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Abstract 

Caching has been used in client-server database systems to improve the performance of 

applications. Much of the current work has concentrated on caching techniques at the 

server side, since the underlying assumption has been that clients are “thin” with 

application level processing taking place mainly at the server side. There are also a new 

class of “thick client” applications where clients need to access the database at the 

server but also perform substantial amount of processing at the client side; here client-

side caching is needed to provide good performance for applications.  

This thesis presents a transactional cache consistency scheme suitable for 

systems with client-side caching. The scheme is based on the optimistic approach to 

concurrency control. The scheme provides serializability for committed transactions. 

This is in contrast to many modern systems that only provide the snapshot isolation 

property which is weaker than serializability. A novel feature is that the processing load 

for validating transactions at commit time is shared between clients and the database 

server, thereby reducing the load at the server. Read-only transactions can be validated 

at the client-side, without communicating with the server. Another feature is that the 

scheme permits disconnected operation, allowing clients with cached objects to work 

offline. 

The performance of the scheme is evaluated using simulation experiments. The 

experiments demonstrate that for mostly read only transaction load – for which caching 

is most effective - the scheme outperforms the existing concurrency control scheme 

with client-side caching considered to be the best, and matches the performance of the 

widely used scheme that only provides snapshot isolation. The results also show that the 

scheme in a disconnected environment provides reasonable performance. 
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Chapter 1. Introduction 

This thesis is concerned with providing good performance along with serializability 

order for transactions in client-server database systems. Caching techniques have been 

used extensively in transactional client-server database systems to improve the 

performance of applications. Much of the current work has concentrated on caching 

techniques at the server side, since the underlying assumption has been that clients are 

“thin” with application level processing taking place mainly at the server side (say 

within the application server). For example, Kossmann et al (2010) describe a typical 

caching scheme in such systems. There are also new classes of “thick client” 

applications where clients need to access the database at the server but also perform 

substantial amount of processing at the client side; here client-side caching is needed to 

provide good performance for applications. 

1.1 Motivation 

1.1.1 Server-Side Caching 

Client-server database systems are comprised of two logical parts: A server that 

provides persistent objects and a client that runs applications (see Figure 1). A 

traditional assumption in the design of client-server database system has been that the 

client has limited resources and the server has a powerful computer. Accordingly, client 

functionality has often been restricted to submit read requests and update requests 

across the network to the server, and to present the received results to the user. In such 

environment, the application logic computation is installed at the server.   

The response time of the server is a critical factor in the performance of the 

client-server database system.  Server resources are shared by many clients. As the 

number of client increases, the server can become the bottle-neck. Optimizing the 

performance of the server has been done by many researchers; such as caching objects 

at the server (Perez-Sorrosal et al., 2011) and allowing transactions to read stale objects 

(Bernstein et al., 2006).  
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Figure 1: The effect of Client Caching on the Client-Server Structure 

1.1.2 Client-Side Caching 

With significant advances in computer technology namely, powerful processors and 

large memories available at low cost, the client functionality has changed. It is possible 

for business logic to be is installed at client sides and to reduce network latency by 

caching objects at the client. Now the functionality of such “thick client” is to submit 

requests to the server for accessing objects only if the objects are not found in client 

cache and the server functionality is to provide persistent objects. Ideally, the workload 

of transactional cache consistency scheme should be shared between servers and clients. 

Client-side caching has been studied in the past (Franklin, et al, 1997). However with 

the popularity of thick-client applications, it is worthwhile to examine if currently 

available schemes can be improved. 

This thesis proposes an efficient concurrency control scheme for use in such 

thick-client applications. The scheme is based on the optimistic approach to 

concurrency control. Basically, in optimistic concurrency control, a transaction makes 

local copies of the data objects from the database server and performs computations on 

them; at commit time, the server performs validation check to ensure that these objects 

have not been modified by some other transactions; if the validation succeeds, the 
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transaction commits, and the modified object copies are written back into the database 

else the transaction is aborted. Optimistic schemes are attractive in environments with 

low data contention (transactions are predominantly read only), precisely the 

environments where data caching would be most effective. Our scheme has several 

attractive features discussed below.  

 It provides serializability for committed transactions; this is in contrast to many 

popular database management systems that provide snapshot isolation which is a 

weaker form of consistency than serializability. 

 A static read-only transaction (a transaction which predeclares its objects to be 

read), is never aborted. 

 It is deadlock free. 

 Read-only transactions can be validated at the client-side, without 

communicating with the server. 

 For update transactions, validation is done partly at the client and partly at the 

server. The net effect is that the processing load for validation is subtantially 

reduced at the server, thereby improving scalability. 

Our scheme, named Validation Queue (VQ) concurrency control, is based on the 

optimistic concurrency control scheme named Read Commit Order Concurrency 

Control (ROCC) introduced by Shi and Perrizo (2002). Traditional optimistic 

concurrency control methods abort a transaction when the transaction conflicts with 

other transactions. The ROCC scheme improves on these methods by only aborting a 

transaction when the execution of the transaction interleaves with the execution of other 

transactions. Shi and Perrizo also show that their scheme outperforms two-phase 

locking in centralized database systems under low data contention load (transactions are 

predominantly read only). 

  Our VQ scheme extends ROCC to distributed systems with client-side caching. 

At the client we use a Cache Validation Queue (CVQ) to record accesses to the objects 

stored at the client. At the server, we use a Server Validation Queue (SVQ) to record 

accesses to the objects stored at the server. By traversing CVQ, the client can validate 
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local read-only transactions without communicating with the server. Meanwhile SVQ 

will be traversed to validate update transactions at the server. 

In this thesis, we describe the VQ algorithm and using simulation, compare its 

performance with two other algorithms that use caching. One is the Multi-Version 

Concurrency Control (MVCC) algorithm, that provides snapshot isolation, and used in 

caching systems such as INFINISPAN (http://www.jboss.org/infinispan); the other is 

the optimistic concurrency control algorithm proposed by Adya et al that has been 

shown to perform very well (Adya et al, 1995). The simulation work demonstrates that 

the VQ algorithm outperforms Adya algorithm and closely matches the performance of 

MVCC.   

1.1.3 Disconnected Operation  

Disconnected operation is neither a specific technique nor a radical new idea.  Rather, it 

is a general philosophy which holds that it is often better to do something useful for 

progression than nothing. With the necessary objects cached in the client computer 

memory and applications installed in the client computer, client logically can work 

under disconnected mode. In term of network connection quality, mobile clients have 

different characteristics compared to fixed clients; clients that run transactions from 

workstations with wired connection to the network. Mobile clients may have an 

intermittent or low bandwidth connection to the server. To enhance the system 

performance, clients may disconnect to the server and work offline. There are other 

reasons for clients to disconnect their connection network. For examples, clients may 

disconnect to the server for saving the battery life, for reducing network charges, or for 

maintaining radio silence in military operations (Jin, 1999). Thus the ability to operate 

in disconnected mode can be useful even when connectivity is available.  

 Maintaining cache consistency so as to provide transaction serializability in a 

disconnected environment has not been studied so far. In this thesis, we extend our 

scheme to work in disconnected mode. 

1.2 Thesis Contributions 

This thesis makes a number of contributions in the area of transactional cache 

consistency: 

http://www.jboss.org/infinispan
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 It presents a new transactional cache consistency scheme which improves the 

system throughput by distributing or sharing the transactional workload between 

servers and clients. The scheme uses an optimistic concurrency control method 

which consists of two validation algorithms; the validation at client side and the 

validation at server side. The validation at client side is to check the client 

accesses against the updates of other clients sent by the server to the client. 

Meanwhile the validation at server side checks the client accesses against the 

accesses of other clients at the server. Both validation algorithms are an 

extension of the technique introduced by Shi and Perrizo (2002). For cache 

consistency protocol we design our update propagation based on Notify locks 

presented by Wilkinson and Neimat (1990).  

 It evaluates and compares the performance of the proposed scheme via 

simulation work. Our simulation results show that the proposed scheme has 

better performance than the scheme presented by Adya et al. (1995) that is 

currently considered to offer the best performance. At the same time the 

performance of our scheme closely matches that of Multiversion Concurrency 

control (MVCC) widely used in industry but which offers snapshot isolation that 

is weaker than serializability.   

 The scheme has been extended to work in disconnected mode. Disconnected 

operation includes the commits of transactions while running in disconnected 

mode, the update propagation to the disconnected clients, and the reconciliation 

process when a client reconnects again. The performance of the proposed 

scheme in the disconnected environment via simulation work has also been 

performed and shown to be acceptable. 

1.3 Thesis Organization 

The rest of this thesis is organized as follows. Chapter 2 presents the necessary 

background information on commonly used concepts within the setting of this thesis 

and summarize the related work. 

 In chapter 3, we present our proposed scheme. We describe the system 

architecture, the validation algorithm of our proposed scheme, the design of the 

proposed scheme, and the correctness of the scheme. 
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 The experimental framework for comparing the performance of the proposed 

scheme with other scheme is described in chapter 4. 

 A number extensions to our proposed scheme are described in chapter 5. These 

extensions include disconnected operation, multi-server systems, parallel transactions, 

MushUp server-side application and edge-computation configuration. 

 Finally, we conclude our thesis with summary and future work in chapter 6. 
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Chapter 2. Background and Related Work 

The purpose of this chapter is to provide necessary background information on 

commonly used concepts within the setting of this thesis and to summarize briefly the 

related work. It provides definitions for required terms and fundamental concepts used 

later. We start this chapter by describing the definition of transactions and providing 

information about concurrency control and some techniques commonly used in 

concurrency control schemes. The basic issues in client-server architectures and client 

caching are discussed. Then we present some transactional cache consistency 

algorithms which are studied in our simulation work. Finally, we describe some current 

published papers about transactional cache consistency schemes and conclude with 

discussion on the performance of the schemes. 

2.1 Transactions and Concurrency Controls 

A database is a collection of objects. In this discussion a single object will be denoted 

as x, y, z, etc. Objects are assumed independent; one object does not have a relation with 

others. An object is either a physical resource (e.g., a memory) or an abstract resource 

(e.g., a record, a picture, a data structure). Each object has a unique identifier and some 

attributes (or fields). The attributes of objects are associated with their values which 

must be at all times related in a way that satisfies the integrity constraints of the 

database. However, many times when a user accesses the databases these constraints 

may be temporarily violated in order to transform the database to a new consistent state. 

Therefore, the accesses to the database are grouped together into units of consistency, 

called transactions. This means that transactions preserve consistency or transactions 

transform one consistent state into a new consistent state of the database. 

 Practically, a transaction is a collection of readset and writeset. Readset is a 

collection of objects to be read while writeset is a collection of objects to be written. It 

preserves ACID properties (Özsu and Valduriez, 1999; Gray and Reuter, 1993): 

Atomicity: when a transaction contains write operations, all or none of them must be 

performed. In other words, if a transaction has to abort then all changes it has made in 

the database have to be undone. 

Consistency: a transaction should be a correct state transformation, and it maps a 

database from one consistent state to another. 
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Isolation: each transaction should execute as if it is running alone in the system. Even 

though transactions execute concurrently, it appears to each transaction, T, that others 

are executed either before T or after T, but not both. 

Durability: when a transaction is committed, the changes made by it in the database 

will never be lost even when the system crashes. 

Although each transaction preserves consistency, some transactions need to run 

concurrently, in order to increase the throughput and availability of the database. 

However, two or more transactions executed concurrently can cause programs to 

behave incorrectly, thereby leading to an inconsistent database (Bernstein, Hadzilacos 

and Goodman, 1983). Therefore there is a need for a mechanism which monitors and 

controls the concurrent execution of transactions so that the consistency of database is 

enforced and incorrect execution of concurrent transactions is avoided.  The mechanism 

is called concurrency control (Eswaran et al., 1976).   

Bernstein et al. (1987) define concurrency control as an activity to coordinate 

the actions of transactions that execute concurrently, access shared objects, and 

therefore potentially interfere with each other. The problems of concurrency control 

appear when two or more transactions are executed concurrently. One operation of a 

transaction may execute in between two operations of another transaction.  This 

interleaved execution may cause an inconsistent database. An execution in which no 

two transactions are interleaved called serial. An execution is serial if, for every two 

transactions, all operations of one transaction execute before any of other operations of 

the other.  

Let us consider the following example, there are two transactions, 

T1={R1(x),R1(y)}  and T2={W2(x),W2(y)}, and H1={R1(x),W2(x),W2(y),R1(y)} is a history 

that indicates the order in which the operations of the transactions were executed. The 

execution of operation R1(x) precedes the execution of operation W2(x); through the 

object x, the execution of transaction T1 precedes the execution of transaction T2. The 

execution of operation R1(y) succeeds the execution of operation W2(y); the execution of 

transaction T1 succeeds the execution of transaction T2. Thus, the execution of 

transaction T1 and T2 is not serial.  
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To have a serial execution, one way would be that a system executes 

transactions one at a time.  However, this is too inefficient. The system may make poor 

use of its resources.  

There are allowable concurrent executions to include executions that have same 

effect as serial one. Such executions are called serializable. An execution is serializable 

if it produces the same results and the same effect on the database as some serial 

execution of the same transactions. Since the execution of the serial one is correct, and 

the serializable execution has the same effect as a serial execution, then the serializable 

execution is correct too. 

Let us see the previous example. The execution of concurrent transactions in the 

previous example is not a serializable execution. A history 

H2={R1(x),W2(x),R1(y),W2(y)} is serializable, because it has ordered transactions to a 

serial execution in which transaction T1 precedes transaction T2.      

To produce a serializable execution, the system employs a concurrency control 

scheme to synchronize accesses to shared objects. There are four main approaches used 

in concurrency control. These are listed below:  

 Locking: If two transactions conflict, conflicting operation of one transaction 

must wait until the operations of another transaction are completed. This 

approach requires each operation must have appropriate locks before its 

execution. 

 Timestamp: The execution of transactions is ordered based on their attached 

timestamp. Each transaction is assigned a unique timestamp. Conflicting 

operations of two transactions are processed in timestamp order. 

 Optimistic: Optimistic concurrency control allows a transaction to execute 

unhindered to its commit point, at which time it is validated to determine 

whether or not to commit the transaction. It is expected that conflicting 

transactions hardly happen. 

 Multi Versions: Concurrency control schemes in this category assume that 

operation write, W(x), does not overwrite object x, instead it creates a new 
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copy (or version) of x. Other transactions are allowed to read the previous 

version of x. Thus, Reads on x are not delayed by a concurrent writer of x. 

In the following paragraphs, we summarize each approach. 

Concurrency Control by Locking. Concurrency control by locking requires every 

single object having locks associated with it; read lock and write lock (Bernstein et al., 

1987). To access an object, transactions should get the appropriate lock on the object. 

Transactions hold all locks on objects until it finishes its execution. When it finishes its 

execution, a transaction releases all its locks. Read lock is a shared mode lock. More 

than one transaction can hold read lock on object x at the same time. But write lock is 

an exclusive mode lock. Only one transaction can hold write lock on object x. A 

transaction cannot get read lock on object x if another transaction holds write lock on 

object x and vice versa. If a transaction cannot get one or more locks, the requesting 

transaction must wait until the requested locks are available.  

Locking is well known mechanism and it is easy to understand. Many variations 

of concurrency control algorithms based on locking mechanism have been introduced in 

the literature. However, concurrency controls based on locking mechanism commonly 

have some disadvantages, one of which is that locking introduces deadlocks. Since 

transactions are forced to wait for other transactions to release the requested locks when 

they cannot get locks on the objects, this might cause deadlocks. These concurrency 

control algorithms should have mechanism to resolve deadlocks.  

Timestamp-based Concurrency Control. In locking, the ordering of transactions in a 

serialization order is determined dynamically while transactions are executing based on 

interleaving of their requests. In timestamp-based concurrency control, the execution 

order of conflicting transactions is based on their timestamp. When the operations of 

two transactions conflict, it orders the execution of operations based on the timestamp 

attached to the transactions. Therefore, each transaction is assigned a unique timestamp. 

To achieve a unique timestamp for transactions arriving from different sites of 

distributed systems, all clocks at all sites must be synchronized.   

Optimistic Concurrency Control. Unlike the locking or the timestamp ordering, 

optimistic concurrency control allows a transaction to execute unhindered to its commit 

point, at which time it is validated to determine whether or not to commit the 
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transaction. The execution of a transaction consists of three phases; read, validation, and 

write. On its read phase, a transaction may read any object.  Before a transaction begins 

its write phase, the system validates the transaction. If it passes the validation process, it 

can begin its write phase; otherwise it is aborted (Kung and Robinson, 1981).  

Two validation techniques; introduced by Hardet, T., have been described 

Herlihy (1990); backward and forward validation. In backward validation, the system 

checks the validating transaction against recently committed transactions. If the 

validating transaction reads any object that has been invalidated by a recently 

committed transaction, the validating transaction is aborted. In forward validation, the 

system checks the validating transaction against active transactions. If it modifies any 

object read by a currently active transaction, it is aborted. This validation favours read-

only transactions which are never aborted. Meanwhile update transactions are required 

to validate their writes.   

Multi-version Concurrency Control: Concurrency control schemes in this category 

assume that operation write, W(x), does not overwrite object x, instead it creates a new 

copy (or version) of x. Other transactions are allowed to read the previous version of x. 

Thus, Reads on x are not delayed by a concurrent writer of x.  

However, an obvious cost of maintaining multiple versions is storage space. The 

system may store more than one version and each version has concurrency control 

information to be stored with it.  To control this storage requirement, the system should 

periodically purge versions. Since a certain versions may be needed by active 

transactions, the system should synchronize with the active transactions in the process 

of purging versions.  

However, maintaining two versions may not add much to the cost of 

concurrency control, because the versions may be needed anyway by the recovery 

algorithm. Moreover, in internet applications, since clients and persistent objects are 

situated in different sites, objects are copied to the clients. Thus, two version objects are 

already in the systems. Some concurrency control schemes may consider a persistent 

object x at the server and a copy of object x at clients as two versions, but others may 

consider as one version.  
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2.2 Client-Server Architecture 

Client-server architecture divides distributed systems in two logical parts; clients and 

servers. The client-server architecture has been around for a long time and has made a 

significant impact on the way people do computing in distributed environment (Özsu 

and Valduriez, 1999).  The basic idea of client-server architecture is to identify and 

distinguish the responsibilities and jobs that need to be done and divide these 

responsibilities and jobs into two sides; client side and server side.  

Service 
Manager

Scheduler

Object 
Manager

Server

Cache 
Manager

Cache Object 
Manager

Application

Client

 

Figure 2: Client-Server Architecture 

Lewandowski (1998) discusses issues of alternative designs of client-server 

architectures; fat servers vs. fat clients. The client-server architecture with fat servers 

assumes that clients have limited resources. In this type of architecture, clients send 

service requests to the server and the server provides the services. To response the client 

requests, the server may access objects and do some computation according to a certain 

logical business implemented at the server. The result of the computation is sent to the 

client, and the client presents the results to the user. Due to the proliferation of the low-

cost hardware and the need to decrease the system response-time, the client-server 

architecture with fat clients has gained popularity. In this client-server architecture, the 

clients run the computation and cache some necessary objects. Therefore, the business 

logic of the computation is installed at clients and the server provides persistent objects 

and tracing objects at clients. Furthermore, Delis and Roussopoulos (1992) conclude in 

their research that client-server architecture with fat clients scales up a lot better for 

higher number of clients.  

2.3 Caching 

Caching is a technique that has been used in various areas of computer and database 

systems for quite some time. To reduce disk latency, database systems use caching 

technique to cache data in a buffer. It is a simple concept of storing of necessary objects 
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in an easily accessible storage so that time and resources are saved because objects do 

not have to be retrieved from the original source.  

 Caching objects at the server side has been studied most recently in (Perez-

Sorrosal et al., 2011). With the current technology, it is possible to cache all database 

objects in the server’s computer memory. By caching objects at the server, the system 

resolves disk-latency and bottle-neck problems. 

 Caching objects at client side has also been studied by many researchers. It has 

some advantages (Voruganti et al. , 2004; Franklin et al., 1997). First, it exploits the 

resources present at the clients. Second, in the presence of locality (i.e. the affinity of 

the applications at certain workstations for certain subsets of database objects), caching 

necessary objects at client side certainly reduces the volume of objects that clients must 

request from servers. Third, caching objects at client side means moving objects closer 

to clients. Therefore, it resolves network latency and eventually reduces the system 

response time.  Last, it resolves bottleneck problems in client-server database systems 

because caching will reduce the work of servers. 

 Caching is like replication. It introduces objects redundancy. Copies of an object 

are stored at multiple places. The system should ensure that the presence of multiple 

copies of an object does not harm any transaction. It should maintain the consistency of 

objects. If a transaction updates an object at the server, the updates should be available 

to others as soon as possible.  

2.3.1 Cache Replacement Strategy 

Cache size at client side is usually limited, and if the space is exhausted, cache 

replacement strategies decide which object should be removed. Podlipnig and 

Böszörmenyi (2003) describe some characteristics of web objects that can influence the 

replacement process. Those are recency (time of the last reference to the object), 

frequency (number of requests to the object), size (size of the object), cost (cost to fetch 

the object from the server), modification time (time of the last modification), and 

(heuristic) expiration time. 

  Podlipnig and Böszörmenyi (2003) mention some well-known strategies; LRU 

and LFU. LRU (least recently used) is a strategy in replacement strategy by removing 

the least recently referenced object. LFU (least frequency used) is a strategy in 
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replacement strategy by removing the least frequently referenced object. LRU has been 

applied successfully in many different areas.  

2.3.2 Degrees of Consistency 

With the aim of providing of improved concurrency and better performance for some 

workloads by sacrificing consistency, the degree of consistency is introduced in (Gray 

et al., 1976). They define four degrees of consistency. Some authors may use the degree 

of isolation instead of the degree of consistency. In the following definition, dirty data 

refers to data values that have been updated by a transaction prior to its commitment. 

Then, based on the concept of dirty data, the four degree levels are defined as follows: 

 “Degree 3: Transaction T sees degree 3 consistency if: 

i. T does not overwrite dirty data of other transactions. 

ii. T does not commit any writes until it completes all its writes (i.e., until the 

end of transaction (EOT)). 

iii. T does not read dirty data from other transaction. 

iv. Other transactions do not dirty any data read by T before T completes.” 

Degree 2: Transaction T sees degree 2 consistency if properties i, ii, and iii hold. 

Degree 1: Transaction T sees degree 1 consistency if properties i and ii hold. 

Degree 0: Transaction T sees degree 0 consistency if property i holds. 

For some internet applications, it is common to allow users reading data that is a 

little out of date; such as item prices or number of bids in an auction site, or the number 

of items in stock in online public store.  Furthermore, most of users do not mind to read 

stale objects as long as their bids or their transactions are executed correctly.     

We use the term of data currency to represent the state of objects that are 

accessed by transactions. The state of objects here is up to date or current and stale or 

out of date. An object is up to date if there is only one version of it in the system. If an 

object is updated by any transaction, the object is in two versions; new version and old 

version. We may use the word up to date for new version and stale or out of date for old 

version.   



Chapter 2. Background and Related Work 

 

 

15 

The use of relaxed currency, representing the state of objects that are retrieved 

from the server, in database systems is frequently acceptable and commonly used to 

enhance performance. There are a couple of published papers related to this matter that 

are worth discussing. These are Bernstein et al. (2006) and Guo et al. (2004).  Bernstein 

et al. describe an extended serializability model which is called Relaxed Currency 

Serializability. This model allows transactions including update transactions to read 

stale objects. But their model guarantees the correctness in replicated database systems. 

Meanwhile Guo et al. focus on expressing the relaxed currency on SQL language. So 

applications have some understanding of which queries can use data that are not entirely 

current and which copies are “good enough”. 

Snapshot Isolation (SI) is a multi-version concurrency control approach that 

provides lock-free reads. Whenever a transaction reads an object, it does not necessarily 

see the latest value of the object; instead it sees the last committed version of the object. 

In practice, most implementations of SI use locking during updates to prevent a 

transaction from modifying an object if a concurrent transaction has already modified it. 

The first transaction to acquire the lock for an object is permitted to update the object; 

concurrent transactions attempting to update the same object will block waiting to 

acquire the lock. SI is introduced in the literature by Berenson et al (1995), and it has 

been implemented by many commercial systems, such as INFINISPAN 

(http://www.jboss.org/infinispan). It provides significant performance improvements 

over serializability implemented with two-phase locking (Cahill, 2009). 

In conclusion that through these papers, the assumption that transactions can 

read data that is a little out of date, has been accepted. For some applications, the 

currency of data cannot be compromised. However, for many applications performance 

is much more important than the currency of data. 

2.3.3 Edge Computing 

Edge-server computing is conceptually similar to client-side caching, as the aim is to 

bring data closer to the client. It is widely used to improve the system performance by 

caching objects to edge of the network. 

Leff and Rayfield in [7] explore how edge-server technology can be extended to 

applications requiring the use of transactional data. However, updates to shared objects 

http://www.jboss.org/infinispan


Chapter 2. Background and Related Work 

 

 

16 

cannot be made at the edge-servers. Updates take place at the server and distributed to 

the edge-servers in a non-transactional fashion.   

2.4 Overview of Concurrency Control and Cache Consistency 

2.4.1 Two-Version Concurrency Control Schemes 

In this subsection we summarize briefly some researches that have been done in 

applying two versions of objects in concurrency control. 

Maintaining two version database objects may not add much to the cost of 

concurrency control, because two version objects may be needed by the recovery 

algorithm. Bernstein et al. (1987) describe that many recovery algorithms presented in 

their book maintain some before image information, at least of those objects that have 

been updated by active transactions. The recovery algorithm needs the before image 

information in case any of the active transactions abort. The before image of an object is 

exactly the old version of an object. Thus, it is a small step for the system to make two-

versions of an object explicitly available to other applications.  

Two-version concurrency control schemes are presented in Bukhari (1990) and 

Bayer (1980). They show that two-version concurrency control increases the 

concurrency level and read operations never block write operations to get a write lock 

on the same object. Compare to one-version and multi-version, two-version 

concurrency control has the best performance. The one version algorithm has the best 

performance if the workload is 100% read-only transaction. In the various percentages 

of read-only transactions, the two version algorithm performs better than the others in 

the replicated database systems (Bukhari, 1990; Bukhari and Osborn, 1997). 

  Kuo et al. (2003) present a two-version concurrency control for real-time client-

server database systems. They define a consistent version and working version for each 

object. Read operations always read from the consistent version of object and write 

operations always write into the working version of object. The algorithm use locking 

techniques to synchronize accesses to the objects. In their simulation work, they show 

that the use of two-version technique reduces the blocking time of the higher priority 

transactions and improves the response time of client-side read-only transactions. It also 

supports an efficient and predictable recovery mechanism. 
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2.4.2 The validation techniques of Optimistic Concurrency Control Schemes 

The original proposal of optimistic concurrency control (OCC) is introduced by Kung 

and Robinson, 1981. Since then many OCCs have been introduced (Adya et al. 1995; 

Shi and Perrizo, 2002).  Each of OCC introduces a different technique in its validation 

phase.  The goal of the validation is to order the execution of transactions. Let 

transactions T1, T2, …, Tn be executed concurrently. Denote an instance of the shared 

objects by d, and let D be the set all possible d, so each transaction Ti may be 

considered as a function Ti: D  D. If the initial of the shared objects is dinitial and the 

final of the shared objects is dfinal, then the execution of concurrent transactions is 

correct if any some permutation π of (1,2, …, 3) such that 

dfinal = Tπ(n) ◦ Tπ(n-1) ◦ ... ◦ Tπ(2) ◦ Tπ(1) (dinitial)  

where “◦” is the operator for functional composition. If each transaction is consistent; or 

each transaction transfer the databases from one consistent to another consistent, then 

functional composition  Tπ(n) ◦ Tπ(n-1) ◦ ... ◦ Tπ(2) ◦ Tπ(1) will transfer dinitial to dfinal. 

Kung and Robinson require each transaction to get a number which is called a 

transaction increment number during its read phase, somewhere before its validation. 

The validation of serial equivalence assumes the order of transactions based on the 

transaction increment number attached to each transaction. If the transaction increment 

number of transaction Ti less than the transaction increment number of transaction Tj, 

then the execution of Ti must precede the execution of Tj or transaction Ti must be 

validated before the validation of transaction Tj. Even if transaction Tj completes its 

read phase much earlier than Ti, before being validated, transaction Tj must wait for the 

completion of the read phase of Ti.   

2.4.3 Disconnected Operation 

Disconnected operation refers to the ability of a client to continue working on local 

cached objects in spite of disconnections. Kistler and Satyanarayanan (1992) show that 

disconnected operation is feasible, efficient and usable in the Coda file system.  

 Advances in computer technology have made powerful computers and large 

memories available at low cost. So now clients are common to run applications from 

high performance machines with substantial memory and processing power. To utilize 

the client computer resources and to solve the bottle-neck, many published papers 
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introduce interesting solutions (Franklin, et al., 1997). Clients keep copies of the objects 

at their local memory. When they need the objects in the future, they can access the 

objects locally so that expensive communication can be avoided. Caching objects at 

client computer memory can enhance the overall performance of a client-server 

database system, especially when there is significant locality of access in the system 

workload, conflicts are rare to happen, and updates are in low percentages (Franklin, 

1996).  

 Client caching alters the structure of client-server model. Without client caching, 

a client application submits its requests directly to the server. With client caching, a 

client application submits its requests to cache manager.  It is served locally. The 

system can scale better now in the number of clients because congestion at the server 

can be reduced by client caching. 

Advances in computer technology and wireless telecommunication have made 

the use of mobile computers popular in client-server database systems. This technology 

provides clients with the ability to access database from anywhere, and this ability is 

very important in future client-server database systems. The demand for ubiquitous data 

access is evident in the increasing prevalence of mobile computing and wireless 

communication.  

However, mobile computers have wide variations in connectivity ranging from 

high-bandwidth, low latency communications through wired network to total lack of 

connectivity. At work, they may have access to cheap, reliable, and high-speed 

connectivity. In other locations, they have access to network via wireless connection 

which is intermittence, low bandwidth, high latency, or high expense. It is very prone to 

frequent disconnections.  

Traditionally in client-server database systems when there is no connection to 

the server, clients stop working, they cannot do anything because persistent objects and 

the information process are stored at the server. In modern client-server database 

systems they hypothetically can work under disconnected mode because some needed 

objects and the code of information process are cached on their computer memory.   

Gruber et al. (1994) discuss some issues related to disconnect operation. They 

discuss how to ensure that all objects needed by the client are cached prior to 
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disconnection. They mention use of the hoarding processes (usual LRU cache policy 

plus user supplied ‘hoarding profiles’) to ensure that the right files are in client cache 

before getting disconnected; this mechanism is necessary for enabling users to work 

under disconnected mode. Then they discuss about what to do if there is a cache miss 

and what to do about transaction commits while running disconnected. They suggest 

that these problems be handled in user specific manner and the users ought to have 

control over how to proceed. They also discuss how to reconcile after reconnection.  

2.4.4 Transactional Cache Consistency 

 Franklin et al.  (1997) state that there are two types of caching:  intratransaction 

caching and intertransaction caching. Intratransaction caching refers to caching within 

transaction boundaries. Cached objects are removed from the client cache when the 

transaction is committed. Intertransaction caching refers to systems that allow clients to 

cache objects even cross transaction boundaries. After a transaction committing, objects 

at the client cache are not protected by regular concurrency control. Therefore, caching 

requires an additional cache consistency protocol to regular concurrency control for 

maintaining the consistency of cached objects at clients. 

 The design of client caching mechanism for client-server database systems must 

respect the correctness of that environment. Client-server database systems must be able 

to provide the same level of transaction support in traditional database systems. Since 

caching is a dynamic form of replication, the criteria of correctness in replicated 

database systems are applicable in caching. The extension of serializability in replicated 

database systems is one-copy serializability (Bernstein et al. 1987).  The execution 

order of transactions in replicated database systems is in one-copy serializability if it is 

equivalent to some serial orders of those transactions in non-replicated database 

systems. 

 Taxonomy of transactional cache consistency algorithms for client-server 

database systems can be found in Franklin et al.  (1990). They categorize transactional 

cache consistency algorithms based on the choice of invalid access prevention. There 

are two categories; Detection Based Protocols and Avoidance Based Protocols. 

Avoidance Based Protocols ensure that all cached objects are valid. Meanwhile 

Detection Based Protocols allow stale objects to remain in client caches and ensure that 

transactions are allowed to commit only if they have not accessed stale objects. Our 
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proposed scheme actually cannot be classified in the taxonomy presented by Fraklin et 

al. because our proposed scheme allows read-only transactions to commit even they 

read stale objects. However, the closed classification for our scheme is detection based 

protocol as the invalid access prevention; the validity check initiation of our scheme is 

deferred until commit; we propagate updates after the transaction commit. 

2.4.5 Invalidation versus Propagation 

Just like replication, caching introduces global redundancy by creating multiple copies 

of single objects. Redundant copies have to be kept consistent; coherence of copies has 

to be ensured in such a way that different copies give the same values. To make all 

copies consistent, the server employs a cache consistency protocol. There are three 

options for cache consistency protocol existing in the literatures: invalidation, 

propagation, and choosing dynamically between the two. 

 Cache invalidation is a process to remove stale copies from the clients as a result 

of the persistent objects updated at the server. The invalidated objects at clients will be 

inaccessible for subsequent transaction. Any subsequent transaction that wishes to 

access the object must obtain a new copy from the server. Moreover, the cache 

invalidation is based on invalidation messages the server broadcasts upon modifications 

of cached objects, which is prone to poor scalability due to client state managed at 

server side. To achieve a consistency, the commit of update transaction has to be 

delayed until all client caches have been invalidated.  

On the other hand, propagation replaces the stale copy with the fresh one.   The 

updates are propagated to clients which cached the updated objects right after the 

update transaction committed at the server. The clients can keep caching the objects and 

any subsequent transaction can access the objects locally. A dynamic algorithm can 

choose between invalidation and propagation in order to optimize performance for 

varying workloads (Franklin, 1996). 

 Wilkinson and Neimat (1990) present a cache consistency protocol using 

propagation. They use the term notification instead of propagation. The server sends 

notifications of updates to clients after the updates are committed. When a client 

receives a notification of updates from the server, it checks the list of updated objects 

against the readset and writeset of its active transactions. Any transaction with an 

updated object in its readset or writeset must abort. The server sends a notification 
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message including a sequence number to a client. This sequence number is used for 

handshaking purposes only with the server. When a client submits a commit request to 

the server, it is required that the client has seen the most recent notification message by 

checking its sequence number. If the sequence number is too low, the server rejects the 

commit request, and asks the client to verify if the transaction should be committed and 

then resend the request.    

2.5 Transactional Cache Consistency Schemes 

In this section we describe three transactional cache consistency schemes using 

respectively locking, timestamp, and multi-version concurrency control.    

2.5.1 Callback Locking  

We describe briefly a concurrency control which is an extension of a pessimistic, 

locking-based protocol known as Callback locking (Howard et al., 1988). The algorithm 

is designed by Zaharioudakis, et al. (1997). It is an adaptive granularity callback locking 

scheme which uses Callback Read technique studied in (Franklin, 1996) to copy a page 

at a client side. Callback Read techniques guarantee that copies of pages at client side 

are always valid, so client transactions can read objects safely without communicating 

with the server. When a client wants to read a page which is not cached yet, it sends a 

request for the page to the server. Upon receiving this request, the server checks 

whether any other client holds write lock on the page. If there is no other client holding 

write lock on the page, the server sends immediately a copy of the page to the client, 

otherwise it delays to do so. In general the server manages write locks and tracks pages 

cached by each client, while read locks are recorded at the clients only. 

 To update a page, a client must get a write lock on the page from the server. 

When a write lock request arrives for a page that is not locked at the server, the server 

issues callback to all clients (except the requester) that cache a copy of the page. At the 

client such callback request is treated as a request exclusive lock for specified page. If 

the page is being read by active transaction, the client responds that the page is currently 

in use; this respond is used by the server for deadlock detection. Otherwise, the clients 

remove from the client cache and an acknowledgement is sent to the server. Whenever 

all callbacks have been acknowledged, the server registers the write lock on the page for 

the requesting client and sends a positive response to the requesting client. Any read or 

write request for the page from other clients will be blocked at the server until the write 
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lock is released by the holding transaction. At the end of the transaction, the client sends 

the updated page to the server and releases its write lock. 

 Zaharioudakis, et al. (1997) also design the algorithm for object server which is 

the same algorithm for page server. The author argues that the object server is a better 

approach. It is avoiding the potential communication, memory usage, and false sharing 

problems of the coarse-grained project server approach. However, in the low-contention 

environment, the use of object server can greatly increase the number of messages 

required to manage cache consistency. Therefore, the author also designs an algorithm 

with allowing the granularity to adapt to the current level contention.  

2.5.2 Adya Algorithm 

Adya et al (1995) proposed a new optimistic concurrency control algorithm for use in 

distributed database systems. Objects are cached and manipulated at client while 

persistent storage and transactional support are provided by servers. There may be more 

than one server. The algorithm uses a loosely synchronized clock to achieve global 

serialization. It provides serializability and external serializability for committed 

transactions. External serializability means that the serialization order is such that if 

transaction T1 is committed before transaction T2 began, then transaction T1 is ordered 

before transaction T2. The author demonstrates that their proposed algorithm 

outperforms adaptive callback locking algorithm for low to moderate contention 

workloads, and scales better with number of clients. This section describes briefly the 

algorithm for providing a good background to readers. In this paper, we refer this 

algorithm as Adya.   

Adya algorithm allows client to cache necessary objects. Objects are fetched 

from servers when needed. The server tracks the objects in the client cache; for each 

client, it maintains a table called cached set that records this information. The cached 

sets are used for maintaining cache consistency.  

Whenever a transaction is about to end its execution, it submits a commit 

request to a server that is the owner of some objects accessed by the transaction. If the 

server owns all objects accessed by the transaction, it commits the transaction 

unilaterally. Otherwise, it acts as a coordinator in a standard two-phase commit protocol 

with the other servers. Note that read-only transactions also require committing their 

actions at servers. When server receives a commit request of a transaction, it tries to 



Chapter 2. Background and Related Work 

 

 

23 

validate the commiting transaction. If validation succeeds, the server commits the 

transaction and sends a positive acknowledgement to the client. Otherwise it aborts the 

transaction and sends a negative acknowledgement to the client. 

The purpose of validation process of a transaction is to prevent the commit of 

any transaction that would violate the consistency requirements; serializability and 

external serializability. The validation process uses a backward validation to preserve 

consistency, a validating transaction is checked against all validated transactions, earlier 

and later validated transactions.  If the validating transaction conflicts with the validated 

transactions that have earlier timestamps, the system makes sure that the validating 

transaction accesses the correct versions of objects. If the validating transaction 

conflicts with the validated transactions that have later timestamps, then the validating 

transaction fails the validation process. Otherwise, the committing transaction succeeds 

the validation process. After committing an update transaction, the server sends an 

invalidate message, which is containing a list of object identifiers updated by the update 

transaction, to other clients that are caching any object updated by the transaction. 

When a client receives an invalidate message, the client drops all objects contained in 

the invalidate message. If the current transaction already reads any object in the list of 

updated objects, the client aborts the transaction immediately. When subsequent 

transactions wish to access any object in the list, the system could get the copy of the 

object from the server. 

 This algorithm records validation information of transactions in a validation 

queue, or VQ (note that this VQ is different than the VQ which we propose for our own 

algorithm later in the thesis). The validation information recorded in VQ contains the 

timestamp of the transaction, the transaction’s readset, the transaction’s writeset, and 

the identity of the client. To maintain VQ, it uses a threshold timestamp. The validation 

record is removed for all transactions with timestamp below the threshold. 

Consequently, a transaction timestamped below the threshold fails validation. 

The validation process performed at the server for transaction T is described as 

follows: 
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Threshold Check 

If T.ts < Threshold then  
 Send abort message to the client; 

 
Checks Against Earlier Transactions: 
 

For each uncommitted transaction S in VQ 
Such that S.ts < T.ts 
 If (S.Writeset ∩ T.Readset ≠ {}) then 
  Send abort message to the client; 
 
Current Version Check  
For each object x at T.Readset 
 If (x is the invalid version) then 
  Send abort message to the client; 
 

Checks Against Later Transactions 
 
For each transaction S in VQ 
Such that T.ts < S.ts  
 If (T.Readset ∩ S.Writeset ≠ {}) 
 Or (T.Writeset ∩ S.Readset ≠ {}) Then   
  Send abort message to the client; 

 

Adya et al (1995) demonstrate that their algorithm outperforms an adaptive 

callback locking algorithm which outperforms other non-adaptive callback locking 

algorithms (Carey et al (1994)) and considered best so far. Therefore, it is a good reason 

for us to compare our algorithm with Adya algorithm. 

2.5.3 Multiversion Concurrency Control (MVCC) Algorithm 

In a multiversion database, each write on object x creates a new object or a new copy 

(or version) of x. Since writes do not overwrite the object, one or more transactions can 

keep read the old version of x while a transaction writes object x. This increases the 

level of concurrency of the system. Some systems manage one old version of objects; 

other systems manage more than one version of objects. A concurrency control 

exploiting the existence of versions of objects is called Multiversion Concurrency 

Control (MVCC).    

Carey and Muhanna (1986) studied the performance of MVCC algorithms. In 

their simulation work, they show that MVCC algorithms offer significant performance 

improvement despite additional disk accesses involved in accessing old versions of 

objects.  
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Many variations of MVCC are published in the literature.  Bernstein et al. 

(1987) describes some MVCC algorithms, such as MVCC two-phase locking. In two-

phase locking, write lock on an object x prevents other transactions from obtaining read 

lock on object x. The system can avoid this by using two versions of x. When a 

transaction writes an object x, it creates a new version of x and sets a write lock on x 

that prevents other transactions writes object x. But other transactions can read the old 

version of x. 

To apply this scheme, the system should store one or two versions of each 

object. Once the update transaction that writes object x commits, the version of x 

becomes one version. The previous version of x becomes inaccessible. Two version 

database systems are commonly used for system recovery purposes. When a transaction 

Ti writes object x, object x will be in two versions; Ti’s before image of x and the new 

value of x. When Ti commits successfully, Ti’s before image of x will be deleted. 

Therefore, two version database systems have been used for system recovery purposes. 

Two version two-phase locking described in Bernstein et al. (1987) uses three 

locks; read locks, write locks, and certify locks.  Read locks are compatible with read 

locks and write locks, but read locks are not compatible with certify locks. Write locks 

are compatible with read locks, but they are not compatible with write locks and certify 

locks. Meanwhile certify locks are inclusive locks, and they are not compatible with 

other locks. The scheduler of two version two-phase locking sets read and write locks as 

usual time, when it process reads and writes. When an update transaction is about to 

commit, the scheduler converts all of transaction’s write locks to certify locks.   

When the scheduler receives a write request on object x from a transaction, it 

attempts to set write lock on x. Since write locks conflict with certify locks and with 

each other, the scheduler set write lock on object x for the transaction as long as no 

other transaction owns a certify lock on x or a write lock on x. Otherwise, it delays the 

process of write on x.  

When the scheduler receives a read request on object x from a transaction, it 

attempts to set read lock on object x for the transaction. Since read locks are not 

compatible with certify locks, it can grant read lock on object x for the transaction as 

long as no transaction owns a certify lock on x.  
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When a transaction is about to commit, the scheduler attempts to convert all 

transaction’s write locks into certify locks. The scheduler sets certify locks on object x 

if no other transaction holds a read lock on x. If any, the scheduler delays the lock 

conversion until all read locks on x are released.  

 A transaction may deadlock while it converts all its write locks to certify locks. 

Therefore this algorithm uses any deadlock detection or prevention technique. In this 

process, the transaction may be aborted.   

Cahill (2009) mentions that Snapshot Isolation is a multi-version concurrency 

control approach that provides lock-free reads. Unlike most other MVCC algorithms, 

update transactions can also avoid locking for their reads. When a transaction Ti starts 

executing at Snapshot Isolation and reads object x, it does not necessarily read the latest 

value written to x; instead it sees the latest committed version of x. To update object x, 

transaction Ti should acquire write lock (an exclusive lock). If Ti fails to get write lock 

on x, it waits until the lock is available. This may cause Ti involve in deadlock. The 

system should employ a mechanism to solve deadlock problems. In practice, one may 

abort the update transaction which fails to get any lock. 

Bober and Carey (1991) use MVCC in different degrees of consistency, such as 

degree 1 or degree 2 consistency, for long running queries. The reason to use different 

degree of consistency for long running queries is to increase the performance. Long 

running queries introduce a high level of data contention. MVCC definitely reduces 

data contention. For similar reason, many commercial database systems use these kinds 

of MVCCs which can only ensure a weaker form of consistency than serializability; 

such as INFINISPAN (http://www.jboss.org/infinispan). In this MVCC, read operations 

can always get accesses. There is no read lock for a read operation. It always reads a 

committed object. Meanwhile, a write lock is required for write operation. A transaction 

should get write locks from the server before it executes its write operations. 

2.6 Conclusion 

Adya algorithm presented in Adya et al. (1995) validates a transaction against 

validated transactions. The validating transaction is aborted if it reads any object written 

by younger validated transactions or it writes any object read by older validated 

transactions. Otherwise the validating transaction is passed the validation process. Thus, 

the order of transactions is based on the timestamp attached to each transaction. 

http://www.jboss.org/infinispan
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The Adya algorithm and the original optimistic concurrency control algorithm 

use external numbers to order the execution of transactions. Read-commit Order 

Concurrency Control (ROCC) introduced by Shi and Perrizo (2002) and discussed in 

the next chapter is more flexible. It does not need an external number, such as 

timestamp or transaction increment number, to order the execution of transactions. It 

can order the execution of transactions based on the transaction’s accesses because it 

records the accesses of each transaction. Based on the record, the validation process of 

ROCC tries to insert a transaction into some serial order. If it cannot insert a transaction 

to any place into some serial order, this means the execution of the transaction 

interleaves with others; therefore the transaction is aborted.  

Thus, the validation process of ROCC gives transactions a better chance to 

success because it has many options to order the transactions. Meanwhile, validation in 

each of the other techniques orders transactions based on one serial order. For examples 

if the timestamp (or the transaction increment number) of Ti is less than the timestamp 

(or the transaction increment number) of Tj, then Ti must precede Tj in the execution 

order produced by the validation process of Adya and Kung’s algorithm. Meanwhile, 

ROCC could produce any order (Ti  Tj or Tj  Ti). Let T1={R1(x), W1(x)}, 

T2={R2(x),W2(y)} and H1={R1(x),R2(x),W1(x),W2(y)}. ROCC’s validation would produce 

T2  T1. But the others fail to produce T1  T2 because T2 conflicts with T1 and  is 

aborted. 

Adya’s and Kung’s validation technique is not suited for systems which have 

long running transactions and short running transactions. Adya’s scheme makes long 

running transactions suffer. The Adya’s long running transactions will tend to abort 

because they will check against many short running transactions. On the other hand, as 

ROCC’s validation produces some serial order, ROCC’s long running transactions still 

have a better chance to succeed. Meanwhile, in Kung’s validation short running 

transactions are forced to wait the long one. Consider the case of two transactions, Ti 

and Tj starting roughly at the same time, assigned transaction number n and n+1, 

respectively. Ti is a long running transaction and Tj is a short running transaction. 

Before being validated, Tj must wait for the completion of the read phase of Ti. 

In the following chapter, we present a transactional cache consistency scheme. 

The scheme is based on the optimistic approach. It is an extension of ROCC which is 
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considered more flexible in ordering transactions and suited for client-server systems 

with caching at client sides.  
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Chapter 3. The Proposed Scheme 

In this chapter, we present the proposed scheme. We call our proposed scheme as VQ 

which stands for Validation Queue, because it uses a validation queue to synchronize 

the accesses to objects and to validate transactions
1
. The primary design goals of the 

proposed scheme are: (1) to increase the system performance by caching necessary 

objects at client side and (2) to reduce the amount of communication with the server.  

In the design of the proposed scheme, we use some common assumptions as 

follows: 

 We assume a single server system. Thus, multi-server issues, such as the use of 

two-phase commit protocol, are ignored. Chapter 5 describes the extension of 

our scheme to multi-server systems. 

 We assume a client issues transactions one at a time. Our scheme can be 

extended to parallel transactions; one client can issues more than one transaction 

at a time. This extension is described in chapter 5. 

 We assume no blind write. If a transaction wants to update object x, it has to 

read object x.  

 We assume a transaction works on its own memory. When it requests accesses 

to objects, the objects are copied to its own memory. It can modify the objects in 

its own memory. When it is about to end its execution, its commit request 

including its updates is submitted. In other words, we use a deferred write 

technique for write operations. 

 To focus the problems that are addressed in this thesis, we assume there are no 

network partitions. A message is always delivered to its destination. 

Furthermore, we assume that messages are received and processed at the client 

in the same order as they are sent from the server, with the network preserving 

the number and the order of messages.  

                                                           

1
 A preliminary version of the scheme appeared in 2012 IEEE 14

th
 International Conference on High 

Performance Computing and Communications (Bukhari, F. and Shrivastava, S., 2012). 
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Since our scheme is an extension of ROCC algorithm, we start this chapter with 

the description of ROCC algorithm. Understanding of ROCC algorithm is helpful to 

understand our scheme. Afterward, we describe the system architecture and the 

validation algorithm. The design of the proposed scheme is described more detail in 

section 3.4. Finally, this chapter is closed with the correctness of the proposed scheme.  

3.1 Read-Commit Order Concurrency Control (ROCC) 

3.1.1 Read-Commit Queue 

Shi and Perrizo describe a new concurrency control method for a centralized database 

system (Shi and Perrizo, 2002). The concurrency control method is called Read-commit 

Order Concurrency Control (ROCC). ROCC is a deadlock-free concurrency control 

method based on optimistic mechanisms. It employs a centralized queue called Read-

Commit queue (RC queue) to record the access order of transactions. Along with the 

RC queue, an “intervening” validation algorithm is developed for execution validation. 

In addition to traditional operation conflict, they introduce a new concept; element 

conflict.  

A client application executing a transaction sends one or more read request 

messages to the database system to fetch copies of the data objects; at commit time, the 

client sends a commit request message with new values of any fetched objects that have 

been updated. The database server performs validation to determine whether the 

transaction should commit or abort. If a transaction succeeds its validation process, it is 

committed. Otherwise, it is aborted.   

Generally, a transaction may submit more than one request to the server. Shi and 

Perrizo define a static transaction as a transaction that submits only one request to the 

server.  

Whenever the system receives a read request message, it generates a 

corresponding element and inserts it into the RC queue. An element contains the 

transaction identifier (TID), the element type, one or more object identifier fields (such 

a field contains the list of object identifiers to be accessed and other information) and 

links for queue management. The element and its fields will be depicted as follows: 

TID Element Type Object Identifiers Links
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An RC queue may have four types of elements: Read element, Commit element, 

Validated element, and Restart element. A Read element is created and inserted into the 

RC queue whenever the system receives a read request message. Since a transaction 

may submit several read request messages, there could be several Read elements related 

to the transaction. All the objects that a transaction requests to write are contained in the 

writeset object identifier field of the Commit element. A Commit element also has a 

readset object identifier field (this is normally empty and used only in the VQ algorithm 

discussed later). The system executes data object accesses in the same order as they 

appear in the RC queue. The system traverses the RC queue to validate a transaction. If 

the transaction passes the validation process, then all of its elements are merged into a 

Validated element. Otherwise, a Restart element will be generated.   

3.1.2 Examples of Cases 

In this subsection, we present some simple cases. The purpose of this subsection is to 

motivate the studies of ROCC algorithm. We give some illustrations for the 

‘intervening’ validation algorithm. The cases are independent, except the first and 

second cases.  

Case 1:  

The following figure represents a structure of RC queue. Its first element (top of the RC 

queue) represents a Read element. It contains transaction identifier: T1; element type: 

Read; the list of object identifiers (x, y). The second element is a Read element of 

transaction T2.  

T1 Read x,y

T2 Read x,z

Null
 

Then transaction T2 submits its commit request message containing a write operation on 

object x. The system creates a Commit element of transaction T2 and inserts it into the 

RC queue. The RC queue will then be as follows: 
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T1 Read x,y

T2 Read x,z

T2 Commit x

Null
 

Before executing the commit request message of transaction T2, the system validates 

transaction T2. The validation process checks whether the execution of transaction T2 

interleaves with the execution of other transactions. If the execution of transaction T2 

does not interleave with the execution of other transactions, then transaction T2 will pass 

the validation process, otherwise, it will fail the validation process. To validate 

transaction T2, we need to examine transaction T2’s intervening elements from other 

transactions in the RC queue.  In the above RC queue, we can see that there are no 

elements belonging to other transactions in between the Read element and Commit 

element of transaction T2. Transaction T2 passes the validation process and its elements 

are combined to form a validated element and the RC queue will now look as follows: 

Null

T1 Read x,y

T2 Validated x,z x

 

Now, transaction T2 is represented by an element; which is the Validated element. It 

contains transaction identifier (T2), element type (Validated), object identifiers to be 

read (x,z), and an object identifier to be written (x). The existence of the validated 

element of transaction T2 in the RC is required queue for validation processes of other 

transactions. 

Case 2:  

Afterwards, transaction T1 submits its commit request message which contains write 

operation on object y. The RC queue will be as follows: 

T1 Read x,y

T2 Validated x,z x

Null

T1 Commit y
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To validate transaction T1, the system checks elements of transaction T1 against ‘in 

between’ elements from other transactions. Transaction T1 reads object x before 

transaction T2 updating it. The read element of transaction T1 conflicts with the 

validated element of transaction T2. Now we examine the commit element of transaction 

T1 and the validated element of transaction T2 and find that they are not in conflict each 

other. We can therefore order the commit element of transaction T1 before the validated 

element of transaction T2. Therefore, transaction T1 passes its validation process, and 

the RC queue will look as follows: 

T1 Validated x,y y

T2 Validated x,z

Null

x

 

Case 3:  

Let us consider another case, for example, after transaction T2 submitting its commit 

element, the RC queue of a system is shown as follows: 

T2 Read x,y

T1 Validated x x

Null

T2 Commit x,y

 

Transaction T2 fails the validation process. Its read element conflicts with the validated 

element of transaction T1. T2’s read element reads object x and T1’s validated element 

writes object x. They are in conflict. The read element of transaction T2 cannot pass the 

validated element of transaction T1. Now, we examine the Commit element of 

transaction T2. The commit element of transaction T2 contains a write operation on 

object x. The commit element of transaction T2 conflicts with the validated element of 

transaction T1 as well. It cannot pass the validated element of transaction T1 as well. In 

this case, the execution of transaction T2 interleaves with the execution of transaction 

T1. Therefore transaction T2 fails the validation process. Consequently, it is aborted. 
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Case 4: Let us consider the following RC queue: 

T1 Read x,y

T2 Validated x x

Null

T1 Read z

T3 Validated x,z x,z

T1 Commit y

 

The validation process of transaction T1 is successful. Transaction T1 reads objects x and 

y which is represented by the first read element of transaction T1. Its first read element 

conflicts with the validated element of transaction T2. Now, we examine the commit 

element of transaction T1. It does not conflict with the validated element of transaction 

T3. Therefore, it can pass the validated element of transaction T3. When we move up, 

then we find another element of transaction T1. We combine the commit element of 

transaction T1 with its read element. The combined element of transaction T1 does not 

conflict with the validated element of transaction T2. Now we move up, we find the first 

read element of transaction T1. Therefore, we can combine all elements of transaction T1 

to be one element which is validated element. As a result, transaction T1 succeeds the 

validation process, and the RC queue will look as follows: 

T1 Validated x,y,z

T2 Validated x x

Null

T3 Validated x,z x,z

y

 

3.1.3 The Validation Algorithm 

This section describes the ROCC validation algorithm in a rigorous manner. Two 

elements, element ei,p from transaction Ti and element ej,q from transaction Tj (i≠j) are in 

conflict if at least one of the following condition is true, 

 ws(ei,p) ∩ ws(ej,q) ≠ {},  

 ws(ei,p) ∩ rs(ej,q) ≠ {}, 

 rs(ei,p) ∩ ws(ej,q) ≠ {}, 
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where the notation of ws(e) means the writeset of element e and the notation of rs(e) 

means the readset of element e. The j-th element of transaction Ti is represented by ei,j. 

The notation Ei represents a sequence of elements. If two elements from the same 

transaction ei,p and ei,q, are merged (ei,p ei,q) to make a single compound element ei,r, 

then ws(ei,r) = ws(ei,p)   ws(ei,q) and rs(ei,r) = rs(ei,p)   rs(ei,q). The compound element 

ei,r represents the existence of the element ei,p and ei,q in transaction Ti. 

The validation process of transaction Ti is started after the transaction submits 

the commit request. Suppose transaction Ti has n+1 elements in RC queue, ei,0, ei,1, .., 

ei,n; where ei,j is any Read element of transaction Ti (0<= j <= n-1);  ei,n is the Commit 

element of transaction Ti. The structure of RC queue, from the first Read element of Ti 

to the Commit element of Ti (or the rear of RC queue) can be considered as follows: 

Null

ei,0 Read …

ei,1 Read ...

ei,k-1 Read ...

ei,k Read ...

ei,n Commit ...

E1

E2

Ek

En

 

E1 is a (possibly empty) collection of elements from other transactions in between 

element ei,0 and ei,1; E2 in between element ei,1 and ei,2; and Ej in between elements ei,j-1  

and ei,j of transaction Ti for 1<=j<=n. Let e
*
 be an element in Ek that splits Ek into two 

parts A and B, therefore Ek=A;e
*
;B (where, A and/or B can be empty sequence). 

Transaction Ti passes its validation process, if one of the two following condition is 

satisfied; 

1. An element or the compound element ei,0 ei,1… ei,j does not conflict with 

any element in the sequence Ej+1, for all j=0,1,…, n-1. 

2. The compound element ei,0 ei,1… ei,j does not conflict with any element 

in Ej+1 for all j=0,1,…,k-1 and any element in A but the compound element 

conflicts with element e
*
, for  k=1,2, …, n. Then, the element ei,n or the 
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compound element ei,n ei,n-1… ei,j does not conflict with any element in 

sequence Ej for all j=n,n-1,…,k+1, and the compound element 

ei,n ei,n-1… ei,k-1 ei,k does not conflict with element e
*
 and any element in 

B. 

In other words, condition 1 is true, only if no elements from other transactions in 

between the first read element and the commit element of transaction Ti conflict with 

the elements of Ti. Condition 2 is true, only if the first read element of Ti or its 

compound element (from its first read element forwards) conflicts with element e
*
 of 

other transaction in between the execution of transaction Ti, but the commit element of 

transaction Ti or its compound element (from its commit element backwards) does not 

conflict with any element from other transactions including element e
*
. If transaction Ti 

fails the validation process, its elements are removed from the RC queue.   

Let us see again the previous cases. The first case, transaction T2 satisfies 

condition 1 so it passes the validation process. The second case, transaction T1 satisfies 

condition 2, so it also passes the validation process. However, in the third case, 

transaction T2 does not satisfy condition 1 or condition 2. Therefore, it fails the 

validation process. In the fourth case, transaction T1 passes the validation process, 

because it satisfies condition 2. 

The rest of this section describes briefly the pseudo code of the “intervening” 

validation algorithm of ROCC which is presented at Figure 3. The pseudo code shows 

how to traverse RC queue when the algorithm is validating a transaction. Initially, the 

algorithm sets the first read element of the validating transaction to FIRST and the 

commit element of the validating transaction to SECOND. From the position of FIRST, 

the algorithm traverses RC queue to the rear of the queue and checks if FIRST conflicts 

with its in-between elements of other transactions. If FIRST does not conflict with its 

in-between elements from other transactions, then merge FIRST and the read element of 

the validating transaction, let this merged element be FIRST and place FIRST to the 

position of the last read element. The algorithm continues checking FIRST against its 

between elements. If the algorithm reaches SECOND which is the commit element of 

the validating transaction, then the algorithm returns true. This condition is the same as 

condition 1 described above.  
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If a conflict is found, then move FIRST to the front of the conflicting element. 

Now traverse RC queue from SECOND toward FIRST and check if SECOND conflicts 

with its in-between elements of other transactions in the same way as described above. 

If SECOND conflicts with its in-between elements, then the algorithm returns false 

after it removing all elements of the validating transaction. Otherwise; SECOND does 

not conflict with its in-between elements and reaches FIRST, then the algorithm returns 

true. This is the same as condition 2 described above. 
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FIRST = get the first read element of the transaction; 
PREV = NULL; 
SECOND = get the commit element of the transaction; 
NEXT = get element after FIRST element; 
for (;;)  
{ 
 If (NEXT is another read element of the transaction)  
 {  
  Remove FIRST element from the RC queue; 
  FIRST = merging FIRST and NEXT then store at the position of NEXT element  
     in the Queue; 
  NEXT = get next element; 
 }  
 else if (NEXT is equal to  SECOND)  
 { 
  Remove FIRST element from the RC queue; 
  Merging FIRST and SECOND store into SECOND as local validated element; 
  Return success; 
 } 
 else if (FIRST conflict with NEXT)  
 {  
  /* move FIRST to the position before NEXT */  
  Remove FIRST from the RC queue; 
  Insert FIRST before NEXT in the RC queue; 
  PREV = get previous element of SECOND; 
  for (;;) 
  { 
   If (PREV is equal to FIRST) 
   { 
    Merging SECOND and FIRST store at the position of FIRST as local validated; 
    Return success; 
   } 
   else if (PREV is another element of the transaction)  
   { 
    Remove SECOND from the RC queue; 
    SECOND = merging SECOND and PREV store at the position of PREV ; 
    PREV = get previous element of SECOND; 
   } 
   else if (SECOND conflict with PREV) 
   { 
    Remove FIRST, SECOND, and all the remainder elements of the transaction;  
    Return failure; 
   } 
   else 
    PREV = get previous element of PREV; 
  } 
 }   
 else  
  /* FIRST is not conflict with NEXT*/ 
  NEXT = get next element of NEXT; 
} 
 

Figure 3: The Validation Algorithm 
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3.2 System Architecture  

We consider a system that shares a common object database over a large geographic 

area. We divide the infrastructure into a server and a set of clients connected by a 

network (see Figure 4). The server is specialized to hold persistent objects and to 

provide them to clients on request. The clients run applications that request accesses to 

the objects. The communication between a client and the server occurs only through 

explicit message across the network. To resolve the network latency problem, the client 

caches necessary objects. 

3.2.1 Client Side Components  

Client side consist of application, Cache Manager, and Cache Object Manager. They 

are independent modules and communicate with each other through explicit messages. 

In this research, Cache Manager together with Cache Object Manager is referred as a 

cache (or local cache). As an alternative architecture, a cache can be placed in a 

separate computer to the application. 

Each client may have different applications. We do not restrict the application to 

a specific one.  However, when an application wants to access database objects, it 

creates a transaction and accesses objects through the transaction. To access objects, a 

transaction submits requests to cache manager.  
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Figure 4: Client-Server Architecture 
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Cache Manager is a module which has a dual function in the system. At one 

hand, it represents the server to the client application. The client application submits its 

requests to the local cache manager. The client application does not know the existence 

of the server, and it does not need to know the server because the local cache manager 

acts like the server for the client application. The cache manager submits a request to 

the server for updating database objects on behalf client applications. It fetches or drops 

objects to the server on behalf the client.  

To provide correct execution of local transactions, the local cache manager is 

required to take actions on committing local transactions.  The actions taken by a local 

cache manager are governed by the outcome of Cache Side Validation Algorithm. If the 

outcome is negative, it aborts the transaction and tells the client about its decision and 

the client creates a new transaction. Otherwise, it commits the transaction; a read-only 

transaction can leave safely; an update transaction requires second validation at the 

server; a commit request message is created (containing the readset and the writeset 

with the new values) and forwarded to the server for global, server side validation. 

3.2.2 Server Side Components 

The server consists of Service Manager, Scheduler, and Object Manager. Service 

Manager coordinates incoming and outgoing messages at the server. Any access request 

to the database is submitted to Service Manager. Then it is directed to Scheduler. 

Scheduler has a responsibility to synchronize the access to the database. To execute the 

accesses, Scheduler submits them to Object Manager.  

 Besides coordinating incoming and outgoing messages, Service Manager is also 

responsible to produce a unique version number for a cache. A new cache version 

number is required if a client cache is initiated or updated by the server. In order to get 

services from the server, each transaction should be provided with a valid version 

number of its originated cache. Otherwise, the transaction would be rejected and 

aborted.  

Scheduler is responsible to validate update transactions and to track client 

cached objects. Meanwhile, Object Manager executes Read, Fetch or Commit elements 

submitted by Scheduler. 
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Accesses to database are managed by the scheduler. To manage accesses to 

objects at the server, the scheduler may execute or reject an access request of 

transactions to objects. The actions taken by the scheduler are governed by an algorithm 

explained in the next section. If the scheduler takes the action to execute the request, it 

passes the request to object manager for execution and notifies the client about its 

decision. When object manager finishes executing the request, it informs the scheduler 

and eventually the scheduler propagates the updates to other clients. If the scheduler 

takes the action to reject the request, in which case it tells the client that its request have 

been rejected.   

3.3 The Validation Algorithm 

We now present the validation algorithm of the proposed scheme. The validation occurs 

in two sides; cache side and server side. Cache side validation is to validate local 

transactions. Meanwhile server side validation is to validate a transaction that updates 

any persistent object at the server. The validation algorithms at both sides are an 

extension of the validation algorithm described in section 3.1. 

The main objective of validation algorithm is to provide serializability order to 

the committed transactions by not allowing interleaved transactions to commit. 

Therefore, sometime before a transaction finishes its execution, the system checks 

whether its execution interleaves with others’. To check whether the execution of a 

transaction interleaves with the execution of other transactions, we use a validation 

queue; we call it validation queue, because we use it for validation purpose only
2
. This 

validation queue is used to record the execution order of transactions. Since we use 

elements as the execution unit of a transaction, then this validation queue contains 

elements.  

There are two kinds of validation queues in the system. The first validation 

queue is named as Cache Validation Queue (CVQ) because it is located at cache sides. 

CVQ is maintained by the local cache manager. It is used to record accesses to cached 

objects at client side. The second validation queue is Server Validation Queue (SVQ) 

located at the server and maintained by the scheduler. SVQ is used to record accesses to 

database objects at the server. Both cache and server sides make use of the same ROCC 

                                                           

2
 In section 3.1 the validation queue was termed RC queue. 
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of algorithm for validation (discussed in section 3.1), making use of some additional 

elements as we discuss below. Each client cache has a unique sequence number 

assigned by the server; this sequence number is included in all the messages sent by the 

clients to the server. The server generates a new, higher sequence number when it has to 

update a cache; the new sequence number is included in the update message from the 

server (this message is called the Update Propagation message). 

 3.3.1 Cache Side Validation Algorithm 

The cache side validation algorithm described in this subsection is invoked by the local 

cache manager when it validates a local transaction. Its objectives are to prevent the 

commit of incorrect execution of transactions. It checks the correctness of a transaction 

execution by examining the execution order of the transaction. If it finds the execution 

of a validating transaction interleaves with others, it returns failure; otherwise it returns 

success.  

 The cache side algorithm uses CVQ as a tool to record the execution order of 

elements, in the same manner as the RC queue. In addition to Read, Commit, and 

Validated elements, CVQ contains Local Validated and Update Propagation elements. 

An Update Propagation element represents the execution of a remote update transaction. 

It contains the readset and writeset of the update transaction.  It is inserted when the 

local manager receives an Update Propagation message from the server (as discussed in 

the next sub-section); Read or Commit elements are inserted into CVQ as a result the 

local manager receives read or commit request respectively from local transactions. 

Whenever any transaction is about to end its execution, it submits its commit 

request to the local cache manager. Upon receiving a commit request, the local cache 

manager creates a commit element and posts it into CVQ. Then it validates the 

transaction. If the transaction succeeds the validation process, then, if it is a read-only 

transaction, all its elements are merged to be a Validated element. Otherwise, the locally 

validated transaction is an update transaction and the process is as follows: (i) all its 

elements are merged to be a Local Validated element; (ii) the local cache manager 

submits its commit request message to the server. A local validated element is turned in 

to a validated element if the response from the server is positive, else (the response is 

abort) the local element is discarded. 
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To validate a transaction, the local cache manager invokes the validation 

algorithm described in section 3.1. In ROCC algorithm, a transaction; read-only and 

update transaction, succeeds in the validation process if its elements in RC queue 

satisfies condition 1 or 2. However, the validation algorithm of our scheme in cache 

side is as follows: 

 A read-only transaction succeeds the validation process if it satisfies condition 1 

or condition 2. Otherwise it fails. 

 An update transaction succeeds the validation process if it satisfies condition 1 

only. Otherwise it fails. 

3.3.2 Examples of the Execution of Transactions at Cache Side  

In this subsection, we present some simple examples. The purpose of this section is to 

motivate the studies of the cache side validation algorithm of the proposed scheme. We 

give some illustrations for the validation algorithm. The examples are independent.  

Example 1:  

In the first example, we consider two transactions; T1={R1(x),R1(y)} as a local read-only 

transaction and T2={R2(x),W2(x)} as a remote update transaction (from other client). 

Initially, T1 submits its first read request. Then the local cache manager inserts its read 

element into CVQ and executes the element. Eventually the local cache manager 

manages to send the value of object x to the client transaction. At the same time, 

transaction T2 from another client commits at the server. The server sends an update 

propagation message to client cache that caches the object x. Upon receiving the update 

propagation message, the local cache manager creates the corresponding element; an 

Update Propagation element, and inserts it into CVQ, then it forwards the message to 

Cache Object Manager to refresh the cached objects. The following figure represents a 

structure of CVQ. Its first element (top of the queue) represents a Read element of T1. It 

contains transaction identifier: T1; element type: Read; the list of object identifiers (x). 

The second element is an update propagation element of T2; it contains a read operation 

on x and a write operation on x. After executing the update propagation element of T2 at 

cache side, the object x has two versions; the old version at T1’s working memory and 

the new version at the cache’s memory. For the correctness of our scheme, the 
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execution of update propagation element does not automatically reflect to T1’s working 

memory.   

T1 Read x

T2
Update 

Propagation
x

Null

x

 

Therefore, transaction T1 can keep running and sending its requests; a read request and 

a commit request. Eventually, CVQ looks as follows, 

T2
Update 

Propagation
x

T1 Commit

Null

x

T1 Read x

T1 Read y

 

To commit transaction T1, the local cache manager executes the cache side validation 

algorithm. Since T1 is a read-only transaction and its elements satisfy condition 2 of the 

validation algorithm described in section 3.1, it succeeds the validation process at 

cache-side. Its elements are merged to be a validated element. After the validation 

process of transaction T1, CVQ is shown as follows, 

T1 Validated x,y

T2
Update 

Propagation
x

Null

x

 

and the validation algorithm returns success. The execution order of these two 

transactions is considered as T1T2 even T1 commits after the commit of T2. 

Eventually, these two elements are removed from CVQ because their existence in CVQ 

is not necessary anymore. 

Example 2: 

In this example, we want to show the case that a local update transaction reads stale 

objects. Let us consider a local update transaction T1={R1(x),R1(y),W1(y)} and a remote 

update transaction T2={R2(x),W2(x)}. Initially, the local transaction T1 submits its read 

request which contains read operations on x and y. Then the local cache manager 
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receives an update propagation message of T2 from the server. Afterward, T1 submits its 

commit to the local cache manager. Now, CVQ looks as follows, 

T1 Read x,y

T2
Update 

Propagation
x

T1 Commit y

Null

x

 

Transaction T1 is an update transaction and its elements do not satisfy condition 1 of the 

validation algorithm described in section 3.1. Therefore, transaction T1 fails the 

validation process and it is aborted. 

Example 3: 

To show the execution of a transaction interleaving the execution of another transaction, 

let a local read-only transaction T1={R1(x),R1(y)} and a remote update transaction 

T2={R2(x),R2(y),W2(x),W2(y)}. Briefly, CVQ shows as follows, 

T2
Update 

Propagation
x,y

T1 Commit

Null

x,y

T1 Read x

T1 Read y

 

The execution of T1 is interleaving with the execution of T2 at local cache. Transaction 

T1 sees object x before updated by T2, but through object y T1 sees it after being updated 

by T2. If we apply the validation algorithm to transaction T1, it returns failure, because 

transaction T1 does not satisfy condition 1 and 2. Therefore, transaction T1 is aborted. 

3.3.3 Server Side Validation Algorithm 

There are three main tasks for the Server Validation Algorithm: to validate an update 

transaction at the server, to propagate the updates to the caches, and to maintain Cache 

elements. A Cache element contains the information about the objects stored at a cache. 

This algorithm uses SVQ in the same manner as the RC queue. SVQ may contain 

Cache, Commit, or Validated elements. 
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Fetch requests from a cache are treated at the server side as requests from a 

cache transaction; which is a transaction associated with a cache; it is a long running 

transaction at the server; its life span is equal to the life of an associated client cache. 

When the server receives a fetch request from a cache-side, it creates a commit element 

of associated cache transaction and posts it into SVQ.  This commit element contains, in 

its readset field, the names of the objects the cache-side is requesting; the writeset field 

is empty. Fetch operations are transactional operations. Therefore, after inserting the 

commit element of the associated cache transaction into SVQ, the server validates the 

cache transaction. If the cache transaction passes the validation process, then its fetch 

operations are submitted to the object manager. Otherwise, the commit element is 

removed from SVQ; to make sure that the fetch operation gets the committed values, it 

will be delayed and retried later. If the fetch request carries a drop request; note that a 

drop request contains a list of cached objects to be removed from the client cache, then 

the server extracts the list of dropped objects from the request and modifies the list of 

cached objects on the correspond cache element; note that drop operations are not 

transactional operations. Eventually, the requesting cache manager will get a positive 

response together with the requested object values from the server. 

Whenever the server receives a commit request of a transaction, it behaves as 

follows: if the sequence number carried by the commit request message is not equal to 

the sequence number recorded on its cache transaction at the server, the commit request 

is sent back to its originated cache manager for verification; else the server creates two 

elements. These are a Read element and a Commit element. The Read element contains 

the list of object identifiers that have been read by the update transaction.  The Read 

element will not be executed; it is needed for the validation purposes only. Meanwhile, 

the Commit element contains the list of object identifiers that the transaction wants to 

update. The Read element is inserted into SVQ at the position right after the position of 

the Cache element of the associated cache transaction in SVQ.  

The validation process at the server-side adopts the validation algorithm 

described in section 3.1. It only requires any transaction to satisfy condition 1. 

Otherwise the transaction is considered failure in the validation process. The pseudo 

code of the server-side validation algorithm is provided in the following section.  
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If the validation is successful, the server sends a commit acknowledgement 

message to the originating cache manager, executes the updates of the transaction, and 

refreshes other caches (holding stale versions) by sending Update Propagation 

messages, with new sequence numbers. If the validation is failure, the server removes 

the commit element from SVQ and sends an abort message to the originated cache 

manager. 

3.3.4 Examples of the Execution of Transactions at Server Side 

This section illustrates the Server Validation Algorithm with some simple cases. Let us 

consider two transactions from two clients in the system. The system has three objects 

x, y, and z. Each client has its own cache, with cache version numbers 1 and 2 

respectively. Cache 1 currently stores object x and cache 2 stores object x and z.  SVQ 

contains two Cache elements as follows: 

T1,0 Cache x

T2,0 Cache x,z

Null
 

The first Cache element represents cache transaction T1,0 from client with Cache 1.  It 

caches object x. The second Cache element represents cache transaction T2,0 from client 

with Cache 2. Consider client at cache 1 issues transaction T1,1 = {R(x,y),W(x,y)}. 

Transaction T1,1 submits its read request to its local cache manager. Its read request 

contains object x and y. Since cache 1 only stores object x, it needs to fetch object y to 

the server before it responses the read request of transaction T1,1. It sends a fetch request 

to the server for object y on behalf of cache transaction T1,0. When the server receives 

the fetch request, it inserts a commit element of cache transaction T1,0, and SVQ is as 

follows: 

T1,0 Cache x

T2,0 Cache x,z

T1,0 Commit y

Null
 

By considering the T1,0’s cache element as the first read element of cache transaction 

T1,0, cache transaction T1,0 succeeds the validation process. Eventually, the server sends 
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the value object y to the client 1 as a fetch acknowledgement message. Now, SVQ looks 

as follows: 

T2,0 Cache x,z

T1,0 Cache x,y

Null
 

Shortly, the local cache manager of client 1 submits the commit request of transaction 

T1,1 to the server. The server creates two elements of transaction T1,1: Read and  Commit 

element. Read element is inserted after the Cache element of cache transaction T1,0. 

SVQ is as follows: 

T2,0 Cache x,z

T1,0 Cache x,y

T1,1 Read x,y

T1,1 Commit x,y

Null
 

The elements of transaction T1,1 satisfy the condition 1 of the validation algorithm 

described in section 3.1. Therefore, a commit acknowledgement message is sent to the 

cache 1 and SVQ is modified as follows: 

T2,0 Cache x,z

T1,0 Cache x,y

T1,1 Validated x,yx,y

Null  

Now consider the commit request of transaction T2,1 = {R(x),W(x)} from cache 2 arrives 

at the server.  The server creates two elements; Read and Commit elements, and inserts 

them into SVQ as follows: 

T2,0 Cache x,z

T1,0 Cache x,y

T2,1 Commit x

T1,1 Validated x,yx,y

T2,1 Read x

Null  
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The read element of transaction T2,1 conflicts with the validated element of transaction 

T1,1; one reads object x, another writes object x. Thus, the elements of transaction T2,1 do 

not satisfy the condition 1 of the validation algorithm. Therefore, transaction T2,1 does 

not pass the validation process. Consequently, it is aborted and removed from SVQ. 

SVQ shows as follows, 

T2,0 Cache x,z

T1,0 Cache x,y

T1,1 Validated x,yx,y

Null
 

As object x and y have been updated by transaction T1,1, each cache side should be 

refreshed by creating and sending an update propagation element. Since cache element 

of T1,0 is from cache side 1, the server does not need to send the update propagation 

element, but it needs to normalize the cache element by updating the position of the 

cache element. Then SVQ will be like this, 

T2,0 Cache x,z

T1,0 Cache x,y

T1,1 Validated x,yx,y

Null
 

The server creates and sends an update propagation element to cache 2. The update 

propagation element for cache 2 contains the value of object x. Then the server updates 

the position of cache element of T2,0. SVQ will be shown as follows, 

T2,0 Cache x,z

T1,0 Cache x,y

T1,1 Validated x,yx,y

Null
 

Eventually, the server removes the validated element of T1,1  from SVQ, because it is on 

the top of SVQ. 
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3.4 The Design of the Proposed Scheme 

3.4.1 Cache Transaction Model 

A cache transaction is a transaction associated with a cache. It is a long running 

transaction at the server. Its life span is equal to the life of an associated client cache. 

The cache transaction is the representation of the client cache at the server.  

Furthermore, it can be considered as a parent transaction of all transactions from the 

client. Our cache transaction model is similar to the envelope transaction model of 

Wilkinson and Neimat, 1990. 

There are some properties of a cache transaction. Those are listed as follows: 

 Cache Transaction identifier: one may take its network address as the cache 

transaction identifier. 

 Cache address: a network address of the local cache manager. 

 Sequence number: an incremented number maintained by the scheduler for a 

cache transaction. This number is incremented when the scheduler creates an 

update propagation element for this cache transaction. 

 List of active transactions: a pointer to linked lists of active transactions at the 

server. 

3.4.2 Client Transaction Model 

The transaction model used in our scheme is a flat model. It consists of begin of 

transaction (BOT), reads, writes, commits or end of transaction (EOT). BOT is 

operation to start a new transaction. The client application requires to submit BOT to 

the system (or local cache manager) because there are some actions that the system 

should do for a new transaction. After receiving a transaction identifier for a new 

transaction, the client application may submit some read and write operations with the 

transaction identifier. The actions of a transaction are ended by EOT. When a 

transaction submits its EOT, it means the transaction submits its commit request. All of 

its readset and writes are attached to the request. 

The response EOT operation may be successful or failure. If the EOT response 

is failure (ABORT_REQ), then all operations of the transaction are undone. The client 

application may restart the transaction or create a new transaction. The restart 



Chapter 3. The Proposed Scheme 

 

 

51 

transaction is treated the same as a new transaction. If the EOT response is successful 

(COMMIT_ACK), then all transaction operations are committed.  

There are some important properties of a transaction: 

 Transaction identifier: consists of a cache transaction identifier and incremented 

number maintained by local cache manager. 

 Elements: point to the linked lists of the transaction elements. 

 Client address: a network address of the client application.  

Transactions which do not write objects are called as read-only transactions. 

Meanwhile transactions which update one or some objects are called update 

transactions.  

3.4.3 Elements 

An element contains the transaction identifier (TID), the element type, one or more 

object identifier fields (such a field contains the list of object identifiers to be accessed 

and other information) and links for queue management. The element and its fields will 

be depicted as follows: 

TID Element Type Object Identifiers Links
 

There are 7 elements in the system. Those are as follows: 

 Read element: corresponds to read request of a transaction. It consists of a list 

of objects to be read (readset). 

 Commit element: corresponds to commit request of a transaction. It may 

contain a list of objects to be written (if any). 

 Update Propagation element: corresponds to the updates of a remote 

transaction. It consists of readset and writeset of a remote transaction. 

 Validated element: represents a validated transaction. It consists of readset and 

writeset of a transaction.  

 Local Validated element: It is the same as Validated element, but it represents 

a local validated transaction. 
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 Cache element: represents a cache transaction. It consists of list of objects 

cached by a client. 

Elements are mutable and movable. Some elements are created by the system as 

corresponding to a client transaction’s request; multiple read requests and a commit 

request, or corresponding to a cache transaction’s request; cache, fetch and drop 

request. The other elements are produced from a combination of other elements of the 

same transaction; such as Validated element is a combination of some Read elements 

and one Commit element; two elements from the same transaction can be merged to be 

a compound element by merging their operations. An Update Propagation element is 

created at the server for a specific client. It is sent to the client through a message. 

3.4.4 Cache Transaction Execution 

To start a cache, cache manager sends a cache request (CACHE_REQ) to the server. 

The server responds the request with a cache acknowledge (CACHE_ACK) and a 

unique identifier of the cache transaction.  This cache transaction identifier together 

with increment local identifiers builds a client transaction identifier. After a cache 

transaction has been created, it may issue some operations or actions. 

 A cache transaction may issue fetch and drop operations. A fetch operation is 

required by a cache transaction to fetch an object from the server. A drop operation is to 

remove a cached object from the client cache. These operations are sent to the server, 

and the server executes them. A fetch operation requires server to send a persistent 

object to the client that submits the fetch operation. A drop operation is necessary for 

enabling server to trace cached objects at clients. To keep the number of messages 

minimum, a client submits a fetch request together with its drop request (if any). 

 When a cache manager finds that a requested object is not found in its local 

cache, it creates a fetch request message for the object. At this time if the number of 

cached objects is greater than the size of cache, a drop request is created and added to 

the fetch request message. Fetch and drop requests basically contains a list of objects. A 

fetch request contains a list of objects to be cached and a drop request contains a list of 

objects to be removed from the client cache. Both requests can be sent to the server at 

once by creating a message with two lists of objects.  
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To have refreshed cached objects, the local cache manager may receive some 

update propagation messages. These messages are sent by the server as an update 

transaction has been committed at the server. An update propagate message contains a 

readset and writeset with the new values, and a sequence number of the cache 

transaction. This sequence number is an incremented number maintained by the server 

whenever the server creates an update propagation message for the cache transaction. It 

increments the sequence number and sends it to the local cache manager together with 

the update propagation message. The purpose of this sequence number is to make sure 

that when the local cache manager sends a commit request of a transaction, it has seen 

the most recent update propagation messages sent by the server. Therefore the local 

cache manager attaches the commit request messages with the most recent sequence 

number it has seen. If a commit request contains a sequence number too low, the server 

rejects the request, and asks the local cache manager to verify if the transaction should 

be committed and then resend the request with the most recent sequence number.  

3.4.5 The execution of Cache Manager 

The cache manager may receive requests from the client and the server. Those requests 

are listed as follows: 

 Start of cache session: a request from a client to start a cache session. 

 Start of transaction: a request from a client application to start a new transaction. 

 Read request: a request from a client transaction to read some objects. 

 Commit request: a request from a client transaction to commit transaction 

actions. 

 Verify request: a request from the server to verify a commit of a transaction. 

 Abort request: a request from the server to abort a transaction. 

 Update Propagation request: a request from the server on behalf of remote 

update transaction. This request contents of readset and updates of the remote 

transaction. 
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The rest of this subsection describes each of these requests and actions taken by the 

local cache manager to respond the requests. We may write a pseudo code for some 

requests.  

Start of cache session. This is automatically sent by a client when it starts to 

execute the application.  This initiates Cache Manager and Cache Object Manager 

module to start their execution. At the beginning of its execution, the local cache 

manager needs to create a new cache transaction at the server. Therefore it sends a 

Cache Start request to the server. After the local cache manager is receiving an 

acknowledgement of Cache Start request, the client can start a new transaction.  

 Start of transaction. When the client application wants to create a new 

transaction, it should send a start of transaction request; other researchers may refer this 

request as Begin of Transaction (BOT), to the local cache manager. As a reply of this 

request, the local cache manager sends a transaction identifier; the cache transaction 

identifier and incremented number. The cache transaction identifier can be a network 

address of the cache side. To create a unique transaction identifier, the local cache 

manager maintains an incremented number. It increments this number whenever it 

creates a new transaction.  

Whenever the local cache manager receives a request from a client transaction, 

it creates a corresponding element and posts it into CVQ. Afterward the element sent to 

Cache Object Manager for execution. The execution of cache manager and cache object 

manager is parallel. After the local cache manager sends any element to the cache 

object manager, it may serve another request from the client or server. However, local 

cache manager serves a request at a time. 
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Receive a read request message; 
Create read element based on read request message; 

if (requested objects available at local cache) 
{ 
 Insert read element into CVQ; 
 Record the object access for cache replacement strategy; 
 Send read request message to Cache Object Manager; 
} 
else 
{ 

Insert read request message into Blocked list; 
Fetch necessary objects to the server; 

}   

Figure 5: Processing a Read Request at Cache Side 

Read request. Figure 5 shows the process of a read request at cache side. When 

the local cache manager receives a read request message, it creates a Read element. If 

the requested objects are available at local cache, it inserts the element into CVQ, and 

records the access to associated objects for the purpose of cache replacement strategy. 

Afterward it sends the read element to the cache object manager for the execution of the 

read operations contained in the read element. Eventually, the client gets the values of 

the requested objects as soon as the local cache manager receives the result from cache 

object manager. Otherwise, if the requested objects are not found at local cache, the 

read request message is delayed and inserted into a blocked list. The local cache 

manager sends a request for fetching the not found requested objects to the server.  

Create fetch request message 
If (number of cached objects > cache size)  
{ // Select objects to be dropped 
 Sort cached objects based on time of last accessed  
    (from least to recently used); 
 Select (number of cached objects – cache size) objects from the sorted objects; 
 Put the selected objects in to the fetch request message; 
} 
Find out which objects needed to be fetched;  
Put the objects needed to be fetched in the fetch request message; 
Send the fetch request message to the server; 

Figure 6: Creating Fetch Request Message  

To fetch one or more objects to the server, the local cache manager submits a 

fetch request message to the server. Figure 6 shows the process of creating fetch request 

message. This message contains a list of objects to be fetched from the server. To 

reduce the number of round-trip message to the server, we design that a fetch request 

message may also contain a list of objects to be dropped from the cache. One or more 

objects are required to be removed from the cache. This is caused by the limitation of 
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cache size. To decide which objects to be removed from the cache, any strategy, such as  

least recently use (LRU), can be used.  

Whenever the local cache manager receives a fetch acknowledgement 

(FETCH_ACK) message, it forwards the message to the cache object manager for 

unloading the content of the message. Then the local cache manager updates its cached 

object information and examines the blocked list if any delayed request can be served. 

Receive a commit request message; 
Create Commit element based on commit request message; 
Insert Commit element into CVQ; 
If (validate()) 
{ // validation success 
 If (is it a read-only transaction?) 
 { // read-only transaction 
  If (ReadDirtyObjects?) 
    // the transaction read uncommitted objects 
   Set element type to Local Validated; 
  else 
   // the transaction read committed objects 
   Set element type to Validated; 
 
  Send commit acknowledgement to client; 
 } 
 else 
 { // update transaction 
  Set element type to Local Validated element; 
  If (is it No Wait Commit option or in disconnected mode ?) 
   Send Local Commit acknowledge to the client; 
 
  If (can submit commit to the server?) 
  { 
   Put the current sequence number to the commit request message;  
   Send commit request message to the server; 
  } 
  else 
   Suspend commit submission; 
 } 
} 
else 
{ // validation failure 
 Remove all elements of the validating transaction; 
 Send abort message to the client;  
}  

Figure 7: Processing Commit Requests at Cache Side 

Update Propagation request. Whenever an update transaction is committed at 

the server, the server creates and sends an update propagation message to each client 

that caches any object updated by the transaction. The update propagation message 
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contains a sequence number, the list  of pair object id and its new value, and the client 

id.  

When local cache manager receives an update propagation message, it creates a 

corresponding element, an Update Propagation element, replaces its old sequence 

number with the new one which is included in the message, and inserts the element into 

CVQ. Eventually, it forwards the message to Cache Object Manager for refreshing the 

cached objects. The update propagation elements in CVQ represent the execution order 

of remote update transactions at cache side. The existence of them in CVQ is important 

for the correctness. The Update Propagation element will be removed if it is on the top 

of CVQ. 

Commit request. Commit request is a request from a client transaction to 

validate its actions; for read-only transactions, this is to validate whether its reads is in 

correct way; for update transactions, this is to validate and to make its updates 

permanent and available to others. The validation algorithm at cache side is described in 

subsection 3.3.1; see Figure 12 for the pseudo-code; here we define it as a function 

named it as validate(). In this subsection, we describe the execution of the cache 

manager whenever it receives a commit request from the client transaction. 

When it receives a commit request message from the client transaction, the local 

cache manager creates a corresponding element; a Commit element (see Figure 7). 

After inserting the element into CVQ, it validates the transaction by invoking the 

function validate(). Suppose a transaction succeeds the local validation process. If it is 

a read-only transaction, then all its elements are merged to be a Validated element and 

its client is notified. Otherwise, if it is an update transaction, then the process is as 

follows:  

i. It’s all elements are merged to be a Local Validated element;  

ii. a local commit acknowledge is sent to its client transaction if the client is 

under asynchronous commit strategy or under disconnected mode; otherwise 

nothing is sent to the client transaction; 

iii. its commit request message is forwarded to the server for final validation, if 

it runs under connected mode or no conflict with suspended transactions (if 
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any). Otherwise its commit is suspended. The suspended commits will be 

examined when the cache manager receives any response from the server.  

Verify request. A cache manager receives a Verify request from the server 

whenever the server finds that the cache manager sends a commit request message with 

an invalid sequence number. We say the sequence number of a commit request is 

invalid if it is not equal to the sequence number of the update propagation element of 

the cache transaction at the server. This may happen when the local cache manager and 

the server are about the same time sending a commit request and update propagation 

respectively.  

The purpose of the Verify message is to ask the local cache manager whether the 

commit request would be resent. The content of Verify request message is the same as 

the commit request sent by the local cache manager. Upon receiving the Verify request 

message, the local cache manager checks whether the commit transaction has been 

aborted.  If the transaction has been aborted, then the local cache manager does not need 

to do anything; it just neglects the Verify message. Otherwise, it resends the commit 

request of the transaction with a new sequence number.   

3.4.6 The Execution of Scheduler  

Scheduler is a collection of programs that synchronize accesses to persistent objects at 

the server and maintain cache consistency. Similar to the local cache manager, the 

Scheduler uses a structured queue to synchronize accesses to persistent objects; we 

name the queue as Sever Validation Queue (SVQ). The accesses to persistent objects 

are recorded in SVQ. Therefore, whenever it receives a access request message, it 

creates a corresponding element and inserts it into SVQ. The scheduler may receive the 

following requests from the clients: 

 Cache Start requests;  requests to start a client cache session, 

 Cache Finish requests; requests to finish a client cache session, 

 Fetch requests; requests to fetch or to drop objects of the client cache, 

 Commit requests; requests to commit an update transaction, 

Therefore SVQ may content of Cache, Read, Commit, or Validated elements.   Cache  
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Start request. When it receives a Cache Start request from a client; a Cache 

Start request is a request to start a cache session, the scheduler creates a new cache 

transaction (see sub section 3.2.1) and its new Cache element of the cache transaction, 

and then inserts the element into SVQ. A Cache element contains information about the 

objects stored at a cache represented by the cache transaction. This element is 

associated with a cache transaction.   

 

Receive a fetch request message; 
If (the fetch request contains a list of objects to be dropped) 
{ 
 Drop objects in the list of writeset from the associate Cache element in SVQ; 
 Remove the dropping list of objects from the fetch request; 
} 
Create a commit element of the cache transaction; 
Insert the commit element into SVQ; 
If (validate()) 
 Send the fetch request to Object Manager;  
Else 
 Put the fetch request into a blocked list; 
 

Figure 8:  Processing a Fetch Request at Server Side 

Fetch request. When the scheduler receives a fetch request message from a 

client, it examines the message. As previously mentioned (see sub section 3.2.6) that a 

cache manager may submit a fetch request and a drop request in one request which is a 

fetch request. Therefore a fetch request contains a list of objects to be fetched and it 

may contain additional list of objects to be dropped. The fetch requests are considered 

as read operation of a cache transaction. Therefore, the scheduler needs to synchronize 

the fetch requests as follows (see Figure 8). First of all, it checks whether the fetch 

request contains a list of objects to be dropped. If the fetch request contains a list of 

objects to be dropped, then the server updates the list of objects in the Cache element of 

the cache transaction. Afterward, the server creates a Commit element of the cache 

transaction. The commit element contains, in its readset field, the list identifiers of the 

objects to be cached; its writeset field is empty. Then the scheduler inserts the Commit 

element into SVQ and validates the cache transaction by considering its Cache element 

as its first Read element. If the cache transaction fails the validation process, the fetch 

request will be delayed and retried later. Otherwise, the Cache element and the Commit 

element are combined to be a new Cache element of the cache transaction. 
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Receive a commit request message; 
If (commit request message does not carry the most recent sequence number) 
{ 
 Send Verify request message to originated cache manager; 
} 
else 
{ 
 Create Read element of committing transaction; 
 Insert the Read element right after the corresponding Cache element in SVQ; 
  
 Create Commit element of committing transaction; 
 Insert the Commit element into SVQ; 
 If (validate())  
 { 
  Send the commit message to Object Manager; 
 }  
 else 
 { 
  Remove all elements of the committing transaction; 
  Send abort message to originated cache manager; 
 } 
} 

Figure 9: Processing Commit Request at Server Side 

Commit request. A commit request at the server side is a request to validate an 

update transaction. When the server receives a commit request of a transaction, it 

behaves as follows (see Figure 9): if the sequence number carried by the commit request 

message is not equal to the sequence number recorded on its cache transaction at the 

server, the commit request is sent back to its cache manager for verification; else the 

server creates two elements. These are a Read element and a Commit element. The 

Read element contains the list of object identifiers that have been read by the update 

transaction.  The Read element will not be executed; it is needed for the validation 

purposes only. Meanwhile, the Commit element contains the list of object identifiers 

that the transaction wants to update. The Read element is inserted into SVQ at the 

position right after the position of the Cache element of the associated cache transaction 

in SVQ. The Commit element is inserted at rear of SVQ.  To validate an update 

transaction, the server invokes the validation algorithm (see in more detail in subsection 

33.2); here we use function validate() to invoke the validation algorithm which its 

pseudo-code is written in Figure 13. If the validation is successful, the server sends a 

commit acknowledgement message to the originated cache and then executes the 

updates of the transaction by sending the commit element to Object Manager. 

Otherwise it aborts the transaction and sends an abort message to the originated cache 

manager.   
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    Receive an execution acknowledgement of commit element  from Object Manager; 
ValidatedElement = get corresponding validated element of the transaction  
     from SVQ; 
 
for each CacheElement in front of ValidatedElement in SVQ 
{ 
 If (ValidatedElement conflicts with CacheElement)  
 { 
  Create UpdatePropagationElement for originated client of CacheElement; 
 
  If(CanProcessUpdatePropagation(CacheElement tid,  
          ValidatedElement tid)  
  { 
   Create update propagation message for the client of CacheElement; 
   Send the update propagation message to Object Manager; 
  } 
  Else 

   Pending propagate update to the client 
 } 
} 

Figure 10: The First Step of the Update Propagation Process 

After the scheduler receiving an execution acknowledgement of the commit 

element, it has to propagate the updates to each cache side. The objectives of the update 

propagation process are not only to distribute the updates to each cache side, but also to 

execute the update transaction automatically at each cache side. Since each cache side 

caches objects differently, the update propagation element for each cache side is unique. 

Therefore, the scheduler creates a single update propagation element for each cache 

side. The scheduler executes the process of update propagation in two steps; the first 

step to create an update propagation element and to read the values; the second step is to 

update the related cache element in SVQ and to send the update propagation to the 

cache side. Figure 10 shows the pseudo-code of the first step of the update propagation 

process. The cache side in which its Cache element is located at the front of the 

validated element of the update transaction in SVQ will be sent an update propagation 

element with two conditions should be satisfied: 

 it caches any object updated by the update transaction, and 

 the function of CanCreateUpdatePropagation (see Figure 14) returns true.  

If these two conditions are satisfied by the cache side, then the process of update 

propagation proceeds. Otherwise it is delayed. 
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The second step of the update propagation process is begun when the scheduler 

receives an acknowledgement of the read execution of the update propagation element 

from Object Manager. The pseudo-code of this step is shown in Figure 11. In the 

second step, the update propagation element has been loaded by the values of the 

objects. Now, the scheduler sends the element to the cache side after inserting the 

incremented sequence number of the associated cache transaction to the element, and 

updating the position of the cache element of the cache transaction in SVQ (see Figure 

15). Afterward it sends the update propagation element to the cache side. If the client 

runs under disconnected environment, then the update propagation element is inserted 

to its cache transaction’s list; otherwise, it is sent to the cache side. 

Receive a read execution acknowledgement of update propagation  
        from Object Manager; 
If (CanProcessUpdatePropagation(Cache trans id, update trans id)  
{  
 Increment the sequence number of the associated cache transaction; 
 Updating the position of CacheElement in SVQ; 
 If (the associated cache transaction running under connected mode)  
  Send update propagation message to the client; 
 Else 
  Put the update propagation element on the cache transaction’s list; 
} 
Else 
 Pending the process of update propagation in second step; 
 

Figure 11: The Second Step of the Update Propagation Process 

Cache Finish request. This request is submitted to the server when the client 

wants to finish its session. To finish a client cache session, the server needs to assure 

that that all requests from the client have been finished. Then, it deletes the associated 

cache transaction and sends a Cache Finish acknowledgement message to the client.  

3.4.7 The Pseudo Code of Cache Side Validation Algorithm 

The rest of this subsection describes the pseudo code of the cache-side 

validation algorithm. Figure 12 shows the pseudo code of the cache side validation 

algorithm. The pseudo code shows how to traverses CVQ in validating a transaction. It 

checks the elements of the validating transaction against its intervening elements. 

Initially, it sets the first read element of the validating transaction to FIRST and the 

commit element of the validating transaction to SECOND. From the position of FIRST, 

it traverses RC queue toward to the rear of the queue and checks if FIRST conflicts with 

its in-between elements of other transactions. If FIRST does not conflict with its in-
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between elements from other transactions, then merge FIRST and the read element of 

the validating transaction, let this merged element be FIRST and places FIRST to the 

position of the last read element. The algorithm continues checking FIRST against its 

in-between elements. If it reaches SECOND which is the commit element of the 

validating transaction, then it returns success.  

If a conflict founds and the validating transaction is an update transaction, then 

the validation algorithm returns failure; otherwise move FIRST to the front of the 

conflicting element. Now traverse CVQ from SECOND toward FIRST and check if 

SECOND conflicts with its in-between elements of other transactions in the same way 

as described above. If SECOND conflicts with its in-between elements, then the 

algorithm returns failure after it removes all elements of the validating transaction. 

Otherwise; SECOND does not conflict with its in-between elements and reaches 

FIRST, then the algorithm returns success. 
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FIRST = get the first read element of the transaction; 
SECOND = get the commit element of the transaction; 
NEXT = get element after FIRST element; 
for (;;)  
{ 

If (NEXT is another read element of the transaction)  
{  
 Remove FIRST element from the CVQ; 
 FIRST = merging FIRST and NEXT then replace NEXT element with FIRST;  
 NEXT = get next element of NEXT; 
}  
else if (NEXT is equal to  SECOND)  
{ 
 Remove FIRST element from the CVQ;   
 Merging FIRST and SECOND store into SECOND as local validated element; 
 Return success; 
} 
else if (FIRST conflict with NEXT)  
{  
 If (it is an update transaction) 
  Return failure; 

 
 /* the transaction is read-only transaction */ 

 /* move FIRST to the position before NEXT */  
 Remove FIRST from the CVQ; 

 Insert FIRST before NEXT in the CVQ; 
 PREV = get previous element of SECOND; 

 for (;;) 
 { 
  If (PREV is equal to FIRST) 
  { 
   Merging SECOND and FIRST store at the position of FIRST as local  
         validated; 
   Return success; 
  } 
  else if (PREV is another element of the transaction)  
  { 
   Remove SECOND from the Queue; 
   SECOND = merging SECOND and PREV store at  
         the position of PREV ; 
   PREV = get previous element of SECOND; 
  } 
  else if (SECOND conflict with PREV) 
  { 
   Remove FIRST, SECOND, and all the remainder elements of the  
     transaction;  
   Return failure; 
  } 
  else 
   PREV = get previous element of PREV; 
 } 
}   
else  
 /* FIRST is not conflict with NEXT*/ 
 NEXT = get next element of NEXT; 

} 
 

Figure 12: The Cache Side Validation Algorithm 
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3.4.8 The Pseudo Code of Server-Side Validation Algorithm 

The main objective of server side algorithm is to validate update transactions at the 

server and to maintain cache consistency. To validate an update transaction, the server 

checks the execution of the update transaction whether interleaves with the execution of 

other update transactions at the server. To maintain cache consistency, the server should 

distribute the updates of an update transaction to each cache side which caches any 

object updated by the update transaction. In this sub section, we describe the function 

validate() and CanCreateUpdatePropagation() which are mentioned in subsection 3.2.7. 

FIRST = get the first read element of the transaction; 
SECOND = get the commit element of the transaction; 
NEXT = get element after FIRST element; 
for (;;)  
{ 

if (NEXT is equal to  SECOND)  
{ 
 Remove FIRST element from the CVQ;   
 Merging FIRST and SECOND store into SECOND as local validated element; 
 Return success; 
} 
else if (FIRST conflict with NEXT)  
{  
 Remove FIRST and SECOND from SVQ;  
 Return failure; 
}   
else  
 /* FIRST is not conflict with NEXT*/ 
 NEXT = get next element of NEXT; 

} 
 

Figure 13: The Server Side Validation Algorithm 

 Figure 13 shows the pseudo-code of the function validate(). As mentioned 

before in this chapter, a commit request contains the readset and writeset of the update 

transaction. The server creates and inserts the read element of the commit request into 

right after the position of the cache element of the associated cache transaction in SVQ, 

and creates and inserts the commit element of the update transaction at rear of SVQ. 

The validation algorithm checks whether the read element can be combined with the 

commit element to be a validated element. If the execution of update transaction 

interleaves with other updates transaction, then there must be any validated element of 

other update transactions in between the read element and the commit element which 

conflicts with the read element. Therefore the read element and the commit element of 

the update transaction cannot be combined to be one element. In this case, the update 
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transaction fails the validation process. Otherwise, the update transaction succeeds the 

validation process. 

The rest of this subsection describes the pseudo-code of the function 

CanCreateUpdatePropagation and updating the cache element position in SVQ. These 

two pseudo-codes are invoked at the process of update propagation which is described 

in subsection 3.2.7. The first pseudo-code (Figure 14) is to check whether the cache 

element can be moved to the position after the validated element or the validated. 

Meanwhile the second pseudo-code (Figure 15) is to update the position cache element 

of the cache transaction to the position right after the validated element.  

Function CanCreateUpdatePropagation(cache trans id, update trans id) 
{ 
 Cache Element = get the cache element of the associated cache transaction  
           in SVQ; 
 ValidatedElement = get the validated element of the update transaction in SVQ; 
 
 NEXT = get element after CacheElement in SVQ; 
 For (;;) 
 { 
  If (NEXT is equal to ValidatedElement) 
   Return true; 
  Else (NEXT conflict with CacheElement) 
  { 
   PREV = get the previous element of ValidatedElement in SVQ; 
   For (;;) 
   { 
    If (PREV conflicts with ValidatedElement) 
     Return false; 
    Else if (PREV is equal to NEXT) 
     Return true; 
    Else 
     PREV = get the previous element of NEXT in SVQ; 
   } 
  } 
  Else 
   NEXT = get the next element of NEXT; 
 } 
} 
 

Figure 14: The function of CanCreateUpdatePropagation  
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CacheElement = get the cache element of the associated cache transaction in SVQ; 
ValidatedElement = get the validated element of the update transaction in SVQ; 
NEXT = get the next element of CacheElement; 
For (;;) 
{ 
 If (NEXT equal to ValidatedElement) 
 { 
  Move CacheElement to right after the position of ValidatedElement  
           in SVQ; 
  Break; 
 } 
 Else if (CacheElement conflicts with NEXT)  
 { 
  Move CacheElement at the position before NEXT; 
  Move ValidateElement to the position before CacheElement; 
  Break; 
 } 
 Else 
  NEXT = get the next element of NEXT; 
} 

Figure 15: Updating Cache Element position in SVQ.   

 

3.5 The Serializability of The proposed Algorithm 

The correctness of the proposed algorithm is described in this section. This section is 

divided in three subsections. The first subsection describes some fundamental concepts 

that are used to prove the correctness of the proposed scheme. The second subsection is 

designated to describe the correctness of ROCC algorithm; note that the proposed 

scheme is an extension of ROCC, therefore it is necessary to describe the correctness of 

ROCC before proving the correctness of the proposed scheme. The following 

subsection is to prove the correctness of the proposed scheme.  

3.5.1 Definitions  

A transaction Ti may request either read or write access to data objects x, denoted as 

ri(x) or wi(x) respectively. The requests submitted to the system can be considered as a 

collection of the accesses. Without lack of generalization, we can consider the 

collection of the accesses as an element. Note that an element may contain one 

operation (read or write). The j-th element of transaction Ti is denoted as element eij. In 

this research, we define the formal definition of element as follows, 
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Definition 1 An element eij is the j-th element from transaction Ti where: 

1. eij is a subset of {rij(x),wij(x) | x is an object}   

2.  )()( ijij ewsers , where rs(eij) is a readset and ws(eij) is a writeset.  

In words, condition (1) defines the kinds of operation in the element. Condition (2) says 

that read and write operations on the same object cannot be in the same element. Two or 

more elements of the same transaction can be merged to build a compound element. 

The compound element is not executed by the system, but it is used for concurrency 

control purposes. The merge operation on elements is defined as follows, 

Definition 2 If element eir is a compound element, built by merging element eip and 

element eiq, then ws(eir) = ws(eip)   ws(eiq) and rs(eir) = rs(eip)   rs(eiq). 

The compound element is not necessary to satisfy the condition (2) of an element (see 

Definition 1).  Note that two elements from different transaction cannot be merged. 

Definition 3 Element eij conflicts with element epq if and only if i ≠ p  and one of the 

following statements is true:  

 rs(eij) ∩ ws(epq) ≠ {}, or  

 ws(eij) ∩ ws(epq) ≠ {},  or  

 ws(eij) ∩ rs(epq) ≠ {}. 

In other words, element eij conflicts with element epq if and only if they are not from the 

same transaction (i ≠ p) and both access the same object (at least one object) and at least 

one of them is write operation. 

Definition 4 A transaction Ti is partial order with ordering relation <i where: 

1. Ti ={ ei1, ei2, …, ein }   {ai,ci},   

2. ai (abort) is member of Ti only if ci (commit) is not member of Ti, 

3. if t is ci or ai, for any element eij in Ti, eij <i t,    

4. if ijij exr )(  and ikik exw )( , then eij <i eik. 
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Informally, (1) transaction Ti is a set of element and abort or commit operations. (2) If 

the transaction executes an abort operation, then it does not execute a commit operation. 

(3) If an operation t is abort or commit operation, then the ordering relation defines that 

for all elements precede operation t in the execution of the transaction. (4) If both read 

and write operations are executed to the same object, then the ordering relation defines 

the order of the execution of the correspondent element. 

Definition 5 Transaction Ti conflicts with transaction Tj if and only if one of Ti’s 

elements (or compound elements) conflicts with one of Tj’s elements (or compound 

elements). 

Definition 6 A complete history Η over T is a partial order with ordering relation <H 

where: 

1. Η = n

i 1 Ti; 

2. <H   n

i 1 <i ; and 

3. for any two conflicting elements p, q  member of Η, either p <H q or q <H p. 

Condition (1) says that the execution represented by H contains the elements submitted 

by transaction T1, T2, …, Tn. Condition (2) says the global ordering relation supersets the 

ordering relation specified within each transaction. Condition (3) says that ordering 

every pair of conflicting elements is determined by ordering relation <H. A history is 

simply a prefix of a complete history. Note that a complete history (or history) is 

defined over a set of committed transactions (Bernstein, P. A., Hadzilacos, V. and 

Goodman, N. 1987). 

Definition 7 Let H be a complete history over T = {T1, T2, … Tn}. The Serialization 

Graph (SG) for H, denoted as SG(H), is a directed graph whose nodes are the  

transactions in T and whose edges are all TiTj (i≠j) such that one of Ti’s elements 

precedes and conflicts with one of Tj’s elements in H. 

We can determine whether a history is serializable by analyzing the serialization graph. 

Suppose H is a complete history over T = {T1, T2, … Tn}. The history H is serial if and 

only if the serialization graph SG(H) is acyclic (Bernstein, P. A., Hadzilacos, V. and 

Goodman, N. 1987).  
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Definition 8: Distributed serialization order (Bernstein and Goodman, 1981). A global 

history H is serializable if there is exist a total ordering of T such that for each pair of 

conflicting elements ei and ej from distinct transactions Ti and Tj (respectively), ei 

precedes ej in any H1, H2, … , Hn if and only if Ti precedes Tj in the total ordering. 

Intuitively, an execution is serial if there is a total order of transactions such that if Ti 

precedes Tj in H, then Ti’s elements precedes Tj’s elements in every local history Hi 

(where i=1,2, …n) where both appear. In other words, this says transactions execute 

serially and in the same order at all clients.    

3.5.2 The Correctness of ROCC Algorithm 

We now present the correctness of ROCC algorithm.  To prove ROCC algorithm is 

correct, we have to prove that all histories representing executions that could be 

produced by it is serializable. Any history of ROCC algorithm can be proved by using 

the serialization graph. 

To prove the correctness of ROCC algorithm, we must characterize the set of 

ROCC history, that is, those that represent possible executions of transactions that are 

synchronized by ROCC algorithm. ROCC records executions of transactions in RC 

queue. When ROCC executes an element of a transaction, it inserts the element into RC 

queue. The transaction may submit multiple Read elements and end its execution by 

submit Commit element. If the transaction succeeds the validation process, all 

transaction elements are united to be Validated element.   

Proposition 1: Let H be a history produced by ROCC. If Ti’s element is in H, it has 

only one element which is Validated element.  

Using this properties, we must show that every ROCC history H has an acyclic SG(H). 

Note that transactions in H are committed transactions. Therefore a transaction Ti in H 

has one element, ei.  

Lemma 1: Suppose there are a set of transaction T = {T1, T2, …, Tn}. A complete 

history H over T is produced by ROCC algorithm. A serialization graph SG is defined 

over H. If Ti  Tj is in SG(H), then ei; the Validated element of Ti conflicts with ej; the 

Validated element of Tj, in H,  ei <H ej.  
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Poof: Since Ti  Tj is in SG(H), then Ti conflicts with Tj and Ti precedes Tj. Transaction 

Ti conflicts with Tj if and only if ei conflicts with ej, such that ei <H ej.   

Lemma 2: Let H be a complete history produced by ROCC algorithm, and let 

T1  T2  …  Tn be a path in SG(H), where n > 1. Then e1 conflicts with en in H,  e1 

<H en.  

Proof: The proof is by induction on n. The basis step, for n=2, follows immediately 

from Lemma 1. Suppose the lemma holds for n=k, for some k ≥ 2. We will show that it 

holds for n = k+1. By induction hypothesis, the path T1  T2  …  Tk implies that 

T1’s element e1 and Tk’s element ek in H, such that e1 <H ek. By Tk  Tk+1 and Lemma 1, 

Tk’s element ek conflicts with Tk+1’s element ek+1 such that ek <H ek+1. By the last three 

precedences and transitivity, e1 <H ek+1 as desired. 

Theorem 1: Every ROCC algorithm history H is serializable. 

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle T1T2 … 

TnT1, where n>1. By Lemma 2, one T1’s element conflicts with another Ti’s 

element in H. This contradicts Proposition 1 that the execution of transaction T1 is 

equivalent with single element. Thus SG(H) has no cycles and so H is serializable. 

3.5.3 The Correctness of VQ Algorithm 

To prove the correctness of VQ algorithm, we have to characterize the set of 

histories produced by VQ algorithm, that is, those that represent possible executions of 

transactions that are synchronized by VQ algorithm. To characterize VQ histories, we 

need to model VQ history. Let T = {T1, T2, …} be a set of transactions in the system 

and H be a global history over T. There are n clients in the system. Each client caches 

necessary objects. Each client has a local cache manager which manages local requests. 

We define a local history Hk for client k as a partial order set over T.  

Definition 9: Let Hk a complete history at cache side k; k=1,2,…,n, is a partial order 

over Tk={Tk,1,Tk,2,…, Tk,nk} with ordering relation <Hk where: 

1. Hk  = Tk,1   Tk,2   …   Tk,nk; 

2. <Hk   <1   <2   ...   <nk; 

3. for any two conflicting elements p,q ϵ Hk, either p <Hk q or q <Hk p. 
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In other words, condition (1) says that the execution represented by Hk involves 

precisely the elements submitted by Tk,1, Tk,2, …, Tk,nk. Condition (2) says that the 

execution honours all element orderings specified within each transaction. Finally, 

Condition (3) says that the ordering of every pair of conflicting elements is determined 

by <Hk.  

 Suppose Ti participates at cache side and its elements are in Hk. If Ti is a local 

transaction, then its execution is equivalent to a single element in Hk and it is a validated 

element. If Ti is a remote transaction, then its execution is equivalent to a single element 

in Hk and it is an update propagation element. Therefore, if Ti participates at cache side 

k, then its execution is equivalent to a single element; for the simplicity, we denotes the 

element as ei. 

Proposition 1: Let Hk be a local history at cache side k produced by cache side 

algorithm of the proposed scheme. If Ti participates at cache side k, then the execution 

of Ti’s elements at cache side k is equivalent to a single element, ei. 

Definition 9: Let T={T1, T2, …} be a set of transactions, H is a complete history 

produced by VQ algorithm, and there are n cache sides in the system. History H is 

defined as a partial order over T with ordering relation <H where: 

1. H=H1   H2 …   Hn, where Hk is a complete history at cache side k; Hk is 

partial order over T. 

2. <H   <H1   <H2   ...   <Hn; 

3. for any two conflicting elements p, q ϵ H, either p <H q, or q <H p. 

In other words, condition (1) says that the execution represented by H involves the 

elements executed at H1, H2, …, and Hn. Condition (2) says that H honours all elements 

orderings specified within each cache side. Finally, condition (3) says that says that the 

ordering of every pair of conflicting elements is determined by <H. 

Note that conflicting update transactions from cache side k are submitted to the 

server one at a time. For example, if two conflicting transactions Ti and Tj run parallel at 

cache side k and Tj has been submitted first to the server. Then the commit of Ti to the 

server is delayed until the server responds the commit of Tj. 
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Proposition 2: Let Hk be a local history at cache side k; k=1,2,…, n, an T={T1, T2, …}, 

H is a global history,  and Ti and Tj  are from cache side k. If ei <Hk ej , then ei <H ej. 

Lemma 1: Suppose the number of clients is n, a set of transactions T = {T1, T2, …}, 

and each client executes serial local history H1, H2, …, Hn based on VQ scheme. A VQ 

global history H is defined over T. If  ei <H ej, then ei <Hk ej in client k in which both 

transactions appear, k=1..n.   

Proof: Suppose client i and j creates Ti and Tj respectively. If ei <Hi ej, then ei conflicts 

with ej at client i.  There three cases that ei conflicts with ej.  

 ei reads some objects at client i into which ej subsequently updates 

(rs(ei)∩ws(ej)≠{}). This means that the update propagation of Tj is received by 

the local cache manager after Ti locally committed at client i. The commit of Ti 

must have preceded the commit of Tj at the server (see Figure 16). Otherwise 

transaction Ti carries an invalid sequence number to the server; consequently it 

is aborted. The execution of Update Propagation of Ti at client j must have 

preceded the commit of Tj at client j. Otherwise transaction Tj is aborted at the 

server. Therefore ei <Hj ej is hold at client j. Since we assume that messages 

delivered in first come first served basis, then  ei <Hk ej for client k which both 

transactions appear, k=1… n. 

Time Client kClient i ServerClient j

>

ri(x)

<

<
upi>

rj(x)

upj

wj(x)

wj(x)

upj

Commit Ti

Commit Tj

upi

 

Figure 16:  Case rs(ei)∩ws(ej)≠{}, ei <Hi ej at Client i 

 ei writes some objects at client i into which ej subsequently reads at client j 

(ws(ei)∩rs(ej)≠{}). This means that the Update Propagation of Ti is received and 

executed by cache manager at client j before Tj reads the conflicting objects (see 

Figure 17.); note that an update transaction is not allowed to read stale objects. 

Consequently, the commit of Ti precedes the commit of Tj at the server. 

Therefore, ei <Hk ej for client k in which both transactions appear, k=1..n. 
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Figure 17: Case ws(ei)∩rs(ej)≠{}, ei <Hi ej at Client i 

 ei writes some objects at client i into which ej subsequently updates 

(ws(ei)∩ws(ej)≠{}). This means that Update Propagation element of Ti must 

precede the Tj’s reads of the conflicting objects at client j (see Figure 18). 

Consequently, the commit of Ti precedes the commit of Tj at the server. 

Therefore, ei <Hk ej for client k in which both transactions appear, k=1..n.  

Client kClient i ServerClient j

>

ri(x)

<

<

upi>
rj(x)

upj

wi(x)

upj

Commit Ti

Commit Tj

Time

wj(x)

 

Figure 18: Case ws(ei)∩ws(ej)≠{} of ei <Hi ej at Client i  

Since all cases above show that if ei <Hi ej at client i then ei <Hk ej at client k for k=1..n. 

Therefore, if  ei <H ej, then ei <Hk ej in client k in which both transactions appear, k=1..n 

is hold.   

Lemma 2: Suppose there are a set of transaction T = {T1, T2, …}. A complete history H 

over T is produced by VQ algorithm. A serialization graph SG is defined over H. If 

Ti  Tj is in SG(H), then ei; the Validated element of Ti conflicts with ej; the Validated 

element of Tj, in H,  ei <H ej. 

Proof: If Ti  Tj is in SG(H), then based on Definition 8 there exist ei conflicts with ej 

and ei precedes ej. Consequently ei <H ej. 
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Lemma 3: Let H be a complete history produced by VQ algorithm, and let 

T1  T2  …  Tn be a path in SG(H), where n > 1. Then e1 precedes en in H,  e1 <H 

en.  

Proof: The proof is by induction on n. The basis step, for n=2, follows immediately 

from Lemma 4. Suppose the lemma holds for n=k, for some k ≥ 2. We will show that it 

holds for n = k+1. By induction hypothesis, the path T1  T2  …  Tk implies that 

T1’s element e1 and Tk’s element ek in H, such that e1 <H ek. By Tk  Tk+1 and Lemma 4, 

Tk’s element ek precedes Tk+1’s element ek+1 or ek <H ek+1. By the last three precedences 

and transitivity, e1 <H ek+1 as desired. 

Theorem 2:  Every VQ history H is serializable. 

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle T1T2 … 

TnT1, where n>1. By Lemma 3, one T1’s element conflicts with another T1’s 

element in H. This contradicts Proposition 1 that the execution of transaction T1 is 

equivalent with single element. Thus SG(H) has no cycles and so H is serializable. 
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Chapter 4. Performance Evaluation 

This chapter describes the experimental framework for evaluating the concurrency 

control scheme in client-server database systems which is discussed in the previous 

chapter. The experiments were performed with the help of a simulator. We used a 

simulation technique to evaluate and to compare the performance of our proposed 

scheme to other schemes in the presence of a large number of clients and varying the 

percentage of read-only transactions.  

 For the purpose of the comparison, we also implement Adya algorithm and 

MVCC algorithm which are described in chapter 2. The reason to choose Adya 

algorithm is that it is considered currently the best algorithm in client-server database 

systems with caching at client side, and it provides one-copy serializability or degree 

consistency 3 (see Franklin et al, 1997). Meanwhile, MVCC is chosen to represent 

Snapshot Isolation algorithms which are used and implemented by many commercial 

systems, such as INFINISPAN (http://www.jboss.org/infinispan).  Note that MVCC does not 

provide one-copy serializability, its degree consistency is 2. 

 Originally, Adya algorithm employs invalidation to maintain cache consistency 

among clients. In invalidation, the server sends an invalidation message to each client 

that caches any object updated by the transaction to drop the object from the client 

cache. Here, we implement Adya algorithm; as the same with VQ and MVCC, with 

using propagation as their cache consistency protocol. In propagation, the server sends 

a propagation message to each client that cache any object updated by the transaction to 

update object at the client cache. Therefore, the client can keep caching the object. This 

does not make a significant change to Adya performance results.  

To use simulation study to compare the proposed algorithm to other algorithms, 

it is necessary to model system components, such as client, server, database, and 

network. We refer to the model of system components as a system model, while the 

workload model captures the way that transactions run against database objects, and the 

nature of these transactions. Each model has a set of parameters, to allow us to vary, 

e.g. the number of clients, or the percentage of read-only transactions. Subsection 4.2 

describes our system model  

http://www.jboss.org/infinispan
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We constructed our simulation study and the workload from earlier concurrency 

control study Gruber (1997). His study was performed for a single-server, multi-client 

system. The simulator scheduling model has been borrowed from his study. 

4.1 Simulation Tool 

We use the Objective Modular Network Test-bed (OMNET++) simulation engine to 

implement the simulation model. It is a public source, component-based, modular and 

open architecture simulation environment with strong GUI support. Its main application 

area is the simulation of communication networks, but because of its generic and 

flexible architecture, it has been successfully used in other areas. 

 The OMNET++ model consists of hierarchically nested modules. The top level 

model is the system model, which covers the complete simulation model and is referred 

to as the “networks”. The system contains sub-modules which themselves may have 

sub-modules. Thus the modules can be described to any depth of nesting as a result able 

to describe complex system models as a combination of a number of simple modules. 

Modules that contain sub-modules are called compound models. Simple modules 

contain the algorithms in the modules and form the lowest level of module hierarchy. 

The user implements the simple modules in C++, using the OMNeT++ simulation class 

library. Modules communicate by message passing which may be a complex data 

structure. 

Modules may send messages directly to their destination or through a series of 

gates and connections to other modules. The messages can represent frames or packets 

in a computer network simulation. The local simulation time advances when the module 

receives messages from other modules or from the same module as selfmessages, which 

is the representation of timers in simulation world. These self messages are used to 

schedule events to be executed by itself at a later time. Each of the modules has  input 

and output interfaces called Gates through which message passing between modules is 

achieved. Messages are sent out through the out-Gate and received through the in-Gate. 

Connections are created between the sub-modules or between sub-module to compound 

module depending on the requirement of the system or the topology. 

The description of the topology, the structure and specification of the modules, 

the Gates and connections are specified  through the Network Description Language 

(NED).  NED files are not used directly: they are translated into C++ code by the 
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NEDC compiler, then compiled by the C++ compiler and linked into the simulation 

executable. The actual behavior of the modules is  written in C++ code using the 

OMNeT++ simulation library and the description of the modules:- parameters, Gates , 

connections between different modules, is specified by the NED language. In this way, 

there is a separation of behavior and interface definition. This allows reusability of 

module interfaces defined by NED code.  For the implementation of the simple modules 

OMNeT++ offers an API consisting of a simple module interface, a message interface 

and a rich simulation library providing support for essential functions, as a lot of 

routines for the simulation purposes as e.g. I/O-functions, statistics-classes for gathering 

the achieved results, etc. but also more general stuff like statistical distributions, random 

numbers generators and even container classes like queues, stacks, containers, etc. The 

simulation tool allows the collection of the final results and also the statistics of the 

performance of the simulation transparently into scalar and vector files.   

4.2 Assumptions for Simulation 

Followings are the assumptions that are adopted for our simulation study: 

 We assume the client-server database system with a single server and many 

clients. Clients are connected to the server through a network. 

 Each client application issues a single transaction at a time. 

 We assume that clients store objects in main memory. Client-side disk caching 

is not considered in our study. Presence of disks at client will affect the local 

data capacity and response time, but it is not expected to alter the relative 

performance of the different concurrency control schemes. 

 We assume the server memory is large enough memory to keep all objects. This 

assumption holds for many applications and systems; current memory trend and 

recent technology (memcached; http://www.memcached.org/).    

 We assume propagation updates than invalidation objects. Adya algorithm 

originally uses invalidation objects. In our simulation study, we implement Adya 

algorithm with propagation updates. Invalidation forces clients to drop the 

objects which are listed on the invalidation message. While propagation allows 
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clients keep caching the objects. This is not expected to alter the performance of 

Adya algorithm significantly.   

 MVCC transactions are always aborted if a conflict is detected with concurrent 

update transactions.  

4.3 System Model 

To simulate a client-server database system accurately, it is necessary to model all 

components that can affect performance in a significant manner. We model each system 

component, such as Scheduler, Cache Manager, Client, etc. as a module in our 

simulation model. A service request to the system component is submitted through an 

explicit message. Upon receiving any request message, the module of the system 

component inserts the message into a queue if it is busy; otherwise it serves the request 

message. The module serves one message at a time. When it finishes serving any 

message, it takes another message from the queue; if there is no message in the queue, 

then it sets itself as an idle. 
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Figure 19: The Flowchart of a Module 
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Table 1: System Parameter Setting 

Database Parameters 

Parameter Value 

Object Size 1 mb 

Database Size 1000 

The number of locality region 5 

Client and Server Parameter 

Client CPU Speed 50 000 MIPS 

Server CPU Speed 100 000 MIPS 

Client Cache Size 25% of database size 

Server Cache Size 100% of database size 

Network Parameters 

WAN Network 100 MBPS 

Fixed Network Cost 36000 instr 

Variable Network Cost 43000 instr/KB 

WAN Propagation Delay Exponential(50ms) 

 

 A module may serve vary messages; for examples Cache Manager module may 

serve read request messages, commit request messages, update propagation messages, 

etc. To serve a request message, a module of a system component may invoke some 

functions. To charge the service of any request, we count the number of instructions 

executed by the module to serve the service; and convert this number of instructions to 

the CPU time consumption based on the speed of CPU. Then to emulate the CPU time 

of the service, we set the module in busy mode as long as the CPU time. The flowchart 

of the module is shown in Figure 19.  We assume that a processor is always available 

for the module.  

4.3.1 Database  

We model database as a collection of objects. An object could be anything; it might 

contain data and procedures (or codes). Kim, Won in (Kim, 1990) defines object-

oriented database very well. An object is an entity which has a unique identifier. We 

assume an object does not have a specific relation with other objects. For the sake of 

simplicity, we use in-memory object-oriented database at the server, and all objects are 

already in the server memory when the simulation is initiated.  

 We assume that an object size is 1 MB, and a request may contain 1 to 5 objects. 

We use objects as the smallest granularity locks for MVCC scheme. 
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4.3.2 Client 

We model a client as a collection of modules; Application module, Cache Manager 

module, and Cache Object Manager module. Application module is a module to 

represent a client application.  The main task of the Application module is to create a 

transaction, to emulate the client application, and to collect statistics. The Cache 

Manager module is a module to emulate Cache Manager. Meanwhile, the Cache Object 

Manager module is a module to emulate Cache Object Manager.  

These three modules execute concurrently. They communicate each other 

through an explicit message. They form a compound module; Client Cache module. 

Each module occupies one processor. Thus, CPU is always available for the modules 

whenever they require CPU computations.  

The processor speed at the client is chosen to be 50,000 MIPS 

(http://en.wikipedia.org). This speed corresponds to the amount of processing power 

can be devoted by the client for activities at the client side. We charge a requested 

service by calculating the CPU time. We calculate the CPU time with following 

formula:  

CPU time = (the number of instructions for the service) / (Client CPU Speed)  

We count the number of instructions for each service by using an approximation 

presented by Ahuja and Orlin (1992). 

We choose the client cache size relative to the database size so that the 

concurrency control costs are not dwarfed by a high number of cache misses.  The 

relative cache size is 25% of the database size. Gruber, et al. (1997) uses the cache size 

relative to the objects accessed by a client in the simulation. He uses the cache size 25% 

of the objects accessed by a client. Cache management is done using LRU.  

4.3.3 Server 

The same as clients, the server is modelled as a collection of modules; Service Manager 

module, Scheduler module, and Object Manager module. These modules emulate 

Service Manager, Scheduler, and Object Manager respectively in our simulation model. 

These three modules execute concurrently. They communicate each other through an 

explicit message.  

http://en.wikipedia.org/
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 We assume the server memory is big enough to hold all objects. This 

assumption is reasonable in the current computer technology (Perez-Sorrosal, et al., 

2011). The server CPU speed is chosen to be 100,000 MIPS.  The server CPU speed 

corresponds to the amount of processing power can be devoted by the server for its 

activities. We charge a requested service at the server by calculating the CPU time with 

following formula: 

 CPU time = (the number of instructions for the service)/(Server CPU speed) 

4.3.4 Network    

Instead of modelling in a particular type of network, we have modelled a network in a 

more abstract manner. Each network message has latency; processing cost for sending 

and receiving the message, network bandwidth, and propagation delay. CPU costs at 

each end consist of a fixed number of instructions and a variable number of instructions; 

these numbers shown in Table 1 are obtained from von Eicken, et al. (1995). We 

assume each client and servers is connected by a network channel which is facilitated 

by OMNET++. For sending a message between clients and servers, the time charged to 

each network channel is determined by processing time for sending and receiving plus 

network bandwidth multiplied by the message size plus propagation delay.  

The propagation delay covers a delay due to the actual physical distance 

traversed by the message and a queuing delay caused by network congestion; we set the 

propagation delay as a number from the exponential distribution with mean 50ms 

(Pucha, et al., 2007).  

We use a network bandwidth of 100 MBPS. We obtain this value from 

Wikipedia (http://en.wikipedia.org/wiki/Bandwidth_(computing)). 

The propagation delay and communication transmission are neglected for 

sending a message from one module to another module within a single client or within 

servers. However, CPU costs and queuing delay are taken place.  

4.4 The Workload Model 

In this section, we describe our workload model adopted for our simulation 

experiments. We also describe how accesses for a transaction are generated. The 

workload models a realistic system with low contention. Each client has its locality 

region. We set 5 locality regions. Each locality region maps to 20% of databases. We 

http://en.wikipedia.org/wiki/Bandwidth_(computing))
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assign a locality region randomly to each client. Any transaction from a client has 

accesses as follows: 80% objects from its locality region and 20% from the whole 

database.  

Transactions are generated in the Application module. This module runs a single 

transaction one at a time. To generate a transaction, we do the following steps: 

1. Set a unique transaction identifier.  

2. Determine the transaction type. 

3. Select the number of elements.  

4. Select the number of objects to be accessed on each read element. If it is an 

update transaction, determine element type; read or write element. The last 

element of a transaction is a commit element.  

5. Determine the objects to be accessed on each element. 

Step 1 assigns a unique identifier to the transaction. The transaction identifier 

consists of a cache transaction identifier and a local identifier. The cache transaction 

identifier is issued by the server at the start of cache transaction; note that each client 

has a cache transaction running all the time at the server. Meanwhile, the local identifier 

is created by the local cache manager. Therefore, the Application module needs to send 

a request of a transaction identifier to the local cache manager before it generates a 

transaction. 

In step 2, we determine the transaction type which is read-only transaction or 

update transaction. We determine the transaction type by using Bernoulli distribution 

with the probability of read-only transaction as a parameter. 

To select the number of elements in step 3, we create a uniform random number 

from 2 to 6. A transaction at least has two elements; the first is read element and the 

second is commit element. Read element is an element containing read operations only. 

Meanwhile, commit element is an element containing write operations if it is an update 

transaction. Otherwise, if it is a read-only transaction, its commit element is an empty 

element. A transaction has only one commit element. It is the last element of a 

transaction.   
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In step 4, we determine the number of objects to be accessed for an element. We 

generate the number of object to be accessed by using the uniform random number from 

1 to 5. If it is a read-only transaction, all its elements are read elements except the last 

element which is a commit element.  If it is an update transaction, the element type of 

each element is determined at this step, except the last element. Each element of an 

update transaction has a probability equal to 0.5 to be a read or write element. If an 

update transaction does not have any write element, then its transaction type will be 

changed to a read-only transaction. Since there is no blind write, each write operation 

on object x will be converted to a read operation to object x and a write operation on 

object x. The write operation on object x will be added to the transaction’s commit 

element. 

The objects to be accessed by a transaction are determined in step 5. Objects to 

be accessed by a transaction are selected by using non-uniform access described in Tay, 

et al. (1985) which is called a b-c access; b is the percentage of a transaction’s accesses 

and c is the percentage of database objects. The b-c access means b percent of a 

transaction’s accesses fall within c percent of database objects. For example, under 80-

20 access, 80 percent of a transaction’s accesses fall within 20 percent of database 

objects. 

 To approach the b-c access, we divide database into five categories. Each 

category contains 20 percent of database objects. Each transaction selects one of five 

categories. Then 80 percent of a transaction’s accesses are selected from its selected 

category and 20 percent of the transaction’s accesses are selected from the whole 

database objects. 

4.5 Simulation Results 

This section presents the result of our simulation study that compares our scheme with 

other schemes in a client-server database system with caching at client-side. For the sake 

of simplicity, we assume a single server with multiple clients and an in-memory 

database at the server. Given a single server, there is no need for distributed two-phase 

commit. We believe that this simplification does not affect the relative performance 

comparison of VQ, Adya, and MVCC. Adding a distributed two-phase commit only 

adds a delay  to commit times for all the algorithms. With the in-memory database 

object assumption, we eliminate the need for disk-latency simulation from our study.    
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Table 1 shows the parameter settings for generating transaction workload. The 

system maintains 1000 objects from the start to the end of the simulation time. We 

assume there are no delete and add object operations in the system. The size of each 

object is the same, which is 1 Mb for each object. The database is split into 5 regions. 

These database regions are used to model the locality reference pattern of client 

accesses. A client selects its locality region randomly; its subsequent accesses to its 

locality region are determined by the probability of locality reference parameter. If the 

probability of locality reference is 100%, a client accesses objects in its locality region 

only. If the probability of locality reference is 80%, each client accesses its locality 

region with 80% probability and the whole database (including its locality region) with 

20% probability. We refer 100% locality of reference as high locality of reference and 

80% locality of reference as moderate locality of reference. 

Clients execute transactions continuously. Each transaction is a sequence of 

access requests as determined by the workload generator. Each request is either for read 

or write, determined randomly. If it is read access, all objects attached to the request are 

to be read; if it is write access, all objects attached to the request are to be updated. A 

write request of a transaction is executed at the transaction commit time. If a transaction 

aborts, a new transaction is started immediately. For each read request, some “thinking-

time” is charged. This models the delay caused by the client before it proceeds to the 

next requests. We define a workload with 80% of read only transactions as low to 

moderate contention workload.   

Table 2: Experiment Setting 

Parameter Setting 

Number of requests for each transaction Uniform(1,5) 

The number of objects for each request Uniform(1,5) 

Observation time 100 hours (5th-105th hours) 

Transaction inter-arrival time Exponential(300 sec) 

Thinking time Exponential(150 sec) 
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Clients and server are connected by a 100 Mb per sec WAN. It has a propagation delay 

Exponential with mean 50 msecs for each message. A simulator run involves 5 repeats 

of 100 hour simulation. 

4.5.1 Number of Clients  

The demands on the shared objects increase directly with more clients, and therefore, 

the effect on system performance of increasing clients is an important scalability issue. 

In the following set of experiments, we vary the number of clients in the system from 5 

to 25 with 80% of read-only transaction, keeping all other parameters fixed at their 

default values. Figure 20 presents the results of these experiments, showing the effects 

on the system throughput, the message traffic, and the abort rate. The results show that 

VQ has scaled better that Adya in all experiments, and VQ has matched MVCC in the 

system throughput and the message traffic. 

 As can be seen from the first graph (Figure 20.a), the system throughput of all 

algorithms increases with larger number of clients. However, VQ and MVCC scale 

much better with increasing the number of clients. The reason is that Adya algorithm 

requires all transactions validate at the server. Therefore, Adya algorithm congestion 

problem at the server and consequently each transaction of Adya algorithm requires 

much more time to commit a transaction. As a result the system throughput (commit per 

hour) of Adya algorithm is less than others at all number of clients. 

  Figure 20.b shows the number of messages sent to the server per commit. A 

message is sent to the server by a local cache manager whenever it submits a commit of 

a transaction or a fetch request. In this graph, VQ has the number of message sent to the 

server less than Adya’s, but it is equal to MVCC’s. The reason is that Adya algorithm 

requires all transactions validating at the server. Meanwhile VQ and MVCC algorithm 

validates transactions at local cache manager except update transactions which have 

final validation at the server. 

 Adya algorithm orders transactions on timestamp basis. If two conflicting 

transactions are not ordered based on their timestamp, then one of them must be aborted 

even they are not interleaved each other. On the other hand, VQ is more direct to the 

problem than Adya. VQ ensures that no interleaving transaction is allowed to commit. 

If the execution of a transaction is interleaved with the execution of another transaction, 
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then it is aborted. Therefore VQ aborts only necessary transactions. This is a reason 

why VQ has scaled better than Adya’s (see Figure 20.c). 
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(a) 

 

(b) 

 

(c) 

Figure 20: (a) The System Throughput; (b) Message Traffic; (c) Abort Rate 
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4.5.2 The Effect of Read-Only Transactions 

To examine the effect of read-only transactions to the performance, we exercise the 

following set of experiments. We vary the percentage of read-only transactions from 

0% to 100% with 20 clients and keeping all other parameters fixed at their default 

values.  

Figure 21 presents the results of these experiments, showing the effect of read-

only transactions on the system throughput, the abort rate, and the message traffic. The 

results show that VQ outperforms Adya on all performances for the percentage of read-

only transactions greater than 60%. Again the performance of VQ matches to the 

performance of MVCC on all performances for the percentage of read-only transactions 

greater than 60%. 

Figure 21.a shows that VQ outperforms Adya in system throughput for all 

percentages of read-only transactions, and the performance of VQ matches to the 

performance of MVCC for the percentage of read-only transactions greater than 60%. 

Again the reason is that Adya requires transactions to validate at the server. On the 

other hand, VQ validates transactions at the client side and shares the validation process 

of update transactions between the client and the server. Meanwhile MVCC does not 

require read accesses to get read lock; only write accesses are required to get write lock 

at the server. This reason is also used to justify the following results. 

For the percentage of read-only transactions greater than 60%, VQ has better 

abort rate than Adya (see Figure 21.b). VQ’s performance matches MVCC’s for 

percentage of read-only transactions greater than 80%. VQ outperforms Adya in the 

number of messages sent to the server for the percentage of read-only transactions 

greater than 30%, and VQ matches MVCC for the percentage of read-only transactions 

greater than 60% (see Figure 21.c).  
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(a) 

 

(b) 

 

(c) 

Figure 21: The Effect of Read-Only Transactions: (a) The System Throughput; (b) 
Abort Rate; (c) Message Traffic
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Chapter 5. Extensions to the Proposed Scheme 

This chapter is designated to describe a few extensions to the proposed scheme. The 

scheme described in chapter 3 is the basics of the proposed scheme. Now we present the 

proposed scheme with some extensions. The first extension we described is 

disconnected operation. It is described in section 5.1. Disconnect operation is a mode of 

operation in which a client uses cached objects to work while disconnected with the 

server. This ability is very useful for mobile clients even when connectivity is available. 

For example, it can extend battery life by avoiding wireless transmission and reception. 

It can reduce network expense and it allows radio silence to be maintained, a vital 

capability in military operations.  

In section 5.2 we present an extension of our scheme to multiple database 

systems requiring multiple servers. 

In the section 5.3, we describe two extensions; those are concurrent transactions 

and the extension to support server-side MushUps and edge-server configuration. In 

modern computation, client applications are to be complex and they may require 

running multi transactions at a time. The client application of our scheme so far runs a 

single transaction at a time. Subsection 5.3.1 describes the extension of our scheme to 

concurrent transactions. Meanwhile in subsection 5.3.2, we describe the extensions of 

server-side MushUps and edge-server configuration. 

5.1 Disconnected Operation 

Disconnected operation refers to the ability of a client to continue working on local 

cached objects in spite of disconnections. Disconnected operation is very useful feature 

for mobile clients. Mobile clients may have an intermittent or low bandwidth 

connection to the server. To enhance the performance, clients may disconnect to the 

server and work offline. There are other reasons for clients to disconnect their 

connection network. For examples, clients may disconnect to the server for saving the 

battery life, for reducing network charges, or for maintaining radio silence in military 

operations (Jin, 1999). 
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 To provide disconnected operation, our scheme requires some modifications to 

its design. In this section we describe the modifications of our scheme in order to make 

our scheme allowing clients to run disconnected operation.  

In disconnected environment, the positive response of EOT (End of 

Transactions) is locally validated (LOCALCOMMIT_ACK). Any read-only transaction 

also receives a locally validated reply, unless it does not read any dirty objects. A read-

only transaction may read dirty objects from locally validated update transactions.  

When a disconnected client submits a connect request, all the locally validated 

update transactions are submitted to the server. Some of these transactions may receive 

positive response (COMMIT_ACK), others may receive abort response 

(ABORT_REQ). An aborted transaction may cause a cascading abort for other 

transactions. 

5.1.1 Cache Transaction Model 

There are some additional properties of a cache transaction. Those are listed as 

follows: 

 isConnected: flag of connection to network; true for connected, false for 

disconnected. 

 List of update propagation elements: a pointer to linked lists of delayed update 

propagations.  

 In the basic scheme of our algorithm, it is required that an update transaction 

waits for the response of its final validation process. This scheme is most suited when 

the probability of conflict is high. However, if the probability of conflict is low or the 

aborts are rare in the system, then the performance can be improved by relaxing this 

requirement. We design two strategies for the commit process of update transactions. 

These are: 

 Synchronous commit: an update transaction has to wait for the response of its 

final validation process from the server.  

 Asynchronous commit: an update transaction does not have to wait for the 

response of its final validation process from the server. In this strategy, the 

update transaction can leave the system or the client application can create a 
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new transaction after it passes local validation. We assume that an update 

transaction succeeds its final validation process with high probability. However, 

if it fails the final validation process, then it may cause cascading aborts.   

Since read-only transactions do not need the final validation process, the above 

strategies are only for update transactions. However, Asynchronous commit strategy 

can cause cascading aborts of read-only transactions. When an update transaction has 

been locally validated, its updates are available for local transaction. The abort of the 

update transaction at final validation causes the abortion of transactions read objects 

from the update transaction.  

A client which runs under disconnected mode executes the commit request of a 

transaction with asynchronous commit strategy. 

5.1.2 The execution of Cache Manager 

The cache manager may receive additional requests from the client and the 

server. 

 Disconnect request: a request from the client application to switch from running 

under connected mode to disconnected mode.  

 Connect request: a request from client application to switch from running under 

disconnected mode to connected mode.  

 Refresh request: a request from client to refresh the cached objects. It is 

available while running under disconnected environment. 

Disconnect request. Whenever the local cache manager receives a disconnect 

request from the client, it forwards the request message to the server. Upon receiving 

the disconnect request message, the server checks whether any transactions from the 

requesting cache side have yet to be validated at the server. The server will send a 

disconnect acknowledgement message to the local cache manager after all validations 

are complete; and the server marks the associated cache transaction as running under 

disconnected mode. From now on the update propagation requests for this cache side 

are held at the server. They are ordered based on first in first out order on a list attached 

to the associated cache transaction. 
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When the local cache manager receives a disconnect acknowledgement, it 

forwards the message to the client and marks itself that from now on the cache side runs 

under disconnected mode. Two things should be noted while running in disconnected 

mode:  

 the client runs on asynchronous commit strategy, 

 the final validation of commit transactions is delayed until the client runs under 

connected mode.  Commit update transactions are set as locally validated. 

Read-only transactions are set as validated if they do not read dirty objects (or 

uncommitted objects); otherwise they are set as locally validated. 

Connect request. A connect operation is executed by the local cache manager 

when the client wishes to break the disconnected mode. The purpose of connect 

operation is to switch the environment from disconnected to connected. However, 

before it switches to the connected environment, the system should execute a 

reconciling process. Reconciling process is to execute all operations which were 

postponed under disconnected environment. The reconciling process is carried in two 

phases:  

 The first phase: This phase is started when the server receives a connect request 

from the client. In this phase, the server sends all update propagations which 

were held at the server side to the cache manager. After sending all update 

propagations, the server sends a connect acknowledgement message to the cache 

manager. When the cache manager receives an update propagation, it checks the 

update propagation against the locally validated elements of update transactions 

in CVQ. Any conflicting transaction is aborted, and abort message sent to the 

client. Any transaction reads from the aborted transaction will be aborted as 

well.  

 The second phase: This phase is started whenever the local cache manager 

receives a connect acknowledgement. In this phase the local cache manager 

examines CVQ whether any locally validated update transaction can be 

submitted to the server; if any, it submits the commit request of the update 

transactions to the server. Eventually, it marks itself from now on as running 

under connected mode.  
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Refresh request. Refresh operation is provided while running under 

disconnected mode. Refresh operation is exactly the same as the connect operation 

except the client keeps running under disconnected mode after the reconciling process. 

Initially, the cache manager executes the connect operation. Afterwards, it executes 

disconnect operation. Note that all delayed update propagations for the client can be 

sent to the cache manager at this time, but not all locally validated update transactions at 

the client side can be submitted in the refresh operation. Because the cache manager 

cannot send a commit request of a transaction which conflicts with the current 

committing transactions. Then, the cache manager sends all commit requests of locally 

validated update transactions that can be submitted before it submits a disconnect 

request to the server. 

5.1.3 The Execution of Scheduler  

Beside the regular requests described in chapter 3, the scheduler may receive the 

following additional requests from the clients in order to provide disconnected 

operation:  

 Disconnect requests; requests to switch from connected to disconnected 

environment, 

 Connect requests; requests to switch from disconnected to connected 

environment. 

 Disconnect request. When the scheduler receives a disconnect request from a 

local cache manager, it examines whether any transaction from the local cache manager 

is in the middle of its commit process at the server; If any, the scheduler delays the 

disconnect process until the commit process of the transactions is finished. Otherwise, it 

sends a disconnect acknowledgement message to the local cache manager. 

Receive a connect request message; 
Get the associated cache transaction; 
Get an update propagation from the cache transaction; 
While  (an update propagation is not null) 
{ 
 Send the update propagation to the client; 
 Get another update propagation from the cache transaction; 
} 
Send a connect acknowledgement to the client; 
 

Figure 22: Processing Connect Request at Server Side 
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 Connect request. Figure 22 shows the pseudo-code of the connect operation 

process at the server side.  As mentioned in the previous subsection that a connect 

request sends by the client if it wants to finish its running under disconnected mode. 

Therefore, the connect process at the server side is to send all delayed update 

propagations to the local cache manager; the delayed update propagations are sent in 

first in first out basis. Then, it sends a connect acknowledgement to the local cache 

manager.    

5.1.4 Performance  

To evaluate the performance of the proposed scheme under disconnected mode, we set 

the following experiments. There are two experiments; the first experiment is to 

evaluate the performance of VQ under three modes; disconnected mode (Disconnected), 

connected mode with synchronous commit options (Connected), and connected mode 

with asynchronous commit options (Async). For this experiment, we set 10 connected 

clients and 10 disconnected clients. We run the first experiment by the variation of 

disconnected period; from 1 hour to 10 hour disconnected period with 80% of read-only 

transactions. The second experiment is to evaluate the effect of read-only transaction 

percentage to the performance of VQ under those three modes. We vary the percentage 

of read-only transactions from 0% to 100% with 10 hour disconnected period. 

 VQ under disconnected mode outperforms VQ under connected mode in both 

commit options; synchronous and asynchronous commit options, for all disconnected 

period; from 1 hour to 10 hours, (see Figure 23.a). The system throughput of 

disconnected clients is significantly higher than the system throughput of the connected 

clients; with synchronous and asynchronous commit options, at disconnected period 1. 

The rationale behind this is that disconnected clients are not interfered by other clients 

and read-only transactions are allowed reading stale objects.  Meanwhile the connected 

clients are interfered by other clients and the cached objects are always refreshed 

immediately after persistent objects updated at the server. However, the advantages of 

the disconnected clients over connected clients decrease as disconnected period 

increases. The reason is that the disconnected clients introduce cascading aborts. Figure 

23.b shows the abort rate of disconnected clients and connected clients. The abort rate 

of disconnected clients increases as disconnected period increases. Meanwhile, the abort 

rate of connected clients is not affected by disconnected periods. 
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 Figure 24.a and Figure 24.b show the effect of read-only transaction percentages 

under disconnected environment (10 hour disconnect period). Our simulation results 

show that our scheme perform reasonable well under disconnected environment (10 

hour disconnected period) with mostly read load (read-only transaction percentage 80-

100%).  

 In Figure 23 and Figure 24, we can see that the performance of the 

asynchronous commit options (Async) and the synchronous commit option (Connected) 

is nearly the same. This fact indicates that the advantages of our scheme; read-only 

transactions can be validated at cache-side, boost the performance of the synchronous 

commit option. Therefore, the difference between the asynchronous commit and 

synchronous commit performance is not significant. 
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(a) 

 

(b) 

Figure 23: The performance of Connected and Disconnected Clients: (a) The System 
Throughput; (b) The Abort Rate. 
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(a) 

 

(b) 

Figure 24: The Performance of Connected and Disconnected Clients: (a) The System 
Throughput; (b) The Abort Rate. 

5.2 Multiple Server System 

Our scheme so far assumes a single server system. The use of a single-server greatly 

simplifies the validation processes of update transactions at the server. Here, we 

generalize our scheme to multiple server system. Each server maintains its own 

database. We describe now the necessary extension to our original scheme. Note that 

our scheme does not support nested transactions. 
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Figure 25 shows the configuration of the client-server database systems with 

multiple servers. For each client, one of the servers (typically the closest) is chosen as a 

host server and the rest servers are as participant servers. To cache objects, the local 

cache manager at a client submits a fetch request to its host server. To respond to a fetch 

request, the host server may forward the request to other participant servers; especially 

the servers that store the requested objects. The server that stores an object, we call it as 

the owner of the object. Thus, we assume that each server has knowledge about 

database stored at other servers. The cache manager initially submits a Cache Start 

request to the host. To response to the request, the host executes a new cache 

transaction associate with the cache side.  

 

Server

Client

Server

Server

Client

Client

Client

 

Figure 25: The Configuration of the Multiple Server Systems 

Upon receiving the fetch request forwarded by the host, a participant server may 

create a new sub cache transaction. Thus, a cache manager may associate one cache 

transaction at the host server. A cache transaction in turn may have sub cache 

transactions at participant servers. If any persistent objects are updated at the owner, 

then the owner sends an update propagation request to the host and then the host 

forwards the request to the cache manager.  

Each cache transaction has a unique identifier; we suggest using the host server 

identifier and client identifier (or cache identifier) to form the cache transaction 

identifier. The sub cache transaction identifier may consist of the host server identifier, 

the cache identifier, and the participant server identifier. The cache manager is only 

aware the cache transaction that runs at the host server.  
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As before, each cache transaction has a sequence number associate with it. This 

sequence number is maintained by the server where the cache transaction is executed. 

Whenever a local cache manager submits a request to the server, it should provide the 

request with the sequence number of the cache transaction. If the cache transaction 

sequence number associated with the request does not match the cache transaction 

sequence number stored at the server, then the server rejects the request and sends a 

verification request to the local cache manager.  

To commit an update transaction, we use the standard two-phase commit 

protocol (Bernstein et al, 1987). A cache manager submits a commit request of the 

update transaction to its host server. Upon receiving the request, the host server may 

forward the request to other participants that own the objects accessed by the update 

transaction. Whenever a participant server receives any commit request from the host 

server of the transaction that acts as coordinator of a commit protocol, it creates the 

corresponding element, inserts the element into SVQ, and validates the transaction. The 

result of the validation is sent to the coordinator. Then the participant server waits for 

commit trigger or abort message from the coordinator. 

If all validation results of each participant servers are positive and the validation 

process at the host server (or coordinator) is also positive, then the coordinator decides 

commit and sends commit trigger message to all participant servers. Otherwise, the 

coordinator decides abort and sends abort message to all participant servers that reply 

positive; those that reply negative already decided abort.    

5.3 Other Extensions 

5.3.1 Concurrent Transactions from a Client 

Our scheme described in chapter 3 assumes that any client application executes 

transactions one at a time. If a client application is multithreaded, it has to coordinate its 

thread as part of a single transaction. Users may prefer to execute multiple transactions 

in parallel. In the basic design of our scheme, they have to start multiple cache sides for 

the same application. However, this is expensive since it leads to excessive duplication 

of data. It is more desirable to have a scheme in which a single cache side allows an 

application to execute multiple transactions simultaneously.  

  This is easily performed in our scheme. The local cache manager has to be 

modified so that it can serve more than one transaction. For the correctness of the 
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execution of transactions, it is required that a single local cache manager submits the 

commit of conflicting update transactions to the server one at a time. 

5.3.2 Supporting Server-Side MushUps and Edge Server Configuration 

In many web applications it is necessary to fuse two or more resources from other web 

applications or tailor their own resources with one or more resources from other web 

applications. These web applications are called server-side MushUps (Auinger, et al. , 

2009; Palfrey and Gasser, 2007).  
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Figure 26: The Configuration of Server-Side MushUp 

 Figure 26 shows the configuration of server-side MushUps in client-server 

database systems. From the server’s point of view, a server-side MushUp is just another 

client. It consists of our cache manager and our cache object manager. The clients of the 

server-side MushUp web applications can read and write our objects by creating 

transactions through the cache manager. Then the cache manager communicates to the 

server for providing accesses to the clients of the server-side MushUp web applications. 

 Our scheme can also support edge-server configuration which is very similar to 

server-side MushUp. The edge server is treated as a client. It can cache some objects. 
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The same as the server-side MushUp, the edge server may serve some clients (see 

Figure 27). 
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Figure 27: The Configuration of Edge Server 
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Chapter 6. Conclusions 

In this thesis we have presented a new concurrency control algorithm for client-server 

database system with caching at the client side. We have demonstrated that the 

proposed algorithm outperforms the currently best known algorithm (Adya algorithm) 

through our simulation study. We have also proved the correctness of the proposed 

algorithm. Furthermore, we have presented some extensions of the proposed algorithm 

to permit disconnected operations and multiple servers. In this chapter we summarize 

our work and also present interesting problems for future research. 

6.1 Summary of Thesis Contributions 

This thesis has presented a transactional cache consistency scheme for client-server 

database systems with caching at the client side. It is based on the optimistic approach 

to concurrency control. We choose the optimistic approach over the pessimistic 

approach because we assumed low data contention environment (predominantly read-

only load), precisely where caching would be most effective.  

 The proposed scheme uses a validation queue to record and to order accesses. 

This is the reason that we name our scheme as VQ; it stands for Validation Queue. We 

put a validation queue at each client side; we name it as Cache Validation Queue 

(CVQ), to record and to order accesses at client side. At the server side, we put another 

validation queue; we name it as Server Validation Queue (SVQ), to record and to order 

accesses at the server side. The proposed scheme employs these queues to validate 

transactions. 

 Our scheme consists of two validation algorithms; the validation at cache side 

and the validation at server side. The validation at client side is to check the client 

accesses against the updates of other clients sent by the server to the client. Meanwhile 

the validation at server side checks the client accesses against the accesses of other 

clients at the server. Therefore, the validation process of read-only transactions can be 

carried out at client side without communicating with the server and the validation 

process of update transactions is in two stages. The first stage is at client side. The 

second stage is at server side. Consequently, incorrectness of transaction execution can 

be detected earlier at client side. Incorrect transactions detected at client side will be 

aborted. Therefore, transactions submitted to server are more likely to succeed the 
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validation process. Consequently, the number of abortions at server side is low. 

Meanwhile, other schemes, CBL and Adya validate transactions at server side only. All 

transactions including all incorrect transactions are submitted to servers. This causes the 

number of abortions at the server to be higher.  Since MVCC does not validate read-

only transactions and validates update transactions at server side, we consider the 

number of abortions at server for MVCC to be medium.  

Our simulation work shows that the proposed scheme outperforms the scheme 

considered best (Adya) and compares favourably with the MVCC scheme that only 

provides shot isolation. We have evaluated the studying scheme in some parameters; the 

system throughput, the number of aborted transactions per committed transactions (the 

abort rate),  

We have also proved the correctness of the proposed scheme. We prove that the 

proposed algorithm provides committed transactions serializability.  

Some additional features of our proposed scheme have been described in this 

thesis. Those additional features are as follows: 

 Disconnected Operation: This feature enables clients to continue working on 

local cached objects in spite of disconnections. It is very useful for mobile 

clients in which may have an intermittent or low bandwidth connection.  

 Multi-Server System: This additional feature enables our system to have more 

than one server. Persistent objects are distributed over several servers and a 

transaction can cache objects from several servers.  

 Other Features: With the extensions described at section 5.3, our scheme 

allows clients to issue more than one transaction at a time. Another additional 

feature of our proposed scheme is to support server-side MushUp applications 

and edge-server configurations.  

Table 3 shows the features of current transactional cache consistency schemes; 

Callback locking (CBL), Adya algorithm, Multiversion Concurrency Control algorithm 

(MVCC), and our scheme VQ. Our scheme; VQ, has the best features compare to the 

rest. Since our scheme has a cache manager at each cache side and it acts as a server to 

transactions, then our scheme allows a client to execute transactions simultaneously. 
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Furthermore, it supports disconnected operations, server-side MushUp applications, and 

edge-server configuration. 

 

Table 3: The Features of Current Transactional Cache Consistency Schemes  

Features CBL Adya MVCC VQ 

Technique used Locking Timestamp Locking Non Blocking 

Deadlock-free No Yes No Yes 

Degree of Consistency Serial Serial Snapshot 
Isolation 

Serial 

Validation of Read-Only 
Transactions 

No Validation Server Side No Validation Client Side 

Validation of Update 
Transactions 

Server Server Server Share  

The number of abortions at 
the server 

High High Medium Low 

 

6.2 Future Work 

We suggest two areas of additional work. The first area is to provide the ability for a 

group of clients to share their caches in a distributed manner to form a single cache. For 

example, if each client in the group has 1G cache, then a group of 10 clients will form a 

10G cache. Memcached (http://www.linuxjournal.com/article/7451) is a good example 

of such scheme. Extending this scheme to work with our algorithm will be a very useful 

extension.  

Figure 28 shows the expected client-side architecture. The architecture is similar 

to the current scheme, except there is a new component named Space Manager. Space 

Manager is a module to manage memory for the client cache. The memory managed by 

the Space Manager is distributed physically among clients. It can be considered as a 

memcached server. It serves Cache Object Manager for read or write operations. It may 

serve local cache object manager or remote cache object manager from other clients in 

the group.  

 A single cache object manager can be thought as a Memchaced client. By using 

memcached library, such as “memcached_get” and “memcached_set”, the client can get 

and update the object value respectively wherever the object is stored in the distributed 

cache. Since there would be more than one client in a group, then the Memcached 

concepts should be converted to distributed Memchached concepts.   
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Figure 28: Distributed Caching at Client Side 

The second area of work is to investigate how replication can be incorporated in 

our system. There are two reasons to employ database replication to improve 

performance and to increase availability. Although middleware-based replication 

scheme that transparently replicate data have been studied extensively in the literature, 

practical workable solutions are still not available (Cecchet et al, 2008). The main 

reason being the scheme for consistency, availability, and performance can interact in 

subtle ways so performing tradeoffs is difficult and requires much experimental work 

and tuning (Cecchet et al, 2008).  

Finally we suggest an interesting generalization of our scheme consisting of 

integrating our VQ clients to servers which are employing other concurrency control 

schemes such as two-phase locking or timestamp concurrency control. Such an 

integrating is possible if at the server side enhancement to include cache update 

propagation functionality can be incorporated. 
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