Maintaining Consistency in Client-Server

Database Systems with Client-Side Caching

Thesis by
Fahren Bukhari

School of Computing Science

In Partial Fulfilment of the Requirements
For the Degree of

Doctor of Philosophy

Newcastle
Q) University

Newcastle University

Newcastle upon Tyne, UK

2012

Abstract

Caching has been used in client-server database systems to improve the performance of
applications. Much of the current work has concentrated on caching techniques at the
server side, since the underlying assumption has been that clients are “thin” with
application level processing taking place mainly at the server side. There are also a new
class of “thick client” applications where clients need to access the database at the
server but also perform substantial amount of processing at the client side; here client-

side caching is needed to provide good performance for applications.

This thesis presents a transactional cache consistency scheme suitable for
systems with client-side caching. The scheme is based on the optimistic approach to
concurrency control. The scheme provides serializability for committed transactions.
This is in contrast to many modern systems that only provide the snapshot isolation
property which is weaker than serializability. A novel feature is that the processing load
for validating transactions at commit time is shared between clients and the database
server, thereby reducing the load at the server. Read-only transactions can be validated
at the client-side, without communicating with the server. Another feature is that the
scheme permits disconnected operation, allowing clients with cached objects to work

offline.

The performance of the scheme is evaluated using simulation experiments. The
experiments demonstrate that for mostly read only transaction load — for which caching
is most effective - the scheme outperforms the existing concurrency control scheme
with client-side caching considered to be the best, and matches the performance of the
widely used scheme that only provides snapshot isolation. The results also show that the

scheme in a disconnected environment provides reasonable performance.

Acknowledgements

The results described in this dissertation would not have been possible without the help
and support of a number of people. First and foremost, I would like to thank my
supervisor, Professor Santosh Shrivastava, for his continuing guidance, encouragement,

and support during the past four years.

I would like to thank to the vice rector of Bogor Agricultural University,
Professor Yonny Koesmaryono, for his administration and financial support during my
study. I acknowledge with thanks to the rector of Bogor Agricultural University,
Professor Herry Suhardiyanto, for his encouragement and help. Special thanks go to my
colleagues at the Department of Mathematics, Bogor Agricultural University, for their

continuous support.

Last but not least, I would like to thank to my family members, Ummu (my
wife) and Shazana (my only daughter), for their love, support, and patience. They
deserve greater thanks than I can possibly give. I would also like to thank my mother

and my mother in law for their continuous support from distance.

This work was financially supported by the scholarship from Directorate

General of Higher Education, Ministry of National Education, Indonesia.

Table of Contents

ABSTRACT ..cuuuueereriiiiiissssnseeetisissssssssssessassesssssssssssansassssssss]
ACKNOWLEDGEIMENTSiieuiiitneiiiineinienssisisnssesissssesisnsssstsnssssssnssssssnssssssnssssssnssssssnssssssnsssssansssssansssssnns]|
TABLE OF CONTENTScciiueeeiiiiiissssnneenisiisssassssssssssssssssssssssssssnssnsss v
LIST OF FIGURES......cceiiiittiiiienniiiiennieiinesieiiessieissssietsssssstsssssssssssssssssssssssssssssnssssssnssssssnssssssnssssssnnsssssnnnns Vi
LIST OF TABLES.......uuettiiiiiiiinneeeiiiiiisssssnssessssssssssssssesssnns VI
CHAPTER 1. INTRODUCTIONciteuiiiiinniiiiennieiiennieiiensiesiensiesisnssosssnssssssnssssssnssssssnssssssnssssssnsssssansssssanssssss 1
1.1 IMIOTIVATION «etteiteeeteesteesuteesuseesuteessseesabaessseesateesnseesataesnsaesasessnsaesasaesnseesasaesnsaesnsessnssesnsessnssesnsesennsesnsens 1
1.1.7 S€IVEr-Sid@ CACRINGeeeueeiaiieeieieeee ettt ettt ettt et e sae e es 1

O IV @110 Y o (=3 6o [l 1] T B SRR 2
1.1.3 DiSCONNECLEA OPEIALION ...ttt ettt ettt et e sneenanees 4

1.2 THESIS CONTRIBUTIONS .uuveeruteeeureesuressseesseessseessseesnseesssessnsessssessnseessessnsessnsessnssesnsesssssesnsesssseesssessnssesnsens 4
1.3 THESIS ORGANIZATION ..euuveesureeareesureeaseessesasseessseesssessssssansessssesansesssssessesssesasssssssesesssssssesesssssssesesssesssees 5
CHAPTER 2. BACKGROUND AND RELATED WORKccccttiiiiisnnnnneniniissssssnnsenssssssssssssssssssssssssnnssssssssssssnns 7
2.1 TRANSACTIONS AND CONCURRENCY CONTROLSuvveruverereesreeasseessesansesssesensaessesassesssesessessssssensessnsesansesnnes 7
2.2 CLIENT-SERVER ARCHITECTURE ...eeeuvteeuteeeteesareeeseesseesseesssessnsessssessssessssesssessssessssessssessssesssessssessssessssess 12

B O Yol 1 TSR 12
2.3.1 Cache Replacement SLIALEQYc..uueeecueeeeiiieeeeeieeeeteeeeesteeeessttaeeettaaeessaaeesssaaesssssaeassseaenans 13
2.3.2 DeGrees Of CONSISTONCYccccueerueeeeeeieeesiee ettt ettt ettt ettt e sate ettt e sat e et eesateenaneesaseenasees 14
2.3.3 EAGE COMPULING ..ttt e ettt e e e e et et e e e e e e s et eaaeessssssssesaaeseessssssenaaasnas 15

2.4 OVERVIEW OF CONCURRENCY CONTROL AND CACHE CONSISTENCY ...uvveeuviesireeereesreesseesnseeaseessesssessseessseess 16
2.4.1 Two-Version Concurrency CONrol SCACMESccccoueeeecveeeesiieieeeiieeeesieeeesceeaesiaaaeesreaaens 16
2.4.2 The validation techniques of Optimistic Concurrency Control Schemes.............ccccccecuvevueennee.. 17
2.4.3 DiSCONNECLEA OPEIALION ... eeeete e e e et ettt e e e e e e s et a e e e e sssstseaaaessssssssenesaaeas 17
2.4.4 Transactional CACAE CONSISEEICYceecuueeeecuiieeeeiieaeeeieeesstiteeestteessiteeesssteaesssesessiseeassssseaenans 19
2.4.5 Invalidation Versus Propagation...............eeeeeeeeceuueeeeeseeesieiieeeseeeesssissesaaesssssisssessaesssssisssessaeses 20

2.5 TRANSACTIONAL CACHE CONSISTENCY SCHEMES......ceeutteeureerureeeseesteesseesreesseesseesnseesuseesseessessseesseessseens 21

W RCTN 6r 1] T Tol @ Mo Yol {1 1 [OOSR 21
BV Vo | VLo 1YY o oY 4 1111 B SRS RS 22
2.5.3 Multiversion Concurrency Control (MVCC) AlGOIitRmMcccccueeeeeceeeeeciieeeccieeeecieeeesveaeeans 24

2.5 CONCLUSION. ..cuutteeutteeuteesteesuteesteesabeeebeesabeeeabeesabeesaseesabeesasaesabeeaaseesabeeenseesabeeenseesabeesnseesabeesnseesabeesnseess 26
CHAPTER 3. THE PROPOSED SCHEMIEccecciiitmiiiiinniiiiinniiiieneiiieneiiiesssiessssiessssisssssissssssssssssssssnsss 29
3.1 READ-COMMIT ORDER CONCURRENCY CONTROL (ROCC) ...veeuvieniieiieniesiesieesieesieeeeeee e et e e snne e snee e 30
3.1.1 ReAd-COMMUL QUEUEeeeeeeeeeiiee ettt ettt e ettt e e ettt e s asteeestbeaesssseaesnastaasssseaenans 30
3.1.2 EXAMPIES Of CASESvvveeeeeeesieeeeit e etee s sttaeeatte e s et e e st teaesaastaesaastaasssseassasseaasassnasansseaannns 31
3.1.3 The Validation AIGOItRMcoeeeeeeeeieiiiee ettt e e e e st a e e e e e st e e e e e sssssaaaaaaaeas 34

3.2 SYSTEM ARCHITECTURE ..ceeuvteeuteeeteesuteeeseesuteesseesateesseesataesnseesaseesnseesasessnseesasessnseessseesseessessseesnsesssseens 39
3.2.1 Client Sid@ COMPONENLSueeeeeieeeeeeeeeeee ettt e e e e ettt e e e e e e e et a e e e e e e sstbeaaaeeeesssssenaaaanas 39
3.2.2 5€1Ver Side COMPONEGNLSccc.uveeeeeieieeeeeeeecee e e et e e et eaestee e e attaesssteaesasseaasasseaessssaasassseaannns 40

3.3 THE VALIDATION ALGORITHM ..iieiuiitttteeeeeaaiiettteeesesesusteteeeesaeaanbatteeaesesaanbaeaeeaeaesaannsseeeeeessaaannreneeaeesanann 41
3.3.1 Cache Side Validation AIGOITtRAMoeeeueeeeeeieeeeeeee et e st e e tea e st a e s sata e e ssaaaesssseaenns 42
3.3.2 Examples of the Execution of Transactions at CAche Side.............cccccueeeecvveeeeciireesiieeesiieaennns 43
3.3.3 Server Side Validation AIGOIItAMoeve oottt e e e et a e e e e e e iareaaaae e 45

3.3.4 Examples of the Execution of Transactions at Server Sidecoccoveeeecvereeeciveesiiieeesiienannns 47

3.4 THE DESIGN OF THE PROPOSED SCHEMEiiuiiiiitieteeeeeiieitteeeeesesitetteeeesesaasebteeeeaeseannneeeeeesseaansseeeeeessanann 50
3.4.1 Cache TranSACtion MOGEIccueecueeeieeesiiiesieesiitesite ettt ettt ste st steesite e steesiseesseenasees 50
3.4.2 Client TranSOCtION MOGE!...........cooeeueeeeeieeeeiiieeeeiiee et estte ettt e et eesstieeessteeesssaaessssseaenns 50
B o -1 1 T-1 o T RSP RPP 51
3.4.4 Cache TranSACtiON EXECULIONccc..vveeeeueeeessiiieeesiieeesiteeesstieeeesitaesssteeesattesesssssesssssassssssesennas 52
3.4.5 The execution Of CACE MONAGELeeeecuveeeeeieieeeieeeeeseeeesseteesiteaeessesesssssassisssaeassseaaeans 53
3.4.6 The Execution of Scheduler
3.4.7 The Pseudo Code of Cache Side Validation AlIGOrithm...............ccoveeeeveeecciieeeciiieesiiieescieeeenns 62
3.4.8 The Pseudo Code of Server-Side Validation AIGOrithmcccovveeeviiveneeeniienieesiienieeeen 65

3.5 THE SERIALIZABILITY OF THE PROPOSED ALGORITHMeeeuveerureeeueesreesseesseesseesseesseesseessseessessssessnseessseess 67
3.5.1 DEINIEIONS ..ottt ettt ettt et ettt ettt et e en 67
3.5.2 The Correctness Of ROCC AIGOItAMcccuveeeeeiiieeeeeeeeeee et e eeea e sttt e e e sea e e saaaessireaeeans 70
3.5.3 The Correctness of VQ AIGOITtAMccccueevuiimiiiiieieeeeee ettt 71

CHAPTER 4. PERFORMANCE EVALUATIONcccooivrnnnreiiiiiissssnneeenssissnns 76

4.1 SIMULATION TOOL 1utveetteeeureeiureessseessseessseessseeasseesssesasssesssessssessssesssseessssssssessssssssssesssesssssesssessssessssesnsees 77

4.2 ASSUMPTIONS FOR SIMULATION 1..eeuvttetreesueeesseeenseeesueesssesesssesssesesssssssesesssssssssesssssssssessesssssesssesssseesssesnsees 78

4.3 SYSTEM IVIODEL...veetveetteeueeestaeeeseeestseessseessteessseesssesasseesssesasseessseeasseesssaansseessseeasssessseensseesssesnsseesssssnnses 79
B A D Lo 2] oo kY= PRSP 80
B B =1 ¢ | ST U 81
3.3 SOV .ttt ettt e e et e e e e et e e e e e et e e e e e e e aeeeenas 81
B B VI Y oY o SRS 82

4.4 THE WORKLOAD IMIODEL..eeuvvteutreeueeessreesueeesueeesseeesseesnsesesssesssesssssssssssesssesssssesssssssesesssesssesesssesssesssssssnsees 82

4.5 SIMULATION RESULTS vveeutteeeureeiureeesseessseessseessseassseessseensssesssessssssssssesssessssssssssssssssssssesssssssssesssessssessssssnsees 84
4.5.0 NUMDBEE Of CHIENTSvveeeeeeeeeeeeeee et etee e tee e ettt e e et a e e ettt e e e et e e e e ssaaesatsaaeeasssaseasssasassrenanans 86
4.5.2 The Effect of Read-0Only TraNSACLIONS...........c.eeevueeesueieiieeiiieieesiee ettt 89

CHAPTER 5. EXTENSIONS TO THE PROPOSED SCHEMEuuueetiiiiiiiinnnnnneninissssnnnseessssssssssnsssssssssssssnns 91

5.1 DISCONNECTED OPERATION ..ceuuvteeutreeureeeseesseeanseessseeasseesssesansessnsessssessssesansessssesssessssessssessssessssessnsessnsesn 91
5.1.1 Cache TransAction MOc...oeeeueeeeiiieeeeeiiee ettt ettt ettt s st e e ssteeesisee e s 92
5.1.2 The execution Of CACAE MONGAGELueeeecueieeeeiieeeeeiieeesiieeeessiteeesteaesssteaesssesesssesassssseaenans 93
5.1.3 The EXECULION Of SCACAUICTccc.eeeeeeeeeeeeeeeeeee ettt e ettt e e ettt e e e saa e e e aaaaessireaaens 95
I B B - g oY 1o [ol -SSR 96

5.2 IMIULTIPLE SERVER SYSTEM ..tttteieiautettteteeesaiietteeeesesesunteteteeeseaunnteeeeeeesesaansasaeeeesesannnreeeeesesanannreneeaessannnn 99

5.3 OTHER EXTENSIONS. ..ceeuutteiuteettteniteentteesiteesiteesuteesuteesuteesuseesateesuseesabeesaseesabeesaseesabeesnseesabeesaseesabeesneenane 101
5.3.1 Concurrent Transactions from G ClIENtcccuveeeeciuereeiieeeeeeieeeecieeeeeieeeeesseeeesiraaaesiaean 101
5.3.2 Supporting Server-Side MushUps and Edge Server Configurationcccccocveeecvveeennenn.. 102

CHAPTER 6. CONCLUSIONScoettiiiiiiiisinneeniiiisssssnssesssssssssssnssesssssssssssnssssssssssssssnsssssssssssssnnssssssssssssnns 105
6.1 SUMMARY OF THESIS CONTRIBUTIONSeeuvveeuteesureenuteesureesuseesaseesseesuseessseesseesnseesasessnseesnsesssseesasesssseesane 105
6.2 FUTURE WORKcettetieuittttteeseaeiuttttteeeesassbe b et eeesesaanteeteeeesesaanbebeeeeeeesannsnseeeeeeesannnbaeeeessaannnnnaneeeessannnn 107

REFERENCES.......uuuuueitiiiiiiiiiinerentiiiiiisissnstesssissssssssssessssssssssssssesssesssssssssnns 109

List of Figures

Figure 1: The effect of Client Caching on the Client-Server Structure........cccccvcevevvcieeevicieeeeennnee, 2
Figure 2: Client-Server ArChitECtUIEciii v e st e e s aeeeeeeaes 12
Figure 3: The Validation AlgOrithmcccviiiiiiiiiic e 38
Figure 4: Client-Server ArChitECLUIEcccviie ittt e e ere e e s ebre e e s e baeeeeeaes 39
Figure 5: Processing a Read Request at Cache Side.........cc.oevieciieiiciiiie e 55
Figure 6: Creating FEtch REQUEST IMESSAZE........ueiiiiciiieeiciiiee et e et e e ette e e e ette e e e ebraee e ssaraeeeeans 55
Figure 7: Processing Commit Requests at Cache Sideccccvveiiviiiii e 56
Figure 8: Processing a Fetch Request at SErVer Sideccueveveciieeiccieee e 59
Figure 9: Processing Commit Request at Server Sideouveeciieeiccieie e 60
Figure 10: The First Step of the Update Propagation ProCess.........ccveeeecireeeecieeeeeciieeeecieee e 61
Figure 11: The Second Step of the Update Propagation ProCesscccecvuveeeecveeeeecieeeescieeeeenns 62
Figure 12: The Cache Side Validation Algorithmccoociiiiiiiiiee e 64
Figure 13: The Server Side Validation Algorithmoccoiiiriiiii e 65
Figure 14: The function of CanCreateUpdatePropagationccccccuveeeecieeeeccieee e 66
Figure 15: Updating Cache Element position in SVQ.......cccceeeeciiieeieiiiie et 67
Figure 16: Case rs(e;)\ws(e))2{}, € <pi € at CHENt [....cvcueiiiiiiicccc s 73
Figure 17: Case ws(e;)Nrs(e;){}, € <ui € at ClIENt f.cvvviiieiciicce s 74
Figure 18: Case ws(e;)Nws(e;)#{} of €; <pi € at ClIENT f....eevvveeiiriiciiicceee e 74
Figure 19: The Flowchart of @ MOdUIE.........ooouiiiiiceee ettt e aeee e e 79
Figure 20: (a) The System Throughput; (b) Message Traffic; (c) Abort Rate..........cccveeeeiveeenns 88

Figure 21: The Effect of Read-Only Transactions: (a) The System Throughput; (b) Abort Rate; (c)
Y T Te I I | ol STt 90

Figure 22: Processing Connect Request at Server Side........oocciiieie e e 95

Figure 23: The performance of Connected and Disconnected Clients: (a) The System
Throughput; (b) The ADOIT RAtE.ciiciiiiiieecee ettt et e estre e s re e e bae e s baeenee s 98

Figure 24: The Performance of Connected and Disconnected Clients: (a) The System

Throughput; (b) The ADOIT RAe.eiiieeeiee ettt e e e e e et e e e ebaeeaeeaes 99
vi

Figure 25: The Configuration of the Multiple Server Systems.........ccccveeevieeeeicieee i, 100

Figure 26: The Configuration of Server-Side MUShUPooovciiiiiiiiiie e 102
Figure 27: The Configuration of EAZE SEIVETcccciiiiicciiee ettt e 103
Figure 28: Distributed Caching at CHent Sidecccveiiiiiiie e 108

vii

List of Tables

Table 1: System Parameter SEEHING.... oo ciiei i e e e e e bre e e e ebaeeeeeaes 80
Table 2: EXPeriment SEEHING.....cvvii ittt e e ette e e e e bte e e s ebaeeeeeraeeeeeans 85
Table 3: The Features of Current Transactional Cache Consistency Schemesccccecuuue.. 107

viii

Chapter 1. Introduction

This thesis is concerned with providing good performance along with serializability
order for transactions in client-server database systems. Caching techniques have been
used extensively in transactional client-server database systems to improve the
performance of applications. Much of the current work has concentrated on caching
techniques at the server side, since the underlying assumption has been that clients are
“thin” with application level processing taking place mainly at the server side (say
within the application server). For example, Kossmann et al (2010) describe a typical
caching scheme in such systems. There are also new classes of “thick client”
applications where clients need to access the database at the server but also perform
substantial amount of processing at the client side; here client-side caching is needed to

provide good performance for applications.

1.1 Motivation

1.1.1 Server-Side Caching

Client-server database systems are comprised of two logical parts: A server that
provides persistent objects and a client that runs applications (see Figure 1). A
traditional assumption in the design of client-server database system has been that the
client has limited resources and the server has a powerful computer. Accordingly, client
functionality has often been restricted to submit read requests and update requests
across the network to the server, and to present the received results to the user. In such

environment, the application logic computation is installed at the server.

The response time of the server is a critical factor in the performance of the
client-server database system. Server resources are shared by many clients. As the
number of client increases, the server can become the bottle-neck. Optimizing the
performance of the server has been done by many researchers; such as caching objects
at the server (Perez-Sorrosal et al., 2011) and allowing transactions to read stale objects

(Bernstein et al., 2006).

Chapter 1. Introduction

Client Server

Object
Application Scheduler Manager

L Service J

Manager

Without client caching

Client Server
Application -
Scheduler Object
,—‘ Manager
Cache | | Cache Object

Manager Manager Service

Manager

A F

X -

With client caching

Figure 1: The effect of Client Caching on the Client-Server Structure

1.1.2 Client-Side Caching

With significant advances in computer technology namely, powerful processors and
large memories available at low cost, the client functionality has changed. It is possible
for business logic to be is installed at client sides and to reduce network latency by
caching objects at the client. Now the functionality of such “thick client” is to submit
requests to the server for accessing objects only if the objects are not found in client
cache and the server functionality is to provide persistent objects. Ideally, the workload
of transactional cache consistency scheme should be shared between servers and clients.
Client-side caching has been studied in the past (Franklin, et al, 1997). However with
the popularity of thick-client applications, it is worthwhile to examine if currently

available schemes can be improved.

This thesis proposes an efficient concurrency control scheme for use in such
thick-client applications. The scheme is based on the optimistic approach to
concurrency control. Basically, in optimistic concurrency control, a transaction makes
local copies of the data objects from the database server and performs computations on
them; at commit time, the server performs validation check to ensure that these objects

have not been modified by some other transactions; if the validation succeeds, the
2

Chapter 1. Introduction
transaction commits, and the modified object copies are written back into the database
else the transaction is aborted. Optimistic schemes are attractive in environments with
low data contention (transactions are predominantly read only), precisely the
environments where data caching would be most effective. Our scheme has several

attractive features discussed below.

e It provides serializability for committed transactions; this is in contrast to many
popular database management systems that provide snapshot isolation which is a

weaker form of consistency than serializability.

e A static read-only transaction (a transaction which predeclares its objects to be

read), is never aborted.
e It is deadlock free.

e Read-only transactions can be validated at the client-side, without

communicating with the server.

e For update transactions, validation is done partly at the client and partly at the
server. The net effect is that the processing load for validation is subtantially

reduced at the server, thereby improving scalability.

Our scheme, named Validation Queue (VQ) concurrency control, is based on the
optimistic concurrency control scheme named Read Commit Order Concurrency
Control (ROCC) introduced by Shi and Perrizo (2002). Traditional optimistic
concurrency control methods abort a transaction when the transaction conflicts with
other transactions. The ROCC scheme improves on these methods by only aborting a
transaction when the execution of the transaction interleaves with the execution of other
transactions. Shi and Perrizo also show that their scheme outperforms two-phase
locking in centralized database systems under low data contention load (transactions are

predominantly read only).

Our VQ scheme extends ROCC to distributed systems with client-side caching.
At the client we use a Cache Validation Queue (CVQ) to record accesses to the objects
stored at the client. At the server, we use a Server Validation Queue (SVQ) to record

accesses to the objects stored at the server. By traversing CVQ, the client can validate

Chapter 1. Introduction

local read-only transactions without communicating with the server. Meanwhile SVQ

will be traversed to validate update transactions at the server.

In this thesis, we describe the VQ algorithm and using simulation, compare its
performance with two other algorithms that use caching. One is the Multi-Version
Concurrency Control (MVCC) algorithm, that provides snapshot isolation, and used in

caching systems such as INFINISPAN (http://www.jboss.org/infinispan); the other is

the optimistic concurrency control algorithm proposed by Adya et al that has been
shown to perform very well (Adya et al, 1995). The simulation work demonstrates that
the VQ algorithm outperforms Adya algorithm and closely matches the performance of

MVCC.

1.1.3 Disconnected Operation

Disconnected operation is neither a specific technique nor a radical new idea. Rather, it
is a general philosophy which holds that it is often better to do something useful for
progression than nothing. With the necessary objects cached in the client computer
memory and applications installed in the client computer, client logically can work
under disconnected mode. In term of network connection quality, mobile clients have
different characteristics compared to fixed clients; clients that run transactions from
workstations with wired connection to the network. Mobile clients may have an
intermittent or low bandwidth connection to the server. To enhance the system
performance, clients may disconnect to the server and work offline. There are other
reasons for clients to disconnect their connection network. For examples, clients may
disconnect to the server for saving the battery life, for reducing network charges, or for
maintaining radio silence in military operations (Jin, 1999). Thus the ability to operate

in disconnected mode can be useful even when connectivity is available.

Maintaining cache consistency so as to provide transaction serializability in a
disconnected environment has not been studied so far. In this thesis, we extend our

scheme to work in disconnected mode.

1.2 Thesis Contributions

This thesis makes a number of contributions in the area of transactional cache

consistency:

http://www.jboss.org/infinispan

Chapter 1. Introduction

e [t presents a new transactional cache consistency scheme which improves the
system throughput by distributing or sharing the transactional workload between
servers and clients. The scheme uses an optimistic concurrency control method
which consists of two validation algorithms; the validation at client side and the
validation at server side. The validation at client side is to check the client
accesses against the updates of other clients sent by the server to the client.
Meanwhile the validation at server side checks the client accesses against the
accesses of other clients at the server. Both validation algorithms are an
extension of the technique introduced by Shi and Perrizo (2002). For cache
consistency protocol we design our update propagation based on Notify locks

presented by Wilkinson and Neimat (1990).

e It evaluates and compares the performance of the proposed scheme via
simulation work. Our simulation results show that the proposed scheme has
better performance than the scheme presented by Adya et al. (1995) that is
currently considered to offer the best performance. At the same time the
performance of our scheme closely matches that of Multiversion Concurrency
control (MVCC) widely used in industry but which offers snapshot isolation that

is weaker than serializability.

e The scheme has been extended to work in disconnected mode. Disconnected
operation includes the commits of transactions while running in disconnected
mode, the update propagation to the disconnected clients, and the reconciliation
process when a client reconnects again. The performance of the proposed
scheme in the disconnected environment via simulation work has also been

performed and shown to be acceptable.

1.3 Thesis Organization
The rest of this thesis is organized as follows. Chapter 2 presents the necessary
background information on commonly used concepts within the setting of this thesis

and summarize the related work.

In chapter 3, we present our proposed scheme. We describe the system
architecture, the wvalidation algorithm of our proposed scheme, the design of the

proposed scheme, and the correctness of the scheme.

Chapter 1. Introduction

The experimental framework for comparing the performance of the proposed

scheme with other scheme is described in chapter 4.

A number extensions to our proposed scheme are described in chapter 5. These
extensions include disconnected operation, multi-server systems, parallel transactions,

MushUp server-side application and edge-computation configuration.

Finally, we conclude our thesis with summary and future work in chapter 6.

Chapter 2. Background and Related Work

The purpose of this chapter is to provide necessary background information on
commonly used concepts within the setting of this thesis and to summarize briefly the
related work. It provides definitions for required terms and fundamental concepts used
later. We start this chapter by describing the definition of transactions and providing
information about concurrency control and some techniques commonly used in
concurrency control schemes. The basic issues in client-server architectures and client
caching are discussed. Then we present some transactional cache consistency
algorithms which are studied in our simulation work. Finally, we describe some current
published papers about transactional cache consistency schemes and conclude with

discussion on the performance of the schemes.

2.1 Transactions and Concurrency Controls

A database is a collection of objects. In this discussion a single object will be denoted
as x, y, z, etc. Objects are assumed independent; one object does not have a relation with
others. An object is either a physical resource (e.g., a memory) or an abstract resource
(e.g., arecord, a picture, a data structure). Each object has a unique identifier and some
attributes (or fields). The attributes of objects are associated with their values which
must be at all times related in a way that satisfies the integrity constraints of the
database. However, many times when a user accesses the databases these constraints
may be temporarily violated in order to transform the database to a new consistent state.
Therefore, the accesses to the database are grouped together into units of consistency,
called transactions. This means that transactions preserve consistency or transactions

transform one consistent state into a new consistent state of the database.

Practically, a transaction is a collection of readset and writeset. Readset is a
collection of objects to be read while writeset is a collection of objects to be written. It

preserves ACID properties (Ozsu and Valduriez, 1999; Gray and Reuter, 1993):

Atomicity: when a transaction contains write operations, all or none of them must be
performed. In other words, if a transaction has to abort then all changes it has made in

the database have to be undone.

Consistency: a transaction should be a correct state transformation, and it maps a

database from one consistent state to another.

Chapter 2. Background and Related Work
Isolation: each transaction should execute as if it is running alone in the system. Even
though transactions execute concurrently, it appears to each transaction, 7, that others

are executed either before T or after 7, but not both.

Durability: when a transaction is committed, the changes made by it in the database

will never be lost even when the system crashes.

Although each transaction preserves consistency, some transactions need to run
concurrently, in order to increase the throughput and availability of the database.
However, two or more transactions executed concurrently can cause programs to
behave incorrectly, thereby leading to an inconsistent database (Bernstein, Hadzilacos
and Goodman, 1983). Therefore there is a need for a mechanism which monitors and
controls the concurrent execution of transactions so that the consistency of database is
enforced and incorrect execution of concurrent transactions is avoided. The mechanism

is called concurrency control (Eswaran et al., 1976).

Bernstein et al. (1987) define concurrency control as an activity to coordinate
the actions of transactions that execute concurrently, access shared objects, and
therefore potentially interfere with each other. The problems of concurrency control
appear when two or more transactions are executed concurrently. One operation of a
transaction may execute in between two operations of another transaction. This
interleaved execution may cause an inconsistent database. An execution in which no
two transactions are interleaved called serial. An execution is serial if, for every two
transactions, all operations of one transaction execute before any of other operations of

the other.

Let us consider the following example, there are two transactions,
T={R;(x),R;(»)} and T,={W1(x),W2(y)}, and H;={R;(x),W:(x),W>(»),R;(¥)} 1s a history
that indicates the order in which the operations of the transactions were executed. The
execution of operation R;(x) precedes the execution of operation W(x); through the
object x, the execution of transaction 7, precedes the execution of transaction 7,. The
execution of operation R;(y) succeeds the execution of operation W>(y); the execution of
transaction 7; succeeds the execution of transaction 7,. Thus, the execution of

transaction 7; and 7> is not serial.

Chapter 2. Background and Related Work
To have a serial execution, one way would be that a system executes
transactions one at a time. However, this is too inefficient. The system may make poor

use of its resources.

There are allowable concurrent executions to include executions that have same
effect as serial one. Such executions are called serializable. An execution is serializable
if it produces the same results and the same effect on the database as some serial
execution of the same transactions. Since the execution of the serial one is correct, and
the serializable execution has the same effect as a serial execution, then the serializable

execution is correct too.

Let us see the previous example. The execution of concurrent transactions in the
previous example is not a serializable execution. A history
H={R(x),W>(x),R;(y),W2(y)} is serializable, because it has ordered transactions to a

serial execution in which transaction 7 precedes transaction 7.

To produce a serializable execution, the system employs a concurrency control
scheme to synchronize accesses to shared objects. There are four main approaches used

in concurrency control. These are listed below:

¢ Locking: If two transactions conflict, conflicting operation of one transaction
must wait until the operations of another transaction are completed. This
approach requires each operation must have appropriate locks before its

execution.

e Timestamp: The execution of transactions is ordered based on their attached
timestamp. Each transaction is assigned a unique timestamp. Conflicting

operations of two transactions are processed in timestamp order.

e Optimistic: Optimistic concurrency control allows a transaction to execute
unhindered to its commit point, at which time it is validated to determine
whether or not to commit the transaction. It is expected that conflicting

transactions hardly happen.

e Multi Versions: Concurrency control schemes in this category assume that

operation write, W(x), does not overwrite object x, instead it creates a new

Chapter 2. Background and Related Work

copy (or version) of x. Other transactions are allowed to read the previous

version of x. Thus, Reads on x are not delayed by a concurrent writer of x.
In the following paragraphs, we summarize each approach.

Concurrency Control by Locking. Concurrency control by locking requires every
single object having locks associated with it; read lock and write lock (Bernstein et al.,
1987). To access an object, transactions should get the appropriate lock on the object.
Transactions hold all locks on objects until it finishes its execution. When it finishes its
execution, a transaction releases all its locks. Read lock is a shared mode lock. More
than one transaction can hold read lock on object x at the same time. But write lock is
an exclusive mode lock. Only one transaction can hold write lock on object x. A
transaction cannot get read lock on object x if another transaction holds write lock on
object x and vice versa. If a transaction cannot get one or more locks, the requesting

transaction must wait until the requested locks are available.

Locking is well known mechanism and it is easy to understand. Many variations
of concurrency control algorithms based on locking mechanism have been introduced in
the literature. However, concurrency controls based on locking mechanism commonly
have some disadvantages, one of which is that locking introduces deadlocks. Since
transactions are forced to wait for other transactions to release the requested locks when
they cannot get locks on the objects, this might cause deadlocks. These concurrency

control algorithms should have mechanism to resolve deadlocks.

Timestamp-based Concurrency Control. In locking, the ordering of transactions in a
serialization order is determined dynamically while transactions are executing based on
interleaving of their requests. In timestamp-based concurrency control, the execution
order of conflicting transactions is based on their timestamp. When the operations of
two transactions conflict, it orders the execution of operations based on the timestamp
attached to the transactions. Therefore, each transaction is assigned a unique timestamp.
To achieve a unique timestamp for transactions arriving from different sites of

distributed systems, all clocks at all sites must be synchronized.

Optimistic Concurrency Control. Unlike the locking or the timestamp ordering,
optimistic concurrency control allows a transaction to execute unhindered to its commit

point, at which time it is validated to determine whether or not to commit the

10

Chapter 2. Background and Related Work

transaction. The execution of a transaction consists of three phases; read, validation, and
write. On its read phase, a transaction may read any object. Before a transaction begins
its write phase, the system validates the transaction. If it passes the validation process, it

can begin its write phase; otherwise it is aborted (Kung and Robinson, 1981).

Two validation techniques; introduced by Hardet, T., have been described
Herlihy (1990); backward and forward validation. In backward validation, the system
checks the validating transaction against recently committed transactions. If the
validating transaction reads any object that has been invalidated by a recently
committed transaction, the validating transaction is aborted. In forward validation, the
system checks the validating transaction against active transactions. If it modifies any
object read by a currently active transaction, it is aborted. This validation favours read-
only transactions which are never aborted. Meanwhile update transactions are required

to validate their writes.

Multi-version Concurrency Control: Concurrency control schemes in this category
assume that operation write, W(x), does not overwrite object x, instead it creates a new
copy (or version) of x. Other transactions are allowed to read the previous version of x.

Thus, Reads on x are not delayed by a concurrent writer of x.

However, an obvious cost of maintaining multiple versions is storage space. The
system may store more than one version and each version has concurrency control
information to be stored with it. To control this storage requirement, the system should
periodically purge versions. Since a certain versions may be needed by active
transactions, the system should synchronize with the active transactions in the process

of purging versions.

However, maintaining two versions may not add much to the cost of
concurrency control, because the versions may be needed anyway by the recovery
algorithm. Moreover, in internet applications, since clients and persistent objects are
situated in different sites, objects are copied to the clients. Thus, two version objects are
already in the systems. Some concurrency control schemes may consider a persistent
object x at the server and a copy of object x at clients as two versions, but others may

consider as one version.

11

Chapter 2. Background and Related Work

2.2 Client-Server Architecture

Client-server architecture divides distributed systems in two logical parts; clients and
servers. The client-server architecture has been around for a long time and has made a
significant impact on the way people do computing in distributed environment (Ozsu
and Valduriez, 1999). The basic idea of client-server architecture is to identify and
distinguish the responsibilities and jobs that need to be done and divide these

responsibilities and jobs into two sides; client side and server side.

Client Server
Cache Moak::zc:zr
L Manager
+ Application Scheduler
Cache Object
Manager

Figure 2: Client-Server Architecture

Lewandowski (1998) discusses issues of alternative designs of client-server
architectures; fat servers vs. fat clients. The client-server architecture with fat servers
assumes that clients have limited resources. In this type of architecture, clients send
service requests to the server and the server provides the services. To response the client
requests, the server may access objects and do some computation according to a certain
logical business implemented at the server. The result of the computation is sent to the
client, and the client presents the results to the user. Due to the proliferation of the low-
cost hardware and the need to decrease the system response-time, the client-server
architecture with fat clients has gained popularity. In this client-server architecture, the
clients run the computation and cache some necessary objects. Therefore, the business
logic of the computation is installed at clients and the server provides persistent objects
and tracing objects at clients. Furthermore, Delis and Roussopoulos (1992) conclude in
their research that client-server architecture with fat clients scales up a lot better for

higher number of clients.

2.3 Caching

Caching is a technique that has been used in various areas of computer and database
systems for quite some time. To reduce disk latency, database systems use caching

technique to cache data in a buffer. It is a simple concept of storing of necessary objects

12

Chapter 2. Background and Related Work

in an easily accessible storage so that time and resources are saved because objects do

not have to be retrieved from the original source.

Caching objects at the server side has been studied most recently in (Perez-
Sorrosal et al., 2011). With the current technology, it is possible to cache all database
objects in the server’s computer memory. By caching objects at the server, the system

resolves disk-latency and bottle-neck problems.

Caching objects at client side has also been studied by many researchers. It has
some advantages (Voruganti et al. , 2004; Franklin et al., 1997). First, it exploits the
resources present at the clients. Second, in the presence of locality (i.e. the affinity of
the applications at certain workstations for certain subsets of database objects), caching
necessary objects at client side certainly reduces the volume of objects that clients must
request from servers. Third, caching objects at client side means moving objects closer
to clients. Therefore, it resolves network latency and eventually reduces the system
response time. Last, it resolves bottleneck problems in client-server database systems

because caching will reduce the work of servers.

Caching is like replication. It introduces objects redundancy. Copies of an object
are stored at multiple places. The system should ensure that the presence of multiple
copies of an object does not harm any transaction. It should maintain the consistency of
objects. If a transaction updates an object at the server, the updates should be available

to others as soon as possible.

2.3.1 Cache Replacement Strategy

Cache size at client side is usually limited, and if the space is exhausted, cache
replacement strategies decide which object should be removed. Podlipnig and
Boszormenyi (2003) describe some characteristics of web objects that can influence the
replacement process. Those are recency (time of the last reference to the object),
frequency (number of requests to the object), size (size of the object), cost (cost to fetch
the object from the server), modification time (time of the last modification), and

(heuristic) expiration time.

Podlipnig and B6szormenyi (2003) mention some well-known strategies; LRU
and LFU. LRU (least recently used) is a strategy in replacement strategy by removing

the least recently referenced object. LFU (least frequency used) is a strategy in

13

Chapter 2. Background and Related Work

replacement strategy by removing the least frequently referenced object. LRU has been

applied successfully in many different areas.

2.3.2 Degrees of Consistency

With the aim of providing of improved concurrency and better performance for some
workloads by sacrificing consistency, the degree of consistency is introduced in (Gray
et al., 1976). They define four degrees of consistency. Some authors may use the degree
of isolation instead of the degree of consistency. In the following definition, dirty data
refers to data values that have been updated by a transaction prior to its commitment.

Then, based on the concept of dirty data, the four degree levels are defined as follows:
“Degree 3: Transaction T sees degree 3 consistency if:

i. T does not overwrite dirty data of other transactions.

it. T does not commit any writes until it completes all its writes (i.e., until the
end of transaction (EOT)).

iii. 7T does not read dirty data from other transaction.

iv. Other transactions do not dirty any data read by 7 before T completes.”
Degree 2: Transaction 7 sees degree 2 consistency if properties i, ii, and iii hold.
Degree 1: Transaction 7 sees degree 1 consistency if properties i and ii hold.
Degree 0: Transaction 7 sees degree 0 consistency if property 1 holds.

For some internet applications, it is common to allow users reading data that is a
little out of date; such as item prices or number of bids in an auction site, or the number
of items in stock in online public store. Furthermore, most of users do not mind to read

stale objects as long as their bids or their transactions are executed correctly.

We use the term of data currency to represent the state of objects that are
accessed by transactions. The state of objects here is up to date or current and stale or
out of date. An object is up to date if there is only one version of it in the system. If an
object is updated by any transaction, the object is in two versions; new version and old
version. We may use the word up to date for new version and stale or out of date for old

version.

14

Chapter 2. Background and Related Work

The use of relaxed currency, representing the state of objects that are retrieved
from the server, in database systems is frequently acceptable and commonly used to
enhance performance. There are a couple of published papers related to this matter that
are worth discussing. These are Bernstein et al. (2006) and Guo et al. (2004). Bernstein
et al. describe an extended serializability model which is called Relaxed Currency
Serializability. This model allows transactions including update transactions to read
stale objects. But their model guarantees the correctness in replicated database systems.
Meanwhile Guo et al. focus on expressing the relaxed currency on SQL language. So
applications have some understanding of which queries can use data that are not entirely

current and which copies are “good enough”.

Snapshot Isolation (SI) is a multi-version concurrency control approach that
provides lock-free reads. Whenever a transaction reads an object, it does not necessarily
see the latest value of the object; instead it sees the last committed version of the object.
In practice, most implementations of SI use locking during updates to prevent a
transaction from modifying an object if a concurrent transaction has already modified it.
The first transaction to acquire the lock for an object is permitted to update the object;
concurrent transactions attempting to update the same object will block waiting to
acquire the lock. SI is introduced in the literature by Berenson et al (1995), and it has
been implemented by many commercial systems, such as INFINISPAN

(http://www.jboss.org/infinispan). It provides significant performance improvements

over serializability implemented with two-phase locking (Cahill, 2009).

In conclusion that through these papers, the assumption that transactions can
read data that is a little out of date, has been accepted. For some applications, the
currency of data cannot be compromised. However, for many applications performance

is much more important than the currency of data.

2.3.3 Edge Computing
Edge-server computing is conceptually similar to client-side caching, as the aim is to
bring data closer to the client. It is widely used to improve the system performance by

caching objects to edge of the network.

Leff and Rayfield in [7] explore how edge-server technology can be extended to

applications requiring the use of transactional data. However, updates to shared objects

15

http://www.jboss.org/infinispan

Chapter 2. Background and Related Work

cannot be made at the edge-servers. Updates take place at the server and distributed to

the edge-servers in a non-transactional fashion.

2.4 Overview of Concurrency Control and Cache Consistency

2.4.1 Two-Version Concurrency Control Schemes
In this subsection we summarize briefly some researches that have been done in

applying two versions of objects in concurrency control.

Maintaining two version database objects may not add much to the cost of
concurrency control, because two version objects may be needed by the recovery
algorithm. Bernstein et al. (1987) describe that many recovery algorithms presented in
their book maintain some before image information, at least of those objects that have
been updated by active transactions. The recovery algorithm needs the before image
information in case any of the active transactions abort. The before image of an object is
exactly the old version of an object. Thus, it is a small step for the system to make two-

versions of an object explicitly available to other applications.

Two-version concurrency control schemes are presented in Bukhari (1990) and
Bayer (1980). They show that two-version concurrency control increases the
concurrency level and read operations never block write operations to get a write lock
on the same object. Compare to one-version and multi-version, two-version
concurrency control has the best performance. The one version algorithm has the best
performance if the workload is 100% read-only transaction. In the various percentages
of read-only transactions, the two version algorithm performs better than the others in

the replicated database systems (Bukhari, 1990; Bukhari and Osborn, 1997).

Kuo et al. (2003) present a two-version concurrency control for real-time client-
server database systems. They define a consistent version and working version for each
object. Read operations always read from the consistent version of object and write
operations always write into the working version of object. The algorithm use locking
techniques to synchronize accesses to the objects. In their simulation work, they show
that the use of two-version technique reduces the blocking time of the higher priority
transactions and improves the response time of client-side read-only transactions. It also

supports an efficient and predictable recovery mechanism.

16

Chapter 2. Background and Related Work
2.4.2 The validation techniques of Optimistic Concurrency Control Schemes
The original proposal of optimistic concurrency control (OCC) is introduced by Kung
and Robinson, 1981. Since then many OCCs have been introduced (Adya et al. 1995;
Shi and Perrizo, 2002). Each of OCC introduces a different technique in its validation
phase. The goal of the validation is to order the execution of transactions. Let
transactions 7, T, ..., T,, be executed concurrently. Denote an instance of the shared
objects by d, and let D be the set all possible d, so each transaction 7; may be
considered as a function 7;: D > D. If the initial of the shared objects is dniis and the
final of the shared objects is dj.u, then the execution of concurrent transactions is

correct if any some permutation z of (7,2, ..., 3) such that

dfinal = Trm) © Tan-1) © v ° Tri2) © Taer) (dinitiar)

“0”

where is the operator for functional composition. If each transaction is consistent; or
each transaction transfer the databases from one consistent to another consistent, then

functional composition) © Trm-1) © ... © Tae2) © Tray Will transfer dipisiar to dpnar.

Kung and Robinson require each transaction to get a number which is called a
transaction increment number during its read phase, somewhere before its validation.
The validation of serial equivalence assumes the order of transactions based on the
transaction increment number attached to each transaction. If the transaction increment
number of transaction 7; less than the transaction increment number of transaction 7j,
then the execution of 7; must precede the execution of 7 or transaction 7; must be
validated before the validation of transaction 7;. Even if transaction 7; completes its
read phase much earlier than 7}, before being validated, transaction 7; must wait for the

completion of the read phase of T;.

2.4.3 Disconnected Operation
Disconnected operation refers to the ability of a client to continue working on local
cached objects in spite of disconnections. Kistler and Satyanarayanan (1992) show that

disconnected operation is feasible, efficient and usable in the Coda file system.

Advances in computer technology have made powerful computers and large
memories available at low cost. So now clients are common to run applications from
high performance machines with substantial memory and processing power. To utilize

the client computer resources and to solve the bottle-neck, many published papers

17

Chapter 2. Background and Related Work

introduce interesting solutions (Franklin, et al., 1997). Clients keep copies of the objects
at their local memory. When they need the objects in the future, they can access the
objects locally so that expensive communication can be avoided. Caching objects at
client computer memory can enhance the overall performance of a client-server
database system, especially when there is significant locality of access in the system
workload, conflicts are rare to happen, and updates are in low percentages (Franklin,

1996).

Client caching alters the structure of client-server model. Without client caching,
a client application submits its requests directly to the server. With client caching, a
client application submits its requests to cache manager. It is served locally. The
system can scale better now in the number of clients because congestion at the server

can be reduced by client caching.

Advances in computer technology and wireless telecommunication have made
the use of mobile computers popular in client-server database systems. This technology
provides clients with the ability to access database from anywhere, and this ability is
very important in future client-server database systems. The demand for ubiquitous data
access is evident in the increasing prevalence of mobile computing and wireless

communication.

However, mobile computers have wide variations in connectivity ranging from
high-bandwidth, low latency communications through wired network to total lack of
connectivity. At work, they may have access to cheap, reliable, and high-speed
connectivity. In other locations, they have access to network via wireless connection
which is intermittence, low bandwidth, high latency, or high expense. It is very prone to

frequent disconnections.

Traditionally in client-server database systems when there is no connection to
the server, clients stop working, they cannot do anything because persistent objects and
the information process are stored at the server. In modern client-server database
systems they hypothetically can work under disconnected mode because some needed

objects and the code of information process are cached on their computer memory.

Gruber et al. (1994) discuss some issues related to disconnect operation. They

discuss how to ensure that all objects needed by the client are cached prior to

18

Chapter 2. Background and Related Work

disconnection. They mention use of the hoarding processes (usual LRU cache policy
plus user supplied ‘hoarding profiles’) to ensure that the right files are in client cache
before getting disconnected; this mechanism is necessary for enabling users to work
under disconnected mode. Then they discuss about what to do if there is a cache miss
and what to do about transaction commits while running disconnected. They suggest
that these problems be handled in user specific manner and the users ought to have

control over how to proceed. They also discuss how to reconcile after reconnection.

2.4.4 Transactional Cache Consistency

Franklin et al. (1997) state that there are two types of caching: intratransaction
caching and intertransaction caching. Intratransaction caching refers to caching within
transaction boundaries. Cached objects are removed from the client cache when the
transaction is committed. Intertransaction caching refers to systems that allow clients to
cache objects even cross transaction boundaries. After a transaction committing, objects
at the client cache are not protected by regular concurrency control. Therefore, caching
requires an additional cache consistency protocol to regular concurrency control for

maintaining the consistency of cached objects at clients.

The design of client caching mechanism for client-server database systems must
respect the correctness of that environment. Client-server database systems must be able
to provide the same level of transaction support in traditional database systems. Since
caching is a dynamic form of replication, the criteria of correctness in replicated
database systems are applicable in caching. The extension of serializability in replicated
database systems is one-copy serializability (Bernstein et al. 1987). The execution
order of transactions in replicated database systems is in one-copy serializability if it is
equivalent to some serial orders of those transactions in non-replicated database

systems.

Taxonomy of transactional cache consistency algorithms for client-server
database systems can be found in Franklin et al. (1990). They categorize transactional
cache consistency algorithms based on the choice of invalid access prevention. There
are two categories; Detection Based Protocols and Avoidance Based Protocols.
Avoidance Based Protocols ensure that all cached objects are valid. Meanwhile
Detection Based Protocols allow stale objects to remain in client caches and ensure that

transactions are allowed to commit only if they have not accessed stale objects. Our

19

Chapter 2. Background and Related Work
proposed scheme actually cannot be classified in the taxonomy presented by Fraklin et
al. because our proposed scheme allows read-only transactions to commit even they
read stale objects. However, the closed classification for our scheme is detection based
protocol as the invalid access prevention; the validity check initiation of our scheme is

deferred until commit; we propagate updates after the transaction commit.

2.4.5 Invalidation versus Propagation

Just like replication, caching introduces global redundancy by creating multiple copies
of single objects. Redundant copies have to be kept consistent; coherence of copies has
to be ensured in such a way that different copies give the same values. To make all
copies consistent, the server employs a cache consistency protocol. There are three
options for cache consistency protocol existing in the literatures: invalidation,

propagation, and choosing dynamically between the two.

Cache invalidation is a process to remove stale copies from the clients as a result
of the persistent objects updated at the server. The invalidated objects at clients will be
inaccessible for subsequent transaction. Any subsequent transaction that wishes to
access the object must obtain a new copy from the server. Moreover, the cache
invalidation is based on invalidation messages the server broadcasts upon modifications
of cached objects, which is prone to poor scalability due to client state managed at
server side. To achieve a consistency, the commit of update transaction has to be

delayed until all client caches have been invalidated.

On the other hand, propagation replaces the stale copy with the fresh one. The
updates are propagated to clients which cached the updated objects right after the
update transaction committed at the server. The clients can keep caching the objects and
any subsequent transaction can access the objects locally. A dynamic algorithm can
choose between invalidation and propagation in order to optimize performance for

varying workloads (Franklin, 1996).

Wilkinson and Neimat (1990) present a cache consistency protocol using
propagation. They use the term notification instead of propagation. The server sends
notifications of updates to clients after the updates are committed. When a client
receives a notification of updates from the server, it checks the list of updated objects
against the readset and writeset of its active transactions. Any transaction with an
updated object in its readset or writeset must abort. The server sends a notification

20

Chapter 2. Background and Related Work
message including a sequence number to a client. This sequence number is used for
handshaking purposes only with the server. When a client submits a commit request to
the server, it is required that the client has seen the most recent notification message by
checking its sequence number. If the sequence number is too low, the server rejects the
commit request, and asks the client to verify if the transaction should be committed and

then resend the request.

2.5 Transactional Cache Consistency Schemes

In this section we describe three transactional cache consistency schemes using

respectively locking, timestamp, and multi-version concurrency control.

2.5.1 Callback Locking
We describe briefly a concurrency control which is an extension of a pessimistic,
locking-based protocol known as Callback locking (Howard et al., 1988). The algorithm
is designed by Zaharioudakis, et al. (1997). It is an adaptive granularity callback locking
scheme which uses Callback Read technique studied in (Franklin, 1996) to copy a page
at a client side. Callback Read techniques guarantee that copies of pages at client side
are always valid, so client transactions can read objects safely without communicating
with the server. When a client wants to read a page which is not cached yet, it sends a
request for the page to the server. Upon receiving this request, the server checks
whether any other client holds write lock on the page. If there is no other client holding
write lock on the page, the server sends immediately a copy of the page to the client,
otherwise it delays to do so. In general the server manages write locks and tracks pages

cached by each client, while read locks are recorded at the clients only.

To update a page, a client must get a write lock on the page from the server.
When a write lock request arrives for a page that is not locked at the server, the server
issues callback to all clients (except the requester) that cache a copy of the page. At the
client such callback request is treated as a request exclusive lock for specified page. If
the page is being read by active transaction, the client responds that the page is currently
in use; this respond is used by the server for deadlock detection. Otherwise, the clients
remove from the client cache and an acknowledgement is sent to the server. Whenever
all callbacks have been acknowledged, the server registers the write lock on the page for
the requesting client and sends a positive response to the requesting client. Any read or

write request for the page from other clients will be blocked at the server until the write

21

Chapter 2. Background and Related Work

lock is released by the holding transaction. At the end of the transaction, the client sends

the updated page to the server and releases its write lock.

Zaharioudakis, et al. (1997) also design the algorithm for object server which is
the same algorithm for page server. The author argues that the object server is a better
approach. It is avoiding the potential communication, memory usage, and false sharing
problems of the coarse-grained project server approach. However, in the low-contention
environment, the use of object server can greatly increase the number of messages
required to manage cache consistency. Therefore, the author also designs an algorithm

with allowing the granularity to adapt to the current level contention.

2.5.2 Adya Algorithm

Adya et al (1995) proposed a new optimistic concurrency control algorithm for use in
distributed database systems. Objects are cached and manipulated at client while
persistent storage and transactional support are provided by servers. There may be more
than one server. The algorithm uses a loosely synchronized clock to achieve global
serialization. It provides serializability and external serializability for committed
transactions. External serializability means that the serialization order is such that if
transaction 7; is committed before transaction 7> began, then transaction 77, is ordered
before transaction 7>. The author demonstrates that their proposed algorithm
outperforms adaptive callback locking algorithm for low to moderate contention
workloads, and scales better with number of clients. This section describes briefly the
algorithm for providing a good background to readers. In this paper, we refer this

algorithm as Adya.

Adya algorithm allows client to cache necessary objects. Objects are fetched
from servers when needed. The server tracks the objects in the client cache; for each
client, it maintains a table called cached set that records this information. The cached

sets are used for maintaining cache consistency.

Whenever a transaction is about to end its execution, it submits a commit
request to a server that is the owner of some objects accessed by the transaction. If the
server owns all objects accessed by the transaction, it commits the transaction
unilaterally. Otherwise, it acts as a coordinator in a standard two-phase commit protocol
with the other servers. Note that read-only transactions also require committing their
actions at servers. When server receives a commit request of a transaction, it tries to

22

Chapter 2. Background and Related Work

validate the commiting transaction. If validation succeeds, the server commits the
transaction and sends a positive acknowledgement to the client. Otherwise it aborts the

transaction and sends a negative acknowledgement to the client.

The purpose of validation process of a transaction is to prevent the commit of
any transaction that would violate the consistency requirements; serializability and
external serializability. The validation process uses a backward validation to preserve
consistency, a validating transaction is checked against all validated transactions, earlier
and later validated transactions. If the validating transaction conflicts with the validated
transactions that have earlier timestamps, the system makes sure that the validating
transaction accesses the correct versions of objects. If the validating transaction
conflicts with the validated transactions that have later timestamps, then the validating
transaction fails the validation process. Otherwise, the committing transaction succeeds
the validation process. After committing an update transaction, the server sends an
invalidate message, which is containing a list of object identifiers updated by the update
transaction, to other clients that are caching any object updated by the transaction.
When a client receives an invalidate message, the client drops all objects contained in
the invalidate message. If the current transaction already reads any object in the list of
updated objects, the client aborts the transaction immediately. When subsequent
transactions wish to access any object in the list, the system could get the copy of the

object from the server.

This algorithm records validation information of transactions in a validation
queue, or VQ (note that this VQ is different than the VQ which we propose for our own
algorithm later in the thesis). The validation information recorded in VQ contains the
timestamp of the transaction, the transaction’s readset, the transaction’s writeset, and
the identity of the client. To maintain VQ, it uses a threshold timestamp. The validation
record is removed for all transactions with timestamp below the threshold.

Consequently, a transaction timestamped below the threshold fails validation.

The validation process performed at the server for transaction 7 is described as

follows:

23

Chapter 2. Background and Related Work

Threshold Check

If 7.ts < Threshold then
Send abort message to the client;

Checks Against Earlier Transactions:

For each uncommitted transaction Sin VQ
Such that S.tis< T.ts
If (S.Writeset N T.Readset # {}) then
Send abort message to the client;

Current Version Check
For each object x at 7.Readset
If (x is the invalid version) then
Send abort message to the client;

Checks Against Later Transactions

For each transaction S in VQ
Such that T.ts< S.ts
If (7.Readset N S.Writeset % {})
Or (7. Writeset N S.Readset # {}) Then
Send abort message to the client;

Adya et al (1995) demonstrate that their algorithm outperforms an adaptive
callback locking algorithm which outperforms other non-adaptive callback locking
algorithms (Carey et al (1994)) and considered best so far. Therefore, it is a good reason

for us to compare our algorithm with Adya algorithm.

2.5.3 Multiversion Concurrency Control (MVCC) Algorithm

In a multiversion database, each write on object x creates a new object or a new copy
(or version) of x. Since writes do not overwrite the object, one or more transactions can
keep read the old version of x while a transaction writes object x. This increases the
level of concurrency of the system. Some systems manage one old version of objects;
other systems manage more than one version of objects. A concurrency control
exploiting the existence of versions of objects is called Multiversion Concurrency

Control (MVCC).

Carey and Muhanna (1986) studied the performance of MVCC algorithms. In
their simulation work, they show that MVCC algorithms offer significant performance
improvement despite additional disk accesses involved in accessing old versions of

objects.

24

Chapter 2. Background and Related Work

Many variations of MVCC are published in the literature. Bernstein et al.
(1987) describes some MVCC algorithms, such as MVCC two-phase locking. In two-
phase locking, write lock on an object x prevents other transactions from obtaining read
lock on object x. The system can avoid this by using two versions of x. When a
transaction writes an object x, it creates a new version of x and sets a write lock on x
that prevents other transactions writes object x. But other transactions can read the old

version of x.

To apply this scheme, the system should store one or two versions of each
object. Once the update transaction that writes object x commits, the version of x
becomes one version. The previous version of x becomes inaccessible. Two version
database systems are commonly used for system recovery purposes. When a transaction
T; writes object x, object x will be in two versions; 7;’s before image of x and the new
value of x. When 7; commits successfully, 7;’s before image of x will be deleted.

Therefore, two version database systems have been used for system recovery purposes.

Two version two-phase locking described in Bernstein et al. (1987) uses three
locks; read locks, write locks, and certify locks. Read locks are compatible with read
locks and write locks, but read locks are not compatible with certify locks. Write loc