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ABSTRACT 

Biodiesel is primarily produced by transesterification of edible oils. Increasing concern about 

using food supplies for fuel has generated interest in alternative raw materials. Furthermore, 

there are numerous steps between harvesting of oilseeds and final production of biodiesel that 

can be integrated, thereby simplifying the process and making it more suitable for distributed 

production. Hence, in this study, the production of biodiesel via in situ transesterification of 

non-edible Jatropha curcas seed has been investigated. The main aim was to investigate the 

parameters of the process, with a view to reducing the substantial excess of methanol 

required. A significant secondary aim was to investigate the possibility of utilising other 

compounds that come out from the process.  “Design of experiments” was employed to study 

the parameters at lab-scale, with the matrix boundary being determined beforehand using 

one-at-a-time experiments. The reduction of methanol excess was attempted by use of two 

co-solvents, hexane and diethylmethane (DEM), and by replacing methanol with methyl 

acetate. It was found that in situ transesterification run using particle sizes below 0.71 mm, a 

400:1 molar ratio of methanol to oil, 60 minutes, and a minimum of 300 rpm mixing intensity 

yielded the highest biodiesel yield of 83 wt %. NaOH concentration and reaction temperature 

were not found to be significant variables, and were set at 1.0 N and 30
o
C respectively. DEM 

was a more effective co-solvent than hexane. The addition of DEM to the process at 400:1 

molar ratio experiment increased the yield from 83 to 92 wt %. When methyl acetate was 

used to replace methanol, the requirement of molar ratio of solvent:oil reduced significantly 

to 175:1 to achieved 86.8 wt% of biodiesel. The solid meal was shown to contain substantial 

amounts of protein, making it a valuable co-product stream. Previously J. curcas meal had 

had little value as animal feed due to its toxicity, but this may be reduced or removed by this 
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process.  
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1 INTRODUCTION 

1.1 Research Background and Problem Statement 

The increasing world population and rapid economic growth are driving up global energy 

demand. Today, the world is very much dependent on petroleum as a main transport fuel 

resource. In its report “Tomorrow‟s Energy” [1], ExxonMobil predicted that global energy 

demand will increase from 230 Million Barrels per Day Oil Equivalent (MBDOE) in 2005 to 

334 MBDOE by 2030. The greatest proportions of the fuel supplied will be required for 

transportation and in industry [2]. As the reserves of crude oil are finite and the demand for 

petroleum is ever-increasing, the need to find alternative energy sources is becoming 

increasingly important.  

 

Since 1900, when Dr. Rudolf Diesel demonstrated his diesel engine with peanut oil in a Paris 

exhibition [3], the possibility of using vegetable oil as a fuel has been investigated by many 

researchers. Nevertheless, because of its high price and the compatibility issues with the 

diesel engine, interest in vegetable oil-based diesel never fully developed. Geopolitical 

tensions in the Middle East and the price volatility of crude oil have, however, recently 

revived interest in vegetable oil-based diesel. Research on biodiesel prior to 1990 mostly 

centred on the use of raw vegetable oils in their pure form or with partial blend [4-7]. But, 

despite success in engine performance tests of less than 10 hours duration, problems occurred 

after longer periods of operation, such as clogging of engine parts [4]. 

 

The major problems with using raw vegetable oil, as listed by Pryde [6], were: i) coking on 

the injectors to such an extent that fuel atomization does not occur properly, or is completely 

prevented by the plugging of orifices; ii) carbon deposits; iii) oil ring sticking; and iv) the 

thickening and gelling of lubricating oil as a result of contamination with vegetable oil. These 
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problems occur due to the higher viscosity and lower volatility of vegetable oil, and the 

reactivity of unsaturated hydrocarbon chains. These problems were addressed by Peterson et 

al. [8], who used winter rape oil in a diesel engine. It was noted that the polyunsaturated fatty 

acid in the oil polymerized and form a layer of gum in the engine chamber, resulting in 

carbon deposits and piston sticking. Darcey et al. [5] also reported that the use of blended 

crude sunflower oil in diesel engines resulted in contamination by solids in the lubricating oil.  

 

Other early researchers, such as Goering and Fry [9] and Ziejewski et al. [10] effectively 

reduced the viscosity of vegetable oil using a process called microemulsion. Furthermore, the 

hybrid oil obtained reduced engine wear [9]. However, greater deposits of carbon on the 

injector tips, intake valve and the tops of cylinder liners were observed [9, 10]. In addition, 

incomplete combustion and an increase in lubricating oil viscosity were reported [10], and 

consequently this process has never been commercialised 

 

Thermal cracking [11, 12] and transesterification [13, 14] have also been reported. The 

composition of fuels produced by thermal cracking was similar to that of diesel [11, 12], but 

the equipment used was too expensive for modest throughputs, as the process was very 

energy-intensive [15].  

 

Conversely, some researchers believed that they had found a suitable process in 

transesterification. In transesterification, oil is chemically converted to biodiesel and glycerol 

by reacting it with alcohol and catalyst. Not only was the quality of biodiesel produced using 

this method comparable to that of petroleum diesel, but the process could also be operated at 

low temperatures and pressures. In addition, the oil was observed to perform well in engine 

tests [14]. Researchers however started to use higher quality of raw materials, such as refined 
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vegetable oils when it was discovered later that ester yields were reduced by the presence of 

gums and extraneous material in crude vegetable oil [13].  

  

The 1990s witnessed considerable research focussing on transesterification, with the effects 

of various parameters and new raw materials being reported throughout the decade. The 

research generally focussed on utilisation of vegetable oil as a raw material. In most cases, 

edible vegetable oil was used. However, a major problem arose when the market price of 

these vegetable oils increased. With higher prices of raw materials, the production costs of 

biodiesel also increased, causing it to become unprofitable. It has been suggested in the 

literature that transesterification would only be profitable if the price of vegetable oils was 

below 400 US$ per metric ton [16]. To overcome this problem, alternative, less expensive 

materials were investigated, including many types of inedible oil. Apart from using non-

edible and low cost materials, the possibility of introducing new process route now become a 

main focus of current research [17, 18].  

 

In 1985 Harrington and D‟arcy-Evans [19] introduced an in situ transesterification process 

[19, 20]. Although like transesterification, in which vegetable oil is chemically converted to 

biodiesel and glycerol, in situ transesterification converts the oil within the seed directly to 

biodiesel rather than from the extracted oil. In this process, the seeds are reacted directly with 

the alcohol (containing the catalyst), producing biodiesel and glycerol. This removed various 

process stages, and could make biodiesel production more profitable. Work on in situ 

transesterification was reported, particularly by Harrington and D‟Arcy-Evans [19, 20] on 

sunflower seed oil. Among their noteworthy conclusions was the claim that the process 

results in fatty acid esters qualitatively similar to, but quantitatively greater than, yields 

obtained from the treatment of pre-extracted oil [19, 20].  
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As shows in Figure 1.1, in situ transesterification did not receive a great deal of attention 

when it was first introduced in 1984. It took almost 20 years before researchers started to 

show interest towards the process. Haas et al. in particular published numerous papers on the 

subject [21-23]. Meanwhile, the Process Intensification Group (PIG) in Newcastle University 

began looking at the process circa 2005, and published its first peer-reviewed article 5 years 

later, in 2010.  

 

Figure 1.1 Brief history of in situ transesterification 

 

In this study attempts were made to produce biodiesel based on in situ transesterification. 

This will avoid the use of solvents, such as hexane. Although hexane is considered to be an 

environmental friendly solvent [24] because of its high volatility and low solubility in water, 

prolong and intense exposure in workplace can cause several effect to the workers including 

toxicity to nerves and muscle weakness which leads to paralysis [25]. In order to avoid the 

problem of instability in the price of edible seeds, non-edible seeds are used as the raw 

material in this project. 

 

First article about in situ 
trans using sunflower seed

In situ trans makes a 
comeback after 11 years
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1.2 Problem Statement 

Although it has been proved that in situ transesterification is a feasible method to produce 

biodiesel, considerable effort is still required to fully understand the fundamental processes 

within the method. Furthermore, it is clear that the process parameters are raw material 

dependant, which implies that optimal process condition must be established independently 

for every new raw material.  

 

Unlike conventional transesterification, where the kinetic modelling and reaction mechanism 

are well-researched, there are no publications concerning those topics in in situ 

transesterification,  

 

The major issue with in situ transesterification is the huge amount of alcohol needed to get a 

desirable yield of product. To 6:1 ratio of alcohol-oil in conventional transesterification, in 

situ transesterification needs about 300/400:1. There is also a gap on the effort on reducing 

the amount of reagent used in in situ transesterification process. To date, only Haas and 

Wagner, in 2011, published on the issue [26]. They showed that a 20-fold reduction of 

methanol ratio usage, from previous ratio of 181, was achieved by combining flaking, 

extrusion and drying regime as a pre-treatment to the seed. Whilst the article discussed 

various mechanical treatments to seeds to address the problem, there are no reports 

concerning changing the process route of the process, which might be an alternatives to 

reduce the methanol requirement.    

1.3 Aims and Objectives of the Research 

The present study attempts to produce biodiesel based on in situ transesterification using non 

edible seeds as the raw material. To achieve this aim, every parameter involved in the process 

was investigated.  
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It is an objective of the study to develop a process that is feasible and practical for the 

biodiesel market. Thus, the research also aims to minimize the huge volumes of alcohol 

previously used in the process, which is a significant barrier hindering the commercial 

application of this technology. At the same time, the work also includes a study on waste 

streams, to examine the potential of these wastes to become valuable co-products. Economic 

evaluation on the process was performed at the end of the study.  

 

Inedible Jatropha curcas (J.curcas) seeds, Figure 1.2, from India were used as the raw 

material in this research, since this species has been suggested in the literature to be a 

potential future source of biodiesel. No new catalysts were investigated in the study, as the 

catalysts which were discussed in previous work were found to be effective for the process. 

Therefore, the study uses existing commercially available transesterification catalysts.  

 

       

Figure 1.2 J. curcas seeds, the raw material for the study 
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2 LITERATURE REVIEW 

This review starts with a brief summary of the nature of biodiesel, followed by an explanation 

of the transesterification process and then in situ transesterification. Previous studies of in situ 

transesterification are discussed according to the variables identified as affecting the process. 

The drawbacks of in situ transesterification are then clarified and current work on 

overcoming the problems is described. In the final part, a critical assessment is presented of 

the selection on J. curcas as the raw material used in this study.  

 

2.1 Biodiesel 

Biodiesel is an alternative fuel made from vegetable oils and animal fats. Chemically, it 

consists of mono alkyl esters of the long chain fatty acids present in the triglycerides of 

vegetable oils or animal fats. Since the feedstock is plant- or animal-derived, biodiesel is a 

renewable fuel. It contains very small quantities of sulphur, polycyclic aromatic 

hydrocarbons or metals, whereas, petroleum diesel, for example, can contain up to 20% 

polycyclic aromatic hydrocarbons [27].  

 

Biodiesel has similar properties to those of petroleum diesel. Its flashpoint is higher than 

diesel oil and so it is safer to handle. Biodiesel also has a higher cetane number and diesel 

index. Biodiesel‟s lower sulphur content and ash content make it more environmentally 

friendly than any fossil fuels [28]. 

 

Most biodiesel today is produced via a process based on the transesterification reaction: a 

basic scheme is shown in Figure 2.1. Refined, bleached vegetable oil is usually used as a raw 
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material. In the transesterification this oil reacts with methanol and base catalysts, such as 

potassium hydroxide or sodium hydroxide to form biodiesel and glycerol. The layers of crude 

biodiesel and crude glycerol are subsequently separated and refined to yield biodiesel and 

glycerol. The methanol is recovered and can be recycled into the process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Basic scheme for biodiesel production via transesterification process with alkali catalyst 

 

 

2.2 The Transesterification Reaction 

Transesterification is a reaction between a triglyceride and an alkyl alcohol, producing alkyl 

esters (biodiesel) and glycerol. Figure 2.2 below depicts the transesterification reaction. 

 

 

 

 

 

Glycerol Biodiesel 

Vegetable Oil 

Transesterification 
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recycle 
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Figure 2.2 Transesterification reaction. One mole of triglyceride reacting with three moles of methanol 

produces three moles of methyl esters and one mole of glycerol. 

 

R1, R2 and R3 in the equation above are long fatty acid chains. Listed in Table 2.1 below are 

the typical fatty acid chains (R) found in oilseed and animal fats [29]. 

 

Table 2.1 Common fatty acid chains in soybean oil and animal fats [29] 

Fatty acid chain Name Description 

- (CH2)14 – CH3 Palmitic 16 carbons, (including one in 

the triglyceride backbone), 0 

double bond (16:0) 

- (CH2)16 – CH3 Stearic 18 carbons, 0 double bond 

(18:0) 

- (CH2)7 CH = CH(CH2)7CH3 Oleic 18 carbons, 1 double bond 

(18:1) 

 

- (CH2)7 CH = CH-CH2-CH = CH(CH2)4CH3 Linoleic 18 carbons, 2 double bond 

(18:2) 

- (CH2)7 CH = CH-CH2-CH = CH-CH2-

CH=CH-CH2-CH3 

Linolenic 18 carbons, 3 double bond 

(18:3) 

 

Although an excess of methanol is typically used, the transesterification process can take 

place with only three moles methanol per mole of triglycerides. An excess is used to increase 

CH  – O – C – R2 

CH2 – O – C – R1 

CH2 – O – C – R3 

C 

C 

C 

+ 3 CH3OH 

CH3 – O – C – R1 

C 

CH3 – O – C – R2 

C 

CH3 – O – C – R3 

C 
+  CH - OH 

 CH2 - OH 

 CH2 - OH 

Catalyst 

Triglyceride Methanol Methyl esters Glycerol 
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the conversion, typically to over 95% completion. Either acid or alkali catalysts can be used 

to accelerate the process.  

2.2.1 Competing Reactions 

The presence of free fatty acids and water in the oil can trigger side reactions which affect the 

yield of the main product. 

2.2.1.1 Free Fatty Acids 

Free fatty acids are carboxylic acids. They are formed here when carbon chains become 

disconnected from the glycerol backbone. Figure 2.3 below shows the structure of oleic acid, 

which is a common free fatty acid in vegetable oils.  

  

 

 

Figure 2.3 Example of free fatty acid (oleic acid) contains 18 carbon, 34 hydrogen and 2 oxygen atoms. 

 

Free fatty acids react with alkali catalysts such as potassium or sodium hydroxide and 

produce soap (Figure 2.4, below) via the saponification reaction. This consumes the catalyst 

and prevents it from being used to catalyse the main reaction. 

 

 

 

 

 

HO – C – (CH2)7 CH= CH (CH2)7CH3 

O 
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Figure 2.4 Side reaction in the transesterification process. Free fatty acid reacts with alkali catalyst 

producing soap and water 

2.2.1.2 Water 

Water in oil reacts with triglyceride and hydrolyses it to form free fatty acids. With the 

presence of free fatty acids, saponification occurs and soap is produced together with the 

biodiesel.  

The saturated fatty acid soaps solidify at room temperatures and therefore the reaction 

mixture forms a semi-solid mass which is difficult to recover [29]. Figure 2.5 illustrates the 

reaction between triglyceride and water, producing diglyceride and fatty acid. 

 

 

 

 

 

 

 

Figure 2.5 Side reaction of the transesterification process. Triglyceride reacts with water producing 

diglyceride and fatty acid [29]. 
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2.3 In situ Transesterification 

2.3.1 Definition 

In situ transesterification is the direct transesterification of oil-bearing materials. The seed 

fragments are reacted with alcohol and a catalyst, producing alkyl fatty acid esters. This 

contrasts with conventional biodiesel transesterification, which uses raw materials of pre-

extracted oil from oil-bearing seeds.  

         

Figure 2.6 Conventional biodiesel process versus in situ transesterification process. In this case, high free 

fatty acid content material (J.curcas) was used as the raw material. 
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Figure 2.6 summarizes the two processes. Both involve a grinding stage, where the seeds are 

reduced in size. In the conventional process, after the grinding, the seed has to undergo 

several processes: mechanical pressing, solvent extraction, degumming and esterification. 

These four processes are not required in in situ transesterification. This is an advantage of in 

situ transesterification, as fewer unit operations are required, hence capital cost would be 

reduced. The next stage is the reaction. In conventional processes, the outputs from this 

process are crude methyl ester, glycerol, methanol and sodium hydroxide whereas for in situ 

transesterification, there is also the meal, the residual solid material from the seeds. The 

presence of the solid in in situ transesterification makes the purification step different from 

that in conventional processes as a filtering process to separate the meal from other products 

is required. The purification step of both processes is similar, involving methanol recycling 

process, water washing and separation of methyl ester from the other products by 

gravitational settlement.  

 

2.3.2 Variables in In situ Transesterification 

2.3.2.1 Raw Materials 

Various traditional oil-bearing seeds such as rapeseed and sunflower seed, or even materials 

such as distiller‟s dried grains with solubles (DDGS) and meat/bone meal (MBM) have been 

studied by researchers [23] for use as feedstocks in in situ transesterification. The fatty acid 

profiles of the oils produced from these materials vary substantially and, consequently, the 

parameters of the in situ transesterification process differ. However, even though fatty acid 

profiles are known to influence biodiesel properties, such as cetane number and cold filter 

plugging point, no research has reported this with respect to in situ transesterification [30]. 

The in situ approach,  as shown in Table 2.2, can be applied to almost any lipid-bearing 

material ranging from oil-bearing fruits such as sunflower seed and soybean, non-fruit 
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materials like meat and bone meal and palm oil pulp, to the unusual sources, such as waste 

water sludge. The table also shows that in situ transesterification can be performed on 

materials with oil contents as high as 51%, and as low as 2%. Interestingly, from the 

materials listed in the table, only two have the majority of their oil in saturated form: they are 

palm oil pulp and sewage sludge, with 44.3% and 42% of palmitic acid (16:0) respectively.  

    

To investigate whether or not in situ transesterification is applicable to all lipid-bearing 

materials, Haas et. al., performed experiments on distillers dried grains with soluble (DDGS) 

and meat and bone meal (MBM). Both types of raw material contain low percentages of oil, 

but the oil fractions of DDGS and MBM were successfully converted to methyl ester at rates 

of 91% and 93% respectively [23]. Using acid catalysis, Dufreche et. al., noted that the in situ 

transesterification of sewage sludge achieved 6.23 % (wt/wt) conversion, compared to 0.38 

wt% when hexane extraction and acid transesterification was used. Even the 3.44 wt% 

conversion achieved when a mixture of hexane, methanol and acetone was used to extract the 

oil was less effective than in situ transesterification. Clearly, this significant difference might 

render use of low oil content feedstocks for biodiesel product economically viable. 
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Table 2.2 Raw materials and their composition used by researchers in in situ transesterification 

Raw material Oil 

(%) 

Fatty Acid Methyl Ester (FAME) 

No of carbon atom: no of double bond (%) 

References 

Sunflower seed 38 16:0(6.8), 18:0(5.0), 18:1(19.6), 18:2(68.6) [19] 

Soybean 23 16:0(12.0), 18:0(5.0), 18:1(25.0), 18:2(52.0), 18:3(6.0) [31] 

Distiller dried 

grains with soluble 

(DDGS) 

8.8 16:0(12.9), 18:0(1.6), 18:1(28.5), 18:2(55.5), 18:3(1.4) [22] 

Meat and bone 

meal (MBM) 

9.1 16:0(25.2), 18:0(19.7), 18:1(35.6), 18:2(1.9), 18:3(0.3) [23] 

Palm oil pulp 80 12:0(0.3), 14:0(0.8), 16:0(44.3), 18:0(5), 16:1(0.2), 

18:1(39.1), 18:2(10.1), uk(0.2) 

[31] 

Cottonseed 31.6 16:0(28.7), 18:0(0.9), 18:1(13.0), 18:2(57.4) [32] 

Rapeseed 42 16:0(4.0), 18:0(1.9), 18:1(62.1), 18:2(32.0) [33] 

Jatropha curcas 54 16:0(16.0), 18:0(7.0), 18:1(45.0), 18:2(32.0) [34]  

Wastewater sludge 

(primary sludge) 

2 16:0(42.0), 18:0(14.0), 18:1(28.0), 18:2(10.0), 

20:1(6.0) 

[35], [36] 

Microalga                 

(S. limacinum) 

51
b
 14:0(2.06), 16:0(35.5), 18:0(0.81), 22:5(8.58), 

22:6(53.05) 

[37] 

Microbial biomass 

(L.starkeyi) 

50
 b
 14:0(0.4), 16:0(33.0), 17:0(0.4), 18:0(4.7), 16:1(4.8), 

18:1(55.1), 18:2(1.6)  

[38] 

Microbial biomass   

(R. toruloides) 

58
 b
 14:0(0.7), 16:0(24.3), 17:0(0.6), 18:0(7.7), 16:1(1.1), 

18:1(54.6), 18:2(2.1), uk(8.9) 

[38] 

Microbial biomass 

(M.isabellina) 

53
 b
 14:0(1.2), 16:0(28.2), 18:0(1.0), 16:1(5.8), 18:1(55.5), 

18:2(5.8), 18:3(2.4), uk(0.1) 

[38] 

auk:unknown 

b
total lipid extraction
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2.3.2.2 Catalyst 

It is well-documented that in situ transesterification is unable to proceed without a catalyst 

[31, 39]. Acid or alkali catalysts help to break down the cell wall of the oilseeds, thereby 

allowing methanol to access the oil in the cotyledon cells. Ren et. al., investigated the in situ 

transesterification of canola using scanning electron microscopy (SEM) and light microscope 

[40]. Lipid staining showed that this reactive extraction followed a shrinking core model, 

where the area of cells containing lipid could clearly be seen to shrink as the extraction 

progressed. 

 

Harrington and D‟Arcy-Evans found that the total mass yield of extraction by in situ 

transesterification (40.9%) was greater than that obtained by conventional transesterification 

(30.3%) [19]. It was claimed that this was due to the capability of in situ transesterification to 

extract materials that were not extracted from the seed by hexane [19], such as phospholipid. 

As a non-polar solvent, hexane can only extract non-polar substances such as triglycerides. 

When acidified/alkaline methanol was used instead of hexane, both polar and non-polar 

substances, like phospholipid and triglyceride, respectively, were extracted from the seed. 

Dufreche et. al., also claimed that a higher percentage of material was extracted from sewage 

sludge when using methanol (19.39%) rather than hexane (1.94%) [35]. The sharp increase 

attributed to methanol extraction in this case was probably due to the presence of large 

amounts of phospholipids in the form of microorganism cell membranes in the sewage. 

Acids, and in particular sulphuric acid, were the preferred catalysts in the early research into 

in situ transesterification for biodiesel production, pioneered by Harrington and D‟Arcy-

Evans [19, 20]. Acid catalysis has often been investigated for the treatment of raw materials 
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with high levels of free fatty acids (FFA). Alkaline catalysts will react with the FFA to 

produce soap and glycerol, decreasing the amount of catalyst available, or even consuming it 

altogether. Furthermore, soap acts to emulsify the product, rendering the separation of alkyl 

esters from glycerol more difficult. Acid catalysis, in contrast, does not promote 

saponification. Mondala et. al., for instance, used sulphuric acid as the catalyst for the 

conversion of their raw material of municipal sewage sludge, which contained 65% by weight 

of FFA [36]. Ozgul-Yucel et. al., investigated extraction from rice bran and used acid 

catalysts because the acidity of rice bran oil was unpredictable and usually high [41-43].  

 

Most researchers reported high level of conversion to methyl esters when using acid catalysts. 

Harrington and D‟Arcy-Evans achieved the 98% conversion of sunflower seed oil to FAME 

using a methanol/sulphuric acid mixture [19, 20]. Siler-Marinkovic and Tomasevic also 

worked with a sunflower seed/methanol/sulphuric acid system, and observed conversion rate 

of over 90% with a wide range of experimental conditions [44]. Shuit et. al., reported that 

90% of oil was extracted from J. curcas seed when using acid-catalysed in situ 

transesterification, and all of it was converted to fatty acid methyl ester (FAME)  [34]. 

Obibuzor et. al., similarly reported a high conversion rate (97%) of oil to FAME from the 

reactive extraction of oil palm waste pulp using a methanol/sulphuric acid mixture [45]. Acid 

catalysis also works efficiently in the reactive extraction of oleaginous microbial biomass. 

Lipid contents from three different types of oleaginous biomass, L. starkeyi, M. isabellina 

and R. toruloides, were successfully converted to FAME at 97 wt% , 91 wt %  and 98 wt % 

respectively [38]. Liu et. al., investigated the in situ transesterification of cellular biomass 

from yeast and fungi using an acid catalyst and methanol. They found that both sulphuric and 

hydrochloric acids could produce moderate ester yields of 60% and 53% respectively. 
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Significantly lower yields (10%) were achieved when phosphoric acid was used, but no 

explanation for this was offered [38]. 

 

Researchers have also observed that reaction times are longer when using acid rather than 

alkaline catalysts. Shuit et. al., for instance, found that the 90% conversion of J curcas using 

sulphuric acid required 24 hours [34]. Obibuzor et. al., on the other hand obtained the same 

level of conversion in 12 hours when using reactively extracted palm oil pulp waste with 

sulphuric acid [45]. These were long compared to reactions using alkaline catalysts, which 

usually take less than 30 minutes to reach the same level [21, 46]. 

 

The first in situ transesterification using an alkaline catalyst was reported by Haas et. al., in 

2004 [21]. Their experiment was conducted using soybean flakes as raw material, and the 

highest percentage of methyl ester was produced using 12.5 mL of methanol and 0.18 N of 

sodium hydroxide. This is equivalent to a molar ratio of 226:1:1.6 methanol/oil/NaOH. 

Compared with the ratio of 6:1:0.22 in conventional transesterification experiments by 

Freedman et. al., [47], it is clear that in situ transesterification requires substantially more 

methanol and more catalyst. Haas et. al., observed three main things when comparing the 

effectiveness of acid and alkali catalysts. Firstly, the flaked, as opposed to pulverized seeds 

produced a high yield when used in in situ transesterification with alkali. All the previous 

study with acid catalysts used pulverized materials [19, 20, 31]. Secondly, less reagent was 

required, along with moderate process conditions. Thirdly, higher yields of methyl ester are 

obtained [21]. The former two advantages are repeatedly found in the literature. For instance, 

a molar ratio of 553:1 methanol to oil in experiments by Harrington and D‟Arcy-Evans using 

sunflower seeds and sulphuric acid achieved 97% conversion [19], Georgogianni et. al.,‟s 

163:1 molar ratio using sunflower seeds and sodium hydroxide achieved 95-97% conversion 
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[48]. However, it seems that both types of catalyst produce comparable yields of methyl 

ester, but not at the same rates. Harrington and D‟Arcy Evans‟ reaction was 4 hours, while 

Georgogianni et. al., only needed 2 hours to produce the same yield. Furthermore, in the 

latter study, 94% of the oil had already been converted to methyl ester after 40 min. 

 

The levels of conversion of oil to methyl esters reported in the literature are typically very 

high when using methanol and sodium hydroxide, for example 97% with both sunflower 

seeds and cottonseeds [32, 48], 88% with soybean [21], and over 95% with cottonseed [39]. 

In situ transesterification using alkaline catalyst has also been conducted with a number of 

non-oilseed feedstocks.  

 

Table 2.3 lists the different raw materials, catalyst and solvents used by researchers to 

produce biodiesel through in situ transesterification. All researchers listed used methanol as a 

solvent. The molar ratio of solvent to oil ranged from 100:1 for sodium hydroxide catalyst to 

1400:1 in a process involving sulphuric acid catalyst. Noticeably, sulphuric acid and sodium 

hydroxide was a preferred acid and alkali catalyst respectively. In general, reaction time for 

experiments with acid catalysts was longer than the one with alkali catalyst.  
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Table 2.3 Combinations of raw material, catalyst and alcohol used by reserachers to produce biodiesel through in situ transesterification 

Raw 

material 

Solvent Catalyst (mol/L) Molar ratio 

solvent/oil 

Reaction 

time (h) 

Temp.  

(
o
C) 

Conversion  

(oil basis) (%) 

Ref Notes 

Sunflower  Methanol H2SO4 (0.75) 532:1 5 65 93 [20]  

Sunflower  Methanol H2SO4 (0.7) 300:1 4 64.5 98.2 [44]  

Soybean  Methanol H2SO4 (0.75) 281:1 10 65 23.3 [31]  

Soybean Methanol H2SO4 (0.75) 150.1 3 121 83 [49] CO2 cosolvent, 

Pressure=7.38 bar 

J. curcas Methanol H2SO4 (0.2) 300:1 24 60 99.8 [34] Hexane cosolvent 

Microbial 

biomass 

Methanol H2SO4 (0.2) 830:1 20 70 96.8 (L.starkeyi)  

91.0 (M.Isabellina) 

98.1 (R.toruloides) 

[38]  

Primary 

sewage 

sludge 

Methanol H2SO4 (0.9) 1400:1 24 75 66 [36]  

Soybean Methanol NaOH (0.09) 543:1 8 23 88 [21]  
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Raw 

material 

Solvent Catalyst (mol/L) Molar ratio 

solvent/oil 

Reaction 

time (h) 

Temp.  

(
o
C) 

Conversion  

(oil basis) (%) 

Ref Notes 

DDGS Methanol NaOH (0.4) 655:1 1.2 35 91.1 [23]  

MBM Methanol NaOH (2.0) 550:1 0.2 35 93.3 [23]  

Cottonseed Methanol NaOH (0.4) 673:1 0.3 60 95 [32] Ultrasound 

Cottonseed Ethanol NaOH (0.4) 613:1 0.7 80 98 [32] Ultrasound 

Sunflower Methanol NaOH (0.4) 476:1 0.7 60 97 [48] Ultrasonic  

Sunflower Ethanol NaOH (0.4) 434:1 0.7 80 98 [48] Ultrasonic  

Sunflower Methanol NaOH (0.2) 101:1 13 20 98 [50] DEM cosolvent 

J. curcas Methanol/ 

ethanol mix 

NaOH (0.02) 512:1 1 60 87 [51]  

J. curcas Methanol NaOH (0.04) 100:1 1 60 70 [52]  
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Various steps were employed to improve in situ transesterification processes: For example, 

co-solvents and ultrasound, have been used, particularly to enhance oil extraction. This can 

hopefully reduce the molar ratio of solvents used in the process. The table shows that the use 

of CO2 and diethoxymethane (DEM) as co-solvents successfully reduced the molar ratio of 

solvent to oil from 280 to around 150 and from 512 to 100, respectively. The use of CO2 also 

reduced the reaction time of the reaction, from usually 24 hours to only 3 hours. However, 

the CO2 combination was executed at 121
o
C, the highest temperature among the combination 

listed in the table, whereas the process is usually performed slightly over or below methanol 

boiling point, 65
o
C.  

 

2.3.2.3 Moisture Content 

In conventional transesterification, the presence of water in the process causes soap formation 

and frothing. This results in increased viscosity, gel formation and difficulty in separating the 

glycerol and alkyl ester-rich phases [15]. In addition, the saponification process consumes 

triglyceride, thereby reducing the potential yield of methyl ester.  

 

After reducing the moisture content prior to in situ transesterification, Haas et. al., found that 

the amount of alcohol required for the process significantly lowered. They reported a 60% 

reduction of methanol and a 56% reduction of sodium hydroxide when soybean flakes were 

dried in a convection oven until the water content reached zero. Experiments with samples 

containing 2.6% water reduced the methanol and sodium hydroxide requirements by 40 %  

and 33 % respectively [53]. 

 



23 

 

In situ transesterification has been shown to require higher alcohol to oil ratios than 

conventional transesterification. Even though the application of in situ transesterification 

eliminates the need for pre-extracted oil, Haas asserts that the resulting biodiesel is still more 

expensive than that produced by conventional transesterification [20]. The reduction of water 

content however, was able to reduce the estimated cost of biodiesel production from $3.14 to 

$1.02 per gallon. [54]. A similar trend has been reported by Qian et. al.,  where methyl ester 

conversion was found to increase significantly from 80% to 98% when the moisture content 

was reduced from 8.7% to 1.9%. Further reductions in moisture content, however, had very 

little effect on level of conversion [39].  

 

By contrast, research at Newcastle University [55] on the in situ transesterification of 

rapeseed using methanol and sodium hydroxide has shown that drying the seeds from 6.7% to 

0% water content neither reduces the solvent requirements, nor increases the yield of ester 

significantly. It was found that ester yields were only reduced when there was more than 2% 

water in the solvent [33]. This indicates that, for rapeseed at least, the drying stage may be 

unnecessary, which should reduce the cost of biodiesel production by this method.  

2.3.2.4 Mixing Intensity 

Two studies by Georgogianni et. al.,  compared the use of a mechanical stirrer at 600 rpm and 

low frequency ultrasound (24 kHz) as a means of agitation in in situ transesterification 

reactions [32, 48]. When the experiments were conducted using methanol, no significant 

difference was noticed, and both agitation methods led to high conversion rates of methyl 

ester after 20 minutes of the reaction. However, when ethanol was used, the application of 

ultrasound produced high conversion rates more rapidly than mechanical stirring. At 40 

minutes, 98% conversion was achieved with ultrasound, whereas mechanical stirring resulted 
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in lower yields of 88% with both sunflower and cottonseed. It was concluded that ultrasound 

produced less soap because no stirring was required, although unfortunately no further 

experiments were conducted to confirm this hypothesis. However, saponifications occurs as a 

result of the reaction between sodium hydroxide and free fatty acid (FFA) and, as with any 

reaction, its occurrence will depend to some extent upon the degree of mixing, but is unlikely 

to be dependent on the form of mixing, so this point is debatable. It may be that, since ethanol 

is a better solvent for triglycerides than methanol, more of the reaction takes place in the 

liquid phase, rather than in the seed leading to a sonochemical enhancement for ethanol but 

not for methanol. 

 

Zeng et. al., studied the in situ transesterification of sunflower seeds with diethoxymethane as 

co-solvent. They found that when using only agitation, the change of speed had no influence 

on biodiesel yield or FAME purity in the ranges tested (300-600 rpm). This may be thanks to 

the co-solvent used which extract the oil out from the seeds [50] or that the ranges tested for 

agitation did not produce a change in the flow region. Because the co-solvent has to be 

removed from biodiesel, the benefit of using it in the process must be balanced with this 

disadvantage.  

2.3.2.5 Molar Ratio of Alcohol to Oil 

All researchers agree that the required molar ratio of alcohol to oil in in situ 

transesterification is extremely high compared to that in the conventional transesterification 

of vegetable oil. Siler-Marinkovic and Tomasevic [44], for example, used a 300:1 ratio in 

their experiments with sulphuric acid as catalyst, while Haas et. al., [21] applied a 543:1 ratio 

for sodium hydroxide. The typical ratio used for conventional transesterification is 6:1 [47]. 

Calculations performed by Haas‟ group indicate that the amount of methanol involved in this 
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process was the main reason for the high production costs of biodiesel [54], mainly because 

the purification of the biodiesel becomes more complicated.   

 

Researchers are now trying to find ways of reducing the amount of alcohol required. The use 

of co-solvents in conventional transesterification is known to improve the solubility of 

alcohol, thereby increasing the rate of reaction [56]. Qian et. al., [39] discussed the feasibility 

of using petroleum ether as a co-solvent in the process. The amount of oil extracted from seed 

and dissolved in methanol increased from 95% in one hour without co-solvent, to 98% with a 

mixture of petroleum ether and methanol. However, petroleum ether/methanol was only 

effective when it was below a volume ratio of 1:3. Above that, the concentration of oil 

became too low.  

 

The application of co-solvents in in situ transesterification has also been investigated in detail 

by Zeng et. al.,[50]. They demonstrated that using diethoxymethane (DEM) as a co-solvent 

reduces the amount of methanol required. At a 58:1 molar ratio of DEM/oil, a molar ratio of 

methanol to oil of only 101:1 was required to produce a 96% yield of crude biodiesel. For 

comparison, the highest yield achieved by researchers working with sunflower seeds was 

97%, but the methanol to oil molar ratio here was 476:1 [48]. 

 

The most recently reported attempt to lower the alcohol to oil ratio used  CO2 as a co-solvent 

[49] at temperatures and pressures at which methanol acts as a less polar solvent. This was 

expected to increase the rate of triglyceride extraction, and therefore the overall reaction rate. 

However, the addition of CO2 only gave positive results when it was used with an acid 

catalyst (in this case sulphuric acid) rather than an alkali. When sodium hydroxide was used, 

sodium carbonate was detected in the system, suggesting that the methoxide was converted to 
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carbonate in the presence of CO2, thereby reducing the amount of catalyst and, 

correspondingly the rate of the reaction. The authors claimed that, using sulphuric acid, the 

total volume of methanol can be lowered by one third without adversely affecting methyl 

ester yield. Not only was the volume of methanol needed lowered, but the rate of reaction 

increased by as much as 2.5 fold.   

 

The reason for a large molar excess of alcohol being needed in in situ transesterification may 

be that the speed of diffusion of alcohol into the particles determines the rate of reaction. A 

high molar ratio would be required to overcome substantial mass transfer resistance in order 

for the reaction to proceed at an appreciable rate. Further evidence for this is the increase in 

reaction rates observed with decreasing particle size [31]. The thermodynamic driving force, 

known as free entropy also may have an effect to the diffusion of solvent into the seed 

particle. 

2.3.2.6 Temperature 

Haas et. al., compared the reaction rates of in situ transesterification of soybeans using 

methanol and sodium hydroxide at room temperature, (23
o
C) and 60

o
C. Both conditions 

yielded high percentages of methyl ester [21], but, at room temperature more methanol was 

required. The optimal molar ratio of alcohol to oil was 2.4-times higher than at the higher 

temperature, whereas in a study at Newcastle University using rapeseed, increasing the 

temperature from 30 to 60
o
C increased the initial rate of ester formation while the time 

needed to reach equilibrium (60 minutes) was comparable [33]. 

 

Noureddini and Zhu have observed that, in conventional transesterification, temperature 

influences mass transfer as well as conversion [57]. The mass transfer region, which was the 
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period when mass transfer is the reaction limiting factor, was reduced from 55 to 20 min 

when temperature was increased from 30 to 60
o
C. This effect was very obvious when the 

reaction was conducted at a low mixing intensity of Re =3100 but became insignificant at a 

high mixing intensity of Re = 6200.  This indicates that, at higher mixing intensities, the 

external mass transfer resistance is removed so that reaction rate is no longer dependent on 

temperature. Temperature should also not have a strong effect on in situ transesterification, 

since the reaction is believed to be largely mass transfer controlled. The results reported by 

Haas et. al., [53] support this, where the conversions achieved with DDGS, methanol and 

sodium hydroxide at three different temperatures of 35, 45 and 55
o
C were almost the same 

and the reactions were completed at the same time of 180 min.    

 

Liu and Zhou [38], on the other hand, reported a considerable increase in reaction rate with 

increasing temperature when sulphuric acid catalyst was used with biomass and methanol.  

For a 20 hour reaction using 0.2 M sulphuric acid, the yield of ester increased from 44.8% to 

96.8 % when the temperature was progressively increased from 40 to 70
o
C. Since 

transesterification is generally much slower with an acid catalyst than alkaline, it is therefore 

conceivable that increases in temperature will produce a more significant effect with acid 

catalysts.    

 

It should be noted that optimal temperature is likely to depend on the feedstock used. 

Different feedstocks will have varied internal structures and therefore different effective 

diffusivities. This may explain some of the apparent contradictions in findings reported in the 

literature.  
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2.3.2.7 Catalyst Concentration 

Catalyst concentration has been identified as the most important factor in determining 

reaction rates of conventional transesterification [58, 59]. Zeng et. al., measured the yield and 

purity of the biodiesel at different concentrations of sodium hydroxide for in situ 

transesterification. They found that while the catalyst concentration did not affect methyl 

ester yield, it did influence its purity, which is the methyl ester concentration, in the final 

product [50]. For instance, in situ transesterification using sunflower seeds, methanol and 

sodium hydroxide at low catalyst concentrations achieved 93% conversion with only 30% 

methyl ester purity, whereas at high concentrations, the conversion was 95% with 98% of 

methyl ester purity.  

 

In contrast, Qian et. al., reported that the conversion of oil to methyl ester for a  

cottonseed/methanol system increased from 33% to 97% when the concentration of sodium 

hydroxide was doubled to 0.1 mol/L [39]. Nonetheless, 0.05 mol/L in this case is equivalent 

to a 0.2:1 molar ratio of catalyst:oil, which is low compared to the levels in Zeng et. al.,‟s 

experiments. The larger amount of catalyst used by Zeng et. al., may explain the apparently 

contradictory results. Additionally, if the rate determining step is the diffusion of alcohol into 

the particles, the different feedstocks used may have contributed to the difference in findings, 

since different oilseeds have different internal structures. 

2.3.2.8 Particle Size 

Since the particle size of the seeds plays a very important role in conventional solvent 

extraction [60, 61], it should be similarly important in in situ reactive extraction. Kildiran et. 

al., investigated two sizes of soybean seeds (<1 mm and <0.5 mm) at three different reaction 

times [31]. At 1 hr reaction time, the larger particle size gave the highest percentage of oil 
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dissolved in ethanol. However, when the reaction time was longer, i.e. at 3 hr and 5 hr, 

smaller particle sizes produced better yields.   

 

Ren et. al., investigated the effect of particle size in rapeseed in situ transesterification [40]. 

The light microscopy and SEM analysis showed that with seed samples at the smallest 

particle size all the lipids were removed after 1h. However, some lipids remained in the 

centre of particle of larger sizes, particles at this time, and it was evident from experiments 

with light microscopy and lipid staining that there was a shrinking core of oil-bearing 

material. As the particle size of the rapeseed fragments increased from 300 – 500 m to 500 – 

850 m, and then to 1000-1400 m, rates of conversion after 1 hour decreased from 86% to 

65% to 43%. The results clearly suggest that, for rapeseed at least, the transport of the 

methanol into the seed particles determined the reaction rate. 

2.3.2.9 Alcohol Type 

At least five types of monohydroxy alcohols have been evaluated as reagents in in situ 

transesterification. Ozgul and Turkay used methanol, ethanol, propanol and butanol as 

reagents with rice bran oil [43]. The solubility of the oil increased with alcohol chain length. 

However, it was noted that, even though the amount of oil dissolved increased, the alkyl ester 

content decreased. The reduction in polarity of the alcohol molecule as chain length increases 

enables it to stabilise the emulsions formed during the course of the reaction. The emulsion 

formed can persist and adversely affect conversion.  
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2.3.3 Biodiesel Quality 

One of the most important factors to be considered in the development of in situ 

transesterification is whether the process can provide the market with biodiesel of sufficient 

quality to meet the requirement of governing bodies. The two main standards are ASTM 

D6751 and EN 14214.  

 

Haas and Scott examined methyl ester produced from soybean flakes via in situ 

transesterification and compared it to the ASTM D6751 standard [53]. The methyl ester 

passed all the tests except for the acid number test, for which it required additional washing 

before it passed the test. Table 2.4 shows the comparison reported by Haas and Scott against 

another standard, EN 14214.  

Table 2.4 Comparison of soybean flake methyl ester obtained via in situ transesterification against ASTM 

D6751 and EN 14214 

Property Soybean methyl 

ester 

ASTM D6751 EN 14214 

Flash point (
o
C) 160 >130 >101 

Water and sediment (vol%) 0 0.05 0.05 

Carbon residue (wt%) <0.010 0.05 0.3 

Sulfated ash (mass%) 0.000 0.020 0.02 

Kinematic viscosity (cSt, at 

40
o
C) 

4.017 1.9-6.0 3.5-5.0 

Sulfur (wt%) 0.00035 0.05 0.001 

Cloud point (
o
C) 0.0 Report Not specify 

Cetane number  >47 >51 

Copper corrosion 1a Class 3 Class 1 

Acid number (mg KOH/g) 0.04 0.80 0.50 

Free glycerine (wt%) 0.000 0.02 0.02 

Total glycerine (wt%) 0.071 0.240 0.25 

Phosphorus (wt%) 0.000 0.001 0.001 

Reduced pressure 350 360 n.a. 
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distillation (temperature at 

90% recovery, 
o
C) 

 

2.4 Reducing the Volume of Reactant 

The enormous amount of reactant used in in situ transesterification is one of the obstacles to 

commercialisation. The reactant needs to be removed from the product, and the separation 

process becomes more energy intensive and expensive when there is more reactant. This has 

an effect on the price of the biodiesel, making it uncompetitive compared to conventional 

biodiesel [54]. This problem has been investigated using two approaches: modifying the raw 

material or the process. 

2.4.1 Modifying the Raw Material 

The main concept in this approach is to disrupt the cell walls inside the raw material, thus 

helping the oil to travel within the cell with less resistance and making the oil body in the cell 

more easily accessible to the reactant. The combination of these effects is then expected to 

reduce the amount of reactant required. 

 

Haas and Wagner pre-treated soybeans with four different physical treatments and 

investigated their performance as raw material in in situ transesterification. The four 

treatments were: 1) dehulling and flaking; 2) dehulling, flaking and passage through a twin 

screw extruder; 3) passage through an expender type extruder and 4) conversion to a flour-

like consistency via disruption in a Pulsewave disintegrator [26]. The second treatment 

successfully reduced the methanol needed by 20-fold from a molar ratio of methanol to 

substrate fatty acids to of 181:1 to 9:1. The other pretreatment regimes were found to be 

ineffective in reducing the amount of methanol required. 
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Although the objective of reducing the reactant was achieved in this study, no further analysis 

was conducted of the energy requiremenst for the pretreatment stages. Whether such a 

combination of dehulling, flaking and extruder could work for other raw material also 

remains to be seen.    

2.4.2 Modifying the Process    

The process is usually modified by introducing other compounds to work as co-solvents.  The 

idea here is that the co-solvent, which is usually non-polar, will help extract the oil from the 

raw material. Once the oil is extracted, it can be transesterified with methanol. Since 

methanol is not used as an extraction agent, the amount used can be reduced. Various non-

polar solvents, such as hexane and diethoxymethane have been employed as co-solvents in in 

situ transesterification process [34, 39, 50]. 

 

Another novel approach is to change the reactant. The conventional reactant used in in situ 

transesterification process is a short-chain alcohol, such as methanol or ethanol. This results 

in the production of methyl ester (biodiesel) and glycerol which is a low value by-product. By 

replacing the short-chain alcohol with short-chain alkyl acetates such as methyl acetate and 

ethyl acetate, triacetin is produced instead of glycerol. Triacetin is a better “co-product” as it 

is used widely as a plasticiser or gelatinising agent in polymers [62], and as fuel additive [63]. 

The utilisation of methyl acetate as a reactant has been studied in the conventional 

transesterification of sunflower oil [64], as well as in transesterification with enzyme 

catalysts [65]. There is as yet no published report however, of the in situ transesterification of 

J. curcas using methyl acetate and either alkali or acid catalysts.   
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In “interesterification”, the alkyl group in triglyceride is replaced by alkyl group in methyl 

acetate, in contrast to transesterification, where the alkyl group in the triglyceride is replaced 

by an alcohol group from methanol instead, as shown in Figure 2.7. The absence of polar 

compounds in the reactant results in a change in the polarity of the mixture, from polar to 

non-polar. This affects the solubility of sodium hydroxide, where it becomes partially soluble 

in the mixture [66]. The addition of a phase transfer agent, such as polyethylene glycol (PEG) 

to the mixture can provide a solution to this problem.   

 

 

Figure 2.7 Process of producing FAME with methyl acetate as alkyl acceptor. The process is known as 

interesterification [66]. 

 

2.5 Raw Material: Jatropha curcas (J. curcas) 

J. curcas was selected as a raw material because it is inedible and its oil properties are similar 

to that of rapeseed. It also grows on almost every type of soil. Research on biodiesel is 
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currently focused on utilizing inedible oils, and J. curcas is one of the most promising 

inedible oils that can be used for this purpose. 

 

It was been reported that in 2008, 900 000 hectares J. curcas was planted globally with 

majority of it located in Asia, and the rest in Africa and Latin America. The report also made 

a projection of 12.8 million hectares of J. curcas plantation by 2015 [67].  

 

2.5.1 General Background 

Jatropha derives from two Greek words: jatros (doctor) and trophe (food). The literal 

meaning of the words implies the function of the tree as a medicinal plant.  

 

Jatropha species, which belong to the Euphorbiaceae family, are small trees or large shrubs. 

The plants can grow up to seven metres tall and are able to survive in harsh conditions. 

Becker and Makkar [68] reported trials of growing J. curcas on degraded land. They showed 

that J. curcas successfully fruited after 9 months, even on land in very poor condition, such 

as coastal sand dunes, where the level of three important soil ingredients (organic carbon, 

total nitrogen and total phosphate) were very low compared to that of fertile land.  

 

Most Jatropha species are toxic. The seed contains phorbol esters, curcin, and lectins, which 

are all toxic substances. However, a species found in Mexico was reported to be non-toxic, 

and is consumed by local people [69]. In general, the fact that the plant is toxic protects it 

from pests and diseases, and also from being a source of food for ruminant animals. 
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The fruit of the plant is comprised of seeds which can be divided into two components, the 

kernel and shell. Achten et. al., [70] collected data from various sources on the composition 

of Jatropha kernels and shells as presented in Figure 2.8. 

 

 

Figure 2.8 Major components in kernel and shell of Jatropha fruit [70] 

 

  

From the figure, it can be observed that two major components in the kernel are crude fat and 

crude protein, while various types of fibre constitute the main components in the shell. The 

shell contains more moisture but less energy than the kernel. 

  

There are 170 known Jatropha species, but the most commonly cited in the literature is J. 

curcas. It is believed that the genus Jatropha originally came from Central America but has 
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since spread all over the world, such as to the countries like India, Nigeria, Mozambique, 

Malaysia, and Thailand.  

2.5.2 Jatropha as a Fuel Source 

Jatropha has been investigated as a fuel source by many researchers. Banerji et. al., [71] 

compared the fatty acid profile of four different species of Jatropha, namely J. curcas, J. 

glandulifera, J. gossypifolia and J. multifida, all of which were found to be suitable for 

methyl ester production.  J. curcas was found to have the highest oil content at 48.5% and J. 

multifida had the highest energy value.  

 

J. curcas is the most widespread species among the Jatropha species, particularly because of 

its high oil content. It has been used directly in engines [72] and transesterified to methyl 

ester [73-76] as well as blended with alcohol [72].  

2.5.3 Composition and Characteristics of J. curcas 

The composition and characteristics of J. curcas play significant roles in determining the 

suitability of the oil as a fuel source.  Table 2.5 shows the fatty acid composition of J. curcas 

[68], which may vary from one plant to another, but generally most of the oil is oleic acid 

(C18:1) and linoleic acid (C18:2). Other major fatty acids include palmitic acid (C16:0) and 

stearic acid (C18:0). Small percentages of myristic acid (C14:0), palmitoleic acid (C16:1) 

linolenic acid (C18:3), arachidic acid (C20:0) and, in some cases, behenic acid (C22:0) are 

also present.  
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Table 2.5 Fatty acid composition of J.curcas oil [61] 

Systematic name C:D Scientific name Percentage (%) 

Myristic  14:0 Tetradecanoic 0.1 

Palmitic  16:0 Hexadecanoic 15.3 

Heptadecanoic 17:0 Heptadecanoic 0.1 

Palmitoleic 16:1 9-hexadecanoic 0.9 

Stearic  18:0 Octadecanoic 6.6 

Oleic  18:1 cis-9-octadecanoic 41 

Linoleic  18:2 cis-9-12-

octadecadienoic 

35.3 

Linolenic  18:3 9,12,15- 

octadecatrienoic 

0.3 

Arachidic  20:0 Eicosanoic 0.2 

Behenic  22:0 Docosanoic tr 

Lignoceleric  24:0 Tetracosanoic 0.1 

C:D = carbon chain: no. of double bond 

 tr = trace 

 

Table 2.6 lists the typical physical and chemical properties of J. curcas seed oil [68, 70]. The 

calorific value (37.8 MJ/kg) of J. curcas oil, for example, is very similar to that of rapeseed 

oil (39.08), which is a main source of biodiesel in Europe [68, 77].  

Table 2.6 Fatty acid composition in J. curcas oil [68, 70]. 

 Range 

Specific gravity (g/cm
3
) 0.860-0.933 

Calorific value (MJ/ kg) 37.83 – 42.05 

Pour point (
o
C) -3 

Cloud point (
o
C) 2 

Flash point (
o
C) 210 – 240 
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Cetane value 

Iodine value 

38.0 – 51.0 

102* 

Saponification number (mg/g) 102.9 – 209.0 

Viscosity at 30
o
C (cSt) 37.00 – 54.80 

FFA % (kg/kg *100) 0.18 – 3.40 

Unsaponifiable % (kg/kg *100) 0.79 – 3.80 

Iodine Number (mg iodine/g) 92 – 112 

Acid number (mg KOH/g) 0.96 – 6.16 

Monoglycerides % (kg/kg *100) nd – 1.7 

Diglycerides % (kg/kg *100) 2.50 – 2.70 

Triglycerides % (kg/kg *100) 88.20 – 97.30 

Carbon residue % (kg/kg *100) 0.07 – 0.64 

Sulfur content % (kg/kg *100) 0 – 0.13 

*from [68]; nd = not detected 

 

2.5.4 J. curcas versus Other Inedible Oils  

Fatty acid composition plays a very important role in determining biodiesel properties. Plant 

oils have a wide variety of compositions. Table 2.7 lists fatty acid compositions of four 

different inedible oils [78]. These four types of plants are among the most studied inedible 

plant in biodiesel research.  

 

Amongst the important factors in biodiesel quality are cetane number (CN) and iodine value 

(IV). CN is a measure of the ignition delay when the fuel is injected into the cylinder. Fuels 

with short ignition delay have higher CN, thus perform better as fuel. IV is used to measure 

the total level of unsaturation in the oil. High IV levels in oil generate problems such as the 

polymerisation of the oil, leading to deposits being formed on engine parts [79].   
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Table 2.7 Fatty acid composition in various non edible oils [78] 

Fatty acid  C:D J. curcas P. pinnata S. oleidis A. indica 

  (%) 

Capric 10:0   0.8  

Lauric 12:0   35.6  

Myristic 14:0 1.4  50.7  

Palmitic 16:0 15.6 10.6 4.5 14.9 

Stearic 18:0 9.7 6.8  14.4 

Oleic 18:1 40.8 49.4 8.3 61.9 

Linoleic 18:2 32.1 19 0.1 7.5 

Arachidic 20:0 0.4 4.1  1.3 

Eicosenoic 20:1  2.4   

Behinic 22:0  5.3   

Lignoceric 24:0  2.4   

C:D = carbon chain: no. of double bonds 

 

According to the European Standard EN 14214, the CN of biodiesel must be more than 51 

while the IV must be less than 120g I2/100g.  Table 2.8 compares the four prominent inedible 

oils with respect to EN 14214 specifications. 

Table 2.8 CN and IV of inedible oils compared to EN 14214 [78] 

Property Units Limits Jatropha 

curcas 

Pongamia 

pinnata 

Salvadora 

oleidis 

Azadarichta 

indica 

  Min. Max.     

Cetane 

No. 

- 51  52.31 55.84 7.6 57.83 

Iodine 

Value 

g I2/100 g  120 93 80.9 66.13 69.3 

 

In terms of CN and IV, neat oil from all of the plants listed falls within the limits set by EN 

14214. CN levels are expected to increase once the neat oil is blended with diesel oil, as 

observed in a number of studies [68, 74]. Iodine values however, remain the same. 

 

Other than CN and IV, the oxidation stability and cold filter plugging point (CFPP) must also 

be within EN 14214 specifications. CFPP is a criterion used to predict the performance of 
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biodiesel at cold temperatures. It has been suggested that CFPP depends on the length of the 

carbon chains in biodiesel [30], where the longer the chains, the worse the low-temperature 

properties will be [80]. However, this claim was made in a study of peanut biodiesel and no 

publications report the CFPP properties of inedible oils.  

 

None of the inedible oils listed in Table 2.7, has carbon chains longer than arachidic acid 

(20:0), except for P. pinnata, 10% of whose carbon chains are longer than that. Although no 

study has reported the cold flow properties of P. pinnata, these may be expected to be worse 

than those of the other inedible oils. 

  

Muniyappa et. al., [81] investigated the correlation between the density, viscosity and cloud 

point of biodiesels from soybean and tallow oil. It was found that the high cloud point 

obtained for methyl ester from beef tallow oil was due to its high concentration of saturated 

fatty esters. Three of the inedible oils considered (J. curcas, P. pinnata, A. indica) also 

contain high percentages of unsaturated fatty acids, and so they are unlikely to suffer from 

this problem. J. curcas contains the highest percentage of unsaturated fatty acid at 72.9 %, 

while P. pinnata and A. indica each contain 68.4 %. The high percentage of fatty acid in S. 

oleidis, however, comes in saturated for fatty acid, especially as myristic and oleic acids. The 

combination of these fatty acids contributes about 96.3% of the overall composition of the 

oil. Therefore biodiesel from S. oleidis is likely to have poor cloud point properties, but no 

studies could be found to corroborate this.  

 

A. indica is more renowned for its medicinal properties than its capability as a new raw 

material in biodiesel production. Exploited largely in India for medicinal purposes, A. Indica 

can also be used as a biopesticide [82]. The significant impact A.indica has made in medicine, 
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especially in India, is far more attractive than its prospects as a raw material for biodiesel 

production.  

 

Out of the four inedible oils listed, J. curcas remains the best option as a raw material for 

biodiesel production. The CN of the oil may be the lowest of the four, but it is still within the 

EN 14214 minimum limit. The oil fatty acid composition in J. curcas is dominated by oleic 

(18:1) and linoleic (18:2) acids, both of which are unsaturated fatty acids and thus the high 

cloud points of oils with high percentages of saturated fatty acids will be avoided. The 

longest fatty acid chain in J. curcas is arachidic acid (20:0), which contributes to 0.4% of its 

overall composition. The lack of long fatty acids in J. Curcas will help to avoid the CFPP 

problem. This is very important in order to ensure that the biodiesel would be accepted at 

higher latitudes.  

 

J. curcas is a toxic plant, so is not consumed by animals. Although one study has reported a 

non-toxic J. curcas, this variety was exclusive to Mexico [69]. J. curcas is capable of 

growing in very challenging environments, and Becker and Makkar [68] have listed the 

characteristic of soils in India where the plant fruited after 9 months as shown in Table 2.9 

Table 2.9 Characteristic of soils (at 15 cm depth) in India where J.curcas fruited after 9 months [68] 

Type of soil Organic carbon (%) Total nitrogen 

(kg/ha) 

Available phosphate 

(kg/ha) 

Rocky and hard soil 0.2 155 13 

Heavy Black soil 0.5 465 2 

Laterite soil 0.4 310 2 

Red loam 0.2 181 2 

Coastal sand dune 0.1 86 2 

Fertile land 2 9000 100 
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The study proved that J. curcas can grow and fruit on poor and stony land. The plant can also 

tolerate long dry seasons and is resistant to disease. Because of the capability of J. curcas to 

grow in arid and semi-arid land, its cultivation would not reduce the amount of available 

fertile land used for food crops. It would also not affect current tropical forest, savannah or 

grassland environment, all of which are very important for the carbon cycle. Instead, by 

utilizing degraded, arid, semi-arid and barren farm land little or no carbon debt would be 

involved which would give advantages in terms of managing greenhouse gas emissions [83, 

84], as well as favouring countries with vast areas of wasteland such as India. Issues in the 

reclamation of such wastelands, as well as prospects for increasing the socio-economic 

profiles of degraded areas from the planting of J. curcas have been discussed in detail by 

Francis et. al., [85].  

 

Even though the advantages of J. curcas are widely acknowledged, the acceptance of J. 

curcas as a raw material in biodiesel production still appears unpromising. Among the 

barriers that contribute to the reluctance to use it are the following: 

 Lack of availability of detailed information about large-scale cultivation and 

harvesting, compared to its competitors, such as rapeseed, oil palm and soy.  

 Limited agronomic studies so far, leading to various uncertainties. For example, it has 

been claimed that J. curcas has low nutrient requirements for growth, whereas recent 

studies have shown that an insufficient supply of nutrients will lead to reduced growth 

and crop production [86, 87]. 

 Lack of species development through special breeding programmes. 

 Availability of competitor species. 

 Lack of investigation into the utilisation of by-products. Since the by-products contain 

toxic components, they cannot be sold as animal feed. 
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 Lack of information about the dangers of processing, due to the toxicity and 

carcinogenicity of J. curcas. 

 

2.5.5 Biorefining Opportunity 

J. curcas seeds contain many valuable chemical compounds. Among those identified are 

proteins [88, 89], phenol [90] and phorbol ester [91, 92]. In biodiesel production, the proteins 

usually concentrate in the solid waste of seeds extraction. Rapeseed meal has been reported 

as an excellent source of protein-rich meal for animals [93]. However, meal from J. curcas 

has been found to be toxic and needs further treatment before it can be utilised as animal feed 

[94].  Makkar and Becker identified the protein types in J. curcas meal and found that it is 

very similar in this respect to soybean meal, with all essential amino acids present [95]. 

Phenolic compounds, meanwhile, offer nutritional benefits in the form of antioxidants [79].  

Phorbol esters can be used as high value biopesticides and insecticides [96]. They may also 

possess medicinal value, as one study has shown that a phorbol ester isolated from J. 

gossypifolia, a near relative of J. curcas, successfully inhibits cancer cell activity [97].  

 

2.6 Summary of Literature Review 

Biodiesel is conventionally produced via the transesterification process, where the refined, 

bleached vegetable oil reacts with alcohol in the presence of acid or alkali catalysts. Because 

refined, bleached vegetable oil is used as a raw material in this process, its cost alone can 

account for 75% of overall expenditure [98], which subsequently affects the price of 

biodiesel. On top of that, edible oils have usually been the preferred feedstocks, but their 

price is volatile, so biodiesel prices will fluctuate in response. The debate on food versus food 
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has become intense, as the demand for agricultural crops increases year-on-year with the 

accelerating use of edible oil seeds for biodiesel production [99]. 

 

To address this problem, the possibility of using another reaction route, called in situ 

transesterification, on non-edible species seeds of J. curcas has been evaluated.  

 

In situ transesterification is an approach to the production of biodiesel from oil-bearing 

materials instead of directly from the oil. To date, the reaction has been tried with various 

kinds of oil-bearing materials, and has successfully produced biodiesel. The process is 

influenced by many variables such as raw material particle size, the molar ratio of alcohol to 

oil, catalyst concentration, reaction temperature, reaction time and mixing speed intensity. 

The diversity of potential raw materials means that optimal operational conditions for the 

process vary widely.   

 

The literature demonstrates that the in situ transesterification process can occur in the 

presence of either acid or alkali catalysts. However, it does not proceed without a catalyst. 

The major difference when these two catalysts are used is that acid catalysts take a longer 

time to complete the reaction compared to alkali catalysts. Both, nonetheless, produce high 

yields of biodiesel. 

 

The use of excessive alcohol has hindered the commercial development of this process, and 

the possibility of reducing the amount of reagent in in situ transesterification has therefore 

been investigated. Compared with the 6:1 - 9:1 molar ratio of alcohol to oil in the 

conventional process, in situ transesterification require ratio of about 300:1 to 500:1 to 

produce significant biodiesel yields. The recovery of this huge amount of alcohol from the 
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product by distillation would be very energy intensive and strongly affects the final 

production cost.     

 

It has also been shown that the reaction is able to progress at moderate temperatures. The 

maximum temperature used is usually just under the boiling point of the alcohol used. The 

performance of the reaction in high pressure conditions has never been studied, since it 

already progresses sufficiently well at atmospheric pressure. Reports of the effect of mixing 

intensity on the reaction are scarce. Generally, researchers have used a minimum of 200 rpm 

in mixing.     

  

Short-chained alcohols such as methanol and ethanol are commonly used for this reaction. 

Longer chained alcohols have been tried, but the reduced solubility of the catalysts in alcohol 

decreases the biodiesel yield. The drying step has proven to be important for certain 

feedstocks such as soybean, but has no impact on other feedstocks, such as rapeseed.    

 

The possible utilisation of non-edible raw materials in biodiesel production has reignited 

interest in this process. Four different non-edible oils, namely J. curcas, P. pinnata, A. indica 

and S. oleidis, have been compared in terms of their suitability as raw materials. J. curcas-

derived biodiesel has CN and IV within EN 14214 limit, and contains short carbon chains 

(not more than 20 carbons), and has a high percentage of unsaturated fatty acid which will 

help in avoiding high CFPPs and will reduce the cloud point. Therefore it was used as a raw 

material for biodiesel production in the present study. The possibility of producing high value 

co-products from J. curcas, such as protein, phenol and methyl ester has also been discussed.   
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3 MATERIALS AND METHODS 

Since J. curcas seeds are used as raw material in the process investigates in this research, the 

need to understand the seeds themselves prior to converting them into biodiesel is paramount. 

Among the characteristics studied are the oil content, moisture content, free fatty acid 

content, acid value and fatty acid profile. 

 

Following the study of seed characteristics, the first experiments investigated the relationship 

between seed particle size and biodiesel yield. From this experiment, a suitable particle size 

was selected and used throughout the study. The effect of moisture on the reaction was also 

investigated. The reaction was then tested with a range of different catalysts, in order to 

determine the most suitable catalyst to be utilised in the process. 

 

The parameters involved in the process were then investigated using a design of experiments-

based matrix. However, because no data were available to set the highest and lowest values 

of the parameters used, one-at-a-time experiments were carried out first. Here, one parameter 

was varied while the others were held constant. The parameters studied were: molar ratio of 

alcohol to oil, catalyst concentration, reaction temperature, reaction time and mixing speed. 

In the design of experiment investigation, a full factorial design (2
5
) was employed. Then, a 

response surface methodology was utilised to inspect the findings at higher mathematical 

orders, the results of which were subsequently used to suggest the optimal conditions for 

running the experiment. Time profile experiments were then performed to observe the 

behaviour of the process as the reaction progressed. In these experiments, information about 

impurities in the biodiesel including diglyceride and triglyceride, was also collected.    
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This was followed by series of modified experiments, the aim of which was to address the 

problem of the excess volumes of methanol used in the in situ transesterification process. 

Firstly, the performance of two different co-solvents (hexane and dimethylethoxymethane) in 

the reaction was evaluated. Then, methyl acetate was used as a substitute for methanol. 

 

The economic feasibility of the process also depends on the added value of the by-products 

generated, and in this study the fate of phenols and protein was investigated. 

 

The analytical methods used throughout this study were gas chromatography (GC) and gas 

chromatography-mass spectroscopy (GC-MS). Light microscopy and Scanning Electron 

Microscopy (SEM) were used to get more information from the experiments result.  

  

3.1 Characterisation of the Oilseeds 

Characterisation of the oilseeds was performed to understand and confirm their properties. 

This was essential as the difference between J. curcas batches can be significant. In this 

section, the kernel oil, moisture and volatile matter content were checked. The acid value and 

the acidity of the oil, as well as the fatty acid profile were investigated and reported. 

 

3.1.1 Determination of Kernel Oil Content 

J. curcas seeds were provided by the Indian Institute of Petroleum (IIP), Dehradun, 

Uttarakhand, India. Seeds were received in batches and stored in opaque air-tight containers. 

The oil content of J. curcas was determined according to the procedure described by the 

British Standards Institution (BS EN ISO 659:2009).The seed coats were separated manually 
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from the kernels prior to the experiments. The kernels were ground and sieved until their size 

was not greater than 2 mm. The ground seeds were then dried in an oven at 80
o
C until the 

difference in mass between before and after drying was less than 10%. 10g samples of the 

ground seed kernels were weighed and put inside a cellulose thimble and plugged using 

cotton wool. 

 

The thimble was placed in the Soxhlet apparatus, while hexane (Fisher Scientific, UK) was 

poured into the flask connected to the bottom of the apparatus. 1 mg of anti-bumping 

granules (Fisher Scientific, UK) was added to the solvent. Heating was performed so that the 

rate of reflux was at least 3 drops per second.  The extraction was left to run for 4 hours. 

After that it was allowed to cool and the thimble was removed and left to dry.  

 

The extracted seed kernels were then put into the grinder again, and ground for 7 minutes, 

before being extracted again for another 2 hours. This procedure was then repeated one more 

time for another 2 hours. Hexane was then removed from the solvent using a heated rotary 

evaporator (Buchi, Switzerland) under vacuum conditions. The flask was then placed in the 

oven at 103
o
C to eliminate any remaining traces of hexane. After cooling in a desiccator, the  

flask was weighed and the mass was recorded as
1m . The flask was then reheated for 30 

minutes and the mass subsequently recorded again as 
2m . 

12 mm  must not equal more than 

5 mg, otherwise the sample has to be reheated and weighed again. The oil content, w, was 

then calculated from the equation below  
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Figure 3.1. Picture of Soxhlet extraction apparatus. 

 

100
1

2

m

m
woc           Equation 3.1

      

where 
1m  = mass (g) of the test portion 

            
2m  = mass (g) of the dried extract 

 

3.1.2 Moisture and Volatile Matter Content 

Moisture and volatile matter content were determined using a procedure described by the 

British Standards Institution (BS EN ISO 665:2000). 

 Cooling water out 

Condenser 

Cooling water in 

Cellulose thimble 

Heater 
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 A flat-bottomed vessel (with lid) was dried for 1 hour at 103
o
C and then weighed after being 

placed in a desiccator to cool, giving 0m . 5 g of J. curcas seeds were put into the vessel and 

weighed again, 
1m . The seeds were ground to a size of less than 2 mm and were used without 

particle distribution analysis. The test sample in the vessel (lid removed) was then placed in 

the oven (Memmert, Germany), with the temperature set at 103
o
C. After 3 hours, the vessel‟s 

lid was closed and it was cooled in a desiccator. The vessel (with lid) was weighed once it 

reached room temperature, giving 
2m . 

 

The determination was considered as finished if 
12 mm  was equal to or less than 0.005g. 

The above procedure was repeated if the difference between weighing was greater than 

0.005g. However, instead of 3 hours of drying, 1 hour as used for the second, third and 

subsequent dryings, until the determination was complete. Equation 3-2 below was employed 

to calculate the mass percentage of moisture and volatile matter in the sample mass. 

%100
01

21

mm

mm
wm         Equation 3.2 

 

where  0m  = mass (g) of the vessel 

             
1m  = mass (g) of the vessel and sample before drying 

       
2m  = mass (g) of the vessel and sample after drying 
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3.1.3 Acid Value and Acidity 

The determination of acid value and acidity (percentage of free fatty acids) was carried out 

based on a titration method. The procedure used in the experiments is described in detail by 

the British Standards Institution (BS EN ISO 660: 2009). 

50 mL of ethanol (96%, Fisher Scientific, UK) containing 0.5 mL of phenolphthalein 

indicator (Fisher Scientific, UK) was boiled in the flask. The solution was then neutralised 

using 0.1 mol/l potassium hydroxide (Fisher Scientific, UK) while its temperature was still 

above 70
o
C. The titration endpoint occurred when a single drop of potassium hydroxide 

produced a slight but definite colour change lasting for about 15 seconds. 

 

The neutralised ethanol was then mixed with 10 g of J. curcas oil. The mixture was then 

titrated with potassium hydroxide solution while being vigorously agitated. The titration was 

considered to be complete when the first permanent pink colour appeared for at least 15 

seconds. 

 

The acid value, AVw (mg/g KOH), was calculated from Equation 3.3, while acidity 
FFAw  (%) 

was calculated using Equation 3.4: 

 

m

cV
wAV

1.56
         Equation 3.3 

 

m

McV
wFFA

1000

100
         Equation 3.4 

 

where c   = concentration (mol/l) of the potassium hydroxide used 
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V  = volume (mL) of potassium hydroxide used 

m  = mass (g) of Jatropha oil used 

M = molar mass (g/mol) of the acid. In this case, it was oleic acid (282   

        g/mol).  

3.1.4 Fatty Acid Profiles 

The fatty acid profile of J. curcas oil was determined by comparing the retention time of the 

peaks eluted from the sample chromatogram with standard peak values, allocating the peaks 

accordingly and quantifying the amounts versus the internal standard. Before undergoing gas 

chromatography analysis the oil had to be converted into the ester form, to reduce its boiling 

point. The transesterification method, as described in details by the British Standards 

Institution (BS EN ISO 5509:2001), was used to convert the oil into its ester. 

 

The procedure for converting the oil started by dissolving 60 mg of oil in 4 mL of isooctane 

(Sigma Aldrich, UK). 200 μl methanolic potassium hydroxide solution (2 mol/l), which was 

prepared beforehand, was then added to the solution. The mixture was shaken vigorously for 

about 30 seconds and 1 g of sodium hydrogen sulfate monohydrate (Sigma Aldrich, UK) was 

added to neutralise the potassium hydroxide. The upper layer was decanted and was then 

injected into the gas chromatography column. 

 

The eluted peaks then were compared to those individual fatty acid standards. Standards were 

available for methyl laurate, methyl palmitate, methyl stearate, methyl oleate and methyl 

linoleate, purchased from Sigma Aldrich, UK. 
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3.2 In situ Transesterification Experiment 

A 250 mL Schott bottle was used as the reaction vessel for the in situ transesterification 

experiment. A pre-determined amount of methanol was added to the bottle together with the 

relevant amount of catalyst. The mixture was then placed in the programmable incubator 

shaker (IKA, Germany) and shaken at 400 rpm until the catalyst had completely dissolved. At 

the same time, the mixture was pre-heated to the desired reaction temperature. When the 

methanolic solution had reached the desired temperature, 10 g of J. curcas seeds were 

introduced to the solution. All of the physical parameters (temperature, agitation speed and 

time) were controlled from the incubator.  Figure 3.2 shows the IKA programmable incubator 

shaker employed throughout the study. 

 

 

Figure 3.2 Programmable incubator shaker used to control temperature, agitation speed and time, with 

Schott bottle used as reaction vessel. 

 

Figure 3.3 below shows the next stages of the experiment which were conducted after the 

bottle had been removed from the incubator. A vacuum pump (KNF, Germany) together with 

a filter were used to separate the solid and liquid under vacuum conditions. Glacial acetic 
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acid (Fisher Scientific, UK) was added to the liquid part to neutralise the base catalyst, thus 

ensuring that the transesterification reaction had completely stopped.  

 

Most of the methanol was removed from the mixture using a rotary evaporator (Buchi, 

Switzerland) with the temperature set at 55
o
C - 60

o
C under vacuum conditions. 10 mL of 

hexane (Fisher Scientific, UK) was then added to the remaining mixture, in which the methyl 

ester in the mixture dissolved. Because of the difference in polarity between methanol and 

hexane, the glycerol, catalyst and un-reacted triglycerides were dissolved in methanol whilst 

the methyl ester dissolved in hexane. The mixture was then transferred to a separating funnel 

for gravitational separation. 

 

Figure 3.3 Schematic representation of the process flow of in situ transesterification process 
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The biodiesel-rich layer appeared in the top half with the glycerol-rich layer in the bottom 

half. The mixture was then washed with warm water. After the glycerol layer had drained out, 

the upper hexane/biodiesel layer was put on an evaporating disc and heated at 60
o
C using a 

hot plate in a fume cupboard. The mass of the biodiesel was recorded, and it was then 

analysed by GC to determine the percentage of methyl ester. Equation 3.5 was used to 

calculate the methyl ester yield: 

 

 

Equation 3.5 

3.2.1 Study of Process Parameters 

In order to study all variables, experiments were conducted by changing each parameter of 

interest whilst holding other parameters constant. Table 3.1 below summarises the settings of 

all parameters used in the experiments. The settings were based on previous work by Haas et. 

al.,  and Harvey and Zakaria [21, 100] 

Table 3.1 Parameter settings for the process parameters study 

Experiment 

Parameters 

Seed 

size 

(mm) 

Mixing 

speed 

(rpm)* 

Reaction 

temperature 

(
o
C) 

Reaction 

time 

(min) 

Catalyst 

concentration 

(N) 

Alcohol:oil 

molar ratio 

Effect of 

particle size 

<0.5-4 400 60 60 0.1 400 

Effect of 

mixing speed 

<0.71 100-400 60 60 0.1 400 

Effect of 

reaction 

temperature 

<0.71 400 30-60 60 0.1 400 

Effect of 

reaction time 

<0.71 400 60 10-60 0.1 400 

Effect of <0.71 400 60 60 0.1-0.2 400 
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catalyst 

concentration 

Effect of 

methanol to 

oil molar ratio 

<0.71 400 60 60 0.1 200:1-600:1 

*To convert RPM to G Force [g = (1.118 x 10
-5

) x RPM x 2 cm] 

 

3.2.2 Study of Main Parameters and Their Interaction using Design of Experiments (DoE) 

The Design of Experiment technique was used to determine the main factors in the process, 

as well as to study the interaction between factors in the experiments. Design Expert
®
 

Version 7 software (StatEase, USA) was utilised for this purpose. The data set was first tested 

using two-level factorial design and then with the response surface methodology (RSM). 

 

3.2.2.1 Two-level Factorial Design 

Factorial design was used to identify the most important factors among many experimental 

factors and also to investigate the interaction between factors. The method can also suggest a 

first order equation that fits the data, and furthermore can give recommendations as to 

whether or not higher order testing is needed by analysing the presence of curvature within 

the data. 

 

Five factors were considered in the design stage, which were molar ratio of methanol to oil, 

catalyst concentration, reaction time, reaction temperature and mixing speed. High (+1) and 

low (-1) levels of each factor were determined earlier in the process parameters study. Table 

3.2 lists all the factors considered with their respective high and low levels.  
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Table 3.2 Factors involved in full factorial design with their respective levels 

Factor Unit Code Level 

-1 +1 

Molar ratio of methanol to oil  - A 100 400 

NaOH concentration  N B 0.1 0.2 

Reaction time  Min C 10 60 

Reaction temperature  
o
C D 30 60 

Mixing speed  rpm E 100 400 

A full factorial design was used to evaluate the effect of the factors involved. A number of 

centre points were also tested to provide information about curvature as well as the stability 

of the process. The dependent variable (response) selected was the yield (wt %) of methyl 

ester obtained from the experiments. 

 

3.2.2.2 Response Surface Methodology (RSM) 

The Central Composite Design (CCD) in response surface methodology was utilised to fit the 

data in a second-order model as well as to optimise the process. Additional experiments were 

added to the design to provide the data at the „star point‟; in order to create a central 

composite design. Table 3.3 below lists the star points, encoded as –α and +α.   

Table 3.3 Star points of the design for RSM experiments 

Factor Unit Code Level 

-α +α 

Molar ratio of methanol to oil  - A 26.0 474.0 

NaOH concentration  N B 0.08 0.22 

Reaction time  Min C 0 72.0 

Reaction temperature  
o
C D 23.0 67.0 

Mixing speed  Rpm E 26.0 474.0 
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3.2.3 Time Profile of the Reaction 

A different set-up was used to study the development of the reaction as time progressed. This 

was necessary since it was difficult to monitor the reaction as it progressed using the 

procedure described in Section 3.2. For this purpose, a 1 L three neck flask was used as the 

reaction vessel. The mechanical stirrer (VWR International, UK) was connected in the middle 

neck while the condenser was attached to the other neck. The flask was half submerged in the 

heated water bath (Fisher Scientific, UK) which was set to the reaction temperature. Figure 

3.4 shows the experimental setup for the experiment. 

 

 

Figure 3.4. Experimental setup for time profile study. A-stirrer; B-cooling water out; C-condenser; D-

cooling water in, E-three neck flask 

 

A 

C 

D 

E 

B 
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Methanol was put into the flask first, followed by NaOH. The mixture was stirred until all of 

the NaOH had dissolved in methanol. The temperature of the methanolic solution was 

checked to ensure that it had reached the desired reaction temperature. 40 g of the pre-ground 

J. curcas seed was then put into the flask. 

 

1 mL of reaction mixture was taken from the flask at different times. 5 µl of acetic acid was 

added to neutralise the NaOH. To separate the solid that was accidentally taken out during 

sample withdrawal, the mixture was passed through a 13 mm, 0.45 µm membrane syringe 

filter (VWR International, UK). The small portion of the sample then underwent gas 

chromatography analysis (Section 3.5.2). The remaining sample was heated until its mass 

was constant, to remove the methanol from the sample. The product was separated into two 

layers after it had gravitationally settled. The top ester layer was taken out and analysed to 

determine the concentrations of monoglyceride, diglyceride and triglyceride (Section 3.5.3.2 

and 3.5.3.3).  

 

3.2.4 Effect of Moisture 

To examine the effect of moisture on the methyl ester yield, the in situ transesterification 

reaction was applied to the J. curcas seed samples with different levels of moisture content. 

This was achieved by adding water to the dry samples. Samples were spiked with 0.5, 1, 3, 5, 

7, 9 wt% of water. The other parameters were set at 60
o
C, 400 rpm and 0.1 N sodium 

hydroxide catalyst. The time of the reaction was 1 hour and the methanol-oil molar ratio was 

400:1. 
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3.2.5 Catalyst Type 

A comparison was made between an alkali-based catalyst (sodium hydroxide), an acid-based 

catalyst (sulphuric acid) and a methoxide catalyst (sodium methoxide). All of the catalysts 

were utilised in the in situ transesterification process with 10 g of J. curcas seeds. The other 

parameters were set at a molar ratio of methanol-oil of 400:1, an agitation speed of 400 rpm, 

a reaction temperature of 60
o
C, and a reaction time of 1 hour. Sodium hydroxide was tested 

in three different concentrations of 0.05 N, 0.1 N and 0.2 N. Sodium methoxide was 

examined in four different concentrations of 0.025 N, 0.05 N, 0.01 N and 0.2 N, while 

sulphuric acid was only tested at one concentration, 0.08 N. 

 

3.3 Modifying the In situ Transesterification Process 

3.3.1 Co-solvent Experiments 

As shown in Table 3.4, the effect of adding co-solvents to the in situ transesterification 

process was examined by using two solvents, hexane and dimethoxymethane (DEM) (Sigma 

Aldrich, UK).  Both solvents were used at three different solvent/oil molar ratios; 10, 30 and 

50:1. The minimum methanol/oil molar ratio investigated was 25, whilst the maximum was 

100. Sodium hydroxide concentration was fixed at 0.1 N. Experiments with hexane were 

conducted at 60
o
C whilst those with DEM were at 40

o
C. The reactions were monitored 

continuously for 60 minutes.  
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Table 3.4. Experiment matrix for investigation of hexane and DEM as co-solvents for the in situ 

transesterification process 

Co-solvent Methanol/ Oil molar 

ratio 

Co-solvent/oil molar 

ratio 

Hexane 

Reaction temperature: 35
O
C 

NaOH concentration: 0.1 N 

Reaction time: 60 min 

50 

10 

30 

50 

100 

10 

30 

50 

200 

10 

30 

50 

 

DEM 

Reaction temperature -35
O
C 

NaOH concentration– 0.1 N 

Reaction time - 60 min 

50 

10 

30 

50 

100 

10 

30 

50 

200 

10 

30 

50 

 

 

3.3.2 Methyl Acetate as a Reactant 

Sodium methoxide (CH3NaO) was used as a catalyst in this experiment and because it is 

insoluble in methyl acetate, a suitable co-solvent to dissolve it was introduced, polyethylene 

glycol (PEG) was used for this purpose following the work by Casas and co-researchers [64]. 

The in situ transesterification reaction was conducted as mentioned in section 3.2. The bottle 

was charged with a pre-determined amount of polyethylene glycol (PEG) and the 

corresponding amount of CH3NaO catalyst was then added to the liquid. To dissolve 

CH3NaO in the PEG, the bottle was then placed in the incubator at 50°C and 400 rpm for 5 

minutes. After this dissolution period, the pre-measured volume of methyl acetate and 10g J. 

curcas were added to the catalyst mixture. The reaction was then treated at 50°C and 400 rpm 

and left for a duration of 90 minutes.  
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Table 3.5 Factors involved in experiment with their respective levels 

Factor Description 
Level Units 

-1 0 +1  

A Molar ratio of PEG/catalyst 3:1 51.5:1 100:1 - 

B Molar ratio of methyl acetate/oil 50:1 175:1 300:1 - 

C Catalyst concentration 0.05 0.13 0.20 mol/L 

 

A Design of Experiments (DOE) matrix was employed to determine the effect of the selected 

process parameters on the yield of FAME. Three factors were considered to be independent 

variables: the molar ratios of polyethylene glycol to catalyst and methyl acetate to oil, and 

catalyst concentration, as shown in Table 3.5.  

 

3.4 Phenol, Protein and Soap Analysis  

3.4.1 Phenol 

The method described by Singleton et. al., [101] was used to determine the amount of phenol 

present throughout the reaction. The analysis required a ultra violet-visible spectrophotometer 

(UV-VIS) at 760 nm. The UV-VIS sample was prepared by adding 50 mg of reaction sample 

to 35 mL of distilled water and 2.5 mL Follin-Ciocalteu reagent in a 50 mL volumetric 

cylinder. The mixture was left for three minutes, where upon 7.5 mL of 20% sodium 

carbonate solution was added. Distilled water was then added up to the 50 mL mark. The 

mixture was left again for two hours before analysis using the UV-VIS spectrophotometer.  

   

3.4.2 Protein 

The protein analysis was carried out by determining the nitrogen content via elemental 

analysis in a carbon-hydrogen-nitrogen analyser (CHN) (Perkin Elmer, UK). The analysis 
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was conducted with fresh seeds before the reaction and seeds after reaction. The amount of 

nitrogen was multiplied by a factor 5.53 to derive the amount of protein in the sample [102].  

 

3.4.3 Soap 

The amount of soap was quantified for use in the mass balance calculation. The soap analysis 

procedure was adapted from the Official Methods and Recommended Practices of the AOCS 

[103]. Acetone (2 % vol. water) (Sigma Aldrich, UK) was prepared and 0.5 mL of an 

indicator, bromophenol blue (Sigma Aldrich, UK), was added to it. The solution was titrated 

with 0.1 N hydrochloric acid (HCl) solutions until the acetone became yellow. 

 

Both ester and glycerol phases after the reaction were analysed. A 5g sample was used from 

the ester phase whilst 0.5g was taken from the glycerol phase. Each sample was put into a test 

tube and 1 mL of water was added. 50 mL of neutralised acetone was then added. The 

mixture was titrated with 0.1 N HCl slowly until the colour changed from blue to yellow. The 

total volume of HCl was recorded as mLa.  

 

The amount of soap was calculated using Equation 3.6 

 

 

Equation 3.6 

 

3.5 Analytical Methods 

Throughout the study, a number of analytical instruments were used to analyse the results. 

Gas chromatography (GC) was used to provide data on FAME yield and mass percentage, 
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whilst gas chromatography equipped - mass spectrometry (GC-MS) was used to analyse 

levels of mono, di and triglycerides and glycerol. Seed morphology was investigated using a 

light microscope and Scanning Electron Microscope (SEM). 

3.5.1 Gas Chromatography – Total Ester Mass Fraction Calculation 

A flame ionisation detector (FID) HP5890 Series II (Hewlett Packard, USA) gas 

chromatograph fitted with a BPX70 column, 30 m long x 0.32 mm ID x 0.25 μm film 

thickness (SGE, Australia) was used to analyse the samples. Helium was used as the carrier 

gas at a pressure of 7 psi and oven temperature was maintained at 230°C for 30 minutes. 

 

The data was acquired and processed using Clarity Chromatography Station for Windows 

(DataApex, Czech Republic). This software allowed the integration of peaks on the 

chromatogram to be performed.  

 

An internal standard, methyl heptadecanoate solution was prepared prior to sample 

preparation. To prepare the solution, methyl heptadecanoate was weighed to approximately 

500 mg in a 50 mL volumetric flask. Heptane was then added up to the 50 mL mark.  

 

A 250 mg of the sample was then weighed and placed in the vial, before 5 mL of methyl 

heptadecanoate solution was added. The mixture was mixed thoroughly using a MS1 

Minishaker (IKA, Germany). 1 μL of the sample was then injected into the GC using a 5 μL 

microsyringe (SGE, Australia).   

 

The total methyl ester mass fraction was calculated according to the guidelines given by 

British Standards Institution (BS EN 14103:2003). The chromatogram obtained was treated 
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before it could be used in the equation. Integration of the peaks was performed in order to 

eliminate the solvent peak from the calculation. The ester content in the sample, C, expressed 

as a mass fraction percentage, was then calculated using Equation 3.7 below: 

 

%100
m

VEIEI

EI

EI C

A

AA
C  

Equation 3.7 

  

where 

 ∑A = total peak area from the methyl ester C14 – C24:1 

 AEI = peak area corresponding to methyl heptadecanoate 

 CEI = concentration in mg/mL of the methyl heptadecanoate solution 

 VEI = volume in mL of the methyl heptadecanoate solution used 

 m = mass of the sample (mg) 

 

3.5.2 Gas Chromatography Technique – Calculation of Methyl Ester Mass  

From Equation 3.7, it can be observed that the calculation of FAME yield is dependent upon 

the mass of the ester phase, which was obtained after numerous downstream processing steps 

and because these steps were conducted manually, it was very difficult to maintain accuracy 

for each run. This method did however, allow the mass of methyl ester to be calculated 

directly from step 3 (as shown in Figure 3.3) and therefore any inaccuracy from the 

downstream processing was minimised. This was crucial since a majority of the experiments 

involved small amounts of raw material.  
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The difference between this technique and the one described in Section 3.5.1 above is the 

chemical used as the internal standard. In this technique, methanol was used instead of 

heptane to dissolve the methyl heptadecanoate. This was because the sample now consisted 

of a mixture of methanol and methyl ester. This mixture could dissolve in an internal standard 

with methanol but not with heptane because of the difference in polarity between the two 

solvents. 

  

In preparing the sample for injection, 1 mL of internal standard stock solution was used 

instead of 5 mL. Equation 3.7 still applies in calculating the mass fraction of the methyl ester 

in the sample, C. The mass of methyl ester was then calculated by multiplying C by the mass 

of the total filtered mixture (step 3, Figure 3.3) as in Equation 3.8: 

 

 

          Equation 3.8 

 

This value was then used in Equation 3.7 to calculate the weight percentage of the FAME 

yield. 

3.5.2.1 Validity of the Technique 

A series of tests were conducted to validate the technique. A known methyl ester mass was 

dissolved in methanol and then injected into the GC. The C value (from Equation 3.7) was 

calculated and multiplied by the mass of methanol and methyl ester (Equation 3.8). The result 

was then compared with the actual methyl ester mass.  
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Figure 3.5 Comparison of actual methyl ester mass with calculated methyl ester mass 

The comparison was made using with methyl ester ranging from 0.3g to 5g. Figure 3.5 shows 

that the agreement between actual and calculated values was very good (R
2
=0.99). Therefore, 

it was concluded that this technique was reliable to use in calculating the mass of methyl ester 

dissolved in methanol.   

 

3.5.3 Gas Chromatography-Mass Spectrometry (GC-MS) 

GC-MS was used to determine the total glycerol and mono-, di-, and triglyceride content in 

the samples. In this procedure, N-methyl-N-trimethylsilyfluoraacetamide (MSTFA) (Sigma 

Aldrich, UK) was used to transform all the components into silylated derivatives, which are 

more volatile. The procedure is explained in detail by the British Standards Institution (BS 

EN 14105:2003). 

 

Two internal standard solutions were prepared prior to the analysis. The first internal standard 

(IS 1), 1,2,4-butanetriol (Sigma Aldrich, UK), was added for the determination of the free 
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glycerol whilst the second internal standard (IS 2), 1,2,3-tricaproylglycerol (Sigma Aldrich, 

UK), also known as tricaprin, was used in the determination of the glycerides. Both were 

prepared using pyridine (Sigma Aldrich, UK). 

 

Calibration curves for all the compounds (glycerol, monoglycerides, diglycerides and 

triglycerides) must be created before calculating the concentrations of these components. The 

calibration curves were created by calculating the ratio of the components‟ area to the internal 

standard area. Table 3.6 shows the mixing proportion of each component in preparing the 

calibration curves.  

Table 3.6 Calibration solutions mixing proportion 

Solution  
1 2 3 4 

Glycerol (µl) 10 40 70 100 

Monoolein (µl) 50 120 190 250 

Diolein (µl) 10 40 70 100 

Triolein (µl) 10 50 100 200 

IS 1 (µl) 80 80 80 80 

IS 2 (µl) 100 100 100 100 

 

3.5.3.1 Calibration of Glycerol and Glycerides 

Equation 3.9 below was used to create a calibration curve for glycerol. For the quantification 

of glycerol, the concentration of glycerol stock solution used was 0.5 mg/mL (Sigma Aldrich, 

UK). It was prepared by mixing 50 mg of glycerol with pyridine in a 10 mL volumetric flask. 

1 mL of this solution was then put into another 10 mL flask. Pyridine was added to make it 
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up the 10 mL mark. The concentration of stock solution for IS 1 was 1 mg/mL whilst for IS 2 

it was 8 mg/mL. Both were prepared by dilution in pyridine. 

 

 

Equation 3.9 

 

Where: 

Mg     = mass of glycerol (mg) 

Mei1    = mass of internal standard No 1 (mg) 

Ag    = peak area of glycerol 

Aei1    = peak area of internal standard No 1 

ag and bg = constants from regression method of glycerol  

The calibration curves for the glycerides were calculated from Equation 3.10 for  

monoglyceride, Equation 3.11 for diglyceride and Equation 3.12 for triglyceride.  

 

For monoglyceride, the calibration curve was prepared by injecting a 4 monoolein stock 

solution with the amount indicated in Table 3.6. The concentration of the monoolein stock 

solution was 5 mg/mL (Sigma Aldrich, UK), whilst the concentration of IS 2 was 12.6 

mg/mL. 

 

For diglyceride and triglyceride, the concentration of standard di- and triolein stock solutions 

prepared were 5 mg/mL (Sigma Aldrich, UK). The IS 2 concentration was 0.5 mg/mL.    

 

 

Equation 3.10  

 

Equation 3.11  

 

Equation 3.12  
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Where: 

Mm, Md, Mt  = mass of the monoolein, diolein and triolein (mg) 

Mei2  = mass of internal standard No 2 (mg) 

Am, Ad, At = peak area of monoolein, diolein and trioleion 

Aei2  = peak area of internal standard No 2 

Am and bm  = constants from regression method of monoglycerol 

Ad and bd  = constants from regression method of diglycerol 

At and bt  = constants from regression method of triglycerol 

 

All the calibration curves were calculated using linear regression and were only regarded as 

acceptable when the correlation coefficient was found to be equal to or higher than 0.95. 

3.5.3.2 Sample Preparation for Monoglyceride 

For monoglyceride quantification, a 20 mg of the sample was mixed with 20 µl of IS 2 (12.6 

mg/mL). 20 µl of N-methyl-N-trimethylsilyfluoraacetamide (MSTFA) was then added and 

the mixture was left for 15 minutes at room temperature to allow it to silylate. 2 mL of 

heptane (Sigma Aldrich, UK) was added after 15 minutes and 0.5 µl was injected into the 

GC-MS. 

3.5.3.3 Sample Preparation for Diglyceride and Triglyceride 

Because the detection limits for diglyceride and triglyceride are lower than that for 

monoglyceride, each sample was injected twice in order to quantify all three components. For 

diglyceride and triglyceride, 20 µl of sample was added to 100 µl of IS 2 (0.5 mg/mL). 20 µl 

of MSTFA was then added and left to silylate for 15 minutes. 0.5 mL of heptane was added 

to the mixture after 15 minutes and 4 µl was injected into the GC-MS. 
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3.5.3.4 Gas Chromatography-Mass Spectrometry (GC-MS) 

The GC-MS used was a Perkin Elmer Clarus 500 and 560D (Perkin Elmer, UK) which was 

fitted with a Perkin Elmer Col-elit column (PE-5HT) (Perkin Elmer, UK). The column 

dimensions were 15 m in length, 0.25 µm internal diameter and 0.1 µm film thickness. 

Helium was used as the carrier gas at a flowrate of 62 cm
3
/s. The GC oven was set at 50

o
C 

for 1 minute, then heated to 180
o
C at a rate of 15

o
C/min, then to 230

o
C at a rate of 7

o
C/min 

and finally to 370
o
C at a rate of 10

o
C/min. At 370

o
C, the temperature was held for 10 

minutes, giving a total run period of 31.5 min. The injector was set at 350
o
C and the detector 

at 370
o
C. The temperatures of the MS source and MS inlet line were 250

o
C and 270

o
C 

respectively.  

3.5.3.5 Identification of the Peaks 

The identification of the peaks was determined by comparing J. curcas oil peaks to the 

relative retention times of the standards. Figure 3.6 is the chromatogram of J. curcas oil 

under conditions described in Section 3.5.3. The peak at 5.02 minutes was the first internal 

standard peak (IS 1). From 11.13 to 12.63 minutes, two different trimethylsily acids were 

identified. The peak at 11.13 minutes was hexadecanoic acid, also known as palmitic acid. 

The other fatty acid, whose peak was between 12.60 and 12.85 minutes was stearic acid.   

 

The next peak at 17.85 minutes was monooleoglycerol. The peak for IS 2 eluted at 22.92 

minutes. This was followed by peaks from 25.86 to 26.99 minutes, which were diglyceride.  

Starting from 29.49 minutes onwards, the peaks represent different components of 

triglycerides. Peaks at 29.49, 31.31 and 32.85 minutes represent octadecenoic acid, and those 

at 35.35 and 38.36 minutes both represent trilinolein. 
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Figure 3.6 Chromatogram of J. curcas oil methyl ester 

 

3.5.4 Seed Morphology 

The effect of the reaction on the seed particles‟ morphology was evaluated using light 

microscopy and Scanning Electron Microscopy (SEM). 

3.5.4.1 Light Microscopy 

Sections of the seed were cut and mounted on glass slides. The protocol was carried out by 

Newcastle University Electron Microscopy Research Services. To observe the lipids, the 

glass slides were immersed in Sudan Black B solution. This stained the lipids and made them 

visible under the microscope. The Sudan Black B was prepared by mixing Sudan Black B 

powder in 70% ethanol until it became saturated. The solution was then filtered and diluted 

with five parts of 70% ethanol.    

 

The excess Sudan Black B solution on the slides was removed by washing with 90% ethanol, 

followed by air drying. The slides were then examined by Olympus BX41 light microscope 
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equipped with a Sony camera. The captured images were processed using the Altra20 Soft 

Imaging System. 

3.5.4.2 Scanning Electron Microscope (SEM) 

The procedure was carried out by Advanced Chemical and Materials Analysis (ACMA), 

Newcastle University. The seeds were dried in a desiccator for 48 hours prior to analysis, and 

were then coated in gold and scanned using high vacuum in a FEI XL30 ESEM-FEG 

microscope (FEI, The Netherlands) at 500X magnification.         

 

3.6 Mass Balance Calculation 

The total amount of triglyceride available for the reaction was calculated from the mass of oil 

in J. curcas. This mass (MT) was obtained from the Soxhlet extraction as described in Section 

3.1 above. 

 

The product of the reaction was two separate layers of liquid. The upper layer contained 

methyl ester and methanol and the bottom layer consisted of a mixture of glycerol, NaOH, 

acetic acid and other methanol-extracted products. The product was placed in a separating 

funnel and the bottom layer drained out. The upper layer was then washed with hexane (10 

mL) three times. Another layer appeared, separating the hexane and methyl ester (non-polar) 

and methanol (polar). The non-polar layer was then taken out and the hexane removed using 

a vacuum evaporator. The remainder, which was the methyl ester, was weighed using an 

A&D HR-200 (A&D, Japan) scale and compared with the mass obtained from the method 

described in Section 3.5.2. This was marked as MME 
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The seed meal after Soxhlet extraction was dried in the oven to remove the methanol and then 

re-extracted to quantify the mass of oil left in the seed. This was marked as MR. The sum of 

MR and MME, should theoretically be the same as the total oil, MT, as shown in Equation 3.13. 

 

Equation 3.13 

 

The bottom layer of the product of in situ transesterification process contained a mixture of 

various compounds, therefore it was difficult to quantify the amount of glycerol 

experimentally. To overcome this, the amount of glycerol was calculated using the 

stochiometric ratio of ester to glycerol, which is 3 to 1. 

 

 

Equation 3.14 

 

The difference between the mass of the extraction (MT) and the combination of methyl ester, 

glycerol mass was then defined as the mass of other components (MO) as in Equation 3.15. 

 

Equation 3.15 

 

The mass of other components includes the combined masses of catalyst (MC), acetic acid 

added for neutralisation (MAA), soap (MS) and phenol (MP). Equation 3.16 shows the 

compositions of the mass of other components. 

 

 

Equation 3.16  
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4 RESULTS AND DISCUSSION 

The results of all of the experiments conducted in this research are presented and discussed in 

this chapter. The chapter starts with the results for characterisation of J. curcas. To select the 

catalyst most suitable for the raw material and the process involved, three different catalysts 

were subjected to the screening process. After the selection of the catalyst, each parameter 

involved in in situ transesterification was investigated using a “one-at-a-time” method. The 

information yielded by that experiment was then used as the basis for the next set of 

experiments, based upon a “design of experiments” approach. Attempts to reduce the amount 

of alcohol required using a co-solvent are discussed in section 4.6.1. Findings on the use of 

methyl acetate instead of methanol are described in section 4.6.2. The chapter ends with a 

discussion of biorefining aspects of this process.  

 

4.1 J. curcas Characterisation 

 

There are two parts to a J. curcas seed, the kernel and shell. Fat (54%) and protein (25%) are 

the two main types of compound in kernel, whilst fibre (87%) is the main component of the 

shell [70].  The characteristics of the J. curcas used in this research are shown in Table 4.1 

below.   

 

The oil content of the J. curcas, at 36.0 ± 0.2%, tested was 4% less than that reported by 

Azam et. al., [78] by 4%. The oil content of seeds depends on many factors such as soil 

characteristics, fertilisers, irrigation and annual rainfall [70, 104, 105]. The FFA content was 

9.2 ± 0.2%, which is considered unsuitable for conventional biodiesel production with alkali 

catalyst. The fatty acid content analysis revealed that 80.4% of the fatty acids in the oil were 
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unsaturated, which is desirable for biodiesel, since oils with high saturated fatty acids 

contents, such as palm oil, produce biodiesels with CFPPs that are too high.      

Table 4.1. Main characteristics of the J. curcas used as the raw material. 

 

Test Assay method Unit  

Oil content BS 659: 2008 % 36.0 ± 0.2 

Moisture 

content 

BS 665:2000 % 7.4 ± 0.2 

FFA content BS 660:2009 % 9.2 ± 0.2 

Acid value BS 660:2009  mg/g 

KOH 

18 ± 0.5 

Fatty acids 

content 

BS 684:2001 + 

BS 15304  

% C16:0 (13.6), C18:0 (6.0),   C18:1 

(42.3), C18:2 (38.1)  

 

 

 

4.2 The Water Tolerance of In situ Transesterification of J. curcas 

 

It has been reported that the presence of moisture in seeds significantly reduces the  methyl 

ester yield when soybeans are used as the raw material [53]. In alkaline-catalysed 

transesterification, the presence of water in the system promotes saponification rather than 

the transesterification reaction during the process, promoting soap rather than methyl ester 

formation, thereby reducing yield, and rendering downstream separations more difficult. This 

phenomenon was, however, proven to be seed-specific to some extent, as other researchers 

have found that for rapeseed, the presence of water in the system did not significantly affect 

the methyl ester yield [55]. 
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To determine the effect of moisture on the process when J. curcas seed was used as raw 

material, two sets of sample, dry and wet were in situ transesterified at three different molar 

ratios. “Dry” refers to samples which underwent a drying process in which the samples were 

placed in the oven until the samples‟ mass were constant, prior to the experiments, whereas 

wet samples were not. The effect of dry and wet samples to the FAME yield at different 

molar ratios was shown in Figure 4.1, below. At all ratios, the FAME yields of experiments 

with dry samples were higher than in the wet samples, indicating that the presence of 

moisture did affect the yield. However, the magnitude of the effect was minimal: the biggest 

difference was 4%, occurring at a molar ratio of 300. The difference between 400 and 500 

molar ratio was 1.2%. In order to determine the level of significance of such differences, a T-

test analysis was performed on the results.  

 

Figure 4.1 Drying effect on FAME yield at different molar ratios. NaOH concentration = 0.1 N, reaction 

temperature = 60
O
C, reaction time = 1 hr, agitation speed = 400 rpm, seed size <0.71 mm.  

 

It was found that, in this process, the drying of the J. curcas seed was not significant with 

respect to FAME yield, as the p-value derived was 0.318 which is greater than the 

significance level of 0.05. This finding is in agreement with that of Zakaria [55], but contrasts 
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with work by Haas and Scott [53], which reported that after drying the soybeans prior to the 

experiments, the amount of methanol needed to achieve maximum FAME yield decreased by 

60%. Therefore, it is clear that the necessity for drying depends on the seeds used. This result 

has a significant effect on the overall process, especially in terms of energy use reduction 

associate with the drying stage.  

 

The finding is significant since it can affect the overall in situ transesterification process. It 

would reduce the number of process steps required, because the process is tolerance towards 

the water content in J. curcas. 

4.3 Catalyst Screening 

 

In situ transesterification process uses homogenous catalysts. In this work, three different 

catalysts, namely sodium hydroxide (NaOH), sodium methoxide (CH3NaO) and sulphuric 

acid (H2SO4), were compared and contrasted. Sodium methoxide was investigated as a 

substitute for sodium hydroxide mainly because it provides more direct way of producing the 

methoxide ions. Furthermore, the preparation of methoxide ions from sodium hydroxide and 

methanol produces water as a by-product, as shown in Equation 4.1. 

 

 

Equation 4.1 

 

The formation of water is critical in the conventional transesterification process, since it will 

initiate triglyceride and methyl ester hydrolysis, which will convert those components into 

free fatty acids and subsequently to soap. This has been shown to affect the FAME yield 

significantly[106]. NaOH and CH3NaO are compared in Figure 4.2 below.  
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Figure 4.2 Comparison of sodium methoxide and sodium hydroxide as catalysts in the process. Reaction 

temperature = 60
O
C, agitation speed = 400 rpm, seed size <0.71 mm. 

 

In this case, however, both catalysts exhibited very similar trends during the reaction. As 

discussed in the section 4.2, the presence of water has an insignificant effect on the in situ 

transesterification of J. curcas seeds up to a few percent, because of the excess of methanol in 

the system. 

 

 When sulphuric acid was employed as a catalyst in the reaction, the reaction rate was 

significantly lower, as shown in Figure 4.3. This finding agrees with Shuit et. al., [34], who 

found that the in situ transesterification of J. curcas with an acidic catalyst took 24 hours to 

reach equilibrium. However, they also reported that the maximum FAME yield achieved was 

higher at between 95-99% compared to 83% with sodium hydroxide. 
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Figure 4.3 Comparison of sulphuric acid, sodium methoxide and sodium hydroxide as catalysts in the 

process. Reaction temperature = 60
O
C, agitation speed = 400 rpm, seed size <0.71 mm. 

 

 

In situ transesterification has the same reaction mechanism as conventional 

transesterification: the triglyceride is converted to diglyceride, monoglyceride and finally 

glycerol with an ester liberated at each stage. Therefore, due to reaction via electrophilic 

attack in the acid-catalysed reaction against nucleophilic attack in the base-catalysed, the 

activity of acid-catalysed transesterification was much slower than that of base-catalysed 

transesterification [107-109]. Figure 4.4 and Figure 4.5 illustrate the chemical pathway for 

both acid and base-catalysed transesterification respectively. The important step in acid-

catalysed transesterification is the protonation of the carbonyl oxygen, as in step 1, Figure 

4.4. The protonation exposes the adjoining carbon atom to nucleophilic attack, as the 

electrophilicity of that carbon atom increases (step 2). The tetrahedral intermediate formed 

after the necleophilic attack then breakdown because of proton migration [108]. 
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Figure 4.4 Chemical pathway for acid-catalysed transesterification [108] 

 

In the base-catalysed reaction, a strongly nucelophilic alkoxide ion is formed directly, as 

illustrated in step 2 in Figure 4.5, below. The ion then attacks the carbonyl group on 

triglyceride (step 3) to form tetrahedral intermediate, which then breaks down to form 

diglyceride and ester [108].  

 

This explains the findings in the above experiments, where for acid-catalysed 

transesterification, 360 minutes was required to get 50% FAME yield, whilst base-catalyst 

only needed less than 20 minutes to reach the same point.     
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Figure 4.5 Chemical pathway for base-catalysed transesterification [99] 

 

 

4.4 Study of Individual Parameters  

It was suspected that a number of parameters would have some effect on the in situ 

transesterification reaction. This section discusses the results of individually investigating 

particle size, mixing speed, reaction temperature, reaction time, catalyst concentration and 

molar ratio of methanol-oil. 

4.4.1 Particle Size 

Figure 4.6 shows that the yield of methyl ester decreases with increasing particle size when it 

is larger than a threshold value of around 0.71 mm. No significant difference was found 

between the yields for the smallest two particle size groups, which were <0.5 mm and 0.5 – 
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0.71 mm, with the former yielding 86.1% and the latter 83.7%. The largest particle size range 

of 2–4 mm produced the lowest yield, at 35.5%.  

 

Figure 4.6 Percentage of methyl ester yield and methyl ester content for various particle sizes. Alcohol to 

oil ratio = 400:1; NaOH concentration = 0.1N; reaction temperature = 60
o
C; mixing speed = 400 rpm; 

reaction time = 1 hr 

 

The diffusion of fluid to solid particle is controlled by various factors, among others are the 

boundary layer, the reaction itself [110] as well as thermodynamics of the system, in this case 

the free entropy. The boundary layer decreases with decreasing particle size and increasing 

fluid velocity [111]. In this research, the seed particles were surrounded with a thin boundary 

layer, because the velocity of the fluid was high at 400 rpm, and therefore has small external 

resistance to the diffusion. As the boundary layer is small, the internal diffusion becomes the 

rate-limiting step.  

 

In the results, it was clear that the yield increased as particle size reduced, from 2.0-4.0 mm 

particle size group to 1.0-2.0 mm and 0.71-1.0 mm. This is because the time needed for the 

methanol-sodium hydroxide mixture to diffuse inside the seed particle is longer than the time 

for the reaction to occur on the interior surface. At the smaller particle size groups of <0.5 
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mm and 0.5-0.71 mm, the mixture takes less time to diffuse into the particle, and thus, 

internal diffusion control is reduced.  

 

This finding is consistent with those reported in the literature, where the authors observed the 

increased of oil dissolved in methanol with the decreased of soybean particle size [39]. They 

also claimed that further decreased of the soybean size from it optimum point, 0.3 mm, has 

negligible effect to the extraction of oil from the particle [39]. 

 

In terms of methyl ester content, only the two smallest particle sizes produced more than 80% 

of methyl ester in the sample. The other particle sizes produced lower methyl ester contents: 

size 0.71-1 mm gave 70.5% methyl ester, size 1-2 mm 77.0% and 2-4 mm 64.0%. No further 

analysis was conducted to determine other compounds in the samples, but the probable 

suggestion would be the presence of  non-reacting glycerides in the form of mono-, di- and 

triglycerides [112, 113]. Because of settling and hexane washing, the chances are small of 

other compounds, such as glycerol and polar lipids being present.  

 

4.4.2 Mixing Speed 

From Figure 4.7, it is noticeable that the mixing intensity is not a rate-limiting factor once it 

reaches 300 rpm. This finding suggests that there is no point in increasing agitation beyond 

this level, as it will not lead to any significant improvement in yield. However, decreasing the 

speed to 200 rpm, and further to 100 rpm, decreased the yield from 94.8% to 85.7% and then 

further to 37.2%. At low agitation speeds, it was apparent that the distribution of seeds was 

not uniform. The seeds settled on the bottom of the reaction vessel and this reduced the 

biodiesel yield. 
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Figure 4.7 Plotted data for the effect of mixing intensity to in situ transesterification of J. curcas. Alcohol 

to oil ratio = 400:1; NaOH concentration = 0.1N; reaction temperature = 60
o
C; seeds size = <0.71 mm; 

reaction time = 1 hr 

 

Transport of methanol-sodium hydroxide mixture from bulk into seed particles involves 

diffusion through an external boundary layer, which is a function of fluid velocity. The 

thickness of this boundary layer is in inverse proportion to the fluid velocity. At 100 rpm, 

where the velocity of the fluid was at its low, the FAME yield obtained was at the lowest, at 

37.2%. The yield then increased to 85.7% when the fluid velocity increased with the 

increases of mixing speed from 100 rpm to 200 rpm. This indicates that at 200 rpm, the 

boundary layer was thinner than at 100 rpm. The resistance of this boundary layer, however, 

became negligible in comparison to other resistances in the system when the mixing speed 

was set at 300 rpm and 400 rpm.     

 

4.4.3 Reaction Temperature 

Four different temperatures (30, 40, 50 and 60
o
C) were used in in situ transesterification of J. 

curcas seeds. The data obtained are plotted in Figure 4.8 below.  
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Figure 4.8 Methyl ester yield and methyl ester content of J.curcas seed at four different temperatures. 

Alcohol to oil ratio = 400:1; NaOH concentration = 0.1N; seeds size = <0.71 mm; mixing speed= 400 rpm; 

reaction time = 1 hr 

 

After 1 hour, the temperature did not seem to have any significant effect on biodiesel yield. 

Although this result is in agreement with the observations of Haas and his co-workers that 

triglyceride can be converted to biodiesel at both low and high temperatures [21], it should be 

noted that probably at 1 hour reaction time, the in situ transesterification reaction already 

completed and therefore, the change in yields were unnoticeable. 

 

However, to further understand the dependency of in situ transesterification on temperature, 

time profile experiments were conducted at 30, 40 and 60
o
C. Figure 4.9 shows the time 

profile of methyl ester yield at those temperatures. 
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Figure 4.9 Time profile of methyl ester yield of J. curcas seed at three different temperatures. Alcohol to 

oil ratio = 400:1; NaOH concentration = 0.1N; seeds size = <0.71 mm; mixing speed= 400 rpm; reaction 

time = 1 hr 

 

Examination of Figure 4.9 indicates that the rate of reaction increases with temperature, 

although the final equilibrium methyl ester yield for each temperature ended at almost similar 

point. The relationship between diffusivity and temperature in liquid-liquid phase, like in the 

triglyceride-methanol system can be described by Equation 4.2 [111].  

 

 

Equation 4.2 

 

where; 

DAB = diffusion coefficient of species from A to B (m2/s) 

T1 = temperature at initial condition (K) 

T2 = temperature at final condition (K) 

µ1 = viscosity of species at initial condition (cP) 

µ2 = viscosity of species at final condition (cP) 
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Using diglyceride diffusion coefficient at 60
o
C as an example [55], the diffusion coefficients 

for 30, 40, 50 and 70
o
C were calculated (Appendix 1) and plotted, to show the dependency of 

diffusion of diglyceride in methanol on temperature. The change in diffusion coefficient was 

predicted to increase exponentially with temperature [111].  

    

4.4.4 Reaction Time 

It has been shown that the in situ transesterification reaction is a “fast” reaction. Haas et. al., 

[21], proved that the reaction produced 80% of FAME within 15 minutes, and reaction time 

up to 6 hours did not increase the yield significantly. However, based on the literature, this is 

only true with alkali-based catalyst since the in situ transesterification of J.curcas seeds with 

acid catalyst needs considerably more time to complete [34]. 

 

Figure 4.10 shows that the methyl ester yield exhibited minimal change from 30 minutes 

onward. It is therefore probable that the reaction was complete between 20 and 30 minutes. It 

can also be observed from Figure 4.10 that reactions of less than 20 minutes did not achieve 

the highest yields. This is in agreement with other findings which have reported rapid 

increases in yield within the first 30 minutes of the reaction [21, 39]. 
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Figure 4.10 Methyl ester yield and methyl ester content of J. curcas seed at various reaction times. 

Alcohol to oil ratio = 400:1; NaOH concentration = 0.1N; reaction temperature = 60
o
C; seeds size = <0.71 

mm; mixing speed= 400 rpm 

 

4.4.5 Catalyst Concentration  

The transesterification reaction does not proceed without a catalyst. A comparison of in situ 

transesterification with and without catalyst is presented in Table 4.2. 

Table 4.2  Comparison of in situ transesterification with hexane extraction (8-hours) and methanol 

extraction.  The condition of in situ transesterification: alcohol to oil = 400:1, mixing speed = 400 rpm, 

reaction temperature = 60
o
C, seeds size = <0.71 mm, reaction time = 2 hours. 

Extraction method Mass of oil 

extracted (g) 

Extraction efficiency 

(%) 

Methyl ester yield 

(%) 

Hexane-soxhlet 5.53 100 0.0 

Methanol-NaOH 

Methanol only 

4.66 

0.8 

84.3 

14.5 

81.9 

0.0 

Solvent extraction with methanol yielded some extract, but no methyl ester was detected in 

the samples. The extract thus probably consists of polar components such as phospholipids, 

which can be extracted by polar solvents [114]. The methanol-NaOH in situ 

transesterification produced 4.66g of a possible 5.53g of oil, and 3.8g (89.1%) of it was 

converted to biodiesel. In conventional transesterification, Om Tapanes et. al., achieved a 
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96.3% yield using a 9:1 methanol alcohol ratio [75], indicating that if they started with the 

same amount of oil (5.53%), they would get 5.3g of biodiesel. However, they used refined, 

bleached, deodorized J. curcas oil, rather than the J. curcas seed, and each of the preliminary 

stages would be associated with a loss of yield, as well as implications for capital and running 

costs. These effects must be weighed against one another to determine the economic viability 

of this process.  

 

The table above also shows that adding sodium hydroxide to methanol significantly increases 

extraction efficiency. Ren et. al., [115] studied lipid content in rapeseeds during in situ 

transesterification with methanol, both with and without sodium hydroxide. In the latter case, 

lipid staining and microscopy clearly demonstrated that lipids were still present and the 

morphology of the seed was unchanged. With sodium hydroxide present, almost all of the 

lipids in the seeds were removed: the presence of catalyst is essential for in situ 

transesterification to take place. Furthermore, the oil-containing part of the seed clearly 

shrank as the reaction progressed, indicating that the reaction takes place largely within the 

seed.  

 

Figure 4.11 presents the data from the present study of NaOH concentration. Three different 

catalyst concentrations were subjected to experimentation. The experiments with 0.25, 0.3 

and 1.0 N NaOH concentration was also executed, but failed to produced any methyl ester. 

Instead, the products from these experiments were soap.  
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Figure 4.11 Methyl ester yield and methyl ester content of J.curcas seed at different NaOH 

concentrations. Alcohol to oil ratio = 400:1; reaction temperature = 60
o
C; seeds size = <0.71 mm; mixing 

speed= 400 rpm; reaction time = 1 hr. 

 

From the methyl ester yield data, it is clear that the addition of NaOH, albeit in small 

amounts (0.1 N) has a significant effect on conversion to methyl ester. Increments in NaOH 

concentration to 0.15 N increased methyl ester yield from 76.2% to 87.8%.  However, a 

further increase in concentration, to 0.2 N, decreased the yield to 80.8%. It is interesting to 

note that, with further increase in NaOH concentration, an emulsion started to form 

consequently reducing yield. The most likely cause of the emulsion is the formation of soap 

which is a competing reaction in the alkali-catalysed transesterification process.  

 

The formation of soap occurs through two different mechanisms: hydrolysis of a triglyceride 

and saponification [112]. The mechanism of both processes was explained in detail in Section 

2.2.1. In conventional transesterification with alkali catalysts, the formation of soap 

emulsions occur when there are high levels of free fatty acids [116]. To overcome this 

problem, the feedstock is usually pre-treated with acid catalyst to esterify the free fatty acids 

prior to the transesterification process with alkali catalyst [117]. Generally, J. curcas oil has a 

high acid value number, which is why the majority of researchers have adopted this route to 
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produce biodiesel [118-120], although there have also been reports of various other routes of 

reaction, such as acid catalyst in situ transesterification [34], supercritical reactive extraction 

[121], direct acid catalyst transesterification [122] and by using heterogeneous catalyst [123]. 

De Oliveira and co-researchers [122], for example, in particular, reported that when J. curcas 

oil was transesterified using sodium hydroxide as catalyst, a stable emulsion formation was 

observed in the sample, which limited the final yield to 68%. Interestingly, it is apparent from 

Figure 4.11 that the high free fatty acid content of J. curcas oil had no negative effect on the 

yield until the NaOH concentration reached 0.2 N. 

 

Figure 4.11 also shows that increasing catalyst concentration from 0.1 N to 0.15 N had a 

positive impact on FAME conversion. However, a further increase from 0.15 N to 0.2 N did 

not affect methyl ester content, presumably due to the increased formation of soap. 

4.4.6 Methanol-Oil Molar Ratio 

 

The methanol volume required in in situ transesterification is very high compared to that of 

conventional processes [21]. In this study, the molar ratio of methanol to oil was ranged from 

100 to 600. The results are shown in Figure 4.12. 

 

No methyl ester was produced at a molar ratio of 100, even though 18.1% of the mass was 

extracted from the initial 10g of seeds. A 52% yield of methyl ester was obtained at the 200 

ratio which then increased steadily with the ratio. The yield at a molar ratio of 300 was 74.7% 

and at 400, 500 and 600 yields were 81.9%, 85.7% and 86.9% respectively.  
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Figure 4.12 Methyl ester yield and methyl ester content of J. curcas seed at various molar ratios of 

methanol to oil. Other parameters: NaOH concentration = 1 N; reaction temperature = 60
o
C; seeds size = 

<0.71 mm; mixing speed= 400 rpm; reaction time = 1 hr. 

 

The results suggest that the amount of methanol must be very high in order to achieve an 

appreciable yield. This is presumably necessary to drive the penetration of alkaline methanol 

into the seed, as described in Fick‟s law of diffusion and observed by Ren et. al., [115]. Any 

further excess of methanol (e.g.600) does not greatly increase the yield, so is undesirable 

since it will increase the load on the downstream separation processes, especially on the 

process such as separation between FAME and glycerol as well as methanol recycling 

system. 

4.5 Design of Experiments  

 

4.5.1 Screening 

The screening experiments were executed on 2
5
 full factorial designs. To allow experimental 

error to be assessed, five central points were added to the design giving a total of 37 

experiments overall. Table 4.3 shows a combination of the experimental matrix and responses 
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in standard order. To avoid bias, the experiments were conducted in random order. Run 

numbers 33 to 37 are the central point experiments.  

Table 4.3 25 Full factorial experiments matrix with centre points in standard order 

Standard run A B C D E Y (%) 

1 100 0.1 10 30 100 30.9 

2 400 0.1 10 30 100 37.4 

3 100 0.2 10 30 100 30.0 

4 400 0.2 10 30 100 54.0 

5 100 0.1 60 30 100 35.2 

6 400 0.1 60 30 100 66.8 

7 100 0.2 60 30 100 48.3 

8 400 0.2 60 30 100 68.7 

9 100 0.1 10 60 100 33.5 

10 400 0.1 10 60 100 40.2 

11 100 0.2 10 60 100 46.1 

12 400 0.2 10 60 100 21.0 

13 100 0.1 60 60 100 38.5 

14 400 0.1 60 60 100 58.9 

15 100 0.2 60 60 100 34.2 

16 400 0.2 60 60 100 68.6 

17 100 0.1 10 30 400 28.7 

18 400 0.1 10 30 400 35.5 

19 100 0.2 10 30 400 48.4 

20 400 0.2 10 30 400 34.3 

21 100 0.1 60 30 400 44.3 

22 400 0.1 60 30 400 76.2 

23 100 0.2 60 30 400 53.2 

24 400 0.2 60 30 400 77.8 

25 100 0.1 10 60 400 32.2 

26 400 0.1 10 60 400 46.5 

27 100 0.2 10 60 400 34.2 

28 400 0.2 10 60 400 40.8 
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29 100 0.1 60 60 400 60.3 

30 400 0.1 60 60 400 89.4 

31 100 0.2 60 60 400 58.7 

32 400 0.2 60 60 400 87.2 

33 250 0.15 35 45 250 62.4 

34 250 0.15 35 45 250 64.9 

35 250 0.15 35 45 250 68.0 

36 250 0.15 35 45 250 63.0 

37 250 0.15 35 45 250 59.1 

 

Figure 4.13 shows that molar ratio, reaction time and mixing speeds had positive effects on 

biodiesel yield. The p-values for these parameters were less than 0.05, indicating that these 

effects were significant.  
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                                                                            (c) 

Figure 4.13 The effect of various factors on biodiesel yield (a) molar ratio of methanol to oil; (b) reaction 

time and (c) mixing speed. 

 

The yield increased with increase in molar ratio, reaction time and mixing speed. However, 

the centre points in all the figures clearly suggest the presence of curvature, indicating that 

correlations between parameters and yields are not linear and therefore, require further 

examination. 

 

Two interactions, of molar ratio-reaction time and reaction time-agitation speed, also gave 

low p-values, indicating that these interactions have especially significant influences on 

biodiesel yield.  

 

In Figure 4.14(a), both positive (C+) and negative (C-) reaction times at lower molar ratios 

gave low yields of 46% and 35% respectively. However, the effect of reaction time becomes 

more obvious at high molar ratios. At lower reaction times, a high molar ratio produced a low 

yield at 38%, which is almost the same percentage as at low molar ratio. However a high 

reaction time produced a high yield of 74%. 
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 The same pattern can be seen in Figure 4.14(b), below, which shows the interaction between 

mixing speed and reaction time.  At low reaction times, the yields obtained at low and high 

mixing speed were almost identical at 37% and 36% respectively. At higher reaction times, 

however, high mixing speed produced a higher yield of biodiesel (68%) than at low mixing 

speed (52%). As in Figure 4.13, the relationships between these factors and yield are clearly 

non-linear. 

                                   
                                       (a)                                                                  (b) 

 

Figure 4.14  The interactions of (a) molar ratio and reaction time and (b) reaction time and mixing speed 

 

 

The other two factors, NaOH concentration and reaction temperature were found to have a 
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 (a)                                                                      (b) 

Figure 4.15 The negligible effect of sodium hydroxide concentration (a) and reaction temperature (b) on 

in situ transesterification of J. curcas oil. 

 

 

A linear equation representing the results in coded factor terms is given in Equation 4.3 

  

Equation 4.3 

The p-value of the curvature for the process was 0.0005, which suggests that the presence of 

curvature is highly statistically significant. Therefore, a different higher order model must be 

considered to represent the data more accurately.  

 

4.5.2 Non-linear Model 

A response surface methodology was employed to fit the data to a non-linear model. This was 

required to fully describe the dependences due to curvature. Ten additional experiments were 

conducted to test the responses at +α and -α for each factor. Table 4.4 below lists the settings 

for the additional experiments against the response.  A quadratic model was developed which 

including all five factors considered. 
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Table 4.4 Parameters and responses in additional experiments conducted for response surface 

methodology study 

Standard 

Run 

A B C D E Y(%) 

1 25.70 0.15 35 45 250 13.2 

2 474.30 0.15 35 45 250 82.1 

3 250 0.08 35 45 250 51.2 

4 250 0.22 35 45 250 55.4 

5 250 0.15 0 45 250 0 

6 250 0.15 72.38 45 250 57.3 

7 250 0.15 35 22.57 250 47.8 

8 250 0.15 35 67.43 250 58.7 

9 250 0.15 35 45 25.70 13.5 

10 250 0.15 35 45 474.30 56.9 

 

In coded terms, the yield is represented by the equation below; 

       

Equation 4.4 

 

Equation 4.4 can be represented by a 3D surface plot to predict yield in the range of 

parameters studied. Figure 4.16 below shows the response predicted when molar ratio was 

plotted  against other factors (B, C, D and E). 
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                                (a)                                                                      (b) 

 

                                (c)                                                                   (d) 

Figure 4.16 The 3D surface plot of interactions of (a) A with B, (b) A with C, (c) A with D and (d) A with 

E.  A= molar ratio, B=NaOH concentration, C=reaction time, D=temperature and E=mixing speed. 

Figure 4.16(a) shows the plot for the interaction of molar ratio and NaOH concentration 

against methyl ester yield. It can be seen that increasing NaOH concentration from 0.1 N to 

0.2 N did not greatly influence methyl ester yield. However, the methyl ester yield clearly 

increased as the molar ratio of methanol to oil increased from 100 to 400. When molar ratio 

was plotted against reaction time as in Figure 4.16b, both factors were observed to influence 
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yield.  The maximum yield of 83% was predicted at a molar ratio of 400 and 60 minutes 

reaction time. Figure 4.16(b) also suggests that the methyl ester yield approaches a plateau as 

reaction time increases. The positive interaction between molar ratio and biodiesel yield was 

linear, and the effect of reaction temperature was found to be insignificant (Figure 4.16c). 

Figure 4.16(d) shows that the methyl ester yield increased significantly with the increases of 

mixing speed from 100 to 300 rpm but beyond 300 rpm, the mixing speed produced small 

change of yield.  

 

4.5.3 Discussion on the Design of Experiment Results  

The relationship of the molar ratio of methanol to oil was similar to those reported by other 

researchers [21, 34, 39, 42], where the FAME increases with the increased of the ratio. 

However, as shown in Figure 4.17, disregarding the ratio of methanol to oil, the maximum 

yield was achieved after about the same time of 30 minutes. The same phenomenon was also 

observed by Mondala et. al., [36] in their work with municipal sludge. 
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Figure 4.17 Effect of methanol-oil molar ratio on reaction time. NaOH concentration = 0.1 N, mixing 

speed = 400 rpm, seed size < 0.71mm 

The amount of methanol needed in in situ transesterification must be enough to at least 

submerge all the seeds. In this study, at least 17 mL methanol (equivalent to a 100:1 methanol 

to oil molar ratio) were needed to fulfil that requirement. In conventional transesterification, 

if the suggestion of 6:1 ratio by Freedman et al. [13], is applied, only 1 mL of methanol is 

required to transesterify the same amount of seeds (10 g of seeds = 3.6 g of oil, molecular 

mass of the J. curcas oil = 877 g/mol). 

 

According to this calculation, the amount of methanol supplied to the in situ 

transesterification should be adequate to give a significant yield, but the experiments proved 

otherwise. At the minimum methanol-oil ratio of 100:1, the yield was only 1.9%. One likely 

explanation for this is the large amount of methanol required for the extraction.  

 

According to the Fick‟s laws of diffusion cited below, the rate of diffusion, j, is proportional 

to the concentration gradient, ΔC, so that the steeper the latter, the faster the rate of diffusion 

accross the length, ΔX. 

 

 

Equation 4.5 

 

In this case, in the first 10 minutes, the concentration of oil in the seed was high compared to 

that in the bulk liquid. Therefore, the yield increased rapidly. As time lengthened, more 

products were extracted to the bulk liquid, decreasing the concentration gradient. Once the 

concentration in the bulk liquid was in equilibrium with that inside the seed, extraction then 

stopped.  
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When a vast amount of methanol is used, this will dilute the bulk liquid further and make the 

concentration gradient steeper. Consequently, this will produce higher yields than reactions 

with low molar ratios of methanol. That increasing the amount of solvent achieves higher 

yield has been reported by several researchers. Sayyar et. al., for example, reported that oil 

extracted from J. curcas was found to increase with the amount of hexane [124], while 

Franco et. al., [125] discussed increases in equilibrium yield when the amount of ethanol was 

increased during the extraction of oil and antioxidants from Rosa rubiginosa L. 

 

In the case of mixing speed, this factor was found to be significant, since at the low mixing 

level (100 rpm) the reaction occurred in a zone of dependence on external mass transfer. The 

reaction was found to be free from external mass transfer dependency once the mixing rate 

was set above 300 rpm, as shown in Figure 4.18. 

 

 
Figure 4.18 The external mass transfer regions in the in situ transesterification of J. curcas. Conditions: 

seed size = <0.71 mm, NaOH concentration = 0.1 N, methanol:oil = 400:1, reaction time = 1 hr, reaction 

temperature = 60
o
C 
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This phenomenon can be described using the Frossling correlation [111], where the mass 

transfer coefficient, kc, kinematic viscosity, ν, diffusion coefficient, DAB, liquid velocity, U, 

and particle diameter, dp are correlated as in Equation 4.6. 

 

 
Equation 4.6 

 

Equation 4.7 

Replacing Sh, Re and Sc in Equation 4.6 with Equation 4.7 : 

 

Equation 4.8 

The Sherwood and Reynolds numbers are in the thousands, so the number 2 in Equation 4.8 

is negligible. Making kc the subject gives:  

 

 

Equation 4.9 

 

The diffusivity, DAB, increases with temperature, and kinematic viscosity, ν, for a liquid, 

decreases with temperature. The second term, however, is a function of flow condition and 

particle size.  

 

In this present case, all the terms were fixed during the experiments, except for U. kc is 

proportional to U to the power 1/2, so when the mixing speed is increased from 100 to 300 

rpm, kc should increase by 3
1/2

.  
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At low velocity, the reaction is limited by diffusion, as the mass transfer boundary thickness 

is large. As velocity is increased, thickness of the boundary layer decreases, and rate of 

reaction is no longer limited by the mass transfer across the boundary layer.   

 

In this study, the reaction temperature was found to have an insignificant effect on FAME 

yield. The effect of temperature was unnoticed because in the experiment matrix, the yields 

data were acquired at 30 minutes and 60 minutes point. At that point, the reaction was most 

probably completed as shown in Figure 4.8. However, when the yield data were recorded as 

time progressed, as discussed in Section 4.4.3, the effect of temperature on the experiment 

were obvious.  

 

To provide further insight into the influence of molar ratio and reaction time on in situ 

transesterification, the seeds before and after reaction were examined under a light 

microscope. Figure 4.19(a) shows fresh seeds consisting of cells 10–40 µm in diameter. Each 

cell is surrounded by wall membranes 0.5-1.5 µm thick. Figure 4.19(b) - (f) show the 

condition of the seeds at 10, 20, 30, 40 and 50 minutes of reaction time respectively.  

 

 

                                   (a)                                                                     (b) 
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                                   (c)                                                                     (d) 

 

                                   (e)                                                                       (f) 

Figure 4.19 Section of J. curcas seed cotyledon tissue before the in situ transesterification reaction (a). 

Areas stained red indicate cell wall polysaccharides. Other sections of the seed after 10 minutes reaction, 

(b) 20 minutes, (c) 30 minutes, (d) 40 minutes, (e) 50 minutes and (f) 60 minutes 

 

The number of intact cells per area decreased from 1.23 x 10
5
/cm

2
 before the  reaction to 1.10 

x 10
5
/cm

2
  after 10 minutes of reaction, then to 0.3 x 10

5
/cm

2
 at 20 minutes and 0.1 x 10

5
/cm

2
 

at 30 minutes. No intact cells were observed in the seeds after 40 or 50 minutes of reaction.  

 

The intact cell calculation suggests that the membrane cell walls break down as the reaction 

progresses. This results in higher yields of methyl ester as the reaction progresses since the 

lipids are released from the cells and react with the methanolic solution. However, this 
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finding was totally different from that of rapeseed. In the rapeseed case, the cell walls were 

found to be intact after the reaction [55]. This was probably due to the different in cell wall 

composition and structure. 

   

The correlation between number of intact cell that was calculated from the micrographs and 

the FAME yields is shown in 4.22. In general, the FAME yield increases as the number of 

intact cells decreases, up to 40 minutes onwards when all were broken.  

 

 

Figure 4.20 The relationship of FAME yield and intact cell count at same reaction time. 

 

However, at 10 minutes, the reduction of the number of intact cell from 1.23 x 10
5
/cm

2
 to 

1.10 x 10
5
/cm

2 
was relatively small compare to the big change in FAME yield from 0 to 59%. 

This phenomenon can be explained by  

Figure 4.21 Figure 4.21 below.  
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                             (a)                                                                    (b) 
 

Figure 4.21 Micrographs of sections of J. curcas seed cotyledon tissue before the in situ transesterification 

reaction (a) and after in situ transesterification (b) taken by SEM. Scale bars for micrographs a – b = 50 

µm. 

Figure 4.21 (a) shows the seed condition prior to in situ experiment. The globules on the 

seed‟s surface is oil, released from the fractured cell during grinding. This outer surface oil 

reacted when it was mixed with methanolic methanol and therefore produced a high yield in 

the first 10 minutes of reaction. Figure 4.21 (b) meanwhile shows the seed condition after the 

reaction, and it is apparent that at 60 minutes, all the outer surface‟s oil had been removed. 

The shrinkage of the cell itself can also be observed. 

   

The micrographs for different molar ratios shown in Figure 4.22 a-d also reveal that the same 

phenomena occured at different molar ratios.  

 

(a)                                                                          (b) 
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(b)                                                                           (d) 

Figure 4.22 Section of J. curcas seed cotyledon tissue before the in situ transesterification reaction (a). 

Areas stained red indicate cell wall polysaccharides. Other section of the seed after reaction with 100:1 

molar ratio of methanol to oil, (b); 300:1 molar ratio of methanol to oil, (c) and 400:1 molar ratio of 

methanol to oil, (d). Scale bars for micrographs a – d = 50 µm. 

 

The intact cell count for the seeds at a molar ratio of 100 was 1.06 x 10
5
/cm

2
, only 6 % less 

than in fresh seeds. This contributed to the lower methyl ester yield at this molar ratio. As the 

molar ratio increased to 300 and 400, the intact cell count decreased accordingly to 0.23 x 

10
5
/cm

2
 and 0.03 x 10

5
/cm

2
 respectively.   

 

 

Figure 4.23 The relation of intact cell count and FAME yield at same molar ratio. 
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Similar to the relationship of FAME and intact cell in reaction time, the decreased of intact 

cell as molar ratio increases also affect the FAME yield positively, as shown in Figure 4.23. 

Again it was observed that as more intact cell break, higher percentage of FAME yield was 

obtained. Whilst a sufficient amount of methanol and an adequate reaction  time are needed 

to release lipids from the cells, an appropriate mixing speed is also required to provide 

enough intensity in the J. curcas oil-methanol-sodium hydroxide system [46]. High mixing 

rates help to eliminate the boundary layer between the seed and the bulk solution thus 

enhance the transport of the methanol into the seeds, and at the same time help the J.curcas 

oil in the bulk phase to exceed the required mixing threshold, as suggested by Ma et. al., 

(1999) [126]. 

 

4.6 Reducing the Molar Ratio 

The large amount of alcohol required for in situ transesterification makes commercialisation 

difficult to envisage. A simulation on recovery of methanol by Dhar and Kirtania reported 

that the reboiler heat duty energy requirement to recover 80% of methanol for 10 stages 

distillation column was increased from 500 kW to 3000 kW for 6:1 and 50:1 molar ratio of 

methanol to oil respectively.  Furthermore, the report also revealed that the energy 

requirement increases exponentially more than 80% recovery is desired [127]. This was 

considered by Core (2005) [54], who concluded that the price of biodiesel obtained by this 

method is higher than that of conventional methods.  

 

Two different approaches have been tried to address this issue. The first was to employ co-

solvents and the second to use methyl acetate as a replacement for alcohol. In co-solvent 

experiments, the idea was to facilitate oil extraction with non-polar solvents to enhance the 
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yield. The idea behind using methyl acetate was to change the reaction such that triacetin 

rather than glycerol is produced as by-product. Although there were reports on the use of 

methyl acetate as a replacement of methanol, it was limited to transesterification [66], 

enzymatic [128-130] and supercritical biodiesel production process [131, 132]. 

 

4.6.1 Co-solvents 

The addition of co-solvents to the methanol should assist the oil extraction, thereby lessening 

the methanol requirement. Hexane and DEM are both non-polar solvents, and are both 

effective in extracting oil seeds. This will help to reduce the amount of methanol needed in 

the process. The utilisation of co-solvents in extraction has been extensively reported, 

especially by Young et. al., [133, 134] and other researchers [135, 136].  

 

Figure 4.24 shows the FAME yields gained when DEM and hexane were added in three 

different molar percentages of 10, 30 and 50 to the in situ transesterification reaction at low 

methanol to oil molar ratios of 100 and 200. At a lower molar percentage of co-solvent of 30, 

the addition of hexane and DEM to the reaction at 100:1 methanol to oil molar ratio did not 

affect the FAME yield. However, when DEM was added at the 200:1 molar ratio, the reaction 

produced higher FAME yields than with hexane, at the same methanol:oil molar ratio. This 

pattern was notably observed when 30% molar ratios of DEM and hexane were introduced to 

the reaction. The reaction with DEM at a 100 molar ratio produced a higher yield than with 

hexane at a 200 molar ratio. This was observed again in experiments with 50% molar 

percentages of the co-solvents.  
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Figure 4.24 FAME yields for different molar ratios of DEM and hexane at three different molar 

percentages. Seeds = 5 g;  temperature = 60
o
C for hexane, 40

o
C for DEM; NaOH concentration = 0.1 N, 

Mixing speed = 400 rpm, reaction time = 1 hr. 

 

DEM was clearly a better co-solvent in these experiments. The addition of higher amounts of 

DEM at higher molar ratios of methanol to oil produced better yields than hexane. This 

agrees with work by Zeng et. al., [50, 137], where the extraction rate with DEM was found to 

be higher than with hexane. At 50% molar percentage DEM and a ratio of methanol to oil of 

200, the FAME yield was 19%, this was 64% less than the yield of 83% achieved at a molar 

ratio of 400 of methanol to oil. To investigate the effect of DEM at the higher molar ratio, a 

50% molar percentage of DEM was added to the reactions with 400 and 500 molar ratios of 

methanol to oil. 

 

The results shown in Figure 4.25 verify that DEM performed better in the reactions with high 

molar ratio. The experiments at 400:1 and 500:1 with DEM both produced better yields than 

the experiments without DEM.  
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Figure 4.25 The difference between FAME yields for the in situ transesterification with and without DEM 

at 400:1 and 500:1 methanol to oil ratios. Seeds = 5 g;  temperature = 60
o
C for hexane, 40

o
C for DEM; 

NaOH concentration = 0.1 N; mixing speed = 400 rpm, reaction time = 1 hr. 

 

4.6.2 Methyl Acetate 

Soxhlet extraction of J. curcas seed by three different solvents, methyl acetate, n-hexane and 

methanol yielded 38.2, 36.1 and 8.0 wt% of extraction product, respectively. This confirms 

methyl acetate capability to extract the oil from the seed. The difference in polarity of the 

compounds is vital in the extraction of the oil from the seed. As a non-polar compound, n-

hexane was expected to yield the highest extraction product, followed by methyl acetate, 

which is a weak polar solvent, and then methanol, a polar solvent. However, from the 

information given below, concerning amounts of methyl acetate extraction, its yield of 38.2% 

was slightly higher than that of n-hexane at 36.1% and methanol at 8%. Methyl acetate 

extracted more, because it extracted polar and non-polar compounds, as it is not entirely 

polar. The same pattern of finding was reported by Su et. al., [65], although the authors did 

not discuss possible reasons for the phenomenon.  
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The results indicate that of the three factors studied (molar ratio of polyethylene glycol (PEG) 

to catalyst, molar ratio of methyl acetate to oil and catalyst concentration) only the ratio of 

methyl acetate to oil had a significant effect on methyl ester yield. Figure 4.26 below 

illustrates these findings.  

 

Figure 4.26 The effect of methyl acetate-oil ratio to methyl ester yield 

 

The yield was 21.6% at the lower molar ratio (50), but at a higher molar ratio (300) a 

significant increase in yield to 75%, was recorded. At the centre point, where the ratio was 

175:1, the average yield for 5 runs was 69.7%. The centre points also suggest that the methyl 

acetate ratio and methyl ester yield were not linearly correlated. This is also indicated in the 

analysis of variance (ANOVA) shown in Table 4.5.  

 

The p-value of the source must be the same as or below p=0.005 in order to be considered 

significant, and the chart shows that whilst sources corresponding to methyl acetate-oil molar 
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Table 4.5 Analysis of Variance (ANOVA) Chart for the Experiments  

Source Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 

F Value p-value 

Prob > F 

Model 6864.3 4 1716.08 7.43 0.0116 

A-PEG:Cat 97.64 1 97.64 0.42 0.5363 

B-MeA:Oil 4805.98 1 4805.98 20.81 0.0026 

C-Cat. Conc 1851.86 1 1851.86 8.02 0.0253 

Curvature 3656.1 1 3656.1 15.83 0.0053 

Residual 1616.49 7 230.93   

Lack of Fit 1115.13 3 371.71 2.97 0.1605 

Pure Error 501.35 4 125.34   

      

 

As illustrated in the 3D representation below, methyl ester yield increases to a maximum 

point of 90.9%. The operational conditions at this point are, a NaOH concentration of 0.20 

mol/L, PEG-NaOH molar ratio of 3:1 and methyl acetate-oil ratio of 300:1. There also 

appears to be a local maximum value of 86.8% at the centre point of the operational 

conditions tested. At this point, the operating conditions were: a NaOH concentration of 0.13 

mol/L, PEG-NaOH molar ratio of 3:1 and methyl acetate-oil ratio of 175:1. A comparison of 

these two sets of operating conditions indicates that the yield increased by just 6.8 wt% when 

the methyl acetate-oil ratio was doubled. 
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Figure 4.27 3D Representation of Yield against Various Parameters  

 

The positive effect of methyl acetate on the yield is to be expected, since it had been proved 

in previous experiments that methyl acetate can operate as a solvent for oil. Its ability to 

extract oil leads to more of the reaction occurring in the bulk environment, rather than inside 

the seeds.  Therefore, the mass transfer of the reagent to the seeds, which is a limitation on 

the reaction in in situ transesterification, was less important in this process.  

 

Figure 4.28 Comparison of FAME yield at various operation conditions. MA for the experiments with 

methyl acetate and M, with methanol. 
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By comparing the results with those from the process using methanol, it can be seen that the 

use of methyl acetate produced higher methyl ester yields. At the same molar ratio of 300:1, 

the FAME yield with methyl acetate surpassed that with methanol by about 16.2%. Even 

when the amount of methyl acetate was reduced, as in methyl acetate-oil ratio of 175:1, the 

yield was still better than methanol-oil ratio of 300:1. Doubling the amount of methanol to 

600:1 increases the FAME yield by 12.1%, to 86.8%, but still gave a slightly lower yield than 

that achieved by methyl acetate at 300:1.  

 

These findings have several repercussions for the design of an overall process. In term of the 

amount of reactant used in the process, at 175:1 molar ratio, 57 mL of methyl acetate required 

for 10 g of J. curcas seed. Meanwhile, at 300:1, 115 mL of methanol needed for the same 

amount of seed. Evidently the use of methyl acetate reduced the amount of reactant by half. 

The effect will cascade to downstream processing unit, in particular the reactant recycling 

unit. Although there was no information on reboiler heat duty during methyl acetate recycling 

process, generally the duty increases with increasing load and the percentage of recovery. 

 

However, it should be noted that with the use of methyl acetate, PEG will be present in the 

outlet stream. Because PEG is soluble in water, it can be removed from the process during 

water washing. PEG is a non-toxic compound [138], so it can be released with the waste 

water to the environment. The waste water stream also contained phenolic compounds, which 

are hazardous due to their toxicity and persistent in the environment [139]. Interestingly, PEG 

was used as additive in the oxidation of phenolic compounds by peroxidise enzyme reaction 

to remove the phenolic compounds in waste water [140, 141].  
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One of the main advantages of using methyl acetate is that glycerol triacetate, known as 

triacetin, is produced instead of the glycerol resulting from the reaction of triglycerides with 

methanol. As stated before, triacetin at current price of £0.90/ kg is more valuable than 

glycerol (£0.20/ kg) and, therefore, can potentially improve the process economics of the 

whole operation.  

 

4.7 Biorefining 

Plant oil has been utilised for its high-value products in sectors like nutritional food, 

lubricants and ink manufacturing [142]. The richness of compounds in J. curcas offers a 

possibility for biorefineing, which could increase the economic viability of in situ 

transesterification. There are two main waste streams in in situ transesterification. The first is 

the meal, which is the solid remainder of the seed after in situ reaction. The second is the 

bottom phase (glycerol and other polar compounds) from the separator. These streams were 

evaluated to identify any valuable compounds within them. 

 

4.7.1 Evaluation of Waste Stream 

Figure 4.29 below, shows the mass ratios of glycerol-rich phase (bottom phase) and ester-rich 

phase (upper phase) in the final product of the in situ transesterification process. At 6.7 g 

glycerol-rich layer and 11.5 g ester-rich layer, the mass ratio of 5:10 was higher than that of 

the conventional process, which is usually at 1:10.  
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Figure 4.29 Comparison between glycerol-rich and ester-rich phase after the in situ transesterification of 

J. curcas. Seeds = 40 g, methanol:oil molar ratio = 400:1 

 

Analysis of the compounds was tabulated in Table 4.6. The table suggested that higher mass 

ratio of upper phase to bottom phase was due to several reasons. The capability of methanol 

to extract polar compounds, such as phenolic compounds and soap contributes to this. 

However, the amount of phenolic compounds in the samples was found to be very small, only 

0.55 g, which was equivalent to 0.03 g/g total extract. This is in accordance with 

Tongpoothorn et. al.,‟s work, who found 0.04 g phenolic compounds per gram of total extract 

in the methanolic extract of J. curcas [143]. Soap, which also ended up in the bottom 

(glycerol-rich) phase accounted for 3.1 g. The soap was present in the bottom phase, as J. 

curcas contains high proportions of free fatty acids in its oil. These saponify and turn into 

soap in the glycerol phase. The rest of the mass was made up by the catalyst, NaOH, the 

acetic acid. 
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Table 4.6 Mass balance of triglyceride in the in situ transesterification product (40 g seeds, 400:1 

methanol oil molar ratio, 60
o
C reaction temperature, 0.1 N NaOH concentration, 1 hr reaction time, 450 

rpm mixing speed) 

Oil in seed (hexane Soxhlet extraction)  14.40 ± 0.005g 

Total extract 18.00 ± 0.005 g 

Upper phase 11.50 ± 0.07g 

          Ester 10.70  ± 0.08 g 

Bottom phase 6.70  ± 0.06 g 

          Glycerol 1.10  ± 0.04 g 

Re-extracted seed 

Oil 4.50  ± 0.08 g 

Total oil recovery = 9.70+4.50 = 14.20 ± 0.09 g 

Uncounted oil =14.40 – 14.20 = 0.2 ± 0.09 g 

Other components in Bottom phase 

NaOH 1.10  ± 0.07 g 

Acetic acid 1.70  ± 0.06 g 

Methanol soluble compounds = 6.70– 1.1 – 1.7 – 0.2 = 3.7 ± 0.07g 

Other components in methanol soluble compounds 

Soap 3.10 ± 0.04g 

Phenol 0.55 ± 0.07g 

Phorbol Ester 0.05 ± 0.01g 

 

 

Since the oil content in J. curcas oil was 36%, with 40 g of seeds, the maximum amount of 

ester it was possible to produce was 14.4 g. The total extract, which is the amount of liquid 

product after filtration of J. curcas meal, was 18.0 g. After separation, 11.5 g were in the 

upper phase, whilst 6.7 g was in the bottom phase. 

 

The seeds were then re-extracted with hexane to extract oil that had remained inside. The 

amount of oil recovered at this stage was 4.5 g. This oil was then analysed by gas 

chromatography, and it was revealed that 54.3% of it was in ester form. This confirms the 

claim that in situ transesterification also occurs inside the seed. In equilibrium, when the 

concentration of methyl ester in the bulk methanol is equal to that in the seed, the latter would 
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not be extracted. Therefore, lower concentrations of methyl ester in the bulk will lead to more 

of it being removed from the seeds. This requires more methanol, hence a higher molar ratio 

of methanol to oil.   

 

After the deduction of sodium hydroxide and acetic acid (used for neutralisation), the amount 

of methanol soluble compounds was 3.7 g. Of this amount, 3.1 g was soap and 0.55 g phenol 

compounds. The nature of the remaining 0.2 g is assumed as phorbol ester, which dissolves in 

methanol and is present in J. curcas oil. Various researchers have also reported the presence 

of phorbol ester in J. curcas oil [144, 145], and it solubility in methanol [146, 147]. In this 

study, the distribution of kernel and shell in J. curcas was 62.7 g to 37.3 g as shown in Figure 

4.30. For 40 g of seed, the kernel contribution was 24 g and the amount of phorbol ester per 

gram kernel was 2.1 mg/g kernel. This amount was within the range stated by Devappa et. 

al., [144] which was 0.8 to 3.3 mg/g of kernel.  

 

 

Figure 4.30 Distribution of shell and kernel in J. curcas used in this study 
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4.7.1.1 Protein 

Defatted J. curcas contains high amounts of protein. Oskoueian et. al., reported that the 

amount of protein in defatted J. curcas seeds in their experiments was as high as 61.8%  

[148], which is very high compared to those found by other researchers, for example 26.6% 

by Oseni and Akindahunsi [149] and 22-28% by Devappa et. al., [150]. Achten et al., 

investigated 37 samples of J. curcas seeds originating from all over the world, and stated that 

the average protein amount in the kernel was 24.85% [70].  

 

J. curcas protein was therefore determined using elemental analysis, where the nitrogen 

element was quantified. The nitrogen concentration was then multiplied by a factor of 5.53 

[102], as described in Section 3.4.2. The same method has been used before to quantify 

protein in J. curcas meal [151]. Table 4.7 shows elements of nitrogen, carbon and hydrogen 

in the seed before and after the experiment. 

Table 4.7 Elemental (CHN) analysis results for the seed before and after experiment 

Sample Found % N Found % C Found % H Protein % 

Before 6.64 ± 0.35   56.88 ±  1.10 9.19 ± 0.53 36.72 

After 3.90 ± 0.35 40.54 ± 0.64 4.56 ± 0.25 21.57 

 

The percentage of nitrogen after in situ transesterification reaction was 2.74% lower than the 

amount before reaction. Non-protein nitrogen in J. curcas seed is reported to be small:  below 

9%, as reported by Makkar and Becker [95]. Therefore, assuming that all of the nitrogen was 

protein-nitrogen, the protein percentage before experiment was 36.72% and then loss by 15% 

to 21.57%. This is comparable to the level obtained after mechanical pressing, reported to be 

in the range of 22-24% [89] and slightly higher than rapeseed meal, which usually contains 

17 -20 % protein [152, 153]. Work by Makkar and Becker, also showed that the protein from 
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J. curcas kernels has good acid amino composition, which means it has all the essential 

protein comparable to Food and Agriculture Organisation (FAO) reference protein for 

growing child [89]. 

 

The only problem to utilise the meal as animal feed, is the existence of anti-nutritionals and 

phorbol ester in it. The main anti-nutritional presence in J. curcas are trypsin inhibitors, lectin 

and phytate [150]. Phorbol ester exists in small quantity, but even though minor, exhibit 

toxicity on different kind of animals when used as animal feed [154, 155]. However, since 

methanol and alkali are used in in situ transesterification, there is a high probability that the 

phorbol ester decomposed during the reaction, as it was reported that phorbol ester can be 

reduced by alkali treatment and methanol extraction [156]. Unfortunately this could not be 

definitively proved during the course of this research as the analytical method to determine 

phorbol ester required a high-performance liquid chromatography (HPLC) equipped with 

special column (reverse-phase C18 LiChrospher 100 [91]), which was not available. 

However, this is perhaps the highest priority further work, as it could substantially improve 

the economics of the process. Rapeseed meal in the UK is an important part of the economics 

of rapeseed farming. 
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4.8 Economic Evaluation 

 

To estimate the price of biodiesel per unit kilogram, the economic evaluation analysis on two 

in situ transesterification scenarios was performed. The first scenario was on methanol-seed 

system (Case I) and the second case was methyl acetate-seed system (Case II). A number of 

limitations were set, in order to help with the analysis. The limitations were; 

i. Data for the fixed capital cost, which is the equipment cost, was taken from 

literatures. 

ii. The operating cost, which is the cost associate with raw material, chemicals, 

product and by-product was calculated using current prices.  

iii. The amount of triacetin in Case II was acquired from mass balance calculation. 

iv. For both cases, meal was considered saleable and can be used as animal food. 

v. For both case, solvents were recycled at 80% from the start up run. 

4.8.1 Stream Profiles 

 

Table 4.8 below shows the stream profiles for both cases; 

Table 4.8 Profile of the inlet and outlet stream for Case I and II 

 Case I Case II 

     General    

Solvent:oil molar ratio 400:1 175:1 

NaOH concentration (mol/L 

solvent) 

0.1 0.13 

PEG (200): NaOH molar ratio - 3:1 

Oil amount (g) 14.4 14.4 

     Feed stream   

J. curcas seed (g) 40.0 40.0 

Methanol (g) 210.0 - 

NaOH (g) 0.9 1.2 
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Methyl acetate (g) - 212.7 

PEG (200) (g) - 78.0 

     Outlet stream   

Biodiesel (g) 10.7 11.5 

Glycerol (g) 1.1 - 

Triacetin (g) - 1.5 

Soap (g) 3.1 3.0 

Meal (g) 25.6 24.0 

 

In both Case I and II, sodium hydroxide was used to catalyse the in situ transesterification 

process. Although the molar ratio of solvent to oil was low in Case II, at 175 compared to 

400:1 in Case I, in terms of solvent mass, both were almost similar. The reason was the 

difference in molecular weight, where the methyl acetate molecular weight, at 74.1 g/mol, 

was more than double the methanol molecular weight, 32.0 g/mol. Both cases used 40 g of J. 

curcas seed, and with 36 % of oil content, the amount of oil was 14.4 g.    

4.8.2 Capital Cost 

The capital cost was calculated based on the process models developed by Haas et. al., [98] 

and Marchetti et. al., [16]. Figure 4.31 shows the process flow diagram for homogenous 

transesterification process with preesterification, which is the process route for producing 

biodiesel from J.curcas oil. 
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Figure 4.31 Process flow diagram of conventional transesterification process 

 

The oil from Tank 3 was acid esterified with alkali catalyst and methanol from Tank 4 and 

Tank 1 respectively, in order to reduce the FFA content. The product then went through 

Decanter 2, where the oil phase was separated from the water phase.  

 

In the upper half of the process, the oil phase from Decanter 2 became a feeder for 

transesterification reactor. The transesterification product then was passed through Decanter 

1 to separate the biodiesel phase and glycerol phase. The biodiesel phase then was washed 

and passed through another decanter to separate the water and biodiesel. Finally the biodiesel 

was dried in the column and stored in Tank 8, 

 

At the bottom half, the outlet stream from all decanters was combined and went to neutraliser 

reactor, where alkali, or acid was added to neutralise the compound. Methanol then was 
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separated using distillation column and recycled to Tank 1. The bottom product was put in 

the evaporator to separate water from crude glycerine. 

 

Figure 4.32 Process flow diagram of in situ transesterification process 

 

The process flow diagram of in situ transesterification in Figure 4.32 shows less unit 

operation required for the process. The process started with ground J. curcas seed transferred 

to the in situ transesterification reactor, where it mixed with methoxide solution. The product 

passed through decanter centrifuge to separate the solid phase and liquid phase. The liquid 

phase then washed and passed through another decanter to separate the water phase and 

biodiesel phase. Top product from decanter, the biodiesel was dried in the drying column and 

stored in Tank 7. The bottom product from decanter meanwhile was neutralised in a batch 

reactor and then went to distillation where the methanol was separated from the glycerol 

phase. The methanol was recycled to Tank 1 whilst the glycerol phase was put into 

evaporator to get crude glycerol.   
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The cost of unit operations was taken from work by Haas et. al., and Marchetti et. al., which 

produced 34,000 and 36, 000 MT/ year of biodiesel respectively [16, 98]. For in situ 

transesterification process, the seed used in raw material was ground before stored in Tank 3. 

Table 4.9 below listed the price for each unit operation for both cases.  

Table 4.9 Price of unit operation used in Case I and Case II. All prices are in US$ 1000 

Equipment Transesterification In situ transesterification 

Pre-mixer 50 50 

Transesterification reactor 350 350 

Acid esterification reactor 349 - 

Sum of all decanters 69.6 46.4 

Nutriliser reactor 13.5 13.5 

Distillation column for 

biodiesel purification 

60 60 

Distillation column for 

methanol separation 

40 40 

Distillation column for 

glycerin separation 

77.5 77.5 

          Tanks   

Methanol 24 24 

NaOH 25 25 

Oil 506 - 

Biodiesel 447 447 

Crude Glycerol 22 22 

Washing water 35 35 

Acid 25 25 

Washing Acid 25 - 

Washing Alkali 25 - 

Wastewater 35 35 

Solid meal - 15 

J. curcas seed - 100 

Total Equipment 2178.66 1365.4 

Installation, @200% of 4357.32 2730.8 
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equipment cost 

Miscellaneous Improvements 500 500 

Total Other Cost 4857.32 3230.8 

Total Cost 7036 4596 

Saving, % 0 34 

 

The calculation revealed that total equipment cost for in situ transesterification was less than 

that of conventional by 37%. The main unit operations that affect the equipment cost were the 

acid esterification reactor and oil tank. The saving on the total cost, which included the 

installation and miscellaneous cost, was 34%. 

4.8.3 Operating Cost 

 

A breakdown of operating cost was presented in Table 4.10 for Case I and Table 4.11 for 

Case II.  

Table 4.10 Operating cost for in situ transesterification using methanol as a solvent 

Item Price £/ kg kg required/ kg 

biodiesel 

Price £/ kg biodiesel 

Methanol [157] -0.26 3.9 -1.014 

J. curcas seed [158] -0.09 3.7 -0.333 

NaOH [159] -0.14 0.1 -0.014 

Soap [160] -0.02 0.3 -0.006 

Wash water [161] -0.06 0.1 -0.006 

Biodiesel [162] 0.72 1 0.72 

Glycerol [163] 0.20 0.1 0.02 

Process water [164] -0.01 0.1 -0.001 

Meal [165] 0.28 2.6 0.728 

   0.1 

 

 

In each case, price (£) per kg of all the components in feed stream and outlet stream was 

listed. After that, the amount of each component, with respect to 1 kg of biodiesel was 
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calculated, using data from Table 4.8. The components in the feed stream were negative in 

value whilst the components in outlet stream were positive, except for the soap. This is 

because of the charge imposed by UK local authority to collect and treat it. Process water 

means the water used in the process, which was bought from local authority. Wash water 

meanwhile means the waste water, which collected by local authority with certain charge.  

 Table 4.11 Operating cost for in situ transesterification using methyl acetate as a solvent 

Item Price £/ kg kg required/ kg 

biodiesel 

Price £/ kg 

biodiesel 

J. curcas seed -0.09 0.45 -0.315 

NaOH -0.14 0.3 -0.063 

Methyl Acetate [166] -0.74 3.7 -2.738 

PEG [167] -0.90 6.8 -6.12 

Soap -0.02 0.3 -0.006 

Wash water -0.06 0.1 -0.006 

Biodiesel 0.72 1 0.72 

Triacetin [168] 0.90 0.1 0.09 

Process water -0.01 0.1 -0.001 

Meal 0.28 2.1 0.588 

   -7.85 

 

Comparison of the unit price of biodiesel from both cases shows that in situ 

transesterification by methanol reduced the unit price from £0.72/ kg to £0.62/ kg, which is 

£0.1/ kg less than the current price of biodiesel. Meanwhile, in methyl acetate case, the price 

was increased by £7.85/ kg, to £8.57/ kg, almost 11 times higher than the current price. For 

comparison, the more complex techno-economic study by Haas on in situ transesterification 

of soybean, which considered all the cost associated with the operating cost, found that the 

price per gallon of biodiesel was 8 time higher than the current price in America [54]. The 

different probably due to the price of raw material, in their case was soybean which the 

current price is £0.40/ kg [169], compared to £0.09/ kg price of J. curcas. 
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For Case II, although the molar ratio of methyl acetate needed for Case II was a half less than 

that of methanol-oil in Case I, the high price of methyl acetate, £0.74 compare to £0.26 of 

methanol, affect the unit price of biodiesel greatly. The need to add PEG as a transfer phase 

agent worsens the economic balance as the PEG price was high at £0.90 per kilogram. Even 

though the by-product triacetin price £0.90 was higher that Case I‟s glycerol, £0.20, this was 

cancelled of by the use of PEG.   

 

It is also interesting to note that for 1 kg of biodiesel, the value of meal was similar to that of 

biodiesel, £0.72. The reason for this is because the huge quantity of meal, 2.6 kg, obtained for 

every kilogram of biodiesel. The price of J. curcas meal, $430/ ton, and equivalent to £0.28/ 

kg is also high, compared to soybean meal, $300/ ton or £0.19/ kg. The explanation of this 

high price is because the meal contains more protein than for example rapeseed meal, as 

stated in Section 4.7.1.1.   

 

Although the biodiesel price in Case I was lower than the current price, it should be noted 

that, the methanol recycling process was more energy consuming in in situ compared to 

conventional transesterification. According to Dhar and Kirtania [126], 500 kW of electricity 

required to recycle 80% of the methanol at 6:1 molar ratio, and this amount increased to 3000 

kW for 50:1 molar ratio. By extrapolating the points for 400:1, which is the molar ratio in 

Case I, 22, 900 kW of electricity required to recycle 80% of methanol back to the process. At 

current electricity price of £0.68 kWh [170], the cost to operate the distillation column for 1 

hour in in situ transesterification plant is £15,000 compared to £340 in conventional 

transesterification plant.  
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Further analysis shows that the electricity price can be lowered by decreasing the recovery 

level of excess methanol. Figure 4.33 shows the electricity price decreased from £15,000 to 

£12,000, £10,000 and £6,000 as methanol recovery percentage was lowered from 80% to 75, 

70 and 65% respectively.    

 

 

Figure 4.33 Relationship of percentage of methanol recovery with electricity and biodiesel price 

 

However, as the methanol recovery percentage and electricity price decrease, the biodiesel 

price per unit kg increased above the current biodiesel price line, £0.72.  Therefore, to ensure 

the biodiesel price from in situ transesterification process remains competitive, a balance 

combination between methanol recovery and electricity price must be considered.    
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5 CONCLUSIONS AND FURTHER WORK 

5.1 Conclusions 

The main aim of this research was to extensively study biodiesel production by in situ 

transesterification of J.curcas seed. It was found that generally, it is possible to produce fatty 

acid methyl ester (biodiesel) via in situ transesterification of J. curcas with alkali catalyst. 

This was possible despite its high free fatty acid content, which would conventionally mean 

that the oil has to undergo an acid esterification process before converted to biodiesel via the 

transesterification process. The in situ transesterification of J. curcas was also found to have 

high tolerance towards water content (5%), as opposed to in situ transesterification of 

soybean (0%). In terms of process, this will have significant effect since the drying stage can 

be eliminated from the process. The J. curcas seed was characterised and it was shown that it 

had 36 % triglyceride and 37 % protein. The triglyceride was dominated by unsaturated fatty 

acids, specifically, oleic and linoleic acids  

 

Sodium hydroxide, sodium methoxide and sulphuric acid were investigated to find the most 

suitable catalyst for the process. Of the three catalysts used in the screening process, sodium 

hydroxide gave the highest yield at the shortest reaction time. Yield per unit time increased 

with the decreasing particle size until the size reach 0.71 mm. 

 

6 parameters were investigated in initial one-at-a-time screening experiments: particle size, 

mixing speed, reaction temperature, reaction time, catalyst concentration and methanol-oil 

molar ratio were tested one by one. For the mixing speed, the parameter become insignificant 

once it reaches 300 rpm. The reaction temperature was found to be irrelevant to the yields 

end point, but when the time profile for different temperatures were plotted, it was obvious 
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that the increases in temperature increased the reaction rate. The FAME yield was observed 

exhibited minimal change beyond 30 minutes of reaction time, suggesting that the reaction 

completed within 20 to 30 minutes after the reaction start. The in situ transesterification were 

unable to proceed without the presence of catalyst, in this case the sodium hydroxide catalyst. 

Even the small amount of sodium hydroxide, 1.0 N, catalysed the reaction greatly. However, 

the addition of more than 0.2 N of sodium hydroxide had promoted soap formation instead. 

The most crucial parameter in in situ transesterification process is the molar ratio of the 

solvent to oil. The results suggest that the amount of methanol must be very high in order to 

achieve an appreciable yield, in this case as high as 400:1.  

 

The data from these experiments were used to set the limits of the “Design of Experiments” 

matrix. The limits were: methanol to oil ratio, 100 – 400, NaOH concentration of 0.1-0.2 N, 

10-60 minutes reaction time, 30-60
o
C reaction temperatures and 100-400 rpm mixing speed.  

The design of experiments result shown that within the experiment matrix, out of 5 

parameters (mixing speed, reaction temperature, reaction time, catalyst concentration and 

methanol-oil molar ratio), only three, which were mixing speed, reaction time and methanol-

oil molar ratio gave significant effect to the FAME yield. It was found in screening process 

that the correlation between the parameters and FAME yield was not linear, and thus non-

linear polynomial model has been suggested instead. 

 

 In the effort to reduce the solvent used in the in situ transesterification, the used of 

diethoxymethane (DEM) was found producing better yield than that of hexane. While the 

effect of DEM was not significant in lower molar ratio experiment, the addition of it in high 

molar ratio experiment increased the FAME yield by 11%. This however did not reduce the 

amount of methanol. One of the more significant findings to emerge from this study is that 
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the replacement of methanol with methyl acetate successfully reduced the amount of solvent 

required for the process. The used of 175:1 molar ratio of methyl acetate to oil produced 

almost similar amount of yield with 400:1 molar ratio of methanol to oil. 

 

It also emerged from this study that there were various compounds that end up in the waste 

streams of the in situ transesterification process. The liquid waste stream mainly consists of 

glycerol, soap, phenol and phorbol ester, whilst the solid waste stream consists of meal which 

was rich in protein. As opposed to the conventional process, where the meal still contained 

toxic compounds and thus make it unsuitable for animal feed, in situ transesterification may 

have reduce or remove these compounds and increased it value as animal feed.   

 

Taken together, the results of this study indicate that the in situ transesterification can offer 

alternative route in producing biodiesel from J. curcas. The advantages of this process lie on 

several factors. The first one is there is no dependency on edible oil, which the price is 

volatile, due to its main use as a food material. Secondly, the process eliminates few energy 

intensive, huge capital cost stages, such as oil extraction and acid esterification process. This 

will help reducing the overall capital cost although its impact on the overall techno-economic 

still has to be investigated. Thirdly, the other compounds that came out from the process‟ 

waste streams have their own value in the market. This possesses the possibility of 

biorefinery concept to be implemented and at the same time will help on the economic aspect 

of the overall project. 

 

The findings from this study make several contributions to the current literature. First, this 

project was the first attempt of in situ transesterification of J. curcas seed with alkali catalyst. 



136 

 

Therefore, it consists of details and in-depth information on the effect of each parameter, 

specific to J. curcas seed. Secondly, the relationship of the effect of parameters with 

fundamental concept such as Fick‟s laws of diffusion for molar ratio effect, diffusivity-

temperature relation for the effect of temperature and Frossling equation for the effect of 

mixing speed, has not been discussed in the in situ transesterification literature to date. 

Thirdly, the use of light microscope to look into the effect of some parameters to the seed‟s 

cell, were started from Process Intensification Group (PIG), and pioneered in in situ 

transesterification study. Fourthly, the modified technique to determine yield in bulk solvent 

phase, also invented within the group, and offered a simpler, consistent and reliable method 

to measure the yield. Although the used of hexane and DEM is not the pioneer in in situ 

transesterification, the use of methyl acetate as a replacement to the methanol is the first of its 

kind. There is high possibility that in situ transesterification capable to remove the toxic 

compound, phorbol ester from the meal. This is based on the literature that indicates that the 

phorbol ester was decomposed when mixed with methanol. The reason is because both 

methanol and phorbol ester are polar compounds. The economics evaluation on the operating 

cost, although briefly, provide a foundation for more extensive techno-economic study and 

never been published in current literature.  
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5.2 Further Work 

It is recommended that further research be undertaken in the following areas: 

i. The reactor design. The used of counter current extractor in many bio-based solid 

extraction has been proved to be more efficient than batch system [171, 172]. This will 

ensure that the seed received fresh solvent during the reaction and thus increase the rate of 

extraction. This will also minimise the solvent used, as the solvent will recycle throughout the 

process. 

 

ii. The phorbol ester material balance. In this study, the amount of phorbol ester was 

determined by calculating the mass balance of the overall process. It will be more accurate if 

the phorbol ester is detected and quantified at all process stages. The detection and 

determination of phorbol ester is important in order to ensure the meal can be utilised as 

animal feed. In mechanical pressing extraction system, this compound remained in the meal. 

The process to quantify the amount of phorbol ester was developed by Makkar and describe 

in details in his publication [69]. The sample was prepared by mixing the ground seed with 

dichloromethane to extract all other non-polar compounds from the seeds. The liquid then 

was filtrated and the dried residue was mixed with tetrahydrofuran. This mixture then was 

passed through a filter and then injected into the HPLC, equipped with reverse phase C18 

column. The condition of the HPLC also described in the publication. 

 

iii. Kinetic Modelling. The modelling of in situ transesterification will help researcher to 

ascertain on the reaction pathway. Data on the kinetics involved in the reaction is important, 

for example to determine the rate limiting step. The data also used to develop a conceptual 

design of the plant with simulator. The hypothesis of the modelling can be based on shrinking 
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core model where the solid particle shrinks in liquid. Two processes occurred in series during 

the dissolution process, which were the escape of solute from the solid particle and the 

diffusion of the solute to the bulk phase. The rate of dissolution may be controlled by one of 

these two steps [173]. 

 

iv. Techno-economic study.  The issue of biodiesel price is an intriguing one which could 

be usefully explored in further research. In the current study, the fixed capital cost, which is 

the cost associated with the equipment‟s price was adopted from literatures. To improve the 

economic analysis study, a conceptual design for each reaction scenario needs to be 

developed with the help of process simulator.      
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7.1 Appendix A: Calculation of methanol-oil molar ratio.  

 

Calculation of methanol 

1 

Percentage 
of oil in 
seed: = 0.36 % 

     

2 
Mass of 
sample: = 10 g 

     

3 

Mass of oil 
in the 
sample = 0.36 x 10 

 

  
= 3.6 g 

     

4 

MW of 
Jatropha 
oil: = 877 

 

     

5 
No of mol of 
sample: = 3.6/ 877 

 

  
= 0.004104903 mol 

     

6 
Ratio of 
alcohol:oil = 100 

 

     

7 

Mol of 
methanol 
required: = 4.1E-03 x 100 

 

  
= 0.410490308 mol 

     

8 
MW of 
methanol = 32.04 

 

     

9 

Mass of 
methanol 
needed = 4.1E-01 x 32.04 

 

  
= 13.15210946 g 

     1
0 

Density of 
methanol = 0.7918 g/cm3 

     

1
1 

Volume of 
methanol 
needed = 13.15 x 0.7918 

 

  
= 10.4121736 cm3 

     Calculation of sodium hydroxide 

     1 Catalyst 
concentrati
on = 0.1 

mol/L 
NaOH 

 

    2 Mass of = 791.8 g 
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methanol 
for 1 L 

 

    3 No of mol of 
1 L MeOH = 24.71285893 mol 

 

    4 MW of 
NaOH = 40 

  

    5 Mass of 
NaOH 
needed = 4 g 

 

    6 Mass of 
NaOH 
needed for 
X g of 
methanol 

= 
0.066441573 g 
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7.2 Appendix B: Calculation of diffusion coefficient, DAB, for diglyceride-methanol 

system 

 

DAB(60
o
C) = 1.62 x 10

-9
 m

2
/s [55] 

Viscosity, µ, of the methanol  

 

 

 

  

For DAB (70
o
C): 

 

 

                                                  

DAB value for temperature ranging from 10-70
o
C 

Temperature (K) DAB (m2/s) 

283.15 7.19 x 10-10 

303.15 1.04 x 10-09 

313.15 1.19 x 10-09 

323.15 1.44 x 10-09 

333.15 1.62 x 10-09 

343.15 1.94 x 10-09 

 

Temperature Viscosity (cP) 

30 0.521 

40 0.469 

50 0.399 

60 0.366 

70 0.314 
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7.3 Appendix C: Publications  
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