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ABSTRACT 

Advances in hardware technologies combined with decreased costs 

have started a trend towards massively parallel architectures that utilise 

commodity components. It is thought unreasonable to expect software 

developers to manage the high degree of parallelism that is made 

available by these architectures. This thesis argues that a new 

programming model is essential for the development of parallel 

applications and presents a model which embraces the notions of 

object-orientation and implicit identification of parallelism. The new 

model allows software engineers to concentrate on development issues, 

using the object-oriented paradigm, whilst being freed from the burden 

of explicitly managing parallel activity. 

To support the programming model, the semantics of an execution 

model are defined and implemented as part of a run-time support 

system for object-oriented parallel applications. Details of the novel 

techniques from the run-time system, in the areas of lazy task creation 

and object-based, distributed shared memory, are presented. 

The tasklet construct for representing potentially parallel 

computation is introduced and further developed by this thesis. Three 

caching techniques that take advantage of memory access patterns 

exhibited in object-oriented applications are explored. Finally, the 

performance characteristics of the introduced run-time techniques are 

analysed through a number of benchmark applications. 
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1CHAPTER 1 
1.  INTRODUCTION 

The research work presented in this thesis was inspired by the 

emergence of high-performance computing architectures built around 

affordable, commodity-based hardware. The assessment of existing 

software-based, run-time support tools for the execution of parallel 

applications on such architectures and the proposition of solutions to 

possible drawbacks were originally set as the primary objectives for this 

thesis. 

This chapter presents in detail the motivation for the research work 

undertaken and lists the contributions to knowledge that the rest of the 

thesis claims to make. The field of high-performance computing is 

explored and the application area and hardware trends are studied. 

The discipline of parallelism is seen as being very closely 

interrelated to high-performance computing. The basic requirements 

for development models and software tools to support parallelism on 

the emerging high-performance architectures are set and the scope for 

the chapters that follow is established. 



Chapter 1 

2 

1.1. High-Performance Computing 

There have always been applications with requirements that exceeded the available 

computational power at any particular period in time. The effort to meet the needs of 

these performance-hungry applications has been the driving force in designing and 

building faster computers. 

In the early years of high-performance computing (HPC), applications with excessive 

demands in processing power were limited to the area of scientific computation (weather 

prediction, cosmology, particle simulation, etc.). As the processing power made available 

to scientists increased, the urge to run larger and/or more difficult problems continued 

and it is still the same today. In addition to scientists, computer practitioners in other 

application areas started to realise the benefits of harnessing more processing power. 

Applications in areas such computer vision and graphics, computer-aided design, 

databases, have all benefited from high-performance computing architectures since the 

‘80s—and still do. Today, performance-critical application areas include computer 

animation (in 1995, ‘Toy Story’ was the first full-featured, computer-generated film with 

many others following it), aerospace, geophysics, World Wide Web (WWW), gaming, 

finance, bioinformatics, education, healthcare, to name only a few. One can observe a 

shift from scientific to primarily industrially oriented HPC applications. 

The last statement is further supported by the recent growth of the WWW. 

Performance-critical web applications have emphasised the demand for industry-based 

HPC platforms. As an example, one only needs to examine the strategies for their future 

products that the two largest software companies in the world, namely Microsoft and 

Oracle, have drawn. Both are suggesting a return to the old server-based style of 

computing (Microsoft 2000; Oracle 1999). The requirements of the multimedia-rich, 

computationally intensive, network-centric applications that are to be supported by the 

re-proposed server-based models of computing point to HPC architectures. 

With the majority of the application areas being industry-oriented during the last 

decade, the interest in the HPC field and the high rate of investment were unsurprising. 

As it will soon be shown, systems with an improved cost/performance ratio attracted 

most of the attention and architectures based on commodity hardware are becoming 

more popular due to their ability to offer good performance for a relative low cost. 

A study of the HPC field cannot and should not neglect the required application 

development models and support tools as well as their enabling execution environments. 
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Additionally, the discipline of parallelism is seen by this thesis as being closely coupled 

with that of HPC, as the foremost purpose of parallelism is the improvement of 

performance. To that extent, this thesis considers different models and support tools for 

parallelism as being the enabling factors for high-performance computing. 

Before the discussion moves to parallelism related issues, the application area and 

hardware trends in the field of high-performance computing are considered. It is hoped 

that the current and future requirements for development and execution paradigms will be 

better understood. 

1.1.1. Application Area Trend 

Analysis of the list of the 500 fastest supercomputers in the world (TOP500 List Authors 

2000) reveals a number of trends in the HPC field. The ‘TOP500 list’ (TOP500 List 2000) 

is published twice a year, every June and November, and it records the fastest computers 

in the world based on the results obtained from the execution of the LINPACK 

benchmark (Dongarra 1994). 
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Figure 1-1: Application area evolution of the top 500 high-performance computers based on data from the 

‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000) 

The graph of Figure 1-1, which is based on all the published TOP500 lists until 

November 1999, is illustrative of the transition towards industry-driven high-performance 

computing. In 1996, the number of computers in the TOP500 list used in the industry 

exceeded those installed in the academia and two years later those used by research 

institutes. However, while the graph of Figure 1-1 strengthens the argument about the 

growing interest of industry in high-performance computing, it does not reveal any 

particular characteristics about the TOP500 systems. 
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Figure 1-2: Evolution of the total computational 
power (in Gflop/s) per application area of the top 
500 high-performance computers based on data 

from the ‘TOP500 list’ (TOP500 List 2000; 
TOP500 List Authors 2000) 

Figure 1-3: Evolution of the computational power 
(in Gflop/s) of the fastest computer for each 

application area of the top 500 high-performance 
computers based on data from the ‘TOP500 list’ 
(TOP500 List 2000; TOP500 List Authors 2000) 

When the achieved computational power, expressed in Gflop/s1, of all the 

supercomputers in the TOP500 list is added together on per application area basis, it is 

revealed that the industry-based systems are lagging behind in overall performance when 

compared to the systems employed by the other application areas (Figure 1-2). Despite 

their great number, as shown in Figure 1-1, the total computational power of the 

industry-installed TOP500 high-performance computers at the end of 1999 is almost half 

of the equivalent computational power of research-based supercomputers (Figure 1-2). As 

a result, the high-performance computers in the TOP500 list that are used in industry are 

the slowest on average when compared to any other application area. 

The investment in exceptionally fast, number-crunching platforms seems to be 

exclusively research-driven, as suggested by Figure 1-3 which shows the evolution of the 

fastest of the supercomputers in the TOP500 list for each application area. Again, it is 

clear that industry does not invest in the highest performing solutions possible. Instead, 

there is an indication that industry is mostly concerned with the cost/performance ratio. 

Although costing information about the supercomputers in the TOP500 list is not 

made available, it is safe to assume that in the general case the cost/performance ratio 

becomes significantly high at the top of the TOP500 list. The excessive computational 

requirements of the scientific applications result in investments on fewer but at the same 

time faster high-performance architectures. It is for this reason the number of 

supercomputers in research has been decreasing (Figure 1-1) while their performance has 

been continuously increasing (Figure 1-2 and Figure 1-3). In contrast and despite the 

manifested interest of industry in high-performance computing, the lack of 
                                                 
1 Flop (Floating Operations): Unit used in the measurement of computational power. 
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industry-installed supercomputers from the top of the TOP500 list suggests that the 

investment on new platforms is not purely performance-driven but, instead, 

cost/performance-driven. 

1.1.2. Architectural Trends 

The computer industry has been experiencing a tremendous rate of advances in VLSI 

technology, especially during the last decade. Microprocessors and memory have been 

becoming faster and cheaper, interconnection networks have been being built with more 

available bandwidth and shorter latency, and local and wide area networking technology 

has been advancing, mostly due to the exponential growth of the Internet. 

Massively Parallel Processing (MPP) and Symmetric Multi-Processing (SMP) 

computers are now much cheaper to manufacture because they can be based partially or 

even completely on general-purpose, commodity hardware. An MPP consists of a great 

number of processing elements with their own private memory. The processing nodes 

may be interconnected through a variety of existing topologies (e.g., rings, buses, cubes, 

hyper-cubes, etc.). An SMP consists of a usually small number—when compared to MPP 

architectures—of processing elements that all share the same physical memory. 

If the reasoning of the previous section about the shift towards inexpensive 

high-performance computing was accurate, then MPP and SMP architectures should lead 

the TOP500 list in terms of numbers. Indeed, the graph of Figure 1-4 confirms the latter 

hypothesis by presenting the evolution of the TOP500 hardware architectures since 

November 1993. 

Due to the scalability limitations of the SMP architectures, further improvements in 

performance are usually difficult and/or extremely costly to achieve. It can be suggested 

that the combination of the costing and scalability considerations is the reason the 

number of SMP architectures is in decline. Furthermore, the eclipse of architectures based 

on Single Instruction Multiple Data (SIMD) processors or just one very expensive but 

specialised single processor (Figure 1-4) can also be attributed to their unfavourable 

cost/performance ratio and their scalability limitations. 
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Figure 1-4: Evolution of hardware architecture of the top 500 high-performance computers based on data 

from the ‘TOP500 list’ (TOP500 List 2000; TOP500 List Authors 2000) 

In contrast, the architectural shift towards MPP architectures can be justified by their 

excellent scalability and the achieved performance. Since the first publication of the 

TOP500 list, an MPP supercomputer has always been the fastest. Figure 1-5 shows the 

evolution of the computational power, in Gflop/s, of the best performing supercomputer 

per architecture. The fastest computer in the world in November 1999, according to the 

TOP500 list, was the ASCI Red, located at the Sandia National Labs, US, which consisted 

of an impressive number of 9,472 Intel PentiumII™ processors. The ASCI Red is 

probably the best demonstration of the way commodity hardware—in this case the 

PentiumIITM microprocessors—can be incorporated in a supercomputer that is capable of 

achieving record-breaking performances. 
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Figure 1-5: Evolution of the computational power (in Gflop/s) of the fastest computer for each hardware 
architecture of the top 500 high-performance computers based on data from the ‘TOP500 list’ (TOP500 

List 2000; TOP500 List Authors 2000) 

The shift towards commodity-based HPC is also indicated by the relatively recent 

appearance in the TOP500 list of a new type of computer architecture that is based on 

numbers of workstations interconnected by fast interconnection networks. The cluster 

architecture, as it is known, has been gaining momentum mostly due to its extremely 

advantageous cost/performance ratio. 

Finally, the general interest for inexpensive HPC is also indicated by the increasing 

popularity of constellation architectures. Such architectures leverage collections of 

existing, most often older, supercomputers for the execution of high-performance 

applications. It should not be of any surprise that in November 1999 industry was the 

main user of constellations due to the cost savings that can be achieved from the reuse of 

old platforms. 

1.1.3. Trend Synopsis 

It is evident that in the last few years, industry has emerged as the main user of HPC. 

Computational power requirements are no longer exclusive to scientific-oriented 

applications. The field of general-purpose, high-performance computing is gaining 

momentum, as the list of HPC applications suggests (page 1). The notable increase in the 

number of TOP500 supercomputers used in industry is yet another indication of the great 

interest and investment in HPC. It seems, though, that the focus is mainly on the 

cost/performance ratio of the platforms employed rather than just on performance. That 

would explain the inferior computational power that is achieved by HPC platforms used 
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in industry when compared to those used in the other application areas and especially in 

research. 

In contrast, due to the excessive computational requirements of scientific applications, 

the maximum achievable performance is pursued for the HPC systems that are deployed 

in research. Often, the focus on performance dramatically increases the implementation 

and support costs for a platform and, as a result, there has to be a concentration on fewer 

but faster installations. 

There also seems to be a drive towards HPC systems that are based, partially or 

completely, on commodity hardware, especially off-the-self microprocessors. The 

incorporation of commodity hardware into HPC results in more affordable systems 

without necessarily sacrificing their performance. 

Finally, it is clear that parallelism is the main enabling factor for HPC. The prime goal 

of parallelism is to improve the execution performance of applications. Since 

supercomputer architectures based on single, specialised, expensive processors have been 

eclipsed (Figure 1-4), it is reasonable to consider parallelism as the facilitating force for 

high-performance computing. 

All the current HPC architectures are built upon aggregations of processing elements 

that collaborate. The definition of a processing element may vary between HPC 

architectures. For example, it may be a microprocessor, a whole workstation, an SMP 

computer, or even a supercomputer in the case of constellations. Nevertheless, in any case 

the concept is the same: a number of processing-capable components that work 

simultaneously having as a purpose the faster execution of an application. 

Having recognised the importance of parallelism in the HPC field, this thesis embarks 

in the investigation of issues related to the field of parallel computing. 

1.2. Parallelism 

For almost six decades, the computer model based on a single processor, memory, bus, 

and peripherals—the von Neumann architecture (Burks et al. 1962)—has been the 

dominant architectural model upon which computers have been built. Nevertheless, even 

during the ‘60s, the HPC community began to realise that traditional computers based on 

the von Neumann model were unable to produce the computational power required. With 

parallelism, the traditional model of computing could be extended to achieve better 

performance. 
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1.2.1. Definition 

According to Pfister (Pfister 1998), there are three ways to perform an activity faster in 

life: work harder, work smarter, or get help. Pfister observes an analogy with the 

computer world (Table 1-1). The execution performance of applications may be improved 

when the components of the computer architecture (e.g., processor, memory, bus, etc.) are 

enhanced. Additionally, an implementation of the same application based on a better 

algorithm may also improve the execution performance. However, if more than one 

processing elements work on the same problem, execution performance may be 

dramatically increased when compared to the two previous approaches. 

Work harder - Processor speed 

Work smarter - Algorithms 

Get help - Parallel processing 

Table 1-1: How to perform an activity faster in real life and in computing (Pfister 1998) 

Almasi and Gottlieb define a parallel computer as “a large collection of processing elements 

that can communicate and cooperate to solve large problems fast” (Almasi and Gottlieb 1994). 

However, as they also observe, the definition raises many questions: How large should the 

collection of processing elements be? How do they communicate? What means do they 

use to cooperate? How large a problem should be? In answering these questions, 

computer architects and software developers have come up with a variety of solutions 

since the ‘60s, descriptions of which can be found in (Almasi and Gottlieb 1994; Culler 

and Singh 1999; Lewis and El-Rewini 1992; Pfister 1998; Tanenbaum 1999). 

Finally, based on the definition by Almasi and Gottlieb, Culler and Singh believe that 

a parallel architecture is just “the extension of conventional computer architecture to address issues of 

communication and cooperation among processing elements” (Culler et al. 1993b). However, this 

definition does not capture the essence of parallel computation, which according to this 

thesis is speedup. As it was suggested earlier in this chapter, the foremost purpose of 

parallelism is the faster execution of applications and for that reason the definition by 

Almasi and Gottlied is perceived as more accurate for the purposes of this thesis. 

1.2.2. Hardware Support 

Since the 60’s, there has been a plethora of research works and considerable progress in 

the field of parallel computer architecture. The rate of computational power increase, as 

shown by graphs presented in the previous section, is an indication of the strong 

hardware developments in the field. The four decades of advances have resulted in a great 
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diversity of hardware platforms, as the discussion in Chapter 2 demonstrates where a 

taxonomy of existing architectures is also presented. 

One may suggest, though, that despite the advances in hardware, application 

development and run-time support tools for the various parallel platforms have not 

received the same attention. 

1.2.3. Programming and Execution Models 

Tanenbaum describes a computer system in terms of a series of layers (Tanenbaum 1999). 

At the bottom of the organisational structure, there is the hardware layer and at the top 

the application layer. In between, layers like the programming language and the operating 

system exist. A layer in the organisational structure of a computer system should provide a 

simple, well-defined abstraction of the underlying ones (Chapter 2 presents a more 

detailed discussion on the layered approach to parallel computer system organisation). 

Perhaps more than other disciplines, in the case of parallel computing the performance is 

an extremely important characteristic of a layer. Consequently, it should be noted that 

efficiency should not be sacrificed in favour of abstraction. 

Unfortunately, after observing the evolution of parallelism since the ‘60s, one notices 

that in practise there have not been significant advancements in the layered approach to 

parallel computer organisation. Parallel computing practitioners have been reluctant to 

explore new approaches to development and run-time support, as the hesitation in 

adopting innovative methods of programming and execution of applications on parallel 

computers suggests. The same troublesome—according to this thesis—methods have 

been used for decades now. 

It is suggested that the absence of a clear distinction between a programming model 

and an execution model of parallel computing is to blame for the apparent lack of 

advancement in parallel computing practices. The former model represents the view of 

the parallel system as it is seen by the developer while the latter is the abstraction of a 

parallel system as it is perceived by the application. The two models are going to be 

defined and discussed in detail in Chapter 2. 

The lack of a clear distinction between the programming and execution models has 

allowed hardware characteristics to be filtered up to the application developer. 

Programmers are required to write applications with the hardware configuration always in 

mind. The management of parallelism, synchronisation, communication, and other related 

issues, burden the application developers. As a result, the parallel software development 

and maintenance processes have become troublesome, time-consuming, and costly. 
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The most popular models of parallel computing are message-passing and 

shared-memory. The two are considered both as programming and execution models. 

Developers have to reason about the implementation of algorithms with the architectural 

characteristics of the parallel platforms in mind. There is no attempt by either of the two 

models to hide architectural details from the programmers. There are, however, 

programming models that have been designed to abstract from the underlying 

architectures, such as the functional model. A synopsis of the main characteristics of all 

the above models are given below (a more detailed discussion is presented in Chapter 2): 

• The message-passing programming and execution model do not provide an 

abstraction of the underlying parallel architecture. Application developers have to 

manage communication and synchronisation between processing elements. In 

most cases and when the programming primitives of the model are used 

appropriately, efficiency is not an issue. Modern operating systems, often in 

combination with optimised user-level libraries that vendors of parallel systems 

supply, provide good run-time support. However, using the message-passing 

programming primitives correctly in order to better utilise the parallel architecture 

is a huge task for the application developer. 

• The abstraction that the shared-memory model provides is that of a computer 

with a collection of processing elements that have access to a common memory. 

The architecture of the underlying parallel system is not hidden from application 

developers, as they have to manage parallelism. As in the case of the 

message-passing model, efficiency can be achieved when the programming 

primitives of the model are used suitably for a specific architecture and with the 

appropriate operating system and/or user-level libraries support. 

• Unlike the two previous models, the functional programming model manages to 

hide the details of the underlying parallel architecture. It requires an execution 

model that is not made visible to application developers, who are not burdened 

with the task of managing parallelism but, instead, they only need to concentrate 

on algorithmic issues. However, the model greatly depends on software tools (i.e., 

compilers, run-time systems) that have not been able to match the performance of 

the tools available for the message-passing and shared-memory models. The 

functional programming model appeared to be good alternative to the traditional 

models but it has not managed to gain a sufficient following in order to become a 

commercial success (Almasi and Gottlieb 1994). 
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It can also be suggested that the existing programming models have poor support for 

good software engineering practices (some to a lesser degree than others) like abstraction 

for managing complexity, structure reuse, maintenance, profiling/debugging, which are 

very important for the application development lifecycle. 

1.3. Possible Future Directions for Parallel Computing 

An attempt to determine the future directions of parallel computing may provide an 

indication of those initiatives that must be undertaken today. It is not the purpose of this 

thesis to discuss and attempt to predict the future of parallel computing. Instead, using as 

a starting point the observations that have been made up to now in this chapter and based 

on the findings of a working group on ‘Enabling Technologies for Petaflops Computing’ 

(Sterling et al. 1995), this section attempts to identify those areas that are likely to 

influence the field of parallel computing in the future. 

1.3.1. Microprocessor Technology 

There are indications that the remarkable rate of advances in microprocessor technology 

will be reduced as physical limits in their production process are reached. The vast 

manufacturing costs will probably yield the current processor manufacturing technologies 

commercially unviable (Moore 1965; Moore 1997; Moore 1998). 

Exotic technologies are under investigation and they might provide alternatives to 

HPC architectures. For example, research on the use of technologies based on optics and 

superconductivity in processor architecture promise enormous availability of 

computational power. However, such technologies are unlikely to make an impact during 

the next two decades. Other promising areas of research such molecular and quantum 

computing are even more unlikely to make an impression in the near future. The findings 

of the working group on Petaflops computing confirm these observations (Sterling et al. 

1995). 

The use of huge numbers of microprocessors in massively parallel computer 

architectures is likely to become standard practise in the HPC field. Cost concerns appear 

to favour the use of commodity rather than special purpose microprocessors in such 

architectures. The hardware trends observed earlier in this chapter seem to confirm the 

last statement. Furthermore, in the analysis of the findings of the working group on 

‘Enabling Technologies for Petaflops Computing,’ Sterling, Messina, and Smith make a 

very important remark that strengthens the arguments toward the use of commodity 
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processors. The analysis also hints at the use of other commodity components in addition 

to microprocessors (e.g., network interconnections, memory, etc.): 

“The level of investment being applied to technology development by the commercial 

semiconductor marketplace is substantial and greatly exceeds any augmentation likely from 

government research programs. Thus, the opportunity to influence expensive development cycles is 

limited. This situation is exacerbated by the tight coupling between mass production and 

component cost. Specialty parts become significantly more costly than mass-produced commodity 

parts of equivalent complexity. Consequently, any initiative to develop a Petaflops computer will 

have to rely heavily (although not exclusively) on commercially-available components. By 

leveraging advances that occur as commercial by-products, development costs can be acceptable.” 

(Sterling et al. 1995) 

1.3.2. Architectures 

The findings of the working group on ‘Enabling Technologies for Petaflops Computing’ 

(Sterling et al. 1995) reinforce the argument that was presented earlier in this chapter 

about the shift towards parallel computer architectures that are focused on 

cost/performance ratio. The use of commodity hardware on such architectures is essential 

if the manufacturing costs are to be kept down. In (Sterling et al. 1995), it is also predicted 

that there will be a shift towards massively parallel architectures with tens of thousands 

processors. The hardware trend of Figure 1-4 (page 5) confirms the prediction. 

However, the move towards architectures with massive numbers of processors will 

probably require new techniques to emerge, especially in the field of memory technology 

(Sterling et al. 1995). Such techniques will attempt to eliminate the latency in memory 

access, improve memory bandwidth, allow for faster communication between processing 

elements, etc. 

1.3.3. Software 

The authors of ‘Enabling Technologies for Petaflops Computing’ reveal the lack of good 

programming models and software tools for parallel computing (Sterling et al. 1995). They 

predicted that for the Petaflops mark to be achieved, a degree of parallelism of up to one 

million would be required. Programmers cannot be expected to manage that degree of 

parallelism without adequate support from software. 

In (Sterling et al. 1995), a series of areas where developments are required is proposed. 

The subset that is relevant to the topic of this thesis is presented bellow. 
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• Global address space: The available memory on a massively parallel architecture 

should be accessible in a uniform way. 

• Latency hiding: Either via software or hardware means, the latency in memory 

operations should be hidden. 

• Implicit and explicit parallelism: New models for developing parallel 

applications are required that allow programmers to concentrate on algorithm 

issues rather than the management of parallelism. 

• Software support tools: New support tools for transparent resource management 

and automatic migration of data and tasks are required. 

This thesis attempts to reflect on the requirements of software tools for well-organised, 

cost-effective, parallel application development and for efficient execution on the parallel 

architectures of the future. 

1.4. Research Goals 

The discussion to this point attempted to sketch the current state of parallel computing 

and hint on potential future developments. A need for new parallel programming and 

execution models and their required software support tools emerged. Furthermore, as the 

complexity of (parallel) applications grows, the implementation, debugging, and profiling 

stages of the application development process become increasingly troublesome. It is 

apparent that good software programming practices need be introduced in the 

development lifecycle of parallel applications. 

In this section, the motivation for the research work undertaken is discussed. The 

objectives that were set and their augmentation are also presented. Finally, the 

contributions to knowledge that this thesis claims to make are outlined. 

1.4.1. Motivation 

This research work was originally inspired by the emergence of cluster architectures based 

on commodity hardware as parallel platforms. The considered clusters consisted of 

single-processor workstations that were interconnected via commodity networking 

equipment. The investigation of run-time techniques for the execution of parallel 

object-oriented applications on such affordable platforms was originally set as the primary 

objective. The main characteristics of the targeted platforms were their distributed, 

non-shared memory and their slow interconnections. 
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However, it was clear even during the early stages of the research work that the 

original objectives were too narrow. There was no reason why the run-time techniques 

under investigation could not target other high-performance architectures as well. As a 

result, the goals were extended to target shared-memory multiprocessors and clusters of 

single-processor and/or multiprocessor architectures. The investigation into programming 

and execution models for parallel computing was also included in the set of objectives. 

The exploration of run-time techniques for parallel computing on shared- and 

distributed-memory architectures was maintained as part of the research goals. 

1.4.2. Contributions to Knowledge 

The exploration of the research goals resulted in the original work that the rest of this 

thesis presents. The list of the contributions to knowledge together with a synopsis of the 

main findings is presented bellow. 

NIP Programming Model 

The NIP programming model attempts to satisfy the requirements of the parallel 

application development process as those were identified in this chapter and as Chapter 2 

discusses in more detail. The main characteristics of the model are the abstraction from 

any underlying architectural details. The focus of the NIP programming model is on 

implicit parallelism and object-orientation. The programmer is not burdened with the 

tasks of identifying and managing parallelism in an application. Instead, developers are 

presented with a programming model that allows them to concentrate on the exploration 

of algorithmic issues only. 

The NIP programming model combines the benefits of two programming paradigms, 

namely functional and object-orientation. The model is based on a previously introduced 

functions plus objects paradigm (Sargeant 1993). 

NIP Execution Model 

The NIP execution model was originally designed to provide the semantics around which 

run-time environments for the NIP programming model could be implemented. 

Nevertheless, the semantics of the model are such that even non-implicitly parallel 

programming models could target it through appropriate software tool support. 

The main characteristic of the model is the abstraction from the underlying hardware 

details. The NIP execution model provides a set of features for the management of 

parallelism, like automatic exploitation of computational resources, implicit memory 
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access synchronisation, distributed shared memory abstraction. Furthermore, the model 

defines that the memory is structured as objects. 

NIP Lazy Task Creation and Tasklets 

The NIP run-time system is an implementation of the NIP execution semantics. It 

employs the novel NIP lazy task creation technique to manage the excessive degree of 

parallelism that many applications exhibit. NIP lazy task creation is based around the 

tasklet, which is a newly introduced construct for the representation of potentially parallel 

tasks. The concept of a tasklet was first proposed by (Watson 1996) and it is further 

developed in this thesis. 

NIP parallel applications are expected to identify, rather than create, parallel tasks 

using the tasklet construct. The NIP run-time system does not create tasks from tasklets 

unless there are available computational resources, a technique also known as lazy task 

creation. The main advantage of NIP lazy task creation over previous approaches is the 

tasklet. Unlike previous approaches, just a single tasklet can represent entire iterative or 

recursive computations from which parallelism can be extracted. 

NIP Distributed Shared Memory 

The NIP run-time system incorporates an all-in-software, object-based, distributed shared 

memory system. The NIPDSM implements the memory semantics of the NIP execution 

model. In addition, NIPDSM provides an enhanced approach to maintaining the 

consistency of objects in distributed memory architectures and features three novel 

caching techniques. For the first time, an object-based distributed shared memory system 

attempts to exploit both temporal and spatial locality in memory access without suffering 

from the problems like false sharing that appear in previous approaches. Additional 

information about object-based structures may be exploited to further enhance the 

performance of the memory system. Memory access patterns may be defined using 

associations between objects and recurring operations on objects are automatically 

captured and used to improve caching. 

1.5. Remaining Thesis Structure 

The remaining of this thesis explores each of the research goals and analytically describes 

the findings of this research work. 
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Chapter 2 deals with some background material on parallel computer architectures, 

programming and execution models and their support tools. Then, the discussion focuses 

on the NIP programming and execution models. 

Chapter 3 thoroughly considers existing lazy task creation techniques in an attempt to 

clearly reveal their drawbacks but also identify their strengths. Then, the NIP lazy task 

creation technique and the tasklet construct are introduced and described in detail. 

Chapter 4 introduces the field of software-based, distributed shared memory. The 

main characteristics and issues of such systems are discussed before the NIPDSM system 

is comprehensively explored. 

Chapter 5 presents a description of the NIP run-time system, an implementation of 

the NIP execution model semantics that incorporates the NIP lazy task creation 

technique and the NIPDSM. The major components of the NIP run-time are examined. 

Chapter 6 includes the results and analysis of the performance evaluation process of 

the NIP run-time system. A number of micro-benchmarks, small programs, and a 

scientific application are used to show the behaviour of the various components of the 

run-time system. 

Finally, Chapter 7 concludes the discussion with a summary of the research work 

findings. 
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2CHAPTER 2 
2.  PARALLELISM 

AND THE NIP PROGRAMMING AND NIP 

EXECUTION MODELS 

The aim of this chapter is to introduce the NIP programming and 

execution models. In doing so, background material on parallel 

computer architectures, programming languages for parallel computing, 

and parallel program execution techniques is presented. 

A layered approach to the parallel computing paradigm is 

considered after examining the idiosyncrasies, advantages, and 

disadvantages of some popular programming and execution models. 

The distinct elements that make a programming and an execution 

model are identified. Issues related to programming languages, run-time 

systems, operating systems, and hardware architectures for parallel 

computing are considered. 

The discussion leads to the description of the NIP programming 

and execution models for parallel computing. The proposed models 

form a new approach to combining good software engineering 

practices, implicit parallelism, and efficient execution in parallel 

computing. 
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2.1. Models and Abstraction 

There has been a misuse of the terms ‘programming model,’ ‘execution model,’ and 

‘computational model’ in the computing literature. The terms have been used 

interchangeably in many different works. Earlier works leading to this thesis also misused 

the term ‘computational model’ (Watson and Parastatidis 1999a; Watson and Parastatidis 

1999b). This thesis argues that the terms describe different levels of abstraction of a 

computer system and for that reason they cannot be used interchangeably. It is imperative 

that the differences between the levels of abstraction implied by the three models are 

established before the tools and techniques available for parallel programming and 

run-time support can be effectively explored. 

2.1.1. Programming Model 

A programming model is a methodology for the implementation of algorithms. It outlines 

the features and limitations of a computer system as they are presented to application 

developers, with all, some, or none of the hardware details hidden. The collection of the 

characteristics and the implied behaviour of a model (i.e., rules, limits, features, etc.) 

constitute its semantics. The semantics of a programming model are realised through 

appropriate software support tools that (e.g., a compiler for a particular programming 

language and perhaps run-time libraries). 

Pfister describes a programming model as “the all-pervasive atmosphere, the internalised set of 

assumptions about how a computer works that imbue every program written for that computer” (Pfister 

1998). Culler and Singh understand the programming model as “the conceptualisation of the 

machine that the programmer uses in coding applications” (Culler and Singh 1999). Others have 

similar approaches to giving a definition to the term ‘programming model’ (Skillicorn and 

Talia 1998). 

2.1.2. Execution Model 

An execution model is the description of the services available for the execution of 

applications on a computer system. While a programming model is the conceptualisation 

of a computer system as presented to application developers, an execution model outlines 

the specifications and behaviour of an abstract architecture for the benefit of the 

programming model support tools (e.g., programming language compilers). A 

programming model may hide the available primitives for the execution of applications 

from developers (e.g., the NIP programming model, which is described in Section 2.8) or 
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it may incorporate them (e.g., message passing, shared memory). The semantics of an 

execution model may be implemented by the run-time system, the operating system, or 

the hardware. 

The abstract machine implied by an execution model need not have the same 

architectural characteristics as the underlying hardware. For example, an execution model 

offering shared memory semantics does not necessarily indicate the existence of hardware 

with physically shared memory. Furthermore, application execution techniques that are 

used to implement the semantics of a model need not be part of the abstract machine 

specifications. For example, the NIP lazy task creation technique (Chapter 3) and the NIP 

distributed shared-memory system (Chapter 4) are implemented as run-time tools to 

support the behaviour of the NIP abstract machine, which is defined by the NIP 

execution model (Section 2.9). 

2.1.3. Computational Model 

A computational model thoroughly defines the behaviour of applications when executed 

on specific computer systems. Unlike the programming and execution models, a 

computational model is not an abstract representation of a computer system. Instead, it is 

a mathematical tool for analysing the performance and behavioural characteristics of an 

application running on a computer system with known specifications. Computational 

models assist developers in refining the implementation of their algorithms in an attempt 

to achieve better performance on particular architectures. A computational model can be 

seen as the combination of the programming model and the execution model. 

Almasi and Gottlieb consider two aspects to a computational model: (a) a tool that 

assists in the design process of an algorithm, and (b) a tool that provides a way to 

mathematically analyse and improve the efficiency of algorithms on the architectures that 

the model targets. Using the known costs of the exposed primitive operations (e.g., 

operating system calls, communication costs, etc.) for a particular computer system, 

Almasi and Gottlieb propose a methodical approach to optimising the efficiency of an 

algorithm for the specific programming and execution models used. However, there exist 

abstract programming and execution models that hide the operations of a computer 

system. In such cases, information about primitive hardware or software operations is not 

available and, therefore, efficiency analysis of the execution of an application cannot take 

place. Indeed, Skillicorn and Talia (Skillicorn and Talia 1998) agree that some 

programming models are unsuitable, due to their abstract nature, for performance analysis 

of algorithms. 
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This thesis does not consider computational models to any further extent. The 

abstract nature of the NIP programming and execution models that are proposed later in 

this chapter does not facilitate the use of any computational model. However, as this 

thesis discusses issues related to parallelism, it should be mentioned that there have been 

several efforts to create parallel computational models. The Parallel Random Access 

Machine (PRAM) (Fortune and Wyllie 1978) was amongst the first and most widely used 

ones but it made unrealistic assumptions about the communication features of the 

computer architecture. Examples of other models proposed are the Bulk-Synchronous 

Parallel model (Valiant 1990), Message-Passing Block PRAM (Agarwal et al. 1989), and 

LogP (Culler et al. 1993b; Culler et al. 1996). 

2.1.4. Lack of Abstraction Causes Confusion 

In the discipline of parallelism, the terms ‘message passing’ and ‘shared memory’ have 

been used to describe (a) computer architecture models, (b) execution models, and 

(c) programming models. Due to the lack of abstraction in early parallel systems and 

parallel application development methodologies, the hardware architecture was reflected 

at the programming model, making the distinction between programming and execution 

models unnecessary. Today, as several software layers may abstract the hardware 

architecture, the distinction between programming and execution models becomes 

important for the study of parallelism. 

A message passing architecture, for example, requires that messages be used for the 

communication between the processing elements of a computer system. A message 

passing execution model suggests that parallel computations use messages to 

communicate with each other without, however, implying that the underlying architecture 

is a message passing architecture or that messages are used in the programming model. 

Message-passing programming models assist application developers in designing and 

implementing an algorithm with the notion of messages as the means for data exchange 

between components of the application but it is not necessarily the case that a message 

passing execution model and architecture exist. It is clear that although there are three 

different levels of abstraction, the same term, ‘message passing,’ is used for all, causing 

confusion. 

2.1.5. Towards Two New Abstract Models 

As the previous chapter suggested, a new approach to parallel programming is required 

that takes away the burden of managing parallelism from application developers to allow 

them to concentrate on algorithmic issues. The discussion in this chapter leads to the 
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introduction of the NIP programming model, an implicitly parallel, functional plus objects 

model (Section 2.8). To support the NIP programming model, the NIP execution model 

was devised and it is described towards the end of this chapter (Section 2.9). 

2.1.6. Layered Approach to the Parallel Computing Paradigm 

To facilitate the discussion on programming and execution models and to emphasise the 

distinction between the two, this thesis proposes a layered approach to examining the 

parallel computing paradigm (Figure 2-1 and Figure 2-2). The design model has been 

included for completeness. 

Figure 2-2 encapsulates the definitions that were presented earlier in this chapter for 

the programming, execution, and computational models. The layers represent the three 

major steps in the lifecycle of an application. (a) An algorithm is devised via a design 

model. (b) The developer implements that algorithm via the programming model, and 

(c) the execution model is used to host the resulting program. The computational model 

may be used for the mathematics-based evaluation of the behaviour and performance of 

the application. The result of the evaluation may be used in reviewing the algorithm. 

specification, analysis, verification tools

programming language (and libraries)

programming model

design model

execution model

runtime system

operating system

hardware

 

computational model

design model

programming model

execution model

 
Figure 2-1: A layered approach to the parallel 

computing paradigm 
Figure 2-2: A condensed view of Figure 2-1 that 

also shows the computational model 

Since this thesis does not consider any issues related to specification, analysis, 

verification, etc., the design model and its supporting tools are not examined. Instead, the 

following sections focus on issues related to the hardware, operating system, run-time 

system, and programming language from a parallel computing perspective. 
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2.2. Hardware 

A plethora of hardware architectures have been built and described in the literature. The 

most referenced and used one is the von Neumann architecture, which is the architecture 

upon which all serial computers are built. There is a wide choice of parallel computer 

architectures from which system designers may choose. As Chapter 1 suggested, the MPP 

architecture (Figure 2-3) is emerging as the dominant one. 

In an effort to study the available architectures for parallel systems, many researchers 

have tried to create taxonomies of computer architectures (Flynn 1972; Gajski and Peir 

1985; Lewis and El-Rewini 1992; Tanenbaum 1999; Treleaven 1985). The taxonomy 

proposed by Flynn is the most general one and is presented in Table 2-1. Originally 

created in 1974, the taxonomy does not illustrate the variety of parallel computer 

architectures that have emerged since then because it is too coarse. 

Instruction 
stream 

Data 
streams 

Name Examples 

1 1 SISD 
(Single Instruction Single Data) 

Von Neumann architecture 

1 Many SIMD 
(Single Instruction Multiple Data) 

Vector computers, array processors 

Many 1 MISD 
(Multiple Instructions Single Data) 

 

Many Many MIMD 
(Multiple Instructions Multiple Data) 

Multiprocessors, Clusters of 
Workstations  

Table 2-1: Taxonomy proposed by Flynn (Flynn 1972) 

computer architectures

SISD

vector
processor

array
processor

bus NC-NUMACC-NUMAswitched grid hyper-cube

multi-
computers

multi-
processors

UMA COMA NUMA MPP COW

SIMD MISD MIMD

 
Figure 2-3: Taxonomy proposed by Tanenbaum (Tanenbaum 1999) 



Chapter 2 

24 

UMA Uniform Memory Access 

COMA Cache-Only Memory Access 

NUMA Non-Uniform Memory Access 

CC-NUMA Coherent Cache NUMA 

NC-NUMA Non-Coherent NUMA 

MPP Massively Parallel Processing 

COW Clusters Of Workstations 

Table 2-2: Legend of acronyms presented in Figure 2-3 

In (Tanenbaum 1999), Tanenbaum expands the taxonomy proposed by Flynn by 

incorporating all the diverse parallel computer architectures available today (Figure 2-3). 

Tanenbaum refers to all the multi-computer architectures as message passing architectures 

and to all the multi-processor architectures as shared memory architectures. However, it 

should not be assumed that there is an association between particular architectures and 

programming or execution models, although there have been architectures designed and 

built to support a particular programming model, like the Manchester Dataflow Machine 

(Gurd et al. 1985) for dataflow programs. A parallel architecture may favour a particular 

programming model due to its architectural characteristics but often others are also 

supported. For instance, the shared-memory programming model can be used on both 

multi-processors and multi-computers with the appropriate software support. The NIP 

programming model (Section 2.8) is applicable to both multi-computer and 

multi-processor parallel architectures. For a detailed discussion of the parallel 

architectures the reader is referred to (Culler and Singh 1999). 

2.3. Operating Systems 

The AOSP, the TOPS-10 on DEC PDP-10, and OS/VS2 on the IBM System/370, were 

amongst the first operating systems to support parallel architectures. In the ‘70s and ‘80s, 

the commercially successful minicomputers and mainframes utilised proprietary operating 

systems with better support for parallelism, like VMS on DEC VAX minicomputers, 

UNICOS on CRAY supercomputers, MUNIX on PDP-11 (Almasi and Gottlieb 1994). 

Nowadays, different flavours of UNIX, like Solaris by Sun, Digital UNIX by Compaq, 

IRIX by SGI, dominate the parallel architectures. Solaris, Windows NT, and Linux (a 

freely available flavour of UNIX) emerge as the leading operating systems for COW 

architectures. 

In the past, there was a case for creating taxonomies for the different operating 

systems due to the diversity in the ways parallelism was supported (e.g., multiprocessing or 
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multithreading, synchronisation and communication primitives, etc.). Today, all the 

modern operating systems offer essentially the same features and, therefore, a 

classification based on the support provided for parallelism would be of little interest. The 

Application Programming Interface (API), the implementation details, or even the 

efficiency of the available features may differ between operating systems but the support 

for parallel applications is in essence the same. For example, all modern operating systems 

are internally parallel; they support multiple processors; they offer the means for 

multithreading and synchronisation; and they provide basic communication primitives. 

However, this does not imply that the area of operating system support for parallelism is 

closed to further developments, as the following areas of research suggest. 

As multi-computers become more popular, the operating systems face the challenge 

for providing an environment for resilient, fault-tolerant, and reliable parallel computing, 

just like the expensive mainframes (Culler and Singh 1999). 

Providing “the illusion […] that a collection of computing elements is a single computing resource” 

(Pfister 1998), or a ‘Single System Image’, at the operating system level is another 

challenge. Examples of commercial and research operating systems attempting to provide 

a Single System Image include Locus, QNX, and Amoeba, cited in (Pfister 1998). 

Additionally, the new run-time techniques for the execution of parallel applications 

that emerge from research efforts could greatly benefit from operating system support. 

Examples of such techniques are lazy task creation (Mohr et al. 1991) which is examined 

in Chapter 3, software-based distributed shared memory (Li 1986) which is discussed in 

Chapter 4, and dynamic load balancing (Eager et al. 1986) which is considered in Chapter 

5. 

2.4. Run-time System 

A run-time system is the environment with which an application interacts during its 

execution. It is the responsibility of the run-time system to manage the resources that the 

operating system makes available for the execution of an application (e.g., stack and heap 

management, task creation, task scheduling, secondary storage management). Even 

though modern, general-purpose operating systems incorporate functionality that could 

make the use of specialised run-time systems obsolete, there are still reasons for using 

them. 

• Portability: A run-time system can hide the API differences between operating 

systems. API calls provided by the run-time system are translated to the 
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appropriate operating system calls. Cross-platform development frameworks like 

ACE (Schmidt 1995) provide such functionality. Virtual machines, like the one 

used for the Java programming language (Newman 1996), and interpreters, like 

the one used for tcl/tk (Ousterhout 1994), also allow portability of applications by 

hiding the underlying operating system from applications. 

• Efficiency: Due to their general-purpose nature, many operating systems are not 

able to provide the most efficient implementation of a particular service. In such 

cases, run-time systems can be of great use. For example, database management 

systems very often take over the management of the secondary storage from the 

operating system because their fine-tuned implementation can achieve better 

performance. 

• Flexibility: With run-time systems it is possible to alter the execution 

environment of applications by incorporating new or removing obsolete features, 

or by changing the implementation of existing features without requiring changes 

to the underlying operating system. 

• Functionality: There are cases where the functionality required by an application 

is not provided by the operating system. Advanced techniques for the execution 

of applications may include lazy task creation (Chapter 3), software-based 

distributed shared memory (Chapter 4), or dynamic load balancing (Chapter 5). A 

run-time system can incorporate such advanced techniques and make them 

available to applications. 

Run-time systems exist in the form of software libraries that developers use during the 

implementation process, as part of the code that a compiler produces, or as virtual 

machines. 

2.5. Programming Language 

According to Hudak, programming languages are classified into imperative and declarative 

(Hudak 1989). Programs written in imperative programming languages consist of a series 

of commands that provide a description of a problem and how it is to be solved. In 

declarative programming languages, the application programmer is only concerned with 

the implementation of an algorithm, while the compiler and run-time system take care of 

other issues, like the management of parallelism, the way memory is accessed, hardware 

architecture independence, etc. The main difference between imperative and declarative 
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languages is state. “Imperative languages are characterised as having an implicit state that is modified 

(i.e., side effected) by constructs (i.e., commands) in the source language” (Hudak 1989). To 

deterministically control the state in imperative languages a sequencing of commands is 

required. 

Hudak suggests that one of the advantages of declarative languages is parallelism. The 

lack of state reduces the need for command sequencing and makes extracting and 

exploiting parallelism a simpler task for the compiler and run-time system. However, 

software practises to date have shown that imperative languages are preferred for 

parallelism. To investigate the reasons behind the popularity of imperative languages, it is 

necessary that the properties and features of parallel programming languages be closely 

examined. Another taxonomy, more comprehensive than the one proposed by Hudak, is 

needed. 

Almasi and Gottlieb point out in (Almasi and Gottlieb 1994) that the execution of a 

parallel application requires the provision of operations to define, start and stop, and 

coordinate parallel subtasks as well as operations to partition and distribute data. The 

method with which these operations are supported can be used to differentiate between 

programming languages. Indeed, Skillicorn and Talia propose an extensive classification 

of parallel programming languages based on whether the parallelism primitives are 

provided explicitly or implicitly (Skillicorn and Talia 1998). 

Everything Explicit 

Communication Explicit, Synchronisation Implicit 

Mapping Implicit, Communication Implicit 

Decomposition Explicit, Mapping Implicit 

Parallelism Explicit, Decomposition Implicit 

Nothing Explicit, Parallelism Implicit 

Table 2-3: Summary of the examined parallel programming model properties (Skillicorn and Talia 1998) 

Skillicorn and Talia start by identifying the important criteria a parallel programming 

model should satisfy: ease of programming, software methodology, architecture 

independence, ease of understanding, guaranteed performance, and cost measures. The 

identified criteria are used in outlining the parallelism related operations and the level of 

abstraction (i.e., implicit or explicit), upon which the classification of existing 

programming languages is based (Table 2-3 summarises the resulting six main categories 

of the taxonomy). Skillicorn and Talia conclude their work by observing a trend towards 

programming languages that support abstract models of parallel programming (Skillicorn 
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and Talia 1998), a view that is consistent with the discussion presented in the previous 

chapter. 

In addition to the comprehensive classification by Skillicorn and Talia, it should also 

be interesting to examine the means by which programming languages support 

parallelism. Since it is not in the scope of this thesis to present a new taxonomy, only the 

characteristics of four different approaches to supporting parallelism in programming 

languages are considered. 

2.5.1. Auto-parallelisation Compilers 

The simplest and most cost-effective approach of introducing parallelism to existing 

applications is to feed serial, legacy code, to an auto-parallelisation compiler. The tasks of 

identifying (e.g., task decomposition) and managing (e.g., synchronisation) parallelism are 

taken over by the compiler. 

The auto-parallelisation technique was popular in the early days of parallel computing 

and especially when large commercial and scientific applications written in FORTRAN 

had to be run in parallel. There is no need for programmers to receive extra training or 

learn another programming language. Programmers just continue to use their favourite 

serial programming language to build parallel applications. 

However, it is difficult for auto-parallelisation compilers to achieve good performance 

results. The implementation of algorithms is based on a serial programming model and 

the von Neumann architecture. As Bacon et al. suggest (Bacon et al. 1994), application 

code can be successfully transformed and optimised by a compiler for sequential 

architectures but the involvement of the programmer is required for parallel architectures. 

A survey of issues related to compiler transformations for high-performance computing 

can be found in (Bacon et al. 1994). 

2.5.2. Software Libraries 

Software libraries can provide support for parallelism in established, widely used, serial 

programming languages. In essence, software libraries complement the run-time 

environment that is provided by the serial programming language compiler. A software 

library introduces the required primitives for parallelism related operations, like task 

management, communication, synchronisation, etc. 

There are several ways a software library may provide support for parallelism. The 

Parallel Virtual Machine (PVM) (Sunderam 1990) and implementations of the Message 

Passing Interface (MPI) standard (Forum 1994) provide support for message passing 

programming (the model is discussed in Section 2.6.2). Implementations of the POSIX 
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standard (IEEE 1996) or operating system specific libraries provide threading and 

synchronisation support for shared memory programming (the model is discussed in 

Section 2.6.3). Software libraries like Linda (Ahuja et al. 1986) allow shared memory 

programming on distributed memory system by hiding communication. 

There is a short learning curve for application programmers using such languages 

because they are only required to learn the Application Programming Interface (API) of a 

particular software library. However, application programmers are required to deal with 

issues related to parallelism, like task decomposition, data distribution, synchronisation, 

communication, etc. Programming languages like FORTRAN, C, and C++ that are 

complemented by software libraries, like PVM and MPI, belong to this class. The large 

academic, scientific, research, and commercial user-base of these programming languages 

have made the approach of software libraries for parallelism the most popular today. 

In addition to the problem of managing parallelism, developers face the problem of 

portability. An application is only portable across parallel architectures if the software 

libraries it uses are available for the targeted architectures. Standards like MPI attempt to 

overcome the portability issue. Even then, though, there are cases where an application 

has to be refined when moved to a different parallel architecture due to efficiency 

variations in the performance of hardware components. 

2.5.3. Language Extensions/Integration 

As discussed in Chapter 1, parallel computing is gaining wider acceptance amongst 

academics, scientists, researchers, and industrialists. As a result, there have been 

significant research efforts in integrating parallelism support into programming languages. 

Extensions to the popular programming languages have been proposed, like //C++, 

Concurrent C, Concurrent SmallTalk, etc. Also, new programming languages appear 

providing constructs for parallel computing, with Java (Newman 1996) being the most 

popular example (Java provides threading and synchronisation support through 

appropriate classes that are considered to be part of the language rather than a library 

addition). Programmers are still required to manage parallelism themselves while they 

have to learn additional primitives in their favourite programming language, or they are 

obliged to switch to a new programming language. 

The portability issue across parallel architectures is resolved because there is no 

dependence on extra software libraries, provided, of course, the programming language 

compiler and the standard libraries are available. Furthermore, features that ease program 

development are finding their way into the new parallel programming languages. For 
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example, Java has been gaining support because it combines good programming practices, 

namely object-orientation and component reuse, with a collection of primitives for 

parallelism, communications, graphical user interface, etc. 

The transition from the serial programming languages to the languages with integrated 

support for parallelism requires resources and time. The language extensions/integration 

approach is only slowly gaining support by the scientific and research communities and 

especially by the industry, where FORTRAN, C, and C++, dominate. 

2.5.4. Implicit Parallelism 

Implicitly parallel programming languages allow application programmers to concentrate 

on the algorithmic issues of the development process rather than having to worry about 

the management of parallelism. There are no parallel programming primitives or 

constructs available to the developer, as the compiler and the run-time system control all 

the aspects of parallelism (the last class of programming models in the taxonomy by 

Skillicorn and Talia, Table 2-3, page 21). Parallel computations are automatically identified 

and exploited; synchronisation and communication are handled; and, data is partitioned 

and distributed where it is necessary. Additionally, source-code portability is not a major 

issue, once the programming language compiler has been ported to an architecture. 

Implicitly parallel programming languages should not be associated with declarative 

languages (described in page 20) despite the fact that in declarative languages parallelism 

may be implicit. Although both categories of programming languages favour algorithmic 

focus over implementation details, implicitly parallel programming languages do not have 

to be stateless, a property of declarative languages. The functional plus objects United 

Functions and Objects (UFO) (Sargeant 1993; Sargeant and Kirkham 1994) and the 

visual, parallel object-flow VORLON (Webber 1998; Webber 1999) programming 

languages are examples of implicitly parallel languages which support state (i.e., objects in 

both cases). 

The growing complexity of parallel applications and architectures and the 

management of the ever-increasing degree of parallelism place a great burden on parallel 

application developers. Tools for implicit parallelism could simplify the development 

process. Indeed, many parallel computing practitioners expect implicitly parallel 

programming languages to gain support in years to come and become the languages of 

choice (Culler and Singh 1999; Sterling et al. 1995). However, research on compiler and 

run-time technology has yet to demonstrate that performance is not sacrificed in the 

transition from explicitly parallel to implicitly parallel programming. 
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2.5.5. Transition Towards Implicit Programming Languages 

Auto-parallelisation compilers and software libraries for serial programming languages 

have dominated parallel application development. FORTRAN has been the programming 

language of choice for decades despite its poor programming practices and the lack of 

support for parallelism at the language level. The required resources and time to switch to 

appropriate tools for parallel computing has been the main cause for the reluctance by 

practitioners to move away from serial programming languages. The position expressed 

by Perrott and Zarea-Aliabadi in (Perrott and Zarea-Aliabadi 1986) is representative of the 

dominating views during the last decade. They believe that a conventional, sequential 

language should be the basis for programming a parallel supercomputer. 

“[…] it has been recognised that if computation on supercomputers is to have a major 

impact, languages that are generally similar to conventional languages in their approach to 

computing must be provided. The strength of this influence and the implicit dependence on 

conventional sequential language principles explain why most existing supercomputer languages 

are based on the ubiquitous language FORTRAN” (Perrott and Zarea-Aliabadi 1986). 

Still, Perrott and Zarea-Aliabadi also recognise the importance of relinquishing 

FORTRAN and moving to a better programming language. They propose a language for 

parallel programming on supercomputers, Actus (Perrott and Zarea-Aliabadi 1986), based 

on the sequential—but with better programming practices than FORTRAN—Pascal 

(Wirth 1971). 

It is apparent from the works of experts in the field of parallel computing, that new 

approaches to programming parallel architectures are required. The widely used sequential 

programming language plus software library approach is not sufficient for developing the 

parallel applications of the future. Parallel computing experts seem to favour implicitly 

parallel programming languages that incorporate good software engineering practices 

(Almasi and Gottlieb 1994; Culler and Singh 1999; Skillicorn and Talia 1998; Sterling et al. 

1995).  

2.6. Common Programming Models 

As mentioned at the beginning of this chapter, programming models abstract the 

architectural characteristics of computer systems for the benefit of the application 

developer. In an effort to study the available programming models, to better understand 

the differences between them, and to examine the way they are used in practice, Skillicron 
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and Talia identify in their work (Skillicorn and Talia 1998) the important properties they 

think a model should have (Table 2-4). They go on to create a classification of 

programming languages based on the level of abstraction in which parallelism primitives 

are supported (Table 2-3, page 21). However, Skillicorn and Talia consider the different 

programming models only through the characteristics of the examined programming 

languages. This thesis takes a more general approach and uses some of the properties 

identified by Skillicorn and Talia in considering four common approaches to 

programming. 

A programming model should be easy to program 

 have a software development methodology 

 be architecture independent 

 be easy to understand 

 have guaranteed performance 

 provide accurate information about the cost of programs 

Table 2-4: Properties a programming model should have (Skillicorn and Talia 1998) 

There has been a plethora of models proposed in the literature and used in practise 

for parallel programming, including Active Objects (Lavender and Schmidt 1996), Active 

Messages (von Eicken et al. 1992), Actors (Agha and Hewitt 1987). It can be suggested, 

however, that the models this section considers are the most commonly used in practice: 

message passing, shared memory, functional. 

Useful Terms 

Before the discussion moves to the programming models, it is necessary to establish a 

common terminology: 

• The unit of execution for applications is the task, which consists of a series of 

commands executing in a serial fashion. Parallelism is achieved through the 

concurrent execution of a number of tasks. According to the programming model 

or the run-time system used, a task may be known as a thread, process, lightweight 

process, etc. 

• Processors execute tasks. A processor can only execute one task at a time. 

Parallelism is possible when more than one processor is available for the execution 

of a single application that is divided into multiple tasks. 

• The memory stores the data required during the execution of tasks. Memory may 

not be directly accessible by a task running on a processor. 

• The unit of information exchange between tasks is the message. Tasks 

communicate with each other by exchanging messages. Depending on the 
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architecture of the underlying parallel system, sending a message from one task to 

another may result in transmission of data over an interconnection network or it 

may just cause memory accesses. 

• Tasks coordinate their execution using synchronisation primitives. There are two 

cases in which tasks may need to coordinate their execution: (a) when the ordering 

of execution is important (e.g., barrier constructs), and (b) when the access to a 

shared resource is critical (e.g., mutual exclusion constructs). 

• Load balancing relates to the distribution of work across a computer system with 

the aim that all processors are utilised in the best way possible. 

• Tasks may have different granularities. A task with a short execution time is 

considered to be of fine granularity, while a larger execution time suggests a task 

of coarse granularity. 

2.6.1. Serial 

It may be of surprise that the first programming model to be examined amongst parallel 

models is the serial. However and as discussed in Section 2.5.1 (page 21), the serial 

programming model was the basis for parallel application development during the early 

years of parallel computing, when auto-parallelisation compilers on sequential code were 

extensively used. The knowledge and experience acquired on the use of the model for 

developing applications was the important factor for the reluctance to move to models 

that are more suitable for parallel computing. Additionally, modern programming models, 

like the functional programming model (Section 2.6.4) and the NIP programming model 

(Section 2.8), bear some similarities in the way the targeted computer architecture is 

conceptualised. 

The model is very simple in that it only assumes one processor and directly accessible 

memory (Figure 2-4). The key characteristics of the model are presented in Table 2-5. 

memoryprocessor

 

- The processor has direct access to the memory 

- There is only one task executing on the processor 

- All the memory is available to the task 

- When the execution of the task starts, it is never 
interrupted  

Figure 2-4: The conceptualisation of a 
computer system by the serial programming 

model 

Table 2-5: Properties of the serial programming model 

The serial model is easier to program and understand when compared to the message 

passing (Section 2.6.2) and shared memory (Section 2.6.3) models, as there is only one 

sequence of instructions. There are no communication or synchronisation considerations 
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and the software development methodology is well studied, understood, and applied 

throughout the years. 

2.6.2. Message Passing 

Unlike the serial model, message passing introduces the notion of parallelism as part of 

the model. The model assumes a number of processors with their own private memory 

(Figure 2-5). There can be many tasks executing at a time on the available processors but 

only one at a time on a particular processor. A task running on a processor cannot directly 

access the memory of another processor. Instead, tasks communicate and exchange data 

by conveying messages to each other. The interconnection network of Figure 2-5 is the 

transportation medium for the messages.  

. . .

interconnection network

memoryprocessor memoryprocessor memoryprocessor

 
Figure 2-5: The conceptualisation of a computer system by the message-passing programming model 

The model does not make any attempt to introduce any level of abstraction. Instead, 

application programmers are burdened with all the parallelism related issues. They have to 

contemplate the following problems and provide solutions: 

• Decomposition of the application to parallel tasks. The granularity of the 

identified parallel tasks may also be important as it may directly affect the 

performance of the application. 

• Partitioning and distribution of the data across the memories so that the parallel 

tasks can access it. 

• Management of the communication and synchronisation between the parallel 

tasks (data exchange and execution ordering, respectively). 

• Consideration for the possible communication latency and bandwidth variations at 

different parts of the interconnection network. 

Properties Supported by the Model 

After regarding all the above, it is safe to suggest that the message-passing programming 

model is lacking the first of the properties suggested by Skillicorn and Talia (Table 2-4, 

page 24): it is not easy to program. As the programs increase in size and complexity, the 

developers are faced with a great number of parallelism related issues that they need to 

resolve. Still, even though the model is difficult to program, it has been popular because it 
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is easy to understand and it can be easily supported by serial, conventional, programming 

languages. 

Portability and performance are major concerns for programmers. In most cases, the 

message-passing programming model reflects the architectural characteristics of the 

underlying hardware. The exposure of the architectural details of the parallel system 

results in non-portable applications because system-specific features are used. Even if the 

issue of portability is resolved, though, there is no performance guarantee when an 

application is moved across parallel platforms. For example, an application developed to 

heavily depend on the low latency performance of a certain interconnection network will 

not perform well when moved to an architecture that favours bandwidth or processor 

speed. The consequence is that the application has to be rewritten or retuned for 

particular architectures, forcing human resources and time to be consumed. 

In the last decade, as the complexity of applications increased and the portability issue 

became more of a concern, efforts to provide software tools with a standard interface 

have emerged. 

Supporting Tools 

The most widely used tools, adding support to conventional languages for the message-

passing programming model, are PVM (Sunderam 1990) and the implementations of the 

MPI standard (Forum 1994), such as LAM, MPICH, and others. PVM (Parallel Virtual 

Machine) was the first environment to provide a portable solution to message-passing 

programming. However, the implementations of the MPI (Message Passing Interface) 

standard have been gaining momentum since the introduction of the standard back in 

1994. Both PVM and MPI come as software libraries for conventional programming 

languages providing facilities to spawn new tasks on remote processors, to send and 

receive messages, to synchronise tasks, etc. 

Due to the importance of the interconnection network in message-passing 

programming, vendors of parallel systems have been providing custom implementations 

of PVM or MPI libraries that are optimised for their architectures. As discussed earlier, 

applications developed to take advantage of the customised libraries are not portable, 

especially when performance is concerned, and they must be reprogrammed when moved 

to other architectures. 

2.6.3. Shared Memory 

The shared-memory programming model is more abstract to some extent than 

message-passing. The interconnection network is abandoned in favour of directly 
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accessible memory. All the processors have direct access to the memory of the computer 

system (Figure 2-6). There can be many tasks executing at a time on the available 

processors but only one at a time on a particular processor. Tasks communicate and 

exchange data or messages via memory operations. 

memory

. . .processor processor processor

 
Figure 2-6: The conceptualisation of a computer system by the shared-memory programming model 

Although some of the development burdens that were associated with the 

message-passing programming model have disappeared, application developers are still 

responsible with the explicit management of parallelism. 

• Programmers have to identify and define the parallel tasks of the application 

(explicit decomposition). 

• They have to deal with synchronisation between tasks (order of execution and 

mutual exclusion on memory access). 

Unlike the message-passing model, the programmers are not required to partition and 

distribute data because there is only a single memory that all tasks can access. 

Communication latency and bandwidth are not a concern as they are in the 

message-passing programming model. 

Properties Supported by the Model 

As the programmer is not required to deal with network communication, data partition, 

and distribution issues, the shared-memory model can be regarded as being easier to 

program. However, the single memory of the model introduces synchronisation issues 

that need to be addressed. Understanding the synchronisation issues and presenting an 

efficient solution is a big challenge for shared memory application programmers. 

The shared-memory programming model requires that the application developers deal 

with primitive, mainly architecture specific, operations like task creation, task 

synchronisation, load balancing, etc. As a result, the portability of applications is 

problematic. Still, even if the portability problem is resolved, the efficient execution of 

applications cannot be guaranteed across architectures. During the development process, 

the programmers may have to make decisions about the granularity and the number of the 

parallel tasks as well as the synchronisation and load balancing policies. The decisions may 

not be valid for all the targeted systems. For example, parallel systems may support 
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unequal number of processors, or the efficiency of the synchronisation primitives may 

differ. The application will have to be rewritten or retuned resulting in additional 

resources and time. 

During the last decade, standards emerged and tools were developed providing better 

support for shared-memory programming. 

Supporting Tools 

The growing popularity of the model has resulted in a variety of tools being available 

today for shared-memory programming. There have also been efforts to create standards 

for the development of portable applications across different platforms, like the subset of 

POSIX (IEEE 1996) dealing with the interface for shared memory programming. 

Additionally, techniques have been proposed to get around the performance issue when 

moving to different architectures, as discussed earlier. Lazy task creation (Mohr et al. 

1991), which is extensively studied in Chapter 3, is an example of such a technique. 

The shared memory abstraction can be implemented in different levels of the 

computer architecture (Chapter 4 offers a more detailed discussion on shared memory 

architectures and tools): 

• At the hardware level. (a) The memory is physically shared across the processors 

of the system. The architecture is widely known as Symmetric Multi-Processing 

(SMP). (b) The memory may be distributed across many processors in the parallel 

system (e.g., MPP systems). Additional hardware provides the shared memory 

abstraction (e.g., SGI Origin series). Finally, (c) the hardware may support the 

shared memory abstraction over a Cluster of Workstations. The Scalable Coherent 

Interface (SCI) (James 1994) and SHRIMP2 (Billas et al. 1998; Iftode et al. 1999) 

are examples of the last approach. 

• At the operating system level. The operating system provides the illusion to 

applications that there exists physically shared memory, although the memory may 

be distributed across many processors (e.g., MPP systems) or even across many 

parallel systems (e.g., Clusters of Workstations). Amoeba (Tanenbaum 1995; 

Tanenbaum et al. 1990) is an example of such an operating system. 

• At the programming library level. Software libraries may provide the 

abstraction of shared memory on MPP or Clusters of Workstations architectures. 

Examples include Treadmarks (Keleher et al. 1994) and NIPDSM (Chapter 4).  

                                                 
2 SHRIMP is actually a hardware/software hybrid approach to the shared memory abstraction over clusters 
of workstations. 
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Parallel computing practitioners have been disagreeing on which of message passing and 

shared memory is the best model for parallel programming. The architectures best suited 

for message passing-programming model (MPP architectures, Clusters of Workstations) 

provide scalability but may have limited performance due to the high communication 

costs introduced by the interconnection networks. In contrast, the architectures that 

favour the shared-memory programming model are not scalable due to the complexities 

related with the design and implementation of bus architectures. 

A Hybrid Model 

There have been research efforts to combine the message-passing and shared-memory 

programming models together (Figure 2-7). The architecture, which is gaining momentum 

in COW architectures, like the Avalon (Warren et al. 1997; Warren et al. 1998), combines 

the scalability of message passing architectures and the performance of shared memory 

architectures. However, the resulting, hybrid, programming model is even more 

complicated to program as it mixes the difficulties of both message-passing and 

shared-memory models. 

memory memory memory

. . .
. . . . . . . . .processor processor processorprocessor processor processorprocessor processor processor

 
Figure 2-7: The conceptualisation of a shared-memory/message-passing computer system 

2.6.4. Functional 

The functional programming model completely abstracts away from any computer system 

architectural details. Application developers are not burdened with the management of 

parallelism. The computer system suggested by the functional programming model does 

not offer memory and only incorporates one processor. Of course, it is not implied that 

resulting applications will be executed on systems without memory and only with one 

processor. It is merely suggested that the programmer does not have to deal with memory 

state, task decomposition, synchronisation, etc. Nevertheless, the programming 

methodology is such that it allows the supporting tools to extract maximum parallelism 

from an application. 

The functional programming model regards applications as expressions rather than a 

series of commands. There is no notion of state. The functional model of programming 

supports features like higher order functions, pattern matching, and abstract data types, 

which make it a very easy and effective model for developing applications. The in-depth 

examination of the issues related to the functional programming model is out of the scope 
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of this thesis. Instead, the reader is referred to (Bird and Wadler 1988; Field and Harrison 

1988; Hudak 1989). 

Properties Supported by the Model 

Due to its abstract nature, the functional programming model is very easy to program and 

very easy to understand. It provides a straightforward way of implementing algorithms. 

Also, the resulting applications are highly portable as no architecture specific primitives 

are used. The implementation of an algorithm cannot be based on the performance 

characteristics of particular hardware components (e.g., latency or bandwidth of an 

interconnection network). 

Many have argued that the lack of state is a disadvantage for the functional 

programming model. However, Hudak suggests that functional programming languages 

do support state but in an explicit fashion rather than implicitly as it is the case with 

imperative languages (Hudak 1989). There have been efforts to incorporate state in 

functional programming languages (e.g., ML). Such languages, although they support state, 

they are still considered to support the functional programming model. 

Implicit parallelism is another important characteristic the functional programming 

model has to offer. Parallel computations can be easily identified, extracted, and exploited 

from applications developed with a functional programming language (Skillicorn and Talia 

1998). 

Supporting Tools 

The functional programming model greatly depends on supporting tools (i.e., 

programming language compiler, run-time system). As programmers have no input on 

issues related to the management of parallelism (e.g., task decomposition, data distribution, 

load balancing, synchronisation) the responsibility falls to the supporting tools. Examples 

of functional programming languages include Haskell (Hudak and Fasel 1992) and 

Miranda (Turner 1985). 

2.7. Common Execution Models 

As discussed in Section 2.1.2 (page 15), an execution model defines the run-time 

environment that will host the execution of applications. The characteristics of the model 

may reflect the underlying hardware details or the model may be abstract and not 

associated with any particular architecture. An execution model may also be seen as an 
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abstract machine that programming models target. It is not unusual for a particular 

execution model to abstract the semantics of another execution model. 

2.7.1. Message Passing and Shared Memory 

The message-passing and shared-memory execution models are the realisations of the 

abstract machine architectures assumed by the programming models with the same names 

that are presented in Sections 2.6.2 (page 26) and 2.6.3 (page 27). The non-abstract nature 

of the message-passing and shared-memory programming models allow for the execution 

primitives offered by the two execution models to become visible to application 

developers. 

It has to be noted, however, that a message-passing or shared-memory execution 

model does not implicitly imply the existence of a message-passing or shared-memory 

parallel system respectively (as categorised by Tanenbaum in Figure 2-3 on page 18). For 

example, software based distributed shared memory (Li 1986) offers a shared memory 

execution model for shared memory programming over message-passing hardware 

architectures (e.g., Clusters of Workstations). 

These two execution models have been the most widely used in parallel computing, 

mostly due to the popularity of the message-passing and shared-memory programming 

models. 

2.7.2. Dataflow 

The dataflow execution model is based on the evaluation of a data-driven graph. The 

graph consists of nodes representing computation that operates on data and arrows 

representing the movement of data. Data is delivered from one computational node to 

another. The computation associated with a node in the graph can only be evaluated when 

the data it is operating upon is available. 

The structure of a dataflow graph eases the process of implicitly exploiting parallelism 

in an application. Usually, a dataflow execution node is considered to be just one 

instruction and, therefore, the resulting parallel tasks are of very fine granularity. 

Depending on the underlying architecture the run-time system may determine different 

strategies for the evaluation of a dataflow graph. 

The underlying architecture may be another execution model (e.g., message passing, 

shared memory) or a dataflow machine. There have been efforts to design and build 

machines based on the dataflow execution model, including the Manchester Dataflow 

Machine (Gurd et al. 1985). A survey of dataflow machines can be found in (Veen 1986). 
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2.7.3. Functional 

Unlike the dataflow execution model, the functional execution models are control-driven: 

a computation is executed when its result is required. Examples of functional execution 

models include graph reduction and string reduction. 

In graph reduction, a graph is constructed from the functional program. A node of 

the graph represents a function (computation) while the arrows represent the flow of 

control. The transformation of the graph in consecutive steps represents the execution of 

a functional program. The graph is reduced to a simpler graph at each step. The structure 

of the graph simplifies the extraction and exploitation of parallelism from a functional 

program (Skillicorn and Talia 1998). 

In string reduction, the functional program is represented as one expression. A 

transformation process takes place during the execution of the application. Each step of 

the process, transforms the functional program to a simpler expression through the 

evaluation of sub-expressions. 

There have been efforts to design and build parallel systems for the execution of 

functional programs, like ALICE (Darlington and Reeve 1981) and Flagship (Watson et 

al. 1988). However, most of the research work has concentrated on the efficient 

implementation of functional execution models on top of the traditional message passing 

and shared-memory execution models, such as the GUM implementation of the Haskell 

programming language (Trinder et al. 1996).  

A detailed discussion of the issues related to execution models and their 

implementations can be found in (Jones 1987). 

2.8. NIP Programming Model 

The two most widely used programming models for parallel computing today, message 

passing and shared memory, require the involvement of application developers in the 

management of parallelism. As the complexity of applications increase, the management 

of parallelism becomes problematic and consumes much of the software engineering 

effort. Increased complexity also results in applications that are difficult to debug and 

profile. 

As discussed in (Watson and Parastatidis 1999a), in the opinion of many software 

developers, the functional programming model has a number of advantages over 

conventional, imperative languages including their expressiveness, and their amenity to 

reasoning about semantics. Moreover, the functional programming model also assists in 
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the development of parallel applications. In particular, functional programs contain far 

fewer constraints on execution order than do their imperative counterparts. This is 

because all expressions in a functional program are without side effects, or they are 

referentially transparent (Henson 1987). Therefore, the order of their execution cannot 

affect the result of the application, and this increases the scope for parallel execution. 

Unfortunately, the very property that makes functional programs so well matched to 

parallel systems—referential transparency—makes the programming of certain important 

classes of computations unnatural, contorted and complex. In particular, many 

computations (or parts thereof) are naturally expressed through an object-oriented 

programming style in which objects encapsulate state, which may be updated through 

method calls. Method calls to objects may not be referentially transparent, as identical 

calls can return different values, and therefore these types of computations cannot be 

directly expressed in a functional program (Watson and Parastatidis 1999a). 

Taking into consideration the above observations, a new approach to programming 

parallel applications is proposed. The NIP programming model was devised to act as the 

inspiration for the introduction of a new breed of parallel software development and 

run-time tools. The new model combines some of the characteristics of the previous 

models and introduces object-orientation as part of the programming model. 

object
memory

processor

 
Figure 2-8: The conceptualisation of a computer system by the NIP programming model 

The NIP programming model is abstract, as it hides all the architecture specific 

primitives from the developers. As Figure 2-8 suggests, the view of a single processor 

abstract machine with memory structured as objects is presented to the developers. The 

single processor view of the computer system does not imply that programs are executed 

serially. Like the functional programming model, parallelism is implicit. The model 

embraces the functional way of programming for the implementation of algorithms but it 

also allows state to be encapsulated in objects when developers feel it is natural to do so. 

As it was the case with the functional programming model, it would be the job of a 

compiler and run-time system to identify and exploit parallelism respectively from an 

application developed with the NIP programming model. 

The adoption of object-orientation as an integral part of the NIP programming model 

brings to parallel computing an analysis, design, and development methodology that has 
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benefited serial programming but has yet to be widely accepted by the parallelism 

community. 

Properties Supported by the Model 

The model is easy to understand and use and provides a natural way to program 

applications. The applications developed with the NIP programming model are portable 

as there are no architecture specific primitives available. Furthermore, the implementation 

of an algorithm cannot depend on the performance characteristics of particular hardware 

components (e.g., latency or bandwidth of an interconnection network, processor speed, 

etc.). Of course, the efficiency of the underlying hardware and/or the run-time will 

influence the performance of the application. It is merely suggested that application 

developers cannot take into consideration the efficiency related attributes of the hardware 

when implementing and refining algorithms. 

Supporting Tools 

As it is the case with abstract programming models, the NIP programming model greatly 

depends on supporting tools. However, there are no new programming languages yet 

designed and implemented to support the NIP programming model as proposed by this 

thesis. However, there do exist programming languages that satisfy the requirements of 

the model. UFO (Sargeant 1993) and VORLON (Webber 1998; Webber 1999; Webber 

2000) are such programming languages. 

The United Functions and Objects (UFO) programming language is an implicitly 

parallel programming language that supports objects. In UFO, as much as possible of the 

computation is expressed in a purely functional programming style. However, where it is 

natural to do so, objects that encapsulate state can be constructed and manipulated. The 

UFO programming language was a great inspiration in defining the properties of the NIP 

programming model. 

VORLON is a visual, object-flow programming language that has been created to 

support the design and implementation phases of a parallel application and it features 

support for implicit parallelism and object-orientation. 

The NIP run-time system (Watson and Parastatidis 1999a) is responsible for 

exploiting the parallel computations that are identified by the programming language 

compilers. The NIP run-time (Chapter 5) is an implementation of the NIP execution 

model semantics, which is the subject of the next section (Section 2.9). 
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2.9. NIP Execution Model 

The NIP execution model defines an abstract machine for the parallel execution of 

applications. The abstract machine consists of a number of processors, shared memory 

structured as objects, and a special component that is responsible for the management of 

parallelism (Figure 2-9) and it is not associated with any particular underlying hardware 

architecture. 

object
memory

processor processorprocessor

parallelism
manager

. . .

 
Figure 2-9: The major components of the abstract machine as suggested by the NIP execution model 

Unlike other execution models, the NIP execution model takes over most of the 

operations that relate to the management of parallelism: load balancing, task creation, and 

task and memory access synchronisation. The identification of parallel tasks is left to the 

programming tools or the application programmer, depending on the programming 

methodology used. The NIP execution model was originally created to act as the target 

abstract machine for tools supporting the NIP programming model. However, the 

features introduced in the NIP execution model can also support other programming 

methodologies, even explicitly parallel in nature. 

The NIP execution model attempts to combine the good features of the shared 

memory and the functional execution models while introducing implicit management of 

parallelism. The ‘single, shared memory’ view of the model makes the abstract machine an 

easier target for programming model support tools (e.g., compilers). In addition, the NIP 

execution model defines that the memory is structured as objects in order to better 

support the object-oriented nature of the NIP programming model. 

2.9.1. Model Requirements 

As already mentioned, it is not the responsibility of the NIP abstract machine to identify 

parallelism. The abstract machine only exploits the parallelism already identified in 

applications. It is the responsibility of the parallel programming language support tools 

(e.g., the compiler) or the programmer to identify the parallel tasks in an application. The 

NIP execution model defines the tasklet as the means for applications to represent 

potentially parallel tasks. The tasklet is semantically rich in that only one is enough to 

represent whole groups of potentially parallel tasks. Currently, tasklets support three 
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different patterns of parallel computation: function parallelism, loop parallelism, and 

recursion parallelism. The tasklet construct was originally introduced by Watson (Watson 

1996) and it is further developed in this thesis (Chapter 3). 

The NIP execution model also requires that the points in the application be identified 

where a tasklet is created and the result of the associated parallel computation(s) is used. 

The NIP execution model semantics do not define implicit task synchronisation and/or 

object availability. The execution of a task will wait for the computation(s) associated with 

a tasklet to complete via an explicitly introduced operation on that tasklet. 

In addition to the identification of parallel tasks, the NIP execution model requires 

applications to indicate the type of the method calls on the objects. Applications should 

specify whether the state of objects is altered due to methods performed on them (read or 

write object access). The NIP abstract machine is not a virtual machine with a 

predetermined instruction set like the Java Virtual Machine (Newman 1996). Therefore, it 

would have been difficult and inefficient to expect implementations of the NIP execution 

model to identify the nature of the methods calls without assistance from applications. 

However, a programming language compiler could easily identify and provide the required 

information from the application source code.  

The semantics of the NIP execution model specify that objects in the memory be 

implicitly destroyed when they are not required, or garbage collected. However, the 

current implementation of the memory system in the NIP run-time, the implementation 

of the NIP execution model, does not support garbage collection. 

Finally, the NIP execution model does not make any assumptions about the 

correctness of applications when concurrency issues are concerned. The application 

should be created as if every potentially parallel task was actually going to be evaluated on 

a separate processor. The NIP execution model does not specify any means of avoiding 

problems with concurrent execution of applications (e.g., races, deadlocks, etc.). 

2.9.2. Run-time Environment 

In addition to the requirements imposed by the NIP execution model semantics, the 

behaviour of the run-time environment during the execution of an application is also 

specified. 

Not all the potentially parallel computations represented by the tasklets are converted 

to tasks. Parallel tasks are created depending on the availability of computational resources 

on the underlying computer system. The creation and distribution of parallel tasks 

throughout the computer system is the responsibility of the run-time environment. 
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The run-time environment must ensure that a parallel task can always call methods on 

an object, irrespective of the processor on which that task is executing. 

Method calls on objects have sequential consistency semantics. Chapter 4 presents a 

detailed discussion on consistency semantics and memory access and gives the formal 

definition of sequential consistency. 

Every task is allowed to have objects in a private memory. Objects placed in the 

private memory are not managed by the run-time environment and they do not adhere to 

the sequential consistency semantics nor they are accessible by other tasks. 

2.9.3. Run-time Environment on Diverse Architectures 

The NIP execution model is not associated to any specific architecture. Implementations 

of the run-time environment that adhere to the semantics of the NIP execution model 

must provide a ‘single computer’ view of the underlying hardware. The semantics of the 

NIP programming model specify that algorithms should not have to be re-implemented 

when moved between architectures. Hence, the run-time environment needs to address 

issues related to both distributed memory and shared memory architectures. As efficiency 

is of a concern, latency tolerance and overlapping of communication and computation are 

welcomed features. Furthermore, optimisations on shared memory architectures are also 

required. 

The rest of this thesis presents the original research work undertaken on the advanced 

run-time techniques that are used for the implementation of the NIP execution model 

semantics. The techniques (Chapters 3, 4, 5) were implemented and evaluated (Chapter 6) 

as part of the NIP run-time system (Watson and Parastatidis 1999a; Watson and 

Parastatidis 1999b; Watson and Parastatidis 1999c). 

The NIP lazy task creation technique together with analogous previous approaches to 

task creation are presented in Chapter 3. NIP lazy task creation features the tasklet 

construct, which was briefly mentioned above. In combination with the NIP load 

balancing service (Chapter 5), it is possible to achieve overlapping of computation and 

communication. 

The NIP distributed shared memory system (Parastatidis and Watson 1999a; 

Parastatidis and Watson 1999b) is presented in Chapter 4. It provides an object-based 

view of the memory and introduces three new caching techniques. Object caching allows 

the NIP run-time system to tolerate latency in method calls on a distributed memory 

system. 
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3CHAPTER 3 
3.  NIP LAZY TASK CREATION 

The NIP execution model that was described in the previous chapter 

encouraged programming language support tools or application 

programmers to identify and expose the maximum logical parallelism 

possible in applications. In this chapter, the run-time techniques used to 

efficiently manage the resulting degree of parallelism are examined and 

the drawbacks of the existing systems are identified. 

The NIP lazy task creation technique is proposed as a run-time 

technique to assist parallel applications better utilise the available 

computational resources. The NIP lazy task creation technique is built 

around a new construct, the tasklet, which is used by applications to 

expose the logical parallelism in applications. 

Like similar constructs found in earlier lazy task creation 

techniques, a tasklet is a representation of a potentially parallel call. In 

contrast to previous approaches, however, the NIP tasklet construct is 

semantically rich. Just one NIP tasklet instance is enough to efficiently 

represent the parallelism available in entire iterative and recursive 

computations. 
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3.1. The Granularity Problem 

As discussed in the previous chapter, many programming languages provide the means of 

expressing—in the form of language constructs or library calls—the logical parallelism in 

an application. Implicitly parallel programming languages, like UFO (Sargeant 1993), take 

away the burden of identifying parallelism from the application developers and move it to 

the programming language compiler and run-time. 

In both cases, the degree of logical parallelism in the resulting application may be 

higher than is required to efficiently exploit the parallelism made available by the 

underlying parallel system. A higher degree of logical parallelism than is required often 

results in reduced performance as the overheads of managing parallel tasks (e.g., task 

creation, task destruction, task switching, load balancing) may overwhelm the execution 

time. 

The degree of parallelism in an application is inversely proportional to the granularity 

of the parallel tasks. Consequently, a lower degree of logical parallelism in an application 

results in tasks of coarser granularity and reduced run-time costs due to the management 

of parallel tasks. The underlying parallel system may then be more effectively exploited, 

provided, of course, that there is still enough parallelism to keep the system busy. 

However, lowering the degree of logical parallelism is can be difficult and not always a 

panacea, as will be explained subsequently. 

3.1.1. The ‘Expert’ Programmer Solution 

With the most popular parallel programming models (i.e., message passing and shared 

memory), it is the programmer who has to make the decisions about the granularity of the 

parallel tasks in an application. Quintessentially, a programmer decides on the degree of 

logical and usually the actual parallelism in an application.  

Achieving the exact balance between the degree of logical parallelism and the 

granularity of parallel tasks can be a troublesome and time-consuming process. The 

process requires knowledge of the particular performance characteristics and primitive 

operation costs of the underlying hardware architecture and run-time system. The 

resulting application may only perform well on that particular combination of architecture 

and run-time system. When the application is moved to another platform, it will have to 

be rewritten or retuned, causing more resources and time to be consumed. 
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Additionally, a parallel algorithm may be more naturally expressed with a higher 

degree of parallelism. If the high degree of parallelism does not match the parallelism 

offered by the underlying architecture, the application developer would have to reconsider 

and redesign the algorithm before even having to deal with all the performance related 

issues mentioned above. 

The granularity issue and its relation to the degree of logical parallelism in an 

application, as the above discussion reveals, are yet another incentive to utilise implicitly 

parallel compilers in the development process of parallel applications. 

3.1.2. The ‘Clever’ Compiler Approach 

Implicitly parallel compilers can relieve programmers from the difficult job of deciding 

the granularity of parallel tasks or the appropriate degree of logical parallelism in an 

application. Such compilers can use information about the underlying architecture when 

exploiting the parallelism in an application. Compile-time static analysis of the application 

source code can determine the appropriate granularity of the parallel tasks for a particular 

combination of hardware architecture and run-time. 

However, there exist applications where even after analysis of the source code an 

efficient solution cannot be generated. Such applications are usually data dependant or 

irregular. Moreover, static analysis of the source code cannot utilise run-time information 

about the load of the underlying system in the case of a multiprocessing environment, 

where it is very likely that the ideal degree of parallelism that can be exploited is 

influenced by the availability of computational resources. 

3.1.3. A Run-time Solution 

In 1991, Mohr et al. proposed a run-time solution to the granularity problem (Mohr et al. 

1991). They described a way in which applications with excessive parallelism could be 

efficiently executed on parallel architectures. Their approach did not require programmer 

assistance but instead it was a combination of compiler and automatic run-time 

techniques. The granularity of the parallel tasks could change dynamically at run-time 

depending on the availability of computational resources. The name of the run-time 

technique proposed by Mohr et al. was lazy task creation and is the subject of Section 3.2. 

Other approaches similar to the lazy task creation technique have also been described 

in the literature. The lazy threads (Goldstein et al. 1996) technique is one of them and is 

described in Section 3.3. Section 3.4 briefly presents some other systems implementing 

similar approaches. Finally, Section 3.6 comprehensively examines a new technique 

originally devised by Watson (Watson 1996) and further developed in (Watson and 
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Parastatidis 1999a; Watson and Parastatidis 1999b; Watson and Parastatidis 1999c) and in 

this thesis, the NIP lazy task creation technique which provides support for iterative and 

recursive computations. 

3.2. Lazy Task Creation 

In 1991, Mohr et al. proposed a run-time technique for increasing the granularity of the 

identified parallel tasks in an application (Mohr et al. 1991). Their method utilised the 

Scheme functional programming language with the addition of a construct for explicit 

parallelism borrowed from Multilisp (Halstead 1985), called future. Their intention was 

to allow programmers to implement algorithms in a natural way, even if the resulting 

implementation had a very high degree of parallelism. The way the identified parallelism is 

exploited is left to the run-time system. As Mohr et al. notice, “the programmer’s task is to 

expose parallelism while the system’s task is to limit parallelism” (Mohr et al. 1991). 

In their work (Mohr et al. 1991), Mohr et al. describe and compare three techniques 

for exploiting the parallelism in an application: eager task creation, load-based inlining, 

and lazy task creation. 

• With eager task creation, every future call is converted to a parallel task at 

run-time, resulting in a great number of fine-grained tasks, when the programmer 

identifies the logical parallelism at a fine-grained level. Of course, as described in 

Section 3.1, the run-time costs due to management of parallelism overwhelm the 

execution time. 

• In load-based inlining (Kranz et al. 1989), and during the execution of an 

application, a decision has to be made every time a future call is encountered. 

Depending on the load of the parallel system, a new parallel task is created to 

execute the computation associated with the future call or the computation is 

executed inline with the task that issued the future call. Drawbacks of the 

load-based inlining technique include the following (Kranz et al. 1989): 

o The involvement of the programmer is still required. The programmer has 

to code the load-based inlining behaviour and to define the load threshold 

upon which the decision to convert future calls to parallel tasks is based. 

o Deadlocks may arise in some applications due to use of load-based 

inlining. 

o The load-based inlining technique is not applicable in parallel iterative 

computations. 
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o Most importantly, though, when computational resources become 

available, there may not be any parallel tasks to execute until another 

future call is encountered. 

• The third approach, lazy task creation, resolves the issues associated with eager 

and load-based inlining techniques and it is the subject of the discussion bellow. 

3.2.1. Concept 

With lazy task creation as proposed by Mohr et al. in (Mohr et al. 1991), the source code 

looks exactly the same as in the case of eager task creation (for examples the reader is 

referred to (Mohr et al. 1991)). Programmers are not expected to write extra code or make 

decisions about the granularity of the parallel tasks. Using future calls, programmers are 

only required to identify all the computations that can be executed in parallel, resulting in 

applications with a high degree of logical parallelism. Lazy task creation attempts to 

reduce any run-time costs that may be incurred on a particular architecture due to the high 

degree of logical parallelism identified by the programmer. 

During the execution of a Scheme program, when a future call of the form 

(K (future X)) is encountered, where K is the parent task or the continuation of X and X 

is the computation identified as parallel, the run-time system starts executing X inline with 

the current task. Enough information is saved, however, so that the continuation K can be 

moved to a separate task if computational resources become available. Each processor 

maintains a list of available continuations that could be executed in parallel. When a 

processor becomes idle, it steals continuations from other processors, a method also 

known as task stealing. If continuation K of computation X has not been stolen when the 

execution of X completes, K will be removed from the list of available continuations and 

executed inline. 

The lazy task creation approach differs from eager task creation because with the 

latter technique a new task would have been created immediately to evaluate computation 

X in parallel with K even if there were not any computational resources available. 

In proposing the lazy task creation technique, Mohr et al. observed that the run-time 

cost of saving the information for the continuation K could be significantly lower than 

the cost of creating a new parallel task. In addition, they expected that in applications with 

a high degree of logical parallelism, the number of parallel tasks created to execute 

continuations would be significantly lower than the total number of tasks executed inline. 

Consequently, Mohr et al. anticipated that the run-time cost of saving information for all 

the continuations plus the cost of converting some of them to parallel tasks would be 
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significantly less than the run-time cost incurred if a new parallel task was created for 

every future call encountered. Indeed, the simulation-based performance results 

presented in (Mohr et al. 1991) confirmed the suitability of lazy task creation as a 

technique for reducing the run-time costs incurred due to excessive parallelism. 

3.2.2. Implementation 

Mohr et al. described two implementations of their lazy task creation technique in (Mohr 

et al. 1991) based on the Mul-T programming language (Kranz et al. 1989): one for the 

Encore Multimax shared memory multiprocessor and another one for the ALEWIFE 

distributed, globally shared memory multiprocessor (Agarwal et al. 1995). 

Both implementations are based on the same principles. Every processor maintains a 

globally accessible lazy task queue with pointers to the available continuations in the stack 

frame of the executing task on that processor. When a future call is encountered during 

the execution of a task on a processor, a pointer to the future’s continuation is pushed 

onto the lazy task queue of that processor. If the execution of the future call completes 

and the continuation is still in the queue, the processor removes that continuation from its 

queue and executes it inline. Another processor becoming idle may also remove, or steal, 

that continuation from the lazy task queue. 

Two levels of locking must take place to ensure the correctness of the operations on 

lazy task queues, as they are accessible by all the processors. First, a lock guarding a lazy 

task queue data structure must be acquired to prohibit two processors from stealing the 

same continuation. Then, another lock must be acquired to ensure that an idle processor 

does not steal a continuation while the processor that queued that continuation is trying 

to inline it. The ALEWIFE implementation of Mul-T takes advantage of specialised 

hardware to improve the performance of these locking operations. 

When a processor steals a continuation from a lazy task queue, it removes a frame 

from the stack of the task executing on the processor owning the queue. The frame is 

used by the new task that is created to execute the stolen continuation. The traditional 

stack implementation that was used on the Encore Multimax resulted in run-time 

overheads due to the costly frame copying of continuation stealing operations. A more 

complicated implementation, which was based on a double-linked list of stack frames, was 

implemented for the ALEWIFE machine. The implementation utilised specialised 

hardware available on the ALEWIFE to improve the performance of continuation 

stealing operations. 
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3.2.3. Weaknesses 

Logical Parallelism 

Although recursive parallel applications may benefit from lazy task creation, as shown by 

the simulation-based performance evaluation presented in (Mohr et al. 1991), Mohr et al. 

believe that it is not possible to automatically increase the granularity of parallel, iterative, 

fine-grained computations. They stated that “the sequentiality of iteration inherently limits 

parallelism” (Mohr et al. 1991). Mohr et al. suggest that parallel, iterative computations are a 

case of algorithms where the convenient way in which they are expressed inherently limits 

parallel performance. This thesis attempts to demonstrate that the lazy task creation 

technique, as described by Mohr et al., fails to improve the execution of iterative, fine-

grained, parallel computations mostly due to the way in which parallelism is identified for 

such computations using the future construct in the Scheme and Multilisp 

programming languages. 

The pseudo-code of two versions of an iterative parallel map function, similar to the 

two Scheme versions presented in (Mohr et al. 1991), are given in Code 3-1 and Code 3-2. 

The iteration over the elements of a list is implemented as a recursive computation while 

the function func is considered to be fine-grained. 

parallel-map func list 
   if list not empty 
      head-result is (future (func list.head)) 
      rest-result is (parallel-map func list.rest) 
      return (concatenate head-result rest-result) 

Code 3-1: First version of parallel map 

 In the first version of parallel map (Code 3-1), where the future call is the 

application of the function func to the head of the list, the task that starts the 

computation, the parent task, inlines that future call and makes its continuation 

available for parallel execution by adding it to the lazy task queue. If the function func is 

fine-grained, the continuation is removed almost immediately from the lazy task queue 

giving little opportunity to other processors in the system to steal it. As the lazy task 

queue is not built up, the load of the parallel system remains initially low. When another 

processor manages to steal a continuation, the parent task is not able to inline any more 

future calls and—depending on the implementation—will have to block or steal a 

continuation from another processor. The former approach means that whenever tasks 

are blocked computational resources are wasted. The latter approach results in many 

parallel tasks of fine granularity to be created. 
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Parallel-map func list 
   if list not empty 
      rest-result is (future (parallel-map func list.rest)) 
      head-result is (func list.head) 
      return (concatenate head-result rest-result) 

Code 3-2: Second version of parallel map 

 In the second version of parallel map (Code 3-2), the application of the function 

func to the rest of the list is identified as the future call. The parent task iterates 

through the whole list inlining all the future calls and making available a great number 

of continuations to other processors. The parallel tasks that may be created from those 

continuations to execute the application of the function func to the head of the list are 

of very fine granularity, as they do not include any future calls. The lack of future 

calls means that there are no possibilities for inlining. Only the granularity of the parent 

task may be increased. 

These issues discussed above were recognised by Mohr et al. and they dismissed the 

suitability of lazy task creation for iterative computations. This thesis discusses an 

alternative approach, based on a scheme originally perceived by Watson (Watson 1996), 

which overcomes the limitations of the technique. The NIP lazy task creation technique, 

discussed in Section 3.6, provides an alternative way of identifying parallelism in parallel, 

fine-grained, iterative and recursive computations. 

Memory and Stack 

In the simulation-based performance evaluation of the Encore Multimax and ALEWIFE 

presented in (Mohr et al. 1991) the cost of the memory operations was not taken into 

consideration. With lazy task creation, whenever a future call is encountered, memory 

has to be allocated on the global heap to store the pointer to the stack frame of the 

continuation. As heap memory operations are significantly more expensive than stack 

memory operations, the allocation of the lazy task queue on the heap introduces extra 

run-time costs. 

Additionally, the lazy task creation technique, as proposed by Mohr et al., relies on the 

manipulation of the parallel application stack. As such, the technique depends on 

specialised compilers. In the case of the ALEWIFE machine, the technique also utilises 

specialised hardware for the implementation of the stack structure in applications to 

improve performance. This dependence on specialised compilers and hardware makes the 

technique difficult to port on different platforms. 

Probably the most important memory related drawback of the Mohr et al. lazy task 

creation technique is the copying of stack frames during a continuation stealing operation. 
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Apart from the run-time cost incurred, pointers to data structures on the heap become 

invalid on distributed memory architectures. Additionally, data structures that are 

allocated on the stack frame of the continuation are no longer available to the future 

call that has been inlined, resulting in poor memory access locality. 

The NIP lazy task creation technique, discussed in Section 3.6, does not use the heap 

when identifying potentially parallel computations and it does not require specialised stack 

structures or copying of stack frames. 

3.3. Lazy Threads 

Goldstein and Culler proposed lazy threads as a run-time technique to increase the 

execution efficiency of parallel applications. The technique was described in (Goldstein et 

al. 1996) and later in more detail in Goldstein’s doctorate thesis (Goldstein 1997). The 

main objective of lazy threads is to provide a way of executing potentially parallel calls as 

efficient as sequential calls when parallel execution is not required (i.e., computational 

resources are not available). 

3.3.1. Concept 

With lazy task creation, a future call causes information to be saved in order to make its 

continuation available for parallel execution. As discussed in Section 3.2, it is 

computationally less expensive to save the necessary information for a continuation than 

actually creating a new parallel task. Still, the run-time cost was significantly higher when 

compared to the cost incurred for a sequential call because of the queuing and 

synchronisation operations required. Goldstein and Culler attempted to design and 

implement an execution mechanism for parallel applications that further reduced the 

run-time costs due to potentially parallel calls (or, future calls in lazy task creation). 

Their run-time technique greatly depended on compiler support and a tree-like storage 

model for stacks, called a cactus stack. 

With the lazy threads execution mechanism, a parallel call is executed as a 

parallel-ready sequential call. The function associated with the parallel call is executed just 

like a sequential call. Space on the stack of the calling thread, the parent, is allocated for 

the execution of the parallel-ready call, the child. If the execution of the child completes 

before computational resources become available, the parent will be resumed exactly in 

the same manner as when a sequential call finishes. Registers are used for the transfer of 

control and data between the parent and the child, making the execution of the 
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parallel-ready call as efficient as the execution of a sequential call. If the child suspends or 

yields the processor, it will have to be disconnected from its parent. A new thread will be 

created to execute the continuation of the parallel-ready call, just like continuation stealing 

in the lazy task creation. In this case, the stack frames of the parent and child are 

disconnected. The compiler produces code for every parallel-ready call to allow the child 

to be joined with its parent in case they were disconnected. 

Goldstein and Culler observed that in many cases the parent was resumed as a 

separate thread only to make another parallel-ready call. They introduced thread seeds as 

an optimisation, to allow new threads to be created without the parent having to be 

resumed. A thread seed points to the next available parallel-ready call in the parent, 

following the one that is using the parent’s stack. When an idle processor attempts to steal 

work from the suspended parent, it uses the thread seed to locate an available 

parallel-ready call and create a new thread to execute it. The thread seed used for the new 

thread is changed to point to the next available parallel-ready call. It must be pointed out 

that thread seeds can only be used with consecutive parallel-ready calls. 

It is not always possible to represent a potentially parallel call as a parallel-ready 

sequential call. Sequential calls use the same stack frame as the parent and there may be 

situations where the data structures passed as arguments to a parallel-ready call are 

modified by the parent before the result of the parallel call is required. The disconnection 

of the child from its parent and the parallel execution of the two may lead to erroneous 

execution. In order to deal with such situations Goldstein and Culler introduced another 

representation of a potentially parallel call, the closure. A closure is a data structure that 

contains the arguments for the potentially parallel call. When a parallel-ready call is 

encountered, a closure is queued and control is returned directly to the parent. When the 

result of the potentially parallel call is required, the closure is dequeued and executed (or, 

inlined as in lazy task creation). Another processor, though, may steal the closure and 

execute the associated call in a new thread. The parent will have to wait until the new 

thread completes. 

The lazy threads execution mechanism greatly depends on the generation strategy 

followed by the programming language compiler. The compiler decides on the 

appropriate representation (i.e., closure, thread seed, parallel-ready sequential) of the 

potentially parallel calls in an application. The compiler also generates extra code to allow 

for work stealing operations and thread synchronisation for every potentially parallel call. 
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A requirement for the lazy threads execution mechanism is that “threads are scheduled 

independently and are not pre-emptive” (Goldstein et al. 1996). The programming language 

compiler provides the code necessary for the scheduling of the created threads. 

3.3.2. Implementation 

In his thesis (Goldstein 1997), Goldstein describes the implementation of two 

programming compilers that provide support for lazy threads, the Split-C+threads and 

the Id90. Goldstein developed the Split-C+threads programming language based on the 

imperative Split-C (Culler et al. 1993a). Id90 is an implicitly parallel functional 

programming language. 

The Split-C+threads compiler was a modified GCC compiler to support the lazy 

threads execution model. During the performance evaluation of the lazy task creation 

technique in a distributed memory parallel environment, the compiler did not generate 

any parallel-ready sequential calls or thread seeds for the potentially parallel calls. Such 

representations are only effective in a shared memory parallel environment. Instead, 

closures were used for the representation of potentially parallel calls, which are not as 

efficient as the other representations. 

Finally, the applications compiled for the distributed memory parallel environment 

had to poll the network for messages from other processors. The polling operation was 

very expensive, especially for the Berkeley NOW parallel system (Culler et al. 1997) that 

was used. The slow network of the Berkeley NOW parallel system had a great impact on 

performance. Goldstein had to introduce a polling period (i.e., a certain number of polling 

operations were skipped) to improve performance. The execution on the Thinking 

Machine CM-5 multiprocessor (Hillis and Tucker 1993) did not suffer from the same 

problems. 

3.3.3. Weaknesses 

Threads 

The integration of support for threads into the programming language compiler causes 

portability considerations, as Goldstein notes in his thesis (Goldstein 1997). The lazy 

threads execution technique is not easily portable across architectures. Furthermore, 

despite the resulting performance benefits due to the integration, additional limitations are 

imposed. As the threads are scheduled independently and there is no pre-emption, 

problems may arise. Goldstein and Culler note in (Goldstein et al. 1996) that because all 

the computational threads are required to complete before an application can finish, 

fairness is not an issue. Indeed, some applications, usually scientific in nature, only require 
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processing resources in order to perform a number of calculations. However, there exist 

applications where pre-emption is required, such as real-time applications. Most 

importantly, though, independent scheduling is not suitable for applications that perform 

operating system calls (e.g., I/O, synchronisation, etc.). Operating system calls may block a 

thread but due to the lack of pre-emption and global scheduling, computational resources 

are not freed and therefore possibilities for parallelism are lost. Finally, due to 

independent scheduling, it is difficult to take advantage of the symmetric multiprocessing 

support many modern operating systems offer. 

Granularity 

The lazy threads execution mechanism succeeds in meeting the same goals as the lazy task 

creation technique described in Section 3.2 while introducing performance improvements. 

Applications with parallel, recursive computations and potentially parallel calls can be 

executed efficiently without incurring the overhead of excessive parallelism. However, 

parallel, iterative computations are still a great problem, as was the case with lazy task 

creation (Section 3.2.3). The granularity of parallel, iterative computations cannot be 

dynamically increased based on the availability of computational resources. 

The independent iterations in an iterative computation are represented as 

parallel-ready sequential calls, threads seeds, or closures by the programming language 

compiler that supports the lazy threads execution mechanism. However, only the less 

efficient closure representation is suitable for distributed memory architectures. When a 

processor becomes available, and regardless of the representation of the potentially 

parallel call, the granularity of the new thread that is created is determined by the 

granularity of the stolen iteration. Fine-grained iterations will result in many fine-grained 

threads. The NIP lazy task creation technique (Section 3.6) provides a solution to the 

granularity problem for iterative computations. 

3.4. Other Run-time Techniques 

A number of other run-time techniques similar to lazy task creation and lazy threads have 

been proposed in the literature (Blumofe et al. 1995; Engler et al. 1993; Freeh et al. 1994; 

Vandervoorde and Roberts 1988; Wagner and Calder 1993). Two of them are briefly 

described in this section as they have some common characteristics with the NIP lazy task 

creation described in Section 3.6. 
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3.4.1. WorkCrews 

In 1988, Vandervoorde and Roberts described in (Vandervoorde and Roberts 1988) 

WorkCrews as a technique for controlling parallelism in Modula-2+ (Rovner 1986). A 

number of workers (i.e., threads) are created during the initialisation of a Modula-2+ 

application. One worker is created for every processor in the parallel system and every 

worker maintains a queue of help requests. A help request consists of a procedure and the 

data structure that represents its arguments. 

In WorkCrews, an active worker exposes parallelism by placing help requests in the 

help request queue. When a worker becomes idle, it tries to assist other workers by 

removing and executing a help request from their queues. When the result from a help 

request is required and if another worker has not already stolen that help request, the 

worker that queued the request executes it. The scheme is similar to the closures of the 

lazy threads execution mechanism (Section 3.3.1). 

The main problem with WorkCrews is the potential for deadlock. Blocked workers do 

not attempt to execute work from other workers. As there is no provision for additional 

workers (only one per processor is available), an application may enter a deadlock state. 

Application developers must be aware of this erroneous execution behaviour and code 

their applications accordingly. 

In (Mohr et al. 1991), Mohr et al. favour their lazy task creation technique over 

WorkCrews due to the required involvement of the application programmers in the latter 

technique. In WorkCrews, application programmers have to expose parallelism by 

queuing potentially parallel calls and their arguments and synchronise the execution of the 

workers with the results from any lazily created tasks. Instead, in lazy task creation the 

future construct is all that is required. The stylistic differences in the two techniques 

also result in implementation differences. The lazy task creation technique requires 

specialised compilers and the manipulation of the stack, which decrease portability, while 

the WorkCrews technique is applicable to conventional stack implementations and does 

not require compiler support. 

3.4.2. LeapFrogging 

LeapFrogging was described in (Wagner and Calder 1993) as an extension to the original 

lazy task creation technique (Mohr et al. 1991) that deals with imbalanced computational 

trees. Actually, it is a combination of the lazy task creation and WorkCrews techniques. 

The closure-like representation for potentially parallel calls is used in LeapFrogging, as in 

WorkCrews and lazy threads. A collection of threads is available to execute work that is 



Chapter 3 

60 

identified as potentially parallel. The number of available threads exceeds the number of 

processors in order to overcome the deadlock problem of WorkCrews. The LeapFrogging 

technique is implemented in C++ and it is compatible with a variety of thread libraries. 

3.5. On Potentially Parallel Calls and their Representations 

All the run-time techniques described above and others that have been proposed in the 

literature (Blumofe et al. 1995; Engler et al. 1993; Freeh et al. 1994; Vandervoorde and 

Roberts 1988; Wagner and Calder 1993) attempted to deal with the fine-grain and/or 

excessive parallelism in some applications, mostly recursive in nature. However, none of 

the proposed techniques has been able to handle the fine-grain parallelism in iterative 

computations. 

3.5.1. The Problem with Iterative Computations 

With the run-time techniques that have been proposed in the literature, parallelism is 

exposed through representations of potentially parallel calls. At run-time, such 

representations may be converted to parallel tasks when computational resources become 

available. Otherwise, the calls with which the representations are associated are executed 

like sequential calls. The granularity of the task that executes the potentially parallel call as 

a sequential call is increased and the extra costs of managing parallelism are avoided (i.e., 

task creation, scheduling, synchronisation, etc.). 

For run-time techniques to work, the execution environment must be made aware of 

the available potentially parallel calls in an application. The approach employed in 

introducing a potentially parallel call to the execution environment depends on the 

technique used (e.g., queuing of future constructs in lazy task creation by Mohr et al., 

advanced stack manipulation and parallel-ready sequential calls, thread seeds, and closures 

in lazy threads). 

In all the techniques that have been proposed, each potentially parallel call must be 

represented separately. Although this approach may work with recursive computations, it 

introduces extra overheads with iterative, parallel computations. For example, with the 

lazy task creation technique iterations would be provisionally inlined as they are 

encountered. If computational resources become available, the remaining iterations would 

be stolen leaving the current task without work after the currently executing iteration 

completes. As a result, the active task would have to suspend and attempt to steal work 

from the task that just stole the rest of the iterations. This would continue until all the 
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iterations have been completed. It is clear that unnecessary overhead is introduced and 

tasks of fine granularity are created as a result. The parallel-ready sequential call 

representation in the lazy threads execution mechanism suffers from exactly the same 

problem (also refer to the discussion in Section 3.2.3). 

In lazy threads, the thread seed representation of potentially parallel calls provides an 

improved solution for the execution of iterative, parallel computations. The granularity of 

the task that introduced the thread seeds for the iterations may be dynamically increased 

as potentially parallel calls are executed sequentially. The thread seed representation, 

though, is not appropriate for distributed-memory systems. Instead, the closure 

representation for potentially parallel calls must be used (the future structure of the 

leapfrogging technique and the help request of WorkCrews are semantically the same as 

the closures of lazy threads). The closure representation allows a task to continue its 

execution even when a potentially parallel call is encountered. The closure is queued so 

when computational resources become available, the closure is stolen and converted to a 

parallel task. Otherwise, the call associated with it is executed sequentially at a 

synchronisation point. However, thread-seeds and closures still result in fine-grained 

parallel tasks from iterations as only one iteration may be stolen at a time. Only the 

granularity of the parent task has the potential to be increased. Finally, all the possible 

parallel iterations have to be identified one-by-one by either a thread seed or a closure, 

which introduces additional run-time overhead. 

The above discussion suggests that the reason the existing run-time techniques cannot 

efficiently handle iterative, fine-grained, parallel computations is the way in which 

individual iterations are made available for parallel execution. Only one at a time is 

introduced to the execution environment and only one at a time may be stolen and 

converted to a new parallel task. 

3.5.2. A Solution 

A new run-time technique, NIP lazy task creation, devised by Watson (Watson 1996) and 

further developed in (Watson and Parastatidis 1999a; Watson and Parastatidis 1999b; 

Watson and Parastatidis 1999c) and in this thesis, attempts to provide a solution to the 

efficiency problem with iterative, fine-grained, parallel computations. NIP lazy task 

creation is based around Watson’s representation of iterative, parallel computations, the 

tasklet (Watson 1996). A tasklet exposes the parallelism available in iterative computations 

and allows new parallel tasks to be created lazily as computational resources become 

available. In contrast to previous approaches of potentially parallel calls representations 
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(e.g., a future construct or a closure), just one tasklet may represent all the iterations of 

an entire iterative computation. The previous execution environments required that 

iterations were uniquely identified. 

This thesis builds upon the ideas first introduced by Watson (Watson 1996) and 

extends the tasklet construct to represent whole recursive, tree-like computations and 

independent potentially parallel calls. Moreover, an object-oriented approach to the design 

and implementation of the tasklet construct in the NIP run-time system (Chapter 5) was 

preferred. Unlike the original tasklet, which was introduced by Watson (Watson 1996), 

tasklet constructs in the NIP run-time system are allocated on the stack frame of their 

parent tasks rather than the heap of the applications (Section 3.6.2), which improves 

efficiency. 

The tasklet construct is examined in detail together with the NIP lazy task creation 

technique in the remaining of this Chapter. 

3.6. NIP Lazy Task Creation 

The NIP lazy task creation technique (Watson 1996; Watson and Parastatidis 1999a; 

Watson and Parastatidis 1999b; Watson and Parastatidis 1999c) was designed as part of 

the NIP run-time system, which is an implementation of the NIP execution model 

(Section 2.9). The main aim of the NIP run-time system is to provide an efficient 

execution environment for general-purpose, object-oriented parallel applications on 

distributed memory and/or shared memory multiprocessor architectures. Parallel 

applications are expected to expose as much logical parallelism as possible. The NIP 

run-time is responsible for efficiently exploiting the identified parallelism and keeping the 

parallel system busy. The algorithm for the distribution of work employed by the NIP 

run-time is based on the work stealing, or task stealing, technique. The implementation 

details of the load distribution algorithms that were adopted in the NIP run-time system 

are presented in Chapter 5. 

This section discusses the details of the NIP lazy task creation technique. It provides a 

closer look at the tasklet construct and the way it is used to expose parallelism. The 

internal data structures required for the implementation of the NIP lazy task creation 

technique are also described. 
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3.6.1. The Tasklet 

As it has already been mentioned, a tasklet is a new representation for potentially parallel 

calls (Section 3.6.4) that can efficiently expose the parallelism in entire iterative (Section 

3.6.5) and recursive (Section 3.6.6) computations. A tasklet is a run-time construct that it 

is best described as an instance of a type whose prototype interface is shown in Code 3-3. 

Specialisations of the basic Tasklet type must provide implementations for the first 

four methods: createTask(), executeTasket(), returnTask(), and 

waitOrInline(). 

type Tasklet 
public: 
   virtual bool createTask(Task&) 
   virtual void executeTask(Task&) 
   virtual void returnTask(Task&) 
   virtual void waitOrInline() 
   void activate() 
   void deactivate() 
protected: 
   bool waitForStolenTasks() 

Code 3-3: Public interface of a tasklet in pseudo-code 

The tasklet representation was designed to support a task creation mechanism based 

on work stealing (or, task stealing), similar to the lazy task creation techniques described in 

the previous sections. When a processor of a parallel system runs out of computational 

work, it attempts to ‘steal’ work from other processors. Processors find additional work 

through the tasklet availability queue, which is maintained by the NIP run-time system. 

Tasklets expose logical parallelism to the execution environment by adding themselves to 

the tasklet availability queue (Section 3.6.2). 

The Interface 

Idle processors create a Task object to store the necessary run-time information for the 

execution of a new parallel task. A Tasklet object differs from a Task object in that the 

former is a representation of one or more potentially parallel calls while the latter 

maintains the required information for the execution of a new parallel task (e.g., function 

call, arguments). Once the Task object has been created, idle processors iterate through 

the tasklet availability queue until they can find a tasklet from which they can steal 

computational work. After a tasklet instance has been chosen, the createTask() 

method is called for that instance. The method checks to see if a new parallel task can be 

created from the selected tasklet in which case the already instantiated Task object is 

updated. Otherwise, another tasklet will have to be chosen. 
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After the Task object has been instantiated, updated, and moved to the idle 

processor, the executeTask() method of the tasklet that was used is called. The 

method uses information from the Task object to evaluate the stolen computation in 

parallel with the computation that created its tasklet. 

Upon completion of the parallel task, the Task object is returned to the tasklet from 

which the computation was stolen. If necessary, the Task object is updated to contain the 

return value of the evaluated computation. The returnTask() method of the original 

tasklet is then called and the tasklet is notified that the stolen computation has finished. 

When the task that created the tasklet reaches the point where the result of the 

associated computation is required, it calls the waitOrInline() method. If an idle 

processor stole the computation, the execution of the task will have to block until the 

stolen computation completes. Otherwise, the computation is executed inline, like a 

sequential call. 

An instance of the Tasklet type is added to the tasklet availability queue when the 

activate() method is called and it is removed from the queue by the deactivate() 

method. The automatic addition (removal) to (from) the queue could have been 

associated with the construction (destruction) of tasklets but the chosen approach allows 

for more flexibility in the design of Tasklet specialisations. Since there is an associated 

run-time cost with the initialisation of a tasklet instance, a Tasklet specialisation could 

allow its instances to be reused in exposing different potentially parallel computations 

without having to incur the construction related run-time costs. 

Finally, the waitForStolenTasks() method automatically removes the tasklet 

instance from the tasklet availability queue. Additionally, if there are parallel tasks that 

were created from the tasklet and are still running, the method will suspend the execution 

of the task from which it was called. The execution of the suspended task will resume 

when all of the parallel tasks have returned. The method can only be called from within a 

specialisation of the waitOrInline() method. In some cases, the waitOrInline() 

method may only include a call to waitForStolenTasks(). 

3.6.2. Tasklet Internals and the Tasklet Availability Queue 

The objective of the lazy task creation technique, as discussed in previous sections, was to 

allow parallel applications to expose the maximum logical parallelism possible to the 

execution environment, without incurring the run-time costs due to excessive parallelism. 

The insight was that only a small number of the total identified potentially parallel calls 

were actually going to be converted to parallel tasks. It was expected that most of the calls 
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were going to be executed inline, like sequential calls. The previously published works 

validated the lazy task creation ideas (Goldstein 1997; Mohr et al. 1991). 

As the NIP lazy task creation technique is based on the same concept as the original 

lazy task creation technique, the execution efficiency of the parallel applications greatly 

depends on the costs of creating tasklets and inlining their associated computations. 

Therefore, the tasklet creation and inlining costs should be kept as low as possible. Only 

then can parallel applications expose the maximum logical parallelism possible to the NIP 

execution environment by creating as many tasklets as possible, without incurring 

significant run-time costs. It is expected that for a parallel application with a high degree 

of logical parallelism, the run-time cost of instantiating tasklets, creating a small number 

of parallel tasks from those tasklets, and inlining the rest, would be significantly smaller 

than eagerly creating all the possible parallel tasks (the performance evaluation of the NIP 

lazy task creation technique is presented in Chapter 6). 

Tasklet Instantiation 

The tasklet representation for potentially parallel calls has been designed with efficiency in 

mind. Instances of the Tasklet type are allocated on the stack of the task that creates 

them rather than on the heap, which is the case with most of the previous potentially 

parallel call representations. As a result, the memory allocation costs associated with the 

heap are avoided. 

Every new tasklet is added at the end of the 

tasklet availability queue, which is a double linked list 

of tasklets. No extra space is required to be allocated, 

as the linking pointers are part of the state of each 

tasklet (Code 3-4). However, a locking operation is 

necessary to guarantee the integrity of the tasklet availability queue data structure. The 

cost of the locking operation is considered to be part of the tasklet instantiation costs 

even though it takes place when the activate() method is called. A tasklet exposes 

potentially parallel calls only when it is part of the tasklet availability queue and it is only 

added to the queue when the activate() method is called. 

Every tasklet is associated with a lock during its instantiation process. A new lock 

does not have to be created for every new tasklet. A pool of already instantiated locks may 

be used. This—private to the tasklet—lock is used during the inlining and stealing 

operations and to guarantee the integrity of the internal state of the tasklet instance with 

which it is associated. 

type Tasklet 
private: 
   Tasklet* next 
   Tasklet* previous 
   Mutex*   lock 

Code 3-4: Tasklet private data members



Chapter 3 

66 

Besides the three essential private data members (as shown in Code 3-4), and more 

often than not, specialised tasklets will have private data members to store additional 

information. The initialisation cost of such tasklets also depends on the cost of creating 

the additional data members. However and unlike previous approaches, a tasklet can be 

constructed in such a way that once instantiated it can be reused within the same scope of 

a task, reducing the effect of the instantiation costs. Code 3-5, for example, shows how a 

tasklet with a member function expose() might be reused to expose to the NIP 

run-time two different potentially parallel calls, f and g. 

ExposeFunctionTasklet tasklet 
tasklet.expose(f) 
tasklet.activate() 
... 
tasklet.waitOrInline() 
... 
tasklet.expose(g) 
tasklet.activate() 
... 
tasklet.waitOrInline() 

Code 3-5: A tasklet can be reused within the same scope

Two-level Locking 

When a processor runs out of work, it looks into the tasklet availability queue in order to 

locate a tasklet from which it can steal work. A lock must be acquired to guarantee the 

integrity of the queue data structure while the search for a tasklet is in progress. Once a 

tasklet is chosen, the private lock of that tasklet is also acquired and the createTask() 

method is called. The acquisition of the private to the tasklet lock guarantees that there is 

not going to be an attempt to inline the associated computation while the stealing 

operation is in progress. 

At first, it may seem that this two-level locking is unnecessary and that the same result 

could be achieved with just one lock operation. That would have been true if there was an 

one-to-one association between a tasklet and a potentially parallel call. However, as it has 

already been mentioned and it is discussed in more detail in the following sections (3.6.5 

and 3.6.6), one tasklet may represent more than one potentially parallel call. Consequently, 

an inlining operation does not necessarily result in the removal of the tasklet from the 

tasklet availability queue. There may still be potentially parallel calls associated with the 

tasklet that have not been executed and, therefore, available to be converted to parallel 

tasks. 

In inlining computation from a tasklet, only the private to the tasklet lock has to be 

acquired. As a result, multiple inlining operations on different tasklets may take place 
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simultaneously. Additionally, an inlining operation does not prohibit the manipulation of 

the tasklet availability queue (i.e., adding, removing, searching for tasklets). 

The two-level locking does not have a significant impact on performance, as the 

number of inlining operations is expected to be much higher than the number of stealing 

operations. 

3.6.3. Use of Tasklets 

Instances of the basic Tasklet type, as they were described in the previous section, 

cannot be used directly to expose parallelism. The basic Tasklet type provides the 

abstract prototype upon which new tasklets are based. 

If an implicitly parallel programming language is used for the development of parallel 

applications, the responsibility for managing the new tasklet representations falls to the 

compiler. Otherwise, in an explicitly parallel development environment, the application 

programmer has to design and implement the new tasklet types. 

As the process of designing and implementing new tasklet types can become 

complicated even for a compiler, generic templates (i.e., parameterised types) are available 

that automatically produce the necessary code for commonly encountered patterns of 

parallel computations. The three basic patterns and the way tasklets are used to represent 

them are described in the following sections. The presented pseudo-code for the tasklets 

is not the actual implementation of the NIP run-time system but a simplified view for 

presentation purposes. 

3.6.4. Function Calls 

With eager task creation, a running task—the parent—creates new parallel tasks—the 

children—for every function call that may be evaluated in parallel. The execution of the 

parent task continues until a synchronisation point is reached. The parent task will then 

have to wait until the child task has completed its execution. In the example of Figure 3-1, 

task T1 spawns task T2 and then continues with some sequential code. T2 executes its 

computation, function f, in parallel. When T1 reaches the synchronisation point, it has to 

wait for T2 to finish. Code 3-6 presents the pseudo-code for tasks T1 and T2. 

T1

T2

T1: ... 
    fork T2 
    ...  
    wait T2 
    ... 
 
T2: f() 

Figure 3-1: The parallel call pattern Code 3-6: Pseudo-code for T1 and T2
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With NIP lazy task creation, the parent task does not spawn a child task. Instead, an 

instance of a tasklet is created to expose as a potentially parallel call the computation that 

the child task would have evaluated. Code 3-7 shows the interface and implementation of 

a parameterised tasklet type whose instances may expose any function as a potentially 

parallel call (i.e., the function is used as a parameter to the type). Only the 

createTask(), executeTask(), and waitOrInline() methods are implemented. 

In this case, the functions to be exposed as potentially parallel calls do not return a value 

and, therefore, there is no need to provide an implementation for the returnTask() 

method. 

Instances of the ExposeFunctionTasklet<Function> tasklet type automatically 

add themselves to the tasklet availability queue by calling the activate() method from 

within their constructor. When an idle processor that is looking for work calls the 

createTask() method, the tasklet instance is immediately removed from the tasklet 

availability queue by the deactivate() method. The tasklet represents just one 

potentially parallel call and, therefore, once the call is stolen, there is no need for the 

tasklet to remain in the tasklet availability queue. When the executeTask() method is 

called by the new parallel task, the function passed as a template parameter to the tasklet 

type is executed. 

type ExposeFunctionTasklet<Function g> : public Tasklet 
public: 
   ExposeFunctionTasklet () 
   bool createTask(Task&) 
   void executeTask(Task&) 
   void waitOrInline() 
 
ExposeFunctionTasklet<Function g>:: ExposeFunctionTasklet() 
   activate() 
 
bool ExposeFunctionTasklet<Function g>::createTask(Task&) 
   deactivate() 
   return true 
 
void ExposeFunctionTasklet<Function g>::executeTask(Task&) 
   g() 
 
void ExposeFunctionTasklet<Function g>::waitOrInline() 
   if waitForStolenTasks() 
      // Do nothing. The function was stolen and 
      // executed by a parallel task. 
   else 
      g() 

Code 3-7: Pseudo-code of a tasklet that exposes a function call as a potentially parallel call  

When the parent task that created the tasklet reaches the synchronisation point, it calls 

the waitOrInline() method. The waitForStolenTasks() method is used to 
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remove the tasklet from the tasklet availability queue if it has not already been removed. 

Then, three possible scenarios are possible: 

• A new parallel task was created to evaluate the potentially parallel call and it is still 

active: the waitForStolenTasks() method blocks the execution of the parent 

task until the parallel task completes. 

• A new parallel task was created to evaluate the potentially parallel call and it has 

already completed: the waitForStolenTasks() returns immediately. 

• The potentially parallel call has not been stolen: the waitOrInline() method 

executes the function like a sequential call. 

Code 3-8 shows how the program of Code 3-6 (page 52) is transformed to use tasklets 

and NIP lazy task creation. 

T1: ... 
    ExposeFunctionTasklet<f> tasklet 
    ... 
    tasklet.waitOrInline() 
    ... 

Code 3-8: The NIP lazy task creation version of the pseudo-code in Code 3-6 

3.6.5. Iterative Computations 

Iterative computations unveil the full strength of the tasklet construct. When a tasklet is 

encountered, it is registered with the execution environment and control is returned 

immediately to the executing task. The task may continue to execute unrelated 

computation while parallel tasks are created to execute iterations from the tasklet as 

computational resources become available. There exists a synchronisation point at which 

all the iterations that have not been converted to parallel tasks are executed sequentially 

(inlined). However, even during the inlining process, if a processor becomes idle and 

requests work, remaining iterations may still be converted to parallel tasks. Code 3-9 

presents an example in pseudo-code of a typical iterative computation and its equivalent 

tasklet representation (the iteration-related lines are highlighted). 

unrelated code1 
start loop n iterations 
   call function 
end loop 
unrelated code2 

create tasklet(n, function) 
unrelated code1 
unrelated code2 
wait for tasklet 
 

Code 3-9: Relation between an iterative computation and its tasklet representation 

Although a tasklet immediately returns control to the executing task, so resembling a 

closure-like representation, the execution semantics of a tasklet differ from those of a 

closure. Code 3-10 presents two more versions of the iterative, parallel computation 
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shown in Code 3-9. Now, closures are used to represent the potentially parallel calls, the 

iterations. In the first version, logical parallelism may be lost, as the fragments of 

unrelated code must be executed sequentially, before and after the iterative computation. 

Additionally, only one potentially parallel call is exposed to the execution environment at 

any particular time. If the granularity of that call is fine, idle processors will have little 

opportunity to steal it because it is going to be inlined almost immediately. An alternative 

approach, which has not been suggested by anyone in the literature, can also be 

considered (the second version of Code 3-10). A loop exposes all the iterations as 

potentially parallel calls, giving the opportunity to idle processors to steal them while the 

unrelated fragments of code are executed. At the end, another loop is required to 

synchronise with all the closures. In both versions, there is an one-to-one association 

between iterations and closure representations. The run-time overhead of creating all the 

closures and then synchronising with them can be significant. As the NIP lazy task 

creation version shows (Code 3-9), the tasklet representation may solve this problem. The 

way in which only one tasklet instance can represent the parallelism in iterative 

computations is described next. 

Unrelated code1 
start loop n iterations 
   closure(function) 
   closure.wait 
end loop 
unrelated code2 

start loop n iterations 
   closure(i, function) 
end loop 
unrelated code1 
unrelated code2 
start loop n iterations 
   wait for closure(i) 
end loop 

Code 3-10: Two closure representations of the same iterative computation 

A Tasklet Type for Iterative Computations 

In NIP lazy task creation, a tasklet instance may contain enough information to represent 

a pool of potentially parallel calls. One of the most common patterns of parallelism is a 

parallel loop, where iterations can be evaluated in parallel. A tasklet type can be designed 

to expose the parallelism in such computations (Figure 3-2). 

T1 T1

T2

T3

T4

T5

 
Figure 3-2: The parallel loop pattern 
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The design, implementation, and application of tasklet types, whose instances expose 

the available parallelism in loops, are illustrated through an example. In the example, a 

function f is applied on all the elements of a vector of size N. The serial version of this 

iterative computation is shown in Code 3-11. The NIP lazy task creation version is 

presented in Code 3-12. 

VectorType vector(N) 
for i = 1 to N 
   vector(i) = f(vector(i)) 

Code 3-11: Serial version of the application of a function 
onto the elements of a vector 

VectorType vector(N) 
MapTasklet<VectorType, f> tasklet(vector) 
... 
tasklet.waitOrInline() 

Code 3-12: NIP lazy task creation version of the application 
of a function onto the elements of a vector 

The MapTasklet<VectorType, f> type is used to expose the available 

parallelism in the iterative computation where the function f is applied to all the elements 

of the vector vector of type VectorType and of size N. Before looking into the design 

of the new tasklet type, two additional methods must be added to the interface of the 

basic Tasklet type. The two additional methods (beginCriticalSection() and 

endCriticalSection()) provide access to the private lock of the tasklet and allow 

new tasklet types to define critical sections. As will be seen, there are cases where the 

createTask(), returnTask(), and waitOrInline() methods attempt to 

simultaneously access the same data structures of a tasklet instance. The defined critical 

sections are used to protect the integrity of the internal state of tasklets from such 

concurrent accesses. 

The design and implementation in pseudo-code of the MapTasklet type is 

presented in Code 3-13. The constructor of the tasklet accepts a reference to a vector 

object and initialises the _vector private data member. The constructor also adds the 

tasklet to the tasklet availability queue by calling activate(). In this way, all the 

iterations of the parallel loop are made available to the execution environment as 

potentially parallel calls as soon as an instance of MapTasklet is created. 
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type MapTasklet<type T, Function g> : public Tasklet 
public: 
   MapTasklet(T&) 
   bool createTask(Task&) 
   void executeTask(Task&) 
   void returnTask(Task&) 
   void waitOrInline() 
private: 
   int _index 
   T&  _vector 
   int _stealAnIteration() 
 
MapTasklet<type T, Function g>::MapTasklet(T& v) : _vector(v), 
                                                   _index(0) 
   activate() 
 
bool MapTasklet<type T, Function g>::createTask(Task& task) 
   i = _stealAnIteration() 
   if i < _vector.size() 
      put i into task 
      put _vector[i] into task 
      return true 
   else 
      deactivate() 
      return false 
 
void MapTasklet<type T, Function g>::executeTask(Task& task) 
   get element from task 
   put g(element) to task 
 
void MapTasklet<type T, Function g>::returnTask(Task& task) 
   get result from task 
   get i from task 
   _vector[i] = result 
 
void MapTasklet<type T, Function g>::waitOrInline() 
   while(true) 
      i = _stealAnIteration() 
      if i < _vector.size() 
         _vector[i] = g(_vector[i]) 
      else 
         stop while 
   waitForStolenTasks() 
 
int MapTasklet<type T, Function g>::_stealAnIteration() 
   beginCriticalSection() 
   i = _index++ 
   endCriticalSection() 
   return i 

Code 3-13: Design and implementation of the MapTasklet type 

There is a private data member, the _index, which points to the first element in the 

vector for which the map function has not been executed, either as a separate parallel task 

or inline. When an idle processor looking for work calls the createTask() method, the 

_index is atomically increased by the _stealAnIteration() private method call. 

The previous value of the _index is returned to the calling method. The returned value 

identifies a unique iteration (an element of the vector). If the returned value is within the 

limits of the vector, the Task object is configured. The value identifying the iteration to 

be evaluated and the element of the vector upon which the function is going to be applied 
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are placed into the Task object. If the _stealAnIteration() method returns a value 

that exceeds the limits of the vector, the tasklet instance is removed from the tasklet 

availability queue because there are no more potentially parallel calls available. 

The _executeTask() method only requires the element of the vector upon which 

the map function is to be called. The index that is already in the Task object is left 

untouched. The map function is called and the element is passed as an argument. The 

result of the function is stored in the Task object. 

When the Task object is returned to the tasklet it was stolen from and the 

returnTask() method is called, both the result and the index are retrieved. The index 

is used to indicate the position in the vector where the result should be stored. The 

returnTask() method completes the cycle of a stolen iteration (steal, execute, and 

return). 

If the granularity of the computation in Code 3-12 between the instantiation of the 

tasklet and the synchronisation point (i.e., the waitOrInline() call) is large enough, all 

the iterations may be stolen and executed as separate parallel tasks. When the 

waitOrInline() method is called, a loop is entered and lasts until all the iterations 

have been executed, either inline or stolen for execution in parallel. Of course, some or all 

of the iterations may already have been stolen and executed in parallel. The 

waitOrInline() will start from the last available iteration, if there is one available. A 

vector index is atomically chosen by the _stealAnIndex() method. If the index does 

not exceed the limits of the vector, the map function is called and the associated position 

in the vector is updated. Finally, the waitForStolenTasks() is called to remove the 

tasklet from the tasklet availability queue and wait for any possible executing parallel tasks. 

The example presented in this section demonstrates the strength of the tasklet 

representation for potentially parallel calls. Only one tasklet instance is required to expose 

the parallelism in an entire loop, rather than one per iteration as is the case with earlier 

schemes. 

Granularity Considerations 

Although the tasklet manages to overcome the problems associated with other 

representations in exposing the parallelism in iterative computations, it suffers from the 

same granularity issue affecting the earlier approaches to lazy task creation. A tasklet may 

expose the parallelism of a parallel loop that consists of fine-grained iterations. When 

iterations are stolen from the tasklet to be executed as separate parallel tasks, the 
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granularity of the resulting tasks is also going to be fine. The run-time costs of lazily 

creating parallel tasks may overwhelm the total execution time. 

Unlike previous approaches, the NIP lazy task creation technique offers a solution to 

the granularity issue mentioned above. The flexibility of the tasklet representation allows 

for more advanced tasklets than the one presented in Code 3-13 to be designed and 

implemented. Tasklets may be created that are able to dynamically increase the granularity 

of the parallel tasks without reducing the degree of logical parallelism available. 

When a processor issues a request for a new task, a group of iterations can be stolen 

rather than just one. The stealing processor creates a new tasklet instance to make sure 

that the stolen iterations are still available to other processors, if any runs out of work. 

Now, the new parallel task will inline iterations from the stolen group and, therefore, its 

granularity is coarser compared to the granularity of a task that only steals and executes 

one iteration. 

The size of the group of iterations to be stolen at one time can be determined in 

various ways. For example, heuristic information about the execution of iterations that is 

collected at run-time (e.g., the execution time of iterations) can be used to dynamically 

change the size of the group. Information collected from the execution environment, 

such as the number of available processors and communication delays, in combination 

with information about the total number of iterations in the loop may be used to 

determine a fixed or varying group size. 

The performance of NIP lazy task creation can be further improved at run-time by 

allowing the tasklets with grouping functionality to reduce the available logical parallelism, 

when appropriate. The parallel tasks that are created to execute a group of stolen 

iterations do not expose them as potentially parallel calls but, instead, execute them all as 

sequential calls. Of course, this can only be possible when enough information is known 

at run-time about the execution environment (e.g., processor, memory, communication, 

etc.), the granularity of the iterations, and the details of the data structures involved (e.g., 

number of elements). 

Several tasklet types that provide grouping functionality are provided by the NIP 

run-time system.  

Consecutive Parallel Calls 

Iterative tasklets can be used to improve the representation of a series of independent 

potentially parallel calls. There is an one-to-one association between such potentially 

parallel calls and tasklets, as discussed in Section 3.6.4. A series of parallel calls, one 
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following the other, will result in a number of tasklets being created. The run-time 

overhead due to tasklet instantiation costs may be reduced with the help of an iterative 

tasklet. 

If all the potentially parallel calls were placed in a data structure such as a vector or a 

list, an iterative tasklet similar to that of Code 3-13 (page 56) could be used. As a result, 

only one tasklet is used to expose the logical parallelism associated with a series of 

independent parallel function calls. 

3.6.6. Recursive Computations 

The last pattern of parallel calls to be examined is that of recursive computations. The 

parallel calls form a tree-like computational flow, like the one shown in Figure 3-3. Each 

of the potentially parallel calls in the recursive computation can be represented as a 

separate tasklet, like the one described in Section 3.6.4. However, as it was the case with 

iterative computations, it is more efficient to design and implement a tasklet type whose 

instances expose the parallelism in whole recursive computations.  

T1 T1

T5

T7

T6

T2 T2

T3 T3

T4

 
Figure 3-3: The parallel recursion pattern 

int nfib(int n) 
   if n > 1 
      return nfib(n – 1) + nfib(n – 2) 
   else 
      return 1 

Code 3-14: The serial version of nfib 

int nfib(int n) 
   if n > 1 
      ExposeFunctionTasklet<nfib> tasklet(n – 2) 
      tmp = nfib(n – 1) 
      tasklet.waitOrInline() 
      return tmp + tasklet.result() 
   else 
      return 1 

Code 3-15: The NIP lazy task creation version of nfib using 
simple tasklets 

The serial version of a recursive algorithm, the calculation of the fibonacci number, is 

presented in Code 3-14. A possible implementation of the same algorithm in NIP lazy 
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task creation using simple tasklets is illustrated in Code 3-15. An appropriate tasklet is 

designed and implemented whose instances expose a function as a potentially parallel call. 

Unlike the example of Section 3.6.4 (page 52) the functions exposed by the tasklets accept 

an argument, the fibonacci number to be calculated, and return a result. Therefore, the 

tasklet type must provide the appropriate functionality. The detailed description of such a 

tasklet is unnecessary for the purposes of this discussion, as it greatly resembles the one in 

Section 3.6.4 (page 52). 

The problem with using a tasklet type like ExposeFunctionTasklet is the 

one-to-one association that exists between tasklet instances and exposed potentially 

parallel calls. A new tasklet has to be created for every recursive call to nfib. If the 

computation at each recursive node is fine-grained, as it is in this example, there might be 

cases where a tasklet instance is added to the tasklet availability queue and almost 

immediately removed from it. The processing activity on the tasklet availability queue may 

become very high. Since there is a lock that must be acquired before any operation on the 

queue, a congestion point may arise. Other tasks that are trying to add new tasklets to the 

tasklet availability queue or remove old ones from it will be delayed. Stealing operations 

issued by idle processors may also be affected. Previous approaches of lazy task creation 

also suffer from the same problem but do not attempt to provide a solution. 

Having identified the problem as the frequent addition and removal operations on the 

tasklet availability queue, a similar solution to iterative computations was designed. NIP 

lazy task creation provides tasklets that are able to expose the parallelism in whole 

recursive computations. Like their iterative counterparts, the recursive tasklets are nothing 

more than specialised implementations of the basic Tasklet type. Therefore, they also 

adhere to the same interface. 

int nfib(RecursiveTasklet& tasklet, int n) 
   if n > 1 
      NfibNode node(tasklet, n – 2) 
      tmp = nfib(n – 1) 
      tasklet.waitOrInline() 
      return tmp + node.result() 
   else 
      return 1 
 
main 
   RecursiveTasklet<NfibNode> nfibTasklet(N) 
   ... 
   nfibTasklet.waitOrInline() 

Code 3-16: The NIP lazy task creation version of nfib using 
a recursive tasklet  
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Code 3-16 shows how the recursive tasklet is used to implement the nfib algorithm. 

Only one instance of the RecursiveTasklet type is constructed. Accordingly, only 

one addition operation is required on the tasklet availability queue. At every recursive call, 

a small object, an instance of the NfibNode type, is allocated on the stack of the running 

task. The object stores the fibonacci number that may be evaluated in parallel (n-2). The 

object also stores the result of the calculation, when that completes. Effectively, an 

NfibNode instance represents a branch of the computational tree. 

The NfibNode instance is automatically added in a queue, which is privately held by 

the recursive tasklet. No additional memory space is allocated as the required pointers for 

the construction of the queue are allocated on the stack of the running task as part of each 

NfibNode instance. The recursive tasklet makes use of its private lock (Section 3.6.2, 

page 50) to maintain the integrity of the queue. 

In the example of Code 3-16, when the createTask() method is called on the 

tasklet, the top of the queue of NfibNode instances is checked. If there are available 

instances, one is stolen and is sent to the idle processor to be evaluated as a parallel task. 

No logical parallelism is lost because the processor receiving the new task will create a 

recursive tasklet. The new tasklet instance is used to expose any potential parallelism that 

may result from the execution of the stolen computational branch. 

When the waitOrInline() method is called on the tasklet, the bottom of the 

queue is examined. If the last NfibNode in the queue was stolen and the result returned, 

then the execution may proceed. If, however, the result has not been returned yet, the 

execution of the running task will have to suspend. Finally, if the last entry in the queue 

was not stolen, it is inlined. 

task

tasklet tasklet tasklet

new
computational
node

tasklet
availability
queue

task

stealinginlining

task  
Figure 3-4: Operations on the queue maintained by recursive tasklets 

Figure 3-4 summarises the discussion on recursive tasklets and the way they are used. 

It illustrates three running tasks, each one of which has added a recursive tasklet to the 

tasklet availability queue. When a new recursive call is made, a new object representing the 

new computational node in the tree-like computational flow is added at the end of the 
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queue. Inlining operations remove node representations from the bottom of the queue, 

while stealing operations use nodes from the top of the queue. 

Nodes that are encountered early in the computational flow occupy the top of the 

queue that is maintained by the recursive tasklets. If the recursive computation is 

balanced, the nodes at the top of the queue will represent branches of coarser granularity 

than the ones at the bottom of the queue. In such cases, recursive tasklets favour the 

creation of coarse-grained parallel tasks. 

3.6.7. Implementation 

The NIP lazy task creation technique and the tasklet representation for potentially parallel 

calls have been implemented in C++, as part of the NIP run-time library (Chapter 5). 

Several tasklet types are available as template C++ classes. Compilers or programmers 

may use the template classes to easily expose parallelism to the execution environment. In 

most cases, there will not be any need to design and implement new specialisations of the 

basic Tasklet type. Additionally, the available tasklet types incorporate optimisations 

that are transparently used on shared-memory multiprocessors. 

The NIP lazy task creation technique and the tasklet construct are compatible with 

conventional stack implementations. There is no need for specialised hardware or 

compiler support, and pre-emptive threads are supported. All the above contribute to the 

portability of NIP lazy task creation on any platform. Additionally, the technique was 

designed to support both shared-memory and distributed memory architectures. 

There is a tight integration with the load balancing service provided by the NIP 

run-time. The integration allows for communication between processors and computation 

to be overlapped, resulting in better performance (Chapter 5). Also, a task that is blocked 

on a waitOrInline() call will give up the processor for either another task that is 

ready to run or a new one that is lazily created so that computational resources are not 

wasted. The NIP run-time, the maintenance of the tasklet availability queue, and the load 

balancing service are described in detail in Chapter 5. 

3.7. Discussion 

Lazy task creation techniques attempt to efficiently manage at run-time the identified 

logical parallelism in applications. The main goal of the techniques is to reduce parallelism 

so that the execution costs due to the management of excessive parallelism are avoided. 
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The main concept is that parallel tasks are only created when computational resources 

become available. 

The NIP lazy task creation technique follows the same concept as the earlier 

approaches but it introduces a new construct for representing potential parallel calls, the 

tasklet. The key features of the NIP lazy task creation technique and the tasklet construct 

many of which cannot be found in earlier approaches are: 

• The ability to represent the parallelism in whole iterative and recursive 

computations using only one instance of the tasklet construct. 

• The allocation of the tasklet construct on the stack rather than the heap of the 

executing application. 

• A two-level locking scheme that allows concurrent inlining and manipulation of 

the tasklet availability queue. 

• The support for pre-emption and symmetric multiprocessing environments. 

• An object-oriented design that eases the process of introducing tasklets with new 

functionality. 

• The option of adjusting at execution time the grain size of the parallel tasks that 

were lazily created from tasklets representing parallel loops (i.e., grouping). 

• The availability of the technique through library support. There is no requirement 

for compiler support or special stack manipulation. 

• The support for distributed memory environments. 
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4CHAPTER 4 
4.  NIP SOFTWARE-BASED 

DISTRIBUTED SHARED MEMORY 

The NIPDSM system is the implementation of the memory system as 

that is defined by the NIP execution model semantics and according to 

the requirements of the NIP programming model. NIPDSM provides 

applications with an object view of the memory and strict consistency 

semantics. 

NIPDSM introduces, as part of its design and implementation, the 

relaxed NIP entry consistency model, which guarantees the required 

strict memory semantics. NIP entry consistency defines that objects are 

implicitly associated with locks and facilitates the coupling of 

synchronisation and cache management. 

Cache management techniques are incorporated in the NIPDSM 

system to reduce object access delays. Applications may benefit from 

spatial locality, temporal locality, recurring object access, and object 

associations. 

The rest of this chapter explores the issues related to the design and 

implementation of distributed shared memory systems and describes in 

details the all-in-software, object-based NIPDSM system. 
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4.1. The Shared Memory Abstraction 

Computer architectures based on multiple processors that physically share memory 

provided one approach to the demand for greater performance (Chapter 1). The 

architectures, which are mostly referred to as tightly coupled multiprocessors or just 

multiprocessors, favour the popular shared-memory programming and execution models 

(Chapter 2). Read and write memory operations provide a convenient way of accessing 

the physically shared memory. Synchronisation operations may be used to protect 

information stored in the memory from concurrency related issues. 

Another approach to building parallel computer systems is to have memory 

distributed amongst a number of processors. Every processor in a parallel system has a 

private memory and all the processors are interconnected together via one of the various 

interconnection topologies that are available. Processors can only access data held in 

remote memories by exchanging messages with each other. Thus, such parallel systems 

are known as message passing architectures or just multicomputers. The hardware 

architecture of multicomputers favours the message passing programming and execution 

models. The main advantage of multicomputer over multiprocessor designs is scalability. 

Additional processors with private memory can be introduced into a parallel system, 

contributing to its efficiency but not increasing the complexity of its design. 

Despite their scalability advantage, multicomputers and the message passing 

programming and execution models that they favour have a negative effect on the 

simplicity of the application development process (Lu et al. 1997). Unlike the shared 

memory programming model which is favoured by multiprocessors, the message passing 

programming model expects application developers to manage the movement of data 

across the distributed memories of a multicomputer system. The complexity of 

application development based on message passing has lead to the introduction of shared 

memory abstractions for multicomputer architectures. Applications and/or developers are 

presented with the illusion of an existing shared memory system, known as a distributed 

shared memory (DSM) system. The abstraction of shared memory is implemented in 

hardware, software, or in a combination of the two. 

The hardware approach to implementing shared memory abstractions on distributed 

memory architectures usually increases the cost and the complexity of a parallel system. 

The hardware implementations are efficient and are considered as extensions to the 
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techniques used in the design of cache coherent multiprocessors but they are not as 

flexible as the software approaches. 

Software-based DSM systems have been a convenient tool for researchers during the 

last decade in their endeavour to study ideas and techniques on hiding the hardware 

message-passing architectures and replacing them with the shared memory abstraction. 

Often, techniques that were originally developed and tested on software-based DSM 

platforms found their way on hardware implementations. The flexibility in the design and 

the low implementation costs of software-based DSM systems allowed researchers to 

better understand and extensively test all the issues of implementing shared memory 

abstractions on top of message passing hardware designs. 

This chapter does not attempt an in-depth comparison between software and 

hardware implementations of DSM systems. Instead, the reader is referred to the work by 

Cox et al. (Cox et al. 1994). Although most of the issues to be discussed are common to 

hardware and software implementations, this chapter mostly considers the software-based 

DSM systems. In the rest of the chapter, the DSM design issues and their effect on 

efficiency is discussed (Section 4.2), existing techniques used to maintain consistency of 

replicated information across a DSM system are described (Section 4.3), and a 

representative group of existing systems is considered (Section 4.4). Finally, the design of 

a new, all-in-software, object-based DSM system and the caching techniques it 

incorporates are thoroughly examined in Sections 4.5 to 4.8. 

4.2. The Design Considerations for DSM Systems 

The decisions that are made during the design process of a DSM system may have a 

significant impact on the performance of parallel applications. Apart from the obvious 

decision on whether the DSM will be implemented in hardware or software, numerous 

other issues need be considered. This section explores those issues and examines the ways 

in which they may influence the implementation of a DSM system. 

4.2.1. Structure, Sharing Unit, and Granularity 

Perhaps, the most divisive design aspect of DSM systems is the layout of the shared 

memory that is presented to parallel applications. There exist two main design 

approaches: applications may perceive memory (a) as a continuous, unstructured shared 

space, or (b) as a collection of data structures or objects. 
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Associated with the decision about the layout of the shared memory is the unit of 

sharing or transfer unit, which can be a byte, a word, a page, a data structure, or object. 

The size of the sharing unit is also known as the granularity of the shared memory. The 

layout and the granularity of the shared memory play a key role in the rest of the design 

considerations for a DSM system and ultimately they greatly affect its performance. 

Two design approaches have emerged as dominant in the design of DSM systems: 

page-based and object-based, where the sharing units are the page and the object 

respectively. Examples of page-based systems include TreadMarks (Keleher et al. 1994) 

and IVY (Li 1986), while cases of object-based systems are Linda (Ahuja et al. 1986), Orca 

(Bal et al. 1992), and Emerald (Jul et al. 1988). Tanenbaum in (Tanenbaum 1995) correctly 

identifies DSM systems that belong to neither the page-based nor the object-based 

approaches. Examples of such DSM systems are Munin (Carter et al. 1991) and Midway 

(Bershad and Zekauskas 1991), which although provide an unstructured, linear memory 

space, they exploit information made available by applications about the shared variables 

in the synchronisation operations. 

Research efforts in the field of DSM system have yet to produce an irrefutable 

conclusion on the superiority of one approach over the other in terms of their efficiency 

and suitability for parallel programming (Buck and Keleher 1998; Levelt et al. 1992). 

Nevertheless, there is a good understanding of the differences between the approaches 

and the issues involved. It is clear that the memory access patterns of a particular parallel 

application in combination with the characteristics of the hardware platform may favour 

one approach over the other (Buck and Keleher 1998; Levelt et al. 1992). 

Page-based 

The most common way of perceiving memory is that of a continuous, unstructured linear 

space of addressable locations. For management purposes, the memory space is often 

partitioned into pages. Early research efforts resulted in the design and implementation of 

hardware and software DSM systems that replicated the semantics of page-based memory 

management. In fact, page-based DSM systems provide parallel applications with a view 

of the distributed memory that cannot be distinguished from the physically shared 

memory found on multiprocessor architectures with a conventional operating system (e.g., 

Linux, Windows 2000, SunOS, etc.). 

The sizes of the pages, the consistency semantics (to be discussed shortly), and the 

caching techniques, if any, may differ between implementations of page-based DSM 

systems but the main principles are the same. Applications access memory locations via 
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read and write operations. When a memory location that is not available locally is 

addressed, the page containing the requested location is fetched from the remote memory 

transparently to the parallel application. Once the page has arrived, the application can 

access it as if it was a local page. 

Unlike hardware DSM systems, which use specially designed and constructed 

hardware components to trap the read and write operations on remote memories, 

software page-based systems usually utilise the virtual paging mechanism of the 

underlying operating system. Li and Hudak were the first to investigate the virtual paging 

mechanism of an operating system as the means to implementing a shared virtual memory 

on a multicomputer (a collection of Apollo workstations) (Li 1986; Li and Hudak 1989). 

As with virtual paging techniques, page-based DSM systems favour applications that 

exhibit spatial locality in memory access. With DSM systems that cache fetched pages, an 

application is able to access memory locations without always having to pay the penalty of 

a remote fetch operation. Actually, it is unlikely that an efficient all-in-software DSM 

system without support for caching could be implemented. With caching, larger page sizes 

increase the probability for spatially adjacent memory locations to be available when 

required by an application. However, the chances of false sharing also increase as more 

than one parallel process may require access to different memory locations on the same 

page. Different consistency models (Sections 4.2.2 and 4.3) attempt to provide a solution 

to this problem but not without sacrificing efficiency. 

Object-based 

A different approach to perceiving memory is that of a shared, structured space. The 

memory is arranged as a collection of data structures or objects rather than as an 

unstructured linear space of addressable locations, as it is the case with page-based DSM 

systems. Both data structures and objects are means of representing state. However, 

objects encapsulate the state and provide methods as the only way of accessing it. For the 

purposes of the discussion in this chapter, the terms ‘data structure’ and ‘object’ are used 

interchangeably while referring to the memory layout of a DSM system, unless it is stated 

otherwise. 

There is no fixed granularity for the sharing unit because the size of the objects may 

vary. As a result, object-based DSM systems do not suffer from the problem of false 

sharing to the same extent as page-based DSM systems. However, unless special caching 

techniques are used, the benefit of spatial locality in memory access that page-based DSM 
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systems feature is lost because only the requested objects are transferred during a memory 

operation. 

4.2.2. Memory Consistency 

During the design of a DSM system, a decision has to be made about the memory 

consistency protocol(s), or memory consistency model(s), that are going to be supported. 

Although the terms ‘memory consistency’ and ‘cache coherence’ are usually used 

interchangeably in the DSM-related literature, this thesis agrees with the argument 

presented in (Adve and Gharachorloo 1996) and considers cache coherence to be a subset 

of memory consistency. A memory consistency protocol is the behavioural specification 

of the memory system as seen by applications and programmers and not just the approach 

taken into preserving the coherence of replicated data stored in caches. A memory 

consistency protocol consists of a set of rules about the way memory should be accessed 

by applications and a comprehensive description of the guarantees provided if those rules 

are met. In essence, a consistency model is a contract between the software and the 

memory (Adve and Hill 1990).  

Perhaps, strict consistency is the most comprehensible model, as it resembles the 

memory model of the von Neumann computer architecture: “Any read to a memory location 

x returns the value stored by the most recent write operation to x” (Tanenbaum 1995). However, the 

model is extremely difficult and inefficient to implement on distributed memory 

architectures due to the explicit use of time. Sequential consistency is a model with strict 

semantics but without the notion of time in its definition. The formal definition of the 

model, as given by Lamport, specifies that the memory is sequentially consistent when 

“the result of any execution is the same as if the operations of all the processors were executed in some 

sequential order, and the operations of each individual processor appear in this sequence in the order 

specified by its program” (Lamport 1979). Although the implementation of sequential 

consistency on a DSM system is feasible, it is still not an efficient approach due to the 

imposed sequentiality, or ordering rules, in memory access. 

In pursuing better performance, research efforts in the fields of cache design for 

multiprocessor architectures and that of DSM systems have resulted in alternative, more 

relaxed consistency models. The proposed models are considered relaxed when compared 

to the consistency models with strict semantics because they eliminate some of the 

ordering rules. The memory access operations are not strictly ordered and as a result, 

performance optimisations can be implemented. Provided applications follow certain 

rules in the way they access the memory, the semantics of sequential consistency seem to 
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be preserved. Relaxed consistency models may also support chaotic memory access as 

required by some type of applications (Protic et al. 1998). 

For a comprehensive discussion of issues related to memory consistency, the reader is 

referred to (Adve and Gharachorloo 1996; Mosberger 1993; Tanenbaum 1995; Zucker 

and Baer 1992). Additionally, Section 4.3 attempts an in-depth look in a small number of 

characteristic and widely used consistency models. 

4.2.3. Data Access 

Another decision that affects the design of a DSM system is the method of accessing the 

sharing unit (i.e., page or object). The sharing unit may be assigned to a specific 

processing node throughout its lifetime or it may migrate between the nodes requiring 

access to it. There may exist only one copy of the sharing unit across a parallel system 

(Single Reader/Single Writer approach) or replicated copies may be permitted in an 

attempt to facilitate more parallelism. In the latter case, only concurrent read memory 

operations may be allowed on the replicated copies (Multiple Reader/Single Writer 

approach) but there may also be cases where both read and write memory operations are 

permitted (Multiple Reader/Multiple Writer approach). The choice and the 

implementation of a memory consistency model greatly depend on the selection of the 

data access algorithm for the DSM system but the vice-versa is also true. 

Associated with the selection of the data access algorithm are other issues that may 

too have an impact on the implementation and the performance of a DSM system. For 

example, if access to a sharing unit is required, a method of locating the processing node 

that currently holds that unit is necessary. If the sharing unit is not allowed to migrate, the 

method of locating it is usually straightforward. Otherwise, a technique of monitoring the 

movement of the sharing unit must be devised (e.g., forwarding requests to the last known 

location, distributed directories, etc.). 

A survey of different algorithms for DSM systems may be found in (Stumm and Zhou 

1990) while (Protic et al. 1998) and (Tanenbaum 1995) provide a very good starting point 

for related issues. 

4.2.4. Implementation 

A software-based DSM system may be implemented by any of the layers in the layered 

approach to the parallel computing paradigm presented in Section 2.1.6 (page 17). It may 

be integrated into the operating system, it may be implemented as part of the run-time 

system, it may be provided by a software library, or it may be incorporated into a 



Chapter 4 

88 

programming language and its compiler. Combined approaches also exist, where the 

implementation of the DSM system is shared between different layers. 

4.2.5. Heterogeneity 

A requirement that may be imposed on the design of a DSM system is heterogeneity. 

There may be cases where a DSM system is going to be used on multicomputers that 

consist of a collection of heterogeneous hardware architectures. DSM systems with 

heterogeneous support are not common, as their efficiency has to be compromised to 

allow for the necessary translation between the different representations of data. 

4.2.6. Efficiency 

The Impact of the Hardware and the Memory Access Patterns 

The performance considerations have been an essential driving force in researching new 

techniques and design approaches for DSM systems. Undoubtedly, the communication 

between the processing nodes of distributed memory architectures has been the primary 

target for the introduced enhancements. In distributed memory architectures, no matter 

how fast the interconnection hardware may be, an access operation on a remote memory 

is always slower than an operation on the local memory. Most of the techniques (e.g., 

caching, memory consistency models, etc.) attempt to reduce the amount of data 

transferred between processing nodes in order to achieve better performance. 

The efficiency of a DSM system design greatly depends on the characteristics of the 

underlying hardware architecture. A DSM implementation that performs well on a 

multicomputer with slow processors but high-speed communications hardware may be 

inefficient when used with fast processors and slow interconnection networks. Of course, 

the opposite may also be true. The investigation by Buck and Keleher in (Buck and 

Keleher 1998) attempts to demonstrate the way the hardware architecture may influence 

the design choices of a DSM system. Their investigation also shows the effect that the 

memory access patterns of applications may have on the efficiency of a DSM system. 

Buck and Keleher simulated the execution of four applications using a page-based and an 

object-based DSM system. Part of their investigation concluded that on hardware 

architectures where the communication between processing nodes is expensive the 

page-based approach is more efficient (Buck and Keleher 1998). Their conclusion is in 

contrast to the general view that object-based DSM designs introduce less communication 

overhead because of the reduced number of messages they require. However, the result is 

attributed to the memory access patterns of the four applications used, which exhibit high 

locality in they way data is accessed. 
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In an attempt to support the different memory access patterns that parallel 

applications exhibit, adaptable memory consistency techniques have been devised. For 

example, Munin (Carter 1995; Carter et al. 1991) offers a variety of consistency models 

that can be used simultaneously for different part of the shared memory space. 

Computation and Communication 

An important feature that has recently found its way into DSM systems is the ability to 

overlap computation and communication. When a remote memory operation is to take 

place and while a fetch request is in progress, the DSM system may block the processing 

node until the data is available locally. Alternatively, the DSM system may free the 

processing node so that other computations can be executed. 

Clearly, the allocation of computation work to processing nodes is the duty of a job 

scheduler and, at first, it may appear unrelated to DSM systems. However, a DSM system 

may be designed and implemented to work together with the job scheduler in order to 

make the overlapping of communication and computation feasible. 

Scalability 

Finally, a concern for designers is the ability of the DSM system to scale to a great 

number of processing nodes. The main advantage of multicomputer over multiprocessor 

architectures is their scalability (Section 4.1). Consequently, the design of a DSM system 

should preserve that advantage and allow parallel applications to benefit from the addition 

of processing nodes. 

In designing a scalable DSM system, centralised points of accessing global 

information should be avoided as they may cause bottlenecks and result in reduced 

efficiency. For example, some DSM systems maintain a directory of the location of the 

migrating sharing units. If the directory is stored on only one processing node, that node 

may become a ‘hotspot’ and eventually it will be unable to efficiently serve all the requests 

that are sent to it. 

4.2.7. Discussion 

Undoubtedly, more research effort is required on exploring the diverse design approaches 

as seen above, especially if software DSM systems are to be used on large-scale 

multicomputer systems. Until now, there have not been any published results of software 

DSM systems utilising a large number of processing nodes (e.g., greater than one 

hundred). Possibly, as software DSM systems are tested on larger systems, some of the 
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proposed techniques and designs will emerge as more suitable for the majority of the 

parallel applications running on multicomputers. 

4.3. Existing Relaxed Memory Consistency Models 

As mentioned earlier, consistency models can be viewed as a contract between the 

memory system and the applications. Memory consistency models consist of a set of rules 

and requirements that define the functionality of a memory system. During the last 

decade, a significant number of consistency models have been proposed in the literature 

(Tanenbaum 1995): strict consistency, sequential consistency (Lamport 1979), pipelined 

RAM consistency, processor consistency (Ahamad et al. 1992), casual consistency, weak 

consistency, release consistency (Gharachorloo et al. 1990), lazy release consistency 

(Keleher 1995; Keleher et al. 1992), entry consistency (Bershad and Zekauskas 1991; 

Bershad et al. 1993), scope consistency (Iftode et al. 1998). 

It is not in the scope of this thesis to thoroughly examine and compare all the 

consistency models. Performance evaluation of consistency models can be found in (Adve 

et al. 1996; Keleher et al. 1995; Zhou et al. 1997). Instead, three of the basic models are 

now described in detail. Release consistency was amongst the first relaxed models to 

utilise information about synchronisation operations while lazy release consistency is a 

better implementation of the original model. Entry consistency was the first model 

designed specifically for a software-based DSM system and it utilised information about 

the data structures in an application. It is the basis for the consistency model used in 

NIPDSM (Section 4.5). 

4.3.1. Release and Lazy Release Consistency 

Release Consistency 

Release consistency is a relaxed model (Gharachorloo et al. 1993; Gharachorloo et al. 

1990) that was designed as an extension to the weak consistency model. It utilises 

synchronisation-specific information in order to reduce the amount of data exchanged 

between processing nodes. To work correctly, release consistency requires that 

applications adhere to a contract with the memory. Synchronisation constructs, such as 

locks or barriers, should be used to guard access to shared data. 

The operations that may be performed on a lock are acquire and release. An acquire 

operation informs the memory system that a critical section begins while a release 

operation indicates the end of that critical section. Access to shared data should only take 

place within a pair of acquire and release operations. A release operation signals the 
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memory system to identify the modified data and update all the processing nodes that 

hold a cached copy of that data. Only after all the cached copies have been updated, the 

lock can be released and allow another processing node to enter its critical section via an 

acquire operation. 

A barrier blocks the execution of a processing node until all other processing nodes 

reach the same point. With release consistency and when a barrier has been reached by all 

the processing nodes, all the shared data are synchronised before execution is allowed to 

proceed. 

The formal definition of the release consistency states that (Gharachorloo et al. 1990): 

• “Before an ordinary read or write access to a shared variable is performed with respect to any 

processor, all previous acquire accesses must be performed. 

• Before a release access is allowed to perform with respect to any other processor, all previous 

ordinary read and write accesses must be performed. 

• Special accesses (acquire and release) are processor consistent with respect to one another.” 3 

Provided the above rules are not broken by an application, the memory semantics of the 

sequential consistency model appear to be maintained. However, the strict ordering rules 

of sequential consistency are relaxed and a more efficient utilisation of the DSM system is 

possible. 

Lazy Release Consistency 

A drawback of the original release consistency model is the eager way in which updates to 

shared variables are propagated to processing nodes. When a release operation on a lock 

occurs, the updates to shared variables are eagerly transmitted to the processing nodes 

that already have a cached copy. It is assumed that the receiving processing nodes may 

need to access the shared variables, which very often may be an erroneous assumption. 

Keleher developed an enhancement to the original release consistency model, which 

he named lazy release consistency (Keleher 1995; Keleher et al. 1992). According to his 

approach, the updates to shared variables were not automatically propagated to processing 

nodes on a release operation. Instead, only when a processing node issued an acquire 

operation the shared variables would be updated. An acquire operation on a lock is seen 

as the signal that a processing node requires access to the shared variables. 

                                                 
3 For a description of processor consistency the reader is referred to (Ahamad et al. 1992). 
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Release consistency was originally developed for the hardware-based DSM system of 

the DASH multiprocessor. Lazy release consistency was first used in the software-based 

TreadMarks DSM system (Keleher et al. 1994). 

4.3.2. Entry Consistency 

Lazy release consistency uses synchronisation operations as signals to the memory system 

on whether the state of the shared data needs to be updated. When an acquire operation is 

performed on a synchronisation construct, the modified shared data in memory must be 

identified and their values synchronised. To that extent, entry consistency (Bershad and 

Zekauskas 1991; Bershad et al. 1993) is very similar to lazy release consistency. Their main 

difference is the additional requirement imposed to applications by entry consistency to 

associate every shared variable with either a lock or a barrier. By associating shared 

variables to locks, the overhead of identifying and synchronising all the modified data is 

not incurred, as it is in lazy release consistency, because only the associated variables are 

examined. 

Due to the required explicit association between shared variables and locks, the 

process of creating an application becomes more troublesome for the programming 

language compiler and/or the developer. All the shared variables must be identified and 

linked to a synchronisation construct. It is a difficult and error prone process but if 

applied correctly it results in the reduction of the communication traffic when compared 

to lazy release consistency. Additionally, multiple critical sections guarding unrelated 

shared data may be defined and executed in parallel. 

Like all the relaxed consistency models, if an application strictly adheres to the rules, it 

is given the illusion of a sequentially consistency memory. The formal definition of the 

entry consistency rules appears in (Bershad and Zekauskas 1991) but it is better expressed 

in (Tanenbaum 1995): 

• “An acquire access of a synchronisation variable is not allowed to perform with respect to a 

process until all updates to the guarded shared data have been performed with respect to that 

process. 

• Before an exclusive mode access to a synchronisation variable by a process is allowed to perform 

with respect to that process, no other process may hold the synchronisation variable, not even in 

nonexclusive mode. 

• After an exclusive mode access to a synchronisation variable has been performed, any other 

process’ next nonexclusive mode access to that synchronisation variable may not be performed 

until it has performed with respect to that variable’s owner.” 
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Entry consistency was designed for the Midway DSM system (Bershad and Zekauskas 

1991; Bershad et al. 1993), which was implemented as an extension to the C programming 

language/compiler and it is further described in Section 4.4.2. This thesis considers entry 

consistency as the most suitable memory model for object-based DSM systems because of 

the association between shared data and synchronisation constructs. The memory 

consistency semantics of the object-based DSM system described in Section 4.5 are based 

on entry consistency. 

4.4. Existing DSM Systems 

There has been a plethora of hardware, software, and hybrid DSM systems proposed in 

the literature. A comprehensive presentation of existing systems and their characteristics 

serves no purpose to the discussion in this thesis. However, the main characteristics of the 

most influential software-based DSM systems, according to this thesis, are presented. The 

reader is referred to the books by Protić, Tomašević, and Milutinović (Protic et al. 1998) 

and Tanenbaum (Tanenbaum 1995) as good starting points for DSM-related concepts and 

systems. 

Midway is the DSM system that utilises the entry consistency model and as such, its 

design and implementation are of particular interest to the discussion presented in this 

chapter. Since the proposed all-in-software, object-based NIPDSM system (Section 4.5) 

uses a variation of the entry consistency model, a comparison between the two 

implementations is within the scope of this thesis. To that extent, a detailed description of 

the design and implementation of Midway is considered necessary. 

4.4.1. Influential Systems 

The following table lists only a representative subset of existing DSM systems and their 

important characteristics. The presented systems are considered by this thesis to have 

contributed to the main concepts in the area of software-based distributed shared 

memory. 

DSM System Notes 

Emerald 
(Jul et al. 1988) 

Amongst the first approaches to object-based DSM systems. 

IVY 
(Li 1986; Li and Hudak 1989) 

The first approach to implementing an all-in-software distributed 
shared memory system on commodity hardware workstations. The 
virtual paging mechanism of the operating system was used to 
capture memory operations on remote pages. 

Linda 
(Ahuja et al. 1986) 

Linda provides a shared tuple space abstraction on distributed 
memory machines. 
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DSM System Notes 

Midway 
(Bershad and Zekauskas 
1991; Bershad et al. 1993) 

Refer to Section 4.4.2 

Munin 
(Bennett et al. 1990b; Carter 
1995; Carter et al. 1991) 

One of the first systems to support multiple consistency protocols. 
The appropriate protocol to be used for a shared variable was 
indicated by the programmer. 

Orca 
(Bal et al. 1992) 

An example of a programming language incorporating the shared 
memory abstraction. The compiler of the language produced code 
that could run on distributed memory architectures. 

Shasta 
(Scales et al. 1996) 

A system that does not require changes to parallel applications to run 
on distributed memory architectures. It also features fine granularity 
of data sharing. 

Treadmarks 
(Keleher et al. 1994) 

Perhaps the most influential of the DSM systems. Release and lazy 
release consistency were designed and implemented for Treadmarks. 
It was used in the research of various DSM related issues. Currently, 
it is the only commercially successful DSM system. 

Table 4-1: A synopsis of the most influential all-in-software DSM systems  

4.4.2. Midway 

Midway is a distributed shared memory system that uses data structures of variable length 

as its sharing units (Bershad and Zekauskas 1991; Bershad et al. 1993). One of the main 

objectives of Midway is to allow existing and new parallel applications for multiprocessors 

to run efficiently on multicomputer architectures. Midway requires that existing 

applications be slightly modified in order for the memory system to work correctly. It is 

implemented as a run-time library and it requires compiler and programming language 

support. To that extent, a number of additional keywords are introduced to the C 

programming language and a modified C compiler is made available. 

Parallel applications perceive the shared memory as an unstructured linear space, as it 

is the case with page-based systems. However, Midway is not considered a page-based 

DSM system because the sharing unit is the data structure and not the page (see also 

Section 4.2.1, page 65). 

An important characteristic of the Midway DSM system is its primary memory 

consistency model, entry consistency. Modifications to the C programming language and 

compiler were introduced to accommodate the requirements imposed to applications by 

the entry consistency model, as discussed in Section 4.3.2 (page 71). However, Midway 

also offers applications the option of using processor or release consistency. 

An exhaustive investigation of the Midway implementation details is beyond the scope 

of this thesis. Nevertheless, the designers of Midway have made some interesting choices 

that are worth noting and contrasted to the design decisions for the NIP object-based 

DSM system (Section 4.5). 
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The Implication of Grouping the Shared Variables 

In the Midway implementation of entry consistency, programmers are responsible for the 

identification of the shared variables in an application and the association of those 

variables with synchronisation constructs. There is a one-to-many relationship between 

the synchronisation constructs and the shared variables. If a shared variable were 

associated with more than one synchronisation construct, the correct execution of parallel 

applications would have been negatively affected. This is true for all concurrent 

environments with shared resources. 

Nevertheless, parallelism may be restricted due to the grouping of variables around a 

synchronisation construct. For example, concurrent access to the elements of a vector 

would not be possible if all the elements were associated with the same lock. The solution 

would be to associate each element with a different lock. However, in Midway there is a 

run-time overhead with the process of associating a variable with a synchronisation 

construct. Moreover, if access to the whole vector was required, a great number of acquire 

and release operations would have been required, resulting in higher run-time costs. 

The advantage of having a number of variables associated with one lock is the 

minimum time a processing node is required to spend in a critical section. Unlike lazy 

release consistency, before a critical section is entered (i.e., an acquire operation on a lock 

has taken place) all the required protected variables are updated because they are 

associated with the lock that guards that section. As a result, no other synchronisation 

operations are required to take place until the end of that critical section (i.e., a release 

operation on the lock). 

Programmers are further burdened with the task of finding the correct balance 

between the degree of parallelism that can be exploited in their application and the 

run-time costs incurred (i.e., association of shared variables to synchronisation constructs 

and communication between processing nodes during an acquire operation). 

Programmers have to decide how large the groups of shared variables should be in order 

to minimise the synchronisation operations between processing nodes while maintaining 

the high degree of parallelism in their application. Of course, it is a complicated, 

troublesome, and error-prone task. 

Distributed Synchronisation Management 

Midway manages the synchronisation constructs (i.e., lock and barriers) separately from 

the memory caches where replicated copies of the data are maintained. A distributed 
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queuing algorithm is used to manage the lock operations while a centralised algorithm is 

used for the management of barriers. 

As entry consistency defines, there are two modes of lock access: exclusive and 

non-exclusive. Every lock in Midway is considered to have a processing node acting as its 

owner. The ownership of a lock moves from one processing node to another. The last 

processing node that successfully acquired the lock in exclusive mode is considered its 

owner. There may be many processing nodes simultaneously holding a lock in 

non-exclusive mode but only one exclusive mode access is allowed at any time. A lock 

cannot be accessed in exclusive and non-exclusive mode by different processing nodes at 

the same time. 

The distributed queuing algorithm implemented in Midway for the management of 

locks is similar to those described in (Forin et al. 1988) and (Lee and Ramachandran 

1990). The detailed description of the algorithm is beyond the scope of this thesis. The 

Midway implementation of the algorithm is comprehensively explored in (Bershad and 

Zekauskas 1991). 

Every processing node is required to maintain information about all the locks defined 

in an application. Amongst that information, there is a ‘best guess’ entry about the owner 

of a lock. When an acquire operation on a lock takes place and if the processing node is 

not its current owner, a request is sent to the ‘best guess.’ If the request is for a 

non-exclusive mode access and a processing node that has already been granted that kind 

of access for that particular lock is found, the request is granted. Otherwise, the request is 

forwarded to another ‘best guess.’ Every processing node maintains an invalidation set 

with the nodes to which it has granted non-exclusive access. If a request for exclusive 

access is submitted and after the owner of the lock has been located, all the current 

non-exclusive access holders must be invalidated first. The current holders are located 

through the invalidation sets. 

The algorithm may produce unnecessary communication traffic, especially during the 

invalidation process. Moreover, in a large-scale system, a great number of messages may 

be required until the owner of a lock is located through the ‘best guess’ entries. 

Distributed Cache Management 

Midway does not update the state of all the shared variables when a critical section is 

entered. Instead, only those cached variables whose state has been modified since the last 

time the critical section was entered are synchronised. In this fashion, unnecessary 

communication costs are avoided. Midway employs a timestamp-based protocol in order 
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to identify the inconsistent shared variables since the last synchronisation operation. The 

protocol is based on the ‘happens-before’ relationship defined by Lamport in (Lamport 

1978). 

A timestamp is associated to every shared variable. When an acquire request for a lock 

is sent from a processing node, the timestamps of the associated variables are piggybacked 

on the message. The timestamps are compared with those at the node that is granting the 

lock and the states of the modified variables are sent with the reply. 

For the cache management algorithm to function, compiler assistance is necessary. 

Indeed, the Midway modified C compiler generates code that updates the timestamp of 

shared variables every time their state is altered by a write memory operation. Evidently, it 

is a significant run-time cost. 

Overlapping of Communication and Computation 

A characteristic of entry consistency that is exploited in the Midway DSM is to treat 

operations on synchronisation constructs separately from each other. A comparison 

between the definitions of release consistency (Section 4.3.1, page 70) and entry 

consistency (Section 4.3.2, page 71) reveals that in the former ordering is imposed with 

respect to processing nodes, while with the latter the ordering is observed with respect to 

processes (or, threads). The significance of this dissimilarity is the ability of entry 

consistency implementations to overlap communication and computation. 

In release consistency, a processor must be blocked until the state of all the shared 

variables in the DSM are synchronised because no concurrency is allowed between critical 

sections guarded by different locks. In Midway, the job scheduler may allow a different 

critical section to execute in a separate process (or, thread) while another one is waiting 

for its shared variables to be updated. 

4.5. NIPDSM Design Considerations 

This section introduces the all-in-software, object-based NIP Distributed Shared Memory 

system, or NIPDSM (Parastatidis and Watson 1999a; Parastatidis and Watson 1999b). 

The design choices for NIPDSM are considered and contrasted against the alternatives 

that were discussed in the previous sections. 

4.5.1. Design Requirements 

In Section 2.8, the NIP programming model was introduced as a new methodology of 

parallel application development. The NIP programming model assumes that the memory 
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of the targeted abstract architecture is organised as a collection of objects whose state is 

only accessible through their methods. The NIP execution model (Section 2.9) is the 

targeted abstract architecture for the NIP programming model and as such, it must 

incorporate a memory system with the required support for objects. Additionally, given 

that the NIP execution model presents a shared memory abstraction on distributed 

memory, shared memory, or hybrid hardware parallel system architectures, its memory 

system should be implemented accordingly. 

The NIP distributed shared memory system (NIPDSM) was designed and 

implemented to provide a memory abstraction that satisfied the above requirements. As a 

result, NIPDSM offers an object view of the memory that is shared amongst the tasks in a 

parallel system. Parallel tasks may call methods on objects as if those objects were stored 

locally. NIPDSM manages the movement and replication of objects around a parallel 

system and guarantees the consistency of their state. The alternative of moving parallel 

tasks to the location of an object was ruled out as it reduces the degree of parallelism that 

can be exploited. Replication improves the performance of parallel applications by 

allowing multiple tasks to access the state of an object concurrently. This would have not 

been possible if tasks were moved to the location of the object, where they would 

probably had to be executed in a sequential manner, depending on the availability of 

computational resources. 

4.5.2. Design Choices 

Structure and Sharing Unit 

As already mentioned, NIPDSM structures the memory as a collection of objects. Unlike 

other object-based DSM systems, NIPDSM may have two types of sharing units 

depending on whether the caching techniques, which will be discussed shortly (Sections 

4.7 and 4.8), are enabled. The sharing unit may be an object or a cache block. A cache 

block contains a group of objects that are transferred together in order to reduce memory 

access delays. 

The object-based memory layout was preferred over the page-based approach. The 

decision was not only influenced by the requirement of the NIP programming model for 

an object memory. This thesis regards object-based DSM systems as more suitable for the 

emerging field of object-oriented, parallel computing, a view that is also supported by 

Hyde and Fleisch (Hyde and Fleisch 1998). 

Object-based systems do not suffer from false sharing and they have the potential to 

better utilise the communications resources because only the necessary data is transferred 
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between processing nodes. In page-based systems, whole pages are transmitted that 

include potentially unnecessary data. However, for many applications that exhibit locality 

in memory access, the extra data found in pages proves to be advantageous. 

Unfortunately, there has not been an object-based DSM system to date that has managed 

to benefit from the same memory access behaviour of parallel applications. This thesis 

uses NIPDSM as a vehicle in the study of issues related with bringing spatial locality to 

object-based DSM systems together with other new caching techniques (Sections 4.7 and 

4.8). 

Consistency Model 

Amongst the proposed memory consistency models, a variant of entry consistency was 

chosen as the most suitable for NIPDSM. The reasons for choosing entry consistency and 

the changes to the original definition are explored in a separate section (Section 4.5.3). 

Data Access 

Some page-based DSM systems allow concurrent writers to access a single page in an 

effort to deal with the problem of false sharing. However, extra overhead is added due to 

the amount of additional computational work that is required at every synchronisation 

point. The differences between copies of the same page must by calculated and integrated 

into one. 

NIPDSM, as an object-based system, does not suffer from false sharing and, 

therefore, does not require multiple writers. There may be cases, though, where 

concurrent write access to different parts of the same object may be advantageous. More 

investigation is required to evaluate any possible performance benefits from providing 

such functionality to an object-based DSM system. A suggestion on how this could be 

achieved is presented in Section 7.3. For the purposes of this thesis, the data access model 

in NIPDSM uses the multiple readers/single writer approach. 

Implementation 

The NIP execution model is implemented as a run-time library, the NIP run-time 

(Chapter 5). No compiler or operating system modification is required. NIPDSM is a 

component of the NIP run-time and as such, it is fully implemented at user level. It does 

not use the operating system or special compiler support to trap access to objects or to 

manage the consistency of their state. The implementation details of NIPDSM will be 

discussed in Section 4.6. 
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4.5.3. NIP Entry Consistency 

In order to allow more parallelism to be exploited, NIPDSM supports the replication of 

objects throughout the processing nodes of a parallel system. Due to the requirements of 

the NIP programming model, the correct execution of a parallel application can only be 

guaranteed if strict memory semantics are observed when managing the state of the 

replicated objects. The choice of the strict or sequential consistency memory models for 

NIPDSM was rejected due to the difficulties associated with their implementation. 

Nevertheless, even if the difficulties were overcome, the inefficiency of the models due to 

the associated communication overheads would have made NIPDSM unusable. Instead, a 

relaxed consistency model that offers strict semantics was deemed necessary. 

From the available relaxed consistency models (Section 4.3), entry consistency 

(Section 4.3.2) appeared to be the best match for the requirements of the object-based 

NIPDSM. Entry consistency was designed to utilise information about the 

synchronisation operations (i.e., critical sections and barriers) and their association to 

shared variables. The difficult and error prone tasks of identifying and defining the 

synchronisation operations and the process of associating the shared variables with the 

synchronisation constructs is left to the programmer or the programming language 

compiler. Furthermore, as it was discussed in Section 4.4.2, the available exploitable 

degree of parallelism in an application may be reduced depending on the number of 

shared variables associated with a synchronisation construct. The implementation of entry 

consistency in NIPDSM does not suffer from the same problems. 

Modifications to the Original Model and Advantages 

The NIP programming and execution models do not provide the means for application 

developers to use synchronisation constructs. There is no provision for locks or barriers 

in the memory system and no means to define critical sections. In the NIP programming 

model, there exist only functions, objects, and method calls. In the NIP execution model, 

there exist tasklets and parallel tasks that may call methods on objects. The 

waitOrInline() method of tasklets may be seen as an implicit barrier for all the 

potentially parallel tasks represented by one tasklet. 

The lack of programmer-accessible synchronisation constructs does not necessarily 

mean that the entry consistency model cannot be used in NIPDSM. However, some 

changes are required to the original model, which is further relaxed and adapted to the 

characteristics of the NIP programming model. The NIP entry consistency is the resulting 

memory consistency model. 
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NIP entry consistency defines that every object is implicitly associated with a lock. 

The lock remains private to the object. Explicit acquire and release operations on the lock 

are made possible through the interface of the object. The method calls on objects 

defined at the NIP programming model level are implicitly enclosed within lock 

operations at the NIP execution model level (Code 4-1). 

NIP programming model level 
(programming language) 

NIP execution model level 
(run-time system) 

 
object.method() 
 

object.lockRead() 
object.method() 
object.unlock() 

Code 4-1: The implicit enclosure of a method call with lock operations 

Unlike the original model that was described in Section 4.3.2, in NIP entry 

consistency there is an one-to-one association between an object and a lock. Before a 

method is called on an object, the object’s private lock is automatically acquired. The 

execution of the method cannot proceed until the acquire operation is successful. When 

the method completes, the lock is automatically released. 

As in entry consistency, there are two modes of access to an object: read and write. 

The methods that do not alter the state of an object are called read methods while those 

that modify the state are known as write methods. Evidently, read and write methods 

implicitly acquire the object lock in read or write access mode respectively. The implicit 

acquire and release operations that surround method calls define the critical sections in 

parallel applications. The degree of available parallelism in an application is not 

compromised due to objects being locked even though they are not accessed within a 

critical section, as it may be the case with Midway, where a group of objects can be 

associated with just one lock. 

Finally, there is no run-time cost in associating an object with a lock as there is with 

the implementation of entry consistency in Midway. In NIPDSM, the lock is part of the 

object state. An overhead may be incurred, however, when objects are constructed. 

Definition 

The changes in the original entry consistency as discussed above require that the rules of 

Section 4.3.2 (page 71) be slightly modified. The NIP entry consistency model requires 

that implementations of the memory system should always conform to the following: 

• A method cannot be called on an object with respect to a task until all updates to 

that object have been performed with respect to that task. 

• The execution of a write method on an object precludes the concurrent execution 

of any other write or read method on the same object. 
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• After a write method has been called on an object, any other method may not be 

called on the same object until the ‘owner’ node of the object has been notified. 

The first rule says that before a method may be called on an object, the state of that 

object must be brought up-to-date first. The second rule prevents the concurrent 

execution of any method on an object while a write method on the same object is in 

progress. Finally, the last rule defines the invalidation process that has to take place before 

a write method is called on an object. Subsequent method calls will have to contact the 

‘owner’ of the object before their execution may proceed. 

Potential Drawbacks 

The NIP entry consistency adapts the original model to the requirements of the NIP 

execution model. Although the changes that are introduced improve upon the original 

approach, there may exist some negative effects as well. 

A disadvantage of the one-to-one implicit association between objects and locks is the 

extra communication overhead that may be introduced. With the original entry 

consistency model, the shared variables associated with a lock were all brought up-to-date 

at the start of a critical section and no additional communication had to take place 

between processing nodes until the lock was released. With NIP entry consistency, a 

series of method calls on different objects may result in several state updates taking place. 

The additional communication overhead could be significant. 

NIP programming model 
(programming language) 

NIP execution model 
(run-time system) 

 
object1.method() 
 
... 
 
objectN.method() 
 

object1.lockRead() 
object1.method() 
object1.unlock() 
... 
objectN.lockRead() 
objectN.method() 
objectN.unlock() 

Code 4-2: Consecutive method calls may result in several state updates

The problem is related to the memory access patterns of an application. Code 4-2 

illustrates the problem by showing the resulting code according to the NIP execution 

model semantics for consecutive method calls on N different objects. As shown, every 

method call is enclosed within lock and unlock operations. Clearly, the task shown in 

Code 4-2 requires access to all the objects. However, the object fetching behaviour, as 

defined by the NIP entry consistency semantics, causes every object to be transferred 

independently. In systems like Midway, the programmer can provide a solution to the 

above potential problem by associating objects with one lock. According to the semantics 

of the NIP execution model, it is left to the run-time system to address the issue. The 
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caching techniques introduced in NIPDSM succeed in solving the problem without 

sacrificing any of the benefits that NIP entry consistency introduces (Sections 4.7 and 

4.8). 

NIP programming model 
(programming language) 

NIP execution model 
(run-time system) 

 
object.method1() 
object.method2() 
object.method3() 
 

object.lockWrite() 
object.method1() 
object.method2() 
object.method3() 
object.unlock() 

Code 4-3: Consecutive method calls of the same access mode 
and on the same object can be grouped together 

Another problem with NIP entry consistency may be the added overhead due to 

repeated lock operations. If a task calls consecutive methods with the same access mode 

(i.e., read or write) on one object, then unnecessary run-time cost is incurred. However, all 

the methods could be enclosed around just one pair of acquire and release lock operations 

at the NIP execution model level (Code 4-3). This optimisation should be an easy task for 

a programming language compiler when converting the code from the NIP programming 

model to the NIP execution model. 

4.5.4. Coupling the Synchronisation and Cache Management 

Unlike page-based DSM systems, the implementation of the NIPDSM system is not 

dependent on memory page-fault handling mechanisms. Page-based systems often utilise 

the memory page-fault handling facilities of the underlying operating system and hardware 

in order to deal with cache management. When access to a memory location in a 

non-cached page is detected, the page-fault handler arranges for the page to be retrieved 

from a remote processing node. However, if the page-fault takes place within the 

boundaries of a critical section, parallelism is reduced because the task executing that 

critical section will have to suspend until the page is made available. The granularity of the 

critical section will increase, therefore, blocking other parallel tasks waiting to enter their 

critical section from proceeding. 

As studies have shown, it is computationally expensive to invoke memory page-fault 

handlers (Anderson et al. 1991; Appel and Li 1991). The hardware is responsible for 

trapping a page-fault and then the operating system is informed. The currently active task 

must be context switched so the page-fault handler can be executed. These operations 

introduce additional run-time costs. 

In addition to the performance issues associated with the page-fault mechanism, most 

DSM systems have to deal with the cost of lock management. Separate locks have to be 
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used for the management of the shared data and for the internal implementation of the 

consistency model and the caching techniques. 

This thesis considers the approach to identifying memory access operations that was 

adopted by Midway as a correct step to reducing the run-time costs associated with 

trapping memory access operations. In Midway, a lock operation on a synchronisation 

construct is an indication to the memory system that access to shared data is required. As 

a result, the underlying page-fault handling mechanism is not necessary. All the shared 

variables are fetched before access to them is requested. Of course, the implementation of 

such an enhancement is made possible because of the entry consistency memory model, 

which requires shared variables to be guarded by a synchronisation construct. 

NIPDSM follows a similar approach to Midway in detecting memory operations on 

objects. A method call on an object is the indication to the memory system that access to 

the state of that object is required. Unlike Midway, though, NIPDSM has finer control 

over the choice of which objects need to be cached, as explained in Section 4.7. 

Midway is forced to deal separately with the management of the synchronisation 

constructs and caching. Although the entry consistency semantics are sufficient for the 

detection of access to shared variables via the operations on synchronisation constructs, 

extra information is required for the identification of the modified data since the last 

exclusive mode access. A distributed queuing algorithm is implemented to deal with the 

synchronisation operations (i.e., lock and barriers) while a timestamp protocol, based on 

Lamport clocks (Lamport 1978), is employed for the cache management. When a lock is 

acquired, the timestamp protocol is used to determine the shared variables that have been 

modified since the last exclusive mode access. For the timestamp protocol to function 

correctly, Midway requires compiler modifications. For every update to a shared variable, 

the compiler inserts code that alters the timestamp associated to that variable. A similar 

approach is taken in page-based schemes where pages that contain modified data are 

marked as ‘dirty’ for caching purposes. Obviously, managing the cache in the described 

way introduces run-time overheads. 

Owing to the NIP entry consistency semantics, NIPDSM combines the cache and 

synchronisation management in an attempt to avoid the additional run-time overheads. In 

NIPDSM, a method call does not only indicate to the memory system that access is 

required to an object but also it supplies the essential information on whether the state of 

that object is going to be modified. Consequently, there is no need for timestamp-based 

protocols. The object is marked as modified at the time its private lock is acquired in write 
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access mode. The information on whether the state of an object is altered may be supplied 

by a programming language compiler based on class information or code analysis, or by 

the application developer. 

The coupling of cache and synchronisation management in NIPDSM results in a 

simpler design and a less demanding and, perhaps, more efficient implementation.  

4.6. NIPDSM Implementation 

Having explored the design of the NIPDSM system, this section moves to the description 

of its implementation. The approach taken in implementing the semantics of NIP entry 

consistency is first considered. Then, the layout and the constructs of NIPDSM are 

examined. 

4.6.1. Node Managers, Read and Write Proxies 

The NIP entry consistency semantics do not specify whether the original copy of an 

object should have a fixed processing node location or whether it may migrate. In systems 

like Midway and NIPDSM, where the consistency semantics favour extensive replication 

of data, the choice between a home-based and a migratory model is more ambiguous than 

it may be on other DSM systems. 

A migratory model like the one implemented in Midway, may introduce great 

communication costs when the owner of a synchronisation construct must be located or 

when replicas need to be invalidated (Section 4.4.2). As the Midway designers admit, their 

approach cannot scale to large systems (Bershad and Zekauskas 1991). 

Alternatively, a home-based approach does not suffer from the extra communication 

overhead but it may convert a particular node to a ‘hotspot.’ Under the home-based 

model, a processing node may become overloaded when two or more nodes are 

repeatedly attempting to gain write access to a number of its objects. All the requests will 

have to be routed via the owner of the objects. However, the home-based model offers 

faster resolution of object owners and more efficient invalidation process. A more 

detailed comparison study of the home-based and migratory models under entry 

consistency semantics is beyond the scope of this thesis. Instead, the reader is referred to 

(Protic et al. 1998). 

NIP Entry Consistency Implementation 

For the implementation of NIPDSM, the home-based model was chosen. The node 

where an object is created is designated as the manager node (or, just manager) for that 
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particular object. Every object has its own, unique manager but, naturally, a node may be 

the manager for more than one object. A processing node that stores a replica of an 

object in its cache becomes a proxy node (or, just proxy) for that object. There may be 

two types of proxies: read proxies and write proxies. 

In order to implement the NIP entry consistency semantics, the following rules have 

been defined (it must be mentioned that a processing node may include more than one 

processor and so it may be able to accommodate the simultaneous execution of multiple 

tasks): 

• The manager node of an object allows local tasks to execute read or write 

methods on the object, provided no proxies exist for that object. 

• The manager node of an object allows local tasks to execute read methods on the 

object, provided no write proxies exist for that object. 

• A write proxy of an object allows local tasks to execute read or write methods on 

that object. 

• A read proxy of an object allows local tasks to execute read methods on that 

object. 

• A processing node can be a manager node, a read proxy, or a write proxy for any 

number of objects but it can never be more than one of them at the same time for 

a particular object. 

• An object has always a manager node, which remains the same throughout the 

lifetime of that object. At any one time, an object may have none or one write 

proxy, or alternatively, none or any number of read proxies. 

• More than one task on a processing node may execute read methods on the same 

object at a particular time. At any one time, there can only be one task throughout 

the parallel system executing a write method on an object. 

Mutable and Immutable Objects 

Often, applications create objects whose state, once initialised, remains constant until they 

are destroyed. NIPDSM makes a distinction between mutable and immutable objects. 

Mutable objects are those whose state may be altered during their lifetime. The objects 

whose state is not altered after their initialisation are considered as immutable. Knowledge 

of immutable objects can be exploited by the memory system to provide a more efficient 

way of dealing with them. Given that a write method is never called on these objects, the 
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implementation can avoid the extra overhead of dealing with concurrency related 

safeguards. 

4.6.2. Object Representation and NIPDSM Reference 

When an object is created in NIPDSM, it is uniquely identified in the memory system by 

its NIPDSM reference. The NIPDSM reference acts like a virtual memory pointer in 

traditional memory systems and provides access to the methods of objects. In the current 

implementation, the NIPDSM reference consists of (a) the unique identifier of the 

manager node, (b) a page number, (c) an offset.4 The three fields comprise a unique path 

to locating the object representation of an object (the NIPDSM memory structure is 

described in Section 4.6.3). 

The object representation is a data structure that maintains vital run-time information 

about every object in NIPDSM. There is an one-to-one association between objects and 

their representations at every node. Cached copies of an object have their own 

representation. The fields comprising the data structure are summarised in Table 4-2. 

Virtual memory pointer The virtual memory pointer to the local copy of the object in the 
physical memory 

Node type The type of the node for the object: manager node, read proxy, or 
write proxy 

Lock The current lock on the object: read, write, or free 

Number of local read locks The number of local tasks that have a read lock on the object 

List of proxies The identification numbers of the processing nodes that are proxies for 
the object 

Queue of requests The lock requests for the object that could not be satisfied 
immediately 

List of associations The NIPDSM references of the objects with which this object is 
associated (further explained in Section 4.8.3) 

Access history VM pointers The pointers required for the participation of the object in the locking 
history at the node (further explained in Section 4.8.4) 

Table 4-2: The fields of the object representation data structure 

The virtual memory pointer specifies the location of the object state in the physical 

memory. The value of the pointer remains fixed throughout the lifetime of the object only 

at the manager node. On a proxy node, the value of the virtual memory pointer is 

guaranteed to remain the same only while the object is locked. The last two observations 

may be used to optimise the performance of the memory system and avoid unnecessary 

NIPDSM reference to virtual memory pointer resolutions. A lock operation on the object 

                                                 
4 The current implementation uses 32bit NIPDSM references: 1bit indicating whether the referenced object 
is mutable, 9bits for the manager node id, 14bits for the page number, and 8bits for the offset. As a result, 
the current implementation of NIPDSM can support up to 222 objects of any size per node and a maximum 
of 512 nodes. 
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returns the virtual memory pointer to the application. The virtual memory pointer can be 

safely used to access the methods of that object until the unlock operation takes place. 

The next five fields are used for the implementation of NIP entry consistency 

according to the rules presented in the previous section. The last two fields in the data 

structure facilitate the implementation of two of the NIP caching techniques, as described 

in Sections 4.8.3 and 4.8.4. 

4.6.3. NIPDSM Virtual Object Table 

The Midway DSM system was required to support legacy applications with minimum 

modifications. Thus, the memory in Midway is an unstructured, linear space resulting in a 

less scalable implementation with complicated cache management. The NIP programming 

and execution models require parallel applications to be developed in a new way without 

being concerned about legacy code. The memory system can be implemented to be 

flexible and scalable while providing an object view of the shared memory. 

The memory structure in NIPDSM is based on the Virtual Object Table (VOT) 

(Figure 4-1). The approach taken in the implementation of VOT is analogous to the 

common practices followed in traditional virtual page memory managers. A series of 

tables is used to organise the object representations. A NIPDSM reference defines the 

unique path in the VOT that leads to the representation of an object. Once the 

representation of an object is located, its state may be accessed via the virtual memory 

pointer field. 

Every processing node in the parallel system maintains its own virtual object table. 

The NIPDSM VOT is used in the dereference process of the NIPDSM reference. Each 

of the three NIPDSM reference fields acts as an index to one of the tables maintained by 

the VOT. The first table contains an entry for every processing node in the parallel 

system. The contents of the table are virtual memory pointers, which lead to a second 

table. Likewise, the second table leads via a pointer to a third table, which contains object 

representations. Following the series of tables, the desired object representation may be 

reached and the memory system information about that object as well as its state may be 

accessed. 

The VOT is not fully constructed when the NIPDSM starts. The left most table of 

Figure 4-1 is always present on all the nodes. The second table is also initialised but only 

for the entries in the first table that represent existing processing nodes. With the 

intention of conserving the physical memory, the tables of the third column are 

constructed lazily as new objects are created or existing ones are cached. When a new 
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object is created on a processing node it is associated with the next available object 

representation. If no more are available in the existing tables, a new table of object 

representations will be created (third column in Figure 4-1). In a similar way, when an 

object is cached on a processing node and the required table is missing, it is created and it 

is only removed when all of its object representations are no longer needed. 

processing node ID NIPDSM referencepage offset

cached object
state

non-cached
objects

object
representation

virtual memory
pointer

cached
objects

 object state

 object state

…

…

…

 
Figure 4-1: The NIPDSM VOT table 

The NIPDSM VOT can scale to a great number of processing nodes and objects 

while making good use of the physical memory on every node. To improve the efficiency 

in memory access, the different parts of the VOT may be accessed concurrently by more 

than one task. 

4.7. Introducing Caching Techniques in NIPDSM 

NIPDSM relieves parallel applications from the burden of defining critical sections and 

managing memory synchronisation because every method call on an object is implicitly 

considered as a small critical region. It was implied earlier in the discussion (Section 4.5.3) 
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that the fine granularity of the critical sections could compromise the efficiency of all the 

remote object access operations. It was also suggested that NIPDSM incorporates caching 

techniques that attempt to reduce the associated costs. Indeed, the NIPDSM system has 

been used as a vehicle for exploring the suitability of new caching techniques for 

object-based DSM systems. The NIPDSM caching mechanism seeks to introduce new 

performance benefits for object-based systems. Memory access patterns that depend on 

locality (e.g., spatial locality and temporal locality) and on dynamic data structures (e.g., tree 

traversal) have been explored in NIPDSM. 

In earlier DSM systems like Midway, it was the developer and/or the programming 

language compiler that was responsible for dealing with performance issues related to 

caching by having to explicitly associate objects to synchronisation constructs and 

carefully define critical sections. In NIPDSM, there is no need for an application to be 

concerned about the performance costs due to method calls on remote objects or the 

potential benefits due to memory access patterns. 

The NIPDSM caching mechanism is based around the notion of a cache block. A 

cache block is a group of objects that are transferred together from one processing node 

to another in order to minimise the number of transfer operations and reduce the 

negative effects of cache misses. A cache miss occurs when a processing node attempts to 

call a method on an object that is not stored locally. NIPDSM is responsible for selecting 

the objects that are included in a cache block. The selection process takes place at 

run-time and it requires no or minimal assistance from the applications. 

Different object selection policies are currently used in NIPDSM, each one targeting a 

distinct memory access pattern. The methods may be used separately or in combination 

with each other to fill a cache block. The design concepts behind the new techniques are 

discussed next but their implementation details are presented later, in Section 4.8. 

4.7.1. Temporal Locality 

NIP entry consistency is responsible for maintaining the consistency of the replicated 

objects around a parallel system. The model defines that it is only necessary to invalidate 

the replicas of an object when a write method is called on that object. The 

implementation of the NIPDSM system takes advantage of the consistency semantics and 

maintains a cached copy of an object until it is invalidated. As a result, the memory 

consistency semantics allow applications to benefit from exhibiting temporal locality in 

the way they access the objects in the memory. 
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4.7.2. Spatial Locality 

The main disadvantage of object-based over page-based DSM systems has to be the 

inability to leverage the locality in memory access that many applications exhibit. A study 

of lazy release consistency and entry consistency concluded that DSM systems based on 

the latter model also suffers from the lack of support for spatial locality (Adve et al. 1996). 

In contrast, despite its object-based nature and the use of an entry consistency variant, the 

caching mechanism in NIPDSM has been designed to benefit applications that exhibit 

locality in the way they access objects. 

Usually, when variables are allocated on an unstructured, linear space, they are placed 

spatially next to each other. A memory page is likely to contain a number of distinct 

variables that a task may access. In page-based DSM systems, a page transfer results in 

many variables being moved together and, thus, if spatial locality in memory access is 

observed, the number of cache misses is reduced. Of course, the actual number of 

variables being transferred is determined by the size of the page. A similar approach is 

implemented in NIPDSM. 

Equivalently to the variables in page-based systems, objects in NIPDSM are spatially 

related. Objects in data structures, like vectors, are allocated spatially adjacent to each 

other. As it will be shortly described (Section 4.8), in the current implementation of the 

NIPDSM, two objects are considered adjacent to each other when their objects 

representations are adjacent in the NIPDSM VOT (Section 4.6.3).  Of course, the 

information about the spatial relationship between objects is kept internally to the 

NIPDSM system and is not visible to applications. An object that was requested by a 

processing node is transferred inside a cache block. NIPDSM selects the objects that are 

spatially related to the requested one and places them inside the same cache block. As a 

result, the spatially related objects are cached at the remote processing node and they can 

be accessed immediately. 

One may have expected that in order to support spatial locality, NIPDSM would be 

required to face the problem of false sharing. However, NIPDSM manages to offer the 

benefits of spatial locality while avoiding the run-time costs of false sharing and without 

having to use a multiple writers solution. NIPDSM does not include a spatially related 

object in the cache block unless the same lock access (i.e., read or write) with the 

requested object is possible. Therefore, if another parallel task has exclusive access to an 

object, NIPDSM will not try to take that access away until it is necessary to do so. 
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4.7.3. Dynamic Data Structures and Access Patterns 

In a parallel environment, there may be cases where a dynamic data structure is created by 

a number of parallel tasks. The objects comprising the dynamic data structure may be not 

spatially related (e.g., the data structure was created at different points in time). In 

traditional page-based schemes, information about the arrangement of a data structure is 

not taken into consideration in improving cache performance. 

In an object-based DSM system like NIPDSM, the knowledge of the relationship 

between the objects comprising the data structure can prove beneficial. Indeed, NIPDSM 

utilises information about the data structures to reduce the number of cache misses. In 

applications, for example, where a data structure is traversed, it is advantageous to have as 

many elements of the structure stored in the cache as possible. 

For this caching technique to work, NIPDSM requires additional information to be 

provided about the associations between objects. The tool that is used for the transition 

from the NIP programming model to the NIP execution model (e.g., an implicitly parallel 

programming language compiler) may be able to deduce the association between the 

objects. For example, a node in a double linked list can be associated with its previous and 

next objects. NIPDSM uses the supplied information when an object, part of the data 

structure, is accessed. The object is included in the cache block together with other 

neighbouring—in terms of their location in the data structure—objects. Only if the 

associated objects can be locked with the same access mode (i.e., read or write) are they 

also included in the group, in order to avoid false sharing. The cache block is filled with 

objects through a breath-first traversal of the graph that the object associations create 

(discussed in Section 4.8.3). 

NIPDSM requires applications to provide information about the associations between 

objects. Help from the compiler or the application programmer is required for the 

technique to be applied. For example, a compiler could deduce the associations between 

objects using class related information (Code 4-4). 

The correlation between objects need not only be in relation to dynamic data 

structures. Objects that are logically associated with each other because they are accessed 

by the same task may form a group, like the objects of the example in Code 4-2 (page 79). 

Each object is explicitly associated (e.g., by the compiler) with every other object in the 

group. When one of the objects in the group is requested by a remote processing node, 

the others are also placed in the cache block and transferred. 
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NIP programming model level 
(programming language) 

NIP execution model level 
(run-time system) 

class Node 
private: 
   Node child 
public: 
   void add(Node&) 
 
treeAddChildren(Node parent) 
   ... 
   child1 = new Node 
   child2 = new Node 
   parent.add(child1) 
   parent.add(child2) 
   ... 
 

treeAddChildren(Node parent) 
   ... 
   child1 = new Node 
   child2 = new Node 
   parent.add(child1) 
   parent.associate(child1) 
   parent.add(child2) 
   parent.associate(child2) 
   ... 

Code 4-4: Type information can be used by a compiler to deduce associations between objects 

Objects may also be associated together depending on the memory access pattern of 

an algorithm. For example, there are various ways of accessing the elements of a matrix: 

row first, column first, diagonally, etc. The objects stored in the matrix could be 

associated to each other depending on the chosen access pattern. 

The caching technique based on associations between objects described above 

achieves the same outcome as the association of shared variables with a synchronisation 

construct in the Midway implementation of entry consistency. Unlike Midway, though, 

the objects are associated with each other rather than to a synchronisation construct. The 

association of objects with each other allows for more flexibility. In Midway, the whole 

group needs to be locked before access to one shared variable in a logical group can be 

granted. Furthermore, a shared variable may participate in only one group while in 

NIPDSM an object may be part of several logical groups. Finally, Midway cannot support 

the creation of logical groups based on the access patterns of algorithms.  

4.7.4. Recurring Access to Objects 

Many applications access the objects in memory in a specific recurring pattern. The 

objects that are accessed need not be related in any way (i.e., spatially adjacent or part of 

the same dynamic data structure). When there is no association between the objects, it is 

difficult to predict which objects should be included in the cache block in an effort to 

improve performance. If there was a way, though, to observe and record the access 

behaviour of an application, caching could be improved. 

NIPDSM records the object locking operations at every processing node. When an 

object is requested by a remote processing node, the objects in the access history list 

following the requested one are also placed in the cache block. Objects that cannot be 

locked with the same access mode are not included. This caching method benefits 
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applications that access unrelated objects in a recurring pattern. For example, a task 

serving a web request may need to access a number of remote objects in order to 

construct a web page. The objects were associated with each other in a previous request 

for the same page and, therefore, they can be placed in the same cache block. 

4.8. Implementation of the NIPDSM Caching Optimisations 

In the final section dedicated to the NIPDSM system, the implementation of the caching 

techniques is described. The role of the NIPDSM object virtual table and the object 

representations are explained. 

4.8.1. Cache Block 

As already mentioned in the previous section describing the caching mechanisms of the 

NIPDSM system, a cache block acts as the transfer medium of groups of objects between 

processing nodes. The caching algorithms select the number of objects that are to be 

transferred together and they place them inside a cache block. Since the objects in the 

memory may be of arbitrary size, the size of the cache block is used by the caching 

algorithms as one of the criteria to end the object selection process. If the size of one 

object happens to exceed the limit imposed by the cache block, then NIPDSM sends the 

object as is. The object is not split across multiple cache blocks but no additional objects 

accompany it. 

A cache block may not be fully loaded with objects when it is sent from one 

processing node to another. To avoid groups with a high number of small-sized objects, 

NIPDSM imposes a limit on how many may be transferred at a time. There is an 

associated run-time cost with adding an object to a group. If the cache block size is large 

then the process of adding many small objects may impose a significant run-time 

overhead. If the maximum number of objects in a group is reached, the caching 

algorithms stop and the cache block is sent even if it is not full. 

The size of the cache block and the maximum number of objects in a group may have 

a significant impact on the performance of NIPDSM in combination with the memory 

access patterns of a parallel application. The investigation of the effect that the cache 

block size in a group may have on efficiency is part of the performance study presented in 

Chapter 6. 
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4.8.2. Object Grouping Based on Location 

The NIPDSM virtual object table contains the information required to extract locality 

related relationships between objects. As in page-based schemes consecutive data 

structures are allocated on neighbouring memory locations, the object representations of 

successive created objects reside in adjacent locations in the VOT. The location of the 

representations is used by NIPDSM to minimise object access times for parallel 

applications that exhibit spatial locality in the way they use the memory. 

Figure 4-2 illustrates the formation of a group when an object is requested by another 

processing node. First, the location of the object representation is located and the locking 

operation on the object takes place. If the object is successfully locked, NIPDSM iterates 

through the adjacent representations and attempts to repeat the same locking operation 

for each one of them. The objects that are successfully locked are included in the cache 

block and those for which the locking operation was unsuccessful are ignored. NIPDSM 

continues to add objects in the cache block until one of the following conditions is 

satisfied: 

• The size of the cache block is exceeded. 

• The maximum number of objects that may participate in a group is reached. 

• There are no more object representations available to be locked. 

The technique is more flexible than caching in traditional page-based schemes because it 

avoids including objects in the cache block that cannot be locked immediately. In this 

way, NIPDSM avoids the problem of false sharing and the associated inefficiencies. 

object
requested

object
group

object already
locked

object
representation

 
Figure 4-2: Caching based on spatial locality information 
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4.8.3. Object Grouping Based on Associations 

In traditional DSM systems, caching may be ineffective if dynamic data structures are 

used by applications (e.g., lists, trees, etc.). Usually the elements of such data structures are 

spread throughout the memory, rendering the caching techniques inefficient. Even in an 

object-based DSM system like the NIPDSM, access to dynamic data structures may 

introduce significant delays due to the lack of an efficient caching mechanism. However, 

the relationship between the elements of a data structure can be valuable if exploited 

correctly, resulting in the reduction of memory access times. 

list of NIPDSM references

list of NIPDSM references

object
representation  

Figure 4-3: Object representations and their list of NIPDSM 
references of the associated objects 

Each object representation in the VOT maintains a list of the NIPDSM references of 

its associated objects (Figure 4-4). The NIPDSM reference of an object may appear in 

many association lists. The list of NIPDSM references is maintained on per object basis 

and can be altered at run-time as dynamic data structures are modified. 

If a locking request is submitted for an object, the list of its associated NIPDSM 

references is traversed and an attempt is made to apply the same locking operation on the 

corresponding objects. As with the previous caching scheme, the objects that are 

successfully locked are added to the cache block while those that cannot be locked 

immediately are ignored. 

NIPDSM is not confined in attempting to include into the cache block only the 

objects that are directly associated with the requested one. Instead, a graph of associations 

can be visualised with the requested object as the root. NIPDSM iterates through the 

graph of object associations in a breath-first manner. In some cases, problems may arise 

from the manner in which the graph is traversed. If a graph-like data structure is traversed 

depth-first, then the selection of objects included in the cache block may not be optimal. 

An illustration of the problem and its impact on performance is presented in Section 

6.5.2. The problem is not observed when graph-like data structures are traversed 

breath-first or when list-like data structures are accessed in an iterative manner. 
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Objects are added into the cache block until one of the following conditions is 

satisfied: 

• The size of the cache block is exceeded. 

• The maximum number of objects that may participate in a group is reached. 

• There are no more object references in the list to be traversed. 

4.8.4. Object Grouping Based on Access History 

Applications have to continually incur the same memory access delays when they, 

repeatedly and in the same order, access a number of objects that are otherwise unrelated 

(i.e., spatially, temporally, or based on associations). This thesis investigates if the caching 

mechanism of a DSM system could be improved if the recurring memory access pattern 

was observed and recorded. 

object
representation

locking
history
pointer

 
Figure 4-4: Caching based on locking history information 

In NIPDSM, when an object is locked, its object representation is automatically added 

to a locking history list, as in the example of Figure 4-4. Two lists are maintained by the 

NIPDSM system: one for read and another for write lock operations. If an object is 

locked by a remote processing node, the locking history list is traversed, starting from the 

object representation of the requested object, and all of the objects that can be locked 

with the same access mode are included in the cache block. 

There are no additional memory requirements for the two locking history lists to be 

maintained. The representation of an object includes two virtual memory pointers (Table 

4-2, page 83) that point to the representation of the next object in the locking history list. 
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The caching algorithm avoids the inclusion of more than one copy of the same object in 

the cache block when a cycle in the locking history list exists. Objects are added to the 

cache block until one of the following is satisfied: 

• The size of the cache block is exceeded. 

• The maximum number of objects that may participate in a group is reached. 

• The end of the access history list is reached. 

• The representation of an object that has already been included in the cache block 

is reached, in the case of a cyclic access history list. 

The locking access history may not capture well all types of recurring patterns. In some 

cases, for example, if a pattern involves a locking operation on the same object more than 

once, locking history information is lost. Figure 4-5 presents three different recurring 

locking patterns that illustrate the behaviour of the caching technique. The object 

representations of four objects are involved. A number indicates a locking operation on 

the corresponding object. 

(a) 
1 2 3 4

 

(b) 1 2 3 4

 

(c) 1 2 3 4

 
Figure 4-5: Examples of the locking history list 

A recurring pattern of the form 1234 results in the locking history list of Figure 4-5a. 

A locking operation on object 1 will then cause objects 2, 3, and 4 to be included in the 

cache block (if the same locking operation can be applied on them and the conditions for 

the inclusion of objects in the cache block are satisfied). An access pattern of the form 

1234234 also results in all the objects being included in the cache block, even though a 

cycle exists in the list (Figure 4-5b). However, an access pattern of the form 123424 will 

only result in three out of four objects to be cached together when a request for the first 
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object is made because the history list is altered and information is lost after the second 

time object 2 is locked (Figure 4-5c). 

4.9. Discussion 

In this chapter, the issues related to the design and the implementation of distributed 

shared memory systems were studied. The unique characteristics of the NIPDSM were 

thoroughly explored. In this section, a final discussion and a synopsis of the major claims 

are presented. 

4.9.1. Why Objects 

A DSM system provides a convenient and natural way to perceiving the memory of a 

multicomputer and eases the task of parallel programming. Data movement and 

communication between processing nodes are no longer a burden to application 

developers. When compared to the use of message-passing interfaces in programming 

multicomputers, DSM is more flexible and less error-prone (Lu et al. 1997). 

Chapter 2 presented the NIP programming and execution models for the 

development and execution of parallel applications. Since the NIPDSM implements the 

memory semantics of the NIP execution model, it is object-based. The NIP programming 

and execution models aside, this thesis still considers object-based DSM systems more 

suitable for the future, large-scale multicomputer architectures. 

Object-based DSM systems can make better use of the communication resources 

when compared to page-based approaches and they do not suffer from the problem of 

false-sharing. Additionally, object-based DSM systems, like the NIPDSM system, may 

utilise run-time information about the structure of the memory in order to improve 

performance. 

4.9.2. Consistency Semantics 

Previous works on DSM systems have proved that in order to achieve efficient execution 

of parallel applications on multicomputers the memory consistency semantics need to be 

relaxed. Amongst the several consistency models proposed in the literature, entry 

consistency (Bershad and Zekauskas 1991; Bershad et al. 1993) was deemed as the most 

appropriate for NIPDSM. A variant of the original model was designed and implemented 

according to the memory semantics of the NIP execution model. 

NIP entry consistency (Section 4.5.3, page 77) is based on the observation that parallel 

applications use synchronisation constructs to impose ordering in memory access. Given 
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that there is no provision for synchronisation constructs in the NIP programming and 

execution models, NIP entry consistency defines that objects are implicitly associated with 

one lock. The one-to-one association between objects and locks allows the NIPDSM 

implementation to have finer control over memory operations. 

The simple design of NIP entry consistency and the wealth of implicit information 

about the way objects are accessed have lead to the unique coupling of synchronisation 

and cache management. The result is a more efficient utilisation of the computational and 

communication resources, as explained in Section 4.5.4 (page 79). 

4.9.3. Caching 

Even in the early stages in DSM research, it was clear that the information about the 

memory behaviour of applications could be utilised to enhance the caching mechanisms 

and ultimately improve the performance. Bennett et al. studied the influence in efficiency 

of the memory access patterns in parallel applications (Bennett et al. 1990a) and 

concluded that performance could be improved by better cache management. The 

NIPDSM system was designed and implemented to provide good cache performance for 

general memory access patterns. 

One of the main problems of object-based DSM systems is their inability to support 

caching for different memory access patterns. Perhaps one the most popular memory 

access pattern is spatial locality. However, only applications using a page-based approach 

benefit from exhibiting locality in the way memory is accessed. NIPDSM brings spatial 

locality to object-based systems in a manner that manages to avoid the problem of false 

sharing. Additionally, NIPDSM supports temporal locality via the NIP entry consistency 

semantics. It also collects run-time information about the implicit locking on objects in an 

effort to benefit from recurring memory accesses. Finally, associations may be defined 

amongst objects in order to improve the performance of applications that access dynamic 

data structures. 

4.9.4. Midway and NIPDSM 

Many of the design ideas of the NIPDSM system were influenced by Midway. However, 

NIPDSM differs from Midway in a number of significant ways that were mentioned in 

the discussion to this point. The following table summarises the differences and, at the 

same time, lists the unique features of the NIPDSM. 

NIPDSM Midway 

NIP entry consistency: Object-centric, implicit 
association of objects and locks 

Entry consistency: Based on shared variables that 
programmers need to explicitly associate to a 
lock 
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NIPDSM Midway 

Coupling of cache and lock management Separate cache and lock management 

Cache support for spatial locality object access 
pattern 

 

Cache support for temporal locality memory 
object pattern through the use of proxies 

Cache support for temporal locality memory 
access pattern through the use of ‘owners’ and 
non-exclusive locks 

Cache support for dynamic data structures and 
general object access patterns 

 

Cache support for recurring object locking  

Does not suffer from false-sharing Suffers from false-sharing 

Object-based view of the memory Page-based view of the memory 

It can be used by programmers as part of a 
run-time library 

It requires changes to the programming language 
compiler 

It does not require a timestamp protocol to 
identify changes in the state of objects 

It requires a timestamp protocol to identify 
changes in shared variables 

Table 4-3: A synopsis of the unique features of the NIPDSM and the way it compares to Midway 
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5CHAPTER 5 
5.  THE NIP RUN-TIME SYSTEM 

The NIP run-time library is a user-level implementation of the NIP 

execution model semantics. The library features four distinct services: 

the communications, the load balancing, the lazy task creation, and the 

distributed shared memory. 

Two of the services incorporated in the library, namely 

communications and load balancing, have not been examined in this 

thesis so far. Up to this point, the emphasis of the discussion has been 

on the novel features of the NIP lazy task creation and the NIP 

distributed shared memory system. It is not in the scope of this work to 

thoroughly investigate issues related to communications and load 

balancing. However, it has been necessary to provide simple 

implementations for these two services. A fully functional NIP 

run-time library is required for the evaluation of the NIP lazy task 

creation and NIP distributed shared memory techniques.  

Issues related to the implementation of the library as a whole and 

the distinct services are explored in this chapter. The aim of the 

discussion in the following sections is to give an overview of the design 

and functionality of the NIP run-time library.  
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5.1. The NIP Execution Model as a Run-time System 

In the previous chapters, the NIP programming and execution models for parallel 

computing were discussed, the NIP lazy task creation (NIPLTC) was presented, and the 

object-based NIP distributed shared memory (NIPDSM) system thoroughly examined. 

NIPLTC and NIPDSM were designed to support the task creation requirements and the 

memory system needs respectively of an implementation of the NIP execution model. 

Referring back to Chapter 2, the parallel computing paradigm was illustrated as a set 

of three layers (Figure 5-1): the design methodology, programming model, and execution 

model. It was suggested that the last of the layers, the execution model, embodies the 

abstraction of a parallel architecture. The semantics of the model may be provided by a 

run-time library, the operating system, the hardware, or any combination of the three. The 

computational model is the mathematical approach to describing the behavioural aspects 

and to analysing the performance characteristics of an application that was created 

according to a certain programming model and it is running on a specific execution model 

(the reader is referred back to Chapter 2 for the detailed discussion on the layers of the 

parallel computing paradigm). 

computational model

design model

programming model

execution model

 
Figure 5-1: The parallel computing paradigm as introduced in Chapter 2 

This chapter focuses on the NIP run-time library, whose design and implementation 

were part of the research work for this thesis. The library was used as a test bed in the 

evaluation of NIPLTC and NIPDSM and it forms the realisation of the NIP execution 

model semantics via a set of user-level primitives. The NIP run-time library provides a 

view of an abstract parallel machine architecture by hiding from the parallel applications 

and/or implicitly parallel programming language compilers the underlying operating 

system, any other run-time libraries, and the hardware platform (Figure 5-2). The 

implementation of NIP does not make any assumptions about the characteristics of the 

underlying hardware platform. The run-time library can exploit a collection of 

single-processor and/or multi-processor workstations. 
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programming language

application design tool

NIP execution model

NIP run-time library

hardware platform

operating system

runtime libraries

 
Figure 5-2: The different layers that are hidden by the NIP run-time library, which is an implementation of 

the NIP execution model semantics 

As an implementation of the NIP execution model semantics, the NIP run-time 

library provides the ‘illusion’ that there exist an infinitive number of processors and 

infinite amount of memory structured as a collection of shared objects. The supporting 

tools for the programming model semantics are responsible for identifying the highest 

degree of parallelism that may be exploited by the execution environment. That does not 

suggest that a compiler could not automatically increase the granularity of the some of the 

identified potentially parallel tasks, which may be too small to ever be executed efficiently 

in parallel. The NIP run-time library attempts to exploit the identified parallelism in the 

most efficient manner while considering the availability of the underlying computational 

resources. 

The rest of this chapter focuses on the design of the NIP run-time library (Section 

5.2), it provides an overall view of the implementation (Section 5.3), and it describes the 

four distinct services that are available (Sections 5.4 to 5.7). 

5.2. Design 

5.2.1. Intended Use 

The NIP run-time library is intended to provide the required application execution 

support for a functional plus objects implicitly parallel programming language (Figure 

5-3), like UFO (Sargeant 1993; Sargeant and Kirkham 1994). However, the UFO compiler 

was not designed and built to utilise the NIP run-time library. At the time this thesis was 

composed, there did not exist a compiler that could produce code according to the 

semantics of the NIP execution model. Hence, it was deemed necessary that a C++ 

interface to the NIP run-time library be made available to developers. The interface is 

intended to allow developers to explicitly identify the potentially parallel tasks in their 

parallel applications and to indicate the access operations on objects. The management of 
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parallelism (i.e., task creation, task execution, task destruction, concurrency control, 

node-to-node communication, etc.) is left to the NIP run-time library. 

NIP runtime library

C++ interface

functional plus objects
implicitly parallel programming language

 
Figure 5-3: Intended use of the NIP run-time library 

In the future, a functional plus objects implicitly parallel programming language 

compiler could be created that utilised the C++ interface (Parastatidis 2000) of the NIP 

run-time library as the target of a source-to-source translation process. Alternatively, the 

functionality of the NIP library could be incorporated into the compiler and its code 

generation routine. Of course, the NIP run-time library could also become the target of a 

non-functional programming language compiler as long as the requirements imposed by 

the semantics of the NIP execution model are met. 

5.2.2. Overall Structure and the NIP Node 

Essential to the design of the NIP run-time library is the notion of a NIP node. During 

the execution of a parallel application that is built to utilise the NIP run-time library, the 

underlying parallel system is logically divided into a number of NIP nodes. Each 

combination of processor(s) and its (their) private, directly accessible memory is 

considered as a separate NIP node. For example, on a multicomputer that consists of a 

group of single- and/or multi-processor workstations, each of the workstations is 

regarded as a NIP node. 

The collection of NIP nodes constitutes the execution environment in which parallel 

applications are hosted. All the NIP nodes cooperate to present parallel applications with 

the illusion of a single underlying hardware platform featuring physically shared memory 

and infinite number of processors. There are two types of NIP nodes, the primary and the 

secondary. There is always one primary NIP node and it is the one used to launch the 

parallel application. There could be zero to many secondary NIP nodes, which are 

automatically spawned by the primary NIP node. 

In reality, a NIP node is the running executable image of the application. A copy of 

that image is automatically spawned wherever it is necessary in the parallel platform, as 

part of the initialisation process of the execution environment. 
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5.2.3. NIP Node Service 

A NIP node is divided into four logical components (Watson 1996) each one of which 

comprises the implementation of a particular NIP run-time service (Figure 5-4). As their 

name suggests, the NIP lazy task creation and NIP distributed shared memory services 

implement the techniques introduced in Chapters 3 and 4 respectively. The design and 

implementation of these two services are discussed in Sections 5.6 and 5.7. The NIP load 

balancing service provides two simple algorithms for distributing the available work on a 

parallel system. The NIP communications service provides a message-passing interface 

for the exchange of information between multicomputer nodes. Although the research 

work for this thesis did not involve in-depth investigation of issues related to load 

balancing and communications, it was necessary that simple implementations of the two 

services were provided if the NIP run-time library was to be functional. Sections 5.4 and 

5.5, introduce the load balancing and communications services and their role in the NIP 

run-time execution system. 

NIP node services

NIP lazy
task creation

NIP communicationsNIP load balancing

NIP distributed
shared memory

 
Figure 5-4: NIP run-time library components 

5.3. Implementation Overview 

5.3.1. Service Task and Workers 

As mentioned in the previous section, when a parallel application that utilises the NIP 

run-time library is launched, a number of NIP nodes are automatically spawned. All the 

NIP nodes start a service task and a number of worker tasks, or just workers. The service 

task is of higher priority than the workers are and it deals with all the messages arriving at 

the NIP node. If there are no available messages to handle, the service task does not 

consume any computational resources. 

The primary NIP node uses one of the workers as the entry point of the application. 

As more work is made available to the execution environment, more workers are given 

computation to execute throughout the parallel system. As already discussed in Chapter 3, 

potentially parallel work is identified via tasklet constructs. One of two work-stealing 

algorithms distributes the available work across the NIP nodes (Section 5.5). 
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5.3.2. The Portability Issue 

The NIP run-time library has been implemented in the C++ programming language 

(Stroustrup 1997). Due to the objective of the library, which is to provide a run-time 

environment for parallel applications according to the semantics of the NIP execution 

model, one would expect that the implementation be closely tied to the underlying 

operating system and machine architecture. However, it has been possible to achieve the 

portability of the library source code across a variety of systems by utilising the ACE 

object-oriented development framework (Schmidt 1995). 

ACE has been ported to a great number of operating systems and it provides, 

amongst other features, a consistent interface to commonly used system calls without 

sacrificing performance. Theoretically, the NIP run-time library should be functional on 

most, if not all, operating systems to which ACE has been ported. However, for the 

purposes of this thesis, the NIP run-time library was only tested on the WindowsNT, 

Windodws2000, and Linux operating systems. 

5.4. NIP Communications 

5.4.1. Design 

The NIP communications service is a simple, non-optimised, message-passing interface 

that allows NIP nodes to exchange messages. It would have been possible to utilise an 

existing message-passing library, like PVM (Sunderam 1990) or an implementation of the 

MPI standard (Forum 1994), but there was not one available supporting thread-safe 

communication primitives and the means to block on multiple active connections waiting 

for network activity, two design requirements for the NIP communications service. 

Due to the nature of the NIP run-time system, it would not have been efficient to use 

predefined points of synchronisation between NIP nodes where information could be 

exchanged, similarly to the approach taken by conventional message passing interface 

systems. For example, a worker executing some computation may require access to an 

object from the distributed shared memory. For the worker to continue its execution, the 

object must be first made available locally to the NIP node via the NIPDSM service, if it 

is not available already. As a result, an access request will be submitted to the appropriate 

NIP node. It cannot be known before the execution time when such an access request is 

going to take place. The other NIP node services also require to send or to receive 

messages in the same unanticipated manner. 
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On a NIP node, a separate thread could have been spawned for every connection to 

another NIP node. Each thread would only have to deal with the messages received from 

one NIP node. However, this approach does not scale well due to the great number of 

threads required as the number of NIP nodes increases. This is the reason a blocking call 

on multiple network connections is required. In the current implementation of the NIP 

communications service, only one thread, the service task, is created on every NIP node 

to deal with received messages. The thread blocks and it is only resumed to deal with a 

message that has arrived on one of the established connections with the other NIP nodes. 

5.4.2. Communication Between NIP Nodes 

Essential to the design of the NIP run-time library and especially the communications 

service are the notions of the node id and the message. Every NIP node is implicitly 

associated with a unique node id. The NIP node services exchange information via 

messages (i.e., objects of type Message). The destination address of each message is set 

to the node id of the receiving NIP node. Broadcast and multicast communication 

services are also supported by the design but their efficiency depends on the underlying 

communication protocol used. 

Any data that must be transferred from one NIP node to another must be packed 

inside a message. The message is then given to the NIP communication service, which is 

responsible for transmitting it to the appropriate NIP node. Of course, the data must be 

prepared so that it can be transmitted across the channel between the sending and the 

receiving NIP nodes according to the requirements of the underlying communication 

protocol. 

As already mentioned, there is a high priority service task at each NIP node, which is 

activated when data arrives from other NIP nodes. The NIP communication service 

reconstructs the original message from the raw data and routes it to the appropriate NIP 

node service. 

5.4.3. Implementation 

The current implementation of the NIP communication service utilises the TCP/IP stack 

provided by the underlying operating system. A connection-oriented data transfer channel 

(i.e., a socket-based communication stream) is established between each NIP node. In 

addition to abstracting the necessary operating system calls for the creation of the 

communication channels, for the transmission and for the reception of data, ACE also 

provides a reactor service, which is an event-dispatching mechanism facilitating the 
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implementation of unanticipated reception of a message. Internally, the reactor utilises the 

select(2) call on UNIX systems or the WaitForMultipleObjects() call on Windows platforms. 

Unfortunately, the TCP/IP stack is probably not the most efficient communication 

protocol for parallel computing on networks of workstations. TCP/IP provides services 

like buffering and error correction that add overhead to the latency of a message transfer 

operation. A less expensive protocol on a faster interconnection network would probably 

be better suited for the NIP run-time system (e.g., Layer5 protocol on ATM networks). 

An additional run-time overhead in the current implementation is the kernel 

participation in all the data transfer operations. There exist communication subsystems 

that could allow the data exchange between two NIP nodes to take place without the 

involvement of the kernel and therefore offering better performance. The SCI (James 

1994) network interface cards and the U-Net (von Eicken et al. 1995) user-level library are 

examples of solutions to message passing that do not require the involvement of the 

operating system kernel in communicating data, hence achieving better latency and 

bandwidth. 

Finally, the feature of the NIP communications service that allows NIP node services 

to use the message abstraction when exchanging data, rather than to deal with operating 

system communication primitives, introduces yet another overhead. A memory copy 

operation takes place every time an object is added to a message. The memory used by a 

message to store objects is expanded dynamically. As a result, the copies of the objects 

may not be allocated in a continuous part of the memory. For that reason, additional 

memory copy operations are required to transfer all the objects into a buffer that is 

maintained by the NIP communications service. The contents of the buffer are 

transferred through an appropriate operating system call. 

Although the implementation of the NIP communication service is by no means 

optimal, it is required for a fully functional NIP run-time environment. 

5.5. NIP Load Balancing 

The main objective of the NIP load balancing service is to keep track of the available 

work on a parallel system. It has to make sure that all the processing nodes are busy but 

not overloaded. The decision on whether a new task will be created using the NIP lazy 

task creation technique and then executed in parallel is taken by the NIP load balancing 

service. Both multiprocessor and multicomputer architectures are supported. 
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Due to the dynamic nature of the NIP run-time library, a static load balancing service 

would be insufficient (i.e., the decision on whether a task should be created and/or 

moved to another processing node is made at compile time). Instead, a dynamic 

load-balancing algorithm is required. A lot of research work in the area of dynamic 

load-balancing, or load-sharing, has been published. The reader is referred to (Billard and 

Pasquale 1997; Eager et al. 1986; Loh et al. 1996; Lüling et al. 1992) as good starting 

points. 

As load balancing is not the subject of this thesis, the NIP load balancing service, like 

the communications service, was just designed and implemented to support the NIP 

run-time library and the new techniques it incorporates, namely the NIPLTC and the 

NIPDSM. Existing load-balancing techniques were adopted for the current incarnation of 

the NIP run-time library. 

5.5.1. Design 

The NIP load balancing service features two simple but distinct algorithms that are 

selected through a command-line switch during the launch of a NIP parallel application. 

Both algorithms are based on the notion of work stealing. When a NIP node is about to 

run out of computation to execute, the NIP load balancing service checks to see if there is 

any work available locally and if not, it requests work from other NIP nodes. For the load 

balancing algorithms in the NIP run-time library, the notion of ‘available work’ on a NIP 

node is equivalent to the ‘existence of at least one tasklet.’ 

One of the load-balancing algorithms is activated when there are no available tasks 

that could be executed. It is only then that the local tasklet availability queue (Chapter 3) is 

checked to establish whether a new task could be created. There are no additional 

load-balancing requirements for multiprocessor architectures. However, on 

multicomputer systems, if the tasklet availability queue is empty or no tasks can be created 

from the existing tasklets (i.e., because the createTask() calls return false) other 

NIP nodes need be contacted. It is in this way the decision is made on which NIP node 

to be contacted where the two algorithms that are supported differ. 

• The simpler of the two algorithms chooses a random NIP node and sends a 

‘request-for-work’ message to it. If the NIP node receiving the request does not 

have any tasklets in its tasklet availability queue or no work could be created from 

the existing ones, a ‘request-for-work-denied’ message is sent back and a new NIP 

node is contacted. 
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• The second algorithm maintains a table with information about all the NIP nodes 

in the parallel system. The entries in the table indicate whether the corresponding 

NIP node has at least one tasklet in its tasklet availability queue. In order for the 

table to represent the most up-to-date information, each NIP node informs the 

rest about the changes in its tasklet availability queue. Whenever the transition 

from zero to one available tasklets takes place, an appropriate message is 

broadcasted to all the NIP nodes. Similarly, when the tasklet availability queue 

moves from one to zero tasklets, another message is sent. 

When the load-balancing algorithm is activated, the table is searched and the 

first NIP node to be found with available work is sent a ‘request-for-work’ 

message. However, it may be the case that the information maintained in the table 

is not up-to-date (e.g., a message indicating that the particular NIP node has run 

out of work is on its way), in which case a ‘request-for-work-denied’ message is 

received and the table is updated accordingly. 

During the execution of a parallel NIP application, a number of events may cause the 

activation of the load-balancing algorithm. In all cases, it is the number of available tasks 

for execution on the NIP node that is first checked and only if more are required is the 

load-balancing algorithm called. Examples of events that may result in the inspection of 

the available tasks for execution are: 

• A task completes the evaluation of some computation. 

• A message arrives from another NIP node indicating the availability of more 

work. 

• A new tasklet is added to the local tasklet availability queue. 

• A task needs to wait for an object to be cached or to be unlocked. 

• A task has to wait for other tasks to finish before it can proceed (i.e., suspend). 

5.5.2. Tasks and the Load of NIP Nodes 

The NIP load-balancing service does not feature a task scheduler (or, job scheduler). 

Instead, the scheduling is left to the underlying operating system as all tasks are mapped 

to kernel-level threads. Nevertheless, the NIP load-balancing service considers the tasks 

to be in one of four states: started, running, waiting, and terminated as shown in the 

task-state diagram of Figure 5-5. 
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terminatedstarted
running

waiting  
Figure 5-5: The four task states as considered by the NIP load-balancing service 

When a task is assigned some computation to evaluate, it is considered to advance 

from the ‘started’ state to the ‘running’ state. When the evaluation of the computation 

completes, the task moves to the ‘terminated’ state. In between, a number of reasons may 

cause the task to be put into the ‘waiting’ state: 

• A call to the waitOrInline() method of a tasklet (Section 3.6.1) when there 

are running parallel tasks created from the same tasklet. 

• A lock operation on an object that the NIPDSM does not allow until the object is 

unlocked. 

• A lock operation on an object that it is not cached. 

The NIP load-balancing service considers a NIP node busy when the number of tasks in 

the ‘running’ state is equal to or greater than the number of locally available processing 

nodes. The service does not attempt to check the load on the NIP node due to other—

unrelated to the NIP application—work that may consume computational resources. 

Additionally and due to the lack of an integrated task scheduler, there may be cases where 

a NIP node has more tasks in the ‘running’ state than available processing nodes. The 

NIP load-balancing service moves tasks from the ‘waiting’ to the ‘running’ state without 

considering the availability of the computational resources. As a result and if the 

underlying threads library supports thread pre-emption, then additional run-time cost may 

be incurred due to context switching as all the tasks in the ‘running’ state compete for 

processing power. 

5.5.3. Implementation 

The current implementation of the NIP load-balancing service utilises kernel-level threads 

for the execution of the parallel tasks created from tasklets. A user-level threads library 

that does not support pre-emption could have been utilised to avoid the additional 

overhead of context switching that may arise in some cases, as mentioned above. 

User-level threads libraries implement an independent scheduling mechanism to avoid the 

overhead of kernel-level scheduling. However, many user-level threads library cannot 

leverage more than one processor on a shared-memory multiprocessor architecture. 
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Furthermore, operating system calls that block the execution of threads waiting for an 

event may result in computational resources being wasted, since another thread cannot be 

scheduled. Lack of pre-emption would have made the implementation of the NIP 

communications service more complicated and perhaps more inefficient. The service task 

(Section 5.3.1) depends on pre-emption to deal with arrived messages as soon as possible. 

Both the two platforms used for the development and performance evaluation 

processes of the NIP run-time library, namely Windows2000 and Linux, support thread 

pre-emption and symmetric multiprocessing. The Linux kernel 2.2.x, however, does not 

support thread priorities for users without administrative privileges. This results in the 

service task being assigned the same priority as the workers and, therefore, having to 

compete for computational resources when a message arrives with any ‘running’ workers. 

Thread Pool 

Whenever computational resources become available and a new task is created, either 

from a local or from a remote tasklet, a thread is required to ‘host’ the evaluation of the 

associated computation. Once the evaluation completes, the thread is not needed 

anymore. In an attempt to avoid the repeated thread creation and destruction operations 

and their associated run-time costs, the NIP load-balancing service creates a number of 

threads during the initialisation process of every NIP application. All the threads are 

created in the ‘suspended’ state and they are added to a pool that is maintained by the 

NIP load-balancing service. 

When a new task is ready to be executed, a thread is removed from the pool and it is 

resumed to evaluate the computation associated with the task. When the computation 

completes, processing resources may become available, hence the number of the tasks 

required to keep the NIP node busy is checked. If more tasks are required, the 

load-balancing algorithm is called within the context of the same thread that just 

completed the evaluation of a previous task. Only after the load-balancing algorithm has 

finished, is the thread suspended and placed back in the pool.  

The thread pool approach reduces the number of thread creation and destruction 

operations during the execution of an application, therefore resulting in faster execution 

times. Of course, if during the execution of an application a thread is required while the 

pool is empty, a new one will be created. 

Overlapping Communication and Computation 

The current implementation of the NIP load-balancing service does not manage the 

available processing resources in the most efficient manner in all cases. As described 
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earlier, if computational resources become available on a NIP node and no local work 

exists, the load-balancing algorithm will request additional tasks from other NIP nodes. 

Still, the available processing resources will have to remain idle while the 

‘request-for-work’ message travels to its destination, the recipient of the message 

processes it, and the response is received. A better solution would be to have a task 

waiting to take over the processor. This could be achieved by utilising a heuristics-based 

load balancing algorithm that pushes work to nodes that are likely to run out of work or 

by attempting to steal work from other nodes before it is needed. 

There are cases, however, where the NIP load-balancing service does attempt to 

overlap the communication with computation. For example, when a task requires access 

to an object from the NIPDSM and it has to wait until the object is cached, a new task 

will be created if necessary to take over the just released processing resources. Of course, 

if there is no local work available, the above problem arises again. The NIPDSM caching 

techniques attempt to reduce the number of times tasks go to the ‘waiting’ state because 

of a cache miss. 

Discussion on Efficiency 

As it is the case with the NIP communications service, the design and implementation of 

the NIP load-balancing service is by no means optimal. The service would benefit from a 

more sophisticated load-balancing algorithm that is aware of the whole execution 

environment on a NIP node for the better utilisation of the available computational 

resources. Additionally, an integrated task scheduler would eliminate some of the extra 

run-time costs due to more than one task being in the ‘running’ state and competing for 

processing resources. 

Nevertheless, the current NIP load-balancing service is sufficient for supporting the 

implementation and performance evaluation of the rest of the NIP node services, which 

consist the main research theme for this thesis: the NIP lazy task creation and NIP 

distributed shared memory. 

5.6. NIP Lazy Task Creation 

The purpose of the NIP lazy task creation service is to provide the necessary support for 

the synonymous technique that was introduced in Chapter 3. The service incorporates the 

implementation of the tasklet construct and maintains the tasklet availability queue. In 

addition to supporting application-specific tasklets, the NIP lazy task creation service also 
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provides a set of predefined tasklets in the form of C++ templates implementing 

common programming patterns (Parastatidis 2000). 

5.6.1. The NIP Tasklet Interface 

The NIP lazy task creation service defines the interface of the tasklet construct as a C++ 

class with pure virtual methods (Section 3.6.1). NIP applications are required to define 

custom tasklet classes that adhere to the NIPTasklet interface. The custom tasklets 

must inherit the NIPTasklet class and provide implementations for the pure virtual 

methods. The purpose of each of the methods was analysed in Chapter 3 as part of the 

discussion about the abstract interface of the tasklet construct. The NIP lazy task creation 

service slightly extends and adjusts that abstract interface. 

class NIPTasklet 
{ 
public: 
   typedef void (*ExecFunction)(NIPTask&); 
   NIPTasklet(ExecFunction); 
   ~NIPTasklet(); 
   virtual bool createTask(NIPTask&)  = NULL; 
   virtual bool createTask()          = NULL; 
   static  void executeTask(NIPTask&); 
   virtual void executeTask()         = NULL; 
   virtual void returnTask(NIPTask&)  = NULL; 
   virtual void waitOrInline()        = NULL; 
   void activate(); 
   void deactivate(bool = true); 
protected: 
   void beginCriticalSection(); 
   void endCriticalSection(); 
   void blockCriticalSection(); 
   void unblockCriticalSection(); 
   bool waitForStolenTasks(); 
}; 

Code 5-1: C++ interface of the NIPTasklet 

Two additional methods are introduced, createTask() and executeTask() (i.e., 

the ones without arguments), to allow for optimisation on shared-memory multiprocessor 

architectures. When a new task is created from a tasklet because of a request from another 

NIP node, a NIPTask object is automatically instantiated to store essential run-time 

information. On shared-memory multiprocessor architectures, where only one NIP node 

exists, the creation of a NIPTask object can be avoided. As a result, the run-time 

overhead associated with the packaging of run-time information into a NIPTask object is 

prevented. The createTask() and executeTask() are called instead of their 

createTask(NIPTask&) and executeTask(NIPTask&) counterparts on 

shared-memory multiprocessors. 
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The executeTask(NIPTask&) method must be declared as static so its virtual 

memory address can be the same on all the NIP nodes that run the same application 

executable. It is a necessary adjustment to the interface of the tasklet construct because 

the state of the particular tasklet instance is not going to be transferred together with the 

new tasks that are created for execution on remote NIP nodes. According to the C++ 

standard (Stroustrup 1997), the virtual memory address of a method of an object is 

calculated in relation to the address of that object. It is therefore necessary to declare the 

executeTask(NIPTask&) method as static so that its virtual memory address can 

be the same on all the NIP nodes running the same application executable. A static 

method call is shared amongst the instances of the same class but is not allowed direct 

access to their states. The ‘static’ qualifier instructs the C++ compiler to give the method 

global linkage (i.e., it is given a virtual memory address in relation to the application 

executable and not to the instances of the class). The address of the static method is the 

required argument for the constructor of the class. 

Finally, there is a variation in the semantics of the createTask() method in the 

NIPTasklet class and the corresponding method of the abstract type introduced in 

Chapter 3. The departure from the original semantics was a result of the efficiency 

considerations in the implementation of the NIP run-time library and the behavioural 

dissimilarity of some synchronisation constructs under the Windows2000 and the Linux 

operating systems. 

Some custom tasklets may enclose data members that need protection from 

concurrent accesses. The designer of new tasklets should be aware that the 

returnTask(), the waitOrInline(), the executeTask(), and both the 

createTask() methods might be called concurrently. Critical sections ought to be 

defined around any access to the private data member. A new synchronisation construct 

(e.g., a mutex) could be instantiated and used for the definition of critical sections but it 

would be more efficient if the lock internal to the NIPTasklet could be utilised instead. 

As already mentioned in Chapter 3, the beginCriticalSection() and 

endCriticalSection() methods grant access to the internal lock. The designer of 

new tasklets should take care and not use the two methods to define critical sections 

within the two createTask() methods because in the current implementation of the 

NIP lazy task creation service the internal lock has already been acquired by the run-time 

system. On operating systems that implement re-entrant locks, like Windows2000, it is 
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not an issue but on systems where the acquisition of the same lock by the same thread is 

not allowed deadlocks are introduced. 

For a similar reason, a Boolean argument has been added to the interface of the 

deactivate() method, which instructs the NIP run-time to remove the tasklet 

instance from the tasklet availability queue. In Section 3.6.2, the two-level locking process 

during a task creation operation was described. The lock guarding the tasklet availability 

queue is already acquired when the createTask() method is called. Therefore, it would 

be troublesome on operating systems that do not support re-entrant operations on 

synchronisation constructs to call the deactivate() method from within any of the 

two createTask() methods without an adjustment. The Boolean argument was 

introduced to act as an indication to the NIP run-time about the context from which the 

deactivate() method is called. 

5.6.2. The Tasklet Availability Queue 

The NIP lazy task creation service implements the tasklet availability queue as a 

double-linked list data structure. The nodes of the list are the tasklets instances allocated 

on the stack of the tasks that create them. There is no requirement for additional memory 

to be allocated when a new tasklet instance is added to the list because the two required 

pointers are part of the state of the tasklet, as described in Chapter 3. Only one variable 

containing the pointer to the first tasklet in the list and a lock guarding the data structure 

from concurrent accesses have to be created during the initialisation process of the NIP 

run-time. 

The activate() and deactivate() methods relate to the addition and removal 

of the tasklet instance to and from the tasklet availability queue respectively. The two 

operations involve the acquisition of the lock guarding the tasklet availability queue and 

the maintenance of the pointers. 

5.6.3. The NIP Tasklet Library 

In addition to allowing the construction of custom tasklets, the NIP lazy creation service 

leverages the strength of the C++ templates and offers a selection of parameterised, 

predefined tasklet classes. The current set of offered templates supports three different 

patterns of parallelism: function calls, parallel iterative computations, and parallel recursive 

computations (the three patterns are covered in more detail in Chapter 3). An example of 

a template class for each of the patterns is presented in Code 5-2. 
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template<class Result, class Argument, Result (*Function)(Argument&)> 
class NIPFunctionTasklet 
 
template<class Argument, void (*Function)(int, Argument&)> 
class NIPIterativeTasklet 
 
template<class Result, class Argument> 
class NIPRecursiveTasklet 

Code 5-2: C++ template classes for common patterns of parallelism 

An instance of the NIPFunctionTasklet tasklet class exposes to the NIP run-time 

a function, the third argument, as a potentially parallel task. A NIPIterativeTasklet 

object is used to represent the parallelism in an iterative computation. The function given 

to the template as an argument contains the computation associated with each of the 

iterations. Finally, the NIPRecursiveTasklet is used to exploit the parallelism in 

recursive computations. 

The NIP lazy task creation service offers a number of variations of the three template 

classes presented in Code 5-2. The description of the whole library and the way it is used 

is beyond the scope of this thesis. Instead, the reader is referred to (Parastatidis 2000) for 

a thorough explanation of the available tasklets and the way they can be used. 

5.7. NIP Distributed Shared Memory 

The NIP distributed shared memory service implements the object-based, shared memory 

abstraction defined by the NIP execution model semantics. The approach to the design 

and implementation of the service closely follows the discussion on NIPDSM presented 

in Chapter 4. 

5.7.1. Allocation of Objects in the NIPDSM 

The NIPDSM service provides a set of template classes and functions in order to facilitate 

the allocation of C++ objects in the shared memory. The class of any object that is going 

to be stored in the NIPDSM must inherit from the NIPShared class template. Instances 

of the derived class do not have to be created on the heap of the NIP application. Even if 

the objects are placed on the stack of a task, they can still be accessed by the rest of the 

NIP nodes in the parallel system until they go out of scope. 

As discussed in Chapter 4, the allocation process involves the possible expansion of 

the NIPDSM virtual object table, the initialisation of an object representation and the 

formation of a unique NIPDSM reference, which at the end is returned to the NIP 

application. The NIPDSM reference is of type NIPRef<class> where class is the 

type of the object. NIPRef is considered as primitive type and—like int, double, and 
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the other primitive types—it cannot be allocated directly in the NIPDSM. An 

encapsulation class is made available, the NIPObject<class>, which allows primitive 

types and types that are not derived from NIPShared, to be stored in the NIPDSM. 

5.7.2. Efficiency 

The semantics of the NIPDSM system render the use of a page-faulting mechanism 

unnecessary. Access to the shared objects in the memory is indicated to the NIP run-time 

through the lock operations on them that all NIP applications are required to issue. The 

state of an object should not be accessed unless that object is locked first. The separation 

of the memory access detection mechanism from any operating system service makes the 

NIPDSM highly portable. Indeed, there was no need to introduce any changes to the 

implementation of the NIPDSM service when moving between the Windows2000 and 

the Linux operating systems. 

During a locking operation, the availability of the object on the local NIP node as well 

as its current locking state can be determined. However, in the current implementation, a 

mutex operation is required whenever an object is locked. As Chapter 6 demonstrates, 

this introduces a very high cost. 

The NIPDSM service implements the locking and caching algorithms that were 

discussed in Chapter 4. 

5.7.3. Object Access 

Access to objects in the NIPDSM is made possible through NIPRef instances. A 

NIPRef instance acts like a ‘smart pointer’ (Stroustrup 1997) to objects of a specific class, 

which must inherit from NIPShared. The state and methods of an object is accessed via 

the C++ arrow operator (->). However, the NIPRef interface is also enriched with 

additional operators and methods. The reader is referred to (Parastatidis 2000) for a 

thorough description of the NIPRef interface. Perhaps, the most important of the 

methods that may be called on NIPRef instances are presented in Code 5-3. 

The lockRead() and lockWrite() methods attempt to lock the referenced 

object. The methods return a virtual memory pointer to the local copy of the state of the 

object. The pointer can be safely used by the NIP application until the unlock() 

method is called. The use of the virtual memory pointer is an optimisation that was 

introduced and described in Chapter 4. The optimisation renders the use of the arrow 

operator (->) unnecessary because it always results in a NIPDSM virtual memory table 

lookup operation, which is computationally more expensive than a virtual memory 
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pointer de-reference. The arrow operator is still included in the interface, though, for 

completeness. 

template<class T> 
class NIPRef 
{ 
public: 
   T*        lockRead(); 
   T*        lockWrite(); 
   void      unlock(); 
   void      associate(const NIPRef&); 
   void      disassociate(const NIPRef&); 
   NIPRef<T> operator[](size_t); 
   T*        operator->(); 
}; 

Code 5-3: Part of the NIPRef interface 

The associate() and disassociate() methods provide an interface to the 

management of the associations list, which is maintained on per object basis. The list is 

used by the NIPDSM object grouping caching optimisation that is based on associations 

between objects. 

Finally, the implementation of the NIPDSM service allows C-style arrays of 

NIPShared objects to be allocated. The subscript operator (operator[]) is used when 

such arrays are accessed. 

5.8. Discussion 

This chapter introduced the NIP run-time library, a user-level implementation of the NIP 

execution model semantics. During the design process of the library, four distinct 

components, or services, were identified. Although no novel techniques were 

incorporated into the implementation of two of the services—the communications and 

the load balancing—their inclusion into the library was necessary in order to evaluate the 

lazy task creation and the distributed shared memory services. 

In the previous sections of this chapter, the focus of the discussion was on the 

implementation details of the NIP run-time services. It has been necessary to concentrate 

on the implementation issues because the good understanding of the functionality and 

operational characteristics of the NIP run-time services will be required in the next 

chapter, where the effect of the NIP lazy task creation and distributed shared memory 

techniques on the performance of a number of benchmark applications will be thoroughly 

investigated. 



Chapter 5 

142 

Architecture-related Considerations 

Although the portability of the NIP run-time library source code across operating systems 

was achieved during the implementation process, some idiosyncratic differences between 

platforms may result in behavioural diversions from what it was specified during the 

design process. 

• The implementation of the kernel threads library in Linux does not support 

modification of thread-priorities at the non-super user level. As a result, there 

cannot be a high priority thread dealing with the messages arriving at a NIP node, 

as the design process for the NIP run-time library specifies. Instead, the thread 

will have to be of the same priority as the worker-threads that execute 

computation and compete for processor time. There could be cases where a 

message is not dealt as soon as it arrives because the thread remains pre-empted 

until it is given a processor time-slice. 

The latency between a request and a response during the exchange of 

messages by two NIP nodes may be negatively affected by the thread priority issue 

on Linux. The NIP lazy task creation technique reduces the effect of the problem 

by not allowing excessive number of tasks to be created. The result is faster 

response times because the thread dealing with messages will have fewer threads 

to compete with for processor time. 

Unlike Linux, the WindowsNT and Windows2000 operating systems do not 

suffer from the same problem. Therefore, a message arriving at a NIP node will 

be dealt with immediately. 

• The cost of lock operations can be another concern across operating systems. 

There is a difference in the costs of the operations on synchronisation constructs 

(e.g., mutex, semaphores, etc.) amongst the two operating systems used for the 

implementation and evaluation of the NIP run-time library (i.e., Windows2000, 

Linux). As a result, small parts of the library had to be modified accordingly in 

order to achieve better performance. The next chapter includes a comparative 

evaluation of some NIP-related operations between the two platforms. 

• Finally, and perhaps more importantly, the load balancing service may be greatly 

affected by the architectural characteristics of the parallel platform. Parallel 

architectures, usually with high-speed communications support, may favour 

load-balancing schemes where tasks are created or moved closer to the location of 
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the objects they access. In contrast, it may be more efficient on some platforms to 

move the objects to the computation that operates on them. 

The current implementation of the NIP load-balancing service supports only 

the latter of the two schemes. Data-intensive parallel computations may suffer on 

platforms with low-latency interconnections, such as Ethernet-based networks of 

workstations. The NIP distributed shared memory service attempts to reduce the 

deficiencies, due to tasks accessing objects from different NIP nodes, through its 

advanced object caching and replication techniques. 
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6CHAPTER 6 
6.  PERFORMANCE EVALUATION 

The discussion in this chapter focuses on the performance evaluation 

of the unique features of the NIP run-time environment. The 

advantages and disadvantages of the techniques studied in the previous 

chapters are analysed though benchmark applications. 

A number of micro-benchmarks are devised to explore the 

performance characteristics and run-time behaviour of the NIP lazy 

task creation technique and the NIP object-based distributed shared 

memory system. Additionally, the performance measurements from the 

execution of three applications, commonly used in the evaluation of 

run-time environments for distributed memory architectures are 

analysed. 

The benchmark applications are tested on a physically shared 

multiprocessor and a distributed memory multicomputer. The results 

from the performance evaluation demonstrate the effectiveness of the 

NIP lazy task creation technique and the potential advantages of the 

NIPDSM caching techniques. 
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6.1. Introduction 

The main objective of this thesis is to explore the characteristics of those unique features 

that were devised to support the semantics of the NIP execution model. To that extent, 

the model semantics, the NIP lazy task creation technique, and the object-based NIP 

distributed shared memory system were studied in the previous chapters. The NIP 

run-time library, a user-level implementation of the NIP execution model semantics, was 

also described. 

The study continues in this chapter with the performance and behavioural evaluation 

of the introduced techniques. A number of micro-benchmarks and applications that were 

built around the NIP run-time library are used as a vehicle for the performance 

evaluation. Through the analysis of the collected data, the applicability of the introduced 

NIP lazy task creation technique and NIP distributed shared memory system is examined. 

6.1.1. Evaluation Objectives 

As mentioned in Chapter 5, the current prototype implementation of the NIP run-time 

library was built as a test platform for the research purposes of this thesis. The design and 

the efficient implementation of all the services incorporated in the library were not of a 

prime research interest to this project. As a result, and given that the performance 

numbers are collected through the actual execution of parallel applications rather than by 

the use of simulation, the efficiency of the whole execution environment may not be 

optimal. 

The impact of the load balancing and communications services on performance is 

indicated where observed. However, the investigation will be primarily concentrating on 

the efficiency improvements or overheads in the execution of parallel applications due to 

NIPLTC and NIPDSM. The behavioural characteristics of the parallel applications are 

also examined. 

6.1.2. Real-System Execution vs. Simulation 

A combination of a great number of factors may influence the performance characteristics 

of a parallel application. One has to consider all those attributes of the execution 

environment that may affect the behaviour and efficiency of an application on a specific 

platform. In research, a simulation environment is frequently used in the performance 

evaluation of run-time techniques. For this thesis, it was decided that the quantification 
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process of the NIP run-time library would take place through the execution of benchmark 

applications on real parallel platforms rather than via the exercise of simulated execution.  

This is because there does not exist a simulation environment that can satisfactorily 

capture the diversity of performance-related attributes that are found on a parallel 

platform. Although some simulation environments may consider a combination of the 

issues, there does not exist one that can deal with all of them (e.g., cost of operating 

system synchronisation operations, thread-related operations, scheduling, pre-emption, 

memory access operations, processor cache behaviour, network communication costs, 

compiler optimisations, etc.). 

The evaluation process will not attempt to determine the impact of each possible 

parameter that may affect the performance of an application execution in a parallel 

environment, as the one provided by the NIP run-time library. Although of great research 

interest, it would have been beyond the scope of this thesis to measure every possible 

detail. Instead, the following sections focus on the NIPLTC and NIPDSM techniques 

that were explored in the previous chapters. 

6.2. Experimental Set-up 

As suggested in Chapter 1, this thesis considers parallel platforms based on commodity 

hardware as emerging architectures for general-purpose, high-performance computing 

due to their cost/performance ratio potential. Although the NIP execution model 

semantics were formulated to be platform independent, the experimental process for this 

research work concentrates on low-cost parallel systems. It should not be assumed, 

though, that the NIP run-time library could not be used on custom-built, 

high-performance parallel computer architectures. 

6.2.1. Hardware Environment 

The main parallel platform used for the execution of the benchmark applications was the 

Affordable Parallel Platform (APP) of the department of Computing Science, at the 

University of Newcastle upon Tyne, UK. The APP consists of a collection of commodity 

hardware-based workstations and an interconnection network. Every workstation of the 

APP cluster runs an instance of Linux, a freely available operating system. The current 

incarnation of the APP is made out of eight workstations, each one with a single 

processor. Each workstation has access to a shared 100Mbit/s Fast Ethernet 
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interconnection networks. The first column of Table 6-1 presents the main characteristics 

an APP workstation. 

 
APP workstation 

Linux SMP 
workstation 

Windows2000 
workstation 

Windows2000 SMP 
workstation 

Processor(s) PentiumII 
233MHz 

4 x PentiumIII Xeon 
500MHz 

PentiumII Mobile 
300MHz 

2 x PentiumIII 
800MHz 

Cache 512KB level 2 
32KB level 1 

512KB level 1 
512KB level 2 
32KB level 1 

32KB level 1 

Memory 64MB 512MB 256MB 256MB 

Bus speed 66MHz 66MHz 66MHz 133MHz 

Swap memory 128MB 128MB Dynamic Dynamic 

Network 100Mbits shared Fast 
Ethernet 

(3Com Boomerg 
adapters) 

N/A N/A N/A 

Operating 
system 

Redhat 6.2 
2.4.0-test7 kernel 

Redhat 6.2 
2.4.0-test7 kernel Windows2000 SP1 

Windows2000 SP1 
multiprocessor mode 

Compiler 
GCC 2.9.2 

Microsoft Compiler 
12.00.8804 

C++ wrappers 
for OS system 

calls 
ACE 5.1.3 

Table 6-1: Profiles of the hardware platforms used for the experiments 

The APP cluster is a distributed-memory parallel architecture. The NIP run-time 

library allows applications to perceive the cluster as a parallel machine with physically 

shared memory. A shared-memory multiprocessor workstation is also used for the 

evaluation of the NIP run-time library. The main characteristics of the platform are 

presented in the second column of Table 6-1. 

Finally, two workstations running an instance of the Windows2000 operating system 

were also used in the evaluation of the NIP primitive operations. The characteristics of 

the workstations are presented in the third and fourth columns of Table 6-1. 

6.2.2. Software Environment 

The Linux operating system in the form of the RedHat 6.2 distribution was installed on all 

the workstations. The 2.4.0-test7 version of the Linux kernel was used during the 

evaluation process. The support for symmetric multiprocessing kernel option was enabled 

only on the multiprocessor workstation. For the comparative study of the NIP run-time 

costs that is presented in the next section, workstations with the Windows2000 operating 

system were also used. 

The NIP run-time library was built with version 2.95.2 of the GCC C++ compiler 

under Linux. The –03 –no-exceptions –no-rtti compiler options were enabled. 

Under Windows2000, the Microsoft C/C++ compiler version 12.00.8804 (Visual Studio 



Cost of Primitive Operations 

 149

SP4) was used with all the optimisations enabled and the exceptions and run-time typing 

information disabled. 

Finally, and as mentioned in the previous chapter, the ACE object-oriented 

development framework (Schmidt 1995) was used for the implementation of the NIP 

run-time library. The 5.1.3 version was installed on all the workstations. Table 6-1 

summarises the configuration of all the workstations. 

6.3. Cost of Primitive Operations 

With the intention of determining the efficiency of NIP primitive operations, this section 

presents a set of small experiments measuring run-time costs. The overhead of the 

primitive operations, in terms of time and processor cycles, are established for four 

different processors, two of them running Linux and two running Windows2000. The 

results from the measurement of the NIP primitive operations are compared to the 

run-time cost of the equivalent operating system calls. 

The cost of a primitive operation is calculated as the average from the repeated 

execution of the same operation. The frequency of each processor is used to calculate the 

corresponding cost in processor cycles. Due to the imprecise nature of the timing 

operations, the presented costs can only be seen as approximations. The small deviations 

in the results may be attributed to a great number of factors, such as the lack of accurate 

means for timing, different memory access times, processor cache speed, small kernel 

differences (i.e., uni-processor version vs. symmetric multiprocessor version), etc. 

Nevertheless, the results are still of interest to this study because the potential benefits 

and drawbacks of using the NIP run-time library can be determined. 

6.3.1. Operating System Primitive Operations 

From the analysis of the measurements presented in Table 6-2 and despite the differences 

between the processors used, it is evident that the launch of a separate thread of control 

to execute the same empty function is much more expensive on Windows2000 than it is 

on Linux. The acquire and release operations on a mutex are faster on Windows2000 but 

the creation and destruction operations of a mutex are slower. Finally, the creation and 

destruction of a conditional variable are significantly slower on Windows2000 because 

ACE has to simulate, using native OS primitives calls, the behaviour of that particular 

synchronisation construct according to the POSIX semantics (IEEE 1996). 
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 PentiumII 
233MHz 
(Linux) 

PentiumIII Xeon 
500MHz 
(Linux) 

PentiumII Mobile 
300MHz 

(Windows) 

PentiumIII 
800MHz 

(Windows) 

 usecs cycles usecs cycles usecs cycles usecs cycles 

Function call 0.009 2 0.004 2 0.005 2 0.002 1 

OS thread spawn/join 336.930 78505 160.299 80149 654.157 196247 343.334 274667 

Mutex acquire/release 0.751 175 0.347 174 0.119 36 0.084 67 

Mutex creation/destruction 0.461 107 0.215 108 1.833 550 0.723 578 

Condition variable 
creation/destruction 0.439 102 0.204 102 31.178 9353 15.959 12767 

Virtual memory C++ object 
construction/destruction 

2.404 560 1.141 570 1.537 461 0.380 304 

Assignment to a data 
member of a C++ object 

0.017 4 0.009 5 0.016 5 0.004 3 

Table 6-2: The elapsed time in usecs and the corresponding cost in processor cycles of some operating 
system primitive operations 

The costs of creating a C++ object in virtual memory and performing an assignment 

operation are measured. The construction of an object is found to be slightly faster under 

Windows2000 over Linux. As would have been expected, an assignment operation on an 

object data member does not introduce any significant costs to the execution of an 

application. 

6.3.2. NIP Run-time Primitive Operations 

There are two possible ways a potentially parallel computation may be executed: inline or 

as a new parallel task. When the logical degree of parallelism in an application is high, a 

great number of tasklets may exist. The cost of the tasklet creation and destruction 

operations can play a significant role in the performance of an application. For that 

reason, the measurements presented in Table 6-3 were taken into consideration in the 

implementation of the NIP run-time library. 

As described in Chapters 3 and 4, every tasklet and NIPDSM object is implicitly 

associated with a private lock. In the current implementation of the NIP run-time library, 

the lock consists of a mutex and a conditional variable. Due to the expensive conditional 

variable operations on Windows2000, a shared pool of synchronisation constructs is used 

on every NIP node. Whenever a new tasklet or NIPDSM object is created, a pair of a 

mutex and a conditional variable is retrieved from the pool. Only the relative smaller cost 

of the acquire and release operations on the mutex that guards the pool is incurred while 

the instantiation overhead of a conditional variable is avoided. On Linux, where the 

acquire and release operations on a mutex are cheaper, there is no need to implement a 

pool for the tasklet construct. However, a pool of mutex and conditional variables is used 
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for the NIPDSM objects, as is under Windows2000, in order to avoid exhaustion of 

resources in case of a large number of objects. Pairs of mutex and conditional variables 

can be shared between different objects. This consequence is that simultaneous access to 

the object representation of two different NIPDSM objects sharing the same pair is 

prevented. 

 PentiumII 
233MHz 
(Linux) 

PentiumIII 
Xeon 500MHz 

(Linux) 

PentiumII 
Mobile 300MHz 

(Windows) 

PentiumIII 
800MHz 

(Windows) 

 usecs cycles usecs cycles usecs cycles usecs Cycles 

Tasklet creation/destruction 4.109 957 1.899 950 0.665 200 0.360 288 

Tasklet creation/destruction 
and function inline 11.486 2676 5.344 2672 1.376 413 0.670 536 

Function inline 0.928 216 0.428 214 0.121 36 0.089 71 

Tasklet creation/destruction 
and parallel task creation 

59.328 13824 45.432 22716 26.733 8020 13.907 11126 

Cost for executing a task from 
a tasklet on a remote node 

(fast Ethernet) 
614.200 143109 N/A N/A N/A 

NIPDSM C++ object 
construction/destruction 

9.850 2295 4.675 2337 10.744 3223 3.797 3038 

Assignment to a NIPDSM C++ 
mutable object (lock and 

unlock) 
2.134 497 0.989 495 0.746 224 0.290 232 

Access to a NIPDSM C++ 
immutable object (lock and 

unlock) 
0.366 85 0.170 85 0.229 69 0.057 46 

Table 6-3: The elapsed time in usecs and the corresponding cost in processor cycles of some NIP primitive 
operations 

Table 6-3 presents the costs of the NIP run-time primitive operations. The smaller 

costs of the tasklet creation/destruction and inlining operations under Windows2000 are 

due to the smaller costs of the mutex acquire/release operations when compared to the 

equivalent costs under Linux. 

As described in the previous chapter, the NIP run-time library uses thread-pooling to 

optimise the use of resources. As a result, the lazy creation of a parallel task is faster than 

eager creation. The former only requires that a thread be taken from the thread pool and 

resumed to execute the new parallel task while the latter requires a new thread to be 

created. Of course, the overhead of creating the thread pool is incurred during the 

initialisation of the execution environment. The thread creation cost only need be 

incurred once and not every time a new parallel task is created. The great overhead of the 

thread creation and thread synchronisation operations under Windows2000 and the small 

cost of mutex acquire and release operations result in high speedup for task inlining over 

eager task creation, as shown in Figure 6-1. Finally, lazy task creation over the shared fast 
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Ethernet network of the APP is significantly expensive, 1.8 times slower than eager task 

creation on a local machine because of the network activity that needs to take place. 

Based on the results presented in Table 6-2 and Table 6-3, the graph of Figure 6-1 

shows the advantages and disadvantages of using the NIP run-time library. Task inlining 

is significantly faster than eager and lazy task creation especially on Windows2000 where 

the thread creation costs are higher and the mutex operations are cheaper. Figure 6-1 

suggests that applications exhibiting a higher degree of parallelism than what is available 

by the hardware architecture will perform much better when tasklets are used to identify 

parallel tasks because of the benefits of inlining. 

In contrast to the benefits of the tasklet related operations, the NIPDSM operations 

introduce significant run-time overhead. A data member assignment operation on a 

NIPDSM object is considerably slower when compared to the equivalent operation on a 

virtual memory object. This is attributed to the high run-time cost that the NIPDSM lock 

and unlock operations introduce. According to the NIP execution model semantics, every 

operation on an object must be included within a pair of lock and unlock operations 

(Chapters 2 and 4). As discussed in Chapter 4, though, memory access can be improved 

by including consecutive calls on the same object within just one pair of lock and lock 

operations. It should also be noted that the NIPDSM objects might be safely accessed in 

a concurrent manner. In contrast, the virtual memory objects are not guarded from any 

form of concurrent access. 
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Figure 6-1: The speedup and slowdown of NIP primitive operations over the corresponding operating 

system operations on four different configurations 
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The overhead of the NIPDSM operations is due to a number of factors. A lock 

operation on a NIPDSM object includes: 

• NIPDSM dereference. The NIPDSM object representation structure of the 

object to be locked must be located. This involves operations on the NIPDSM 

reference to identify the correct path to the object’s representation in the 

NIPDSM virtual object table (Chapter 4). 

• Mutex acquire/release operations. Access to the NIPDSM object 

representation is critical and needs to be protected. Two concurrent tasks on the 

same NIP node should not be allowed to access simultaneously the same 

NIPDSM object representation. This does not imply, of course, that two tasks 

cannot have a read lock on the same object at the same time. 

• C++ STL operations. The current implementation of the NIPDSM uses the 

list<T>, set<T> C++ Standard Template Library (Stroustrup 1997) classes to 

maintain necessary information about the state of the object (e.g., the nodeIDs of 

the proxies, the queue of lock requests, the NIPDSM references of the associated 

objects, etc.). A NIPDSM lock operation may involve calls to instances of one of 

those classes, which are probably computationally more expensive than a custom 

solution, similar to the one adopted for the tasklet availability queue. 

• Node type and lock information check. The type of the node (i.e., manager, 

read proxy, write proxy) must be checked to ensure the current NIP node has 

permission to satisfy a lock request. Finally, the current lock on the object is 

checked to ensure that the multiple readers/single writer object access model is 

preserved. 

Most of the overheads described above can be avoided for immutable objects only when 

the locking operation takes place on the manager node of those objects. This is the reason 

for the difference in the performance of the locking operations presented in Table 1-1 

and Figure 6-1. 

6.4. NIPLTC Micro-Benchmarks 

The investigation into the performance of the NIP run-time techniques starts with the 

evaluation of NIP lazy task creation. A number of micro-benchmarks are devised to test 

the applicability of NIPLTC. The benchmarks are executed both on the shared-memory 
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and distributed-memory architectures. The tests attempt to measure the additional 

overhead incurred due to NIPLTC but also the speedups that can be achieved. 

None of the tests that follow attempt to make a direct comparison between NIPLTC 

and eager task creation. Eager task creation would have introduced a great execution 

overhead, as the thread creation costs shown in Table 6-2 (page 115) suggest, for the 

applications with a great degree of parallelism that are examined next. Of course, the 

applications could be explicitly written in a manner that better utilised the available 

computational resources but, then, they would not comply with the semantics of the NIP 

programming and/or execution models. The benefits of lazy over eager task creation were 

presented in previous works (Goldstein 1997; Goldstein et al. 1996; Mohr et al. 1991). 

This section concentrates on establishing the applicability of NIPLTC under different 

cases of parallel computations. 

6.4.1. Iterative Tasklet – Parallel Map – APP 

The first of the micro-benchmarks involves the iterative tasklet construct (Chapter 3), an 

instance of which is used to represent a data parallel computation. The computation 

involves the application of a function f on the elements of a vector. Code 6-1 presents the 

pseudo code of the data parallel computation, in harmony with the NIP programming 

model semantics. 

Both the size of the vector and the granularity of the function are varied in the 

following tests. The vector size determines the degree of parallelism and the grain size of 

the applied function controls the granularity of every potentially parallel task. 

main() 
  Vector<double> vector(X) 
  for i = 0 to vector.size() 
    f(a[i]) 
 

Code 6-1: Pseudo code for an iterative computation

Parallel Tasks Executing Single Iterations 

By means of an appropriate NIP-aware compiler, Code 6-1 can be translated to Code 6-2, 

which is consistent with the NIP execution model semantics without the object memory. 

The parallelism in the computation is expressed through an iterative tasklet. All the 

iterations in the loop of Code 6-1 are exposed as potentially parallel tasks through just one 

instance of the NIP iterative tasklet (Code 6-2). However, a lazily created task from the 

tasklet can execute only one iteration. 
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The MapTasklet tasklet class is not part of the NIP run-time library (Chapter 4). It 

is a specialisation of the general Tasklet type and it is specifically created for the benefit 

of this micro-benchmark. The createTask(NIPTask&) method (Chapter 3) of the 

tasklet explicitly places the required data into the state of the task being created. Hence, 

there is no need for the object-based-shared memory of the NIP execution model (i.e., 

the NIPDSM). In this manner, the performance evaluation of the micro-benchmark can 

concentrate on issues related to NIPLTC, without the influence of the NIPDSM. A 

version of this micro-benchmark, which depends on the object memory for data access 

and uses one of the NIP run-time library provided tasklets, will be employed later in this 

chapter, in the assessment of one of the NIPDSM caching techniques. 

main() 
  Vector<double> vector(X) 
  MapTasklet<double, f> tasklet(vector) 
  tasklet.waitOrInline() 

Code 6-2: The resulting pseudo code from the translation of Code 6-1 consistent 
to the NIP execution model semantics without object memory 

Although the cost of the tasklet related operations were measured and presented in 

Table 6-3 (page 116), the overall run-time overhead on the computation is also calculated 

here. The sequential version of the computation of Code 6-1 is implemented in C++ and 

compared against the NIP version executed on one node. The difference between the 

execution times of the two versions corresponds to the total overheads introduced due to 

the NIP run-time related operations. 

 Vector size 

 100 500 1000 2000 

0.01 8.92% 7.29% 8.73% 7.17% 

0.03 2.04% 1.69% 1.62% 1.40% 

0.05 1.40% 0.99% 0.92% 0.84% 

0.11 0.69% 0.51% 0.38% 0.65% 

0.27 0.29% 0.26% 0.88% 0.25% 

0.54 0.20% 0.19% 0.15% 0.16% 

1.35 0.14% 0.14% 0.13% 0.15% 

2.69 0.12% 0.14% 0.10% 0.09% 

5.38 0.08% 0.10% 0.12% 0.10% 

8.07 0.20% 0.29% 0.10% 0.08% 
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10.76 0.09% 0.08% 0.08% 0.12% 

Table 6-4: The execution overhead introduced due to NIP run-time related operations as a percentage of 
the execution time of sequential version of the computation presented in Code 6-1 

Table 6-4 shows the additional overhead incurred from the execution of the NIP 

version of the computation as a percentage of the C++ sequential version. As the 
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granularity of the function applied to the elements of the vector increases, the effect of 

the NIP related operations decreases. This is because the NIP related overheads are fixed. 

They are only incurred during the construction and destruction of the iterative tasklet 

instance and during a stealing operation for an iteration (Chapter 3) that is to be executed 

inline. Therefore, the increase of the function’s granularity does not introduce additional 

overheads. 

Next, the speedup achieved from the execution of the NIP version of the 

computation on the APP is measured (Figure 6-2). For fine granularities, a smaller rate in 

the efficiency is observed as the number of nodes increases (Figure 6-3). This is due to the 

great communication overheads on the APP and the high cost of lazily creating tasks on 

remote nodes, as shown in Table 6-3 (page 116). The number of task stealing operations 

increases with the number of nodes, thus the introduced run-time overheads are higher. 

When the granularity of the computation is fine, the impact of these overheads is greater 

and, as a result, the efficiency is affected. 
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Figure 6-2: Speedup achieved on 2, 4, and 8 nodes (vector size: 100, 500, 1000, 2000) 
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Figure 6-3: Efficiency achieved on 2, 4, and 8 nodes (vector size: 2000) 
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Figure 6-4: % of tasks created out of 2,000 possible for different function granularities and for different 

number of nodes used (non-optimised iterative tasklet) 

In order to support the above argument, the number of lazily created tasks was 

measured. The percentage of the tasks that were created depends on the granularity of the 

function and the number of nodes used, as Figure 6-4 suggests. When the granularity of 

the function is large, the secondary nodes of the parallel system have more chances of 

stealing iterations from the primary node, which is inlining as many iterations as possible. 

Furthermore, as the number of nodes increases, more parallel tasks can be executed 

simultaneously. 

It is expected that the potentially parallel work be evenly distributed on the available 

processing nodes. For example, on 2, 4, and 8 nodes, it is expected that 50%, 75%, and 

87.5% of the available tasks are lazily created and executed on the available processors 

respectively. Figure 6-4 presents the percentage of tasks that were lazily created during the 

execution of the micro-benchmark. When 8 nodes are used, the measured number of 

lazily created tasks surpasses what was expected (the 87.5% line of Figure 6-4 

demonstrates the anomaly). Since only one node in the parallel system has available work 

to offer, all the other nodes attempt to steal tasks from it. As that node has to deal with 

the requests, it does not get enough time to execute its part of the computation (i.e., inline 

iterations). Therefore, other nodes execute a larger piece of the entire computation. 

The results of Figure 6-4 suggest that both NIPLTC and the NIP load balancing 

service work well together to distribute the work around the parallel system. However, 

since the additional overhead of lazily creating a task for the execution of only one 

iteration is significant, the performance of the micro-benchmark is poor for smaller 

granularities. 
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Parallel Tasks Executing Groups of Iterations 

The number of parallel tasks actually created from the iterative tasklet presented above is 

very large. Every task that is lazily created only executes one iteration. Chapter 3 proposed 

an optimisation to the original iterative tasklet by suggesting that a group of iterations 

could be executed together. In this manner, the granularity of the lazily created parallel 

tasks could be implicitly increased. 

main() 
  Vector<double> vector(X) 
  MapTaskletGroup<double, f> tasklet(vector) 
  tasklet.waitOrInline() 

Code 6-3: Optimised version of the pseudo code presented in Code 6-2

The iterative tasklet of Code 6-2 is replaced by a new specialisation of the tasklet 

construct. The new tasklet allows a group of iterations to be stolen at a time. The default 

number of iterations to be included in a group is calculated according to Equation 6-1. If 

during the execution of an application the number of the remaining, non-evaluated 

iterations is less than the group size, then all the iterations are included in the same group. 

The equation divides the total number of iterations into groups, according to the optimal 

availability of computational resources in the parallel system (it is assumed that every NIP 

node in the parallel system has an equal number of processors). The size of the group is 

divided by two to give the NIP node that created the iterative tasklet more chances of 

inlining iterations. When the iterations are fine-grained, the execution of the application 

suffers less from the overheads of lazily creating tasks because more iterations can be 

executed inline, since a smaller part of the entire computation is executed on remote NIP 

nodes. 

2∗∗
=

processorsofnumbernodesofnumber
iterationsofnumbertotalsizegroup Equation 6-1 
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 Vector size 

 100 500 1000 2000 

0.01 2.98% 1.73% 0.85% 1.03% 

0.03 0.70% 0.29% 0.32% 0.11% 

0.05 0.59% 0.28% 0.67% 0.18% 

0.11 0.31% 0.22% 0.05% 0.06% 

0.27 0.18% 0.15% 0.10% 0.10% 

0.54 0.13% 0.11% 0.14% 0.10% 

1.35 0.19% 0.10% 0.09% 0.20% 

2.69 0.09% 0.12% 0.08% 0.07% 

5.38 0.06% 0.08% 0.11% 0.09% 

8.07 0.19% 0.08% 0.09% 0.08% 
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10.76 0.12% 0.08% 0.08% 0.10% 

Table 6-5: The execution overhead introduced due to NIP run-time related operations as a percentage of 
the execution time of sequential version of the computation presented in Code 6-3 

The optimised version reduces the NIPLTC related overheads because the number of 

stealing operations is decreased. Table 6-5 presents the run-time overhead as a percentage 

of the C++ sequential version of the computation. When compared to Table 6-4 (page 

119), it is clear that for smaller granularities the overhead is dramatically reduced. There is 

no difference for larger granularities because the NIP related overhead is minimal when 

compared to the total computation time. 

The grouping approach to stealing iterations from a tasklet dramatically improves the 

performance of the run-time environment for smaller granularities. The same degree of 

speedup is achieved but for smaller granularities than was possible with the iterative 

tasklet of the previous section. Figure 6-5 compares the speedup achieved for function 

granularities up to 3msecs for both the grouping-capable and the original iterative tasklets. 
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Figure 6-5: Comparison between the speedups achieved when a single iteration (top row) is stolen and 
when a group of iterations (bottom row) is stolen, for 2, 4, and 8 nodes and for fine granularities of the 

function (vector size: 100, 500, 1000, 2000) 

The nodes of the parallel system are kept busy without having to continuously steal 

jobs from others because they receive more than one iterations to execute at a time. 

Despite the implicit increase in the granularity of the parallel tasks, the degree of 

parallelism of the entire application is not reduced. When a node receives a group of 

iterations, a new tasklet is immediately created to represent the potentially parallel tasks in 

the delivered group. Then, the node starts inlining the iterations from the created tasklet 

while others can steal work from it. This approach also means that there is a better 

distribution of work in the parallel system. Now, it is not only the node where the iterative 

tasklet was created that has available work for other nodes to steal. This means that a 

single node does not become a ‘hot spot’ for work requests, which results in better 

performance. This problem was first illustrated in the previous section (Figure 6-4, page 

120). 

Nodes sending tasks 

 Original iterative tasklet  Grouping-capable iterative tasklet 

 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

1  0 0 0 0 0 0 0  0 0 0 0 0 0 0 

2 254.0  0 0 0 0 0 0 0.6  3.3 1.7 1.0 0.3 0.7 0 

3 254.0 0  0 0 0 0 0 0.6 0  20.3 12.3 8.3 4.0 4.0 

4 254.0 0 0  0 0 0 0 0.7 0.3 0  14.0 11.0 6.7 4.7 

5 254.0 0 0 0  0 0 0 0.7 0.3 0.3 0  14.0 10.3 7.7 

6 254.0 0 0 0 0  0 0 0.8 1.3 1.3 1.0 0  16.0 8.3 

7 254.0 0 0 0 0 0  0 0.9 6.7 2.3 2.7 1.3 0  14.7 N
o

d
e
s 

st
e
a
li
n

g
 t

a
sk

s 

8 253.7 0 0 0 0 0 0  1.2 7.0 1.3 2.0 0.7 0 0  

Table 6-6: Average of the tasks stolen from the repeated execution of the tests (number of nodes used: 8, 
vector size: 2000, function granularity: ~23msecs)  
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Table 6-6 presents a comparison between the two versions of the iterative tasklet. The 

exchange of tasks between the nodes of the parallel system is recorded. In the original 

version, only the primary node (node 1) has work to offer and, as such, it becomes a ‘hot 

spot’ of work stealing requests. With the grouping-capable version, the work is better 

distributed across the parallel platform. It has to be noted that in the optimised version a 

group does not always contain the same number of iterations. The total number of iterations 

factor of Equation 6-1 may differ between nodes as it depends on the size of the group 

received. 
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Figure 6-6: % of tasks created out of 2,000 possible for different function granularities and for different 

number of nodes used (optimised iterative tasklet) 

It can also be observed that the number of tasks lazily created from the 

grouping-capable version of the iterative tasklet is significantly smaller than from the 

original version. This is attributed to the resulting larger granularity of the created tasks. 

The comparison of Figure 6-4 (page 120) and Figure 6-6 demonstrates the substantial 

difference between the numbers of lazily created tasks from the two versions of the 

iterative tasklet. 

When the grouping-capable iterative tasklet is used, the granularity of the lazily created 

tasks greatly depends on the load balancing algorithm. The algorithm used in the 

execution of this and all the other benchmarks, is the one described in Chapter 5, where a 

‘request-for-work’ message is sent to the next node (in ascending order) with a non-empty 

tasklet availability queue. However, the work stolen from secondary nodes is of finer 

granularity than the work that is stolen from the primary node. This results in fine-grained 

lazily created tasks as the number of nodes increases, which, in turn, means larger number 

of tasks (Figure 6-6). 

In the grouping-capable version, if the primary node runs out of work to inline, it des 

not have to wait for the execution of the stolen tasks to complete. Instead, it may steal 
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back some of the available work in the parallel platform. With the original version, this 

would have not been possible because there is no other work available in the parallel 

platform. In the example of Table 6-6, the primary node does not receive any tasks from 

the other nodes because the execution of all the stolen tasks finishes before the primary 

node runs out of work. 

The smaller number of lazily created tasks with coarser granularity results in better 

utilisation of the available computational resources. The nodes of the parallel platform do 

not waste valuable computational time waiting for a new task to arrive, as it is the case 

with the original version of the iterative tasklet. This observation is justified by the 

speedups for small function granularities presented in Figure 6-5 (page 122). 

6.4.2. Iterative Tasklet – Parallel Map – SMP 

The benefits of the iterative tasklet construct are also observed on physically shared 

memory multiprocessor architectures. As mentioned in Chapter 3, the implementation of 

the tasklet construct can be fine-tuned to better utilise SMP architectures. The tasks that 

are created from a tasklet have direct access to the state of that tasklet and, therefore, can 

also inline part of the associated computation. This approach reduces the number of lazily 

created tasks and improves performance by avoiding the overheads of creating new tasks. 

Since network related overheads are not incurred, NIPLTC performs significantly 

better on the 4-way SMP than on the APP. Good speedups are achieved for very fine 

granularities of the function f (Code 6-1, page 118). The grouping-capable iterative tasklet 

results in even better performance (Figure 6-7).  This is because the lazily created parallel 

tasks have a group of iterations to execute and, as a result, there is no congestion on the 

tasklet’s private lock. Every inlining operation requires that the tasklet’s private lock be 

acquired. In the case of the original iterative tasklet, every inlining operation involves only 

one iteration. In contrast, an inlining operation on the grouping-capable iterative tasklet 

involves a group of iterations and, therefore, the number of required inlining operations is 

reduced. 

Due to the fine-tuning of the tasklet construct on physically shared-memory 

architectures, as described in Chapter 3, the degree of parallelism in the application is 

implicitly reduced when the grouping-capable version of the iterative tasklet is used. All 

the lazily created parallel tasks inline iterations without creating new tasklets to maintain 

the degree of parallelism. If the degree of parallelism needs to be preserved, a suitable 

specialisation of the iterative tasklet could be implemented. 
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Figure 6-7: Speedups of the parallel map micro-benchmark on the 4-way SMP for the original (top row) 
and grouping-capable (bottom row) iterative tasklet (2 and 4 processors, vector size: 100, 500, 1000, 2000)  

Finally, it is observed that the speedup on 4 processors asymptotically reaches ~3.4 

and does not increase even with the grouping-capable iterative tasklet. Even for larger 

granularities of the function f (not shown in Figure 6-7), the speedup does not exceed 3.4. 

Although this may be attributed to a number of factors, such as smaller executable of the 

sequential code and therefore better utilisation of the processor cache, Linux thread 

scheduling, etc., it is very likely that there is a scalability problem with the 

micro-benchmark on SMP architectures. Only one tasklet is available from which all the 

lazily created parallel tasks are trying to inline iterations. A grouping-capable iterative 

tasklet that does not reduce the degree of the parallelism in the application on SMP 

architectures (i.e., new tasklets are created for every stolen group) could probably tackle 

the problem of scalability as inlining would take place from more than one tasklet 

simultaneously. 

The performance benefits due to the grouping-capable version of the iterative tasklet 

demonstrate the strength of NIPLTC and the tasklet construct over previous lazy task 

creation approaches. In all the benchmark applications that follow, when an iterative 

tasklet is required, the grouping-capable version will be used. 

6.4.3. Recursive Tasklet – Grain 

The grain micro-benchmark used for the evaluation of the recursive tasklet (Chapter 3) is 

the same one used in (Mohr et al. 1991). The grain computation recursively adds up a 

perfect binary tree. When a leaf is reached, a function is called, which controls the overall 

granularity of the computation, before the value 1 is returned. As in the original grain 

benchmark, a tree-depth of 16 is used. The number of leaves in the tree determines the 
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degree of logical parallelism of the computation given that a separate parallel task could be 

created to evaluate the function associated with each leaf. The number of potential 

parallel tasks for a tree-depth of 16 is 65,536. 

Code 6-4 presents the pseudo code of the grain micro-benchmark. A suitable, 

NIP-aware compiler could transform the program to match the NIP execution model 

semantics (Code 6-5). The NIPDSM is not used because the grain micro-benchmark does 

not require access to any objects placed in the shared memory. A more detailed discussion 

of the recursive tasklet can be found in Chapter 3. 

grain(int depth) 
  if (depth > 0) 
    return grain(depth – 1) + grain(depth – 1) 
  else 
    f() 
    return 1 
 
main() 
   grain(16) 

Code 6-4: The grain pseudo code consistent to the NIP programming 
model semantics 

grain(NIPRecursiveTasklet& tasklet, int depth) 
  if (depth > 0) 
    NIPRecursiveTaskletNode grainNode(depth – 1) 
    int tmp = grain(depth – 1) 
    tasklet.waitOrInline(grainNode) 
    return tmp + grainNode.result() 
  else 
    f() 
    return 1 
 
main() 
   NIPRecursiveTaskletNode grainNode(16) 
   NIPRecursiveTasklet tasklet(grainNode) 
   grain(tasklet, 16) 
   tasklet.waitOrInline() 

Code 6-5: The grain pseudo code converted to be consistent with NIP 
execution model semantics 

The additional overheads introduced in the execution time of the grain benchmark by 

NIP related operations are presented in Table 6-7.  
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APP 

workstation 
SMP 

workstation 

0.01 42.09% 42.65% 

0.02 13.45% 13.42% 

0.04 5.84% 5.79% 

0.06 3.61% 3.59% 

0.08 2.67% 2.64% 

0.10 2.12% 2.08% 

0.15 1.39% 1.37% 

0.20 1.01% 1.04% 
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0.50 0.41% 0.42% 

Table 6-7: The execution overhead introduced due to NIP related operations as a percentage of the 
execution of sequential version of the grain micro-benchmark for the an APP workstation and the SMP 

workstation for different granularities 

The grain micro benchmark is executed on both the APP and the SMP parallel 

platforms. The speedup achieved on the APP is presented in Figure 6-8 and the 

percentage of lazily created tasks is shown in Table 6-8. The very good speedups that are 

achieved on the APP (Figure 6-8), despite the slow network that is used (shared Fast 

Ethernet 100Mbit/s), are attributed to the following factors: 

• Tasks are stolen from the top of the recursive tasklet’s queue and, therefore, their 

granularity is coarse (Chapter 3). As a result, there are only a small number of 

coarse-grained tasks created (Table 6-8). The NIP nodes are kept busy without 

having to look for work frequently. 

• There is a good distribution of work in the parallel platform. When a task receives 

a sub-tree of the computation to execute, it creates a new tasklet to represent the 

potential parallelism in the received job. The primary node does not become a ‘hot 

spot’ of work stealing requests. 

The grain micro-benchmark performs well on the SMP workstation (Figure 6-9). Only a 

fraction of the total number of potentially parallel tasks is created. The tasks that are lazily 

created are of coarse granularity, resulting in better utilisation of resources. The 

implementation of the recursive tasklet is optimised for SMP architectures, like the 

iterative tasklet. The same factors that may be influencing the scalability of the iterative 

tasklet (Section 6.4.2) may also be affecting the recursive tasklet. Figure 6-9 suggests that 

an upper limit exists to the speedup that can be achieved on 4 processors. 



Chapter 6 

166 

  2 nodes 4 nodes 8 nodes 

0.01 0.002% 0.012% 0.038% 

0.02 0.002% 0.006% 0.055% 

0.04 0.003% 0.008% 0.095% 

0.06 0.003% 0.015% 0.037% 

0.08 0.003% 0.011% 0.044% 

0.10 0.003% 0.012% 0.082% 
0

1

2

3

4

5

6

7

8

0.0 0.1 0.2 0.3 0.4 0.5
function granularity (msecs)

sp
ee

du
p

8 nodes

4 nodes

2 nodes

 

F
u

n
ct

io
n

 g
ra

n
u

la
ri

ty
 

(m
se

cs
) 

0.15 0.003% 0.014% 0.142% 

Figure 6-8: Speedups of the grain micro-benchmark on 
the APP 

Table 6-8: Percentage of tasks created out of 
65,536 possible on the APP 

  2 processors 4 processors 

0.01 0.003% 0.034% 

0.02 0.006% 0.024% 
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Figure 6-9: Speedups of the grain micro-benchmark on 
the SMP 

Table 6-9: Percentage of tasks created out of 
65,536 possible on the SMP 

6.5. NIPDSM Micro-Benchmarks 

The micro-benchmarks of the previous section demonstrated the effectiveness of the 

NIPLTC technique on both physically shared and distributed memory architectures. 

However, none of those micro-benchmarks made use of the NIP execution model 

memory semantics that define the object-structured shared memory. In this section, a 

series of tests are used to evaluate NIPDSM, the implementation of the NIP execution 

model memory semantics, and the introduced caching techniques (Chapter 4). 

In the current implementation of the NIP run-time library, the cost of accessing an 

object in the NIPDSM is exceptionally high, as shown in Table 6-3 (page 116). At least 

one pair of acquire and release mutex operations is required for every lock operation on 

an object. On proxy nodes, two different mutexes must be acquired and released before a 

method can be called on a cached copy of the object. Locking operations on immutable 

objects that take place on the manager node of those objects are not as expensive, since 

the part of the NIPDSM locking process that guarantees thread-safe access to the 

NIPDSM VOT is not required. 

The cost of a cache miss incorporates the network communication and thread 

suspension/resumption costs, in addition to the overheads due to mutex operations on 
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both the proxy and manager nodes. The cost of accessing a cached object is very close to 

the cost of accessing an object at the manager node (Table 6-3, page 116). The additional 

overhead is attributed to an extra pair of mutex acquire/release operations that must take 

place when checking the availability of the required NIPDSM VOT tables. The 

considerable difference in the run-time overheads between a cache-miss and a cache-hit 

illustrates the importance of the object grouping caching techniques, which improve the 

cache-hit rates as will be shown shortly. 

The cost of accessing a NIPDSM object is significantly higher when compared to the 

overhead of accessing an object in virtual memory. This will probably result in 

memory-intensive applications performing poorly. Better results should be achieved for 

applications with a high computation/NIPDSM operations ratio. 

 Elapsed (usecs) 

VM object access 0.017 

NIPDSM access through NIP reference 0.094 

NIPDSM immutable object access immutable 
on manager node (lock operation) 

0.366 

NIPDSM mutable object access on manager 
node (lock operation) 

2.134 

NIPDSM cache miss 461.715 

NIPDSM cache hit 3.664 

NIPDSM proxy invalidation 451.516 

Table 6-10: Cost of NIPDSM operations 

An additional issue that affects performance of memory-intensive applications is the 

allocation of objects in the NIPDSM. Objects are not distributed around the nodes of the 

parallel system when created. Instead, the node that creates an object automatically 

becomes the manager node for that object. Many applications create all the necessary 

objects before they initiate any parallel computations. With the NIP run-time, this results 

in the node creating the objects being overwhelmed with proxy requests. 

Even if the implementation were improved, however, the cost of cache misses would 

remain high due to the overheads of the network related operations. Therefore, one of the 

main aims of the NIPDSM is to improve caching. To that extent, the analysis of the 

performance-related results that follows focuses primarily on the applicability of the 

NIPDSM caching techniques for various memory access patterns. 

In the performance evaluation that follows, a specific NIPDSM caching technique is 

enabled or disabled according to the requirements of a particular micro-benchmark. 
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However, even when none of the caching techniques is enabled, an object may be found 

in the cache of a proxy node due to temporal locality. This is because the NIP entry 

consistency semantics specify that an object remains at a node until it is invalidated 

(Chapter 4). The micro-benchmarks that follow explicitly invalidate cached objects when 

required in order to investigate the characteristics of a specific object caching technique. 

Finally, in the discussion that follows, ‘no caching’ means that none of the object 

grouping techniques was used. 

6.5.1. Object Grouping Based on Location – Parallel Map 

The micro-benchmark of Section 6.4.1 is modified and used in the evaluation of the first 

of the caching techniques. The version of the benchmark that was used to test NIPLTC 

did not make use of the memory semantics of the NIP execution mode because no shared 

memory was assumed. The required data for the execution of an iteration was transferred 

as part of the Task object. 

The code of the micro-benchmark that is consistent with the NIP execution model 

semantics is presented in Code 6-6. The NIPIterativeTaskletGroup tasklet is part 

of the NIP run-time library. The only data exchanged between nodes as part of the lazy 

task creation process is the argument to the function that is executed for each iteration, a 

NIPRef<double> instance in this case. The availability of any data is guaranteed 

through the NIPDSM locking operations. For every iteration in the loop, the required 

element from the vector must be locked before it can be accessed (Code 6-6). 

typedef NIPObject<double> Double 
 
iter(int i, NIPRef<Double> vectorRef) 
  Double& d = vectorRef[i].lockRead() 
  f(d) 
  vectorRef.unlock() 
 
main() 
  NIPRef<Double> vectorRef = NIPDSMNewObject<Double>(Mutable, N) 
  NIPIterativeTaskletGroup<NIPRef<Double>, iter> tasklet(N, vectorRef) 
  tasklet.waitOrInline()  

Code 6-6: Pseudo code for the parallel map micro-benchmark consistent with the NIP execution model 
semantics 

The application of Code 6-6 exhibits spatial locality in memory access. This is because 

the elements of the vector are spatially adjacent to each other and they are accessed in an 

iterative manner. The object grouping caching technique was designed and implemented 

to favour this particular memory access pattern. 

The following series of speedup graphs illustrate the impact of the caching technique 

to the performance of the micro-benchmark (Figure 6-10). The first row of graphs shows 
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the speedups achieved for 2, 4, and 8 nodes without the use of any caching techniques. In 

contrast, the graphs of the bottom row are generated from the execution of the 

micro-benchmark with object-grouping based on location enabled. 

The performance of the micro-benchmark is improved when the caching technique is 

enabled. Due to the overheads associated with the NIPDSM, the speedups attained are 

worse, but not to a great extent, than what was achieved with the earlier version of the 

micro-benchmark (Figure 6-5, page 122). Since the NIPDSM related overheads are fixed, 

the executions of the micro-benchmark for large granularities are affected less. For 

example, for a granularity of 22.91msecs and vector size of 2,000 on 8 nodes (this 

configuration is not shown in any of the graphs of Figure 6-10), a speedup of 7.3 is 

achieved, which compares to the speedup of 7.6 that was possible with the non-NIPDSM 

version. For the same configuration (i.e., function granularity, vector size, and number of 

nodes) but without object grouping enabled, a speedup of only 6.3 is achieved. The 

micro-benchmark performs poorly when caching is disabled because the tasks on 

secondary nodes are repeatedly suspended. This is because the execution of every iteration 

has to suspend on a locking operation until the object being accessed can be fetched from 

its manager node, which in this case is always the primary node. When the granularity of 

the function is fine, the additional run-time cost of the cache miss overwhelms the 

execution time. Object grouping reduces the number of times the execution has to wait. 
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Figure 6-10: Comparison between the speedups achieved when a caching technique is not used (top row) 
and when a object grouping based on location (bottom row) is used (number of nodes: 2, 4, 8; vector size: 

100, 500, 1000, 2000) 

The graphs of Figure 6-10 give the impression that as the number of nodes increases, 

the advantages due to object grouping based on location become less obvious. There 

seems to be an association between the number of nodes, the degree of logical parallelism 
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and the speedup achieved. A greater number of nodes result in poorer speedups for 

smaller vectors. 
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Figure 6-11: Cache-hit rates for the map micro-benchmark on 2, 4, and 8 nodes and for different 

granularities of the function (vector size: 100, 500, 1000, 2000) 

The total number of available potentially parallel tasks in the system is fixed for this 

micro-benchmark and it depends on the size of the vector used. As the number of the 

available processing nodes increases, the available work is split to smaller groups through 

NIPLTC and distributed across the parallel system. The smaller number of iterations on a 

node results in a lower cache-hit rate. Consequently, the total cache-hit rate on the parallel 

system is reduced, which results in reduced performance. Figure 6-11 confirms the above 

discussion. For larger vectors, the number of iterations executed on each node is enough 

to keep the cache-hit rate high. 

The decrease in performance due to the increase in processing nodes for the parallel 

map micro-benchmark would have been the same with any page-based caching scheme. 

The high cache-hit rates that have been achieved demonstrate that object grouping based 

on location can benefit applications exhibiting spatial locality in memory access. 

6.5.2. Object Grouping Based on Associations – TreeSum 

Object grouping based on associations is the NIPDSM caching technique that attempts to 

improve the memory access times for applications that traverse through dynamically 

created data structures, like lists, trees, etc. NIPDSM can make use of information about 

the layout of the data structures at run-time, in order to increase the cache-hit rates. 

Applications are required to explicitly identify the associations between objects (Chapter 

4). The identified associations are used when NIPDSM chooses the objects to be included 

in a cache block. 

A new micro-benchmark was devised to test the behaviour of the caching technique. 

It is assumed that a tree of arbitrary depth is created dynamically over time and that this 

results in the nodes of the tree being spread throughout the memory (i.e., the nodes are 

not spatially adjacent). A node is a NIPDSM object and, therefore, it needs to be locked 
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before its state can be accessed. Each node has four children and stores the value 1. 

During the construction of the tree, every node is associated with its children. 

Once the tree has been initialised, a task is created on a secondary node to calculate 

the summary of all the values in the tree. In order to allow the performance evaluation to 

concentrate on the NIPDSM technique, the NIPLTC is not used in this 

micro-benchmark. 

Since each node in the tree is accessed only once and the nodes are not considered to 

be spatially adjacent, every locking operation would cause a cache-miss even when the 

object grouping based on location caching technique is enabled (i.e., cache-hit rate of 0%).  

The treesum micro-benchmark was executed for a varying number of tree nodes and 

cache block sizes. The achieved cache-hit rates range between ~36% and ~93% (Figure 

6-12). Figure 6-12 suggests that the cache-hit rate depends on both the depth of the tree 

and the size of the NIPDSM cache block. 

The size of each of the nodes in the tree is 64 bytes. Table 6-11 presents the total 

number of objects for the different tree depths. The entire tree is transferred from the 

primary node to the secondary node, where the tree traversal algorithm is evaluated. The 

number of objects is the same as the total number of locks required for the entire tree to 

be traversed. As the size of the cache block increases, more objects can be transferred 

together during a locking operation. However, as Figure 6-12 demonstrates, there are 

cases where for the same number of objects (constant tree depth) a larger cache block 

does not result in cache-hit rate increase. 

There does not seem to be a clear link between the effectiveness of the NIPDSM 

caching technique in terms of cache-hit rate, the cache block size, and the depth of the 

tree. The reason for the results of Figure 6-12 can be found if the behaviour of the 

NIPDSM caching algorithm is considered. Figure 6-13 presents an example that illustrates 

the correlation between the tree size, the cache block, and the cache-hit rate. Two 

quadruple trees are shown of size 3 and 4 respectively. If it is assumed that a NIPDSM 

cache block can only accommodate four objects, then the cache-hit rates for the two trees 

are 19% and 78.8% respectively. The significant difference in the cache-hit rates between 

the two trees is attributed to the manner in which NIPDSM places associated objects in 

the cache block. 
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Figure 6-12: Cache-hit rate for the treesum micro-benchmark for different 

tree depths and cache block sizes 
Table 6-11: Number of 
objects transferred (and 
read lock operations) for 

each tree depth and size of 
each tree node 
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Figure 6-13: Example of object grouping based on relations and the association between the tree-depth and 

the number of cache hits 
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Figure 6-14: Cache block usage for the treesum benchmark 

As Chapter 4 described, the associations between NIPDSM objects formulate a graph. 

The algorithm used to place objects into the cache block traverses the graph of 

associations in a breadth-first manner. This means that if the last objects to be placed in 
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the cache block are those at the depth-1 level, then all their children (i.e., the leaves) will 

have to be cached on their own because they are not associated with any other object 

(first tree of Figure 6-13). If, however, when an object at depth-1 is placed in the cache 

block and there is still space for other objects, its children will also be included (second 

tree of Figure 6-13). 

Different cache block sizes result in distinct object caching behaviour. To illustrate 

this, the cache block usage is calculated and presented in Figure 6-14 for different cache 

block sizes. The total number of objects that fit into a cache block can be determined 

since the size of each tree node is known (Table 6-11). As it is shown in Figure 6-14, the 

cache block is not fully used. 

Despite the variations in the cache-hit rate and the non-optimal use of the cache 

block, good cache-hit rates were achieved (Figure 6-12). This demonstrates the 

effectiveness of object grouping based on associations when data structures are accessed 

because the significant overheads of cache-misses (Table 6-10, page 128) will not be 

incurred to the same extent as when the cache-hit rate is low. The cache-hit rate may be 

low or even zero when none of the object grouping caching techniques is enabled or 

when object grouping based on location is used, since the tree nodes are not spatially 

adjacent. The object grouping based on locking history (examined in the next section) 

would not have increased the cache-hit rate either, since the tree nodes are only accessed 

once (i.e., there is no recurring object access). 

The observed problems were due to the mismatch of the tree traversal and NIPDSM 

object grouping algorithms. A tree with fewer children per node would suffer less from 

the problem discussed above, while the cache-hit rate for other data structures, like lists, 

will be significantly better (i.e., the maximum use of the cache block is achieved). 
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Figure 6-15: Object 

associations in order to 
improve the cache-hit rate 

Figure 6-16: Cache-hit rate for the optimised treesum micro-benchmark for 
different tree depths and cache block sizes 

If the cache-hit rate for this algorithm was to be improved, additional associations 

between objects are required. Besides the associations of each tree node with its children, 

the left most node in each subtree is associated with the nodes with which it shares its 

parent (Figure 6-15). The cache-hit rate is improved and it is almost identical for all the 

tree depths. 

To further illustrate the benefits of the object grouping based on associations caching 

technique, the cache-hit rate achieved from the execution of a micro-benchmark similar to 

treesum was also measured. In the list-iteration micro-benchmark, a task is created on a 

secondary node to iterate through the nodes of a list data structure, the nodes of which 

are spread in memory (i.e., the nodes of the tree are not spatially adjacent). Every node of 

the list is associated with its next node (Figure 6-17). The cache-hit rate achieved is shown 

in Figure 6-18. 

associations & order of list traversal

 
Figure 6-17: An example of a list data structure and the associations between nodes 
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Figure 6-18: Cache-hit rate for the list-iteration micro-benchmark (number of elements in the list: 1,000, 

5,000, 10,000, 20,000) 

The object grouping technique could be used for objects that are associated with each 

other even if when they are not part of the same data structure. The graph of associations 

between NIPDSM objects could identify a memory access pattern in an application or 

even explicit links between otherwise unrelated objects. The matrix multiplication 

benchmark investigates the use of object associations in defining memory access patterns 

(Section 6.6.1). 

6.5.3. Object Grouping Based on Access History – Tree Search 

The final NIPDSM caching technique to be evaluated is the object grouping based on 

access history. A new micro-benchmark was devised to test the technique. A sorted binary 

tree of 1,024 objects is created and a search algorithm is used to locate a random object in 

that tree. The search algorithm is repeated 1,000 times for a different random object each 

time. 

A task is explicitly created using appropriate NIP run-time library calls on a secondary 

node. As a result, none of the objects required by the search algorithm are available locally 

on that secondary node. After the completion of the search algorithm, all the objects that 

have been fetched from the primary node are flushed from the secondary node’s cache. 

The next invocation of the search algorithm will not find any objects available on that 

secondary node. 

The random object used as a criterion in the search algorithm is chosen from one of 

the following pre-specified ranges in turn: the first 128
1,32

1,16
1,2

1  part of the sorted range 

of leaves. In order to allow the performance evaluation to concentrate on the NIPDSM 

technique, the NIPLTC is not used in this micro-benchmark. Furthermore, the elements 
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of the tree are assumed not to be spatially adjacent to each other. Hence, enabling the 

object grouping based on location technique would not result in any cache-hit rates. 

As the range from which the object is randomly selected becomes narrower, the 

chances the search algorithm will access objects in the same order increases. The top part 

of the tree that is common for all runs of the search algorithm includes more objects. As 

an example, the first four steps of the micro-benchmark for 16 leaves are illustrated in 

Figure 6-19. When object 5 is to be located, none of the objects along the route is 

included in the cache block as part of a grouping operation, resulting in zero cache-hit 

rate. However, NIPDSM records the order in which the objects are accessed and uses that 

information in the next run. If object 7 is to be located by the search algorithm, the lock 

on object a will result in objects b and e to be cached as well (the cache-hit rate is 2/5). 

Although the link from object e to object i is lost (Section 4.8.4, page 90), the link from 

object i to object 5 is maintained. As more instances of the algorithm are executed, the 

locking history information is built up. In Figure 6-19, the random object was chosen 

from the first half of the set of leaves. This resulted in objects a and b always being 

locked, during an execution of the search algorithm. If the object was selected from the 

first quarter of the same set, objects a, b, and d will always be cached as a group. 
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Figure 6-19: Example of locking operations in the tree search micro-benchmark 
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Figure 6-20: Cache-hit rates of object grouping based on access history for the tree search 

micro-benchmark (binary tree leaves: 1,024; random objects used as criteria for the search algorithm are 
selected from the 128

1,32
1,16

1,2
1  of the set of leaves) 

Figure 6-20 presents the results from the execution of the micro-benchmark. A dot in 

the graph indicates the cache-hit rate achieved for one invocation of the search algorithm. 

The line represents the trend of the cache-hit rate. As expected, a narrower range of 

objects from which a random one is chosen results in higher cache-hit rates (the trend 

lines of Figure 6-20) because more objects are accessed in a recurring manner. The 

cache-hit rates for the first 50 repetitions of the algorithm are shown in Figure 6-21. 

Finally, Figure 6-22 presents the evolution of the cache-hit rate as the range from which 

the random objects are chosen becomes narrower. 
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Figure 6-21: Cache-hit rates of object grouping based on access history for the tree search 

micro-benchmark for the first 50 repetitions of the search algorithm (binary tree leaves: 1,024; random 
objects used as criteria for the search algorithm are selected from the 128

1,32
1,16

1,2
1  of the set of leaves) 
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Figure 6-22: Evolution of the cache-hit rate when the range from which the random objects are chosen 

becomes narrower 

The cache-hit rates achieved from the execution of the micro-benchmark demonstrate 

the applicability of the object-grouping based on access history for applications that 

exhibit recurring behaviour when accessing objects in memory, such as implementations 

of search algorithms, web or database servers, numerical applications, etc. 

6.6. Applications 

After the separate examination of the NIP run-time techniques, the discussion moves to 

the analysis of the results obtained from the performance evaluation of three applications, 

with both NIPLTC and NIPDSM activated. All three applications utilise the grouping 

capable iterative tasklet for identifying parallelism. 

In the discussion that follows, ‘no caching’ indicates that none of the object grouping 

techniques was used to improve the cache-hit rate. However, when individual objects are 

cached, even if none of the object grouping techniques is used, temporal locality can still 

be exploited. According to the NIP entry consistency semantics, a proxy node maintains 

an object in its cache until it is invalidated (Chapter 4). 

6.6.1. Matrix Multiply 

Design 

The first application to be examined implements a matrix-by-matrix multiplication 

algorithm. A matrix is regarded as a two-dimensional array. If the dimensions of the 

matrix are N rows by M columns, then M+1 NIP references are required to represent a 

Matrix instance. Since the subscript operator (operator[]) is available for NIP 

references and it offers a similar behaviour to the subscript operator on virtual memory 
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pointers, it is not necessary to store all the possible NIP references to the matrix elements 

(N*M in total) (Table 6-12). 

[0] NIP reference to column 0  [0] NIP reference to matrix element 

[1] NIP reference to column 1  [1] NIP reference to matrix element 
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[M – 1] NIP reference to matrix element 

Table 6-12: NIP references required for representing the layout of a matrix 

template<class T> 
class Matrix : public NIPShared<Matrix<T> > 
{   
public: 
   Matrix(size_t, size_t); 
   ~Matrix(); 
 
   typedef T                             MatrixElement; 
   typedef NIPRef<MatrixElement>         ColumnRef; 
   typedef NIPRef<NIPObject<ColumnRef> > RowRef; 
 
   RowRef row(size_t); 
private: 
   Matrix(); 
   RowRef  _rowsRef; 
   size_t  _m, _n; 
}; 
 
typedef Matrix<NIPDouble> MatrixOfDoubles; 

Code 6-7: The Matrix class 

The Matrix C++ interface is presented in Code 6-7. Since NIPRef<T> is 

considered a primitive type, its instances cannot be allocated directly into the NIPDSM. A 

wrapper template class (NIPObject<T>) is made available by the NIP run-time that may 

be used when primitive types are to be allocated in the NIPDSM. For the purposes of this 

test, the elements of the matrix are of type NIPDouble, a type provided by the NIP 

runtime library and which is equivalent to NIPObject<double>. 
Matrix instance

matrix reference lock
rows reference

NIPObject instance

column reference

double instance

lock
lock

 
Figure 6-23: Series of locking operations when accessing a Matrix element 

In order to be consistent with the NIP execution model memory semantics, three 

NIPDSM locking operations are required before an element of a matrix instance may be 

accessed (Figure 6-23). The significant run-time overheads of the NIPDSM locking 

operations (Section 6.3.2 and Section 6.5) overwhelm the computation, as the results 

presented later in this section demonstrate. A total number of MN ××3  lock operations 

are required when all the elements of a matrix of size MN ×  are accessed. The number 
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of lock operations for the multiplication of two matrices of size MN ×  and LM ×  is 

given by Equation 6-2. However, it is reasonable to assume that a compiler can optimise 

the access to the matrices by reducing the number of locks required. For example, when 

the elements of an entire column are accessed, the NIPObject containing the NIP 

reference to that column need not be locked every time (second lock in Figure 6-23). In 

the implementation of the matrix multiplication application that is used here, the number 

of locks required is reduced and is given by Equation 6-3. 

LNMLN ××+×××× 332 Equation 6-2

LNMLNN ×+×××+× 35 Equation 6-3

An alternative design of the Matrix class could have eliminated part of the run-time 

overhead and significantly improve performance. The value of the matrix elements rather 

than their references could be stored in a vector object. Then, only one lock operation 

would be required when accessing a whole row or column of the matrix (depending on 

the way the matrix is represented). However, this alternative approach introduces two 

important problems: 

• The manner in which the application can access the matrix object is restricted to 

either row-wise or column-wise. 

• If exclusive access (i.e., a write lock) to an element of the matrix were required, a 

whole vector would have to be locked. As a result, the application’s logical degree 

of parallelism would have been compromised because not all the elements of the 

vector could be accessed concurrently. Furthermore, false sharing is introduced. If 

two or more parallel tasks require concurrent access to different elements of the 

matrix that belong to the same column (or row), the vector object representing the 

column (or row) will have to move from one node to another, further 

compromising performance. 

In the performance evaluation of the matrix application that follows, the first design for 

the Matrix class was used (Table 6-12, Code 6-7, Equation 6-3). 

Performance Analysis 

The NIP version of the matrix multiplication was executed on the SMP using 1, 2, and 4 

processors. The measured execution times are compared to the sequential C++ version of 

the same application. The one-processor test shows the significant overheads due to 

object locking. The observed slowdowns are reduced as the matrix size increases. This is 

because a number of lock operations ( N×5  in Equation 6-3) are performed outside the 
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dot product loop of the matrix-by-matrix multiplication. As the granularity of the dot 

product increases, the relative impact of the run-time overheads due to those lock 

operations is reduced. 
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Figure 6-24: Execution slowdowns of the matrix multiplication application on the SMP due to object 

locking when compared to the sequential C++ version 
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Figure 6-25: Execution slowdowns of the matrix multiplication application on the APP when compared to 

the sequential C++ version (number of nodes: 2, 4, 8; vector sizes: 100, 200, 300) 

Having observed the significant slowdowns on the SMP, the discussion moves to the 

analysis of the results collected from the execution of the matrix multiplication application 

on the APP. The performance is expected to be even poorer on the APP due to the 

additional network related overheads. Indeed, the slowdowns on 2, 4, and 8 nodes are 

extremely high, as presented in Figure 6-25. 

When any of the caching techniques is enabled, the performance is dramatically 

improved, especially for smaller matrix sizes, compared to the execution of the application 

with ‘no caching.’ Cache hits due to temporal locality are still observed. All three 

NIPDSM caching techniques are in turn used for the execution of the application.  

When the object grouping based on locking history technique is enabled, NIPDSM 

records the locking pattern as the elements of the matrix are accessed and it uses the 

information to improve caching. The locking access pattern can also be explicitly defined 

through object associations. Each element of a matrix is associated with the next element 

in the same matrix that is to be locked during the dot product loop. 
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Even with the caching techniques enabled, the application performs very poorly when 

compared to the sequential C++ version. This may be attributed to the following factors: 

• A task has to suspend whenever an element of the matrix is accessed on a 

secondary node. Since the grouping-capable tasklet is used, the number of dot 

product calculations that take place on the secondary nodes is high. Therefore, the 

computation is overwhelmed by task suspensions and proxy requests. 

• Even when caching is enabled, a task has to suspend on every write lock 

operation. The default behaviour of the NIPDSM is not to attempt to improve 

cache-hit rates for write lock operations by write locking groups of objects. This is 

because it is assumed that the read/write object-locking ratio in applications is 

high. If a cache block was filled with write locked objects in response to a write 

proxy request, a great number of invalidations would have been required by 

subsequent locking requests that are initiated on different nodes. 

• The sequential version of the application can better utilise the processor cache 

because of the small size of its executable image. 

The performance of the application on the APP is also influenced by the distribution of 

work on the parallel platform. As discussed in Section 6.4.1 (page 118), the number of 

lazily created tasks on a node does not necessarily determine the actual work performed at 

that node when the grouping-capable iterative tasklet is used. However, the number of 

dot product computations executed on a node can be determined through the write lock 

operations on that node (Figure 6-26). A write lock operation only takes place once for 

every dot product computation (i.e., when the result is stored to appropriate element of 

the results matrix). The positive effect of the caching operations is illustrated by the even 

distribution of work around the platform. 
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Figure 6-26: % of tasks executed at each node (vector size: 250x250, number of nodes: 8) 
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When the object grouping based on location caching technique is used, a number of 

proxy invalidations take place. This is because objects belonging to the results matrix are 

cached on secondary nodes due to a read lock operation on a spatially adjacent object. On 

page-based schemes, the problem of false sharing would have arisen in this case because 

different type of access (i.e., read or write) would have been required for objects placed in 

the same page. NIPDSM avoids the problem by only invalidating the required objects. 

This is indicated by the very small number of object invalidations that take place during 

the execution of the matrix multiplication application when the object grouping based on 

location caching technique is enabled (Table 6-13). 

  Matrix size 

 100 200 300 

2 0% 0% 0% 

4 0.045% 0.002% 0.001% 

N
u

m
b

e
r 

o
f 

n
o

d
e
s 

8 0.177% 0.019% 0.004% 

Table 6-13: Percentage of cached objects that were invalidated 

The analysis of the performance results in this section demonstrates the benefits of 

both the NIP lazy task creation and NIP distributed shared memory system caching 

techniques. The work in the matrix multiplication application is lazily distributed across 

the parallel platform and the caching techniques significantly improve performance. 

However, due to the high NIPDSM locking operations on the APP and the memory 

intensive nature of the application, no speedups could be achieved. The affect of the 

NIPDSM locking operations on performance is further discussed at the end of this 

chapter. 

6.6.2. Barnes-Hut 

Design 

The Barnes-Hut application is the implementation of a simulation algorithm for a 

collisionless system of bodies (e.g., molecules, planets, stars, etc.). A new position for every 

body in the system is calculated during each step of the simulation. The new body 

position is determined by the forces applied to it by the other bodies in the system, its 

velocity, its acceleration, etc. A step of the simulation requires that the interactions 

between all the bodies in the system be considered. The Barnes-Hut algorithm reduces the 

complexity of the simulation from O(N2) to O(NlogN) by taking into consideration the 

distance of the bodies from each other. Groups of bodies that are ‘far enough’ from a 

particular body are regarded as one (Barnes and Hut 1986). The algorithm is split into 

three distinct steps: 
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• The Barnes-Hut algorithm is based on a quad- or oct-tree data structure, for the 

2D and 3D cases respectively. The trees are created by the recursive 

decomposition of the space containing the bodies into four squares (2D space) or 

eight cubes (3D space) until each node in the tree contains at most one body. The 

tree nodes that contain a body or other tree nodes are called cells. 

• Once the tree has been created, the interactions between the bodies in the system 

are calculated. For each body in the system, the tree is traversed and the distance 

from each cell in the tree is examined. If the distance between a cell and the body 

is within the critical radius (i.e., ‘far enough’ criterion), the children of the cell are 

traversed. If the distance from the cell is long enough, the interaction between the 

body and the cell can be calculated. 

• Once all the interactions have been calculated, the new position of the bodies may 

be determined. The tree is destroyed before the algorithm can be repeated starting 

from the first step. 

The Barnes-Hut algorithm is often used in DSM related works due to its irregular 

memory access pattern. The dynamically created tree structure exposes the limitations of 

the caching techniques because the benefits due to spatial or temporal locality, in the way 

memory is accessed, are limited. 

The NIP version of the Barnes-Hut algorithm uses NIPDSM objects to represent 

bodies and cells. The bodies of the system are stored in a vector throughout the 

simulation. An oct-tree is constructed during the first step of the simulation (3D space). 

The nodes of the tree are associated with their children in an attempt to improve the 

access times when the object grouping based on associations caching technique is 

enabled. The second step of the algorithm requires that the interactions of every body in 

the vector be calculated. The potential parallelism in the second step is exposed through a 

grouping-capable iterative tasklet. The tasklet used in the current implementation inlines 

groups of iterations, rather than one, at a time. Finally, the tree is destroyed during the 

third step. The first and the third step always take place on the primary node since any 

potential parallelism in them has not been exposed. As a result, all the bodies that are 

cached on secondary nodes are invalidated during the third step because their state is 

updated (i.e., the result from the interactions is used to determine the new position). 

The initial position of the bodies is randomly selected before the first step of the 

simulation and it is the same for all the tests. The oct-tree is different for every step of the 

simulation as the bodies change positions. The total number of locks required during 
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every step dramatically increases for larger number of bodies. For example, an average 

number of ~468,000 read and ~154,000 write locks per step are required for 512 bodies. 

The corresponding number of locks for 8,192 objects are ~61,000,000 and ~20,000,000 

respectively. 

Performance Analysis 

The performance characteristics of the Barnes-Hut application are recorded separately for 

each step of the simulation. Due to the great number of locking operations required for 

every step of the simulation, the run-time overheads are dramatically increased resulting in 

significant slowdowns. The run-time overhead is measured to be approximately 11% of 

the execution time of the sequential version (number of bodies: 512, 1024, 2048, 4096). 

However, when the application is run on more than one node, the cost of accessing 

non-cached objects affect performance to a greater extent, as is shown below. 

Figure 6-27 presents the measured slowdowns on 2, 4, and 8 nodes for different 

number of bodies. In Figure 6-28, the same results are shown in finer detail only for the 

larger number of bodies. When the granularity of the computation is fine (i.e., smaller 

number of bodies), the slowdown on a larger number of nodes is higher. This is attributed 

to the overwhelming runtime costs of object replication to secondary nodes when 

compared to the total computation time. As the granularity increases, the NIPDSM 

related overheads become comparably less evident. 

The cache-hit rates achieved from the execution of the Barnes-Hut application on the 

APP are presented in Figure 6-29. The cache-hit rate is exceptionally high because of the 

temporal locality in memory access that the application exhibits. During a body-to-body 

or body-to-cell interaction, every body or cell is locked a great number of times. Higher 

rates are achieved when object grouping based on location is enabled. 

It would have been expected that higher cache-hit rates would yield improved 

application performance. However, this is true only for larger number of bodies (Figure 

6-28).  When Figure 6-27 and Figure 6-29 are compared for smaller number of bodies, it 

is clear that the significant difference in cache-hit rates does not result in performance 

improvement over the execution of the application when none of the caching techniques 

is enabled. In order to account for this lack of improvement, the memory access pattern 

of the Barnes-Hut application must be considered. 
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Figure 6-27: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different 

caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 512, 
1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14) 
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Figure 6-28: Slowdowns of the NIP version of the Barnes-Hut application on the APP for different 

caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 2048, 
4096, 8192; object and cache block sizes are presented in Table 6-14) 
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Figure 6-29: Cache-hit rates of the NIP version of the Barnes-Hut application on the APP for different 
caching techniques (each graph represents a different number of nodes: 2, 4, 8; number of bodies: 512, 

1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14) 

Body NIPDSM object 128 bytes 

Cell NIPDSM object 144 bytes 

NIPDSM cache block 2,048 bytes 

Table 6-14: Sizes of the body and cell objects and the NIPDSM cache block 

The bodies in the simulated space are created together during the initialisation of the 

application, thus being spatially adjacent to each other. As mentioned earlier, the parallel 

computation of the second step is represented by an iterative tasklet. Each iteration 

calculates the interactions of one body. The calculation involves the traversal of the 

oct-tree and the evaluation of the necessary body-to-body or body-to-cell interactions. At 

the end of each interaction, the state of the body is updated and, hence, a write lock 

operation is required. However, the write lock operation on an object is always preceded 

by a series of read locks because its state is read a number of times before it is altered. 



Applications 

 187

This access pattern and the caching technique that is used influence the performance of 

the application, as explained next. 

When an iteration is executed on a secondary node, it will have to block when the 

body for which the interactions are calculated is not cached. When the object grouping 

based on location caching technique is enabled, the locking operation on a body causes 

the adjacent objects (bodies or cells) to be cached as well. As the task waits for the 

requested object to be fetched, a new local task may be created to inline part of the 

available iterations. Additionally, another node may steal a group of iterations. In either 

case, it is very likely that the new task created will have to suspend on a lock operation 

because the required body for the first lock of the iteration is not cached. 

Figure 6-30 illustrates how most of the bodies in the simulated space are quickly 

replicated in the parallel platform, when the object grouping based on location caching 

technique is enabled, and why a high cache-hit rate is observed. The large number of 

replicated bodies, though, results in a higher rate of invalidations (Figure 6-31), which 

compromises performance for smaller granularities of the entire computation (i.e., smaller 

number of bodies). The example of Figure 6-30 is only a simple demonstration of the 

NIP-related operations that take place. The complexity of the actual execution behaviour 

of the application is much greater due to the combination of load balancing, NIPLTC, 

and NIPDSM. 

In addition to the above discussion, it should also be noted that the recursive way in 

which the oct-tree is constructed results in cells at the top part of the tree being spatially 

adjacent, further contributing to the increase in the cache-hit rate. 
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Example description - (Four nodes are used to simulate a system of 40 bodies. The cache block is assumed to 
accommodate a maximum of five objects.) Node 1 requests work from the primary node (step 1). When the work 
arrives (step 2), node 1 attempts to acquire a read lock on the body of the first iteration. This results in a proxy 
request being sent to the primary node (step 3) and a cache block full of bodies is returned (step 4). In the mean 
time, or even after the cache block has arrived, node 2 steals some work from node 1. As a result, the copies of 
another group of objects will be cached on node 2. In the same manner, objects will be cached on node 3. As the 
execution of the calculations for body 4 finishes on node 1, the active task will have to be suspended until the stolen 
tasks by nodes 2 and 3 have been completed. A new task is created from the primary node 1 to keep node 1 busy 
causing yet another group of objects to be cached. 

Figure 6-30: Caching of bodies on a parallel platform of four nodes when the object grouping based on 
location technique is enabled 
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Figure 6-31: Locks causing object invalidations from the execution of the Barnes-Hut application on 8 

nodes (number of bodies: 1024, 2048, 4096, 8192; object and cache block sizes are presented in Table 6-14, 
page 143) 

Figure 6-31 suggests that the object invalidation rates are almost identical when no 

caching technique is used, and when object grouping based on associations is used, 

despite their different cache-hit rates (Figure 6-29, page 143). In both cases, a lock 

operation on a non-cached body results in only that body being fetched. This is because in 

the former case, no object grouping takes place at all and, in the latter case, object 
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grouping takes place only when elements of the oct-tree are accessed, since only the cells 

in the oct-tree contain associations with bodies.  

As explained in Section 6.5.2 (page 131), the algorithm used by NIPDSM to group 

objects based on the graph of associations is breath-first and it does not match the tree 

depth-first traversal that is used in the Barnes-Hut algorithm. This contributes to the 

lower cache-hit rate of object grouping based on associations caching technique. 

In the discussion up to this point, the effect of the caching techniques on the 

distribution of work in the parallel platform and the granularity of the lazily created tasks 

were not considered. If the write lock operations on bodies are regarded as a measure of 

the work executed on a node, a view of the load distribution can be generated (Figure 

6-32). 
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Figure 6-32: Write locks executed on each node during the execution of the Barnes-Hut application on 8 
nodes (each graph represents a different number of bodies: 1024, 8192; object and cache block sizes are 

presented in Table 6-14, page 143) 

The graphs of Figure 6-32 suggest that a very large share of the overall computation is 

executed on the primary node. This is due to the benefits of accessing immutable objects 

at the manager node (Table 6-10, page 128). The cells of the oct-tree are constructed as 

immutable objects since, once initialised, their state is not altered. The primary node does 

not suffer from the overheads of all the locking operations on cells. Therefore, the 

interaction calculations are executed significantly faster. Not all of the work that is 

executed on the primary node, however, can be attributed to iteration inlining from the 

original tasklet. Since the secondary nodes suffer from the overheads of remotely 

accessing objects, the primary node manages to steal back some of the iterations that were 

stolen from it and executes them locally. 

Unfortunately, due to the dynamic nature of the NIP run-time and the use of a 

grouping-capable tasklet, it is not possible to determine the exact granularity (i.e., the 

number of iterations) of each lazily created task. However, the total number of lazily 

created tasks gives an indication of the granularity, as a smaller number of lazily created 

tasks suggests more inlining operations and, therefore, coarser granularity (Table 6-15). 
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 Number of bodies 

 512 1024 2048 4096 8192 

No caching 
techniques 

14.0% 5.7% 4.5% 2.7% 1.6% 

Object grouping 
based on location 

10.7% 4.6% 3.7% 3.7% 2.2% 

Object grouping 
based on associations 

10.2% 4.1% 4.2% 3.6% 1.7% 

Table 6-15: Percentage of lazily created tasks per step out of the maximum possible (number of nodes: 8, 
object and cache block sizes are presented in Table 6-14, page 143) 

On most page-based DSM systems, the kind of memory access pattern that was 

described above would have resulted in page-thrashing due to false sharing, as concurrent 

access to more than one body in the same page would not be possible. NIPDSM avoids 

the thrashing problem for object groups because of the fine granularity of the sharing 

unit. However, during the second step of the algorithm the state of an object may be 

accessed both by read and write methods, causing false-sharing at the object-level. 

Although this is not as computationally expensive as page-thrashing would have been, it 

still introduces a significant overhead. In Chapter 7, the concept of a locking technique 

that allows distinct parts of the same object to be locked in different access modes is 

outlined. 

The implementation of the Barnes-Hut application used in these experiments was not 

optimal. It was assumed that an implicitly parallel programming language compiler 

generated the code. The only optimisation used was the one described in Chapters 4, 

where consecutive method calls can be enclosed within on pair of lock/unlock 

operations. However, it should be reasonable to assume that a compiler could do better 

than that. A body is read locked and unlocked for every cell in the oct-tree that is accessed 

during the second step because the distance between the body and the cell must be 

calculated. The body data members that are accessed during this calculation remain 

constant throughout the second step of the algorithm. Based on this observation, two 

optimisations could be introduced: 

• Since the body is unlocked between body-to-cell distance calculations, a write lock 

on another node might invalidate the cached copy (i.e., object false-sharing). The 

next read lock operation would cause a cache-miss. If the body was split to two 

parts, one that is accessed by read-only methods and another that is accessed only 

by write methods, this unnecessary invalidation could be avoided. 

• Given that the same part of a body’s state is read for every body-to-cell and 

body-to-body interaction, it would be a significant improvement if the locking 
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operations on the body were avoided. A copy of the required state is obtained and 

used for subsequent calculations. 

The efficiency of the application is improved due to the introduced optimisations and 

speedup was obtained when compared to the sequential C++ version of the Barnes-Hut 

application (Figure 6-33). 
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Figure 6-33: Speedup improvement of the Barnes-Hut application on 8 nodes with the object grouping 
based on location caching technique enabled (number of bodies: 8192, 16384, 32768; 65536; object and 

cache block sizes are presented in Table 6-14, page 143) 
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Figure 6-34: Slowdowns of the Barnes-Hut application on the SMP workstation (number of bodies: 512, 

1024, 2048, 4096, 8192, 16384, 32768) 

Finally, the slowdowns of the Barnes-Hut application on the SMP workstation are 

presented in Figure 6-34. The optimised version is the one described above that reduces 

the number of locks required. Although the execution times do not suffer from the 

overheads of cache misses, the achieved performance is poor. This is attributed to the 

following reasons: 

• Since bodies are mutable objects, a locking operation on a body always requires a 

mutex to be acquired. The overhead of accessing a mutable NIPDSM object is 

presented in Table 6-10 (page 128). 
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• More than one thread may attempt to read the state of the same body. Although 

both will be granted access to the state of the body, NIPDSM only allows one 

thread to update the object representation of that body (i.e., the number of local 

read locks must be updated). As a result, the execution of a thread may be blocked 

until exclusive access to the object representation can be granted. 

• The granularity of each iteration that calculates body-to-body and body-to-cell 

interactions is relatively fine. For example, the average granularity of one iteration 

of the sequential C++ version is 4msecs for 16,384 bodies. Therefore, the 

NIPDSM related costs overwhelm the computation. 

6.6.3. Travelling Salesperson Problem 

Problem Description and Implementation 

The final application used in the performance evaluation of the NIP run-time library is 

the travelling salesperson problem (TSP). The definition of the problem is as follows: 

Given a set of cities and travelling costs for each pair of cities, find the best route visiting each city only 

once. The problem considered here is asymmetric, which means that the travelling cost 

from city i to city j is not assumed to be the same as the cost from city j to city i. 

Route       bestRoute 
CostsMatrix costs 
   
routeCostForCity(rootCity) 
  Route route 
  createRoute(rootCity) 
  if (route.cost < bestRoute.cost) 
    bestRoute = route 
 
createRoute(rootCity, route) 
  for city = 1 to N except rootCity 
    if city not visited 
      route.cost += 
            costs(rootCity, city) 
      createRoute(city, route) 
 
main() 
  for city = 2 to N 
    calculateRouteCostForCity(city) 

RouteNIPDSM  bestRoute 
CostsMatrix  costs 
 
routeCostForCity(rootCity) 
  Route route 
  createRoute(rootCity) 
  bestRoute.lockRead() 
  bestRouteTmp = bestRoute.cost 
  bestRoute.unlock() 
  if (route.cost < bestRouteTmp.cost) 
    bestRoute.lockWrite() 
    if (route.cost < bestRoute.cost) 
      bestRoute = route 
    bestRoute.unlock() 
 
createRoute(rootCity, route) 
  for city = 1 to N except rootCity 
    if city not visited 
      costs(rootCity, city).lockRead() 
      route.cost += 
            costs(rootCity, city) 
      costs(rootCity, city).unlock() 
      createRoute(city, route) 
   
 
main() 
  
NIPIterativeTasklet<routeCostForCity> 
                          route(2, N) 
  route.waitOrInline() 

Code 6-8: Pseudo code for the sequential 
version of TSP 

Code 6-9: Pseudo cost for the NIP 
version of TSP 

For the purposes of this thesis, a brute force algorithm for solving the problem was 

utilised. The costs of all possible routes, given an initial city, are calculated. When the 
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calculated cost for a particular route is found to be less than the current minimum, the 

current best route and the associated minimum cost are updated. 

A matrix with the travelling costs between each pair of cities is created. The state of 

the matrix elements is not altered once initialised (i.e., the elements are immutable 

objects). Only the current best route and minimum cost are updated when necessary. The 

two versions of TSP in pseudo code are presented in Code 6-8 and Code 6-9. In the NIP 

version of TSP, if the calculated cost for a route is found to be less than the currently best 

route, another comparison must take place after the write lock has been acquired. This is 

required in order to guarantee the correctness of the result. Finally, the first city from a set 

of N is considered as the start of the route. 

Performance Analysis 

The complexity of the TSP algorithm does not allow large instances of the problem to be 

considered. The cost of a total number of )!1( −N  routes must be calculated for N cities. 

However, the smaller instances of TSP are sufficient to study the behaviour of the NIP 

version on the APP. 

On the APP, the route costs matrix will be progressively cached on secondary nodes 

through locking operations. Due to the small number of cities, only few locks are required 

for the whole matrix to be cached on a particular secondary node, when object grouping 

based on location is used. This is because the elements of the matrix are spatially adjacent 

to each other. 

Data structure holding best 
route and minimum cost objects 

232 bytes 

Cost between two cities object 32 bytes 

Cache block size 2,048 bytes 

Table 6-16: Sizes of the body and cell objects and the NIPDSM cache block 

Figure 6-35 presents the speedups achieved when compared to the sequential C++ 

version of the TSP application on the APP. An optimised version of the application is 

also presented. In the optimised version, the locking costs for accessing the elements of 

the matrix are avoided because a copy of the matrix is distributed to all the secondary 

nodes at the start of the computation. Access to the best route and minimum cost objects, 

though, still requires a NIPDSM locking operation. The optimised version is presented 

only as a demonstration of the impact on performance that the NIPDSM locking 

operations have. Since the majority of the locks are avoided in the optimised version, the 

achieved speedups are very good (Figure 6-35). 
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Figure 6-35: Speedup the NIP version of the TSP application on the APP (each graph represents a 
different number of nodes: 2, 4, 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are 

presented in Table 6-16) 

For the non-optimised version of TSP and when object grouping based on location is 

enabled, performance is only slightly improved over the execution of TSP with none of 

the caching techniques enabled. This is attributed to the high temporal locality in memory 

access that TSP exhibits. The cache-hit rates in both cases approaches 100%. Once the 

immutable objects of the route costs matrix are cached, they are accessed a great number 

of times. Furthermore, since the great majority of the total number of object locking 

operations are read locks on immutable objects, the chances of parallel tasks attempting to 

access the same object at the same time are minimised. This results to a very small 

percentage of locking operations causing object invalidations, as presented in Figure 6-36. 
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Figure 6-36: Rate of invalidations in the execution of the NIP version of TSP on the APP (number of 

nodes: 8; number of cities: 8, 9, 10, 11, 12; object and cache block sizes are presented in Table 6-16) 

Only the cached copies of the object storing the best route and its cost that may be 

kept on secondary nodes need to be invalidated during the execution of the TSP 

application. The percentage of object invalidations decreases as the granularity of 

computations increases. This is because the increase in the total number of write locks 

required for the entire computation is disproportional to the increase in the read locks 

required. For example, when the number of cities is 8, 6 write locks and 32,439 read locks 

take place respectively. When the number of cities is 12, the number of write locks that 

take place is 34 while the number of read locks is 256,927,023. 
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6.7. Discussion 

The performance results presented in this chapter demonstrate the effectiveness of NIP 

lazy task creation technique in efficiently exploiting the identified parallelism in 

application at run-time. Furthermore, the benefits of the NIPDSM caching techniques 

were demonstrated. Other works that used the NIP run-time library also demonstrated 

the advantages of NIPLTC (Johnson 2000) and NIPDSM (Kelly 2000; Webber 1998) for 

certain types of parallel object-oriented applications, mainly not memory intensive in 

nature. 

In the evaluation of NIPDSM presented in this chapter, it has not been possible to 

achieve promising performance results for two of the applications that were evaluated: 

matrix multiplication and Barnes-Hut. The overwhelming communication costs in 

combination with some implementation related drawbacks resulted in poor performance 

on the APP. 

The slowdowns observed in the execution of applications, especially on the SMP 

workstation, suggest that the requirements of the NIP execution model memory 

semantics are too strict. The NIP execution model memory semantics defined that a lock 

be acquired on an object before a method can be called on it. For the implementation of 

these semantics in the NIPDSM system, a mutex synchronisation construct is associated 

with each object. As a result, a locking operation on a mutable object requires at least one 

pair of acquire and release operations on the mutex. This introduces a significant 

overhead when applications access objects in memory. Chapter 7 discusses further the 

effect that the design of the NIP execution model memory system has on the 

performance of NIP applications and the applicability of implicit object-based locking in 

the field of parallel object-oriented computing. 

Next, NIPDSM implementation related issues that further affect performance are 

identified. 

Load Balancing and Communication 

The load balancing and communication services are not optimal. As described in Chapter 

5, simple implementations of these two services were provided in order to have a fully 

functional run-time environment. The most important issues related to these two services 

are: 

• When a cache-miss occurs, a new task is always created—from either a local or a 

remote tasklet—if there are no active tasks at that node. However, as the load 
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balancing service depends on the underlying operating system for task scheduling, 

when the object is finally cached, the suspended task will resume even if there 

other active tasks running. This results in context switching, which is one of the 

problems that NIPLTC tries to overcome through the use of tasklets. Although 

an upper limit on the number of tasks that can simultaneously exist on a node, 

either in suspended or active state, is imposed in order to reduce the potential 

overheads, a better solution is required. 

• For every message exchange between two nodes, two memory-copy operations 

take place before the appropriate operating system call is made, which usually 

results in yet another memory-copy operation. Furthermore, the current 

implementation is based on TCP/IP, which further reduces communication 

efficiency. 

Lack of Object Distribution 

In the current implementation of the NIPDSM, the manager node for an object is always 

the node on which the task creating the object is running. This introduces a bottleneck 

when a great number of objects are created together by one task, as in the case of the 

matrix multiplication and Barnes-Hut applications, because that node is overwhelmed 

with NIPDSM related requests. 
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7CHAPTER 7 
7.  CONCLUSIONS AND DISCUSSION 

In this chapter the conclusions of the thesis are drawn. The motivation 

for this research work and the summary of the introduced run-time 

techniques in the areas of lazy task creation and distributed shared 

memory define the context for the discussion. Additionally, the findings 

from the performance evaluation of the benchmark applications are 

considered when suggesting possible optimisations in the current 

design and implementation of the NIP run-time. The thesis concludes 

with an outline of possible avenues for future research. 
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7.1. Object-Oriented Parallel Computing 

Chapter 1 identifies the need for a new approach to parallel programming. Through the 

analysis of data from the top500 list of supercomputers (TOP500 List 2000), a trend is 

observed towards massively parallel architectures that are based partly or entirely on 

commodity hardware. Software developers should not be burdened with the task of 

managing the high degree of parallelism that is made available to them through such 

hardware architectures. Instead, it is suggested that software developers should only have 

to concentrate on the algorithmic issues of their applications by using a programming 

paradigm that, although it does not expose any hardware architecture characteristics, it 

allows for parallelism in applications to be implicitly exploited. Additionally, good 

software engineering practices should be supported. 

To meet this challenge, the NIP programming model is proposed in Chapter 2. The 

key features of the introduced model are object-orientation and implicit parallelism. These 

two characteristics of the NIP programming model are considered by many experts as 

essential for the future of parallel computing (Almasi and Gottlieb 1994; Culler and Singh 

1999; Skillicorn and Talia 1998; Sterling et al. 1995). Previous work on the UFO language 

has demonstrated that object-orientation, state, and implicit parallelism may be 

successfully combined at the language level (Sargeant 1993). 

While the NIP programming model describes a software development methodology, 

the NIP execution model defines the semantics to which an execution environment 

should adhere in order to host applications implemented through the proposed 

methodology. The main characteristics of the NIP execution model are illustrated through 

an abstract machine (Figure 7-1): implicit exploitation of parallelism and automatic 

management of computational resources (parallelism manager), object-based memory. 

object
memory

processor processorprocessor

parallelism
manager

. . .

 

computational model

design model
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Figure 7-1: The major components of the abstract 
machine as suggested by the NIP execution model 

Figure 7-2: The parallel computing paradigm with 
the NIP programming and execution models 

Figure 7-2 illustrates the parallel computing paradigm as proposed by this thesis. The 

NIP programming and execution models replace the corresponding layers of the parallel 
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computing paradigm presented in Chapter 2. This thesis focuses on issues related with the 

bottom layer of Figure 7-2, the design and implementation of a run-time environment 

that adheres to the semantics of the NIP execution model. 

7.2. Run-time Support 

The main research goal of this research work has been the investigation of run-time 

techniques to support the parallel execution of applications developed with an 

object-oriented, implicitly parallel programming language. The NIP lazy task creation 

technique (Chapter 3) and the NIP distributed shared memory (Chapter 4) were designed 

and implemented as part of the NIP run-time environment (Chapter 5), which is available 

as a C++ library. 

NIP Lazy Task Creation 

The tasklet is a new construct that was first introduced by Watson (Watson 1996) to 

represent the parallelism in an iterative computation (Watson and Parastatidis 1999a; 

Watson and Parastatidis 1999b; Watson and Parastatidis 1999c). In this thesis, an 

object-oriented approach to its design and implementation was adopted. The patterns of 

parallel execution that can be represented by a tasklet are extended to include function 

and recursion parallelism. 

The tasklet construct is used by the NIP lazy task creation technique. During the 

execution of an application, parallel tasks are lazily created from existing tasklets as 

computational resources become available. The performance evaluation of a number of 

micro-benchmarks (Chapter 6) demonstrates the efficiency benefits from representing 

parallel computations using tasklets. It is also shown that applications with a very high 

degree of parallelism can almost optimally utilise the available processing resources even 

when the degree of parallelism offered by the hardware is orders of magnitude lower. 

NIP Distributed Shared Memory 

NIPDSM provides an implementation of the NIP execution model memory semantics. It 

is an all-in-software, object-based, distributed shared memory system. Central to the 

design of the NIPDSM is the NIP entry consistency model, a variation of the original 

entry consistency model (Bershad and Zekauskas 1991). The NIP entry consistency model 

defines the requirements for the management of the object locking and replication in a 

parallel system. It provides a view of the available memory as defined by the NIP 

execution model semantics. 
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An object in the NIPDSM is implicitly associated with a lock, which must be acquired 

before any method can be called. The methods are classified as read or write, depending 

on whether the state of the object, for which they are called, is altered. The object’s 

private lock is acquired in non-exclusive or exclusive mode respectively. The fine 

granularity of locking avoids the problem of false-sharing, from which page-based systems 

suffer. In the current implementation of the NIPDSM, significant run-time overheads are 

introduced to the execution of applications, as the performance results of Chapter 6 

demonstrate. Access to a NIPDSM object is orders of magnitude more expensive than it 

is to a C++ object in virtual memory. 

An important characteristic of the NIPDSM is the overlapping of communication and 

computation through cooperation with the NIP load balancing service. When a task 

blocks on a lock operation, the load balancing service is informed and a new task is 

created through NIPLTC, if there is not one already available to use the freed 

computational resources. 

A key feature of the NIPDSM is its caching mechanism. The implementation of the 

NIP entry consistency model, through proxy nodes, improves the memory access time for 

applications that repeatedly call methods on the same object within short time periods 

(i.e., temporal locality in memory access). In previous object-based DSM systems, it was 

not possible to take advantage of memory access patterns other than temporal locality in 

order to improve cache-hit rates and, hence, memory access times. Through NIPDSM, 

the access patterns in object-oriented applications are explored in order to improve the 

performance of applications: 

• Applications that exhibit spatial locality in memory access can take advantage of 

the object grouping based on location caching technique. Spatially adjacent objects 

in NIPDSM are cached as groups. NIPDSM does not suffer from the problem of 

false-sharing, unlike page-based DSM systems. Objects that cannot be locked are 

not included in a group. 

• A problem with DSM systems has been their inability to improve the access times 

of applications that use dynamically created data structures, such as trees, lists, etc. 

NIPDSM uses information about the relation between objects in the memory to 

improve cache-hit rates. The object grouping based on associations caching 

technique can also be used in applications to explicitly define memory access 

patterns (e.g., the order in which the elements of a matrix are accessed). 
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• The object grouping based on access history technique improves performance in 

applications that exhibit a recurring memory access pattern. The order in which 

objects are locked is recorded at run-time and used when grouping objects 

together. 

The performance evaluation of the micro-benchmarks in Chapter 6 demonstrated the 

performance gains and potential benefits from the object grouping techniques. However, 

despite the improved execution times due to object grouping, the parallel execution of 

applications suffers from the great overheads of the NIPDSM operations. 

The NIP execution model memory semantics define that objects be implicitly locked 

before methods can be called on them (Chapter 2). This removes the burden of dealing 

with concurrency related issues in memory access from programming language compilers 

or application developers. Unless an implementation can be demonstrated, which satisfies 

the memory semantics of the NIP execution model without incurring the overheads of 

NIPDSM, the results presented in this thesis suggest that a memory system based on 

implicit locking of objects is not an effective design for a run-time system to support 

parallel object-oriented computing. In the absence of schemes which support coarse-

grained locking of objects, the ratio of computation to locking is such that favourable 

performance cannot be achieved. 

7.3. Potential NIPDSM Enhancements 

A number of possible enhancements that may be considered in future implementations of 

the NIPDSM are presented here. The goal of the enhancements is performance 

improvements and/or introduction of new features. 

Mask-based Locking (Multiple Writers) 

The performance evaluation of the Barnes-Hut application (Chapter 6) illustrated a 

known problem with the NIPDSM and other object-based DSM systems. Although 

NIPDSM does not suffer from false-sharing when separate objects are accessed, 

concurrent access to different data members of the same object is not allowed, when at 

least one of those accesses requires an exclusive lock. 

In order to deal with the problem of false-sharing, some page-based DSM systems 

allow multiple-writers to access different parts of the same page. Multiple copies of a page 

are maintained. A page-merging algorithm that combines the changes in the copies of a 

page is necessary. A similar approach could be adopted in the NIPDSM for objects. 
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However, a more elegant solution, which is achieved through the extension of the 

consistency protocol semantics rather than by additions to the implementation, could be 

investigated. 

A lock operation on an object could be accompanied by a mask, which identifies the 

part(s) of the object involved. The combination of the lock type (i.e., read/write) and the 

mask determines whether access to the object may be granted. For example, in the 

Barnes-Hut application, a mask could have logically split a body into two parts, allowing 

one task to write to the first part of the body while others read from the second part. A 

programming language compiler could determine whether mask-based locking is required 

for a particular class of objects. The structure of each mask (i.e., the number of logical 

parts in which an object is divided) could also be specific to each class. 

Re-arrangement of Locking Requests 

An approach to dealing with the problem of object thrashing might be the re-arrangement 

of locking requests. On every node, an attempt could be made to serve pending read or 

write locking requests on an object as a group. This requires that some lock requests 

pending in the queue of an object be re-arranged and brought forward. For example, it 

could be beneficial if any queued read lock requests on an object were served ahead of any 

pending remote write requests, even if they were submitted later. In this manner, the 

number of object invalidations may be reduced. The effect that delayed locking requests 

may have on performance requires investigation. 

7.4. Future Research Directions 

This research work focused on the design and implementation requirements of an 

execution environment for object-oriented implicitly parallel computing. Based on the 

discussion presented in this thesis, new research avenues are identified in the fields of 

dynamic task management and object-based distributed shared memory. 

Implicit Decomposition of Container Objects for Data Parallel Computations 

Software developers may find it useful, and sometimes necessary, to express an algorithm 

in a data parallel manner by using, for example, a ‘for each’ programming language 

construct. This thesis demonstrated that such a computation could be represented by an 

appropriate specialisation of the tasklet construct. The application of a function to the 

elements of a vector was a representative example. However, it is left up to the 

programming language support tools (e.g., compiler) to identify and express, in terms of 
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tasklets, the data parallelism in applications. The design of a tasklet that decomposes 

container objects at run-time and supports the ‘for each’ pattern of parallel computation 

could be investigated. 

Heuristics-based Lazy Task Creation 

It may be possible to use a heuristics approach in determining whether it is beneficial to 

pay the extra overhead of lazily creating a new parallel task. For example, when work is 

requested, the rate by which computation is inlined from a tasklet may be compared to 

the rate by which new parallel tasks are created from the same tasklet. If the comparison 

favours inlining, it may be the case that it would be more beneficial to reject the request 

for a new task. 

Heuristics may also give an indication of the most advantageous granularity for new 

tasks (e.g., the number of iterations that are grouped together from a grouping-capable 

tasklet). Furthermore, additional run-time or application-provided information may be 

used when deciding on lazily creating a task, like the location and size of the objects to be 

used by the new parallel task, the communication overhead between the two nodes 

involved (i.e., the node requesting work and the node with the available work), the 

processor(s) speed at a particular node, etc. 

Type-assisted DSM 

The object-oriented nature of applications may benefit the performance of an 

object-based DSM system, such as the NIPDSM. Type specific information can be used 

to improve the effectiveness of the object grouping caching techniques. 

Access to the elements of an entire container data structure is often required in 

applications (e.g., lists, sets, vectors, etc.). Using type information that is provided by the 

compiler or inferred at run-time through reflection, an object-based DSM system could 

reduce the overheads of locking operations by allowing entire data structures to be locked 

with only one operation. The degree of logical parallelism in the application should not be 

compromised due to a container-wide lock. For example, in a data parallel computation 

involving the elements of a container object, the entire computation should be regarded as 

the owner of the lock, hence allowing concurrent access to all the elements. Additionally, 

concurrent access to the individual elements should be supported when the container 

object is not locked, as in the current implementation of the NIPDSM. 

In the discussion of the NIPDSM caching techniques, it was assumed that a 

programming language compiler could provide the associations between objects that are 

required by the object grouping based on associations caching technique. In addition to 
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the work on compiler techniques that can deduce the necessary object associations, an 

approach based on type information collected at run-time could also be investigated. 

7.5. Concluding Remarks 

This thesis described the design and implementation of the NIP lazy task creation 

technique and the NIP distributed shared memory system for supporting object-oriented 

implicitly parallel computing. The effectiveness of the tasklet construct for representing 

iterative and recursive computations was established and the benefits of object grouping 

techniques for an object-based distributed shared memory system were demonstrated. 

The performance evaluation of memory intensive parallel applications with low 

computation to locking ratio revealed the unsuitability of implicit object locking for 

parallel object-oriented computing. 
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