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Abstract  

Actinomycin D (Act D) has been used successfully to treat several cancers for 

over 50 years and continues to play a key role in the treatment of paediatric 

tumours. The aim of this thesis was to investigate Act D pharmacokinetic 

variability in children with cancer, alongside in vitro and in vivo drug transporter 

and pharmacogenetic studies.   

The transport of Act D by ABC transporter proteins was investigated in chapter 

2. Growth inhibition and intracellular and cellular efflux assays in MDCKII cells 

demonstrated that Act D was a substrate for ABCB1, ABCC2 and to a lesser 

extent ABCC1. The in vivo relevance of these findings was assessed using 

knockout mouse models in chapter 3. 

Act D pharmacokinetics was investigated in Abcb1a/1b and Abcc2 knockout 

mice. Abcb1a/1b-/- mice had 1.6-fold higher AUC0-6h compared to wild-type 

(WT). Abcc2-/- mice exhibited an Act D AUC0-6h of 76% that seen in WT mice. 

Brain concentrations of Act D were also significantly higher in Abcb1a/1b-/- mice 

compared to WT, although no difference was observed in liver and kidney 

concentrations. These findings suggest that Abcb1a/1b and possibly Abcc2 play 

an important role in Act D pharmacokinetics but have only a minimal impact on 

tissue distribution.  

Following this the pharmacokinetics of Act D in children with cancer was 

investigated. Analysis of pharmacokinetic data from 74 patients showed large 

inter-patient variability in Act D pharmacokinetics. Clearance ranged from 15 – 

341 ml/min and was positively correlated to patient age and body size. A 10-fold 

range in clearance normalised to body surface area was observed, indicating 

that factors other than body size may be involved in determining Act D 

pharmacokinetics.  

Finally, the relevance of ABCB1 and ABCC2 SNPs to Act D pharmacokinetics 

was investigated in 64 patients. Genotyping analysis of 3435C>T and 

2677G>T/A, showed that patients with more than one variant allele in these two 



ii 
 

SNPs had 1.7-fold higher Act D clearance compared to patients who were WT 

at both SNPs (200 versus 115 ml/min/m2, respectively).  

The work presented in this thesis has advanced our understanding of Act D 

pharmacokinetics and the potential factors that influence patient exposure. Act 

D has been confirmed as a substrate for both ABCB1 and ABCC2, and these 

transporters have been shown to influence Act D pharmacokinetics in vivo. 

Patient variability in Act D exposure has been confirmed in a large patient 

cohort, and it has been demonstrated that some of this variability can be 

attributed to ABCB1 genotype.  
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Chapter 1. Introduction 

1.1 Cancer 

1.1.1 Background 

Cancer is a broad term for a wide range of diseases all characterised by 

uncontrolled cell proliferation. Cell proliferation in the body is tightly controlled, 

resulting in cell number homeostasis and maintenance of normal tissue 

structure and function. Cancer occurs when regulation of this vital process is 

lost, as cancer cells have acquired functional capabilities which allow them to 

survive, proliferate and spread outside the control of normal cellular processes.  

The six hallmarks of cancer dictate that cancer cells must be able to: 

 sustain chronic proliferation 

 circumvent growth suppressors 

 activate invasion and metastasis 

 replicate 

 induce angiogenesis 

 avoid apoptosis.  

These acquired hallmarks can be the result of genetic instability, where random 

mutations or chromosome translocations pave the way for tumourigenesis 

(Hanahan and Weinberg, 2000). Recently, this has been expanded to include 

new emerging hallmarks such as deregulating cellular energetics and avoiding 

immune destruction, in addition to enabling characteristics which include 
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genome instability and tumour-promoting inflammation (Hanahan and 

Weinberg, 2011).  

1.1.2 Cancer in adults 

Cancer is predominately a disease of the elderly, with 1/3 of the UK population 

developing some form of cancer during their lifetime. In the UK, 60% of cancer 

cases are in patients older than 65 years, and 1/3 are in patients older than 75 

years. Since the 1970s, the incidence of cancer has steadily increased in males 

by 20% and females by 40%. This increase in cancer incidence has been 

strongly linked to lifestyle choices. For instance in the case of malignant 

melanoma, due to increased sun and UV exposure, or liver cancer, due to poor 

diet and alcohol abuse. According to the most recent CancerStats data from 

Cancer Research UK (Figure 1.1), breast cancer is the most common 

malignancy in females, whilst prostate cancer is the most common in males 

(http://info.cancerresearchuk.org/cancerstats). 
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Figure 1.1. The twenty most common adult cancers in the UK in 2009.  

*Bowel including anus. **4% of all female cancer cases and 3% of all male 

cancer cases are registered without specification of the primary site. 

Modern multimodal approaches to cancer treatment, in addition to increased 

public awareness and earlier detection, have helped to dramatically increase 

the ten-year survival rates of many adult cancers since the 1970s (Figure 1.2). 

Survival to ten years in common cancers such as breast cancer in women has 

increased from 39% to 77%, while prostate cancer survival rates have 

increased from 20% to 69% since 1971. However, the same has not happened 

in some aggressive tumour types such as lung and pancreatic cancer, where 

ten year survival rates remain below 10% 

(http://info.cancerresearchuk.org/cancerstats). 
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Figure 1.2. Ten year survival (%) in adults (15-99 years) in England and 
Wales 1971-2007. 

1.1.3 Paediatric cancer 

Childhood cancer is relatively rare, with only 0.5% of cancer sufferers younger 

than 16 years in western populations. However, while the risk of developing 

some form of cancer during the first 15 years of life is around 1 in 500, 

paediatric cancer remains the leading cause of non-accidental death in children 

in the UK. Despite a rising incidence of paediatric cancers over the last 50 years 

mortality rates have been declining (Figure 1.3), with average 5 year survival 

rates increasing from 30% to 78% 

(http://info.cancerresearchuk.org/cancerstats).  

  

Pancreas
Lung

Oesophagus

Stomach

Brain

Ovary
Leukaemia

Kidney

Colon

Prostate

Bladder

Larynx (males)

Cervix

Uterus
Breast (females)

Hodgkin's lymphoma

Melanoma

Testis

All cancers

Myeloma 

0

10

20

30

40

50

60

70

80

90

100

1971-72

(1)

1980-81

(1)

1990-91

(1)

2007 (2)

P
e

rc
e

n
ta

g
e

 s
u

rv
iv

a
l

Period of diagnosis



5 
 

 

Figure 1.3. Average incidence and mortality rates for all paediatric cancers 
between 1966-2005.  

Cancers seen in the paediatric population are very different to those seen in 

adults, with some of the major adult cancers, such as lung cancers, being 

extremely rare in children. Paediatric cancer classification and incidence are 

shown in Figure 1.4. Leukaemia is by far the most common malignancy in 

childhood (Figure 1.4), accounting for approximately one third of all paediatric 

cancers. Acute Lymphoblastic Leukaemia (ALL) accounts for  79% of childhood 

leukaemia (Pui and Evans, 2006; CancerStats, 2010), and 25% of all paediatric 

cancers (Pui et al., 2004). Acute Myeloid Leukaemia (AML) is the second most 

common type of leukaemia in children, accounting for 15% of leukaemia cases 

in the UK (http://info.cancerresearchuk.org/cancerstats).  
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Figure 1.4. Average number of cases and percentage of new cases of 
childhood cancer. Results are separated by sex and diagnostic group.  

1.2 Cancer Therapy 

1.2.1 Introduction 

Treatment of both adult and paediatric cancers often requires a multidisciplinary 

approach, depending on disease stage and progression. Several types of 

cancer therapy exist, and are usually used in combination as multimodal 

treatment to rid the body of cancerous cells. 

1.2.2 Surgery 

Surgical removal is widely used and is a treatment option for many patients with 

solid tumours. Surgery can be carried out before or after chemotherapy 

depending on the staging of the tumour. In conjunction with chemotherapy, 

surgery is an excellent way of large scale tumour eradication (Stiller and 

Draper, 2005). 
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1.2.3 Radiotherapy 

Radiotherapy uses concentrated ionizing radiation, focused on a particular area, 

to control the development and proliferation of malignant cells. It is commonly 

used in combination with surgery and chemotherapy. Radiotherapy can be used 

pre-surgery to shrink tumour bulk or post-surgery to kill any cells not removed 

by the surgical procedure (Stiller and Draper, 2005). 

1.2.4 Chemotherapy 

In 1942, Louis Goodman and Alfred Gilman investigated the potential for using 

chemical warfare agents as potential cancer therapeutics. Based on 

observations using mice, it was found that nitrogen mustards, similar to those 

used in chemical weapons, caused tumour regression in a non-Hodgkin’s 

lymphoma patient. Towards the end of the 1940s, Sydney Farber investigated 

the effect of folic acid on paediatric patients with ALL, after previous work 

showed that folate deficiency was linked to megaloblastic anaemia (Wills et al., 

1937). Farber discovered that administration of folic acid actually increased the 

rate of leukaemic cell proliferation, leading to the development of the folate 

analogues, aminopterin and amethopterin (Methotrexate), which act to block the 

function of enzymes requiring folate. Remission was induced in children with 

ALL following treatment with antifolates, and normal bone marrow function was 

restored (Farber and Diamond, 1948). From these observations, nitrogen 

mustards and antifolates were discovered as chemotherapeutic agents and 

modern chemotherapy was born (Gilman, 1963). 

Modern day chemotherapy involves the use of a plethora of cytotoxic drugs, 

either on their own, or more frequently in combination, with the aim of achieving 
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complete disease remission and eradication of minimal residual disease, or as 

palliation of symptoms (Chabner and Roberts Jr, 2005; Stiller and Draper, 

2005).  Chemotherapy is adapted for each patient depending on their disease 

state and was the first form of cancer therapy to provide systemic treatment and 

to target unknown distant metastases. Most paediatric cancers respond very 

well to treatment with cytotoxic drugs as they have a very high proliferation rate, 

a property targeted by many cytotoxic agents (Stiller and Draper, 2005). 

1.2.5 Toxicity 

Most conventional cytotoxic agents are usually administered intravenously and 

as such have the potential to reach many cells in the body. As a result of this, 

the use of cytotoxic drugs often causes some toxicity to normal healthy cells. 

Toxicity tends to occur in the normal cells, such as the bone marrow, 

gastrointestinal mucosa and liver cells, that are actively replicating (Stiller and 

Draper, 2005). 

1.2.6 Molecular Targeted Approach 

Until recently chemotherapy was based on a largely non-specific approach to 

treatment, with the use of cytotoxic drugs merely targeting actively dividing 

cells. By far the biggest advance in chemotherapy over the past decade has 

been the shift in focus to cancer specific, targeted therapies. This requires a 

greater understanding of the cancer aetiology at a genetic level, which then 

allows the development of specific drugs. 

A great success story in this area is the identification and use of imatinib, in the 

treatment of Chronic Myeloid Leukaemia (CML). Approximately 95% of patients 

with CML have the Philadelphia chromosome, which is formed by a 
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translocation between chromosome 9 and 22, creating a fused BCR-ABL gene. 

This fused gene causes the expression of a constitutively-active tyrosine kinase 

which results in uncontrolled cell proliferation. A specific inhibitor of the BCR-

ABL fusion protein was developed, targeting the ATP binding site on the ABL 

kinase (Druker et al., 1996). Imatinib and related drugs have transformed the 

treatment of CML, with 5 year survival rates of 89% (Druker et al., 2006). 

Targeted therapy is therefore a way of specifically targeting markers only found 

in tumour cells, allowing significantly increased survival with much less toxicity.  

However, specific molecular targets have not been identified for the majority of 

tumours. 

1.3 Actinomycin D 

1.3.1 The Actinomycins 

In 1940, the Actinomycins became one of the first group of antibiotics isolated 

from Streptomyces by Waksman and Woodruff (Waksman and Woodruff, 

1940). Streptomyces bacteria produce many different actinomycins including, A, 

B, C, D, I, J and X (Vining and Waksman, 1954), all containing an identical 

phenoxazine ring linked to different peptides (Figure 1.5) (Brockmann, 1954; 

Brockmann and Muxfeldt, 1955). Different actinomycins are produced 

depending on the availability of peptide components within the bacteria 

(Roussos and Vining, 1956).  
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Figure 1.5. The chemical structure of Actinomycin D 

1.3.2 Actinomycin D in cancer therapy  

Actinomycins were discovered during the search for novel anti-microbial agents, 

but research was stopped when they were found to be too toxic for use as 

antibiotics (Farber, 1966). It took a further 12 years for the actinomycins to be 

identified as potential anti-tumour agents, when in 1952 Hackmann 

demonstrated the activity of actinomycin C in animal models (Hackmann, 1952; 

Hackmann, 1953) and Ravina et al., observed clinical activity of actinomycin C 

(Ravina et al., 1954). Between 1946 and 1954, Sydney Farber and colleagues 

at Harvard Medical School were working to improve the survival rate of children 

with Wilms tumour. The treatment regimen of choice at that time involved 

surgery to remove the tumour and subsequent radiotherapy to prevent 

reoccurrence, leading to a survival rate of 40%. It was hypothesised that poor 

prognosis patients who presented with metastases, particularly involving the 

Peptide rings

Phenoxazine 

ring
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lung, would benefit from the administration of adjuvant chemotherapy. Over this 

eight year period a wide range of chemotherapeutic agents were tested in 

children with Wilms tumour, but survival rates did not improve.  

Following Hackmann’s demonstration of the activity of actinomycin C, Farber et 

al. found that actinomycin D (Act D) was the most potent anti-cancer agent by 

weight, when treating transplanted mouse tumours (Farber, 1955; Farber et al., 

1956). Act D was first administered to a child with advanced terminal Wilms 

tumour with lung metastases in 1954. Following the death of the child three 

weeks post-Act D treatment, the post-mortem showed that the metastases, 

previously observed in the lungs by X-ray, had either disappeared or become 

collagenous. Act D was also administered to a second child with a ruptured 

Wilms tumour and a large lung metastasis. No evidence of tumour was present 

three months after treatment with Act D and the child was alive without tumour 

after eleven years (Farber, 1966). Early studies also showed Act D could 

potentiate the effects of radiation when given in combination for Wilms tumour 

therapy (D'Angio et al., 1959). 

In 1960, the long-term treatment program for all patients with Wilms tumour was 

modified to include Act D immediately following surgery and radiotherapy. 

Benefits of this change were observed when early patient studies showed 43% 

survival in patients receiving surgery and radiotherapy, compared to 92% 

survival in patients receiving the surgery and radiotherapy plus Act D (Fernbach 

and Martyn, 1966). In addition, Act D improved treatment outcome in patients 

with or without metastases; 89% of patients presenting with no metastases 

were tumour free after 2 years, compared to 40% previously, and 53% of 
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patients presenting with metastases were tumour free after 2 years, compared 

to no patients previously (Farber, 1966).    

Act D is now an integral part of multimodal therapy for many paediatric tumours, 

particularly Wilms tumour, rhabdomyosarcoma (RMS) and Ewing’s sarcoma 

(ES), where it is used in combination with radiotherapy and other anti-cancer 

agents such as vincristine and doxorubicin (Metzger and Dome, 2005). 

Although rarely used, Act D is also effective in some adult cancers, such as 

Gestational trophoblastic disease (Turan et al., 2006) and Ewing’s sarcoma 

arising in adult patients (Ferrari et al., 2010). 

1.3.3 Mechanism of action 

Act D binds to DNA mainly at guanine (Reich et al., 1961; Reich et al., 1962), 

preventing the synthesis of RNA (Goldberg et al., 1962a). It has also been 

shown to inhibit the incorporation of nucleotide triphosphates into DNA, again 

resulting in prevention of RNA synthesis, possibly due to stalling of DNA 

polymerase replication machinery (Goldberg et al., 1962b). Structures of Act D 

bound to DNA reveal that the phenoxazine ring intercalates into DNA between 

the dinucleotide sequence d(pGpX), whilst the peptide subunits lie in the minor 

groove of the DNA helix, forming hydrogen bonds with the opposing guanine 

residues (Sobell, 1985). Another study indicated that Act D binds tightly to 

double-stranded DNA, but poorly to double-stranded RNA, RNA-DNA double-

strands or single–stranded DNA or RNA (Sobell and Jain, 1972). Act D has also 

been shown to induce DNA strand breaks when incubated with purified DNA 

topoisomerase I and II, perhaps revealing another mechanism of action 

(Wassermann et al., 1990).  
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1.3.4 Toxicity 

Act D is a relatively well-tolerated drug with minimal side effects associated with 

its use. However, liver toxicities including veno-occlusive disease (VOD) have 

been reported in 1.7 to 13.5% of cases (Green et al., 1988; Raine et al., 1991; 

Bisogno et al., 1997), with reported incidence rates increasing due to a greater 

awareness of VOD by paediatric oncologists. Occurring suddenly after the 2nd 

or 3rd injection, liver toxicity usually causes fever, anaemia and 

thrombocytopaenia (Davidson and Pritchard, 1998). Liver toxicity and the 

associated development of VOD, whilst undesirable, is usually a reversible 

process. However, VOD associated with multi-organ failure has been reported, 

leading to high death rates (D'Antiga et al., 2001).  

A study carried out in the US has shown age to be a risk factor for VOD. RMS 

patients under 3 years were 11% more likely to develop liver toxicity than 

patients aged 3 and over (Arndt et al., 2004). A more recent study of over 3000 

patients confirmed the higher incidence of Act D related toxicity in patients <1 

year old, and observed that toxicity was more likely to occur early in treatment, 

although the incidence was lower in patients who initially tolerated the treatment 

(Langholz et al., 2011). However, the major contributing risk factor appears to 

be the presence of Wilms tumour. A review in 1995 by Kanwar et al. found that, 

out of 49 patients with chemotherapy-associated VOD related to Act D 

treatment, 41 patients had Wilms tumour (Kanwar et al., 1995). Although 

disease stage is not thought to be a direct risk factor of developing VOD, 

patients with stage III Wilms tumour who require radiotherapy are possibly at a 

greater risk due to the exposure to radiation and the positioning of the liver 

(Bisogno et al., 1997).  
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The National Wilms Tumour Study (NWTS) group in the United States and 

International Society of Paediatric Oncology (SIOP) group in Europe advise 

differing dosing regimens for Act D; the former recommend dosing based on 

body weight, and the latter suggests dosing based on body surface area, thus 

complicating the discussion of dosing of Act D as a risk factor. However studies 

by both clinical research groups have repeatedly changed their advice to 

clinicians, indicating that further information on the pharmacology of Act D is 

required. Recent pharmacokinetic studies have suggested that dosing via body 

surface area is not optimal, with clearance more closely correlated to body 

weight (Veal et al., 2005; Mondick et al., 2008).  

Studies into the late effects of Wilms tumour therapy reveal that secondary 

malignant neoplasms (SMN) and cardiotoxicity are common. SMNs occur in 

between 4.8-7.0% of patients 30 years following treatment and this has been 

linked to radiotherapy and anthracyclines administration (Levitt, 2012). 

Anthracyclines have also been linked with cardiotoxicity, with 25% patients in 

one study having abnormalities during echocardiograms (Sorensen et al., 

1995). However, Act D has not been linked with secondary effects due to 

chemotherapy, with study suggesting that nephrectomy followed by vincristine 

and Act D treatment has helped to minimize late effects of Wilms tumour 

treatment (Bailey et al., 2002). 

1.4 Wilms tumour  

1.4.1 Epidemiology 

Wilms tumour or nephroblastoma is the most common renal malignancy in 

childhood, accounting for 90% of renal tumours in people under the age of 15, 
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and 6% of all paediatric cancers in the UK (CancerStats, 2010). Wilms tumour 

was first described in 1814 by Rance, but received its name after a surgeon, 

Max Wilms, identified nephroblastoma as a mixture of three tissues; blastema, 

stroma and epithelium (Rance, 1814; Wilms, 1899). The term “Wilms tumour” is 

now used loosely to describe a solid tumour arising in the kidney during 

childhood; however in practice these tumours can vary significantly at a 

pathological, clinical and genetic level. 

Wilms tumour usually arises in a single kidney, and a slight predominance is 

seen in girls. Globally, a higher incidence of Wilms tumour is seen in the black 

population, 10 per million, compared to 6-9 per million in the Caucasian 

population, and only 3 per million in East Asian children (Stiller and Parkin, 

1990; Stiller and Draper, 2005; Varan, 2008). Peak incidence occurs between 

1-3 years old in the UK (http://info.cancerresearchuk.org/cancerstats). 

1.4.2 Aetiology 

Wilms tumour arises through three different mechanisms; sporadic formation, 

inherited genetic mutations or in conjunction with congenital abnormalities. 

Around 10-15% of patients with Wilms tumour have a positive family history 

(Ruteshouser et al., 2008).   

Some Wilms tumours arise as the result of hereditary factors. WT1, present in 

around 20% of sporadic tumours (Huff, 1998; Ruteshouser et al., 2008), was 

the first gene thought to be involved in tumourigenesis, identified through 

patients with Wilms-Aniridia-Genitourinary anomalies-mental Retardation 

(WAGR) syndrome who presented with Wilms tumour. WT1 is expressed in the 

kidney, gonads, spleen and mesothelium, where it encodes four zinc finger 
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transcription factors. WT1 plays an important role in normal kidney 

development. It is detected early during embryonic development (Pritchard-

Jones et al., 1990), and Wt1-/- mice fail to develop kidneys (Kreidberg et al., 

1993). WT1 acts as a tumour suppressor gene in Wilms tumour, as patients 

who are heterozygous for germline mutations in WT1 have inactivated WT1 and 

are therefore predisposed to Wilms tumour. However, this is not universally the 

case, as upregulation has been described in some leukaemias, suggesting an 

alternative role as an oncogene (Huff, 2011). 

CTNNB1, the gene encoding β-catenin, responsible for control of the cell 

adhesion and the WNT pathway, is also independently found to be mutated in 

around 15% of Wilms tumours (Koesters et al., 1999). CTNNB1 and WT1 

mutations are found in 79% of Wilms tumours, suggesting the possibility that a 

single mutation in WT1 or CTNNB1 may not be sufficient to initiate 

tumourigenesis (Huff, 2011). This hypothesis was strengthened by the 

generation of mice where Wt1 ablation was induced by tamoxifen treatment, 

following kidney development. In these mice tumourigenesis occurred only in 

combination with upregulation of insulin-like growth factor 2 (Hu et al., 2011), a 

mutation found in patients with Beckwith-Wiedemann syndrome (BWS) who are 

predisposed to Wilms tumour. 

More recently a third gene, WTX, has been shown to be mutated in around 20% 

of Wilms tumours (Rivera et al., 2007; Huff, 2011). WTX function is at present 

unknown, but it is thought to be involved in the WNT pathway, similar to 

CTNNB1, promoting ubiquitination and degradation of β-catenin (Major et al., 

2007). A recent study has shown WTX mutations to be present in 18.4% of 125 

sampled patients, and that the WTX mutation is independent of WT1 status. 
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Defects in WT1, CTNNB1 and WTX account for around 1/3 of the mutations 

found in Wilms tumour patients (Ruteshouser et al., 2008; Huff, 2011).  

Around 10% of Wilms tumour cases occur in conjunction with congenital 

abnormalities (Narod et al., 1997). Wilms tumour occurs in around 4-5% of 

patients with Beckwith-Wiedemann Syndrome (Porteus et al., 2000) with a 

chromosomal defect occurring at 11p15.5. A second abnormality, WAGR 

syndrome is associated with a chromosomal deletion at 11p13, and patients 

suffering from WAGR have a 30% risk of Wilms tumour (Fischbach et al., 2005). 

Denys-Drash Syndrome is associated with a defect on the WT1 gene 

(Büyükpamukçu et al., 1992). 

1.4.3 Staging 

Two major staging systems are in place for Wilms tumour, NWTS in North 

America and SIOP in Europe (Figure 1.1). NWTS favours surgery and staging 

before chemotherapy, whereas SIOP advise initial chemotherapy followed by 

surgery. 

  



18 
 

Stage SIOP (after chemotherapy) NWTS  (before chemotherapy) 

I - Tumour contained in the kidney 

- Protrusion or bulging allowed into 
pelvic/ureter systems but infiltrations 
not allowed 

- Vessels of renal sinus not involved, 
but intrarenal vessels may be. 

- Tumour contained in the kidney 

- Total removal 

- Vessels of renal sinus not involved 
beyond 2mm 

- Rupture does not occur during removal 

II - Tumour extends outside of kidney 

- Total removal 

- Capsule, adjacent tissues, renal 
sinus and renal vessels can be 
involved 

- Tumour extends outside of kidney 

- Total removal 

- Local spillage and intrarenal vessel 
involvement allowed 

III - intra-abdominal tumour 

- incomplete surgical removal 

- renal hilus, lymph, ureteral and 
peritoneal involvement 

- peritoneal metastases 

- intra-abdominal tumour 

- incomplete surgical removal 

- renal hilus, abdominal lymph nodes 
and peritoneal involvement 

IV - distant metastases i.e. lung, liver, 
bones & brain 

- distant metastases i.e. lung, liver, 
bones & brain 

V - Bilateral tumours at diagnosis - Bilateral tumours at diagnosis 

Table 1.1. Staging systems in use in North America (NWTS) and Europe 
(SIOP).  

Adapted from (Kaste et al., 2007; Bhatnagar, 2009). 

1.4.4 Treatment 

Early treatment of Wilms tumour involved complete surgical resection on 

presentation and carried high death rates. The first planned surgery to remove 

Wilms tumour in 1871 was performed on an adult patient and the first 

nephrectomy on a child with Wilms tumour was in 1877. Radiation was added to 

standard therapy following evidence that pre-surgery radiotherapy helped to 

reduce surgery-associated deaths, and post-operatively increase cure rates 

(Friedlander, 1916; Prather and Friedman, 1936; Farber, 1966). As previously 

mentioned, in the mid-1950s Farber et al. recognised the importance of 

including a chemotherapeutic agent in the Wilms tumour treatment regimen, 
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and tested many agents until Act D was shown to greatly increase the survival 

of Wilms tumour patients (Farber, 1966). 

Modern treatment of Wilms tumour involves a multidisciplinary approach, 

incorporating chemotherapy, surgery and radiotherapy, with cure rates of 

almost 90% (Metzger and Dome, 2005). Both SIOP and the NWTS have carried 

out numerous clinical trials to determine the optimal treatment regimen for 

Wilms tumour, however, their recommendations differ substantially. SIOP have 

carried out six clinical trials between 1971 and 2001 (Table 1.2). The SIOP 

treatment regimen is based entirely on pre-operative chemotherapy to reduce 

tumour mass with the aim of reducing tumour rupture during surgery. In North 

America, NWTS have performed five clinical trials (Table 1.3), but have not 

considered pre-operative chemotherapy.  
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SIOP 
trail No. 

Date No. of 
patients 

Aims Conclusions Ref. 

SIOP 1 1971-
1974 

398 - benefits of pre-
operative radiotherapy 

- duration of post-
operative 
chemotherapy 

- pre-operative 
chemotherapy reduces 
tumour ruptures during 
surgery 

- no benefit to prolonged 
post-operative surgery 

(Lemerle 
et al., 
1976) 

SIOP 2 1974-
1976 

138 - confirm the findings of  
SIOP 1 

- pre-operative 
chemotherapy benefits 
confirmed 

- post-operative 
chemotherapy should be 
no longer than 6 months 

(Oncology, 
2001) 

SIOP 5 1977-
1979 

433 - compare pre-operative 
radiotherapy vs. 
chemotherapy 

- chemotherapy is as 
good as radiotherapy at 
avoiding tumour rupture 
during surgery 

(Lemerle 
et al., 
1983) 

SIOP 6 1980-
1987 

1095 - duration of stage I 
treatment 

- need for anthracycline 
in post-operative 
chemotherapy 

- need for radiotherapy 
in stage II –ve nodes 

- post-operative 
chemotherapy -18 weeks 
as effective as 38 weeks 
(92% vs. 88% 2hr DFS) 

- stage II +ve nodes/III – 
anthracycline treatment 
increased DFS (74% vs. 
49%) 

- stage II –ve nodes - 
relapses seen in non-
irradiated group 

(Tournade 
et al., 
1993) 

SIOP 9 1987-
1991 

852 - optimal pre-operative 
chemotherapy duration 
in localised tumours 

- 4 weeks as good as 8 
weeks 

- 1% vs. 3% rupture rate 
at surgery 

- 84% vs. 83% 2yr EFS 

- 92% vs. 87% 5yr 
survival rate 

(Tournade 
et al., 
2001) 

SIOP 
93-01 

1993- 
1999 

1104 - optimal post-operative 
chemotherapy length 

- 4 weeks as good as 18 
weeks in stage I tumours 

(Reinhard 
et al., 
2004) 

Abbreviations- DFS; disease free survival, EFS; event free survival, +ve; positive, -ve; negative, 

Table 1.2. A summary of the aims and conclusions of all SIOP WT clinical 
trials published to date.  
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NWTS 
trial No. 

Date No. of 
patients 

Aims Conclusions Ref. 

NWTS-1 1969-
1975 

741 - elimination of radiotherapy 
in low risk patients 

- is the combination of Act 
D/VCR required? 

- examining tumour 
histology 

- Radiotherapy not given 
to low risk patients 

- combination therapy 
better than single agent 

- FH and UH histologic 
classifications 

(Sutow 
et al., 
1982) 

NWTS-2 1975-
1979 

950 - reduce treatment in low 
risk patients 

- will an anthracycline 
improve outcome 

- 50% dose for children <12 
months 

- 6 months as good as15 
months 

- anthracycline improved 
outcome for stage II and 
III patients 

- 50% dosage in children 
<12 months is safe 

- prognosis for FH is 
good, UH is bad 

- new staging system 
introducing lymph nodes 

(Grundy 
et al., 
1989) 

NWTS-3 1979-
1986 

2496 - study histology vs. 
outcome 

- refine treatment to 
staging, prevent over-
treatment 

- late survivor studies 

- patients must be divided 
into FH and UH groups 

- Stage I FH – no 
radiotherapy 

- Stage III FH – Act 
D/VCR/DOX + RT 

- Stage II-IV UH -  Act 
D/VCR/DOX/C 

(Grundy 
et al., 
1989) 

NWTS-4 1986-
1995 

3335 - reduce cost by decreasing 
clinical visits and drug 
treatments 

- Pulse intensive method 
created 

- cost decreased 

http://ww
w.nwtsg.
org/ 
about/cli
nical_tria
ls.html 

NWTS-5 1995-
2002 

3031 - increase survival rate in 
children with FH 

- link histology to prognosis 
and outcome 

 

- histology can be a factor 
in patients with FH 

- surgery alone may be 
adequate in children <2 
years 

- Anthracycline could 
benefit children with lung 
metastases. 

(Dome et 
al., 2006) 

Abbreviations – VCR; Vincristine, DOX; Doxorubicin, C; Cyclophosphamide, RT; radiotherapy, UH; 
unfavourable histology, FH; favourable histology 

Table 1.3. A summary of the aims and conclusions of all NWTS clinical 
trials published to date. 
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A major benefit to post-operative chemotherapy is the ability to stage a tumour 

before administering chemotherapy, preventing patients with benign tumours 

from being over-treated and ensuring that patients with high-risk Wilms tumour 

are treated adequately. Patients treated on SIOP protocols receive 

chemotherapy before histological examination of their tumours, therefore some 

patients may receive chemotherapy unnecessarily. However, the potential 

reduction in tumour size following pre-operative chemotherapy allows for 

simpler surgery with a lower risk of tumour rupture and the possibility of sparing 

kidney tissue. Current treatment protocols for both SIOP and NWTS are 

summarised in Table 1.4. Although protocols by SIOP and NWTS are different, 

the two treatment plans report equivalent overall survival rates (Bhatnagar, 

2009).  
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Stage 

SIOP 

NWTS 
Pre-operative Post-operative (after 

staging) 

Localised 4 weeks Act 
D/VCR 

  

Metastatic 6 weeks Act 
D/VCR/EPI 

  

I  Low grade – None 

Int grade – 18 weeks Act 
D/VCR 

FH/UH – 18 weeks Act D/VCR 

II  -ve lymph nodes – 28 
weeks Act D/VCR/EPI 

+ve lymph nodes - 28 
weeks Act D/VCR/EPI + 
RT tumour bed 

FH - 18 weeks Act D/VCR 

UH – 24 weeks Act D/VCR/DOX/C/ET 
+ RT tumour bed and involved sites 

III  +ve lymph nodes - 28 
weeks Act D/VCR/EPI + 
RT tumour bed 

High grade – 34 weeks 
EPI/IF/ET/CARBO + RT 

FH - 24 weeks Act D/VCR/DOX/ + RT 
tumour bed and involved sites 

UH – 24 weeks Act D/VCR/DOX/C/ET 
+ RT tumour bed and involved sites 

IV  Treat as per local stage + 
RT and excision of 
metastases 

FH - 24 weeks Act D/VCR/DOX/ + RT 
tumour bed and involved sites 

UH – 24 weeks Act D/VCR/DOX/C/ET 
+ RT tumour bed and involved sites 

Abbreviations - VCR; Vincristine, EPI; Epirubicin, ET; Etoposide, RT; radiotherapy, CARBO; 
Carboplatin, DOX; Doxorubicin, C; Cyclophosphamide; IF, Ifosfamide; Int, Intermediate; +ve, 
positive; -ve, negative;  

Table 1.4. Treatment regimens advised by SIOP and NWTS (Bhatnagar, 
2009).  

1.5 Rhabdomyosarcoma (RMS) 

1.5.1 Epidemiology 

RMS is the most common soft tissue sarcoma of childhood; classed as a small, 

round, blue-cell tumour (Dagher and Helman, 1999). In the UK, RMS has an 

incidence rate of around 16 per million, with approximately 80% of those 

occurring from birth to 9 years old. This makes RMS, the third most common 
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extra-cranial paediatric solid tumour after neuroblastoma and Wilms tumour 

(Stiller and Draper, 2005). 

RMS tumours are derived from mesenchymal cells, which mature into 

numerous cells throughout the body including muscle, fibrous structures and fat 

(Helman and Meltzer, 2003; Garcia-Castro et al., 2008). As such possible 

primary tumour sites for RMS are numerous, with head and neck (40%), 

genitourinary tract (20%), and the extremities (20%) being the most common 

(Dagher and Helman, 1999).  

1.5.2 Aetiology 

RMS can occur sporadically, or as a result of a germline familial mutation such 

as Li-Fraumeni syndrome associated with a p53 mutation, or with BWS (Malkin 

et al., 1990; Li et al., 1997). 

RMS has two main subtypes; Alveolar RMS (A-RMS) accounting for 20%, 

having an alveolar like appearance, and Embryonal RMS (E-RMS) accounting 

for 80%, consisting of spindle cells (Stiller and Draper, 2005). A-RMS cells have 

been found to carry chromosomal translocations creating fusion oncogenes. 

The most frequently seen translocation t(2;13)(q35;q14) creates a PAX3-

FOXO1 fusion gene (Galili et al., 1993; Shapiro et al., 1993) or the less 

common variant t(1;13)(p36;q14) creates a PAX7-FOXO1 fusion gene (Davis et 

al., 1994). Both fuse a DNA binding domain (PAX) with a transactivating domain 

(FOXO1), thought to contribute to tumourigenesis (Linardic, 2008). In contrast 

E-RMS has been shown to occur through loss of heterozygosity (LOH) at 

11p15.5, resulting in a loss of maternal DNA, but a duplication of paternal DNA 

(Visser et al., 1997). However, translocations in patients with E-RMS have more 
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recently been reported, with the majority again involving chromosome 2 

(Pressey et al., 2008).  

1.5.3 Staging and grouping 

The Intergroup Rhabdomyosarcoma Study Group (IRSG) employs separate 

grouping and staging systems. Patients are separated into groups following an 

initial surgical procedure, depending on the extent of remaining disease before 

chemotherapy and radiotherapy (Table 1.5).  

Group Definition 

I - Localised 

- completely removed 

- clear margins 

- no lymph node involvement 

II - Localised 

- Mostly removed 

- microscopically involved margins 

- microscopically involved lymph nodes, mostly removed  

III - Localised 

- incomplete removal 

IV - Distant metastases at diagnosis 

Table 1.5. The IRSG pre-chemotherapy grouping system for RMS patients 

The staging system is then used to separate patients based on primary tumour 

site, lymph node involvement and presence of metastases (Table 1.6).  
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Stage Primary tumour site Tumour size (cm) Lymph nodes Distant 
metastases 

1 - Orbit 

- head/neck (non-PM) 

- GU (non-
bladder/prostate) 

- biliary tract 

Any size Yes/No No 

2 Any other site ≤ 5  No No 

3 Any other site ≤ 5 

> 5 

Yes 

Yes/No 

No 

4 All sites Any size Yes/No Yes 

Abbreviations- PM; Parameningeal, GU; genito-urinary, 

Table 1.6. The IRSG staging system for RMS patients 

1.5.4 Treatment 

Before chemotherapy became a standard part of the multidisciplinary approach 

to treat RMS, surgery represented the sole treatment option. Current protocols 

are the result of four randomised clinical trials (IRSI-IV) performed by the IRSG. 

Following surgery and staging, the optimal combination of chemotherapeutic 

agents and radiotherapy was determined. A summary of these clinical trials and 

their findings can be found in Table 1.7.  

Chemotherapy is usually given as a combination of vincristine, Act D and 

cyclophosphamide (VAC), but for low-risk sub-types vincristine and Act D (VA) 

alone are used. Chemotherapy can be given to shrink the tumour size before 

surgery and post-operatively. Radiation is used to treat areas where surgical 

removal is difficult, such as the head and neck, and to control the proliferation of 

any remaining cancerous cells post-surgery. Patients with RMS will undergo 

surgical removal of the tumour if appropriate, as determined by stage, with the 

aim of minimising mutilation (Dagher and Helman, 1999). Cure rates for RMS 
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following IRS-IV are high, with an average of 70% of patients surviving to 5 

years (Crist et al., 2001), compared to 55% at the start of IRS-I (Maurer et al., 

1988; Hayes-Jordan and Andrassy, 2009). 
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IRS trial No. Date No. of 
Patients 

Aims Conclusions Ref. 

I 1972-
1978 

686 - RT clinical benefit 
in Group I  

- Clinical benefit of C 
in Group II 

- Clinical benefit of 
DOX for Group III/IV 
patients    

- RT does not benefit 
Group I patients 

- C does not benefit 
Group II patients 

- DOX does not 
benefit Group III 
patients 

- 55% overall 5 year 
survival 

- survival after relapse 
12% after 2 years 

(Maurer 
et al., 
1988) 

II 1978-
1984 

999 - C clinical benefit in 
Group I/II 

- DOX clinical benefit 
in Group III/IV     

- C gives no clinical 
benefit in Group I and 
II patients 

- DOX gives no 
clinical benefit 

- 63% overall 5 year 
survival (up 8% from 
IRS-I) 

(Maurer 
et al., 
1993) 

III 1984-
1991 

1062 - Risk-based 
treatment 

- Is 1 year therapy 
safe for group I/II 

- DOX clinical benefit 
in Group II 

- CIS and ET benefit 
in Group III/IV 

 

    

- patients should be 
treated by risk 
stratification 

- 1 year therapy safe 
for low risk patients 

- DOX gives no 
benefit to low risk 
patients 

- intensive regimens 
better than pulsed 
regimens of IRS-II 

(Crist et 
al., 
1995) 

IV 1987-
1997 

883 - combinations of 
three drug therapies 
tested 

- VAC, VAI or VIE 

- All combinations 
equally effective in 
patients with 
local/regional disease 

- VA and RT gives 
cure in Group II 
patients 

(Crist et 
al., 
2001) 

V 1997-
ongoing 

 - to test the benefit of 
T or I in therapy for 
low risk patients 

- not completed (Raney 
et al., 
2001) 

Abbreviations – VCR; Vincristine, DOX; Doxorubicin, C; Cyclophosphamide, VAC; 
vincristine/Act D/cyclophosphamide, VAI; vincristine/Act D/ifosfamide, VIE; 
vincristine/ifosfamide/etoposide, VA; vincristine/Act D, RT; radiotherapy, CIS; Cisplatin, 
T;topotecan, I; ifosfamide 

Table 1.7. A summary of the aims and conclusions of IRS-I-IV clinical 
trials. 
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1.6 Ewing’s sarcoma 

1.6.1 Epidemiology 

ES is an aggressive sarcoma, predominately of the bone and to some extent 

soft tissue. ES has an incidence of 1-3 per million in western populations, 

making it the second most common primary bone tumour in childhood and 

adolescence (Janknecht, 2005; Potratz et al., 2012). The median age for 

diagnosis of ES is 14-15 years, however 20% of patients are over 20 years of 

age, and diagnosis is not uncommon in patients over 30 years (Cotterill et al., 

2000; Paulussen et al., 2001).  ES has a slight predominance in males and is 

found in Caucasian patients more often than in patients of Asian or African 

descent (Worch et al., 2010). In children and adolescents the primary site of ES 

is commonly in the pelvis, chest wall and limbs, whereas in adults the presence 

of extraskeletal soft tissue ES is common (Applebaum et al., 2011).  

1.6.2 Aetiology 

ES is a small round blue cell malignancy with >90% of ES cells positive for the 

CD99 surface antigen. ES cancer cells have been found to commonly harbour 

chromosome translocations, which are responsible for uncontrolled cell 

proliferation and cell division (Potratz et al., 2012). The EWS-FLI1 translocation 

is found in 85% of ES patients (Delattre et al., 1994). This involves the 

transactivation domain of EWSR1 gene on chromosome 22 (EWS), and a DNA-

binding domain from the ETS transcription factor family on chromosome 11 

(FLI1), to create the EWS-FLI1 aberrantly active transcription factor, promoting 

transcription and cell division. In the 15% of patients that do not contain the 

EWS-FLI1 translocation, 10% carry translocations involving EWS and Ets 

Related Gene (ERG), and translocations involving Ets translocation variant 1 
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(ETV1), Ets translocation variant 4 (ETV4) or Ets oncogene family (FEV) occur 

rarely, all creating aberrant transcription factors (Janknecht, 2005).  

1.6.3 Treatment 

VAC chemotherapy was added to the treatment protocol for ES in the 1970s, 

before which surgery and radiotherapy represented the standard approach 

(Jaffe et al., 1976). The introduction of multiple chemotherapeutic agents to the 

treatment protocol has resulted in an increase in 5-year survival rates from 50% 

to 70% (Potratz et al., 2012). The on-going clinical trials Euro-EWING 99 

(Figure 1.6) and EWING 2008 dictate the treatment regimen for patients with 

ES. Patients are grouped by risk, determined by metastatic state and successful 

tumour removal following surgery. EWING 2008 addresses the issue of whether 

high dose chemotherapy in high risk patients affects outcome 

(ClinicalTrials.gov, 2009).  
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Figure 1.6. The protocol for ES patients enrolled on the current EURO-
EWING 99 clinical trial.  

All patients receive 6 cycles of VIDE (vincristine, ifosfamide, doxorubicin and 

etoposide), followed by surgery and one further cycle of VAI (vincristine, 

actinomycin D, and ifosfamide). Patients are then grouped (see below) and 

randomised depending on their grouping. Abbreviations - G1; Group 1 – 

successful treatment, not spread, G2; Group 2 – treatment not fully 

successful, total tumour removal not possible, G3; Group 3 – unsuccessful 

treatment and lung metastases, G4; unsuccessful treatment and metastases 

in lungs and other places, RT; radiotherapy 

(http://cancerhelp.cancerresearchuk.org/trials). 

1.7 Pharmacokinetics and drug disposition 

1.7.1 Introduction 

Pharmacokinetics can be described in simple terms as the study of what the 

body does to the drug. Four processes govern the fate of a drug within the 

body; Absorption, Distribution, Metabolism and Excretion (ADME) (Figure 1.7). 
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Individual

treatment
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Understanding these four processes can be very important in designing dosing 

regimens for patients. 

Chemotherapy is an extremely important and well used tool in modern cancer 

care. However, not all patients fully benefit from chemotherapy, with both under 

and over-treatment, a common observation in cancer therapy. Pharmacokinetic 

studies provide an important insight into how patients are responding to 

treatment, and whether current treatment is appropriate. Pharmacokinetic 

models which take into account these processes are used to interpret 

pharmacokinetic data more easily, providing a useful way of characterising 

individual drug pharmacokinetics.  
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Figure 1.7. The relationship between the four processes influencing drug 
pharmacokinetics. Adapted from 
(http://www.diseasespictures.com/circulatory-system/).  

Pharmacokinetics is the relationship between drug absorption, distribution 

around the body metabolism and subsequent drug excretion. All these 

processes govern the plasma concentration-time profile and thus drug 

response.   

Clinical trials involving the collection of pharmacokinetic data are therefore 

important as through these potential variations between patients can be seen. 

Information relating to differences in pharmacokinetics between patients can be 

used to identify more appropriate dosing regimens for individual patients 

(Gibson and Skett, 2001; Katzung, 2007). 

1.7.2 Pharmacokinetics of anti-cancer drugs 

The standard dosage regimen for many drugs may not be adequate for all 

patients. Pharmacokinetic studies allow individual exposures to externally 

Absorption

Distribution and 

Metabolism

Excretion

Response
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administered compounds in patients to be investigated. Observed variations 

can be correlated to patient characteristics such as age and size and patient 

covariates such as glomerular filtration rate (GFR) and toxicity. Tailoring 

treatment based on pharmacokinetic studies has been shown to improve patient 

outcome for a number of important drugs. 

Carboplatin and methotrexate are both good examples of anti-cancer drugs 

where treatment can be tailored based on pharmacokinetics, resulting in more 

patients treated within a specific therapeutic range. Individualised therapy for 

carboplatin has been extensively researched. Large inter-individual variation in 

carboplatin pharmacokinetics had been observed, suggesting that therapy could 

be improved by a more individualised approach to dosing (Newell et al., 1987; 

Madden et al., 1992; Murry et al., 1993). The majority of carboplatin is cleared 

via the kidneys, and a direct correlation was seen between carboplatin 

clearance and renal function (Figure 1.8), resulting in therapy being adapted for 

the GFR of the patient (Harland et al., 1984; Calvert et al., 1985; Calvert et al., 

1989; Sorensen et al., 1992; Newell et al., 1993; Thomas et al., 2000). 
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Figure 1.8. Carboplatin clearance in relation to (A) GFR and (B) body 
surface area (Calvert et al., 1989).  

Carboplatin clearance was shown to correlate better with pre-treatment GFR 

(r=0.875), compared to body surface area (r=0.312). 

In children with ALL, a 3 to 10-fold difference in clearance of anti-cancer drugs 

has been reported (Rodman et al., 1993). For example, in patients with ALL 

treated on the same conventional methotrexate (MTX) treatment regimen, low 

plasma concentrations and therefore a high rate of systemic clearance were 

associated with poor outcome (Evans et al., 1986). To combat this varied 

outcome with conventional therapy, a clinical trial was conducted commencing 

in 1988, with the aim of dosing patients on the basis of their systemic clearance 

of the administered anti-cancer agents, rather than by body size. Previously, it 

had been demonstrated that steady-state plasma concentrations below 16µM 

during a continuous infusion of MTX were associated with an increased rate of 

relapse (Evans et al., 1986), therefore 20µM (25% above 16µM) was set as the 

lowest acceptable plasma concentration. For those patients randomised to the 

individualised therapy arm, plasma concentrations were taken at 1 and 6h to 

A B
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determine the individual rate of clearance and steady-state MTX concentration. 

If required, the drug infusion rate was altered to increase or decrease overall 

MTX exposure (target range 580-950µM.h), but the steady-state plasma 

concentration was not allowed to be less than 20µM. In the short-term, more 

patients treated with the individualised approach were within the target 

compared to those on conventional therapy (p<0.001), with only 7.7% of 

patients outside the target range. Overall, patients on individualised treatment 

required fewer courses of chemotherapy, had lower systemic toxicity and the 5 

year survival in B-lineage patients increased from 66% to 76% (Figure 

1.9)(Evans et al., 1998).  

Based on these and other examples, pharmacokinetic individualisation offers 

the potential to improve therapy with other drugs used in cancer treatment. 

 

Figure 1.9. Continuous complete remission Kaplan-Meier curves 
comparing individualised vs. conventional administration of methotrexate. 

Individualised dosing based on systemic clearance improved 5 year survival 

rates to 76 ± 6% compared to 66 ± 7% using conventional therapy (Evans et 

al., 1998). 
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1.7.3 Pharmacokinetics of actinomycin D 

Although Act D was discovered over 70 years ago, and has been used as an 

anti-cancer agent for over 50 years, very few studies investigating the 

pharmacokinetic of Act D have been published. In 1975, Tattersall et al. carried 

out the first pharmacokinetic analysis using 3H-labelled Act D administered to 3 

patients. This study showed substantial accumulation of Act D in the bone 

marrow, tumour samples and nucleated cells. No accumulation was seen in the 

brain and after 5 days 86% of the total Act D remained unmetabolised. In one 

patient it was demonstrated that only 34.6% of the administered Act D was 

found to be excreted after 5 days; 20.3% was due to renal clearance and 14.3% 

was due to hepatic clearance (Tattersall et al., 1975). Tritiated-Act D was also 

administered intravenously to rat, monkey and dog animal models, with rapid 

depletion from the plasma and no significant metabolism observed. Total 

excretion was 42.6%, 31.0% and 16.9% in rat, monkey and dogs respectively, 

with on average 1.3-fold more elimination of the kidneys than liver (Galbraith 

and Mellett, 1975).  

In 1977 a pharmacokinetic model for Act D in the beagle dog was published, 

again using 3H-labelled Act D. A flow-limited model was presented, suggesting 

that Act D distribution was limited by blood flow rate rather than cell 

permeability, assuming that the concentration of Act D in tissues is in 

equilibrium with that in the blood (Lutz et al., 1977). 

However, using radioimmunoassay (RIA) and an anti-Act D antibody, Brothman 

et al., reported a large difference in plasma half-life between dogs (0.78min) 

and humans (1.78min). These data indicated the need for more investigations in 

patients, rather than relying on animal pharmacokinetic models (Brothman et 
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al., 1982). Further assay development led to an anti-Act D.BSA conjugate being 

developed for use with an ELISA (Fujiwara et al., 1988). 

However, a more specific assay was needed which was suitable for Act D 

quantification in clinical samples. All previous methods were unsuitable, either 

due to a lack of specificity and/or the use of a radiolabelled drug in patients. In 

2003, Veal et al. published the first method suitable for quantification of Act D in 

human plasma, using liquid chromatography-mass spectrometry (LC/MS). The 

LC/MS approach provided a robust, specific and sensitive method for studying 

clinical samples.  

Development of this LC/MS method was initiated due to concerns expressed by 

clinicians who desired more useful information regarding the pharmacology of 

Act D and its potential impact on toxicity in patients (Veal et al., 2003b). Using 

this assay, a study of 31 patients under the age of 21 years, who received Act D 

as part of their standard treatment, was published in 2005. Initial plasma 

concentration data from these 31 patients indicated the extent of inter-patient 

variation in Act D concentrations in plasma (Figure 1.10). The pharmacokinetic 

variability observed between patients strongly indicated that current surface-

area based dosing regimens are not optimal, with some patients having 

extremely high Act D exposures and others having markedly lower plasma 

levels.  
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Figure 1.10. Act D plasma concentration-time profiles for 31 paediatric 
patients.  

Blood samples were taken were between 15mins and 24h. Each individual 

line represents pharmacokinetic data from an individual patient (Veal et al., 

2005).     

These published data suggested that Act D exposure is inversely related to 

weight, with lower exposures generally observed in larger children, a finding 

that may be connected with the practice of dose capping Act D at a maximum 

dose of 2mg. Despite the limited number of patients, these data also suggested 

that higher plasma concentrations may be associated with a higher risk of 

toxicity (Veal et al., 2005). Using these data, a three-compartment 

pharmacokinetic model with first order elimination was proposed. Age and 

gender had no effect on Act D pharmacokinetics in patients, and body weight 

was the best descriptor of body size (Mondick et al., 2008). This initial study and 

the proposed model were the starting point for further investigation of Act D 
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pharmacology; continuing recruitment in a larger population and to investigate 

other sources of variability. 

1.8 ATP-binding cassette transporters 

1.8.1 Introduction 

ATP-binding cassette (ABC) transporters were discovered and extensively 

studied during the 1970s. Chinese hamster ovary cells that had been 

continuously treated with low, non-toxic concentrations of Act D conferred 

resistance to Act D and cross-resistance to multiple agents. It was noted that 

resistance was inversely proportional to the level of radiolabelled drug present 

in the cell nucleus. Therefore resistance appeared to be due to lower 

intracellular concentrations of Act D (Biedler and Riehm, 1970). Later, it was 

shown that accumulation of daunorubicin in cells was higher when co-incubated 

with vincristine and vinblastine, perhaps indicating resistance via the same 

saturable efflux mechanism (Dano, 1973). Subsequent work demonstrated that 

resistance in Chinese hamster ovary cells was due to a membrane protein 

alteration at the cell surface, which was not present in the wild-type (WT) cells; 

this 170kDa membrane component was termed “P-glycoprotein” (P-gp) (Juliano 

and Ling, 1976). Expression of P-gp was confirmed in mammalian cell lines 

resistant to colchicine, anthracyclines such as daunorubicin and cytotoxic 

antibiotics including Act D (Kartner et al., 1983a).  

The gene responsible for P-gp was first isolated from human cancer cell lines in 

1986 (Roninson et al., 1986), with the 4.5kb mRNA coding for P-gp found to be 

upregulated in human cancer the same year (Shen et al., 1986). Since the 

discovery of P-gp, subsequently known as MDR1 or ABCB1, 48 further ABC 
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transport proteins have been identified in humans, and have been divided into 

seven subfamilies, designated A-G (Dean et al., 2001; Dean, 2002), based on 

structure and sequence homology; of these transport proteins ABCB1, ABCC1 

and ABCC2 (MRP1 and MRP2) and ABCG2 (BCRP) are the most extensively 

characterised. ABCB1 has twelve transmembrane regions, with two ATP 

binding domains, resulting in a transmembrane protein capable of exporting a 

wide range of hydrophobic substances against high concentration gradients 

(Chen et al., 1986; Ambudkar et al., 1999). Two mechanisms of action for ligand 

efflux have been proposed; these are detailed in Figure 1.11.  
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Figure 1.11. The two proposed transport cycles of ABCB1. 

(A) Model proposing ATP binding causes a conformational change, causing 

ligand efflux. Subsequent ATP hydrolysis and phosphate release causes 

transporter reset. (B) Model proposing hydrolysis of one ATP molecule 

causes ligand efflux. Binding and hydrolysis of a second ATP molecule 

causes transporter resetting.  Red rectangles; transmembrane substrate 

binding domain, Blue rectangles; ATP binding domains. Adapted from 

(Ambudkar et al., 2006). 

1.8.2 ABC transporters in normal tissues 

Using a combination of mRNA and immunohistochemistry techniques, 

endogenous P-gp expression has been confirmed at many sites such as the 

liver, kidney and intestines and indeed throughout the body  (Fojo et al., 1987; 

Thiebaut et al., 1987). It is now recognised that ABC transport proteins have a 

vital role to play in removing substances from the body. ABCB1, ABCC2 and 
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ABCG2 are all present at the apical membrane of hepatocytes and proximal 

tubule cells in the liver and kidneys, where they are thought to contribute to the 

elimination of substrates via the bile and urine (Figure 1.12) (Thiebaut et al., 

1987; Ho and Kim, 2005). These transporters are also present at the apical 

membrane of enterocytes, where ABCB1 in particular has been shown to 

prevent uptake of substrates via the intestines (Lown et al., 1997). ABCB1, 

ABCC2 and ABCG2 are also found at many important “sanctuary sites” such as 

blood-brain, blood-testis, and blood-placenta barriers (Tatsuta et al., 1992; 

Melaine et al., 2002; Vahakangas and Myllynen, 2009). In contrast, ABCC1 is 

present at the basolateral membrane of hepatocytes and proximal tubular cells, 

facilitating the return of compounds to the blood (Borst and Elferink, 2002). 

Thus, ABC transporters have pivotal physiological roles, actively protecting the 

body from harmful exogenous compounds. Full expression details and notable 

transporter substrates can be seen in Table 1.8. 
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Figure 1.12. Location of important transport proteins in the liver (A) and 
kidneys (B).  

In both the liver and kidney, ABCB1, ABCC2 and ABCG2 are present at the 

apical membrane actively removing substrates from the hepatocytes for 

biliary excretion and from the proximal tubular cells for urinary excretion. In 

addition, ABCC1 and ABCC3 transports substrates back into the blood 

stream, working against import transporters such as OAT1 and OAT2. 

ABCC4 is present at the basolateral membrane in hepatocytes, and the 

apical membrane in proximal tubular cells. Adapted from (Ho and Kim, 2005). 
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Transporter Tissue 
distribution 

Non-chemotherapy 
substrates 

Cancer 
chemotherapy 
substrates 

Ref. 

ABCB1 Liver, kidney, 
intestine, blood-
brain, blood-testis 
and blood-placenta 
barrier 

Hydrophobic, neutral 
and cationic organic 
compounds. Common 
drugs. 

Anthracyclines, 
actinomycin D, 
etoposide, 
vincristine, 
vinblastine, 
imatinib 

(Biedler and 
Riehm, 
1970; Dano, 
1973; 
Fairchild et 
al., 1987; 
Sehested et 
al., 1992; 
Mahon et 
al., 2003) 

ABCC1 All tissues Glutathione and other 
conjugates, 
leukotriene C4, 
bilirubin conjugates 

Anthracyclines, 
vincristine, 
methotrexate 

(Cole et al., 
1992; Leier 
et al., 1994; 
Jedlitschky 
et al., 1997; 
Zhang et al., 
2002; Rigato 
et al., 2004) 

ABCC2 Liver, kidney, 
intestine, 
pancreas, blood-
brain barrier 

As ABCC1 but 
preference for 
bilirubin conjugates. 
Non bile-salts organic 
anions. 

Doxorubicin, 
vincristine, 
cisplatin, SN-38 

(Taniguchi 
et al., 1996; 
Chu et al., 
1997b; 
Jedlitschky 
et al., 1997; 
Cui et al., 
1999; 
Faneyte et 
al., 2004) 

ABCG2 Placenta, intestine, 
breast, liver,  

 Anthracyclines 
mitoxantrone, 
topotecan,  

(Schellens 
et al., 2000; 
Robey et al., 
2003) 

Table 1.8. Tissue distribution and selected transporter substrates for 
ABCB1, ABCC1, ABCC2 and ABCG2 specific to cancer.  

1.8.3 Transport of chemotherapeutic agents by ABC transporters in 

animals 

Since the generation of ABC transporter knockout mice, the endogenous role of 

ABC transporters in drug disposition and elimination has become clearer. One 

of the original cytotoxics used to characterise multidrug resistance (MDR) was 

doxorubicin. ABCB1-mediated cellular resistance to doxorubicin was first noted 

in MCF-7 breast cancer cells, which had been subjected to continuous low-level 
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exposure of doxorubicin (Fairchild et al., 1987). This led to a pharmacokinetic 

study of doxorubicin administered intravenously in Abcb1a-/- mice revealing that 

absence of Abcb1a had a profound effect on doxorubicin disposition, with 

higher plasma exposure and higher tissue accumulation in the liver (van 

Asperen et al., 1999). Altered plasma exposure to etoposide in Abcb1a/1b-/-

;Abcc2-/- double knockout mice has also been observed following oral and 

intravenous dosing, with higher plasma exposure as well as reduced urinary 

and biliary excretion, compared to WT mice (Lagas et al., 2010).  

ABCB1 has been shown to lower the bioavailability of orally administered 

cyclosporine by reducing absorption in the intestines in humans (Lown et al., 

1997). The importance of ABCB1 expression in the intestine was demonstrated 

in mice, where complete reversal of digoxin transport in the enterocytes was 

achieved by coadministration with the ABCB1 inhibitor, PSC833 (Mayer et al., 

1997). In the brain vinblastine accumulates 3-fold higher in Abcb1a deficient 

mice compared to the WT following intravenous administration, demonstrating 

that ABCB1 is critically important at the blood-brain barrier, preventing uptake of 

potential neurotoxins into the brain and central nervous system (CNS) (Schinkel 

et al., 1994; Schinkel et al., 1996). 

Both in vitro and in vivo investigations are now performed routinely with old and 

new anti-cancer drugs, demonstrating that ABC transporters have the potential 

to directly impact the pharmacokinetics of anti-cancer agents. More recent 

investigations suggest that investigating the transport of novel agents by 

ABCB1 and other ABC transporters can lead to important findings, particularly 

as transport is often different depending on substrate. Reduced accumulation of 

the B-Raf inhibitor vemurafenib was seen in vitro in human ABCB1 and mouse 
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Abcg2 over-expressing cells, but an increase in plasma exposure was not 

observed in the subsequent in vivo study in Abcb1a/1b-/-;Abcg2-/-  mice. Instead, 

following intravenous dosing, vemurafenib accumulated in the brain in these 

mice due to the absence of Abcb1a, Abcb1b and Abcg2 at the blood-brain 

barrier (Mittapalli et al., 2012). Similar results were seen with both the tyrosine 

kinase inhibitor sunitinib and its active metabolite N-desethyl sunitinib, both 

showing significantly higher brain exposure after intravenous dosing, with no 

change in plasma concentration in comparable mouse models (Tang et al., 

2012a; Tang et al., 2012b). 

1.8.4 Multidrug resistance 

Modern cancer therapy, although potentially extremely effective, is limited by 

the development of drug resistance in tumours. Resistance can be acquired or 

intrinsic and is thought to occur via one or more of the following mechanisms: 

 reduced drug uptake into cells 

 changes to cellular drug targets rendering drugs ineffective 

 increased drug efflux from cells 

MDR is often caused by greater expression of ABC transporters in tumour cells, 

commonly ABCB1, ABCC2 and ABCG2. Increased drug efflux in resistant 

cancer cells results in lower drug accumulation, therefore reducing the 

therapeutic effect. 

Determining the significance of MDR in solid malignancies has been impaired 

by heterogeneity of tumour tissue, the expression of ABC transporters in the 
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original non-cancerous tissues and different analysis techniques. However, 

ABCB1 has been linked to reduced response in breast cancer patients following 

treatment (Trock et al., 1997), in addition to being present in 80% of soft tissue 

sarcomas following doxorubicin therapy (Abolhoda et al., 1999). ABC 

transporters have also been found to be overexpressed in many solid 

malignancies, with ABCC1 and ABCC3 overexpressed in small cell lung cancer 

(SCLC) (Young et al., 1999) and ABCG2 in paediatric hepatoblastoma (Vander 

Borght et al., 2008). 

However, perhaps the best studied example of MDR in patients comes from 

haematological malignancies, due to the ease of collection and examination of 

tumour material. Numerous studies have shown that MDR is common in 

patients with AML, with one reporting ABCB1 expression in 50% of AML 

leukaemic blasts of patients (Leith, 1998). Greater expression of the ABCB1 

gene product has been shown in elderly patients (Marie and Legrand, 1999; 

Pallis et al., 2002), and this has been linked to more inferior outcome. However, 

this data could be masked by the fact that younger patients with leukaemias are 

treated using more intensive therapy (Steinbach and Legrand, 2007). ABCB1 

overexpression as a consequence of imatinib resistance has also been reported 

in a leukaemic cell line model (Mahon et al., 2003) with this translating to an 

increase in ABCB1 transcripts following imatinib therapy (Galimberti et al., 

2005). 

1.8.5 MDR reversing agents 

MDR reversing agents were developed with the aim of improving the 

effectiveness of therapy and clinical outcome in patients who have tumours with 

MDR. The first generation of MDR inhibitors were known substances that were 



49 
 

found to be effective in reversing MDR in a cell line model, these were 

verapamil and cyclosporin A (CsA) (Tsuruo et al., 1981). However, to achieve 

ABCB1 inhibition verapamil and CsA needed to be used at concentrations that 

were too toxic. This prompted the generation of the first compound specifically 

designed to inhibit ABCB1, the CsA analog PSC833 or valspodar (Twentyman 

and Bleehen, 1991). Valspodar is 10-fold more potent than CsA, however 

during a phase III clinical trial patients receiving valspodar in addition to 

vincristine and doxorubicin exhibited greater toxicity compared to the control 

arm, due to inhibition of hepatic ABCB1 and increased exposure to both 

doxorubicin and vincristine (Friedenberg et al., 2006). Subsequent third 

generation inhibitors have also shown similar toxicity problems in phase III 

clinical trials (Shukla et al., 2011).  

ABCB1 reversing agents also have the potential to alter brain accumulation of 

substrates. This represents an attractive route for oncologists to improve 

penetration of anti-cancer agents across the blood-brain barrier, thereby 

improving the efficacy of some drugs used to treat brain tumours. The use of 

imatinib in the treatment of gliomas in the brain is severely limited by ABCB1 

and ABCG2 removal at the blood-brain barrier. Tariquidar, a third-generation 

ABCB1 and ABCG2 inhibitor increased brain penetration of imatinib in mice 

(Gardner et al., 2009). However due to the expression of both ABCB1 and 

ABCG2 throughout the body, this also caused a significant increase in liver and 

plasma concentrations increasing the treatment-associated toxicity. Additionally, 

brain accumulation of dasatinib, another BCR-ABL inhibitor was shown to be 

dramatically higher in mice treated with the third generation inhibitor elacridar 

(Tang et al., 2011). However, in this study plasma concentration was not 
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effected by administration of the ABCB1 inhibitor, perhaps indicating substrate 

or inhibitor specific effects on pharmacokinetics. 

1.8.6 Other roles for ABC transporters in cancer 

ABC transporters are often present in tumours prior to chemotherapy, with 

expression often indicative of poor cell differentiation and prognosis. In 

colorectal carcinomas ABCB1 expression levels correlate with invasion and 

metastases, with the highest ABCB1 expression seen at the site of invasion 

(Weinstein et al., 1991). In primary untreated neuroblastoma, high expression of 

ABCC1 and ABCC4 is independently associated with poor clinical outcome. 

Interestingly, whereas ABCC1 is known to transport drugs used in 

neuroblastoma therapy, ABCC4 does not (Norris et al., 2005; Haber et al., 

2006). Another example of this phenomenon is in untreated non-small cell lung 

cancer (NSCLC) where, ABCG2 expression is predictive of poor prognosis, 

although no agent used to treat NSCLC is known to be an ABCG2 substrate 

(Oda et al., 2005). These studies perhaps indicate a role independent of efflux, 

or the potential for substrates other than chemotherapeutic agents being 

removed from cells when ABC transporters are highly expressed, leading to 

tumour progression.  

1.9 Pharmacogenetics 

1.9.1 Introduction  

Pharmacogenetics is the study of genetic variation, which influences response 

to drug treatment. Genetic variation has been found to occur in numerous 

protein classes including drug metabolising and transport proteins. The first 

evidence for inherited drug response was observed in 1950, when anti-malarial 
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drugs were found to cause haemolysis in patients deficient in glucose-6-

phophate dehydrogenase (Alving et al., 1956), the mechanism for which was 

described in 1988 (Hirono and Beutler, 1988). At around the same time, 

variations in renal clearance profiles of isoniazid, used to treat tuberculosis, was 

observed (Hughes, 1953). Patients exhibiting poor conversion of isoniazid to 

acetylisoniazid were more likely to suffer from common adverse reactions, and 

these have been termed poor acetylators (Hughes et al., 1954). This was later 

found to be due to an ethnically diverse genetic polymorphism present in 

around 50% of Europeans and 10% of the East Asian population (Mitchell and 

Bell, 1957; Harris et al., 1958; Evans et al., 1960). Also in the 1950s, 

succinylcholine a muscle relaxant was found to be associated with a rare side 

effect causing prolonged paralysis following surgery (Lehmann and Ryan, 

1956). This was shown to be due an autosomal recessive inherited mutation in 

cholinesterase, following which a biochemical test was developed to screen for 

the deficiency (Kalow, 1990). 

Following this the first example of germline mutation in the cytochrome P450 

metabolising enzyme family was identified in CYP2D6. This was found to 

prevent expression, the result of which was hypotension in 8% of patients 

administered with debrisoquine (Mahgoub et al., 1977).  

Since these early observations, the field of pharmacogenetics has expanded 

greatly, particularly with the advent of modern molecular biological techniques. 

Genetic variations are very common, with single nucleotide polymorphisms 

(SNPs) occurring every 1000-3000 bases. These variants can occur at any 

point along the gene, in the coding or non-coding region. SNPs in the coding 

region of a gene can be synonymous, where no amino acid change occurs, or 
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nonsynonymous, resulting in an altered amino acid sequence (Sachidanandam, 

2001). It has been suggested that between 20-95% of differences in drug 

response between patients, may be caused by genetic variability (Scripture et 

al., 2005). Genetic mutations can often change the expression or activity of the 

protein, having the potential to influence both pharmacokinetics and 

pharmacodynamics. A number of significant examples have been demonstrated 

for drugs used to treat cancer. 

1.9.2 Pharmacogenetics and anti-cancer agents 

Soon after polymorphisms in CYP2D6 were discovered, altered response to 

thiopurines in the treatment of ALL was observed. Thiopurine methyltransferase 

(TPMT) is an enzyme with unknown endogenous function that methylates 

thiopurines, preventing their conversion into toxic thioguanine nucleotides 

(TGNs). 6-mercaptopurine (6-MP) and its prodrug azathioprine are used in the 

treatment of ALL and as immune suppressant (Veal et al., 2003a). 6-MP is 

metabolised by hypoxanthine-guanine phosphoribosyl transferase (HGPRT) 

before conversion into TGNs, which are then incorporated into DNA, exerting a 

cytostatic effect (Bertino, 1991). TPMT competes with HGPRT to methylate 

thiopurines, preventing their conversion to TGNs (Figure 1.13). High 

concentrations of TGNs are extremely toxic to cells and can cause widespread 

toxicity.  
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Figure 1.13. Metabolic pathway of the thiopurines 6-MP and 6-Thioguanine 
(6-TG).  

Adapted from (Veal et al., 2003a).  

Caucasians can be separated into three groups according to TPMT activity: 

high activity (88.6%), intermediate activity (11%) and no activity (0.3%) (Figure 

1.14) (Weinshilboum and Sladek, 1980). TPMT is subjected to several common 

SNPs which are grouped into haplotypes. The most common variant haplotype 

in Caucasians is TPMT*3A (Yates et al., 1997), which results in amino acid 

changes causing a high rate of TPMT ubiquitination and proteolysis (Tai et al., 

1997). The lower level of TPMT in these individuals results in higher levels of 

TGNs and is found in around 1 in 300 people (Weinshilboum, 1984). As such, 

patients on 6-MP therapy with these SNPs suffer from life threatening toxicity, 

causing widespread myelosuppression (Ben Ari et al., 1995) and hepatotoxicity 

(Lennard et al., 1989) and therefore require individualised dose reductions, 

based on phenotype or genotype (Abraham et al., 2006).   
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Figure 1.14. TPMT activity in red blood cells in 298 health volunteers.  

The trimodal distribution of TPMT activity can clearly be seen in the 

Caucasian population, with high activity in homozygous wild type volunteers, 

intermediate activity seen in heterozygous volunteers and the lowest activity 

seen amongst those patients who were homozygous variant. TPMTL/TPMTL; 

no activity, TPMTL/TPMTH; intermediate activity, TPMTH/TPMTH; high activity 

(Weinshilboum and Sladek, 1980). 

TPMT represents a very good example of a polymorphism that is relevant to 

cancer, and which has been implemented clinically. Due to the strength of the 

evidence, the British Association of Dermatologists (BAD) and the Clinical 

Pharmacogenetics Implementation Consortium have updated their guidelines 

for the safe and effective use of 6-MP and azathioprine (Relling et al., 2011). 

BAD recommend that TPMT activity should be determined in each patient 

before administration, with patients exhibiting intermediate activity receiving a 

reduced dose, and patients with no TPMT activity being ineligible for treatment. 

Although these recommendations are in place, treatment-associated toxicities 

should be routinely monitored as evidence exists of variable toxicity amongst 

those patients with the same TPMT status (Meggitt et al., 2011). 
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Another highly polymorphic gene that can influence drug exposure is CYP2D6, 

a member of the cytochrome P450 family. The cytochrome P450 family are 

responsible for metabolising up to 80% of all prescribed drugs (Eichelbaum et 

al., 2006), 25% of which can be attributed to CYP2D6 (Zanger et al., 2004). 

SNPs identified in CYP2D6 have a broad range of effects; increased or 

decreased expression, altered protein function, and some are still currently 

uncharacterised. Tamoxifen is an oestrogen receptor antagonist used in breast 

cancer treatment, and is metabolised to its active forms, 4-hydroxytamoxifen (4-

HT) and endoxifen by CYP2D6 (Teh and Bertilsson, 2012). Tamoxifen and 4-

HT exposure in patients is highly variable, with a major cause of this variation 

believed to be linked to CYP2D6 genotype. Impact of CYP2D6 genotype is 

highly dependent on race. In Caucasian post-menopausal oestrogen receptor 

positive breast cancer patients, those who were homozygous for the *4 

genotype were shown to have shorter relapse free survival, compared to 

patients who were heterozygous or WT (Schroth et al., 2007; Schroth et al., 

2009). However, in Asian breast cancer patients, the *10 genotype is 

associated with low 4-HT and endoxifen (Lim et al., 2007; Lim et al., 2011) and 

this is predictive of lower progression free survival and increased recurrence in 

the Japanese population (Kiyotani et al., 2008). 

1.9.3 ABC transporter genetic variation and clinical relevance 

ABCB1 is a highly polymorphic gene with over 100 exonic and many more 

intronic SNPs. The three most common and extensively studied SNPs on the 

ABCB1 gene are 1236C>T, 2677G>T/A and 3435C>T. Clinical studies 

investigating the effect of these polymorphisms on pharmacokinetics and 

patient response and toxicity are numerous and are largely inconsistent, 
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appearing to be dependent on drug type and patient ethnicity (Tang et al., 

2002). 

1236C>T is a synonymous SNP, however studies have demonstrated greater 

exposure to temozolomide, an orally administered anti-cancer agent, in patients 

with the CC genotype (Schaich et al., 2009) and conversely patients with the TT 

genotype receiving irinotecan therapy experience higher irinotecan and SN-38 

exposure (Mathijssen et al., 2003).  

Inconsistent reports are also associated with 2677G>T/A, a non-synonymous 

SNP causing an amino acid change from serine to threonine or alanine. At 

amino acid position 2677, the G allele is associated with greater efflux of 

ABCB1 substrate digoxin (Kim et al., 2001), whilst higher exposure of 

cyclosporin A has been observed in patients homozygous for the variant T allele 

(Zhang et al., 2008). 

Hoffmeyer et al. first associated the TT homozygotes at allele 3435 with lower 

ABCB1 expression and consequently higher digoxin exposure in patients in 

2000 (Hoffmeyer et al., 2000). Although this is a synonymous SNP, expression 

of the T allele has been linked to altered mRNA and protein conformation 

(Kimchi-Sarfaty et al., 2007), and higher mRNA turnover due to lower mRNA 

stability and altered protein folding structures (Wang and Sadee, 2006). As such 

the ABCB1 SNP 3435C>T has been the subject of extensive research. 

Although lower expression associated with the TT genotype was also shown in 

kidney epithelial tumours (Siegsmund et al., 2002) and mammary and ovarian 

carcinomas (Sauer et al., 2002), higher expression in homozygous TT patients 

has been reported in the intestine and placenta of Japanese healthy volunteers 
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(Dey, 2006). Liver expression of ABCB1 has also been shown to be unchanged 

with genotype (Owen et al., 2005). Away from cancer, 3435C>T genotype also 

has variable impact on the exposure of antiretrovirals in patients. Homozygous 

TT patients have high exposure of nelfinavir (Zhu et al., 2004), whilst in contrast 

patients with the homozygous CC genotype have high exposure of atazanavir 

(Rodriguez Novoa et al., 2006).  

ABCB1 SNPs have also been found to be predictive of outcome. The 3435T 

allele has been linked to greater overall survival in multiple myeloma patients 

treated with bortezomib and pegylated liposomal doxorubicin (Buda et al., 

2010), whilst it is suggested that the 2677A allele is predictive of lower overall 

survival and progression-free survival in breast cancer patients treated with 

doxorubicin (Bray et al., 2010).  

Due to the inconsistency of these reports, many studies now include haplotype 

analysis with 1236C>T, 2677G>T/A and 3435C>T. Studies in an Asian breast 

cancer patient population found that patients with one variant allele from all 

three common SNPs of ABCB1 (C1236T, G2677T/A and C3435T), had 

significantly higher exposure to doxorubicin (Figure 1.15) (Lal et al., 2008). In 

the same study patients homozygous WT for all three SNPs had lower 

doxorubicin exposure (Lal et al., 2008), however, single SNP analysis 

performed before haplotype analysis revealed limited impact on doxorubicin 

pharmacokinetics. 
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Figure 1.15. Influence of the three common ABCB1 SNPs on overall 
exposure and clearance of doxorubicin in Japanese patients with breast 
cancer.  

Japanese breast cancer patients who were homozygous WT for all three 

common ABCB1 SNPs had (A) lower exposure than heterozygous or 

homozygous variant patients and (B) higher clearance than heterozygous 

patients (Lal et al., 2008)   

SNPs in other ABC transport proteins have been less well studied than ABCB1. 

To date, few studies regarding ABCC1 SNPs have been reported in humans. 

However, one study has identified 2012G>T (Gly621Val), present in around 

10% of the Caucasian population, as a risk allele for doxorubicin-related 

cardiotoxicity in patients with non-Hodgkin’s lymphoma (Wojnowski et al., 

2005).  

A major endogenous function of ABCC2 is to facilitate the removal of bilirubin 

conjugates from the body. This was first elucidated in patients with Dubin-

Johnson Syndrome, where loss of function of ABCC2 leads to 

hyperbilirubinemia. There are several SNPs in ABCC2 with potential clinical 

importance, however, by the far the most studied SNP is -24C>T. This is 

present in around 18% of the Caucasian population and is located in the 5’ 

untranslated region (UTR), potentially influencing transcription due to its 
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location upstream of the ABCC2 gene. Patients with at least one copy of the -

24T allele have been shown to have lower ABCC2 mRNA in the kidney 

(Haenisch et al., 2007), however other studies have not confirmed this in either 

the intestine (Moriya et al., 2002; Haenisch et al., 2008) or placenta (Meyer zu 

Schwabedissen et al., 2005).  

Clinical studies investigating the effect of this SNP on drug disposition, have 

demonstrated higher AUC of the irinotecan metabolite SN-38 in patients 

homozygous for the TT allele (Zhou et al., 2005; Fujita et al., 2008). Other 

studies have demonstrated that an increase in the ratio SN-38:SN-38 

glucuronide is indicative of lower elimination in homozygous TT patients (Han et 

al., 2007), indicating reduced expression or function of ABCC2 associated with 

this SNP. In addition to the impact on the pharmacokinetics of irinotecan and its 

metabolites, presence of the variant allele T is associated with higher risk of 

diclofenac induced hepatotoxicity. This is potentially due to higher hepatic 

concentrations of diclofenac and its metabolites remaining in the liver, due to 

lower ABCC2-mediated elimination (Daly et al., 2007). 

1249G>A (Val417Ile), a second commonly studied ABCC2 SNP and is found in 

around 20% of Caucasians. It has been shown to cause lower mRNA and 

protein expression in some studies (Meyer zu Schwabedissen et al., 2005), and 

changes to membrane localisation in neuroepithelial tumours have been seen 

(Vogelgesang et al., 2004).  

ABCG2 is a half transporter known to transport a wide range of endogenous 

and exogenous substrates throughout the body. Several SNPs have been 

identified within the ABCG2 gene with the potential to be clinically relevant. The 
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non-synonymous SNP 421C>A (Gln141Lys) is present in 12% of the Caucasian 

population, has been widely studied and is responsible for altered drug 

disposition and pharmacokinetics. The mechanism behind this is unclear, with 

studies reporting altered transport activity, protein stability, reduced protein 

expression  and enhanced degradation as possible reasons for the impact of 

this SNP (Imai et al., 2002; Kondo et al., 2004; Mizuarai et al., 2004; Morisaki et 

al., 2005; Tamura et al., 2007; Furukawa et al., 2009).  

Investigations into anti-cancer agents in children with ALL treated with ABCG2 

and ABCB1 substrates have shown that those patients carrying at least one 

variant allele at the 421C>A position, as well as the 3435TT genotype in 

ABCB1, were more likely to suffer from toxic encephalopathy (Erdilyi et al., 

2008). Patients with the variant allele being treated with docetaxel in hormone-

refractory prostate cancer, show better response and survival, perhaps due to 

an increase in intracellular docetaxel concentration in the tumour cells (Hahn et 

al., 2006). Also in cancer patients administered with gefitinib, those with the 

variant allele had significantly higher steady-state plasma concentrations 

(Cusatis et al., 2006; Li et al., 2007), with similar results being seen with 

administration of rosuvastatin and sulfasalazine (Zhang et al., 2006; Yamasaki 

et al., 2008). However, as with ABCB1 genotype-phenotype relationships, the 

literature is highly inconsistent. Studies involving nitrofurantoin, lamivudine, 

indinavir and zidovudine have all failed to show any impact on drug disposition 

and pharmacokinetics (Anderson et al., 2006; Adkison et al., 2008). 

Heterozygotes at amino acid position 421 have higher oral bioavailability of 

diflomotecan and topotecan than homozygous WT patients. However, as the 

pharmacokinetic profile for irinotecan is unchanged between the genetic groups 
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(Sparreboom et al., 2004; Sparreboom et al., 2005; Han et al., 2007), the effect 

of this SNP appears to be substrate specific.   

Another SNP which is found frequently in the Asian population, 34G>A, was 

found to exhibit decreased expression of ABCG2 in vitro (Mizuarai et al., 2004), 

however, this appears to have not translated into a related finding in vivo as 

studies have shown no link between 34G>A genotype and pharmacokinetic 

parameters (Kondo et al., 2004). 

1.10 Summary and Aims 

While Act D plays a key role in the successful treatment of paediatric 

malignancies including Wilms tumour, RMS and ES, its use could be further 

improved. Although relatively rare, severe hepatotoxicity in the form of VOD, is 

a major concern for clinicians when treating patients with Act D. While it is still 

not clear why some patients develop VOD, links to patient age and disease 

have been suggested. Therefore current aims are to maintain high survival 

rates, whilst reducing treatment-related toxicities. 

Previous pharmacokinetic studies have shown the extent of inter-individual 

variation in Act D exposure, indicating that current surface area-based dosing is 

not optimal. Continued pharmacokinetic evaluation is needed with a particular 

emphasis on a greater number of early (5min) and late (24-26h) samples to 

more fully characterise Act D pharmacokinetics and to identify key factors 

determining Act D exposure. Additional data are also required to further 

investigate the potential correlation between high plasma concentrations in 

patients and toxicity.  
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ABC transport proteins are present at vital cell membranes throughout the body, 

and as such have the potential to markedly influence drug disposition and 

elimination. Studies in mice have shown that systemic removal of ABC transport 

proteins significantly alters the pharmacokinetic profile and tissue distribution of 

many anti-cancer agents, however, this is highly substrate and transporter 

specific. ABC transporters are highly polymorphic, and various SNPs have been 

shown to potentially alter protein expression and function. Clinical studies 

involving patients receiving ABC transporter substrates as part of their standard 

chemotherapy regimen have shown a link between ABCB1 genotype and drug 

exposure or clinical outcome. Whilst the literature is sometimes contradictory 

regarding clinical association and ABC transporter genotype, this represents a 

potentially interesting prospect for studies with Act D.  

The aims of this project are: 

1. To determine Act D transport in vitro using MDCKII cell-lines over-

expressing the ABC transporters, ABCB1, ABCC1, ABCC2 and ABCG2. 

2. To determine the effect of ABC transporters on Act D pharmacokinetics 

and tissue accumulation in vivo, using relevant ABC transporter knockout 

mice. 

3. To determine the pharmacokinetics of Act D in an expanded paediatric 

patient population, with a wider range of sampling time points, and to 

investigate potential correlations between plasma concentrations and 

clinical endpoints. 

4. To investigate pharmacogenetic variation in ABC transport proteins 

relevant to Act D pharmacology, correlating genetic variations with 

pharmacokinetic data, clinical response and toxicity. 
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Chapter 2. In vitro transport in ABC-transporter over-

expressing cell lines 

2.1 Introduction 

Since its introduction into the standard treatment regimen in 1960 (Fernbach 

and Martyn, 1966), very few detailed pharmacokinetic studies have been 

performed with Act D. In the only pharmacokinetic study involving significant 

patient numbers to date, 31 children receiving Act D demonstrated that whilst 

treatment is generally well tolerated, it is associated with a large variation in 

exposure between patients on similar dosing regimens.  

ABC transporters are present throughout the body, removing a wide range of 

substrates from cells. ABCB1, ABCC2 and ABCG2 are all present on the apical 

membrane in liver, kidney and intestine, facilitating the elimination of substrates 

via the bile, urine and faeces (Ho and Kim, 2005). ABCB1 is also found at the 

blood-brain barrier, blood-testis barrier, and the blood-placenta barrier, 

protecting vital sites from harmful toxins (Schinkel et al., 1996; Melaine et al., 

2002; Vahakangas and Myllynen, 2009). In contrast, ABCC1 is present on the 

basolateral membrane, transporting substrates into the blood (Borst and 

Elferink, 2002).  

Many anti-cancer agents such as doxorubicin (Fairchild et al., 1987; Ueda et al., 

1987) and etoposide (Guo et al., 2002; Allen et al., 2003) are substrates for 

ABC transporters. The impact of ABC transporters on drug exposure by 

influencing drug absorption and elimination could be clinically relevant. Since 

the initial work undertaken to characterise ABCB1 (Biedler and Riehm, 1970; 

Juliano and Ling, 1976), no detailed confirmatory studies have been carried out 
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to confirm Act D as a substrate for ABCB1 and it is unclear whether Act D is a 

substrate for any other major ABC transport proteins. 

To predict the potential impact of drug transporters on Act D exposure in 

patients, Act D transport was investigated in vitro in MDCKII cell lines, stably 

over-expressing human ABCB1, ABCC1, ABCC2 or ABCG2. Using these cell 

lines, Act D growth inhibition (GI) studies, intracellular accumulation assays, 

cellular efflux assays and fluorescent competition assays were developed and 

utilised. In addition expression and function of the appropriate ABC transporters 

in MDCKII cell lines was tested using western blotting and known, well-studied 

ABC transporter substrates such as doxorubicin and mitoxantrone.  
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2.2 Materials and methods 

2.2.1 Materials 

Drug transporter inhibitors KO143 and MK571 were supplied by Tocris 

Bioscience (Bristol, UK), methanol and ethanol were supplied by Fisher 

Scientific (Loughborough, UK) and all other chemicals were supplied by Sigma-

Aldrich (Dorset, UK) unless otherwise specified. 

2.2.2 Cell lines 

WT polarized Madin-Darby canine kidney (MDCKII) cell lines and those stably 

transfected with human ABCB1 (MDR1/P-gp) (Schinkel et al., 1993; Schinkel et 

al., 1995; Evers et al., 1997), ABCC1 (MRP1) (Evers et al., 1997), ABCC2 

(MRP2) (Evers et al., 1998) and ABCG2 (BCRP) cDNA (Pavek et al., 2005), 

were kindly provided by Dr A.H. Schinkel (Amsterdam, the Netherlands). These 

cell lines were used for growth inhibition, intracellular accumulation, cellular 

efflux, and fluorescent competition assays.  

2.2.3 Culture of cell lines 

Cells were cultured, in Dulbecco's Modified Eagle Medium (DMEM) with 10% 

FBS, 2mM L-glutamate, 2mM penicillin, and 2mM of streptomycin, at 37oC, 5% 

CO2 in a humidified incubator, and were routinely screened for mycoplasma. 

Cells were grown as a monolayer and were passaged at approximately 80% 

confluency, using 2xTrypsin-EDTA. 

2.2.4 Western Blotting 

Cells were seeded at 25,000 cells per well in 6-well plates and were left for 

between 1-4 days to establish growth. Cell lysates were extracted and protein 
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concentration determined. Cells were lysed and scraped from 6-well plates in 

lysis buffer (62.5mM Tris-HCl pH 6.8, 10% glycerol, 2% sodium dodecyl 

sulphate (SDS)) containing 1x protease inhibitor (Thermo-Scientific, Rockford, 

USA) and protein concentration was determined using the Pierce BCA Protein 

Assay Kit (Thermo-Scientific, Rockford, USA). Cell lysates were diluted 1:20 in 

lysis buffer, and 10µl of each sample was loaded in quadruplicate onto a 96-well 

plate. Once all samples had been loaded, 190µl of assay buffer (50:1 mixture of 

buffers A:B) was added to each well using a 12 lane multichannel pipette. 

Plates were then incubated for 30 min at 37oC, 5% CO2 in a humidified 

incubator. After 30 min, the plates were removed from the incubator, and 

absorbance was measured at 562nm using a BMG Labtech FLUOstar Omega 

microplate reader (BMG Labtech, Aylesbury, UK). Protein concentrations were 

determined using a standard curve of bovine serum albumin at concentrations 

of 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2mg/ml. 

Depending on protein concentration, samples were diluted and 20µg of lysate 

was added to a 1.5ml capped vial with 1x NuPage LDS sample loading buffer  

and 1/10 β-mercaptoethanol. Samples were briefly mixed by vortex and pulse 

spun then incubated at 98oC for 10 min to denature the protein, and kept at on 

ice if being used the same day, or stored at -20oC until needed. Samples were 

loaded onto 4-20% Tris-Glycine gels (Life Technologies, Paisley, UK), with 1x 

running buffer (25mM Trizma base, 0.19M Glycine with 0.1 % SDS) using 

SeeBlue Plus2 Pre-Stained Standard as a molecular marker (Life Technologies, 

Paisley, UK).  Gels were run in an Invitrogen XCell SureLock™ Novex Mini-Cell 

with a Bio-Rad Powerpac 300 (Hemel Hempstead, UK) at a constant 150v for 

approximately 1.5 h, until the dye had reached the bottom of the gel.  
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Separated proteins were transferred to polyvinylidene fluoride (PVDF) 

membranes. Before use, PVDF membranes were soaked in methanol for 15s, 

soaked in double-distilled water (ddH2O) for 2min and then stored in transfer 

buffer (25mM Trizma base, 0.19M Glycine, 20% methanol) until required. For 

protein transfer, a Bio-Rad Mini-PROTEAN 2-D Electrophoresis Cell using a 

Bio-Rad Powerpac 300 was used at a constant 30v overnight. Membranes were 

then blocked in 1x TBS/T (20mM Trizma Base, 140mM NaCl, pH 7.6 with 0.1% 

Tween20) with 5% milk (5% w/v, Marvel, Lincolnshire, UK) for 2 h with gentle 

agitation. Following membrane blocking, the membrane was incubated with the 

appropriate antibody at the appropriate concentration in blocking buffer 

overnight at 4oC, with gentle agitation (Table 2.1). 

Protein Antibody Concentration Expected molecular 
weight (kDa) 

ABCB1/MDR1/P-gp C219, Abcam, 
Cambridge, UK 

1:200 170 

ABCC1/MRP1 MRPm6, Enzo Life 
Sciences, Exeter, UK 

1:1000 190 

ABCC2/MRP2 M2-III-6, Kamiya 
Biosciences, Seattle, 
USA 

1:1000 170-180 

ABCG2/BCRP BXP-21, Kamiya 
Biosciences, Seattle, 
USA 

1:1000 70 (half transporter) 

Actin Ab3280, Abcam, 
Cambridge, UK 

1:25000 42 

Table 2.1. Antibodies for western blot analysis 

Optimised concentrations for an overnight incubation at 4oC in blocking 

buffer.  

Following overnight incubation with primary antibody, the membrane was 

washed three times in 1xTBS/T to wash off any unbound primary antibody. After 

washing, membranes were incubated with the secondary antibody, goat anti-

mouse conjugated to horse radish peroxidase (P0447, Dako, Cambridge) in 1x 
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TBS/T with 5% milk at a 1:1000 dilution, with gentle agitation for 2h. The 

membrane was then washed three times in 1x TBS/T for 10min each, removing 

unbound secondary antibody.  To detect bound secondary antibody, enhanced 

chemiluminescence + (ECL+) (GE Healthcare, Buckinghamshire, UK) was 

used, and the membrane was covered for 5min. Excess ECL+ was then 

removed and the membrane was imaged with a Fujifilm LAS3000 using Fujifilm 

Image Reader version 1.1 (Billingham, UK). Genetools version 4.01 was used 

to perform densitometry on the migrated proteins (Syngene, Cambridge, UK). 

Transporter expression was compared to actin expression for each lane and the 

output termed “relative protein expression”.   

2.2.5 Growth curve with MDCKII cell lines 

Growth curves were carried out to determine an appropriate density to seed 

MDCKII-WT, MDCKII-ABCB1, MDCKII-ABCC2 and MDCKII-ABCG2 cells for a 

96h growth inhibition investigation, to ensure that the cells would be in the 

exponential phase of growth. To compensate for the edge effect, 200µl ddH2O 

was first added to the outer wells of the 96-well plates. Following this, the cell 

count of each cell line was determined using a Neubauer haemocytometer 

supplied by Hawlsey (Lancing, UK) and cells were seeded at varying densities 

(250 – 40,000 cells per well) in 96-well plates, with four identical plates being 

set up for each cell line on day 0. Subsequently, one plate per cell line was fixed 

at 24, 48, 72 and 96h by removing medium and replacing with 250µl 0.6mM 

TCA in phosphate buffered saline (PBS) and placing at 4oC. After 1h, the TCA 

was removed and the plates were washed with water, and stored at 4oC until all 

time points had been completed. The plates were stained by adding 100µl of 

0.4% sulfarhodamine B (SRB) to each well for 1h, washed in 1% glacial acetic 
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acid and allowed to dry overnight. Once dry, the stain was solubilised in 100µl 

10mM Tris (pH 10.5) (Skehan et al., 1990) and absorbance readings were 

taken using a Spectramax 250 microplate reader at 570nm (Molecular Devices, 

USA).   

2.2.6 Drug stocks and dilutions 

Act D stocks were made up in methanol, verapamil stocks were made up in 

ddH2O, and all other stocks (doxorubicin, mitoxantrone, SN-38, MK571 and 

KO143) were made up in dimethyl sulfoxide (DMSO). Dilutions were carried out 

to ensure the maximum concentration of methanol, ddH2O or DMSO in media 

on the cells was 1:500 (0.2%) for all experiments and all experiments were run 

with a solvent control to ensure any solvent effect would be detected. 

2.2.7 Growth Inhibition 

Growth inhibition (GI) assays were carried out in 96-well plates. According to 

growth curves, all cells were seeded at a density of 4,000 cells/well on day 0, 

and allowed to establish growth over 24h, with 200µl ddH2O added in all outer 

wells to compensate for the edge effect. Cells were treated with varying 

concentrations (0-50µM) of an appropriate drug (Act D, doxorubicin, 

mitoxantrone or SN-38) in triplicate on day 1 in the presence or absence of the 

appropriate transporter inhibitor; verapamil (1µM) for ABCB1, MK571 (25µM) for 

ABCC1/2 and KO143 (0.2µM) for ABCG2. Drug, verapamil and MK571 

concentrations were chosen after initial GI experiments were carried out to 

determine half-maximal inhibitory concentration (IC50) values for the various 

agents in these cell lines, and 0.2µM was chosen for KO143 from 

concentrations used in the literature (Allen et al., 2002). Following a 72h drug 
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incubation, Promega tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) 

substrate (12µl) was added and plates were returned to the incubator for 2-4h. 

The plates were read on a Spectramax 250 (Molecular devices, USA) at 490nm 

and results reported as a percentage of growth inhibition compared to cells 

incubated with medium alone.  

2.2.8 Intracellular accumulation of actinomycin D in MDCKII cell lines 

Initial experiments of various seeding densities in 6-well plates determined that 

25,000 cells per well ensured that the cells were approximately 80% confluent 

after 4 days growth and therefore still in exponential phase of growth. All cell 

lines were seeded at 25,000 cells per well in 6-well plates on day 0 and left to 

establish growth over 4 days. On day 4 individual plates of cells were incubated 

with 0.01-2µM Act D alone for up to 12h to determine a dose which did not 

cause cellular toxicity following a 12h incubation. Experiments were then carried 

out over 12h with 0.01µM Act D, and over 4h with 0.1µM Act D (to ensure 

detectability on the LC/MS) and increasing concentrations (0-25µM) of the 

appropriate inhibitor (2.2.7). After the defined time course, medium was 

removed and the cells were washed twice with 1ml ice-cold PBS to remove 

excess Act D and to prevent any further ABC-mediated drug transport. 

Methanol (200µl) was added to each well and cell scrapers used to collect cells. 

Intracellular Act D concentrations in cell lysates were then determined by 

LC/MS (0).  
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2.2.9 Cellular efflux of actinomycin D in MDCKII cell lines 

For efflux experiments, cell growth was established as per 2.2.8 and cells were 

incubated with 0.1µM Act D for 4h at 37oC, 5% CO2 in a humidified incubator. 

The medium was then replaced with medium containing no drug and 

intracellular levels were determined at 0, 1 and 2h to determine rate of drug 

efflux. Following completion of incubations, intracellular Act D was extracted as 

per 2.2.8 and concentrations were determined (2.2.10.3).   

2.2.10 Analysis of actinomycin D by liquid chromatography-mass 

spectrometry in cell extracts 

2.2.10.1 Chemicals 

HPLC-grade solvents were supplied by Fisher Scientific (Loughborough, UK), 

concentrated ammonia was supplied by BDH (Dorset, UK).  

2.2.10.2 Preparation of working standards 

Act D was weighed and dissolved in methanol to obtain a 1mg/ml solution. The 

1mg/ml working standard stock solution was used to make a 1µg/ml solution in 

methanol, and from this the following working standards were prepared in 

methanol: 10, 5, 2, 1, 0.5 and 0.25ng/ml.  Working standards were stored at -

20oC until needed.  

2.2.10.3 Preparation of samples for analysis via liquid 

chromatography-mass spectrometry 

Full LC/MS assay validation was performed with human plasma and can be 

seen in 4.2.3. Prior to performing intracellular accumulation and efflux 

experiments (as described in 2.2.8 and 2.2.9), extraction of Act D was 

attempted from cells in suspension in tissue culture medium. This caused ion 
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suppression with no Act D peak visible. Moving to a methanol based extraction 

method resulted in consistent and reliable Act D peaks and standard curves. 

Comparing chromatograms between Act D in human plasma, methanol or cell 

lysates in methanol all retention times are comparable (3.84-3.87min, Figure 

2.1) and the method was deemed acceptable for use in the in vitro setting. 
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Figure 2.1. Comparisons between chromatograms of Act D (A) extracted 
from human plasma, (B) in methanol and (C) in methanol from cell lysates. 

The retention time of Act D in (A) human plasma (3.87min), (B) methanol 

(3.84min) and (C) methanol and cell lysates (3.84min) are all comparable 

between matrices. 
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C
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Therefore cell lysates in methanol were centrifuged at 15,300g to remove cell 

debris and appropriately diluted in methanol to give a 100µl sample. Before 

injection onto the LC/MS 100µl 1% acetic acid pH 4 was added to all samples. 

For each separate LC/MS run, a standard curve in methanol (2.2.10.2) was run 

in duplicate before the cell samples, in addition to a low, medium and high 

standard being placed at the end of each run to ensure consistency. Standards 

were back calculated from the equation of the standard curve, with an allowed 

error of ± 15%. 

2.2.10.4 Liquid chromatography-mass spectrometry method 

An API4000 LC/MS/MS (Applied Biosystems, California, USA) was used for 

analysis attached to a Series 200 micropump, autosampler and Peltier column 

oven (Perkin Elmer Ltd, Beckonsfield, UK). A Luna 3µ C8 (2) Mercury column 

(20 x 4mm) fitted with a security guard cartridge C8 (4 x 2mm) was used 

(Phenomenex, Cheshire, UK). The gradient was set as shown in Table 2.2, with 

a 0.5ml/min flow rate and an injection volume of 50µl.  

Time (min) A (%) B (%) 

0.0 40 60 

2.0 40 60 

3.0 0 100 

6.0 0 100 

10.0 40 60 

Table 2.2. Liquid chromatography conditions for Act D and 7-
aminoactinomycin D separation. 

A: acetate buffer (1% acetic acid, adjusted to pH4 using strong ammonia), B: 

100% methanol. 
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Turbo spray ionisation was performed in positive ion mode with nitrogen gas at 

the following optimal settings; collision gas, 3, curtain gas, 10, ion source gas 1, 

85 and ion source gas 2, 60. The ion spray voltage was set at 5500 with an 

interface temperature of 450oC. Optimal mass-spectrometry conditions for Act D 

and 7-aminoactinomycin D (7-AD) can be found in Table 2.3. 

Analyte Retention 
time (min) 

Q1 
mass 
(Da) 

Q2 
mass 
(Da) 

Declustering 
Potential 

Entrance 
Potential 

Collision 
Energy 

Collision 
Exit 
Potential 

Act D 3.8 1255.79 857.60 136 10 47 26 

7-AD 3.6 1270.77 872.70 136 10 49 26 

Table 2.3. Mass spectrometer gas and temperature settings for Act D and 
7-AD 

2.2.11 Inhibition assay using fluorescent transporter substrates 

Fluorescence inhibition assays were carried out in black, clear bottom 96-well 

plates (Greiner Bio-One, Stonehouse, UK). MDCKII-WT and MDCKII-ABCB1 

cells were seeded at 1,000 cells per well, to ensure low confluency for easy 

imaging, and allowed to establish growth over 4 days. Cells were then pre-

incubated with varying levels of Act D (0 – 100µM) for 1h. The fluorescent 

ABCB1 substrate doxorubicin (10µM) was added for a further 1h, to assess 

doxorubicin efflux in the presence of Act D. Hoechst 33342 was used as a 

nuclear stain once cells had been formalin-fixed and permeabilised with 0.1% 

Triton-X. Cells were then imaged for doxorubicin fluorescence on a BD HT 

Pathway (BD Biosciences, Oxford, UK).  The excitation wavelength for 

doxorubicin was 488nm and a 515nm long-pass filter was used to monitor 

emitted fluorescence. 
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2.2.12 Statistical analysis 

For the growth inhibition, intracellular accumulation and cellular efflux assays it 

was not possible to determine whether the data was either normally or non-

normally distributed as there is only 3 data points per time point or drug 

concentration. Non-parametric analysis such as the Mann-Whitney U test or the 

Kruskal-Wallis one-way analysis of variance (ANOVA) cannot be performed on 

data sets that contain only 3 repeats each, and will result in an inaccurate 

significance being reported (Mundry and Fischer, 1998).  

Therefore for GI assays, drug concentrations were log-transformed and non-

linear regression was performed, with upper limit set to 100% and lower limit set 

to 0%. An F-test was then used to compare GI50 values. For intracellular 

accumulation and cellular efflux assays, the intracellular concentrations were 

log-transformed if variances were not equal, to achieve equal variances. 

Following this, two-way ANOVAs were performed and multiple comparisons 

were used to compare all cell lines against the MDCKII-WT parental cell line at 

each time point or concentration. Bonferroni’s correction was used to correct for 

the number of these tests performed. Multiple comparisons were not used to 

compare differences between time points or inhibitor concentrations in the same 

cell lines. The significance reported is therefore under the assumption that if 

more data were generated, it would be normally distributed, which is highly 

likely when performing repeats of experiments under identical conditions. 

GraphPad Prism 6.00 was used for all statistical analysis, following Bonferroni’s 

correction p<0.05 was accepted as statistically significant.  

LC/MS data were quantitated using Analyst Software 1.4.2 (Applied 

Biosystems), with optimal settings as follows: Act D, peak splitting factor, 2 
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smoothing width, 3 and for 7-AD, peak splitting factor, 2 smoothing width, 11. 

The standard curve was set to linear, and was fitted automatically by the 

software, and from this percentage accuracies and unknown sample 

concentrations were calculated.  
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2.3 Results 

2.3.1 Confirmation of transporter expression in MDCKII cell lines 

ABC transporter expression was confirmed in each MDCKII cell line by western 

blot analysis. As subsequent assays would be carried out over 4 days of cell 

growth, the expression of ABCB1 was initially investigated over 4 days in 

MDCKII-WT and MDCKII-ABCB1 cell lines. ABCB1 was detected in all MDCKII-

ABCB1 samples, and was uniform over 3 days (2.01-2.12 relative expression, 

Figure 2.2B). Minimal levels of ABCB1 were detected in MDCKII-WT, due to the 

endogenous expression of canine ABCB1 in these cell lines (0.01-0.03 relative 

expression, Figure 2.2A). Densitometry performed on the day 4 sample of 

MDCKII-ABCB1 suggested a lower expression after 3 days proliferation, 

however due to the corruption of the migrated protein band this result is not 

reliable. Western blotting did not improve following repeats. 

As consistent expression of ABC transporters was observed in MDCKII over 4 

days, subsequent transporter expression analysis was carried out after 4 days 

proliferation. Again, ABCB1 expression was confirmed in the MDCKII-ABCB1 

cell line, with analysis in ABCC2 and ABCG2 over-expressing cell lines (Figure 

2.3) revealing comparable ABCB1 expression to the parental in MDCKII-ABCC2 

cell line (0.12 vs. 0.14 relative expression), but lower expression in the MDCKII-

ABCG2 cell line (0.02 vs. 0.12 relative expression).  
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Figure 2.2. Expression of human ABCB1 in MDCKII-WT and MDCKII-
ABCB1 cell lines. 

Expression of ABCB1 was determined by western blot analysis. Cell lines 

were allowed to grow for 1-4 days and western blotting was performed on cell 

lysates. ABCB1 expression in (A) MDCKII-WT and (B) MDCKII-ABCB1 were 

normalised against actin as an endogenous control. Relative expression in 

(C) MDCKII-WT cells was 0.01-0.03 compared to actin and (D) MDCKII-

ABCB1 cells was 2.01-2.12, cells over 3 days. Abbreviations- D, Day. ABCB1 

molecular weight: 170kDa, Actin molecular weight: 42kDa. 
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Figure 2.3. Expression of ABCB1 in MDCKII WT, -ABCB1, -ABCG2 and –
ABCC2 cell lines.  

Expression of ABCB1 in MDCKII WT, -ABCB1, -ABCG2 and –ABCC2 cell 

lines was determined by western blot analysis. Cell lines were grown for 4 

days and western blotting was performed on cell lysates. ABCB1 expression 

in all cell lines (A) was normalised to actin as an endogenous control in each 

sample. (B) Relative expression: MDCKII-WT: 0.12, MDCKII-ABCB1: 0.45, 

MDCKII-ABCG2: 0.02, MDCKII-ABCC2: 0.14. ABCB1 molecular weight: 

170kDa, Actin molecular weight: 42kDa. 
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Higher expression of ABCC1 was seen in the ABCC1 over-expressing cell line 

compared to parental (0.78 vs. 0.18 relative expression, Figure 2.4A/C) and 

higher ABCC2 expression was confirmed in the MDCKII-ABCC2 cell line 

compared to parental (1.60 vs. 0.08 relative expression, Figure 2.4B/D). Further 

analysis in other MDCKII cell lines was not carried out due to the time spent 

optimising antibody conditions for the ABCC1 and ABCC2 antibodies. 

 

Figure 2.4. Expression of ABCC1 and ABCC2 in MDCKII-WT, MDCKII-
ABCC1 and MDCKII-ABCC2 cell lines.  

Expression of (A) ABCC1 in MDCKII WT and MDCKII-ABCC1 cell lines and 

(B) ABCC2 in MDCKII-WT and MDCKII-ABCC2 cell lines was determined by 

western blot analysis. Cell lines were grown for 4 days and western blotting 

was performed on cell lysates. (C)  ABCC1 and (D) ABCC2 expression in 

relevant cell lines was normalised to actin as an endogenous control in each 

sample. Relative expression of ABCC1: MDCKII-WT: 0.08, MDCKII-ABCC1: 

0.78 and ABCC2: MDCKII-WT: 0.08, MDCKII-ABCC2: 1.60.  
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High levels of ABCG2 expression were confirmed in MDCKII-ABCG2 cell lines 

(Figure 2.5) compared to MDCKII-WT and MDCKII-ABCB1 cell lines (0.85 vs. 0 

relative expression). Densitometry did suggest ABCG2 expression in MDCKII-

ABCC2 cell lines (0.85 vs. 0.16 relative expression), but this was not clearly 

visible in the gel image.  

  

Figure 2.5. Expression of ABCG2 in MDCKII WT, -ABCB1, -ABCG2 and –
ABCC2 cell lines.  

(A) Expression of ABCG2 in MDCKII WT, -ABCB1, -ABCG2 and –ABCC2 

cell lines was determined by western blot analysis. Cell lines were grown for 

4 days and western blotting was performed on cell lysates. (B) ABCG2 

expression in all cell lines was normalised to actin as an endogenous control 

in each sample. Relative expression: MDCKII-WT: 0, MDCKII-ABCB1: 0, 

MDCKII-ABCG2: 0.85, MDCKII-ABCC2: 0.16. 

2.3.2 Growth curves using MDCKII-WT, ABCB1, ABCC2 and ABCG2 

Following confirmation of ABC transporter expression, growth curves were 

constructed in MDCKII-WT (Figure 2.6A), ABCB1 (Figure 2.6B), ABCC2 (Figure 

2.6C) and ABCG2 (Figure 2.6D) cell lines to determine the optimal seeding 

densities for a 4 day incubation in 96-well plates. In all four cell lines, 4,000 cells 

per well was sufficient to initiate and maintain exponential phase growth over 
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96h. As transporter expression did not have an effect on cell growth, it was 

deemed appropriate for all cell lines to be seeded at 4,000 cells per well, 

including MDCKII-ABCC1 cells for which growth curves were not constructed 

due to being sourced late in the study. 

 

Figure 2.6. Growth curves in MDCKII cell lines.  

MDCKII-WT (A), MDCKII-ABCB1 (B), MDCKII-ABCC2 (C) and MDCKII-

ABCG2 (D) cells were seeded at the indicated densities in 96-well plates and 

allowed to grow for 96h. Cell growth was determined using SRB staining with 

results expressed as absorbance at 490nm. The optimal seeding density of 

4,000 cells per well was chosen. 

2.3.3 Growth inhibition of known ABC transporter substrates in MDCKII 

cell lines 

Known ABC transporter substrates were used to assess ABC transporter 

function. Doxorubicin was used as a well-characterised ABCB1 substrate 
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(Fairchild et al., 1987; Ueda et al., 1987). When incubated with a concentration 

range of doxorubicin of 0-50µM, ABCB1 over-expressing cells were 16-fold less 

sensitive than the parental cell line (GI50 values 890nM vs. 55.7nM, p<0.0001, 

Table 2.4, Figure 2.7A). Inhibition of ABCB1 by verapamil (1µM) over a 72h 

period resulted in almost complete reversal of resistance in the MDCKII-ABCB1 

cells (GI50 without verapamil, 890nM vs. with verapamil, 142nM, p<0.0001, 

Table 2.4, Figure 2.7C). Inhibition with verapamil also caused a 2.9-fold 

reduction (GI50 without verapamil, 55.7nM vs. with verapamil, 19.5nM, 

p<0.0001, Figure 2.7B, Table 2.4) in the parental cell, due to the endogenous 

expression of canine ABCB1. No difference was observed in sensitivity to 

doxorubicin compared to the parental cell line in MDCKII-ABCC2 and MDCKII-

ABCG2 cell lines.  

 MDCKII-WT MDCKII-ABCB1 MDCKII-ABCC2 MDCKII-ABCG2 

GI50 

(nM) 

95% CI GI50 

(nM) 

95% CI GI50 

(nM) 

95% CI GI50 

(nM) 

95% CI 

Doxorubicin 55.7 (34.3, 
90.4) 

890**** (529, 
1501) 

39.3 (33.0, 
47.0) 

47.3 (36.2, 
61.7) 

Doxorubicin + 
Verapamil 

19.5
†
 (10.4, 

36.7) 
142

†
 (72.3, 

280) 
- - - - 

SN-38 335 (307, 
365) 

659**** (526, 
826) 

5668**** (4861, 
6609) 

445 (341, 
580) 

Mitoxantrone 475 (395, 
584) 

5545**** (4564, 
6737) 

300 (249, 
361) 

4793**** (3730, 
6172) 

Mitoxantrone + 
KO143 

690 (571, 
834) 

- - - - 523
†
 (362, 

757) 

Abbreviation: -, not applicable  

GI50 assessed by MTS assay after 72h of drug exposure. Values are the mean of ≥ 3 experiments. 

****p<0.0001 compared to MDCKII-WT under the same treatment conditions. 

†
p<0.0001 compared to the same cell line without inhibitor treatment. 

Table 2.4. Growth inhibition of doxorubicin, SN-38 and mitoxantrone in 
MDCKII cell lines over-expressing specific drug transporters 
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Figure 2.7. Doxorubicin growth inhibition in MDCKII-WT and MDCKII-
ABCB1 cell lines in the presence or absence of verapamil.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-50µM doxorubicin either alone (A) or in the presence of 1µM 

verapamil (B and C) for 72h following which MTS substrate was added to 

determine cell sensitivity. Each point represents mean ± SEM from ≥ 3 

experiments. GI50 values were compared by F-test. 
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SN-38, the active metabolite of irinotecan is a well-established ABCC2 

substrate (Chu et al., 1997a; Fujita et al., 2008). When MDCKII cells were 

incubated with SN-38 (0-20µM), ABCC2 over-expressing cells were 17-fold less 

sensitive than the parental cell line (GI50 values 5.67µM vs. 0.34µM, p<0.0001, 

Figure 2.8, Table 2.4). A small yet statistically significant difference in sensitivity 

was also seen in MDCKII-ABCB1 (GI50 values 0.66µM vs. 0.34µM, p<0.0001, 

Table 2.4) and MDCKII-ABCG2 cell lines (GI50 values 0.45µM vs. 0.34µM, 

p<0.0001, Table 2.4). Adequate, selective inhibition of ABCC2 was not possible 

during this initial investigation.   

 

Figure 2.8. SN-38 growth inhibition in MDCKII-WT and MDCKII-ABCC2 cell 
lines.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-20µM SN-38 for 72h following which MTS substrate was 

added to determine cell sensitivity. Each point represents mean ± SEM from 

≥ 3 experiments. GI50 values were compared by F-test. 

Using mitoxantrone as a model substrate for ABCG2 (Doyle et al., 1998), 

ABCG2 over-expressing cells were 10-fold less sensitive than MDCKII-WT (GI50 

values 4.79µM vs. 0.48µM, p<0.0001, Figure 2.9A, Table 2.4). Use of the 
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specific ABCG2 inhibitor KO143 (0.2µM) further confirmed this by complete 

reversal of resistance in MDCKII-ABCG2 cell lines over a 72h period (GI50 in the 

absence of KO143, 4.79µM vs. in the presence of KO143, 0.52µM, p<0.0001, 

Figure 2.9C, Table 2.4). No effect was observed of incubation with KO143 in 

MDCKII-WT cells (Figure 2.9B, Table 2.4). MDCKII-ABCB1 cells were also less 

sensitive to mitoxantrone than the parental cell line (5.55nM vs. 0.48nM, 

p<0.0001, Table 2.4) due to mitoxantrone also being an ABCB1 substrate 

(Kamiyama et al., 2006).  

These experiments demonstrate that MDCKII-ABCB1, MDCKII-ABCC2, 

MDCKII-ABCG2 and the parental cell lines are functioning as models to assess 

the transport of Act D. 
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Figure 2.9. Mitoxantrone growth inhibition in MDCKII-WT and MDCKII-
ABCG2 cell lines in the presence or absence of KO143.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-20µM mitoxantrone either alone (A) or in the presence of 

0.2µM KO143 (B and C) for 72h following which MTS substrate was added to 

determine cell sensitivity. Each point represents mean ± SEM from ≥ 3 

experiments. GI50 values were compared by F-test.  
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2.3.4 Growth inhibition due to actinomycin D in MDCKII cell lines 

Growth inhibition by Act D was carried out as an initial step to investigate the 

possible transport of Act D by ABCB1, ABCC1, ABCC2 and ABCG2. When 

treated with 0-10µM of Act D over 72h, MDCKII-ABCB1 cells were 59-fold less 

sensitive than the parental cell line (GI50 values 745nM vs. 12.7nM, p<0.0001, 

Table 2.5, Figure 2.10) indicating that Act D undergoes ABCB1-mediated efflux, 

therefore reducing growth inhibition. Inhibition of ABCB1 with verapamil (1µM) 

over a 72h period resulted in partial reversal of resistance in the MDCKII-

ABCB1 cell line, with a 6-fold lower GI50 (745nM vs. 129nM, p<0.0001, Figure 

2.10, Table 2.5). Inhibition with verapamil also caused a 3-fold reduction (GI50 

values 12.7nM vs. 4.4nM, p<0.0001, Table 2.5, Figure 2.10) in GI50 in the 

parental cell line, due to endogenous canine ABCB1 expression.  

 MDCKII-WT MDCKII-ABCB1 MDCKII-ABCC1 MDCKII-ABCC2 MDCKII-
ABCG2 

GI50 

(nM) 

95% 
CI 

GI50 

(nM) 

95% CI GI50 

(nM) 

95% 
CI 

GI50 

(nM) 

95% 
CI 

GI50 

(nM) 

95% 
CI 

Act D 12.7 - 745**** (680.8, 
905.3) 

25.7**** (18.3, 
36.1) 

40.4**** (32.2, 
50.7) 

14.0 (11.7, 
16.8) 

Act D + 
Verapamil 

4.40
†
 (3.31, 

5.85) 
129

†
 (109.8, 

150.5) 
- - - - - - 

Act D + 
MK571 

4.10
†
 (3.02, 

5.55) 
- - 5.90

†
 (3.35, 

10.4) 
32.3 23.3, 

44.7) 
- - 

Act D + 
KO143 

13.1 (10.2, 
16.9) 

- - - - - - 13.0 (10.3, 
15.4) 

Abbreviation: -, not applicable  

GI50 assessed by MTS assay after 72h of drug exposure. Values are the mean of ≥ 3 experiments. 

****p<0.0001 compared to MDCKII-WT under the same treatment conditions. 

†
p<0.0001 compared to the same cell line without inhibitor treatment. 

Table 2.5. Growth inhibition of Act D in MDCKII cell lines over-expressing 
specific drug transporters 
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Figure 2.10. Act D growth inhibition in MDCKII-WT and MDCKII-ABCB1 cell 
lines in the presence or absence of verapamil.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-10µM Act D either alone or in the presence of verapamil 

(1µM) for 72h, following which MTS substrate was added to determine cell 

sensitivity. Each point represents mean ± SEM from ≥ 3 experiments. GI50 

values were compared by F-test. 

ABCC1 and ABCC2 over-expressing cell lines showed reduced sensitivity to 

Act D compared to the parental cell line.  GI50 values were 25.7nM for ABCC1 

and 40.4nM for ABCC2, compared to the parental GI50 of 12.7nM (p<0.0001, 

Figure 2.11, Table 2.5), indicating that Act D may be a substrate for ABCC1 and 

ABCC2. To further investigate this, experiments were carried out with the pan-

ABCC family inhibitor MK571. MK571 (25µM) increased sensitivity 3-fold in the 

parental cell line (p<0.0001, Figure 2.12A, Table 2.5), whilst a greater than 4-

fold increase was seen in MDCKII-ABCC1 (p<0.0001, Figure 2.12B, Table 2.5).  

There was no effect on the sensitivity of the MDCKII-ABCC2 cell line (p=0.23, 

Figure 2.12C, Table 2.5).  
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Figure 2.11. Act D growth inhibition in MDCKII-WT, MDCKII-ABCC1 and 
MDCKII-ABCC2 cell lines.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-10µM Act D for 72h following which MTS substrate was 

added to determine cell sensitivity. Each point represents mean ± SEM from 

≥ 3 experiments. GI50 values were compared by F-test. 
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Figure 2.12. Act D growth inhibition in MDCKII-WT, MDCKII-ABCC1 and 
MDCKII-ABCC2 cell lines with MK571.  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-10µM Act D in the presence of MK571 (25µM) for 72h 

following which MTS substrate was added to determine cell sensitivity. Each 

point represents mean ± SEM from ≥ 3 experiments. GI50 values were 

compared by F-test. 
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No difference in sensitivity was observed between the parental cell line and 

ABCG2 over-expressing cells, when incubated with Act D alone or in 

combination with the specific ABCG2 inhibitor KO143 (p=0.74, Figure 2.13, 

Table 2.5). 

 

Figure 2.13. Act D growth inhibition in MDCKII-WT and MDCKII-ABCG2 cell 
lines in the presence or absence of KO143 (0.2µM).  

Cells were seeded and allowed 24h to establish growth and were then 

incubated with 0-10µM Act D either alone or in the presence of KO143 

(0.2µM) for 72h following which MTS substrate was added to determine cell 

sensitivity. Each point represents mean ± SEM from ≥ 3 experiments. GI50 

values were compared by F-test. 

2.3.5 Intracellular accumulation of actinomycin D in MDCKII cell lines 

To confirm the results obtained from growth inhibition studies, intracellular 

concentrations of Act D were determined in all cell lines across a wide 

concentration range. Initially, to determine an acceptable dose which would not 

cause cell toxicity over 12h, all MDCKII cell lines were incubated with 0.01-2µM 

Act D for between 2 and 12h; 0.01µM was used over 12h and 0.1µM was used 

over 4h during inhibition studies (Table 2.6). 
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 Act D concentration (µM) 

 0.01 0.1 0.5 1 2 

Time (h) 2 4 6 12 2 4 6 12 2 4 6 12 2 4 6 12 2 4 6 12 

MDCKII-
WT 

- - - - - - T T - - T T - - T T - T T T 

MDCKII-
ABCB1 

- - - - - - - - - - - - - - - T - - - - 

MDCKII-
ABCC1 

- - - - - - - - - - - - - - T T - - T T 

MDCKII-
ABCC2 

- - - - - - - T - - T T - - T T - - T T 

MDCKII-
ABCG2 

- - - - - - T T - - T T - T T T - T T T 

Abbreviations:  -, No toxicity* observed T, Toxicity* observed  

Table 2.6. Observed cellular toxicity following incubation with 0.01-2µM 
Act D for 2-12h.  

All MDCKII cell lines were seeded in 6-well plates and allowed to establish 

growth over 4 days, cells were then incubated with a concentration range of 

Act D (0.01-2µM). *Cells were examined using a microscope and toxicity was 

defined as cells detaching from the base of the well at 2, 4, 6 and 12h. Each 

reading was from ≥ 3 experiments. 

When incubated for between 2 and 12 hours with Act D (0.01µM) alone, a time-

dependent accumulation of Act D was observed. After 12h, mean Act D 

accumulation in MDCKII-ABCB1 was 10.2% of that seen in the parental cell line 

(0.98nM vs. 0.1nM, p<0.0001, Figure 2.14A, Table 2.7). When co-incubated 

with verapamil, intracellular levels of Act D increased in a verapamil 

concentration-dependent manner, indicating that Act D efflux is reduced when 

ABCB1 is inhibited.  
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Cell line Act D concentration (nM) 

 2h 4h 6h 12h 

MDCKII-WT 0.24 0.43 0.66 0.98 

MDCKII-ABCB1 0.06**** 0.06**** 0.07**** 0.10**** 

MDCKII-ABCC1 0.17 0.22 0.31* 0.40** 

MDCKII-ABCC2 0.16 0.19* 0.22*** 0.28*** 

MDCKII-ABCG2 0.43 0.75 0.88 1.27 

*p < 0.05, **p < 0.01, ***p<0.001, ****p < 0.0001 – compared 
with MDCKII-WT cell line at the same accumulation time point, 
using two-way ANOVA with Bonferroni’s multiple comparisons 
test 

Table 2.7. Intracellular accumulation of 0.01µM Act D in MDCKII- cell lines 
over 12h 

Treating MDCKII-ABCB1 cells with 10μM verapamil caused a 7.9-fold increase 

in intracellular Act D (Figure 2.14B, Table 2.8). Complete reversal of 

intracellular concentration was achieved with verapamil concentrations of 10μM 

or greater. These results, alongside those seen during growth inhibition studies 

further suggest a role for ABCB1 in the transport of Act D. 
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Figure 2.14. Intracellular accumulation of Act D in MDCKII-WT and 
MDCKII-ABCB1 in the presence or absence of verapamil.  

Following 4 days growth, cells were incubated with (A) 0.01µM Act D for 

between 2 and 12h or (B) 0.1µM Act D for 4h in the presence or absence of 

verapamil (0-25µM). Cellular contents were extracted at the appropriate time 

point and intracellular Act D concentrations were determined by LC/MS 

analysis. Each point represents mean ± SEM from ≥ 3 experiments. 

**p<0.01, ***p<0.001 and ****p<0.0001 compared to MDCKII-WT at the same 

experimental conditions using the two-way ANOVA with Bonferroni’s 

correction for multiple comparisons. 
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 Act D concentration (nM) 

Cell line 
No 
inhibitor 

[Verapamil] µM [MK571] µM [KO143] µM 

1 10 25 1 10 25 1 10 25 

MDCKII-
WT 

0.76 0.94 0.96 1.15 0.94 0.92 1.27 0.71 0.78 0.85 

MDCKII-
ABCB1 

0.12*** 0.35** 0.95 0.94 - - - - - - 

MDCKII-
ABCC1 

0.55 - - - 0.55 0.68 0.91 - - - 

MDCKII-
ABCC2 

0.39** - - - 0.41** 0.56 0.87 - - - 

MDCKII-
ABCG2 

1.85* - - - - - - 1.43 1.04 1.1 

Abbreviations: -, not applicable 

*p < 0.05, **p < 0.01, ***p<0.001 – compared with MDCKII-WT cell line at the same inhibitor 
concentration, using the two-way ANOVA with Bonferroni’s multiple comparisons test. 

Table 2.8. Intracellular accumulation of Act D (0.1µM) over 4 h in MDCKII- 
cell lines in the presence or absence of specific drug transport inhibitors 

Accumulation studies over 12h indicated that Act D is also transported by 

ABCC1 and ABCC2, with 2.5-fold (p<0.01) and 3.5-fold (p<0.001) lower 

accumulation respectively, compared to the parental cell line (Figure 2.15A, 

Table 2.7). A small trend towards increased Act D accumulation (1.24-fold in 

MDCKII-ABCC1 and 1.41-fold in MDCKII-ABCC2, Figure 2.15B, Table 2.8) was 

seen when co-incubating Act D with MK571, but this was not statistically 

significant. 

Throughout this investigation, MDCKII-ABCG2 cell lines consistently had higher 

intracellular concentrations of Act D than any other cell line, including the 

parental. Between 2-6h, intracellular Act D concentrations in MDCKII-ABCG2 

were 1.6-fold higher than the parental, and 1.3-fold higher than the parental at 

12h, however these results were not statistically significant (Figure 2.16A, Table 
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2.7). Use of the specific ABCG2 inhibitor KO143 reduced Act D accumulation 

with increasing inhibitor concentration. When MDCKII-WT and MDCKII-ABCG2 

cells were incubated for 4h in the absence of KO143, intracellular Act D 

concentrations were 1.92-fold higher in MDCKII-ABCG2 than the parental 

(p<0.05, Figure 2.16B, Table 2.8), but upon KO143 treatment the intracellular 

Act D concentration in MDCKII-ABCG2 was lower than without inhibition 

(1.14nM vs. 1.42nM, Figure 2.16B, Table 2.8). This trend continued with 

increasing KO143 concentrations.  
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Figure 2.15. Intracellular accumulation of Act D in MDCKII-WT, MDCKII-
ABCC1 and ABCC2 in the presence or absence of MK571.  

Following 4 days growth, cells were incubated with (A) 0.01µM Act D for 

between 2 and12h or (B) 0.1µM for 4h in the presence or absence of MK571 

(0-25µM) . Cellular contents were extracted at the appropriate time point and 

intracellular Act D concentrations were determined by LC/MS analysis. Each 

point represents mean ± SEM from ≥ 3 experiments. *p<0.05, **p<0.01 and 

***p<0.001 compared to MDCKII-WT at the same experimental conditions 

using the two-way ANOVA with Bonferroni’s correction for multiple 

comparisons. 
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Figure 2.16. Intracellular accumulation of Act D in MDCKII-WT and 
MDCKII-ABCG2 in the presence or absence of KO143.  

Following 4 days growth, cells were incubated with (A) 0.01µM Act D for 

between 2 and12h or (B) 0.1µM for 4h in the presence or absence of MK571 

(0-25µM) . Cellular contents were extracted at the appropriate time point and 

intracellular Act D concentrations were determined by LC/MS analysis. Each 

point represents mean ± SEM from ≥ 3 experiments. *p<0.05 compared to 

MDCKII-WT at the same experimental conditions using the two-way ANOVA 

with Bonferroni’s correction for multiple comparisons. 
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2.3.6 Cellular efflux of actinomycin D in MDCKII cell lines 

To further confirm the results seen in both the GI and intracellular accumulation 

assays, Act D efflux was assessed following a 4h incubation. Over 2h efflux, a 

time-dependent reduction in intracellular Act D was seen in all cell lines. 

Consistent with previous data, MDCKII-ABCB1 cell lines initially had 12.7% of 

the Act D intracellular concentration compared to the parental cells (0.61 vs. 

4.8nM, p<0.0001, Table 2.9, Figure 2.17). Over 2h the intracellular Act D 

concentration decreased 5.5-fold in ABCB1 over-expressing cells (0.61 to 

0.11nM, p<0.0001, Figure 2.17, Table 2.9), whilst the Act D concentration in the 

parental cell line decreased by only 1.5-fold (4.8 to 3.2nM, Figure 2.17, Table 

2.9). 

 Act D concentration (nM) 

 0h 1h 2h 

MDCKII-WT 4.80 4.04 3.19 

MDCKII-ABCB1 0.61**** 0.15**** 0.11**** 

MDCKII-ABCC1 4.60 3.93 2.40 

MDCKII-ABCC2 2.75* 1.55*** 1.29*** 

MDCKII-ABCG2 8.20* 5.85 5.29* 

*p < 0.05, ***p < 0.001, ****p < 0.0001 

 – compared with MDCKII-WT cell line at the 
same efflux time point, using two-way ANOVA 
with Bonferroni’s multiple comparisons test. 

Table 2.9. Cellular Efflux of Act D (0.1µM), following a 4h incubation in 
MDCKII cell lines 
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Figure 2.17. Cellular efflux of Act D in MDCKII-WT and MDCKII-ABCB1 cell 
lines following a 4h incubation.  

After 4 days growth, cells were incubated with Act D (0.1µM) for 4h, following 

which the 0h time point was extracted and spiked media was removed and 

replaced with blank media for the 1 and 2h time points. Intracellular 

concentrations were determined by LC/MS analysis. Each point represents 

mean ± SEM from ≥ 3 experiments. ****p<0.0001 compared to MDCKII-WT 

at the same sample time, using the two-way ANOVA with Bonferroni’s 

correction for multiple comparisons. 

Supporting both GI and intracellular accumulation assays, initial intracellular Act 

D concentrations in MDCKII-ABCC1 and MDCKII-ABCC2 cells were lower than 

MDCKII-WT (4.6 and 2.75nM (p<0.05) vs. 4.8nM respectively, Figure 2.18, 

Table 2.9) followed by a 1.9- and 2.1-fold reduction in intracellular Act D 

respectively during efflux observed over 2h. 
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Figure 2.18. Cellular efflux of Act D in MDCKII-WT, MDCKII-ABCC1 and 
MDCKII-ABCC2 cell lines following a 4h incubation.  

After 4 days growth, cells were incubated with Act D (0.1µM) for 4h, following 

which the 0h time point was extracted and spiked media was removed and 

replaced with blank media for the 1 and 2h time points. Intracellular 

concentrations were determined by LC/MS analysis. Each point represents 

mean ± SEM from ≥ 3 experiments. *p<0.05 and ***p<0.001 compared to 

MDCKII-WT at the same sample time, using the two-way ANOVA with 

Bonferroni’s corrections for multiple comparisons. 

MDCKII-ABCG2 cells again had higher accumulation of Act D after the initial 4h 

incubation (8.20 vs. 4.80, p<0.05, Figure 2.19, Table 2.9) confirming results 

seen during intracellular accumulation studies.   Similarly to the parental cell 

line, a 1.6-fold reduction in Act D was seen during efflux over 2h. 
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Figure 2.19. Cellular efflux of Act D in MDCKII-WT and MDCKII-ABCG2 cell 
lines following a 4h incubation.  

After 4 days growth, cells were incubated with Act D (0.1µM) for 4h, following 

which the 0h time point was extracted and spiked media was removed and 

replaced with blank media for the 1 and 2h time points. Intracellular 

concentrations were determined by LC/MS analysis. Each point represents 

mean ± SEM from ≥ 3 experiments. *p<0.05 compared to MDCKII-WT at the 

same sample time. 

 

2.3.7 Drug transport inhibition assay using doxorubicin and actinomycin 

D 

Inhibition of ABCB1-mediated efflux was used to confirm the results obtained 

from Act D growth inhibition and intracellular drug accumulation experiments 

(Figure 2.20). Pre-incubation with Act D (0-100μM) resulted in an increase in 

intracellular levels of the fluorescent ABCB1 substrate doxorubicin. Intracellular 

doxorubicin levels in the parental cells did not appear to increase further 

following Act D concentrations of 0.1-1μM, whereas in the ABCB1 over-
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expressing cell line concentrations of 1-25μM were required to inhibit 

doxorubicin efflux. 
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2.4 Discussion 

Studies were undertaken to determine the in vitro transport of Act D and 

whether Act D is a substrate for clinically-relevant ABC transporters. Data 

generated from these in vitro studies may provide useful information which has 

the potential to help us understand inter-patient variability in Act D 

pharmacokinetics (Veal et al., 2005). Cellular resistance to Act D has previously 

been reported in a Chinese hamster ovary model (Biedler and Riehm, 1970), 

and confirmed to be caused by ABCB1 (Juliano and Ling, 1976). However, no 

detailed subsequent study has been conducted to confirm the transport of Act D 

by ABCB1 or other ABC transporters.  

In the current study the transport of Act D by a number of ABC transporters was 

characterised. Using the well-studied MDCKII cell line model, transporter 

expression was initially confirmed by western blot analysis. Uniform high 

ABCB1 expression was demonstrated over 4 days in MDCKII-ABCB1 

compared to all other cell lines. However, low-level ABCB1 expression was 

observed in all cell lines due to endogenous canine ABCB1 expression. High 

ABCG2 expression was observed in MDCKII-ABCG2 cell lines, but not for other 

cell lines. Expression analysis for ABCC1 and ABCC2 was only performed in 

MDCKII-WT and their over-expressing cell lines due to time constraints. 

MDCKII-ABCC1 cells had high expression levels of ABCC1 compared to the 

parental cell line and similarly MDCKII-ABCC2 cells had high expression of 

ABCC2 compared to the parental cells. 

Following confirmation of appropriate ABC transporter expression and 

determination of an appropriate seeding density, cell function was assessed 

with known transporter substrates using GI assays. Doxorubicin, one of the 
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original anti-cancer agents shown to be a substrate for ABCB1, was first 

established as an ABCB1 substrate in doxorubicin resistant MCF-7 breast 

cancer cells. Doxorubicin resistant cells had GI50 values 200-fold higher than 

the WT cell line, with a 45-fold amplification of ABCB1 cDNA (Fairchild et al., 

1987). In this study, MDCKII-ABCB1 expressing cells were 16-fold less 

sensitive to doxorubicin than MDCKII-WT, indicating active ABCB1 efflux. This 

was further confirmed by inhibition of ABCB1 with the competitive substrate 

verapamil, causing almost complete restoration of sensitivity. MDCKII-ABCC2 

cells were 17-fold less sensitive than the parental cell line to SN-38, a known 

ABCC2 substrate, with small differences in sensitivity also being seen in 

MDCKII-ABCB1 and MDCKII-ABCG2 cell lines (2- and 1.3-fold respectively), 

confirming active efflux of SN-38 by ABCC2. Specific reversal of resistance by 

inhibition was not possible due to the lack of an available specific inhibitor. 

Finally, MDCKII-ABCG2 cells were 10-fold less sensitive than MDCKII-WT to 

mitoxantrone, an ABCG2 substrate. Inhibition of ABCG2 by KO143 (0.2µM) 

caused complete reversal of resistance only in the MDCKII-ABCG2 cell line, 

therefore confirming active transport of mitoxantrone by ABCG2. 

MDCKII-WT, -ABCB1, -ABCC2, and –ABCG2 cell lines were therefore 

functioning as a model to study the transport of ABCB1, ABCC2 and ABCG2 

substrates. MDCKII-ABCC1 over-expressing cells were sourced late in the 

study, therefore it was not possible to fully test their function. However, 

transporter expression was confirmed by western blot analysis and MDCKII cell 

lines are a recognised model for studying ABC transporters and their 

substrates.  



109 
 

GI studies initially confirmed Act D as an ABCB1 substrate as a 59-fold 

difference in sensitivity was seen between the parental and ABCB1 over-

expressing cells. This indicates that Act D is removed from MDCKII-ABCB1 

cells, therefore decreasing its growth inhibitory effect. Verapamil was 

subsequently used to successfully reverse this resistance, confirming the role of 

ABCB1 in decreasing the growth inhibitory effect.  

Transport was further investigated by directly looking at intracellular 

concentrations of Act D in both MDCKII-WT and MDCKII-ABCB1 cell lines. A 

7.9-fold lower intracellular accumulation was observed in cells over-expressing 

ABCB1 at a fixed concentration of Act D (0.01µM) over a 12h period, confirming 

that Act D was being actively removed from the MDCKII-ABCB1 cells by 

ABCB1. Again, verapamil was used to inhibit ABCB1-mediated transport, 

resulting in a concentration-dependent increase in Act D accumulation in 

MDCKII-ABCB1 cells.  

Cellular efflux experiments over 4h further confirmed lower Act D accumulation 

in ABCB1 expressing cells. Following removal of spiked media a 5.5-fold time-

dependent reduction in intracellular levels in MDCKII-ABCB1 cells was 

observed compared to a 1.5-fold reduction in MDCKII-WT 2h after drug 

removal. 

The inhibition assay was used to demonstrate that doxorubicin fluorescence 

was reduced in MDCKII-ABCB1 cells, as compared to MDCKII-WT cells. 

Incubating cells with increasing concentrations of Act D resulted in competition 

for ABCB1 efflux, inhibiting doxorubicin removal from cells. This caused an 

increase in doxorubicin fluorescence in both cell lines, with Act D demonstrating 
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a higher affinity for efflux than doxorubicin. Due to the over-expression of 

ABCB1, a greater concentration of Act D was required to saturate the 

transporter and prevent doxorubicin efflux in MDCKII-ABCB1 cells compared to 

MDCKII-WT. These four independent assessments strongly indicate that Act D 

is a substrate of the efflux protein ABCB1. 

Growth inhibition assays showed lower sensitivity in both MDCKII-ABCC1 and 

MDCKII-ABCC2 cell lines compared to MDCKII-WT (2-fold and 3.2-fold 

respectively). Although initial investigations into ABCC2 function were not 

carried out in combination with an inhibitor due to the lack of appropriate 

specific inhibitors, the pan-ABCC family inhibitor MK571 was used to investigate 

Act D transport. Upon inhibition with MK571, a 4-fold increase in sensitivity was 

seen in MDCKII-ABCC1, whilst in the MDCKII-ABCC2 cell line treatment with 

MK571 had no effect on Act D sensitivity. However, MDCKII-WT were also 3-

fold more sensitive when treated with MK571, possibly indicating either some 

low-level toxicity when incubating with 25µM MK571 or endogenous ABCC1/2 

expression.  

Again the role of these transporters was investigated with intracellular 

accumulation and cell efflux assays. Over 12h, accumulation was significantly 

lower in both MDCKII-ABCC1 (2.45-fold) and MDCKII-ABCC2 (3.5-fold) cell 

lines, as compared to MDCKII-WT, providing additional confirmation of the 

results of the GI studies, that Act D is undergoing active ABCC1 and ABCC2 

mediated efflux. To further investigate this, the pan-ABCC family inhibitor 

MK571 was used. Over 4h, a concentration-dependent increase in Act D 

accumulation was observed in both the ABCC1 and ABCC2 over-expressing 

cell lines, but this was not significant. In cellular efflux experiments a significant 
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time-dependent reduction in intracellular Act D was observed over 1 h in 

ABCC2 over-expressing cells (1.6-fold), compared to the parental cell line, 

further supporting the GI and intracellular accumulation assay data suggesting 

ABCC2-mediated transport. 

No evidence of Act D transport by ABCG2 was found during GI, intracellular 

accumulation or cellular efflux assays. Interestingly, intracellular Act D 

concentrations were consistently higher in MDCKII-ABCG2 cells than MDCKII-

WT cells throughout both intracellular (1.6-fold between 2-6 hours) and cellular 

efflux assays (1.7-fold after 4 hours), however, this was not reflected in GI 

studies. Evidence from investigations in rats suggests that Oatp1 and Oatp2 are 

bidirectional import transporters, using endogenous glutathione as an 

electrochemical driving force for transporter function (Li et al., 1998; Li et al., 

2000). The data here could suggest a role for ABCG2 as a bidirectional 

transporter, importing Act D into the cell causing an increase in intracellular Act 

D concentrations and a decrease in Act D efflux. However, as ABCG2 transport 

is ATP-dependent, co-transport would not be expected and as such there are 

no data available in the literature to support this. In MDCKII-ABCG2 cells, 

ABCG2 is present on the apical membrane, removing substrates from the cell 

(Pavek et al., 2005), it is therefore unlikely that this effect is the result of ABCG2 

over-expression. According to densitometry performed on MDCKII-ABCG2 cells 

after being probed for ABCB1, lower expression of endogenous ABCB1 was 

observed in the MDCKII-ABCG2 cell lines (23-fold), which could give rise to 

reduced Act D efflux in these cells, therefore increasing Act D intracellular 

accumulation.  
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The data presented here confirm, through a systematic investigation, that Act D 

is a substrate for ABCB1, ABCC2 and to lesser extent ABCC1. ABCB1 and 

ABCC2 are both present at the apical membrane in the liver and kidneys 

eliminating substances from the body via the bile and urine. It is therefore 

possible that these transporters have an important role in determining the 

pharmacokinetics of Act D. Data generated in ABC transporter knockout mouse 

models have highlighted the potential importance of ABC transporter 

expression, demonstrating altered pharmacokinetics when mice are 

administered ABC transporter substrates (Schinkel et al., 1996; van Asperen et 

al., 1999; Lagas et al., 2010). The impact of ABCB1 and ABCC2 on the 

transport of Act D in vivo must therefore be investigated in an appropriate 

model.  
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Chapter 3. Pharmacokinetics and tissue distribution of 

actinomycin D in mice 

3.1 Introduction 

Pharmacokinetic studies in animals and patients investigate the fate of 

externally administered compounds through the processes of absorption, 

distribution, metabolism and excretion. These processes are governed by the 

expression of drug-metabolising enzymes and transporter proteins, as well as 

physiological functions such as glomerular filtration. The presence of ABC 

transporters at sites such as the intestinal lumen prevents absorption of orally 

administered drugs, whereas in the liver and kidney they facilitate the 

elimination of drugs via the bile and urine.  

The availability of ABC transporter knockout mice has made it possible to study 

the impact of individual ABC transporters and to investigate the role of drug 

transporters in influencing the pharmacokinetics of drugs. It is often difficult to 

predict the effect of complete systemic knockout, and as such results vary 

substantially between different chemotherapeutic agents. Administration of 

etoposide, both orally and intravenously, in Abcb1a/1b-/-;Abcc2-/- mice causes a 

significant increase in plasma AUC0-∞, due to reduction of urinary and biliary 

excretion (Lagas et al., 2010). In other studies, reduced concentrations of 

vemurafenib were seen in vitro in MDCKII-ABCB1 and MDCKII-Abcg2 cells, but 

there was no increase in plasma exposure in the subsequent in vivo study in 

Abcb1a/1b-/-;Abcg2-/- mice. Instead vemurafenib concentrations were higher in 

the brain in the knockout mice, due to the absence of Abcb1a, Abcb1b and 

Abcg2 at the blood-brain barrier (Mittapalli et al., 2012). 
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To date, limited in vivo pre-clinical pharmacokinetic studies have been 

performed with Act D. Using tritiated Act D in rats, monkeys and dogs rapid 

depletion from plasma was been observed, coupled with increased linear 

accumulation in tissues except the brain with 12-31% of Act D excreted via the 

urine depending on species (Galbraith and Mellett, 1975; Lutz et al., 1977). 

Preliminary Act D pharmacokinetic data in 31 patients suggest a marked 

variability in exposure in patients being treated with Act D (Veal et al., 2005).  

The evidence presented in Chapter 2 suggests transport of Act D by ABCB1, 

ABCC1 and ABCC2 in vitro which could, in part, be responsible for the 

observed inter-patient variation in Act D exposure. In this chapter, the relevance 

of this will be investigated in an appropriate pre-clinical model. Mice lacking 

Abcb1a/1b (Abcb1a/1b-/-) and Abcc2 (Abcc2-/-) as well as their WT counterparts 

will be used to assess the role of Abcb1a/1b and Abcc2 in the transport of Act D 

in vivo.  
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3.2 Materials and methods 

3.2.1 Materials 

Mice were treated with Act D (Merck Sharp & Dohme, UK) supplied by the 

Pharmacy, Royal Victoria Infirmary, Newcastle upon Tyne. 

3.2.2 Preliminary pharmacokinetic study in CD-1 mouse and ABC-

transporter knockout mice 

All in vivo experiments were reviewed and approved by the institutional animal 

welfare committee, and performed according to National Cancer Research 

Institute Guidelines (Workman et al., 2010) and the Animals (Scientific 

Procedures) Act 1986. CD-1 mice were chosen to carry out a preliminary 

pharmacokinetic study in non-knockout mice to confirm the current LC/MS 

method would be sufficiently sensitive and the chosen dosage regimen would 

provide plasma concentrations of Act D similar to those seen in human patients. 

For the initial study, 12 female CD-1 mice were used. ABC transporter knockout 

mice were chosen based on results obtained during in vitro investigations. 

Abcb1a/1b-/-(Schinkel et al., 1994; Schinkel et al., 1997), Abcc2-/- (Vlaming et 

al., 2006) constitutive knockout mice, along with the parental FVB strain were 

supplied by Taconic (Hudson, USA) with 12 mice used per strain.  

3.2.3 Treatment regimen 

Mice were dosed based on the equivalent dose in children of 1.5mg/m2 

(0.06mg/kg). Using the species conversion factor from human to mouse (dose 

(mg/kg) x 12) an initial dose of 0.72mg/kg was obtained (Freireich et al., 1966). 

However previous Act D in vivo data demonstrated that using 0.5mg/kg in mice 

resulted in limited toxicity over 24h, but an increase in dose to 1mg/kg caused 
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toxicity and death in 9 out of 10 mice (Robinson and Waksman, 1942), therefore 

0.5mg/kg was chosen. A 500µg vial of Act D suitable for in vivo administration 

was reconstituted in 1.1ml ddH2O to obtain a 500µg/ml solution. This was 

further diluted 10-fold to 50µg/ml in saline and administered intravenously at 

10ml/kg (0.5mg/kg) via the tail vein. 

3.2.4 Mouse plasma collection  

At the appropriate sample time, mice were anesthetised with 10 ml/kg of an 

anaesthetic cocktail (0.75mg/kg fentanyl citrate, 25mg/kg fluanisone, 12.5mg/kg 

midazolam), and euthanized by cervical dislocation. Blood was taken via 

cardiac puncture using a heparin-coated needle and syringe, and placed in 

1.5ml capped vials. Plasma was separated by centrifugation (1,000g for 5min) 

and stored at -20oC until needed. 

3.2.5 Mouse tissue collection  

To assess Act D concentrations in tissue, each mouse was dissected following 

cardiac puncture and the brain, liver and kidneys were removed, wrapped in 

aluminium foil and immediately snap-frozen in liquid nitrogen. Once all animals 

had been dissected, tissues were stored at -80oC until needed.  

3.2.6 Analysis of actinomycin D in mouse plasma by LC/MS 

Details of the LC/MS method are provided in 2.2.10 and assay validation can be 

seen in 4.2.3. Act D chromatography following extraction from mouse plasma 

and tissue was identical to that from human plasma. The chromatograms and 

retention times for all matrices were identical (3.87-3.88min, Figure 3.1). 

Repeated analyses of both plasma and tissue samples were consistent, 
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therefore it was deemed appropriate to use the same assay to analyse Act D 

concentrations in mouse plasma and tissues. 

 

Figure 3.1. Comparisons between chromatograms of Act D (A) extracted 
from human plasma, (B) in extracted from mouse plasma and (C) 
extracted from mouse liver tissue. 

The retention time of Act D in (A) human plasma (3.87min), (B) mouse 

plasma (3.87min) and (C) mouse liver tissue (3.88min) are all comparable 

between matrices. 

 

A
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3.2.6.1 Preparation of working standards, QCs and internal standard 

Act D was weighed and dissolved in methanol to obtain a 1mg/ml solution. 

Separate Act D and stock solutions were prepared for working standards and 

QCs. The 1mg/ml working standard stock solution was used to make a 1µg/ml 

solution in human plasma, and from this the following working standards were 

prepared in human plasma: 10, 5, 2, 1, 0.5 and 0.25ng/ml.  The 1mg/ml QC 

stock solution was used to prepare a 1µg/ml solution in human plasma and from 

this 10, 2 and 0.5ng/ml QC samples were prepared in human plasma. Working 

standards and QC samples were stored at -20oC until needed. 7-

aminoactinomycin D (7-AD) was used as an internal standard (IS), with a 

1mg/ml solution prepared in methanol diluted 1:200 in methanol, to give a 

5µg/ml working solution. Both 7-AD solutions were stored at 4oC until needed. 

3.2.6.2 Actinomycin D extraction from mouse plasma 

Preliminary pharmacokinetic study samples were assayed at 1:3 and 1:10 

dilutions (diluted in blank human plasma) as the concentration of Act D in the 

mouse plasma was unknown. Subsequently, analysis of knockout mice samples 

was carried out at 1:10 dilutions for the samples at 15 and 30min and 1:3 

dilutions for the samples at 2 and 6h, ensuring all sample were within the range 

of the standard curve. 

The 5µg/ml IS working solution was diluted 1:200 in ddH2O to give a 25ng/ml 

solution. Patient samples were centrifuged at 15,300g for 5min, then 0.6ml was 

mixed with 0.6ml ddH2O and 50µl 25ng/ml IS solution (final concentration 

1ng/ml) in a 10mm borosilicate tube. Gilson Aspec XL4 (Anachem, UK) and 

Oasis solid phase extraction (SPE) cartridges (Part no. WAT058882) (Waters, 

UK) were used for extraction, using 100% acetonitrile (MeCN), 5% MeCN in 
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ddH2O and ddH2O as follows: (1) SPE columns were conditioned with 1ml 

100% MeCN, (2) SPE columns were washed with 1ml ddH2O, (3) 1ml sample 

was loaded onto the SPE column, (4) SPE was washed with 5% MeCN, and (5) 

Act D was eluted with 2ml 100% MeCN into a 12mm borosilicate tube. Samples 

were then evaporated to dryness under nitrogen using a Turbovap LV solvent 

evaporator (Biotage, Uppsala, Sweden).  

3.2.7 Preparation of mouse liver and kidney samples for LC/MS analysis   

The concentration of Act D in mouse liver and kidneys was determined using 

the method of addition. Tissue samples were washed in PBS, weighed and 

homogenised in 3 x PBS (i.e. 1g tissue: 3ml PBS) using a Pro scientific 200 

Homogeniser (Oxford, CT, USA). Standards were prepared in MeCN by diluting 

the 1mg/ml working solution to 10µg/ml. From this working standards were then 

prepared in MeCN at concentrations of 150, 100 and 50ng/ml. After appropriate 

dilution in PBS, 50µl of the same tissue sample was pipetted into eight 1.5ml 

capped vials with 10µl of 0, 50, 100 or 150ng/ml standard, added to the 

duplicate samples. To each 1.5ml vial, 440µl MeCN was added to extract Act D 

and the tubes were mixed by vortex for 10s.  These tubes were then centrifuged 

at 15,300g for 5min, transferred to 12mm borosilicate tubes and evaporated to 

dryness under nitrogen using a Turbovap LV solvent evaporator (Biotage, 

Uppsala, Sweden). Dried samples were then reconstituted in 200µl mobile 

phase (50:50 A:B), mixed by vortex for 20s and centrifuged at 15,300g for 5min. 

The supernatant was transferred to small volume insert tubes and placed in the 

Peltier tray for analysis. Results are expressed as µg/L, however, these have 

been normalised to tissue weight. 
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3.2.8 Preparation of mouse brain samples for LC/MS analysis 

The mouse brain tissue was washed, weighed and homogenised as per 3.2.7. 

Due to low sample volumes of brain tissue following homogenisation, it was not 

possible to produce an adequate spiked standard curve for the analysis of Act D 

concentrations in the brain. It was therefore not possible to use the method of 

addition and 1ml MeCN was added to 100µl of undiluted brain homogenate to 

extract Act D within the tissue. Samples were then centrifuged, dried down 

under nitrogen and reconstituted as per 3.2.7. Results are expressed as peak 

area (pa), however, these have been normalised to tissue weight. 

3.2.9 RNA extraction from mouse liver 

RNA extraction was carried out using a Qiagen RNeasy® Mini Kit according to 

the manufacturer’s instructions (Qiagen, Crawley, UK). Briefly, between 15-

30mg of liver tissue per sample (one per mouse) was weighed and 

homogenised in Buffer RLT using a Pro Scientific 200 Homogeniser (Oxford, 

CT, USA). Following centrifugation, the supernatant was mixed with 70% 

ethanol and transferred to an RNeasy spin column, where cell debris was 

removed by further centrifugation and column washing with Buffer RW1 and 

twice with Buffer RPE. Total RNA was then eluted using RNase-free water. 

RNA concentration was determined against an RNase-free water blank using a 

NanoDrop ND-1000 (Thermo Scientific, Rockford, USA). 

3.2.10 Reverse transcription of RNA to cDNA 

Reverse transcription was carried out using the Reverse Transcription System 

supplied by Promega (Southampton, UK). All extracted RNA from mouse liver 

was reverse transcribed in the same assay to ensure uniform PCR conditions 
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and amplification for all samples. For each sample, a 20µl reaction mix (5mM 

MgCl2, 1x Reverse transcription buffer, 1mM dNTP mixture, 1u/µl Recombinant 

RNasin® Ribonuclease Inhibitor, 15u/µg AMV Reverse Transcriptase, 0.5µg 

Random primers, Nuclease-Free water and 1µg sample total RNA) was set up 

on ice in 0.2ml PCR tubes. Samples were then incubated at room temperature 

for 10min, and transferred to a GeneAmp PCR System 9700 (Applied 

Biosystems, California, USA). The PCR conditions used are shown in Figure 

3.2, cDNA was stored at 4oC for short-term storage or -20oC for long term 

storage.  

 

Figure 3.2. Reverse transcriptase PCR conditions. 

3.2.11 PCR primers, design and validation for detection of mouse Abcb1a, 

Abcb1b and Abcc2 

Validated QuantiTect Primer Assays for Abcb1a and Abcc2, along with mouse 

Gapdh as an endogenous control were supplied by Qiagen (Crawley, UK). 

Acceptable primer assay kits were not available for Abcb1b, therefore the 

Abcb1b cDNA sequence was used to design 4 primer sets (Table 3.1) which 

were supplied by Invitrogen (Paisley, UK). 
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Primer set Forward Reverse Exon 

Cyclophilin 5’-ATGGCACTGGTGGCAAGTCC-3’ 5’-TTGCCATTCCTGGACCCAAA-3’  

1 5’–ACGTGAGGTGGTGATGGAGTTTGA-

3’ 

5’-

CCAGCCAATCTGCATAGCGAAACA-

3’ 

1/2 

2 5’–ACGTGAGGTGGTGATGGAGTTTGA-

3’ 

5’-

CCCAAATACGCCAACAGCAGGTTT-

3’ 

3/4 

3 5’-ATCAGCAACAGCAGTCTGGAGGAA-

3’ 

5’-

GGCACCAAAGTGAAACCTGGATGT-

3’ 

5/6 

4 5’-TGTGGATGAAGATGTGCCTCTGGT-

3’ 

5’-

CAGCGCAAAGTACGCCAACAAGTA-

3’ 

16/17 

Table 3.1. Primer sequences for 4 Abcb1b primer sets for Real-time PCR. 

Real-time PCR was performed using a Platinum® SYBR® Green qPCR 

SuperMix-UDG w/ROX kit supplied by Invitrogen (Paisley, UK). Validation of all 

primers was carried out using five serial 1 in 10 dilutions of WT mouse cDNA 

(3.2.10), adding 1µl of cDNA per well in triplicate to a MicroAmp® Optical 384-

well plate (Applied Biosystems, California, USA). According to the 

manufacturer’s instructions, 9µl of reaction master mix (1x SYBR green master 

mix, 0.2µM forward and reverse primers) was added to each well. Abcb1a and 

Abcc2 primers were validated against Gapdh as an endogenous control, whilst 

Abcb1b was validated against cyclophilin. No template controls in triplicate were 

also used for each primer set. Plates were sealed using MicroAmp® Optical 

Adhesive Film and Real-time PCR under standard conditions (Figure 5.3) was 

carried out using an ABI PRISM® 7900HT (Applied Biosystems, California, 

USA).  Real-time PCR data was analysed using SDS version 2.3 and data was 

exported to Microsoft Excel 2010 for further analysis. Primers were accepted as 

valid if the Ct value (cycle threshold) data was linear over 3 concentrations of 
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cDNA and the slope of the ∆Ct (the difference between endogenous control Ct 

and target primer Ct) against cDNA concentration was not greater than 0.1.  

3.2.12 Detection of Abcb1a, Abcb1b and Abcc2 by Real-time PCR 

All previously generated cDNA (3.2.10) was diluted 1 in 10 to produce a working 

stock for all samples. Each sample was run twice in triplicate on a 384-well 

plate, once using endogenous control primers (Gapdh or Cyclophilin), and once 

using the primers for the gene of interest (Abcb1a, Abcb1b or Abcc2). 

Expression of Abcb1a, Abcb1b and Abcc2 was analysed in all samples and 

compared to the endogenous control. Plate set up, master mix, Real-time PCR 

and software were all as previously described (3.2.11). The ∆CT (CT target – CT 

reference) was calculated individually for each cDNA sample, following which 

outliers and contaminated samples were removed from the data set. The ∆∆CT 

(∆CT test sample – ∆CT calibrator sample) was also calculated, representing the 

difference in expression relative to one representative sample from the WT mice 

group. 

3.2.13 Statistical analysis 

Pharmacokinetic data from thirty-six mice were analysed by WinNonlin 

Professional version 5.3 (Pharsight Corp, Mountain View, CA, USA). Data from 

three mice per time point were combined and non-compartmental analysis 

(NCA) was performed once for each mouse strain. The area under the plasma 

concentration versus time curve from drug administration to 6h (AUC0-6h) were 

estimated where possible using the logarithmic trapezoidal rule. AUC 

extrapolation to infinity (AUC0-∞) was performed using an estimate of t1/2 from 



124 
 

slope of the concentration vs. time curve using the final two pharmacokinetic 

sample time data points. Clearance was estimated as dose divided by AUC0-∞. 

It was not possible to statistically compare overall exposure data between 

mouse variants as samples were not paired and once all pharmacokinetic 

samples had been combined at the appropriate time points, only one curve per 

mouse variant existed. Therefore mean Act D concentrations in plasma, liver, 

kidney and brain at individual time points were compared as per the intracellular 

accumulation cellular efflux statistical analysis which can be found in 2.2.12. 

Mean tissue-to-plasma ratios and transporter expression data were compared 

using the one-way ANOVA. Multiple comparisons were used to analysis 

differences in Abcb1a/1b-/- mice and Abcc2-/- against WT mice and individual 

time points. Bonferroni’s multiple comparisons were used to correct for this 

multiple testing. p<0.05 following Bonferroni’s correction was taken as 

significant. LC/MS data were analysed as per 2.2.12. 
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3.3 Results 

3.3.1 Actinomycin D pharmacokinetics in CD-1 mice 

No previous pharmacokinetic study of Act D had been performed in mice, 

therefore an initial study in CD-1 mice was undertaken to determine an 

adequate dosage regimen and to ensure the current LC/MS method would be 

sufficiently sensitive. Following administration of 0.5mg/kg Act D to CD-1 mice, 

a time-dependent decrease in Act D plasma concentrations was observed 

(Figure 3.3). The overall exposure to Act D in CD-1 mice (AUC0-6h 131.7µg/L.h, 

Table 3.2) was higher but comparable to that seen previously in patients (AUC0-

6h, range 18.7-81.7 µg/L.h) (Veal et al., 2005). No visible signs of acute toxicity 

were seen with this single dose, therefore a dose of 0.5mg/kg was taken 

forward into the knockout mouse study.

 

Figure 3.3. Act D plasma concentration-time profile for CD-1 mice.  

CD-1 mice were treated with 0.5mg/kg Act D administered via the tail vein, 

following which blood samples were taken at 15min, 30min, 2h and 6h. Act D 

concentrations in mouse plasma samples were determined by LC/MS 

analysis. Inset – semi-logarithmic representation of data. Each point 

represents mean ± SEM from 3 mice.   
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Time (h) 
Act D 

concentration (µg/L) 

0.25 63.9 ± 3.5 

0.5 51.3 ± 15.0 

2 15.6 ± 4.1 

6 9.0 ± 1.2 

AUC0-6h, µg/L.h 132
†
 

AUC0-∞ µg/L.h 160
†
 

Cl (ml/min) 3.13
†
 

Cmax, µg/L 63.9 ± 3.5 

Tmax, h 0.25 

t1/2, h 2.15
†
 

Individual plasma concentration time 
points are mean ± SD from 3 mice.  

†
No SD reported as data is from 

combined pharmacokinetic sample 
non-compartmental analysis.  

Table 3.2. Plasma Act D concentrations and pharmacokinetic parameters 
in CD-1 mice following intravenous administration of 0.5mg/kg Act D 

3.3.2 Actinomycin D pharmacokinetics in wild-type, Abcb1a/1b-/- and 

Abcc2-/- mice 

To investigate the role of Abcb1a/1b and Abcc2 on pharmacokinetics, a dose of 

0.5 mg/kg Act D was administered to WT, Abcb1a/1b-/- and Abcc2-/- mice and 

blood samples were taken between 15min and 6h. Following administration, 

plasma concentrations of Act D decreased with time (Figure 3.4, Table 3.2 ). 

Act D plasma concentrations were consistently higher in Abcb1a/1b-/- mice than 

WT (Figure 3.4, Table 3.3) over the 6h period. The Cmax at 15min was 1.4-fold 

higher in Abcb1a/1b-/- mice compared to WT (93.7µg/L vs. 68.6µg/L, Table 3.3, 

Figure 3.4). A significant 1.7-fold difference in plasma concentration was 

observed 30min post-administration between Abcb1a/1b-/- and WT (71.6µg/L 
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vs. 43.3µg/L, p<0.05, Table 3.3/Figure 3.4). Act D plasma concentrations in 

Abcb1a/1b-/- were 3.3-fold higher than the WT mice (20.1µg/L vs. 6.0µg/L, 

p<0.0001, Table 3.3, Figure 3.4), resulting in a 1.6-fold higher AUC0-6h (AUC0-6h; 

242µg/L.h vs. 151µg/L.h, Table 3.3) than the parental. In addition, the terminal 

phase half-life (t1/2) was 1.5-fold longer in Abcb1a/1b-/- mice than WT, resulting 

in a 1.9-fold greater AUC when extrapolating to infinity (AUC0-∞ 322.6 µg/L.h vs. 

168.1µg/L.h, Table 3.3). Clearance (Cl) in Abcb1a/1b-/- was 52% of that 

observed in WT mice, whilst Cl in Abcc2-/- mice was 1.2-fold higher compared to 

WT mice. This indicates that absence of systemic Abcb1a/1b is associated with 

a reduced rate of elimination of Act D, higher Act D plasma concentrations and 

a higher overall exposure over 6 h. 

 

Figure 3.4. Act D plasma concentration-time profiles for wild-type, 
Abcb1a/1b-/- and Abcc2-/- mice.  

Act D (0.5mg/kg) was administered to WT, Abcb1a/1b-/- and Abcc2-/- mice 

and blood samples were taken at 15min, 30min, 2h and 6h. Act D 

concentrations in mouse plasma were determined by LC/MS analysis. Inset – 

semi-logarithmic representation of data. Each point represents mean ± SEM 

from 3 mice. *p<0.05 and ****p<0.0001 compared to the WT, using the two-

way ANOVA with Bonferroni’s correction for multiple comparisons. 
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In contrast to Abcb1a/1b-/- mice, Abcc2-/- mice generally had lower plasma 

concentrations of Act D than the WT (Figure 3.4, Table 3.3), with significantly 

lower plasma concentrations being observed in Abcc2-/- mice after 2h (16.3µg/L 

vs. 25.8µg/L, p<0.05, Figure 3.4, Table 3.3). AUC0-6h in Abcc2-/- mice was 76% 

of that in WT mice (115µg/L.h vs. 152µg/L.h, Table 3.3) and similarly  the Cmax 

in Abcc2 deficient mice was 73% of that seen in WT mice (48.0µg/L vs. 

68.6µg/L, Figure 3.4/Table 3.3). The t1/2 in Abcc2-/- was longer than the parental 

(2.46h vs. 1.92h), and consequently a similar AUC0-∞ for parental and Abcc2-/- 

was observed (168.1µg/L.h vs. 145.2µg/L.h). 
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 Act D concentration (µg/L) 

 
WT Abcb1a/1b

-/-
 Abcc2

-/-
 

0.25h 68.6 ± 15.6 96.7 ± 12.0 48.0 ± 11.1 

0.5h 43.3 ± 7.7  71.6 ± 12.3* 37.7 ± 6.1 

2h 25.8 ± 4.8 35.8 ± 2.0 16.3 ± 3.7* 

6h 6.0 ± 0.7 20.1 ± 0.8**** 8.6 ± 1.0 

AUC0-6h, µg/L.h 152
†
 242

†
 115

†
 

AUC0-∞, µg/L.h 168
†
 323

†
 145

†
 

Cl (ml/min) 2.97
†
 1.55

†
 3.44

†
 

Cmax, µg/L 68.6 ± 15.6 96.7 ± 12.0 48.0 ± 11.1 

Tmax, h 0.25 0.25 0.25 

t1/2, h 1.92
†
 2.78

†
 2.46

†
 

Individual plasma concentration time points are mean ± SD from 
3 mice.  

*p<0.05 and ****p<0.0001 compared to the WT, using the two-
way ANOVA with Bonferroni’s correction for multiple 
comparisons. 

†
No SD reported as data is from combined pharmacokinetic 

sample non-compartmental analysis.   

Table 3.3. Plasma Act D concentrations and pharmacokinetic parameters 
in WT, Abcb1a/1b-/- and Abcc2-/- mice following intravenous administration 
of 0.5mg/kg Act D 

3.3.3 Actinomycin D accumulation in wild-type, Abcb1a/1b-/- and Abcc2-/- 

mouse liver 

To investigate the impact of Abcb1a/1b and Abcc2 knockout on Act D 

accumulation, mouse livers were taken at 15min, 30min, 2h and 6h following 

administration and Act D concentrations were determined. Act D liver 

concentrations decreased with time in WT and Abcb1a/1b-/- over 6 hours 

(Figure 3.5). The Cmax in Abcb1a/1b-/- was 1.3-fold higher than in the parental 

(2,323µg/L vs. 1,810µg/L, Table 3.4) and this was seen at the earliest 
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observation of 15min post-administration.  The Cmax in Abcc2-/- mice was 

reached 30min post-administration and was 85% of that seen in WT (1,540µg/L 

vs. 1,810µg/L, Table 3.4). Liver Act D concentrations were not markedly 

different between knockout and WT mice. As such, no difference was seen in 

overall liver exposure (AUC0-6h) between knockout and WT mice (Table 3.4). 

The t1/2 in Abcb1a/1b-/- mice was 1.5-fold longer (3.37h vs. 2.21h, Table 3.4 ) 

resulting in a higher AUC0-∞ than the WT (6,594µg/L.h vs. 5,387µg/L.h), 

although due to the limited data and therefore the difficulty in estimating t1/2, 

these results should be considered with caution. 

 

Figure 3.5. Act D liver concentration-time profiles for wild-type, 
Abcb1a/1b-/- and Abcc2-/- mice.  

Act D (0.5mg/kg) was administered to WT, Abcb1a/1b-/- and Abcc2-/- mice 

and liver samples were taken at 15min, 30min, 2h and 6h. Act D 

concentrations in mouse livers were determined by LC/MS analysis. Inset – 

semi-logarithmic representation of data. Each point represents mean ± SEM 

from 3 mice. 
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 Act D concentration (µg/L) 

 
WT Abcb1a/1b

-/-
 Abcc2

-/-
 

0.25h 1810 ± 155 2323 ± 239 1317 ± 302 

0.5h 1593 ± 167 1367 ± 133 1540 ± 356 

2h 747 ± 165 737 ± 172 787 ± 99 

6h 287 ± 40 407 ± 9 303 ± 128 

AUC0-6h, µg/L.h 4473
†
 4616

†
 4445

†
 

AUC0-∞, µg/L.h 5387
†
 6594

†
 5516

†
 

Cmax, µg/L 1810 ± 155 2323 ± 239 1540  ± 356 

Tmax, h 0.25 0.25 0.5 

t1/2, h 2.21
†
 3.37

†
 2.44

†
 

Individual liver concentration time points are mean ± SD from 3 
mice.  

†
No SD reported as data is from combined pharmacokinetic 

sample non-compartmental analysis.   

Table 3.4. Liver Act D concentrations and pharmacokinetic parameters in 
WT, Abcb1a/1b-/- and Abcc2-/- mice following intravenous administration of 
0.5mg/kg Act D 

The relationship between Act D accumulation in liver tissue and the plasma 

concentration (L/P ratio) was determined for all sample times. Over the 6h of 

exposure to Act D, there was a small trend towards increasing L/P ratio in WT 

mice (26.4g-1 to 47.8g-1) and Abcc2-/- (27.4g-1 to 35.4g-1). In contrast, this trend 

was not observed in Abcb1a/1b-/- mice, as the L/P ratio remained constant over 

6h and lower L/P ratio was observed after 6h in Abcb1a/1b-/- mice as compared 

to WT (20.4g-1 vs. 47.8g-1, p<0.05, Figure 3.6). This observation suggests that 

despite overall higher plasma concentrations over 6h in Abcb1a/1b-/- mice, this 

does not translate into higher accumulation in the liver.  
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Figure 3.6. Act D liver-to-plasma ratios at 15min and 6h in wild-type, 
Abcb1a/1b-/- and Abcc2-/- mice.  

The relationship between Act D liver accumulation and plasma concentration 

was investigated at 15min (A) and 6h (B). Liver-to-plasma ratios were 

calculated by dividing the liver concentration by the corresponding plasma 

concentration at 15min and 6h. Each point represents mean ± SEM from 3 

mice. *p<0.05 compared to the WT, by using the one-way ANOVA with 

Bonferroni’s correction for multiple comparisons.  
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3.3.4 Actinomycin D accumulation in wild-type, Abcb1a/1b-/- and Abcc2-/- 

mouse kidney 

To investigate the impact of systemic Abcb1a/1b and Abcc2 removal on Act D 

accumulation in kidney tissue, mouse kidneys were taken at the time points 

previously mentioned and Act D concentrations in whole kidney were 

determined. As with the liver, Act D concentrations in the kidney decreased in 

all three mouse variants over 6h (Figure 3.7/Table 3.5). Comparable AUC0-6h 

and Cmax values were observed in knockout and WT mice (Table 3.5). Act D 

accumulation in kidneys from Abcb1a/1b-/- mice was 1.2-fold higher than the WT 

(13,163µg/L vs. 10,713µg/L) at 30min post-administration, however this 

difference was not statistically significant. T1/2 in Abcb1a/1b and Abcc2 deficient 

mice were 1.2- and 1.5-fold higher than the WT animals, respectively. A longer 

t1/2 resulted in higher AUC0-∞ in Abcb1a/1b-/- and Abcc2-/- mice compared to WT 

(48,799 and 46,701 vs. 35,754µg/L.h, Table 3.5). 
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Figure 3.7.  Act D kidney concentration-time profiles for wild-type, 
Abcb1a/1b-/- and Abcc2-/- mice.  

Act D (0.5mg/kg) was administered to WT, Abcb1a/1b-/- and Abcc2-/- mice 

and kidney samples were taken at 15min, 30min, 2h and 6h. Act D 

concentrations in mouse kidneys were determined by LC/MS analysis. Inset 

– semi-logarithmic representation of data. Each point represents mean ± 

SEM from 3 mice. 
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 Act D concentration (µg/L) 

 
WT Abcb1a/1b

-/-
 Abcc2

-/-
 

0.25 13323 ± 3960 13207 ± 1025 13107 ± 2318 

0.5 10713 ± 2498 13163 ± 2521 10593 ± 944 

2 4693 ± 415 5327 ± 1257 4987 ± 161 

6 1970 ± 150 2957 ± 872 3410 ± 527 

AUC0-6h, µg/L.h 29552
†
 35381

†
 33079

†
 

AUC0-∞, µg/L.h 35754
†
 46701

†
 48799v 

Cmax, µg/L 13323 ± 3960 13207 ± 1025 13107  ± 2318 

Tmax, h 0.25 0.25 0.25 

t1/2, h 2.18
†
 2.65v 3.2

†
 

Individual kidney concentration time points are mean ± SD from 3 
mice. 

†
No SD reported as data is from combined pharmacokinetic sample 

non-compartmental analysis.   

Table 3.5. Kidney Act D concentrations and pharmacokinetic parameters 
in WT, Abcb1a/1b-/- and Abcc2-/- mice following intravenous administration 
of 0.5mg/kg Act D 

Comparisons between plasma and kidney Act D concentrations (K/P ratio) were 

also investigated between 15min and 6h. Increases in K/P ratio were observed 

with time in WT (194g-1 to 329g-1, at 15min and 6h, respectively) and Abcc2-/- 

(273g-1 to 398g-1). Again, this trend was not observed in Abcb1a/1b-/- mice. 

Over 6h, the K/P ratio in Abcb1a/1b-/- remained constant (137g-1 to 147g-1). 

After 6h the K/P in Abcb1a/1b-/- mice was 2.2-fold lower than the WT (147g-1 vs. 

329g-1, p<0.05, Figure 3.8). In agreement with the liver data, this indicates that 

a high plasma AUC0-6h in Abcb1a/1b-/- mice does not translate into higher kidney 

accumulation. 
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Figure 3.8. Act D kidney-to-plasma ratios at 15min and 6h in wild-type, 
Abcb1a/1b-/- and Abcc2-/- mice.  

The relationship between Act D kidney accumulation and plasma 

concentration was investigated at 15min (A) and 6h (B). Kidney-to-plasma 

ratios were calculated by dividing the kidney concentration by the 

corresponding plasma concentration at 15min and 6h. Each point represents 

mean ± SEM from 3 mice. *p<0.05 compared to the WT, using the one-way 

ANOVA with Bonferroni’s correction for multiple comparisons.  
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3.3.5 Actinomycin D accumulation in wild-type, Abcb1a/1b-/- and Abcc2-/- 

mouse brain 

Finally, Act D accumulation in the brain of all mouse variants was investigated 

over 6h; results are expressed as peak area (pa). Act D brain penetration was 

comparable between different groups at 15min (Figure 3.9, Table 3.6). This was 

followed by a time-dependent decrease in Act D brain concentrations in WT 

mice, whereas Act D concentration in the brains of Abcb1a/1b-/- and Abcc2-/- 

mice were maintained over 6 hours resulting in 2.3-fold and 1.3-fold higher 

AUC0-6h values respectively, compared to WT (6,802 and 3,785 vs. 2,943pa.h, 

Figure 3.9, Table 3.6). However, Act D concentrations in the brain were highly 

variable between both animals and time points, with Abcc2-/- mice having the 

lowest Act D concentration at 2h. T1/2 and thus extrapolation to estimate AUC0-∞ 

could not be performed for Abcb1a/1b and Abcc2 deficient mice as there was 

no consistent decrease in Act D concentrations between 2 and 6h.  
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Figure 3.9. Act D brain peak area-time profiles for wild-type, Abcb1a/1b-/- 
and Abcc2-/- mice.  

Act D (0.5mg/kg) was administered to WT, Abcb1a/1b-/- and Abcc2-/- mice 

and brain samples were taken at 15min, 30min, 2h and 6h. Act D 

concentrations in mouse brains were determined by LC/MS analysis. Inset – 

semi-logarithmic representation of data. Each point represents mean ± SEM 

from 3 mice. **p<0.01 and ***p<0.001 compared to WT at the same time 

point, using the two-way ANOVA with Bonferroni’s correction for multiple 

comparisons. 
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 Act D peak area (pa) 

 
WT Abcb1a/1b

-/-
 Abcc2

-/-
 

0.25h 1071 ± 217 1134 ± 635 972 ± 455 

0.5h 775.3 ± 127 1420 ± 521 1039 ± 181 

2h 501 ± 28.9 912.7 ± 461 424.3 ± 120 

6h 309 ± 156 1383 ± 439*** 733 ± 470** 

AUC0-6h, pa.h 2943
†
 6802

†
 3785

†
 

Cmax, pa 1071 ± 217 1420 ± 521 1039  ± 181 

Tmax, h 0.25 0.5 0.5 

Individual plasma concentration time points are mean ± SD from 3 
mice. 

**p<0.01 and ***p<0.001 compared to WT at the same time point 
using the two-way ANOVA with Bonferroni’s correction for multiple 
comparisons. 

†
No SD reported as data is from combined pharmacokinetic sample 

non-compartmental analysis.   

Table 3.6. Brain Act D concentrations and pharmacokinetic parameters in 
WT, Abcb1a/1b-/- and Abcc2-/- mice following intravenous administration of 
0.5mg/kg Act D. 

Brain-to-plasma (B/P) Act D concentration ratios were investigated up to 6h 

post administration. B/P ratios increased in all mouse variants over 6h. A 3.3-

fold (15.6 to 51.6pa/µg/L) increase in B/P ratio was observed in WT mice, 

compared to a 5.9-fold (11.7 to 68.6 pa/µg/L) increase in Abcb1a/1b-/- mice and 

a 4.2-fold (20.2 to 85.5 pa/µg/L) increase in Abcc2-/- mice (Figure 3.10) over this 

time period. This indicates that despite a reduction in Act D plasma 

concentrations over time, Act D is accumulating in the brains of all mice, to the 

greatest extent in Abcb1a/1b deficient mice, confirming Act D transport at the 

blood-brain barrier. 
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Figure 3.10. Act D brain-to-plasma ratios at 15min (A) and 6h (B) in wild-
type, Abcb1a/1b-/- and Abcc2-/- mice.  

The relationship between Act D brain penetration and plasma concentration 

was investigated at 15min (A) and 6h (B). B/P ratios were calculated by 

dividing the brain concentration by the corresponding plasma concentration 

at 15min and 6h. Each point represents mean ± SEM from 3 mice.  
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3.3.6 Expression of Abcb1a, Abcb1b and Abcc2 in wild-type, Abcb1a/1b-/- 

and Abcc2-/- mice. 

Abcb1a, Abcb1b and Abcc2 expression was analysed in all mice to assess 

whether differential expression of these transporters was responsible for the 

lower plasma AUC0-6 seen in Abcc2-/-. The expression of Abcb1a and Abcc2 in 

all mice was evaluated using commercially available primer kits from Qiagen 

(see 3.2.11), hepatic mRNA and real-time PCR. All four primer sets designed to 

assess the expression of Abcb1b did not amplify the target DNA sequence in a 

linear fashion over 3 log concentrations of template DNA, therefore they failed 

validation checks (see 3.2.11) and Abcb1b expression could not be determined. 

Abcb1a expression in Abcb1a/1b-/- mice was 4% of the WT expression (0.04 vs. 

1.00, p<0.0001, Figure 3.11A). Unexpectedly, Abcb1a expression was also 

significantly lower than WT in Abcc2-/- mice (0.65 vs. 1.00, p<0.0001, Figure 

3.11A). Similar results were also observed when evaluating the expression of 

Abcc2 in all mice. Abcc2 expression in Abcc2-/- was 26-fold less than in the WT 

(0.04 vs. 1.02, p<0.0001, Figure 3.11B), and 2.0-fold less in Abcb1a/1b-/- mice 

(0.52 vs. 1.02, p<0.0001, Figure 3.11B).  



142 
 

 

 

Figure 3.11. Expression of Abcb1a (A) and Abcc2 (B) in WT, Abcb1a/1b-/- 

and Abcc2-/- mice livers.  

Livers from all mice were dissected and used to assess Abcb1a (A) and 

Abcc2 (B) expression. mRNA was extracted from the liver tissue and reverse 

transcribed to cDNA. Real-time PCR was performed using specific Abcb1a 

and Abcc2 primers to initiate replication and SYBR green was used to detect 

amplified DNA. Results are normalised to Gapdh expression. Values 

represent the mean fold change ± SEM of 12 samples, compared with WT 

∆Ct values. ****p<0.0001 compared to WT, using the one-way ANOVA with 

Bonferroni’s correction for multiple comparisons.   
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3.4 Discussion 

Studies have been undertaken to investigate the relevance of Act D transport by 

ABCB1 and ABCC2 in an appropriate animal model. Abcb1a/1b-/-, Abcc2-/- and 

WT mice were used to investigate the in vivo pharmacokinetics and distribution 

of Act D, along with the parental WT mice, allowing the systemic impact of 

transporter knockout to be fully investigated.  

A preliminary study in CD-1 mice was undertaken to determine an appropriate 

dosage regimen, as well as confirming adequate sensitivity of the LC/MS 

method and the suitability of current extraction techniques. The pharmacokinetic 

profile observed at a dose of 0.5mg/kg in mice was similar to that previously 

seen in patients (Veal et al., 2005). The Cmax in mice was recorded at the first 

sampling time of 15min, followed by a decrease in Act D concentrations in 

plasma over the 6h studied. The AUC0-6h in CD-1 mice was higher than in 

previous studies in patients (131.7µg/L.h vs. 18.7-81.7 µg/L.h (Veal et al., 

2005)), but no acute toxicities were observed over 6h and plasma 

concentrations were detectable in all samples by LC/MS analysis.  

Following confirmation that the dose and LC/MS method were appropriate, the 

transporter knockout mouse studies were performed. Investigations in Abcb1a-/- 

mice with the ABCB1 substrate doxorubicin have demonstrated higher plasma 

AUC and half-life (t1/2) and lower clearance compared to WT mice following 

intravenous administration. High doxorubicin accumulation was also seen in the 

liver in the absence of Abcb1a (van Asperen et al., 1999). In the current study, 

significant differences between Act D plasma concentrations at 15 and 30min 

post-administration were observed between WT and Abcb1a/1b-/- mice. At the 

30min time point, plasma concentrations in Abcb1a/1b-/- mice were 1.7-fold 
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higher (p<0.05) in Abcb1a/1b-/- mice than the WT mice. This trend continued at 

2 and 6h, with 1.4-fold and 3.3-fold (p<0.0001) higher plasma concentrations, 

respectively, in Abcb1a/1b-/- compared to WT. Higher plasma concentrations in 

Abcb1a/1b-/- resulted in a higher overall exposure and lower Act D Cl, with a 

1.6-fold higher AUC0-6h and Cl being 52% of that observed in WT mice. Half-life 

was longer in Abcb1a/1b which resulted in a 1.9-fold higher AUC0-∞ over the 

WT. However, a low final plasma concentration caused difficulty in estimating 

AUC0-∞ in WT. These data show that Abcb1a/1b knockout had a significant 

impact on Act D exposure resulting in higher plasma concentrations and a 

slower elimination from the plasma compared to the WT. 

Previously investigations using Abcc2-/-
 mice have demonstrated higher plasma 

exposure in Abcc2 knockout mice, when intravenously administered with anti-

cancer ABCC2 substrates methotrexate (Vlaming et al., 2006) and etoposide 

(Lagas et al., 2010). In this study, plasma concentrations in Abcc2-/- mice were 

consistently lower than the WT. The Cmax 15min post-administration, was 70% 

of that seen in the parental mice (48.0 vs. 68.6µg/L), and this continued at 

30min and 2h, with plasma concentrations 87% (37.7 vs. 43.3µg/L) and 63% 

(16.3 vs. 25.8µg/L) of those seen in WT mice respectively. However, this data 

only reached significance at the 2h time point. These lower Act D plasma 

concentrations resulted in a 1.3-fold lower overall exposure to Act D over 6h 

compared to WT, and a 1.2-fold higher Cl. The sharp reduction in plasma 

concentrations in WT mice between 2 and 6h resulted in a shorter t1/2 in WT 

than in Abcc2-/- mice (1.9h vs. 2.5h). AUC0-∞ estimation with limited 

pharmacokinetic sampling was highly dependent on the concentration of the 

final sample. This resulted in comparable AUC0-∞ values being determined for 

Abcc2-/- and WT mice (146µg/L.h vs. 168µg/L.h). Although plasma 
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concentrations in Abcc2-/- were generally lower, no significant difference in 

results between Abcc2-/- and WT were observed. 

Interestingly, higher Act D accumulation was not seen in either the liver or 

kidney of Abcb1a/1b-/- mice.  Although higher liver concentrations were initially 

observed in Abcb1a/1b-/- mice at 15min, similar time-dependent decreases in 

Act D liver concentrations were seen in all mice variants, and consequently no 

difference in AUC0-6h was observed. Similarly to Abcb1a/1b-/- mice, Act D 

plasma concentrations in Abcc2-/- mice did not appear to impact on 

accumulation in the liver. Although there was an initially lower plasma 

concentration  in Abcc2-/- livers at 15min, there was no difference in Act D 

accumulation between Abcc2-/- and WT mice, resulting in unchanged Cmax, 

AUC0-6 and AUC0-∞ values.   

There was also no difference between Abcb1a1b-/-, Abcc2-/- and WT mice in Act 

D concentration in the kidneys. Act D concentration in kidney tissue decreased 

with time at a similar rate in all mice, with no difference observed in Cmax or 

AUC0-6h. The t1/2 was greater in Abcb1a/1b-/- and Abcc2-/- mice compared to WT, 

resulting in a 1.3-fold and 1.4-fold higher AUC0-∞ than WT, respectively. 

However, due to the limited number of pharmacokinetic samples analysed, 

AUC0-∞ was highly dependent on the last pharmacokinetic sample at 6h. The 

final liver concentration in WT mice was lower than those seen in both 

Abcb1a/1b-/- and Abcc2-/- mice, resulting in the percentage extrapolation to 

infinity being lower in WT mice compared to both variant strains; AUC0-∞ was 

17% extrapolated from AUC0-6h in WT mice, compared to 24% and 32% in 

Abcb1a/1b-/- and Abcc2-/- mice respectively.  
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It is possible that the lack of difference seen in both liver and kidney 

concentrations in Abcb1a/1b-/- mice is due to high Act D plasma protein binding, 

therefore preventing high plasma concentrations causing a reciprocal increase 

in liver and kidney concentrations compared to the wild-type. Studies carried out 

in rats have demonstrated 8% plasma protein binding (Wosilait and 

Eisenbrandt, 1971), whilst plasma protein binding in humans has been reported 

as 5% (Dart, 2004). Therefore this low level of protein binding is unlikely to 

affect the disposition of Act D in the mice. 

Contrary to both liver and kidney data, increased concentrations of Act D were 

seen in brain tissue from Abcb1a/1b-/- compared to WT. Over the 6h studied, 

Act D brain concentration reduced in WT mice, whereas it remained constant in 

Abcb1a/1b-/- mice resulting in a 1.5-fold higher brain concentration at 6h (2957 

vs.1970pa, p<0.001). Overall exposure to the brain over a 6h period was 2.3-

fold higher in Abcb1a/1b-/- mice versus the WT. Brain accumulation of Act D in 

Abcc2-/- followed a similar pattern to that observed in Abcb1a/1b-/- mice. Cmax 

was reached at 30min, therefore indicating an initial slow distribution phase not 

seen in the WT. This was followed by a decline in Abcc2-/- brain concentrations 

to 2h, and an increase in Act D brain concentration between 2-6h. However, 

data generated from brain tissue was highly variable and should be treated with 

caution. Additional experiments with an increased number of time points and 

animals would be needed to assess whether this later increase in brain 

concentration, seen in Abcb1a/1b-/- and Abcc2-/- is reproducible.    

Tissue-to-plasma ratios can be used to correct tissue concentration for 

differences in plasma concentrations, allowing distribution to be examined 

independent of plasma concentration (Lagas et al., 2009; Poller et al., 2011). In 
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this study, L/P ratios between Abcb1a/1b-/- , Abcc2-/- and WT were comparable 

at 15min post-administration, however, the L/P ratio was lower in Abcb1a/1b-/- 

as compared to Abcc2-/- and WT at 6h (47.8g-1 vs. 20.4g-1 and 26.4g-1, 

respectively, p<0.05).  

In agreement with the liver data, no differences in K/P ratios were observed 

between Abcb1a/1b-/-, Abcc2-/- and WT 15min post administration (138, 277 and 

191g-1, respectively). The K/P ratio in Abcb1a/1b-/- mice remained constant over 

6h and was 2.2-fold lower than the WT and 2.8-fold lower than Abcc2-/- at this 

time point (148 vs. 329g-1, 148 vs. 408g-1 p<0.05). The K/P ratio increased over 

6h in both Abcc2-/- (273g-1 to 398g-1) and WT (194g-1 to 329g-1) mice, indicating 

continued accumulation in the kidney over 6h, despite declining plasma 

concentrations. These data would indicate that high Act D plasma 

concentrations in Abcb1a/1b-/- were not influencing the concentration of Act D in 

the liver and kidney over 6h compared to both Abcc2-/- and WT mice. Finally, 

B/P ratio contrasted those data observed in the liver and kidneys. When plasma 

concentration was taken into account, no difference in B/P ratio was observed 

between all mice variants, indicating brain concentration was proportionate to 

the concentration of Act D in the plasma. 

Contradictory reports exist as to whether collateral upregulation of various ABC 

transporters occurs in knockout mice. Abcc3 upregulation has been shown in 

Abcc2-/- mice liver with Abcc4 upregulation in the kidney (Vlaming et al., 2006; 

Lagas et al., 2010). Using a different strain of Abcc2-/-, Chu et al. found no 

upregulation of either transporter (Chu et al., 2006), however a separate report 

from a different laboratory using the same mice did find upregulation of Abcc3 

(Nezasa et al., 2006). Abcb1a1b-/- and Abcc2-/- mice used in this study were 
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investigated for Abcb1a and Abcc2 expression. Abcb1a expression was lower in 

Abcc2-/- than the WT and Abcc2 expression was lower in Abcb1a/1b-/- mice. 

Interestingly, this does not explain the low Act D concentrations observed in the 

plasma of Abcc2-/- mice. In light of the previously discussed publications it would 

have been beneficial to determine the expression of other ABC transporters for 

example Abcc3 and Abcc4 in Abcc2-/- mice to establish whether upregulation of 

either transporter was responsible for the Act D plasma concentrations 

observed.  

The data presented in this chapter show that knockout of either Abcb1a/1b or 

Abcc2 may influence the in vivo pharmacokinetics of Act D. Abcb1a and 

Abcb1b knockout reduces the elimination of Act D from plasma, resulting in 

higher plasma concentrations and plasma exposure.  

Due to the role of Abcb1a/1b and Abcc2 at the apical membrane of proximal 

tubular cells in kidney and hepatocytes in the liver eliminating substances from 

the body, knockout of these transporters would be expected to cause 

accumulation of substrates in both the liver and kidney. However, the data 

presented in this study demonstrate that despite high Act D plasma exposure in 

Abcb1a/1b deficient mice, this does not impact on Act D concentration in the 

liver or kidneys. However, ABC transporter knockout did appear to alter Act D 

penetration across the blood-brain barrier. Although not significant, Abcc2 

knockout appeared to result in a lower Act D plasma AUC0-6h, the reason for 

which is not understood. The absence of differences in Act D distribution to the 

liver and kidneys of all mice may be due to the reciprocal expression of Abcc2 

in Abcb1a/1b-/- mice and vice versa. An investigation using a double knockout 

mouse model (Abcb1a/1b-/-; Abcc2-/-) would therefore be potentially informative.  
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Irrespective of transporter knockout genotype, Act D accumulation over 6h in 

the kidneys was 6.6 to 7.7-fold higher than in the liver, potentially demonstrating 

a major route for Act D elimination from the body. A limitation to the current 

study is the lack of Act D analysis in the urine and faeces. This would allow the 

full impact of Abcb1a, Abcb1b and Abcc2 on Act D elimination in the liver and 

kidneys to be investigated.   

As Abcb1a/1b and to a degree Abcc2 have been shown to be involved in the in 

vivo disposition of Act D, it is important to investigate whether common SNPs in 

ABCB1 and ABCC2, which have clinical relevance, could be responsible for 

inter-patient variation in Act D exposure.  
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Chapter 4. Pharmacokinetics of actinomycin D in a paediatric 

patient population 

4.1 Introduction 

Although Act D has been used clinically for many years, very few 

pharmacokinetic studies have been carried out, and as such little is known 

about its drug disposition in humans. Early pharmacokinetic studies used 

tritiated Act D demonstrated accumulation in nucleated cells in addition to 

tumour accumulation (Tattersall et al., 1975). Act D half-life in dogs (0.8min) 

was less than half that of humans (1.8min) when using a RIA (Brothman et al., 

1982). This inter-species variation and the use of non-specific analytical 

methods indicate that more human pharmacokinetic trials need to be 

performed. 

The main side-effect associated with Act D therapy is treatment-related toxicity. 

Although rare, this can be life-threatening, and remains a major concern when 

treating potentially curable patients. Age at treatment is a major risk factor, with 

patients less than 3 years old almost 4-fold more likely to have some form of 

toxicity following Act D treatment (Arndt et al., 2004). This observation was 

confirmed in a retrospective study, with patients aged <1 year at treatment 

showing an even greater incidence of toxicity (Langholz et al., 2011). 

The current study was originally driven by the concerns of clinicians over 

treatment-related toxicity and its potential association with inter-patient 

variability in Act D pharmacokinetics and exposure. This led to the development 

of a highly sensitive method for measuring Act D in patient plasma using LC/MS 

(Veal et al., 2003b), and a clinical trial evaluating the pharmacokinetics of Act D 
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in patients was performed (Veal et al., 2005). Initial reports in 31 patients 

highlighted the inter-patient variation in Act D exposure with a greater than 4-

fold range in AUC0-6h being observed. Higher Act D exposure was observed in 

smaller children, and despite the limited number of patients this was linked to an 

increase in toxicity risk. Conversely, low Act D exposure was reported in older, 

larger patients where the practice of dose capping at 2mg may result in under 

dosing. However, the major limitations of this initial report were low patient 

numbers and limited pharmacokinetic sampling beyond 6h after drug 

administration, requiring much of the data to be extrapolated out to 24h to 

obtain pharmacokinetic parameter estimates.  

In this chapter, Act D pharmacokinetic data from two large clinical trials 

conducted in the UK are presented. Eligible patients were less than 21 years 

old and were due to receive Act D as part of their standard treatment regimen. 

A major aim of these two clinical trials was to address the limitations of the initial 

study, increasing patient numbers and including pharmacokinetic sampling at 

earlier and later time points, thus allowing more accurate characterisation of Act 

D pharmacokinetics. Act D pharmacokinetic data will be assessed against 

patient characteristic and covariate data recorded at the time of treatment. The 

link between Act D patient exposure and treatment-related toxicity will be 

investigated.  
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4.2 Materials and methods 

4.2.1 Clinical study 

Study protocols were approved by UK Trent Multicentre Research Ethics 

Committee and written informed consent was obtained from all patients or 

parents where appropriate. Eligible patients were under 21 years old and were 

receiving Act D as part of their standard chemotherapy. The trials were 

registered through the appropriate clinical trials registries (PK 2003 08; REC: 

03/04/074 CTA: 23198/0001/001, PK 2006 07; REC 05/MRE04/62, CTA: 2005-

002996-34, ClinicalTrials.gov identifier: NCT00900354) prior to patient 

recruitment. Baseline toxicity data prior to Act D treatment was obtained from 

patients’ notes and details of concomitant medications being administered prior 

to and/or in combination with Act D were recorded. Additional patient 

characteristics and clinical parameters were also recorded for each patient 

participating in the study for post-study analysis. 

Patients were dosed at 1.5mg/m2 (max 2mg) intravenously. However, the 

standard protocol dose could be given as a split dose (0.75mg/m2 over 2 days) 

and is altered for infants that were <1 year or <10kg in body weight. For 

example, doses are frequently changed to 25µg/kg for patients between 0-

6months, and adjusted to 1mg/m2 for patients aged 6months to 1 year, but less 

than 10kg. In practice, patients were not dosed at 1.5mg/m2 until they reach 

their third birthday (Arndt et al., 2004).  

Blood samples (2ml) were collected in heparinised tubes from patients with a 

central line, before administration, and at 5, 15 and 30min, and 2, 4, 8, 24 and 

26h post administration. Actual sampling times were recorded; not all samples 
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were available for all patients. Blood samples were immediately centrifuged at 

1,200g for 10min at 4oC. Plasma was separated and stored at -20oC prior to 

analysis by LC/MS. 

4.2.2 Analysis of actinomycin D by LC/MS 

Chemicals and LC/MS method details can be found in 2.2.10. Preparation of 

working standards and samples for LC/MS analysis can be found in 3.2.6. 

4.2.3 Assay validation 

A standard curve of between 0.25-10ng/ml was established to be linear in 10 

assays (mean r2=0.998 ± 0.001) and the LC/MS assay was validated using 

human plasma. The level of detection (LOD) and level of quantification (LOQ) 

for Act D were both determined to be 0.125ng/ml (Figure 4.1). Further work was 

not carried out to establish the true LOD (a peak 3 times the baseline) and LOQ 

(a peak 10 times the baseline) as 0.125ng/ml was below the concentration 

needed for the range of the standard curve in human plasma. 

 

Figure 4.1. LOD and LOQ determination in human plasma. 

0.125ng/ml actinomycin D in plasma extracted

7 amino actinomycin D 
(50µl of 25ng/ml per sample) extracted
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Intra- and inter-assay precision and accuracy were determined in human 

plasma as per Table 4.1. The coefficient of variation was deemed acceptable if 

<10% and the concentration of samples had to be within 15% of the 

concentration injected to be deemed accurate. 

Added 
(ng/ml) 

Intra-assay precision (n=10) Inter-assay precision (n=8) 

Found 
(ng/ml) 

CV (%) Accuracy 
(%) 

Found 
(ng/ml) 

CV (%) Accuracy 
(%) 

0.5 0.47 ± 0.03 6.0 94 0.496 ± 0.02 3.1 99 

2 2.1 ± 0.07 3.6 105 1.91 ± 0.19 9.3 96 

10 9.9 ± 0.63  6.4 99 10.0 ± 0.25 2.5 100 

Data expressed as mean ± SD for ‘found’ values. 

Abbreviations – CV; coefficient of variation (SD/mean).  

Table 4.1. Intra- and inter-assay precision and accuracy of the Act D 
LC/MS assay in human plasma.  

In addition, Act D stability during a run was tested. Following sample extraction 

and reconstitution, Act D is determined to be stable for 24h at 4oC or room 

temperature.  

4.2.4 Non-compartmental pharmacokinetic data analysis 

Pharmacokinetic data from 108 patients were analysed by WinNonlin 

Professional version 5.3 (Pharsight Corp, Mountain View, CA, USA). Non-

compartmental analysis (NCA) was performed on all 108 sample sets. The area 

under the plasma concentration versus time curve from drug administration to 

6h (AUC0-6, n=93) and 24h (AUC0-24, n=66) were estimated where possible 

using the logarithmic trapezoidal rule. AUC extrapolation to infinity (AUC0-∞, 

n=108) was performed using an estimate of t1/2 from slope of the concentration 

vs. time curve using the final 3-4 pharmacokinetic sample time data points. 
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Clearance was estimated as dose divided by AUC0-∞ for 107 patients, as dose 

information was not available for one patient. 

4.2.5 Statistical analysis 

Linear regression was performed to assess possible associations between only 

clearance values obtained from full sample sets (those with early (5-30min) and 

late (20-26h) samples, and was termed Cl-F) and patient characteristics. An r2 

value is reported for each linear regression performed; a p-value is also given to 

represent the deviation of the slope from zero. Overall means between groups 

were compared using the unpaired t-test (two groups) and one-way ANOVA 

(three groups) with Bonferroni’s multiple comparisons. If data were not normally 

distributed, the data were log-transformed to achieve a normal distribution, after 

which an unpaired t-test or one-way ANOVA with Bonferroni’s correction for 

multiple comparisons was performed to compare means. Normality was 

checked by producing a histogram of the data. LC/MS data were quantitated as 

per 2.2.12. 
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4.3 Results 

4.3.1 Patient characteristics 

One hundred and forty two patients receiving Act D as part of their standard 

chemotherapy regimen were recruited on to the study between August 2004 

and February 2012. The study population had a median age of 4.5 years (range 

0.4-19.8 years) with identical numbers of males and females. Wilms tumour was 

the most common tumour type in patients recruited on to the study (52%), 

followed by RMS (27%) and ES (18%). Other tumour types included a 

paraspinal undifferentiated sarcoma, an embryonal sarcoma of the liver, a 

pleuropulmonary blastema and a non-RMS tumour.  Full patient characteristics 

can be found in Table 4.2. 
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Characteristic No of 
patients 
(%) 
(n=142) 

No. of patients 
with valid PK 
results (%) 
(n=108) 

No. of patients 
with valid PG 
results (%) 
(n=126) 

Matched 
PK-PG 
results (%) 
(n=98) 

Age 
(years) 

<1 7 (5) 7 (6) 5 (4) 5 (5) 

1 – 3 39 (27) 28 (26) 34 (27) 24 (24) 

3 - 10 72 (51) 52 (48) 63 (50) 48 (49) 

10 - 21 24 (17) 21 (19) 24 (19) 21 (21) 

Gender Male 71 (50) 58 (54) 61 (48) 45 (46) 

Female 71 (50) 50 (46) 65 (52) 53 (54) 

Weight 
(kg) 

<10 13 (9) 12 (11) 10 (9) 9 (9) 

10 - 30 92 (65) 70 (65) 81 (64) 64 (65) 

30 - 60 25 (18) 22 (20) 23 (18) 21 (21) 

>60 4 (3) 4 (4) 4 (1) 4 (4) 

Unknown 8 (6) 0 (0) 8 (6) 0 (0) 

SA (m
2
) <0.5 18 (13) 15 (14) 15 (12) 13 (13) 

0.5 – 1 87 (61) 66 (61) 75 (60) 59 (60) 

>1 28 (20) 26 (24) 27 (21) 25 (26) 

Unknown 9 (6) 1 (1) 9 (7) 1 (1) 

Diagnosis Wilms tumour 74 (52) 45 (42) 63 (50) 39 (40) 

Rhabdomyosarcoma 39 (27) 35 (32) 35 (28) 32 (33) 

Ewing’s sarcoma 25 (18) 24 (22) 24 (19) 23 (23) 

Other 4 (3) 4 (4) 4 (3) 4 (4) 

Ethnicity
†
 White British 80% - - - 

 White other 4 - - - 

 Pakistani 3 - - - 

 Asian other 5 - - - 

 Black Caribbean 1 - - - 

 Black African 2 - - - 

 Black other 2 - - - 

 Any other mixed 
background 

2 - - - 

 Other 1 - - - 

Abbreviations: SA; body surface area, PK; pharmacokinetic, PG; pharmacogenetic 

†
Data not collected in this study, therefore a representative UK paediatric cancer population with a 

similar number of patients has been used to demonstrate the likely patient demographics (Veal et 
al., 2012). 

Table 4.2. Patient characteristics for all 142 patients recruited onto study 
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4.3.2 Actinomycin D pharmacokinetics 

Out of the 142 patients recruited, blood samples for pharmacokinetic analysis 

were taken from 131 patients. Data from our laboratory suggest that Act D is 

stable in human plasma for no longer than six months and as such 

pharmacokinetic data from 23 patients was deemed invalid due to analysis 

taking place beyond this time period. A total of 601 plasma samples from 108 

patients were valid, and have been used to generate pharmacokinetic data. Full 

pharmacokinetic data for the 108 patients can be found in Table A.1 in the 

appendix. Full sample sets with early (5-30min) and late (20-26h) time points 

were provided by 74 patients (69%). 

A large degree of variability in plasma concentrations was observed between 

patients (Table 4.3, Figure 4.2). For those patients whose first sample was 

taken 5min post-administration, the median Cmax was 129µg/L (range 64.7-

193µg/L, n=14), compared to 22.7µg/L (range 7.5-122µg/L, n=81) for those 

patients whose first sample was taken at 15min. The median Act D 

concentration in plasma samples taken 24h after administration was 1.8µg/L 

(range 0.7-4.3µg/L, n=66). 

Depending on treatment protocol, doses of Act D ranged from 0.19-2.5mg 

(0.43-1.62mg/m2). Following non-compartmental pharmacokinetic analysis (see 

4.2.4) the mean t1/2 was estimated at 13.7 ± 10.3h. AUC0-6h and AUC0-24h were 

calculated for 93 and 66 patients respectively (Table 4.3).  The median AUC0-6h 

was 2.8mg/L.min (range 1.1-10mg/L.min), indicating a 9-fold variation in Act D 

exposure up to 6h in patients. A large degree of variability was also seen in 

AUC0-24h, with a 6-fold range observed from 2.3-13.7mg/L.min.  
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Sample time (min) 
No. of 

samples 
Median Minimum Maximum 

5 14 129.0 64.7 193 

15 91 24.4 7.5 122 

30 104 9.7 3.3 91.9 

60 16 6.3 3.3 38.1 

120 102 4.7 1.4 44.8 

240 97 3.6 1.4 19.5 

360 39 3.2 1.2 9.1 

480 29 2.8 1.2 6.6 

1320 12 1.7 1.1 4 

1440 (24h) 67 1.8 0.7 4.8 

1560 (26h) 30 2.0 0.7 4.3 

AUC0-6h (mg/L.min) 93 2.8 1.1 10 

AUC0-24h (mg/L.min) 66 5.6 2.3 13.7 

AUC0-∞ (mg/L.min) 108 6.3 1.4 19.8 

Cl-F (ml/min) 74 116 14.8 341 

Vss (L) 80 135 2.5 638 

GFR (ml/min/1.73m
2
) 52 116 64.0 278 

Creatinine (µmol/L) 104 38 18 90 

Abbreviations- AUC0-6h; area under the concentration time curve between 0 and 6h, 
AUC0-24h; area under the concentration time curve between 0 and 24h, AUC0-∞; 
area under the concentration time curve extrapolated to infinity, Cl-F; Clearance 
from patients with both early (5-30min) and late (20-26h) samples, Vss; volume of 
distribution at steady-state conditions calculated from patients with Cmax at 15min, 
GFR; glomerular filtration rate. 

Table 4.3. Pharmacokinetic, GFR and creatinine data from 108 patients 
receiving Act D 
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4.3.3 Patient covariate analysis 

The primary pharmacokinetic end points used were estimated clearance, based 

on dose and AUC0-∞. For those patients without full sample sets (no 

pharmacokinetic sampling after 8h), AUC0-∞ was estimated using the latest 

samples available (72 to 480min) and the estimated clearance was termed Cl-L. 

The median AUC0-∞ estimated from 108 patients was 6.3mg/L.min (range 1.4-

19.8mg/L.min) and subsequently, mean clearance was estimated as 154 ± 

103ml/min, indicating a 42-fold range in clearance among patients. Clearance in 

patients with limited samples (Cl-L, n=33) was 1.7-fold higher, compared to 

those with full sample sets (Cl-F, n=74) (211 vs. 127ml/min, p = 0.003, Figure 

4.3), indicating that AUC is underestimated when data were limited to 6h after 

administration. Given that the clearance for Cl-L is likely to be an overestimate, 

covariate analysis was therefore carried out using Cl-F only. 

 

Figure 4.3. Comparisons between Cl-L and Cl-F.  

Estimated clearance from 108 patients were separated into two groups 

based on the last pharmacokinetic sample time; <8h = Cl-L, n=33, >20h = Cl-

F, n=74. **p=0.003. Mean represented by horizontal bar. 
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4.3.4 Actinomycin D clearance and patient characteristics 

Positive linear relationships were observed between Cl-F and patient age 

(Figure 4.4A), SA (Figure 4.5A) and weight (Figure 4.6A). To investigate the 

relationship between Cl-F and these patient characteristics further, patient age, 

weight and SA were grouped according to age and size. Patients who were 

above 3 years old had 1.8-fold higher mean Cl-F than patients less than 3 years 

old (144 vs. 78.2ml/min, p=0.0002, Figure 4.4B). Similarly, patients above 0.5m2 

had Cl-F 2.3-fold higher than those below 0.5m2 (138 vs. 59ml/min, p=0.0005, 

Figure 4.5B) and those above 10kg had 3-fold greater Cl-F compared to smaller 

patients (136 vs. 46.8ml/min, p=0.0008, Figure 4.6B). Associations between Cl-

F normalised to surface area (Cl-FSA) and patient age, SA and weight were 

also investigated. After normalising for body size, variation was lower, with a 10-

fold range in Cl-FSA observed (33.7-339ml/min/m2), compared to 23-fold 

variation in Cl-F.   

Creatinine and GFR data before Act D treatment were provided for 104 and 52 

patients respectively (Table 4.3). The median GFR recorded in patients was 

116ml/min/1.73m2 (range 64-278 ml/min/1.73m2) and the median creatinine was 

38µmol/l (range 18-90 µmol/l). When comparing these two clinical parameters 

to Cl-F, positive correlations were observed with creatinine (r2 = 0.3, Figure 

4.7A), however no association was found between Cl-F and GFR (Figure 4.7B).  

The type of catheter used to administer Act D appeared to have a minor 

influence on Cl-F (Figure 4.8A). Those patients fitted with a double-lumen 

Hickman line had 1.5-fold higher mean CL-F than those fitted with a port-a-cath 

(142 vs. 94.3ml/min, p<0.05, Figure 4.8A) and 1.4-fold higher mean CL-F than 

those patients with a single-lumen Hickman line (142 vs. 103ml/min, Figure 
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4.8A). However, these differences were also confounded by the interaction 

between patient age and line type. The mean age of patients with a double-

lumen Hickman line was 2.4-fold higher than those with a single-lumen Hickman 

line (7.3 vs. 3.3yr, p<0.01, Figure 4.8B) and 1.4-fold higher than those with a 

port-a-cath (7.3 vs. 5.3yr, Figure 4.8B). Line type had no influence on Cmax at 5 

or 15min. Gender (Figure 4.9A) and Act D infusion time (Figure 4.9B) had no 

impact on Cl-F.  
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Figure 4.4. Relationship between Cl-F and patient age following 
intravenous administration of Act D.  

Patient age (A) was plotted against Cl-F. Linear regression was used to 

assess correlations between Cl-F and age (p<0.0001), r2 values are 

presented on graphs where applicable. Patients were also grouped according 

to age (B). Means were tested using the unpaired t-test. ***p<0.001.
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Figure 4.5. Relationship between Cl-F and SA following intravenous 
administration of Act D.  

SA (A) was plotted against Cl-F. Linear regression was used to assess 

correlations between Cl-F and SA (p<0.0001), r2 values are presented on 

graphs where applicable. Patients were also grouped according to SA (B). 

Means were tested using the unpaired t-test. ***p<0.001.   
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Figure 4.6. Relationship between Cl-F and weight following intravenous 
administration of Act D.  

Weight (A) was plotted against Cl-F. Linear regression was used to assess 

correlations between Cl-F and weight (p<0.0001), r2 values are presented on 

graphs where applicable. Patients were also grouped according to weight 

(B). Means were tested using the unpaired t-test. ***p<0.001.   
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Figure 4.7. Relationship between creatinine and GFR and Cl-F following 
intravenous administration of Act D.  

Creatinine (A) and corrected GFR (B) were plotted against Cl-F. Linear 

regression was used to assess correlations between creatinine (p<0.0001) 

and GFR and Cl-F, r2 values are presented on graphs where applicable. 
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Figure 4.8. Relationship between catheter type and Cl-F and age.  

Catheter type was investigated against (A) Act D CL-F and (B) age. Means 

were tested using the one-way ANOVA with Bonferroni's multiple comparison 

tests. *p<0.05 and **p<0.01. (B) Data was log transformed to achieve a 

normal distribution before using the one-ANOVA with Bonferroni’s correction 

for multiple comparisons. Horizontal bar represents; (A) Mean, and (B) 

median. 
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Figure 4.9. Relationship between Cl-F and gender and infusion time.  

Cl-F was investigated against (A) gender and (B) Act D infusion time. (A) 

Means were tested using the unpaired t-test. (B) The association between Cl-

F and infusion time was assessed using linear regression, r2 = 0.01. 
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4.3.5 Tumour type 

The impact of tumour type on Act D pharmacokinetic parameters was also 

investigated. CI-F in ES patients was 1.8-fold higher than patients with Wilms 

tumour (170 vs. 94ml/min, p<0.01, Figure 4.10A). However, this association 

was strongly influenced by confounding factors such as patient age and 

consequently body size. Patients with ES were significantly older than those 

with Wilms tumour (median age 9.2 vs. 3.0 years, Figure 4.10B, p<0.0001) and 

those with RMS (9.2 vs.5.0, Figure 4.10B, p<0.01). 
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Figure 4.10. Relationship between tumour type, Act D clearance and age.  

Tumour type was plotted against Cl-F (A) and patient age at diagnosis (B). 

**p<0.01, ***p<0.001, ****p<0.0001 compared to ES. (B) Data was log 

transformed to achieve a normal distribution before using the one-ANOVA 

with Bonferroni’s correction for multiple comparisons. Horizontal bar 

represents; (A) mean, and (B) median. 

C
l-

F
 (

m
l/

m
in

)

W ilm s  tu m o u r R M S E S O th e r

0

1 0 0

2 0 0

3 0 0

T u m o u r ty p e

* *A

B

A
g

e
 (

y
e

a
r
s

)

W ilm s  tu m o u r R M S E S O th e r

0

5

1 0

1 5

2 0

T u m o u r ty p e

* * * *

* *



172 
 

4.3.6 Actinomycin D toxicity 

Act D treatment was relatively well tolerated; the most common side-effects 

observed were haematological toxicities. Reduced granulocytes occurred in 

45% of patients, 35% of which were considered CTC grade 3 or 4 and grade 3 

or 4 leucocyte and haemoglobin toxicity were seen in 26% and 15% of patients 

respectively. Grade 3 or 4 infection (14%), reduced platelets (9%) and fever 

(10%) were also observed. Elevated alanine transaminase (ALT) and aspartate 

transaminase (AST) concentrations were observed in 8% and 2% of patients 

respectively, however only two cases of grade 3/4 toxicity associated with liver 

function was recorded. Overall, following administration of Act D, 36 patients 

(28%) had no adverse events, 63 patients (49%) had one or more grade 1/2 

toxicities, and 59 patients (46%) had one or more grade 3/4 toxicities. A 

summary of all toxicity data is shown in Table 4.4.  

No statistically significant associations were found between patient age, weight 

and SA and grade 3 or 4 treatment related toxicities (Figure 4.11). Analysis of 

Act D pharmacokinetic parameters also revealed no relationship between peak 

plasma concentration, clearance or dose and incidence of grade 3 or 4 toxicity 

(Figure 4.12 and Figure 4.13). It should be noted that any analysis of the 

influence of Act D pharmacokinetics on toxicity could be confounded by the co-

administration of other chemotherapy. 
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Toxicity 

No. of patients (%) 

All CTC grades Grades (3/4) 

Granulocytes 57 (45) 44 (35) 

Leucocytes 56 (44) 33 (26) 

Haemoglobin 53 (42) 19 (15) 

Infection 21 (17) 18 (14) 

Platelets 20 (16) 12 (9) 

Fever 20 (16) 12 (9) 

ALT 10 (8) 1 (1) 

Neuroconstipation 6 (5) 0 

Neuromotor 5 (4) 0 

AST 3 (2) 1 (1) 

Neurosensory 3 (2) 1 (1) 

Bilirubin 3 (2) 0 

Hepatic enlargement 0 0 

Ascites 0 0 

Haemorrhage 0 0 

Neurocorticol 0 0 

Note: Toxicity grades based on National Cancer Institute 
Common Toxicity Criteria (version  3.0)  

Table 4.4. Act D treatment-related toxicity in 127 patients, 102 of which 
had corresponding pharmacokinetic samples. 
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Figure 4.11. Relationship between patient age, weight and body surface 
area and incidence of CTC grade 3-4 toxicity following Act D 
administration.  

Data for age, SA and weight was log transformed to achieve a normal 

distribution prior to using the unpaired t-test to compare means.(A) Patient 

age, p=0.2, (B) weight, p=0.2 and (C) body surface area, p=0.3. N=127. 

Median is identified by a horizontal bar. No toxicity = includes patients with 

CTC grade 1-2 toxicity. 
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Figure 4.12. Relationship between incidence of CTC grade 3-4 toxicity and 
Cmax at 5min and Cmax at 15min following Act D administration.  

(A) Cmax at 5min, p=0.9, (B) Cmax at 15min, p=0.9. (B) Data was log 

transformed to achieve a normal distribution before using the unpaired t-test 

to compare means. Horizontal bar represents; (A) mean, and (B) median. No 

toxicity = includes patients with CTC grade 1-2 toxicity. 
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Figure 4.13. Relationship between incidence of CTC grade 3-4 toxicity and 
dose, AUC0-24h and Cl-F following Act D administration.  

(A) Dose (mg), p=0.3, (B) AUC0-24h, p=0.9 and (C) Cl-F, p=0.7. Mean is 

identified by a horizontal bar. No toxicity = includes patients with CTC grade 

1-2 toxicity 
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4.4 Discussion 

Administration of Act D to paediatric patients over the last 50 years has helped 

to greatly improve 5 year survival rates in WT, RMS and ES, now standing at 

85%, 63% and 64% respectively. Despite this, toxicity remains the major 

concern with Act D treatment. Inter-patient variation in Act D exposure has 

previously been reported (Veal et al., 2005), however, low sample numbers and 

limited early and late sample time points have hindered definitive 

characterisation of Act D pharmacokinetics. 

Over a 7.5 year period, 142 patients were recruited on to this study, 131 of 

which provided pharmacokinetic samples. Valid pharmacokinetic data were 

available from 108 patients, compared to 31 recruited in the previously 

published study (Veal et al., 2005). Early time points were available from 14 

(13%) patients and full sample sets were available from 74 (69%) patients, 

allowing a more comprehensive analysis of Act D pharmacokinetic parameters.  

The data presented in this study confirm the large degree of inter-individual 

variability in the pharmacokinetics of Act D in children. A 3-fold range (64.7-

193µg/L) in Cmax at 5min and 16-fold range (range 7.5-122µg/L) in Cmax at 

15min were observed, and this variation continued to 24h, where the Act D 

concentrations varied 7-fold (0.7-4.8µg/L). Non-compartmental pharmacokinetic 

analysis was carried out on data from all 108 valid sample sets. Act D AUC0-6h 

varied 9-fold (range 1.1-10mg/L.min) and AUC0-24h varied 6-fold (range 2.3-

13.7mg/L.min). This compares to the previous study, where in 31 patients a 4.4-

fold variation in AUC0-6h (1.12-4.90mg/L.min ) and a 31-fold range in Cmax (3.2-

99.2µg/L) were observed. The data presented here are therefore comparable to 
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those reported by Veal et al in 2005, with a greater degree of variation expected 

due to a larger sample size.   

Due to a 13-fold range in Act D dose (0.19-2.5mg), the primary pharmacokinetic 

end point used was estimated clearance, calculated from dose in milligrams and 

AUC0-∞ in mg/ml.min (Cl = Dose / AUC0-∞). AUC0-∞ was estimated for all patients 

using the log-trapezoidal rule; mean AUC0-∞ was 6.3mg/L.min (range 1.4-

19.8mg/L.min). AUC0-∞ estimates from limited sample sets were significantly 

under-estimated compared to AUC0-∞ from patients with full sample sets (4.1 vs. 

9.0mg/L.min, p<0.0001). After dose was taken into account by estimating 

clearance, the difference between groups was still significant (211 vs. 127 

ml/min, p=0.003), therefore only Cl-F were used for covariate and toxicity 

analysis. A large degree of variability in Cl-F was observed, with a 23-fold range 

(14.8 to 341ml/min) compared to 7-fold range (48-345ml/min) previously 

reported (Veal et al., 2005).   

The relationship between age, weight and SA was investigated in this paediatric 

population. A large interrelationship between body size indicators age, weight 

and SA was observed. Cl-F was positively correlated to age, weight and SA (r2 

= 0.6 for all). When separating these data into age groups, the mean Cl-F in 

patients under 3 years was 54% of that in patients 3 years old and above (78.2 

vs. 144ml/min, p=0.0002). Predictably, this was also observed with patient 

weight and SA; Cl-F was 2.9-fold higher in patients of 10kg or above (46.8 vs. 

136ml/min, p = 0.0008) and 2.3-fold higher in patients who were above 0.5m2 

(59 vs. 138ml/min, p=0.0005). However, these measures of body size were not 

predictive of Cl-F. When selecting patients that were between 2-3 years old at 

the time of treatment, a 2.7-fold range in Cl-F was seen (66.9-178ml/min). A 
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similar result was obtained for patient SA and weight; patients that were 

between 10-15kg had a 3-fold range in Cl-F (35.1-120ml/min) and patients 

whose SA was between 0.6-0.7m2 also had a 3-fold range in Cl-F (46.3-

143ml/min).  Variability in CI-F was still apparent when adjusting for patient age, 

weight or SA, confirming that other factors in addition to body size need to be 

considered in order to achieve consistent Act D exposure in children. 

There was no evidence to suggest that gender or Act D infusion time had an 

influence on Cl-F. Although tumour type was found to be associated with Cl-F, 

this was a result of confounding factors such as patient age and body size. 

Patients with ES had a median age of 9.2 years compared to 3.0 and 5.0 years 

in WT and RMS, respectively. Unfortunately, perhaps due to complexity of the 

treatment regimens used to treat paediatric tumours, concomitant therapy data 

was unavailable therefore it was not possible to assess any drug-drug 

interactions which may be occurring in this patient population.    

Paediatric oncology patients almost invariably have a semi-permanent fixed 

central venous catheter (CVC), to facilitate the administration of drugs and for 

routine biochemical sampling.  While this CVC provides a convenient access 

point for obtaining blood samples for pharmacokinetic analysis, a number of 

concerns need to be addressed. Firstly, any dead-space in the line must be 

removed before the pharmacokinetic sample is obtained and secondly, the risk 

of line contamination must be minimised by an appropriate flushing procedure 

between drug administration, and pharmacokinetic sampling.  The paediatric 

oncology centres contributing to this pharmacokinetic study are staffed by 

experienced research nurses who receive specific training for pharmacokinetic 
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studies and adhere to appropriate flushing and sampling procedures, 

standardised across all of the centres.   

It has recently been reported that binding of administered Act D to the catheter 

may result in contamination of pharmacokinetic samples, with an initial 

contribution to the measured plasma concentration of 19%.  This contribution 

was modelled to decrease exponentially with time, and to be removed by an 

appropriate catheter clearing procedure (Edwards et al., 2012). An initial 

comparison of Cl-F between different catheter types indicated a difference, 

which might be interpreted as suggesting a problem with sample contamination 

with single-lumen lines or port-a-caths.  However, line type was closely linked to 

age, which also influences pharmacokinetics.  It was not possible to separate 

these confounded potential influences on pharmacokinetics in the current study.  

Based on previous experience with pharmacokinetic sampling using a range of 

CVCs, it is unlikely that line contamination has a significant effect on this 

dataset. 

Several studies have demonstrated that treatment with Act D can cause life-

threatening toxicity (Green et al., 1988; Raine et al., 1991; Bisogno et al., 1997), 

with a reported incidence of 1.7-13.5%. However, in the current study, Act D 

treatment appeared to be well tolerated. Haematological toxicities were by far 

the most common adverse effect suffered by patients, with CTC grade 1-4 

haematological toxicities occurring in 45% of the population. Increases in ALT 

or AST, signifying hepatotoxicity, were rare, occurring in 8% and 2% of patients 

respectively. Only two patients had CTC grade 3 or 4 elevated AST or ALT, 

therefore covariate comparisons were not possible.  
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No significant correlations were observed between pharmacokinetic parameters 

and treatment related toxicity in terms of individual toxicities. After grouping 

patients that experienced CTC grade 3 or 4 toxicity and those that did not, no 

influence of age, weight, SA, Cmax, Cl-F or dose was found.  

Consistent with previous studies, the data presented here demonstrate inter-

patient variability in Act D exposure in patients treated on the same dosage 

regimen. Due to the low number of young and smaller patients, meaningful 

comparisons with patient age or size and pharmacokinetic parameters were not 

previously possible. In the current study, full sample sets were available from 19 

patients (25%) under the age of 3 years, and 7 patients (9%) under 10kg.  

Clearance of Act D has been shown to be positively associated with patient 

age, weight and body size. Current dosing guidelines suggest a dose cap of Act 

D of 2mg regardless of patient age, weight or SA. The data from this study 

suggest that this dose cap could result in some larger patients being under-

dosed, resulting in potentially sub-therapeutic Act D exposures. In addition to 

this, dose administered had no impact on treatment-related toxicities, further 

questioning the relevance of a 2mg dose cap. No evidence exists in the 

literature to justify the rationale for this dose capping. Vincristine is another anti-

cancer drug which is subjected to dose capping. An investigation in children 

with leukaemia demonstrated no pharmacokinetic rationale for the dose cap at 

2mg, and similar to our data, suggested that older, larger patients receive less 

intensive chemotherapy due to under-dosing (Frost et al., 2003).  

Patient age and weight have both been identified as possible risk factors for the 

development of toxicity following Act D treatment (Arndt et al., 2004; Veal et al., 
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2005; Langholz et al., 2011). In our study patients below 3 years old were 

shown to have 1.8-fold lower systemic Act D clearance, compared to patients 

older than 3 years (Cl-F 78.2 vs. 144ml/min, p=0.0002). Similar findings were 

observed with patient weight, where patients below 10kg had 3-fold lower Cl-F 

compared to those above 10kg. These data suggest that smaller, younger 

patients have relatively higher Act D exposures. This could highlight the 

possibility of greater toxicity risk, although this cannot be confirmed without any 

patients with hepatotoxicity being reported in this study.  

Estimating AUC0-∞ for those patients without late pharmacokinetic sampling was 

challenging using non-compartmental analysis. The use of population 

pharmacokinetic approaches would allow an appropriate pharmacokinetic 

model to be generated, and subsequently, more accurate AUC0-∞ estimation 

especially for those patients lacking later pharmacokinetic samples. Act D 

pharmacokinetics in patients has previously been fitted to a three-compartment 

model with first order elimination (Mondick et al., 2008; Edwards et al., 2012). 

Confirmation of this model, or generation of a new model, would allow more 

accurate extrapolation for AUC0-∞ for those patients with limited sample sets.  

Although many of the agents used to combat paediatric cancer today have been 

used for many years, for drugs such as Act D, there remain considerable gaps 

in our knowledge. The success seen over the last four decades in improving 

survival rates of children with cancer should not deter efforts to further improve 

therapy, especially given the potential to reduce life-threatening toxicities. The 

main aim now for pharmacokinetic studies is to provide supportive data to 

maintain current survival rates and reduce treated-associated toxicities.  
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This study has demonstrated a large degree in variability in Act D exposure 

between patients, which appears to be partially attributed to patient age and 

size. Act D has been shown both in Chapter 2 and Chapter 3 be a good 

substrate for ABCB1, and to a lesser extent ABCC2. It is possible that SNPs in 

these proteins, that have been previously shown to influence drug disposition of 

important anti-cancer agents, could be responsible for some of this variation. 
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Chapter 5. Pharmacogenetic analysis of patients being treated 

with actinomycin D 

5.1 Introduction 

Inter-patient variation in drug exposure is a very common observation for many 

anti-cancer agents, in both adult and paediatric patient populations. With the 

advent of modern biological techniques, it has been suggested that much of the 

inter-patient variation observed could be due to genetic differences among 

individuals. SNPs occur every 1000-3000 bases (Sachidanandam, 2001) and 

are implicated in 20-95% of differences in drug response (Evans and McLeod, 

2003). 

Act D exposure in paediatric patients has been shown previously to be highly 

variable, with the pharmacokinetic variability observed between patients 

strongly indicating that current surface-area based dosing regimens are not 

optimal (Veal et al., 2005). Consistent with these previous data, marked inter-

patient variability in Act D exposure was confirmed in the current study (Chapter 

4). Patient age and size have previously been associated with Act D treatment-

related toxicity, with younger, smaller patients more likely to experience some 

form of toxicity during treatment (Arndt et al., 2004; Langholz et al., 2011).  

The data presented in the current study suggest that younger patients with 

small body surface area and body weight appear to have low clearance, 

indicating high Act D exposure and therefore the possibility of an increased risk 

of toxicity. Conversely, older patients with a large surface area and body weight 

exhibit relatively high clearance values, resulting in low Act D exposure and the 

possibility of sub-therapeutic dosing. Therefore identification of factors that 
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could be predictive of Act D pharmacokinetics could be important in the 

optimisation of Act D dosage regimens.  

ABC transporters are present throughout the body, and are well recognised to 

have a key role in removing both endogenous and exogenous substances from 

the body (Ho and Kim, 2005). Many commonly used drugs, including anti-

cancer agents have been shown to be substrates for various ABC transporters, 

and as such, ABC transporters have the potential to impact drug disposition and 

elimination from the body. SNPs in these transporters that influence the function 

or expression of ABC transporters therefore have the potential to alter drug 

transport and pharmacokinetics. For example, SNPs in ABCB1 have previously 

been shown to alter exposure of the commonly used anti-cancer agent 

doxorubicin in Asian breast cancer patients (Lal et al., 2008) and be predictive 

of clinical outcome in breast cancer and multiple myeloma patients (Bray et al., 

2010; Buda et al., 2010). However, clinical studies investigating the impact of 

ABCB1 SNPs are highly inconsistent.  

Act D has been confirmed as a good substrate for ABCB1 and ABCC2 through 

growth inhibition and intracellular accumulation assays in Chapter 2. Following 

this in Chapter 3 ABC transporter function was confirmed to affect the 

pharmacokinetics of Act D in an ABC transporter knockout mouse model. 

Based on these findings the potential effects of clinically-relevant SNPs and 

their associated diplotypes for both ABCB1 and ABCC2, on the 

pharmacokinetics of Act D are investigated in the current chapter. 
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5.2 Materials and methods 

5.2.1 Patient eligibility, treatment and blood sampling 

Patients were eligible and treated as per (4.2.1).  Whole blood samples (5-10ml) 

were collected in tubes containing EDTA as an anti-coagulant, and stored 

at -20oC for pharmacogenetic analysis. 

5.2.2 DNA extraction from whole blood 

QIAamp DNA blood Maxi kits were used to extract DNA from whole blood 

according to the manufacturer’s instructions. Briefly, 5-10ml of whole blood was 

mixed with 500µl QIAGEN Protease , and all tubes were made up to 10ml with 

PBS. Buffer AL (12ml) was used to lyse the cells during a 10min incubation at 

70oC and following this, 100% ethanol (10ml) was added to each tube to bind 

the DNA. This solution was added to a QIAamp Maxi column. Subsequent 

centrifugation steps (2,000g for 5min) ensured that all waste was removed, 

leaving the DNA bound to the QIAamp Maxi column. The column was washed 

twice, once with Buffer AW1 (5ml) and once with Buffer AW2 (5ml), and the 

DNA was eluted with 1ml Buffer AE. DNA purity and concentration was 

measured against a Buffer AE blank using a NanoDrop ND-1000 (Thermo 

Scientific, Rockford, USA). 

5.2.3 Genotype analysis 

Genetic analysis was performed on genomic DNA obtained and extracted as 

described (5.2.2).  To assess whether ABCB1 and ABCC2 variants are 

responsible for inter-patient variability in Act D exposure, tagSNPs were 

selected using the international HapMap database and Haploview with the 

integrated tagger tool to capture alleles and regions of interest. The tagger 
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software was set to output tagSNPs based on the CEU (U.S. residents of 

northern and western European ancestry) and TSI (Tuscans in Italy) databases, 

with a minor allele frequency (MAF) of 0.1 and a minimum r2 value of 0.8 for 

both genes. In addition to this, SNPs were also chosen if clinical relevance had 

previously been shown. TagSNPs were used to minimise the amount of 

genotyping that was required, preventing SNPs in linkage disequilibrium (LD) 

being individually genotyped. This resulted in 18 tagSNPs in ABCB1 

encompassing 67 polymorphic sites (Figure 5.1, Table 5.1) and 11 tagSNPs in 

ABCC2 encompassing 27 polymorphic sites (Figure 5.2, Table 5.2), spanning 

the majority of both genes. 
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ABCB1 

tagSNPs 

Captured 
alleles 

MAF Exon/Intron Gene location 

NG_011513 

Clinical association 

rs13233308 - 0.43 Intron 1-2 102605G>A No (Xing et al., 2006) 

rs1858923   0.42 Intron 4-5 126349T>C  - 

  rs12535512   Intron 4-5 127231A>G  - 

  rs3789243   Intron 4-5 126679T>C  Possible (Haerian et 
al., 2011; He et al., 
2011) 

rs17327624 - 0.13 Intron 4-5 130748C>A  (Bochud et al., 2008) 

rs1202184   0.5 Intron 5-6 133664G>A  (Krupoves et al., 
2009; Lin et al., 2011) 

  rs11763872   Intron 4-5 130350A>G   

rs4148733   0.1 Intron 5-6 134333T>C  (Bochud et al., 2008) 

  rs17327442   Intron 4-5 130350A>G   

rs1202172   0.45 Intron 5-6 136591G>T (Wong et al., 2008; 
Krupoves et al., 2009) 

  rs1989830   Intron 5-6 141902T>C   

  rs1202175   Intron 5-6 138415C>T   

  rs1202185   Intron 5-6 134181G>A   

  rs1202179   Intron 5-6 143286G>A   

  rs1202182   Intron 4-5 132261C>T   

  rs1202171   Intron 5-6 136520A>T   

  rs1202186   Intron 5-6 134307G>A   

  rs1202181   Intron 4-5 131415C>T   

  rs1202180   Intron 5-6 143725G>A   

rs10280623   0.25 Intron 5-6 145021A>G  (Uhr et al., 2008) 

  rs10260862   Intron 5-6 146083C>G   

  rs12334183   Intron 5-6 146185A>G   

  rs10808071   Intron 26-27 206757T>C   

  rs2235015   Intron 5-6 148001G>T   

rs4148734   0.29 Intron 8-9 153968C>T   (Potocnik et al., 
2004; Potocnik et al., 
2008) 
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ABCB1 

tagSNPs 

Captured 
alleles 

MAF Exon/Intron Gene location 

NG_011513 

Clinical association 

  rs2235035   Intron 14-15 168479C>T   

  rs10259849   Intron 5-6 146723G>A   

  rs1922240   Intron 9-10 164211A>G   

  rs1922241   Intron 9-10 161671C>   

rs868755   0.38 Intron 9-10 157635A>C  (Huebner et al., 
2009; Krupoves et al., 
2009) 

  rs6949448   Intron 26-27 205751A>G    

  rs2235046   Intron 17-18 173499A>G    

  rs1202169   Intron 7-8 151715A>G   

  rs2520464   Intron 4-5 146479G>A   

  rs10276036   Intron 10-11 167367G>A   

  rs4148738   Intron 21-22 184516G>A   

  rs1202167   Intron 6-7 150506G>A   

  rs1202168   Intron 7-8 151603C>T   

  rs11975994   Intron 8-9 154834C>T    

rs1128503 - 0.45 Exon 12 167964C>T 

1236C>T 

Gly412= 

  

rs10808072   0.47 Intron 15-16 171102T>C    

  rs2235033   Intron 14-15 168422T>C   

  rs1202170   Intron 8-9 152459G>A   

  rs6961665   Intron 10-11 166147G>T    

  rs2235013   Intron 15-16 168939G>A   

rs4148735   0.43 Intron 18-19 174684G>A  (Krupoves et al., 
2009) 

  rs6961419   Intron 18-19 175429A>G    

  rs4148737   Intron 18-19 176413A>G    

  rs2091766   Intron 16-17 173061G>A   

rs10248420 - 0.18 Intron 21-22 182579T>C  (Krupoves et al., 
2009) 
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ABCB1 

tagSNPs 

Captured 
alleles 

MAF Exon/Intron Gene location 

NG_011513 

Clinical association 

rs11983225   0.16 Intron 21-22 186045A>G  (Krupoves et al., 
2009) 

 rs11760837   Intron 21-22 184549A>G    

  rs2235040   Intron 21-22 181815G>A    

  rs2235067   Intron 23-24 197643G>A   

  rs10268314   Intron 19-20 177896A>G   

  rs4148739   Intron 21-22 186516A>G   

 rs10244266   Intron 9-10 159098A>C   

  rs10280101   Intron 22-23 193980T>G    

  rs10276603   Intron 18-19 176038A>G   

  rs12720067   Intron 19-20 178209G>A    

  rs10274587   Intron 21-22 183082C>T   

  rs10225473   Intron 22-23 192919T>C   

  rs2032583   Intron 22-23 187004T>C    

rs2032582 - 0.47 Exon 22 186947G>T/A 

2677G>T/A 

Ser893Thr/Ala 

  

rs4437575   0.47 Intron 26-27 208249T>C  (Lin et al., 2011) 

  rs2235048   Intron 27-28 209054C>T   

rs1045642 - 0.43 Exon 27 208920T>A 

3435C>T 

Ile1145= 

  

rs3842 - 0.16 Exon 29 214199A>G 

UTR-3 

  

All 18 tagSNPs genotyped in ABCB1 are listed along with the 67 polymorphic sites that are 
“captured” by the chosen tagSNPs due to their linkage disequilibrium. Their location and 
clinical significance (if appropriate) are also listed. 

Abbreviations: MAF, minor allele frequency 

Table 5.1. TagSNPs in the ABCB1gene genotyped in this study. 
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ABCC2 

tagSNP 

Captured 
alleles 

MAF Exon/Intron Gene location 

NG_011798 

Clinical association 

rs717620 - 0.23 Exon1 5116C>G 

-24C>T  

UTR-5 

 (Zhou et al., 2005; 
Daly et al., 2007; 
Haenisch et al., 2007; 
Han et al., 2007; 
Fujita et al., 2008; 
Sun et al., 2010; 
Franke et al., 2011) 

rs6584327   0.48 Intron 7-8 19867A>C  (Sookoian et al., 
2008a; Sookoian et 
al., 2009) 

  rs2756103   Intron 1-2 5585A>C   

  rs4148397   Intron 23-24 54858A>G   

  rs4148388   Intron 2-3 12303G>A   

  rs4148386   Intron 2-3 11006G>A   

  rs7393105   Intron 2-3 9559C>A    

  rs2804400   Intron 3-4 15797C>T   

  rs4148385   Intron 2-3 10715A>C    

  rs4919395   Intron 1-2 5501A>G    

  rs4148389   Intron 2-3 12449G>A   

  rs2756105   Intron 2-3 9580C>T   

  rs2756104   Intron 1-2 6564C>T   

rs2756109 - 0.45 Intron 7-8 21284G>T  (Sloan et al., 2012) 

rs2273697   0.23 Exon 10 26353G>A 

1249G>A 

Val417Ile 

 (Vogelgesang et al., 
2004; Meyer zu 
Schwabedissen et al., 
2005; Haenisch et al., 
2008; Kim et al., 
2010) 

  rs11190291  Intron 11-12 28548C>T   

rs4148394    0.3 Intron 15-16 34881A>C  (Sookoian et al., 
2008a) 

  rs2002042  Intron 19-20 50469C>T   

rs4148396     Intron 23-24 54482T>C  (Cecchin et al., 2012) 

  rs2804398   Intron 7-8 21172A>T   

  rs3740074   Intron 15-16 34066C>T   
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ABCC2 

tagSNP 

Captured 
alleles 

MAF Exon/Intron Gene location 

NG_011798 

Clinical association 

  rs2073337   Intron 12-13 29964A>G    

  rs3740073   Intron 16-17 39498T>C    

rs4148398 - 0.33 Intron 23-24 55160A>G - 

 

rs3740066 - 0.34 Exon 28 66745C>T 

3972C>T 

Ile1324= 

(Sookoian et al., 
2008a; Cecchin et al., 
2012; Qu et al., 2012) 

rs3740065 - 0.1 Intron 29-30 68231A>G  (Kiyotani et al., 2010) 

rs3740063 - 0.41 Intron 31-32 73261A>G  - 

rs8187710 - 0.05 Exon 32 73832G>A 

4544G>A 

Cys1515Tyr 

 (Wojnowski et al., 
2005; Elens et al., 
2009; Sookoian et al., 
2009; Ni et al., 2010; 
Elens et al., 2011; 
Simon et al., 2012) 

All 11 tagSNPs genotyped in ABCC2 are listed along with the 27 polymorphic sites that are 
“captured” by the chosen tagSNPs due to their linkage disequilibrium. Their location and 
clinical significance (if appropriate) are also listed. 

Abbreviations: MAF, minor allele frequency 

Table 5.2. TagSNPs in the ABCC2 gene genotyped in this study. 
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5.2.4 Patient genotyping by Real-time Polymerase Chain Reaction using 

the TaqMan® method 

According to DNA concentrations determined in 5.2.2, patient DNA was diluted 

in ddH2O to 10ng/µl to produce a working stock of DNA for each patient. 

TaqMan® SNP primer sets and probes for all 29 SNPs (5.2.3) were obtained 

from Applied Biosystems.  

Prior to adding DNA samples, a reaction master mix was made up (Table 5.3) in 

a sterile 5ml tube and 24µl was added to each required well of a 0.1 ml 

MicroAmp Fast Optical 96-well plate (Applied Biosystems). 

Reagent Initial 
Concentration 

Final 
Concentration 

Volume per 
sample 

Volume for 
full plate 

Master Mix 2x 1x 12.5µl 1250µl 

SNP primers 20x 1x 1.25µl 125µl 

ddH2O   10.25µl 1025µl 

Table 5.3. Volume required for each component of the TaqMan PCR 
reaction mixture.  

Full plate volume = 100 samples (96 wells + 4 for error).  

Following this, 1µl of DNA (10ng) was added to each well. No-template controls 

(reaction master mix only) were placed at the beginning and end of the 

samples, and where possible, known genotype controls were used to validate 

the primers. Plates were sealed using MicroAmp® Optical Adhesive Film and 

Real-Time PCR was carried out (Figure 5.3) using an ABI 7500 Fast Real-Time 

PCR System (Applied Biosystems, California, USA). Upon completion, endpoint 

allelic discrimination was performed at 60oC, allowing quantitative analysis of 

the fluorescence of both the wild type and variant reporters in each well of the 

96-well plate. Applied Biosystems Sequence Detection Software (SDS) version 

1.4 was used to run the Real-time PCR system, analyse data and assign 
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genotypes. Example allelic discrimination plots can be found in Figure A.1 and 

Figure A.2 in the appendix. 

 

Figure 5.3. Real-time PCR conditions used for the TaqMan® and SYBR 
Green methods. 

5.2.5 Statistical analysis 

Hardy-Weinberg equilibrium was assessed using the Chi-squared test, a p-

value of >0.05 was taken as data being consistent with Hardy-Weinberg 

equilibrium. D’ and R-squared between all SNPs within ABCB1 and ABCC2 

were calculated using the program pwld (David Clayton, Cambridge Institute for 

Medical Research, Cambridge University, UK) in Stata/SE 11.2 (StataCorp, 

College Station, Texas). These values were imported into Microsoft Excel 2010 

and were plotted against each other using the conditional formatting feature to 

create the plot in Figure 5.4. 

Genotypes were analysed separately and the ABCB1 SNPs 1236C>T, 

2677G>T/A and 3435C>T were grouped into diplotypes according to Table 5.4 

Stage 1
Reps - 1

Stage 2
Reps - 1

Stage 3
Reps - 40

50oC

2 minutes

95oC

10 minutes

95oC

15 seconds

60oC

1 minute
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for analysis against pharmacokinetic parameters. Overall means between 

groups were compared using the unpaired t-test (two groups) and one-way 

ANOVA (three groups) with Bonferroni’s correction for multiple comparisons. If 

data were not normally distributed, the data were log-transformed to achieve a 

normal distribution, after which an unpaired t-test or one-way ANOVA with 

Bonferroni’s correction for multiple comparisons was performed to compare 

means. Normality was checked by producing a histogram of the data. If 

normality could not be achieved by log-transforming the data, a Kruskal-Wallis 

one-way ANOVA was performed. 

Due to the large number of statistical tests performed, the p-value accepted as 

significant will be changed accordingly. As 29 statistical tests were performed 

on Cl-F, a p-value of 0.002 (0.05/29) will be accepted as significant. 
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Diplotype 

Allele 1 Allele 2 

1236C>T 2677G>T/A 3435C>T 1236C>T 2677G>T/A 3435C>T 

1 C G C C G C 

2 C G C * * * 

3 C G C T T/A T 

4 T T/A T * * * 

5 T T/A T T T/A T 

6 C G - C G - 

7 C G - ♦ ♦ - 

8 C G - T T/A - 

9 T T/A - ♦ ♦ - 

10 T T/A - T T/A - 

11 - G C - G C 

12 - G C - ♦ ♦ 

13 - G C - T/A T 

14 - T/A T - ♦ ♦ 

15 - T/A T - T/A T 

* Any combination of alleles that is not mutually exclusive with another diplotype 
consisting of all three SNPs.  
♦ Any combination of alleles that is not mutually exclusive with another diplotype 
consisting of only the 2677 and 3435 SNPs. 

Table 5.4. Diplotype groupings for ABCB1 SNPs 1236C>T, 2677G>T/A and 
3435C>T.  Diplotypes 1-5 are based on all 3 SNPs. Diplotypes 6-10 include 
only diplotypes in SNPs 1236C>T and 2677G>T/A, whilst diplotypes 11-15 
include only diplotypes in SNPs 2677G>T/A and 3435C>T. Diplotypes 
based on (Sissung et al., 2008).   

Post-hoc power calculations were carried out using the 3435C>T SNP data and 

the one-way ANOVA power calculator in Minitab 16. The population standard 

deviation was 50.5 and the maximum difference between the three groups was 

set at 30.9 with same size mean of 21 patients per genotype used.  
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5.3 Results 

5.3.1 DNA extraction and quantification 

DNA was extracted from whole blood from 126 patients. Following extraction 

DNA was quantified; mean DNA concentration was 310 ± 178µg. 

5.3.2 Genotyping 

One hundred and twenty six patients provided samples for genetic analysis 

Twenty nine tagSNPs, encompassing 94 polymorphic sites across ABCB1 and 

ABCC2 were chosen to be genotyped based on clinical relevance and a minor 

allele frequency of ≥ 0.1 (10%). At least one copy of the variant allele in the 

three common exonic ABCB1 SNPs, 1236C>T, 2677G>T/A and 3435C>T were 

present in 43%, 43% and 48% of patients respectively. The rare ABCB1 SNP 

2677A allele, causing a change in amino acid from serine to alanine, was 

present in 9 patients (allele frequency – 0.04). The commonly-studied ABCC2 

exonic SNPs rs2273697 and rs3740066 were present in 22% and 35% of 

individuals on study. Although rs8187710 in ABCC2 had a minor allele 

frequency of only 0.05 in a Caucasian population according to HapMap data, it 

was selected to be genotyped as it is a non-synonymous SNP with clinical 

relevance (Table 5.2). Full genotype and allelic frequencies can be found for 

ABCB1 in Table 5.5 and ABCC2 in Table 5.6. All genotype frequencies were 

comparable to those previously observed in Caucasian populations (Table 5.1 

and Table 5.2) and all were in Hardy-Weinberg equilibrium.  
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ABCB1 

Polymorphism 

No of patients with genotype (frequencies) Allelic frequencies
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 p q 

1236C>T 44 (0.35) 55 (0.44) 27 (0.21) 0.567 0.433 

2677G>T/A 35 (0.28) GT - 58 (0.46) 

GA – 7 (0.06) 

TA – 2(0.02) 

24 (0.19) 

0.536 
0.429 

(A - 0.036) 

3435C>T 28 (0.22) 64 (0.51) 34 (0.27) 0.476 0.524 

rs11983225 1 (0.01) 30 (0.24) 95 (0.75) 0.127 0.873 

rs868755 47 (0.37) 58 (0.46) 21 (0.17) 0.603 0.397 

rs1202172 10 (0.08) 53 (0.42) 63 (0.50) 0.290 0.710* 

rs10280623 2 (0.02) 43 (0.34) 81 (0.64) 0.187 0.813 

rs4148734 68 (0.54) 47 (0.37) 11 (0.09) 0.726 0.274 

rs10808072 33 (0.26) 62 (0.49) 31 (0.25) 0.508 0.492 

rs4148735 27 (0.21) 52 (0.41) 47 (0.37) 0.421 0.579 

rs1858923 30 (0.24) 63 (0.50) 33 (0.26) 0.488 0.512 

rs4148733 1 (0.01) 36 (0.29) 89 (0.71) 0.151 0.849 

rs3842 96 (0.76) 30 (0.24) 0 (0) 0.881 0.119 

rs4437575 38 (0.30) 65 (0.52) 23 (0.18) 0.560 0.440 

rs10248420 82 (0.65) 42 (0.33) 2 (0.02) 0.817 0.183 

rs13233308 31 (0.25) 65 (0.52) 30 (0.24) 0.504 0.496 

rs1202184 40 (0.32) 55 (0.44) 31 (0.25) 0.536 0.464 

rs17327624 78 (0.62) 41 (0.33) 7 (0.06) 0.782 0.218 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Hardy-Weinberg notation for allele frequencies (p, frequency for allele 1; q, frequency for 

allele 2) 

Table 5.5. Genotype and allelic frequencies for the studied ABCB1 SNPs 
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ABCC2 

Polymorphism 

No of patients with genotype (frequencies) Allelic frequencies
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 p q 

rs6584327 22 (0.18) 56 (0.44) 48 (0.38) 0.397 0.603 

rs4148396 53 (0.42) 55 (0.44) 18 (0.14) 0.639 0.361 

rs4148394 68 (0.54) 49 (0.39) 9 (0.07) 0.734 0.266 

rs2273697 5 (0.04) 46 (0.37) 75 (0.60) 0.222 0.778 

rs2756109 26 (0.21) 61 (0.48) 39 (0.31) 0.448 0.552 

rs3740065 107 (0.85) 17 (0.14) 2 (0.02) 0.917 0.083 

rs717620 5 (0.04) 36 (0.29) 85 (0.68) 0.183 0.817 

rs4148398 16 (0.13) 53 (0.42) 57 (0.45) 0.337 0.663 

rs3740063 46 (0.37) 56 (0.44) 24 (0.19) 0.587 0.413 

rs3740066 16 (0.13) 55 (0.44) 55 (0.44) 0.345 0.655 

rs8187710 1 (0.01) 10 (0.08) 115 (0.91) 0.048 0.952 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Hardy-Weinberg notation for allele frequencies (p, frequency for allele 1; q, frequency for 

allele 2) 

Table 5.6. Genotype and allelic frequencies for the studied ABCC2 SNPs 

5.3.3 Linkage disequilibrium 

In this population LD was observed between several genotyped SNPs within the 

ABCB1 gene and within the ABCC2 gene (Figure 5.4), based on Lewontin’s D’. 

Lewontin’s D’ calculations take into account LD irrespective of allele 

frequencies. When applying the more rigorous parameter, r2, the number of 

SNPs in LD (r2 ≥ 0.8) was lower. Out of the three ABCB1 SNPs that are 

commonly found in LD (1236C>T, 2677G>T/A and 3435C>T), only 1236C>T 

and 2677G>T/A were in LD in this population according to r2 correlations (0.82). 

Full results of LD analysis for all ABCB1 and ABCC2 SNPs are shown in Figure 

5.4A and Figure 5.4B respectively.  
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Following the analysis of genotype-phenotype correlations, the LD data were 

used if similar results were seen, to determine whether they were due to SNPs 

in LD.  
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   D’              R-squared 

 

      

Figure 5.4. Linkage disequilibrium for ABCB1 and ABCC2 SNPs.  

Visible values (blue) are minor allele frequencies observed in this population. 

Lewontin’s D’ (red) and r2 value (black) were used to assess LD between 

SNPs in (A) ABCB1 and (B) ABCC2. SNPs are ordered according to location 

on the gene. Abbreviations: I=intron, E=exon 
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5.3.4 ABCB1 genotype-phenotype association 

Relationships between transporter genotype and pharmacokinetic parameters 

were investigated. Since a strong correlation was observed between Cl-F and 

patient age, SA and weight, Cl-F was normalised to SA (Cl-FSA) and the impact 

of transporter genotype investigated. Estimates of Cl-FSA were available from 

74 patients, 64 of whom had accompanying genetic data, allowing the impact of 

transporter genotype to be assessed. 

There was no apparent influence of the ABCB1 SNP 1236C>T on Cl-FSA when 

considering each genotype separately (Figure 5.5A, Table 5.7). However, when 

combining all patients with at least one copy of the variant T allele, these 

patients had a 1.2-fold higher Cl-FSA than WT patients (153 vs. 125ml/min/m2, 

p=0.05, Figure 5.5B). Similarly the 3435C>T polymorphism, had no effect on Cl-

FSA (Table 5.7, Figure 5.6A) until variant allele carriers were considered as a 

group, where those patients had 1.3-fold higher Cl-FSA than patients with two 

WT alleles (150 vs. 116ml/min/m2, p=0.05, Figure 5.6B). Patients carrying at 

least one copy of the variant T allele at position 2677 also exhibited a 1.3-fold 

higher Cl-FSA than other individuals (154 vs. 121ml/min/m2, p=0.02, Figure 

5.7B, Table 5.7). However, these data cannot be considered significant due to 

the number of statistic tests performed; p<0.002 identifies significance. 

Meaningful analysis to determine the effect of the 2677A SNP on Cl-FSA could 

not be performed, as only 3 patients with the A allele had accompanying 

pharmacokinetic data.  

No other ABCB1 SNP had a statistically significant effect on Cl-FSA (Table 5.7) 

and ABCB1 genotype did not have an impact on the volume of distribution at 

steady-state (Vss) concentrations of Act D (Table 5.8). 
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ABCB1 

Polymorphism 

Mean Cl-FSA (ml/min/m
2
) 

Significance
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 

1236C>T 125 157 144 0.10 

2677G>T/A 
122 

156 

(GA – 117) 
145 0.10 

3435C>T 115 153 144 0.12 

rs11983225 - 144 144 0.96♦ 

rs868755 125 155 153 0.1 

rs1202172 144 137 151 0.75 

rs10280623 - 145 144 0.93 

rs4148734 149 145 113 0.34 

rs10808072 145 152 127 0.33 

rs4148735 111 158 146 0.04 

rs1858923 152 144 136 0.66 

rs4148733 - 130 149 0.21♦ 

rs3842 142 152 - 0.48♦ 

rs4437575 142 154 104 0.04 

rs10248420 148 138 - 0.39♦ 

rs13233308 129 152 142 0.38 

rs1202184 155 145 125 0.24 

rs17327624 145 137 144 0.74 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Statistical analysis performed was the one-way ANOVA. One test was 

performed per genotype, assessing global significance between genotype and 
Cl-FSA. p<0.002 accepted as significant. ♦Unpaired t-test as testing was 

performed on less than three groups. 

Table 5.7. Effect of genotyped ABCB1 SNPs on Cl-FSA 
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ABCB1 

Polymorphism 

Median Vss (L) 

Significance
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 

1236C>T 178 150 211 0.61 

2677G>T/A 197 148 246 0.35 

3435C>T 247 144 231 0.04 

rs11983225 - 156 171 0.57 

rs868755 193 144 246 0.21 

rs1202172 201 165 151 0.83 

rs10280623 - 158 163 0.58 

rs4148734 173 155 217 0.55 

rs10808072 173 155 155 0.75 

rs4148735 140 156 174 0.77 

rs1858923 161 154 178 0.90 

rs4148733 - 139 172 0.16 

rs3842 164 153 - 0.80 

rs4437575 215 151 178 0.18 

rs10248420 173 151 365 0.37 

rs13233308 158 164 161 0.89 

rs1202184 171 155 158 0.95 

rs17327624 155 158 263 0.32 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Statistical analysis performed using the Kruskal-Wallis one-way ANOVA. One 

test was performed per genotype, assessing global significance between 
genotype and Vss. p<0.002 accepted as significant. 

Table 5.8. Effect of genotyped ABCB1 SNPs on Vss. 
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Figure 5.5. Effect of ABCB1 SNP 1236C>T on Cl-FSA.  

Mean values represented with a horizontal bar. CL-FSA was assessed 

against (A) all genotypes and (B) those patients that carried the variant allele 

T compared to CC patients. Number of patients: CC=19, CT=29, TT=16, 

CC=19, T carrier=45.  
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Figure 5.6. Effect of ABCB1 SNP 3435C>T on Cl-FSA.  

Mean values represented with a horizontal bar. CL-FSA was assessed 

against (A) all genotypes and (B) those patients that carried the variant allele 

T compared to CC patients. Number of patients: CC=10, CT=38, TT=16, 

CC=10, T carrier=54.  
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Figure 5.7. Effect of ABCB1 SNP 2677G>T/A on Cl-FSA.  

Mean values represented with a horizontal bar. CL-FSA was assessed 

against (A) all genotypes and (B) those patients that carried the variant allele 

T compared to all other patients. Number of patients: GG=15, GT=31, 

TT=15, GA=3, T carrier=46, Other=18 
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5.3.5 ABCB1 diplotype analysis 

The three widely studied ABCB1 SNPs, 1236C>T, 3435C>T and 2677G>T/A 

are in LD and diplotype analysis has previously shown an additive effect on 

drug transport when considering all three SNPs (Salama et al., 2006; Sissung et 

al., 2011). Diplotype analysis was performed according to Table 5.4. 

Association between diplotypes 1-5 and Cl-FSA are shown in Figure 5.8A and 

Table 5.9. Patients with diplotype 4 had 1.6-fold higher Cl-FSA than those with 

diplotype 1, but this did not withstand correction for multiple testing (183 vs. 

115ml/min/m2, p=0.06). When considering only the polymorphisms at base pairs 

3435 and 2677 (diplotypes 11-15), a trend of higher Cl-FSA with increasing 

numbers of variant alleles was observed (Figure 5.8C, Table 5.9). Patients with 

diplotype 14 had 1.7-fold higher Cl-FSA than WT patients (diplotype 11) (200 

vs. 115ml/min/m2, p<0.01, Table 5.9). Differences between Cl-FSA and 

diplotype were also observed between diplotype 14 and 12 (mean 200 vs. 

127ml/min/m2, p<0.05) and diplotype 14 and 15 (mean 200 vs. 127ml/min/m2, 

p<0.05). No statistically significant associations were found between diplotypes 

6-10 (1236C>T and 2677G>T/A) and Cl-FSA. Although trends between Cl-FSA 

and ABCB1 diplotype did appear to be seen, these data cannot considered 

significant due to the number of statistical tests performed.  
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Diplotype 
∆
 

No. of patients 
(%) 

Cl-FSA (ml/min/m
2
) 

Significance
†
 

Mean Minimum Maximum 

1 8 (13) 115 83.3 158  

2 10 (16) 132 74.7 189  

3 25 (40) 152 82.0 244  

4 9 (14) 183 82.7 339  

5 11 (17) 127 71.7 218 0.03 

6 15 (23) 122 83.3 189  

7 4 (6) 143 74.7 175  

8 29 (45) 157 82.0 250  

9 1 (2) 82.7
‡
  

10 15 (23) 148 71.7 339 0.38 

11 8 (13) 115 83.3 158  

12 9 (14) 127 74.7 189  

13 27 (42) 151 82.0 244  

14 9 (14) 191 85.1 339  

15 11 (17) 127 71.7 218 0.003 

†
Statistical analysis performed was a one-way ANOVA. One test was performed per genotype, 

assessing global significance between diplotype and Cl-FSA. p<0.002 accepted as significant. 

‡
Only one patient was diplotype 9 had associated pharmacokinetic samples. Diplotype 6-10 

analysis should therefore be treated with caution 

∆
Note – one patient did not fit into any diplotype between 1-5 involving all three SNPs. 

Table 5.9. Effect of ABCB1 diplotypes on Cl-FSA. 
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Figure 5.8. Effect of ABCB1 diplotypes 1-15 on Cl-FSA in 63 paediatric 
patients with diplotype 1-5, 64 patients with diplotypes 6-15 following Act 
D administration.  

Mean values represented with a horizontal bar. The impact of diplotypes (A) 

1-5, (B) 6-10 and (C) 11-15 on Cl-FSA was investigated. ‡ Any combination 

of alleles that is not mutually exclusive with another diplotype within the 

diplotype group.   
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5.3.6 ABCC2 genotype-phenotype association 

The impact of ABCC2 genotype on Cl-FSA was also investigated. Associations 

between genotyped exonic ABCC2 SNPs and Cl-FSA are shown in Figure 5.9 

and Figure 5.10. No statistically significant relationships were seen between 

exonic or intronic ABCC2 SNPs and Cl-FSA (Table 5.10) and ABCC2 genotype 

had no impact on Vss (Table 5.11). 

ABCC2 

Polymorphism 

Mean Cl-FSA (ml/min/m
2
) 

Significance
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 

rs6584327 157 135 149 0.46 

rs4148396 148 140 144 0.83 

rs4148394 150 138 133 0.60 

rs2273697 151 149 140 0.75 

rs2756109 146 140 149 0.84 

rs3740065 144 157 98 0.48 

rs717620 - 139 146 0.64♦ 

rs4148398 139 137 150 0.62 

rs3740063 149 131 166 0.16 

rs3740066 167 130 151 0.17 

rs8187710 - 170 142 0.24♦ 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Statistical analysis performed was a one-way ANOVA. One test was performed 

per genotype, assessing global significance between genotype and Cl-FSA. 
♦Unpaired t-test as testing was performed on less than three groups. p<0.002 
accepted as significant. 

 Table 5.10. Effect of genotyped ABCC2 SNPs on Cl-FSA  
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ABCC2 

Polymorphism 

Median Vss (L) 

Significance
‡
 

Allele 1
†
 Heterozygous Allele 2

†
 

rs6584327 139 177 171 0.46 

rs4148396 164 213 126 0.09 

rs4148394 174 140 177 0.55 

rs2273697 212 158 153 0.59 

rs2756109 158 175 152 0.81 

rs3740065 171 158 76 0.36 

rs717620 - 148 171 0.93 

rs4148398 127 210 172 0.16 

rs3740063 156 223 146 0.37 

rs3740066 140 217 171 0.42 

rs8187710 - 199 155 0.29 

†
Allele 1- homozygous for allele 1, Allele 2 – homozygous for allele 2 

‡
Statistical analysis performed using the Kruskal-Wallis one-way ANOVA. One 

test was performed per genotype, assessing global significance between 
genotype and Vss. p<0.002 accepted as significant. 

Table 5.11. Effect of genotyped ABCC2 SNPs on Vss. 
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Figure 5.9. Effect of exonic ABCC2 SNPs rs717620 and rs2756109 on Cl-
FSA.  

Mean values represented with a horizontal bar. Cl-F was assessed against 

(A) the exon 1 5’ UTR SNP rs717620 and (B) exon 10 non-synonymous SNP 

rs2273697.  
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Figure 5.10. Effect of exonic ABCC2 SNPs rs3740066 and rs8187710 on Cl-
FSA.  

Mean values represented with a horizontal bar. Cl-F was assessed against 

(A) the exon 28 synonymous SNP rs3740066 and (B) exon 32 non-

synonymous SNP rs8187710. 
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5.3.7 ABCB1 diplotype and ABCC2 SNP association with actinomycin D 

treatment-related toxicity 

ABCB1 diplotype data were also assessed against toxicity as a result of Act D 

therapy. ABCB1 diplotype had no effect on treatment-associated CTC grade 3-4 

toxicity (Figure 5.11). The incidence of toxicity did appear higher in 

heterozygous patients with diplotypes 3, 8 and 13, however this result did not 

reach significance, perhaps due to low patient numbers. No associations were 

observed between ABCC2 SNPs and incidence of toxicity however this could 

be due concomitant chemotherapy administered alongside Act D. 
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Figure 5.11. Effect of ABCB1 diplotype on Act D treatment related toxicity.  

The number of patients with (A) diplotypes 1-5, (B) diplotypes 6-10 and (C) 

diplotypes 11-15 were separated as to whether they experienced Act D 

treatment related CTC grade 3/4 toxicity. (A) p=0.49, and (C) p=0.53 by Chi-

squared test and (B) p=0.16 by Fisher’s exact test, p<0.002 accepted as 

significant. 
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5.3.8 Post-hoc study power calculation 

To assess the power of the current study a post-hoc power calculation was 

performed using the genotype data and Cl-F values from the common ABCB1 

SNP 3435C>T. Setting the same size at 16 patients (i.e. the number of patients 

that were 3435TT) , this current study in this genotype had a power of 30%. 

With identical genotypic and pharmacokinetic variation, to achieve a power of 

80%, this study would require an estimated total of 212 patients to potentially 

achieve significance. However, if more patients were recruited more 

pharmacokinetic variability is likely to occur. 
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5.4 Discussion 

Inter-individual variation in drug exposure between patients is a major issue 

facing clinicians in modern cancer therapy. This may be particularly relevant for 

drugs used to treat tumours with better survival rates, where the majority of 

patients respond well, but a small percentage may experience unacceptable 

toxicity. As such, it is important to consider genetic variation in drug 

metabolising or transport proteins, as polymorphisms in these genes have the 

potential to alter pharmacokinetics and pharmacological phenotype.  

In the current study of 108 patients, inter-patient variation in Act D exposure 

previously observed in 31 patients (Veal et al., 2005) was confirmed, with a 23-

fold range in Act D Cl-F observed in patients across all age groups (14.8-

341ml/min, n=74). Due to the strong correlation between Act D Cl-F and patient 

age and body size, Cl-F was normalised to SA. A 10-fold range in Cl-FSA (33.7-

339ml/min/m2) was still observed indicating that variation in patient exposure 

could be attributed to factors other than patient age and body size.  

Data presented in this chapter represents the first investigation of the potential 

impact of common and clinically-relevant SNPs of ABCB1 and ABCC2 on the 

pharmacokinetics of Act D in patients. Using the International HapMap project 

data, 29 candidate SNPs in ABCB1 and ABCC2 were chosen based on 

previous clinical relevance, and/or a minor allele frequencies of 0.1 (10%) or 

above. It was also important that the SNPs chosen covered as much of each 

gene as possible; LD data allowed tagSNPs to be chosen that would capture 

other SNPs in the same region. The SNPs chosen covered 96 polymorphic 

sites across both genes.  
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LD analysis of both ABCB1 and ABCC2 SNPs revealed interesting data. Within 

the ABCB1 and ABCC2 genes, despite variations in allelic frequencies, many 

SNPs appeared to be in close LD according to the D’ value, however when r2, 

which takes into consideration allele frequency as well as linkage, this was not 

the case. The ABCB1 SNPs 1236C>T, 2677G>T/A and 3435C>T have been 

extensively studied with many anti-cancer agents. The 2677G>T/A SNP is a 

non-synonymous SNP, where the variant allele T results in a serine to threonine 

conversion or the variant allele A results in a serine to alanine conversion. Both 

1236C>T and 3435C>T are synonymous SNPs, with inconsistent data 

concerning their effect on drug exposure. Reduced digoxin exposure in patients 

is associated with TT genotype at position 3435 (Hoffmeyer et al., 2000), whilst 

conflicting studies have reported higher exposure of temozolomide in CC 

patients (Schaich et al., 2009) and irinotecan in patients with a TT genotype at 

position 1236 (Mathijssen et al., 2003).  

In clinical studies, the 3435C>T SNP has been associated with both up- and 

down-regulation (Hoffmeyer et al., 2000; Dey, 2006), in addition to being 

predictive of longer overall survival in multiple myeloma patients (Buda et al., 

2010). In the study presented here, no influence was observed of individual 

genotypes on Cl-FSA when studied as separate genotypes. When combining all 

patients who carry one copy of the variant T allele for 1236C>T, 3435C>T and 

2677G>T/A, Cl-FSA was 1.2-, 1.3- and 1.3-fold higher respectively than 

homozygous WT patients. However, this borderline significance cannot be 

accepted as significant due to the high number of statistical tests performed.  

Clinical studies investigating the impact of 1236C>T, 3435C>T and 2677G>T/A 

on pharmacokinetics are inconsistent, and as such they are commonly studied 
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as haplotypes (Salama et al., 2006; Kimchi-Sarfaty et al., 2007). Single SNP 

analysis in Asian breast cancer patients revealed only a minor impact on 

pharmacokinetic parameters. However, in the same study, haplotype analysis 

suggested higher doxorubicin exposure in patients who were heterozygous for 

each SNP, and higher clearance in those patients who were homozygous WT 

for all three SNPs (Lal et al., 2008).  

In this patient population, no significant association between patient diplotype 

and Act D pharmacokinetics was observed. A trend did appear to be seen 

between Cl-FSA and diplotypes 11 to 15, which include only those 

polymorphisms at base pairs 2677 and 3435. However, as no difference was 

observed when analysing these SNPs individually, it was unlikely that diplotype 

analysis would reveal further information. Analysis of diplotypes 11-15 was 

close to acceptable significance (p=0.003 vs. p<0.002), however, this may have 

been driven by the apparent large difference between diplotype 11 and 14, 

which collectively only represented 17 patients. 

Although not significant, these observations are in contrast to those for 

doxorubicin published by Lal et al. as the data presented here may suggest that 

patients with variant alleles have higher clearance compared to homozygous 

WT patients. Interestingly, patients with diplotype 15, who are homozygous 

variant at 2677 and 3435, had similar Cl-FSA to homozygous WT patients (127 

vs. 115ml/min/m2), and lower Cl-FSA than patients with diplotype 14 (127 vs. 

200ml/min/m2), however this may be due to low patient numbers. This 

phenomenon of homozygous WT and variant patients with similar clearance 

was also noted following doxorubicin therapy in a breast cancer setting (Lal et 

al., 2008).   
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Diplotype analysis using 1236C>T, 3435C>T and 2677G>T/A also revealed a 

trend between diplotype and Cl-FSA, but significance was not reached. 

Diplotypes 6-10 examined the combination of alleles at base pairs 1236 and 

2677. Statistically significant associations between diplotypes 6-10 and Cl-FSA 

were not observed. However, similar to other diplotype groupings, Cl-FSA 

appeared to be higher in heterozygous patients, but due to only one patient with 

diplotype 9, meaningful conclusions could not be drawn.  

Although data regarding the transport of Act D by ABCB1 throughout this work 

have been consistent from cell line models, to knockout mice and finally the 

impact of genotype on pharmacokinetic parameters, this is not the case for 

ABCC2. Cell lines over-expressing ABCC2 were less sensitive to Act D and had 

lower intracellular accumulation and higher cellular efflux of Act D than their WT 

counterparts. However, data from Abcc2-/- mice unexpectedly indicated 

consistently lower Act D plasma concentrations compared to the WT mice, but 

this was not globally significant. 

In addition to investigating correlations between ABCB1 genotype and Cl-FSA, 

clinically relevant and common SNPs in ABCC2 were also chosen, and these 

genotypes were assessed against Cl-FSA. Rs2273697 has been shown to 

cause lower mRNA and protein expression in the placenta (Meyer zu 

Schwabedissen et al., 2005), and one study reported a neurological adverse 

drug reaction following carbamazepine therapy associated with the variant 

genotype (Kim et al., 2010). Lower expression and subsequent lower protein 

levels of ABCC2 could therefore alter drug elimination and pharmacokinetics. In 

this study 37% of patients were heterozygous for this SNP, however the data 

presented here do not suggest any link between patient genotype at position 
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1249 and Cl-FSA. Rs717620, rs8187710 and rs3740066 are all SNPs located in 

the exonic regions of ABCC2. Rs717620 has been associated with increased 

platinum response in patients (Sun et al., 2010), whereas rs8187710 and 

rs3740066 have been reported to be related to development of certain liver 

diseases (Sookoian et al., 2008a; Sookoian et al., 2008b; Sookoian et al., 

2009). However, patient genotype at these three positions did not have an 

impact on Act D Cl-FSA.  

Examples of studies that have shown transport of anti-cancer agents to be 

relevant both in vitro and in vivo, that fail to impact of the pharmacokinetics in 

patients are available throughout the literature. A recent study involving 

docetaxel has shown in vitro in CHO cells transfected with OATP1B1 and 

OATP1B3 demonstrated transport of docetaxel by these transporters. 

Docetaxel clearance was then shown to be 18-fold lower in Oat1b2-/- mice, a 

rodent transporter with 60% sequence homology to human OATP1B1 and 

OATP1B3. However, similarly to this study, the large difference in both in vitro 

and in vivo disposition of docetaxel was not found to be clinically relevant 

patients when examining comparing common SNPs in human OATP1B1 and 

OATP1B3 against docetaxel clearance in 141 patients (de Graan et al., 2012). 

In addition to this, post-hoc power calculations performed using data from the 

3435C>T SNP, estimate that at least 212 patients would be required on this 

study for potential significance to occur. However, post-hoc power calculations 

should be considered with caution as their use is often controversial (Hoenig 

and Heisey, 2001).  

Despite relatively high 5 year survival rates in Wilms tumour, ES and RMS 

(85%, 64% and 63% respectively), a major drawback of the clinical use of Act D 
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is the treatment-associated toxicities observed. Previous studies have shown 

toxicity risk to be correlated to patient age, weight and body size (Arndt et al., 

2004; Veal et al., 2005; Langholz et al., 2011). Act D treatment-related toxicity 

has been assessed against relevant ABCB1 diplotype. Those patients with or 

without CTC grade 3 or 4 toxicities were assessed against ABCB1 diplotypes. 

Toxicity incidence did not appear to be influenced by diplotype, except in those 

patients who had diplotype 3, 8 and 13. Across diplotypes 3, 8 and 13, where 

patients are heterozygous for all SNPs, Act D treatment-related toxicity 

occurred in 62, 69 and 57% of patients respectively, however this was not 

significant and only limited patient data were available to correlate toxicity with 

other diplotypes.  

In this genotype-phenotype study, the relevance of genetic variation in ABCB1 

is inconclusive. Associations between patient genotype and pharmacokinetic 

parameters have demonstrated that the inter-patient variability in Act D 

exposure in paediatric patients could be influenced by ABCB1, but not ABCC2 

genotype. Pharmacogenetic and corresponding pharmacokinetic samples were 

available from only 64 patients in this current study. Continued recruitment to 

increase the number of patients who provide both pharmacokinetic and 

pharmacogenetic samples would be vital for a more conclusive outcome to be 

potentially achieved. In addition to this, the effect of ABCB1 and ABCC2 

pharmacogenetics should be validated in a larger more ethnically diverse cohort 

of patients. 
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Chapter 6. Conclusion 

Act D is one of seven naturally occurring actinomycins isolated from 

Streptomyces in 1940 by Waksman and Woodruff (Waksman and Woodruff, 

1940). Identified during the search for novel anti-microbial agents (Farber, 

1966),  it was a further 12 years until their potential as chemotherapeutic agents 

was recognised (Hackmann, 1952; Hackmann, 1953; Ravina et al., 1954).  

When Act D was discovered, the average cure rate of Wilms tumour at 20 years 

post-diagnosis was 40%, and patients who presented with metastases faired far 

worse than those that did not (Farber, 1966).  Sydney Farber and colleagues 

hypothesised that addition of a systemic anti-cancer agent to the treatment 

regimen to those patients with metastases would be of great benefit. This led to 

a wide range of chemotherapeutic agents being tested for efficacy against 

Wilms tumour, resulting in Act D being added to the long-term treatment 

program in 1960. Addition of Act D to treatment protocol significantly increased 

the number of patients that were tumour free 2 years after diagnosis; 89% vs. 

40% previously in patients with no metastases, and 53% vs. 0% in patients who 

presented with metastases. 

Despite being used as a chemotherapeutic agent for over 50 years, limited 

information is known about the pharmacokinetics of Act D in animals or 

humans. Early pharmacokinetic studies were mainly performed in animals, with 

only two studies to date involving humans.  

Concerns over treatment-associated toxicity and its possible link with inter-

patient variability in Act D exposure in patients led to the development of a 

highly sensitive LC/MS method suitable for detection of Act D in human plasma 
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(Veal et al., 2003b). Subsequently, Act D pharmacokinetic data in 31 patients 

indicated large variations in Act D exposure in patients (AUC0-6h 1.12-

4.90mg/L.min) (Veal et al., 2005). This study also demonstrated that those with 

high Act D exposure tended to be smaller children, indicating a potential 

increased toxicity risk, a finding confirmed in a recent large-scale retrospective 

study in the United States (Langholz et al., 2011). Perhaps due in part to the 

practice of Act D dose capping at 2mg, older children were shown to have lower 

Act D exposure. Due to the lack of meaningful Act D pharmacokinetic data in 

the literature, it was unclear at the start of the first study which pharmacokinetic 

time points would be required for accurate pharmacokinetic parameter 

estimates. A major limitation of this initial study was the sparsity of 

pharmacokinetic samples collected beyond 6h, with extensive extrapolation to 

24h therefore required for many patients in order to estimate pharmacokinetic 

parameters.  

To address the limitations of the initial study, two large clinical trials were set up, 

increasing patient numbers and including pharmacokinetic samples at earlier 

and later time points, to allow more accurate pharmacokinetic parameter 

estimation; the results of these studies are presented in Chapter 4. Consistent 

with the findings from Veal et al. 2005, a large inter-patient variability was 

observed with Act D clearance in patients on the same dosage regimen (14.8 to 

341ml/min). Again, in agreement with the previous study, pharmacokinetic 

parameters correlated well with age and patient size; clearance in patients 

under 3 years old was estimated to be 54% of that seen in patients older than 3 

years. No link was seen between Act D treatment-related toxicities and any 

pharmacokinetic parameters, however toxicity was mainly haematological, with 

only two cases of hepatotoxicity reaching grade 3 or 4. It was also not possible 
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to remove confounding factors such as concomitant administration of other anti-

cancer drugs during analysis of treatment-associated toxicities. 

Variability in clearance could not be attributed to factors such as dose, line-type 

or tumour-type and variability between patients was still apparent when 

adjusting for patient age, weight or SA. Therefore it is possible that variation in 

genes affecting the disposition of Act D, such as ABC transporters, could 

underlie the inter-individual differences in the pharmacokinetics of Act D. 

MDCKII cell lines are an excellent and well exploited resource in determining 

whether drugs are substrates for ABC transporters. Act D has long been 

thought of as a substrate for ABCB1. Indeed, the early investigations into MDR 

were carried out in Chinese hamster ovary cells resistant to Act D (Juliano and 

Ling, 1976). Later the resistance was found to be caused by upregulation of a 

cell membrane P-glycoprotein, now known as MDR1 or ABCB1 (Kartner et al., 

1983a; Kartner et al., 1983b; Ling et al., 1983; Ueda et al., 1986). Perhaps due 

to its limited clinical use, determining the clinical relevance of transport of Act D 

by ABCB1 or other ABC transport proteins has seen little attention since the 

early the 1980s.  

MDCKII cell lines which individually over-express the human forms of ABCB1, 

ABCC1, ABCC2 and ABCG2 were used to investigate the transport of Act D. 

Through growth inhibition assays, cell lines over-expressing either ABCB1, 

ABCC1 or ABCC2 were significantly less sensitive to Act D compared to 

MDCKII-WT. This observation led to the development of intracellular 

accumulation and cellular efflux assays which, using LC/MS, allowed the 

quantification of intracellular Act D following defined treatments. Intracellular Act 
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D was lower in ABCB1, ABCC1 and ABCC2 over-expressing cells compared to 

MDCKII-WT and significant Act D efflux was shown to be greater in MDCKII-

ABCB1 than any other cell line. These three techniques demonstrated that Act 

D was a good substrate for ABCB1 and ABCC2.  

Based on these findings, Abcb1a/1b-/- and Abcc2-/- mice were used to determine 

the relevance of ABCB1 and ABCC2-mediated Act D transport in an animal 

model. Previous data using knockout mice suggested that transport by ABC 

transporters in vitro is not always indicative of in vivo transport and potential 

clinical relevance, with results varying substantially between chemotherapeutic 

agents. For example, etoposide exposure is significantly higher in Abcb1a/1b-/-

;Abcc2-/- mice due to reduced renal and hepatic excretion (Lagas et al., 2010). 

However, no alteration in plasma pharmacokinetics was observed when 

administering vemurafenib to Abcb1a/1b-/-;Abcg2-/- mice despite indications in 

MDCKII cell lines that vemurafenib was transported by ABCB1 and mouse 

Abcg2  (Mittapalli et al., 2012).  

In this study altered pharmacokinetics were observed in both strains of mice 

compared to the WT. Lack of Abcb1a/1b caused a consistent significant 

increase in plasma concentrations over 6h, resulting in higher Act D exposure 

compared to WT mice. Interestingly, absence of Abcc2 caused a decrease in 

plasma concentrations over 6h but this was not significant. Although altered 

plasma pharmacokinetics were observed in both knockout mouse models, 

removal of these transporters had no impact on the Act D concentrations in the 

liver or kidneys. However, a significantly higher Act D brain concentration in 

Abcb1a/1b-/- indicated that the presence of ABCB1 at the blood-brain barrier 

does limit penetration of Act D into the brain. Through a systematic approach 
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Act D was confirmed as an ABCB1 and ABCC2 substrate in vitro and knockout 

of Abcb1a/1b significantly influences its pharmacokinetics.  

Clinical studies investigating the role of ABC transport SNPs to date are largely 

inconsistent, and substrate specific, and have not previously been performed 

with Act D. The common ABCB1 SNP 3435C>T has been found to cause both 

lower expression in the Caucasian population (Hoffmeyer et al., 2000), whilst it 

has been associated with higher expression in certain tissues of the Japanese 

population (Dey, 2006). Results are also variable when considering another 

ABCB1 SNP 1236C>T, with higher exposure to temozolomide in CC patients 

(Schaich et al., 2009) and higher exposure to irinotecan in TT patients 

(Mathijssen et al., 2003). 

Finally, in Chapter 6, the hypothesis was investigated that the variability seen in 

Act D pharmacokinetics in children is influenced by ABCB1 and/or ABCC2 

SNPs. When considering single SNPs, the variant allele T in ABCB1 SNPs 

1236C>T, 2677G>T/A and 3435C>T had higher Act D clearance normalised to 

patient SA but this was not significant. Similarly, diplotype analysis of these 

three common ABCB1 SNPs revealed a trend of increasing clearance with the 

variant alleles at position 2677 and 3435, however this cannot be considered 

significant and required the removal of 1236C>T from diplotype analysis. 

Paired pharmacokinetic and pharmacogenetic data were only available from 64 

patients in this current study. Another limitation of this study is the lack of data 

concerning patient ethnicity. A larger more ethnically diverse patient population 

would therefore be required to appropriately determine the effect of common 

ABCB1 and ABCC2 polymorphisms on the exposure of Act D. 
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Early studies have demonstrated that Act D is minimally metabolised (Tattersall 

et al., 1975), and further work in human liver microsomes in this laboratory, has 

as yet, failed to identify metabolites. ABCB1 and other efflux protein expression 

is regulated by the pregnane X receptor (PXR) (Synold et al., 2001) which can 

be activated by large structurally diverse anti-cancer agents such as vincristine 

and paclitaxel (Harmsen et al., 2010). It would therefore be interesting to 

investigate the potential induction of ABCB1 via PXR with Act D. Future 

investigations into the metabolism and excretion of Act D, in addition to ABCB1 

induction, would be helpful to fully determine the factors influencing Act D 

pharmacokinetics, to ensure all patients receive a non-toxic, therapeutic dose.  
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Appendix 

Actinomycin D pharmacokinetic data in 108 patients 

 

Patient SA 
(m

2
) 

Dose 
(mg) 

Weight 
(kg) 

AUC0-6h 

(µg/L.h) 
AUC0-24h 
(µg/L.h) 

AUC0-∞ 
(µg/L.h) 

Cl-F 
(ml/min) 

Cmax 
(µg/L) 

Tmax 

(h) 

11 0.77 0.80 18.7 73.0 - 96.0 14.8 59.8 15 

12 0.62 0.60 14.2 27.5 67.8 83.6 - 13.3 17 

13 0.77 0.85 19.4 42.8 117.2 194.1 - 29.1 17 

15 0.63 0.63 14.3 16.9 51.3 90.9 - 9.6 20 

16 0.57 0.55 12.3 24.8 72.8 102.7 51.8 14.0 17 

17 0.44 0.25 8.3 44.2 - 51.6 44.9 30.2 14 

18 1.10 1.35 32.0 - - 36.0 - 18.8 19 

22 0.77 0.90 20.2 30.1 - 60.5 42.6 42.4 15 

24 0.85 0.95 21.8 26.3 63.7 98.3 - 14.1 15 

25 0.46 0.26 8.8 28.8 63.7 83.7 35.1 20.3 17 

26 0.62 0.61 13.6 26.8 - 96.1 - 25.9 23 

29 0.44 0.19 8.9 22.6 191.7 213.3 - 33.4 25 

33 0.74 0.80 17.9 22.9 - 103.5 - 13.2 23 

34 0.42 0.24 8.5 21.5 - 28.1 - 5.8 35 

35 0.77 0.85 19.4 29.3 88.6 151.4 32.2 26.2 16 

38 0.55 0.36 11.9 94.9 - 115.5 62.4 98.4 13 

41 0.53 0.33 11.0 - - 83.3 66.9 36.5 13 

42 0.62 - 14.1 24.9 - 34.0 - 14.2 20 

43 0.65 0.69 15.4 23.5 - 93.5 156.1 9.5 17 

44 1.80 2.00 64.8 54.5 - 65.9 - 92.6 7 

45 0.65 0.70 15.3 0.0 - 23.5 80.6 14.9 19 

46 0.53 0.33 11.2 81.0 - 91.8 - 143.4 7 

47 0.62 0.63 14.2 - - 83.0 40.9 112.6 5 

49 0.62 0.49 14.6 18.3 - 45.8 89.2 19.9 16 

50 0.74 0.80 18.1 15.2 55.4 113.9 - 16.8 18 

51 0.87 1.04 23.4 36.8 - 41.8 89.3 22.1 20 

53 1.20 0.90 37.7 18.7 - 90.3 109.7 20.0 11 
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Patient SA 
(m

2
) 

Dose 
(mg) 

Weight 
(kg) 

AUC0-6h 

(µg/L.h) 
AUC0-24h 
(µg/L.h) 

AUC0-∞ 
(µg/L.h) 

Cl-F 
(ml/min) 

Cmax 
(µg/L) 

Tmax 

(h) 

55 0.42 0.24 7.9 - - 48.3 119.7 95.4 6 

56 0.54 0.52 11.5 - - 23.9 - 13.8 18 

57 0.62 0.65 13.7 57.6 144.0 234.1 - 52.2 13 

60 0.51 0.30 10.5 27.0 83.6 117.4 - 27.9 18 

61 1.40 2.00 46.8 24.1 68.9 134.2 - 16.9 17 

62 2.00 1.50 77.4 16.6 49.9 73.3 - 16.7 20 

63 0.71 1.00 16.8 26.8 64.1 93.9 115.5 20.1 17 

64 0.82 0.46 21.2 13.6 38.5 49.1 - 9.7 18 

65 0.46 0.50 9.2 22.9 62.0 103.3 46.3 3.4 140 

66 1.50 1.10 51.7 60.2 61.2 76.3 195.6 30.1 16 

69 0.39 0.36 7.2 60.2 141.8 186.0 60.6 42.0 18 

70 0.87 1.30 22.5 51.5 102.2 130.7 123 27.6 16 

71 0.87 1.30 22.3 35.6 - 179.7 - 39.3 16 

72 0.49 0.75 10.5 32.0 78.8 115.8 136 16.3 17 

73 0.43 0.42 8.3 43.7 94.8 112.2 - 32.8 17 

74 0.73 1.10 17.9 38.9 106.9 162.7 119.4 13.3 29 

75 1.50 2.20 50.0 53.0 130.4 204.5 108 39.5 18 

77 0.77 1.20 18.6 17.8 - 76.7 - 19.3 18 

78 0.85 0.65 22.0 16.3 40.9 55.4 128.8 7.5 15 

79 0.90 1.40 24.4 71.7 222.7 291.3 117 85.9 15 

80 1.10 1.60 30.8 52.0 158.7 272.5 73 30.8 19 

81 0.90 0.70 24.1 16.3 47.5 85.8 93.6 9.7 15 

82 0.66 1.00 15.6 31.0 83.5 116.3 93.4 15.6 15 

83 1.60 2.00 56.8 46.7 127.8 201.1 100.7 186.2 7 

84 0.49 0.74 10.6 24.3 58.8 103.3 - 13.3 18 

85 0.69 1.05 16.4 36.4 87.8 139.7 - 21.0 17 

86 0.54 0.35 11.5 - - 30.9 - 67.0 6 

87 0.63 0.95 14.4 38.5 89.6 169.5 166.1 34.5 16 

88 0.86 1.30 23.2 49.8 119.5 170.4 89.5 32.4 15 

89 1.00 1.50 27.5 36.8  90.1 140.5 72.8 29.3 14 
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Patient SA 
(m

2
) 

Dose 
(mg) 

Weight 
(kg) 

AUC0-6h 

(µg/L.h) 
AUC0-24h 
(µg/L.h) 

AUC0-∞ 
(µg/L.h) 

Cl-F 
(ml/min) 

Cmax 
(µg/L) 

Tmax 

(h) 

90 0.65 1.00 16.0 39.0 - 59.1 96.8 28.8 18 

91 0.65 0.50 14.5 26.9 - 53.6 154 15.8 18 

92 1.73 2.50 63.2 53.2 144.8 220.1 161 138.6 7 

93 0.97 1.45 26.9 52.4 140.1 208.5 93.4 149.8 5 

94 1.30 2.00 40.0 40.2 198.7 301.4 71.3 122.0 15 

95 0.81 1.20 20.5 - 186.8 219.5 177.5 127.8 5 

96 1.60 2.00 56.0 37.6 100.8 156.9 143.3 29.4 15 

97 0.46 0.27 9.0 26.9 62.8 100.2 - 64.7 6 

98 1.50 2.00 52.9 29.9 75.0 102.2 - 40.2 10 

99 0.74 1.10 18.3 52.8 - 213.0 144.2 69.9 20 

100 0.78 1.15 19.4 58.8 129.1 191.0 83 125.2 6 

101 0.82 0.62 21.5 21.2 - 36.5 - 7.6 25 

102 1.05 1.60 30.1 62.0 133.4 201.7 - 161.8 6 

103 0.93 0.70 25.4 57.1 - 135.7 125.2 85.6 17 

104 1.30 2.00 39.7 - - 117.2 116.6 130.2 5 

105 2.10 2.00 87.2 19.1 50.5 105.0 224.3 14.8 20 

106 0.71 1.15 18.3 78.4 173.1 329.1 240.2 99.0 15 

108 1.29 1.00 41.0 35.2 90.5 115.6 112.7 31.1 18 

109 0.77 0.86 19.1 - - 82.7 86.1 193.2 5 

110 1.10 1.40 30.3 - - 77.4 51.9 16.5 17 

111 0.56 0.55 11.6 19.8 42.7 83.6 100.3 26.8 15 

112 0.49 0.31 10.1 60.7 121.3 144.7 58.2 44.8 15 

113 1.50 2.00 50.4 33.5 - 239.5 86.6 29.4 18 

114 0.49 0.50 9.8 14.3 40.0 203.5 260.8 18.8 10 

115 0.56 0.85 12.1 40.1 97.9 151.6 91.1 22.2 15 

116 0.68 1.00 15.8 47.2 119.1 200.8 233.9 19.3 22 

117 1.40 1.05 47.6 46.2 117.9 150.1 165.7 19.2 16 

118 0.61 0.90 14.3 40.5 107.6 167.6 120.6 27.4 15 

119 0.87 1.30 23.0 80.9 - 104.1 127.1 30.2 27 

120 1.60 2.00 54.0 30.6 83.6 170.0 - 14.7 18 
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Patient SA 
(m

2
) 

Dose 
(mg) 

Weight 
(kg) 

AUC0-6h 

(µg/L.h) 
AUC0-24h 
(µg/L.h) 

AUC0-∞ 
(µg/L.h) 

Cl-F 
(ml/min) 

Cmax 
(µg/L) 

Tmax 

(h) 

121 0.62 0.90 14.1 39.6 - 206.1 - 37.4 27 

122 0.77 0.85 18.9 31.9 84.8 140.7 80.1 19.6 22 

123 0.49 0.30 10.5 - - 63.5 - 53.2 15 

124 0.71 0.85 17.0 - - 64.0 115.9 92.8 10 

126 1.40 1.05 45.1 14.0 37.8 78.0 128.4 8.2 19 

127 0.77 1.15 20.0 43.0 128.2 221.4 341.1 13.7 20 

128 0.59 0.60 13.3 - - 164.3 177.9 40.7 45 

129 0.58 0.44 12.6 26.9 64.9 109.6 97.9 20.5 17 

130 1.40 1.00 48.2 28.8 - 66.6 132.2 23.2 10 

131 0.59 0.90 13.3 30.7 77.9 155.0 - 26.2 15 

132 1.20 0.90 35.1 24.3 59.0 97.4 248.4 11.7 20 

133 0.62 0.95 14.4 48.9 117.6 221.9 165.7 38.2 15 

134 0.95 1.45 26.2 44.1 106.9 188.2 110.6 29.0 15 

135 0.62 0.60 13.6 24.7 - 44.4 212.4 16.3 16 

136 0.49 0.28 9.8 - - 52.8 326.3 24.4 17 

137 0.59 0.60 12.9 - - 40.6 - 22.7 18 

138 0.68 0.5 15.7 25.8 62.2 93.4 317.6 15.3 16 

139 - 1.2 59.45 20.0 48.3 85.5 139.2 20.0 15 

140 1.5 2 49.05 36.7 90.6 162.0 196.1 26.4 15 

141 0.44 0.45 8.6 35.1 - 53.5 205.7 20.6 15 

142 0.64 0.65 14.5 26.5 72.3 178.8 179.3 12.1 34 

Table A.1. Pharmacokinetic parameters for all 108 patients with valid 
sample sets.  
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Allelic discrimination plot examples 1 

 

Figure A.1. Example allelic discrimination plots for ABCB1 SNPs (A) 
1236C>T and (B) 3435C>T 

Genotypes are labelled next to their corresponding allelic discrimination 

cluster. 

Abbreviations- NTC; no template control.  
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Allelic discrimination plot examples 2 

 

 

Figure A.2. Example allelic discrimination plots for ABCB1 SNP 
2677G>T/A 

Genotypes are labelled next to their corresponding allelic discrimination 

cluster. Both the (A) 2677G>T SNP assay and (B) 2677G>A SNP assay 

were used to determine patient genotype at position 2677 on ABCB1. 

Abbreviations- NTC; no template control. 
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Conference abstracts 

 

BACR annual meeting 2010, Edinburgh 

 

Poster presentation 

Investigating the clinical significance of pharmacogenetic factors 

affecting the transport of Actinomycin D in children with cancer 

Christopher Hill, David Jamieson, Colin Brown, Alan V. Boddy and Gareth J. 

Veal 

Actinomycin D (Act D) has been used routinely to treat certain types of cancer 

in both adults and children for over 30 years. It has been previously shown that 

treatment of patients with Act D is not optimal, with varied patient exposures 

being recorded. ABC transporters are expressed throughout the body. They 

have been shown to play a major role in the transport of anti-cancer agents 

such as doxorubicin, potentially affecting clinical response and toxicity.  

Act D transport was investigated using MDCKII-WT, ABCB1, ABCG2 and 

ABCC2 over-expressing cell lines. Growth inhibition (GI) and intracellular 

accumulation of Act D was determined from a range of Act D concentrations (0-

2µM). In addition, transport competition experiments were also carried out 

exploiting the fluorescent properties of known transporter substrates. 

GI of Act D indicate a 40 –fold decrease in sensitivity in cells over-expressing 

ABCB1 (GI50- 0.85µM) and a 3-fold decrease in cells over-expressing ABCC2 

(GI50- 0.06µM) compared to the control cell line (GI50- 0.02µM). Higher 

intracellular levels of Act D were observed in the untransfected parental cell line 

than those over-expressing ABCB1, an effect that was abrogated by use of the 

ABCB1 inhibitor verapamil. In addition Act D has been shown to increase 

intracellular levels of the fluorescent ABCB1 substrate doxorubicin, by 

competition for ABCB1 efflux. 

A pharmacokinetic study is also being carried out alongside the investigation 

into the transport of Act D to determine a possible link between SNPs in various 

transport proteins and clinical response and toxicity.  
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AACR annual meeting 2011, Orlando, Florida 

 

Poster presentation 

 

Investigating the relationship between pharmacogenetic variation in 

ABCB1 and ABCC2 tagSNPs and actinomycin D pharmacokinetics in 

children 

Christopher Hill, Alan V. Boddy and Gareth J. Veal 

Actinomycin D (Act D) has been used successfully to treat adult and childhood 

cancers for over 30 years. It continues to play a key role in the treatment of 

Wilms tumour patients, with 5-year survival rates >80% currently observed. 

While treatment is generally well tolerated, veno-occlusive disease (VOD) is a 

potentially life-threatening side effect observed in 1.7-13.5% of patients. Dose-

intensity of Act D treatment has been highlighted as a possible risk-factor for 

VOD in paediatric patient populations. 

ATP binding cassette (ABC) transporters are expressed throughout the body to 

protect against exogenous compounds. In the liver and kidney, ABC 

transporters facilitate the removal of compounds via biliary or renal excretion 

and have previously been shown to play a major role in the transport of anti-

cancer agents such as doxorubicin and irinotecan. Common single nucleotide 

polymorphisms (SNPs) for these transporters have been shown to alter clinical 

exposure to various anti-cancer agents.  We have therefore carried out 

translational and clinical studies focusing on Act D pharmacokinetics in Wilms 

tumour patients and pharmacogenetic variation in key ABC transporters. 

Initial experiments were carried out to determine the potential importance of 

ABC transporter expression on the in vitro activity and transport of Act D, using 

MDCKII-WT alongside ABCB1, ABCG2 and ABCC2 over-expressing cell lines. 

Growth inhibition (GI) and intracellular accumulation experiments were carried 

out over a range of Act D concentrations (0-10µM). Pharmacokinetic analysis of 

samples obtained from patients receiving Act D was carried out using a 

validated LC/MS method and blood samples were obtained from all patients for 

pharmacogenetic analysis. Finally, the International HapMap database was 

used to determine tagSNPs for ABCB1 and ABCC2 with minor allele 

frequencies of greater than 0.1 in a Caucasian population, allowing the link 
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between ABCB1 and ABCC2 haplotypes and Act D exposure to be 

investigated. 

GI experiments indicated a 40–fold decrease in Act D sensitivity in cells over-

expressing ABCB1 (GI50: 0.85µM) and a 3-fold decrease in cells over-

expressing ABCC2 (GI50: 0.06µM) compared to the control cell line (GI50: 

0.02µM). Higher intracellular levels of Act D (normalized per mg protein) were 

observed in the WT parental cell line (650nM) as compared to those over-

expressing ABCB1 (215nM), following a 6h incubation with 2µM Act D. This 

effect was abrogated by use of the ABCB1 inhibitor verapamil. Pharmacokinetic 

analysis of samples obtained from 56 patients indicated a large inter-patient 

variability in Act D exposure (AUC0-24h range: 1.6 - 11.4 µg/ml.min). Ongoing 

investigations into pharmacogenetic variation in ABCB1 and ABCC2 tagSNPs in 

these patients provide novel preliminary data relating to links between ABCB1 

and ABCC2 haplotypes and Act D exposure in children with cancer. 
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AACR annual meeting 2012, Chicago, Illinois 

 

Poster presentation 

 

Pharmacokinetics and pharmacogenetics of Actinomycin D in an animal 

model and paediatric patient population 

Christopher Hill, Alan V. Boddy and Gareth J. Veal 

ATP binding cassette (ABC) transporters, such as ABCB1 (MDR1/P-gp), are 

expressed throughout the body to protect against exogenous toxins. ABC 

transporters control the removal of many anti-cancer drugs from the body via 

biliary or renal excretion, such as doxorubicin and etoposide. Actinomycin D 

(Act D) has been used successfully to treat adult and childhood cancers for over 

30 years. It continues to play a key role in the treatment of Wilms tumour 

patients, with 5-year survival rates >80% currently observed. Treatment is 

generally well tolerated, however, it has been previously demonstrated in a 

small paediatric population that Act D exposure in patients is associated with a 

large degree of inter-patient variability. Common single nucleotide 

polymorphisms (SNPs) in ABC transporters have been previously shown to 

alter clinical exposure to various anti-cancer agents. We have therefore carried 

out translational and clinical studies to investigate the transport of Act D in vitro 

and in vivo using well established cell line and animal models.  

Growth inhibition (GI) and intracellular accumulation studies, over a range of Act 

D (0-10µM), were initially carried out in vitro to determine the role of ABC 

transporter expression in MDCKII-WT, ABCB1, ABCC1, ABCC2 and ABCG2 

cell lines. To assess the importance of ABCB1 and ABCC2 transporter 

expression in vivo, Act D pharmacokinetics and exposure were determined in 

Abcb1a/1b and Abcc2 knockout mice over 6 hours. In addition, liver, kidney and 

brain tissue samples were also taken from mice treated with Act D to assess 

tissue accumulation. Further pharmacokinetic sampling has also been carried 

out from patients receiving Act D as part of their standard treatment, with 

analysis using a validated LC/MS method and blood samples were obtained 

from all patients for pharmacogenetic analysis.  
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When treated with a concentration range of Act D, a 59-fold decrease in Act D 

sensitivity in ABCB1 expressing cells (GI50: 745nM), a 2-fold decrease in 

ABCC1 (GI50 : 25.7nM) and a 3-fold decrease (GI50: 40.4nM) in ABCC2 

compared to the parental cell line (GI50: 12.7nM). Intracellular accumulation of 

Act D was lower in ABCB1 over-expressing cell lines compared to the parental, 

following incubation with Act D for 6 hours. This effect was abrogated by use of 

the ABCB1 inhibitor verapamil. In vivo pharmacokinetic analysis revealed a 

1.64-fold increase in AUC0-6hours in mice with no Abcb1a/1b expression and a 

0.78-fold reduction in Abcc2-/- mice compared to the wild type. Pharmacokinetic 

analysis of samples obtained from 58 patients indicated a large inter-patient 

variability in Act D exposure (AUC0-24h range: 1.6 - 11.4 µg/ml.min). Ongoing 

investigations into pharmacogenetic variation in ABCB1 and ABCC2 tagSNPs in 

these patients provide novel preliminary data relating to links between ABCB1 

haplotypes and Act D exposure in children with cancer. 
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