
  

                                                   

 

 
Methylation of NOTCH genes in normal 

and at-risk colorectal epithelium 
 

 

 

Submission for the degree of Doctor of Philosophy, Newcastle University 

 

October 2012 

Human Nutrition Research Centre, 

Institute for Ageing and Health,  

Newcastle University 

 

 

 

Iain JD McCallum 

 



i 

 

Supervisors 
 

John C Mathers 

Professor of Human Nutrition, Newcastle University 

 

 

Seamus B Kelly 

Senior lecturer, Newcastle University 

Consultant Surgeon, Northumbria Healthcare NHS Foundation Trust 

 

 

D Michael Bradburn 

Consultant Surgeon, Northumbria Healthcare NHS Foundation Trust 



ii 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

This thesis represents my own work. Where the work of others has been included it 

has been correctly acknowledged in accordance with university and school guidance 

on good academic conduct. No part of the material offered has been previously 

submitted for a degree or other qualification in this or any other University.  

 

 

 

Iain JD McCallum 

October 2012



iii 

 

Abstract 

Introduction 

Colorectal cancer (CRC) arises from genetic defects in stem cells. NOTCH signalling 

plays a key role in stem cell replication control. NOTCH-related genes are 

overexpressed in CRC. The mechanism for this is not known but could include 

epigenetic activation of NOTCH oncogenes via promoter hypomethylation. 

Methylation can be modulated by environmental stimuli including dietary factors such 

as butyrate, produced by bacterial fermentation of non-digestible carbohydrates in the 

colon. Butyrate exerts potent anti-oncogenic effects in the colorectal mucosa. 

Methods  

Participants were recruited at endoscopy and included those at normal risk of CRC 

(n=75), or higher risk of CRC because of previous adenomatous polyps (n=28) or 

ulcerative colitis (n=12). Participants provided 9 rectal biopsies. Normal risk 

participants were randomised to resistant starch (Hi-maize 260) or polydextrose 

supplementation in a 2x2 factorial placebo controlled trial for 50 days. 

Methylation of several CpG sites in the promoters of JAG1 (NOTCH pathway ligand) 

and RBP-J (NOTCH intracellular activator) was quantified using pyrosequencing.  

Results 

For JAG1 there was trend towards lower methylation at all CpG sites in those at higher 

CRC risk. Methylation at RBP-J CpG 11 was lower in polyp patients than in controls 

(18.0(1.5) vs. 23.6% (0.8), p=0.011). At JAG1 CpG 4, methylation increased following 

polydextrose supplementation compared to placebo (3.1(0.4) vs. 1.7%(0.4), p=0.009). 

A similar, but non-significant, trend was observed at other CpG sites for JAG1. 

Conclusions 

DNA methylation of NOTCH signalling genes is altered in macroscopically normal 

colorectal mucosa of patients at higher CRC risk. The observed changes in JAG1 
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methylation after polydextrose supplementation are consistent with a protective 

effect against carcinogenesis. 
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CHAPTER 1. INTRODUCTION 

1.1 COLORECTAL CANCER - INCIDENCE  

Colorectal cancer (CRC) is common in the UK. In 2009 there were 41 142 new cases 

diagnosed in the UK. (CRUK 2009)  It is the 2nd most common cancer in women and the 

3rd in men, overall the third most common type of cancer in the UK. (Figure 1-1)(CRUK 

2009) The overall lifetime risk of an individual developing CRC is estimated to be 1 in 

15 for men and 1 in 19 for women. (CRUK 2009)  

CRC is primarily a disease of older age with 72% of new diagnoses made in patients 

aged 65 or over. Incidence rates between males and females are similar until age fifty 

when the rate of CRC in males increases more rapidly. This trend continues until age 

eighty when rates equalize due to the greater life expectancy of women. (Figure 1-2) 

The overall male to female ratio for all age groups is 17:10. (CRUK 2009) 

UK incidence has remained broadly stable since 1975.  Overall incidence in Europe, 

particularly southern Europe, is increasing. Incidence in Asian countries such as Japan 

is increasing as diet becomes more ‘westernised’. (CRUK 2009) Incidence in the United 

States rose steadily until around 1980 and has since been slowly declining. (CRUK 

2009) 

Worldwide there were 1.2 million new CRC diagnoses in 2010 (Jemal, Bray et al. 2011) 

which equates to approximately 10% of all new cancer diagnoses. (ISD 2010; Jemal, 

Bray et al. 2011) CRC incidence rates vary over a tenfold range from low to high 

incidence areas of the world. (Figure 1-3) Two-thirds of CRCs occur in developed 

countries. (CRUK 2009) Migrant studies have demonstrated that CRC risk increases 

toward that of the new country in individuals relocating from low to high incidence 

areas. (Stirbu, Kunst et al. 2006; Nasseri, Moulton et al. 2009) This effect is more 

pronounced in second generation migrants and is particularly pronounced for CRC 

compared with other cancers. (Flood, Weiss et al. 2000; Stirbu, Kunst et al. 2006)  
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The wide variation in CRC risk between countries, predominance in the most 

developed countries, coupled with increased individual risk when migrants move from 

low to high incidence countries suggest that environmental exposure plays a strong 

role in CRC carcinogenesis. A strong influence of environmental exposure on risk would 

suggest a proportion of CRCs are potentially preventable – a proportion which has 

been estimated to be upto 50%. (Platz, Willett et al. 2000) 
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FIGURE 1-1. UK INCIDENCE OF MOST COMMON TYPES OF CANCER (2009).  

REPRODUCED WITH PERMISSION FROM CANCER RESEARCH UK.  

HTTP://INFO.CANCERRESEARCHUK.ORG/CANCERSTATS/INCIDENCE/COMMONCANCERS 

 

FIGURE 1-2. UK INCIDENCE OF CRC BY AGE GROUP IN MALES AND FEMALES (2009).  

REPRODUCED WITH PERMISSION FROM CANCER RESEARCH UK. 

HTTP://INFO.CANCERRESEARCHUK.ORG/CANCERSTATS/TYPES/BOWEL/INCIDENCE
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FIGURE 1-3. AGE STANDARDISED INCIDENCE AND MORTALITY OF CRC IN MEN BY WORLD REGIONS. 

REPRODUCED WITH PERMISSION FROM CANCER RESEARCH UK.  

HTTP://INFO.CANCERRESEARCHUK.ORG/CANCERSTATS/WORLD/COLORECTAL-CANCER-WORLD/ 

 

FIGURE 1-4. AGE STANDARDISED MORTALITY FROM CRC BY SEX, UK, 1971-2010.  

REPRODUCED WITH PERMISSION FROM CANCER RESEARCH UK. 

HTTP://INFO.CANCERRESEARCHUK.ORG/CANCERSTATS/TYPES/BOWEL/MORTALITY 
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1.2 MORTALITY & SURVIVAL 

As with CRC incidence rate, CRC mortality increases sharply with age. However 

mortality rates have decreased steadily over time with the largest decreases noted in 

younger patients. (Figure 1-4) Between the early 1970’s and 2010 age standardised 

mortality from CRC has decreased by between 40 and 50% in the UK. (CRUK 2009) 

Worldwide mortality from CRC is over 600,000 per year. (Jemal, Bray et al. 2011) 

Mortality rates are highest in high incidence areas such as southern and eastern 

Europe. (CRUK 2009) Mortality rates overall are decreasing in Europe. Further 

decreases are expected as therapy improves and bowel cancer screening programmes 

are introduced. 

Survival is closely linked to patient age and cancer stage at diagnosis. Older patients 

have poorer survival. (CRUK 2009) Tumour stage can be described using the American 

Joint Committee on Cancer TNM (tumour, nodes & metastases) system, however the 

Dukes’ staging originally described in 1932 (Dukes 1932) is more commonly used and 

well validated. Dukes’ stages are described in Table 1-1. (NCIN 2009) 
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TABLE 1-1. DISTRIBUTION OF CRC BY DUKES’ STAGE AND ASSOCIATED 5 YEAR SURVIVAL RATES  

(NATIONAL CANCER INTELLIGENCE NETWORK, 2009) 

Dukes’ 

stage 

Description % of 

tumours 

5-year 

survival (%) 

A Invasive carcinoma not breaching the muscularis 

propria 

8.7 93.2 

B Invasive carcinoma breaching the muscularis  

propria, but not involving regional lymph nodes 

24.2 77.0 

C Invasive carcinoma involving regional lymph 

nodes 

23.6 47.7 

D Metastatic disease 9.2 6.6 
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1.3 NATURAL HISTORY OF COLORECTAL CANCER  

1.3.1 NORMAL COLONIC MUCOSA 

The normal gut mucosa consists of a specialised single layer of columnar epithelial cells 

which form both a barrier between the external environment of the gut lumen and the 

the body, and a hydrolytic and absorptive surface for digestion and absorption of 

nutrients and other food-derived molecules. In the proximal gut (stomach, duodenum 

and small bowel) food is mixed with digestive secretions so that foods can be broken 

down into molecular entities which are suitable for absorption. The colon receives 

food residues that have escaped digestion and absorption in the proximal 

gastrointestinal tract. The primary functions of the colon are water reabsorption and 

energy salvage from the end-products of colonic microbial fermentation of 

carbohydrates such as short-chain fatty acids (SCFA), and to a lesser extent, proteins. 

Colonic microbiota also synthesise amino acids, several B vitamins and vitamin K. 

(Manas, Martinez de Victoria et al. 2009)  

As most absorption of nutrients has occurred proximally less absorptive area is 

required in the colon. The functional unit of the proximal gut epithelium is the crypt 

(invagination of the epithelium) and its associated villi (protrusions of the epithelium) 

which increase surface area for hydrolysis and absorption. The colon has no villi, just 

flat mucosa and crypts. (Figure 1-5) The crypt protrudes into the lamina propria of the 

colonic wall and, together with the associated flat mucosa, forms the basic functional 

unit of the colon epithelium. 

1.3.2 NORMAL CRYPT STRUCTURE AND CELLULAR TURNOVER 

Each colonic crypt contains three terminally differentiated cell types:  

 colonocytes - the absorptive cells of the colon 

 goblet cells –  mucous secreting cells  

 entero-endocrine cells – peptide hormone secreting endocrine cells 
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This is in contrast to small bowel where there are four terminally differentiated cells: 

those mentioned above plus Paneth cells. Paneth cells contribute to host defenses by 

secretion of antimicrobial and other peptides. These secreted peptides moderate the 

intestinal bacterial flora, contributing to host immunity in the colon. Dysregulation of 

this system is associated with gastrointestinal diseases such as inflammatory bowel 

disease. (Murphy, Kwon et al. 2012)  

The differentiated cells of the colonic crypt are generated at the crypt base by division 

of adult colonic stem cells. Immediately above the crypt base is the transit-amplifying 

compartment. Within the transit-amplifying compartment cells there is rapid mitotic 

division of partially differentiated cells which then differentiate progressively to their 

final phenotype as they migrate towards the gut lumen where they apoptose and are 

shed into gut. Colon cell turnover occurs frequently. (see section 1.7.1) In mice the 

time for a new cell to ascend and be shed from a crypt is only one day. (Creamer, 

Shorter et al. 1961) Radio-labelling of proliferative cells in normal colonic and rectal 

mucosa demonstrates that this process takes five days in humans. (Lipkin, Bell et al. 

1963) 
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FIGURE 1-5. NORMAL COLON HISTOLOGY. 
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1.3.3 DEVELOPMENT OF COLORECTAL CANCER 

Cancer is caused by alterations in gene expression which result in unregulated cellular 

replication. The unchecked growth of cells leads to tumour formation – neoplasia - and 

invasion of these transformed cells through basement membranes is the hallmark of 

cancer. Multiple alterations in genetic expression are usually required to give rise to a 

cancer. (Pecorino 2008) Pre-malignant genetic changes, occurring predictably in 

tandem with macroscopic neoplasia, have been well described in CRC and the 

macroscopic and genomic changes associated with the polyp-cancer sequence in CRC 

is the paradigm for carcinogenesis in other epithelial cancers.  

Polyps are neoplastic lesions defined as: ‘a circumscribed mass of tissue arising from 

the bowel wall.’ (Bond 1993) Evidence that CRC arises from pre-existing polyps 

includes: 

 The prevalence of adenomas and carcinomas are similar, with peak prevalence 

of adenomas being 5-10 years younger than that of carcinomas. (Muto, Bussey 

et al. 1975; Winawer, Zauber et al. 1987) 

 Adenomatous tissue often accompanies carcinomatous tissue and small 

cancers are rarely found without surrounding adenomatous tissue. (Morson 

1966; Green 1983) 

 Sporadic adenomas are histologically identical to adenomas in familial 

adenomatous polyposis (FAP), which have unequivocal malignant potential. 

(Bussey 1975) 

 The larger an adenoma becomes the more likely it is to show evidence of 

cellular atypia and genetic abnormalities (Muto, Bussey et al. 1975; Vogelstein, 

Fearon et al. 1988) 

 The distribution of adenomas and carcinomas is similar throughout the colon 

with predominance towards distal lesions. (Granqvist 1981; Green 1983) 
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 Adenomas are found in up to one third of specimens resected for CRC. (Chu, 

Giacco et al. 1986; Eide 1986) 

 Bowel screening programmes reduce CRC mortality through early diagnosis at 

the polyp stage. (Towler, Irwig et al. 2000; Morris, Whitehouse et al. 2012) 

1.4 GENETICS & INHERITED RISK 

1.4.1 INHERITED AND FAMILIAL CRC 

Inherited factors play a strong role in the aetiology of CRC. In the general population 

lifetime risk is approximately 5-6% (CRUK 2009), but lifetime risk increases to 20% in an 

individual with an affected first or second degree relative and may reach 80-100% in 

inherited CRC syndromes. (Rustigi 2007; Kastrinos and Syngal 2011)  

Familial CRC refers to a familial predisposition where no genetic abnormality has been 

found (and the possibility of stochastic cause remains). Hereditary CRC refers to a 

syndrome where an inherited mutation has been identified. Of all CRCs, 15-20% are 

familial and 6-7% are inherited. Approximately 5% of CRCs are due to hereditary non-

polyposis colorectal cancer (HNPCC) also known as Lynch syndrome, 1% is due to 

familial adenomatous polyposis (FAP) and 1% due to other inherited syndromes such 

as MYH-associated polyposis, the hamartomatous polyposis syndromes and 

hyperplastic polyposis. (Rustigi 2007; Kastrinos and Syngal 2011) 

1.4.2 FAMILIAL ADENOMATOUS POLYPOSIS  

FAP is an autosomal dominant condition with near 100% penetrance. Sufferers 

develop multiple polyps throughout the gastrointestinal tract, especially the colon, in 

adolescence or early adult life. These individuals are at increased risk of several 

cancers including thyroid, stomach and duodenal but have nearly 100% risk of 

developing a CRC if left untreated. (Rustigi 2007; Kastrinos and Syngal 2011) FAP is 

caused by an inherited mutation of the Adenomatous Polyposis Coli (APC) gene which 

was defined in 1991, facilitating many developments in the understanding of the 
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genetic basis of CRC. (Groden, Thiveris et al. 1991) The 15 exon APC gene codes for the 

2843 amino acid cytoplasmic APC protein which is central to the WNT signalling 

pathway which is in turn, intrinsic to the development of FAP and sporadic CRC.  

1.4.3 WNT SIGNALLING, Β-CATENIN & APC 

APC is a classical tumour suppressor gene (TSG) which indirectly controls transcription 

of genes regulating cellular proliferation via its interaction with β-catenin. APC binding 

to β-catenin, together with the other components (GSK-3, CKI and Axin) of the 

cytoplasmic destruction complex (CDC), results in ubiquitination of β-catenin and its 

destruction, decreasing expression of β-catenin’s target genes. (Tirnauer 2005) 

Whilst APC function is key to the negative regulation of β-catenin activation, WNT 

signalling is the key positive regulator. (Clevers 2006) In the ‘on state’, secreted WNT 

proteins bind to Frizzled transmembrane receptors. This results in intracellular 

expression of LRP5/6 and Frizzled. Frizzled and LRP5/6 activate Dishevelled (DSH) (a 

cytoplasmic protein). Released DSH binds to CK1, GSK-3 and axin to the WNT/LRP5/6 

complex and prevents formation of the CDC. B-catenin accumulates in the cytoplasm 

driving transcription of its target genes. (Clevers 2006) (Figure 1-6)  

If WNT is not activated, the ‘off state’, then DSH, CK1, GSK-3 and axin are no longer 

bound to the WNT/LRP5/6 complex and the CDC can be formed. The CDC binds, 

ubiquitinates and destroys cytoplasmic β-catenin. (Clevers 2006) WNT is inhibited by 

the Dickkopf (DKK) protein which cross-links LRP6 to another transmembrane protein, 

Kremen, preventing its intracellular expression.(Mao, Wu et al. 2002) 

Within the nucleus, transcription of WNT target genes is repressed by the complex that 

is formed by TCF and Groucho. If cytoplasmic β-catenin accumulates and migrates into 

the nucleus it displaces Groucho from TCF and the resulting β-catenin/Groucho and β-

catenin/TCF complexes, especially β-catenin/TCF-4, activate target gene transcription. 

(Clevers 2006) The absence of APC results in constitutive activation of β-catenin/TCF-4 

complex which is restored to wild type function on restoration of APC. (Korinek, Barker 

et al. 1997) (Figure 1-6) 
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1.4.4 WNT TARGET GENES 

In health, WNT target genes have a role in stem cell maintenance and differentiation of 

stem cell progeny (see section 1.8.8) (Nusse 2008). In tumourigenesis, intranuclear β-

catenin signalling causes increased expression of c-MYC and cyclin D1 which are key 

regulators of cellular growth, regulating the progress of the cell cycle at the G1/S 

checkpoint. Both proteins are overexpressed in CRC. (Smith, Myint et al. 1993; Arber, 

Hibshoosh et al. 1996)  Heinen et al. showed that transfection with wild type Apc gene 

in Apc mutated rats restored the normal cell cycle regulation phenotype. However this 

effect was nullified if rats were co-transfected with β-catenin or c-myc and cyclin D1 

demonstrating that the loss of G1/S phase checkpoint is mediated finally by these 

proteins. (Heinen, Goss et al. 2002) 
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FIGURE 1-6. DIAGRAMATIC REPRESENTATION OF WNT SIGNALLING IN THE ON AND OFF STATES. 

REPRODUCED UNDER CREATIVE COMMONS ATTRIBUTION LICENSE FROM EISENMANN DM, WNT BIOLOGY. 

WWW.WORMBOOK.ORG/CHAPTERS/WWW_WNTSIGNALLING/WNTSIGNALLING.HTML 
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1.4.5 HEREDITARY NON-POLYPOSIS COLORECTAL CANCER (HNPCC) 

Also known as Lynch syndrome, HNPCC is the most common cause of inherited CRC 

accounting for an estimated 1-6% of all CRC. HNPCC is an autosomal dominant trait 

and is associated with other epithelial tumours including ovarian, gastric and 

endometrial cancer. (Beggs and Hodgson 2008) These cancers are characterised by a 

germline defect in one of the DNA mismatch repair (MMR) genes which detect and 

repair DNA replication errors during mitosis. Mutations in hMLH1, hMLH2 and hMLH6 

are causal for HNPCC with the former two genes accounting for the majority of 

tumours. (Beggs and Hodgson 2008) 

Microsatellite instability (MSI) is the characteristic biomarker of HNPCC. Microsatellites 

are small repeating units of two to five base pairs. (Leslie, Carey et al. 2002) These 

repeat regions are highly vulnerable to replication errors which are usually repaired by 

DNA repair mechanisms within the cell. Defects in one of the seven MMR proteins 

encoded by the mismatch repair genes, usually MSH-1, MSH-2 and MSH-6, results in a 

defunct mismatch repair system allowing base mismatches and strand misalignments 

which occur during replication to be retained in daughter cells. (Medina-Arana, 

Delgado et al. 2012) When a cell is MMR deficient, microsatellites become mutated 

with time and the degree of mutation or MSI can be characterised as being high or 

low; MSI-H or MSI-L respectively. Whilst the changes occurring at microsatellites have 

little consequence for the genome or for the changes in gene expression which are 

causal for tumourigenesis, MSI acts as a surrogate marker for other genetic damage 

that is going unrepaired by the defunct MMR system. (Beggs and Hodgson 2008) 

Deficient MMR leads to rapid acquisition of other genetic mutations and accelerated 

cancer development with a median age of CRC diagnosis of 45 years. (Kastrinos and 

Syngal 2011; Medina-Arana, Delgado et al. 2012) 

1.4.6 THE SPORADIC COLORECTAL CANCER SEQUENCE 

Understanding of the molecular and genetic basis of sporadic CRC has been facilitated 

by knowledge of the abnormalities responsible for inherited CRC syndromes. The initial 
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description of the sequence of genetic mutations in sporadic CRC was provided by 

Vogelstein & Fearon who demonstrated progressive acquisition of four genetic defects 

as tissue progressed macroscopically from normal colorectal epithelium to small 

adenoma, to large adenoma and to a carcinoma. (Vogelstein, Fearon et al. 1988)  

Haploinsufficiency of APC is thought to occur early in the sporadic cancer sequence as 

APC mutations are present in approximately the same percentage of polyps and 

cancers. (Beggs and Hodgson 2008) Allelic loss has been shown to increase as 

phenotype progresses from adenoma to carcinoma with APC mutation detectable in 

around 80% of all CRCs. (Powell, Zilz et al. 1992; CGAN 2012)(Figure 1-7) 

K-RAS is an oncogenic regulator of cell differentiation and mutations in this gene act 

later than those in APC in CRC carcinogenesis. (Figure 1-7) Mutation of K-RAS results in 

permanent activation of the RAS protein and uncontrolled cellular proliferation. (Scott, 

Bell et al. 1993) K-RAS mutations are found in 35-45% of colorectal adenomas and 

carcinomas (Beggs and Hodgson 2008; CGAN 2012) Mutations in K-RAS are found less 

frequently in small adenomas suggesting that oncogenic activation of K-RAS is not an 

initiating event in CRC development. (Leslie, Carey et al. 2002) In a study of small 

polyps, K-RAS mutation was frequent in both benign and dysplastic adenomatous 

polyps but was always associated with APC mutation when dysplasia was observed. 

(Jen, Powell et al. 1994)  

p53 has multiple functions including DNA repair, cell cycle arrest in the presence of 

DNA damage and induction of apoptosis. (Pecorino 2008) It is the gene most 

frequently altered in any human cancer. (Caron de Fromentel and Soussi 1992) p53 

mutations lead to accumulation of mutated p53 proteins in the cell and functional 

inactivation of its tumour suppressor role. (Beggs and Hodgson 2008) The probability 

of alteration of p53 seems to be a cumulative process and genetic mutations have 

been detected in 4-26% of colorectal adenomas, 50% of invasive foci in adenomas and 

75% of carcinomas. (Beggs and Hodgson 2008) It has been postulated that p53 

mutation is a critical process in the phenotypic change from adenoma to carcinoma. 

(Leslie, Carey et al. 2002)  
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18q loss has long been recognised in CRC. It is present in 70% of cancers, 10-30% of 

early adenomas and around 60% of late adenomas. (Vogelstein, Fearon et al. 1988; 

Boland, Sato et al. 1995) Initially this was thought to act via the DCC (deleted in 

colorectal cancer) gene but further characterisation of the genes in this locus revealed 

two further putative tumour suppressor genes: SMAD2 and SMAD4. Their protein 

products are parts of the inhibitory pathway TGF-β (Leslie, Carey et al. 2002) which 

acts to control cell growth, differentiation and apoptosis. (Leslie, Carey et al. 2002) 

Mutations in SMAD4 have been observed in approximately 15% of CRC cell lines and 

10% of CRCs (Thiagalingam, Lengauer et al. 1996; CGAN 2012). Serrated polyps – 

polyps containing foci of both hyperplasia and adenoma - have been created in a 

murine model with an induced SMAD4 mutation, implying that this gene may have an 

early role in the adenoma-carcinoma sequence. (Hohenstein, Molenaar et al. 2003)  

FIGURE 1-7. SUMMARY OF SELECTED GENETIC AND EPIGENTIC CHANGES IN CRC AND THEIR RELATIONSHIP TO 

MACROSCOPIC STAGE.  

REPRODUCED WITH PERMISSION. (KERR 2003) 
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1.4.7 EPIGENETIC ALTERATIONS IN CRC CARCINOGENESIS 

Mutations are not the only events causing alteration of gene expression in CRC 

development. Epigenetic events also play an important role in alterations of gene 

expression required for a cancer phenotype.  

The term epigenetics was first defined in 1939 by C.H. Waddington to describe, ‘the 

causal interactions between genes and their products, which bring the phenotype into 

being.’ (Waddington 1939) The term has subsequently been refined, and redefined as: 

‘as heritable changes in gene expression that are not due to any alteration in the DNA 

sequence.’ (Holliday 1987)   

Epigenetic modifications of gene expression arise by three main mechanisms: histone 

modification, gene methylation and micro riboxynucleic acid (RNA) (miRNA) inhibition. 

(Esteller 2008) Histone molecules are five small proteins exhibiting a highly positive 

charge which tightly bind DNA (strongly negatively charged) and form the core of all 

DNA packaging. DNA bound to a histone is essentially inaccessible for transcription and 

expression but alterations to histone proteins such as methylation or acetylation may 

alter conformation and binding of DNA, changing the expression of the relevant gene. 

(Alberts, Bray et al. 1994; Pecorino 2008) Micro RNAs are 20-30 base RNAs which are 

encoded in the genome and transcribed into RNA but not translated into protein 

products. Instead these microRNAs act to inhibit transcriptional and translational 

processes of other genes to regulate their expression. (Bartel 2004) Methylation of 

genes is also associated with transcriptional activation and silencing and is discussed in 

detail below (see Section 1.4.8). In a fashion similar to genomic events, epigenetic 

events may be cumulative, and different types of epigenetic modification such histone 

modification and promoter methylation may act together to alter gene expression. 

(Mossman and Scott 2011) 
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1.4.8 GENE METHYLATION 

In mammals, methylation of the genome refers to the presence of a methyl group at 

the 5’ position in cytosine residues within CpG dinucleotides. The addition of methyl 

groups is mediated by DNA methyltransferases (DNMT) 1, 3a and 3b. (Zaidi, Young et 

al. 2011) Methylation may alter transcription through a number of mechanisms 

including: alteration of promoter binding sites for transcription factors and other 

protein components of the transcriptional machinery, by nucleosomal occupancy 

alteration or through recruitment of histone deacetylases to remodel the chromatin 

structure to an inactive state. (Lim, Neilsen et al. 2011; Zaidi, Young et al. 2011; Wang, 

Maurano et al. 2012)  

CpGs are not evenly distributed within the genome. Around one half of genes contain a 

short segment which is CpG dense – a CpG island - whilst the remainder of the genome 

is relatively CpG deficient. (Jones 2012) Functional control of expression by 

methylation is largely thought to occur when CpG islands are present within gene 

promoters although new roles are being observed for telomeric, exonic and inter-genic 

areas of the genome. (ENCODE 2012; Jones 2012) Promoter methylation is generally 

highly correlated with gene expression although there are recent data suggesting that 

exonic methylation status is more highly correlated, although mechanistic 

relationships underpinning this finding are not understood. (Bell, Pai et al. 2011) 

The recent publication of data from the ENCODE project which profiled CpG 

methylation for an average number of 1.2 million CpGs in 82 cell lines found that 96% 

of CpGs were differentially methylated in at least one cell type. (Meissner, Mikkelsen 

et al. 2008) Similar to Bell et al. (above) ENCODE suggested that the most variability in 

methylation occurred out with gene promoters at intergenic and coding segments of 

the genome. (ENCODE 2012) Unmethylated coding regions were found to bind the 

enhancer protein P300 which has suggested new mechanisms for the methylation 

dependent control of transcription. (Ogryzko, Schiltz et al. 1996; ENCODE 2012) In 

normal tissues methylation of promoters was suggested to occur as a passive 
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phenomenon in response to lack of transcription factor binding to promoter regions. 

The association that suggested this passive role for methylation was reversed in cancer 

tissues (although CRC cell lines were not tested) suggesting that gene specific 

methylation may take on a more active role in determination of transcription during 

carcinogenesis. (Thurman, Rynes et al. 2012)  

Whilst the relationship of CpG methylation and transcription is well established 

mechanisms regulating gene methylation, particularly those causing demethylation of 

CpGs are less well characterised. (Branco, Ficz et al. 2012; Jones 2012) Potential 

pathways have been proposed including hyper hydroxylation of methyl cytosines by 

TET enzyme systems and subsequent replacement with unmethylated cytosines by 

base excision repair mechanisms, although this has only been demonstrated in non-

CpG rich areas of the genome. (He, Li et al. 2011; Ito, Shen et al. 2011; Maiti and 

Drohat 2011; Nabel and Kohli 2011)  

TSG hypermethylation silencing and hypomethylation based activation of oncogenes 

are now recognised as hallmark epigenetic defects in CRC and ageing. (Jones and 

Baylin 2007; Belshaw, Pal et al. 2010; Berdasco and Esteller 2010; Sunami, de Maat et 

al. 2011) Promoter hypermethylation is such a prevalent defect in CRC carcinogenesis 

that many consider it to be the third hit in Knudson’s model for inactivation of TSGs. 

(Herman and Baylin 2003) A selection of genes known to exhibit promoter 

hypermethylation in CRC is listed in Table 1-2. (van Engeland, Derks et al. 2011) Several 

TSGs are also known to be silenced in adenomatous polyps via promoter 

hypermethyaltion. (Jones and Baylin 2002; Chan and Rashid 2006) Importantly, subtle 

changes in methylation of TSG promoters have been detected in macroscopically 

normal mucosa in individuals with CRC and also in the normal mucosa of individuals at 

higher risk of CRC. (Al-Ghnaniem, Peters et al. 2007; Belshaw, Elliott et al. 2008) These 

findings suggest that methylation changes may be precursors of tumourigenesis and 

may contribute to the field defects which are present in the vulnerable, or higher risk, 

mucosa. (Belshaw, Elliott et al. 2008) Progressive promoter hypermethylation is also 

associated with normal ageing, independent of other risk factors, which may give rise 
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to some of the increased CRC risk with older age. (Shen, Kondo et al. 2005; Belshaw, 

Elliott et al. 2008)  

Aberrant methylation is present in the majority of CRCs (van Engeland, Derks et al. 

2011) and as methylation is modifiable (section 1.4.10) restoration of normal tissue 

methylation represents an exciting therapeutic target. Agents which alter methylation 

are currently used routinely for haematological malignancies and myelodysplastic 

syndromes. However, until recently, applications in solid organ tumours have been 

limited by effects in non-cancerous tissues. The development of targeted agents and 

the discovery of the de-methylating properties of current anti-arrhythmic drugs such 

as procainamide and hydralazine have revived research into solid organ tumour 

therapies. (Ren, Singh et al. 2011) In pre-clinical CRC models de-methylating agents 

including boswellic acid can decrease hypermethylation of TSGs such as SAMD14 and 

SMPD3 and restore normal expression. (Fini, Selgrad et al. 2007; Shen, Takahashi et al. 

2012) A phase 1 clinical trial has demonstrated proof of concept in humans showing 

that global methylation can be altered in metastatic cancer patients (several of whom 

had CRC) using 5-Azacytidine (de-methylating agent) and valproic acid (histone 

deacetylase inhibitor). (Braiteh, Soriano et al. 2008)  

Whilst drug discovery for agents that modulate methylation holds future prospect, 

methylation can currently predict response to existing therapies. DEXI 

hypermethylation predicts poor tumour response to irinotecan chemotherapy (Miyaki, 

Suzuki et al. 2012) and methylation of TFAP2E–DKK4 predicts response to fluorouracil 

and other chemotherapeutic strategies with response of 15% in hypomethylated 

tumours and 80% in hypermethylated tumours in prospective human studies. (Ebert, 

Tänzer et al. 2012)  
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TABLE 1-2. GENE PATHWAYS AND GENES KNOWN TO BE AFFECTED BY PROMOTER HYPERMETHYLATION IN CRC.  

ADAPTED FROM VAN ENGELAND ET AL. 2011 (VAN ENGELAND, DERKS ET AL. 2011) 

Pathway Genes with known hypermethylation 

WNT APC, SFRP1, SFRP2, SFRP4, SFRP5, 

SOX17, WNT5a, DKK1, DKK3, WIF1, 

AXIN2 

NOTCH NEURL 

Cell cycle regulation P16 INK4A, KLF4 

Transcription regulation GATA4, GATA5, RUNX3, CDX1, HLTF, 

FOXL2, ALX4  

DNA repair/stability MLH1, MGMT, WRN, CHFR 

Invasion and metastasis TIMP3, RECK, CXCL12, TFPI2 

 

Whilst hypermethylation of TSGs is the more frequently reported pathway for 

epigenetic mediated carcinogenesis, hypomethylation of oncogene promoters also 

acts as a carcinogenic pathway, although hypomethylation is more established in non-

CRC epithelial cancers. For example, hypomethylation of miRNA-191 is responsible for 

its over-expression in hepatocellular carcinoma (HCC) which contributes to epithelial 

to mesenchymal transformation. (He, Cui et al. 2011) Promoter hypomethylation 

leading to oncogene upregulation in HCC has also been observed for CD147. (Kong, 

Liao et al. 2011) Whole epigenome array data in HCC has found that an equal number 

of promoters are affected by hypomethylation (3,689 promoters corresponding to 

1,974 genes) and hypermethylation (3,517 promoters, 1,894 genes) in cancer tissues 

compared to controls. Functional clustering of pathways of the over-expressed genes 

showed that they controlled: cell growth, cell adhesion and communication, signal 
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transduction, mobility, and invasion. Genes which were overexpressed in HCC were 

compared to published data in other epithelial cancers (breast and ovarian) and 42 

genes were found to be commonly overexpressed with associated hypomethylation. 

Attempts were made to correlate overexpressed genes due to hypomethylation in HCC 

to those overexpressed in CRC by hypomethylation but none were found due to the 

paucity of such data in CRC. (Stefanska, Huang et al. 2011)   

In breast cancer upregulation of the NOTCH1 protein (section 1.9, Figure 1-8) has been 

observed as cancers progress in stage and is associated with poor tumour 

differentiation. This increased expression has been correlated with progressive 

hypomethylation of the NOTCH1 promoter. (Zhang, Sun et al. 2011) Similar 

associations of expression, tumour stage and hypomethylation have been reported for 

the circadian gene TIMELESS in breast cancer. (Fu, Leaderer et al. 2011)  

Hypomethylation of oncogene promoters has additionally been reported in salivary 

gland adenoid cystic carcinoma, oesophageal carcinoma and glioma. (Alvarez, 

Opalinska et al. 2011; Liu, Tang et al. 2011; Shao, Sun et al. 2011)  

In CRC, hypomethylation of parts of the Sonic hedgehog pathway are the mechanism 

by which folate depletion can enhance the invasiveness of cultured CRC cells. (Wang, 

Hsu et al. 2012)  RAPGEF1, which has a role in regulation of proliferation, 

differentiation and apoptosis, has been found to be hypomethylated in 40% of CRCs 

compared to normal controls. (Samuelsson, Alonso et al. 2011) In CpG methylator 

phenotype tumours, a type of CRC characterised by a high degree of methylation 

dependent gene silencing, (Issa 2004) DNMT3a is frequently hypomethylated, 

potentially leading to its overexpression and increased methylation at multiple loci 

observed in this tumour subtype. (Drini, Wong et al. 2011) 

1.4.9 GLOBAL DNA METHYLATION 

In addition to specific gene promoter methylation changes, there is overall global DNA 

hypomethylation associated with CRC. (Hiraoka, Kato et al. 2010; Khare and Verma 

2012) Global hypomethylation occurs with age and promotes genomic instability. 
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(Belshaw, Pal et al. 2010; Beck, Garcia-Perez et al. 2011)  Whilst global methylation is 

measured on a genome wide basis, most of the genome is CpG deplete (section 1.4.8) 

and reported global methylation actually occurs predominantly in repeat elements 

rather than evenly throughout the genome. (Jones 2012) Whilst global 

hypomethylation was originally thought to represent a bystander effect on non-coding 

DNA, genomic instability is actually mediated by the demethylation and transcriptional 

activation of previously silenced transposable elements which make up 45% of the 

human genome. Activation of transposable elements results in insertions of mutated 

DNA and is implicated in the initiation of several human diseases including various 

cancers. (Beck, Garcia-Perez et al. 2011) Transposable elements in the human genome 

are primarily long interspersed element 1 (LINE-1) (18% of the human genome) and 

short interspersed elements (27% of the human genome). (Beck, Garcia-Perez et al. 

2011) 

1.4.10 METHYLATION AND THE MICROENVIRONMENT 

Methylation status can be affected by the tissue microenvironment. (Arasaradnam, 

Commane et al. 2008) Many environmental exposures and lifestyle factors have been 

shown to affect the epigenome including: folate consumption, tobacco smoke 

exposure, alcohol exposure, ageing, hormonal exposures, air pollution and heavy 

metal exposure. (Christensen, Marsit et al. 2012) Environmental exposures affect 

different tissues in a context specific pattern and the interaction of environmental 

factors and the epigenome may depend on factors such as transcription factor 

availability or pre-existing methylation status of a tissue. (Rakyan, Down et al. 2010; 

Alegría-Torres, Baccarelli et al. 2011; Christensen, Marsit et al. 2012)  In colorectal cells 

there is evidence that methylation status and genetic expression can be modulated by 

dietary supplementation with resistant starch (section 1.12) and its colonic 

fermentation product, butyrate. (Dronamraju, Coxhead et al. 2008; Dronamraju, 

Coxhead et al. 2009) Further details of promoter methylation modulation by 

environmental factors are detailed in section 1.12.7.3. 
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1.5 ULCERATIVE COLITIS 

Ulcerative colitis (UC) is an inflammatory bowel disease characterised by diffuse 

superficial mucosal inflammation that is essentially confined to the colon. The 

incidence of UC is 10-120 per 100 000 per year and prevalence is 100-200 per 100 000 

with approximately 100 000 people thought to be affected in the UK. (Carter, Lobo et 

al. 2004) Ethnic groups have varying prevalences with Ashkenazi Jews and Indian 

immigrants having a particularly high rate of UC. (Carter, Lobo et al. 2004; Nicholls and 

Tekkis 2005) The disease is predominantly incident in younger people with an equal 

sex distribution. (Nicholls and Tekkis 2005) 

1.5.1 ULCERATIVE COLITIS AND COLORECTAL CANCER 

The aetiology and pathogenesis of UC have not been fully defined. Best evidence 

suggests that it is a combination of a response to an environmental factor in a 

genetically susceptible individual. (Nanau and Neuman 2012; Neuman and Nanau 

2012) UC confers an increased risk of CRC which increases with time from diagnosis. 

Individual reports of the magnitude of CRC risk vary between 60% risk at 40 years and 

a risk of CRC similar to the normal population. (Zisman and Rubin 2008) The best 

current estimate is based on a meta-analysis of published evidence performed in 2001 

which showed the incidence of CRC was 2% after 10 years, 8% after 20 years, and 18% 

after 30 years following diagnosis of UC with lifetime risk 2.4 times that of the general 

population. (Eaden, Abrams et al. 2001; Jess, Rungoe et al. 2012) More recent, smaller, 

reports have suggested lower risks of CRC leading to the suggestion that UC associated 

CRC may be decreasing possibly due to therapeutic improvements in UC management. 

(Bernstein, Blanchard et al. 2001; Winther, Jess et al. 2004; Rutter, Saunders et al. 

2006)  

Disease specific risk factors modify an individual’s risk of CRC. Incidence of UC 

associated CRC increases with time since diagnosis (Gong, Lv et al. 2011; Higashi, 

Futami et al. 2011) and with longer segments of colonic involvement (relative risk 1.7 

for proctitis, 2.8 for left-sided disease and 14.8 for pancolitis) (Ekbom, Helmick et al. 
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1990) Several studies have found the depth of mucosal inflammation to be 

independently predictive of CRC development. (Rutter, Saunders et al. 2004; Rubin 

2006; Gupta, Harpaz et al. 2007) Other risk factors include a family history of CRC 

independent of a family history of colitis (Askling, Dickman et al. 2001; Velayos, Loftus 

et al. 2006) and a young age at disease onset (Ekbom, Helmick et al. 1990). Co-existing 

primary sclerosing cholangitis is strongly associated with CRC development and 

increased surveillance is recommended in such patients. (Mowat, Cole et al. 2011) 

1.5.2 PATHOLOGY OF CRC IN UC  

The pathology of cancer in UC differs from the pathology of sporadic CRC both at a 

macroscopic level and also at a molecular level. The microscopic phenotype of pre-

malignant UC lesions follows a similar progression to the sporadic polyp-cancer 

sequence progressing from, indeterminate to low grade to high grade dysplasia and, 

with basement membrane invasion, to carcinoma. However dysplastic lesions 

associated with UC are more commonly flat rather than raised polyps therefore 

detection and removal are more complex (Neumann, Vieth et al. 2011). Technologies 

have developed to improve diagnostic accuracy of pre-malignant lesions in UC such as 

narrow-band imaging or chromoendoscopy as adjuncts to standard colonoscopic 

surveillance. (Zisman and Rubin 2008; Neumann, Vieth et al. 2011) Finding areas of 

dysplasia usually mandates colectomy as 19% of patients with a low grade dysplasia 

will have synchronous high grade dysplasia and approximately fifty percent will 

develop CRC within five years. Of those with high grade dysplasia 43% will have a 

synchronous CRC. (Bernstein, Shanahan et al. 1994; Ullman, Croog et al. 2003) 

Most cancers related to UC are adenocarcinomas, however, there is an increased 

frequency of cancer types less frequently seen as sporadic CRCs such as mucinous 

carcinomas or signet cell adenocarcinomas. (Harpaz and Polydorides 2010) 

Synchronous CRCs also occur more frequently in the context of UC. Sporadic CRC has a 

frequency of two synchronous tumours in less than five percent of all cases. Three or 

more synchronous tumours occur so infrequently that data are not available on their 

prevalence. In contrast the incidence of two synchronous tumours in UC is between 
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ten and thirty percent and three or more synchronous tumours are more common. 

(Harpaz and Polydorides 2010) 

1.5.3 GENETIC CHANGES IN UC ASSOCIATED CANCER 

At a molecular level the genetic changes in UC associated CRC are similar but the 

sequence in which they are acquired in premalignant lesions is often different. 

(Itzkowitz and Harpaz 2004) APC mutation is generally considered to be an initiating 

event in sporadic CRC however in UC associated CRC it is a late and infrequent event 

only occurring in high grade dysplasia or cancer. (Kern, Redston et al. 1994; Aust, 

Terdiman et al. 2002) K-RAS mutation is relatively infrequent in UC and, as it is thought 

to confer a polypoid phenotype, may account for the increased incidence of flat 

dysplasia observed in UC. (Burmer, Levine et al. 1990; Yashiro, Carethers et al. 2001) 

p53 is a late event in sporadic CRC but is thought to be an initiating lesion in UC 

associated CRC as it is often present in macroscopically normal mucosa before 

dysplasia can be detected. (Burmer, Levine et al. 1990; Burmer, Rabinovitch et al. 

1992) 

1.5.4 EPIGENETIC CHANGES IN UC AND UC ASSOCIATED CANCER 

Epigenetic factors influence the UC disease process independently of carcinogenic 

potential. DNA methylation changes have been shown at multiple loci when patients 

with inflammatory bowel disease are matched to normal controls. A sub-set of genes 

displaying aberrant methylation further differentiates Crohn’s colitis from UC. (Lin, 

Hegarty et al. 2011) When patients with UC for more than seven years are compared 

to normal controls global DNA hypomethylation and increased proliferation index 

within crypts – a phenotype associated with higher cancer risk – are observed. (Glória, 

Cravo et al. 1996; Konishi, Shen et al. 2007) Maternal supplementation with a methyl 

donor in mice, increases methylation in 59 gene promoters and decreases methylation 

in 96 gene promoters in the offspring mice. These mice are more susceptible to 

chemical induction of colitis, a situation not found in the offspring of mice on a 
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maternal control diet subsequently fed a methyl donor in the neonatal period. 

(Schaible, Harris et al. 2011) 

DNA methylation changes are also described in the pathogenesis of UC associated CRC. 

DNA methylation changes are likely to be founder mutations in UC associated CRC and 

epigenetic field change (see section 1.8) may explain the more rapid acquisition of 

further somatic mutations and also the preponderance for synchronous lesions.  In 

murine models promoter methylation changes in many genes have been noted as 

early as eight weeks after colitis induction and these changes are independent of 

inflammatory cell presence or absence. (Katsurano, Niwa et al. 2012) Promoter 

hypermethylation of two TSGs; ESR-1 and N-33 have been shown to be higher in 

patients with UC compared to matched controls. (Arasaradnam, Khoo et al. 2010) 

When APC mutations are examined in IBD related cancers, somatic mutations, 

common in sporadic CRC (present in 74% of tumours), are rare in IBD associated CRC 

(6% of all tumours). (Tarmin, Yin et al. 1995) Promoter methylation of ten key WNT 

pathway genes has been examined in non-UC controls, long-standing UC patients and 

patients with UC associated cancer. APC2, SFRP1, SFRP4, SFRP5, DKK1, WIF1 all showed 

significantly increased promoter methylation in long-standing UC compared to normal 

controls. APC2, SFRP1 and SFRP2 also showed increased promoter methylation in UC 

associated CRC compared to longstanding UC controls suggesting that this maybe the 

mechanism controlling altered WNT pathway expression where genetic mutation of 

APC is not present. (Dhir, Montgomery et al. 2008) Hypermethylation of ARF has also 

been shown to be associated with duration of UC and predicts of risk of developing UC 

associated CRC. (Moriyama, Matsumoto et al. 2007) The promoter site of the E-

cadherin gene (CDH1), related to cell adhesion properties, has also been shown to be 

hypermethylated and transcriptionally silenced in dysplastic versus non-dysplastic UC 

tissue. (Azarschab, Porschen et al. 2002) Wider whole genome methylation arrays have 

identified multiple aberrantly methylated loci in UC sufferers which correlated highly 

with methylation abnormalities also detected in a sporadic CRC cell line. (Koizumi, 

Alonso et al. 2012) 
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1.6 SUMMARY – CLINICAL CHARACTERISTICS OF CRC AND AETIOLOGY 

CRC represents a major disease burden both in the UK and worldwide. Survival has 

improved with improved therapeutics however incidence is largely unchanged. A 

minority of CRC (6-7%) has a defined heritable genetic cause (hereditary CRC) whilst 

another minority (15-20%) has a genetically undefined heritable increased risk (familial 

CRC). The majority of CRC is sporadic and data showing variation between populations 

depending on environmental and particularly dietary exposures, with rapid conversion 

to a host nations risk in migrant individuals, suggest that environmental exposures are 

critical in CRC aetiology. This strong environmental influence suggests that a 

proportion of sporadic CRC may be preventable - estimated to be up to 50%. (Platz, 

Willett et al. 2000) 

The genetic ‘hits’ required for tumourigenesis are relatively well understood, largely 

due to the study of hereditary syndromes, particularly FAP. In sporadic CRC 

carcinogenesis, genetic mutations occur predictably in tandem with macroscopic 

development of neoplasia and invasion – the polyp-cancer sequence. (Vogelstein, 

Fearon et al. 1988)  

Also contributing to the CRC phenotype are epigenetically driven changes in gene 

expression. Methylation is a key pathway altering gene expression by hypomethylation 

based activation of oncogenes, hypermethylation based silencing of TSGs or global 

hypomethylation activating previously silenced transposable elements resulting in 

genomic instability. Multiple pathways are subject to methylation changes in CRC. 

Whilst DNA methylation signatures are heritable they are also plastic to environmental 

factors. 

UC associated CRC represents a distinct CRC subtype. Epigenetic alterations play a key 

role in the field change which predisposes to rapid acquisition of mutations and the 

increased incidence of synchronous tumours. Methylation changes potentially  

account for a degree of the predisposition to developing UC and, once the disease is 
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established, provide the founder mutation for those individuals who go on to develop 

UC associated CRC. 
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1.7 COLONIC CRYPT BIOLOGY AND STEM CELLS  

1.7.1 THE NORMAL COLONIC CRYPT 

CRC is a disease of genetic expression at the molecular level which translates to a 

disease of cellular proliferation. (Pecorino 2008) Knowledge of cellular proliferation 

and the resulting dynamics of the functional unit of the colon – the crypt - are 

therefore required to understand CRC pathogenesis. 

Colonic crypts are invaginations of the colorectal mucosa, opening into the lumen of 

the gut. New crypt cells originate at the crypt base from the division of stem cells and 

migrate lumenwards. As cells progress lumen-wards they differentiate progressively 

and lose their proliferative capacity through the transit amplifying region to become 

terminally differentiated cells (either secretory goblet cells or absorptive colonocytes) 

in the upper third of the crypt. (Potten, Kellett et al. 1992) The average crypt is 

approximately 80 cells high and 40-45 cells in circumference with between 2000 and 

2200 cells per crypt. (Potten, Kellett et al. 1992)  

Bromodeoxyuridine (BrdUrd) labelling of proliferating cells (S-phase) shows 10% of 

crypt cells to be in S phase at any time in normal mucosa. Ninety percent of BrdUrd 

labelled cells are found between position 4 and 43 (from the crypt base) and maximal 

labelling occurs at position 15. (Potten, Kellett et al. 1992) Thus the zone of 

proliferation is located in the lower half of the crypt with the greatest proliferation 

occurring in the lower third - the crypt base and transit amplifying compartment. 

1.7.2 THE DISEASED COLONIC CRYPT 

Altered colorectal cellular proliferation related to tumour development was first 

reported in carcinogen treated mice. (Thurnherr, Deschner et al. 1973) Initially there 

was a shift in proliferation to include the entire crypt length although the majority of 

proliferation was retained in the lower half. With further genotoxic insults the main 

area of proliferation shifted to the upper half of the crypt. The shift of the proliferative 

compartment occurs in tandem with an overall increase in the proportion of S-phase 
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cells. (Roncucci, Pedroni et al. 2000) Similar shifts in the zone of maximal proliferation 

and increase of the proportion of S-phase cells are seen in macroscopically normal 

tissue adjacent to tumours and in patients with FAP and HNPCC. (Roncucci, Pedroni et 

al. 2000) 

1.7.3 THE STEM CELL 

Cells in colorectal crypts, as with all cells in the body, arise from stem cells. Adult stem 

cells (ASC) are cells which satisfy two criteria:  

Longevity – long lived cells able to undergo multiple divisions  

Multipotency – the ability of progeny to differentiate into all the cell types of that 

organ (cf. pluripotency which is the ability of an embryonic stem cell to differentiate 

into any cell type of the organism). (Barker, van de Wetering et al. 2008) 

Barker et al. have provided a gold standard method for identification of colorectal 

ASCs. ASCs in the intestinal mucosa stain positively for Leucine-rich-repeat containing 

G-protein-coupled receptor 5 (Lgr5) in mouse colon and small intestine. (Barker, van Es 

et al. 2007) Lgr5 is a protein whose transcription is increased in response to an 

activated Wnt pathway. WNT is a key pathway in the control of the stem cell 

differentiation and activity (see section 1.8.8). (Barker and Clevers 2006; Van der Flier, 

Sabates-Bellver et al. 2007) Lgr5 expression is limited to the base of the intestinal crypt 

with differential expression from Paneth cell and transit-amplifying cell specific 

markers which suggested Lgr5 as a putative ASC marker in the colon. (Van der Flier, 

Sabates-Bellver et al. 2007) In the small bowel Lgr5 positive cells reside between the 

Paneth cells in the crypt base. (Barker, van Es et al. 2007) An average of 3.5 Lgr5 

expressing cells are present per crypt base in the mouse. These cells are actively 

cycling as they stain positively for Ki67 (a proliferation marker). (Barker, van Es et al. 

2007)  

Labelling of the putative stem cells and their progeny using a tamoxifen activated LacZ 

reporter demonstrated multipotency and longevity. (Barker, van de Wetering et al. 
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2008) Mice with the inducible LacZ reporter were given a tamoxifen pulse and killed at 

1, 5, 12, 35 and 60 days. Labelled cells were seen to be emanating lumen-wards from 

the Lgr5 positive cells. The proportion of labelled cells within each crypt base remained 

stable indicating that the Lgr5 positive cells continued to divide over a 60 day period 

and did not ascend the crypt as would be expected for non-stem epithelial cells. 

(Barker, van Es et al. 2007) These experiments have subsequently been replicated and 

extended over 14 months, confirming greater longevity of Lgr5 positive cells. (Barker, 

van Es et al. 2008) Within the progeny of Lgr5 positive cells in small bowel and colon all 

cell types in the gastrointestinal mucosa were identified confirming multipotency. 

(Barker, van Es et al. 2007) Additionally, single cell transplantation of an Lgr5 positive 

cell was able to grow complete crypt structures in culture containing all differentiated 

cell types of the intestine in the proportions expected in normal epithelium. Whilst this 

is not a defining feature of an ASC (see beginning of section) it confirms the progenitor 

capacity of the Lgr5 positive cell population. (Sato, Vries et al. 2009) 
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1.8 CRYPT DYNAMICS, SUCCESSION AND FIELD CHANGE 

1.8.1 CLONALITY OF THE CRYPT 

Experiments where stem cell progeny have been labelled demonstrate the clonal 

nature of differentiated crypt cell populations depending on their originator ASC within 

the crypt base. (Barker, van Es et al. 2007) Methylation signatures within crypts can 

also be used to demonstrate distinct clonal populations within a crypt. (Graham, 

Humphries et al. 2011) CRC arises from the acquisition of mutations within a single ASC 

(see section 1.8.7). The process for the development of a single mutated ASC into a 

CRC requires an acceleration of normal processes that occur within the crypts and 

epithelium as a whole. These processes and how they become dysregulated in 

carcinogenesis are detailed below. 

1.8.2 MONOCLONAL CONVERSION AND NICHE SUCCESSION 

The vast majority of ASC divisions are likely to be asymmetrical producing one ASC and 

one partially differentiated cell, with occasional symmetrical divisions producing either 

two daughter differentiated cells or two daughter ASCs. Over time random lineage 

extinction and matched lineage expansion will occur by the process of symmetrical 

divisions and several cell lineages within a crypt will eventually be succeeded by a 

single clonal population. (Boman, Wicha et al. 2007; Graham, Humphries et al. 2011) 

This clonality has been shown in XY/XO mosaic normal mucosa where each individual 

crypt was monoclonal with either exclusively XY or XO karyotype. (Novelli, Williamson 

et al. 1996) 

The patterns of succession can be observed using age related methylation signatures 

within the crypt. The theory underpinning these observations is that whilst overall 

methylation of a CpG with age related change in a tissue will gradually change in an 

individual over time, at a cellular level the methylation at the same CpG locus is an all 

or nothing phenomenon. This means that methylation at a cellular level is a binary 

phenomenon whilst measurement of methylation in a tissue is measured on a 
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continuous scale, usually described in terms of percentage of cells methylated within a 

tissue or simply ‘percentage methylation’. Methylation is heritable, so the progeny of a 

stem cell will display the same methylation signature as its parent stem cell with only 

very slight drift as differentiated cells may pick up additional methylation marks in 

response to environmental stimuli. This drift from daughter cells and parent stem cells 

is minimal as methylation signatures at the bottom and top of crypts are the same, 

thus methylation observed in whole crypt samples reflects methylation status of the 

parent stem cell. (Yatabe, Tavaré et al. 2001)    

Clonal succession has been confirmed by measuring the number of populations with 

distinct methylation signatures on genes known to display age related change in 

colonic epithelium. (Yatabe, Tavaré et al. 2001) Yatabe et al. found that each 

succession cycle (one clonal population replaced entirely by another) would be 

approximately 8.2 years (95% confidence interval (CI) 2.7-19 years). (Yatabe, Tavaré et 

al. 2001; Kim and Shibata 2002) Crypt succession has also been shown by 

measurement of epigenetic changes and associated COX deficiency as a result of 

mitochondrial DNA mutation (see section 1.8.3), again suggesting that succession is a 

slow process (taking up to 10 years) in normal tissues. (Graham, Humphries et al. 2011) 

In a normal colonic crypt, succession would be random, but this would not remain the 

case if an ASC were to acquire a genetic mutation conferring a survival or growth 

advantage. In such a situation the probability would be for the mutated stem cell to 

succeed the crypt resulting in monoclonal conversion with a pro-carcinogenic genetic 

mutation. (Kim and Shibata 2002) Although succession and monoclonal conversion 

remains macroscopically invisible if there is no phenotypic difference in populations, 

molecular changes do occur. Several studies have demonstrated pro-carcinogenic 

genetic mutations in phenotypically normal crypts of patients at higher risk of CRC. 

(Hanahan and Weinberg 2000; Belshaw, Elliott et al. 2008; Belshaw, Pal et al. 2010; 

Fujii, Katake et al. 2010)  

The number of stem cells per crypt giving rise to clonal populations can also be 

inferred by counting the number of distinct age-related epigenetic signatures per 
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crypt. As these epigenetic marks are involved in ageing but not carcinogenesis, and 

therefore do not confer a survival advantage in themselves, measurement of these 

signatures remains valid in epithelium under pro-carcinogenic influence. 

Morphologically normal colon crypts from resected FAP and non-FAP colon controls 

have been analysed to assess the number of distinct methylation lineages per crypt. 

Fewer distinct methylation signatures were observed in non-FAP controls whilst a 

greater number of distinct signatures were present per crypt in macroscopically 

normal FAP epithelium. (Kim and Shibata 2004) Mathematical modeling suggested that 

an increase in the number of stem cell reproductive cycles in FAP crypts did not explain 

the increased number of distinct signatures observed, however an increase in the 

number of ASCs per crypt did explain the observed data. (Kim, Calabrese et al. 2004) 

These data confirm subtle mucosal kinetic changes preceding morphological change in 

at risk epithelium and suggest that a founder change is likely to be a change in ASC 

number as demonstrated by an increase in the number of distinct clonal populations.  

1.8.3 CRYPT FISSION AND FIELD CHANGE 

Epithelium at risk of CRC, such as in longstanding UC, have large areas of tissue 

containing thousands of crypts with single clonal populations implying that ASCs with 

an acquired survival advantage can expand to populate more than a single crypt. 

(Humphries and Wright 2008) Branched crypts are observed occasionally (<1%) in 

normal human colon leading to the suggestion that intestinal crypts divide by a process 

called fission, similar to somatic cells dividing by mitosis.  

Lineage tracing using cytochrome c oxidase (COX) status (either present or absent for 

any one cell) has been used to demonstrate the process of crypt fission. The COX 

status of a cell is encoded through mitochondrial DNA. Multiple different 

mitochondrial mutations may result in COX deficiency as COX status is encoded by 

multiple repeated sequences which are subject to relatively frequent errors in 

replication. (Tariq, Stuart et al. 2009) Specific mutations causing COX deficiency can be 

used to trace ancestry in a similar fashion to age-related methylation marks. Double 

immuno-histochemical staining can track both COX status and its specific causal 
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mitochondrial mutation in gastrointestinal tissue. (McDonald, Preston et al. 2006) This 

technique had been utilised to confirm monoclonal conversion of crypts in both colon 

(Taylor, Barron et al. 2003) and stomach crypts. (McDonald, Greaves et al. 2008) 

Both Greaves et al. and Graham et al. have shown that in fissioning crypts, single cells 

from either branching arm shared the same specific mitochondrial mutation that 

resulted in COX deficiency (the odds of this occurring randomly are less than one in 

2.48 x 109). (Kim and Shibata 2004; Greaves, Preston et al. 2006) They also showed 

that in adjacent non-fissioning COX deficient crypts, single cells shared the same 

mitochondrial mutation and that COX negative crypts were clustered in the colon. This 

field effect was associated particularly with increasing age. These data suggest that 

crypt fission is indeed the method by which field changes occur in the colon. (Greaves, 

Preston et al. 2006; Graham, Humphries et al. 2011) Similar patches of identically 

mutated mitochondrial DNA have also been identified in the small intestine. (Lydia, 

Maesha et al. 2009) 

Whilst Graham et al. confirmed crypt ‘relatedness’ using COX mutation they could not 

confirm ‘relatedness’ of crypts sharing a COX mutation using methylation signatures of 

non-coding areas of the genome. (Graham, Humphries et al. 2011) This lack of 

methylation ‘relatedness’ within age related gene promoters has also been observed 

in adjacent crypts presumed to share common ancestry by proximity, but not shown 

by other means to do so. (Kim and Shibata 2004) As these data are derived from 

macroscopically normal appearing mucosa this can be accounted for by the long time 

periods over which crypt fission is thought to occur. As fission is such an infrequent 

process in normal tissue, sampling of adjacent crypts reflects a temporally distant 

fission where two daughter clonal crypts have subsequently developed entirely 

different methylation signatures. (Graham, Humphries et al. 2011) As the epigenetic 

defects studied did not confer a survival advantage to the cell (non-coding DNA or 

ageing related gene promoters) this would explain such data as the lineage expansion 

and extinction associated with such defects would be balanced and random. 
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In higher risk epithelium pro-carcinogenic field change has been confirmed by various 

techniques. Proteomic data has demonstrated differential protein expression in 

normal mucosa from patients with no colonic abnormality and normal appearing flat 

mucosa from those with either adenomatous polyps (206 proteins) or cancer (61 

proteins). (Polley, Mulholland et al. 2006) Multiple other reports have found epigenetic 

alterations associated with carcinogenesis in macroscopically normal mucosa adjacent 

to tumours. (Suzuki, Gabrielson et al. 2002; Shen, Kondo et al. 2005; Milicic, Harrison 

et al. 2008) 

Crypt fission may account for colonisation of large fields of epithelium arising, 

originally, from a single ASC with a mutation conferring a survival advantage. However, 

the time that is proposed for monoclonal conversion within a crypt (8.2 years) (Yatabe, 

Tavaré et al. 2001) and crypt fission (estimated to occur every 17 years and taking 27 

months) (Totafurno, Bjerknes et al. 1987)  in normal tissue makes field change of large 

areas of epithelium and subsequent carcinogenesis over a human lifetime impossible. 

However, there are data suggesting that at risk epithelium may have an increased rate 

of crypt fission. 

In at risk epithelium there is evidence of increased ASCs per crypt as higher numbers of 

distinct age-related methylation signatures are present in higher risk epithelium 

indicating a greater number of clonal populations. (Kim, Calabrese et al. 2004) Using a 

non-specific marker of all crypt basal cells Boman et al. have shown an expansion in 

the proliferative component lumenwards in human FAP colons. The noted changes 

were progressive as the pathology progressed from normal to aberrant crypt foci to 

adenomatous polyp. (Boman, Walters et al. 2004) Mathematical modelling of the 

observed data suggested that as part of a general increase in the proliferative 

compartment there would be an increase in the ASC number per crypt. An increase in 

size, and shift lumenwards, of the proliferative compartment has also been identified 

in sporadic colorectal adenomas. (Wong, Mandir et al. 2002; Dronamraju, Coxhead et 

al. 2009)  
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This overpopulation of the ASCs appears to specifically drive an increased rate of crypt 

fission. (Brittan and Wright 2002; He, Zhang et al. 2004) The initial genetic change in 

sporadic cancer is the APC mutation. (Beggs and Hodgson 2008) Haploinsufficiency for 

the APC allele in isolation results in no macroscopic epithelial change. (Hanahan and 

Weinberg 2000) Microscopically, increased rates of crypt fission are observed in FAP 

patients with haploinsufficiency, with a nineteen fold increase in the number of crypts 

in fission compared to non-FAP controls. (Wasan, Park et al. 1998) Thus a rapidly 

dividing ASC which has lost growth checkpoint characteristics would clonally expand by 

increased symmetrical division. This would increase the number of ASCs in the crypt 

base and shift the zone of proliferation towards the lumen. An overpopulation of ASCs 

would stimulate rapid fission, propagating its clonal daughter population exponentially 

across large areas of epithelium. 

1.8.4 STEM CELLS AND CARCINOGENESIS 

Several observations in CRC suggest the presence of a distinct subpopulation of cancer 

stem cells (CSC). (Boman and Wicha 2008) Firstly, therapies (chemotherapy and 

radiotherapy) targeted at rapidly reproducing cells may decrease tumour bulk but 

often do not lead to complete cure with high incidence of local or metastatic 

recurrence. This occurs after apparently curative therapy suggesting that a sub-

population can ‘escape’ such treatments and repopulate a tumour in the absence of 

clinically detectable disease at the completion of therapy. Secondly the vast majority 

of cells (e.g. differentiated cells in the gut, reproductive tract and breast) are rapidly 

turning over. These cells are present for days or weeks but not the years required to 

accrue all the genetic changes required to induce cancer phenotype. (Boman and 

Wicha 2008) Data such as this suggests that the cellular population of cancer is 

heterogeneous, with a distinct subpopulation of cells which is able to initiate 

carcinogenesis and often evade current therapeutic strategies - the cancer stem cell. 

The concept of a founder cell population is not new (Virchow 1855) however the term 

‘cancer stem cell’ is more modern. (Carney, Gazdar et al. 1982) Since the initial 

discovery of a CSC in lung cancer (Carney, Gazdar et al. 1982), confirmation of CSCs in 
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other tissues has followed rapidly. CSCs have been identified in brain (Singh, Hawkins 

et al. 2004), breast (Al-Hajj, Wicha et al. 2003), haematological malignancies (Bonnet 

and Dick 1997), head and neck cancers (Zhang, Filho et al. 2012), pancreatic cancer (Li, 

Heidt et al. 2007), melanoma (Monzani, Facchetti et al. 2007) and colon cancer 

(O'Brien, Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 2007). 

Much of what is known about CSC biology has been derived from study of 

haematological malignancies as CSCs have been characterised definitively in this form 

of cancer for the longest time. (Bonnet and Dick 1997; Wang and Dick 2005) It has 

been shown that most circulating cells in acute myeloid leukaemia do not have a 

proliferative potential. There is only a small subset of cells – the CSCs - which are able 

to replicate in vitro after extraction from a patient. (Wang and Dick 2005) This system 

is analogous to normal hematopoiesis and also analogous to current understanding of 

crypt biology. (Wang and Dick 2005) These CSCs are thought to be relatively slow-

cycling which allows them to evade cancer therapies which primarily target rapidly 

replicating cells. (Boman and Wicha 2008) CSCs produce rapidly cycling, partially 

differentiated cells (analogous to transit amplifying cells) which produce terminally 

differentiated cells to form the tumour bulk. (Wang and Dick 2005) 

1.8.5 EVIDENCE FOR THE COLORECTAL CSC 

Two groups published data at approximately the same time which confirmed the 

existence of CRC-CSCs. Both used CD133 as the marker to identify potential CSCs. 

CD133 is an antigen expressed by normal primitive endothelial, haematopoietic and 

epithelial cells (Yin, Miraglia et al. 1997; Uchida, Buck et al. 2000; Salven, Mustjoki et 

al. 2003) and has been shown to enrich for CSCs in multiple other tumours. 

(Ferrandina, Petrillo et al. 2009) High expression of CD133 is associated with poor 

prognosis in CRC. (Horst, Kriegl et al. 2008; Maeda, Shinchi et al. 2008; Li, Li et al. 2009; 

Artells, Moreno et al. 2010) 

The initial publication demonstrating colon CSCs was by Ricci-Vitiani et al. in 2007. 

Flow cytometry was used to separate CD133+ cells in 19 human CRC specimens. The 
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CD133+ population made up around 2.5% (±1.4%) of the total tissue volume and did 

not express cytokeratin 20 (CK20) which is expressed in differentiated cells. (Ricci-

Vitiani, Lombardi et al. 2007) CD133 expression was barely detectable in normal 

adjacent colonic epithelium.  

To test the potential of CD133 as a colon CSC marker the tumourigenic potential was 

compared of CD133+ and CD133- cells in severe combined immunodeficient (SCID) 

mice. After separation, both CD133+ and CD133- expressed similar phenotypes to the 

parent tumour in terms of APC, carcinoembryonic antigen (CEA) and p53. 

Transplantation of any number of CD133- cells did not recreate tumour in the recipient 

mice however transplantation of 3,000 CD133+ cells was able to generate new tumour 

in recipient mice as was transplantation of 106 unseparated cells. (Ricci-Vitiani, 

Lombardi et al. 2007) 

CD133+ cells were also transferred to serum free culture media (used to grow 

undifferentiated cells) and serum containing culture medium (used to grow 

differentiated cells). In serum containing media CD133- cells were able to survive for 

around 14 days whilst viable CD133+ cell numbers declined rapidly. In serum free 

conditions there was rapid growth and replication to form colonospheres of CD133+ 

cells from five of the 15 tumours tested. CD133- cells rapidly died in such conditions 

and progressive selection of CD133+ cells from the colonospheres seemed to lead to an 

increase in replication with a decrease in doubling time observed with progressive 

passages. The proportion of CD133+ cells within the colonospheres remained high and 

CK20 expression remained low indicating an undifferentiated or ‘primitive’ phenotype. 

(Ricci-Vitiani, Lombardi et al. 2007) 

Implantation of these colonospheres into SCID mice led to rapid tumour formation. 

Serial transplantation of CD133+ cells from the induced tumour induced quaternary 

tumours. When colonospheres were placed in culture media containing 5% serum 

differentiation was observed with differentiated cells acquiring similar morphology and 

immunological phenotype to the original tumour. The colonospheres began to widely 
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express CK20 and other markers of differentiation. After this, colonospheres lost their 

ability to initiate tumour growth in SCID mice. (Ricci-Vitiani, Lombardi et al. 2007) 

In this series of experiments it was shown that all CD133+ cells from a tumour were 

undifferentiated and that this population had the ability to initiate tumour growth. 

Whilst CD133 appears to be a sensitive marker it may not be specific as not all positive 

populations were able to generate tumour. Interestingly the determination of CD133 

status appeared to be plastic, with a change in phenotype of CD133+ colonospheres 

when exposed to different environmental conditions. (Ricci-Vitiani, Lombardi et al. 

2007; Yang, Wang et al. 2012)   

Further evaluation of CD133 as a marker for CSCs was performed by O’Brien et al. who 

also transplanted CRC tumour samples enriched for CD133+ cells into SCID mice. They 

observed new tumour growth with similar molecular profiles to parent tumours in all 

17 mice. (O'Brien, Pollett et al. 2007) 

Using serial dilution techniques before transfer to SCID mice of unfractionated cells 

they estimated one CSC per 5.7 x 104 unselected tumour cells (95% confidence interval 

(CI) 3.4 x 104 – 9.3 x 104 cells). When they repeated this after enrichment based on 

CD133 status, CD133- cells again were unable to generate tumour in SCID mice whilst 

CD133+ cells did initiate tumours with much lower numbers transplanted than that 

required to initiate tumour using unfractionated cells. Tumours were consistently 

generated with transplantation of 1x 103 CD133+ cells and generated after injection of 

only 100 cells in one in four mice. Serial dilution of the CD133+ fraction suggested that 

there were one CSC per 262 CD133+ cells (95% CI 129-534) suggesting that CD133+ 

status enriches 216 fold for CSCs. (O'Brien, Pollett et al. 2007) 

In addition to CD133 there are other antigenic combinations which have been 

suggested to mark CRC-CSCs more specifically. Dalerba et al. found epithelial cell 

adhesion molecule (EpCAM)high/CD44+ epithelial cells were able to initiate new 

tumours in SCID mice consistently while EpCAMlow/CD44- cells could not. (Dalerba, 

Dylla et al. 2007) High expression of CD133 and CD44 in combination is able to predict 
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poor prognosis in CRC possibly suggesting a higher ratio of stem cells to differentiated 

cells in such tumours. (Galizia, Gemei et al. 2012)  

1.8.6 CHARACTERISTICS OF COLON CANCER STEM CELLS 

Tumours are characterised by increased growth and replication compared with normal 

surrounding tissue. Boman et al. have sought to define the characteristics of the CSC 

compartment which give rise to this increased growth and replication. They 

mathematically modeled tumour replication assuming CSCs represent  a constant 0.25 

- 2.5% (O'Brien, Pollett et al. 2007; Ricci-Vitiani, Lombardi et al. 2007) of the total 

cellular population (108-1013 cells). (Boman, Wicha et al. 2007) The model 

demonstrated a significant expansion in ASC number from healthy epithelium was 

required, taking into account even the largest estimations of ASC numbers per crypt 

previously suggested (largest estimates are 40-60 ASCs per crypt based on indirect 

evidence compared to the more widely accepted estimate of 4-6 ASCs per crypt based 

on direct observations). (Issa 2000; Barker, van Es et al. 2007) Assuming that CSCs arise 

from ASCs, tumour development required a twenty fold increase in symmetrical 

division of ASCs each producing two daughter ASCs. Symmetrical division of transit 

amplifying cells, increased symmetrical division of ASCs to produce two daughter 

transit amplifying cells and other permutations of division and replication did not fit 

observed tumour characteristics. (Boman, Wicha et al. 2007) 

1.8.7 ORIGINS OF CANCER STEM CELLS 

CSCs have the ability to initiate and drive tumour growth and have accrued several 

genetic and epigenetic mutations to achieve this phenotype. ASCs are the only cell 

with the longevity to accrue these mutations so it is likely that ASCs are the origins of 

CSCs – known as the ‘bottom-up’ hypothesis. However the alternative hypothesis 

states that CSCs originate out with the stem cell compartment from a more 

differentiated cell type, potentially within the transit amplifying compartment – the 

top-down hypothesis (Wright and Poulsom 2002) 
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Most biological data logically supports the bottom-up hypothesis such as: stem cell 

longevity, crypt monoclonal conversion and propagation of mutation by crypt fission. 

Barker et al. sought to definitively prove ASCs as the originators of CSCs. Mice with an 

inducible floxed Apc allele linked to Lgr5 allowed the Apc gene to be knocked down 

after administration of β-naphthoflavone specifically in the colonic Lgr5+ ASC 

population. On induction with β-naphthoflavone there was rapid proliferation of ASCs 

with increased cell numbers ascending the crypts compared to cell counts prior to Apc 

knockdown. Although the Lgr5+ stem cells initially remained in the crypt base 

microadenomas soon formed. Large multi-villus adenomas developed at 14 days. 

Within the adenomas fluorescence-activated cell sorting demonstrated that at Lgr5+ 

cells made up approximately 6% of the total cells (an increased proportion compared 

to that observed prior to Apc knockdown). Similar patterns were observed in both the 

small bowel and the colon. (Barker, Ridgway et al. 2009) This accelerated model of CRC 

carcinogenesis shows that an initiating mutation specifically applied to ASCs generates 

a neoplastic phenotype as observed in sporadic CRC carcinogenesis, strongly 

suggesting that CSCs originate from ASCs. 

In addition to mouse evidence there are indirect data in human tissue linking the 

origins of the CSC to ASCs. Boman et al. performed immuno-histochemical staining of 

adenomatous polyps from patients undergoing prophylactic colectomy for FAP. Crypts 

were stained with a variety of markers known to stain crypt basal cells (MSH2, Bcl-2 

and survivin), proliferating cells (Ki-67 and topoisomerase II) and differentiated cells 

(p21WAF1/C1P1 and p27kip1). These were compared with two types of normal control: 

macroscopically normal FAP crypts and crypts from non-FAP patients. (Boman, Walters 

et al. 2004) In general they found that the proportion of all stained cell types (basal 

and proliferative) to total cell number increased from normal mucosa to 

macroscopically normal FAP crypts to FAP adenomatous crypts. The most marked 

difference occurred in the proportions of cells positive for crypt basal markers. In FAP 

adenoma tissue these cells made up the majority of all cells however in normal crypts 

these cells comprised the smallest proportion. Crypt basal marker staining cells were 
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confined to the lowest crypt positions in the normal mucosa whilst they occupied the 

entire length of the crypt in FAP adenomas. (Boman, Walters et al. 2004) 

The findings of this study are consistent with modeling work suggesting that stem cell 

over-population is the initiating step in tumour development. (Boman, Fields et al. 

2008) However the work discussed above uses a stain for crypt basal cells, i.e not a 

specific ASC stain, so the results shown may represent an over-population of another 

basal cell population such as transit amplifying cells. Barker et al.’s work does show 

specific expansion of Lgr5+ ASCs though this has not been replicated in a human tissue. 

(Barker, Ridgway et al. 2009) 

Several studies have now documented increased expression of the stem cell marker 

Lgr5 in CRC cell lines (Uchida, Yamazaki et al. 2010), tumours and metastasis (Kleist, Xu 

et al. 2011) and in peripheral blood of CRC patients (Valladares-Iyerbes, Blanco-Calvo 

et al. 2012) with increased expression linked to poor prognosis. (Kleist, Xu et al. 2011; 

Valladares-Iyerbes, Blanco-Calvo et al. 2012) 

1.8.8 SIGNALLING PATHWAYS IN CANCER STEM CELLS  

WNT signalling is implicitly involved in CRC carcinogenesis as discussed in section 1.4. 

As CRC is a disease of the stem cells it is likely that the transition of ASC to CSC is 

mediated in part at least by WNT’s role in stem cell maintenance, where it prevents 

differentiation in the crypt base and promotes differentiation towards secretory 

(goblet cell) lineages luminally. (Scoville, Sato et al. 2008). Blocking Tcf-4, a 

downstream transcriptional effector of Wnt, in mouse embryo results in direct 

transformation of endoderm into differentiated gut epithelium composed almost 

entirely of enterocytes, with complete absence of the proliferative compartment and 

death. (Korinek, Barker et al. 1998) This effect is replicated in upstream silencing of 

Wnt by Dkk (a soluble Wnt inhibitor) which results in loss of crypts and decreased villus 

size in mice. (Pinto, Gregorieff et al. 2003; Kuhnert, Davis et al. 2004). Growth patterns 

can be returned to normal by removing Wnt inhibition. (Kuhnert, Davis et al. 2004) 
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Other signalling pathways such as NOTCH, BMP, P10 and PI3K have been shown to 

have both independent and inter-related roles in the maintenance and activity of the 

intestinal stem cell population. (Scoville, Sato et al. 2008).  
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1.9 NOTCH SIGNALLING 

1.9.1 NOTCH SIGNALLING IN NORMAL MUCOSA 

The NOTCH receptors are a family of transmembrane cell surface proteins which 

regulate the NOTCH pathway. The Notch gene was initially identified in 1917 and was 

so named because mutation in Drosophila resulted in a notched wing phenotype. 

(Morgan 1917) Core components of the NOTCH pathway in humans are: the ligands on 

the sending cell, Delta-like (DLL) 1, 2 and 3 and Jagged (JAG) 1 and 2; receptors on the 

receiving cell, NOTCH 1, 2, 3 and 4; and the transcription factor RBP-J, a  sequence 

specific DNA binding protein. (Lai 2004) 

NOTCH is a relatively simple cascade activated by direct cell to cell contact of NOTCH 

ligands and NOTCH receptors. (Borggrefe and Oswald 2009) When JAG or DLL interact 

with NOTCH receptors a two stage, γ-secretase dependent, proteolysis is instituted 

resulting in cleavage of the Notch intracellular domain (NICD) which binds 

(heterodimerises) the nuclear transcription factor RBP-J. RBP-J activates transcription 

of target genes with an RBP-J binding site. In the absence heterodimerisation of the 

RBP-J protein by NICD, RBP-J acts as a transcriptional silencer of NOTCH target genes 

which led to it being considered as a transcriptional silencing molecule initially. 

(Borggrefe and Oswald 2009) Downstream target genes regulated by NOTCH include: 

hairy enhancer of split (HES) family, HES1, HES5, HES7, HEY1, HEY2 and HEYL 

(Borggrefe and Oswald 2009); NRARP and Deltex-1 (negative regulators); C-MYC; 

CYCLIN D-1 and P21-WAF1 which are also implicated in human carcinogenesis. 

(Borggrefe and Oswald 2009) (Figure 1-8) 

NOTCH signalling was first identified as a key pathway for carcinogenesis in human T-

cell acute lymphoblastic leukaemia where a chromosomal translocation results in 

constitutive NOTCH activation (Ellisen, Bird et al. 1991). Aberrant NOTCH signalling has 

been identified in several other human cancers including breast, prostate, skin and 

cervical. (Lai 2004) In several cases the mechanism of aberrant NOTCH signalling is 

interaction of the RBP-J complex with viruses such as Epstein-Barr resulting in 
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activation of the NOTCH pathway by constitutive binding of RBP-J to transcriptional co-

factors. (Allenspach, Maillard et al. 2002) NOTCH signalling has been more extensively 

investigated in breast cancer where there is promise as a therapeutic target, both to 

promote differentiation of stem cells, enhancing radio and chemo sensitivity, and as a 

key pathway in carcinogenesis. (Harrison, Farnie et al. 2010) 

 

FIGURE 1-8. DIAGRAMMATIC REPRESENTATION OF THE NOTCH SIGNALLING PATHWAY. 

 

 

NICD – NOTCH INTRACELLULAR DOMAIN 
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1.9.2  NOTCH SIGNALLING AND STEM CELLS 

NOTCH has been shown to be an implicit signalling pathway in determining cell fate 

and differentiation of ASCs in the colon. (Katoh 2011) Whilst WNT drives 

differentiation to secretory cell lineages, NOTCH maintains ASCs in an undifferentiated 

state in the crypt base (Kazanjian and Shroyer 2011) and counterbalances WNT’s 

action to promote cells to a secretory fate towards the lumen. (van Es, Jay et al. 2005; 

Andreu, Peignon et al. 2008; Katoh 2011)  Luminally NOTCH has dual functions 

promoting differentiation to absorptive lineages whilst actively decreasing 

differentiation to secretory lineages. In mice Notch promotes differentiation to 

absorptive cell lineages via the effectors Hes1 and Ascl1. (van Es, van Gijn et al. 2005) 

Hes1 negatively regulates Atoh1 transcription. Increased Atoh1 promotes 

differentiation to secretory lineages via Math1 (human ortholog HATH1) and other 

proteins. (Jensen, Pedersen et al. 2000; Yang, Bermingham et al. 2001). Gain of 

function studies demonstrate that increased Notch increases the number of 

undifferentiated crypt basal cells together with an increased number of differentiated 

absorptive cells towards the lumen. (Fre, Huyghe et al. 2005; van Es, van Gijn et al. 

2005) 

Several other strategies have been used to block or enhance Notch signalling further 

defining the pathway. Mice born with constitutively active Notch1 live to three days. 

These mice have an absence of goblet cells throughout the intestine and a relative lack 

of Paneth cells. In addition the proliferative compartment expands to encompass the 

whole crypt and villus in the small bowel. (Fre, Huyghe et al. 2005) 

Cleavage of the NICD, and activation of RBP-J as a pro-transcription factor via co-factor 

recruitment in response to the NICD, is a γ-secretase dependent process. Γ-secretase 

inhibitors have been used in the treatment of Alzheimer’s disease and toxicological 

studies of its effects in rats have shown increased numbers of goblet (secretory) cells 

as would be expected with Notch inhibition. (Milano, McKay et al. 2004; Wong, Manfra 

et al. 2004) Subsequent work has aimed to elucidate the mechanisms of Notch 

mediated effects that have been observed. Van Es et al. used mice with an inducible 
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Rbp-j knockout and found bowel histology was not noticeably different at 2 days whilst 

levels of Hes1 were decreased and levels of Atoh1 were increased. Math1 protein was 

also found to be expressed throughout the crypt when it is usually only expressed in 

differentiated secretory cells. (van Es, van Gijn et al. 2005) After five days the transit-

amplifying compartment had been entirely replaced by goblet cells expressing Math1 

whilst Ki67 and BrdU inclusion (markers of ongoing proliferation) had become 

undetectable. (van Es, van Gijn et al. 2005) 

1.9.3 NOTCH SIGNALLING AND COLORECTAL CANCER 

NOTCH is a critical pathway in CRC carcinogenesis. Increased NOTCH1 expression and 

decreased NOTCH2 expression are both associated with features of an advanced CRC 

phenotype such as advanced stage, poor differentiation and vascular invasion. 

Multivariate analysis showed both were independent predictors of decreased survival 

with co-expression predicting a sub group with very short survival. (Chu, Zhang et al. 

2011) Decreased NOTCH2 expression in association with poor differentiation has been 

replicated in an independent dataset. (Jin, Zhang et al. 2012) NOTCH is activated in the 

majority of primary CRCs together with WNT although the precise mechanism of 

NOTCH activation remains unclear. (section 1.9.5) (Veenendaal, Kranenburg et al. 

2008; Kazanjian and Shroyer 2011)  

Notch signalling activation has been investigated in murine adenomas. Heterozygous 

ApcMultiple intestinal neoplasia (Min) mice showed increased expression of Notch receptors and 

ligands throughout polyp tissue and in crypt bases of macroscopically normal tissue. 

Increased Hes1 expression was also noted throughout the adenomatous tissue. (van 

Es, van Gijn et al. 2005; Guilmeau, Flandez et al. 2009) Inhibition of Notch in these 

ApcMin mice by γ-secretase induced differentiation of cells in variable proportions with 

over 50% of adenomas responding and generating Math1+/Ki67- cells (differentiated, 

non-proliferative cells), a situation never observed in untreated mice. (van Es, van Gijn 

et al. 2005) These findings suggest that active Wnt and Notch are both required to 

maintain the proliferative phenotype of neoplastic lesions.  
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Downstream NOTCH targets (HES1) have been found to be considerably upregulated in 

CRC tissue when compared with patient matched normal tissue. (Peignon, Durand et 

al. 2011) Ligand and receptor expression studies showed several that were unchanged 

between cancer and non-cancer controls (DLL-1, DLL-3 and NOTCH 3) however DLL-4, 

JAG-1, JAG-2, NOTCH 1 and NOTCH 2 were all upregulated. (Peignon, Durand et al. 

2011) JAG1 overexpression in human CRC has been confirmed in several other studies 

and has been correlated with adverse features such as poor differentiation. (Guilmeau, 

Flandez et al. 2009; Jin, Zhang et al. 2012)  

Similar results in a larger panel of human CRC have been reported by Reedijk et al. 

(Reedijk, Odorcic et al. 2008) They found HES1 and NOTCH 1 were consistently 

upregulated in all of the tumours (n=20) whilst JAG1 and JAG2 were upregulated 

inconsistently and DLL1, DLL3, DLL4 and NOTCH 2 were expressed at levels found in 

normal crypt bases. LFNG, a member of the Frizzled family of genes known to affect 

NOTCH through alteration of the specificity of the ligand/receptor interaction, was 

found to be consistently upregulated in human CRCs whilst other members of the 

Frizzled family retained normal expression. (Reedijk, Odorcic et al. 2008)  

Based on the observation that CRC is goblet cell deficient (Ho, Niehans et al. 1993), 

HATH1 (as the final mediator of secretory differentiation in response to increased 

ATOH1 and decreased NOTCH) expression was quantified by Leow et al. (Leow, 

Romero et al. 2004) Using the gene logic database they determined that HATH1 

expression was high in normal colon compared to other tissues and downregulated in 

CRC, a phenomenon not observed in other cancer tissues. This was subsequently 

confirmed in prospectively collected human CRC tumours and CRC cell lines. HATH1 

induction in CRC cell lines was able to decrease replication with a tenfold reduction in 

number of colonies formed on culture in soft agar. On xenograft into SCID mice there 

was absent tumour growth of HATH1 induced cells, compared with expected growth in 

non-HATH1 expressing controls. (Leow, Romero et al. 2004) The ability of NOTCH 

knock-down to promote differentiation and decrease proliferation has been replicated 

in other cell line based studies. (Sikandar, Pate et al. 2010; Yeung, Gandhi et al. 2011) 
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ATOH1 (which commits cells to a secretory lineage via HATH1) can also be considered 

as an independent TSG. (Leow, Romero et al. 2004; Bossuyt, Kazanjian et al. 2009) 

ATOH1 is silenced in approximately 70% of CRCs although point deletions accounting 

for this are only detectable in half of silenced cases. (Leow, Romero et al. 2004; 

Bossuyt, Kazanjian et al. 2009) Re-induction of silenced ATOH1 in CRC cell cultures 

greatly reduces proliferation. (Leow, Romero et al. 2004) 

In CRC-CSCs NOTCH signalling has been found to be increased 10-30 fold. This 

overexpression was found to prevent apoptosis via ATOH1, an effect that could be 

reversed on ATOH1 knock-down. (Sikandar, Pate et al. 2010)  

The therapeutic implications of these data have been tested in three studies. Human 

CRC explants have been transplanted into SCID mice and the effects of irinotecan and 

γ-secretase inhibitors tested. Sensitivity to chemotherapy was enhanced when both 

agents were provided with the greatest effect observed in tumours over-expressing 

NOTCH1. (Arcaroli, Powell et al. 2012) In CRC cell lines oxaliplatin, 5-fluoruracil and 

irinotecan have been shown to upregulate NOTCH1 and activate pro-survival cell 

pathways suggesting a potential mechanism by which NOTCH may mediate resistance 

to chemotherapy. This effect was abrogated by γ-secretase inhibitors in addition to 

chemotherapy. (Meng, Shelton et al. 2009) In NOTCH over-expressing CRC cell lines 

blocking of DLL4 using a monoclonal antibody greatly reduces tumour growth and 

enhances the radio-sensitivity of tumours in mouse explants.(Liu, Bham et al. 2011) 

1.9.4 EPIGENETIC REGULATION OF NOTCH 

There are few data on epigenetic regulation of NOTCH in CRC. In gastric cancer NOTCH 

pathway activation has been shown to be under the influence of DLL1 methylation in 

cell lines and DLL1 methylation is specifically associated with certain tumour subtypes. 

(Piazzi, Fini et al. 2011) NOTCH1 and NOTCH3 have been shown to be under 

methylation dependent control of expression in hepatic ASCs. (Reister, Kordes et al. 

2011) In breast cancer, hypomethyaltion of NOTCH1 has been correlated with NOTCH1 

overexpression and advanced cancer stage. (Zhang, Sun et al. 2011) Although there are 
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no data to date demonstrating methylation as the mechanism of altered NOTCH 

signalling in CRC, analysis of NOTCH 1,2,3,4 has only identified genetic mutation in 2% 

of all CRCs. (Lee, Jeong et al. 2007)  

1.9.5 NOTCH AND ITS RELATIONSHIP WITH WNT 

WNT is classically regarded as the key pathway in CRC carcinogenesis (section 1.4.3) 

Both WNT and NOTCH are crucial for maintenance of undifferentiated cells in the stem 

cell compartment with inactivation of either resulting differentiation and loss of 

proliferation. (Korinek, Barker et al. 1998; van Es, van Gijn et al. 2005) Stem cell 

overpopulation (section 1.8.3) is an initiating event in CRC carcinogenesis so signalling 

pathways controlling stem cell proliferation (WNT and NOTCH), which are known to be 

overexpressed in CRC, are likely to be implicitly involved in CRC carcinogenesis. Recent 

work suggests that there is a degree of cross-talk between the NOTCH and WNT 

pathways in CRC.  

Peignon et al. assessed whether upregulation of Notch targets such as Hes1 was due to 

increased β-catenin related transcription. Induced loss of Apc in a murine model 

resulted in immediate upregulation of Hes1 expression together with the expected 

acquisition of a pre-malignant phenotype (increased proliferation and expansion of the 

proliferative zone lumenwards). (Peignon, Durand et al. 2011) Mechanisms of the 

relationship of Wnt/β-catenin and the Notch pathway were then explored. After 

induced loss of Apc, expression of Dll4, Jag1, Jag2, Notch1, Notch2 and Notch4 were all 

increased at five days. However, on restoration of wild type only Jag1 returned 

immediately to normal, suggesting that the interaction of β-catenin and the Notch 

pathway maybe mediated by Jag1. (Peignon, Durand et al. 2011)  

Similar data has been found using APC deficient human CRC cells lines when both WNT 

and NOTCH were activated, and then, with inactivation of either pathway or both.  

(Rodilla, Villanueva et al. 2009). Both pathways had several downstream 

transcriptional pathways in common. Additionally increased WNT signalling increased 

JAG1 transcription and inhibition of WNT returned JAG1 levels to normal. Jag1 deletion 
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in Apc Min mice was sufficient to reduce the size of adenomas in mice at four months. 

(Rodilla, Villanueva et al. 2009) 

Intermediate steps in this pathway have been further defined with the observation 

that progastrin inhibition produces a phenotype similar to that of Notch inhibition 

(differentiation towards secretory phenotype) but not reminiscent of Wnt silencing 

(absorptive cell differentiation). (Pannequin, Delaunay et al. 2007; Pannequin, Bonnans 

et al. 2009) Progastrin is over expressed in human CRC (Siddheshwar, Gray et al. 2001) 

and is a downstream target of the WNT pathway. (Koh, Bulitta et al. 2000) This 

suggests that progastrin is the downstream target of Wnt which acts to promote Jag1, 

activating canonical Notch signalling. (Pannequin, Bonnans et al. 2009) 

To define whether Apc loss could be rescued by normalisation of Notch expression, 

Rbp-j was also knocked down to silence Notch. In this case mice with both Apc and 

Rbp-j loss had no difference in numbers, size or morphology of polyps or protein 

expression analysis compared to those with induced Apc loss only. The ability of 

downregulated Notch to rescue Apc- phenotype was not observed. However the 

phenotype was normalised when expression of Math1 was specifically induced, 

suggesting that this downstream Notch target gene may also be regulated via Wnt. 

Specific inhibition of Math1 increased tumourigenesis in mice. (Peignon, Durand et al. 

2011) Similar results have been observed in human cells with the additional re-

expression of HATH1 after reactivation of APC in an APC deficient human CRC cell line.  

(Leow, Romero et al. 2004) 

Loss of Math1 has been shown to increase tumourigenesis in murine models and loss 

of ATOH1 function (Math1 and HATH1’s upstream regulator) is present in around 70% 

of human tumours and potentially under epigenetic control. (Bossuyt, Kazanjian et al. 

2009) High levels of ATOH1 methylation were detected in both the promoter region 

and coding genome CpG islands in CRC samples compared to controls. ATOH1 

expression could be reactivated with the addition of DNA methyltransferase to CRC cell 

lines with epigenetic silencing of ATOH1. (Bossuyt, Kazanjian et al. 2009). Downstream 

targets of WNT signalling, which contribute to  cell cycle control, cyclin D-1 and p27 
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can be up-regulated by induction of HATH1 without change to WNT signalling. (Leow, 

Romero et al. 2004) 

Another mechanism of NOTCH/WNT linkage has been proposed by Tsuchiya et al. 

(Tsuchiya, Nakamura et al. 2007) to account for tumours where ATOH1 

downregulation is not observed despite a goblet cell deficient phenotype. (Aragaki, 

Tsuchiya et al. 2008) In these cases, cell line work showed that HATH1 suppression was 

not mediated by transcriptional silencing of ATOH1 and that normal HATH1 mRNA 

levels were observed with decreased HATH1 protein levels. This suggests that a post-

transcriptional mechanism may account for the goblet cell deficient phenotype. 

Exploration of the mechanism showed that HATH1 was degraded by GSK3β (a 

dephosphorylating enzyme that acts on β-catenin as part of the CDC). The degradation 

of HATH1 by GSK3β and evidence that this effect was reversed on silencing of the WNT 

pathway suggests that GSK3β directly modifies HATH1 levels post-transcriptionally. 

(Tsuchiya, Nakamura et al. 2007) 

The actions of WNT on NOTCH have been extensively investigated whilst the reverse 

causal pathway, the action of NOTCH on WNT has been less well documented. The 

balance of data in the literature available therefore seems to suggest a one way 

relationship where WNT signalling controls NOTCH. Some data does support this as 

when Notch is constitutively activated in transgenic mice the intestinal phenotype is 

grossly altered and death occurred within three days, however Wnt signalling, defined 

by nuclear β-catenin, TCF-4 and LEF1, was unchanged. (Fre, Huyghe et al. 2005) Notch 

inhibition therefore seems to have an independent phenotype which is not due to any 

influence on Wnt signalling.  

However there are suggestions of feedback of NOTCH on WNT. Katoh et al. screened 

WNT inhibitor promoter regions for the Notch responsive element (NRE). NREs were 

found on DKK2 (a secreted WNT inhibitor). Promoter and expression analysis 

suggested DKK2 as a NOTCH target gene. (Katoh 2007) This negative feedback on WNT 

signalling may be lost in CRC as DKKs are frequently found to be silenced by promoter 

hypermethylation. (Sato, Suzuki et al. 2007) More direct feedback on the WNT has 
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been demonstrated by Kwon et al. who have shown that NOTCH1 can directly bind 

Ser37 phosphorylated β-catenin (the small proportion of total cellular β-catenin that is 

biologically active). This occurs independently of all downstream NOTCH factors and is 

an effect limited to NOTCH1 rather than other NOTCH receptors. (Kwon, Cheng et al. 

2011) 

1.9.6 NOTCH SIGNALLING AND INFLAMMATORY BOWEL DISEASE 

Studies examining the role of NOTCH signalling in IBD are limited. In mouse models, 

differences between IBD and controls and between Crohn’s disease and UC have been 

investigated. With comparable levels of inflammation, Math1 was increased in Crohn’s 

disease but not in UC mice. Although the proportion of goblet cells was reduced in 

both IBDs, goblet cell depletion was more marked in UC mice (in the upper third of the 

crypt). (Gersemann, Becker et al. 2009) Both goblet cell depletion in UC, and decreased 

expression of HATH1, have been replicated in human UC sufferers. (Zheng, Tsuchiya et 

al. 2011) Mice with induced colitis show overexpression of Jag1, Dll1 and Dll4 

compared to normal controls. (Imaeda, Andoh et al. 2011) In an induced colitis mouse 

model, blocking of Notch signalling with dibenzazepine is able to prevent goblet cell 

and Math1 depletion compared to controls and increases the rates of mucosal healing. 

(Shinoda, Shin-Ya et al. 2010) 

1.10 SUMMARY – MICROSCOPIC AND MOLECULAR BIOLOGY OF CRC 

NOTCH signalling is a highly conserved pathway directing differentiation to absorptive 

differentiated cells and maintaining basal stem cells in an undifferentiated proliferative 

state. There is a high degree of interaction with the WNT signalling system which has 

yet to be fully defined. Both pathways are implicit in embryological development of 

the gut and subsequently in regulating cellular homeostasis.  

CRC is a disease of stem cells. CRC displays significant aberrations in both WNT and 

NOTCH signalling. It is likely that altered NOTCH signalling drives carcinogenesis by 

conferring an embryological phenotype of maintained de-differentiation and 
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proliferation on CRC-CSCs. Aberrant NOTCH signalling is required to initiate, promote 

and maintain a neoplastic phenotype.  

Whilst WNT abnormalities have been relatively well described in CRC the causal lesions 

for abnormalities in expression of NOTCH signalling components in CRC have not been 

well characterised. The limited evidence to date suggests that there may be genetic 

mutations, epigenetic control or interactions between WNT and NOTCH driving 

changes in NOTCH expression. This project aims to explore potential epigenetic 

regulation of NOTCH. 
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1.11 COLORECTAL CANCER AND THE ENVIRONMENT 

Less than a quarter of CRCs can be accounted for by direct inheritance of genetic 

mutation. (Rustigi 2007) Migration studies show that migrant individuals rapidly take 

on the host countries risk of CRC. This ‘migration effect’ is stronger for CRC than for 

many other cancer types indicating the strong influence of environmental exposure. 

(Flood, Weiss et al. 2000; Stirbu, Kunst et al. 2006; Nasseri, Moulton et al. 2009) Large 

prospective studies evaluating general good health measures have demonstrated an 

incremental risk in CRC associated with poorer lifestyle factors. (Macfarlane, 

Macfarlane et al. 2006) 

Several environmental and personal factors affect the risk of developing CRC. Smoking 

has been shown to have a marked effect, increasing CRC risk by around 20% (Relative 

risk (RR) 1.19; 95% CI 1.09-1.24, current smokers vs. non-smokers) in a meta-analysis 

of 22 prospective cohort studies including 23 500 participants. The pro-carcinogenic 

effect of smoking was more pronounced for rectal cancer compared to colon cancer. 

(Huxley, Ansary-Moghaddam et al. 2009) Additionally mortality after CRC diagnosis is 

increased in smokers and there is a dose-response relationship for both incidence and 

mortality with increased overall cigarette exposure. (Liang, Chen et al. 2009) The 

biology of CRCs between smokers and non-smokers is different with smokers more 

likely to have K-RAS mutation negative tumours. (Samadder, Vierkant et al. 2012) 

In a meta-analysis of physical activity and CRC risk, increased physical activity is 

protective against CRC. Data were available from 27 studies including approximately 

27 500 participants. Physical activity reduced CRC risk by around by 20% (RR 0.81; 95% 

CI 0.77-0.86). The observed effect was stronger for colon cancer compared to rectal 

cancer and for men. (Huxley, Ansary-Moghaddam et al. 2009) 

Meta-analysis of obesity as a risk factor included 58 000 individuals and concluded that 

individuals with a body mass index (BMI) of greater than 30 kg/m2 had a 20% increase 

in CRC risk (RR 1.19; 95% CI 1.11 – 1.29). Obesity may be considered as a combined 
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measure of both poor dietary choice and lower physical activity, but obesity also 

increases cancer risk by independent means.  

Adipose tissue is recognised as an endocrine organ as well as a fat storage tissue. 

Adipose tissue releases pro-inflammatory cytokines and increased adiposity is 

associated with higher circulating levels of interleukin 6 (IL6), tumour necrosis factor 

alpha (TNF-alpha) and C reactive protein (CRP). (Das 2001) Concentrations of these 

cytokines decrease with weight loss. (Esposito, Pontillo et al. 2003; Dietrich and Jialal 

2005; Imayama, Ulrich et al. 2012) Proposed mechanisms by which inflammatory 

cytokines promote cancer include: paracrine regulation of tumour cells, inflammation 

creating reactive oxygen species, apoptotic suppression and pro-angiogenic response. 

(Le Blay, Michel et al. 2003)  

Additionally, with increased adiposity and energy intake, metabolic adaptions occur in 

response to high circulating levels of free fatty acids resulting in insulin resistance and 

hyperinsulinaemia. (Calle and Kaaks 2004) Hyperinsulinaemia and increased adipokine 

levels have been shown to correlate with increased CRC risk. (Ho, Wang et al. 2012) 

Hyperinsulinaemia inhibits apoptosis and stimulates proliferation in CRC cell lines and 

murine studies have shown promising effects of metformin (a biguanide 

hypoglycaemic agent) as a chemopreventative agent for CRC. (Heijnen, van Amelsvoort 

et al. 1996; Algire, Amrein et al. 2010)  

Whilst there appears to be a correlation between CRP levels (and other inflammatory 

cytokines) and several epithelial cancers, including CRC, it has been difficult to 

determine if elevated CRP is causal, a response to early carcinogenesis or represents a 

confounder in response to other CRC risk factors known to increase systemic 

inflammation such as obesity or smoking. (Allin and Nordestgaard 2011) Difficulty in 

establishing this relationship has been due to long time course and large number of 

participants required to demonstrate a temporal relationship prospectively. Recent 

data has supported a causal role, as the temporal relationship between increased 

systemic inflammatory parameters followed by increased rate of CRC carcinogenesis 

has been demonstrated in a large cohort study originally recruited to study 
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cardiovascular risk factors. (Prizment, Anderson et al. 2011) Whatever the precise 

relationship CRP can be used to augment the accuracy of CRC screening (Tao, Haug et 

al. 2012) and predict metastatic disease in locally advanced CRC. (Ishizuka, Nagata et 

al. 2012) 

1.12 DIET AND COLORECTAL CANCER 

The impact of diet on colonic health is most aptly demonstrated by migrant studies 

when populations relocate from low to high risk areas.(Stirbu, Kunst et al. 2006; 

Nasseri, Moulton et al. 2009) This effect is more apparent for CRC than other epithelial 

tumours. (Flood, Weiss et al. 2000; Stirbu, Kunst et al. 2006) 

The World Cancer Research Fund (WCRF)/American Institute for Cancer Research 

(AICR) report on ‘Food, Nutrition and the Prevention of Cancer’ has judged that ‘food 

and nutrition has a highly important role in the prevention and causation of colorectal 

cancer.’ (WCRF/AICR. 2007) The report combined results for 752 publications 

concerning the role of diet and CRC. It found strong evidence that increased red meat, 

processed meat and alcohol consumption, body fatness and abdominal fatness all 

increased the risk of CRC. The evidence was graded as probable that dietary fibre, 

garlic, milk and calcium were protective against the development of CRC. (WCRF/AICR. 

2007) In 2010 WCRF/AICR released their CRC update report which added 263 papers to 

the meta-analysis and the evidence of a protective effect of dietary fibre was upgraded 

to convincing. (Dagfinn, Doris et al. 2011; Perera, Thompson et al. 2012; WCRF/AICR. 

2012) (Table 1-3)
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TABLE 1-3. DIETARY AND LIFESTYLE RISK AND PROTECTIVE FACTORS FOR CRC.  

(REDRAWN FROM WCRF/AICR CRC UPDATE REPORT 2010) 

 Decreases risk Increases risk 

Convincing Physical activity 

Foods containing dietary 

fibre 

Red meat  

Processed meat 

Alcoholic drinks (men) 

Body fatness 

Abdominal fatness  

Adult attained height 

Probable Garlic 

Milk 

Calcium 

Alcoholic drinks (women) 

 

 

1.12.1 DIETARY FIBRE AND COLORECTAL CANCER 

There is considerable debate on the actual definition of dietary fibre. The World Health 

Organisation (WHO) Codex Alimentarius Committee on Nutrition and Foods for Special 

Dietary Uses has been debating a universally acceptable definition for 20 years and 

separate definitions currently exist for the UK government, the EU, and WHO. Most 

debate revolves around the relative importance of chemical structure vs. physiological 

effect and/or health benefit. A current pragmatic definition would be that dietary fibre 

is a heterogeneous group of dietary components composed principally of non-

digestible carbohydrates (NDC) usually derived naturally from plant cell walls. NDCs 

are primarily non-starch polysaccharides such as cellulose and pectin. (Heijnen, van 

Amelsvoort et al. 1996; Saemann, Bohmig et al. 2000; Asp and Bender 2006) Whilst the 
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consensus view on dietary fibre and CRC risk is now clear there are variations in effect 

found across different studies which may be accounted for by difficulties studying 

dietary effects. 

The WCRF/AICR report concluded that there was a ten percent decrease in risk of 

cancer for every increase in fibre intake of 10g/day. (Dagfinn, Doris et al. 2011) The 

European Prospective Investigation into Cancer and Nutrition (EPIC), a large 

prospective study which included over 1700 cases of CRC, also found a protective 

effect for CRC with increasing dietary fibre intake (RR 0.79; 95% CI 0.63-0.99). 

(Bingham, Day et al. 2003) 

There are several proposed mechanisms by which dietary fibre could exert its 

protective effect. Firstly increased dietary fibre may dilute carcinogen exposure. Those 

with higher levels of dietary fibre have increased colonic transit times and greater stool 

bulk which may limit the time and concentration of toxins the colonic epithelium is 

exposed to. (Cummings 1981) It has also been proposed that fibre molecules are able 

to bind potentially carcinogenic compounds preventing exposure to the colonic 

mucosa. (Bingham, Day et al. 2003) 

Whilst these mechanisms may have a contributory effect there is strong evidence to 

suggest that benefit is derived from a sub-group of dietary fibre – resistant starch (RS). 

RS is defined as any starch or products of starch digestion that are not absorbed in the 

small bowel. (Nilsson, Ostman et al. 2008) It is subdivided into four main types: 

RS1 - physically inaccessible starch due to an intact cell wall, mostly present in 

whole grains 

 

RS2 – resistant starch granules (ungelatinised), found in green bananas and 

high amylose corn starch 

 

RS3 – retrograded starch (after cooking and cooling a proportion of starch 

crystallises rendering it resistant to amylases), found in cooked cooled potatoes 

 

RS4 – chemically modified starches often used as food additives (Asp and 

Bender 2006) 
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1.12.2 RESISTANT STARCH AS A DIETARY COMPONENT 

RS is present in the everyday diet in foods such as wheat bran, rye bread, kidney 

beans, potatoes and green bananas. (Table 1-4) Average daily RS consumption is 

estimated to be around 2.8g/day in the UK (Wacker, Wanek et al. 2002) compared to 

20g/day, the amount proposed to produce health benefits. (Englyst, Kingman et al. 

1992) It is feasible to supplement a range of carbohydrate containing foods with 

manufactured RS without detectable change to taste or consistency of food stuffs. 

(Cook and Sellin 1998) 

TABLE 1-4. RS CONTENT OF VARIOUS FOODS.  

FROM THE NATIONAL STARCH FOOD INNOVATION DATABASE OF RESISTANT STARCH. 

Food Serving size Resistant starch content (g) 

Navy beans (baked beans) ½ cup cooked 9.8 

Banana, raw 1 medium, peeled 4.7 

Cold potato 1 small 3.2 

Lentils  ½ cup cooked 2.5 

Cold pasta 1 cup 1.9 

Pearl barley ½ cup, cooked 1.6 

Oatmeal 1 cup, cooked 0.7 

Wholegrain bread  2 slices 0.5 

 

1.12.3 SAFETY AND STATUTORY STATUS OF RS 

RS is found naturally in many foods as discussed above. No allergic reactions to RS 

have ever been reported and there are no safety issues. (Goldring 2004; Nugent 2005) 

Side effects such as flatulence, bloating, abdominal pain and laxative effects have been 

reported with higher doses (>30g/day) however these usually settle with time. 
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(Heijnen, van Amelsvoort et al. 1996; Grabitske and Slavin 2009) One small study of 

eight participants has reported an increase of DNA adducts in individuals receiving very 

high doses of RS, however these results have not been replicated subsequently. 

(Wacker, Wanek et al. 2002) 

Currently RS has no specific legal status and naturally occurring RSs would be defined 

as dietary fibres for food labelling purposes in the UK. (Nugent 2005) The status of 

synthetically produced RSs is more complex as they must satisfy the accepted criteria 

for the structure of a fibre (polysaccharide with polymerisation degree >3) and have a 

proven health benefit to be classed as dietary fibre. (Stowell 2009) Health benefit 

claims are accepted nationally leading to variation in the classification of type 4 RSs on 

a country by country basis. Additionally, standard analytical methods to determine 

fibre content of whole foods are not often able to distinguish synthetic or naturally 

occurring fibres once they are mixed in a final product. In the UK, labelled dietary fibre 

content is determined by the AOAC (997.08) method which includes RSs and fructans. 

Different measurement methodologies and definitions of a products status make 

comparisons of RS intake in different populations problematic.  

1.12.4 HEALTH BENEFITS OF RESISTANT STARCH 

Several trials have examined the effect of RS on satiety. In a randomised double-blind 

crossover trial, Nilsson et al. found that consumption of RS at breakfast increased 

subjective satiety compared with a low fibre meal. (Nilsson, Ostman et al. 2008) RS 

supplementation was also shown to decrease food intake for subsequent meals. 

(Nilsson, Ostman et al. 2008) This effect has not been consistently demonstrated in 

other studies of RS supplementation and there may be variation depending on the 

format in which the RS supplement is taken and dose of supplement. (Willis, Eldridge 

et al. 2009; Monsivais, Carter et al. 2011; Karalus, Clark et al. 2012) 

Several trials have demonstrated that ingestion of RS has a beneficial effect on 

glycaemic control. (Robertson 2012) Al-Tamimi et al. showed lower levels of insulin 

release and decreased peak blood glucose concentrations after consumption of a 
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standard glucose drink with RS versus glucose and a control calorie matched fibre 

supplement. (Rycroft, Jones et al. 2001) A cross-over study of healthy young adults has 

shown similar results when a standard glucose load was given with either RS 

supplemented rice versus normal rice. (Le Blay, Michel et al. 2003) In patients with 

metabolic syndrome and type 2 diabetes, RS supplementation has been shown to 

improve insulin sensitivity when compared to placebo in a randomised controlled trial. 

(Aoyama, Kotani et al. 2010) 

Local colonic effects include lowering the pH of stool preventing the formation of 

potentially carcinogenic bile salt metabolites and promoting absorption of calcium. 

(Asp and Bender 2006) RSs most potent colonic effect is likely through its action as a 

prebiotic and the products of its bacterial fermentation.  The definition of a prebiotic 

is: ‘a selectively fermented ingredient that allows specific changes, both in the 

composition and/or activity in the gastrointestinal microbiota that confers benefits 

upon host well-being and health.’(Gibson, Probert et al. 2004) Almost any 

carbohydrate that reaches the colon will act as a substrate for bacterial fermentation 

and may alter the composition of the commensal microbiota. Specific beneficial 

change is thought to result from increase in bifidobacteria and lactobacilli rather than 

less beneficial species such as Bacteroides and clostridia. (Macfarlane, Macfarlane et 

al. 2006; Bird, Conlon et al. 2010) It is also recognised that an important characteristic 

of a prebiotic is to provide a substrate for bacterial fermentation which generates 

short chain fatty acids (SCFAs) which improve colonic health. (Macfarlane, Macfarlane 

et al. 2006; Bird, Conlon et al. 2010) 

Although specific effects of different carbohydrates are difficult to characterise due to 

dietary heterogeneity there is evidence that specific molecules have differential effects 

on bacterial populations and fermentation. (Rycroft, Jones et al. 2001) RS is one of the 

more complex prebiotics in the colon compared with shorter chain carbohydrates. RS 

has been shown to increase products of fermentation to a greater extent in the distal 

colon compared to the proximal colon of rats. Less complex carbohydrates had the 

opposite effect with the increase in fermentation products primarily in the proximal 
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colon. (Le Blay, Michel et al. 2003) Products of RS fermentation include carbon dioxide, 

methane and SCFAs. SCFAs (acetate, proprionate and butyrate), particularly butyrate, 

have a strongly beneficial effect on the colonic mucosa. Overall propionate and acetate 

are produced in greater quantity, but butyrate is the preferred fuel of colonocytes, 

contributing to 60% of their energy requirements, and is absorbed preferentially to 

acetate and proprionate. (Cook and Sellin 1998; D'Argenio and Mazzacca 1999) RS has 

been noted to have the property of making greater quantities of SCFAs, particularly 

butyrate, in contrast to other colonic bacterial substrates. (Bird, Conlon et al. 2010)  

1.12.5 POLYDEXTROSE 

Polydextrose (PD) is a complex synthetically manufactured polysaccharide generated 

by bulk melt polycondensation of glucose and sorbitol. (Stowell 2009) PD is 96% 

undigested within the small bowel and is also fermented by the colonic microbiota to 

SCFAs. (Stowell 2009) It has appetite suppressing effects similar to RS (Hull, Re et al. 

2012; Ranawana, Muller et al. 2012). Consumption of PD in humans at a dose of 

21g/day has a prebiotic effect. (Hooda, Boler et al. 2010) In healthy human subjects 

consumption of 8g/day has demonstrated that PD is a prebiotic which is slowly 

fermented over the length of the colon and fermentation of PD reduces the 

genotoxicity of faecal water. (Costabile, Fava et al. 2012) When PD is fermented in an 

in vitro colonic model and the products applied to colon cancer cells in culture, up 

regulation of protective pathways regulating apoptosis and down regulation of pro-

carcinogenic cell cycle pathways are observed. (Putaala, Mäkivuokko et al. 2011) 

1.12.6 BUTYRATE EFFECTS ON COLORECTAL EPITHELIUM 

Butyrate has been shown to have several different anti-inflammatory properties in the 

gut. (Vinolo, Rodrigues et al. 2011) In vitro it has been shown to increase rates of 

neutrophil apoptosis; decreased neutrophil apoptosis is usually associated with chronic 

inflammation. (Aoyama, Kotani et al. 2010) Modulation of the inflammatory 

mechanisms of the epithelium has been shown by butyrate’s ability to restore normal 

expression of immune modulators in inflamed tissue such as: IL-10, IL-12 (Saemann, 
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Bohmig et al. 2000), IL-8 (Kwon, Kim et al. 2010), Fas (Zimmerman, Singh et al. 2012) 

and nuclear factor kappa B (NF-κB) (Andersen, Christensen et al. 2010; Russo, Luciani 

et al. 2012) NF-κB is one of the principal transcription factors which regulates the 

inflammatory response (Bonizzi and Karin 2004) and is constitutively activated in 40% 

of CRC. (Sakamoto, Maeda et al. 2009; Machado, Constantino et al. 2012) Array data 

after induced blocking of NF-κB has demonstrated that many of the genes down-

regulated upon inhibition of NF-κB are known to control tumour progression and 

metastasis. (Agarwal, Das et al. 2005) High NF-κB expression in CRC has been linked 

with poor prognosis. (Kwon, Kim et al. 2010) Certain polymorphisms of NF-κB may 

modulate an individual’s response to dietary factors. In a large, prospective Danish 

population there was a 3% increase risk of CRC per 25g red or processed meat 

consumed per day in individuals with an NF-κB 94 deletion and no effect of increased 

meat consumption in individuals without this mutation. (Andersen, Christensen et al. 

2010)  

Butyrate has actions on the colorectal epithelium additional to its anti-inflammatory 

properties. Cancer cells display foreign antigenic signatures and so induce an immune 

response. Evasion of this immune response is required for a cancer to progress. The 

degree of tumour infiltration by immune cells is a prognostic marker in a variety of 

cancers. (Prestwich, Errington et al. 2008) Immuno-editing is the process of natural 

selection of tumour cells that progress vs. those that do not by their ability or 

otherwise to evade the host immune response. (Dunn, Bruce et al. 2002; Prestwich, 

Errington et al. 2008) Dietary components that enhance the immune system’s ability to 

destroy tumour cells may have a chemoprotective role. (Armstrong and Mathers 2000) 

Butyrate was initially reported by Perrin et al. to increase the susceptibility of cancer 

cells to IL-2 activated natural killer cells in rats. (Perrin, Cassagnau et al. 1994) 

Enhanced natural killer cell lysis of tumour cells has also been shown in human CRC cell 

lines after supplementation with butyrate. (Zhang, Wang et al. 2009) Other 

mechanisms by which butyrate may enhance the immune response have been 

demonstrated, such as enhancement of human leucocyte antigens (Kvale and 
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Brandtzaeg 1995; Siavoshian, Blottiere et al. 1996) or inhibition of decay accelerating 

factor. (Andoh, Shimada et al. 2002) 

Additionally butyrate promotes apoptosis in cancer cells. Butyrate is able to induce 

caspase cascade mediated apoptosis in CRC cell lines. (Medina, Edmonds et al. 1997; 

Pajak, Gajkowska et al. 2009) Butyrate has also been shown to enhance the cellular kill 

in CRC cancer cell lines treated with the cytotoxic cisplatin. (Koprinarova, Markovska et 

al. 2010) Caco-2 cell line studies have demonstrated that this effect is greater with 

butyrate than other SCFAs and that these changes are mediated via redox status and 

D-glucose metabolism alterations. (Matthews, Howarth et al. 2012) Butyrate’s ability 

to induce apoptosis in in vitro cancer models has been replicated in vivo, where a dose-

dependent increase in apoptosis with butyrate was shown in rats with induced CRC. 

(Clarke, Young et al. 2012) Whilst enhanced apoptosis has been demonstrated in CRC 

models this effect is not present in normal mucosa. (Hass, Busche et al. 1997) 

Mentschel et al. found that apoptosis was reduced by one third in RS supplemented 

pigs with normal mucosa vs. controls whilst mitotic rates remained the same. Changes 

in the apoptotic rate were not consistent throughout the crypt. Apoptosis decreased in 

the upper two thirds of the crypt and increased in the lower third. (Mentschel and 

Claus 2003) The differential effects of butyrate appear to be mediated by the 

differentiation status of cells with apoptosis occurring primarily in undifferentiated 

cells at the crypt base. Comalada et al. found no effect in apoptosis in normal 

differentiated colonocytes or well differentiated CRC cells whilst there was a large 

increase in apoptosis in poorly differentiated CRC cells supplemented with butyrate. 

(Comalada, Bailon et al. 2006) Similar results have been shown in an in vivo model of 

rat CRC carcinogenesis. (Clarke, Young et al. 2012) Cumulatively, these data suggest a 

maximal effect of butyrate in undifferentiated crypt basal cells; the stem cell 

compartment. 

Butyrate has consistently been shown to have an anti-neoplastic effect on CRC cell 

lines. (Rycroft, Jones et al. 2001; Le Blay, Michel et al. 2003) Animal studies have also 

shown a protective effect of butyrate against cancer formation. (Medina, Afonso et al. 
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1998; Le Leu, Brown et al. 2007; Aoyama, Kotani et al. 2010) In rats fed a diet high in 

red meat, high numbers of DNA mutations were found in a dose dependent fashion. 

However supplementation of the rats’ diet with RS caused increases in colonic 

butyrate concentrations and ameliorated DNA mutations caused by the red meat diet. 

(Toden, Bird et al. 2007) High fibre diets not rich in RS, did not have the protective 

effect of RS supplemented diets. (Toden, Bird et al. 2007) 

1.12.6.1 BUTYRATE AS A MODULATOR OF RESPONSE IN COLONIC INJURY 

Butyrate delivered directly to the human colon has been shown to increase cellular 

replication rates in injured epithelium in UC and produce healing. (Freeman 1986) 

Protein synthesis in cells from patients with UC is increased significantly with butyrate 

supplementation compared with cells from normal controls or cancer patients. 

(Agarwal, Das et al. 2005) Several rat studies have shown that anastomotic strength is 

increased after colorectal resection when the animals are given butyrate enemas 

rather than placebo. (Dunn, Bruce et al. 2002; Prestwich, Errington et al. 2008; 

Bloemen, Schreinemacher et al. 2010; Mathew, Wann et al. 2010) Similar 

improvements in strength of a colonic anastomosis have been reported when butyrate 

is supplemented intravenously to rats. (Rolandelli, Buckmire et al. 1997) 

When butyrate has been administered to animals with induced CRC a protective effect 

has not been noted either in terms of fewer or less aggressive CRCs. (Freeman 1986; 

Deschner, Ruperto et al. 1990; Caderni, Luceri et al. 2001) Several possibilities exist to 

explain these data such as timing of butyrate administration with respect to tumour 

development stage, dose of butyrate and other independent effects of dietary fibre. 

(Lupton 2004) However the simplest explanation is that the individual effects of 

butyrate act at a much more subtle level than methods used for induction of CRCs and 

that the effects of butyrate are not appreciable in the face of such severe genotoxic 

insults. In humans diagnosed with CRC and administered RS supplementation as part 

of a randomised controlled trial prior to surgery, RS patients had decreased crypt 

proliferation and beneficial changes in methylation of several TSGs compared to 
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controls indicating that there are butyrate effects in established CRC although not at a 

macroscopic level. (Dronamraju, Coxhead et al. 2009)  

1.12.6.2 BUTYRATE METABOLISM IN ULCERATIVE COLITIS 

Whilst the exact aetiology of UC remains to be elucidated it is clear that butyrate 

metabolism has a role in healing in UC and potentially in the aetiology of the condition. 

Butyrate metabolism is impaired in UC mucosa with deficient mitochondrial β-

oxidation of butyrate resulting in an energy deficiency for colonocytes. (Roediger 1980; 

Chapman and Grahn 1994) It has been suggested that this could represent the primary 

lesion in UC development as induced blocking of mitochondrial β-oxidation in rats 

results in a similar clinical and pathological disease to human UC. (Roediger and Nance 

1986) However when in vivo butyrate metabolism was measured in human patients 

with UC, butyrate metabolism was found to be deficient only in actively inflamed 

mucosa and returned to normal with disease remission suggesting altered metabolism 

was a consequence rather than an initiating factor. (Den Hond, Hiele et al. 1998) 

Several studies have addressed the role of butyrate in treating active UC or 

maintaining UC remission. Dietary supplementation with Plantagoovata – a rapidly 

fermentable RS - has been shown in a controlled clinical trial to maintain UC remission 

with similar efficacy to mesalazine. (Fernandez-Banares, Hinojosa et al. 1999) Another 

RS – germinated barley fraction – has been shown to assist mucosal healing in active 

flares of UC and maintain remission. (Kanauchi, Suga et al. 2002; Kanauchi, Mitsuyama 

et al. 2003; Hanai, Kanauchi et al. 2004) To achieve greatest effect in UC it seems that 

SCFA generation should occur throughout the colon; that is gradual fermentation is 

preferential to rapid caecal fermentation as provision of less complex, rapidly 

fermentable RSs do not show the magnitude of beneficial effects of slowly fermented 

RSs. (Galvez, Rodriguez-Cabezas et al. 2005)  
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1.12.7 POTENTIAL MECHANISMS OF BUTYRATE ACTION 

1.12.7.1 BUTYRATE AND WNT SIGNALLING 

Butyrate has been shown to affect WNT signalling which may contribute to its anti-

tumourigenic properties. In studies of CRC cell lines, the addition of butyrate has been 

shown to increase WNT signalling – a finding that would be expected to be pro-

carcinogenic.  (Bordonaro, Lazarova et al. 2002; Lazarova, Bordonaro et al. 2004) 

However this was associated with increased apoptosis and decreased clonal growth 

proportional to the increase in WNT signalling with no effect noted on cellular 

differentiation. (Lazarova, Bordonaro et al. 2004) Within each cell line, there was intra-

cellular heterogeneity of response with apoptotic cells showing higher levels of WNT 

activation than live cells. (Lazarova, Bordonaro et al. 2004) When upregulation of WNT 

signalling was repressed so was the apoptotic effect of butyrate. They concluded that 

the response of a cell to butyrate was mediated by the level of WNT expressed by that 

cell. (Lazarova, Bordonaro et al. 2004) 

These data appear contradictory as whilst WNT was increased by butyrate 

administration, an unexpected finding for a protective agent, apoptosis was also 

enhanced especially in the most highly expressing WNT cells. (Barker and Clevers 2006; 

Clevers 2006; Katoh 2011; White, Chien et al. 2012) 

Bordonaro et al. propose this may be due to a relationship whereby WNT has an 

optimum level of activation for carcinogenesis, before and after which, WNT results in 

either controlled replication (normal tissue homeostasis) or apoptosis respectively. 

(Figure 1-9) (Bordonaro, Lazarova et al. 2008) ‘Optimal’ WNT levels for cancer result in 

uncontrolled proliferation and tumourigenesis. This theory is supported by an 

observation in FAP where the second allelic hit to APC which allows progression of a 

polyp to cancer has to be ‘correct’ depending on the specific germline APC mutation.  

Mutations or ‘hits’ are complimentary as many second hits do not actually result in 

progression of neoplasia. (Medina, Edmonds et al. 1997) For progression to cancer the 

‘correct’ mutation maintains low levels of APC expression so that downstream WNT 
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expression is partially regulated but increased - the ‘just right’ hypothesis. 

(Albuquerque, Breukel et al. 2002)  

 

FIGURE 1-9. CELLULAR REPLICATION IN RESPONSE TO WNT SIGNALLING ACTIVITY AS PROPOSED BY BORDONARO 

ET AL. 

 

 

1.12.7.2 BUTYRATE AS A HISTONE DEACETYLASE INHIBITOR 

Butyrate also acts as a histone deacetylase inhibitor (HDACi). This action is likely to 

both contribute to alterations in WNT and via other mechanisms. HDACis are a 

potential therapy in CRC and are already in clinical use for haematological cancers as 

vorinostat (Zolinza™, Merck, NJ, USA) which has been licenced in the U.S. as third line 

therapy for cutaneous T-cell lymphoma since 2006. (Tan, Cang et al. 2010) Pre-clinical 

data has shown that HDACis are active against CRC and act synergistically with 

established therapies such as 5-FU and irinotecan to enhance chemosensitivity of 

tumours. (Kim, Kim et al. 2009) The metastatic potential of CRC cell lines can be 
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abolished using butyrate to restore histone acetylation towards normal level. (Li and 

Chen 2012)  

HDACis act epigenetically by modifying histone structure thus altering gene expression 

(section 1.4.7). (Pajak, Gajkowska et al. 2009) HDACis promote hyperacetylation of 

histones and increase transcription of CRC TSGs and reduce transcription of CRC 

oncogenes both in vitro and in vivo. (Dronamraju, Coxhead et al. 2009) One 

mechanism by which butyrate suppresses NF-κB activation in the colon is via its action 

as an HDACi. (Bonizzi and Karin 2004)  

Butyrate’s action as an HDACi has also been shown to influence the alterations in WNT 

signalling discussed previously. Butyrate and other HDACis have been shown to 

directly increase the levels of active β-catenin in the cell leading to apoptosis. Where 

β-catenin formation is blocked, or in cells resistant to production of β-catenin, the 

apoptotic effects of butyrate and other HDACis is abolished. (Pajak, Gajkowska et al. 

2009)  

1.12.7.3 BUTYRATE AND METHYLATION 

Butyrate, via its action as an HDACi, is also able to reverse hypermethylation of 

silenced TSGs and induce differentiation of colorectal cancer cells in vivo. (Sgambato, 

Puglisi et al. 2010; Sarkar, Abujamra et al. 2011) In gastric cancer butyrate is able to 

reverse hypermethylation of silenced WNT inhibitors and restore their expression. 

(Shin, Kim et al. 2012) 

Conversely in normal human fibroblasts (both adult and foetal) butyrate is able induce 

de-differentiation, increasing the harvest of stem cells from culture. Genome wide 

microarray shows that the mechanism for this is demethylation of gene promoter 

regions. (Mali, Chou et al. 2010) Although this action to de-differentiate cells may 

seem contradictory these differential effects could be accounted for by the different 

biological systems (normal and cancer tissue) and the fact that the initial methylation 

pattern of these tissues would be different as methylation is tissue specific. 

(Thompson, Atzmon et al. 2010; Liang, Song et al. 2011) 
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1.13 HUMAN CLINICAL TRIALS INVOLVING RESISTANT STARCH 

Despite strong evidence in vitro and epidemiologically for the benefits of dietary fibre 

and specifically RS in CRC chemoprevention, clinical trials have not consistently 

demonstrated similar effects. Several large trials have enrolled human volunteers after 

diagnosis of a colorectal adenomatous polyp and randomised them to either high or 

low RS diets to examine the effect on polyp recurrence. The Toronto Polyp prevention 

trial was small (n=201) and used dietary advice rather than a supplement to change 

diet for two years. They reported no significant difference in polyp recurrence 

between the groups although with dietary advice only, changes in terms of fat and 

fibre consumed by participants fell short of those that had been defined a priori. 

(McKeown-Eyssen, Bright-See et al. 1994) Similar results were reported from the 

Australian polyp prevention trial. In this trial of 411 patients, participants were 

assigned to one of eight groups. High fibre, low fat and high beta-carotene were tested 

in all combinations against placebo. No overall effect was noted for any of the 

interventions tested. Only one group taking a combination of low fat/high fibre had a 

significant decrease in large adenomas at both 24 and 48 months. The reliability of 

these data are questionable given very small sample size within a single group. 

(MacLennan, Macrae et al. 1995) 

Larger trials have similarly failed to show benefits of dietary fibre on polyp prevention. 

Alberts et al. found no difference in polyp recurrence in adults taking high wheat-bran 

fibre vs. a low fibre supplement, although baseline fibre consumption was high in both 

groups, compliance in the high fibre arm was poor and follow-up was only 3 years. 

(Alberts, Martinez et al. 2000)  

The polyp prevention trial randomised patients to counseling to achieve a low fat, high 

fibre, high fruit and vegetable intake diet vs. standard healthy eating advice. This trial 

also failed to show benefit of such a diet compared with controls at both four 

(Schatzkin, Lanza et al. 2000) and eight years (Lanza, Yu et al. 2007) after adenomatous 

polyp resection. Sustained dietary changes did occur but these drifted with longer 

follow-up. (Lanza, Schatzkin et al. 2001) Sub analysis of the polyp prevention trial has 
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shown that those who were deemed ‘super-compliers’ with advice to maintain a low 

fat, high fruit and vegetable, high fibre diet over four years had a 35% lower risk of 

polyp recurrence than controls. (Sansbury, Wanke et al. 2009) 

The Concerted Action Polyp Prevention (CAPP) studies were large randomised 

controlled trials (RCT) to test the chemoprotective effects of RS and aspirin 

(www.ncl.ac.uk/capp). The trials investigated two populations at high risk of CRC; 

CAPP1 examined the effects of RS and aspirin in patients with FAP whilst CAPP2 

examined the effects in patients with HNPCC. (Burn, Chapman et al. 1998) Participants 

were randomised to take either: aspirin (600mg/day), RS (15g/day raw potato starch, 

15g/day Hylon VII (CAPP1), 15g/day Novelose 240, 15g/day Novelose 330 (CAPP2)), 

aspirin and RS or double placebo. (Mathers, Mickleburgh et al. 2003) CAPP1 recruited 

133 participants and followed them up for 1 year. Although there was a trend towards 

smaller polyps in both the aspirin and RS treated group there was no effect on polyp 

recurrence. (Burn, Bishop et al. 2011) CAPP2 has reported results of 703 HNPCC who 

were followed up for a mean of 29 months. There was no difference in either the rate 

of polyp formation or the rate of cancer diagnosis between any of the groups. (Burn, 

Bishop et al. 2008) 

1.14 SUMMARY – THE ROLE OF RS IN MODULATING CRC RISK 

The human trial data seems to contradict the basic science, animal and 

epidemiological evidence showing protective effects for fibre, RS and butyrate 

discussed earlier.  

It is clear that, via butyrate, RS has potent effects on both normal colonic mucosa and 

CRC cells in addition to other general health benefits. Butyrate directly affects WNT 

signalling, one of the core functional pathways in CRC pathogenesis. The effects that 

butyrate has on colorectal epithelium suggest strongly that it should act as a 

chemoprotective agent in humans, however this has not been bourne out in human 

trials. There are several potential reasons for this. Firstly the effects generically 

attributed to fibre (used in several of the human trials) are likely derived from a 

http://www.ncl.ac.uk/capp
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specific subset of fibre such as RS. Therefore trials which generically increase dietary 

fibre may not increase the ‘correct’ fibre resulting in no overall effect. Secondly it is 

possible that patients who are recruited to trials on the basis of previous adenomatous 

polyps or high risk conditions such as FAP and HNPCC have too great a mutation load 

for butyrate’s action to be detectable using polyp recurrence as the outcome measure. 

Where more subtle mucosal kinetic changes and methylation marks have been 

measured in CRC patients supplemented with RS whilst awaiting surgery, beneficial 

effects are noted. (Dronamraju, Coxhead et al. 2009) It has also been shown that the 

effects of butyrate alter depending on the phenotypic status of the cell (Comalada, 

Bailon et al. 2006). The polyp forming stage of CRC carcinogenesis may not be sensitive 

to the chemopreventative effect of butyrate, although this seems less likely as 

adenomatous change would be associated with an increase in butyrate sensitive, 

undifferentiated cells (section 1.8.3). It is also likely that in patients who are at high risk 

of forming further polyps, either due to genetic mutations or because they have had a 

prior adenomatous polyp, may require longer periods of dietary change than those 

used in some of the human trials. Indeed when a subset of good compliers in one trial 

was examined at longer follow-up there does appear to be a reduction in polyp 

formation. (Sansbury, Wanke et al. 2009) 

For these reasons it is likely that meaningful data on the chemoprotective effects of RS 

is likely to be obtained from those at normal risk of CRC. The use of cancer or polyp 

development as end points is impractical as these occur infrequently in a normal 

population and time periods for development are long. Therefore surrogate endpoints 

of cancer risk (biomarkers) are required so valid new knowledge can be discovered 

contemporaneously and practically. 
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1.15 HYPOTHESES, AIMS AND OBJECTIVES  

1.15.1 HYPOTHESES 

1. Selected NOTCH genes (ATOH1, NOTCH1, NOTCH3, JAG1, LFNG, RBP-J) display 

hypomethylation of promoter regions in those at higher risk of CRC compared 

to normal controls. 

2. Global genome methylation, as measured by LINE-1, will be decreased in those 

at higher risk of CRC compared to normal controls. 

3. Systemic inflammation, as measured by hsCRP, will be elevated in those at 

higher risk of CRC compared to normal controls. 

4. Dietary intervention in individuals at normal risk of CRC with either 

polydextrose or Hi-maize 260® will increase methylation of NOTCH gene 

promoters.  

5. Dietary intervention in individuals at normal risk of CRC with either 

polydextrose or Hi-maize 260® will increase global DNA methylation.  

6. Dietary intervention in individuals at normal risk of CRC with either 

polydextrose or Hi-maize 260® will decrease systemic inflammation.  

7. Pro-carcinogenic and protective anthropometric and environmental factors will 

influence methylation of NOTCH genes in normal risk individuals with increased 

methylation associated with protective exposures and decreased methylation 

associated with harmful exposures. 

1.15.2 AIMS 

Broadly the aims of the project are to test the hypotheses detailed above by collecting 

biological samples (including rectal biopsies), anthropometric, demographic and 

dietary data from individuals at higher risk of CRC due to a previous diagnosis of 

adenomatous polyps within the colon or a diagnosis of UC for longer than 7 years and 
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comparing these to a control population at normal risk of CRC. Methylation assays for 

NOTCH genes and for global methylation will be developed and used to estimate 

methylation in DNA extracted from rectal mucosal biopsies of recruited participants. 

Individuals at normal risk will additionally be recruited and allocated to 50 day dietary 

intervention with RS or polydextrose using a 2x2 factorial allocation. Before and after 

analysis of rectal biopsies using the methylation assays developed will test the 

plasticity of methylation of NOTCH genes.  

1.15.3 OBJECTIVES 

The objectives of this study are: 

1. To screen several candidate NOTCH genes for variation in promoter 

methylation in DNA from colorectal mucosal biopsies from a subset of trial 

participants at differential CRC risk i.e. normal controls, polyp patients and UC 

patients. Screening will identify the most variably methylated genes between 

risk groups and inform selection of genes to be analysed in the whole study 

sample.  

2. To describe variation in the selected NOTCH gene methylation in rectal biopsies 

between individuals at normal lifetime risk of CRC and individuals at higher 

lifetime risk of CRC (previous adenomatous polyp or UC >7years). 

3. To describe associations between lifestyle, dietary and anthropometric factors 

known to increase risk of CRC and methylation of NOTCH genes.  

4. To investigate differences in  global DNA methylation (LINE-1 assay) in DNA 

from rectal biopsies between individuals at normal lifetime risk of CRC and 

individuals at higher lifetime risk of CRC (previous adenomatous polyp or UC 

>7years). 

5. To describe associations between lifestyle, dietary and anthropometric 

exposures known to increase risk of CRC and global gene methylation.  
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6. To undertake a randomised, double-blind, placebo-controlled human dietary 

intervention study with resistant starch (Hi-maize 260) and polydextrose given 

in a 2x2 factorial design in those at normal lifetime risk of CRC.  

7. To investigate the effect of dietary supplementation with resistant starch and 

with polydextrose on methylation of selected NOTCH genes in the colorectal 

mucosa of humans at normal risk of CRC. 

8. To investigate the effect of dietary supplementation with resistant starch and 

with polydextrose on global DNA methylation in humans at normal risk of CRC.  
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CHAPTER 2. METHODS 

2.1 CLINICAL TRIAL PROTOCOLS 

2.1.1 STATUTORY APPROVALS 

Prior to recruiting any participants ethical approval was sought and gained from 

Newcastle and North Tyneside Research Ethics Committee 2 (09/H0907/77). (Appendix 

1) Caldicott approval for storage of data was sought and gained from Northumbria NHS 

Foundation trust (C1792). The trial was registered with clinicaltrials.gov 

(NCT01075893) 

2.1.2 FUNDING AND TASK ALLOCATION 

The DISC study was funded by the Biotechnology and Biological Science Research 

Council. This funding included the appointment of Dr Naomi Willis as a research 

associate and Dr Long Xie as a laboratory technician to the team. All statutory 

approvals, trial protocols and standard operating procedures were undertaken by 

myself prior to their joining the study. Participant recruitment and post procedure 

processing was undertaken by all team members although I was responsible for all 

invitations to potential participants. Dr Willis undertook all home visits to volunteers 

and repeat biopsies were undertaken by all team members. All laboratory work; DNA 

extraction, bisulfite modification, assay development, sample processing and analysis 

was undertaken by myself with the exception of the LINE-1 assay development which 

was undertaken by Dr Wan Adnan Omar who also provided my laboratory training. 
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2.1.3 PARTICIPANT GROUPS 

Allied to the research questions there were two patient groups: 

1. Those at higher risk of CRC – this group comprised participants with either 

ulcerative colitis or a previous history of adenomatous polyp. 

2. Those at ‘normal’ risk of CRC - this group comprised participants with no 

macroscopic or microscopic abnormality in their colon or other factors likely to 

increase their risk of CRC. These participants were invited to participate in a 

dietary intervention study (the DISC Study) in which they took a food 

supplement for 50 days. Their baseline samples were used as comparators for 

the higher risk group (described above). 

2.1.4 SAMPLE SIZE CALCULATION 

The DISC study aimed to recruit 75 patients. No formal power calculation was 

undertaken due the exploratory or pilot nature of the analyses being undertaken and 

hence the paucity of relevant data to undertake such a calculation. The sample size 

was based on a previous RCT undertaken within the group which demonstrated 

significant changes in cell proliferation and expression of cell cycle regulatory genes 

with RS supplementation at a similar dose over a shorter time period. (Dronamraju, 

Coxhead et al. 2009) 
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2.2 RECRUITMENT 

2.2.1 APPROACH TO PATIENTS 

All patients were recruited via endoscopy lists at Wansbeck General Hospital, 

Ashington, UK or North Tyneside General Hospital, North Shields, UK. Review of 

hospital databases and prior endoscopy reports allowed most patients with a history 

of UC or prior adenomatous polyps to be identified prior to their appointment. 

Potential participants were sent a detailed description of the study at least five days 

prior to their appointment. (Appendix 2) 

Potential recruits were identified at their endoscopy visit. Suitable participants were 

invited to participate and screened for potential exclusion criteria (Table 2-1) 

(Appendix 3) before full informed consent was obtained. (Appendix 4) Sample 

acquisition and data collection depended on the group (higher risk of CRC or 

intervention study) and so these are described separately henceforth. 
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TABLE 2-1. PARTICIPANT EXCLUSION CRITERIA. 

Exclusion criteria - general 

 
Age <16 or >85 years 

Prisoner at the time of initial endoscopy 

Familial polyposis syndrome 

Hereditary non-polyposis colorectal 
cancer (HNPCC) 

Known colorectal tumour 

Previous colorectal resection 

Pregnancy  

Chemotherapy in last 6 months 

Therapy with aspirin/other non-steroidal 
anti-inflammatory drug (NSAID) 

Other immunosuppressive medication 

Active colonic inflammation at 
endoscopy 

Incomplete left sided colonic 
examination 

Colorectal carcinoma found at 
endoscopy 

Iatrogenic perforation at endoscopy 

Colorectal cancer on histology 

 

Additional exclusion criteria for 
intervention group 

 

Warfarin or other anticoagulant therapy 

Diabetes mellitus 

Additional exclusion criteria for UC group 

 
Short clinical colitis activity index (SCCAI) 
score greater than 5 
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2.2.2 JUSTIFICATION OF EXCLUSION CRITERIA 

Many exclusion criteria are self-explanatory and were chosen for pragmatic reasons 

e.g. age and pregnancy. Other criteria were selected to ensure that intervention 

participants had no underlying cause to be at higher risk of CRC. High risk inherited 

conditions such as FAP and HNPCC resulted in exclusion. To screen for possible HNPCC 

the Amsterdam II criteria 3-2-1 rule was used: at least 3 relatives with an HNPCC 

associated cancer, 2 generations affected and 1 cancer diagnosed before age 50. 

(Vasen, Mecklin et al. 1991)  

Similarly, therapy with aspirin or other NSAID resulted in exclusion as even small daily 

doses (75mg) of aspirin have been shown to have a protective effect against CRC 

development. (Fowkes, Price et al. 2010; Rothwell, Fowkes et al. 2011) 

To be deemed at normal risk of CRC, subjects had to have a normal left-sided (to the 

splenic flexure) examination of the colon rather than a complete colonoscopy. 

Sigmoidoscopy reliably excludes cancer and other relevant colonic pathology 

depending on presenting symptoms and other risk markers for an individual. Where 

sigmoidoscopy is indicated the chance of missing a lesion is approximately one 

percent, less than the additional risk of whole colonic imaging. (Thompson, Flashman 

et al. 2008)  

Those with active colonic inflammation, recent chemotherapy or immunosuppressive 

medication were excluded due to the influence of these factors on immune function 

and systemic immune status, as change in inflammatory markers was a study end 

point. 

Potential participants for the dietary intervention study who were taking warfarin or 

other therapeutic anti-coagulant agents were excluded due to increased risk of 

bleeding at their repeat biopsies. Potential participants with diabetes mellitus were 

excluded due to potential adverse effects on glycaemic control if they were 

randomised to take one of the placebo carbohydrates (maltodextrin or amioca starch). 
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The Short Clinical Colitis Activity Index (SCCAI) is a simple validated tool to assess 

clinically whether potential participants have quiescent colitis at the time of 

endoscopy. (Walmsley, Ayres et al. 1998) Active colitis was excluded pragmatically as 

histological analysis would have been complicated and to ensure sample homogeneity. 

An SCCAI score greater than five predicts active colitis with 92% sensitivity and 91% 

specificity. (Jowett, Seal et al. 2001) 

2.2.3 TRIAL PARTICIPANT JOURNEY - HIGHER RISK OF COLORECTAL CANCER 

PARTICIPANTS 

2.2.3.1 COLLECTION OF DEMOGRAPHIC, ANTHROPOMETRIC, LIFESTYLE AND DIETARY DATA 

Participants in the higher risk of CRC group had all measurements and samples taken 

at the initial (and only) visit. Demographic data were collected including: age, sex, 

medical history and medications. Dietary choices and habitual physical activity were 

assessed using questionnaires. The food frequency questionnaire (FFQ) was a locally 

adapted version of the validated questionnaire used in the EPIC study. (Bingham, Gill 

et al. 1997; Kroke, Klipstein-Grobusch et al. 1999) The physical activity questionnaire 

was identical to that used in the EPIC study which has been validated against objective 

accelerometer data. (Cust, Smith et al. 2008) It is considered suitably sensitive to 

detect epidemiological associations between physical activity and health outcomes 

when both recent and long-term activity data are required. (Cust, Smith et al. 2008) 

Participants also had height, weight, waist, hip and thigh circumferences measured. 

(see section 2.2.4.4) 

2.2.3.2 BLOOD SAMPLE COLLECTION 

Venepunture was performed at the time of recruitment to the study. 4 x 7.2mg EDTA 

(K3E) tubes (Becton Dickinson, Oxford, UK) and 1 x gel-coated (SST II) advance (Becton 

Dickinson, Oxford, UK) were collected. Vitamin B12, plasma folate and high sensitivity 

C-reactive protein (hsCRP) estimation were performed at the Freeman Hospital 

laboratories (Newcastle-upon-Tyne, UK). Plasma selenium was measured at Liverpool 
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University (Liverpool, UK) after plasma was separated by centrifugation (5 minutes, 

4ᵒC, 3100g)  

2.2.3.3 BIOPSY COLLECTION AND PROCESSING 

After the endoscopy had been completed to its proximal extent, and no exclusion 

criteria had been found, 9 mucosal biopsies were taken from the rectum, 10cm from 

the anal verge, with 2.3mm spiked flexible endoscopy forceps (Biobite forceps, Medical 

Innovations, Essex, UK). The first biopsy was placed in 1ml RNAlater® (Ambion, USA), 

two biopsies were immediately flattened and fixed in 10% formalin for later paraffin 

embedding and sectioning, 1 biopsy was placed in 1ml of Carnoy’s solution (30% acetic 

acid, 70% ethanol) and 5 were snap frozen in liquid nitrogen cooled isopentane after 

being suspended in Tissue-tek® optimal cutting temperature (OCT) compound (Sakura, 

Netherlands). 

Biopsies for paraffin embedding were transferred to the pathology laboratories at 

Northumbria Healthcare NHS Foundation trust for paraffin embedding and blocking. 

OCT frozen biopsies and RNAlater® biopsies were stored at -80ᵒC. Carnoy’s samples 

were stored at 4ᵒC overnight then transferred to 70% ethanol for long-term storage.  
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2.2.4 TRIAL PARTICIPANT JOURNEY - INTERVENTION PARTICIPANTS  

Those participants who consented to take part in the intervention trial had a more 

complex journey through the study. (Figure 2-2) 

2.2.4.1 ENDOSCOPY 

At the initial endoscopy visit demographic data, blood samples and mucosal biopsies 

were taken, identical to those taken for participants at higher risk of CRC. Participants 

were given equipment for collection of urine and stool samples at home. A ‘washout’ 

period of at least seven days before urine and stool sample collection was used to 

mitigate against possible effects of bowel preparation on these samples.  

2.2.4.2 BIOPSY PROCESSING 

Biopsy collection and processing were as described previously for participants in the 

higher risk group. (see section 2.2.3.1) 

2.2.4.3 BLOOD SAMPLE COLLECTION 

Venepuncture was performed at the time of recruitment to the study. 8 x 7.2mg EDTA 

tubes and 1 x gel-coated were collected. Post venepuncture processing was as for 

higher risk of CRC participants (see section 2.2.3.2). The remaining 4 EDTA tubes were 

centrifuged (5 minutes, 4ᵒC, 3100g) and plasma extracted and stored at -80ᵒC. These 

samples were used to estimate plasma SCFA concentrations (Scottish Universities 

Environmental Research Centre (SUERC), UK). 

2.2.4.4 HOME VISITS 

The first visit after endoscopy was arranged in the patient’s home after the seven day 

washout period. Participants were asked to collect urine and stool samples 

immediately prior to the visit. Height was measured with an ultrasound stadiometer to 

the nearest 0.1cm (Soehnle, Germany) and weight to the nearest 0.1kg with Tanita 

digital scales (TanitaEurope B.V., Amsterdam, The Netherlands). Waist, hip and thigh 

circumference measurements were recorded to the nearest 0.1cm. All measurements 
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were performed as per methods previously described. (Marfell-Jones, Olds et al. 2006) 

All measurements were performed twice or repeated until agreement tolerances were 

achieved (0.1kg weight, 0.1cm height and 1cm for waist, hip and thigh circumference).  

During the course of the 50 day intervention participants were visited on two further 

occasions to supply additional intervention sachets, check compliance and provide 

support. Prior to the end of the intervention period participants were provided with 

apparatus to collect further urine and stool samples. Some were also supplied with an 

accelerometer to validate physical activity data reported in the lifestyle questionnaire.  

2.2.4.5 RANDOMISATION & BLINDING 

Randomisation of participants was stratified for the initial endoscopic procedure 

(colonoscopy or flexible sigmoidoscopy) to mitigate against the effect of different 

bowel preparation regimes. Participants selected an opaque sealed envelope from a 

box for the relevant procedure. This was coded A, B, C or D. Blinding was maintained 

until data collection and analysis was complete. 

2.3 INTERVENTIONS 

Two active ingredients and two placebos were tested in a 2x2 factorial design. The 

active ingredients were Hi-maize 260 (National Starch, USA) and polydextrose 

(Danisco, Finland). Maltodextrin and Amioca starch acted as placebos. 

2.3.1 HI-MAIZE 260 (RS) 

Hi-maize 260 is a granular RS with an energy content of 5.7kJ/g (cf. 16.4 kJ/g white 

flour). Approximately 40% of Hi-maize 260 is digestible in the small bowel so 60% is RS 

available for fermentation in the colon. 

(http://www.foodinnovation.com/Downloads/Applications/HimaizeBrochure.pdf)  

http://www.foodinnovation.com/Downloads/Applications/HimaizeBrochure.pdf
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2.3.2 POLYDEXTROSE  

PD was supplied by Danicso (Finland) as Litesse® ultra 

(http://www.danisco.com/wps/wcm/connect/www/corporate/products/product_rang

e/sweeteners/litesse). It is a complex synthetically manufactured polysaccharide 

generated by bulk melt polycondensation of glucose and sorbitol which is essentially 

tasteless and can be incorporated into foods to enhance texture. (Stowell 2009) It has 

an energy content of 4.1 kJ/g and is less than 5% digested in the small bowel (>95% 

NDC available for fermentation in the colon). 

2.3.3 DIGESTIBLE CARBOHYDRATES- MALTODEXTRIN AND AMIOCA STARCH 

Two carbohydrates which are completely digested and absorbed within the small 

bowel were used within the DISC study. They were provided together to create a 

placebo arm within the trial and were combined with active agents in the single agent 

arms so that blinding could be maintained. These agents were:  

 maltodextrin which is produced by partial hydrolysis of starch molecules. It is 

rapidly digested and absorbed in the small bowel as glucose. 

 amioca starch is derived from maize corn and consists mainly of amylopectin 

(low amylose content), a highly branched glucose polymer. It is completely 

digested and absorbed as glucose in the small bowel. 

(http://eu.foodinnovation.com/docs/AMIOCA.pdf)  

http://www.danisco.com/wps/wcm/connect/www/corporate/products/product_range/sweeteners/litesse
http://www.danisco.com/wps/wcm/connect/www/corporate/products/product_range/sweeteners/litesse
http://eu.foodinnovation.com/docs/AMIOCA.
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2.3.4 INTERVENTION COMBINATION 

Interventions were combined so that each participant was taking either (Figure 2-1):  

 Double intervention agent (Hi-maize 260 & PD) 

 Hi-maize 260 (combined with amioca starch) 

 PD (combined with matched maltodextrin) 

 Placebo (maltodextrin and amioca starch) 

The amount of intervention agent supplied per day was calculated to deliver the same 

dose of non-digestible carbohydrate to the colon for PD and Hi-maize 260 based on 

known proportion digested in the small bowel i.e. 12 and 23g/d respectively. The dose 

of 23g/day RS has been previously shown to modulate cell proliferation and gene 

expression as part of an RCT and 12g/day PD was greater than the dose (8g/day) which 

has been shown to reduce the genotoxity of faecal water in humans. (Dronamraju, 

Coxhead et al. 2009; Putaala, Mäkivuokko et al. 2011)  The quantity of maltodextrin or 

amioca starch supplied was matched to the quantity of the corresponding intervention 

agent so that the total weight of supplement consumed each day was 35g/day for each 

of the four treatment limbs. (Figure 2-1) 

 
All interventions were supplied in 8x8cm opaque silver sachets coded depending upon 

contents. Sachets were combined to produce each intervention and packed in boxes to 

contain one week’s supply of a supplement. The daily dose of each agent was divided 

between two sachets so each day each participant was asked to consume four sachets 

daily.  

Participants were asked to consume the supplement on cold food or mixed with cold 

water or juice. Participants were free to divide the doses as they saw fit throughout 

the day. Participants were asked to retain both eaten and uneaten sachets for 

collection and counting to give an estimate of compliance. 
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FIGURE 2-1. COMBINATIONS OF INTERVENTIONS AND PLACEBOS  

(PD – POLYDEXTROSE) 

 

 

2.3.4.1 REPEAT BIOPSIES 

At the end of the 50 day period the participants re-attended the hospital for their end 

of intervention repeat biopsies and measurements. All initial measurements were 

repeated (blood samples, anthropometry, biopsies, stool and urine). Mucosal biopsies 

were taken using a rigid sigmoidoscope from the mid rectum using rigid 4mm Sarratt 

biopsy forceps (Stericom, UK) (10cm from the anal verge). Rigid sigmoidoscopy 

avoided the need for bowel preparation prior to the repeat biopsies. All repeat 

samples were processed identically to the samples obtained at the start of the study 

(see section 2.2.3.2, 2.2.3.3).  
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FIGURE 2-2. SCHEMATIC REPRESENTATION OF PARTICIPANTS PROGRESS THROUGH THE DISC STUDY 
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2.4 LABORATORY METHODS 

2.4.1 MEASURING METHYLATION 

Several methods exist to assess the degree of methylation of promoter sequences of 

the genome. Pyrosequencing is a ‘sequencing by synthesis’ technique for quantifying 

the methylation status of individual CpG sites. (Tost and Gut 2007) 

2.4.2 BISULFITE MODIFICATION 

Sequencing to measure methylation is achieved by generating a methylation specific 

sequence alteration. This utilises the desulphonation reaction between pyrimidines 

and sodium bisulfite initially described in the 1970s.  (Hayatsu, Wataya et al. 1970; 

Hayatsu, Wataya et al. 1970) Whilst the desulphonation reaction with unmethylated 

cytosine is rapid, the desulphonation of methylated cytosine happens at a much slower 

rate, such that the deamination of unmethylated cytosine will be will be complete 

before the deamination of methylated cytosine has begun. (Frommer, McDonald et al. 

1992) 

Bisulfite modification utilises this reaction to convert unmethylated cytosine residues 

to uracil, whilst methylated cytosines remain as cytosine. The region of interest within 

a genome can then be amplified using polymerase chain reaction (PCR) and the 

pattern of original methylation can be measured by sequencing the complimentary 

product and determining the ratio of cytosines to thymines at each CpG site; hence 

determining the ratio of methylated to unmethylated cytosines in the original sample. 

2.4.3 PYROSEQUENCING 

Primer sets are designed to amplify a region of interest in the gene which is known to 

contain several CpG sites. This region is then amplified by PCR and the product is 

denatured to single DNA strands. The pyrosequencer then sequences the 

complementary strand to the PCR product which is incubated with DNA polymerase, 

ATP (adenosine triphosphate), sulfurylase, luciferase, and apyrase as well as the 
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substrates, adenosine 5' phosphosulfate, and luciferin. Bases are sequentially added to 

the reaction and if a base is incorporated it is accompanied by release of 

pyrophosphate. (Figure 2-3) Pyrophosphate is converted to ATP by ATP sulfurylase 

which drives conversion of luciferin to oxyluciferin generating visible light in proportion 

to the amount of ATP produced. The light produced is therefore also proportional to 

the number of nucleotides incorporated into the sequence and is recorded by the 

pyrosequencer. (Figure 2-4) At the completion of this reaction unincorporated bases 

are cleared by apyrase before further bases are added. The incorporation ratio of 

cytosine to thymine at the completion of sequencing is directly related to the 

cytosine/thymine ratio in the PCR product and hence the methylated to unmethylated 

CpG ratio in the original sample. 
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FIGURE 2-3. SEQUENCING OF COMPLIMENTARY STRAND TO SINGLE-STRANDED PCR PRODUCT IN THE 

PYROSEQUENCER.  

(REPRODUCED WITH PERMISSION FROM WWW.PYROSEQUENCING.COM) 

 

FIGURE 2-4. INCORPORATION OF A NUCLEOTIDE IN THE COMPLIMENTARY SEQUENCE RESULTS IN LUCIFERASE 

MEDIATED RELEASE OF LIGHT MEASURED BY THE PYROSEQUENCER.  

(REPRODUCED WITH PERMISSION FROM WWW.PYROSEQUENCING.COM) 
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2.5 BIOINFORMATIC ANALYSIS & PRIMER DESIGN 

Genes were selected initially based on their proposed biological relevance. (section 

1.9.3).  The list selected was: ATOH1, JAG1, LFNG, NOTCH1, NOTCH2, NOTCH3 and 

RBP-J. 

The gene2promoter function on the genomatix website (www.genomatix.de) was used 

to identify likely promoter sequences for relevant transcripts. Promoter sequences 

were copied into methprimer (http://www.urogene.org/methprimer). A 200 base pair 

window including, CG ratio >0.5 and CpG observed to expected ratio >0.6,  was used to 

identify promoter zones rich in CpGs. (Gardiner-Garden and Frommer 1987; Feinberg 

and Tycko 2004) CpG rich promoter regions were chosen as regions of interest for 

assay of methylation status and bisulfite modified to be suitable for analysis in PSQ 

assay design (Biotage AB, Uppsala, Sweden). In PSQ assay design, multiple CpG rich 

target zones were tested to generate the best primer sets based on the suitability 

score generated by PSQ and verified on direct examination of the sequence. Eighteen 

potential primer sets were identified and tested. (Table 2-2) The final assays that were 

used to screen the test sample population are detailed in Table 2-3. 

http://www.genomatix.de/
http://www.urogene.org/methprimer/index1.html
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TABLE 2-2. SUMMARY OF PRIMER SEQUENCES TESTED  

(PCR- POLYMERASE CHAIN REACTION) 

Assay  PCR Validated Reproducible Screened Excluded due to   

NOTCH1(1) No No No No No PCR product generated  

NOTCH 
1(2wob) 

Yes No No No Unable to establish consistent 
optimal annealing 
temperature 

 

NOTCH1(3) Yes No No No Inconsistent validation  

NOTCH1(4) Yes No No No Inconsistent validation  

NOTCH1(5) Yes Yes Yes Yes   

       

NOTCH2(1) No No No No No PCR product generated  

NOTCH2(2) Yes No No No Would not sequence past 1st 
CpG site on pyrosequencing 

 

NOTCH2(3) Yes No No No Inconsistent validation  

       

NOTCH3(1) Yes No  No No Few CpGs included, good 
result with Notch3 (3) 

 

NOTCH3(2) Yes No  No No Few CpGs included, good 
result with Notch3 (3) 

 

NOTCH3(3) Yes Yes Yes Yes   

NOTCH3(4) Yes Yes Yes No Same CpGs included as Notch 
3(3) 

 

       

LFNG (1) Yes  No No No Inconsistent validation  

LFNG (2) No No No  No No PCR product generated  

LFNG (3) Yes Yes Yes Yes   

       

RBP-J Yes Yes Yes Yes   

       

ATOH1 Yes Yes Yes Yes   

       

JAG1 Yes Yes Yes Yes   
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2.6 TECHNIQUES 

2.6.1 DNA EXTRACTION 

DNA was extracted from half a biopsy using a standard phenol-chloroform 

methodology. Samples were homogenized in a solution of 500µl SET-SDS (25ml 50mM 

Tris, 12.5 mM ethylenediamine tetracetic acid (EDTA), 0.5% sodium dodeyl sulphate 

(SDS)) and 16µl proteinase K (Fermentas) overnight at 55°C. DNA was precipitated by 

the addition of 600µl 24:1 chloroform:isoamyl alcohol (Fermentas) and the 

supernatant separated using phaselock gel tubes (5-prime, Hamburg, Germany).  The 

supernatant was incubated with 16µl RNAase/T1 (Fermentas) at 37°C for 30 minutes. 

42µl 3M sodium acetate was added, followed by 400µl isopropanolol and 2.5µl 

(20mg/ml solution) glycogen (Fermentas). The DNA precipitated was separated by 

centrifugation at 13 000 rpm for 5 minutes. The DNA pellet was washed with 70% 

ethanol twice before air drying and re-suspending in 50µl of 2mM Tris. 

2.6.2 BISULFITE MODIFICATION 

DNA was bisulfite modified using EZ DNA methylation Gold™ kit (Zymo, CA, USA) 

according to the manufacturer’s protocol. 

2.6.3 PCR 

All PCRs were performed on a Sensoquest Thermocycler (Göttingen, Germany). 

Standard PCR contents were: 12.5μl Hotstar Taq (Qiagen), 9.5μl nuclease free water, 

1μl forward primer, 1μl reverse primer and 1μl template DNA. Where required Q-

solution (Qiagen) was added, 2μl was substituted for 2μl nuclease free water. Standard 

cycling conditions were: enzyme activation (95°C for 5 minutes), 50 cycles of 

denaturation (15s 95°C), annealing (30s optimal annealing temperature, Table 2-3) and 

extension (15s 72°C) followed by a final extension phase (5 minutes 72°C) and 

termination of the reaction by cooling to 4°C indefinitely. 
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2.6.4 PYROSEQUENCING 

Pyrosequencing was performed using a Pyromark Q96 ID (Qiagen) using Pyromark 

Gold Q96 reagents (Qiagen). 10μl of PCR product was placed in each well of a standard 

96 well plate together with 38μl binding buffer (Qiagen), 30μl nuclease free water and 

2μl Streptavidin Sepharose High Performance beads (GE Healthcare, Uppsala, 

Sweden). Plates were covered and shaken (15rpm) to prevent bead sedimentation 

until ready for analysis. In a corresponding pyrosequencing plate (Qiagen), 11.5μl of 

annealing buffer and 0.5μl of sequencing primer were aliquoted for each sample. 

Samples were drawn up by vacuum probes on the Q96 vacuum work station (Qiagen), 

washed in 70% ethanol (5s), denatured in 0.8% NaOH solution (10s) and washed in 

Pyromark wash buffer (Qiagen) (5s) before being transferred to the pyrosequencing 

plate. The pyrosequencing plate was heated to bind the sequencing primer (80°C for 2 

minutes) prior to analysis on the pyrosequencer. 
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2.7 ASSAY DEVELOPMENT 

2.7.1 PCR OPTIMISATION 

The designed primer sets were synthesised by Eurofins (Ebersberg, Germany). 

Lyophilised primers were reconstituted using nuclease-free water to a concentration of 

10pmol/µl. Gradient PCR was performed around the estimated optimal annealing 

temperature (Tm-2°C) to identify the actual optimal PCR conditions. PCR products were 

compared against the anticipated product size using gel electrophoresis for correct 

product size and product purity. Where required, further optimisation was conducted 

using additional Q-solution (Qiagen, Crawley, UK) or by varying cycle number and 

timings. Final assay conditions are summarised in Table 2-3. 

2.7.2 ASSAY VALIDATION AND REPRODUCIBILITY 

After PCR optimisation, biotin-labelled (5’) reverse primers were used for 

pyrosequencing. PCR was performed using control DNA of predetermined degrees of 

methylation (Epitect Control DNA, Qiagen). 100%, 75%, 50%, 25% and 0% methylated 

control DNA was amplified and pyrosequenced to determine the relationship between 

observed methylation levels and known methylation levels. Both pre- and post-PCR 

dilutions were performed and the results plotted using Microsoft Excel 2010. (White, 

Durston et al. 2006) A best fit line was applied and the coefficient of determination (R2) 

calculated. R2>0.95 was deemed to validate the assay at each individual CpG site. 

The reproducibility of assays was tested using the assays for three genes (ATOH1, 

LFNG, and RBP-J). The proportion of samples in which variability was greater than 5% 

in duplicate samples was 6.3% for duplicate bisulfite modification procedures (13 

samples, 142 CpG sites), 4.3% for duplicate PCR reactions (12 samples, 139 CpG sites) 

and 2.2% for duplicate pyrosequencer runs (9 samples, 90 CpG sites).  
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2.7.3 ASSAY SCREENING  

To identify gene assays which were likely to yield biologically interesting results, 6 

assays for 6 genes (Table 2-3) were applied to DNA from a sub-group of study 

participants. This screening sub-group comprised eight polyp participants, eight normal 

participants (age, sex and smoking status matched to the polyp sub-group), and eight 

UC participants. Due to the small size of the UC group matching was not possible. Data 

from the screening phase were used to determine those genes displaying differential 

methylation signatures in those at higher risk of cancer and those at normal risk. These 

data were used in conjunction with other factors to determine which genes would be 

analysed for the whole study population. (section 3.2.8) 

2.7.4 GLOBAL DNA METHYLATION 

Global DNA methylation was assessed using an assay which quantified CpG 

methylation in the long interspersed nucleotide element-1 (LINE 1). Around 18% of the 

human genome consists of LINE-1 repeats with 500 000 truncated and 5 000 full length 

sequences (Kazazian 2000) LINE-1 methylation status is thought to represent the 

genome-wide DNA methylation status and has been shown to be the best surrogate 

for the current gold standard assay: high performance liquid chromatography (HPLC). 

(Lisanti, Omar et al. 2012) 

2.8 SAMPLE PROCESSING 

RBP-J and JAG1 methylation and LINE-1 (global DNA methylation) were quantified on 

the entire study population. All samples were processed in duplicate using 

independent PCR reactions. Each participant’s duplicate PCR samples were analysed in 

the same pyrosequencing run to minimise batch effect. For intervention participants, 

before and after intervention samples were analysed in the same run. Duplicate data 

were deemed acceptable if there was agreement within 5% (absolute values). If there 

was not agreement, a third sample was run. The mean value of these data was used 

for analysis. If after 3 values there was a significant outlying value (>15% difference 
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from others values within 5%) this value was discarded from the analysis. Mean values 

were used for statistical analysis.



 

1
0
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TABLE 2-3. SEQUENCES AND PCR CONDITIONS FOR VALIDATED PRIMERS. 

Assay Forward primer Reverse primer Sequencing primer Annealing 

temperature 

(ᵒC) 

Reaction 

additives 

Cycle 

adjustments 

ATOH1 GTTTGGGAGTTTTTTGTATA GTTTGGGAGTTTTTTGTATA GTTTGGGAGTTTTTTGTATA 49 Q- sol. None 

JAG1 TTGGGTAGAGGTGGTTAG CCCTTTTAAATCAACTACA TTGGGTAGAGGTGGTTA 49 Q- sol. None 

LFNG GGTTAAGTTTTTGTTTTGTATAAATAA AAAAAAACCCAACCTAACCAAC GAGGAAGTAGGATGTTTT 53 Nil None 

NOTCH1 ATGGGGGTTGTTTTGGAGATG ATGGGGGTTGTTTTGGAGATG GGGTTGTTTTGGAGAT 57 Nil None 

NOTCH3 TGTATTGGGGGATGGGGATG CCTCCTCCCTCCTTCCCTAAACT GGGTGGGTAGGGATT 56 Nil None 

RBP-J GGTTTTTAGGGAAGGTAG CCTTTTTCCTCACTCCTC GAGTAGGATTTTTTATTTT 49 Q-sol None 
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2.9 NON-LABORATORY DATA 

2.9.1 FFQ AND LIFESTYLE QUESTIONNAIRE DATA  

All questionnaire data were checked for completion before the end of the study. 

Missing data were checked with study participants. Data were entered into customised 

databases in Microsoft Access 2010. Thirteen percent of all data entries were checked 

for accuracy which was found to be >98%. Data were extracted from the FFQ database 

to provide estimates of consumption for dietary fibre (Englyst, Kingman et al. 1992), 

red meat, processed meat, alcohol, garlic and calcium. Calcium was used to estimate 

dairy consumption as technical issues did not allow extraction of dairy intakes from the 

database and calcium is a reasonable surrogate as cow’s milk is the basis for most dairy 

consumed in the UK. (DEFRA 2010). Estimates of physical activity were extracted from 

the lifestyle questionnaire. Physical activity was coded depending on recreational and 

occupational activity levels. (Figure 2-5) (Wareham, Jakes et al. 2003) 

2.9.2 BLOOD AND ANTHROPOMETRIC DATA 

Blood results were received in Microsoft Excel spreadsheet format from the analyzing 

institution and were transferred directly into the custom built DISC study database 

(Xentec Ltd., Wallsend, UK). Paper based records of volunteer anthropometrics were 

entered directly into the DISC database. Techniques used by collaborators to obtain 

additional data used in the present analysis will not be described here.  
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FIGURE 2-5. CALCULATION OF PHYSICAL ACTIVITY CATEGORY. 

 

FROM (WAREHAM, JAKES ET AL. 2003). 1- INACTIVE, 2 - MODERATELY INACTIVE, 3 – MODERATELY ACTIVE, 4 - 

ACTIVE 

2.10 STATISTICAL ANALYSIS 

Statistical analysis was performed in Minitab 16.0. p<0.05 was considered significant 

throughout unless otherwise stated. 

2.10.1 NORMALITY OF DATA AND TRANSFORMATION 

Several datasets within the study had significant positive skew. In these cases 

transformations were attempted. Natural log transformation1 was found to be the best 

transformation though frequently did not normalise datasets to a degree to pass tests 

of normality. Reciprocal, arcsin, log10 and square root transformations were also 

tested. The General Linear Model (GLM) was used for subsequent analysis. GLM 

incorporates several statistical tests: primarily analysis of variance (ANOVA) and 

multiple linear regression. Normality of the data set is not an assumption for multiple 

linear regression (Miles and Shevlin 2001) and ANOVA is reasonably robust even in the 

presence of non-normally distributed data. (Box and Anderson 1955; Lindman 1974). 

Therefore data were analysed without transformation and significant results were 

                                                      

1
 Where all original values were > 1.0; XT = loge (XR) where XT = transformed value and  XR = original value. 

Where there were values <1.0; XT = loge(XR+C) where C is the lowest value to ensure that XR+C=1 
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confirmed with non-parametric equivalent tests when significant. Non-parametric 

testing could not be used throughout as GLM was required to obtain measures of 

treatment effect from the 2x2 factorial design. 

2.10.2 ANALYSIS OF BASELINE VARIABLES 

The GLM was used to investigate possible differences between the different risk of CRC 

groups (normal, polyps and UCs). Dunnett’s test was used to identify the origin of 

significant variance comparing healthy controls with polyp and UC groups. Where 

categorical data (smoking status, sex etc.) were required within the analysis these 

were binary coded. Standard covariates used within all analyses were age, sex and 

smoking status. Chi-square tests were used to compare groups at baseline where these 

data were of a proportional nature.  

2.10.3 IDENTIFICATION OF FACTORS PREDICTING METHYLATION OF THE SELECTED 

GENES 

Hypothesis based stepwise linear regression with forward selection was used to model 

factors predicting methylation of the examined genes. Required factors in all models 

were age, sex, smoking status and waist circumference. Free predictors were hsCRP, 

plasma vitamin B12, plasma folate, fibre consumption, red meat consumption, 

processed meat consumption, alcohol intake, calcium intake and garlic intake. α to 

enter was set at 0.25.  

2.10.4 IDENTIFICATION OF FACTORS PREDICTING POLYP SEVERITY 

Nominal logistic regression was used to identify factors able to predict severity of 

disease in the polyp group. Factors tested were anthropometric variables, systemic 

inflammation, dietary exposure data and methylation of the analysed genes. Modelling 

was attempted for each individual group with an α of 0.05 for the test for all slopes 

demonstrating a significantly predictive factor within the group.  
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2.10.5 IDENTIFICATION OF FACTORS FOR POTENTIAL DIAGNOSTIC TESTING 

To identify whether measured factors within the study had the potential for use as a 

diagnostic test, factors were entered into binary logistic regression to define variation 

between polyps and normals.  Those factors with the greatest variation were analysed 

using Receiver Operator Characteristic (ROC) curves – a method of varying cut-off for 

factors in a diagnostic test to optimise sensitivity and specificity. A contingency table of 

true positives, false positives, true negatives and false negatives was created allowing 

sensitivity and specificity for the selected factors to be calculated. 

2.10.6 EFFECTS OF DIETARY INTERVENTIONS 

The effect of each of the interventions (PD and Hi-maize 260) was tested by analysing 

outcome data (after intervention) using the GLM with the baseline values as 

covariates. This analysis examined both the main effects of each intervention agent 

and also potential interactions between the intervention agents. Least squares mean 

(LSM) for each intervention are presented. 

Although there were some factors that differed between groups at baseline (age, 

plasma selenium, processed meat consumption (section 4.1.2)) these were not 

included as covariates during analysis. Dietary, demographic and anthropometric 

factors are only known to effect baseline values of methylation. Methylation at the 

end of the study was analysed for intervention effect with baseline methylation as a 

covariate. This accounts for variation in baseline values and analyses change (β value) 

from baseline. As there are no data to suggest that any baseline values measured 

moderate methylation change in response to dietary intervention, no other factors 

have been included as covariates for the analysis of effects of intervention.  
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CHAPTER 3. RESULTS - BASELINE 

3.1 RECRUITMENT 

In total, 92 participants (healthy controls) were recruited to the dietary intervention 

study. Of these, 75 participants completed the dietary intervention and provided 

samples at the end of the study. For all participants, >95% of biological samples, 

anthropometric data and dietary data were collected.  

In addition, 26 participants with previous adenomatous polyps and 12 participants 

with UC were recruited.  

3.1.1 CHARACTERISTICS OF THE PARTICIPANT GROUPS 

There was a significant difference in the sex distribution between groups with a 

greater proportion of males in the polyp and UC groups (χ2=9.825, p=0.007). There was 

a significant difference in the mean age of the groups (p=0.003) and Dunnett’s test 

showed that the participants in the polyp group were, on average, older than the 

normal controls by approximately 9 years. No differences were detected in the 

anthropometric data between the normal, polyp and UC groups in terms of weight, 

BMI, hip circumference and waist circumference. (Table 3-1) There was a difference in 

thigh circumference (p=0.041) with both the UC and polyp groups having smaller thigh 

circumferences than the controls. (Table 3-1) 

Baseline hsCRP differed significantly between groups (p=0.014). Post-hoc Dunnett’s 

test showed that the UC group differed from the control group (p<0.05). This result 

was largely influenced by a single UC outlier with a CRP of 141 (presumably 

representing an intercurrent illness). After removing this outlier a significant difference 

remained; these data are presented in Table 3-2. Post-hoc Dunnett’s test showed 

higher hs-CRP in the polyp group compared to normal (8.05 vs. 3.28mg/l).  There was 

no difference in nutritional indices sampled in blood (vitamin B12, folate and selenium). 

(Table 3-2) 
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No significant differences were noted in the consumption between groups of any of 

the dietary factors to be tested for effect on methylation of NOTCH pathway genes. 

(Table 3-3) 

 

TABLE 3-1. DEMOGRAPHIC AND ANTHROPOMETRIC DATA AT BASELINE FOR INTERVENTION, UC AND POLYP 

GROUPS. 

  Controls 
(n=91) 

Polyp (n=26) UC (n=12) p value 

Sex (M:F) (M:F) 35:40 20:6 9:3 0.007 

Age (years) LSM 
(SEM) 

52.6 (1.3) 61.8 (2.3) 56.4 (3.5) 0.003 

Smoking status 
 

(Current/ 
Ex/Never) 

37:20:16 8:10:5 3:10:1 0.091 

Weight (kg) 
 

LSM 
(SEM) 

83.0 (1.8) 81.6 (3.0) 80.9 (4.6) 0.862 

Body mass 
index (kg/m2) 

LSM 
(SEM) 

30.1 (0.6) 28.9 (1.0) 28.4 (1.6) 0.401 

Hip 
circumference 
(cm) 

LSM 
(SEM) 

107.1 (1.3) 104.0 (2.2) 102.2 (3.3) 0.246 

Waist 
circumference 
(cm) 

LSM 
(SEM) 

99.6 (1.5) 99.7 (2.5) 98.5 (3.8) 0.964 

Thigh 
circumference 
(cm) 

LSM 
(SEM) 

60.0 (0.8) 56.6 (1.3) 56.4 (2.0) 0.041 
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TABLE 3-2. BLOOD MEASUREMENTS FOR INTERVENTION, POLYP AND UC GROUPS AT BASELINE. 

 Controls 
(n=90) 

Polyp (n=26) UC (n=12)  

Assay LSM (SEM) p value 

C-reactive protein (mg/l) 3.3 (0.8) 8.0 (1.4) 3.4 (2.2) 0.014 

Serum B12 (ng/l) 425.6 (21.5) 439.0 (39.3) 477.9 (60.4) 0.702 

Red cell folate (μg/l) 269.5 (13.8) 255.8 (25.3) 285.5 (38.9) 0.792 

Plasma selenium (μmol/l) 1.20 (0.22) 1.30 (0.08) 1.27 (0.09) 0.264 

 

TABLE 3-3. DIETARY INTAKES OF GROUPS ESTIMATED BY FOOD FREQUENCY QUESTIONNAIRE.  

PORTIONS ARE SELF-REPORTED ‘MEDIUM SIZED SERVINGS’ 

 Normal (n=84) Polyp (n=26) UC (n=11)  

Assay LSM (SEM) p value 

Energy intake (kJ/day) 11408 (584) 12692 (1086) 10455 (1536) 0.290 

Total fat intake (g/day) 100.5 (6.6) 111.1 (12.4) 92.3 (17.4) 0.636 

Fibre intake (g/day) 
(Englyst, Kingman et al. 
1992) 

22.5 (10.3) 24.4 (10.4) 20.0 (8.3) 0.524 

Red meat 
(portions/day) 

0.48 (0.04) 0.59 (0.07) 0.36 (0.11) 0.290 

Processed meat 
(portions/day) 

0.60 (0.06) 0.74 (0.11) 0.62 (0.15) 0.567 

Alcohol intake (g/day) 22.3 (3.6) 33.2 (6.4) 22.0 (9.1) 0.314 

Calcium intake 
(mg/day) 

1193 (51) 1260 (96) 1177 (136) 0.813 

Garlic intake 
(portions/day) 

0.27 (0.03) 0.15 (0.05) 0.22 (0.08) 0.221 
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3.2 RESULTS OF SCREENING OF CANDIDATE NOTCH GENES 

3.2.1 CHARACTERISTICS OF STUDY PARTICIPANTS USED FOR SCREENING NOTCH 

GENES 

Eight participants from each patient group were selected to test the panel of NOTCH 

gene promoter methylation assays (section 2.7.3). These data were used to inform 

selection of genes for evaluation in the whole study population based on variability of 

gene methylation between higher and normal risk of CRC groups.  

The sample was age, sex and smoking status matched as far as possible between the 

polyp and normal groups. Best-matched UC participants were selected on this basis 

although the group size limited accurate matching. Characteristics of matched 

variables are reported in Table 3-4. The genes screened were as follows: 

ATOH1, JAG1, LFNG, NOTCH1, NOTCH3 and RBP-J. 

 

TABLE 3-4. CHARACTERISTICS OF THE PARTICIPANTS FROM EACH PATIENT GROUP USED FOR ASSAY SCREENING. 

  Normal 
(n=8) 

Polyp (n=8) UC (n=8) p value 

Sex (M:F) (M:F) 3:5 3:5 6:2 0.829 

Age (years) Mean 
(SD) 

65.4 (8.1) 65.1 (8.4) 56.5 (12.4) 0.879 

Smoking status 
 

(Current/ 
Ex/Never) 

4:4:0 3:1:2 
(2 missing) 

3:4:1 Not 
calculated 
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3.2.2 ATOH1 METHYLATION RESULTS 

ATOH1 is negatively regulated by NOTCH signalling via HES and HEY. Upregulation of 

HES and HEY downregulates ATOH1 and promotes differentiation of epithelial cells to 

absorptive lineages. The ATOH1 assay examined 6 CpG sites in the promoter region. 

Data for one UC participant were not available due to wide variation in methylation 

recorded between four repeat pyrosequencer measurements. Low level methylation 

(range 2.3 – 7.1%) was observed at all 6 CpG sites and in all 3 patient groups with no 

significant differences between patient groups observed. (Table 3-5) 

 

TABLE 3-5.SUMMARY OF ATOH1 METHYLATION BY PARTICIPANT GROUP FOR THE SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=7)  

CpG site LSM (SEM) p value 

1 3.2 (0.6) 2.5 (0.5) 2.6 (0.6) 0.536 

2 6.9 (0.9) 7.1 (0.7) 6.6 (0.9) 0.918 

3 3.5 (0.7) 3.0 (0.6) 4.0 (0.7) 0.573 

4 3.7 (0.7) 4.3 (0.6) 4.5 (0.7) 0.735 

5 5.7 (0.9) 4.9 (0.7) 4.6 (0.9) 0.611 

6 3.0 (0.6) 2.3 (0.5) 2.8 (0.6) 0.576 
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3.2.3 JAG1 METHYLATION RESULTS 

JAG1 expression is upregulated in human CRC (Reedijk, Odorcic et al. 2008; Peignon, 

Durand et al. 2011) and higher expression is linked to poor tumour differentiation and 

prognosis. (Jin, Zhang et al. 2012) The assay developed for JAG1 examined 5 CpG sites. 

Most CpG sites showed methylation levels between 2 and 10%. Methylation of all 

CpGs tended to be lower in the polyp group and a significant difference was observed 

in methylation at site 4 with mean values of 4.4, 2.8 and 3.6% for normals, polyps and 

UC groups respectively. However, Dunnett’s test did not show a difference between 

UC or polyp groups and controls (normals) (p>0.05). (Table 3-6) 

TABLE 3-6. SUMMARY OF JAG1 METHYLATION BY PARTICIPANT GROUP FOR THE SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=8)  

CpG site LSM (SEM) p value 

1 4.9 (1.0) 3.9 (1.0) 4.6 (1.0) 0.561 

2 4.3 (1.1) 2.8 (1.1) 4.0 (1.1) 0.440 

3 4.2 (0.7) 3.6 (0.7) 4.4 (0.7) 0.322 

4 4.4 (0.6) 2.8 (0.6) 3.6 (0.6) 0.027 

5 3.9 (0.8) 2.9 (0.8) 3.0 (0.8) 0.399 
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3.2.4 LFNG METHYLATION RESULTS 

LFNG affects NOTCH signalling by altering the specificity of NOTCH receptor and 

sending cell ligand interaction. LFNG expression is upregulated in most human CRCs. 

(Reedijk, Odorcic et al. 2008). Levels of methylation of this gene were low at all 10 CpG 

sites measured (all values <5.4%). Where statistical significance was achieved or 

approached by parametric testing (sites 4, 6 and 7) the distributions were not normal. 

These data were unsuitable for transformation and Kruskal-Wallis testing showed 

differences between patient groups which approached significance at site 4 only. (site 

4 p=0.061, site 6 p=0.172, site 7 p=0.101)  (Table 3-7) 

TABLE 3-7.SUMMARY OF LFNG METHYLATION BY PARTICIPANT GROUP FOR THE SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=8) P value 

CpG site LSM (SEM)  
1 1.0 (0.4) 1.0 (0.4) 1.4 (0.4) 0.772 

2 2.6 (0.6) 2.8 (0.6) 2.2 (0.6) 0.748 

3 2.0 (0.5) 1.2 (0.5) 0.9 (0.5) 0.347 

4 0.0 (0.5) 0.8 (0.5) 1.6 (0.5) 0.085 

5 5.2 (0.6) 5.3 (0.6) 5.4 (0.6) 0.971 

6 4.3 (0.8) 5.7 (0.8) 6.9 (0.8) 0.082 

7 0.7 (0.5) 0.6 (0.5) 2.4 (0.5) 0.034 

8 2.0 (1.2) 2.0 (1.2) 4.7 (1.2) 0.222 

9 1.8 (0.7) 1.6 (0.7) 3.2 (0.7) 0.269 

10 0.4 (0.5) 1.0 (0.5) 0.3 (0.5) 0.571 
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3.2.5 NOTCH1 METHYLATION RESULTS 

NOTCH1 is over expressed in CRC and high expression predicts poor prognosis (Chu, 

Zhang et al. 2011; Jin, Zhang et al. 2012). NOTCH1 mutation has not been detected in 

human CRC. (Lee, Jeong et al. 2007) Data from one UC patient was not available due to 

wide variation between four repeat pyrosequencer assays resulting in this sample 

being rejected from the analysis. Methylation values were less than 5.5% at all sites 

with no differences detected between patient groups. (Table 3-8) 

TABLE 3-8. SUMMARY OF NOTCH1 METHYLATION BY PARTICIPANT GROUP IN THE SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=7) P value 

CpG site LSM (SEM)  

1 1.3 (0.8) 1.2 (0.9) 2.7 (0.9) 0.321 

2 1.1 (0.6) 1.0 (0.7) 1.9 (0.6) 0.549 

3 2.7 (0.5) 2.6 (0.5) 3.3 (0.5) 0.453 

4 0.7 (0.4) 0.4 (0.4) 1.2 (0.4) 0.339 

5 4.4 (0.5) 3.1 (0.6) 4.3 (0.5) 0.613 

6 1.3 (0.3) 0.8 (0.3) 1.1 (0.3) 0.648 

7 1.9 (0.5) 0.8 (0.5) 1.0 (0.5) 0.215 

8 1.9 (0.3) 1.8 (0.3) 2.0 (0.3) 0.667 

9 1.5 (0.4) 0.7 (0.4) 0.8 (0.4) 0.459 

10 5.5 (1.0) 4.1 (1.0) 4.5 (1.0) 0.592 
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3.2.6 NOTCH3 METHYLATION RESULTS 

NOTCH3 is significantly upregulated in the majority of human CRCs. Downregulation of 

NOTCH3 in tumour xenografts decreases tumour growth. (Serafin, Persano et al. 2011) 

Mutational analysis has only identified a NOTCH3 mutation in 2% of CRCs. (Lee, Jeong 

et al. 2007). The NOTCH3 assay examines 9 CpG sites. Data for one UC participant were 

not included due to wide variation in assay values after four repeat measurements. 

There was significant variation in this dataset at CpG site 9 and variation approaching 

statistical significance at site 5. (Table 3-9) Data were not normal and not suitable for 

transformation. Similar levels of significance were found using Kruskal-Wallis (site 5 – 

p=0.083, site 9 – p=0.008). Post-hoc Dunnett’s test showed significant differences 

between the UC and normal group at site 5 and between the polyp and normal group 

at site 9.  

TABLE 3-9. SUMMARY OF NOTCH3 METHYLATION BY PARTICIPANT GROUP IN SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=7) P value 

CpG site LSM (SEM)  

1 3.7 (0.8) 3.1 (0.8) 4.9 (0.8) 0.323 

2 11.5 (1.2) 9.4 (1.3) 11.9 (1.3) 0.359 

3 4.8 (0.8) 3.2 (0.9) 3.6 (0.9) 0.442 

4 5.3 (1.3) 5.7 (1.3) 7.1 (1.3) 0.644 

5 2.0 (0.7) 3.4 (0.8) 4.7 (0.8) 0.063 

6 5.1 (1.0) 5.6 (1.0) 5.6 (1.0) 0.888 

7 7.9 (1.3) 5.5 (1.4) 7.4 (1.4) 0.444 

8 7.8 (1.4) 7.4 (1.5) 9.2 (1.5) 0.690 

9 2.5 (0.6) 5.0 (0.6) 4.2 (0.6) 0.013 



117 

3.2.7 RBP-J METHYLATION RESULTS 

The assay developed for RBP-J examined 12 CpG sites. RBP-J is the intranuclear 

transcription factor for the NOTCH pathway and may either facilitate or repress NOTCH 

gene transcription depending upon the co-transcription factor recruited. Co-

transcription factor recruitment is defined by the presence or otherwise of NICD within 

the nucleus. Knock-down of RBP-J induces near complete conversion of 

undifferentiated crypt cells to goblet phenotype both in normal epithelium and 

adenomas. (van Es, van Gijn et al. 2005)  

Most sites, except site 11, were minimally methylated (values <6.9%). However 

significant differences between patient groups are observed for CpGs 1, 4 and 9. These 

data were not normally distributed and significant differences using parametric testing 

were replicated with Kruskal-Wallis testing (p<0.05). Post-hoc Dunnett’s test did not 

demonstrate significant differences of the polyp or UC group from the normal group 

(p>0.05). There was an observed trend towards higher methylation in the UC group 

which was not statistically significant in the screening sample. (Table 3-10) 
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TABLE 3-10. SUMMARY OF RBP-J METHYLATION BY PARTICIPANT GROUP IN SCREENING SAMPLE. 

 Normal (n=8) Polyp (n=8) UC (n=8)  

CpG site LSM (SEM) p value 

1 1.0 (0.5) 0.5 (0.5) 1.6 (0.5) 0.049 

2 0.4 (0.9) 0.7 (0.9) 2.2 (0.9) 0.309 

3 1.0 (1.2) 0.9 (1.2) 3.0 (1.2) 0.718 

4 0.8 (1.4) 0.4 (1.4) 3.3 (1.4) 0.047 

5 1.1 (1.5) 1.4 (1.5) 3.5 (1.5) 0.656 

6 2.2 (2.3) 2.4 (2.3) 6.9 (2.3) 0.143 

7 0.9 (1.5) 0.8 (1.5) 3.2 (1.5) 0.310 

8 0.7 (1.2) 0.7 (1.2) 2.7 (1.2) 0.554 

9 1.4 (1.7) 0.5 (1.7) 2.7 (1.7) 0.021 

10 0.7 (1.6) 0.7 (1.6) 3.7 (1.6) 0.127 

11 17.5 (2.3) 20.3 (2.3) 24.1 (2.3) 0.112 

12 2.3 (1.6) 2.9 (1.6) 4.9 (1.6) 0.501 
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3.2.8 GENE SELECTION FOR MAIN STUDY 

The screening results suggested that there are unlikely to be significant between 

patient group differences for the assays developed for NOTCH1, LFNG and ATOH1. The 

final gene selection to be run on all study samples was: 

1. RBP-J 

2. JAG1 

3. NOTCH3 

In addition to these genes a LINE-1 assay was run on all samples to estimate global 

gene methylation between groups and in response to the dietary intervention.  

Complete data on NOTCH3 was not able to be collected within the time period of the 

study. Initial runs on the complete study set revealed high variation in methylation 

values for duplicate samples. This variability meant that high numbers of repeat 

measurements were required to define final methylation values for statistical analysis 

for each sample (section 2.8). High variability within duplicate samples for the NOTCH3 

assay also raises doubts as to the test, re-test validity of this assay. 
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3.3 METHYLATION OF NOTCH GENES AND GLOBAL METHYLATION IN 

POLYP, UC AND NORMAL PARTICIPANTS 

3.3.1 LINE-1 (GLOBAL) METHYLATION 

Data for LINE-1 were normally distributed. Results are presented as least squares 

mean (LSM) with standard error of the mean (SEM). Smoking status, sex, age and 

adiposity (waist circumference) were included as covariates for all analyses.  

Global methylation as measured by LINE-1 is shown in Figure 3-1 (and appendix 5). 

Methylation values at all three CpG sites within the assay were lower for UC 

participants than polyp and normal controls (p<0.05). Methylation of polyp patients 

was lower at CpG site 1 compared to normal controls (77.2 vs. 80.4%, p<0.05), higher 

at CpG site 2 (67.1 vs. 65.1%, p<0.05) and no significant difference was detected at site 

3 (65.6 vs. 66.2%, p>0.05) 
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FIGURE 3-1. LINE-1 METHYLATION VALUES BY GROUP (NORMALS, POLYPS AND UC) FOR THE WHOLE STUDY 

SAMPLE. 

 

PERCENTAGE METHYLATION LEVELS AT CPGS 1,2 &3 OF THE LINE-1 PYROSEQUENCING  ASSAY BETWEEN THOSE 

AT NORMAL RISK (N=91) OF CRC AND THOSE AT HIGHER RISK (POLYP (N=26) AND UC (N=12) GROUPS). *=P<0.05 

USING GLM AND DUNNETT’S POST-HOC TEST FOR BETWEEN GROUP DIFFERENCES. 
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3.3.2 PREDICTION OF LINE-1 METHYLATION 

Forward stepwise regression was undertaken using all normal risk participant samples 

with LINE-1 data (n=72). Required predictors were age, sex, waist circumference and 

smoking status. Free predictors were dietary factors (section 2.10.3) hsCRP, plasma B12 

and plasma folate. The final model selected included seven factors:  

Mean LINE-1 methylation = 70.5 + 1.11 smoking code + 0.07 age (years) - 0.52 sex code 

- 0.02 waist circumference (cm) - 0.05 fibre intake (g/day) - 0.002 serum B12 (ng/l) - 

0.08 pre CRP (mg/l) (R2=30.2%, R2(adj)=22.6, PRESS=323.4) 

Where smoking code value was 0 for never smokers, 1 for ex-smokers, 2 for current 

smokers and sex code value was 0 for female and 1 for male. 

R2 (coefficient of multiple determination) indicates the proportion of variation that is 

explained by the factors within the model. Increasing the number of factors within the 

multiple linear regression model necessarily increases the fit and hence the R2 value 

increases. Adjusted R2 values adjust for the number of variables and will decrease with 

the addition factors which have a poor fit for the data set. PRediction Error Sum of 

Squares (PRESS) estimates the ability of the model to predict future results.  PRESS 

residuals are calculated for each data point by removing that data point, recalculating 

the regression equation and determining the new equation residual for that data 

point. The PRESS statistic compares all the residuals for the regression equation to the 

PRESS residuals. Higher PRESS values indicate better predictive power. (Miles and 

Shevlin 2001)  

3.3.2.1 CORRELATION OF LINE-1 METHYLATION BETWEEN CPGS 

Good correlations were observed between all three CpG sites on the LINE-1 assay 

using Pearson’s product moment correlation coefficient. High correlation (r>0.6) was 

observed between sites 1 and 3 and sites 2 and 3.  (Figure 3-2) 
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FIGURE 3-2. PEARSON’S CORRELATION (R) OF VALUES AT CPG SITES WITHIN THE LINE-1 ASSAY.  

(ALL P VALUES<0.001) 
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3.3.3 JAG1 METHYLATION 

Data for JAG1 are presented in Appendix 6 and Figure 3-3. Smoking status, sex, age 

and adiposity (waist circumference) were included as covariates for all analyses. A 

wider range of methylation values was observed compared to the screening values 

obtained earlier (whole population range 2.9-8.0%, screening sample range 2.8-4.9%). 

These higher values occurred in the normal group.  Whilst no significant difference was 

demonstrated between the three groups there was a trend towards lower methylation 

in the higher risk of CRC groups (polyp and UC) with the lowest methylation at all 5 

CpG sites observed in the polyp group.  

FIGURE 3-3. JAG1 METHYLATION VALUES BY GROUP (NORMALS, POLYPS AND UC) FOR WHOLE STUDY SAMPLE. 

 

PERCENTAGE METHYLATION LEVELS AT CPGS 1-5 OF THE JAG1 PYROSEQUENCING ASSAY BETWEEN THOSE AT 

NORMAL RISK (N=75) OF CRC AND THOSE AT HIGHER RISK (POLYP (N=26) AND UC (N=12) GROUPS). *=P<0.05 

USING GLM AND DUNNETT’S POST-HOC TEST FOR BETWEEN GROUP DIFFERENCES. 
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3.3.4 PREDICTION OF JAG1 METHYLATION 

Forward stepwise regression was undertaken using all normal risk participant samples 

with mean JAG1 methylation (n=72). Required predictors were age, sex, waist 

circumference and smoking status. Free predictors were dietary factors (section 

2.10.3), hsCRP, plasma B12 and plasma folate. The final model included six factors:  

Mean JAG1 methylation (%) = 7.3+ 1.7 smoking code + 0.007 age (years) + 2.1 sex code 

- 0.01 waist circumference (cm) + 4.4 garlic consumption (portions/day) - 0.003 

calcium intake (mg/day) 

(R2=12.84%, R2(adj)=5.61, PRESS=3489.7) 

Where smoking code value was 0 for never smokers, 1 for ex-smokers and 2 for 

current smokers and sex code value was 0 for female and 1 for male. 

Although age, waist circumference and sex were variables included in the model to 

account for possible confounding effects their predictive value within the model was 

poor with p values of 0.913, 0.849 and 0.179 respectively. Overall the model explained 

a relatively small proportion of the mean methylation status of JAG1 with low R2 value. 

Removing age, waist circumference and sex did not significantly improve the predictive 

value of the model (R2=12.95%, R2(adj)=8.12, PRESS=3298.1) 

As this model did not explain much of the variation within mean JAG1 methylation, 

modelling was attempted using JAG1 CpG 5 as it had shown the greatest degree of 

variation in those at normal and higher risk of CRC. Forward stepwise regression 

selected the same predictors to include within the model: 

JAG1 CpG 5 methylation (%) = 7.9 + 2.6 smoking code + 3.0 sex code + 0.001 age 

(years) - 0.009 waist circumference (cm) + 5.9 garlic consumption (portions/day) - 

0.004 calcium intake (mg/day) 

(R2=15.6%, R2(adj)=7.62, PRESS=5244.9) 
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Within this second model the effect sizes and directions of effects were similar. Also 

there was a low R2 value with a very high PRESS, suggesting an equation that could not 

explain much of the variance of a value but could predict methylation extremely 

accurately. This suggested a model demonstrating statistical instability and review of 

the residual distribution of both equations revealed non-normal distributions which 

could not be normalised with removal of outliers. Therefore the results of these JAG1 

analyses must be treated with caution as they may be subject to statistical error. 

3.3.4.1 CORRELATION OF JAG1 METHYLATION BETWEEN CPGS  

The heterogeneity between models was likely to be due to very high levels of 

correlation between the CpG sites of the JAG1  as all values for Pearson’s correlation 

were >0.75 (Figure 3-4). 

FIGURE 3-4. PEARSON’S CORRELATION (R) OF VALUES AT CPG SITES WITHIN THE JAG1 ASSAY. 

(ALL P VALUES<0.001) 

 

          



127 

 

3.3.5 RBP-J METHYLATION 

There was minimal methylation (<6.3%) at all CpG sites in all groups except at CpG site 

11. CpG site 11 showed higher methylation with individual participant’s values ranging 

from 6.8-49.0%. The data for RBP-J promoter methylation at CpG site 11 were normally 

distributed.  

GLM testing showed a significant difference between the three groups at this site 

(p=0.006). Post-hoc Dunnett’s test showed lower methylation in the polyp group 

compared to control (normal) (18.0 vs. 23.6%, p<0.05). Mean methylation in the UC 

group was also higher than the normal group (22.7%) but this value did not differ 

significantly from the control group.  (Table 3-11, Appendix 7) 
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TABLE 3-11. RBP-J METHYLATION VALUES BY GROUP (NORMALS, POLYPS AND UC) FOR WHOLE STUDY SAMPLE. 

CpG site Normal (n=86) Polyp (n=25) UC (n=12) P-value 

 LSM (SEM)  

1 1.2 (0.2) 0.9 (0.3) 1.4 (0.4) 0.525 

2 1.9 (0.3) 1.4 (0.5) 2.4 (0.7) 0.629 

3 2.2 (0.4) 2.0 (0.7) 3.0 (0.9) 0.684 

4 2.1 (0.4) 1.8 (0.8) 3.2 (1.1) 0.565 

5 2.2 (0.5) 1.8 (0.8) 3.1 (1.2) 0.647 

6 5.2 (0.7) 5.0 (1.3) 6.3 (1.7) 0.811 

7 2.6 (0.5) 1.8 (0.8) 3.1 (1.2) 0.652 

8 2.3 (0.4) 1.7 (0.7) 2.8 (1.0) 0.630 

9 2.9 (0.5) 1.9 (1.0) 3.8 (1.3) 0.461 

10 2.5 (0.5) 1.8 (0.9) 3.5 (1.3) 0.505 

11 23.6 (0.8) 18.0 (1.5) 22.7 (2.0) 0.006 

12 4.0 (0.5) 4.8 (1.2) 4.8 (1.2) 0.841 



129 

 

3.3.6 PREDICTION OF RBP-J METHYLATION 

Forward stepwise regression was undertaken using all baseline samples with mean 

RBP-J methylation (n=71). Required predictors were age, sex, waist circumference and 

smoking status. Free predictors were dietary factors (section 2.10.3), hsCRP, plasma 

B12 and plasma folate. The final model included six free factors:  

RBP-J mean methylation (%) = 8.3 - 0.3 smoking code + 3.0 sex code - 0.04 age (years) - 

0.04 waist circumference (cm) + 3.5 garlic consumption (portions/day) - 0.001 calcium 

intake (mg/day) - 0.6 processed meat intake (portions/day) + 0.2 pre CRP (mg/l) + 

0.003 serum B12 (ng/l) - 0.01 alcohol intake (units/day) 

 (R2=25.5%, R2(adj)=13.1, PRESS=632.2) 

Where smoking code value was 0 for never smokers, 1 for ex-smokers, 2 for current 

smokers and sex code value was 0 for female and 1 for male. 

3.3.6.1 CORRELATION OF RBP-J METHYLATION BETWEEN CPGS 

High correlation (r>0.6) of methylation between was observed for all combinations of 

CpGs on the RBP-J assay. Almost all showed very high correlation, r>0.9. The exception 

to this was correlations with CpG site 11. At CpG 11 correlations with other sites were 

still high (all r>0.75) but were noticeably lower than for other CpGs in the correlation 

matrix. (Figure 3-5) 
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FIGURE 3-5. PEARSON’S CORRELATION (R) VALUES AT CPG SITES WITHIN THE RBP-J ASSAY. 

(ALL P VALUES <0.001) 
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3.3.7 CORRELATION BETWEEN LINE-1, RBP-J AND JAG1 METHYLATION 

To investigate possible relationships between the gene specific and global methylation, 

mean global methylation (LINE-1) was correlated with mean RBP-J and mean JAG1 

methylation. The three mean methylation values were not significantly correlated with 

one another (r<0.4). (Figure 3-6) 

FIGURE 3-6. CORRELATIONS BETWEEN MEAN METHYLATION OF MEASURED GENES (LINE-1, RBP-J & JAG1) 
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3.4 ANALYSIS OF THE POLYP GROUP 

Within the polyp group only, ordinal logistical regression was undertaken to 

investigate predictors of future risk of CRC. (section 2.10.4)  Future risk was defined by 

previous polyp characteristics from histopathology as per the British Society of 

Gastroenterology guidelines for colonoscopic surveillance after polypectomy. (Atkin 

and Saunders 2002) Entry into each risk category was defined by a combination of the 

size and polyp number (Figure 3-7). There were 11 patients deemed at low risk of CRC 

(Group A in Figure 3-7 below), 11 at moderate risk (Group B in Figure 3-7 below) and 4 

at high risk (Group C in Figure 3-7 below).  

 

FIGURE 3-7. DETERMINATION OF POLYP RISK STRATIFICATION.  

(REPRODUCED WITH PERMISSION, ATKIN & SAUNDERS 2002) 
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3.4.1 INFLUENCE OF ENVIRONMENTAL EXPOSURES 

Potential factors that might be associated with polyp severity were analysed in linked 

groups due to the small number of cases (n=26) limiting the capability of detecting 

significant factors when all factors were tested at once. The ‘test for all slopes equal 

zero’ defines whether there is one or more factors tested within a group of factors 

with a significant predictive value for the methylation outcome of interest at p<0.05.   

Within this dataset, age, sex, smoking status, height and waist circumference were 

non-significant predictors of CRC risk in polyp patients (test for all slopes, p=0.156) 

Similarly, no association was found between hsCRP as an estimate of systemic 

inflammation and risk of CRC (test for all slopes, p=0.27) When red meat, processed 

meat, garlic, calcium, total fibre, alcohol, total energy and fat consumption were tested 

against CRC risk no significant associations were found (test for all slopes, p=0.068). 

3.4.2 INFLUENCE OF GLOBAL AND GENE SPECIFIC METHYLATION 

Neither LINE-1 methylation for any of the three CpG sites measured separately (test 

for all slopes, p=0.104) nor mean LINE-1 methylation (test for all slopes, p=0.197) 

predicted entry into the CRC risk groups. Individual JAG1 CpG methylation values (test 

for all slopes, p=0.817) and mean JAG1 methylation (test for all slopes, p=0.427) also 

did not predict entry into CRC risk groups.  

Ordinal logistic regression showed that RBP-J methylation could predict entry into the 

risk groups for CRC development (test for all slopes, p=0.04). Within this model, the 

CpGs with low level methylation (CpGs 1-5, 7-10 and 12) generated instability with 

extremely wide 95% CIs for odds ratios (OR). The most extreme example of this being 

CpG 2; OR 5250 95% CI 0.43-64 624 869. The only CpG site within the model with an 

individual significant p value for prediction of severity was site 11 (OR 0.56, 95%CI- 

0.34-0.95, p=0.03). The Pearson test for goodness-of-fit test for the whole model 

(including unstable factors) was highly significant (p<0.001) indicating the whole model 

did not accurately predict entry into groups.  
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Removing the statistically unstable values left a model which included CpG sites 6 and 

11 only. This model predicted entry into the CRC risk categories (test for all slopes, 

p=0.05, CpG site 6 OR 1.23 (95% CI 1.01-1.51) p=0.044, CpG site 11 OR 0.85 (95% CI 

0.73-1.00) p=0.045)). The coefficients of effect were 0.21 for CpG site 6 and -0.15 for 

CpG site 11 suggesting that higher methylation of site 6 was associated with higher risk 

category for CRC in polyp patients with the opposite effect for site 11. Mean RBP-J 

methylation did not predict entry into CRC risk categories (test for all slopes, p=0.454). 
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3.5 PREDICTION OF DIAGNOSIS OF ADENOMATOUS POLYPS 

To investigate whether the methylation values obtained in rectal mucosal samples 

could accurately predict the presence or otherwise of adenomatous polyps elsewhere 

in the colon binary logistic regression was undertaken using the polyp and normal 

populations. Potential predictive methylation factors were selected based on the 

variation detected between the polyp and normal groups; large variations in 

methylation between groups at a CpG site meant that site was more likely to be able 

to distinguish between groups. Therefore the parameters selected were: age, JAG1 

CpG 5 methylation, LINE-1 CpG 1 methylation and RBP-J CpG 11 methylation.  

Analysis of all parameters revealed a significant relationship (test for all slopes, 

p<0.001. Age (p=0.003), LINE-1 (p=0.016) and RBP-J (p=0.009) showed strong 

predictive relationships whilst JAG1 did not (p=0.655).  JAG1 was dropped from the 

final model.  

The final model therefore included:  

Age -     OR 1.08 95% CI 1.03-1.13, coefficient 0.08, p=0.002 

LINE-1 CpG 1 methylation -  OR 0.80 95% CI 0.68-0.94, coefficient -0.21, p=0.007 

RBP-J CpG 11 methylation - OR 0.88 95% CI 0.80-0.97, coefficient -0.12, p=0.002 

This suggests that older age, lower LINE-1 CpG 1 methylation and lower RBP-J CpG 11 

methylation would predict a diagnosis of an adenomatous polyp. LINE-1 showed the 

strongest effect size (coefficient) followed by RBP-J CpG 11 methylation and age.  

ROC curve analysis revealed an area under the curve of 0.82 suggesting a good clinical 

test however the poor sensitivity (38.5%) would mean this was not suitable for clinical 

practice. (Table 3-12) 
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TABLE 3-12. SUMMARY OF PROSPECTIVE ‘DIAGNOSTIC ABILITY’ OF THE LOGISTIC REGRESSION MODEL BASED ON 

ROC ANALYSIS. 

 Test positive Test negative Total 

Polyp 10 16 26 

Normal 6 85 91 

Total 16 101 117 

 

Sensitivity: true positive/ (true positive + false negative) x100 

  10/26 x100 = 38.5% 

Specificity: true negative/ (true negative + false positive) 

 85/91 x100 = 93.4% 
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3.6 DISCUSSION OF BASELINE RESULTS 

3.6.1 LIMITATIONS, BIAS AND ROLE OF CHANCE 

3.6.1.1 SELECTION OF GENES TO BE INVESTIGATED  

Throughout the project there has been a significant attrition of assays. This attrition 

was initially due genetic sequences that were incompatible with primer design for 

pyrosequencing usually due to very high density of CpG sites and inability to validate 

assays for reasons such as primer dimer generation on testing of the assay. (Table 2-2) 

Subsequently validated assays were selected based on pragmatic criteria to identify 

genes likely to be differentially methylated in those at normal and higher risk of CRC. 

Criteria applied at this stage were: 

o Biological – literature suggesting a role for the gene in carcinogenesis 

o Assay based – assay reliability, i.e. need for minimal repetition of samples to 

achieve acceptable tolerances 

o Likely to display variable methylation between groups at different risk of CRC – 

based on the gene screening process 

These criteria have limitations. Biological data available is incomplete, especially in a 

pathway such as NOTCH which is less well characterised than others such as WNT in 

CRC carcinogenesis. Data are more widely available on the role of NOTCH signalling in 

breast cancer (Harrison, Farnie et al. 2010; Reedijk 2012). Although there are many 

similarities between these two epithelial cancers, applicability of data from one cancer 

type to the other is not guaranteed. In this study JAG1 was the only gene selected for 

analysis in the whole study population known to have altered expression on CRC. (Jin, 

Zhang et al. 2012) 

Assay based criteria were purely pragmatic. Assay validity was demonstrated 

individually by comparison of pyrosequencer results with control DNA of known 

methylation and production of standard curves. Test-retest validity was demonstrated 

between different bisulfite modifications, different PCR reactions and different 
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pyrosequencer runs prior to commencing actual study measurements. (section 2.7.2) 

Despite acceptable validation parameters some assays, most notably NOTCH3, were 

found to be unstable at the screening stage meaning that a high proportion of the 

wells in a single 96-well plate on each pyrosequencer run failed and variation between 

repeat samples was higher than acceptable tolerances between matched samples. 

NOTCH3 analysis was attempted on the full study population but initial pyrosequencer 

runs showed very few samples pairs with agreement within 5%, so NOTCH3 was given 

lower priority for complete evaluation.  

Finally the likelihood of variable methylation between groups was considered based on 

results from a small ‘screening’ sample from each group. To avoid confounding effects, 

these samples of participants were matched as far as possible for age, sex and smoking 

status. However, the small sample size increased the likelihood of type II errors. In this 

case a type II error would result rejection of a gene from full evaluation due to a non-

significant value, when evaluation in the full study population would have 

demonstrated a significant difference.  Therefore for the purposes of deciding genes to 

be included the level of significance was raised to p<0.1 and selection of genes was 

undertaken based on statistical differences in conjunction with biological and assay 

based criteria discussed above.   

3.6.1.2 MEASUREMENT AND ANALYSIS LIMITATIONS 

Many of the CpGs within the current study had mean methylation values <5%. Due to 

the hard lower end point of these datasets (0%) positive skew was common, increasing 

the chance of spurious significant statistical tests. The use of non-parametric tests 

throughout was considered and rejected as parametric tests were required to take 

proper account of covariates as baseline comparability of the groups was not perfect 

(Table 3-1 ). 

The biological action of the NOTCH pathway is procarcinogenic i.e. increased 

expression would be noted in carcinogenesis which, if related to gene methylation, 

would be shown as hypomethylation. Therefore when initial levels of methylation are 

low it becomes difficult to detect differences between groups without increasing the 

power of the statistical test and therefore also the sample size.  
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However small changes may be relevant. Estimation of methylation reflects the global 

status of a tissue whilst within each cell methylation at an individual CpG site is a 

binary phenomenon. Thus methylation effects at a cellular level are not continuous but 

binary and so small changes measured in tissue may have a profound impact at a 

cellular level. This is potentially very relevant as NOTCH appears to define the number 

of undifferentiated stem cells within a crypt base (in conjunction with other signalling 

pathways) and overpopulation of this compartment is the initial microscopic lesion in 

carcinogenesis. However stem cell specific methylation analysis was not possible 

within this project and would not be justified without appropriate preliminary data. 

A parametric approach was selected to give a consistent statistical approach as this 

would be required for subsequent analyses of treatment effects in the factorially 

designed dietary intervention study. Parametric tests were used in isolation where 

data were normally distributed but where data were not normally distributed and 

parametric tests had shown a significant result this was confirmed or refuted using 

non-parametric equivalents. (see 3.2.4 for example) 

Data on gene specific and global methylation and age were used to create a predictive 

model where these factors could be used to predict an adenomatous polyp diagnosis. 

The predictive factors tested within the model were those that had shown the greatest 

variation between groups. Using factors showing greatest variation may imply that the 

final model would inevitably predict group entry as a ‘self-fulfilling prophecy’. Whilst 

this may be true, it is pragmatic to pick factors as predictors which are different 

between groups as these are more likely to discriminate groups, although this is not 

always the case. Comparative analysis between groups determines differences in 

terms of location and spread of the data. Predictive analyses (such as ROC) also 

compare these attributes of the group datasets but rely more heavily on overlap to 

define factors which discriminate consistently between groups. (Figure 3-8) Thus the 

location of data may be significantly different but a pattern of overlap may exist that 

means a factor does not discriminate reliably between groups. The data presented 

within this project must also be interpreted cautiously as all predictive models must be 

replicated in at least one independent population prospectively before they can be 

considered validated. 
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FIGURE 3-8. THE CHARACTERISTICS OF MODELLING A PREDICTIVE STATISTICAL TOOL.  

 

THE HORIZONTAL LINE REPRESENTS THE SCALE OF MEASUREMENT FOR EACH PREDICTIVE FACTOR (EG. AGE, 

GLOBAL OR GENE SPECIFIC METHYLATION). THE VERTICAL BAR REPRESENTS THE ‘CUT-OFF’ ABOVE WHICH A TEST 

IS DETERMINED POSITIVE AND BELOW WHICH A TEST IS DETERMINED NEGATIVE. THE TWO CURVES REPRESENT 

THE DISTRIBUTION OF TEST VALUES FOR EACH DIAGNOSIS, IN THIS CASE ADENOMATOUS POLYPS AND NORMAL. 

IF THE CURVES OVERLAP THERE WILL BE A PROPORTION OF INCORRECT TEST RESULTS, FALSE POSITIVES (FP) AND 

FALSE NEGATIVES (FN). MOVING THE CUT-OFF VALUE (GREEN ARROW) WILL ALTER THE NUMBER OF FPS AND 

FNS AND THERFORE ALTER THE SENSITIVITY AND SPECIFICITY OF THE TEST. (TP – TRUE POSITIVE, TN - TRUE 

NEGATIVE) 

3.6.2 CHARACTERISTICS OF PATIENT GROUPS 

3.6.2.1 ANTHROPOMETRIC, LIFESTYLE, DIETARY AND BLOOD FACTORS 

Most anthropometric factors within the three patient groups were well-matched 

except waist measurement. The difference noted in thigh measurements (lower 

circumference in UC and polyp patients) in the context of similar BMIs may reflect a 

relative tendency towards central or abdominal obesity which is recognised as a risk 

factor for sporadic and UC associated CRC. (Larsson and Wolk 2007; Park, Mitrou et al. 

2012). Most participants within the study were overweight or obese (17.3% healthy 

(BMI 20-25), 36% overweight (BMI 25-30), 40% obese (BMI 30-40) and 6.7% morbidly 

obese (BMI>40)). Mean BMI for all groups was greater than the healthy range (normal 

– 30.1, polyp – 28.9, UC – 28.4kg/m2). 

There were also significant age and sex mismatches between the groups. Polyp 

patients were more frequently male. Polyps and CRC are recognised to occur more 
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frequently in males (CRUK 2009; Leffler, Kheraj et al. 2012) In this study the degree of 

male preponderance in the polyp group was greater than that which would be 

expected. This may represent sampling error or chance. To minimise confounding, sex 

was included as a covariate in all comparative analyses and as a required factor in all 

regression equations. As expected polyp patients were older. Age is the strongest 

independent risk factor for adenomatous polyp diagnosis. (Leffler, Kheraj et al. 2012) 

No between group differences were noted in terms of dietary intake measured by FFQ. 

Mean energy intake was high in the polyp (12692kJ/day) and normal groups 

(11408kJ/day) and potentially within recommended limits in the UC group (10455 

kJ/day). The most recent report on recommended energy intake in the UK (SACN 2011) 

has increased previous values for average daily recommended intake. Intake 

recommendations are based on age, sex and physical activity and are calculated for 

BMI 22.5 kg/m2. Physical activity estimates are not directly comparable between this 

study and the SACN report due to different measurement tools. Using the mean ages 

of the study participants and  assuming ‘average’ physical activity by the SACN 

definition recommended daily intake of our study participants would be 10 900 kJ/day 

for the ‘average’ male within the study population and 8 600 kJ/day for the ‘average’ 

female. (SACN 2011)  

These recommended values would be increased in the higher BMI participants (specific 

values not available) within our study groups and would vary depending upon physical 

activity and age of each participant. The lack of comparability of physical activity 

estimates and inability to adjust recommended intake values depending on BMI of 

participants means more detailed individualised comparisons i.e. how many 

participants within in each group over-consume, would be neither informative nor 

accurate.  In addition the FFQ used in this study has been shown to underreport total 

energy intake suggesting that actual energy intake of participants may be even higher 

than calculated values. (Kroke, Klipstein-Grobusch et al. 1999)  Objectively measured 

indices of micronutrient status: serum B12, red cell folate and plasma selenium showed 

no significant differences between groups.  
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After exclusion of the significant outlier in the UC group (very high CRP likely due to an 

intercurrent illness) there was a significantly higher hsCRP concentration in the polyp 

group compared normal and UC (8.05 vs. 3.28 vs. 3.43 mg/l respectively, p=0.014) The 

relationship of CRP elevation and established CRC is established (Allin and 

Nordestgaard 2011) and recent data suggests that increased systemic inflammation is 

causative rather than a bystander or confounding effect. (Prizment, Anderson et al. 

2011) Higher hsCRP levels within the polyp group reflect increased systemic 

inflammation in this group. Prizment et al.’s data suggests that this increased level of 

systemic inflammation would contribute to causation of CRC.  No difference was 

detected between the UC group and normal controls (3.4 vs. 3.3 mg/l respectively).  

This may reflect the sampling strategy (excluding those with active disease), or that the 

dysplasia-cancer sequence in UC is dependent on other factors such as local 

inflammation rather than systemic inflammation. 

3.6.2.2 GLOBAL METHYLATION BETWEEN GROUPS 

Global hypomethylation is a well-documented phenomenon in cancer in general and in 

CRC specifically. (Hiraoka, Kato et al. 2010; Khare and Verma 2012) Progressive 

hypomethylation in neoplastic tissue from normal to polyp to CRC has been shown 

using the LINE-1 assay (Sunami, de Maat et al. 2011)  and greater degrees of tumour 

hypomethylation are associated with poor prognosis. (Ogino, Nosho et al. 2008; Ahn, 

Chung et al. 2011) Global hypomethylation is consistently found in tumours in sporadic 

and hereditary CRC and is also often found in adjacent macroscopically normal colonic 

mucosa in many CRC patients. This normal tissue hypomethylation occurs more 

frequently in hereditary CRC than sporadic CRC and is particularly prevalent with MSI-H 

tumours suggesting that, especially in hereditary and MSI-H CRC, global 

hypomethylation is part of the pro-carcinogenic field change. (Pavicic, Joensuu et al. 

2012)  

In this study, significantly decreased methylation in the polyp group was found at one 

CpG (site 1) in the LINE-1 assay. At other sites the methylation was either greater or 

equivalent comparing the polyp group to normal participants. (Figure 3.1) Previous 

studies have usually reported mean methylation of all CpGs within the LINE-1 assay. 
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These studies have found that global hypomethylation in normal tissue predicts 

specific tumour sub-types (Kamiyama, Suzuki et al. 2012; Pavicic, Joensuu et al. 2012) 

and is not a consistent finding in all CRC. (Estécio, Gharibyan et al. 2007; Ogino, 

Kawasaki et al. 2008; Figueiredo, Grau et al. 2009) The data obtained in this study 

suggests that mean LINE-1 methylation may not be the most informative method of 

analysing global DNA methylation data and that analysis of individual CpGs within 

LINE-1 may detect more subtle procarcinogenic changes. 

In contrast to this, there was significant global hypomethylation in macroscopically 

normal tissue from patients in the UC group at all CpGs compared to normal controls. 

(Figure 3-1) These results are similar to those observed by Glória et al. (Glória, Cravo et 

al. 1996) who found hypomethylation of DNA in rectal biopsies from UC patients 

compared with controls using a semi-quantitative methyl group incorporation assay. 

Their study included those with active disease and they showed a dose-response 

association of hypomethylation with progressive disease activity. Our findings confirm 

a marked decrease in global methylation independent of disease activity in a UC group 

with disease for greater than seven years. Group size (n=12) and inclusion criteria led 

to a relatively homogeneous group that did not allow further analysis of disease or 

patient factors predicting methylation. 
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3.6.2.3 METHYLATION OF NOTCH GENES IN GROUPS AT DIFFERENTIAL CRC RISK 

This project is the first report of data on the methylation of NOTCH genes in the 

normal colorectal epithelium of patients with no colorectal pathology or in those at 

higher CRC risk. NOTCH is critical in colorectal ASC maintenance and differentiation 

(Katoh 2011; Peignon, Durand et al. 2011) and in CRC development (Veenendaal, 

Kranenburg et al. 2008; Chu, Zhang et al. 2011).  JAG1 (sending cell ligand) expression 

is upregulated in human CRC (Reedijk, Odorcic et al. 2008; Peignon, Durand et al. 2011) 

but there are no data on RBP-J expression in CRC. Depending on the presence or 

absence of NICD within the nucleus, RBP-J recruits either repressive co-transcription 

factors or activation co-transcription factors. Despite its potential dual role, data 

suggests it acts as an oncogene as silencing of RBP-J in breast cancer reduces cellular 

proliferation (Yong, Sun et al. 2011) and silencing in the colorectal epithelium results in 

terminal differentiation of all cells ablating the stem cell compartment. (van Es, van 

Gijn et al. 2005)  

Methylation of JAG1 was not found to be different using ANOVA analysis. (Figure 3-3) 

There was a trend towards lower methylation in those at higher risk of cancer, 

especially the polyp group, at all CpG sites except site 4. This is the direction of effect 

that is anticipated for oncogenic activation via methylation change. Although statistical 

significance was not achieved the trend observed may have transcriptional 

significance. However assumption of a change in transcription cannot be assumed, 

even though it is likely. (Bell, Pai et al. 2011) Correlation with expression data would be 

required to link methylation change to a functional effect.  

Most sites on the RBP-J assay were minimally methylated (<3%) in the normal 

population and so in terms of oncogenic activation by hypomethylation are less likely 

to be transcriptionally significant. In contrast, CpG site 11 was relatively highly 

methylated in normals and significant hypomethylation at this site was noted in the 

polyp group (23.6 vs. 18.0%, p=0.006). There was no statistically significant difference 

observed in the UC group. In normal participants, methylation at all CpG sites within 

the assay was highly correlated with each other (Pearson’s r >0.9) except for CpG 11, 
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potentially suggesting different causal factors for methylation at this site. Within the 

polyp group, methylation of CpG site 11 and CpG site 6 predicted the disease risk 

category. A continuous effect within the polyp group with progressively lower RBP-J 

site 11 methylation associated with more severe disease strengthens confidence in the 

association observed in the between group analysis. 

3.6.2.4 PREDICTION OF GLOBAL DNA METHYLATION 

Forward stepwise regression analysis was used to identify potential predictors of 

baseline DNA methylation levels in the normal participants using anthropometric, 

dietary and lifestyle factors. Forward stepwise regression has been subject to criticism 

when used indiscriminately, in a non-hypothesis based fashion. (Miles and Shevlin 

2001) This form of data-mining may generate spurious or biologically implausible 

relationships. In this study only pre-specified variables based on a priori hypotheses 

from best available evidence were interrogated. (WCRF/AICR. 2012) 

Since global DNA hypomethylation is linked with increasing risk of CRC, the direction of 

effect within the LINE-1 regression equation is expected to be negative for exposures 

which increase CRC risk and positive for protective exposures. The equation suggested 

that male sex would decrease global methylation by approximately 0.5% and an 

increase in waist circumference by 1 cm would decrease methylation by 0.02%. These 

were expected effects of known CRC risk factors. (section 1.1 and 1.11) 

Age and smoking status had opposite effects to those expected. Although these were 

forced factors within the model, their individual p values (smoking status p=0.002 and 

age p=0.001) indicate strong relationships. The other forced variables in the equation 

(sex and waist circumference) had p values >0.05 indicating the strength of their 

association with global methylation was less strong. In another analysis of predictive 

factors of global methylation (also assessed by measurement of LINE-1 methylation in 

normal mucosa) of 400 polyp patients, no associations were found for age, sex, 

smoking status or BMI. (Figueiredo, Grau et al. 2009)  

Figueiredo et al. did not find any association between circulating vitamin B12 

concentrations and global DNA methylation whereas in the present study vitamin B12 
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concentrations were inversely related to global DNA methylation (p=0.069). Vitamin 

B12 derivatives are used in diverse biological processes involving methyl group transfer 

(Kung, Ando et al. 2012) and maternal vitamin B12 status has been shown to correlate 

inversely with infant global methylation. (McKay, Groom et al. 2012)  In the current 

study, total dietary fibre intake predicted global methylation but the direction of effect 

was opposite to the CRC protective effect that would be anticipated (increased fibre – 

decreased global methylation). (WCRF/AICR. 2012)  

Inverse correlations of CRP concentration and global DNA methylation as shown in this 

study, have been shown in several small studies of cancer patients (Kwon, Kim et al. 

2010; Allin and Nordestgaard 2011; Ishizuka, Nagata et al. 2012) and a direction of 

effect for the association, CRP and systemic inflammation resulting in cancer, has been 

suggested by demonstration of a temporal relationship. (Prizment, Anderson et al. 

2011) This may represent an isolated effect in the colon as the association between 

systemic inflammation and decreased global methylation has not been replicated in 

blood.  (Baccarelli, Tarantini et al. 2010; Zhang, Santella et al. 2012) However, lack of 

replication between tissues is not concerning as wide variations in tissue specific 

epigenetic marking are known to be prevalent. (Thompson, Atzmon et al. 2010; Liang, 

Song et al. 2011; McKay, Xie et al. 2011).  

Overall, these predictive data must be interpreted with caution as the relatively limited 

number of cases included in the study and the small variance within the normal 

population make relationships both difficult to find and of uncertain significance until 

they are replicated in another population. 

3.6.2.5 PREDICTORS OF METHYLATION OF JAG1 AND RBP-J 

Since there are no data on methylation of NOTCH related genes in CRC, there are no 

comparable data for the environmental predictors of JAG1 and RBP-J methylation 

identified by regression analysis in this study. If methylation supresses expression, we 

would anticipate that methylation of oncogenes such as JAG1 and RBP-J would be 

decreased by factors that enhance CRC risk. 
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For JAG1, smoking was found to increase methylation (coefficient 2.55, p= 0.051) as 

was male sex (coefficient 2.98, p=0.157), both unexpected effects. The relatively low p 

values associated with these parameters means they would have entered the model 

on the basis of free selection (α to enter 0.25) even though they were forced 

parameters. Even after removal of outliers and high leverage data points, the 

distribution of residuals within the regression equation was not normal so the 

assumptions of multiple regression were not satisfied and this may therefore 

represent a statistical error. The low R2 together with a very high PRESS statistic 

suggest this may be the case.  Replication in a larger independent data set would be 

required to test this.  

The identified predictors of RBP-J methylation i.e. age, smoking behaviour, waist 

circumference, processed meat consumption, alcohol and garlic intake and hsCRP 

showed the expected directions of effect for most parameters (except sex and hsCRP). 

Garlic was noted to have a particularly strong effect on RBP-J methylation raising mean 

values by 3.5% per portion consumed daily. The standard error of 1.3 and p=0.01 

suggest a robust statistical finding. No data to date suggest a specific role of garlic or 

other alliums in direct modulation of DNA methylation. This may represent an 

interesting new association, however, if it were not to be replicated in an independent 

data set it may be that the instrument of measurement (asking about portions per day 

of garlic) is inaccurate. It could be flawed due to different individual perceptions of ‘a 

medium portion’ size and participants lack of knowledge of whether they are 

consuming garlic if meals are prepared for them.  

3.6.3 POTENTIAL BIOLOGICAL CONSEQUENCES 

Description of the potential biological consequences associated with a single 

epigenetic signature is complex. Despite macroscopic similarity, CRC is a molecularly 

heterogeneous disease. Issues of confounding effects that cannot be measured or 

have not been adjusted for can exist and there is great difficulty in defining cause and 

effect in studies of epigenetic epidemiology. These concepts are discussed in greater 

detail in the global discussion of the study (section 5.2) (Ogino, Chan et al. 2011; Ng, 

Barrett et al. 2012; Relton and Davey Smith 2012) 
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3.6.3.1  GLOBAL DNA METHYLATION 

The biological consequences of global DNA hypomethylation have been relatively well 

described. Global hypomethylation (assessed by LINE-1) has been associated with a 

family history of CRC and young age at onset (Baba, Huttenhower et al. 2010). LINE-1 is 

usually heavily methylated preventing retrotransposal element activation. 

Demethylation activates these elements promoting genomic instability and acquisition 

of further genomic and epigenomic alterations. (Hoffmann and Schulz 2005)   

Although this points to a key causal role in the acquisition of a cancer phenotype, the 

global hypomethylation epitype is not a consistent finding in all CRCs and is more 

associated with MSI-H and hereditary cancers. (Kamiyama, Suzuki et al. 2012; Pavicic, 

Joensuu et al. 2012)  Data from this study indicates that it may also play a role in 

pathogenesis of UC associated CRC. Global demethylation is also not generally 

considered a founder epimutation as it has been shown to be a response to preceding 

genetic or epigenetic changes which result in dysfunctional chromatin remodelling. 

(Hoffmann and Schulz 2005). Thus global demethylation acts as a promoting epigenetic 

alteration in carcinogenesis as well as a biomarker of specific tumour sub-types. 

Further investigation may also demonstrate utility as a biomarker of cancer risk in UC. 

3.6.3.2 METHYLATION OF JAG1 AND RBP-J 

RBP-J acts as both a transcriptional repressor and an activator depending on the 

recruitment of co-factors in the presence or absence of NICD. Downstream genes 

affected by RBP-J are summarized in section 1.9. The potential consequences of 

suppression of RBP-J expression can be predicted from the phenotype and 

transcriptome observed in Rbp-j knockout experiments in mice. Rbp-j knockout results 

in decreased Hes1 and Math1 expression. Phenotypically the transit-amplifying and 

stem cell compartments of the crypt were replaced entirely by post-mitotic goblet cells 

without any change in apoptosis. (van Es, van Gijn et al. 2005) These changes 

represent complete differentiation of the stem cell compartment in the absence of 

Notch signalling. As CRC carcinogenesis may be associated with an initial increase in 

stem cell number (Boman, Walters et al. 2004; Boman, Fields et al. 2008) the direction 
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of effect in carcinogenesis would be increased RBP-J expression via hypomethylation 

as was observed at CpG site 11 in RBP-J in the present study.  

Although JAG1 overexpression has been documented in the majority of CRC (Reedijk, 

Odorcic et al. 2008; Peignon, Durand et al. 2011) no mechanism for this altered 

transcription has been identified. One plausible mechanism is methylation dependent 

regulation of expression. The direction of change observed in higher risk groups 

compared to controls would suggest that this may be the case; however biological 

effect cannot be defined without measurement of functional outcomes (mRNA or 

protein). 

3.7 SUMMARY OF BASELINE FINDINGS 

These data suggest that global DNA hypomethylation occurs in UC patients with long-

standing disease independent of disease activity. Global hypomethylation is associated 

with genomic instability and increased cancer risk. Previous studies have found global 

hypomethylation in normal mucosa of patients with sporadic and hereditary CRC, 

though this is more common in hereditary CRC. In this study significant 

hypomethylation in the polyp group was found at CpG site 1 compared to normals, but 

methylation at CpG site 2 was increased and at CpG site 3 no difference was detected. 

This suggests that the practice of reporting mean LINE-1 methylation in the literature is 

not the most informative and that global demethylation may play a lesser role in 

sporadic CRC carcinogenesis. 

JAG1 methylation was reduced at most CpG sites, except site 4, in the expected 

direction for oncogenic activation although significant differences were not detected 

statistically. Most sites on the RBP-J assay were minimally methylated and therefore 

small changes were difficult to detect in this study and such changes are less likely to 

be biologically significant. Where there was significant methylation (CpG site 11) this 

was decreased, as expected, in patients with adenomatous polyps. Additionally there 

was progressive decrease in methylation at this site with increasing risk of CRC defined 

by polyp characteristics.  
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Exposures that may influence methylation have been suggested using linear 

regression. These data are exploratory and require to be validated in a larger dataset 

prospectively. 
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CHAPTER 4. RESULTS - INTERVENTION GROUP (THE DISC STUDY) 

4.1 RECRUITMENT TO INTERVENTION 

1508 potential participants attending endoscopy were invited to attend the DISC 

study. 1420 were excluded on the basis of non-attendance, being unwilling to 

participate or fulfilling exclusion criteria, most commonly aspirin therapy. 88 

consented and were randomised. 11 participants dropped out post-randomisation. 

Reasons for drop-outs were: not liking intervention (n=2), changed mind (n=2), unable 

to fulfil time commitments (n=3), privacy issues with family (n=1), bloating whilst 

taking the intervention (n=1), becoming unwell during the intervention phase (not 

related to intervention) (n=1) and incorrect classification of endoscopy as normal by 

the study team when a polyp had been found (n=1). Drop-outs were balanced 

between groups.  

Two participants were excluded at the analysis stage. An audit of participants revealed 

that one potentially fitted the Amsterdam criteria for possible HNPCC diagnosis. 

(Vasen, Mecklin et al. 1991) This participant was not able to be contacted to clarify 

family history and so was excluded. The second excluded participant was taking 

Orlistat. Orlistat inhibits fat digestion causing steatorrhoea. High fat content in the 

colon may alter microbiota populations confounding several outcome measures in the 

study. (Jiang, Lupton et al. 1996; Murphy, Cotter et al. 2010) A summary of recruitment 

is presented as a CONSORT diagram. (Schulz, Altman et al. 2010) (Figure 4-1) 
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FIGURE 4-1. CONSORT DIAGRAM SHOWING FLOW OF PARTICIPANTS THROUGH ENROLLMENT, ALLOCATION, 

FOLLOW-UP AND ANALYSIS PHASES OF THE DISC STUDY. 

 

4.1.1 CHARACTERISTICS OF DISC PARTICIPANTS 

Final diagnoses at endoscopy were classified as: 

 Normal microscopically – where,  in addition to a normal endoscopy, mucosal 

biopsies  had been sent for histology and no abnormalities were reported 

 Normal macroscopically – where final endoscopic diagnosis was recorded as 

‘normal’ and no other clinical diagnosis was made or investigation planned 

 Haemorrhoids – where this was the final endoscopic diagnosis and the 

presentation was per rectal bleeding 

 Diverticular disease – visualised at endoscopy with no other abnormality 

 Other perianal – which consisted of perianal skin tag, rectocoele and anal 

fissure and the remaining endoscopy was normal 
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The final diagnoses of the DISC participants are listed in Table 4-1. Twenty participants 

(27%) had normal histology in addition to normal endoscopy. No participants had 

histology samples sent and were subsequently excluded due to abnormalities 

detected. Only 5 participants (7%) had any detectable colonic abnormality which was 

diverticular disease. Some studies have reported an association between diverticular 

disease and CRC but these have been subject to major issues of confounding and bias 

and more modern and reliable evidence does not support such a link. (Ekbom 2012) 

TABLE 4-1. FINAL CLINICAL DIAGNOSES IN THE DISC STUDY PARTICIPANTS. 

Diagnosis  Number of participants  

Normal microscopically 20 (27%) 

Normal macroscopically 17 (23%) 

Haemorrhoids 29 (39%) 

Diverticular disease 5 (7%) 

Other perianal 5 (7%) 

 

4.1.2 RANDOMISATION AND BASELINE COMPARABILITY OF GROUPS 

There was no significant difference in the sex distribution between groups (p=0.074) or 

smoking status (p=0.604). There was a significant difference in age between the groups 

with mean age being older for participants in Group B (p=0.043). No differences were 

detected in the anthropometric data between groups in terms of weight (p=0.775), 

BMI (p=0.879), hip circumference (p=0.262), waist circumference (p=0.781) or thigh 

circumference (p=0.702). (Table 4-2) 

No difference was detected in hsCRP (p=0.600), serum B12 (p=0.528) and red cell folate 

(p=0.708). There was a significant difference detected in Selenium levels between 

groups (p=0.005) although all values lay well within the normal range of 0.8-2.0μmol/l. 

(Table 4-3) 
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Intake of energy (p=0.618), fat (p=0.737), fibre (p=0.359), red meat (p=0.840), alcohol 

(p=0.315), calcium (p=0.521) and garlic (p=0.177) did not vary significantly between 

intervention groups at baseline. In contrast, processed meat consumption was 

different between groups (p=0.023) at baseline. Post-hoc Tukey’s test showed that 

group A had higher consumption (0.88 portions/day), and group C a lower 

consumption, (0.38 portions/day) than groups B & D (0.49 and 0.62 portions/day 

respectively) (p<0.05) (Table 4-4). 
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TABLE 4-2. ANTHROPOMETRIC DATA BY INTERVENTION GROUP AT BASELINE FOR DISC STUDY PARTICIPANTS. 

  Group A 
(n=20) 

Group B 
(n=20) 

Group C  
(n= 17) 

Group D 
(n=18) 

P value 

Age (years) LSM 
(SEM) 

48.2 (2.6) 58.4 (2.6) 53.5 (2.9) 50.1 (2.8) 0.043 

Sex (M:F) (M:F) 10:10 11:9 13:4 6:12 0.074 

Weight (kg) LSM 
(SEM) 

83.43 
(18.89) 

80.14 
(16.0) 

83.09 
(15.93) 

85.67 
(13.73) 

0.775 

Body mass 
index 
(kg/m2) 

LSM 
(SEM) 

29.83 
(4.72) 

29.67 
(6.09) 

31.02 
(5.36) 

29.96 
(5.44) 

0.879 

Smoking 
status  

Current/
Ex/Never 

4:4:12 3:5:12 3:6:8 6:6:6 0.604 

Hip 
circumfere
nce (cm) 

LSM 
(SEM) 

108.0 
(11.0) 

102.8 
(10.7) 

110.1 
(11.0) 

107.9 
(13.6) 

0.262 

Waist 
circumfere
nce (cm) 

LSM 
(SEM) 

99.3 
(14.5) 

97.3 
(14.1) 

100.7 
(11.3) 

101.4 
(12.4) 

0.781 

Thigh 
circumfere
nce (cm) 

LSM 
(SEM) 

59.9 (5.8) 58.7 (8.2) 61.1 (6.4) 60.5 (5.8) 0.702 
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TABLE 4-3. CRP AND MICRONUTRIENT CONCENTRATIONS IN BLOOD BY INTERVENTION GROUP AT BASELINE FOR 

DISC STUDY PARTICIPANTS. 

 Group A 
(n=20) 

Group B 
(n=20) 

Group C  
(n= 17) 

Group D 
(n=18) 

 

Assay LSM (SEM) p value 

C-reactive 
protein (mg/l) 

2.75 (0.99) 4.56 (0.99) 3.15 (1.07) 3.81 (1.07) 0.600 

Serum B12 (ng/l) 395.1 (47.9) 485.1 (47.9) 418.2 (51.9) 469.1 (53.5) 0.528 

Red cell folate 
(μg/l) 

263.5 (31.4) 259.1 (31.4) 290.8 (34.1) 306.9 (35.1) 0.708 

Plasma 
selenium 
(μmol/l) 

1.05 (0.05) 1.14 (0.05) 1.27 (0.05) 1.31 (0.05) 0.005 

 

TABLE 4-4. DIETARY INTAKE BY GROUP AT BASELINE FOR DISC STUDY PARTICIPANTS. 

 
 

Group A 
(n=20) 

Group B 
(n=20) 

Group C  
(n= 17) 

Group D 
(n=18) 

 

Variable LSM (SEM) p 
value 

Energy intake 
(MJ/day) 

12.53 (1.34) 10.71 (1.34) 10.70 (1.45) 12.59 (1.41) 0.618 

Total fat  
intake (g/day) 

114.6 (15.6) 91.7 (15.6) 95.8 (16.9) 105.8 (16.5) 0.737 

Fibre intake 
(g/day) 
 

24.4 (2.4) 21.3 (2.4) 20.0 (2.6) 25.6 (2.5) 0.359 

Red meat 
(portions/day) 

0.47 (0.08) 0.40 (0.08) 0.48 (0.08) 0.50 (0.08) 0.840 

Processed 
meat 
(portions/day) 

0.88 (0.12) 0.49 (0.12) 0.38 (0.13) 0.62 (0.12) 0.023 

Alcohol intake 
(g/day) 

14.4 (6.2) 28.2 (6.2) 29.3 (6.7) 21.1 (6.5) 0.315 

Calcium intake 
(mg/day) 

1266 (109.0) 1115 (109.0) 1115 (118.3) 1302 (114.9) 0.521 

Garlic intake 
(portions/day) 

0.25 (0.06) 0.19 (0.06) 0.40 (0.07) 0.26 (0.07) 0.177 
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4.2 EFFECTS OF INTERVENTIONS 

Results are presented below for effects of the RS source Hi-maize 260 (active agent) 

compared with the corresponding placebo - amioca starch (control group) and for 

effects of the active agent PD compared with its placebo - maltodextrin (control 

group). The only covariate included in analysis was baseline methylation level. (section 

2.10.6) 

4.2.1 EFFECT SUPPLEMENTATION WITH RS AND PD ON ANTHROPOMETRIC 

MEASUREMENTS AND BLOOD INDICES  

Most anthropometric variables i.e. weight, BMI, waist and hip circumference were 

unchanged by either agent after the intervention. PD intervention reduced thigh 

circumference slightly, but significantly, compared with controls (59.7 vs. 60.4cm, 

p=0.039) (Table 4-5). 

Neither systemic inflammation estimated by hsCRP nor blood indices of micronutrient 

status  (vitamin B12, folate, selenium) were changed with either intervention agent 

alone, nor was there any evidence of significant interactions between RS and PD on 

any of these variables after the 50 day intervention (Table 4-6). 
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TABLE 4-5. EFFECT OF RS AND PD SUPPLEMENTATION ON ANTHROPOMETRIC MEASUREMENTS. 

 RS allocation LSM (SEM) PD allocation LSM (SEM) Interaction  

 Hi-maize 

260 

Control p value PD Control p value p value 

Weight 

(kg) 

83.9 (0.3) 

 

83.4 (0.2) 0.191 83.5 (0.8) 83.7 (0.8) 0.524 0.502 

BMI 

(kg/m2) 

30.2 (0.1) 30.1 (0.1) 0.513 30.1 (0.1) 30.2 (0.1) 0.523 0.831 

Waist 

(cm) 

99.9 (0.4) 100.3 

(0.4) 

0.546 99.6 (0.4) 100.5 

(0.4) 

0.118 0.319 

Hip (cm) 109.0 

(1.6) 

108.5 

(1.5) 

0.823 109.2 

(1.5) 

108.3 

(1.5) 

0.673 0.415 

Thigh 

(cm) 

60.1 (0.3) 60.0 (0.3) 0.945 59.7 (0.3) 60.4 (0.3) 0.039 0.092 

 

 

 



159 

 
TABLE 4-6. EFFECT OF RS AND PD SUPPLEMENTATION ON BLOOD CRP AND MICRONUTRIENT STATUS. 

 RS allocation LSM (SEM) PD allocation LSM (SEM) Interaction 

 Hi-maize 

260 

Control p value PD Control p value p value 

hsCRP 

(mg/l) 

2.7 (0.3) 2.2 (0.3) 0.274 2.3 (0.3) 2.5 (0.3) 0.575 0.727 

Serum 
B12 (ng/l) 

454.2 

(39.5) 

428.4 

(35.8) 

0.631 418.4 

(38.3) 

464.2 

(37.5) 

0.399 0.151 

Red cell 
folate 
(μg/l) 

276.8 

(13.2) 

286.9 

(11.9) 

0.573 280.3 

(12.7) 

283.5 

(12.4) 

0.859 0.593 

Plasma 
Se 
(μmol/l) 

1.21 

(0.04) 

1.22 

(0.03) 

0.785 1.21 

(0.03) 

1.22 

(0.03) 

0.796 0.535 
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4.2.2 EFFECT OF RS AND PD ON LINE-1 METHYLATION 

LINE-1 methylation was not affected by either RS or PD at any of the 3 CpGs within the 

assay (or mean methylation across the 3 sites) and there was no evidence of any 

interaction between RS and PD. (Table 4-7) 

TABLE 4-7. EFFECTS OF RS AND PD SUPPLEMENTATION ON LINE-1 METHYLATION. 

CpG 

site 

RS allocation LSM (SEM) PD allocation LSM (SEM) Interaction 

 Hi-maize 

260 

Control p value PD Control p value p value 

1 76.7 (0.8) 

 

77.2 (0.8) 0.673 76.9 (0.8) 76.9 (0.8) 0.993 0.422 

2 63.8 (0.6) 63.9 (0.6) 0.869 64.1 (0.6) 63.6 (0.6) 0.554 0.843 

3 65.1 (0.5) 65.6 (0.5) 0.482 65.7 (0.5) 65.0 (0.5) 0.307 0.360 

Mean 68.5 (0.5) 68.9 (0.5) 0.594 68.9 (0.5) 68.5 (0.5) 0.149 0.832 
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4.2.3 EFFECT OF RS AND PD ON JAG1 METHYLATION 

After 50 days of supplementation, methylation of JAG1 at CpG site 4 was increased 

significantly (p=0.009) in those that allocated to PD (3.1 (PD) vs. 1.7% (control)) (Table 

4-8) All other CpGs on the JAG1 assay showed higher levels of methylation in response 

to PD compared to controls although these changes were not statistically significant 

(p>0.05). For an oncogene higher levels of methylation after treatment would 

potentially confer a protective effect by resulting in less gene transcription. There were 

no consistent, or significant, changes in JAG1 methylation in response to RS 

supplementation. (Table 4-8) 

TABLE 4-8. EFFECTS OF RS AND PD SUPPLEMENTATION ON JAG1 METHYLATION. 

CpG 

site 

RS allocation LSM (SEM) PD allocation LSM (SEM) Interaction 

 Hi-maize 

260 

Control p value PD Control p value p value 

1 3.8 (0.8) 4.8 (0.7) 0.386 4.7 (0.8) 3.9 (0.8) 0.450 0.750 

2 2.6 (0.6) 3.2 (0.6) 0.482 3.2 (0.6) 2.6 (0.6) 0.461 0.836 

3 6.7 (0.7) 6.1 (0.7) 0.459 7.1 (0.7) 5.5 (0.7) 0.115 0.834 

4 2.5 (0.4) 2.3 (0.4) 0.703 3.1 (0.4) 1.7 (0.4) 0.009 0.341 

5 4.5 (0.7) 4.7 (0.6) 0.895 5.0 (0.7) 4.2 (0.6) 0.368 0.950 

Mean 4.0 (0.5) 4.2 (0.5) 0.742 4.7 (0.5) 3.6 (0.5) 0.132 0.924 
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4.2.4 EFFECT OF RS AND PD ON RBP-J METHYLATION  

The results by treatment group are summarized in Table 4-9. No statistically significant 

differences were noted for either RS or PD supplementation in isolation compared to 

placebo controls.  

Several of the CpG sites achieved (CpG 2) or approached (CpGs 1, 3, 4, 7, 8, 10, 11) 

statistical significance for an interaction effect. The effect at all sites was the same with 

higher methylation in the double intervention and double placebo (control) groups and 

lower methylation for each of the single intervention groups (data for mean RBP-J 

methylation interaction effects shown in Table 4-10). The initial analysis of results for 

interaction effects (mean RBP-J methylation) did not fulfill the necessary assumptions 

of GLM, specifically normal distribution of residuals. Removal of three outliers with 

high standardised residuals (these individuals were distributed evenly between 

intervention groups) from the analysis of mean RBP-J methylation gave a significant 

interaction p value of 0.044 and normalised the distribution of residuals. Mean 

methylation was higher in the double intervention and double placebo groups (3.1 and 

3.3% respectively) and lower in the single intervention groups (Hi-maize 260 – 2.4%, 

PD – 2.6%). (Figure 4-2) 
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TABLE 4-9. EFFECTS OF RS AND PD SUPPLEMENTATION ON RBP-J METHYLATION. 

CpG 
site 

RS allocation LSM (SEM) PD allocation LSM (SEM) Interaction 

 Hi-maize 
260 

Control p value PD Control p value p value 

1 0.9 (0.2) 0.9 (0.2) 0.892 0.7 (0.2) 1.0 (0.2) 0.207 0.099 

2 1.3 (0.2) 1.3 (0.2) 0.931 1.3 (0.6) 1.3 (0.6) 0.461 0.017 

3 1.5 (0.2) 1.4 (0.2) 0.852 1.4 (0.2) 1.5 (0.2) 0.626 0.095 

4 1.0 (0.2) 1.3 (0.2) 0.363 0.9 (0.2) 1.4 (0.2) 0.091 0.091 

5 1.2 (0.2) 1.3 (0.2) 0.785 1.0 (0.2) 1.5 (0.2) 0.137 0.132 

6 4.0 (0.5) 4.2 (0.5) 0.753 4.1 (0.5) 4.2 (0.5) 0.882 0.133 

7 1.4 (0.2) 1.4 (0.2) 0.973 1.2 (0.2) 1.5 (0.2) 0.371 0.060 

8 1.3 (0.2) 1.3 (0.2) 0.950 1.2 (0.2) 1.4 (0.2) 0.522 0.068 

9 1.3 (0.2) 1.5 (0.2) 0.598 1.1 (0.2) 1.6 (0.2) 0.160 0.140 

10 1.4 (0.2) 1.5 (0.2) 0.818 1.2 (0.2) 1.8 (0.2) 0.066 0.087 

11 17.5 (1.1) 18.3 (1.1) 0.631 18.1 (1.2) 17.7 (1.1) 0.807 0.082 

12 2.9 (0.3) 2.8 (0.3) 0.797 2.7 (0.3) 2.9 (0.3) 0.670 0.127 

Mean 3.0 (0.3) 3.1 (0.3) 0.821 2.9 (0.3) 3.1 (0.3) 0.606 0.055 
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TABLE 4-10. VALUES FOR INTERACTION EFFECTS AFTER RS AND PD SUPPLEMENTATION FOR MEAN RBP-J 

METHYLATION.   

RS allocation  PD allocation LSM SEM 

Hi-maize 260 PD 3.1 0.3 

Hi-maize 260 Control 2.4 0.4 

Control PD 2.6 0.3 

Control Control 3.3 0.3 

 

FIGURE 4-2. GRAPHICAL REPRESENTATION OF THE INTERACTION EFFECT NOTED IN RESPONSE TO RS AND PD 

SUPPLEMENTATION. 
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4.3 DISCUSSION OF THE DISC STUDY 

4.3.1 CRITICAL APPRAISAL AS A RANDOMISED CONTROLLED TRIAL 

The DISC study recruited the target number of participants. Although this was not 

subject to a formal power calculation it represented an achievable target likely able to 

detect effects based on a previous study conducted within the group which detected 

methylation changes in CRC patients given RS supplementation for 25 days. 

(Dronamraju, Coxhead et al. 2009) Groups were well matched at base-line except for 

age, selenium and processed meat consumption. These were not deemed to be 

required covariates for analysis of intervention effects as the distribution between 

treatment groups was unknown and there was no evidence that these would act as 

confounding variables for intervention effect when baseline methylation level was 

already being accounted for (section 2.10.6). 

Most participants progressed to completion of the trial suggesting that the protocol 

was acceptable. 11 participants were unable to complete the study (12.5%) although 

only three of these were due to poor palatability of the intervention or side-effects 

(bloating). There was no differential loss to follow-up between groups which, if 

present, might suggest an unmeasured factor causing drop-out rates to increase in a 

particular group. Two participants were excluded after completing the trial as there 

were concerns that their inclusion might bias results. One participant was excluded 

due to potentially meeting family history criteria for HNPCC which could not be further 

clarified and, as such, meeting previously defined exclusion criteria. The other 

participant was excluded because he was taking Orlistat. This could have potential 

confounding effects as a large proportion of dietary fat is diverted to the colon which 

may affect the colonic bacteria (Thompson and Spiller 1995; Jiang, Lupton et al. 1996; 

Murphy, Cotter et al. 2010)  although the only study specifically assessing Orlistat’s 

effect found no effect on colorectal mucosal crypt cell proliferation. (Ahnen, 

Guerciolini et al. 2007) Orlistat use had not been anticipated prior to the trial 
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commencing and so was not included in the initial exclusion criteria. Importantly this 

post-hoc exclusion decision was made prior to any analyses being undertaken.  

Overall participants’ had final clinical diagnoses consistent with no increase in CRC risk 

suggesting that the predefined exclusion criteria were satisfactory as the basis for 

participant selection. Allocation of participants was free from investigator or 

participant influence and all laboratory and statistical analyses were undertaken with 

blinding to treatment allocation. As such the DISC study fulfils the criteria for a high 

quality RCT according to published guidelines. (Schulz, Altman et al. 2010) 

4.3.2 EFFECTS OF DISC INTERVENTIONS ON ANTHROPOMETRIC AND BLOOD 

INDICES 

The intervention combinations were designed based on the maximum energy intake 

increase being 180kJ/day in the double intervention group. This was calculated to 

provide only a modest increase in overall energy intake compared to recommended 

values in males (10.9MJ/day) and females (8.6MJ/day). There was no evidence of 

weight gain in any of the treatment groups so it is possible that participants 

(unconsciously) adjusted their energy intake or energy expenditure to maintain energy 

balance during the intervention study. Doses were also based on doses of RS which 

have previously been shown change methylation profiles in patients with CRC taking a 

25 day intervention between diagnosis and surgery. (Dronamraju, Coxhead et al. 2009; 

Burn, Bishop et al. 2011) Supplying intervention so that similar doses of NDC reached 

the colon for each treatment, based on anticipated levels of small bowel digestion 

(section 2.3), allowed detection of differential effects of the two different NDCs, Hi-

maize 260 and PD.  

The only anthropometric measure which changed after fifty days supplementation was 

thigh circumference which was reduced in those participants taking PD (59.7 vs. 

60.4cm, p=0.039). There are no data available to suggest that PD is known to cause 

weight change or alter body composition. There are data that show significant 

suppression of appetite by PD consumption at doses similar to the DISC study doses, 

with decreased consumption at subsequent ad libitum meals between 218-408kJ/day. 

(Hull, Re et al. 2012; Ranawana, Muller et al. 2012) RS consumed in greater quantities 
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and over a longer time period than in the DISC study has also been shown to confer 

more favourable fat distribution in conjunction with improved insulin sensitivity but 

without weight loss in subjects with metabolic syndrome. (Johnston, Thomas et al. 

2010) Thigh circumference has been found to be a predictor of cardiovascular disease 

(smaller thighs associated with increased mortality) and it has been suggested that this 

is because it acts as a surrogate estimate of body fat distribution. (Berit and Peder 

2009) Within the DISC study the FFQ was not repeated at the end of the study to 

attempt to measure dietary change as it has not been validated in this context. Data on 

subjective ratings of appetite and satiety or body composition were not collected. 

These may have clarified underlying reasons behind changes in thigh measurements or 

suggested that this was a type 1 error. 

Systemic inflammation was not influenced as hypothesised by either intervention 

agent or combination of agents. PD has been shown to have anti-inflammatory 

properties in animal colitis models but data showing an anti-inflammatory effect in 

humans is not available. (Witaicenis, Fruet et al. 2010; Bassaganya-Riera, DiGuardo et 

al. 2011) RS has also been shown to decrease systemic inflammatory markers in animal 

models (Witaicenis, Fruet et al. 2010) but these results have not been replicated in 

human intervention studies. (Worthley, Le Leu et al. 2009; Johnston, Thomas et al. 

2010). No change was expected in blood concentrations of the micronutrients B12, 

selenium or folate and this is what was observed. 

4.3.3 EFFECTS OF DISC INTERVENTIONS ON GLOBAL AND GENE SPECIFIC 

METHYLATION 

Global methylation was unchanged after either intervention in the DISC study or any 

combination of interventions. The only other study to evaluate global methylation 

after dietary intervention in humans with RS used a similar dose in combination with 

probiotic supplementation in a placebo-controlled cross-over design. After forty days 

intervention they also found no change in LINE-1 methylation for active treatment 

compared to controls. (Worthley, Le Leu et al. 2009)  

Baseline DISC study participant data suggested that LINE-1 methylation was decreased 

in response to higher reported dietary fibre intake, though not specifically RS. This 
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would be the direction of effect anticipated for a harmful environmental exposure. 

(section 3.3.2) Global gene methylation is known to decrease with age and is 

associated with increased CRC risk. (Ogino, Nosho et al. 2008; Belshaw, Pal et al. 2010; 

Sunami, de Maat et al. 2011) Figuerido et al. reported other dietary associations 

between LINE-1 methylation and dietary intake but no data regarding fibre 

consumption was reported. (Figueiredo, Grau et al. 2009) 

There are several potential explanations for no effect of RS or PD being observed in the 

DISC study. Firstly, LINE-1 may respond to dietary and specifically RS or PD protective 

effects. However, this effect may occur over the lifespan of an individual and relatively 

short interventions (50 days) may not modulate global methylation sufficiently for 

detection. The small absolute lifetime differences noted between the higher risk and 

normal risk participants (largest between any high risk and normal control was 6.4% - 

section 3.3.1) in the current study suggest that absolute differences after a dietary 

intervention may be small and difficult to detect. A second explanation is that 

decreased global methylation, whilst associated with cancer risk and likely to be 

causative, may be brought about by mechanisms entirely independent of dietary 

factors such as stochastic genetic mutation of DNMTs, or that dietary factors may only 

contribute partially to the pathogenesis of global demethylation. Finally, as suggested 

by data within the current study, consumption of dietary fibre may actually be 

associated with decreased methylation although this would contradict the consensus 

evidence based on much larger studies. (Dagfinn, Doris et al. 2011; WCRF/AICR. 2012) 

It must be noted that the measurement instrument used in the exploratory analysis of 

LINE-1 methylation earlier was dietary fibre as defined by the Englyst method which 

estimates all dietary fibre and not RS specifically. (Englyst, Kingman et al. 1992) Also 

the previous analysis was underpowered for the number of associations examined so 

results must be treated with caution (see section 5.1.6). More definitive information 

would be gleaned from repetition in a larger independent data set.  

JAG1 methylation was not affected by RS intervention in the DISC study. PD 

supplementation caused an increase in methylation levels at all CpG sites measured in 

the assay, an effect which was statistically significant at site 4 (3.1 (PD) vs. 1.7% 

(control), post-treatment values with pre-treatment values as control, p=0.009) (Table 
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4-8) An increase in methylation was hypothesised for a protective effect on an 

oncogenic gene. No other data are available on dietary effects on NOTCH signalling 

genes or methylation changes in response to PD specifically but other studies have 

shown that gene specific methylation can be modulated by RS intervention over a 

short intervention period of two weeks. (Dronamraju, Coxhead et al. 2009) It can 

reasonably be expected that one intervention can have an effect independent of 

another (or in conjunction with another) as different RSs have very different 

fermentation profiles, SCFA release and prebiotic effects. (Beards, Tuohy et al. 2010)  

No effects of either intervention agent individually were detected on RBP-J 

methylation at any CpG site or for mean RBP-J methylation (Table 4-9). However there 

was a consistent pattern across all CpG sites for an interaction between RS and PD 

which was statistically significant at CpG site 2 (p=0.017).  Mean RBP-J methylation 

interaction values are shown in Table 4-10. Higher methylation was present for double 

intervention (3.3%) and double placebo groups (3.1%) and lower values for Hi-maize 

260 (2.4%) and PD groups (2.6%) (p<0.05 after removal of outliers).  

Given the action of RBP-J as an oncogene, a similar direction of effect (increased 

methylation) would be expected for JAG1 if RS or PD confers a protective effect for 

CRC. What has been observed is actually a curvilinear response to overall NCD dose 

with decreased methylation in response to a single agent and return to baseline 

(control group values) with double intervention. (Figure 4-3)   The simplest explanation 

of these results is that they represent a type I error, although this seems unlikely given 

the reproducibility of the pattern between CpGs. 

Another potential factor that could explain the results would be an unexpected 

placebo effect. The analysis model used does not include prospective analysis to detect 

a placebo effect although a post-hoc paired t-test of before and after values suggests 

that there was not significant change in methylation of the placebo group (p=0.059). If 

it is assumed that the placebo has no effect, then it would be concluded that individual 

interventions decrease methylation in an unexpected fashion and, when combined, 

the intervention agents cancel out each other’s effect.  The potential harmful effect of 

single agent intervention with RS or PD is unexpected and would need to be further 
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examined with estimation of intermediary products such as RNA and protein to see if 

the methylation change observed translates into a detectable change in the 

transcriptome or proteome.  Cancellation of the effect with double intervention may 

be mediated by changes in the colonic microbiota in response to differing doses and 

types on NDC. There are previous data showing that different RSs and RS combinations 

have specific effects on colonic microbiotal populations (Martínez, Kim et al. 2010; 

Abell-J, Christophersen et al. 2011) and also that specific methods of delivery of 

butyrate to the colorectum have differing degrees of protective effect in terms of 

cancer development in carcinogen treated rats. (Clarke, Topping et al. 2008; Clarke, 

Young et al. 2012) Stool samples have been collected before and after intervention 

from all the DISC study participants and analysis of the microbiotal populations is 

planned as part of the DISC project. These analyses may be informative in suggesting 

whether changes in microbiotal colonisation of the colon mediate the cancellation 

effect. Confirmation of results in an independent data set would also be required 

validate these results. 

 

FIGURE 4-3. GRAPHICAL REPRESENTATION OF RBP-J METHYLATION IN RESPONSE TO INTERVENTION AGENTS IN 

THE DISC STUDY. 
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4.4 SUMMARY OF RESULTS FROM THE DISC STUDY 

The DISC study (intervention) recruited the anticipated number of participants and 

inclusion and exclusion criteria selected a group who were unlikely to be at higher risk 

of CRC than the general population despite sampling a symptomatic population. The 

trial was acceptable to participants with low drop-out rates and fulfilled the criteria for 

a high quality RCT unlikely to be affected by bias.  

PD caused a small but significant (0.7cm, p=0.039) decrease in thigh circumference 

compared with controls without change in other anthropometric variables. This could 

suggest that body fat has redistributed in response to PD supplementation but 

measurements to confirm this were not taken within the DISC study. 

JAG1 methylation was unaffected by RS supplementation. PD supplementation caused 

a trend towards increased methylation at all CpG sites compared to control which 

reached statistical significance at CpG site 4. This is the expected direction of effect for 

a protective agent and demonstrates plasticity of JAG1 methylation in response to PD 

dietary supplementation.  

RBP-J methylation was not changed by either intervention agent. An interaction effect 

was noted with lower methylation in groups supplemented with a single NDC and 

higher in those receiving double intervention. This curvi-linear dose-response 

relationship appears to show a potentially harmful effect of single NDC 

supplementation and cancellation when double NDC dose was consumed. 
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CHAPTER 5. DISCUSSION 

5.1 STRENGTHS AND LIMITATIONS 

5.1.1 BASELINE STUDY  

The baseline study describes the methylation between groups at differing risk of CRC 

and potential environmental factors affecting methylation. Two main analyses were 

undertaken; one investigating variation in NOTCH gene methylation in response to 

disease states that increase risk of CRC (adenomatous polyps and UC) compared to 

normal risk controls. The second main analysis investigated environmental exposures 

that may predict gene methylation in a population at normal risk of CRC. Such analyses 

of exposures and biomarkers are retrospective by nature meaning that associations 

can be defined but causality cannot be proven. However the practicalities of any 

prospective design, long time scale and large number of participants, made case-

control the pragmatic choice for this project. In this study all groups were recruited 

from the same geographical and socio-economic population over the same time period 

and measurements were performed by the same study team minimising the risk of 

systematic biases being introduced. 

When investigating the different methylation of NOTCH genes between higher and 

normal CRC risk groups a sample size calculation was not possible due to the 

exploratory nature of the study and the absence of data describing normal baseline 

methylation of NOTCH genes or anticipated difference in methylation in the higher risk 

CRC population. Therefore type I and type II statistical errors could have been made. 

The potential setting for type II errors (accepting a null hypothesis when it is false) 

within this study mostly concerned gene promoters with a mean methylation of less 

than 5% in the normal risk population. Although biologically significant demethylation 

may occur in response to increased risk of CRC at these CpG loci, very large samples 

sizes would be required to detect small absolute changes in methylation. If further 

data were to suggest that these CpGs are relevant in carcinogenesis then other 
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methods of methylation estimation would be appropriate to quantify such low level 

methylation accurately such as methylation specific PCR. (Belshaw, Elliott et al. 2008)  

Where between-group differences have been detected in methylation of gene 

promoters and in whole genome methylation, these data were usually normally 

distributed so the use of parametric tests is valid. Where data were not normally 

distributed, significant differences detected using parametric tests have been 

confirmed using equivalent non-parametric tests (Kruskal-Wallis). In addition, within-

group homogeneity of data is reassuring for generalisability of conclusions to the 

relevant population even when the sample size is small (as for the UC group). 

Confidence in the validity of results is also increased by the high correlations observed 

between CpGs on the same gene promoter as this is expected to be greater than 0.6 

for most genes. (Bell, Pai et al. 2011) Whilst these factors are reassuring that the 

observed data represent real differences between those at normal and higher risk of 

CRC, validation can only be achieved with replication in an independent data set.  

5.1.2 INTERVENTION STUDY - THE DISC STUDY  

The DISC study aimed to determine the effects of the dietary intervention on putative 

biomarkers of CRC risk in a population of adults at normal CRC risk. Therefore, when 

designing this intervention study, considerable care was taken to be explicit about the 

inclusion and exclusion criteria to be applied before commencing recruitment to the 

study. Exclusion criteria were selected to minimise confounding issues which could 

affect study outcome measurements (eg. aspirin or other NSAID use and inflammation 

parameters) or result in participants at higher CRC risk, above that of the normal 

population, being included in the normal risk group (eg. by fulfilling the Amsterdam 

criteria for HNPCC). However two issues of generalisability of the DISC study outcomes 

to a wider normal risk population remain. The first issue is the extent that selection 

from a symptomatic population represents a truly ‘normal’ population. Data collected 

on indications for colonoscopy, final result and random histology are reassuring. A high 

proportion of the study sample had a final diagnosis which was not consistent with any 

increase in CRC risk or colorectal mucosal disease, such as haemorrhoids or anal 

fissures. Where biopsies were taken (27%), these were reported as normal and no 
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participant was excluded on the basis of these results. The final endoscopic diagnosis 

was listed as ‘normal’ with no histology for 17 participants (23%). Although no formal 

diagnosis has been made, it is likely that a high proportion of this group will be 

suffering from irritable bowel syndrome which has no association with increased CRC 

risk. (Norgaard, Farkas et al. 2011) 

The second issue of generalisability results from the large attrition between invitation 

to enter the study and recruitment of participants. Overall 88 participants were 

randomised from 1508 invitations. Whilst a large percentage was due to pre-defined 

exclusion criteria, many simply refused to participate. Data are not available to suggest 

if, or how, this may affect the findings of the study. Studies on CRC screening have 

shown that patients are more likely to take up invitations using less invasive tests and 

a personalised invitation strategy.(Brouwers, De Vito et al. 2011; Hewitson, Ward et al. 

2011) In this study rigid sigmoidoscopy represented the least invasive method of 

obtaining tissue for repeat samples and avoided the need for repeat bowel 

preparation. Potential surrogate markers such as stool and buccal cells were collected 

as part of the DISC study. Previous studies have shown these surrogates do not  

accurately replicate mucosal methylation patterns (Elliott, Johnson et al. 2012; Staley, 

Bradburn et al. 2012) and wide tissue specific variation in methylation is known to 

exist. This meant that such surrogates were not suitable to replace more invasive 

direct mucosal sampling. (Thompson, Atzmon et al. 2010; Liang, Song et al. 2011) 

Invitations were personalised to attempt to maximise participation. (Appendix 2) 

Recommendations about whether and how participation could be improved in future 

studies cannot be made as ethical approval did not allow recording reasons for refusal.   

The DISC study is the largest RCT investigating the effects of RS and PD 

supplementation on colonic biology in people at normal risk of CRC. Previous studies 

using RS supplementation or placebo control in healthy humans recruited 17 and 12 

participants in a cross-over design. (Wacker, Wanek et al. 2002; Worthley, Le Leu et al. 

2009) The DISC study was a randomised controlled trial (RCT) using appropriate 

allocation concealment and double-blinding until completion of analysis, thus 

representing a high quality trial unlikely to be affected by bias. Well-conducted RCTs, 
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such as the DISC study, represent the only way to define a cause and effect 

relationship.  

5.1.3 BIOLOGICAL SAMPLES 

Biological sample collection from participants was >95% overall. Audit of samples 

revealed that 100% of collected samples were traceable. Samples that were not 

obtained were due to non-systematic factors such as loss of samples at external 

laboratory or inability of a participant to tolerate rigid sigmoidoscopy and were 

balanced equally between baseline and follow-up visits and between intervention 

groups. Appropriate quality and quantity of DNA was able to be extracted from all 

tissue samples and all blood samples received by external laboratories were suitable 

for analysis. 

Estimations of any biomarker using pinch biopsies from the rectum are subject to the 

effect on an assay of non-mucosal tissue collected within the biopsy such as: stromal 

tissue, smooth muscle, blood vessels and blood cells which may display different 

biological characteristics. As epigenetic marking is tissue specific this may confound 

results obtained. (Thompson, Atzmon et al. 2010; Liang, Song et al. 2011) However the 

majority of the tissue within these biopsies is colorectal mucosa and so the results are 

likely to describe this tissue sufficiently. 

Mucosal samples were obtained from the mid-rectum in all cases. This was a pragmatic 

decision based on two considerations. The first is the need to avoid potential 

confounding due to differences in biomarkers between different sites in the large 

bowel. For example, previous work from this group has shown significant, and 

systematic, differences in crypt cell proliferation and differential expression of WNT 

genes in mucosal biopsies collected from different anatomical sites in the human colo-

rectum. (Mills, Mathers et al. 2001; Malcomson, Willis et al. 2012)  Second was the 

need to use rigid sigmoidoscopy for collection of repeat biopsies due to  cost 

implications of a second formal endoscopy, acceptability of repeat bowel preparation 

and endoscopy (and consequences for recruitment) and possible confounding effects 

that bowel preparation may have had on study outcomes.  
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Sampling from mid-rectum, 10cm from the anal verge ensured reproducibility of 

sample location between patient visits and different endoscopists as estimated 

location at points more proximal to this has been shown to be highly variable between 

endoscopists. (Vignati, Welch et al. 1994)  

The rectum is the site where most CRCs and adenomatous polyps are found and so 

represents an informative site to sample to detect biological effect that may affect CRC 

risk. (Granqvist 1981; Green 1983) In UC patients the rectum provides an ideal 

sampling location as the rectum is involved in all cases of UC. In polyp patients the 

fixed sampling site may not describe the magnitude of change at the site of the disease 

process, which may be significantly proximal to the sampled site. Whilst additional 

sampling at the site of disease would add interesting data, potentially showing 

progressive methylation change, we hypothesised that epigenetic change would form 

part of a field change. The homogeneity of results in the rectal mucosa of the polyp 

group strongly suggests that such a field change is present. This supports the results of 

other studies where epigenetic field change has been confirmed in epithelium at 

higher risk of CRC. (Suzuki, Gabrielson et al. 2002; Shen, Kondo et al. 2005; Belshaw, 

Elliott et al. 2008; Milicic, Harrison et al. 2008) 

5.1.4 METHYLATION ASSAY DESIGN 

Within this study quantitative methylation assays were based on gene promoter 

regions that had been experimentally verified. Standard selection parameters for 

genomic areas likely to be subject to transcriptional regulation by methylation (CpG 

islands within experimentally verified promoter regions) were used; GC content >0.5 

and observed to expected ratio of CpGs>0.6. (Gardiner-Garden and Frommer 1987; 

Feinberg and Tycko 2004) There are data that suggest that that regions upto 2kb 

upstream of promoters, known as CpG shores, may show greater variation in 

methylation in response to disease risk. (Irizarry, Ladd-Acosta et al. 2009) The recently 

published data from the ENCODE project also suggest that the greatest degree of gene 

methylation variation occurs in minimally methylated, intergenic (regions also known 

as CpG ‘open sea’) and exonic regions. Mechanistic processes of transcription control 

have been suggested, though not definitively proven, such as recruitment of P300 as a 
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transcription factor. The ENCODE data were not available when the current study was 

being undertaken and all data had been collected before the ENCODE publications on 

5th September 2012. (ENCODE 2012)  

Analysing these CpG shores or open sea using pyrosequencing would not be possible 

due to the practical limitations of pyrosequencing. This is due the disparity of to the 

wide regions that would need to be sequenced and the low frequency CpGs within 

them, and the reliable sequencing abilities of a pyrosequencer (typically <100 bases). 

Whilst studies have raised the possibility that transcription is more closely associated 

to intergenic or exonic genome methylation rather than gene promoter methylation, 

(Brenet, Moh et al. 2011; ENCODE 2012) these data also confirm a high correlation 

between promoter methylation and transcription (Brenet, Moh et al. 2011) a finding 

that replicates that of multiple other studies. (Hsieh 1994; Lorincz, Schübeler et al. 

2002; Chevalier-Mariette, Henry et al. 2003) Thus a ‘standard’ assay design using 

experimentally verified promoters and CpG islands within these promoters was 

adopted in the DISC study. As such assays were practical to carry out and highly likely 

to be biologically relevant i.e. correlate with transcription.  

5.1.5 SCREENING OF GENES FOR SELECTION TO BE ANALYSED ON THE COMPLETE 

DISC STUDY SAMPLE 

The ‘screening’ of NOTCH gene promoters was designed to inform the selection of 

genes for the main study using a small sample of high vs. normal risk of CRC 

participants. Where different levels of methylation between groups were found this 

would suggest that a gene should be analysed in the full study population. Perhaps 

unsurprisingly, not all statistically significant results in the screening sample were 

replicated in the complete DISC study population suggesting that the small sample size 

increased the risk of type 1 errors at this stage. However a higher α value was applied 

when analysing these data and decisions made in conjunction with known biological 

effect and assay reliability (section 3.6.1.1). Overall, the screening study was 

particularly effective in identifying gene promoters which were essentially 

unmethylated in both those at normal and at higher CRC risk and, therefore, which are 

unlikely to be informative, allowing them to be rejected from the main study.  
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5.1.6 STATISTICAL ANALYSIS 

Issues around the selection of parametric and non-parametric tests are discussed in 

section 2.10. Data suggesting statistically significant differences between groups were 

either normally distributed and thus suitable for parametric testing or not normally 

distributed but not suitable for transformation and non-parametric-testing was used to 

confirm significant results.  

When considering dietary and lifestyle factors contributing to global and gene specific 

methylation the study is likely to be under-powered. The determination of sample 

sizes for multiple linear regression are defined by acceptable type I and II error rates 

(usually α-0.05, power-0.8) and the multiple correlation coefficient (R) – the number of 

variables included in the regression equation. For statistically robust results, sample 

sizes would have to have been much larger for JAG1 (n≈595) and RBP-J (n≈252) and 

slightly larger for LINE-1 (n≈105). (http://www.stattools.net 2012) Although the sample 

sizes are small for regression analyses they are comparable to the size of other studies 

reporting epigenetic epidemiological associations recently reviewed by Hou et al.. 

(Hou, Zhang et al. 2012) 

Overall these data can be viewed as exploratory only. Whilst increasing numbers in the 

sample would strengthen confidence in the validity of the observed associations, proof 

of an association would require replication in an independent data set. 

5.2 ISSUES IN EPIGENETIC EPIDEMIOLOGY 

5.2.1 CAUSE AND EFFECT RELATIONSHIPS 

Within any epidemiological study associations between exposures and outcomes are 

subject to confounding and the direction of cause and effect can be difficult to 

ascertain. The direction of cause and effect can be rationalised logically, but not 

proven, in many cases. Reverse causation can be problematic in some epidemiological 

studies (Smith, Timpson et al. 2008) but it seems unlikely that epigenetic modifications 

in the genes studied here would have affected dietary and lifestyle choices. There are 

also data using in in vitro and in in vivo models showing the temporal relationship of 
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changing exposure to RS or butyrate followed by methylation change. (Dronamraju, 

Coxhead et al. 2008; Dronamraju, Coxhead et al. 2009; Worthley, Le Leu et al. 2009) 

The DISC study has also supported this temporal relationship by demonstrating a 

change in methylation of JAG1 after dietary supplementation with PD as part of a high 

quality RCT. 

Whilst the cause and effect relationship of environmental exposures and methylation 

can be rationalised the same is not true for differences in methylation observed 

between higher risk of CRC groups and normal controls. When describing these 

associations many other factors may moderate the different epitypes observed 

including: germline epigenetic variation, genetic mutation with an associated 

epigenetic signature, intra-uterine exposure and inheritance of the epigenome across 

generations reflecting distant environmental exposure. (Relton and Davey Smith 2012) 

Additionally the final biological effect of altered methylation in response to higher CRC 

risk cannot be defined without further examination or intermediary products of 

transcription and translation. However, the likely effect on transcription of a gene can 

be implied by the known relationships of gene promoter methylation and transcription 

in other genes. However the precise change in transcription levels for any degree of 

change in methylation cannot be assumed for an individual gene as methylation may 

be the dominant factor regulating transcription or may only play a small role in 

conjunction with other regulatory pathways. Thus the contribution of an epitype to the 

known phenotype within a group is difficult to quantify. (Relton and Davey Smith 2012) 

Consideration must also be given to the potential that epigenetic traits may not be 

causal and may simply mark at-risk cells as a result of another biological mechanism. 

Recent ENCODE data has even suggested that a proportion of methylation change may 

actually occur passively in response to an absence of transcription factors in promoter 

regions of the genome. (Thurman, Rynes et al. 2012) Whilst potential plasticity of 

epigenetic responses makes them attractive therapeutic or chemopreventative 

targets, there is no therapeutic value in a non-causal epigenetic trait. However such a 

trait would have value as a biomarker of risk and may be useful to risk-stratify subjects 

using less invasive means than currently available. 
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5.2.2 STRATEGIES TO DEFINE CAUSALITY IN EPIGENETIC EPIDEMIOLOGY 

The only experimental method that truly defines causation without confounding is a 

well-conducted RCT such as the DISC study as the process of adequate randomisation 

accounts for confounders and a temporal relationship of cause and effect can be 

defined. However RCTs are expensive, time consuming and may expose recruited 

subjects to an element of risk. Thus an RCT is the correct strategy to define a 

relationship where strong lower level evidence exists to support a single intervention 

as is the case with RS and PD. However, when analysing life-course effects of multiple 

exposures, potentially with interacting effects, this becomes unrealistic and other 

strategies must be employed. 

Several other strategies exist to strengthen the likelihood of causality. These may 

include: demonstrating no association with implausible similar exposures, defining a 

biologically plausible link, measuring intermediary steps from epitype and phenotype 

eg. RNA or protein expression, extrapolation of animal data into humans, 

measurement of surrogate outcomes or linking exposures to population behaviour 

such as in migration studies. 

Mendelian randomisation has been proposed as an additional method to link life-

course exposures to outcomes whilst negating confounding effects. It relies on the 

random distribution of allelic variants across the population and the immunity of 

genetic variance from confounding influences. In this method an instrumental genetic 

variant highly correlated with the exposure of interest but, critically, not actually or 

potentially linked to the outcome of interest, is examined for an association. If the 

association with the ‘instrumental’ genetic variable with the outcome of interest is the 

same as the association of the exposure and outcome, then this indicates a causative 

link between the exposure and outcome. Genes linked with exposures are not 

randomly selected but often define level of exposure. An example of a useful 

instrumental variable gene in dietary linkages is HFE. This gene is involved in iron 

absorption and is therefore linked to serum iron concentrations implicitly (mutated 

HFE leads to low iron absorption and low serum iron concentrations). A link with HFE 

and cancer would strengthen causation in a previously defined association between 
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serum iron concentration and cancer. This could not be due to a confounder effect as 

HFE has no role itself in carcinogenesis. (Schatzkin, Abnet et al. 2009) Mendelian 

randomisation therefore represents a useful tool to define causation in epidemiology 

but is often limited by the lack of appropriate genetic instrumental variables. If genetic 

instrumental variables are available an inadequate variation either of the gene or of 

the outcome may make analysis complex, requiring studies with large numbers of 

participants. Additionally this approach maybe confounded by effects of other genetic 

variants associated with the outcome of interest (linkage disequilibrium) and unknown 

biological effect of the gene of interest on the outcome (pleiotropy). (Schatzkin, Abnet 

et al. 2009) 

Use of the principle of Mendelian randomisation to link a single environmental 

exposure with an epigenetic trait and the epigenetic trait with an outcome adds an 

additional layer of complexity. Each link must be proven to be independent of 

confounders individually, so a more complex process – two-step Mendelian 

randomisation – has been proposed. The underlying principle is the same as 

Mendelian randomisation however separate instrumental genetic variables are 

required for both associations (Figure 5-1), increasing the complexity of experimental 

work. (Figure 5-2) (Relton and Davey Smith 2012) Sample sizes for such studies depend 

on the variation of each component in the causal relationship and the variation in 

instrumental genetic variables and are likely to be very large. (Schatzkin, Abnet et al. 

2009) 

In this study an exploratory multiple linear regression approach was used to describe 

potential effects of multiple dietary and lifestyle factors on methylation of selected 

genes. An RCT was used to define the relationship of RS and PD on methylation of 

these genes as this environmental exposure has very strong evidence linking it to CRC 

risk. (section 1.12.4) 
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FIGURE 5-1. DIAGRAMATIC REPRESENTATION SHOWING POSSIBLE CONFOUNDING FACTORS IN A RELATIONSHIP 

BETWEEN AN EXPOSURE AND OUTCOME. 

REPRODUCED WITH PERMISSION. (RELTON AND DAVEY SMITH 2012) 

 

 

A MODIFIABLE CAUSAL RISK FACTOR [E] FOR DISEASE [Y] EXERTS ITS CAUSAL EFFECT (AT LEAST IN PART) VIA THE 

EFFECT OF E ON X (THE MEDIATOR) AND THROUGH THE CAUSAL EFFECT OF X ON Y. U1 AND U2 REPRESENT ALL 

CONFOUNDERS FOR THE ASSOCIATION OF E WITH Y AND X WITH Y, RESPECTIVELY. U1 AND U2 CAN INCLUDE 

DIFFERENT CHARACTERISTICS.  
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FIGURE 5-2. DIAGRAMATIC REPRESENTATION OF TWO STEP MENDELIAN RANDOMISATION TO DEFINE A CAUSAL 

RELATIONSHIP LINKING AN EXPOSURE, AN EPIGENETIC TRAIT AND AN OUTCOME.  

REPRODUCED WITH PERMISSION. (RELTON AND DAVEY SMITH 2012) 

 

 

GENETIC VARIANTS ARE USED AS INSTRUMENTAL VARIABLES IN A TWO-STEP FRAMEWORK TO ESTABLISH 

WHETHER DNA METHYLATION IS ON THE CAUSAL PATHWAY BETWEEN EXPOSURE AND DISEASE. (A) FIRST, A 

SINGLE NUCLEOTIDE POLYMORPHISM (SNP) IS USED TO PROXY FOR THE ENVIRONMENTALLY MODIFIABLE 

EXPOSURE OF INTEREST AND (B) SECONDLY, A DIFFERENT SNP IS USED TO PROXY FOR DNA METHYLATION LEVELS 
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5.3 MAIN FINDINGS 

5.3.1 COMPARISON OF HIGHER VS. NORMAL RISK OF CRC PARTICIPANTS  

Baseline values for anthropometric, dietary and blood values were equivalent between 

groups except for the polyp group being older, as expected, and a higher hsCRP in the 

polyp group. Higher levels of CRP have been found in both cancer and polyp patients in 

other studies (Allin and Nordestgaard 2011) and evidence from a large longitudinal 

cohort study suggests that CRP is a causative exposure. (Prizment, Anderson et al. 

2011) 

Global methylation was found to be decreased at all CpGs in the LINE-1 assay for UC 

patients compared to normal controls. This is only the second study to report such 

data and the only to use a fully quantitative analysis of LINE-1 methylation. (Glória, 

Cravo et al. 1996) 

In this study differential effects were noted at the CpG sites within the LINE-1 assay 

between polyp and normal controls. This suggests that the usual style in the literature 

of reporting mean LINE-1 methylation may be inaccurate and may mask important 

relationships. Defining specific CpG methylation may help to promote understanding 

of LINE-1’s direct influence on CRC carcinogenesis and on other disease processes 

where global hypomethylation is implicated. (Beck, Garcia-Perez et al. 2011) 

Gene specific methylation was found to be altered in both of the genes examined 

(JAG1 and RBP-J) between high risk of CRC groups and normal controls. For RBP-J 

significantly decreased methylation was observed at one CpG site (site 11) in polyp 

patients compared to normal controls, whilst the other CpGs were minimally 

methylated. Methylation of CpG 11 was able to predict entry into disease severity 

classifications within the polyp group. For JAG1 all group testing did not demonstrate 

significant changes but a trend towards decreased methylation was seen at all CpGs 

(except CpG site 4) in the assay for polyp patients compared to normal controls. The 

direction of effect was as anticipated for oncogenes and although absolute changes 

were small, relative changes were large. Promoter methylation is known to correlate 
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with gene transcription but precise quantification of the methylation effect would 

require measurement of transcription or translation. (Bell, Pai et al. 2011)  

In this study, the best panel of biomarkers (age, LINE-1 methylation and JAG1 

methylation) demonstrated a high specificity to define normal patients from those 

with adenomatous polyps but a low sensitivity making the discriminatory power of the 

test unsuitable for clinical practice. Other studies have reported potential blood based 

biomarkers for colorectal adenomas but predictive value was also unsuitable for 

clinical practice with low sensitivity (50%) and specificity (65%). (Cassinotti, Melson et 

al. 2012) Few other studies have described changes in normal epithelium in patients 

with colorectal adenomas. One study examined methylation of 15 genes and found 

that no individual gene predicted polyp patients from normal patients. Combination 

modelling using 10 factors only had an area under the curve (AUC) of 0.66 making it 

unsuitable for clinical use. (Worthley, Whitehall et al. 2010) Belshaw et al. were not 

able to differentiate polyp patients from normal subjects with reasonable accuracy 

using a methylation panel of 6 (HPP1, APC, SFRP4, p16, ESR1 and WIF1) (sensitivity 

38%) or 3 genes (SFRP4, SFRP5 and WIF1) (sensitivity 61%). (Belshaw, Elliott et al. 

2008) In a non-quantitative study by Ye et al. methylation of CDKN2A/p16, hMLH1, and 

MGMT were not able to predict polyps in around 200 cases and controls. However 

there were multiple epigenetic changes between normal tissue from polyp patients 

and patients at normal risk of CRC. (Ye, Shrubsole et al. 2006) More refined panels are 

being developed with a six gene methylation panel comprising CNRIP1, FBN1, INA, 

MAL, SNCA, and SPG20 able to distinguish normal from polyp with 93% sensitivity and 

98% specificity (AUC 0.984) and normal from cancer with 94% sensitivity and 98% 

sensitivity (AUC 0.986). (Lind, Danielsen et al. 2011) However this panel used tumour 

tissue, not normal rectal mucosa, so larger differences between actual neoplastic 

disease and normal methylation levels can be anticipated.  If such methylation assays 

could be replicated in normal epithelium and detected in stool or other surrogates 

then accurate, non-invasive estimation of CRC risk may be possible without direct 

visualisation of the colon. 
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5.3.2 RESULTS OF THE INTERVENTION (DISC) STUDY 

The DISC study results showed that LINE-1 (global) DNA methylation was not changed 

by a fifty day dietary intervention with either RS (Hi-maize 260) or PD. This suggests 

that either LINE-1 methylation is not modulated by RS intervention or that such 

modulation may occur over a longer time period. JAG1 methylation did change in 

response to PD dietary intervention in the direction hypothesised for that of a 

protective effect. Whilst this occurred at all CpGs within the assay it was only 

statistically significant at one CpG (site 4). These data show that JAG1 methylation is 

plastic to PD supplementation and that PD confers the hypothesised protective effect. 

Both RS and PD supplementation appeared to decrease RBP-J methylation (an 

unexpected potentially harmful effect) in isolation but this effect was cancelled with 

double intervention. This trend was replicated across all CpGs in the assay but was only 

significant at CpG site 2 and for mean RBP-J methylation. Such consistency suggests 

that this is not a spurious finding and represents a genuine effect of intervention.  

These results were unexpected and further analysis of stool samples collected from 

participants to describe bacterial population change in the colon may clarify potential 

mechanisms by which this effect occurred.  

5.3.3 IMPLICATIONS IN COLORECTAL CANCER BIOLOGY 

NOTCH signalling is known to be involved in CRC and offers a new potential 

therapeutic target through its actions on ASCs and CSCs. (Reedijk, Odorcic et al. 2008; 

Sikandar, Pate et al. 2010; Zhang, Li et al. 2010) No genetic mutation currently 

accounts for changes in NOTCH ligand expression observed in human CRC. (Lee, Jeong 

et al. 2007) If epigenetic means were found to control NOTCH signalling this could 

offer potential new chemopreventative and therapeutic strategies.  

Studies have suggested activation of NOTCH via a direct effect of WNT pathway 

activation. (Rodilla, Villanueva et al. 2009) This study suggests an alternative 

mechanism of activation for both RBP-J and JAG1 with decreased promoter 

methylation observed in higher risk groups of CRC. These changes occur in at-risk 



187 

epithelium, distant from the macroscopic pathology for polyps or independently of 

disease activity in UC, suggesting utility as biomarkers of at risk epithelium that has 

been subject to carcinogenic field change. If further work demonstrates that 

methylation levels do drive transcriptional regulation of NOTCH oncogenes, epigenetic 

therapeutic targets may be identified.  

This study demonstrates that JAG1 methylation is modifiable by PD intervention over a 

short time period at acceptable doses. JAG1 would therefore be a potential 

therapeutic target as plasticity to short term intervention is proven, it is over 

expressed in CRC and it may moderate the link between WNT and NOTCH signalling 

(section 1.9.5). (Reedijk, Odorcic et al. 2008; Pannequin, Bonnans et al. 2009; Rodilla, 

Villanueva et al. 2009) 

5.4 FUTURE RESEARCH 

5.4.1 DEFINING THE ROLE OF NOTCH IN COLORECTAL CARCINOGENESIS 

Whilst the role of WNT signalling is well described in CRC the specific actions and 

temporal relationship to phenotypic change, of the NOTCH pathway are largely 

unknown. NOTCH is clearly an integral pathway in CRC carcinogenesis due its role in 

stem cell maintenance and daughter cell differentiation in the colorectal epithelium. 

Whilst complete removal of NOTCH signalling has been shown to obliterate the stem 

cell compartment (van Es, van Gijn et al. 2005) more subtle, physiological, 

manipulations remain to be described. Increased expression of various NOTCH 

components has been described in CRC (Reedijk, Odorcic et al. 2008; Veenendaal, 

Kranenburg et al. 2008) but similar work in pre-malignant lesions is currently lacking.  

5.4.2 DEFINING THE REGULATION OF NOTCH SIGNALLING 

Control mechanisms of NOTCH pathway activation remain to be fully defined. Data 

suggests that genetic mutation does not account for changes in ligand expression. 

(Lee, Jeong et al. 2007) There does appear to be a degree of crosstalk between WNT 

and NOTCH. (Pannequin, Bonnans et al. 2009; Rodilla, Villanueva et al. 2009; Katoh 

2011) Although the precise mechanism for activation has not been defined it seems 
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likely that JAG1 may have an important role. Defining the precise role of JAG1 in CRC 

carcinogenesis, in particular its role in linking NOTCH to WNT, could lead to discovery 

of a new therapeutic target.  

This study has shown a degree of plasticity for JAG1 to a fifty day PD intervention. 

Epigenetically mediated alterations in gene expression hold the potential to be 

manipulated by alterations in diet or by drug therapies. Dietary manipulation has 

greater utility in chemoprevention and further exploration of epigenetically mediated 

changes in carcinogenesis and their relationship to dietary exposures may improve 

knowledge of healthy eating. Future interventions would have to be designed so that 

they are acceptable and sustainable for users over long time periods perhaps by 

including PD into dietary products as a functional food. The difficulty of relating life 

course exposures to epigenetic change and outcome are discussed in section 5.2.2. 

Studies on the effect of dietary exposures by 2 step Mendelian randomisation or RCTs 

would have to be large to be adequately powered. Further work to define the role of 

NOTCH (section5.4.1), widen the panel of NOTCH genes examined for methylation 

variation (specifically NOTCH3) and define the relationship of methylation traits to 

intermediate molecular measures of expression (RNA and protein) would seem 

prudent initial steps before embarking on such studies. 

5.4.3 MANIPULATION OF NOTCH SIGNALLING 

Γ-secretase inhibitors are potent suppressors of NOTCH signalling as cleavage of the 

NICD is a γ-secretase dependent process. The potential utility of γ-secretase inhibitors 

was first realised for Alzheimer’s disease where accumulation of amyloid plaques in 

the brain, pathognomic of this disease, is a γ-secretase dependent process. However 

early animal and human trials failed due to side-effects of NOTCH inhibition in the 

gastrointestinal tract such as bleeding and immunosuppression. (Searfoss, Jordan et al. 

2003; Karran, Mercken et al. 2011) Subsequently, more specific inhibitory agents have 

been developed.  

In breast cancer NOTCH molecular signatures predict prognosis as they do in CRC. 

(Reedijk, Odorcic et al. 2005) Γ-secretase inhibitors have been shown to decrease 

proliferation and prevent metastasis of breast cancer cells in vitro. (Zavadil, Cermak et 
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al. 2004) Pre-clinical studies suggest that NOTCH inhibition may potentiate the effect 

of monoclonal antibodies in the treatment of breast cancer. (Pandya, Meeke et al. 

2011) Pre-clinical studies have also shown that there is potential to inhibit NOTCH 

signalling within other epithelial cancers specifically using monoclonal antibodies (Wu, 

Cain-Hom et al. 2010) and  in CRC models. (Fischer, Yen et al. 2011) Currently Roche 

has ten agents in phase I clinical trials, Merck has nine agents and Pfizer a single agent 

to inhibit NOTCH signalling in a variety of cancers. (Groth and Fortini 2012) 

5.4.4 DIFFERENTIATION THERAPIES FOR CRC TREATMENT 

The result of NOTCH inhibition may actually result in a differentiation therapy. 

Differentiation therapies differentiate radio-resistant or chemo-resistant CSCs within a 

tumour, temporarily sensitising them to chemo or radio therapy. These approaches 

will become increasingly important as there is a consensus of evidence emerging that 

high expression of stem cells markers is related to poor prognosis, resistance to chemo 

and radiotherapy and recurrence in CRC. (Yasuda, Tanaka et al. 2009; Saigusa, Tanaka 

et al. 2011; Jao, Chen et al. 2012; Sprenger, Conradi et al. 2012) 

Differentiation therapies are currently being experimented upon in breast cancer. 

(Harrison, Farnie et al. 2010; Pham, Phan et al. 2011) Potent differentiation effects and 

subsequent sensitisation to chemo and radio therapy have been observed on breast 

cancers when NOTCH signalling is reduced. (Harrison, Farnie et al. 2010; McGowan, 

Simedrea et al. 2011) 

Yang et al. have shown that CD133 (a CSC marker) levels decrease in CRC cultures in 

response to nutrient restriction. (Yang, Wang et al. 2012) Nutrient restriction has been 

shown to have potent anti-cancer effects both in vitro and in vivo. (Rondini, Harvey et 

al. 2011) Although the authors of the paper have interpreted their data to suggest that 

CD133 is an unreliable stem cell marker, Yang et al. may have actually shown that the 

differentiation of stem cell populations in CRC cell lines is plastic in response to 

environmental changes. (Yang, Wang et al. 2012) To date there are no published data 

on manipulation of NOTCH signalling in CRC and its potential effect on stem cells. If 

NOTCH signalling could be suppressed and induce differentiation of CSCs this could 

result in improved responses to chemo and radio therapy, fewer cases of recurrent 
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disease and, in the case of rectal cancer, could decrease rates of surgery by increasing 

rates of complete pathological response after radiotherapy. 
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5.5 SUMMARY 

NOTCH signalling plays a key role in maintenance of crypt homeostasis, particularly by 

maintaining ASC homeostasis. NOTCH-related genes are overexpressed in CRC but no 

mechanism for this has yet been described. ASC overpopulation is an early feature in 

CRC carcinogenesis and may be mediated by dysregulated NOTCH signalling. This 

project aimed to describe differences in methylation of NOTCH genes and global DNA 

methylation in populations at higher and normal risk of CRC, and the response of gene 

methylation to the provision of a potentially protective dietary supplement (RS or PD) 

as part of an RCT in normal risk participants.   

The study recruited the anticipated number of participants and the intervention study 

fulfills criteria for a high quality RCT.  

Between groups at higher and normal risk of CRC several differences in methylation 

were noted. This study is the second to report global hypomethylation in the normal 

mucosa of patients with longstanding UC, and is the first to do so quantitatively. Data 

showing differential responses of individual CpGs within the LINE-1 assay in patients 

with adenomatous polyps compared to controls suggest the usual practice of reporting 

mean LINE-1 methylation may not be informative. JAG1 methylation was lower at 4 of 

the 5 CpGs tested in participants at higher risk of CRC but this was not statistically 

significant. RBP-J was minimally methylated overall at most CpGs but site 11 had 

higher levels of methylation and differences were observed between polyp and normal 

controls. Additionally methylation of CpG site 11 decreased progressively with 

increasing severity of polyp disease. The direction of effects noted was as anticipated 

for the hypothesised role of JAG1 and RBP-J as oncogenes.  

Dietary intervention with RS or PD did not change global methylation of DISC study 

participants. JAG1 methylation did respond to PD supplementation with the 

anticipated protective direction of effect. RBP-J methylation results were unexpected 

with a potentially harmful effect noted with each single agent supplemented and 

cancellation of the effect when both were provided. 
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There are very few data describing the role of NOTCH signalling in CRC carcinogenesis 

or the factors controlling NOTCH signalling. However data to date suggest a critical role 

for NOTCH in ASC homeostasis and dysregulation of NOTCH leading to therapy 

resistant CSC phenotype. This makes NOTCH a promising future pathway for research. 

JAG1 in particular holds promise a key functional regulator due to its documented 

overexpression in the majority of human CRCs and its potential key role linking both 

WNT and NOTCH.  
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APPENDIX 1 – CONFIRMATION OF ETHICAL OPINION 

 
Newcastle & North Tyneside 2 Research Ethics Committee 

Room 002 
TEDCO Business Centre 

Rolling Mill Road 
Jarrow 

NE32 4BW 
 

 Telephone: 0191 428 3565  
Facsimile: 0191 428 3432 

10 December 2009                                                               Email: gillian.mayer@sotw.nhs.uk 
 

Professor John Mathers 
Professor of Human Nutrition 
Institute of Ageing and Health 
William Leech Building 
Newcastle University 
Newcastle upon Tyne 
NE2 4HH 
 
Dear Professor Mathers 
 
Study Title: Diet related biomarker of colorectal cancer risk - the 

impact of non-digestible carbohydrates 
REC reference number: 09/H0907/77 
Protocol number: v 1 
 

Thank you for your letter of 4 December 2009, responding to the Committee’s request 
for further information on the above research and submitting revised documentation.   
 

The further information has been considered on behalf of the Committee by the Chair 
who noted that this is a good, thorough response.     

 
Confirmation of ethical opinion 
 
On behalf of the Committee, I am pleased to confirm a Favourable ethical opinion for 
the above research on the basis described in the application form, protocol and 
supporting documentation as revised, subject to the conditions specified below. 
 

Ethical review of research sites 
 
The favourable opinion applies to all NHS sites taking part in the study, subject to 
management permission being obtained from the NHS/HSC R&D office prior to the 
start of the study (see “Conditions of the favourable opinion” below). 
 
The Committee has not yet been notified of the outcome of any site-specific 
assessment (SSA) for the non-NHS research site(s) taking part in this study. The 
favourable opinion does not therefore apply to any non-NHS site at present. I will write 
to you again as soon as one Research Ethics Committee has notified the outcome of a 
SSA. In the meantime no study procedures should be initiated at non-NHS sites. 
 
 
Conditions of the favourable opinion 



222 

 
The favourable opinion is subject to the following conditions being met prior to the start 
of the study. 
 
 
Management permission or approval must be obtained from each host organisation 
prior to the start of the study at the site concerned. 
 
For NHS research sites only, management permission for research (“R&D approval”) 
should be obtained from the relevant care organisation(s) in accordance with NHS 
research governance arrangements.  Guidance on applying for NHS permission for 
research is available in the Integrated Research Application System or at 
http://www.rdforum.nhs.uk.  Where the only involvement of the NHS organisation is as 
a Participant Identification Centre, management permission for research is not required 
but the R&D office should be notified of the study. Guidance should be sought from the 
R&D office where necessary. 
 
Sponsors are not required to notify the Committee of approvals from host 
organisations. 

It is the responsibility of the sponsor to ensure that all the conditions are complied 

with before the start of the study or its initiation at a particular site (as applicable). 

 

Approved documents 
 
The final list of documents reviewed and approved by the Committee is as follows: 
  

Document    Version    Date      

Covering Letter  Iain McCallum  23 October 2009    

REC application  28026/70673/1
/201  

20 October 2009    

Protocol  v 1  21 October 2009    

Investigator CV  John Mathers  20 October 2009    

Referees or other scientific critique report  Ref 49395, 
49396, 49425  

12 December 2008    

Summary/Synopsis  v 1  16 October 2009    

CV for student/key investigator  Iain McCallum  20 October 2009    

CV for key investigator  Seamus Kelly  20 October 2009    

CV for key investigator  David 
Bradburn  

20 October 2009    

Letter of support from Danisco  Julian Stowell  30 March 2009    

Letter of support from SUERC  Tom Preston  19 March 2009    

Details of subcontractors  Danisco and 
SUERC  

     

Letter from Newcastle University re peer reviews  Helen Rodgers  12 December 2008    

Response to reviewers' comments  Seamus Kelly       

Response to Request for Further Information  John Mathers  04 December 2009    

Participant Information Sheet: Normals  v 2  21 November 2009    

Participant Information Sheet: Polyps  v 2  21 November 2009    

Participant Information Sheet: UC  v 2  21 November 2009  

http://www.rdforum.nhs.uk/
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Participant Consent Form  v 2  21 November 2009    

Letter of invitation to participant  (Normals) v 2  21 November 2009    

Letter of invitation to participant  (Polyps) v 2  21 November 2009    

Letter of invitation to participant  (UC) v 2  21 November 2009    

GP/Consultant Information Sheets  (Normals) v 2  21 November 2009  

GP/Consultant Information Sheets  (UC) v 2   21 November 2009    

GP/Consultant Information Sheets  (Polyps) v 2  21 November 2009    

 
 
Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard 
Operating Procedures for Research Ethics Committees in the UK. 
 
After ethical review 
 

Now that you have completed the application process please visit the National 
Research Ethics Service website > After Review 
 
You are invited to give your view of the service that you have received from the 
National Research Ethics Service and the application procedure.  If you wish to make 
your views known please use the feedback form available on the website. 
 
The attached document “After ethical review – guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including: 
 

 Notifying substantial amendments 

 Adding new sites and investigators 

 Progress and safety reports 

 Notifying the end of the study 
 
The NRES website also provides guidance on these topics, which is updated in the 
light of changes in reporting requirements or procedures. 
 
We would also like to inform you that we consult regularly with stakeholders to improve 
our service. If you would like to join our Reference Group please email 
referencegroup@nres.npsa.nhs.uk.  
 

09/H0907/77 Please quote this number on all correspondence 
 
Yours sincerely 
 
 

 

Professor Philip M Preshaw 
Chair 

mailto:referencegroup@nres.npsa.nhs.uk
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APPENDIX 2 – LETTER TO POTENTIAL STUDY PARTICIPANTS 

 
Dept of Surgery 

North Tyneside General Hospital 

Rake Lane 

North Shields 

NE29 8NH 

 

 

Dear Mrs Thomson, 

 

We are writing to inform you about a study that we are conducting at North Tyneside 

General Hospital and Wansbeck General Hospital. We are writing to you because you 

have been booked for an endoscopy (a camera examination of the lower bowel). 

 

Our research aims to examine how diet can influence cells in the bowel wall and the 

changes they sometimes undergo to become a cancer. To conduct this study we require 

samples taken from the bowel wall from normal volunteers without a cancer.  

 

Please take your time reading the enclosed information. When you arrive for your 

endoscopy you will be seen by one of the research team who will be able to provide you 

with further information. If you decide to take part in the study you will have to sign a 

consent form. If you decide not to participate now, or at a later time within the study, it 

will not affect any other aspect of your treatment at the hospital. 

 

Thank you for your cooperation which is very much appreciated. 

 

Yours sincerely 

 

 

 

Naomi Willis 

Research Associate 

Newcastle University 

 

On behalf of the research team 

 

 

John Mathers    Iain McCallum  Naomi Willis 

Professor of Nutrition  Research Fellow  Research Associate 

Newcastle University  North Tyneside Hospital Newcastle University 

 

Seamus Kelly   Mike Bradburn   

Consultant Surgeon  Consultant Surgeon   

North Tyneside Hospital Wansbeck Hospital 
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Letter of invitation / research participant information sheet 

 

 

Dear Sir/Madam, 

 

 

You are being asked if you would be willing to participate in one of our research 

projects that is being conducted by Northumbria NHS Foundation Trust and Newcastle 

University.  

Before you decide to participate, please read the details below. Take the time to read the 

following information carefully and discuss it with friends, relatives and your GP if you 

wish. Ask us if there is anything that is not clear to you or if you would like more 

information. Your GP will be informed if you decide to participate in the study. Take 

time to decide whether or not you wish to take part. Deciding to take part or not to take 

part will not affect any other aspect of the care that you will receive. 

 

Why have I been offered entry to the study? 

You have been offered entry to the study because your doctor (GP or hospital doctor) 

has requested that we perform an endoscopy (camera examination of the lower bowel). 

For our research we require biopsy samples from patients’ colons to examine particular 

cells. Depending on the findings at your endoscopy, you may be asked to participate in 

the study where a food supplement is taken for 50 days and a repeat camera test is done 

with new biopsies taken. 

 

Why is this study being performed? 

One part of the study is designed to examine colon stem cells (stem cell study). Stem 

cells are present in all tissues of the body and are responsible for renewing all cells in 

the body. Cancers are thought to originate from stem cells by a process of genetic 

alterations. If no abnormality is present on your endoscopy we would like to take nine 

biopsies (tiny tissue samples) so that we can count the number of stem cells present in 

the tissue. We will be able to compare your samples with other peoples’ to see how the 

distribution of stem cells varies between people. We will also compare your samples 

with other people who have precancerous abnormalities to see how normal is different 

from them. 
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In the colon we know that a substance thought to be protective against cancer (non-

digestible carbohydrates) can reverse some very early precancerous changes at a 

microscopic level in tissue from people who have colon cancer. Two non-digestible 

carbohydrates are resistant starch and polydextrose. Non-digestible carbohydrates occur 

naturally in the diet. 

 

We believe that the changes in the cells in the bowel caused by non-digestible 

carbohydrates may be due to changes in the numbers of stem cells in the colon. To test 

this we would like you to take a food supplement which will be a type of non-digestible 

carbohydrate or a placebo (a substance that has no effect) for 50 days. We would then 

take further biopsy samples with a different type of telescope that only examines the last 

15cm of the bowel to see if the number of stem cells has changed. This procedure 

doesn’t require any medicines to cleanse the bowel beforehand.  

 

The other part of the study (marker study) aims to help us understand the molecular 

changes that put some people at risk of colon cancer. We know that diet and lifestyle 

choices can affect the risk of developing colon cancer. However definite answers that 

would tell us how colon cancer could be prevented are hard to come by as we have to 

conduct experiments over very long time periods as we need to wait and see who 

develops a cancer and this is a very slow process (tens of years). We need to understand 

some of the changes that we can measure much earlier, particularly expression of 

certain molecules and genes. To know whether these molecules are sensitive enough to 

show the very early changes we are looking for we need to test their response to dietary 

supplementation. These tests would be carried out on the same samples that you 

provided for the stem cell part of the study. 

 

What exactly would I have to do as a participant? 

If you decide to participate and there are no abnormalities seen in your colon we will 

ask if you would carry on with the study. This would involve taking a food supplement 

twice a day for 50 days and then returning for a second endoscopy to look at the last 

15cm of the bowel to collect further biopsies. 

 

We would ask all patients to answer some questions at the start of the study about their 

lifestyle (smoking, dietary and exercise habits). We would take height, weight, waist, 
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hip and thigh measurements at the start and end of the study. We would also like to 

collect a blood sample as well as a urine, stool and cheek cell sample at the start and the 

end of the study. To allow the effects of the bowel preparation to wear off so that our 

measurements are accurate we would ask that you wait for one week after your first 

endoscopy before starting the food supplement. Just before starting the food supplement 

we would ask you to give a urine and stool sample. We will give you more details on 

this if you decide to participate. 

 

Deciding not to participate will not affect any other treatments or investigations that the 

hospital would provide for you. 

 

How often do I need to visit the hospital during the study? 

You would need to attend for the first endoscopy as you normally would. If you are 

asked to participate further the food supplement would be supplied to you and you 

would be asked to attend again for one further examination of the last 15cm of the 

bowel after 50 days of treatment. Before you start taking your supplement we would ask 

you to provide a urine and stool sample. This would be one week after the first 

endoscopy and we will provide you with equipment and instructions to collect this at 

home. We would pick up this sample from your home at a time that suits you. You 

would then take your food supplement after this. Just before your second endoscopy we 

would ask you to provide a urine and stool sample in the same way which we would ask 

you to bring with you at the time of your second appointment. 

 

There may of course be other clinic appointments or tests required due to the results of 

tests that are unrelated to this study. These would not alter although we would do our 

best to fit your one repeat endoscopy test around any other appointments that you had to 

minimise your inconvenience. 

 

What food supplement would I be taking? 

You will not be told and we would not know what supplement you were taking. You 

would either be taking resistant starch, polydextrose or a substance called a placebo 

which is something that will have no effect on your cells. Both the patient and the study 

staff not knowing what supplement anyone is taking makes the experiment fairer when 

it comes to looking at the results. 
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What do we know about non-digestible carbohydrates? 

Non-digestible carbohydrate is a term for any starch molecule in the diet that is not 

broken down by the intestine until it reaches the colon. In the colon natural bacteria 

break down the resistant starch into active chemicals. We know that these chemicals 

have the ability to interact with genes in cells and are able to switch on anti-cancer 

genes. We have shown that treatment with resistant starch can alter very early pre-

cancerous changes in mature cells. This study aims to find the effects on the stem cells 

in the colon and the effects on molecules that could be tested for to show the earliest 

signs of cancer development. 

 

How is the supplement administered? 

We will ask you to take four sachets of the supplement each day for 50 days. The 

powder in these sachets can be put on cold food or sometimes dissolved in juice and 

does not have any taste. 

 

What side effects can I expect? 

Non-digestible carbohydrates are part of the normal diet although we are providing a 

supplement to exaggerate any effect that they have on colon cells. In larger amounts 

non-digestible carbohydrates are known to sometimes cause: increased flatulence, 

bloating sensation, mild abdominal pain and mild laxative effects. These will all stop 

when the supplementation is stopped. No serious side-effects have ever been reported 

from non-digestible carbohydrates. 

 

What are the risks of endoscopy examination and biopsies? 

All operations and procedures carry a small risk and it is important that you understand 

this before deciding whether or not to participate. There is a very small chance of a 

perforation (a hole made in the bowel) of the bowel (1 in 15 000). A perforation will 

almost always require an operation to fix it. Bleeding occurs more frequently (1 in 100-

200) but is almost always minor and settles on its own. It is most common after removal 

of a polyp. Although you may require to have a polyp removed depending on what your 

consultant sees at your initial endoscopy this would not be a part of the study we are 

conducting. This risk of bleeding or perforation is obviously higher with each biopsy 

that is being taken. We plan to take nine biopsies at your first and second camera 

examinations. 
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What happens if anything goes wrong? 

You are free to participate or not in the study and this will in no way affect your 

subsequent care in the hospital. There is no payment intended for patients or doctors. If 

you are harmed by taking part in this research project, there are no special compensation 

arrangements, but you will still be entitled to complain through your local NHS hospital 

procedure. If you are harmed due to someone’s negligence or wrong doing, then you 

may have grounds for a legal action but you may have to pay for it. You may withdraw 

from the study at any time without explaining why, this will not affect any future care 

that you may receive. 

 

Will the information be confidential? 

Yes. Only those involved will be able to look at any information records. Specific 

details which identify you will only be available to the study doctors. Your own doctor 

(GP) will be informed that you are taking part in this study.  

 

What will happen to the samples collected? 

The samples that are collected will be examined at laboratories in Newcastle University. 

All samples will be stored securely. We will perform tests to look for the stem cells and 

tests to look at the activity of the various markers we are looking into. After the study 

has finished the samples will be stored in our laboratory freezers in accordance with 

government regulations. Your name and details will no longer be associated with the 

samples. We keep the samples so that if new techniques or markers are discovered we 

can do further testing without having to collect new samples from other volunteers. 

 

What benefits may I get from the study? 

We do not believe that there will be any direct benefit to the health of those who 

participate in the study. The research may well help us to understand the development 

of bowel cancer and develop prevention or treatment strategies. 

 

We will give all the patients who take part in the intervention phase (i.e. taking the food 

supplement) a shopping voucher for £50 as a thank you for the extra time that they will 

have given up for the project. Travel expenses for the additional trip to hospital will also 

be provided. 
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Who is performing the research? 

 

The research team consists of five members: 

 

Mr Iain McCallum is a research fellow at Northumbria NHS Foundation Trust 

Dr Naomi Willis is a research associate at Newcastle University 

Professor John Mathers is the Professor of Human Nutrition at Newcastle University 

Mr Seamus Kelly is a consultant surgeon at North Tyneside General Hospital and a 

senior lecturer at Newcastle University 

Mr Mike Bradburn is a consultant surgeon at Wansbeck General Hospital 

 

 

We hope that you agree to participate, if you have any questions please ask. 

 

 

Study coordinator, Naomi Willis 

 

Research Associate 

Human Nutrition Research Centre 

Newcastle University 
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APPENDIX 3 – EXCLUSION CRITERIA FOR POTENTIAL PARTICIPANTS 

Patient screening                                                 
 

Age <16      ○  Therapy with aspirin/other NSAID  ○ 

Age >85      ○ Familial polyposis syndrome ○ 

Lynch syndrome     ○ Known colorectal tumour  ○ 

Previous colorectal resection    ○ Pregnancy  

 ○ 

Chemotherapy in last 6 months   ○  Active colonic inflammation ○ 

Other immunosuppressive medication/steroid ○ Colorectal carcinoma found ○ 

Incomplete left sided examination   ○ Iatrogenic perforation  ○ 

Colorectal cancer on histology   ○ Crohn’s disease   ○ 

 

 

UC group ONLY (score should be less than 5) 

 

 Bowel frequency (day)    Urgency of defecation 

1-3    0  Hurry    1

 4-6    1  Immediately   2 

7-9    2  Incontinence   3 

>9    3 

 

Bowel frequency (night)    General Well Being  

1-3    1  Very well   0 

4-6    2  Slightly below par  1 

      Poor    2 

Blood in Stool      Very poor   3 

 Trace    1  Terrible    4 

 Occasionally frank  2 

 Usually frank   3 Extracolonic manifestation, 1 per manifestation 

      

 

Patient name ………………………………….....          Patient date of birth  ………….. 

Assessed by ……………………………………..          Date of assessment   ………….. 

Suitable Yes/No     Informed consent Yes/No      Study ID DISC        …………. 
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APPENDIX 4 – DISC STUDY CONSENT FORM 

 

I freely consent to participate in this project   Yes  No 

 

I have had the opportunity to ask questions    Yes  No 

 

I understand that my care will not be affected   Yes  No 

if I choose not to participate 

 

I understand I can withdraw at any time    Yes  No 

 

I give permission for my GP to be informed    Yes  No 

 

I am happy for the samples to be stored after    Yes  No  

the study has finished in case further testing  

can be carried out later  

 

I understand that relevant sections of my medical notes  Yes  No 

And data collected during the study, may be looked at by 

Individuals from regulatory authorities or from the NHS  

trust, where it is relevant to my taking part in this research. 

I give my permission for these individuals to have access  

to my records. 

 

 

Participant signature …………………………………………..  Date ……………… 

 

Participant name (print) ………………………………………. 

 

 

Researcher signature …………………………………………..  Date ……………… 

 

Researcher name (print) ………………………………………. 

 

 

 

 

1 copy to patient; 1 to research file; 1 to notes 
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APPENDIX 5 – TABULATED BASELINE LINE-1 METHYLATION DATA 

 

LINE-1 METHYLATION VALUES BY GROUP (NORMALS, POLYPS & UC) FOR WHOLE STUDY SAMPLE. 

CpG site Normal 

(n=91) 
Polyp    

(n= 26) 

UC   

(n=12) 
P-value Post-hoc test 

 LSM (SEM)   

1 80.4 (0.4) 77.2 (0.7) 74.0 (1.0) <0.001 UC < polyp < normal 

2 65.1 (0.4) 67.1 (0.7) 60.5 (0.9) <0.001 UC < normal < polyp 

3 66.2 (0.3) 65.6 (0.5) 62.6 (0.3) <0.001 UC < normal & polyp 
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APPENDIX 6 – TABULATED BASELINE JAG1 METHYLATION DATA 

 

JAG1 METHYLATION VALUES BY GROUP (NORMALS, POLYPS AND UC) FOR WHOLE STUDY SAMPLE. 

CpG site Normal (n=78) Polyp (n=25) UC (n=12) P-value 

 LSM (SEM)  

1 8.0 (1.0) 4.7 (1.9) 4.9 (2.6) 0.256 

2 5.7 (0.8) 2.7 (1.4) 3.9 (1.4) 0.193 

3 7.2 (0.7) 4.2 (1.3) 5.5 (1.8) 0.225 

4 3.1 (0.3) 2.9 (0.5) 3.0 (0.6) 0.969 

5 7.0 (0.9) 3.0 (1.6) 3.9 (2.2) 0.076 
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APPENDIX 7 – HISTOGRAM OF BASELINE RBP-J METHYLATION DATA 

 

 

PERCENTAGE METHYLATION LEVELS AT CPGS 1-12 OF THE RBP-J PYROSEQUENCING ASSAY BETWEEN THOSE AT 

NORMAL RISK (N=75) OF CRC AND THOSE AT HIGHER RISK (POLYP (N=26) AND UC (N=12) GROUPS). *=P<0.05 

USING GLM AND DUNNETT’S POST-HOC TEST FOR BETWEEN GROUP DIFFERENCES. 

 

 
 
 
 

 

 

 

 


