
The University of Newcastle upon Tyne

Department of Computing Science

VISUAL OBJECT-ORIENTED DEVELOPMENT OF PARALLEL

APPLICATIONS

by

James Webber

Ph.D. Thesis

September 2000

Visual Object-Oriented Development of Parallel Applications

 3

Abstract

Developing software for parallel architectures is a notoriously difficult task,

compounded further by the range of available parallel architectures. There has been little

research effort invested in how to engineer parallel applications for more general

problem domains than the traditional numerically intensive domain. This thesis addresses

these issues. An object-oriented paradigm for the development of general-purpose

parallel applications, with full lifecycle support, is proposed and investigated, and a visual

programming language to support that paradigm is developed. This thesis presents

experiences and results from experiments with this new model for parallel application

development.

Visual Object-Oriented Development of Parallel Applications

 5

Acknowledgements and Dedications

Firstly I would first like to express my gratitude to my academic supervisor, Professor

Pete Lee. Professor Lee has demonstrated a great deal of patience during his time as my

supervisor, and offered innumerable valuable insights into my research topic. Without his

guidance, I feel sure that my research would have been at a tremendous disadvantage. I

owe Professor Lee a significant debt for his work, and I fear that it may be one I will

never be able to repay sufficiently.

I would also like to thank the other two members of my thesis committee, Drs.

Richard Snow and Paul Watson for their valuable input to my research work. Their

opinions and constructive input has helped to focus my research, and increase its

maturity. I would also like to thank the Department of Computing Science as a whole for

providing a friendly environment and equipment for my research. In particular, I would

like to express thanks to Dr. Lindsay Marshall for his advice and friendship.

To my dear friend and fellow Ph.D. student Savas Parastatidis, I would like to offer

my most heartfelt thanks. Savas’ own unswerving efforts in his own related work served

as a terrific source of inspiration and encouragement. During the four years that we have

known one another, Savas has offered welcome advice, and been a fine friend

throughout.

To other assorted friends and flatmates: Anna Hillier, Rhodri Jones, Louise Barker,

Garry Forster, David Ely, Jamie Leech, Philippe Leadbetter, Mark Joszt, and David

Ingham, I can only offer my most sincere thanks for their continued and valued

friendship.

In addition, I would like to thank my parents and family for their warm support and

encouragement throughout my academic career.

And with all my love to Katherine Neasham.

This work was funded for three years by the Engineering and Physical Sciences

Research Council.

Visual Object-Oriented Development of Parallel Applications

 7

Table of Contents

Chapter 1 Introduction ... 19

1.1 An Overview of Parallel Computing ... 19

1.2 Parallel Computing Drivers ... 22

1.3 Moore’s Law and the Road to Parallel Computing .. 23

1.4 Affordable Parallel Platforms .. 26

1.5 Visual Programming Techniques ... 29

1.6 The Object-Oriented Paradigm .. 31

1.7 Research Goals .. 32

1.8 Summary .. 33

Chapter 2 Visual Parallel Programming Languages .. 35

2.1 Introduction ... 35

2.2 Visual Programming ... 35

2.2.1 Visual Development Environments ... 36

2.2.2 Visual Programming Languages and Techniques ... 37

2.2.3 Visual Parallel Programming ... 38

2.3 A Survey of Visual Parallel Programming Tools .. 39

2.3.1 HeNCE – Heterogeneous Network Computing Environment 39

2.3.2 CODE – Computationally Oriented Display Environment 49

2.3.3 VPE – Visual Programming Environment ... 62

2.3.4 ParADE –Parallel Application Development Environment 70

2.4 Related Work ... 79

2.5 Closing Remarks ... 79

Chapter 3 An Analysis of Visual Parallel Programming .. 81

3.1 Introduction ... 81

3.2 A Taxonomy of Visual Parallel Programming Languages 82

Introduction

 8

3.2.1 Syntactic Elements of Visual Parallel Programming Languages 83

3.2.2 Graph .. 84

3.2.3 Node ... 87

3.2.4 Arcs ... 89

3.2.5 Node Syntactic Elements ... 93

3.2.6 Node: Firing Rule .. 93

3.2.7 Node: Inputs and Outputs... 95

3.2.8 Node: Program .. 96

3.2.9 Node: Output Token Production Rule .. 98

3.2.10 Support for Modes of Parallel Execution .. 99

3.3 Development Paradigm versus Execution Model ... 103

3.4 Requirements for Visual Parallel Programming Languages 107

3.5 Flow-Based Visual Parallel Programming ... 108

3.6 Object-Oriented Development ... 110

3.7 Summary .. 112

Chapter 4 A New Paradigm and Language for Visual Parallel Programming. 115

4.1 Introduction ... 115

4.2 Parallel Object-Flow: A New Paradigm for Parallel Application Development

 ... 116

4.2.1 The Parallel Object-Flow Development Paradigm 117

4.2.2 The Parallel Object-Flow Execution Model ... 119

4.2.3 Execution of a Parallel Object-Flow Application .. 122

4.3 The Vorlon Programming Language .. 123

4.3.1 Methods in the Vorlon Programming Language 125

4.3.2 The Vorlon Class Model .. 143

4.3.3 Built-in Types, Primitives, and Library, and Array Support 145

4.4 Summary .. 149

Visual Object-Oriented Development of Parallel Applications

 9

Chapter 5 Experimental Performance Results and Analysis 151

5.1 Introduction ... 151

5.2 Software Support - The NIP Parallel Run-Time System 152

5.3 Code Generation .. 155

5.4 Experimental Environment ... 165

5.5 Matrix Multiplication .. 165

5.5.1 Aims .. 166

5.5.2 Experimental Method ... 166

5.5.3 Matrix Multiplication Performance Results... 184

5.5.4 Matrix Multiplication Conclusions ... 192

5.6 Parallel Compilation System ... 195

5.6.1 Aims .. 196

5.6.2 Experimental Environment ... 196

5.6.3 Experimental Method ... 196

5.6.4 Parallel Compilation System Performance Results 203

5.6.5 Parallel Compilation System Conclusions ... 207

5.7 Summary .. 208

Chapter 6 Reflections on the Vorlon Language .. 211

6.1 Introduction ... 211

6.2 Applying the Taxonomy Criteria to Vorlon ... 211

6.2.1 Graph .. 211

6.2.2 Nodes .. 212

6.2.3 Arcs ... 212

6.2.4 Node: Firing Rule .. 213

6.2.5 Node: Inputs and Outputs... 213

6.2.6 Node: Program .. 213

Introduction

 10

6.2.7 Node: Output Token Production Rule .. 214

6.2.8 Support for Parallel Modes of Execution .. 214

6.2.9 Notable Omissions from the Vorlon Language ... 215

6.3 Software Engineering Issues from the Experiments ... 220

6.4 Syntactic and Semantic Improvements for Vorlon ... 222

6.4.1 Improvements for Current Language Syntax.. 222

6.4.2 Possible Future Additions to and Removals from Vorlon 224

6.5 Closing Remarks ... 227

Chapter 7 Conclusions and Further Thoughts .. 229

7.1 Overview .. 229

7.2 Reflections on Software Engineering Aspects ... 230

7.3 Vorlon Language Issues ... 231

7.4 Performance Results ... 231

7.5 Future Work .. 232

7.6 Closing Remarks ... 234

Appendix A Development of a Parallel Compilation System 235

A.1 Introduction .. 235

A.2 High Level Analysis ... 235

A.3 Application Design .. 237

A.4 Implementation .. 241

A.4.1 The Main Class ... 241

A.4.2 The Project Class .. 243

A.4.3 The Compiler Class .. 246

A.4.4 The SourceFile Class .. 248

A.4.5 The List and ListNode Classes ... 249

A.4.6 The String Class .. 253

A.5 Summary.. 261

Visual Object-Oriented Development of Parallel Applications

 11

References ... 263

Visual Object-Oriented Development of Parallel Applications

 13

Table of Figures

Figure 1-1 Moore’s First Law .. 23

Figure 1-2 Moore’s Second Law and the Origin of the “Software Stretch” 24

Figure 1-3 The Network of Workstations Architecture .. 26

Figure 1-4 A Typical Commodity SMP Architecture .. 27

Figure 1-5 A Possible SMP-NOW Architecture .. 28

Figure 2-1 The HeNCE Node Icons ... 42

Figure 2-2 HeNCE Matrix Multiplication Example .. 44

Figure 2-3 CODE Language Icons .. 51

Figure 2-4 Arc Topology Specifications Instantiating Data Parallel Activity..................... 55

Figure 2-5 CODE Matrix Multiplication Main Graph .. 56

Figure 2-6 CODE Matrix Multiplication Sub-Graph .. 57

Figure 2-7 VPE Language Node Icons .. 65

Figure 2-8 VPE Matrix Multiplication ... 67

Figure 2-9 The ParADE Node Icons... 72

Figure 2-10 ParADE Matrix Multiplication Example ... 76

Figure 3-1 Visual Programming Technology: A Roadmap ... 81

Figure 3-2 Main Syntactic Elements of Taxonomy ... 84

Figure 3-3 Layers of Abstraction in a Software System .. 103

Figure 3-4 The Orthogonal Abstraction Problem ... 106

Figure 3-5 Exploiting Natural Parallelism in an Algorithm .. 109

Figure 4-1 A Parallel Object-Flow Graph ... 118

Figure 4-2 Multiple Readers, Single Writer Method Invocation .. 120

Figure 4-3 Exploiting Parallelism in a Parallel Object-Flow Application 121

Figure 4-4 The Architecture of a Vorlon Application ... 123

Figure 4-5 Vorlon Arc .. 126

Introduction

 14

Figure 4-6 The Replicate and Merge Nodes ... 127

Figure 4-7 Computation Node .. 127

Figure 4-8 Computation Node: Graphical and Textual Views .. 129

Figure 4-9 Parallel Computation Node using Automatic Data Decomposition 130

Figure 4-10 Parallel Computation Node .. 131

Figure 4-11 Conditional Computation Node .. 132

Figure 4-12 Graph Start and Halt Nodes .. 133

Figure 4-13 Literal Source Node... 134

Figure 4-14 Attribute Source Node .. 134

Figure 4-15 Object Interface Source Node ... 135

Figure 4-16 The Loop Node ... 135

Figure 4-17 Textual Representation of a Loop Node ... 137

Figure 4-18 The New Object Node ... 137

Figure 4-19 The Constant New Object Node .. 138

Figure 4-20 Method Call Node ... 138

Figure 4-21 Asynchrony in Textual Programming Environments 139

Figure 4-22 Task Parallelism without Explicit Asynchronicity .. 140

Figure 4-23 Parallel Method Call Node ... 142

Figure 4-24 Comment Icon ... 143

Figure 4-25 The Main Class ... 145

Figure 4-26 Vorlon Application Architecture at the Experimental Phase 147

Figure 4-27 Creating an Array of Objects ... 148

Figure 4-28 Setting an Array Element .. 148

Figure 4-29 Retrieving an Array Element .. 148

Figure 5-1 NIP Lazy Task Creation ... 154

Figure 5-2 Translation from Vorlon to Machine Code ... 155

Figure 5-3 An Example Class Diagram ... 157

Visual Object-Oriented Development of Parallel Applications

 15

Figure 5-4 Generation of NIP-Safe Types from the Vorlon Class Diagram 157

Figure 5-5 Main Method for Vehicle Simulator ... 159

Figure 5-6 Main Method for Vehicle Simulator (Tasklet View) ... 160

Figure 5-7 C++ Representation of Tasklet1 ... 161

Figure 5-8 C++ Representation of Tasklet2 ... 162

Figure 5-9 C++ Representation of the Main Program ... 164

Figure 5-10 High-Level Analysis of the Matrix Multiplication Problem 166

Figure 5-11 Composition Relation Between Matrix and Vector Types 166

Figure 5-12 Type Interfaces for the Matrix Multiplication Application 168

Figure 5-13 Matrix Multiplication Final Design ... 168

Figure 5-14 Vector Constructor .. 169

Figure 5-15 Vector Copy Constructor ... 170

Figure 5-16 Vector Get Method ... 171

Figure 5-17 Vector Set Method .. 171

Figure 5-18 Vector Size Method ... 172

Figure 5-19 Vector Multiply Method (Dot Product) ... 172

Figure 5-20 Vector Dot Product Loop Node Sub-Graph .. 173

Figure 5-21 Matrix Constructor .. 174

Figure 5-22 Matrix Constructor Loop Node Sub-Graph ... 175

Figure 5-23 Matrix Copy Constructor ... 176

Figure 5-24 Matrix Copy Constructor Loop Node Sub-Graph ... 177

Figure 5-25 Matrix Multiply Method .. 178

Figure 5-26 Matrix Multiply Parallel Computation Node Sub-Graph 179

Figure 5-27 Matrix-Vector Multiply Method .. 180

Figure 5-28 Matrix-Vector Multiply Loop Node Sub-Graph ... 181

Figure 5-29 Matrix Get Row Method .. 182

Figure 5-30 Matrix Get Column Method .. 182

Introduction

 16

Figure 5-31 Matrix Set Row Method .. 183

Figure 5-32 Matrix Set Column Method ... 183

Figure 5-33 Matrix Get Rows Method ... 183

Figure 5-34 Matrix Get Columns Method .. 183

Figure 5-35 Matrix Multiplication Main Method .. 184

Figure 5-36 Slowdown for Matrix Multiplication Application on a Four Processor SMP

Platform ... 185

Figure 5-37 Slowdown for Matrix Multiplication Application on an Eight Node

Computer Cluster ... 188

Figure 5-38 Slowdown for Matrix Multiplication Application on an Ad-Hoc Parallel

Platform ... 191

Figure 5-39 Class Diagram for the Parallel Compilation System 197

Figure 5-40 Parallel Compilation System Main Method ... 198

Figure 5-41 Obtaining Out of Date Files for Compilation... 199

Figure 5-42 Obtaining Out of Date Files for Compilation Sub-Graph Decomposition 200

Figure 5-43 The compile(…) Method from the Compiler Class 202

Figure 5-44 Speedup for Compilation System on a Four Processor SMP Platform 203

Figure 5-45 Speedup for Compilation System on an Eight Node Cluster Computer 205

Figure 5-46 Speedup for Compilation System on an Ad-Hoc Parallel Platform............. 206

Figure 6-1 Pipeline Reduces Potential for Parallelism ... 217

Figure 6-2 Race Conditions with ParADE Streaming ... 219

Figure 6-3 Possible Future Syntax for Conditional Execution Supporting Multiple Return

Paths ... 223

Figure 6-4 Data Structure Decomposition to Facilitate Type-Driven Data-Parallelism 224

Figure 6-5 A Tree Data Structure ... 225

Figure 6-6 A Graph Data Structure .. 225

Figure 6-7 A List Data Structure .. 225

Visual Object-Oriented Development of Parallel Applications

 17

Figure 6-8 Reducing Visual Complexity by Removing Replicate Nodes 227

Figure A-1 Initial Class Diagram for the Parallel Compilation System 236

Figure A-2 Initial Design-Stage Class Diagram .. 237

Figure A-3 Final Application Design ... 240

Figure A-4 The main(…) Method .. 242

Figure A-5 getCompilerName(…) Method .. 243

Figure A-6 getCCFlags(…) Method ... 243

Figure A-7 getTarget(…) Method .. 243

Figure A-8 getOutOfDateFiles(…) Method ... 244

Figure A-9 getOutOfDateFiles(…) Method Sub-Graph .. 244

Figure A-10 The Default Constructor of the Project Type .. 245

Figure A-11 The compile(…) method of the Compiler Class.. 246

Figure A-12 The link(…) method of the Compiler Class ... 247

Figure A-13 SourceFile Class Constructor .. 248

Figure A-14 SourceFile Class Copy Constructor ... 248

Figure A-15 SourceFile Class getName(…) Method ... 249

Figure A-16 SourceFile Class getAge(…) Method ... 249

Figure A-17 List Class Default Constructor ... 249

Figure A-18 List Class addNode(…) Method... 250

Figure A-19 List Class nodeAt(…) Method .. 251

Figure A-20 List Class nodeAt(…) Method Sub-Graph ... 252

Figure A-21 List Class noOfNodes() Method .. 252

Figure A-22 ListNode Default Constructor .. 253

Figure A-23 ListNode Copy Constructor.. 253

Figure A-24 ListNode Constructor .. 253

Figure A-25 String Class Default Constructor .. 254

Figure A-26 String Class Copy Constructor ... 254

Introduction

 18

Figure A-27 String Class Constructor .. 255

Figure A-28 String Class concat(String) Method .. 256

Figure A-29 String Class concat(char) Method .. 258

Figure A-30 String Class length(…) Method .. 259

Figure A-31 String Class c_str() Method ... 260

Visual Object-Oriented Development of Parallel Applications

 19

Chapter 1 Introduction

Parallel computation is a vast discipline with researchers and practitioners

involved in a bewildering array of projects, unified by the common goal of

achieving rapid computation. The vastness of the field and the many complex

interrelations between its subdivisions means that research in parallelism often

transcends several areas of work. This thesis is no exception.

It is certainly accurate to suggest that for a piece of research to be successful, it

must not solely focus on one key area, but draw upon related research areas to gain

depth and context. To this end, this chapter introduces the main focus of the

research, visual parallel programming, and sets the context for the importance of

this technique in terms of both technological and economic issues pertaining to

today’s and tomorrow’s parallel computing world.

1.1 An Overview of Parallel Computing

As society evolves, it places an ever-increasing dependence on, and demands more

power from, its computing systems. One way in which researchers are tackling the

requirement for increased computing power is through the application of parallel

processing. Parallel processing is the act of executing streams of instructions

simultaneously with the intention that concurrent execution will decrease the amount of

time taken to complete a computational task compared to the same program running on

a single CPU. The ratio of decrease in computational time compared to a sequential

application is known as speedup, and is fundamental to the entire discipline of parallel

processing.

Though the performance benefits of parallel computation are potentially very

attractive, parallel programming itself remains a notoriously difficult mode of

computation to achieve. Simplistically, it seems reasonable to assume a linear relationship

between the number of processors available to solve a problem, and the speedup which

is attained. It is unfortunate that in practice such optimal speedups cannot be achieved.

Amdahl’s Law {Amdahl 1967} formalises the maximum speedup attainable as follows:

Introduction

 20

If N is the number of processors, s is the amount of time spent by a serial processor on

serial parts of a program and p is the amount of time spent by a serial processor on parts

of the program that can be done in parallel, speedup is given by the following:

N
ps

psSpeedup
+

+
=

Speedup is measured as the ratio between the total time taken for the serial program to

complete and the total time for the hybrid serial-parallel program to complete.

Amdahl’s Law demonstrates the primary obstacle between a problem domain and the

goal of a high-performance parallel application, in that certain parts of the problem may

not be parallelism-amenable. Unfortunately, Amdahl’s Law is not the only barrier; indeed

it is only the very tip of the iceberg. Assuming that a reasonable proportion of an

application is amenable to parallelism, which is not always the case, extracting and

utilising that potential parallelism is often a non-trivial task.

In addition to Amdahl’s Law, several other factors which complicate the task of

developing parallel applications have been identified. Most significantly the tasks of co-

ordinating the exchange of information between the multiple processors in a parallel

machine, known as communication, and ensuring that communication occurs at the

correct time, or synchronisation, are recognised as being key problem areas in the

construction of parallel software. Failure to optimise the communication and

synchronisation pattern between concurrent tasks will lead to poor application

performance, and in the worst case render parallel applications slower than their serial

equivalents.

It is not only the fact that communication and synchronisation patterns within an

application are often difficult to understand, but the fact that the implementation of

those patterns is often highly intricate and by necessity platform-dependent. To support

the exploitation of parallel hardware, each platform provides the developer with a set of

primitives which support communication and synchronisation abstractions specifically

for that platform. Once an application is written for a specific platform, porting it to

another platform offering different facilities may be non-trivial. Even if the application is

to be ported between two broadly similar architectures, there still exists the problem of

substituting one set of parallelism directives from the first architecture with those of the

Visual Object-Oriented Development of Parallel Applications

 21

second. To make matters worse, if the architectural differences are substantial, such as

moving from a shared to a distributed memory platform, the entire application may have

to be re-written, or in the worst case porting the application may be completely

infeasible.

The problems of efficiency, portability and ease of implementation associated with

programming a wide variety of parallel machines have not gone unaddressed by

researchers within the parallelism community. The creation of source code which is both

portable and provides efficient execution over a wide variety of parallel platforms

remains an active research topic. Currently three solutions to the problem are popular

{Allen 1998}:

 Automatically parallelising compilers for existing sequential

languages;

 New parallel languages;

 Parallelism extensions to existing sequential languages, including

parallelism libraries such as PVM/MPI.

Whilst each of the approaches provides some benefits, and ultimately provide some

abstraction from the underlying parallel hardware, it is believed that even these methods

do not sufficiently abstract the complexity inherent within a parallel computer, or do not

exploit sufficient parallelism {Allen 1998}. The main drawback with using such methods

is that the developer either has to be content with relatively simple forms of parallel

activity such as those provided by parallel compilers, or explicitly program all parallel

activity using language keywords or library calls. Using the compiler option may not

necessarily yield an optimal parallel application, since such compilation techniques are

only sufficiently advanced to extract simple data-parallel, or iterative activity. That is not

to say that such tools are without merit, indeed in situations where loop or data-parallel

activity is predominant, such tools would be able to achieve speedups with no further

user intervention. If the problem domain contains more subtle forms of parallel activity,

such as pipelined or task parallelism, then the compiler method is much less appropriate.

Instead, it is likely that the developer will be charged with the identification and

specification of parallelism, making use of language constructs as in the case of

parallelism oriented languages, or making library calls in the case of a sequential language

augmented by parallelism facilities.

Introduction

 22

The common difficulty in applying any of the current textual programming solutions

to implement parallel applications lies in the fact that the linear form of the source code

does not intuitively represent the non-linear parallel control-flow within an application.

The significant burden of conceptualising parallel control-flow within the application is

placed on the developer. Experience has demonstrated that the act of programming is

itself intellectually demanding without the encumbrance of parallel control-flow and

concurrency control mechanisms being added. Parallel applications development

currently relies heavily upon the individual skills of the parallel programmer to manage

the extra intellectual workload, and is fraught with potential pitfalls, making development

slow and complicated. However, despite the inherent drawbacks to developing parallel

applications, the demand for parallel software is set to increase rapidly in the coming

decades, driven by increasingly performance dependent scientific and general-purpose

computing applications.

1.2 Parallel Computing Drivers

Notwithstanding the difficulties associated with parallel computation, the need for

very high performance computing facilities is already significant and set to increase.

Members of the scientific and engineering communities have been able to absorb every

performance increase that computing research has managed to win, for larger and ever

more accurate numerically oriented applications. Interestingly, even desktop computer

users have recently begun to require increasing hardware capabilities to run increasingly

computationally intensive application and entertainment software. Whilst scientific and

desktop users have historically formed distinct groups, both now have the common

requirement for increased computational capacity, though they remain distinct from an

economic viewpoint.

In the past the scientists and engineers have been able to increase the power of their

computing systems by investing significant sums of money in specialised high-

performance computing equipment. Conversely, desktop users have been supported by

steady increases in the power of personal computers, and secured much reduced pricing

due to market economics. Where the two groups differ is that scientific users are used to

exploiting multiprocessor hardware to solve typically numerically-oriented problems with

well known algorithms and requirements using parallel processing, whereas personal

computer users have been using functionality-rich software on single processor systems

to support a variety of tasks. Unlike the scientific community, developers of personal

Visual Object-Oriented Development of Parallel Applications

 23

computer applications have not yet embraced parallel computing technologies to

facilitate a continued increase in software response and functionality.

Whilst the scientific community is implicitly prepared for the future from a

technological viewpoint because parallel computing technology is already commonplace,

the same cannot be said for the personal computing domain. Conversely, the personal

computer users are already accustomed to utilising off-the-shelf hardware, an approach

which remains uncommon in scientific computation. However, what is certain is that

these two disjoint approaches must converge. Many scientific users can no longer afford

to fund powerful proprietary architectures upon which to execute calculations, and by

the same token no longer can the personal computer users be satisfied with a single

commodity processing unit. This convergence of requirements by the two parties has set

us along the path to parallel computation.

1.3 Moore’s Law and the Road to Parallel Computing

Alongside the social drivers applying pressure to the computing community,

economic factors have also forced a great deal of change. Perhaps the single most

important economic factor currently impacting the discipline of computing is Moore’s

Law. In 1965, Gordon Moore made the observation that the number of transistors that

could fit on a single silicon-based integrated circuit had doubled approximately every

eighteen to twenty-four months {Moore 1965; Moore 1998}. Moore’s First Law as it is

now more commonly known, has been somewhat reinterpreted since it was first

formulated and is now often cited as being the fact that computer hardware doubles in

terms of performance every eighteen to twenty-four months. It has remained a

remarkably accurate prediction, even some thirty years later as borne out by Figure 1-1

below:

Figure 1-1 Moore’s First Law

Introduction

 24

However, Moore himself has recently issued a warning as to the continued accuracy

of his prediction {Moore 1997}. He notes that although there is no technical reason not

to expect the First Law to hold, economic factors will eventually cause its breakdown as

the capital outlay required to build each new generation of fabrication facilities increases.

Moore predicts the breakdown in the First Law to occur at some point between 2010

and 2020, whereupon it will be no longer economically viable to develop and release next

generation integrated circuits as frequently as the industry has come to expect. This

observation has been termed Moore’s Second Law {Moore 1997; Schaller 1997}, and its

progress can be seen as the ogive in the figure below {Webber 1998}:

Figure 1-2 Moore’s Second Law and the Origin of the “Software Stretch”
Plotted on a linear scale, as opposed to the logarithmic scale of Figure 1-1, Figure 1-2

shows the ogive-shaped curve of Moore’s Second Law intersected by a second, linear

relationship. The linear relation illustrates the user expectation that technology will

simply improve over time, and is a far simpler relationship than Moore’s: the user always

requires that the functionality and response of computing systems improves – the next

version of a software product should be both faster and more functionality rich. The

relationship between Moore’s Law and user expectation is punctuated by five points on

the graph each marking an event in modern computing history:

A. Mainframe technologies are utilised in large corporations whilst

minicomputers proliferate smaller companies. User expectation is low, and

largely reconciled to a batch mode of operation.

B. Personal computers begin to appear and gain in popularity over the use of

timeshared systems. Users begin to expect interactivity with their

Visual Object-Oriented Development of Parallel Applications

 25

computing systems. At this point, personal computer systems although

interactive are woefully underpowered.

C. The first workstations with sufficient computational power to comfortably

run graphical user interfaces and WIMP style applications appear. GUI-

based computing becomes the normal mode, though GUI interaction is

often unresponsive.

D. The raw computational power of computing hardware facilitates the

production of highly functional and responsive software. For the time

being, hardware power outstrips the computational requirements of all but

the most demanding user group (the scientific and engineering users).

E. Moore’s Second Law {Moore 1997} heralds the beginning of the

“Software Stretch” {Webber 1998; Webber 2000}, where increases in

hardware power become less frequent and profound. The functionality and

response required by the users can no longer be supported solely in

hardware. Software begins to bear the responsibility for meeting user

requirements from a proportionally less powerful hardware base. In effect,

the software is stretched between the falloff in computation power

provided by uniprocessor hardware, and the relentless growth in

expectation of the user base.

Computing has ridden the curve of Moore’s First Law for some thirty years. Today,

computing is in a time of plenty where, for the majority of users, the power of standard

off-the-shelf hardware is more than sufficient. Nevertheless, as Moore’s Second Law

begins to encroach, other methods of providing increased computing power in addition

to gains in raw processor speed are needed. For this, the computing community looks

towards its current generation of high-performance computer users for guidance, and

finds that utilising parallel processing techniques could provide the necessary

performance increases as the single-processor approach begins to falter. However, the

software engineering methodologies endorsed by the current parallel processing users

have been low-level, and largely unsuitable for general-purpose parallel application

development, and hardware costs involved have been prohibitively expensive. If the

computing community is to survive the onslaught of Moore’s Second Law, it will need to

develop new technologies that bring the power of parallel computing into the domain of

Introduction

 26

mainstream software engineering practice, and crucially bring the cost of multiprocessor

hardware further into the commodity price range.

1.4 Affordable Parallel Platforms

Access to parallel computing facilities has traditionally been the domain of universities

and businesses with sufficient funding available to purchase expensive specialised parallel

hardware. Even though computing hardware has increased in terms of power, whilst

decreasing in terms of cost, specialist parallel hardware has remained enormously

expensive. However, as technology has advanced, multiprocessor hardware has begun to

move into the mainstream from two directions: downward from the expensive specialist

parallel hardware, and upward from standard single-processor workstations {Sterling,

Becker et al. 1998}. Perhaps most interestingly combinations of both technologies have

been recently suggested.

The network of workstations, or NOW, approach to providing affordable parallelism

was the first of the new affordable parallel technologies to make headway. Building upon

the increasing computational abilities of single processor workstations, and the ubiquity

of computer networks, it is a logical step forward to use networked workstations together

to solve computationally intensive problems. In fact the architecture, as seen in Figure

1-3 below, had already been successfully used in massively parallel computing systems.

The NOW approach offers the advantage that workstations can be used to provide

scaleable parallel computing facilities for computationally intensive tasks for the price of

commodity hardware.

interconnection network

Memory

CPU

Memory

CPU

Memory

CPU

Figure 1-3 The Network of Workstations Architecture

The downside of a NOW, or for that matter any other distributed architecture, is the

difficulty of the associated programming model. Each CPU in a NOW has its own local

Visual Object-Oriented Development of Parallel Applications

 27

memory which is not directly accessible to any of the other CPUs. Instead, when data is

to be exchanged between concurrent processes, explicit message-passing must occur

between sender and receiver. As messages travel over an interconnection network, data

rates are slow and latency is high; because of this, NOWs are suited to classes of

applications where the ratio between computation and communication is low. That is to

say, the NOW architecture is well-suited to problems which have a naturally large grain-

size.

A much more recent arrival to the field of affordable parallel computing is the shared

memory multiprocessor, or SMP, which can be seen in Figure 1-4. SMPs began their

migration from large, high-performance mainframes into low-cost server platforms, in

response to the need for high-performance workgroup-level servers. As market forces

push the cost of SMP hardware downward, proliferation of SMPs to the desktop is to be

expected within the short term making them a viable proposition as a personal computer

for executing parallel applications {Kennedy, Bender et al. 1997}.

Memory Memory Memory Memory

CPU CPU CPU CPU

backplane bus

Figure 1-4 A Typical Commodity SMP Architecture

Though the SMP platform is generally limited to fewer processors than the NOW

approach to parallel computing, SMPs benefit from a far simpler parallel programming

model than the NOW architecture. Since all processors in an SMP share the same

memory, moving data between concurrent processes is merely a matter of reading and

writing between shared memory locations. Furthermore, using shared memory as a

means of exchanging data between processes is not only simpler than the message-

passing approach, but is also quicker because of the low latency of memory access. Using

a low-latency, high-bandwidth backplane bus to support communication permits SMPs

Introduction

 28

to efficiently exploit much more finely grained parallelism than the NOW architecture

permits, since the relative cost of communication within an SMP is lower. However, it is

this backplane bus which limits the number of processors that an SMP can comfortably

accommodate, and for problems requiring vast computational power, the SMP

architecture alone may not suffice.

As SMPs make their way onto desktops and into clusters, the possibility of utilising a

third affordable parallel architecture class emerges, such as that seen in Figure 1-5. In this

hybrid class, networks of SMPs are used to provide the computing platform. This third

approach, though rare at the moment, promises the same advantages as the NOW

approach, but with potentially far higher performance.

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

Memory Memory Memory Memory

CPU CPU CPU CPU

backplane bus

Memory Memory

CPU CPU

backplane bus

Memory Memory

CPU CPU

backplane bus

Figure 1-5 A Possible SMP-NOW Architecture

The hybrid architecture seen in Figure 1-5 is exciting in that it provides facilities for

exploiting both medium-grained parallelism within individual (SMP) network nodes, and

coarse-grained parallelism across network nodes. Unfortunately, the hybrid architecture

Visual Object-Oriented Development of Parallel Applications

 29

also inherits communication methods from both the standard NOW and SMP

architectures, complicating programming as message-passing and shared-memory models

of programming must be reconciled within a single application.

Though it is clear that there are some significant problems to be addressed before

affordable parallel platforms will become mainstream computing devices, the promise of

high performance computing at a significantly reduced cost compared to that of

specialist machines is highly attractive. That is not to say that performance of the

affordable and specialist architectures would be comparable, as that is unlikely, but the

cost effectiveness of affordable parallelism is certain to be a priority of those investing in

such equipment.

The effectiveness of the affordable parallel platform for parallel processing remains a

function of the tool support provided to abstract away from the complexity and

inefficiencies inherent within any of the three affordable architectures. There is no reason

to think that affordable parallel platforms will succeed on their cost-effectiveness alone.

If the true benefits of low-cost, high-performance computing are to be realised, suitable

methods for developing software for such open platforms still need to be developed. The

comparative level of comfort enjoyed by the software developers on proprietary parallel

platforms, such as homogeneity and high-speed, low latency interconnection between

processing nodes, is unlikely to be repeated by the affordable parallel platforms. Any

applications development must acknowledge the complicated computing environment

provided by affordable platforms, and mask their potential shortcomings.

1.5 Visual Programming Techniques

Since the advent of workstations with high-performance graphics capabilities,

researchers have attempted to utilise visual techniques to improve application

development. To date, a variety of graphics-based tools have been devised, from

development environments for textual programming languages through to tools

providing sophisticated graphical modelling facilities and pure visual programming

languages.

The success of graphical application development tools and the potential held by

graphics-enabled workstations has not gone unnoticed by researchers within the

parallelism community. Language developers noted that the complicated control flow

behaviour exhibited by parallel programs could be more eloquently expressed graphically

rather than textually. This axiom continues to underpin the development of visual parallel

Introduction

 30

programming languages, and several visual language implementations based upon flow-

like semantics have been developed as research prototypes. Typically, visual parallel

programming languages consist of graphical objects interconnected by arcs which specify

either control-flow or data dependencies between those objects. Where there are no

interdependencies between objects, or a pipeline structure is present, parallel execution

may occur. Thus, flow-based graphs provide a level of implicit parallelism which can be

exploited without burdening the developer with the low-level programming detail.

As well as providing a means of abstracting low-level programming details, visual

parallel programming languages also provide an architecture-independent programming

model. Often, a language will be designed to exploit particular architecture features, or

provide language constructs to optimise away potential inefficiencies. The abstract, visual

nature of the languages helps to prevent them from being closely coupled to any one

particular architecture, and thus aids software portability.

Nonetheless, current visual parallel programming languages do not provide the

necessary level of abstraction required to build general purpose parallel software. Whilst

they simplify the act of parallel programming, in that machine details can be effectively

hidden from the developer, the programming models used by contemporary visual

parallel programming languages support paradigms that are distinctly underpowered

when considering the development of large-scale software projects. At best, the

languages offer something akin to the procedural abstraction through visual black-box

like mechanisms, whilst some do not even offer that level of abstraction, a topic which is

explored in greater depth in Chapter 2.

If visual parallel programming is to make the leap from niche research area into

mainstream software engineering practice, the programming paradigms in use must grow

from being simple value-passing between processes into something more abstract and

powerful. Examining modern sequential software engineering practice, it is clear that the

object-oriented paradigm, amongst others, has been cited as being a good example of a

high-level software paradigm. When the object-oriented paradigm is compared to the

predominant procedural abstraction used in visual parallel programming, it is clear that

the paradigms supported by visual programming languages are immature. If visual

languages are truly to flourish, they must adopt more highly abstract paradigms which

support the development of software, from inception through to release and beyond.

Visual Object-Oriented Development of Parallel Applications

 31

1.6 The Object-Oriented Paradigm

Whilst accepting that programming languages are of key importance to the process of

software development, it must also be recognised that programming languages

themselves are not a universal panacea. Indeed, when considering the lifecycle of any

non-trivial software system, the actual implementation is but one of several important

stages in the development of the application. What supports each of the stages is the

underlying paradigm through which software is developed.

It is clear that today in software engineering the object-oriented paradigm has gained

considerable favour amongst software practitioners. The object-oriented paradigm

provides a single, coherent approach that underpins all stages of the software

development process from analysis through to maintenance. Supported by a powerful

and unified paradigm, modern (sequential) software has been able to increase in size and

complexity and yet remains, to a large extent, well managed and maintainable.

Applying the same level of object-orientation to parallel application development has

several important benefits. Object-orientation provides a powerful conceptual model

with which a problem can be taken from inception through to release. All stages of the

software lifecycle can be conceptualised in a completely machine-independent fashion,

permitting the developer to concentrate upon getting the software correct, rather than

having to be concerned about low level machine-specifics. In short, the abstraction

provided by the object-paradigm manages the complexity of software, and thus allows

highly ambitious, complex software projects to be managed through to completion.

Furthermore, the object-paradigm provides a structured method of re-use through the

inheritance mechanism. Re-use is particularly valuable when considering the increased

cost of producing robust parallel code, and the potential to introduce bugs into an

application when adding new routines – a problem which is exacerbated by the

complicated nature of parallel code.

Object-orientation provides a further useful abstraction to the parallel application

developer, in that objects themselves are a natural unit of parallelism. Traditionally,

parallel programs have been written with a data-centric mindset, where the problem is

viewed as a single data set which is partitioned, operated upon in parallel and recombined

to recover a solution. Objects encapsulate this behaviour in a much more abstract

fashion. As parallelism can be achieved through concurrent method invocation on

several objects, as well as within an object’s methods, the user is not forced into a low-

Introduction

 32

level parallelism-oriented view of a system, yet the potential for extracting parallel activity

remains. Instead the decisions about the parallel activity are made at the design stage,

where types are developed to provide problem domain abstractions and encapsulate

parallel behaviour.

The object-oriented paradigm has been shown to work for serial application

development, and offers some potentially attractive benefits for the parallel application

developer. Although object-orientation constitutes a highly useful programming model,

textual object-oriented programming does not offer assistance in managing the control-

flow complexity of parallel applications. If object-orientation is to be successfully applied

in producing high-performance parallel applications, programming environments which

support the paradigm must also be able to abstract parallel activity. It is this hypothesis

which suggests that an object-oriented visual parallel programming language could be an

invaluable tool in producing software for the parallel machines of the future, and

consequently is the main topic of this thesis.

1.7 Research Goals

The aim of the research is to investigate methods for the construction of parallel

software and to develop new approaches for building general-purpose parallel

applications, utilising parallel computing facilities composed from off-the-shelf

computing and networking equipment. The objectives of the work undertaken were:

 to provide an architecture-independent programming model, and in

particular enable the exploitation of parallelism from affordable

parallel platforms,

 to exploit parallelism in as natural a fashion as possible, without

forcing the developer into a data-centric mode of computation,

 to enable the development of general-purpose parallel applications,

 to support the non-specialist developer in producing high-

performance parallel applications,

 to produce a programming language with the facilities to abstract

complicated parallel activity and computation platforms using

computer graphics.

Visual Object-Oriented Development of Parallel Applications

 33

1.8 Summary

This chapter has introduced some of the basic concepts and terminology of

parallelism, and provided a justification for parallelism based upon Moore’s Laws. The

problems facing the software community because of the impact of Moore’s Second law

have been discussed and potentially valuable techniques for alleviating the “Software

Stretch” have been identified. Furthermore, the problem of developing general-purpose

applications has been described, and object-oriented development offered as a suitable

paradigm through which parallel applications could be developed.

The following chapters each build upon and refine the basic concepts developed here.

Chapter 2 presents a survey of visual parallel programming tools. It describes current

research efforts in visual parallel programming, and discusses the range of abstractions

available in contemporary visual parallel programming systems.

Continuing from the survey results of the second chapter, Chapter 3 presents a

detailed analysis of visual parallel programming. The analysis consists of a discussion on

execution and programming models, a taxonomy of key features of each of the languages

surveyed, and proceeds to develop requirements for future languages.

Chapter 4 introduces the Parallel Object-Flow paradigm which is a novel

methodology for object-oriented parallel programming, that seeks to address

shortcomings in contemporary parallel programming methodologies by reinforcing them

with object-orientation as a software development model. Additionally, it presents a new

language for visual parallel programming, called Vorlon, which implements the Parallel

Object-Flow paradigm. The syntax semantics of the Vorlon language are described

alongside a discussion on the architecture of a Vorlon application.

In Chapter 5, the step-by-step development of two Vorlon applications presented.

The development of each application is performed in stages from high-level analysis and

design through to release, and performance characteristics of the final applications are

also presented and analysed.

Evaluation and conclusions on the success of developing with Vorlon are given in

Chapter 6. Problems with the language are discussed and possible solutions to those

problems are offered. The overall validity of the Vorlon approach is debated with respect

to the taxonomy criteria that previous visual parallel programming languages were subject

Introduction

 34

to, and a number of conclusions about software engineering aspects of Vorlon are drawn

up.

Chapter 7 finalises the thesis. It considers current and likely future practice in parallel

programming in light of the experience with Vorlon, and presents a number of

suggestions for future work. Furthermore a discussion as to which aspects of visual

parallel programming languages should be retained and which should be left out is

offered before some closing remarks are presented.

Visual Object-Oriented Development of Parallel Applications

 35

Chapter 2 Visual Parallel Programming Languages

The concept of visual parallel programming languages, using computer graphics

to develop parallel programs, is relatively young, stretching back no further than a

decade. Even so, significant research effort has been invested in the development

of graphical methods for parallel programming. However, there are other tools in

contemporary computing science competing for the attribute “visual.” In order to

clarify the situation, it is necessary to dispel programming technologies often

considered to be visually oriented (through clever brand management), and

understand in detail the underlying philosophy of true visual application

development. Once the core visual parallel programming issues have been

separated, the task of identifying features within those technologies is simplified,

and accelerates the process of building on those languages’ strong points.

2.1 Introduction

This chapter begins by introducing the discipline of visual programming, covering

both the fundamental principles of the field, and the impact of visual programming

techniques on mainstream software engineering. The discussion then turns to the

application of visual programming techniques to developing parallel applications and a

survey of four earlier research projects in the field of visual parallel programming is

presented. The survey presents, the development paradigm, execution model, and

language syntax and semantics from each of the four surveyed languages, and an example

application written in each of the languages. Drawing upon experience in developing

with the surveyed languages, the chapter concludes by offering an informal critique of

the languages as a whole, and identifies the need to formalise language characteristics in

order to further extract useful concepts.

2.2 Visual Programming

Since computers became sufficiently powerful to support user interaction through

graphical user interfaces (GUI), researchers have attempted to harness that same ease-of-

use offered by GUIs to simplify the process of programming the machines themselves.

To this end, a variety of graphics-based solutions have been developed, from enhanced

GUI-based textual code editors through to languages with purely visual syntactic

elements. The underlying principle of all of the graphics-based software engineering tools

Visual Parallel Programming Languages

 36

is similar, regardless of the degree to which computer graphics has been applied: to

simplify the act of building software.

Though modern (sequential) software continues to grow rapidly in terms of in size

and complexity, the potential to simplify software construction should hold particular

appeal to the developers of parallel applications whose software complexity far exceeds

that of sequential software developers. It is hoped that if visual language techniques can

truly deliver on their promise to simplify application development, parallel programmers

may reap the rewards. However, it is by no means certain that current visual software

engineering tools, including visual languages, are sufficiently well developed to deliver on

that promise.

2.2.1 Visual Development Environments

More so than any point in the past, the adjective “visual” adorns a multitude of

software engineering tools. In many cases the prefix does not refer to using a graphical

syntax with which to program, but instead to the fact that software projects can be

managed using graphical tools, and cosmetic details such as the appearance of an

application’s user interface can be constructed in a graphical environment.

Experience has demonstrated that graphics-enhanced software engineering tools

provide significant productivity gains over their textual counterparts. The richness of

information conveyed by good use of computer graphics is invaluable in giving the

developer a better understanding of the construction of the application. Whilst it is true

that there are few fundamental differences in methodology between the techniques used

in a purely text-driven environment and the graphics-enabled versions, graphical tools

are often simply easier to use. Even integrating several traditional tools behind a single

consistent graphical interface, such as integrating a compiler and debugger with a source

code editor, provides a far richer programming environment than the sum of the

individual parts.

Though valuable, graphics-enhanced development environments do not themselves

constitute a complete solution to the problems of producing high-quality software

systems. Indeed, such environments are merely tools in the software engineer’s toolkit,

and whilst software engineering tools are certainly of a higher quality today than at any

other time in the history of software, tools alone are only one aspect of a complete

software engineering solution. What is actually required is a combination of a paradigm

Visual Object-Oriented Development of Parallel Applications

 37

through which to conceptualise a problem domain, and high-quality software engineering

tools and techniques which may draw upon computer graphics for support.

Even with considerable support in terms of paradigms and software engineering tools,

the fact remains that the level of abstraction offered by textual programming languages is

low. Whilst modern textual languages support paradigms which are themselves highly

abstract, actual source code remains at a low level of abstraction. Software engineering

paradigms have evolved over the years, and now endorse highly abstract software models

and programming languages, and are supported by sophisticated visually enhanced tools,

and yet have remained at the same low-level of syntactic abstraction since their inception.

Realising that attaining a further level of abstraction at the source code level may

prove to be valuable, researchers have begun to look past merely wrapping textual

programming tools in graphical support, and begun to focus considerable effort on

applying graphics to software development from the ground up. As the power of

workstations has increased, the software community has begun to realise that the

application of visual programming techniques may no longer be a pipe dream.

2.2.2 Visual Programming Languages and Techniques

Like graphics-enhanced textual programming environments, visual programming

languages and their graphical environments also constitute one part of some larger

development methodology. Unlike textual programming, visual programming offers

abstraction not only through the underlying paradigm, but also at the source code level

where previously, in textual programming there was little support.

The field of visual programming is underpinned by the axiom that in some cases, an

iconic representation of program behaviour is better than a textual representation,

though the extent to which this concept is applied varies between languages. At opposite

ends of the spectrum, there exist languages whose syntax is purely visual, and languages

which mix visual syntax with textual. Visual languages themselves may be further

classified into general-purpose and application-specific forms, where the general-purpose

languages tend to be of the hybrid style, whilst application-specific languages tend

towards being more purely visual. The choice of one style of visual language over

another thus depends upon the target application area and the availability of a suitable

visual programming language.

The great advantage of visual programming is the additional level of abstraction that it

offers. Visual programming is one way in which low-level primitives can be abstracted

Visual Parallel Programming Languages

 38

away from the developer, which in turn frees the developer to concentrate upon higher

concerns such as ensuring the correctness of the application rather than investing effort

in low-level programming detail.

Unfortunately, though they brim with potential, visual programming techniques are

still rather immature. There is a wide variance amongst visual languages which suggests

that the field has not settled on any particular style, and opinion on their overall value to

the field of software engineering remains diverse {Whitley 1997}.

Concerns over the migration from textual to visual programming are similar to that

observed during the migration from assembly code programming to textual high-level

languages. Developers are comfortable with current programming methods, and are

often reluctant to experiment with what amounts to an unknown quantity, especially

since current textual programming techniques appear to be delivering.

Having acknowledged that excellent results are being produced by software engineers

world-wide, the higher level of abstraction offered by visual programming techniques

may be considered superfluous to the current needs of developers. Though the

complexity of the software may be high, the ability to manage complexity is well within

the ability of text-based programming given a suitably simple execution platform such as

a uniprocessor computer. However, when developing applications for parallel computing

platforms, it is apparent that textual programming can be extremely difficult.

2.2.3 Visual Parallel Programming

The field of visual parallel programming seeks to address the problems traditionally

associated with developing software for multiprocessor computers, namely the enormous

complexity of building parallel applications. The rationale behind visual parallel

programming is simple: parallel applications exhibit high levels of control-flow

complexity; that complexity in turn can be managed through abstraction, and visual

programming techniques provide a more abstract language syntax than textual

programming.

The goal of visual parallel programming languages is to encapsulate low-level

concurrency control primitives and abstract architectural details using a visual syntax,

whilst ensuring that run-time efficiency of the parallel application is not seriously

compromised. Once low-level concerns such as concurrency control and machine

architecture are removed from the developer’s workload, and efficiency issues addressed

automatically by the language or compilation system, development effort can be focussed

Visual Object-Oriented Development of Parallel Applications

 39

ensuring that the application meets its specification. This in itself is a major step forward

for the parallelism community who, until now, have spent a great deal of effort in dealing

with precisely such issues and which certainly are not primary problem domain

considerations. Free from the burden of low-level detail, developers should be able to

target increasingly ambitious software projects which need the performance increases

offered by a parallel mode of computation.

It is not therefore unreasonable to assume that applying visual programming

techniques to parallel programming may yield programming techniques which support

highly abstract, machine independent methods for developing general-purpose parallel

applications. However, as with mainstream visual programming technology, visual

parallel programming may not yet have reached that goal. Indeed, it is becoming

increasingly clear that current visual parallel programming systems have a significant

amount of ground to cover before general-purpose parallel application development

becomes possible.

2.3 A Survey of Visual Parallel Programming Tools

This section introduces four visual parallel programming tools from recent research

projects. For each tool this section presents: the authors abstract; a discussion of the

programming paradigm used; and a review of the visual syntax. Furthermore, a simple

parallelism-amenable problem, matrix multiplication, is completed in each of the

languages and a discussion on the experience of developing with each is presented.

2.3.1 HeNCE – Heterogeneous Network Computing Environment

HeNCE, Heterogeneous Network Computing Environment, is a graphical parallel

programming environment. HeNCE provides an easy to use interface for creating,

compiling, executing and debugging parallel programs which run under the PVM system.

HeNCE programs can be run on a heterogeneous network of UNIX

workstations.{Beguelin, Dongarra et al. 1994}

2.3.1.1. HeNCE Language and Paradigm

The HeNCE development paradigm takes the view that a parallel application is

composed from a set of computational tasks related by a set of control-flow

interdependencies. In HeNCE, both computational tasks and control-flow dependencies

are represented graphically, where computation takes the form of nodes and control-flow

dependencies take the form of arcs connecting nodes on a graph. In addition, HeNCE

Visual Parallel Programming Languages

 40

provides a number of special node types, which in combination with the graph arcs,

direct control-flow within an application.

Parallelism, essentially being a sophisticated form of program control-flow, is also

managed graphically by HeNCE. Implicit parallelism is available wherever there exist no

control-flow dependencies between computations, allowing any task-parallelism within

an application to be exploited without explicit programmer intervention. Conversely,

parallelism may be explicitly induced in HeNCE applications using the data-parallel and

pipelining abstractions provided. The crux of the matter is that whether parallelism is

implicit within the structure of an application, or explicitly invoked by the developer, no

system-level features are exposed to the developer – all parallel activity is expressed in a

highly abstract graphical form.

In addition to the graphical specification of parallel activity, HeNCE also provides a

comfortable level of abstraction from the underlying parallel machine, in that the low-

level concurrency issues such as locking and synchronisation are implicit within the

structure of a HeNCE graph. Although nodes in a HeNCE program operate in a

synchronous fashion, the overall execution of a HeNCE program is asynchronous, in

that there is no global timing mechanism which governs execution – the only condition

for the execution of a node is the completion of its predecessors. The consequence of

this mode of operation is that execution can only be delayed by latent communication.

The determinism of the program cannot be compromised by the unpredictable

behaviour of the underlying network architecture. Thus, by applying graphical

abstraction to the implementation of parallel applications, HeNCE affords developers

the luxury of being able to concentrate on higher-level aspects of the program control-

flow structure, rather than low-level locking and synchronisation issues.

Unlike the control-flow structure of a HeNCE application, computational tasks are in

fact expressed textually. Within each of the computational nodes on a HeNCE graph, the

developer embeds a call to an external program written in either C or Fortran.

Bindings between graphical and textual objects in HeNCE are managed by an entity

known as the node program. The node program is a piece of textual source code written

in a HeNCE-proprietary language, which forms an interface between the textual and

graphical aspects of an application. Since HeNCE arcs provide only control-flow signals,

the node program also bears the responsibility for obtaining any data which the node

requires in order to carry out its computational requirements. This data is kept in a

Visual Object-Oriented Development of Parallel Applications

 41

globally accessible space, and in order for a node to use a piece of that data, its node

program must be specified to obtain it.

At runtime, the mapping between the logical parallelism inherent within a HeNCE

application, and the physical parallelism offered by the underlying network of

workstations architecture is controlled by a mechanism known as the cost matrix, and

allows HeNCE applications to take advantage of the underlying network-centric parallel

architecture. The cost matrix is a static data structure which the developer specifies at

compile-time, containing the relative costs of running each computation in the

application on each of the available processors, or even architecture classes, in the

underlying network multiprocessor. Using knowledge of the likely power and loading of

nodes on the network, the developer can bias an application in favour of more powerful

architecture types, or less heavily loaded hosts. A further burden managed by the

HeNCE system is that for each of the architecture classes that appear in the cost matrix,

HeNCE assumes the responsibility for compiling and distributing binaries of the user-

specified textual computations to each workstation in the cluster.

Visual Parallel Programming Languages

 42

2.3.1.2. The HeNCE Language Constructs

Computation Node

Loop Node End

Loop Node Begin

Conditional Node End

Conditional Node Begin

Fan Node End

Fan Node Begin

Pipeline Node End

Pipeline Node Begin

Arc

Figure 2-1 The HeNCE Node Icons

2.3.1.3. Arc

The arc in HeNCE describes a control-flow dependency between two nodes, where

the node at the tail of an arc must have completed its execution before the node at the

head of the arc can begin. Note that in HeNCE, graphs are read bottom-upwards which

is why an arc’s head is (somewhat counter intuitively) above its tail.

2.3.1.4. The Computation Node

The computation node is the fundamental building block of HeNCE programs. Each

computation node contains a node program, which handles logistical aspects of the

node’s execution, and the name of an external procedure written in C or Fortran to

execute when the node becomes active. The computation node is unique in HeNCE,

since it is the only node type that is not specifically meant as a control-flow modifier.

Visual Object-Oriented Development of Parallel Applications

 43

2.3.1.5. The Loop Begin and Node End Nodes

The loop begin and end nodes define a section of iteration within a HeNCE graph,

much like a for loop in the C programming language. The computations declared in

the nodes between the loop begin and loop end nodes are repeated whilst the condition

in the loop begin node specification holds true. It is perhaps noteworthy that HeNCE

does not provide a parallel loop execution strategy such as that offered by the HPF

programming language {Koelbel, Loveman et al. 1994}. Instead, HeNCE looping is used

purely for iteration – all parallel activity is initiated through fan or pipeline nodes, or is

implicit within the control-flow structure of the program graph itself.

2.3.1.6. The Conditional Begin and Conditional End Nodes

The conditional begin and conditional end nodes provide an if-then clause in the

control flow of the graphs. If the condition specified within the specification of the

conditional begin node evaluates to true, the graph elements contained within the begin-

end node pair are executed, otherwise control flow moves directly to the successor(s) of

the conditional end node.

2.3.1.7. The Fan Nodes

Pairs of fan nodes are used to delimit sections of data-parallel activity in a HeNCE

graph. Copies of the nodes contained within fan node begin/end pairs are replicated and

executed in parallel, with the intention that each set of parallel computations will

manipulate a different set of input data. The overall partitioning strategy for the input

data is determined by the node specification of a fan begin node, which may be

determined either at compile-time or by runtime conditions.

2.3.1.8. The Pipeline Nodes

Pipeline nodes offer the second form of explicit parallel activity in the HeNCE

language. A pipeline in HeNCE retains is common-use meaning, whereby data at each

stage in the pipeline can be operated upon in parallel, whilst maintaining a particular

sequential ordering. The number of steps, and thus the level of parallelism, in a pipeline

is determined by the number of nodes in the area of the graph delimited by the pipeline

begin and end nodes.

Visual Parallel Programming Languages

 44

2.3.1.9. HeNCE Matrix Multiplication Example

Figure 2-2 HeNCE Matrix Multiplication Example

The diagram in Figure 2-2 shows the HeNCE graph for a very simple, parallel, matrix

multiplication algorithm, as follows:

 Two matrices are created.

 One of the matrices is split into a series of row vectors.

 Each row vector is multiplied with a copy of the second matrix in

parallel.

 The final matrix is assembled from the results of the matrix-vector

multiplication.

It should be noted that the algorithm employed is very crude. Firstly, the algorithm

will fail if the matrices to be multiplied are not compatible. Secondly maximal parallelism

(the parallel multiplication of individual matrix elements) has not been chosen for

reasons of efficiency as the very fine granularity of multiplying two single matrix

elements is difficult to exploit efficiently within the network of workstations architecture,

Visual Object-Oriented Development of Parallel Applications

 45

which is better suited to the exploitation of coarse-grained parallelism. With this in mind,

the appearance of Figure 2-2 can be explained:

1. One of the matrices is created, and passed to a successor for

splitting into its component vectors.

2. The same matrix, consisting of an array of floating point

values is split into several smaller arrays, each representing

one row in the original matrix.

3. A second matrix is created in parallel with the first and is

made available to its successor node.

4. The fan out node distributes a copy of a whole matrix along

with one unique row vector to each of its successor nodes.

5. The data arrives at the matrix-vector multiplication node for

processing in parallel. Multiple copies are executed in parallel

by dint of the fact that the node which carries out the

operation is contained within a fan begin and fan end node

pair. Each of the replicated nodes performs a matrix-vector

multiplication and produces a single row vector along with a

row identifier, which is passed to its successor.

6. The end fan out node collects the vectors produced by the

matrix-vector multiplication node and passes them to its

successor.

7. The vectors produced by the end fan out node are assembled

into a matrix, using their associated row identifiers to ensure

correct placement, and the result is output.

Whilst the graph clearly demonstrates the (parallel) structure of the program, it should

be noted that the graph alone does constitute the entirety of the program. In addition to

the construction of the graph, each of the nodes needs to be equipped with a node

program, and the computations themselves need to be written.

2.3.1.10. HeNCE Observations

The originators of HeNCE suggest that it is non-exclusively geared to problems

within the domain of computational science. HeNCE is intended to abstract away details

Visual Parallel Programming Languages

 46

of underlying architectures, libraries and run-time systems thus alleviating the intellectual

burden of handling low-level parallelism detail from the developer.

Insofar as its aims reach, HeNCE is a successful language in that it allows for

problems which are currently solved using low-level parallel programming to be solved at

a higher level of abstraction from the underlying parallel architecture. However, the goals

set by the HeNCE research project were somewhat lacking in ambition by today’s

standards. That is not to say that HeNCE is a poor language, as it is not, but within the

era from which HeNCE derives there was little to suggest that parallelism would be a

tool for anything other than large, computational problems. As a result, HeNCE adopts

the same low-level problem solving paradigm as any textual parallel-programming

strategy from the same period, whereby problems are conceptualised as sequential

processes, exchanging data from time to time, as typified by Hoare’s CSP language

{Hoare 1985}. Such an approach necessarily presents the developer with a cognitive

model close to that of the computing system (distributed memory, and message-passing).

Whilst it is true that HeNCE abstracts the lowest level of detail, the locking and message-

passing primitives and so forth, the lack of a suitably highly abstract development

paradigm to support HeNCE is its biggest downfall. Relying on a paradigm which itself

in remarkably similar to the underlying parallel system seems almost self-defeating when

the goal of HeNCE was to abstract that same system and manage implementation

complexity. That being said, HeNCE is quite a suitable tool for expressing parallel

applications whose structure is straightforward enough not to require highly abstract

cognitive models. Indeed, where the communicating sequential processes view of a

parallel application is sufficient to enable its construction, HeNCE is a valuable tool,

allowing developers to concentrate on extracting as much parallelism as possible from

the structure of the program, without the intellectual load of managing low-level detail.

On a positive note, HeNCE supports an important aspect of parallel programming, in

that it separates control-flow and computation. Whilst in imperative sequential languages

it has been accepted that computation and control flow can exist within the same body

of source code and even using the same syntax, in a parallel application the control flow

may exhibit far more complicated behaviour than its sequential counterpart. In a HeNCE

program, the parallel behaviour of the application does not pollute the actual source code

for computations. As control-flow and computation are somewhat orthogonal issues, the

complexity of both can be managed individually.

Visual Object-Oriented Development of Parallel Applications

 47

Where parallel control-flow problems are concerned, HeNCE receives a mixed

response. On the positive side, the ability to exploit parallelism implicit within the

structure of the graphs is a great bonus, in that tasks which are mutually exclusive are

free to execute in parallel without explicit intervention by the user. On the negative side,

pipelined parallelism must be explicitly induced since HeNCE has a control-flow

execution model, where under normal circumstances all a nodes predecessors must have

completed before subsequent nodes may execute. The HeNCE pipeline nodes allow this

model to be circumvented, permitting successor nodes to execute whilst their

predecessors are still themselves computing, but only within the graph area delimited by

pipeline begin/end node pairs. To the graph containing the section of pipelined activity,

the image of a strict control-flow model is maintained. However, in other languages

pipelined parallelism is claimed to be implicit within the structure of the application, and

as such provides the facility at no cost to the developer. Data-parallel activity in HeNCE

is once again explicitly induced, though here the penalty on the developer is not

significant, since HeNCE’s target computational problems (numerical analysis) often

involve a great deal of data-parallelism, and it is often the case that data-parallelism is

obvious for the developer to identify. Thus explicitly activating data-parallel activity in a

HeNCE program is perhaps not an unreasonable burden for the developer, for whom

the identification of data-parallelism is trivial, and for whom the implementation of data-

parallel activity is simplified through visual abstractions.

Having said that HeNCE satisfies its goals comfortably, it does not satisfy them

completely. HeNCE applications should, in theory, be portable across any architecture

supporting the PVM {Geist, Beguelin et al. 1994} message-passing system, as HeNCE

ultimately produces C/Fortran code containing PVM calls. In practice, things turn out to

be a little more complicated. When a developer builds a HeNCE application, that

application will run on the developer’s own target architecture. However, just because a

set of workstations supports the execution of PVM tasks, this does not mean that all

PVM clusters are architecturally identical, and in fact the reality is often far from that.

There is little chance that an application written with one PVM cluster in mind will

execute with the same performance characteristic on another cluster. At the very least, a

new cost matrix will have to be constructed for each PVM cluster that a HeNCE

application is ported to, at worst applications may need considerable changes in order to

run efficiently. However, the reduced portability of HeNCE applications is not a

function of the language syntax itself. Theoretically, HeNCE programs, because of their

Visual Parallel Programming Languages

 48

graphical construction, could be made portable across a range of parallel architectures. It

is the fact that HeNCE targets the PVM run-time system as its target architecture which,

ironically, reduces its portability.

Though the language is to be considered blameless for the fact that HeNCE

applications are somewhat less portable than its name suggests, the language is to blame

for introducing implementation work outside the scope of the problem domain.

Moreover, the fact that each of the nodes in a HeNCE program requires a specification,

which governs the control-flow logistics and bindings between text-level and graph-level

objects, is detrimental. The addition of a third language component provides another

route via which bugs could be introduced into programs, and although the language used

to program each of the node specifications is simple, it is nevertheless an aspect outside

the problem domain that a developer must contend with.

A further shortcoming of the HeNCE language is the lack of facilities for source code

management. Though HeNCE may seem amenable to and could benefit from some

graphical function-call mechanism or similar black-box mechanism, it has not been

equipped with such {Browne, Hyder et al. 1995}. If a particular application consists of

many nodes then the HeNCE graph representing that program may become very large,

and ultimately become so dense with information that continuing development becomes

difficult. It is perhaps an obvious deficiency that even well known control-flow

mechanisms, such as the procedure call abstraction, are missing.

On a more positive note, HeNCE is supported by a useful post-mortem program

animation facility as part of the development environment. The animation facility is

useful in debugging and optimisation, providing an insight into both the activities of the

program and the run-time system. From this, not only the high-level information about

the program can be obtained, but also the low-level machine details are available, thus

revealing both programming errors, and optimisations with respect to utilising the

underlying hardware more effectively. The downside of this information is that the

programmer must possess sufficient skill to make the optimisations required by the

architecture, which itself may be non-trivial.

Though far from perfect, HeNCE provides a useful starting point into the field of

visual parallel programming. Its virtues and weaknesses have been observed by

contemporary projects, and armed with this knowledge other researchers have attempted

to build languages which address some of HeNCE’s shortcomings.

Visual Object-Oriented Development of Parallel Applications

 49

2.3.2 CODE – Computationally Oriented Display Environment

The conceptual approach we have taken to providing a solution for the problem of

programming MIMD parallel architectures is based upon raising the level of abstraction at

which parallel structures are expressed and moving to a compositional approach to

programming. The CODE 2.0 model of parallel programming permits parallel programs

to be created by composing basic units of computation and defining relationships among

them. It expresses the communication and synchronisation relationships of computation

as abstract dependencies and runtime determined communications structures can be

expressed.{Newton 1993}

2.3.2.1. CODE Paradigm

The CODE model of parallel computation views a parallel application as a set of

potentially parallel computational tasks whose execution ordering is determined by their

natural data dependencies. In CODE, the structure of an application is described visually

in terms of a set of computational elements and the data dependencies that exist between

those computational elements. Computations, though themselves expressed textually in

the C programming language, are visualised as nodes on a graph and data dependencies

as arcs interconnecting those computational nodes.

The CODE model of computation is interesting in that there exist no nodes which

specifically deal with parallel control-flow aspects of an application. This has some

profound implications for the way in which execution proceeds in CODE, in that the

responsibility for routing data, and therefore overall control-flow in the application, rests

with the Unit of Computation (UC) nodes (the basic computational element in CODE)

and arcs. The way in which UC nodes manage such logistical aspects is through “node

stanzas,” which describe a node’s interface in terms of number and type of input and

output arcs. The node stanzas themselves can be made to co-operate with arc topology

specifications, which are equivalent to node stanzas but specify arc behaviour, such that

data from one node can be transmitted via an appropriate arc to an instance of another

node.

The upshot of this mode of execution is that data-parallelism must be explicitly

induced by the programmer, who must write a consistent set of node stanzas and arc

topology specifications to manage the distribution and recombination of data across the

set of nodes involved in the data-parallel activity. On a more positive note, other forms

Visual Parallel Programming Languages

 50

of parallelism (pipelining and task) are implicit within the structure of the application and

occur as and when the natural data dependencies of the application allow.

CODE retains a reasonably comfortable level of abstraction from the underlying

parallel architecture with issues such timing and synchronisation being automatically

managed. Additionally, CODE augments the dataflow programming paradigm by the

inclusion of a subgraph-level shared memory abstraction. The shared memory

mechanisms offered are valuable in that they support the construction of applications

which are not easily modelled by value-passing. As with other low-level concurrency

control mechanisms, access control to shared resources is handled automatically by

CODE.

The problem of mapping such high-level abstractions into efficiently executing

parallel programs has been central to the CODE model of computation. CODE tries to

balance the developer’s requirements of high levels of abstraction with the execution

requirements of optimised machine code by using a proprietary translator. This incurs an

overhead when compared to targeting a general-purpose run-time system such as PVM

in that for each parallel architecture that CODE programs are to be executed upon, a

new translator must be developed. However, the advantage of developing translators on

a per-architecture basis is that features indigenous to particular architectures can be

exploited to maximise the efficiency of program execution. Thus CODE allows

programmers to enjoy the relative luxury of developing in an abstract, graphical

environment, whilst, uniquely amongst the surveyed tools, offering the capability of

producing platform-optimised executable programs.

Visual Object-Oriented Development of Parallel Applications

 51

2.3.2.2. The CODE Language Constructs

UC Node
Call Node

Input Interface Node Output Interface Node

Creation Parameter Node Name Sharing Relation Node

Figure 2-3 CODE Language Icons

2.3.2.3. UC (Unit of Computation) Node

The Unit of Computation, or simply UC, node is the fundamental building block

within the graphical component of the CODE language. UC nodes represent sequential

computations which may potentially execute in parallel, data dependencies permitting,

promoting the exploitation of parallelism at the sub-routine level {Newton 1993}.

As is the case with other node types in CODE, each UC node within a graph is

explicitly programmed with a set of node stanzas using a declarative style textual

programming language. Here, the node stanzas are responsible for determining under

which conditions the node’s computation may execute (selecting which of the input

ports containing data will invoke the node through the firing stanza), where the results of

the computation will be sent, and binding graph-level constructs to local variables. The

set of stanzas may also contain a computation written in a subset of the C programming

language, or alternatively contain a procedure call to an external C program where the

full expressiveness of the C language is required to implement the computation. It is

Visual Parallel Programming Languages

 52

noteworthy that nodes are stateful, in that local variables defined in nodes retain their

values between each activation of the node, with similar semantics to static variables in

the C language. If required, the initial state of variables local to a node can be set before a

graph is executed via the inclusion of an appropriate clause within that node’s stanza.

2.3.2.4. Call Node

A typical CODE program may be composed of a number of intercommunicating

graphs, arranged hierarchically. The call node is used as an interface between the graphs

from which an application is composed. Graph calls made via a call node exhibit

identical semantics to any other node in a CODE program. Thus no special measures

need to be taken, even though activating a call node may cause the execution of an entire

sub-program. The call node is analogous to a function call in sequential programming

languages, and as such can be used in a similar fashion, including the ability to make

recursive calls to the same graph.

Using call nodes and sub-graphing allows applications to be constructed in a

structured fashion from components. Provided the interface to each of the components

is known and adhered to, there is no reason why library components, and components

from other developers or projects cannot be re-used with no change to the overall

semantics of the execution model. Furthermore, a procedure-call abstraction mechanism

can be used as a tool for managing software complexity and allowing top-down

decomposition of a problem domain, which is valuable.

2.3.2.5. Input and Output Interface Nodes

Input and output interface nodes only appear when an application is composed from

multiple CODE graphs. The function of input and output interface nodes is to provide a

binding between arcs from a calling graph into the called sub-graph and back again. At

the sub-graph level the interface nodes are visualised simply as local data sources and

sinks. When a sub-graph is called through a call node, values pass from the input

interface node into the main body of the graph where the computation occurs. Similarly,

the output interface nodes provide a means of returning values from a sub-graph to

outgoing arcs on the calling graph’s call node.

The benefit provided by the use of input and output interface nodes is that

components of an application can be developed independently, with the set of input and

output nodes providing each component with its own environment. This in turn

Visual Object-Oriented Development of Parallel Applications

 53

decreases coupling between nodes and as such increases the scope for potential re-use of

an application’s code base.

2.3.2.6. Creation Parameter Node

The creation parameter node is a shared-memory abstraction whose purpose is to

allow CODE graphs to be parameterised at their instantiation. The values held in the

creation parameter nodes act as read-only variables within the scope of the graph within

which they are declared. Though each creation parameter node must be bound to a

dataflow arc from the calling graph, only the first value which arrives along that arc will

be retained and shared by the rest of the graph. Any subsequent values arriving along

that arc will be ignored by the creation parameter node, in keeping with its read-only

semantic.

Within sub-graphs, creation parameter nodes do not obey the normal node-

connected-by-arc syntax which characterises the normal semantic. Instead, the placement

of a creation parameter node on a CODE graph implicitly connects each node in the

graph to that creation parameter node. Whilst this contravenes the normal semantics of

CODE graphs, this approach greatly improves graph readability, reducing the need for

webs of what amounts to trivial arc interconnections on the graph.

2.3.2.7. Name Sharing Relation Node

The name sharing relation node provides a fully mutable shared variable facility.

Unlike the creation parameter node, the name sharing relation node holds a value which

may be read from or written to at any point during a graph’s execution, applying the

limitation that nodes must have declared their possible intentions as readers or writers

(via the node stanza) before accessing the shared value. Concurrency issues pertaining to

read, write and read-write access to name sharing relations are automatically resolved by

CODE, freeing developers from the burden of explicitly programming concurrency

control mechanisms.

Name sharing relation nodes, in common with other node types in CODE, require a

set of stanzas that govern their run-time behaviour. In particular, the name sharing

relation nodes contain the following stanzas, which differ from the standard UC node

stanza set:

 A name for the node.

 The name and type of the shared variables.

Visual Parallel Programming Languages

 54

 An (optional) activation computation which will activate before the

node begins to share its shared variables. When instantiated, the

name sharing relation nodes can perform useful computation which

may affect the initial state of the shared variables which it contains.

 A set of external function signatures that may be called by the node’s

activation computation if any activation computation exists.

 A set of local variables to be used in the activation computation.

It is noteworthy that the functions defined with the node are available to the

activation computation, but they themselves are not shared, for example in the same way

that an object’s methods would be visible to other objects in an object-oriented

application. That is to say, the name sharing relation can operate upon the data that it

exports, but no other nodes can coerce the name sharing relation into repeating those

operations. Once complete, the name sharing relation becomes a standard shared value

abstraction, which can be read and updated by other nodes in the graph.

2.3.2.8. Arcs

Arcs in the CODE language specify potential paths of communication between nodes

along which values may pass. Each arc is essentially an unbounded FIFO queue, where

the head of the queue is accessible to the receiver of the values and the tail accessible to

the sender.

Whilst this would seem a suitably simple form for a node to take, arcs, in common

with the other graphical CODE components, must be annotated. Specifically arcs are

annotated with arc topology specifications, which map an output port from a source UC

node to an input port on a destination UC node.

The reason why CODE requires arc topology rules for each arc is that they govern

the run-time mapping between nodes and arcs, and thus any parallel activity within a

graph. For example, using indices associated with each arc, values can be passed to

multiple instantiations of UC nodes which can then operate on data in parallel which can

be seen in Figure 2-4 below.

Visual Object-Oriented Development of Parallel Applications

 55

[i].output =>. input[i]

.output[i] =>[i] .input

Figure 2-4 Arc Topology Specifications Instantiating Data Parallel Activity

In Figure 2-4, a CODE template for simple data-parallel activity is show. The UC

nodes uppermost and lowermost are each instantiated once at run-time, whilst the

middle UC node may be instantiated any number of times in parallel. The way that the

CODE system knows when to instantiate a node multiple times is, as has been

previously noted, through the arc topology specification. Here the first arc topology

specification, .output[i] => [i].input, specifies that the uppermost node in

fact has a choice of [i] arcs onto which it may deposit data, and that the middle node is

therefore replicated i times. The second arc topology specification, between the middle

and lowermost node, performs a similar operation except that in this particular case,

[i].output => .input[i] maps arcs between multiple instances of the middle

node with a single instance of the terminal node.

As is apparent, arc annotation is tightly coupled to the behaviour of both the sender

and receiver. All must agree on the correct behaviour if the overall program is to

function as expected, and presents a most opportune situation for the introduction of

bugs into an application. As such, the developer must be cautious when constructing the

Visual Parallel Programming Languages

 56

arc topology specification, or the behaviour of the final application may be somewhat

different to that intended.

2.3.2.9. CODE Matrix Multiplication Example

Read Inputs

.n_out[i] => [i].n.A_out[i] => [i].A

Call VectMult

[i].b_out => b_in.[i]

.b_out[i] =>[i] .b_in

Figure 2-5 CODE Matrix Multiplication Main Graph

Visual Object-Oriented Development of Parallel Applications

 57

b_in

b_in

b_out

b_out

A n

Figure 2-6 CODE Matrix Multiplication Sub-Graph

The two CODE graphs shown in Figure 2-5 and Figure 2-6 constitute a simple

parallel matrix multiplication algorithm, an example similar to that offered by the

originators of CODE {Newton 1993}. The algorithm used is the same as that used in

the HeNCE example of Figure 2-2, where a matrix-vector multiplication is performed in

parallel and the results merged to form the final solution. However, the CODE example

exploits two features that HeNCE does not possess, namely hierarchical graph

decomposition (procedure-call) and a shared memory abstraction.

It should also be noted that the CODE graphs are commented. The commenting is

necessary to show the arc topology specifications, which are of fundamental importance

to the execution of CODE programs. For those elements referred to by the arc topology

specifications, it is inferred that there exists a corresponding element within the

associated nodes. That is to say that for each binding there is the implication that there

exist appropriate local variables exist for the graphical elements to bind to within each of

the nodes.

The function of each of the graphs, and importantly the annotations, will now be

described starting with the main graph of Figure 2-5.

Visual Parallel Programming Languages

 58

1. The first UC node reads the inputs from the environment and sends the

values onto three outgoing arcs. Each of these arcs carries one of: a matrix;

an integer value for the current matrix column size; and a vector. The

matrix and integer value for the matrix column size will be identical on

each of their instantiated arcs, whereas each of the vectors may differ. The

comments near each of the arcs show the actual bindings performed

between the first UC node and the call node. The arcs marked

.A_out[i] => [i].A and .n_out[i] => [i].n carry the

matrix to be multiplied and its dimension to creation parameter nodes

within the multiplication sub-graph. The indices present on the arc

topology specifications show that the arcs may be instantiated more than

once at run time, which infers that the call node is also instantiated more

than once at run time. The remaining arc, .b_out[i] => [i].b_in

carries a single vector to the call node in the same way.

2. The call node is used to instantiate a sub-graph and divert the flow of

control from the parent into the newly created sub-graph. In this case, it is

used to send a matrix, a vector, and an integer to a matrix-vector

multiplication graph. Again arc topology specifications use indices, which

indicates that the output from multiple instances of the sub-graph are to be

gathered.

3. The output from the parallel matrix-vector multiplication is gathered to

form the final result. Note that explicit identifiers for each of the vectors

are not required as the subscript of each of the indices can be used to

identify each of the incoming data elements.

Whilst normally the graph call node would be treated as a simple black-box, in the

case of this example it is prudent to examine the behaviour of its sub-graph, which can

be seen in Figure 2-6.

1. The creation parameter node marked A is bound to the arc marked

.A_out[i] in the calling graph and is used in the sub-graph to

hold a matrix. The creation parameter node marked n is bound to

the arc marked .n_out[i] in the parent graph and used to hold

the size of the matrix for the multiplication in the sub-graph. The

Visual Object-Oriented Development of Parallel Applications

 59

values held in both nodes are set when their graph is instantiated,

and remain constant throughout the execution of the program.

2. The input interface node binds an arc from the calling graph to the

local graph. Its output is identical to the input that it receives from

the arc to which it is bound. The actual arc to which an instance of

the sub-graph is bound depends on the value of the index of the arcs

which are incident upon that sub-graph. That is to say that CODE

allows for multiple instantiations of sub-graphs via the arc topology

specifications of an application, in the same way that the UC nodes

may be replicated.

3. A vector is received by the UC node from the input interface node,

which in turn has received it from the arc in the calling graph marked

b[i], where i is the index for this particular instance of the sub-

graph. The UC node also implicitly has access to the values stored in

both creation parameter nodes as it exists within the same scope as

those nodes. A simple matrix-vector multiplication is performed and

the resulting vector is passed onto the successor of the UC node.

4. The output interface node binds the output from the sub-graph to an

arc in the calling graph. The arc which is bound to a particular output

interface node is dependent on the index of the arc, in an analogous

way to the input interface node.

2.3.2.10. CODE Observations

The primary goals of the CODE language and execution model are to provide both

an efficient and portable programming environment. Portability is attained through the

use of a language which is abstract in appearance, and not closely coupled to any

particular architecture class. Efficiency is achieved by providing translators which map

the CODE language onto particular architecture types, thus enabling the facilities

provided by each architecture to be exploited without presenting those features directly

to the developer. To prove the efficiency case for CODE, its originators have developed

an example using the Barnes-Hut particle simulation algorithm {Barnes and Hut 1986}.

The CODE program for this simulation demonstrated an impressive speedup curve

close to that achieved by a hand-crafted piece of C code (though both approaches failed

to achieve a curve similar to that for ideal speedup {Newton 1993}).

Visual Parallel Programming Languages

 60

Though the translation of CODE programs has indeed been shown to be efficient,

the language itself presents some barriers to the straightforward development of parallel

applications, because of its use of textual annotations which manage dataflow logistics.

This is detrimental to the CODE language in three ways. Firstly, the structure of CODE

graphs are not a true representation of actual program behaviour. Though it is recognised

that representing the dynamic behaviour of a program on a static graph is a non-trivial

problem, CODE graphs do not maximise the amount of potential run-time behaviour

present in each graph, relying instead upon a proprietary textual language. Thus, it is

impossible to predict accurately the behaviour of a CODE program by using the graph

alone. This means that the advantages afforded by the separation of control-flow into a

graphical language and computation into a textual language diminish, as the graphical

language becomes increasingly dependent on the supporting textual component.

Secondly, the introduction of a third language for writing node stanzas and arc topology

specifications, in addition to the graphical language itself and the textual high-level

language in which external procedures are created, is another potential entry point for

bugs into an application. Thirdly,node programs and arc topology specifications do not

constitute part of the problem domain under consideration and thus are an overhead on

the use of CODE for constructing applications.

Bearing in mind that CODE is young and still being actively researched, some of

these problems may yet be overcome. For instance, it may be possible to automate at

least the arc topology specifications, as exemplified in ParADE, where graphical-textual

bindings are resolved automatically {Allen 1998}. Furthermore, experience has

demonstrated that whilst using CODE the more complex arc topology specifications

tended to be used where data-parallelism was required. In this case, some form of pre-

defined arc topology specification pattern or specialised node type such as HeNCE’s fan-

out node would provide significant benefits to the software developer.

Leaving syntax aside, the way in which CODE programs are made portable across a

range of architectures is another aspect of CODE which distinguishes it from its

contemporaries. The use of a translation layer for each architecture class that CODE

programs are to be executed upon produces both benefits and drawbacks. On the

beneficial side, the use of a specialist translator for each target architecture offers the

possibility of tailoring CODE software to suit the architectural nuances of each machine

class, and correspondingly increase application performance through exploiting those

features. On the downside, the task of producing translation software for new

Visual Object-Oriented Development of Parallel Applications

 61

architectures limits the availability of CODE to specific architectures, unlike other

systems whereby portable run-time systems have been targeted. In an attempt to alleviate

such a burden, the CODE system is built in an object-oriented fashion, allowing for

straightforward supplementation of existing translators, and indeed this feature is heavily

praised in one thesis on CODE {Newton 1993}.

Although the originators of CODE make much of the fact that developing translators

for a wide range of machine architectures is greatly eased by the CODE environment’s

object-oriented architecture, it is ironic that the CODE language itself does not support

object-orientation. Using an object-oriented approach, it has been demonstrated that the

existing translators can be supplemented, using useful concepts such as inheritance. In

the same way, CODE source application could be re-used and extended rather than re-

written. Parallel programming is far more difficult than sequential programming, yet it is

sequential programs which receive support for re-use and maintainability. CODE’s

originators seem to suggest by this action that it is desirable to offer a rich development

paradigm to the tool producers, but deny that paradigm to the users of that tool.

CODE does however provide a basic mechanism whereby source code can be

managed via the sub-graphing facility. Source code can be kept in logical groups and

partitioned to keep modules relatively simple, using a hierarchical graph decomposition

strategy. With the aid of the call node facility CODE programs can be developed in a

top-down fashion, using a hierarchical approach to manage complexity, and structure

applications. Whilst this does lag behind the state of the art in software development,

CODE is at least equal with contemporary systems in the field.

Whilst CODE has achieved some success and even managed to provide a portable

parallel programming methodology, it is not without drawbacks, some of which it holds

in common with the HeNCE system. For systems which avoid the drawbacks common

to graphical flow-style languages, researchers from the original HeNCE project have

progressed with a second visual parallel programming language based upon an entirely

different parallel programming paradigm, which is discussed next.

Visual Parallel Programming Languages

 62

2.3.3 VPE – Visual Programming Environment

VPE is a visual parallel programming environment for message-passing parallel computing

and is intended to provide a simple human interface to the process of creating message-

passing programs. Programmers describe the process structure of a program by drawing a

graph in which nodes represent processes and message flow on arcs between nodes. They

then annotate these computation nodes with program text expressed in C or Fortran

which contains simple message-passing calls. The VPE environment can then

automatically compile, execute and animate the program. VPE is designed to be

implemented on top of standard message-passing libraries such as PVM and

MPI.{Newton and Dongarra 1994}

2.3.3.1. The VPE Paradigm

VPE is a hybrid textual-graphical language, intended to simplify the construction of

message-passing programs built upon the standard PVM and MPI {Snir, Otto et al.

1996} message-passing libraries. As such, VPE splits an application into two

components: the graphical aspect which represents the process and inter-process

communication structure; and the textual part, written in C or Fortran, which forms the

actual computations to be executed within potentially parallel processes.

VPE employs a simple top-down design strategy via a sub-graphing mechanism in the

language, which supports structured, top-down programming techniques. VPE graphs

show the structure of computations, or processes, and the communication that may

occur between those computations. For each process (computational node) specified in a

VPE graph, the programmer is presented with an environment within which to construct

a sequential textual program. The exact environment presented depends on the

arrangement of input and output ports attached to a computational node. However,

because the structure of the overall program has been determined graphically, the text

embedded within the computation nodes is simpler in comparison to the equivalent

programs constructed by hand using the message-passing libraries. That is not to say that

the complexity of the problem domain itself has somehow been reduced, nor that that

the textual programming languages embedded within the computations are somehow

made simpler under VPE. The advantage that VPE offers to the programmer at the

textual level is that communication primitives are relatively simple, compared with the

primitives offered by PVM and MPI. As the message-passing library calls are not used

directly, VPE introduces the possibility of porting programs between the two message-

Visual Object-Oriented Development of Parallel Applications

 63

passing environments. Furthermore, as VPE calls map directly onto the underlying

message-passing environment, very little overhead is added when using a VPE

communications primitive compared to using a PVM or MPI primitive directly {Newton

and Dongarra 1994}.

In addition to providing a top-down design strategy, VPE takes further advantage of

the sub-graphing mechanism by permitting the execution of sub-graphs to be

parameterised, and when appropriate, initialised before being executed, in a similar vein

to CODE’s shared variable abstraction introduced earlier. In VPE, graph

parameterisation is a mechanism used to hold values that will be utilised by the actual

computations within the same graph. Parameters are fixed before any computation

begins and may be set either by an initialisation computation or by values received from a

calling graph. Any of the graph parameters can be read from any of the computational

nodes in the graph as if the parameters were declared locally within those computations,

and as such provide a simple shared-memory abstraction. Computational nodes are also

free to update as well as read the value held by the graph parameters, though any updates

made by a node are only seen by that same node: communication via the shared memory

abstraction is not permitted, save for initialising the graph values.

For those parameters not initialised by value arguments from a calling graph, an

initialisation computation is used. The purpose of the initialisation computation is purely

to set values for any graph parameters that are not to be received from a calling graph. It

is noteworthy that initialisation computations may encapsulate any arbitrary application-

specific functionality, but in the general case they are used merely for initialising graph

parameters.

Apart from the shared memory mechanism made available during the initialisation of

graphs, VPE utilises a message-passing paradigm. As mentioned above, there are no

other facilities for communicating information through shared memory, as such

mechanisms are at a higher level of abstraction than the VPE model encompasses. If a

computational element is dependent upon data from another computational node, the

data in question can only be transported via the explicit exchange of a message between

those nodes.

Though admittedly low-level, the execution model supported by VPE naturally

encourages parallel activity. Each computational node in a VPE program may potentially

execute in parallel with any other. The only programming barrier to completely parallel

Visual Parallel Programming Languages

 64

execution are blocking message-passing calls which enforce control-flow dependencies

between computations.

As the VPE paradigm is purely message-passing based, there are no separate graphical

components which control specific forms of parallelism. Task parallelism is the default

mode of execution if possible, and pipelined parallelism is implicit within a program’s

structure. It is noteworthy that data parallelism is also available to the developer, though

exploiting data-parallel activity must be explicitly specified (but not programmed since

ultimately it is the message passing structure of the application which governs even data-

parallel activity) using the VPE replication node.

As a consequence of VPE’s approach to parallel application development, the

programmer does not have to learn a textual language solely for programming the

communication behaviour of the nodes. Such communication occurs using a binding in a

language with which the developer is familiar, being either C or Fortran, which is

significantly less open to accidental misuse than the approach whereby a third language

element is introduced specifically for mapping textual and graphical level entities.

Furthermore, unlike its contemporaries VPE does not seek to address parallel control-

flow issues graphically. The fact that VPE does not specify control-flow graphically is not

a shortcoming, indeed it is not an aim of VPE to be able to do so. VPE is ultimately a

visual interface to message-passing libraries rather than a fully-fledged parallel

programming language in itself.

The VPE programming environment is extensive. Control of the underlying message-

passing mechanism to which VPE is coupled is performed through a graphical console

window within the development environment. VPE also automates one of the most

common burdens in message-passing parallel programming in a heterogeneous

environment, by ensuring that appropriate executable files are distributed around hosts

within the networked multiprocessor. Without programmer intervention, source files are

compiled for appropriate architectures and the resulting binaries placed on file systems

which those hosts can read. Post-mortem style program animations are also available to

the developer to aid debugging and optimisation.

Visual Object-Oriented Development of Parallel Applications

 65

2.3.3.2. VPE Node Icons

Compute Node Compute Node with
Replication Box

Compute Node with:
Above: Output port
Below: Input port

Above: Input Interface Tool
Below: Output Interface Tool

Call Node

Figure 2-7 VPE Language Node Icons

2.3.3.3. Compute Node

The compute node is the basic building block in VPE. Each compute node is a

template for the creation of a computational process, which the developer must express

in either C or Fortran. To enable communications with other compute nodes,

communication ports are attached to each compute node’s edges. Indeed, a VPE

program without ports can only be executed as a single serial process.

A compute node becomes active when its internal program becomes active. This may

occur at the very beginning of a program’s execution, or the compute node’s execution

may be suspended, awaiting the arrival of a message. The graphical structure of the

program itself does not determine the order of execution, it merely describes possible

communication paths which the internal programs of each compute node are free to use.

2.3.3.4. Replication Box

The replication box provides the mechanism for data-parallel execution within VPE.

The function of the replication box is to execute a particular computation node in

parallel with other instances of itself, but ideally with each working on disjoint sets of

data. The amount of replication that occurs is governed by graph parameters which are

set at run-time, thus permitting the program to adapt its behaviour according to the

Visual Parallel Programming Languages

 66

metrics of the problem under consideration, and potentially modify the level of

parallelism according to hardware run-time conditions.

The replication box alone does not fully address the problem of data-parallelism. Any

messages exchanged with a replicated compute node must specify which of the replicated

computations is being communicated with, whether they are sending data to, or receiving

data from any of the replicated computations. To this end, the message-passing calls

provided by VPE take an identifier of a replicated computation as one of their arguments

in a manner not dissimilar to CODE’s arc indices. Experience has shown that even with

this extra burden, the message-passing calls used by VPE remain significantly simpler

than using the message-passing libraries directly.

2.3.3.5. Port Nodes

VPE is unlike other systems where communication via graph level components must

be explicitly programmed in a textual form. Instead, input and output nodes provide

typed bindings between the variables used in the compute node programs and the

communication structure expressed in the graphs. Within the textual computation such

ports are accessed through function calls, whose usage is consistent with the language

used to write the node programs, using appropriately typed arguments. For example, if

an output port is configured to emit an array of integers, calls to that output port must

supply an array of integers as an argument. The same is true for receive operations using

input ports.

2.3.3.6. Call Node

VPE permits a hierarchical decomposition of programs through a procedure call-like

mechanism. A call node is used when the programmer needs to call upon the

functionality encapsulated within a separate VPE graph. The graph called may be another

graph within the same application, a library component, or another developer’s routine,

though maintaining a consistent procedure-call semantic throughout.

2.3.3.7. Input and Output Nodes

When a VPE program is composed from more than one graph there must exist entry

and exit points for all except the main graph. Input and output nodes supply that

functionality by providing a binding between arcs in a sub-graph and arcs in calling

graphs.

Visual Object-Oriented Development of Parallel Applications

 67

Within a sub-graph, there is no concept of coupling to any one calling graph. Instead,

data is sourced from input nodes, which receive their data from input ports attached to

the sub-graph’s call node. Similarly data sinks in the form of output nodes send the

values which they receive to the output ports on the sub-graph’s call node. This reduces

coupling between graphs and ultimately helps to improve the modularity of VPE source

code.

2.3.3.8. VPE Matrix Multiplication Example

Figure 2-8 VPE Matrix Multiplication

The diagram in Figure 2-8 shows the VPE graph for the parallel matrix multiplication

algorithm, whereby many matrix-vector multiplications are performed concurrently and

the results combined to form the final result. In the diagram there are three potentially

parallel processes, one of which may spawn concurrent copies of itself by means of the

replication box annotation. The functionality of the graph is outlined below:

The graph initialisation computation is run and a graph parameter for the size of

the matrices to be multiplied is set. Though this does not appear on the graph in

the form of a compute node, it is worth recalling that VPE allows graph

parameters to be initialised in this way. The graph parameters are themselves

needed as they control the level of replication that occurs in the replicated

compute node.

The initialise compute node creates two matrices, sizing them using the graph

parameters. One of the matrices is split into vectors which are then transmitted via

the output port V_Out to one of the replicated compute nodes identified by the

index of the current row vector. For each outgoing vector, a copy of the matrix

which is to be multiplied by the vector is sent to the output port M_Out. A single

port could have been used to send both the matrix and the vector, but for the sake

of clarity and ease of comparison this approach has not been adopted.

Upon receiving a matrix and a vector to multiply, an instance of the multiply node

is invoked. The actual number of parallel instances invoked depends on the graph

Visual Parallel Programming Languages

 68

parameter set for the number of rows in a matrix. The number of rows is read

from the graph parameter that is set before the program is started. Each

instantiated compute node outputs the results of its calculation to the output port

V_Out, using the index of the replication to act as an identifier for the newly

created vector.

The finalise node receives vectors through its input port V_IN. From the index of

the replicated node which delivers values to V_IN, the finalise compute node

places the vectors in the appropriate part of the matrix. When all vectors have been

received and the final result assembled, the program outputs the result and

terminates.

2.3.3.9. VPE Observations

The VPE graph, despite its small size, manages to exploit a great deal of parallelism.

Data-parallel activity occurs due to the replication of the main part of the program, in the

compute node marked multiply. Pipeline parallelism is also evident in that each of

the compute nodes can be viewed as a stage in a pipeline, where each compute node

works on the data sent to it by the previous node in the pipeline. In this example, it is

entirely feasible that all parts of the program could be working on splitting, multiplying

and re-assembling matrices in parallel, thus maximising parallel activity.

Though the VPE graph is compact and the program is highly parallel, there is a price

to be paid. The price comes in the form of node programs that are of greater length and

higher complexity than contemporary systems. Furthermore there are no facilities to

support the development of these compute node programs, other than the simplified

calls to the message-passing libraries, and thus had the problem under consideration been

of significantly greater complexity it is uncertain whether VPE alone would have been a

sufficiently powerful tool.

Unlike contemporary systems, VPE is not meant to be a visual parallel-programming

language per se. Its aims from the outset have been somewhat different, in that VPE is

designed purely to simplify explicit message-passing parallel programming with the

standard PVM and MPI message-passing environments. As such, it is expected that the

programmer will already be familiar with parallel programming and be able to construct

parallel algorithms without assistance from VPE.

Visual Object-Oriented Development of Parallel Applications

 69

Where VPE excels is the fact that there are only two elements to the language, both

of which are directly connected to the algorithm under consideration. Unlike

contemporary systems where it is common that a third, proprietary language element is

added to control the communication structure of the graph, the communication structure

of a VPE program is entirely specified in terms of VPE graphs and standard high-level

textual programming languages. Thus, in comparison to contemporary systems, VPE

presents one less opportunity to introduce bugs into an application.

However, the fact that VPE is meant to be used as a front-end to the message-passing

libraries and not as a language in its own right means that there is no clear distinction

between computation and communication. In a VPE graph, possible communication

routes are shown, though from the graph alone it is impossible to tell which nodes will

execute under which circumstances. Whilst this is not a goal of VPE, its contemporaries

are able to actually show sequencing and dependencies which may well be of value to the

developer of a parallel application.

Run-time aspects such as load balancing and task creation strategies are not a

consideration of VPE. However, VPE does allow computations to be mapped to

particular hosts or architecture classes in the underlying virtual machine environment.

Thus computations suited to particular architectures can be accommodated, or less

heavily loaded machines can be utilised, in a similar fashion to the HeNCE cost matrix

facility.

Furthermore, as VPE maps directly onto the standard message-passing systems, it can

benefit directly from software that enhances those systems. Thus as the message-passing

environments are improved, the performance of VPE programs will also improve.

In short, VPE’s departure from the normal approach to building visual parallel

programming tools has yielded a certain amount of promise. The paradigm used is close

to the paradigm in use by many parallel programmers, and furthermore VPE is

sufficiently low-level to not incur run-time overheads often associated with using higher-

level visual parallel programming languages. As a tool for simplifying the implementation

of today’s parallel programming problems, VPE is a good effort. When considering the

needs of future parallel application developers VPE may simply be too low-level.

Visual Parallel Programming Languages

 70

2.3.4 ParADE –Parallel Application Development Environment

While the benefits of parallel computing – the performance increase due to simultaneous

computations – are clear, achieving those benefits has proved difficult. The wide variety of

parallel architectures has led to a similarly diverse range of parallel languages and methods

for parallel programming, many of which feature complicated architecture-specific

language mechanisms. The lack of good tools to assist in the development of parallel

software has compounded the problem of parallel programming being limited to a field

which is both specialist and fragmented.

The ParADE system provides a means for the graphical specification of parallel programs

using an architecture-independent graph-based notation representing the design of the

program, combined with conventional sequential languages. Furthermore, the ParADE

language provides a graphical means for adjusting the granularity of parallel tasks to tune

programs to the particular architecture upon which they execute. {Allen 1998}

2.3.4.1. The ParADE Paradigm

ParADE is a mixed textual-graphical parallel programming language based upon the

dataflow execution model. The structure of a parallel application, including

synchronisation and communication, is determined graphically, whilst computations are

described textually in C.

The visual programming component in ParADE takes the form of directed, acyclic,

top to bottom graphs where nodes, known as actors, represent computation or routing

elements, and arcs represent data dependencies between nodes along which values may

be passed. Actors become active when there is data on each of their input arcs. When

activated, actors will either execute a user defined computation, or a predefined action

depending on whether the actor is general or special purpose respectively.

In ParADE, general-purpose actors are the only components which must be

programmed using a high-level textual programming language. The developer is not

charged with maintaining interfaces between the graphical and textual programming

components. Instead, tool support bears the responsibility for binding arcs onto local

program variables within the actor source code. All the programmer must do is use those

variables in a manner consistent with the high-level textual language with which the

actors are programmed. That is to say that the programmer sees arcs merely as standard

C programming language variables when writing the actor source code, omitting the

extra interface code required by some of ParADE’s contemporaries.

Visual Object-Oriented Development of Parallel Applications

 71

ParADE permits the exploitation of both parallelism implicit within the structure of

its graphs, and parallelism explicitly programmed by the developer. Implicit parallelism is

a strength of dataflow based languages such as ParADE, in that tasks which are mutually

independent may execute in parallel by default. Furthermore, to some degree tasks that

are not mutually independent may be able to execute in parallel through pipelined

parallelism, which is also claimed to be implicit within the graph structure.

Data-parallelism is explicitly expressed by the programmer, using a general-purpose

parallel activity actor, known as the depth actor. Unlike contemporary systems,

ParADE’s depth actor encapsulates the decomposition and recomposition of data which

is operated upon in parallel. Furthermore, ParADE comes equipped with several

common visual templates for data decomposition and recomposition, and the

architecture of the ParADE tool support is such that it is possible to supplement the

built-in templates with user-defined patterns.

Along with automated data distribution, ParADE also has a facility for controlling the

grain size of a computation in order to tailor the characteristics of the application to the

particular platform upon which it will be run. ParADE’s predecessor, MeDaL {Harley

1993}, used a mechanism for grouping data to be sent along arcs as its mechanism for

increasing granularity, though in practice the grouping of messages was found to be an

unsatisfactory solution which was not pursued in ParADE. ParADE’s unique graphical

mechanism for altering the granularity of processes is known as actor folding. Actor

folding is accomplished by selecting a group of actors to execute sequentially as a single

task. The ParADE system itself automatically sequences the execution and optimises the

communications of the folded actors without assistance from the developer.

As a design aid and code management facility, ParADE utilises hierarchical

decomposition of programs through actor decomposition. Actor decomposition is

similar to the use of sub-graphs in visual programming or procedure calls in textual high-

level languages. However, ParADE does not seek to visually differentiate between an

actor which has been decomposed and one which has not. In this way it seeks to simplify

the black box approach to a level whereby a decomposed actor is identical even in

appearance to a standard actor, which helps to reinforce the notion of the black-box

semantic.

Visual Parallel Programming Languages

 72

2.3.4.2. The ParADE Notation

Actor

Discrete
Datapath

Continuous
Datapath

Depth
Actor

File-in Actor

File-out Actor

Stdin Actor

Stdout Actor

Halt Actor

Merge ActorReplicator ActorInput
Interface
Node

Output
Interface
Node

Loop Actor

Loop
Input
(At Initialisation)

Loop
Output
(At termination)

Loop
Output
(Every Iteration)

Loop
Input
(Every Iteration)

General Purpose
Source Actor

General Purpose
Sink Actor

Figure 2-9 The ParADE Node Icons

2.3.4.3. General Purpose Actors

ParADE’s general-purpose actor provides a harness within which the developer’s

textual source code resides. There is no default action specified for either the standard

Visual Object-Oriented Development of Parallel Applications

 73

actor or depth actor, and as such the programmer must always provide an action in C

code for the actor to execute when it is activated.

Both the standard and depth actors are activated when there is data present on their

input data arcs, which are incident upon their topmost edges. Upon activation the actor

immediately consumes the data on the input arcs. If the consumer is a depth actor, the

data may be partitioned according to the partition strategy specified by the programmer

and the data operated upon in parallel by multiple instances of the actor code.

Operation of both standard and depth actors is synchronous in that each time the

actor is activated there will be one set of input data consumed and one set of output data

produced. Even the parallel activity that occurs within the execution of depth actor is

abstracted away from the rest of the application in that for each set of input data, there

exists a single set of output data. As the depth actor will be responsible for not only

partitioning, but re-combining the data according to the specified template, a consistent

set of semantics is maintained across both actor types.

2.3.4.4. Datapaths

ParADE provides two types of datapaths along which values can be passed between

actors. The purpose of providing two types of datapath is for programming convenience

and optimisation. The first of these datapaths, the discrete datapath, visualised as a white-

headed arrow, is implemented as a classic FIFO queue. A producing actor will supply

data, which then enters the datapath at its tail, and later leaves at the head when the

receiving actor consumes the data. The second type of datapath, the continuous

datapath, represented by a solid-headed arrow, is a similar structure to the discrete

datapath, except that it has the additional property that under certain circumstances it will

retain a copy of the last item of data in the queue. This retention of data occurs when the

queue would otherwise be empty, and thus a continuous datapath will always offer data

to actors once it has been used for the first time. The continuous datapath can therefore

be used in programs where repeated transmission along datapaths would otherwise incur

an overhead. Using a mixture of discrete and continuous datapaths it is possible to

minimise communication overheads in a program, whilst maintaining the correct

dependencies between actors.

Visual Parallel Programming Languages

 74

2.3.4.5. Source and Sink Actors

The library of source and sink actors in the ParADE language provides facilities for

ParADE programs to communicate with their environment. Source actors allow

information from the environment to be used during the execution of the application,

while sink actors permit the application to send messages out to the environment or to

terminate the application and return control to the environment. The basic types of

source and sink actors include the general purpose source and sink actors, the file I/O

actors, the standard I/O actors, the graph interface nodes, and the halt actor.

The general-purpose source and sink actors provide a user-programmable means of

instigating and terminating dataflow. They are somewhat similar to the general-purpose

actors in that they are permitted to execute computations upon data. However, unlike the

general-purpose actors, the general-purpose source and sink actors possess only a single

arc.

The stdin actor allows the user to specify input to the program via the standard input

stream, and is represented as a source actor containing a keyboard and mouse icon.

Conversely the stdout actor permits the application to return values to the standard

output and is represented by the monitor icon within a sink node.

Similarly, the file in and file out actors are depicted as being sources and sinks

containing a floppy disk icon which is symbolic of their file-oriented operation.

Additionally, the file actors have a second datapath emerging from their sides, which,

when utilised, signifies some form of exceptional behaviour with respect to the files

being used, such as lack of disk space, or the non-existence of a file.

The input interface and output interface nodes provide bindings between datapaths

on the current graph and datapaths in a decomposed actor. For each datapath incident

upon a decomposed actor, there exists an input interface node in the sub-graph.

Correspondingly, for each datapath exiting from the sub-graph, there exists an output

interface node which performs the binding between the sub-graph datapaths and the

parent graph. Interface nodes do not alter the flow of data; their function is merely to

provide an binding mechanism between graphs.

The only sink node that does not have a complementary sink is the halt node. The

halt node’s functionality is simply to provide a means by which program execution can

be terminated. When activated, the halt node stops the execution of program, and

potentially return values to the application’s environment.

Visual Object-Oriented Development of Parallel Applications

 75

2.3.4.6. Merge Actor

The merge actor in ParADE takes as its input two or more datapaths and outputs the

data from these paths onto one single datapath. The merge actor is useful for collating

the output of several actors for further processing by other actors. The order in which

the data items are placed on the output datapath is strictly chronological. If multiple

items of data arrive at the input to the actor simultaneously, the order in which they are

output is undefined.

2.3.4.7. Replicator Actor

The semantics of the replicator node are simple. When data is placed on the input

datapaths copies are broadcast onto all of the going datapaths, though the actual placing

of copies of data onto the outgoing datapaths may not occur strictly simultaneously.

2.3.4.8. Loop Actor

Unlike its predecessor MeDaL, ParADE language graphs are acyclic and thus iteration

cannot be achieved through a feedback loop. Instead, ParADE provides a loop actor

purely for iteration, whose semantics are consistent with the synchronous execution

semantics of the other actor types.

However, unlike the other actors in the ParADE language, loop actors must be

further decomposed to implement their behaviour. The loop actor itself thus acts merely

as a black box at the level of the container graph to which data is provided and from

which values are returned.

The actual iterated computation can only be seen at the level of the sub-graph where

it is supported by four other node types which are specific to the decomposed loop

actor. These nodes provide an input to the loop at the beginning and after each iteration

and an output from the loop upon termination and an output after every iteration. These

nodes are depicted in Figure 2-9 as the loop input and loop output nodes, where each

type is uniquely identified by the position of the loop symbol and by the direction in

which each points.

Within the decomposed loop actor, there must also exist at least one other actor. This

actor encapsulates the computation that is to be iterated, and communicates with any of

the data sources or sinks in the normal way. There is no special mechanism for coupling

the iterated computation to the iteration mechanism, which helps to maintain a modular,

de-coupled source code base.

Visual Parallel Programming Languages

 76

2.3.4.9. ParADE Matrix Multiplication Example

MatMult

MatrixA MatrixB

MatrixC

Figure 2-10 ParADE Matrix Multiplication Example

The diagram in Figure 2-10 depicts a ParADE graph for a parallel matrix

multiplication problem, whereby multiple matrix-vector multiplications are concurrently

executed.

1. The file-in actors read two matrices (MatrixA and MatrixB) in

from disk files (potentially in parallel).

2. MatrixB is sent out along a continuous datapath to the depth actor

marked MatMult. The reason that a continuous datapath is used, is

because MatrixB is required throughout the operation of the depth

actor MatMult. Clearly for each parallel task spawned by

MatMult, a new copy of MatrixB could be sent along a standard

discrete datapath, though using a continuous datapath offers an

optimisation in terms of the amount of communication that occurs.

3. The data sent out from the file-in actor marked MatrixA is

partitioned by the datapath connecting the file-in actor to the depth

actor MatMult. This is a novel approach in that ParADE does not

require the use of further actors to partition data before it can be

Visual Object-Oriented Development of Parallel Applications

 77

operated upon in parallel. Instead the data will be partitioned

according to some graphical template specified for the datapath.

Here, the decomposition template has been set to columns (not

shown in Figure 2-10), and using that information, the ParADE

system can arrange for individual column vectors to be extracted

from the data, and sent to subsequent parallel computations.

4. The depth actor MatMult takes a copy of MatrixB and an

element of the partitioned data from its predecessors, and for each

data item on the datapaths executes a parallel matrix-vector

multiplication. The results from these multiplications are

automatically collated by the outgoing data arc according to the

graphically defined template.

5. The final result is written to disk by the file-out actor marked

MatrixC, and the program terminates.

2.3.4.10. ParADE Observations

ParADE aims to support the programmer in developing programs that are

architecture independent, efficient and which exploit a wide-variety of parallel activity.

Furthermore, ParADE is also intended to move parallel programming into the domain of

the non-specialist programmer. In all of these programming-oriented aims, ParADE is

generally successful. Through the use of a graphical co-ordination language and a

common computation language (the C programming language), parallel programming

becomes accessible to non-specialists, and furthermore the abstract computational model

does not couple ParADE closely to any particular architecture or run-time system.

Whilst ParADE insulates the developer of an application from the complexities of

parallel systems, this does not mean that the programmer can ignore parallel computation

altogether. Though it is true that a great deal of parallelism may be implicit within the

structure of an application, there are cases when the programmer will need to be aware

of basic parallel-programming principles in order to exploit all of the available parallelism

within an application. In particular, the programmer must be aware of when and how to

apply data-parallelism in order to be able to utilise the depth actor and data partitioning

facilities available within ParADE.

Visual Parallel Programming Languages

 78

On the positive side, ParADE, unlike its contemporary systems, does not require the

user to perform bindings between graph level objects and text level objects. The tool

supporting the ParADE language automates this task, thus removing the potential for

introducing inconsistencies between the co-ordination and computation components of

an application. Furthermore as ParADE is data-centric, it provides a graphical

mechanism for partitioning and combining data which circumvents the need to create

actors for that purpose, thus removing this significant intellectual burden from the

developer.

In addition to the graphical specification of data partitioning, ParADE also provides a

graphical means of increasing the granularity of parallel tasks, through actor folding. The

theory behind actor folding is simple, in that multiple fine-grained actors (where

initialisation or communication costs outweigh the actual computation costs) can be

combined to form a single medium or coarse-grained computation (where computation

costs outweigh the costs of setting up the computation). Actor folding is a simple

operation from the user’s perspective. The developer must identify those actors which

are to be grouped to form a more coarsely grained computation, and surround them with

the actor folding box, merely by dragging the boundaries of the box to surround the

actors. ParADE itself assumes the responsibility for combining the actors into a single

computation, optimising communications, and ensuring that the computations are

executed in the correct sequence.

Uniquely amongst visual parallel programming tools, ParADE extends the standard

visual parallel programming approach by implementing a basic exception-handling

schema. Although exception handling is limited to file operations, ParADE’s graphical

exception handling could be generalised to other node types. Whilst this would certainly

result in graphs with a higher information density, it would also mean that the exception

handling structure of a program could be represented in the same way as the non-

exceptional behaviour. That being said, the responsibility for presenting different views

of an application could be handled quite straightforwardly by a suitable development

tool.

It is clear that the ParADE graph is much simpler than the graphs of the previous

languages. It is perhaps obvious that ParADE graphs are simpler because ParADE does

not require the developer to manually construct bindings between textual and graphical

level variables, and encapsulates much more control-flow detail within the each of the

Visual Object-Oriented Development of Parallel Applications

 79

graphical components than its contemporaries. Furthermore, the richer set of graphical

components that encapsulate common control-flow options mean that there are less

control-flow issues to be handled at the textual level.

Although ParADE has impressive support for parallel programming, through its

novel features and rich set of language constructs, it has very limited support for other

phases in the software lifecycle. Support for designing programs is limited to a top-down

approach using actor decomposition and there is no support for anything other than top-

down design and granularity optimisation. Whilst the program visualisation and other

post-mortem debugging tools could be added to the prototype ParADE system relatively

easily, it is unclear how ParADE would be adapted to support problem domain analysis

or more sophisticated design methods.

2.4 Related Work

In addition to the surveyed languages, there are a number of other visual

programming tools and languages, each addressing particular aspects of programming

parallel architectures. Support ranges from graphical distribution of source code in a

heterogeneous environment, through novel visual approaches to program construction

{Kramer-Fuhrmann and Brandes 1991}, reusability {Loques, Leite et al. 1998} and fault

tolerance issues {Babaoglu, Alvisi et al. 1992}. Some are specifically aimed at a single

class of parallel architecture, or are sufficiently similar to the surveyed languages not to

warrant individual discussion {Dozsa, Kacsuk et al. 1997; Kacsuk, Cunha et al. 1997;

Kacsuk, Dozsa et al. 1997; Kacksuk and Forrai 1999}. Since this research is primarily

interested in the development of general-purpose parallel applications, surveys of these

more specialist systems are not presented. However, the literature more than bears

testament to the fact that there is a great deal of commonality across all current visual

parallel programming techniques, and as such a full presentation of all work is neither

trivial nor warranted.

2.5 Closing Remarks

This chapter has set the scene for further research and development work in the field

of visual parallel programming. During the course of the survey, the work undertaken

exposed strengths and weaknesses in both the language element and paradigm of each of

the systems. This experience, coupled with experience of software engineering practice

and that of developing text-based parallel applications has set in process trains of thought

as to how improve visual parallel programming. However, a pre-requisite for turning

Visual Parallel Programming Languages

 80

those thoughts into action is to formalise the relationships between the surveyed

languages, and draw from that formalisation the threads of a new paradigm for building

parallel applications. This is the topic of the next chapter.

Visual Object-Oriented Development of Parallel Applications

 81

Chapter 3 An Analysis of Visual Parallel Programming

Given that considerable intellectual effort has already been invested in the field of

visual parallel programming, and several notations developed, the questions that need to

be asked are whether there is scope for improving visual parallel programming

techniques, and if so, where those improvements could be made. To answer those

questions requires key aspects of each of the existing languages to be captured,

generalised, and reasoned about such that key strengths and weaknesses can be

identified. The answers will provide the basis for the next step in the evolution of visual

parallel programming techniques.

3.1 Introduction

The previous chapter introduced and exemplified four prominent visual parallel

programming languages. This chapter proceeds by developing a taxonomy of those

languages, from which a framework for subsequent research efforts in the area was

derived.

Once the framework from the taxonomy has been established, the chapter fittingly

splits into several threads. Each thread either investigates specific aspects of the

taxonomy, or combines issues identified by the taxonomy with other software

engineering issues. The overall structure of the threads running through this chapter is

based upon Figure 3-1 below.

Object-Oriented
Technology

Visual Programming
Technology

Parallel
Programming
Technology

Visual, Object-Oriented
Parallel Application

Development

Object-Oriented
Parallel

Programming

Visual Parallel
Programming

Visual, Object-
Oriented

Programming

R
oo

t
Te

ch
no

lo
gi

es

1st
 G

en
er

at
io

n
H

yb
ri

d
Te

ch
no

lo
gi

es

2nd
 G

en
er

at
io

n
H

yb
ri

d
Te

ch
no

lo
gi

es

Review and
Evaluate

Survey and
Taxonomise

Separate
Research
Discipline

Figure 3-1 Visual Programming Technology: A Roadmap

An Analysis of Visual Parallel Programming

 82

Although the overall goal of this chapter is to reach a new paradigm for visual parallel

programming, intermediate steps towards that goal, based on Figure 3-1, are also

investigated. However, not all of the elements identified in Figure 3-1 are scrutinised to

the same level. In particular, work on visual object-oriented programming such as that

exemplified in {Burnett, Goldberg et al. 1995; Citrin, Doherty et al. 1995}, although

valuable is not considered further since the goal here is supporting techniques for the

development of parallel applications, and not on visual languages per se. Similarly work

on object-oriented parallel programming has been dealt with in-depth by other

researchers {Yonezawa and Tokoro 1987; Annot and Haan 1990; Treleaven 1990; Kale

and Krishnan 1993; Wolf and Kramer-Fuhrman 1996}, and a full survey of the discipline

is not presented although an overview of the salient features of the discipline is. The final

of the threads from the middle layer of Figure 3-1 on visual parallel programming, has

already been dealt with in-depth in Chapter 2. Instead, the taxonomy presented in

Section 3.2 will recap the most pertinent points from the survey of visual parallel

programming languages, whilst formulating a framework for their future development.

Once each of the distinct threads has been presented, the chapter then draws aspects

of each into a single coherent model for parallel application development, using the

framework provided by the taxonomy as its basis. It is the development of this model

and supporting language, which form the basis for the work presented in the remainder

of this thesis.

3.2 A Taxonomy of Visual Parallel Programming Languages1

The purpose of this section is to explore the design space for visual parallel

programming languages and to present a taxonomy that captures the important

characteristics that underlie them. A number of existing languages, those examined in

Chapter 2, will be used to exemplify the taxonomy, but the taxonomy will also be of use

to future language designers for highlighting possibilities that might not otherwise be

considered.

Interest here is in languages that take the form of a graphical mechanism for

structuring and controlling parallel invocations of textually specified code written in a

traditional (non-parallel) language such as C or FORTRAN. The languages are visual

coordination languages, in the sense that the Linda system {Gelernter 1985; Carriero and

1 This section adapted from a journal submission jointly authored with P.A. Lee.

Visual Object-Oriented Development of Parallel Applications

 83

Gelernter 1989} is a textual coordination language for parallel programming, targeted as

producing software that will execute on commodity hardware. Languages that are

targeted at special-purpose hardware systems (e.g. data flow machines {Gurd, Kirkham

et al. 1985; Veen 1986}, graph-reduction machines) are not considered here.

Thus the taxonomy presented here concentrates on the parallel processing aspects of

visual parallel programming languages. A key feature for this taxonomy to explore is the

interaction between the visual features that a visual parallel programming language

provides and the parallelism features required. The fact that some parallelism feature (e.g.

synchronisation between parallel elements) could be obtained through the use of the

textual programming language parts that a language utilises is not something to be

considered. What is of interest is the way in which the visual features of the language

help the implementation of the parallel activity desired by the user, and whether those

features are appropriate. This interest is reflected by the use of the terms explicit and

implicit, to represent respectively the situations where the user does and does not have to

deal with a parallelism feature directly. In other words, implicit features are assumed to be

helpful to the programmer.

One feature which does not form part of the taxonomy is tool support. Since each of

the surveyed languages forms, more or less, a research prototype it is not expected that

complete environments for software development are available. Therefore, one of the

non-functional requirements of this taxonomy is to distil features pertaining to the visual

language, and isolate them from features provided by tool support, since it is the

language element, and not the tool support, which is of importance.

3.2.1 Syntactic Elements of Visual Parallel Programming Languages

Visually, a visual parallel programming language supports a graph structure in which

the main programming constructs are:

 Nodes, that are linked together by;

 Arcs that transport tokens of differing types between nodes.

The main type of node is a computation node which is where the language user

specifies the application-specific computation. Other nodes may be provided by a

language to assist the management of the graph’s structure. Nodes that are independent

may be executed in parallel. As will be seen, nodes themselves have a number of

syntactic elements from which they are composed.

An Analysis of Visual Parallel Programming

 84

Arcs interconnect nodes and provide an overall indication of the interdependencies

between the nodes, amongst other things. Such inter-node dependencies are particularly

important in a parallel processing environment as they determine the extent to which

computation nodes may be executed in parallel.

 Graph

Sub-graph

Data
Inputs

Firing
Rule

Node
Program

Output token
Production
Rule

Data
Output

Arc Node

Figure 3-2 Main Syntactic Elements of Taxonomy

Figure 3-2 shows the main syntactic elements of the taxonomy. The arrows in Figure

3-2 indicate ‘has-a’ or compositional relationships rather than indicating the syntactic

rules that dictate the legal ways in which graphs can be composed. In what follows, each

of these syntactic elements will be examined in a top-down fashion with respect to:

 What options exist for the semantics of the syntactic element, and

some discussion of those options;

 What sub-elements it is composed from (with those sub-elements

themselves being examined subsequently); and

 Exemplification from contemporary languages.

3.2.2 Graph

 Composed of
 Sub-Graphs Arcs Nodes

Table 3-1 Graph Composition

 Graph Semantics
 Structure Node

dependencies
Recursion

Options Directed Cyclic
Directed Acyclic

Explicit via arcs
Implicit

Permitted
Not Permitted

Table 3-2 Options for Graph Semantics

Visual Object-Oriented Development of Parallel Applications

 85

3.2.2.1. Graph Discussion

Decomposition or modularisation of a complex system into more manageable (and

reusable) components is a well-recognised requirement. This requirement is likely to be

of particular importance in graphical notations which inevitably occupy more space than

compact textual representations. Visual parallel programming languages can support this

requirement by permitting one graph to be composed from other (sub-)graphs. Visual

complexity can then be reduced by permitting a node on one graph to refer to a sub-

graph constructed separately. This feature also permits graph-reuse (c.f. code reuse), a

useful feature in itself for the usual reasons.

When sub-graphing is permitted the language will need to provide (visual) means for

expressing the way in which connections represented on the parent graph are reflected

onto connections in the sub-graph. These connections are usually represented by special

types of connector nodes in the sub-graph and appropriate naming conventions to

identify the cross-coupling.

The feature of sub-graphs raises the issue of whether recursion (at the graph level) is

supported or not. A useful comparison may be drawn here between the issues of macros

and functions in languages such as C. Functions may be recursive, requiring the dynamic

generation of information at run-time for support. A recursive graph (i.e. a graph that

“calls” itself) will also require dynamic support in the form of instantiation of a graph

and its arcs at run-time. Non-recursive graphs (c.f. macros) can be completely

instantiated at graph-compile time.

A statically generated system had the advantage that the complete parallel structure is

known before execution commences, which may provide advantages for statically

mapping the potential parallelism onto the underlying parallel platform. Dynamic

generation has the advantage of supporting recursion, but the disadvantage is that

dynamic run-time load balancing may be needed to support the evolving structure of the

parallel application efficiently. Note however that run-time load balancing may be a

requirement in any case if the load on the parallel platform may vary.

As mentioned earlier, the arcs in a graph show node interdependencies and hence

impose order relationships on the execution of nodes. As will be discussed subsequently,

the dependencies may be of the form of control-flow dependencies (e.g. node B must

execute after node A) or data dependencies (e.g. node B needs data produced by node

A). Since the graphs capture some of these dependency relationships, all of the languages

An Analysis of Visual Parallel Programming

 86

considered in this paper are directed, and may have a cyclic or acyclic structure. However, a

language may or may not require explicit connectivity showing all dependencies. Where

dependencies must appear explicitly, arcs join nodes which are dependent. If implicit

dependencies are supported, any explicit dependencies created between nodes joined by

arcs may be supplemented by implicit linking between nodes of certain types on a graph.

While arcs show the possible links between nodes, it is assumed that these arcs carry

tokens (of various types) that capture dynamic aspects of the behaviour of the application

represented by the graph.

Explicit and implicit dependencies have advantages and disadvantages. On one hand

the explicit method ensures that dependencies are visible on the graph and can be

visualised at-a-glance, while implicit dependencies are “hidden” and cannot be discerned

just from the graph’s appearance. On the other hand, allowing implicit dependencies on a

graph will minimise the need for arcs and therefore reduce that graph’s visual complexity.

Cyclic graphs permit the expression of reusability, in an iterative sense. The nodes

enclosed in a cycle essentially represent what would be a repetition loop in a sequential

programming language, permitting (a) a section of the graph to be reused; and (b)

feedback of results from one iteration to be fed back to the next. This is a useful

programming paradigm to support even in parallel applications, and languages which are

acyclic generally provide other means for expressing iterative repetitions (normally by

using a special type of control-flow modifier node).

3.2.2.2. Graph Examples

 Graph Semantics
 Sub-

Graphs
Structure Node

dependencies
Recursion

HeNCE Not permitted Directed acyclic Explicit & Implicit Not permitted
CODE Permitted Directed cyclic Explicit & Implicit Permitted
ParaDE Permitted Directed acyclic Explicit Not permitted
VPE Permitted Directed cyclic Explicit Not permitted

Table 3-3 Graphs Semantics for Specific Languages
HeNCE graphs are directed and acyclic, and sub-graphs and recursion are not

supported. While it was claimed [Browne95] that sub-graphing was just a support-tool

issue, in fact other HeNCE features would make sub-graphing problematical for

purposes of reuse (although not for managing visual complexity). The reason why

HeNCE does not readily lend itself to supporting procedure-calls is due to the fact that

data values within a HeNCE application are stored in a globally accessible namespace.

Once a node has received sufficient control-flow stimulus from predecessor nodes, it

Visual Object-Oriented Development of Parallel Applications

 87

begins its execution and at that point accesses data elements from the global namespace

according to the interface specified for that node. Since the interface explicitly names

precise elements from the global namespace which are to be used during the execution of

that node, there is no means of distinguishing actual and formal parameters, so in effect

parameters are hard-coded into nodes at compile time. The addition of sub-graphs into

the language does not alleviate this problem, since sub-graph nodes themselves, and their

contents, must have their parameters similarly hard-coded.

CODE is the only language under consideration that offers mechanisms (discussed

later) which provide a true procedure-call abstraction, and as a consequence that

supports recursion. Furthermore, unlike the other flow-based languages under

consideration, CODE also permits implicit dependency relations to occur between nodes

in a sub-graph. In short, what this means is that a nodes within the confines of a sub-

graph may be involved in a dependency relation with other nodes, without arcs being

present to signify the existence of that relation. The approach is clearly meant to improve

the visual clarity, and thus scalability, of the notation whereby obvious dependencies, in

CODE’s case being shared memory abstractions, do not require the explicit addition of

arcs to each node in a sub-graph.

Given that there are no features for procedure call, or for cyclic graphs to provide

feedback in either HeNCE or ParADE, other means for supporting such activity were

found. In particular, both HeNCE and ParADE supported the notion of special-purpose

iterative graph nodes which could circumvent the normal graph semantics, within a

strictly delimited area of the graph, in order to provide iterative behaviour. In the case of

HeNCE, areas of a graph which are to be iterated, are delimited by special loop-begin

and loop-end nodes, whilst in the case of ParADE, a special sub-graphing mechanism

(the loop actor) is used which is capable of repeating the contents of a whole sub-graph.

3.2.3 Node

Nodes in a graph support the specification of the functionality of the parallel application.

While a visual parallel programming language may provide a variety of different nodes, those

that support user-defined computations are clearly the fundamental building blocks from

which a parallel solution is built.

An Analysis of Visual Parallel Programming

 88

 Node Semantics
 Type Purpose State

Options Computational
Graph management

Special
General

Can be retained
Cannot be retained

Table 3-4 Node Semantics

3.2.3.1. Node Discussion

It is convenient to distinguish two types of node: computational nodes, that permit a user

to define computational behaviour; and graph management nodes, that are concerned with

controlling aspects of the graph such as:

 Identify particular structures within a graph (e.g. such as node

replication or parallelism); and

 Providing behaviour which would not be obtainable by using the

general-purpose nodes (e.g. they may have different firing rules).

Nodes may provide special-purpose (i.e. predefined) behaviour or be general-purpose

(user-programmable), and may use a variety of shapes for their representation, the

differences in which are not important here.

All of the languages considered in this paper use a sequential programming language

as the basis for the computational node. All permit the use of C or FORTRAN (or both).

The CODE system provides a C-like language for node programming, although permits

callout from a node to a C function.

The state issue for a node is a fundamental part of the computational model provided

to the user. A node may be able to retain state between executions of that node or may

not. The ability to retain state is useful in that it can avoid the overhead of re-obtaining

identical input data needed for every execution (e.g. a node repeatedly executing with a

varying input and a fixed input). In a cyclic graph the ability to retain state can be used to

reduce the visual complexity of the graph in that a feedback arc is not needed. In acyclic

graphs state retention can implement the feedback path which otherwise is not available

by using arcs.

When executed, as dictated by the firing rule and tokens on incoming arcs, a node

obtains input data from some other part of the parallel computation, processes that data

using the normal features of the sequential language, generates data to be consumed

elsewhere, and produces tokens on any outgoing arcs. Discussion of the constituent parts

of a node (below) elaborates on how this behaviour can be achieved.

Visual Object-Oriented Development of Parallel Applications

 89

3.2.4 Arcs

Arcs are a fundamental building block of visual parallel programming languages and

are not decomposable. As discussed earlier, graphs in the surveyed languages are

directed; arcs therefore capture interdependency relationships between nodes.

 Arc Semantics
 Direction Tokens

Carried
Structure Capacity Consumpt

ion
Connect-
ion

Options Supply
Demand

Control
Data value
Reference

Single item
Container

Single item
Infinite

When used
Explicit

1 : 1
N : M

Table 3-5 Arc Semantics

3.2.4.1. Arc Discussion

Though arcs are conceptually simple, there are in fact numerous subtle nuances which

are worthy of further investigation. Several of the semantic options for arcs dictate the

model of execution for the nodes in a graph, although detailed discussion of these

models is best left to the section on node firing rules below.

The direction characteristic of an arc captures whether an arc is used as a supply route

from a source node to a destination node that follow it, or as a demand route from the

destination node back to the source node.

Arcs can carry tokens of various types: control information, data values, references to

data values, or some combination of these. Arcs that carry just control information

indicate an execution ordering relationship between two nodes. In effect an arc carries a

signal indicating completion from the source node to the destination for supply arcs, or a

signal which requests execution with demand arcs. The input data required by the

receiving node must then be obtained through some other mechanism; this is discussed

in the section below on node data inputs.

Arcs that carry data values are naturally used to carry data that has to be shared

between nodes. Languages using supply data arcs are based on the dataflow model of

parallel computation {Treleaven, Brownbridge et al. 1982} where the execution of a

node is determined primarily by the availability of data on its input arcs. Thus data arcs

can indicate execution order relationships as well as holding the data a node requires, and

therefore carry control information implicitly. (This topic is returned to in the discussion

of firing rules below.) Demand data arcs would be used by a destination node to signal

the preceding node to commence generation of the required data.

An Analysis of Visual Parallel Programming

 90

Although none of the surveyed languages permit arcs to carry references, conceptually

there is no reason preventing this type of token. References (or “pointers”) would permit

nodes to share data, thus avoiding the need to partition and copy data items around.

Traditionally, references have not been supported on data arcs for two main reasons.

Firstly, as languages have been targeted at parallel architectures that encompass

distributed memory there would be some implementation difficulties in implementing

the abstraction of sharing. A language that targeted just shared memory multiprocessor

architectures would not suffer from this implementation problem. Secondly, if data is

shared, concurrency-control mechanisms, such as those found in the shared memory

abstractions of the CODE language, are required to ensure parallel accesses to that data

are properly synchronised.

Data-arcs can be typed in that the language associates a data type with an arc and

hence can provide traditional “compile-time” error detection on node interconnections.

A further issue with data arcs is whether they carry individual data values, or whether

they support the transport of “containers” of values. Since most languages are concerned

with FORTRAN-like programming languages and numerical applications, arrays are the

only containers supported although one might imagine that support for C structs

(i.e. records) could be appropriate when the C language was the textual programming

language used in the language. Clearly many other container types exist (sets, bags, lists,

etc.) but as these will depend on user-level programming conventions, it would be

difficult for a language to be able to automatically transform and transport such

containers. The limitation in practice of containers being only arrays is not therefore

surprising.

Since “supply” arcs connect independent sources and destinations (whether carrying

data or control), it may be possible for a source to “race ahead” of the consumer. The

capacity of an arc is therefore an issue to be considered. If an arc can only hold a single

item then additional synchronisation is implicit in the language using such an arc since a

producer cannot generate a new item on an arc before the previous has been consumed.

“Demand” arcs effectively carry only a single item and hence keep source and destination

nodes in step. If arcs have an infinite capacity (limited by practical considerations of

course) then the language potentially provides a more relaxed execution model with more

parallelism opportunities. Note, however, a language that uses control arcs for node

synchronisations coupled with some sharing mechanism for common data is likely to be

Visual Object-Oriented Development of Parallel Applications

 91

difficult to program if those arcs have a capacity for more than one completion signal,

since there would be a difficulty in keeping the multiple incarnations in order as has been

seen in the tagging issues encountered by the Manchester Dataflow Machine researchers

{Gurd, Kirkham et al. 1985}.

Arcs normally provide 1:1 connections between nodes in a graph. However, there

may be N-to-M relationships required between the nodes. For arcs carrying control

tokens, a 1 to N arc effectively fires N nodes in parallel (e.g. to obtain data parallelism)

while N to 1 arcs effectively provide a synchronisation point for N parallel nodes. For

arcs carrying data tokens, a 1 to N arc may be used to provide the same data to N nodes

for data parallelism, while an N to 1 arc would indicate the recombination of a number

of separate data streams into one. Such behaviour could be provided by permitting N-to-

M arcs. (Clearly, such arcs would be problematical for data arcs carrying different types

of data.)

An alternative to N-to-M arcs which may be adopted in languages is to combine 1:1

arcs with special node types to split and merge arc contents, or to require the use of a

general-purpose node which can be explicitly programmed with replicate or merge-like

facilities.

Initially, one might question whether arcs other than 1:1 were justifiable, given that

nodes can be used to achieve splitting and merging. Requiring the user to explicitly

program a node to do splitting/merging, while straightforward, is perhaps not providing

the right level of (visual) language support to the parallel programmer, particularly for the

situation of arcs carrying data values. Here one would prefer the language to take the

burden of managing the data flows; the use of special-purpose replicate/merge nodes

goes some way to achieving this, and then the only argument in favour of N-to-M arcs is

if they simplify the visual complexity of the graph as compared to that containing extra

nodes.

Considering further the issue of managing the data together with the ability for an arc

to carry containers such as arrays, other possibilities emerge. When applying parallel

processing to arrays of data, it is common to split up those arrays into smaller units

which can then be processed in parallel before being recombined back into the output

data structure. Of course all of this data partitioning can be achieved in a general-purpose

node, but that is an additional requirement on the programmer and adds additional

complexity (and possible errors) to the code they have to generate. For example, splitting

An Analysis of Visual Parallel Programming

 92

a matrix into rows (or columns) usually requires additional code to permit the rows to be

explicitly identified for subsequent recombination into a result matrix. In effect what is

required is a 1:N arc with partitioning capabilities (splitting a structure up for parallel

processing) and an N:1 arc with recombination capabilities.

In the languages under consideration, only the CODE language actually takes an

approach which relies on 1:N and N:1 arcs to achieve this behaviour. Since CODE arcs

are programmed with the sources and destinations of any data passing through them, it is

quite feasible for either the sources or destinations to be the same node for many

instances of the arc. For both the HeNCE and ParADE notations, arcs are somewhat

simpler, and it is the existence of special purpose nodes which instantiate data

decomposition and re-composition. The advantage of using special purpose nodes to

distribute data as opposed to smart arcs, is that the nodes can be given helpful

behaviours which support the user in data distribution and recombination.

3.2.4.2. Arc Examples

The CODE system with its dynamically instantiated arcs suffers from the fact that not

all possible execution paths can be seen in its program graphs, but does allow a program

to alter its structure (to the limited extent of adding or choosing not to add more or less

of the same arcs specified in a program graph) at run time.

HeNCE arcs carry control only. Clearly, a language such as Hence that provides only

control-information arcs has to provide some other means for the communication of

data between interdependent nodes.

In all of the surveyed languages, both single values and arrays of values were

permitted to travel between nodes. However, where the languages differed was in the

support provided for decomposition of such structures to feed into parallel processes.

Perhaps the best example came from the ParADE language, where an arc can be

equipped with a decomposition template (from a variety supplied with the language)

which automatically decomposes and distributes data from a structure to a number of

parallel processes before recombining the results of those processes back into a single

structure. The level of support provided by the other languages was significantly less than

that provided by ParADE. Although it is possible to decompose, parallel process, and

recompose data in the other languages, it is left to the developer to implement such

schemes.

Visual Object-Oriented Development of Parallel Applications

 93

The CODE language in common with the ParADE language allows decomposition to

be specified at the meta (i.e. graphical) level, though unlike the ParADE system there is

no graphical support for doing such. Instead, arcs in the CODE system are given an

index as they are instantiated at runtime, which may be used to identify units

decomposed data to facilitate re-composition.

3.2.5 Node Syntactic Elements

In order to understand fully the behaviour of a node in a language, the following

issues to be considered include:

 When a node is executed (firing rules);

 The data inputs - how a node obtains data from other parts of the

application;

 The (textual) program within a node and how that interacts with the

visual features;

 The data outputs that a node generates for subsequent processing;

and

 The rule for the production of output tokens from a node.

 Composed of
 Firing Rule Input Data Node

Program
Output Token
Production
Rule

Output
Data

Table 3-6 Node Composition

3.2.6 Node: Firing Rule

The firing rule specifies the conditions under which the execution of a node is

commenced. In turn this may affect the synchronisation that will be needed between the

parallel nodes.

3.2.6.1. Firing Rule Semantics

 Node: Firing Rule Semantics
Options No rule Fixed User-programmable

Table 3-7 Node Firing Rule Semantics Options

3.2.6.2. Firing Rule Discussion

As has been discussed, the arcs in a visual parallel programming language are directed

and provide dependency information in a supply or demand direction. Thus one set of

An Analysis of Visual Parallel Programming

 94

semantics for firing rules is naturally based upon the arcs that are incident (i.e. directed

towards) to the node and their contents. However, some nodes may have no firing rule,

and instead commence their execution when the graph of which they are a part is

“executed”. One set of nodes for which this would be the appropriate behaviour is those

which do not have any incident input arcs. Nodes which represent the starting point(s)

for the execution of the application represented by a graph using “supply” arcs (or the

end node for a graph using “demand” arcs), or those that provide an interface between a

filing system and data to be processed by the application, are cases in point.

For nodes that have incident input arcs, a “no-rule” firing rule is less appropriate. A

language that combined a no-firing-rule scheme with arcs carrying control information

would not make any sense. A language that uses data arcs with the no-firing-rule is

providing little more than a graphical interface to part of a message passing system for

parallel programming (VPE is such a language), and would still requires the programmer

to deal explicitly with synchronisation aspects (e.g. through message read operations).

Thus most visual parallel programming languages have arc-based firing rules which

simplify what the parallel programmer has to provide.

The options for firing a node based on arc contents, coupled with the arc semantics

discussed earlier, give rise to node executions that follow a common classification

{Treleaven, Brownbridge et al. 1982} of data-driven, control-driven or demand-driven firing

rules. When incident arcs have:

 “Supply” + “data value” semantics, arc-based firing corresponds to

the data-driven semantics, where a node can execute when its inputs

are available;

 “Supply” + “control” semantics, arc-based firing naturally

corresponds to the control-driven situation, indicating that a

preceding node has completed its execution

 “Demand” semantics, arc-based firing would cause a node to fire

when outputs from that node are needed. Demand-driven semantics

give rise to a lazy form of execution.

In the most general case, a node may have multiple incoming arcs which have to be

considered in the firing rule. Of particular importance is the rule that applies to

computational nodes, since the programmer has to understand the rule in order to use

Visual Object-Oriented Development of Parallel Applications

 95

the system. The rule may be fixed by the language, the simple possibilities being that the

node fires when all or any of the arcs contain values. (Other special-purpose nodes may

break the fixed rules in order to provide different semantics.) Flexibility would be

provided in a user-programmable scheme which would permit the programmer to specify

the exact firing rules based on logical combinations of arc contents. While this flexibility

appears on the surface to be desirable, in practice it means that the overall behaviour of

the graph can only be discerned by examining all of the firing rules in detail. A language

with fixed firing rules may therefore be easier to comprehend only from the graph level.

If a computational node can fire when only some of its incoming arcs contain values

then the language has to provide some means for the program in the node to

differentiate between the various cases that could arise - for example, to determine which

data arcs do or do not contain valid values. This is clearly more complex than the “fire

when all present” case.

The ability for a node to fire when only some inputs are present provides one form of

conditional execution within a node in a graph. With the “fire when all present” rule the

only means by which conditional execution in a graph can be achieved is through the

conditional production of tokens on output arcs. This is discussed in the output token

production rule section below.

3.2.7 Node: Inputs and Outputs

Interest here concerns the model that indicates how a node obtains data from other

parts of the parallel computation, and how obtaining that data is supported by the

language. Issues concerning the mapping of input data to variables in the (sequential)

programming language used in the computational nodes is addressed in the next section

(Node: Program).

3.2.7.1. Data Input Semantics

 Node: Data Input Semantics
Options Copy Shared

 Implicit Explicit
Table 3-8 Node Input Semantics Options

3.2.7.2. Node: Inputs and Outputs Discussion

For parallel programming, the key issue concerning non-local data is the issue of copy

versus shared - that is, whether a node receives copies of data values that it is to process,

or whether the data is accessed from some shared area. Data copying suffers the

An Analysis of Visual Parallel Programming

 96

overhead of that copying, mitigated by the fact that a node can then access that data

locally and without restriction. Shared data can avoid the copying overhead but may

require locking overheads to be imposed to ensure orderly use of the shared space.

Ideally, locking will be implicitly provided by the language in order to avoid the burden

of requiring the programmer to deal explicitly with the locking issues. Of course, the

parallel platform may itself impose further overheads on these semantics - for instance,

to implement the abstraction of data sharing on a distributed memory machine.

For arcs that carry data, the most natural semantics are those of copying the data. For

arcs that carry references, the sharing semantics follow. For arcs that just carry control

information, the data inputs are an orthogonal issue that has to be supported somehow

in the language, such as the in the node interfaces in HeNCE, supporting either copy or

sharing semantics.

3.2.8 Node: Program

The node program is where the programmer specifies the computation that a

particular computational node undertakes. If the language supports a standard sequential

programming language, programs written can only deal with data through variables as

supported in those languages. How such variables get mapped onto the data inputs that

are provided to the computational node, and where any such mappings are specified are

issues to be addressed here.

3.2.8.1. Node Program Semantics

 Node: Program
Options Language Variable mapping

 Proprietary Standard Implicit Explicit
Table 3-9 Node Program Options

3.2.8.2. Node Program Discussion

Clearly a visual parallel programming language can provide a proprietary programming

language with features that fit into its graphical framework, such as dealing with data

inputs. Generally, such languages are likely to be sequential, as the graph-level is where

the parallelism of the application is meant to be captured. More commonly, languages

support traditional sequential languages such as C and FORTRAN, because the purpose

of the language is to build upon programmer’s strengths in those languages while

implicitly handling the parallelism features (to a greater or lesser extent).

Visual Object-Oriented Development of Parallel Applications

 97

Programming the computational nodes, particularly in standard languages, will require

the use of variables, and an issue therefore to be considered is how the variables in the

node program are mapped onto the data inputs and outputs. Ideally, a language will

provide implicit mappings from the data inputs (e.g. those arriving on arcs) to the

variables in the node program. Alternatively the language could permit the mappings to

be explicitly specified using some form of (proprietary) language such as the HeNCE

scheme whereby local variables are mapped to a global namespace in the node’s

interface. Similar issues arise for data that a node has to generate for its data outputs.

In either scheme, textual and graphical elements of the application must be closely

coupled. Conditional execution of nodes based upon arrival of tokens necessitates the

construction of node programs which understand the node’s interface, which is

undesirable.

The issue concerning variable mappings also concerns what in traditional

programming are called formal and actual parameters. Programming languages allow a

procedure to have formal parameters that are mapped to actual parameters at run-time.

This permits a procedure to be reused from a number of places. The same issue arises in

languages - to permit a computational node to be programmed in a general manner and

then reused, in a parallel application.

3.2.8.3. Node Program Examples

In HeNCE there is no mechanism for defining formal parameters for a node. Instead,

the actual parameters are hard-coded into the node interface, and from those hard-coded

parameters the appropriate variables are accessed from the global namespace.

In CODE, ParADE, and in some sense VPE too, there exist mechanisms for

mapping actual onto formal parameters. In CODE, the formal parameters are presented

by the number and type of data-flow arcs and the actual parameters by data values

flowing along those arcs. A similar scheme is seen in ParADE, though ParADE

automates the mapping between graph level parameters and those in the node program

where CODE does not.

VPE provides formal parameters in the sense that its port nodes decouple

intercommunicating processes. The code residing in a VPE compute node has an

environment consisting of a textual interface to each of the port nodes attached to the

compute node, and so in some sense has the notion of formal parameters. Actual

An Analysis of Visual Parallel Programming

 98

parameters in VPE are data values exchanged during the message-passing phase of a

compute node’s program.

3.2.9 Node: Output Token Production Rule

Given that the arcs between nodes indicate some kind of dependencies between those

nodes, the options for the alternatives by which one node can control the generation of

tokens on its outgoing arcs need to be considered.

3.2.9.1. Output Production Rule Semantics

 Node: Outputs
Options Arc Coverage Explicit Send/Implicit

Send
Streamed
Output

 All Some None Implicit Explicit Yes No
Table 3-10 Node Output Options

3.2.9.2. Output Production Rule Discussion

It is assumed that a computational node may be permitted to have multiple outgoing

arcs, since a restriction on there only being one arc may be a limitation in a parallel

application. However, some nodes may have no outgoing arcs, where such nodes act as

sinks for data (e.g. storing results into a data file, or acting to terminate the execution),

and other nodes may be permitted to output on N from M possible output arcs.

The language has to provide some means for indicating when output tokens can be

generated. This could be explicit, via some special instruction used in the node program

(such as an explicit send in a piece of VPE textual code). This could be implicit by the

system taking action when a node program’s execution has completed. Note that the

former would permit a node to generate a stream of output tokens (e.g. to provide a

pipeline structure) while the latter would not. Again, special-purpose nodes can provide

different semantics in order to achieve the streaming behaviour.

3.2.9.3. Output Production Rule Examples

In the CODE language, routing rules specified as part of the node’s compliment of

stanzas, determine under which conditions the output arcs from the node will become

active. As such, CODE allows for some arcs (i.e. N:M) to be activated. Sending is

implicit in CODE since arcs simply appear as variables in the node program, and variable

access is then equivalent to moving data onto an arc. Streaming from any one arc is

permitted since a computation may contain a loop which continuously updates the

variable that represents the output arc and thus continuously cause output on that arc.

Visual Object-Oriented Development of Parallel Applications

 99

HeNCE adopts an all arc output rule whereby control-flow signals from a predecessor

node will reach all successors and instigate their activity. The sending of output tokens is

implicit in that the completion of the node program causes the tokens to be produced,

and since the node program can, by definition, complete only once, streaming is not

permitted at the level of an individual node.

ParADE’s actor node permits output on a subset of its output arcs for conditional

execution. Sending is implicit in ParADE since arcs are bound to textual variables and

any of those variables which are updated during the course of the execution of the node

program are automatically sent along their output node when the node program finishes.

Although streaming is supported by ParADE graphs, only the loop actor can instigate it

since it possesses a per-iteration output semantic.

VPE also permits output along some arcs. Arcs in VPE represent possible routes of

message-passing, not dependencies per-se and as such can be used as and when messages

are to be passed in whatever combination is required at that time. Sending is explicit via

message-passing calls in the textual node program (as is receiving). Streams are permitted

through asynchronous sends.

3.2.10 Support for Modes of Parallel Execution

A language must, by definition, provide means for expressing parallel activity. Some

of these, such as pipelining, have already been encountered in the discussion whilst

others, such as task parallelism, have been alluded to. Each of the languages under

examination provide a mechanisms or patterns of mechanisms which support parallel

activity. The functionality of such mechanisms is the concern of this section.

An Analysis of Visual Parallel Programming

 100

3.2.10.1. Parallel Execution Mechanisms

Behaviour Parade Hence Code VPE
Data parallel Depth Actor Fan-in/out Node stanza Replicate Box
Task Parallel Yes Yes Yes Yes
Pipeline Loop Pipeline

begin/end
nodes

Repeated
output
generation
from a Node

Using
asynchronous
sends in node
program

Iteration Loop actor Loop
begin/end

Cyclic graphs No graph-level
iteration

Conditional Conditional
output
generation
from actor.

Conditional
begin/end
nodes

Node stanza No graph-level
conditional
construct.

Recursion No No Yes Yes
Table 3-11 Parallel Execution Mechanism Options

3.2.10.2. Parallel Execution Mechanisms Discussion

Whether the means of extracting parallel activity are in the form of patterns, and thus

supporting implicitly parallel activity like the textual UFO language {Sargeant 1993}, or

those means are provided through explicit language features, has an effect on the way the

developer builds a parallel application. In the languages under scrutiny here, mechanisms

for explicitly instigating parallelism and patterns for implicitly exploiting parallelism are

present.

Given that it is preferable for parallel activity to be implicit within the structure of an

application, rather than to have the developer explicitly identifying parallelism, the main

issue for the languages is to what degree they encourage the construction of naturally

parallel applications (and indirectly the suitability of the underlying execution models),

and what degree of support they provide when they require the developer to explicitly

invoke parallel computation.

In general, the languages only support task parallelism implicitly, whereby

computational elements which are not directly interconnected may execute

independently. This is rather an odd paradox, since the data-centric execution models

supported tend to influence the developer into building data-parallel applications, whose

construction necessitates explicit programming with special languages constructs. Where

special language constructs for data parallelism are provided, the provision of features to

deploy those constructs is valuable. In common with data-parallelism, pipelining is also

Visual Object-Oriented Development of Parallel Applications

 101

explicitly programmed, though features to aid deployment are of less importance since

execution is more of a known quantity at compile-time.

In addition to task, pipeline, and data parallelism, parallel languages have previously

supported parallel activity from logically distinct loop iterations (such as in HPF), and

have exploited parallelism from recursive operations. Support for iterative style parallel

activity is lacking in these languages since data parallel mechanisms are used to achieve

the same affect. Furthermore, it has been reasoned by Allen that iteration should be a

purely sequential construct in a visual parallel programming language, and that it is a

parallel construct in textual languages only because of the limitations imposed by textual

syntax {Allen 1998}. Parallelism based upon individual instantiations of a recursive

problem is permitted in some of the languages (those that support formal and actual

parameters and calls between graphs), though exploitation of such parallelism is left to

the developer, much as it would have been in a textual language.

3.2.10.3. Parallel Execution Mechanisms Examples

The CODE language provides an explicit form of instantiating data-parallel activity

through the use of “arc topology specifications” which allow a node to communicate

with a run-time determined number of successors or predecessors, and to identify which

nodes are communicating via the index of the arc through which data is being passed.

Being text-based, the developer has little support in deploying data-parallelism and

furthermore must bear the burden of cross-referencing graph- and text-level objects.

Conversely, task parallelism is implicit within the structure of an application and requires

no explicit developer input, other than the requirement that developers express solutions

without introducing unnecessary dependencies into the graphs. Pipelines (and iterative

behaviour) are achieved through a combination of intricate node interfaces and feedback

loops which can be used to trigger the multiple execution of a node. Recursion is

supported through the graph call node which can be used to call the current graph. Since

computational nodes execute in parallel with other computational nodes, recursion is

naturally parallel in CODE.

Where CODE uses combinations of textual meta-programming and graphics,

HeNCE uses only graphical components to initiate parallel activity. Areas of data-parallel

activity are delimited by special purpose nodes which may take values at run-time to

determine the level of replication for the contained computations. Pipelined parallelism is

also delimited by special purpose nodes, but there is no need to specify any further

An Analysis of Visual Parallel Programming

 102

control metrics, since they are implicit within the structure of the pipeline. Task

parallelism is, once again, implicit within the structure of the application. Iterative

parallelism is not supported, though there is a graphical mechanism for supporting

sequential iterative behaviour. As HeNCE does not support sub-graphing (let alone

formal and actual parameters) recursion is not possible.

ParADE takes a similar approach to HeNCE in that parallelism is considered purely

graphically. Data parallelism is achieved through the depth actor, which also takes

responsibility for decomposing data into pieces for each parallel instance of the actor to

work on, and for recompiling the results from those actors into a single result structure.

The process of manipulating the data for the parallel actors is specified graphically,

whereby the user selects from a number of templates when constructing the application,

which are then applied to the partitioning of data at run-time. Whilst this is conceptually

no different to the approach taken by the HeNCE and CODE data parallel mechanisms,

ParADE’s approach significantly simplifies implementation, and thus eases the

developer’s job. Pipeline parallel activity is supported through the loop actor (as is

straightforward iteration), though it is known that pipelining in current versions of

ParADE leads to non-determinacy. Task parallelism is implicit within the structure of an

application, though recursion is not supported since ParADE does not provide a

mechanism whereby a named graph can be called.

Since it supports an explicit message passing, as opposed to flow-based, approach,

VPE is somewhat different to the other languages under consideration here. Data

parallelism is supported in a manner which resembles elements from both CODE and

ParADE. In VPE, a specific graphical notation is used to denote the potential replication

of a computation (like ParADE’s depth actor), yet communication with instances of that

computation are identified through indices (like CODE’s arc topology specifications).

The result is that at the graphical level, the developer can specify a potentially parallel

computation, but then must invoke that parallel computation with appropriate

instructions at the textual level. However, unlike other languages both task and pipeline

parallelism, are implicit within the structure of the application. Iteration is not supported

at the graph level, though it is permissible within the textual node program. Similarly

recursion is not supported at the graph level (and thus cannot be exploited in parallel),

though sub-graphing is.

Visual Object-Oriented Development of Parallel Applications

 103

3.3 Development Paradigm versus Execution Model

In software development, abstraction is the key element in managing the complexity

of both problem domain and implementation. In addition to the syntactic abstractions

outlined in the taxonomy, a common strategy to leverage the benefits provided by

abstraction, is to utilise a development paradigm whose semantics are close to that of the

problem domain. That is, to use a development method whose features and vocabulary

either suit the problem domain at hand, or which can be extended to suit that problem

domain. Although there may ultimately be constraints from the underlying hardware

architecture (such as number of processors or interconnection speed), the development

paradigm remains an expression of the problem, and not of machine-level activity. The

development paradigm interfaces to an execution model, which provides an abstraction

of the underlying computing system through programming language syntax and

semantics. The challenge in developing paradigms for software development lies in the

fact that the development paradigms and execution models must work in unison to

support the application developer and the application. Each must provide an appropriate

abstraction: the execution model to the development paradigm, and the development

paradigm to the developer, as can be seen in Figure 3-3 below.

Software Developer

Development Paradigm
(Developer-friendly expression

of the problem domain)

Execution Model
(The programming language

syntax and semantics)

Computer System
(The hardware and software
that comprise the computing

system)

Highly Abstract View

Concrete View

Figure 3-3 Layers of Abstraction in a Software System

In the absence of a layered model of abstraction, software developers may be

unnecessarily exposed to inappropriate detail of a computing system. It is self-evident

that if either of the development paradigm or execution model is at an inappropriate

level of abstraction, the software system as a whole will suffer. This was seen in the

An Analysis of Visual Parallel Programming

 104

current generation of visual parallel programming languages where machine-level

execution models were allowed to permeate through the layers of abstraction to the

development paradigm.

Reflecting upon the taxonomy, it is apparent that there is no distinction made

between execution model and development paradigm in any of the languages surveyed.

When using any of those languages, the developer’s view of the software system (as

presented by the development paradigm) and the manner in which processing proceeds

(as dictated by the execution model), are similar in each case. Each of the development

paradigms adopted by the languages resemble execution models normally associated with

lower-level level parallel activity. The programming abstraction utilised consists of values

passing between (parallel) procedure calls, which in effect gives a semantic not dissimilar

to processes and inter-process communication. Although each of the languages abstracts

low-level architectural detail, in that locking and synchronisation primitives are implicitly

handled, the fact remains that the user is exposed to behavioural patterns which have

permeated from the computing system level to the development paradigm level.

The fact that system aspects, like processes, are exposed to the developer cannot but

lead the developer into a system- rather than problem domain-centric mode of

development. The result is that developers are left ill-equipped to deal with potentially

complex problem domains, since their only vocabulary for conceptualising problems is

biased towards computational rather than cognitive activity. The misuse of low-level

execution models as high-level development paradigms increases the gap between

problem-domain and computerised solution. If a low-level execution model is the only

paradigm through which the problem domain can be conceptualised, the developer is

forced to bridge a large gap between problem domain and implementation of a solution.

This results in software whose construction, debugging, porting, and maintenance will all

be hindered due to source-code complexity. In short, the problem with visual parallel

programming languages is that whilst they support an abstract mode of implementation

(through a graphical syntax) they do not offer sufficiently powerful paradigms through

which problems may be conceptualised – their programming models and development

paradigms are simply too similar.

The problem of providing suitable development paradigms and execution models is

not restricted to visual parallel programming. For example, in a typical sequential-

software project, it is likely that a methodology such as object-orientation will underpin

Visual Object-Oriented Development of Parallel Applications

 105

development. The object-oriented paradigm provides a suitably abstract development

paradigm (through interrelated and intercommunicating objects), though software

implementation is based upon textual annotations. Since the implementation of object-

oriented software is intricate, the execution model must be simple enough such that

overall complexity can be managed. This is reflected in the fact that most object-

oriented software is built for a sequential rather than parallel execution.

When building parallel application with textual object-oriented languages, the

developer must bear the intellectual effort of understanding multiple parallel flows of

control, from an inherently sequential-looking piece of textual code. Coupled with the

fact that parallel applications demand longer development and testing periods, a pattern

emerges that not only are parallel applications difficult to build, but are also expensive.

Contrasting the problems faced by both the object-oriented developer and the visual

parallel programmer when working on similar software products, it is clear that they face

two rather orthogonal problems. The visual parallel programmer struggles to represent

the problem domain since the available vocabulary is limited to that of parallel execution

models. The object-oriented developer has no such problem-domain difficulties since the

development paradigm provides abstractions which are extensible. In a parallel

programming environment, the object-oriented developer will struggle with

implementation issues since the textual style of the programming language does not lend

itself particularly well to managing parallel activity, whilst the visual parallel programmer

will not. The essence of the problem is therefore that visual parallel programming has a

very low level of abstraction in its development paradigms, whilst offering quite suitable

methods for implementation, whereas object-oriented (textual) programming may offer

highly abstract execution models, but provide the user with little in the way of a helpful

means of implementing (parallel) code. This problem is summarised in Figure 3-4 below.

An Analysis of Visual Parallel Programming

 106

Figure 3-4 The Orthogonal Abstraction Problem

The Orthogonal Abstraction Problem {Webber 1998; Webber 2000} shown in Figure

3-4 indicates the primary difficulty that lies between the parallel programming

community and the mainstream of software engineering. If the overall level of

abstraction provided by a particular implementation style is given by the area covered on

the plane, and the horizontal and vertical dimensions give the “strength” of the execution

model (the power of the source code syntax and semantics) and the development

paradigm (the power of the software methodology as a whole) respectively, then a

pattern of abstractions emerges. The textual programming languages in common use

have tended to provide highly abstract models of computation, through which problems

can be conceptualised and managed, with object-orientation providing the richest and

most extensible set of abstractions of any methodology to-date. Although

implementation may be based on intricate textual syntax, the actual implementation

complexity, if free of parallel activity, is manageable. The reciprocal problem arises when

considering visual parallel programming languages which successfully abstract the

complexities of the underlying (parallel) system, and offer a development paradigm

which is very well suited to parallel programming. However, visual parallel programming

languages do not offer a sufficiently abstract execution model to warrant their uptake in

more general software engineering, since their execution models reflect those of parallel

machines, and not of typical problem domains (whilst the converse is true for typical

textual programming). Visual parallel programming to-date is simply underpowered to

the extent where its use is not feasible for general-purpose application development, and

likewise standard textual programming techniques are underpowered for developing

parallel applications.

Visual Object-Oriented Development of Parallel Applications

 107

3.4 Requirements for Visual Parallel Programming Languages

Given that the previous discussion suggests that contemporary visual parallel

programming languages are not well suited to developing general-purpose parallel

applications, and that there is a clear and increasing need for such applications {Webber

1998}, there is a distinct requirement to capture exactly what is required of languages to

be considered successful. This section introduces a number of requirements for future

visual parallel programming methodologies.

 Support Abstract Means of Implementation. Utilising abstract

programming language syntax (such as a visual syntax) reduces the

implementation complexity of parallel software. Since contemporary

visual parallel programming languages have succeeded in

encapsulating the details of parallel architectures, future languages

should continue likewise. In short, languages should be visual.

 Support Abstract Development Paradigms. To facilitate the construction of

general classes of applications, support for conceptualising and

managing the complexity of arbitrary problem domains is required.

The paradigm through which problem domains are conceptualised

should support detailed analysis and both high-level and unit-level

design, as is supported by object-orientation.

 Maximise Potential Parallelism. Whilst the developer should not

generally be concerned with explicitly instigating parallel activity, the

amount of potential parallelism available within the source code

should be maximised. As a consequence, the low-level data-oriented

view taken by contemporary visual parallel programming tools is to

be avoided, and higher-level models of parallel activity should be

embraced. The implication of this is that the language should

implicitly enable the identification of as much potential parallelism as

possible, and it is the responsibility of some other mechanism to

ensure that such (logical) parallelism is mapped efficiently onto the

available (physical) hardware.

 Encourage Re-Use. Though visual parallel programming simplifies

implementation, source code for parallel applications remains

intricate. To reduce the potential for introducing bugs into

An Analysis of Visual Parallel Programming

 108

applications through the re-implementation of code, visual parallel

programming languages should encourage the re-use of existing,

tested code. However, future visual parallel programming languages

should not adopt the black-box reuse mechanism favoured by the

surveyed languages. Thought the procedural abstraction

underpinning most of the contemporary efforts provides a basic

mechanism for re-using a library of procedures, it is clear that

software engineering best practice has moved on. Furthermore,

modern software paradigms such as object-orientation allow re-use

much earlier in the software lifecycle through, for example, re-use of

types at design-time, which cannot be supported by existing means.

 Use Appropriate Implementation Methods. Throughout the visual

languages community there is the implicit assumption that visual is

best. For representing parallel activity, a visual notation has certain

strengths which cannot be matched by a textual language. However,

there are times in the development of an application where

algorithms are sequential, and would be better specified textually

rather than visually. In such cases, the developer should be allowed

to use a textual representation for implementation purposes, and that

code should fit into the overall framework provided by the visual

element of the language. In effect, the visual component of the

language may be used to coordinate the activity of textual

computations, in a similar fashion to the textual LINDA

coordination language {Carriero and Gelernter 1989}.

3.5 Flow-Based Visual Parallel Programming

Although this thesis has identified a number of problems with contemporary visual

parallel programming languages as a solution to the problem of building general-purpose

parallel applications, it is not the case that existing approaches are entirely without merit.

Indeed, it has been argued that aspects of current visual parallel programming technology

are in fact extremely useful.

Given the track record of visual parallel programming, which has predominantly been

flow-based, it is a logical step to examine the benefits afforded by flows. Flow-based

visual programming is based around the notion that flows of information between

Visual Object-Oriented Development of Parallel Applications

 109

computational elements, either in the form of data or control-flow signals, can be used to

govern the overall execution path of an application. For example, in a dataflow language

such as CODE {Newton 1993}, it is the arrival of data at a computational element which

triggers the activation of that element. In HeNCE {Browne, Hyder et al. 1995}, it is the

arrival of control-flow signals from prior computational elements which acts as the

stimulus for invoking subsequent elements. Regardless of whether control- or data-flows

are used, the commonality between the two is that both implicitly manage timing and

synchronisation issues within an application, which is indeed a very desirable property for

a parallel language to exhibit.

In addition to the fact that flow-based computing is a natural method of scheduling

the interaction between concurrent tasks, it also provides the benefit that identifying

potential parallelism from the overall communication/synchronisation structure of an

application is straightforward. For example, tasks that are mutually independent with

respect to either data or control-flow are free to execute in parallel, and are

straightforward to identify as they do not exhibit any direct interrelationships, as can be

seen in Figure 3-5.

St
ric

t S
eq

ue
nt

ia
l O

rd
er

in
g

Po
te

nt
ia

lly

Pa
ra

lle
l

Ex
ec

ut
io

n

Figure 3-5 Exploiting Natural Parallelism in an Algorithm

Flow-based visual parallel programming in its current forms is by no means a

comprehensive solution to the problems inherent within developing general-purpose

parallel applications. Building applications with contemporary visual parallel

programming languages remains difficult. Contemporary systems offer little more than a

An Analysis of Visual Parallel Programming

 110

means of transporting values between concurrent processes as a development paradigm,

which is distinctly underpowered. Undoubtedly the value-passing approach is not

without merit, though its overall worth is nevertheless limited when considering

problems outside of traditional numerical applications – a fact which is acknowledged by

the language developers {Newton 1993; Beguelin, Dongarra et al. 1994}.

Though visual parallel programming is in its infancy, the fact remains that flows are a

very natural way of representing dependencies in a parallel application. This thesis

conjectures that flows are fundamental, and that a new paradigm for visual parallel

programming should adopt a flow-based approach as its central tenet.

3.6 Object-Oriented Development

Object-oriented development is one of the most powerful and widely adopted

software paradigms in use today. The power of the object-oriented paradigm is that it

supports the developer with a rich framework for tacking problem domains, and an

extensible toolset for designing solutions and implementing applications.

As a concept, object-orientation is as simple as it is elegant, viewing a software system

as a group of intercommunicating objects which offer certain services in order to

complete computational tasks. What is more, the objects within an object-oriented

software system may be of particular types to suit the problem domain at hand and it is

quite usual for those types to be interrelated. Herein lies the primary benefit of the

object-oriented approach:

… in managing complexity and hence improving productivity in the software development

process {Winbald, Edwards et al. 1990}.

 In essence, object-orientation allows a problem domain to be conceptualised in its

own terms, which are then propagated into the design and implementation of software

product. In addition, the object-oriented methodology encourages the construction of

highly modular designs and software which provide benefits in terms of reuse and

maintenance.

Though the opinions of software engineering researchers and software practitioners

are coherent in their belief that object-orientation is an important and powerful software

paradigm {Coad and Yourdon 1991; Coad and Yourdon 1991; Jacobson, Christerson et

al. 1992; Coad and Nicola 1993; Booch 1994; Booch 1996}, its uptake in the field of

parallel application development has been slow. Whilst it may seem surprising that

Visual Object-Oriented Development of Parallel Applications

 111

benefits of applying object-orientation has not penetrated further into the field of parallel

programming, reviewing literature reveals that the overwhelming majority of applications

written are numerical in nature, and low in terms of overall functionality. As such the

consensus seems to be that advanced software engineering techniques are unnecessary in

a field which still maintains from its very name to be a purely implementation-oriented

discipline.

Clearly parallel computing and object-oriented development have met beforehand.

Indeed, there have been some notable attempts to merge object-oriented technology with

parallel computing technologies {Yonezawa and Tokoro 1987; Annot and Haan 1990;

Treleaven 1990; Kale and Krishnan 1993; Geist, Gropp et al. 1996}, current parallel

programmers remain seemingly steadfast in their opinion that the application of object-

oriented technology is superfluous to their needs, and this is reflected in the tool support

that has attained widespread acceptance within the community (PVM, MPI, and so

forth). It may simply be the case that the problems tackled by parallel programmers are

very well understood, and that applying advanced software development methodologies

would simply be overkill. Furthermore, the perceived overheads of developing with an

object-oriented language over a purely procedural language are often considered

unacceptable, in environments where every CPU cycle is deemed precious2.

Although the parallel programming mainstream may have rejected object-orientation,

it does not mean that the technology has nothing to offer the field. On the contrary, as

parallel computing technologies move further into the realm of general-purpose

computing and the cost of parallel computing platforms at the commodity end of the

market continues to decrease, it is no longer unthinkable that future practice will become

quite different to current. However, the kind of applications that the general-purpose

computing market requires differs greatly from the style of current parallel applications.

A typical productivity or entertainment application for a commodity parallel system will

be large, complex, and functionality-rich, and it is precisely here that object-orientation

has the potential to provide significant benefits.

Whilst object-orientation wholly endorses the notion of abstraction for managing

complexity, the common (textual) object-oriented programming languages are deficient

2 Ironically the lack of proper engineering of code may cost more cycles in the long run, since software

may be crudely built using low-level tools and not be sufficiently sophisticated to take full advantage of the

computing system as a whole. Concentrating on low-level details may simply detract from the big picture.

An Analysis of Visual Parallel Programming

 112

in terms of facilities for managing parallel activity. In terms of the orthogonal abstraction

problem of Figure 3-4, they are lacking in terms of a suitable execution model. If the

current popular object-oriented programming languages such as C++ {Stroustrup 1991;

Stroustrup 1997} and Java {Flanagan 1997; Flanagan 1997; Morrison 1997; Microsoft

1998} are considered, it is clear that the concurrency features of those languages often

seem to be secondary issues. Generally the developer is presented with models which fit

uncomfortably with objects, such as threading, and is left with the burden of effectively

managing objects and threads – proverbial chalk and cheese. This is not surprising, in

that most object-oriented languages were not designed with parallelism in mind. What is

surprising is that even those languages which were built to address parallelism

{Yonezawa and Tokoro 1987; Annot and Haan 1990; Kale and Krishnan 1993; Bik and

Gannon 1997} still place the burden of explicitly managing parallel control-flows upon

the developer. Furthermore, the mixture of control-flow code and computational code

means that the source code base may become highly intricate and difficult to maintain

and debug. As any practitioner in parallel programming will concede, maintaining a clear

view of program behaviour from textual source code requires significant intellectual

effort. This is all in stark contrast to the visual flow-based languages which support

parallel activity with comparative ease, through a separation of control and computation

aspects, and choosing the most appropriate type of syntax, visual or textual, for each.

Despite the fact that textual object-oriented languages have not been widely adopted

by the parallel programming community, the concepts that underpin object-oriented

technology are sound. Moreover, language developers are beginning to take an interest in

at least making concurrency control mechanisms a standard part of their languages

{Flanagan 1997; Flanagan 1997; Morrison 1997; Microsoft 1998}. Whilst this is a far cry

from fully-fledged parallelism aware languages, it is some measure of the recognition of

the growing importance of concurrent execution within applications. Given that the

object-oriented paradigm is valuable, what remains is to deduce the best way of

combining object-oriented and visual philosophies within the context of parallel

application development to harness the key strengths of both, and this is the subject of

the next chapter.

3.7 Summary

This chapter has provided a taxonomy for visual parallel programming languages, and

the results of that taxonomy were used to identify weaknesses in the current generation

Visual Object-Oriented Development of Parallel Applications

 113

of visual parallel programming languages. In particular the problems associated with

closely coupled development paradigms and execution models were highlighted, and

from the identification of that problem, a set of requirements for future visual parallel

programming languages was derived.

Provisions to satisfy the identified requirements were examined, and in particular

flow-based programming and object-orientation were introduced as a combined solution.

In subsequent chapters a paradigm based upon visual, object-oriented, and flow-based

programming is presented, and a language supporting that paradigm is developed and

evaluated.

Visual Object-Oriented Development of Parallel Applications

 115

Chapter 4 A New Paradigm and Language for Visual Parallel

Programming.

Visual parallel programming is a technology still in its infancy and it is clear that

current systems are somewhat lacking in support for the software engineering

lifecycle. As general-purpose applications begin to demand increases in hardware

performance, it is unlikely that the current generation of visual parallel

programming languages will provide a reasonable solution to building such

functionality-rich applications.

In order to meet the need for faster and more functional software products,

visual parallel programming must be endowed with better abstractions in terms of

cognitive and execution models. Paradigms must be developed and languages to

support those paradigms must be built and tested to explore solutions to the

problem of engineering parallel software.

4.1 Introduction

The single most important fact that previous chapters have revealed is that the current

generation of visual parallel programming languages fails to support the developer

throughout the software engineering process. It is true that current languages fare a little

better in terms of helping the actual implementation of parallel applications, but

nonetheless if there is no support for software engineering then, simply put, software

cannot be engineered.

In order to identify engineering that could be applicable to the discipline of visual

parallel programming, it is necessary to look to mainstream software engineering for

inspiration. In the mainstream, it is clear that the object-oriented paradigm has risen to

prominence above all others since it alone provides a sufficiently rich and extensible set

of abstractions to allow arbitrary problem domains to be managed.

This chapter begins by presenting a new paradigm for parallel application

development based upon the combination of object-orientation together with the more

useful aspects of current visual parallel programming technology. This paradigm, Parallel

Object-Flow, is then used as a basis for the development of a new visual language to enable

the development (by visual means) of general-purpose (object-oriented), high

performance (parallel) applications. The syntax and semantics of the language are

A New Paradigm and Language for Visual Parallel Programming.

 116

introduced in this chapter as are its development paradigm and executions models,

covering both implementation issues and software engineering aspects.

4.2 Parallel Object-Flow: A New Paradigm for Parallel Application

Development

The creation of a new paradigm for application development is non-trivial. However,

prior work suggests the following as a basis:

 The application of object-orientation will provide a familiar cognitive

model and development paradigm;

 The application of visual programming notations can be used to

abstract details of parallel computing systems;

 Flow-based languages support the straightforward identification and

exploitation of parallelism, and provide the additional benefit of

implicitly synchronising concurrent tasks.

It is these three notions that form the essence of the Parallel Object-Flow paradigm.

This paradigm maintains the view of a parallel application as being composed from a set

of intercommunicating objects, where each object is a potentially parallel entity.

Furthermore objects encapsulate methods which may exhibit parallel activity, where such

parallel activity is obtained by constructing those methods in a visual, flow-based

language. The use of object-orientation empowers Parallel Object-Flow with a powerful

development paradigm which provides facilities for the management of complexity

throughout the software lifecycle, whilst the flow aspects of the paradigm enable high-

performance through an inherently parallel model of computation.

The way in which a type’s methods are specified in a Parallel Object-Flow application

differs significantly from the imperative style which traditional object-oriented languages

have adopted, in order to provide a syntax which both abstracts underlying parallel

systems and which is amenable to parallelism. To achieve this, the most successful

aspects of the current generation of visual parallel programming languages (flows

between computational elements to implicitly support parallel activity, and visual syntax

to abstract architectural complexity) are used to build larger abstractions (classes).

Specifically, classes are composed of attributes and methods, but those methods are

implemented using visual flow-based notations, not textual source code.

Visual Object-Oriented Development of Parallel Applications

 117

The fact that distinct paradigms for the development (object-orientation) and

execution model (flow-based graphs) are available is of importance, since they solve the

orthogonal abstraction problem introduced previously. Although approaches based

upon a mixture of objects and flows, such as the object-flow execution model of

Prograph language {Cox, Giles et al. 1995} have been investigated within the serial

programming arena, no similar approach has as yet been applied to parallel computing.

The premise of the work described in this chapter is that the application of a hybrid of

flow and object paradigms to parallel computing is novel, and will yield benefits in terms

of both software engineering and parallelism.

4.2.1 The Parallel Object-Flow Development Paradigm

The fundamental abstraction of the Parallel Object-Flow development paradigm is the

class. During the analysis and high-level design stages of the software lifecycle, the

developer is concerned with identifying classes and capturing class interrelationships

from the problem domain. In that sense, Parallel Object-Flow is no different to the

object-oriented methodology. At the implementation phase, Parallel Object-Flow

applications diverge from standard object-oriented languages. The primary differences lie

in the facts that

 Parallel Object-Flow applications are constructed from an

intercommunicating set of autonomous objects, and

 each method in a class is specified by a graph.

 When constructing a Parallel Object-Flow application, creating such graphs to

represent the computational activity of the program becomes the developer’s main

workload. Graphs themselves consist of nodes and arcs, where nodes represent some

form of computational element and arcs describe dependencies between nodes. In

addition arcs constitute routes via which parameters may pass from one node to another,

rather like the dataflow languages CODE and ParADE. However, the parameters passed

between nodes in Parallel Object-Flow graphs are unlike parameters in other visual

parallel programming systems, in that they are in fact simply pointers to objects (called

object handles) stored somewhere within the computing system. The actual detail of

where objects are stored is of no direct concern to the programmer who deals only with

object handles within a physically shared memory or perhaps in a logically shared

memory {Keleher, Cox et al. 1994; Protic, Tomasevic et al. 1998; Watson and

A New Paradigm and Language for Visual Parallel Programming.

 118

Parastatidis 1999; Watson and Parastatidis 1999}, or handles to null objects (which are

indicative of a temporal, rather than data, dependency).

Nodes (computational elements) represent either computation local to the current

method, or method calls on other objects. Nodes act as an interface through which

parameters (object handles) are passed to textual subroutines (local computation), or to

other graphs within the application (method call).

A typical Parallel Object-Flow method graph will resemble that of Figure 4-1 below.

Graph Parameter Graph Parameter

Object Creation Object Creation

Method Call

Return

Handles to
input
parameters

Creation of
new objects
and release of
handles

Method call on an object
passing another as a
parameter to that call

Output handle and
method termination

Figure 4-1 A Parallel Object-Flow Graph

Although the overall style of the graph in Figure 4-1 resembles that of contemporary

visual dataflow languages, there are a number of differences.

1. Object handles rather than copies of values flow between nodes.

2. Since object handles travel around Parallel Object-Flow graphs,

multiple nodes could attempt to invoke methods on the same object

concurrently3. Any language based upon the Parallel Object-Flow

paradigm should ensure that concurrency control mechanisms are

provided to prevent undesired concurrent accesses.

3 In the dataflow paradigm concurrency control is not an issue since the semantic is one of copies of

values passing between computational elements. This is potentially costly, since it is generally not more

efficient to pass a copy of an object than to pass a handle to that object, especially on a parallel platform

where an interconnection network may be involved in the transfer.

Visual Object-Oriented Development of Parallel Applications

 119

3. The arrival of the complete set of incoming handles triggers the

execution of a node, in the style of classic dataflow computation. For

the sake of elegance and simplicity no other firing rules are

permitted. This mode of execution ensures that what the developer

specifies on the graph happens at run-time – there are no situations

where the firing of a node is unclear.

4. For each set of input handles received by a node, there is only one

output handle produced. There is no possibility for a single node to

generate a “stream” of output object handles. A clean “single shot”

model of computation at the graph level is thus provided.

5. Handles in-transit to a node are queued until the destination node is

able to consume them. Once handles are consumed by a node, they

are removed from the application as whole. If a particular object is to

remain accessible from a graph, it must remain referenced elsewhere

in the application.

6. Where no handles to an object exist on any graph within an

application, that object is “garbage” and can be removed by a

garbage collecting mechanism.

7. Since the Parallel Object-Flow paradigm supports the use of a

mixture of textual and visual implementation styles, the automatic

integration of graph-level and objects in textual subroutines must be

fully supported.

4.2.2 The Parallel Object-Flow Execution Model

Where the goal of a development paradigm is to present the application developer

with a rich cognitive model within which to express solutions, the execution model

supporting the application at run-time is not of immediate concern to the developer. In

essence the execution model is the intermediate step between the semantics of the

programming language and the semantics of the underlying computing system (run-time,

operating system, and hardware).

Given that applications will be composed from objects, the most pertinent place to

begin the discussion of the Parallel Object-Flow execution model is with an individual

A New Paradigm and Language for Visual Parallel Programming.

 120

object. At the execution model level, the requirements for an object in the Parallel

Object-Flow paradigm are twofold:

 The internal data structures of an object must not become corrupted

through potentially concurrent access;

 Objects must not constitute a performance bottleneck.

These requirements clearly are not mutually compatible, and in order to accommodate

both into the execution model, some compromise is necessary. In the Parallel Object-

Flow paradigm, a multiple readers – single writer protocol derived from the work on

Actors {Agha and Hewitt 1987} and Active Objects {Lavender and Schmidt 1996} is

used to mediate access to objects. Using this protocol, an object may simultaneously

service multiple methods which do not update the state of that object (reader), whilst

serialising any requests for service which may update the state of the object (writer,

which may also be a reader). An example of such activity can be seen in Figure 4-2

below.

Opportunities for
concurrent method

invocation

WWWRRR

Serving Object

Methods

Data

Figure 4-2 Multiple Readers, Single Writer Method Invocation

Figure 4-2 demonstrates a hypothetical situation where the object is requested to

service a number of methods. In this example, it receives requests for three read-only

methods which it can handle in parallel, and three write methods which the object

serialises after completing the read-only methods to ensure consistency.

In addition to the multiple readers / single writers protocol, the Parallel Object-Flow

paradigm supports parallel activity across multiple objects. Since an application will

typically comprise a number of objects, it is clear that multiple objects could potentially

execute (multiple) methods at any one time. The Parallel Object-Flow paradigm allows

methods themselves to be parallel routines, specified in a visual, parallelism-amenable

syntax. The execution model for a Parallel Object-Flow application is therefore

Visual Object-Oriented Development of Parallel Applications

 121

inherently parallel, where parallel method code, may call multiple (parallel) methods on

multiple objects. This is illustrated in Figure 4-3.

Calling
Object

Serving
Object

Multiple Method
Calls Supported

Parallel Calls on
Multiple Objects

Multiple
Objects

Parallelised
Methods

Serving
Object

Multiple Method
Calls Supported

Figure 4-3 Exploiting Parallelism in a Parallel Object-Flow Application

For the current generation of visual parallel programming languages, exploiting

potentially high levels of parallelism shown in Figure 4-3 could be seen as troublesome.

Where most current languages have adopted a rigid mapping of logical to physical

parallelism (what appears as a parallel task on a graph will be parallel at run-time), the

Parallel Object-Flow paradigm adopts a more subtle approach in that logically parallel

tasks may not necessarily be executed concurrently at run-time. In fact, tasks will only be

executed concurrently if there are sufficient free computational resources available, in a

scheme similar to that proposed in {Mohr, Kranz et al. 1991}. This lazy scheme inhibits

swamping of hardware with too many parallel tasks. This is an important point, that the

exploitation of available parallel hardware is not directly derived from the application, but

instead is more sensibly managed by the parallel run-time support system itself, and the

language element merely points out opportunities for parallelism (and may even be able to

A New Paradigm and Language for Visual Parallel Programming.

 122

perform optimisations)4. This is beneficial since it decouples the programming and

execution of applications, resulting in increased portability and less need for performance

debugging between hardware platforms.

4.2.3 Execution of a Parallel Object-Flow Application

Given that there are several aspects to the Parallel Object-Flow paradigm, it is helpful

to piece these aspects together to give an overview of how the execution of a Parallel

Object-Flow application might proceed. This section takes a high-level view of both the

development paradigm and execution model previously introduced, and shows how

those components interact in order to support application execution.

When initially executing an application, a designated method graph begins its

execution. This method is the entry point to the application and is equivalent to the

main function in the C/C++/Java languages. Within the main function objects may be

created and methods called upon those objects. When methods are called, flow of

control effectively spreads into other method graphs giving rise to parallelism. The

graphs themselves implicitly handle communication and synchronisation issues as

previously mentioned. The location of the objects created by an application is

unimportant to the software developer, and is managed by the run-time system in such a

way that locality of objects in a multiprocessor environment can be exploited to improve

application performance. The overall level of parallel activity is also managed by the run-

time system where the logical parallelism found in the application may be constrained to

suit the physical resources of the target parallel architecture.

Simplification of constructing parallel applications is not the only benefit afforded by

the Parallel Object-Flow paradigm. In fact the benefits are threefold:

1. Parallelism (and thus the potential for application speedup) is

implicitly obtained, and exploitation of that potential parallelism is not

explicitly invoked;

2. System complexity can be managed through the application of visual

programming techniques;

4 Though current visual parallel programming languages abstract low-level details like locking and so

forth, they do not provide mechanisms for automatically managing physical hardware. Instead, the

developer considers the logical to physical mapping of parallelism during the development process.

Visual Object-Oriented Development of Parallel Applications

 123

3. Problem domain complexity can be managed through object-

orientation.

Given that the three major problem areas for developing parallel applications

(management of problem domain, implementation complexity, and parallelism

management) are each addressed by the Parallel Object-Flow paradigm, there is room for

optimism in this approach. What remains for this thesis is the design of a language

supporting the paradigm, to test whether such a language can be used not only to build

general-purpose parallel applications, but also show potential for yielding speedup.

4.3 The Vorlon Programming Language

This section introduces the Vorlon programming language, which has formed the

majority of the practical work for this thesis. Vorlon is the primary vehicle for evaluating

the Parallel Object-Flow as a methodology for developing high-performance parallel

applications.

Although Vorlon is intended to be a complete system for the development of parallel

applications, here only the language element is presented. Issues pertaining to code

translation and run-time support are left for later chapters. The context within which the

work is focussed is highlighted in Figure 4-4 below, which shows the architecture of a

Vorlon application.

 Developer

Data
Dictionary

Methods Library

Translator

Intermediate Language
(e.g. C++)

Run-Time System

Multiprocessor Computer
System

P
ar

al
le

l O
bj

ec
t-F

lo
w

 P
ar

ad
ig

m

D
ev

el
op

m
en

t
P

ar
ad

ig
m

E

xe
cu

tio
n

M
od

el

Figure 4-4 The Architecture of a Vorlon Application

A New Paradigm and Language for Visual Parallel Programming.

 124

Figure 4-4 shows the five levels in the architecture of a Vorlon application. At the

bottom resides the actual hardware upon which the application is executed. As is

apparent from the number of layers in between the hardware and the developer, there is

a high level of abstraction inherent in the application architecture. It is important to

understand that the layers are not meant as a source of potential inefficiencies, but as a

framework under which software can be developed. The executable code produced in

this architecture is no further away from the computer system than it would be if a

“manual” programming method such as PVM had been used, but the developer is

granted a higher-level view of the application.

The run-time system, one level above the hardware, bears the responsibility for taking

compiled source code from the intermediate language level, and managing its execution.

The run-time system must provide facilities for managing parallel execution of an

application, such as supporting mechanisms for communication and synchronisation

between concurrent computations, and implementing appropriate concurrency controls.

At the centre of the architecture is the intermediate language layer which is used to

interface Vorlon graphs with run-time system services. An intermediate language is

simply used to enable Vorlon to target a range of existing run-time systems via normal

compilation and linking techniques.

The translation layer of the Vorlon application architecture is responsible for

converting Vorlon graphs to textual source code suitable for compilation via traditional

compilation methods. It is intended that the translation layer will be flexible in terms of

the intermediate language ultimately produced such that no options, in terms of run-time

system or machine architecture, are ruled out. In this respect, the translation layer is

considered a plug-in component, in a similar fashion to the translation model adopted by

the CODE system {Newton 1993}.

The uppermost layer of Figure 4-4 is the language element of the architecture, the

level at which the user develops software. It consists of both a data dictionary {Layzell

and Loucopoulos 1989} where the issues of modelling the problem domain through

classes and class-interrelationships are tackled, and a set of methods belonging to those

classes, which encapsulate computational activity in Vorlon. Both the data dictionary and

methods are specified graphically. Specifically, the data dictionary is constructed using a

UML-like notation {Fowler and Scott 1997; Booch, Rumbaugh et al. 1999} where classes

and interrelationships are specified visually to aid developer comprehension; methods

Visual Object-Oriented Development of Parallel Applications

 125

belonging to those classes are specified in a graphical, flow-based notation in accordance

with the Parallel Object-Flow paradigm.

As approaches for the object-oriented analysis and design of systems are already well

known and not a research topic explored by this thesis, the discussion on constructing

the data dictionary is left until the end of this section. Since the novel work undertaken

has been in the area of expressing methods graphically, it is the syntax and semantics of

Vorlon which is examined next.

4.3.1 Methods in the Vorlon Programming Language

This section introduces the syntax and semantics of the Vorlon programming

language. The syntactic elements are presented in a bottom-up style with the simpler

elements, and those familiar from previous visual parallel programming work presented

first and the less familiar and more complex elements presented subsequently.

To construct software which is insulated from the complexities of the underlying

parallel system, the Vorlon programming language borrows from proven technology in

visual parallel programming and offers a visual flow-based syntax as stipulated by the

Parallel Object-Flow paradigm.

For each method of each of the problem domain classes, a Vorlon method graph

exists which describes that computation. A Vorlon method graph is an acyclic, top-to-

bottom graph consisting of nodes which represent some form of computation, and arcs

which describe dependencies between those computations. The arrival of handles to

objects (including the possibility of handles to null objects) along arcs on a graph triggers

a computational node’s execution. In Vorlon, the arrival of such handles signifies the

completion of previous computation(s) and thus signals readiness for successor

computations to proceed, just as in the HeNCE computational model, which yields a

clear graph-execution semantic.

In contrast to previous work in visual parallel programming, Vorlon arcs do not carry

data values between computational nodes but in general carry handles to objects (i.e.

Parallel Object Flow) which may be used to invoke methods on referenced objects. As

an optimisation, for primitive types (coincidentally the same set of types offered by the

C++ language) values are transmitted such that both pass-by-reference and pass-by-value

semantics are supported. Pass-by-value for objects is realised by using the type’s copy

constructor and passing a handle to that newly created copy. As Vorlon arcs carry

handles to typed objects, the language benefits from being strongly typed. As type

A New Paradigm and Language for Visual Parallel Programming.

 126

information is known at compile-time, unlike previous objects-plus-flows methods {Cox,

Giles et al. 1995}, it is possible for a Vorlon compiler to perform static type-checking of

applications.

Having established the overall flavour of a Vorlon method graph, it is now germane

to review each of the syntactic elements available to the developer. The following

sections introduce each piece of graph syntax, its semantics and common use.

4.3.1.1. Arc

Arcs are the “glue” with which the computational elements of Vorlon applications are

linked together. Arcs are used to describe dependencies between nodes, where such

dependencies may be either temporal (one node must await the completion of a prior

node) or data dependence (where one node requires the results of another node).

 The arc has straightforward semantics. Arcs are typed in that only handles to objects

of a particular type, or subtype, are allowed to flow through any arc. Attempting to pass a

handle of an incorrect type along an arc will result in a compile-time error. Arcs are

unidirectional, and to accommodate the acyclic, non-stream nature of Vorlon have a

capacity for only one item. The visual representation of Vorlon arcs can be seen in

Figure 4-5.

Source

Destination

Figure 4-5 Vorlon Arc

4.3.1.2. Replicate and Merge Nodes

The replicate and merge nodes are inspired by features of the MeDaL and ParADE

languages where replication and merging were used to distribute and gather data passed

to different parts of an application. In Vorlon, the replication facility is used to make

copies of object handles to transmit to multiple nodes in a graph where each of those

nodes requires access to the same object. The merge node is used where conditions

occur in graphs (see conditional node discussed later) to maintain consistent firing rules

even where some paths in a graph may not be used. The replicate and merge node syntax

is presented in Figure 4-6.

Visual Object-Oriented Development of Parallel Applications

 127

Figure 4-6 The Replicate and Merge Nodes

The replicate node accepts a handle to an object at its uppermost edge and emits one

handle to the same object along every arc at its lowermost edge. It is important to

understand that the node does not copy the object itself, but only the handle to that

object. Copies of actual objects must be created using a copy constructor, as discussed

below.

The merge node accepts inputs from any one of its input arcs and echoes that handle

to the output arc. All input arcs must be of the same type for this node to work, and a

compile time error will occur if this is not the case. The merge node is the only node in

the Vorlon language which does not obey the strict all-arcs firing rule, though without

this node conditional execution at the graph level is not possible.

4.3.1.3. Computation Node

Name

Typed input arc(s)

Typed output arc

Figure 4-7 Computation Node

The computational node, shown in Figure 4-7, is represented as a rectangular icon

with a descriptive name at its centre. Its purpose is to encapsulate a single computational

task (written textually) or group together a number of such tasks (described graphically),

and is semantically similar to the procedure call mechanism in the C programming

language, allowing for multiple arguments (input arcs) and a single return parameter

(output arc). The choice of a single output arc is defensible since it maintains a familiar

function call semantic (though it has been noted that additional parallelism could be

invoked by allowing multiple return paths).

The encapsulated computation can be expressed either:

A New Paradigm and Language for Visual Parallel Programming.

 128

1. Textually using a subset of the C++ programming language

{Stroustrup 1997}; or

2. Graphically, in which case the node acts in a similar fashion to a

decomposed actor in ParADE, to manage visual complexity.

 It is permitted for nodes containing graphs to nest arbitrarily, though sub-graph

recursion is not supported (recursion instead being achieved via method calls as

discussed later).

If a computation is expressed in C++ rather than using Vorlon graphs, any code

within a computational node will be executed sequentially, even if there is potential for

parallel activity. Since parallelism is potentially restricted by programming computational

nodes textually, a developer must therefore be aware that the best way to interact with

objects is via the graphical mechanisms (to be described subsequently). A piece of textual

code should be used only where it is apparent that there is strict sequential ordering of

operations, or a piece of computation is trivial enough not to warrant the support of a

graphical syntax (such as the manipulation of primitive values or where it is obvious that

there is no parallelism to be extracted from a piece of code).

Like the ParADE system, the computation node automatically handles conversion

between graph-level arcs and appropriately typed objects in the textual host language.

When viewing application structure at the graphical level, the developer is presented with

a set of typed arcs connected to the computation node. When the developer chooses to

view a decomposed node, either the encapsulated graph or a piece of source code

providing a textual representation of the node’s environment will be presented. The

provision of a textual representation for a textually-programmed node can be seen in

Figure 4-8 where the automatically generated (C++) code is highlighted5, and the

developer’s own code can be seen nested within that.

5 Note that there may be other code associated with the node to provide the necessary locking and

synchronisation for the node program, though the developer would never be presented with such

information.

Visual Object-Oriented Development of Parallel Applications

 129

Graphical

double
double

bool

double

checkRange

Textual

//
// Check Range Computation Node
//
// Inputs: double, double, double
// Output: bool
//

bool checkRange(double d1, double d2, double d3)
{
 if(d1 <= d2 && d2 <=d3)
 {
 return true;
 }
 else
 {
 return false;
 }
}

Figure 4-8 Computation Node: Graphical and Textual Views

Execution of a node obeys the same strict firing rule as other Vorlon nodes, whereby

only when items are present on all input arcs will the node program be activated. At

some point later in time, the node program will finish and a single handle is emitted

along the single output arc (returning void from a textual program has the effect of

producing a handle to a null object on the arc).

4.3.1.4. Parallel Computation Node

The parallel computation node exhibits a useful behavioural pattern when used in

conjunction with container-like data structures. Its semantics derive from the data-

parallel mechanisms of other visual parallel programming languages, whereby it is able to

spawn multiple concurrent instances of its node program, and indeed its look-and-feel

are adapted from the depth actor in the ParADE language. However, when the situation

arises where each input arc carries a handle to a suitable data structure such as a List, the

parallel computation node will automatically perform decomposition and re-composition

of the elements contained within the list. The visual syntax of this operation can be seen

in Figure 4-9 below, alongside the decomposition pattern for this mode of operation.

A New Paradigm and Language for Visual Parallel Programming.

 130

Name

Handle(s) to objectsList

Handle to objectList

Figure 4-9 Parallel Computation Node using Automatic Data Decomposition

In Figure 4-9, each element of the list will automatically be extracted and provided as

an argument to each parallel invocation of the node’s program. This scheme is similar to

Prograph {Cox, Giles et al. 1995}, where is has been argued that such a scheme is quite

adequate for the purposes of handling parallelism in an object-oriented application.

Furthermore, the notion of parallelism being driven by typing is consistent with the

object-oriented philosophy of Vorlon where the developer concentrates on high-level

software engineering issues and tool support takes care of the parallelism. Whilst it is

clear that linear structures such as lists and arrays can easily be dealt with, it may also be

possible to automatically decompose arbitrary data structures for parallel processing in

this way, though such research is beyond the scope of this thesis.

Though the ability to decompose a data structure automatically is desirable, there are

some conditions that the developer must adhere to:

1. The type of the objects held in the data structure must be compatible

with the types expected as individual arguments to instances of the

parallel computation node’s program.

2. The number of elements contained in each data structure must be

identical, otherwise the firing condition for some instances of the

node program will be satisfied whilst for others it will not.

If the Vorlon parallel computation node is compared to the depth actor in ParADE,

the Vorlon version is less flexible in the patterns of decomposition that it supports.

However, it is thought that the inclusion of the more advanced partitioning schemes seen

in ParADE is unlikely to yield any additional benefits to the Vorlon language since

Visual Object-Oriented Development of Parallel Applications

 131

developers are building object-oriented and not dataflow applications, and as such task-

and not data-parallelism is the norm. If a situation arises where more intricate

partitioning strategies are required, the developer must manage their implementation.

In its other form, the parallel computation node provides the simplest explicit form of

parallelism in the Vorlon programming language. The iconic representation of the

parallel computation node can be seen in Figure 4-10 below.

Name

Typed input arc(s)
Control input (int)

Null handle (void) output arc

Figure 4-10 Parallel Computation Node

The parallel computation node’s only other significant difference from the standard

computation node is the presence of a control input which governs the level of logical

replication of the node’s program or sub-graph at run-time, and the imposition of a null

handle to act as a timing signal when the node has finished on the output arc. The

control input expects a single integer value to be present on its incident arc which is used

to specify the logical extent of the replication of parallel instances of the node program at

run-time. Inside the parallel computation node, each of the arcs incident on the node are

presented to the programmer in a manner consistent with the standard computation

node, including the control input, so that each instance of the node program can be

identified from within the node program.

4.3.1.5. Conditional Computation Node

The conditional computation node behaves in an almost identical fashion to the

standard computational node with the exception that the execution of its node program

(but not the activation of the node itself) can be made conditional on the items carried by

a subset of its input arcs. The visual representation of the conditional computation node

can be seen in Figure 4-11.

A New Paradigm and Language for Visual Parallel Programming.

 132

Name

Typed input arc(s)

Conditional input arc(s)

Conditional output arc
Typed output arc

?

?

Figure 4-11 Conditional Computation Node

The semantics of the conditional computation node are straightforward. Items arrive

via the arcs at the topmost edge of the icon, with the conditional input(s) denoted by the

grey circle containing the question mark symbol. Once all input arcs contain handles, the

node will activate (though not necessarily execute its node program), and its first

operation will be to evaluate the condition (written in standard C++ and yielding a

Boolean result) using the items supplied to the conditional input area, to determine

whether or not the node program will be run. If the program runs, all input parameters

from both the normal input arcs and the conditional arcs are supplied to the node

program (regardless of whether it is an actual C++ computation or another graph). The

node program then executes and at some point later returns a single item via its typed

output arc.

If the condition specified by the node’s condition statement is not satisfied then the

node program will not be executed. Immediately a null object handle will be sent along

the conditional output arc to indicate non-execution. This is important since the non-

execution of a conditional node’s program is equally as important to subsequent nodes in

the graph as the execution would be. That is to say it is not permitted in Vorlon for a

node to not signal its completion even if it is deemed to have performed no useful work.

4.3.1.6. Graph Start and Halt Nodes

A typical Vorlon application will be composed from many graphs (and sub-graphs).

To manage graphs and their interactions, a visual mechanism is required to decouple

them – in effect to provide actual and formal parameters such that called graphs can be

isolated from their calling graphs. To satisfy this requirement, the Vorlon programming

language borrows technology originally developed for the MeDaL {Harley 1993} system,

and later implemented by the ParADE {Allen 1998} language, in the form of graph start

and halt nodes. The visual syntax for those nodes can be seen in Figure 4-12 below.

Visual Object-Oriented Development of Parallel Applications

 133

Start Node Halt Node

Figure 4-12 Graph Start and Halt Nodes

The purpose of a start node is to provide a graph icon to act as a formal parameter. It

isolates an incoming arc from a calling graph, or in the case of an application’s root graph

to isolate arguments from the environment (to act as command line arguments).

Similarly, the purpose of the halt node is to provide a binding between the output arc on

the called graph and its associated arc on the calling graph. To be consistent with the

computational node, where there may be any number of input arcs yet only a single

output arc, there can be any number of start nodes in a graph, but only one halt node.

In addition to its role as a parameter-passing mechanism, the halt node is also

equipped with certain synchronisation characteristics. It is clear the activation of a halt

node is in itself a synchronisation, since it indicates the completion of a graph. However,

the halt node is also able to accommodate any number of arcs carrying null handles (of

type void), and in the cases where the return type of the graph is not void, up to one

other arc carrying a handle to any non-null object. In each case the semantics of the halt

node are that the graph will complete when all incident arcs are carrying object handles,

though in the first case a null handle will be returned to the graph’s caller whilst in the

second the non-null handle will be returned. This semantic ensures that all nodes in a

graph must have completed before a return will occur, and thus avoiding potential race

conditions.

4.3.1.7. Literal Source

To facilitate the introduction of literal values for primitive types into an application,

the literal source node was developed, whose purpose is simply to accept a literal value at

compile time and provide a handle to an object holding that value at run time. The

syntactic element for a literal source can be seen in Figure 4-13 below.

A New Paradigm and Language for Visual Parallel Programming.

 134

Figure 4-13 Literal Source Node

4.3.1.8. Attribute Source

Since Vorlon nodes may only operate upon objects to which they possess handles, a

mechanism which supports access to an object’s attributes (its data members) must be

provided. Unlike contemporary object-oriented programming languages where attributes

are implicitly available within the scope of any methods, nodes in the Vorlon language

must be supplied with handles to any attributes which are required within the scope of a

graph. The mechanism which provides handles to attributes is known as the Attribute

Source, which grants access to an object’s attributes to methods in that object’s type.

The iconic representation of the Attribute Source can be seen in Figure 4-14 below.

Figure 4-14 Attribute Source Node

Attribute source nodes emit an object handle to part of the current object’s state as

soon as the graph to which they belong is activated. That is to say that the attribute

source provides a mechanism by which a method can access the private or protected data

members of its type. Precisely which of the data members is sourced by a particular

attribute source is determined by the developer at compile-time. Once the parameters

have been selected, there is no way to alter which attribute will be sourced at run-time.

As such the developer must take care to ensure that any attributes which may be required

during the execution of a graph has a corresponding Attribute Source.

Providing a visual mechanism through which object state is accessed is certainly

unusual in object-oriented languages, where attributes are normally implicitly available

throughout the execution of all methods. In the case of the Vorlon programming

language, it is actually beneficial. Attributes will be referenced in only the scopes in which

they are needed, and as such will need to be locked only for those scopes. This allows for

Visual Object-Oriented Development of Parallel Applications

 135

a fine granularity of locking involving parts of an object’s state, which in turn promotes

parallelism.

4.3.1.9. Object Interface Source Node

In addition to the fact that a method in the current object may require access to the

attributes of the current object, there may be cases when a method may need to call

another method on the same object. Since methods can only be invoked upon objects

whose handles appear in the current graph, Vorlon requires a syntactic mechanism for

introducing handles to the current object’s interface into a method graph (equivalent to

the this pointer in C++/Java). This is the function of the Object Interface Source

node, which can be seen in Figure 4-15.

Figure 4-15 Object Interface Source Node
When activated, the Object Interface Source node provides a single handle to the

current object on its output arc. That handle may then be used in a consistent fashion

with handles to any other objects in the method graph, with the exception that both

public and private methods in the local object may be invoked. Using the Object

Interface Source in conjunction with the Attribute Source allows all of the facilities of the

referenced object to be exploited in a consistent fashion.

4.3.1.10. Loop Node

The loop node is intended to provide a graph-level control-flow abstraction

mechanism for iteration, and can be seen in Figure 4-16 below.

Control input(s)

Name

Output

Other parameter(s)

Figure 4-16 The Loop Node

A New Paradigm and Language for Visual Parallel Programming.

 136

The look and feel of the loop node has been adopted from the loop actor in the

ParADE system, although its semantics have been changed to remove the ill-defined

behaviour of ParADE’s loop actor which possessed both iterative and parallel aspects. In

particular, the Vorlon loop node removes the per-iteration loop input and loop output

that characterised the ParADE version. Removal of the per-iteration input and output

renders the loop node suitable for iteration only, and not as a mechanism for invoking

streamed activity, since Vorlon does not support streaming (or pipelines for that matter)

for reasons discussed in Chapter 7.

Having established that the loop node is a purely iterative construct, the syntax for

loop node usage can now be introduced. It should be noted that the loop node has two

areas upon which arcs carrying object handles can be incident. Any arcs incident upon

the uppermost grey circle are taken as being variables used within the loop control

statement (discussed next). These variables are consumed according to the normal firing

rules, once per node activation, and determine the conditions under which iteration is

allowed to proceed. The loop control statement is expressed textually in a subset of the

C++ programming language. Arcs incident on the uppermost edge of the loop node,

though not incident on the grey circle, provide handles for use inside the loop in much

the same fashion as arcs incident upon the uppermost edge of a computation node

provide handles for use within that particular sub-graph or computation. Handles

transmitted along such arcs are made available to each iteration of the loop.

The output arc provides a means of returning a handle to the environment once all

iterations of the loop have completed. Whilst it may at first seem strange that a loop can

return an object, as opposed to merely iterating over objects, it makes more sense when

considering the loop node as a specialisation of the computational node which repeats

the body of the function until a certain condition is met. Once the loop condition has

been met, the node can then release a handle onto its output arc. This handle can be any

handle within the scope of the node (its parameters), or can be a null handle, as depicted

in Figure 4-17.

Visual Object-Oriented Development of Parallel Applications

 137

Foo bar(Bar b) //node interface
{
 for(…) //loop condition (user specified)
 {
 //body of function (user code) here
 }
 //return statement
 return b; //returns a handle from current scope
}

Figure 4-17 Textual Representation of a Loop Node

Since each instantiated Vorlon graph can be used only once in the execution of an

application, during the execution of a loop each iteration is presented with a fresh copy of

the loop’s sub-graph. This semantic can be seen as being somewhat akin to a macro

expansion semantic, in that each iteration effectively creates and uses a new copy of the

sub-graph defined within the loop node.

4.3.1.11. New Object Node and Constant New Object Node

The new object node is the means by which objects are instantiated and introduced

into a Vorlon graph. The semantics of a new object node are relatively simple. Handles

representing arguments to a constructor call for a new object flow into the node via its

input arcs, causing the construction of a new object (the location of which is of no

concern to the developer). Once the new object has been constructed, a handle to that

object flows out of the node along its single output arc.

The visual syntax of the new object node is shown in Figure 4-18 below. The new

object node is oval in shape, in common with other object interaction nodes, to

distinguish it from control-flow and computational elements of a Vorlon graph. The type

of object to be created appears in textual form towards the bottom of the icon along

with any parameters required to instantiate the object (in effect the signature of its

constructor). The mapping between input arcs and parameters is performed left to right,

such that the leftmost arc maps onto the leftmost parameter and so forth.

Constructor

Input Arc(s)

Figure 4-18 The New Object Node

It should be noted that the new object node does not support functional

polymorphism with respect to selecting the most appropriate of any available

A New Paradigm and Language for Visual Parallel Programming.

 138

constructors based upon the handles received as its input arguments. The new object

node obeys the strict firing rule that all other nodes obey, in that it will only become

active when all of its input arcs are carrying handles. If other constructors are to be

invoked on an object, then their invocation will have to occur within other new object

nodes, where the number and type of arguments required for construction is in

agreement with the number and type of input arcs to the new object node itself.

In addition to the new object node, the Vorlon language also supports a simple

variant called the Constant New Object Node. The constant version of the node shares

similar syntax and semantics as the standard version of the new object node, but

produces handles to immutable objects. That is to say, the constant new object node

produces objects whose state cannot be updated, and therefore upon which only

methods that do not update state may be invoked (methods that are declared as const).

This may in turn have implications for locking optimisations, in addition to the software

engineering benefits provided (some objects simply don’t change their state, and a way of

modelling this is useful). The icon for the constant new object node is shown in Figure

4-19.

Constructor

Input Arc(s)

Figure 4-19 The Constant New Object Node

4.3.1.12. Method Call Node

Method Call

Serving Object Input

other input arc(s)

Figure 4-20 Method Call Node

The method call node as seen in Figure 4-20, provides the primary means in Vorlon

by which parallelism is expressed, since it is the activation of multiple method call nodes

Visual Object-Oriented Development of Parallel Applications

 139

which propagate control-flow between graphs. Whilst it may seem strange that a method

call node is the primary abstraction for parallel execution in Vorlon, consider the

traditional approach to building concurrent applications, using some imperative textual

language. Since textual code is written in a single dimension and effectively executes one

statement at a time synchronously, where one statement completes before another starts,

asynchrony was developed as a mechanism through which the normal control-flow rules

could be circumvented. With the aid of asynchrony, it became possible to execute

multiple one-dimensional flows of control within an application, as illustrated in Figure

4-21 below.

 Execute 1st Statement
Execute 2nd Statement
Spawn New Task
Execute 3rd Statement
…
…
…
Execute nth Statement
Join Tasks
Execute n+1th Statement

Execute 1st Statement
Execute 2nd Statement
Execute 3rd Statement
…
…
…
Execute ith Statement

Communication between concurrent tasks

Parallel control flows

Figure 4-21 Asynchrony in Textual Programming Environments

Figure 4-21 shows a typical textual parallel program, where an initial computation

spawns a second computation, both of which then proceed concurrently until the

spawned computation has completed. Upon completion, the spawned computation waits

until the main computation is ready to allow its spawned task to re-join.

In the Vorlon programming language, using asynchronous mechanisms to invoke

concurrent methods does not fit comfortably with the programming model. Unlike

imperative textual programming languages where asynchronicity is used to circumvent

the sequential execution of statements, Vorlon method graphs have the ability to route

flows of control around nodes, and thus permit further potentially parallel computations

to execute without employing asynchronous mechanisms. Figure 4-22 demonstrates a

situation similar to that exemplified in Figure 4-21, whereby two distinct parallel flow of

control are present in the example code. However, Figure 4-22 makes no use of explicit

asynchrony to achieve this situation, instead using routing to spread control-flow to parts

of the graph that can be active concurrently.

A New Paradigm and Language for Visual Parallel Programming.

 140

Method n+1

Method n

Method 2

Method 2

Method 1

Method 1

Figure 4-22 Task Parallelism without Explicit Asynchronicity

Having understood the importance of the Method Call node pertaining to parallel

activity, it is now germane to investigate the mechanics of the node. Arcs incident upon

the method call node may be attached at one of three possible points. The simplest to

explain is the output arc. The output arc of a method call node is attached at the lowest

point of the node’s lower edge. Since Vorlon methods are permitted to return only a

single object handle, a single output arc must be present at the base of a method call

node which enables the return of a result, with the possibility that result may be a null

object handle. Upon completion of a method, a handle is transmitted to subsequent

nodes via this arc.

Arcs carrying input handles to the method call node are a little more intricate in that

the positioning of those arcs is of importance to the functioning of the method call node.

This importance stems from the fact that object handles flowing into the method call

node fall into one of two categories. An object handle can:

1. Refer to the object upon which a method is to be invoked; or

Visual Object-Oriented Development of Parallel Applications

 141

2. Refer to parameters for that method invocation.

 This distinction is of such significance that it warrants acknowledgement in the visual

syntax of the language. It was decided that the single handle pertaining to the serving

object should attach to the method call node differently from the potentially more

numerous parameter object handles. As such, the arc carrying the handle to the object

which is to service the method call is attached to the grey circle, or serving object input,

uppermost on the method call node’s icon, and is the only arc permitted to be incident

upon that area of the icon. Other arcs providing parameters to the method call must only

be attached to the upper side of the node’s icon. Any attempts to attach multiple arcs to

the server object input will result in a compile-time error. Actual parameters are mapped

onto formal parameters with a simple left-to-right ordering of arcs.

Visual syntax aside, the method call node has the same semantic as a method call in

C++ or Java – similar to that of the computational node introduced earlier. Method call

nodes invoke a method on a specified object, pass any parameters to that method call as

required, and await the completion of that method before returning control to their

caller. In Vorlon, this involves passing the flow of control to the graph representing the

method, and awaiting completion of that method graph before control is returned to the

caller. In addition, the method call node can be used to access public attributes from an

object by specifying the name of that attribute and no other parameters.

There remains one aspect of the method call node semantics which warrants further

explanation. In general, when a method is invoked through a method call node, handles

to objects are transmitted as parameters. When parameter is an instance of a built-in

primitive type, it is not a handle which is sent, but a copy of its value (c.f. Java). If there

exists a requirement for such types to be transmitted by reference, all that is required is

for the developer to wrap a primitive value within a user-defined type, or within the

built-in Object type provided by Vorlon (discussed below). Once a user defined type

wrapper has been written for a particular primitive type, the user-defined type can be

used to implement pass-by-reference semantics for primitive types, allowing both pass-

by-value and pass-by-reference semantics, benefiting from both approaches. A pass-by-

value semantic can also be achieved for non-primitive types by making copies of an

object via the type’s copy constructor and passing a handle to that newly created object.

A New Paradigm and Language for Visual Parallel Programming.

 142

4.3.1.13. Parallel Method Call Node

The parallel method call node behaves in an almost identical manner to the standard

method call node, but with the exception that it implicitly supports “data-parallel” 6

activity, whereas the standard method call does not. The icon for the parallel method call

node can be seen in Figure 4-23 below.

Vector multiply(Vector)

List<Matrix>

List<Vector>

List<Vector>

Figure 4-23 Parallel Method Call Node

Although in many respects the parallel version of the method call node is similar to

the original method call node, its intended usage is somewhat different. Whilst it is clear

that parallelism can be achieved using multiple instances of the method call node

together with the replicate node, this is a limited data-parallel pattern where the level of

parallelism invoked is determined at compile-time. Since the level of data-parallelism

available in a particular circumstance is often unknown until run-time, using several

instances of the standard method call node is an unsatisfactory solution. Instead it will

usually be the case that method call nodes will be used to invoke task-parallel activity,

where distinct methods are invoked concurrently through multiple method call nodes.

True data-parallel activity will be exploited through the parallel method call nodes.

Where a standard method call node will consume a single set of input object handles,

and execute a method before returning a single object handle, the parallel method call

node is equipped to decompose linear data structures (such as a List) in the same way

as the parallel computation node (Section 4.3.1.4). The size and type of any incident data

structures must be both mutually compatible in terms of size, and compatible with the

method call’s parameter list in terms of type, lest a compile-time error occur. If handles

6 The term “data parallel” is used here is a cognitive aid to described a replicated computation operating

on different inputs. Since Vorlon is not a dataflow language, parallel method call or a similar term would be

a better interpretation.

Visual Object-Oriented Development of Parallel Applications

 143

to single objects, as opposed to structures of objects, are presented on any arcs, then

those handles will be made available to all instances of the method call.

4.3.1.14. Comments

This graph parses the
input data, and passes
it into the initialisation

mechanism.

Figure 4-24 Comment Icon

During the construction of software, extra information on particularly interesting or

intricate aspects of source code will require additional documentation than the source

code (Vorlon graph) itself provides. Acknowledging this need, the Vorlon programming

language provides a mechanism adapted from UML {Fowler and Scott 1997}, seen in

Figure 4-24 above, via which comments can be added to the application source code.

4.3.2 The Vorlon Class Model

The Vorlon class model is the means by which the data dictionary, or repository of

types used within an application, is described. The class model supports the analysis and

high-level design phases of the software lifecycle where the problem domain is

decomposed in terms of types, interrelations between those types, and the methods that

those types support.

The modelling of classes and interrelationships was never an area of research which

was to be covered by this thesis, particularly since aspects of the Unified Modelling

Language, or UML {Fowler and Scott 1997; Booch, Rumbaugh et al. 1999} were

thought adequate for the modelling of classes and interrelationships. It was therefore

proposed that UML could be used as a suitable notation for object-oriented analysis and

design in Vorlon. UML is composed from a comprehensive set of modelling methods to

capture the behaviour of an object-oriented system at several different levels, but it is the

UML class model which is of particular interest with respect to the Vorlon programming

language. Whilst several other notable object-modelling languages exist {Coad and

Yourdon 1991; Coad and Yourdon 1991; Bruegge, Blyth et al. 1992; Booch 1994}, UML

has sought to extract the salient features of these and condense them into a single unified

methodology. It is precisely this refinement which has lead to the belief that the UML is

A New Paradigm and Language for Visual Parallel Programming.

 144

most suitable of the available methods as a notation for representing the Vorlon data

dictionary.

Of particular interest in the context of the work presented in this thesis, the UML

class model provides a graphical method of expressing the interfaces and interrelations

between the types that exist within a particular problem domain. The UML class model

presents the developer with a set of icons representing types, and allows those icons to

be connected via various relations including:

1. Inheritance – to permit the specialisation of types to manage particular

problem domain requirements, and promote source code re-use.

2. Composition – to allow new types to be formed by the aggregation of

objects from existing types.

3. Association – to allow objects of one type to maintain references to other

objects.

4. Uses – publishes interface details of one type to a second type, permitting

the second type to manipulate objects of the first type.

The UML class model was never intended as a language for programming, but as a

means of modelling object-oriented systems. As such, raw UML is unsuitable for use

within the context of a programming language. Specifically UML’s class model lacks the

ability to specify a starting point for an application. To remedy this, inspiration was

drawn from object-oriented programming languages such as C++ and Java, where a

single static method called main is used as an entry point into an application. In C++,

the main method is a function at global scope, whilst in Java the main method is given

static scoping within a particular class in an application. The Vorlon approach takes

aspects of both the C++ and Java approaches in that it both enforces class membership

for methods, yet acknowledges the semantic importance of the main method as a

separate entity. The result is the Vorlon Main class which can be seen in Figure 4-25.

The semantics of the Main class icon are that it has only a single method called main

which executes immediately, and once only, upon application startup.

Visual Object-Oriented Development of Parallel Applications

 145

Main

+int main
 (in:String[] args)

Figure 4-25 The Main Class

Main class is also abstract, which prevents objects of type Main from being created.

The fact that the Main class is abstract implies that it cannot form part of a two-way

relationship with other classes; whilst it is permitted for the Main class to use, associate

or be composed from objects of other classes, the reciprocal is not true. In addition, the

Main class, to use Java terminology, is said to be final which implies that it cannot be

sub-classed by other types through the inheritance relationship. It is not permitted for

the inheritance relationship to be attached to a Main class, nor is it permitted for

another class to instigate an interrelation with the Main class.

It is clear that UML has a great deal of expressive power. Coupled with the notion of

a Main class, the notation becomes not only suitable for modelling object-oriented

systems, but with the Vorlon methods graphs and suitable library support, also as a basis

for programming them.

4.3.3 Built-in Types, Primitives, and Library, and Array Support

It has become commonplace to consider a modern programming language not only in

terms of its keywords and its syntax, but also in terms of any built-in types and library

support. For example, the C++ programming language definition now contains not only

rules governing syntax and semantics, but also contains a number of built-in primitive

types and the definitions of the C++ standard library which must accompany any

vendor’s C++ implementation {Stroustrup 1997}. It is thus reasonable to assume that

the Vorlon programming language should also provide a degree of developer support in

the form of robust and re-useable library components and a number of useful built-in

types. The provision of a set of built-in types is relatively straightforward. Since Vorlon

targets the C++ as its intermediate language, it is simple to allow instances of C++

primitive types to appear in Vorlon programs.

In addition to these primitive types, Vorlon also provides three additional types:

Object, List, and String. The List type has already been discussed as one

A New Paradigm and Language for Visual Parallel Programming.

 146

means by which parallel computation nodes and parallel method call nodes can

automatically decompose regular data structures into individual elements for parallel

processing. List is a parametric type (influenced by C++ templates) allowing a List

to contain objects of any type.

Object is another parametric type used as a generic wrapper class for primitive

types. If the execution semantics of a Vorlon graph are recalled, usually only non-

primitive types are passed by reference, whereas primitive types are passed by value (as

an optimisation). The Object type can be used to wrap primitives when pass-by-

reference, as opposed to pass-by-value, semantics are needed.

The final non-primitive type which Vorlon supports is String. The main purpose

of the String type is to represent sequences of characters in an object-oriented

fashion. To that end, the String type supports a variety of operations for application

use (substring operations and the like).

The construction of high-quality libraries for general-purpose programming relies not

only on the availability of stable versions of the language in which to develop the

libraries, but also on experience drawn from using the language to determine precisely

what should and should not form part of its standard library. In addition, the sheer size

of a typical standard library for a modern programming language means that considerable

resources are required for their construction. Since the Vorlon programming language is

intended as a vehicle primarily for validating the Parallel Object-Flow paradigm, no such

library support was developed.

Notwithstanding the fact that a standard library for Vorlon was not available, the

requirement for some form of support to handle issues such as input and output

remained. To satisfy this requirement, the experimental version of the Vorlon

programming language implemented a scheme of Vorlon-safe wrappers whereby the

library support of the intermediate language component could be exploited by a Vorlon

application. Thus the architecture of Vorlon applications was modified to reflect

experimental needs, as can be seen in Figure 4-26.

Visual Object-Oriented Development of Parallel Applications

 147

Methods Data
Dictionary

Hand
Translation

Library
Wrappers

Developer

Library
Components

Intermediate Language
(C++)

Run-Time System

Multiprocessor Computer

Figure 4-26 Vorlon Application Architecture at the Experimental Phase

Figure 4-26 shows the approach taken in creating an architecture for the experimental

version of Vorlon. This architecture is unlike the set of well-defined interfaces presented

in Figure 4-4, where the translator level provided the language component of the

architecture with complete isolation from the intermediate language which is ultimately

compiled and executed. Instead, the method component of the Vorlon language

environment is presented with a set of hand-generated wrappers that encapsulate the

functionality of the libraries supplied with the targeted intermediate language (C++). The

wrappers implement the necessary concurrency controls around the components

supplied by the intermediate language library, so that they can be called safely from

Vorlon language components, though this is certainly not an optimal solution. In

particular, the fact that non-native libraries were not written with parallelism in mind

implies that their performance will not approach that of a set of native Vorlon language

libraries. This has the implication that although a large body of functionality becomes

available to the Vorlon developer, each time part of that functionality is utilised the

performance of the application may be compromised.

The final aspect of the Vorlon language to be introduced is its support for arrays. In

Vorlon, arrays are considered to be objects in their own right, as in Java, though in

Vorlon arrays are more akin to optimisations for multiple instantiation since their

functionality is low (similar to C/C++ arrays). Since Vorlon arrays support methods,

albeit a limited set, they are accessed through method called nodes.

A New Paradigm and Language for Visual Parallel Programming.

 148

Creation of and access to arrays is facilitated by the New Object Node and Method

Call Node respectively, where the node name is used to indicate either creation of an

array or array subscripting. Examples of array creation and access can be seen in Figure

4-27, Figure 4-28, and Figure 4-29.

Object[]

int or Object []

Object []

Object []

[]

int

null handle

Object

Object []

[]

int

Object

Figure 4-27 Creating an
Array of Objects

Figure 4-28 Setting an
Array Element

Figure 4-29 Retrieving
an Array Element

Figure 4-27 shows the familiar New Object Node as introduced in Section 4.3.1.11,

except in this example, the type of the object the be created (Object) is suffixed with

square brackets ([]) indicating that it is an array which is to be created and not a

single instance. Only one input parameter is allowed, either an integer or another array

whose contents will be copied, and this parameter is used to set the size of the array and

where the input is another array of objects to fill the new array. The implication of

allowing only a single parameter is that only the default constructor of a type can be

called when an array of objects is to be created, and that instances of types which do not

support a default constructor cannot be held in an array (in common with C++ and

Java).

Figure 4-28 shows the syntax for setting an element of an array. In this case, the array

which is to be operated upon arrives via the serving object input (uppermost grey circle).

A handle to the object which is to be inserted into the array arrives along an arc, as does

the index of the desired array element. Once all arcs are carrying handles, the node

overwrites the handle currently held in the indexed array element with the new handle,

and emits a null handle along the output arc to signify the completion of the node’s

execution.

Figure 4-29 shows the opposite action to Figure 4-28, where an element is retrieved

from an array. In this case, a handle to the array to be operated upon is presented at the

serving object input and the index of the required handle is also transmitted to the node.

Visual Object-Oriented Development of Parallel Applications

 149

When these two handles arrive, the node executes and sends a copy of the handle at the

specified location onto the output arc.

It should be noted that the array mechanism in Vorlon is only suitable for reference

types, and not for primitives (c.f. Java). If arrays of primitive types are required, then

each primitive must be wrapped in an instance of Object as described previously in this

section. Furthermore it is important to remember that arrays in Vorlon are not range

checked, and if an array operation causes an out of bounds error then it is likely that a

run-time failure will occur.

4.4 Summary

This chapter has introduced the Parallel Object-Flow paradigm. The notion of a flow-

based semantic has been introduced whereby object handles flow between graph nodes

representing method calls and computation, alongside a set of other requirements, such

as concurrency control and communication mechanisms, needed to support execution.

In addition the aspects of the Parallel Object-Flow paradigm which address both system

(visual language and execution model) and problem domain complexity (object-

orientation) were discussed. The notion of building parallel software visually from

objects was proposed as a major improvement over traditional approaches to parallel

programming.

This chapter also introduced the Vorlon language for visual, object-oriented parallel

programming. The architecture of a Vorlon-based application was described, with

particular attention being paid to the way in which methods are constructed, and the

parallel-by-default execution model which methods in the Vorlon language exhibit. The

way in which parallelism is expressed not only through concurrent method calls on

objects, but also through the traditional means of extracting parallelism from a flow-

based graphs, was also explained.

The next chapter presents an investigation of the development of two applications

using the Vorlon programming language, with an aim to evaluate the language both in

terms of software engineering and performance.

Visual Object-Oriented Development of Parallel Applications

 151

Chapter 5 Experimental Performance Results and Analysis

Given that a methodology and tools - the Parallel Object-Flow paradigm and

the Vorlon programming language - have been developed on paper, the evaluation

of that technology must follow. This chapter presents a set of experimental test-

beds and procedures designed to test the performance capabilities of application

developed with the Vorlon language, and analyses the performance of two

applications developed with Vorlon. This chapter does not cover language and

other higher-level software issues, which are discussed in-depth in the next

chapter.

5.1 Introduction

This chapter investigates the Vorlon programming language within a formal

experimental framework. As with formal experimentation in the pure sciences, this

chapter adopts the approach of introducing aims, experimental apparatus, methodology,

and results before presenting conclusions. The parallelism community has often fallen

into the trap of providing benchmarks which are specifically designed to demonstrate a

system in its prime. It the aim of this experiment to check whether the prototype Vorlon

programming language is a useful tool, and not to prove that it is.

In order to validate the Vorlon language and the Parallel Object-Flow paradigm as a

means by which high-performance parallel applications can be constructed, of necessity

requires experimentation with software systems. To that end, the main thread of this

chapter charts the course of two software experiments, a matrix multiplication

application and a Vorlon compilation system, from inception through to release. The

matrix multiplication experiment allows for direct comparison between Vorlon and its

predecessors within the problem domain favoured by previous programming methods.

The production of a (parallel) compilation system for a language has traditionally been

the starting point for that language to become self sufficient, and indeed writing such a

tool in the Vorlon language itself is a robust test of the language and paradigm, as well as

an opportunity to investigate a more object-oriented system than problems in numerical

analysis.

After describing the construction, experimentation, and evaluation of each of the

software projects individually, the chapter closes by drawing together the experiences of

developing Vorlon applications. However, before experimentation can begin, the systems

used to run the experiments must be introduced. To that end, the discussion diverges at

Experimental Performance Results and Analysis

 152

this point to tackle issues of run-time support and mappings between that run-time

support and the Vorlon language itself.

5.2 Software Support - The NIP Parallel Run-Time System

The NIP (Newcastle Implicit Parallelism) parallel run-time system {Watson and

Parastatidis 1999} is an experimental system whose goals are to abstract the complexity

of a parallel computer, and present the abstraction of an idealised parallel computer to a

compilation system7. The NIP system does not reveal the details of the underlying

architecture, but instead portrays that hardware as an abstract machine with large

memory and a similarly large number of processors, regardless of the physical

configuration of hardware (shared memory, distributed memory, or a mixture of both).

Thus NIP is responsible for the efficient exploitation of the underlying hardware, since it

is encapsulated away from the compilation system and developer. This is a major

advance compared to previous tools, such as PVM and MPI, where the developer had to

bear the responsibility of managing computational resources, and ensuring that

application-level parallelism was mapped correctly to physical resources.

However, it is important to understand that the normal “rules” for parallelism apply

even though optimisations are supported. If the parallelism that the user identifies is

relatively coarse grained, then the NIP run-time system will have far more chance of

successfully optimising its exploitation than with fine grained parallelism. Still, the NIP

philosophy rejects the notion of explicit logical to physical mappings of parallelism, and

instead conjectures that it is the run-time system which is ideally positioned to exploit

hardware resources efficiently, and not the developer – characteristics which were

assumed in the Vorlon architecture, as discussed in Chapter 4. NIP provides two

important mechanisms to support this notion in the form of a lazy task creation scheme

and a distributed shared memory abstraction.

NIP’s lazy task creation scheme {Watson and Parastatidis 1999} provides the illusion

of an arbitrary number of processors. It is based around a unit of parallelism known as

the “Tasklet” {Watson and Parastatidis 1999} which is a logical unit of work which may

be executed in parallel, should sufficient computational resources exist. If resources are

available then a parallel task will be extracted from the Tasklet, and executed on an

7 Originally, NIP was designed to support functional-plus-objects languages such as UFO {Sargeant

1993}, though it was also found to be suitable to support declarative-style language semantics, such as

those exhibited by Vorlon.

Visual Object-Oriented Development of Parallel Applications

 153

available processor. If sufficient resources are not available then the work will be

executed serially. What distinguishes NIP from contemporary lazy task creations schemes

is the fact that the NIP API provides a number of Tasklets which implement common

parallel patterns (iteration, recursion, etc.) on behalf of the user, without requiring the

instantiation of multiple Tasklets, and thus optimising run-time overheads. The API also

provides an excellent target for syntactic elements from the Vorlon language to map

onto.

The general behaviour of NIP lazy task creation can be seen in Figure 5-1, where two

snapshots of potential activity are presented. In the earlier of the two snapshots, at time

T1, two processors are shown busy processing parallel tasks. Some time later, at time T2,

one of the processors has become idle after finishing all of the tasks in its task queue.

The NIP load balancing mechanism will then steal available work from a non-empty task

queue in order to keep all processors busy. Under a normal lazy task execution scheme

one potentially parallel task could be moved from one queue to another. Since one

Tasklet can potentially describe a number of potential parallel tasks, it is possible for its

load balancing mechanism to steal whole parts of the work described by that Tasklet.

This optimisation reduces the need for many potentially parallel tasks in situations such

as loop unrolling where traditionally the overhead of creating potentially parallel tasks for

each unrolled iteration has had to be paid. The upshot of this mode of execution is that

the NIP user can assume that swamping of hardware will not occur, and that execution

of all potentially parallel tasks is sensibly managed. Furthermore, since the NIP user deals

only with identifying potentially parallel tasks and not executing them, the user not need

to be concerned with the actual processor configuration of the underlying system8.

8 The closest that contemporary visual parallel programming has come to achieving a model like this, is

the “cost matrix” of the HeNCE language, but that influences the load balancing mechanism and not the

task creation strategy.

Experimental Performance Results and Analysis

 154

Figure 5-1 NIP Lazy Task Creation

NIP’s distributed shared memory (DSM) abstraction provides the communications

mechanism through which objects in an application may interact9. The NIP DSM

provides the illusion of a logically shared object-based memory across a number of

computational nodes, and provides a means of locking and accessing objects stored in

that memory space. Additionally the NIP system provides a level of insulation from the

non-uniform memory access (NUMA) nature of its shared memory abstraction by the

inclusion of caching schemes.

Importantly the NIP DSM model supports a similar access semantic to Vorlon’s

relaxed active object model. In the NIP DSM, serving objects may be read or write

locked. Where objects are read locked, multiple (cached) copies of the object in question

are allowed to be operated upon in parallel, one copy per processing node executing a

method call on the serving object. When an object is write locked, all read proxies are

9 In addition to providing the shared memory abstraction, NIP also allows explicit message-passing to

occur, though the mechanism has not been exploited in this thesis, it may be used in future work

(discussed later).

Visual Object-Oriented Development of Parallel Applications

 155

invalidated and only a single method on a single object is allowed to proceed until the

write lock is released.

Having introduced the necessary features of the NIP model of computation, the next

section describes the approach taken to mapping Vorlon onto NIP, and sets the scene

for experimental work.

5.3 Code Generation

From the Vorlon software architecture introduced in the previous chapter it was seen

that an intermediate language is used to provide a target for Vorlon to map onto. Since

NIP provides a C++ interface, and Vorlon has adopted elements from the C++

language for its textual and library components, it was clear that Vorlon graphs should

lead to the production of C++ suitable for linking with the NIP libraries. The steps taken

to execute a Vorlon application can be seen in Figure 5-2 10.

Figure 5-2 Translation from Vorlon to Machine Code

Though conceptually simple, there are some issues that arise from Figure 5-2 which

are influential enough to warrant discussion here. Since parallel languages, and not tool

support, was the primary focus of this research there was no tools support developed for

the drawing of Vorlon graphs. Instead graphs were drawn with standard chart-drawing

packages. The implications of manually drawing graphs are twofold:

The quality of the graphs may not be as high as if generated with tools support

since no automatic syntax checking is available;

10 Note that the compilation / linking layer is itself tackled as a Vorlon application in later sections,

though for prototyping traditional compilation methods were used.

Experimental Performance Results and Analysis

 156

There is no way of automatically extracting compilable source code from graphs.

The first of these problems can be mostly protected against by proof-reading. The

second is more difficult and requires that rigorous rules are followed in the manual

conversion from Vorlon graph to C++ source code. It is important to note that the

translation process, although executed manually, was done mechanistically as an

automatic translation system would have. No expert knowledge, that is making use of

information which would not be available to an automatic translator, was applied during

the translation process in order to ensure a fair test. Thus, although the following text

make use of phrases like “the compilation system” and “automatic” it should be borne in

mind that these operations were human-executed (and not completely infallible).

Having understood the manual nature of code production, there are a number of

other aspects which must be addressed in the translation of Vorlon graphs into NIP

compatible C++. Of particular importance are:

 Creation of NIP compatible (i.e. thread-safe) classes from those

types identified in the problem domain;

 Identification of potentially parallel tasks from Vorlon graphs from

which to create NIP Tasklets;

 Determining and optimising locking requirements for objects

referenced in Vorlon graphs.

Given that NIP itself is a prototype system with known limitations, there exist a

second set of issues which must also be addressed, though these issues may not be

directly addressed by features of the Vorlon language. These are:

 Memory management, and in particular the provision of garbage

collection in the absence of any such scheme within the NIP DSM;

 Problem size must be carefully considered since NIP’s internal data

structures are known to continually consume memory as applications

execute.

Since types form the basis of Vorlon applications, it is the generation of NIP-safe

classes which constitutes the first stage in the code generation process. Fortunately, this

is a relatively straightforward process since there is simple mapping between syntactic

elements seen in the Vorlon class model, and components of the NIP system. This can

best be shown by example. Consider the example class diagram of Figure 5-3.

Visual Object-Oriented Development of Parallel Applications

 157

Main

Car

Wheel

Vehicle

0…4

2

Figure 5-3 An Example Class Diagram

In Figure 5-3 a simple problem domain is shown whereby some algorithm embodied

within the main class interacts with two instances of the Vehicle class, to run some kind

of simulation with them. The Vehicle class itself is composed from between zero and

four instances of the Wheel class, and is sub-classed by the Car class, which presumably

addresses issues pertaining to motor cars rather than other types of vehicles (such as

hovercraft). The NIP-safe type interfaces for this problem are shown Figure 5-4 below.

Main

int nipMain(int argc, char* argc[])
{
 NIPRef<Vehicle> vehicle01;
 NIPRef<Vehicle> vehicle02;

 //Main program here

 return 0;
}

Car
class Car : public Vehicle, public NIPShared<Car>
{
 public:
 //specialised methods here
 private:
 //specialised data
};

Wheel
class Wheel : public NIPShared<Wheel>
{
 public:
 //methods here
 private:
 //data here
};

Vehicle
class Vehicle : public NIPShared<Vehicle>
{
 public:
 //methods here
 private:
 NIPRef<Wheel> wheels; //used like a C-style array
};

0…4

2

Figure 5-4 Generation of NIP-Safe Types from the Vorlon Class Diagram

The generation of NIP-safe interfaces is straightforward if certain rules are followed.

In the first instance, all types (with the exception of the Main class) must sub-class the

parametric NIP type NIPShared, which encapsulates the necessary functionality

needed to store instances of those classes within the NIP DSM.

Secondly, since objects are stored within the NIP DSM rather than in the usual virtual

memory address space, mechanisms other than virtual memory pointers are required to

access those objects. The mechanism which is used to access objects in the DSM is the

NIP Reference, or simply NIPRef, which appears in type interfaces where virtual

memory pointers would normally be expected. There is one caveat in the use of

NIPRefs in that only instances of non-primitive types are accessed through this

Experimental Performance Results and Analysis

 158

mechanism. Instances of primitive types are accessed directly and cannot be stored in the

DMS unless they constitute part of the state of a non-primitive type object.

Apart from the global nature of the NIPRef, the semantics of the mechanism are

similar to that of C-style pointers. A NIPRef may refer to either a single object as with

each of the references to vehicles in the Main function, or may refer to a C-style array-

like structure of multiple objects such as the array of Wheel objects in the Vehicle

class. The mapping for uses and composition relations is therefore straightforward.

When the extent of the relation is known (i.e. the developer has specified a single value

for the number of related or contained instances in the class diagram) then that same

number of NIPRefs to instances is generated. When the extent of the relation is

unknown, an array, sizeable at run-time, is used to hold NIPRefs to maintain the

relations. Although semantically different11, both composition and uses relations are

implemented using NIPRefs and it falls to the developer to ensure that correct use of

each is maintained, by ensuring that details of encapsulated objects are not revealed to

outside of their allocated scope.

Having established the means by which type interfaces can be automatically generated

from the Vorlon class diagram, the next step is to devise a means by which the

implementation of those types can be automatically generated from Vorlon method

graphs. Once again explanation is facilitated by example. Consider the Vehicle

problem domain, and in particular the main(…) program which is going to manipulate

instances of the various problem domain types. For this example it is convenient to

assume the overall goal of the application is to use parallelism to speed up a set of

simulations involving vehicle collisions with other vehicles, though in this case the

number of vehicles involved has been limited to two for simplicity (the figure governed

by the qualified uses relation between Main and Vehicle in the class diagram). The

assumption will be made that the Vehicle class will support a method called

collide(…) which takes as its parameters another Vehicle:

void collide (NIPRef<Vehicle> vehicle)

11 A composition relation implies that the contained objects are private to its container, whilst a uses

relation implies that objects of one type hold references to objects of another type but which are not

contained within the first object. Though both relations are implemented with NIP References, the class

model should be used to enforce the notion of uses versus composition.

Visual Object-Oriented Development of Parallel Applications

 159

In this simple example, each of the Vehicles needs to be collided with the other in

order to ascertain what damage will be done. A possible Vorlon graph for the algorithm

is depicted in Figure 5-5.

Figure 5-5 Main Method for Vehicle Simulator

Before continuing to show how parallelism can be automatically extracted from

graphs, it is worth explaining how the graph in Figure 5-5 actually works. Firstly the

parameters for the application are received from the environment through the

uppermost source nodes. These source nodes provide handles to Strings which

describe each of the Car objects involved in the collision. Two Car objects are created

and handles to those objects are released, copies of those handles are made, and sent to a

number of method calls. The method calls invoke the collision(…) method on

each of the Cars, passing the details of the partner in the collisions as a parameter. At

Experimental Performance Results and Analysis

 160

some point later the method for computing collision damage completes and the two cars

are drawn to show the damage inflicted (encapsulated by a separate sub-graph). Figure

5-6 illustrates the extraction of potentially parallel activity from this method graph.

Figure 5-6 Main Method for Vehicle Simulator (Tasklet View)

Figure 5-6 shows each of the potentially parallel tasks (boxes labelled Tasklet1 and

Tasklet2) where each Tasklet is instantiated twice (since they perform the same

operations, just on different data). The algorithm used to determine the potentially

parallel sections of code is straightforward: wherever there are no dependencies between

computational nodes, those nodes may execute in parallel. Taking Tasklet1 as an

example, there are clearly no interdependencies between the two New Object Nodes and

as such they are potentially parallel. The following replicate nodes are graph management

nodes and therefore have no bearing on the parallel activity within the graph. The

method call nodes within Tasklet2 are again mutually independent and are identified

Visual Object-Oriented Development of Parallel Applications

 161

as potentially parallel tasks. Subsequent nodes exhibit interdependencies and thus cannot

be executed in parallel.

Having identified the required Tasklets for the graph, the translation process can then

produce C++ source code. In this case, the main(…) method graph requires three

distinct source code items, one for each of the Tasklets and one of the main program

itself. Since the main program depends on instances of the two Tasklets, it is first useful

to understand how the Tasklets themselves are represented. An example code fragment

is given in Figure 5-7.

NIPRef<Car> Tasklet1Function(NIPRef<String> pString01)

{

 Car* car01 = new Car(pString01);

 //////////////////////////////

 // Interface Code

 //////////////////////////////

 return car01->registerObjs(car01, Mutable);

 //////////////////////////////

}

typedef NIPFunctionTasklet<NIPRef<String>, NIPRef<Car>,
Tasklet1Function> Tasklet1;

Figure 5-7 C++ Representation of Tasklet1

The source code in Figure 5-7 consists of a function (Tasklet1Function) which

encapsulates the computation carried out by the Tasklet, and a type definition

(Tasklet1) which is used to simplify code which uses this Tasklet. The Tasklet

function takes as its parameter a handle to an instance of the String class, and using

that parameter creates an instance of the Car class. The wrapper code (the code which

deals with locking issues) is automatically generated, and in this case has the effect of

changing the type of the pointer car01 from a standard virtual memory pointer into a

NIPRef, which is then returned to the caller.

class Tasklet2Args : public NIPShared<Tasklet2Args>

{

 public:
 NIPRef<Car> car01;

Experimental Performance Results and Analysis

 162

 NIPRef<Car> car02;

};

void Tasklet2Function(NIPRef<Tasklet2Args>
pTasket2Args01)

{

 //////////////////////////////

 // Interface Code

 //////////////////////////////

 Tasklet2Args* Tasklet2Args01 =

 pTasklet2Args01.lockRead();

 Car* car01 = Tasklet2Args01->car01.lockWrite();

 /////////////////////////////

 car01->collide(Tasklet2Args01->car02);

 //////////////////////////////

 // Interface Code

 //////////////////////////////

 Tasklet2Args01->car01.unlock();

 pTasklet2Args01.unlock();

 //////////////////////////////

}

typedef NIPFunctionTaskletArgument<NIPRef<Car>,
Tasklet2Function> Tasklet2;

Figure 5-8 C++ Representation of Tasklet2

Figure 5-8 shows a function which encapsulates the computational activity of

Tasklet2, and a type interface for the argument that the function requires12. The first

section of interface code for the Tasklet deals with the locking of parameters passed to

the function so they can be operated upon safely, and return a virtual memory pointer to

12 The NIP API imposes the restriction that a Tasklet’s function can take only one argument, and

hence a composite type is needed to pass multiple arguments.

Visual Object-Oriented Development of Parallel Applications

 163

one of those objects13. The main body of the function simply invokes a method on one

of the objects via its virtual memory pointer and passes an object into the method call by

its NIPRef (since the computation invoked by the method may not necessarily take

place in the same memory address space of the call itself). Once the call has completed,

the second layer of interface code releases any acquired locks and the function

completes. A type definition is again provided to simplify the act of instantiating this

Tasklet.

int nipMain(int argc, char* argv[])

{

 //////////////////////////////

 // Interface code

 //////////////////////////////

 String* param0 = argv[1];

 NIPRef<String> argument00 = param0->registerObjs(param0, Mutable);

 String* param1 = argv[2];

 NIPRef<String> argument01 = param1->registerObjs(param1, Mutable);

 //////////////////////////////

 Tasklet1 Tasklet10(argument00);

 Tasklet1 Tasklet11(argument01);

 Tasklet2Args* Tasklet2Args00 = new Tasklet2Args;

 Tasklet2Args* Tasklet2Args01 = new Tasklet2Args;

 Tasklet10.waitOrInline();

 Tasklet11.waitOrInline();

 Tasklet2Args00->car00 = Tasklet10.result();

 Tasklet2Args00->car01 = Tasklet11.result();

 Tasklet2Args01->car01 = Tasklet10.result();

 Tasklet2Args01->car00 = Tasklet11.result();

 NIPRef<Tasklet2Args> nrTasklet2Args00 =

 Tasklet2Args00->registerObjs(Tasklet2Args00, Mutable);

 NIPRef<Tasklet2Args> nrTasklet2Args01 =

 Tasklet2Args01->registerObjs(Tasklet2Args01, Mutable);

 Tasklet2 Tasklet20(nrTasklet2Args00);

 Tasklet2 Tasklet21(nrTasklet2Args01);

13 A locking optimisation occurs here in that only objects which are to be operated upon within this

graph are locked, whilst other objects (parameters to method calls) are not.

Experimental Performance Results and Analysis

 164

 Tasklet20.waitOrInline();

 Tasklet21.waitOrInline();

 //

 // Code for drawing cars would go here

 // eg, Tasklet20.result().lockRead()->draw();

 // Tasklet20.result().unlock();

 //

 return 0;

}

Figure 5-9 C++ Representation of the Main Program

The code in Figure 5-9 constitutes the main(…) function for the application. The

first section of interface code merely maps the arguments to the application onto

instances of the String type, and places those instances into the distributed shared

memory. Once the command line arguments are available in the distributed shared

memory, the actual computational work proceeds with the activation of a number of

Tasklets. In Figure 5-9, each instantiation of a Tasklet corresponds directly to a Tasklet

identified in the Vorlon graph shown Figure 5-6. Initially only instances of the

Tasklet1 type are executed whilst the main function continues its own work creating

the parameter objects for the execution of the Tasklet2 objects. When the instances

of Tasklet1 have completed their execution, the waitOrInline(…) method

either forces the in-line execution of the Tasklet’s function or waits until the function has

completed within another thread of control before allowing further statements in main

to be executed. Once the waitOrInline(…) methods have returned, the Tasklet is

then ready to produce its result, which is obtained through the result(…) method

call. Those results are then used to populate the parameters for the subsequent execution

of two instances of Tasklet2. Once the execution of the Tasklet2 functions have

completed, other computation (such as drawing the damage of the collided cars) could

then occur, before the program terminates via the final return statement.

Having established the process by which Vorlon graphs are mapped onto NIP

mechanisms, the following sections detail two experiments and their test-beds designed

to test Vorlon in typical situations from traditional parallelism areas and new application

areas for parallel processing.

Visual Object-Oriented Development of Parallel Applications

 165

5.4 Experimental Environment

There were a total of three separate test bed environments used for performance

analysis during this experiment. The first of these was a single four-way symmetric

multiprocessor Linux computer, to examine application characteristics on a

commonplace architecture. The second environment was the network of workstations

environment, consisting of eight single processor Linux workstations connected by

shared fast Ethernet, now commonly in use in scientific computing worldwide. The

intention of using this equipment was to verify that Vorlon applications are suitable for

execution on a traditional parallel architecture.

The final system used is somewhat more reflective of the average computer user,

consisting of a Pentium II Mobile class PC connected via 10Mbit Ethernet to a more

modern dual Pentium III class machine, where both machines ran an instance of the

Windows 2000 operating system. This is certainly not a traditional parallel architecture,

though it is an increasingly commonplace architecture, as new machines are purchased

before old machines have failed. The intention here is to determine whether typical

computing equipment could be re-used to provide performance increases to the user, by

using the processing power of older hardware to bolster that of the new.

5.5 Matrix Multiplication

Matrix multiplication is habitually used as an example for parallel programming,

because it is a well-known problem, which contains a great deal of potential parallelism –

in fact it has been said of matrix multiplication that it is “embarrassingly parallel.” Most

previous work in the area of visual parallel programming has used parallel matrix

multiplication as a benchmark, and to enable a direct comparison with previous research

efforts, a Vorlon implementation of the matrix multiplication problem, by parallel

matrix-vector multiplications, is implemented and analysed in the following sections.

An important point to note for the matrix multiplication application is that a design

decision was made to use matrix*vector as the fundamental unit of parallelism. There

were a number of reasons for this decision, including:

 Maintain parity with the matrix multiplication programs developed in

Chapter 2;

 Ensure the grain size of tasks has a reasonable chance of achieving

good performance (since it is known that fine grain-sizes will not

Experimental Performance Results and Analysis

 166

parallelise efficiently, and may not be efficient even after run-time

optimisations).

Therefore, when reviewing method graphs it should not be surprising that there are

sequential mechanisms, such as loop nodes, in places where there could have been

parallel ones, such as parallel computation nodes. The upshot of this is that the run-time

system is presented with tasks with coarser grain sizes to optimise, which should

therefore result in more efficient performance at run-time.

5.5.1 Aims

The aim of the matrix multiplication experiment are to determine whether Vorlon can

yield speedup given a problem which is known to be parallelism amenable.

5.5.2 Experimental Method

The first step in building any object-oriented application is the analysis phase. In the

analysis phase, the developer considers the problem domain in terms of its constituent

objects, and forms generalisations of those objects from which types are derived. In the

case of matrix multiplication, the objects involved are matrices and vectors. Accordingly

Matrix and Vector types can be derived from the problem domain, and the

construction of a UML class diagram can then begin, as seen in Figure 5-10.

Figure 5-10 High-Level Analysis of
the Matrix Multiplication Problem

Figure 5-11 Composition Relation
Between Matrix and Vector Types

Once the types have been derived from the problem domain, the developer can then

begin to examine the interrelationships between those types. In a typical application,

there may be a high number of types, and complex interrelations between them, although

in the matrix multiplication example things are somewhat simpler. Here, the only

relationship that occurs in the problem domain is that a matrix object is composed from

a number (≥ 2) of Vector objects (representing the columns of the matrix), which contain

real numbers. A refined class diagram showing this relation can be seen in Figure 5-11.

Visual Object-Oriented Development of Parallel Applications

 167

The next development stage is high-level design. High-level design involves

determining the internal structure (attributes) of each of the problem domain types, and

the operations (methods) which those types are to support. Beginning with the Vector

type, it is clear the vector dot product is fundamental to the application as a whole, and

as such the Vector type is specified as supporting that method. In addition, Vector

needs to provide subscripting operations, and that functionality is supported by the

get(…) and set(…) methods. The other operations that the Vector type needs to

support are two constructors, one which allows the size of the vector to be specified, and

a copy constructor which is necessary in this prototypical version of the Vorlon

programming language14. The Vector itself is composed from a single integer value

which represents the size of the vector, and a pointer which is used to create a run-time

array to hold the vector’s contents.

The Matrix type, in addition to its Vectors, also requires a number of other

attributes to support its functionality. In particular it needs two integer values to hold its

two dimensions. Matrix supports more operations than Vector, including

constructors (one of which is the compulsory copy constructor), two multiply methods

(one for matrix-matrix multiplication and one of matrix-vector multiplication), methods

for obtaining the dimensions of a matrix, and methods for extracting individual rows or

columns from a Matrix object.

14 The provision of a copy constructor (or equivalent mechanism) is good practice when building

object-oriented software, though in Vorlon it is necessary for the sake of type safety in the run-time

system. It has been found that the lack of a copy constructor may cause the certain aspects of the NIP run-

time system to fail with certain compiler /operating system combinations. The simplest solution to this

problem is to mandate the provision of the copy constructor either by the user, or by a default

implementation being provided by the Vorlon to C++ translator.

Experimental Performance Results and Analysis

 168

Figure 5-12 Type Interfaces for the Matrix Multiplication Application

Once this stage has been reached, all of the principal operations that derive naturally

from the problem domain have been identified. To complete the design of the matrix

multiplication application, the start and end points to the application are added to yield

the class diagram seen in Figure 5-13.

Figure 5-13 Matrix Multiplication Final Design

Visual Object-Oriented Development of Parallel Applications

 169

At this point the analysis and design phases are complete and what remains is the

construction of method graphs for each of the operations specified in the class diagram

of Figure 5-13.

Whilst there is no strict ordering in which the methods belonging to each class must

be constructed, it is sometimes helpful to construct applications bottom-up, building

smaller components first, and amalgamating those smaller components into larger ones.

Following such an approach, the first type whose methods will be implemented is the

Vector class.

Figure 5-14 Vector Constructor

Figure 5-14 shows the default constructor for the Vector class. This method

receives an instance of the primitive type int through its start node which it uses to

create an array of doubles which will be used to hold values. The penultimate stage of

the method involves two assignments within a computation node which assign the size

of the instance to the attribute representing the vector’s size, and the assignment of the

newly created double array to the corresponding attribute within the Vector. Note

Experimental Performance Results and Analysis

 170

that the Vector constructor will initialise each of the elements of the Vector to a

random (garbage) value, and that the user of the Vector class should therefore not

assume that a Vector is ready to be used unless its values have been set.

The copy constructor follows a similar pattern to the default constructor of Figure

5-14, with the exception that as well as creating the internal data structures for the

instance, it also duplicates the values held by the instance passed as a parameter to the

constructor. The copy constructor can be seen in Figure 5-15.

Figure 5-15 Vector Copy Constructor

Visual Object-Oriented Development of Parallel Applications

 171

The major difference between the method shown in Figure 5-15 and that shown in

Figure 5-14 is the use of the loop node. Within the loop, an assignment operation is

repeated such that the contents of the _data[] attribute of one Vector object is

copied to the new object. Once the necessary assignment operations have completed, the

loop node returns a null handle to the halt node which indicates the termination of the

graph.

Although the copy constructor could be made more parallel by replacing the loop

node with a parallel computation node, it was not since years of use of sequential

programming generally tends to force the notion of iterating over a data structure. In this

case the amount of lost parallelism is minimised, since the assignment (a write operation)

is naturally serialised. However, the issue of using iterative constructs where parallel ones

would be better is recognised as being important, and is thus dealt with more thoroughly

in a later chapter.

Figure 5-16 Vector Get Method Figure 5-17 Vector Set Method

Figure 5-16 shows the get method of the Vector class. The _data[] attribute is

supplied by an attribute source node, and the element to be extracted is supplied as a

parameter through the graph’s start node. Both handles flow into a method call node

which performs an array subscript operation and returns an instance of double to the

calling graph via the halt node. The corresponding set method is shown in Figure 5-17.

Experimental Performance Results and Analysis

 172

Figure 5-18 Vector Size Method

The size()method shown in Figure 5-18 is the simplest of the methods that the

Vector class supports. Its functionality is merely to return a copy of the value which

represents the length of a Vector object. The receipt of a null handle (representing no

parameters) triggers the execution of the graph, which in turn releases a handle to the

_size attribute of the current object. Both then flow into the halt node which returns

_size (by value) to the caller of the graph. Note that the graph will not return the null

handle from the rightmost arc to the caller of the graph due to the special semantics of

the halt node whereby non-void types have precedence.

Figure 5-19 Vector Multiply Method (Dot Product)

The method graph shown in Figure 5-19 shows the first of two graphs which

constitute dot product. In this first graph, three parameters are passed to a loop node

which iterates over the contents of two Vectors. The first parameter is the size of the

Vector, used to control the number of iterations the loop node will execute. The

second parameter is the vector which is to be multiplied with the current object. The

Visual Object-Oriented Development of Parallel Applications

 173

final parameter is a double which is used to hold the result of the dot product. Note

that once again an iterative, rather than parallel, pattern is used here. However in this

case it is reasonable since the design decision has already been made to sequentialise any

aspect of the matrix multiplication of finer granularity than matrix*vector (discussed

earlier).

Figure 5-20 Vector Dot Product Loop Node Sub-Graph

Figure 5-20 shows the loop node of Figure 5-19 decomposed. In this graph the ith

element (where i is determined by the control value of the loop node) of both the current

object’s internal array and of the parameter vector are extracted via a subscript operation

and a method call respectively. Those values are then sent to a computation node where

they are multiplied and their product added to the running total for the invocation. Once

the total has been updated, the graph ends and control returns to the loop node of

Figure 5-19 which, according to the control condition, may perform further iterations or

send the result to that graph’s halt node. The latter will end that graph’s execution and

return the vector dot product to the graph’s caller.

Experimental Performance Results and Analysis

 174

Figure 5-21 Matrix Constructor

The Matrix type is essentially a container for Vectors in the same way that a

Vector is a container for doubles and as such the default constructor for the

Matrix type is similar in principle to that of the Vector. The constructor shown in

Figure 5-21 performs two (separate and potentially parallel) assignment operations before

creating an array of Vectors15 which the decomposed loop node of Figure 5-22

subsequently fills with Vector objects. Note that the loop node in the constructor

15 A Vector of Vectors is not used here since the Vector class is a container for doubles, and not a

generic container like the C++ STL Vector type. The built-in array type is used as an optimisation for

multiple declarations.

Visual Object-Oriented Development of Parallel Applications

 175

serialises the construction of a Matrix, although like the constructor for the Vector

class, the serialisation is not (fortunately) critical to performance.

Figure 5-22 Matrix Constructor Loop Node Sub-Graph

The Matrix copy constructor is similar in form to the default constructor, with the

exception that instead of creating an array of empty Vectors, it copies the contents of

the Matrix passed to it as a parameter. The top-level graph for this method is shown in

Figure 5-23.

Experimental Performance Results and Analysis

 176

Figure 5-23 Matrix Copy Constructor

Figure 5-23 starts by obtaining the dimensions of the parameter Matrix by invoking

the getRows() and getColumns() methods (in parallel), followed by the

assignment of those values to the appropriate attributes in the new object. Once the

_rows and _columns attributes of the new object are set, the loop node then copies

each of the Vectors from the _data array (which holds columns) from the parameter

object into _data in the new object. The sub-graph which the loop node encapsulates

is shown in Figure 5-24.

Visual Object-Oriented Development of Parallel Applications

 177

Figure 5-24 Matrix Copy Constructor Loop Node Sub-Graph

The parameters for the graph shown in Figure 5-24 represent the current iteration of

the loop, the internal array of the Matrix being constructed and the Matrix which is

being copied. The appropriate element of the new matrix’s array is accessed via the array

subscript method call node, and the column to be copied from the parameter Matrix is

extracted by calling the getColumn(…) method and subsequently used to create a new

copy of the resulting Vector via a new object node. The final step in this graph is an

insertion of the newly created Vector into the array of column vectors, performed by

the array subscript method call node.

Experimental Performance Results and Analysis

 178

Figure 5-25 Matrix Multiply Method

The multiply(…) method of the Matrix class is shown in Figure 5-25. This

graph instantiates a new Matrix object to hold the result of the matrix multiplication,

and explicitly initiates a parallel computation node (using its non-canonical form) ready

to perform parallel Matrix*Vector multiplications. The parallel multiplications are

themselves executed by the sub-graph shown in Figure 5-26.

Visual Object-Oriented Development of Parallel Applications

 179

Figure 5-26 Matrix Multiply Parallel Computation Node Sub-Graph

Figure 5-26 shows two interdependent method calls. The first is a call on the current

object (this) to the vector multiplication method (discussed subsequently), which

returns the product of the current Matrix and the Vector passed as a parameter to

this graph. The second method call takes that Vector and passes it as a parameter to

the setColumn(…) method invoked on the result Matrix before the graph returns.

The matrix-vector multiplication method, which is called by the graph shown in Figure

5-26, is itself shown in Figure 5-27.

Experimental Performance Results and Analysis

 180

Figure 5-27 Matrix-Vector Multiply Method

The matrix-vector multiplication method, shown in Figure 5-27, takes a Vector as

its parameter, multiplies that Vector with the contents of the current Matrix in a

series of row*column multiplications and returns a Vector as its result. The actual

multiplication matrix*vector work is performed within the loop node16 whose

encapsulated sub-graph is shown in Figure 5-28. Note that although the graph is

sequential due to dependencies and iterative activity, parallelism is achieved because

instances of the graph will be created in parallel by dint of the fact that the graph’s calling

graph (Figure 5-26) is itself instantiated in parallel.

16 The loop node is not the most parallel construct to use in this situation, however given the design

decision to serialise any operation below the granularity of matrix*vector to maintain parity with previous

implementations from Chapter 2, it is understandable.

Visual Object-Oriented Development of Parallel Applications

 181

Figure 5-28 Matrix-Vector Multiply Loop Node Sub-Graph

The sub-graph in Figure 5-28 begins by extracting the appropriate row from the

current Matrix and multiplying it with the Vector supplied by the parent graph

(Figure 5-27). Once the vector dot product operation has completed, the resulting double

value is sent to the set(…) method which is invoked on the result Vector to store

the result before the graph returns control to its parent.

Experimental Performance Results and Analysis

 182

Figure 5-29 Matrix Get Row Method Figure 5-30 Matrix Get Column
Method

The Vorlon graph representing the getRow(…) method of the Matrix class can

be seen in Figure 5-29. Since the internal data structure for the Matrix type is

represented by an array of column vectors, obtaining a row vector from that structure

involves accessing each of the columns and extracting just one element. Having accessed

that element, a copy of it can be made and stored in another Vector object which acts

as the result of the operation. It is noteworthy that in the getRow(…) method the loop

node is not decomposed into a sub-graph since the code to be repeated is simple enough

to be written directly in C++. Although the loop node code operates upon objects which

may be accessed concurrently, and which may not reside in the local machine’s memory

space, the developer does not have to contend with such issues which are taken care of

by the loop node (and its subsequent translation).

In contrast to the getRow(…) method in Figure 5-29, the getColumn(…)

method of Figure 5-30 is significantly simpler since the internal Matrix data is arranged

by column. In this method, the column which is to be retrieved is accessed via an array

subscript operation which obtains a handle to that column and returns it to the graph’s

caller. Note that both “get” methods return a read-only handle (const, as depicted in

the class diagram). This maintains a consistent semantic to the user (and prevents direct

access to the internals of the object in the case of getColumn(…)).

Visual Object-Oriented Development of Parallel Applications

 183

Figure 5-31 Matrix Set Row Method Figure 5-32 Matrix Set Column
Method

The setRow(…) and setColumn(…) methods of Figure 5-31 and Figure 5-32

respectively are the reciprocal of the get methods described earlier. Setting a new row in a

Matrix composed of column vectors involves access to all columns. In contrast,

setting a column in a Matrix composed from columns is straightforward in that one

Vector merely replaces another in the Matrix and the replaced Vector can then be

garbage collected if not reference elsewhere.

Figure 5-33 Matrix Get Rows
Method

Figure 5-34 Matrix Get Columns
Method

Accessing the dimensions of a Matrix is done through the getRows() and

getColumns() methods which can be seen in Figure 5-33 and Figure 5-34. In both

cases, the dimension to be accessed is introduced into the graph by an attribute source

which immediately sends that dimension to a halt node. Once the null handle from the

start node of the graph also reaches the halt node, the non-null handle (being either the

row or column dimension) is returned to the caller of the graph.

The final method for this application is the main(…) from the Main class. The

graph for main(…) can be seen in Figure 5-35, and is remarkably similar in shape to the

Experimental Performance Results and Analysis

 184

matrix multiplication graphs with previous visual parallel programming languages seen in

Chapter 2. In this figure, four parameters representing the dimensions of two matrices

are supplied via start nodes, and immediately used to create two matrices (potentially in

parallel). Note that, since the Vectors from which the matrices are built are

randomised at construction, in effect the matrices themselves will contain random values

which is useful for experimental purposes, though for real work the matrices would have

to be initialised with non-random data. Once the matrices are built, the multiply(…)

method is invoked on the leftmost Matrix passing a handle to the rightmost as a

parameter. The multiplication then proceeds and later a handle to a third Matrix is

emitted from the bottom edge of the method call node. This handle is fed into a

computation node which is responsible for the output of the result (to some output

device whose characteristics are unimportant here). Once the output of the result has

completed, the application terminates by sending a null handle to the halt node.

Figure 5-35 Matrix Multiplication Main Method

5.5.3 Matrix Multiplication Performance Results

Having followed the development of the matrix multiplication application, the next

stage in the experimental procedure is to examine its performance. For the performance

tests, all three test platforms described earlier were used together with a pure sequential

C++ matrix multiplication program which formed the basis for measuring performance

Visual Object-Oriented Development of Parallel Applications

 185

characteristics. The results are presented with shared memory and uniprocessor cluster

platforms first, followed by the less common ad-hoc parallel platform.

5.5.3.1. Shared Memory Multiprocessor

Single four-way Pentium III Xeon 500MHz (512KB cache), 512MB main memory, Ultra

SCSI disk, running Red Hat Linux 6.2

The four-way PC SMP is typical of the recent multiprocessor trend the computing

industry. Often used as powerful servers in corporate workgroup environments, such

equipment readily lends itself to being utilised as a parallel computation platform. The

main advantage that this machine provides for this test is size of both memory and CPU

cache. The large memory means that larger problems can be investigated, whilst the large

processor cache sizes reduce contention for that memory.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

10 10
0

20
0

30
0

40
0

50
0

Matrix Size

Re
la

tiv
e

Sl
ow

do
w

n

Slowdown (2 CPUs)
Slowdown (3 CPUs)
Slowdown (4 CPUs)

Figure 5-36 Slowdown for Matrix Multiplication Application on a Four
Processor SMP Platform

The performance results for the matrix multiplication application on the SMP

platform can be seen in Figure 5-36. The results are shown as relative slowdown when

compared to a pure sequential C++ version of a matrix multiplication algorithm running

on a single processor of the same computer for matrix sizes 10 by 10 through to 500 by

500.

It is important to understand that characteristics of the NIP run-time system play a

key role in the results obtained. The SMP version of NIP cannot guarantee that the

specified number of processors will be utilised at run-time since it does not perform its

own thread-scheduling (instead leaving such matters to the operating system). NIP

Experimental Performance Results and Analysis

 186

instead creates a sufficient resource pool (worker threads, mutexes, etc.) for the specified

number of CPUs (determined by heuristics), but the operating system is free to allocate

any thread to any CPU. Thus if one thread suspends and another is active and then the

suspended thread resumes, the operating system may choose to execute that thread on

any available processor (and not necessarily on the processors the user believes are

active). Thus when the following discussion uses terms like “N-processors” it actually

means that the full complement of run-time resources for N processors is activated, and

not physically that number of processors. In addition, NIP’s lazy task creation

mechanism will attempt to optimise the number of tasks that actually end up being

executed by distinct threads (for the sake of grain-size). Thus, even though the resource

may have been created for multiple processors, that it not to say that all of those

resources (or processors) will be exploited.

Having understood that the underlying run-time system possesses such characteristics,

the analysis of the performance results can proceed. For smaller matrices the slowdown

is similar for all processor configurations, and this is due to the fact that the amount of

work available is so small that it is executed sequentially by one processor – an

optimisation caused by the lazy task creation mechanism of the underlying run-time

system. The slight time differences between slowdowns are caused by the increased set

up times needed for increasing numbers of processors and the slowdown itself caused by

the fact that all object access is thread safe and thus incurs a significant locking cost

compared to pure sequential C++ application.

For medium sized matrices, 50 by 50 through 150 by 150, the increased slowdown is

caused by contention for matrix access. So while there exists enough work to instigate

computation on more of the available processors, those active processors all try to access

a comparatively small number of objects (particularly when accessing the result matrix

which must be write-locked in places) and are thus in constant competition with, and

waiting for, one-another.

The fact that the slowdown increases at first is due to a combination of increasing

matrix sizes (and thus increasing workload) allowing the run-time system to start work on

other processors (whereas previously the work available was in such short supply that

only one CPU was used as an optimisation). As more processors come on-line the

contention for access to matrix elements increases and correspondingly so do the

slowdowns experienced.

Visual Object-Oriented Development of Parallel Applications

 187

As larger matrices were used, the contention for access to particular elements

decreases since with more elements to be operated upon, the less is the likelihood of

multiple processors requiring access to the same element at the same time. For larger

matrices such as 300 by 300 and upwards, the performance graph settles into a more

steady state where slowdown becomes a function of number of processors with four

processors being quicker than either three or two.

Regardless of the fact that for larger matrix sizes, slowdown becomes more

predictable, it is nevertheless slowdown and not speedup which is attained. This is clearly

a source of some disappointment for a parallel solution to have performed an order of

magnitude worse than its serial equivalent (and thus a likely two orders of magnitude

worse than its successful parallel equivalents). The source of the slowdown is the amount

of locking required to access elements of the matrices, and the severity is significantly

influenced by contention for such locks. In further experiments carried out on the SMP

platform, the per-element locking was removed by hand, and speedups as close to

optimal as could reasonably be expected were obtained, and such issues are explored in

more depth later.

5.5.3.2. Uniform Cluster

Eight uniprocessor Pentium II 233MHz, 64MB main memory, IDE disk, running Red Hat

Linux 6.2 with exclusive access to shared 100Mbit Ethernet network.

The network of workstations (NOW) approach has become the flagship architecture

for the parallelism community over the past few years. This “Beowulf” {Sterling, Salmon

et al. 1999} class architecture has reached particular prominence through the widespread

uptake of the PVM and MPI programming environments and is now commonly used as

a parallel platform for scientific and engineering problems.

The advantage of this configuration for this experiment is the number of processors

available to undertake work. Whilst the specifications of the machines and

interconnection network are modest, having access to eight CPUs on which to execute

work allows insights into scalability of the methods to be drawn. The drawback to using

this configuration is its low memory per node which, given the current memory use

pattern of the NIP run-time system, limits experimentation to somewhat smaller matrices

than on the more powerful SMP platform. Although the total memory available on the

cluster of workstations used is the same as the SMP platform, NIP’s distributed shared

memory abstraction does not yet support load balancing across nodes in a cluster. As

Experimental Performance Results and Analysis

 188

such objects are created in the memory of the node which happens to execute a Tasklet

function that contains object declarations. In this experiment most of the objects (and

the internal NIP data structures which maintain those objects in the DMS) end up being

created on the primary node of the cluster (the node from which NIP initialises). Since

there is relatively little computational work in creating objects, the primary node does not

export such work to other nodes and so the experiment overall is limited by the memory

of that node (64Mb).

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

10 50 100 150 200 250

Matrix Size

Sl
ow

do
w

n

Slowdown (2 Nodes)
Slowdown (4 Nodes)
Slowdown (8 Nodes)

Figure 5-37 Slowdown for Matrix Multiplication Application on an Eight
Node Computer Cluster

Once again before the analysis of the results can begin, it is helpful to understand the

salient characteristics of the NIP run-time system on a distributed memory computing

system. Although task creation is similar to that of the SMP (wherein tasks will only be

created if there is sufficient work to justify it), unlike the SMP system the specified

maximum number of processors involved in a computation cannot be exceeded. Thus

where N nodes (and in a uniprocessor cluster, processors) are assigned to participate in a

run, no more than N processors will ever participate (though through optimisations less

than N might). Also important to these experiments is the fact that “page-based”

Visual Object-Oriented Development of Parallel Applications

 189

memory caching mechanisms were employed17 (which improved performance by an

order of magnitude), whereby when an object is accessed in the NIPDSM, a 2 kilobyte

“page” is filled with subsequent objects with the idea being that such objects will

probably be needed by the requesting task anyway, and thus optimises the number of

requests made to the DSM.

Figure 5-37 shows the performance degradation of the matrix multiplication

application on two to eight nodes of a distributed memory computing system, compared

to a pure sequential C++ version of the program running on a single node of that

system. Once again for small matrix sizes there is significant slowdown since the cost of

initialising all nodes in the parallel platform is paid, though with little work to be done a

single processor undertakes the whole of the computation.

For medium sized matrices the curve is somewhat different to that obtained using the

SMP. In the distributed environment with NIP page-based caching enabled, copies of

Vectors are distributed around the system which results in far less contention for locks

on those Vectors since each processor is more likely to have its own copy cached in its

local memory space. In this case since there is less contention for access to objects, the

processors are able to work without considerable interruption of one-another. However,

the cost of locking objects before accessing them remains and, coupled with the fact that

transfers between nodes on the network are relatively slow, ensures that slowdown rather

than speedup is the norm. For larger matrices, there is a similar pattern for that of the

medium sized matrices where as grain size increases (without significant increase in

contention for objects because of the caching), slowdown decreases.

It is interesting to note here that the best case slowdown for the distributed memory

multiprocessor (7.4 times slower for 5 nodes) is not considerably worse than the best

case slowdown for the shared memory architecture (6.1 times slower for 4 processors)

due to the caching optimisation. This bolsters the argument offered by this thesis that

optimisations are best left to the run-time system, and that introducing layers into an

architecture for engineering reasons need not necessarily imply that performance will

significantly suffer. Such performance issues are presented in more depth later in the

chapter.

17 The NIPDSM is completely object-based and does not use pages as its unit of storage. The so-called

“page-based” caching is merely a convenient term for a group of objects which are spatially local.

Experimental Performance Results and Analysis

 190

5.5.3.3. Ad-Hoc Environment

Dual Pentium III 800 MHz SMP, 256MB main memory, IDE disk, and Pentium II Mobile

300MHz, 128MB main memory, IDE disk, both running Windows 2000 SP1 with non-

exclusive access to shared 10Mbit Ethernet networking.

The ad-hoc computing environment is drawn together from computing peripherals

that might be found in a typical office (in this case being the range of equipment available

in the author’s office). There are two particularly interesting aspects to this experiment,

the first being the fact that a parallel computer is being built from non-specialist

hardware, and the second is that an operating system not usually associated with high-

performance computing (Microsoft’s Windows 2000) is used to support the

computational activity. Figure 5-38 shows the performance of matrix multiplication on

this system.

The slowdowns seen in Figure 5-38 were measured using a pure sequential C++

program executing on one processor of the faster of the two machines in the “cluster,”

in order to give the most accurate interpretation of speedup (or in fact slowdown). As

such it must be borne in mind that although the figures seem somewhat worse than

those that have been previously presented, one of the machines involved is of a previous

generation of processor and runs at less than half the clock speed of the other, which

causes the bias.

Visual Object-Oriented Development of Parallel Applications

 191

Ad-Hoc Multiproccessor Platform Matrix Multiplication

0

10

20

30

40

50

60

70

80

90

10 50 100 150 200 250 300 350 400

Matrix Size

Sl
ow

do
w

n Slow dow n (2 CPU SMP)

Slow dow n (2 CPU SMP
Plus Uniprocessor)

Figure 5-38 Slowdown for Matrix Multiplication Application on an Ad-Hoc
Parallel Platform

If the curve for the two-way shared memory platform seen in Figure 5-38 is

considered, it is similar (though considerably shallower) to those curves seen in for the

four-way shared memory platform in Figure 5-36 where slowdown increases for

medium sized matrices, but decreases for small and large matrix sizes. The reasons for

the shape of the curve are the same, pertaining to contention and locking of objects and

so forth.

The shape of the curve for the “cluster” of two machines is close to the curves

witnessed in Figure 5-37. Once again the reason for the improvement in performance as

matrix size is increased is due to the caching mechanism reducing contention between

the two hosts for access to objects, and perhaps even lessening the effect of the slower

machine on the faster. The initial large slowdown is exacerbated in this case by the slow

networking between the two machines which compounds costs of contention between

processors by acting as a serious bottleneck between the two hosts.

Thus the notion of bolstering newer hardware by adding in surplus (older) hardware

in a kind of co-processor arrangement has failed for this application. Even for large grain

sizes the dual processor computer is burdened by the attached uniprocessor. For small

grain sizes the usual rules concerning efficiency of exploitation between shared and

distributed memory architectures applies.

Experimental Performance Results and Analysis

 192

5.5.4 Matrix Multiplication Conclusions

The crucial factor in such poor performance figures is locking (and not

communication costs since the performance degradation was consistent between

platforms, due to caching in the distributed memory experiment). For matrix

multiplication, the amount of locking required was of the order of three read locks for

each element of the matrices to be multiplied, and two read locks (which each in turn

acquire two operating system level locks) and one more expensive write lock for each

element of the result matrix. For a matrix the potential amount of locking required is

considerable, of the order of N2 where N is the number of elements in the matrix.

Thus an unfortunate mismatch between the algorithm and the data structures that

constitute the application has arisen. Although the algorithm stipulates matrix-vector

multiplications (which is a relatively coarse grain size), the types that represent vectors

still require locking at the element level (which is an extremely fine grain size). If

Amdahl’s law is applied, then the sequential parts of the application (the locking) far

outweigh the parallel parts (the actual multiplications) and thus the chances of getting

speedup are nullified.

In the serial matrix multiplication program, no such locking is required. Though only

one processor is available to perform calculations, the lack of locking overhead made the

serial program significantly quicker.

Matrix multiplication algorithms have of course been parallelised and achieved

reasonable speedup - indeed previous visual parallel programming languages have all

achieved this. Even using tools such as PVM which this thesis has claimed are primitive,

matrix multiplication can achieve speedup with suitably sized matrices (of the order of

300 by 300 and upwards in experiments undertaken early in this research). One reason

for the disparity between the Vorlon matrix multiplication application and others is that

the design of the application involved the wrapping of instances of the double type

inside instances of the Object type such that they could be stored in the distributed

shared memory abstraction of the underlying NIP run-time system. Objects in the

distributed shared memory must be locked before they can be operated upon, whilst with

other approaches, since copies of values were used, locking was not necessary. Indeed

the caching of copies of objects providing performance increases bolsters this argument.

There are thus four possible means of improving performance for this application:

Visual Object-Oriented Development of Parallel Applications

 193

1. Change the Vorlon language18;

2. Change the design of the application;

3. Change the Vorlon to NIP translation strategy; or

4. Change (or optimise) the run-time system;

Since it is quite possible as NIP matures that it will improve and provide some modest

performance increases, point (4) in the above list can be left aside for the purposes of

this discussion (or in the unlikely case that NIP fails to improve, other run-time systems

could be substituted to the same effect). Given that this thesis has argued that delegation

to the run-time is a sensible notion, reasons for the lack of performance attributed to this

delegation must be considered.

If Vorlon is to be changed to delegate less to the run-time system, careful

consideration must be given to what aspects should be altered. Given that it is locking

which has caused the disappointing performance figures, means of optimising locking at

the language level could be introduced. One such scheme could take a similar form to

the “actor folding” scheme proposed for the ParADE language to build grain-size by

serialising a number of tasks. In Vorlon, locking could be optimised in a similar way by

allowing the user to bound specific classes on the class diagram to indicate that they

should be considered as one logical unit for storage, and thus when one of the objects is

locked, all associated objects are implicitly locked, but at no extra cost.

A similar scheme could be employed if the mapping between Vorlon and NIP were to

be changed (option 3). In an optimised mapping scheme, where the class diagram

indicates a data structure composed of primitive types (or perhaps even non-primitive

types with suitably small attribute sets), a single lock could be used to lock the entire

structure, as opposed to locking individual elements as occurs now. In matrix

multiplication, the benefits are obvious in that locking overhead would be substantially

reduced. However, one possible drawback to this scheme is that there may be algorithms

which exhibit far more complex data access patterns than merely by-row or by-column.

If that is the case, then locking of such coarse granularity may increase the contention for

access to data. Given that currently it is the locking cost itself (as opposed to waiting for

locks) which is the significant penalty, coarse locking would seem to be favourable.

18 In-depth discussion on changes to the language is offered in the next chapter.

Experimental Performance Results and Analysis

 194

If the application were to be changed, the developer would have to be aware of both

the characteristics of the NIPDSM and of the mapping between Vorlon and NIP. Once

those mappings are understood, the developer would then have to concoct data

structures which avoided invoking the translator to use the costly parts of NIP. Whilst

this is possible, it reduces Vorlon to the same level as its predecessors by exposing low-

level (run-time) detail to the developer. As such, adopting this scheme should be

opposed.

From the options identified, only (3) would result in performance benefit (for this

particular application) without the need for further user intervention. Given the

philosophy of Vorlon is to abstract details of parallel activity from the developer it is the

most promising scheme. Whether this will eventually lead to further performance

bottlenecks (because of non-regular access patterns to data structures) is unknown and

can only be determined through further research.

This discussion raises a further important point for consideration - that of matching

types and algorithms. In this experiment, because of the algorithm used it was implicitly

assumed that coarse grain sizes would arise and that readily exploitable parallel activity

would follow. Unfortunately, the locking strategy imposed by Vorlon is extremely

simplistic (since no optimisations were made during the hand-translation of Vorlon

graphs), and lead to a fine granularity of locks which in turn lead the poor application

performance.

Particularly where containers of objects are being considered, the application

developer must ensure that the algorithm being developed is compatible with the types

available, and the developer of a (container) type should ensure that the types provide

access mechanisms suited to a wide range of access patterns (which the Matrix and

Vector types did not). Despite seeming contrary to the Vorlon philosophy of

delegation of parallel processing issues to the run-time system, these are in fact higher-

level software engineering issues, but in a context (parallel computing) which developers

are not yet used to. In sequential software engineering, it is always thought of as good

practice to harmonise the behaviour between data structures and algorithms and it is not

therefore a huge step to ask that the same consideration be given to the development of

classes to be used in a parallel application.

The fact that such considerations exist at all means that Vorlon in its current form

does not implicitly support the construction of efficient parallel container types, and

Visual Object-Oriented Development of Parallel Applications

 195

relying on good software practice from programmers may be asking too much in this

case. As such the only recourse for Vorlon at this point is to implement compiler-level

optimisations, as have been outlined above, whereby for containers (particularly of

primitive types) groups of elements can be locked with a single lock. Such a scheme

would support novice users well enough (as has been proven with the hand-optimised

locking scheme discussed earlier), and leave scope for advanced users to optimise

application performance by exploiting their insights into likely access patterns for a

particular container.

5.6 Parallel Compilation System

It has become the tradition for programming languages, that the one of the first

applications to which they are applied is the construction of their own compilers, to

ensure a language’s self-sufficiency. In order to facilitate self-sufficiency of Vorlon

applications, and to examine a more object-oriented problem, the second of the

experiments presents a parallel compilation system for Vorlon applications.

As Vorlon is a visual language which targets an existing textual language (C++), the

meaning of a “compiler” is ambiguous. It could be taken to mean the translation of

graphs into the intermediate language, or the transformation of intermediate language

code into machine code – though both are simply transformations. For purposes of

experimentation, the latter of the two options has been chosen. The former, though

equivalent in terms of overall methodology (translating one form of encoding to another)

requires additional software support such as a graphical development environment in

which Vorlon graphs could be built and parsed, which has not been developed during

this period of research. Instead the approach takes a Vorlon project as might be

produced by such a software development environment which consists of a number of

C++ source file representations of Vorlon graphs and some meta-data on how those

graphs are related, and performs a parallel compilation of all necessary source files into

machine code.

It should be noted that the purpose of this experiment is not to explicitly create tool

support for Vorlon, though tool support for the language would be valuable. Instead this

experiment tests whether Vorlon can be used to explore an unknown problem domain,

and via object-orientation, successfully carry forward a solution for that problem domain

through to a software release. That being said, it is also important that performance gains

Experimental Performance Results and Analysis

 196

are achieved, but this is of lesser importance than simply being able to build parallel

object-oriented software.

5.6.1 Aims

To develop a parallel Make-like {Oram and Talbott 1993} system from inception

through to release underpinned by object-orientation. A secondary aim is to investigate

the performance characteristics of the application developed.

5.6.2 Experimental Environment

The experimental environment for this set of experiments was the same as that

introduced in Section 5.4. The only significant difference was the issue of disk access,

since the compilation system is dependent upon ready access to source files. The times to

access disk files were not identical, and on the shared memory multiprocessor and home

user architectures, file access was found to be particularly expedient or particularly slow

respectively.

5.6.3 Experimental Method

An abbreviated version of the development of the compilation system is presented

here. The complete development of the application can be found in Appendix 1.

As with any object-oriented application, the starting point in the construction of the

parallel compilation system is the analysis phase. In this problem domain, there exist a

number of source code files, a project (which is essentially meta-data describing the

relations between source code files and the final executable) and a compiler. In addition

there were found to be a number of other data structures and types present to support

the problem domain-specific types. Having gone through the high level analysis and

design phases, the final class diagram for this problem was developed and is presented in

Figure 5-39.

Visual Object-Oriented Development of Parallel Applications

 197

Figure 5-39 Class Diagram for the Parallel Compilation System

The class diagram of Figure 5-39 captures the overall composition of the application

and shows the relationships between types in the problem domain. There are three

primary types (Project, Compiler, and SourceFile), and when considering the

model it is these types which encapsulate the functionality of the underlying system. The

other types in the diagram (List, String, and Object) are there to support the

problem domain-derived types and do not occur naturally within the problem.

The next development stage is to implement each type’s methods. Since there is little

in the way of compositional relationships as were apparent in the matrix multiplication

application, there is no need to build the parallel compilation application bottom-up.

Instead, it was felt that a top-down approach was more appropriate, and as such the

starting point for this application is its main(…) method which can be seen in Figure

5-40.

Experimental Performance Results and Analysis

 198

Figure 5-40 Parallel Compilation System Main Method

The main(…) method of the compilation system contains a great deal of potentially

parallel activity. Once an instance of the Project class has been created, everything

until the link operation is potentially parallel. These parallel operations include

obtaining a list of out-of-date files for the build, and information on which compiler is to

be used and which compiler switches are to be activated in order to create an instance of

the Compiler class. Once the Compiler object has been instantiated, and the list of

out-of-date files has been produced, the parallel compilation of each of those files is

undertaken by a parallel method call node which uses each element of the input List to

spawn the compile(…) method of the Compiler class. Once all compilation has

Visual Object-Oriented Development of Parallel Applications

 199

finished, the final stage is to link the necessary object code files together into an

executable program which is done by the Compiler type’s link(…) method.

Although several method calls are made from within the main(…) method, the two

which are most interesting directly pertain to the compilation of files (as opposed to

setting up the environment for the compilation to run). The first of these is the

getOutOfDateFiles(…) method from the Project class which returns a List

of SourceFile objects that is then consumed by the compile(…) parallel method

call node which runs a (potentially) parallel compilation on each out-of-date source file.

The getOutOfDateFiles(…) method is shown in Figure 5-41 and its decomposed

sub-graph in Figure 5-42.

Figure 5-41 Obtaining Out of Date Files for Compilation

The method graph shown in Figure 5-41 performs the action of building a List of

source files whose last modified date is newer than that of the target executable. It does

this by first creating an empty List of out-of-date files and sending that empty List

to a parallel sub-graph, shown in Figure 5-42, where it is filled with instances of the

SourceFile type which are out-of-date. Note that in Figure 5-41 the explicitly parallel

form of the parallel computation node is used since not all of the input Lists are to be

decomposed and as such the automatic decomposition semantic of the parallel

Experimental Performance Results and Analysis

 200

computation node is unhelpful here. Once the sub-graph has finished its (parallel)

operations, the method completes and returns a List of all out-of-date files to the

caller.

Figure 5-42 Obtaining Out of Date Files for Compilation Sub-Graph
Decomposition

Although the sub-graph shown in Figure 5-42 is sequential because of its pattern of

dependencies, it must be borne in mind that executing multiple copies of this graph will

be activated thus achieving parallelism. It is also important to remember that although

the sub-graph node takes Lists as its parameters, those Lists are not automatically

decomposed, and it is the responsibility of the sub-graph itself to access the required

elements from the data structures.

Visual Object-Oriented Development of Parallel Applications

 201

The overall functionality of the sub-graph of Figure 5-42 is straightforward. A List

structure is presented as a parameter and a SourceFile object is retrieved from that

List according to which instance of the node program is running (from zero to one

less than the size of the List). The age of the SourceFile object is compared with

the age of the target application, and if the SourceFile object is found to be younger

than the target application it is added to a second List which stores the SourceFile

that need re-compilation. If the current SourceFile is not out-of-date then the sub-

graph returns immediately. Note that there may be many parallel calls to add SourceFile

objects into the List of out-of-date files, and as such the order in which they are added

is undefined. However, this does not affect the program as a whole since order of

compilation is unimportant.

The compile(…) method from the Compiler class is the second of the more

important method calls in the main(…), and is shown in Figure 5-43.

Experimental Performance Results and Analysis

 202

Figure 5-43 The compile(…) Method from the Compiler Class

The compile(…) method is invoked via a parallel method call node from the

main(…) method of Figure 5-40. Although the method itself is largely serial because of

dependencies, it still has the potential to exhibit parallel behaviour. The functionality of

the graph is straightforward and largely involves string concatenation. The string

concatenation simply builds a compilation command which can be sent to the shell

command interpreter in order for the compilation of a source file to occur. An example

of a typical string might be something like:

g++ -c –I/home/me/include –L/home/me/lib –lmylib myfile.cpp

The final node in the graph simply calls a C library function (the system(…) call) in

order to pass that compilation command to the shell. In an ideal situation, each available

processor in the underlying parallel machine will be used to execute one compilation

command at a time in order to achieve faster build times for software.

Visual Object-Oriented Development of Parallel Applications

 203

5.6.4 Parallel Compilation System Performance Results

For the performance tests, all three types of test platforms described earlier were used

to build the resulting C++ source files from the Vorlon graphs, and the performance

results were compared to an equivalent serial build using the Unix tool Make.

5.6.4.1. Shared Memory Multiprocessor

Single four-way Pentium III Xeon 500MHz (512KB cache), 512MB main memory, Ultra

SCSI disk, running Red Hat Linux 6.2

The shared memory multiprocessor used for this experiment is designed as a server

computer, and as such is optimised for typical server applications, importantly including

file access. Since a great deal of work for this problem involves reading in data from files

so that it can be compiled (in parallel), an optimised disk system is advantageous.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4

Number of Processors

Sp
ee

du
p

Figure 5-44 Speedup for Compilation System on a Four Processor SMP
Platform

The performance data shown in Figure 5-44 shows speedup for all processor

configurations. For two and three processors, speedup is as good as could be expected in

practice, taking Amdahl’s Law into account. However, the four processor speedup is not

in line with what would have been expected if the two and three processor results had

been projected to four processors. The performance increase in adding the fourth

processor should have resulted in an execution time being around 3.5 times faster than

the sequential version, yet the actual figure is more like 2.8 times. The reason for the

more limited speedup is contention for access to files on disk. Had the source files been

located on separate disks then, because of the characteristics of the SCSI interface,

Experimental Performance Results and Analysis

 204

concurrent access to files would have been supported and speedup, particularly for the

four processor experiment, should have been more similar to the projected speedup.

5.6.4.2. Uniform Cluster

Eight uniprocessor Pentium II 266MHz, 64MB main memory, IDE disk, running Red Hat

Linux 6.2 with exclusive access to shared 100Mbit Ethernet network, where one host acts

as a fileserver.

The cluster computing environment provides a larger number of processors than the

SMP, and given sufficient numbers of source files to process, should logically be able to

complete more compilations in parallel than the SMP. However, unlike the SMP, the

cluster computer is not optimised for disk access even at the individual host level, since

IDE disks are used, and certainly not at the cluster level where NFS is used to transport

file systems between hosts. It is unfortunate that the same network which applications

use to swap messages via the NIP DSM is also as a route via which NFS traffic, in this

case the C++ source files, moves between hosts. This situation is further compounded

by the fact that one of the processing nodes acts as a fileserver and the fact that the

network is a shared, as opposed to switched, medium which prevents more sensible

routing of the two types of traffic (communication and file movement). Thus the results

gained from the cluster experiments represent what might occur in a typical user cluster,

rather than on a cluster dedicated to parallel processing.

Visual Object-Oriented Development of Parallel Applications

 205

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6 7 8

Number of Processors

Sp
ee

du
p

Figure 5-45 Speedup for Compilation System on an Eight Node Cluster
Computer

The performance data presented in Figure 5-45 is symptomatic of the I/O bottleneck

that cluster computing suffers from. Although speedup is attained throughout, the fact

that access to the source files was performed via NFS meant that, even with large

numbers of processors, performance was modest at best.

For two nodes, network contention is low and so overall performance is not

significantly hindered. As the number of nodes increases, so does contention for

resources, including the network, file services on the file server, and access to the disk

containing the source files itself. At each successive increase in processors (up to and

including six nodes) the performance increases are successively less because of the

contention.

At seven nodes the performance flattens out. This is not because of reduced

contention, but because the compilation system application is composed from only six

source files (which derive from the class diagram of Figure 5-39) and as such there is no

more parallel activity from the problem domain that the computer can exploit. On eight

nodes there is a slight performance increase which is attributed to the fact that the eighth

node is the fileserver, and is thus logically close to the source files. Since the eighth node

has fast access to the source files, it is in a position to compile more quickly than the

other nodes, which is does in addition to performing its duties as a fileserver.

Experimental Performance Results and Analysis

 206

5.6.4.3. Ad-Hoc Environment

Dual Pentium III 800 MHz SMP, 256MB main memory, IDE disk, and Pentium II Mobile

300MHz, 128MB main memory, IDE disk, both running Windows 2000 SP1 with non-

exclusive access to shared 10Mbit Ethernet networking.

The ad-hoc parallel platform suffered from precisely the same problems as the cluster,

only more acutely. In the ad-hoc platform not only was the fileserver itself an active

computational node, but the network joining the two hosts is slow (10Mbits per second)

and shared amongst a number of users.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2 CPU SMP 2 CPU SMP Plus Uniprocessor

Sp
ee

du
p

Figure 5-46 Speedup for Compilation System on an Ad-Hoc Parallel
Platform

Within the two-way SMP performance is quite acceptable. For two processors a

speedup of 1.5 times that of the sequential application running on one of the processors

in the same machine. In this case the theoretical ~2 times speedup is not attainable since

the disk architecture of the machine (IDE) is not well suited to efficiently supporting

concurrent disk access.

When the second (slower) host is added into the system, performance degrades from

1.5 times to around 1.2 times speedup. This reduction in speedup happens because of the

fact that the two-way SMP has to spend some of its time acting as a fileserver, rather

than as a processing node, and because file access is slow across a low-bandwidth and

high latency interconnection network. Once again adding older hardware to a

configuration to support newer hardware has had the opposite affect to that desired.

Visual Object-Oriented Development of Parallel Applications

 207

5.6.5 Parallel Compilation System Conclusions

In the case of the compilation system, performance is generally good insofar as

speedups are attained across all configurations, and follows a predictable pattern where

shared memory performance is best, whilst the distributed memory platforms perform

less well. In this case since the number of objects was much lower compared to the

matrix multiplication experiments (typically of the order of a few tens per application)

and the granularity of most of the method calls higher (especially the callouts to the C++

compiler), locking was a much less significant aspect of the system. In this experiment it

was disk access that was the most important factor in determining speedup.

Even with very coarse grained parallelism such as that present in this problem, adding

older hardware to help with the computational workload does not necessarily mean that

better performance will be obtained. Whilst it is true that better networking may have

helped the ad-hoc cluster a little, the cost benefits of such a scheme may outweigh the

benefits.

In order to change the performance characteristics of the application, it is the issue of

disk access which would need to be addressed. Since disks cannot be made faster by

software applications, nor network bandwidth higher, the only way in which

performance can be improved at the application (as opposed to hardware) level is by

reducing contention for access to such resources. In this case it is not necessary to look

to changes to the language, or improvements in the run-time system, but instead to look

at the application structure. One straightforward improvement that could be made is to

perform a file copy operation before compilation so that when compilation occurs the

source file is being read from a local disk rather than from a network volume. This could

be relatively simply achieved in Vorlon by sub-classing the Compiler type in the

application to include facilities to perform file copies before compilation occurs. This is a

clear benefit of object-orientation in that all of the work previously invested in building

the Compiler class is not wasted, but re-used in a structured fashion to build a type

that more closely suits the device access pattern of the application. Such a scheme would

mean less contention for the network volume (and less thrashing of that disk) and less

contention for the network, and given the less contentions state, better performance

should be achieved.

With the benefit of expert knowledge of the underlying system, such changes as have

been suggested above may seem a viable route to take to improve application

Experimental Performance Results and Analysis

 208

performance. However, this is in some sense difficult to completely reconcile with the

Vorlon philosophy of abstracting even the virtual parallel machine that the language

translator targets. Furthermore, a normal Vorlon developer would be shielded from this

detail and would not have access to such hardware architectural details. Thus whilst

object-orientation provides richly for the higher-level aspects of the system development

(from analysis through to implementation), and parallelism was attained throughout the

application, there was no optimised support at the execution level for the actual file

operations that the application was performing. This is not a vastly different problem

from that experienced with matrix multiplication where the algorithm design and the

particular type implementation were incompatible. Here a similar mismatch between the

logically specified parallelism and the physical execution of that parallelism occurs, since

the only resource taken into consideration for the execution of a task is CPU availability,

and not other resources such as access to I/O devices.

This does not suggest that an amendment to the language syntax is required as had

been contemplated for the matrix multiplication experiment19, but if expert knowledge is

not available, that better support for device access is needed. This is an issue which

should most likely be addressed at the Vorlon library level, whereby components

optimised for a typical parallel hardware architecture could developed (in Vorlon) and

used in preference to the external language library calls which are non-optimal for parallel

computing problems. If such components were available for the experiments, then it is

entirely possible that the true benefits of building object-oriented parallel software (full

lifecycle support, improved performance) would have shone through, as they did on the

SMP platform where I/O was much less of a problem.

5.7 Summary

This chapter has shown the development of two distinct classes of applications using

Vorlon. Importantly, is has been shown how Vorlon supports the development of an

application throughout the software lifecycle, and has demonstrated how the language

syntax works.

This chapter has presented the performance of the two applications developed. In the

case of the matrix multiplication application, slowdown was observed, whilst in the case

of the compilation system reasonable performance was obtained. Reasons for the

19 Language issues arising from both experiments are dealt with in-depth in the next chapter.

Visual Object-Oriented Development of Parallel Applications

 209

performance figures were discussed and means of avoiding those conditions which incur

performance penalties were also alluded to. In particular, the importance of minimising

locking from information available at compile-time was identified from the matrix

multiplication experiment, whilst the cost of file access was identified as a particular

problem for the parallel compilation system.

The engineering and language aspects of the work have not been commented upon,

and will instead be dealt with in the next chapter.

Visual Object-Oriented Development of Parallel Applications

 211

Chapter 6 Reflections on the Vorlon Language

This chapter examines the Vorlon language using the taxonomy criteria that

have been applied to other visual parallel programming languages in Chapter 3.

Language issues arising from the experience of developing applications using

Vorlon are also presented, including possible amendments to the language and

future directions of some of the techniques developed in this thesis.

6.1 Introduction

Chapter 5 introduced two applications developed with Vorlon and presented

experimental procedure and performance results across a range of hardware platforms. It

was found that as expected performance varied between applications and across

hardware platforms, although performance was found to be within reasonable limits.

However, it is not only performance which is crucial to the success of Vorlon. For the

language to be successful it must also address higher-level software engineering concerns,

something that Chapter 2 showed was a significant weakness in prior visual parallel

programming languages. To see whether the same is true of Vorlon, this chapter

examines the software engineering aspects of Vorlon, and identifies key strengths and

weaknesses of the syntactic elements of the language and the execution model.

6.2 Applying the Taxonomy Criteria to Vorlon

A taxonomy for visual parallel programming languages was presented in Chapter 3,

where it was used to characterise four previous languages. The taxonomy provided some

key insights into the execution models that particular types of syntactic elements support.

It is fitting at this point to subject Vorlon to the same criteria that its predecessors faced.

As with the earlier use of the taxonomy, each of the important classes of syntactic

elements will be scrutinised individually, starting with the graph.

6.2.1 Graph

Graph Semantics
Sub-Graphs Structure Node

Dependencies
Recursion

Decomposition
and Method

Graphs

Directed
Acyclic

Implicit Permitted (through
recursive method

calls)
Table 6-1 Vorlon Graph Semantics

Vorlon supports sub-graphing both for both managing visual complexity

(computational node decomposition) and for structuring the application to suit the

Reflections on the Vorlon Language

 212

problem domain (multiple method graphs per type). Graphs are acyclic and directed, and

all dependencies between nodes on a graph are explicit in that, to be mutually dependent,

nodes must be connected by arcs. Recursion is supported through recursive method

calls, and does not warrant specific language syntax.

6.2.2 Nodes

Node Semantics
Type Purpose State

Computational
Graph Management

Special
General

Cannot be retained

Table 6-2 Vorlon Node Semantics
Vorlon supports both computational (method call, computation) and graph

management (replicate, merge) nodes. Graph management nodes are used to circumvent

the need for textual graph annotations and to maintain the notion that all control issues

are dealt with graphically. Special (predefined) and general (user-defined) computational

nodes are also supported where nodes such as the method call node have a predefined

action, whilst nodes such as the computational node may encapsulate user-defined

activity. State cannot be retained by nodes since it is the objects from which applications

are built that maintain state, and not syntactic elements from the language.

6.2.3 Arcs

Arc Semantics
Direction Tokens

Carried
Structure Capacity Consumption Connection

Supply Handle Single item Single
item

When used 1 : 1

Table 6-3 Vorlon Arc Semantics
Vorlon arcs are supply driven in that they only carry elements once the producer of

the element has produced, and not when the consumer of the element demands it. Arcs

in Vorlon, in keeping with the Parallel Object-Flow paradigm, carry handles (or

references) to objects, though they are not equipped to carry structures such as arrays of

references, as previous languages were. This is in fact not a disadvantage in Vorlon since

the a similar semantic to passing structures is maintained, since arcs can carry handles to

arbitrary data types including any kind of structure.

 Since Vorlon graphs are acyclic, and nodes can only activate once per graph, arcs

carry only a single item per graph instantiation. Once an object handle reaches its

destination, it is consumed from the arc upon activation of that destination node. Arcs

Visual Object-Oriented Development of Parallel Applications

 213

themselves always connect two nodes and as such exhibit a 1:1 mapping, leaving more

complex schemes to be implemented by special purpose nodes (mentioned earlier).

6.2.4 Node: Firing Rule

Node: Firing Rule Semantics
Fixed

Table 6-4 Vorlon Firing Semantics
Since all dependencies in Vorlon graphs must be explicitly maintained via arcs

connecting nodes, all Vorlon nodes are subject to the firing rule. There are no implicit

dependencies. An important consideration in the design of Vorlon was to keep control

flow issues entirely within the graphical element of the language, firing rules were kept

deliberately simple, and fixed to an all-inputs rule whereby a node would activate only

when all of its input arcs were carrying handles. The only exception to this rule is the

merge node which is used where conditional execution is present in a graph.

6.2.5 Node: Inputs and Outputs

Node: Data Input Semantics
Shared
Implicit

Table 6-5 Vorlon Data Input Semantics
Node inputs and outputs in Vorlon consist solely of handles. It is permissible for any

number of handles to refer to the same object, and although the handles themselves

cannot be shared (though they can be copied) the overall semantic is one of object

sharing. Since the graphical syntax of the language encapsulates low-level detail such as

locking, this sharing is implicit, though the developer must ensure correct sequencing of

accesses to shared objects through the dependencies in the graph.

6.2.6 Node: Program

Node: Program
Language Variable Mapping
Standard Implicit

Table 6-6 Vorlon Node Program Semantics
For those nodes which permit user programming with textual source code (the

computation and parallel computation nodes), the main issues are whether a standard or

proprietary language is used to program those nodes, and whether there is support for

automatic mapping between graphical and textual objects. In Vorlon, the language used

to program computation nodes is standard C++. Mappings between textual and

graphical objects is predominantly a tool support issue, but since the environment of

Vorlon nodes is dictated solely by the arcs which are incident upon them, automating

Reflections on the Vorlon Language

 214

such mappings would be straightforward to implement. As such they are thought of as

being implicit.

6.2.7 Node: Output Token Production Rule

Node: Outputs
Arc Coverage Explicit Send/Implicit

Send
Streamed
Output

All Implicit No
Table 6-7 Vorlon Node Output Semantics

Since Vorlon nodes only have one outgoing arc, the arc coverage for the output

production rule is all arcs. Even in the single exceptional case, the conditional node, the

arc from one distinct output area of the node carries an output token, though it is

admittedly a fine distinction. All sends are implicit since nodes are only permitted to

output handles onto arcs once they have completed their execution, and as such the end

of a node’s execution implies an output on its output arc.

6.2.8 Support for Parallel Modes of Execution

Behaviour Node
Data parallel Parallel Computation Node

Parallel Method Call Node
Task Parallel Implicit in Graph Structure

Pipeline Not supported
Iteration Loop node

Conditional Conditional Node
Recursion Method Call Node

Table 6-8 Syntactic Support for Parallel Execution in Vorlon
Explicit data parallelism is instantiated with either the parallel computation or parallel

method call nodes, depending on whether its is a textual computation (or a sub-graph)

which is to be executed in parallel, or a method call on a number of objects. Though the

developer may be expected to notice the opportunity for data parallel style activity,

typing can be used to implicitly drive that activity where appropriate.

There is no specific syntactic element for task parallelism, since mutually independent,

and thus potentially parallel, tasks can be identified from the overall graph structure.

There is no syntax for inducing pipeline parallel activity since Vorlon graphs do not

support pipelines (for reasons discussed later).

Iteration is not a parallel construct in Vorlon, though the type-driven aspects of the

explicitly parallel nodes could be seen as a kind of foreach construct. The loop node

is instead a purely iterative construct as recommended by ParADE {Allen 1998}.

Visual Object-Oriented Development of Parallel Applications

 215

Recursion is supported by the Vorlon language insofar as any method graph is free to

invoke itself via a method call node. If the recursive method does not update the state of

its associated object (it is a read-only method) then parallelism may occur since multiple

instances of that method may run concurrently. It is noteworthy that recursion at the

sub-graph level is not supported by Vorlon since there is no naming convention for sub-

graph nodes which means they cannot be called from any graph node (unlike methods

which, by definition, are named).

6.2.9 Notable Omissions from the Vorlon Language

Compared to contemporary visual parallel programming languages, Vorlon has some

significant omissions from, and restrictions inherent in, its syntax. That is not to say that

a range of other syntactic elements was not considered for adoption, but simply that they

were either incompatible with the Vorlon model, or were found to be unsuitable

abstractions for application-level parallelism. Specifically, Vorlon provides no

mechanisms for pipeline parallelism, or for streams of handles to occur either in its

syntactic elements or its graph semantics. The next sections discuss why such facilities

were deliberately left out of Vorlon.

6.2.9.1. Pipelined Parallelism and Related Syntactic Elements

Mechanisms and execution models supporting pipelined parallelism have been the

norm in visual parallel programming languages to-date. Value has been placed on the

ability to exploit parallel behaviour whilst maintaining a strict sequential ordering of

tasks. This type of parallel activity has been proven in everyday use, from a car

production line through to pipelines within computer processors. So, given that

pipelining is seemingly valuable it begs the question as to exactly why it is not supported

in Vorlon.

The answers to that question are manifold, and rest on the premise that software is a

logical, not a physical entity. In the first instance, imagine a car plant or CPU pipeline.

The designers of that plant or CPU have gone to great lengths to ensure that the

available real-estate is used to its best potential. That is they seek to address the question,

“Given a limited physical space, how is maximal concurrent activity achieved?”. In such

cases the pipeline is useful, providing for a fixed level of parallel activity which given

careful design can be maximised for the space available.

Reflections on the Vorlon Language

 216

Software does not have a physical dimension. It is then a strange exercise that

developers impose a parallelism abstraction designed for real-estate economy in the

physical world onto a world where physical space has little significance (like the idealised

parallel machine which Vorlon targets where physical computer characteristics are

unimportant). This is the first problem with application-level pipelined parallelism: it

does not take into account the “physics” of the environment in which software resides.

Secondly, again consider the traditional pipeline, be it either software or physical. The

maximum level of parallelism which can be exploited is equal to the number of stages in

that pipeline. If sufficient input tokens exist to feed the pipeline then that maximal

parallelism will be achieved, but no more. This makes perfect sense in the physical world

where machinery cannot be added and removed at will. In software where “virtual”

machinery can be added and removed relatively quickly and inexpensively, obeying

physical world rules for pipelines seems wrong, and yet it is done and furthermore

encouraged by the abstractions available in some visual parallel programming languages.

Again consider a pipeline and imagine it turned into a piece of sequential code. If the

pipeline is executed, there is no potential for parallelism. However, now imagine a

situation where there are two tokens available to the first stage of the pipeline. If the

pipeline is sequential again no parallelism is available, but in the virtual environment of

computer software, another (zero-parallelism) pipeline can be constructed to accept the

second input token, and immediately there exists parallel activity. Now imagine M

available input tokens to a the pipeline, where M is greater than the number of stages in

the original pipeline. In this case, logically there exists parallelism of M, which cannot be

achieved by the standard pipeline (whose parallelism is restricted to N, the number of

segments in the pipeline). This is the second problem with application-level pipelined

parallelism: stifling potential parallel activity (Figure 6-1).

Visual Object-Oriented Development of Parallel Applications

 217

Many (M) tokens

available to head of
pipeline

Pipeline length (N)
giving maximal

parallelism of N (< M)

Single sequential tasks,
equivalent to pipeline,

but no parallelism

M instantiations
of sequential task
giving parallelism

of M (>N)

Pipeline Replicated Sequential
Computations

Figure 6-1 Pipeline Reduces Potential for Parallelism

Once again consider a physical pipeline. In such a pipeline each stage is significantly

shorter than the length of the entire pipeline, taking approximately 1/T the duration of a

pipeline which takes time T to complete. In a software pipeline the same is true.

In a parallel computing environment the issue of grain size is paramount. In a pipeline

grain size is reduced since one coarse-grained task is split into several finer-grained tasks.

Since coarser grain sizes give a much better chance of efficiently exploiting parallel

activity than finer grain sizes, developers should be looking to increase, not decrease

grain size. This is the third problem with application-level pipelined parallelism: it

reduces grain size.

Parallel software executes within a somewhat unpredictable environment where,

depending on hardware conditions, identical tasks may take differing amounts of time to

complete. In a physical pipeline this situation cannot be allowed, and significant effort

goes into ensuring that each stage of the pipeline takes almost exactly the same amount

of time. Given that in a parallel computing system there will be contention for resources,

and that such contention is largely unpredictable, application-level pipelines are far more

susceptible to underlying hardware conditions than other mechanisms. Imagine a

situation in a pipeline where one stage requires access to some data which is not currently

Reflections on the Vorlon Language

 218

available, for example it could be residing on another node in the computer system and

thus require network transfer. Waiting for that data will cause the pipeline to stall, and

incur associated performance penalties. Compared to a “data parallel” approach, the

pipeline has multiple points of failure in terms of performance (one at each pipeline

stage). Here lies the final problem with application-level pipelined parallelism: it requires

that the developer understands each stage of the pipeline to ensure efficient

implementation.

Given the number of drawbacks to logical pipelines, and that more coarsely grained

tasks with an equivalent behaviour can be obtained using data parallel activity, the

argument against directly supporting application-level pipelines is strong. Thus Vorlon

does not support pipelining.

6.2.9.2. Streaming Nodes and Streamed Graphs

Streaming occurs in a graph when a node is permitted to produce output repeatedly.

In the normal case such repeated outputs would be used to invoke more activity in a

graph and potentially increase parallelism. Streaming is somewhat similar to pipelining,

except where in a formal pipeline stages are strongly coupled together in terms of

functionality, in a streamed graph they are not.

Streaming is clearly a convenient way of keeping active what would otherwise be

dormant graph nodes in order to obtain a state of maximal parallelism. However, there

are a number of problems with streaming, as an investigation into the actual semantics of

the ParADE loop actor revealed. The functionality of the ParADE loop actor was found

to have unwittingly played a dual role, in that it bears both the responsibility for iterative

behaviour and for instantiating streaming activity. This duality was not acknowledged in

the ParADE work, save for the fact that it was known that there were problems in

halting ParADE applications where streaming was exploited.

The problems with the ParADE loop actor stemmed from the fact that a loop node

could output data values on each iteration of the loop. Although the purpose of the per-

iteration output in the loop actor was clearly out of place in a mechanism designed for

iteration, from a parallelism point of view, it was thought to be very useful. The output

of values on a per-iteration basis allowed the ParADE programmer to stream data values

out along an arc, and thus to invoke the activity of nodes further along the graph whilst

current nodes were still working.

Visual Object-Oriented Development of Parallel Applications

 219

However, the way in which the ParADE loop actor was used as a means of invoking

pipeline parallelism was found to be unsafe. In particular, due to the fact that that there is

no means of checking for the end of any streaming activity invoked by the loop actor,

there is the possibility of introducing a race condition into a ParADE graph. Imagine a

situation, such as that depicted in Figure 6-2, where a loop node positioned towards the

top of a graph begins streaming out data values, which feed a number of subsequent

nodes20. At the end of this graph is a halt actor which terminates the program, activated

when an item of data is transmitted to it. At some point in the execution of the program,

several nodes in the stream are processing and the node nearest the halt actor emits an

element of data along its outgoing arc. At this point the program stops, despite

processing still occurring within the other nodes. Whilst the conscientious programmer

will be prudent enough to monitor the number of elements streamed by the loop actor,

and count that number of elements through the stream before allowing the program to

close, this is not mandated in ParADE.

Figure 6-2 Race Conditions with ParADE Streaming

Having discovered that the streaming semantics of the ParADE are weak, other

mechanisms of inducing parallelism had to be investigated. If the other dataflow-like

languages surveyed in Chapter 2 are recalled, only one other streaming approach was

found. In the CODE language {Newton 1993} a single computation node is free to

20 For the sake of clarity, a pipeline-like structure is used in the example, though in reality streams of

data could permeate deep and wide in a graph.

Reflections on the Vorlon Language

 220

produce multiple outputs per activation, which may subsequently instigate graph

streaming.

This approach is not easily reconciled with the Vorlon language philosophy. In

Vorlon, control flow issues are specified purely in graphical form which immediately

discounts the CODE approach of embedding control flow commands in the textual

node program.

Since streaming seemed an unnecessary complication, it was not adopted by Vorlon.

Initially it was feared that parallelism would suffer, but since most parallelism is based

upon concurrent invocation of methods (task parallelism), the lack of streaming has not

been a significant drawback. However, there have been benefits in terms of graph

readability attributed to the fact that there is no streaming. Since each node activates

once only, it is possible to see all possible control-flows on a graph at compile-time and

be certain that the same will occur at run-time, just as was advocated by the execution

model for HeNCE.

6.3 Software Engineering Issues from the Experiments

The single most important feature demonstrated by the experiments developing

Vorlon applications was the fact that, through object-orientation, support for the entire

software lifecycle was attained. Each application was developed from early analysis phase

through to design, development and release within proper engineering framework, which

allowed seamless transition from one stage to the next (and back again as necessary). No

such engineering facilities have been seen in a visual parallel programming language to-

date, which are highly implementation-centric.

Aside from the lifecycle support that object-orientation provides, perhaps the next

most obvious factor that differentiates Vorlon applications from those developed with

previous visual parallel programming languages is their size. If any of the matrix

multiplication programs from Chapter 2 are considered alongside the Vorlon equivalent,

it is clear that the Vorlon application is considerably larger than any of the others,

stretching to several tens of nodes across several graphs. When compared to even the

largest of the previous matrix multiplication programs (CODE, composed from two

graphs) the Vorlon program seems quite unwieldy.

Although there are obvious size costs in using Vorlon to implement such applications,

these are offset to some degree by other benefits. The fact that Vorlon is object-oriented,

Visual Object-Oriented Development of Parallel Applications

 221

and thus requires the implementation of types which constitutes the majority of the work

of an application programmer, also means that it is extensible and encourages re-use.

Extensibility is an aspect which no other visual parallel programming language has

been able to offer, outside of limited functional re-use. Once the set of supported

abstractions was fixed in any of the previous languages, it was fixed permanently. Whilst

the abstractions are often extremely useful, such as the automatic array decomposition of

ParADE’s depth actor, they cannot be extended. Being object-oriented, the Vorlon

language offers extensibility. If there is no suitable abstraction available from the

language directly, then the developer is free to extend the language by developing types

to suit the problem under consideration.

Vorlon does not natively support matrices and must therefore be extended to provide

them. In the other languages, and most notably ParADE, the notion of a matrix (or at

least arrays of arrays) is built into the language syntax. The point here is that once the

Vorlon language has been extended to include matrices by developing a Matrix type,

the actual implementation of the matrix multiplication program is as straightforward in

Vorlon as it is in any of the other languages. In fact, the main(…) method in the Vorlon

matrix multiplication is of the same order of magnitude in terms of number of nodes of

any of the other matrix multiplication programs seen in Chapter 2.

Vorlon is extensible since it supports necessary abstractions through typing, and not

via language syntax. Whilst it is true that the implementation of types may be time

consuming, it is also true that once a type is implemented it will not need to be re-

implemented often. This is the second key advantage offered by object-orientation – type

re-use. The re-use of types allows re-use much earlier in the software lifecycle, and is a

more powerful model of re-use than function libraries since types can be specialised. If,

for example, a developer needed to investigate another numerical analysis problem using

matrices then the Vorlon approach pays dividends since the now-developed Matrix

type can be re-used early in the lifecycle, and where appropriate simply specialised to suit

the new problem domain. The other visual languages offer no such means of re-use - all

written code is inapplicable to the new problem unless that new problem specifically uses

a matrix multiplication subroutine, and even then re-use can only occur much later at the

implementation stage.

In short, because of its object-oriented nature, Vorlon provides significant benefits in

terms of re-use and extensibility. Whilst it is true that Vorlon developers have to develop

Reflections on the Vorlon Language

 222

types for any new problem domains, in the long term the benefits afforded by object-

orientation should outweigh costs, and development cycles should be shortened.

6.4 Syntactic and Semantic Improvements for Vorlon

Vorlon is a prototype language for visual object-oriented parallel programming. As

such, it is by no means perfect but is valuable as a means of exploring new approaches.

Having gained experience developing applications with Vorlon, it is clear that there are a

number of aspects of the language which could be improved, removed, or included. The

following sections discuss such language amendments, including:

 Possible improvements to the current language.

 The removal of particular language elements.

 The possible inclusion of new language elements.

6.4.1 Improvements for Current Language Syntax

There are two main aspects of the Vorlon programming language which it is felt

would warrant further refinement in future versions of the language. These are:

Conditional execution; and

Explicit data parallelism.

The problem with the conditional execution node is simply that it is confusing to use.

Whilst the node itself always executes when activated by handles on all input arcs, the

node program or sub-graph which the node encapsulates may not. This is not consistent

with other nodes in the language where activation implies the execution of the node’s

functionality.

As a replacement, conditional execution could be subsumed into the semantics of the

computation node, whereby multiple outputs could be attached to the node and subsets

of these outputs could be activated depending on certain conditions within the node

program. Note that more than one output may also be allowed in a future version of the

node since such permits multiple return paths which may be desirable for a parallel

language (as first noted in Chapter 3), though for conditional execution some of these

multiple outputs would be mutually exclusive. A possible form for the future

computation node is depicted in Figure 4-1.

Visual Object-Oriented Development of Parallel Applications

 223

Computation Node

Input Arc(s)

Mutually Exclusive Groups of Output Arc(s)

Figure 6-3 Possible Future Syntax for Conditional Execution Supporting
Multiple Return Paths

Although the conditional execution node shown Figure 4-1 is an improvement over

the current node, it does not solve all the problems associated with conditional

execution. The need to alter particular firing rules to accommodate conditional behaviour

remains, and the only solution proposed in this thesis has been the adoption of the

merge node for “gathering together” arcs from multiple conditionally executed sub-

graphs, which would have to either remain or be supplanted by additional semantics

added to (groups of) halt nodes.

The other aspect of Vorlon which requires refinement is the explicitly parallel aspects

of the parallel computation node. This node and the corresponding parallel method call

node have a dual personality whereby they can be explicitly parameterised to perform

data-parallel operations, or can use the type information from their input arcs to

implicitly perform operations in parallel. Given that implicit parallelism is the better

choice since it does not burden the developer, and that one of the aims of Vorlon was to

present the user with an environment which does not require that parallelism be directly

identified, it is proposed that the explicitly data-parallel form of the node should be

removed from the language. Instead, the parallel computation node should be reduced to

its canonical form where data-parallelism can be automatically extracted from the types

of the handles carried by the input arcs.

It is not a significantly bigger step to suggest that the node itself could be removed

from the language, and its decomposition and data-parallel semantics be added to the

standard computation node. In this case, if the computation node’s function signature

takes individual arguments of a certain type as its parameters, and the input arcs provide

linear data structures (such as lists, vectors, arrays and so forth) composed from instances

of that type, then it should be possible to automatically decompose the input structures

Reflections on the Vorlon Language

 224

(and correspondingly re-compose the output into a similar structure). This is shown in

Figure 6-4.

Bar foo(FooBar)

// Some computational code that
// accepts FooBar objects as
// a parameter, and returns Bar
// objects to the caller.

List<FooBar> List<FooBar>

List<Bar> List<Bar>

Figure 6-4 Data Structure Decomposition to Facilitate Type-Driven Data-
Parallelism

The graph shown in Figure 6-4 shows a computational node whose function

prototype specifies an instance of the type FooBar as its arguments, and Bar as its

return type. The input arc is able to carry a handle not to an instance of FooBar but to

an instance of List<FooBar> whose contents will automatically be extracted and a

single instance fed to each parallel instance of the computational node. When each

instance completes, the output from the node is built into a List<Bar> from the

individual instances of Bar produced by the parallel node programs.

Whilst such decomposition semantics may be useful, they are not especially generic in

that they rely details of the decomposable data structures being exposed to the language.

This is quite contrary to the extensible nature of Vorlon, and so whilst this simple

decomposition mechanism offers a “quick-fix” to the problem (as did list decomposition

in the current version of the language) it is clear that any major language revision should

tackle this issue at a more fundamental level.

6.4.2 Possible Future Additions to and Removals from Vorlon

The fact that data-parallelism, which is traditionally explicitly invoked by the user, may

be attained implicitly through the language’s type system is interesting. The discussion in

the previous section noted that the parallel computation node should, if its functionality

is retained in the language, rely solely on type information to decompose linear data

structures into a form suitable for data-parallel processing. However, it may be possible

to extend that automatic decomposition of data structures to arbitrary types21.

Specifically, in a class diagram, there is a great deal of information available which has not

21 With thanks to Savas Parastatidis for his constructive input in formulating these ideas.

Visual Object-Oriented Development of Parallel Applications

 225

been capitalised on in the current Vorlon language save for producing skeleton class

interfaces, but which could be used to facilitate more automated decomposition of data

structures. Take for example a tree data structure such as that modelled in Figure 6-5.

Tree

Node

0

0..1

0..*

0

Graph

Node

0

1

0..*

0..*

Figure 6-5 A Tree Data Structure Figure 6-6 A Graph Data Structure

Figure 6-5 shows a typical UML representation of a tree. In this case, the Tree class

is associated with zero or one instance of the Node class, and the node class is

associated with zero or more instances of itself. A similar pattern is observed in Figure

6-6, where the Graph class is associated with zero or one instance of the Node class,

and any instance of the Node class is associated with any number of other instances of

itself.

Neither of the patterns seen in Figure 6-5 and Figure 6-6 are especially different to the

interrelationship pattern exhibited by the List class in Figure 6-7, which has already

been shown to be an implicitly decomposable data structure that can be used to drive

data parallel activity.

List

Node

0

1

1

0

Figure 6-7 A List Data Structure

Given that there are known algorithms for traversing data structures {Sedgewick

1992}, it is possible to decompose those structures into their individual elements. Once

Reflections on the Vorlon Language

 226

individual elements have been obtained it is straightforward to use them to drive data

parallel activity.

In order to facilitate implicit data parallel activity from the automatic decomposition

of data structures, it is likely that a syntactic element will need to be introduced. Whilst

the introduction of syntax to explicitly support parallel activity is contrary to the goals of

reducing such syntax (Section 6.4.1), it is possible to think of such a mechanism without

necessarily exposing the fact that it exists to support data parallel activity. Furthermore

the introduction of such a syntactic element would allow data structures to be processed

serially by “non-parallel” nodes when required. Inspiration for such a syntactic element

comes from the Visual Basic language {Deitel, Deitel et al. 1999}, where the

Collection data structure is commonly used with the foreach statement for

iterating over the contents of a Collection. Since Visual Basic does not (natively)

support concurrent activity, there is no notion of executing each of the iterations of a

foreach loop concurrently - it is instead seen as an optimised syntax for unordered

iteration.

A foreach node could be added to the Vorlon language whereby one of the inputs

contains a data structure which is then decomposed and used to drive parallel instances

of the node’s program. The Vorlon developer would not think of that node as an

explicitly parallel mechanism, but as a kind of non-ordered iterative construct as does the

Visual Basic programmer. If such a construct could be supported by the Vorlon language

then it could remove all notion of explicit parallel programming. Both task- and data-

parallelism would be totally implicit within the structure of a graph, whereas now only

task parallelism is completely implicit, and data parallelism only partially implicit.

Whilst adding features into the language to support implicit parallelism is certainly a

good idea, it is also a good idea to remove those features from the language which

explicitly sequentialise code. This is particularly prevalent in the case of the loop node

which has been (mis-) used in many places in the matrix multiplication application, where

parallel mechanisms could, or perhaps should, have been used. With the benefit of

hindsight it is clear that the provision of a sequential control-flow abstraction in a parallel

programming language is the wrong thing to do. Instead implicitly parallel mechanisms

(such as the foreach mentioned above) should be used to support iterative activity,

and ordering of iterations, should the need arise, could be dealt with in the textual

language element of a computational node. Thus the purely sequential iteration would be

Visual Object-Oriented Development of Parallel Applications

 227

supported, though the developer would be less tempted to use that feature since it would

not be supported at the graph level.

In addition to parallelism-oriented features, future visual parallel programming

languages should seek to accommodate new features which modern textual languages

support. In particular, the ability to handle events would be valuable such that programs

where there is no top-to-bottom execution could be built, and exceptions and exception

handling could be implemented. An event handling mechanism would replace the

current use of loops and busy waiting for conditions in Vorlon, and exceptions and

exception handling would help to increase the robustness of the produced software.

The final aspect of the Vorlon language which it is felt needs amendment is the

replicate node. Whilst the behaviour of the replicate node (making copies of handles) is

useful in graphs, it is felt that such a semantic could instead be assimilated into the arc –

i.e. 1:M arcs. This would help to make Vorlon graphs more readable since there would be

fewer nodes per graph. An example of the upgraded arc can be seen in Figure 6-8

alongside the equivalent replicate node pattern.

Figure 6-8 Reducing Visual Complexity by Removing Replicate Nodes

6.5 Closing Remarks

This chapter has presented Vorlon within the taxonomy framework introduced in

Chapter 3, and identified areas where the Vorlon language improves on its peers, and

areas where it lacks. The costs and significant benefits of developing within an object-

oriented framework have been identified - initial implementation costs versus

extensibility and re-use – and it has been argued that although Vorlon applications tend

to be large, this is simply because extensibility demands that abstractions are added

through types, and are not hard-coded into the language syntax.

The syntax and semantics of the language has also been considered in light of

experience developing with Vorlon, and suggestions have been made in both tightening

Reflections on the Vorlon Language

 228

the language syntax, and for developing the parallel processing model for future Vorlon

revisions.

Visual Object-Oriented Development of Parallel Applications

 229

Chapter 7 Conclusions and Further Thoughts

This final chapter draws together the work presented by this thesis. An

overview of the work is presented which briefly covers the salient features of each

of the chapters and thus sets the context for the final evaluation of the

programming technology developed. The results obtained from experiments with

the developed language technology are recapped and suggestions for aspects of

current practise to be upheld in future work are also offered.

7.1 Overview

The fundamental tenet of this thesis is that the parallel computing will become

widespread in the near future. Chapter 1 described Moore’s Laws and the software

stretch which showed how reliant software is on ever-increasing uniprocessor hardware

performance, and how those performance increases will eventually be limited by

economic factors; at that point parallel computing platforms could be used to

compensate for the expected shortfall in computational power. Chapter 1 also pointed

out that parallel programming is a difficult discipline, complicated by not only a wide

variety of computing platforms, which is set to get wider as parallel computing moves

into the commodity computing range, but also by the intricate nature of parallel

programs themselves.

Chapter 2 examined four existing visual parallel programming languages whose

existence is testimony to the fact that parallel programming is an intricate and time-

consuming process. Each of the four surveyed languages uses computer graphics to

abstract some of the detail of the underlying parallel computing system in an attempt to

make those systems easier to exploit. Examples of developing parallel programs with

those languages were given, and discussion on the suitability of each language was

presented.

The work presented in Chapter 3 built on Chapter 2, and a taxonomy of the surveyed

languages was presented and their strengths and weaknesses analysed. The results from

the taxonomy process, in conjunction with experience from developing examples with

each of the four languages, lead to the belief that the current generation of visual parallel

programming languages provide little more than current textual parallel programming

languages, in that they support parallel programming, and not parallel application development.

To address this problem a new paradigm for parallel application development, Parallel

Object-Flow, was developed to deal with both problem domain and architectural

Conclusions and Further Thoughts

 230

complexity. Importantly, object-orientation was proposed as a means of supporting the

software lifecycle, whilst visual programming languages were proposed as a means of

abstracting the detail of an idealised parallel computer.

Chapter 4 introduced the main work developed for this thesis, the Vorlon visual

parallel programming language which implemented the Parallel Object-Flow paradigm.

The syntax and semantics of the language were introduced, alongside the development

methodology and software architecture of a Vorlon application.

The next stage in the development of this thesis was the collection and analysis of

results. Chapter 5 presented the construction of two applications (one numeric, one non-

numeric) developed from conception through to release with Vorlon. The results

obtained from these applications were in the form of practical experience developing

with Vorlon, and timing data from executing the applications. The performance results

obtained were mixed and revealed that, in the first version of the Vorlon language,

applications which exhibit a pattern of fine granularity of locking of objects (such as

numerical applications using matrices) did not perform well, whilst other types of

application (in this case a compilation system) performed satisfactorily.

The penultimate chapter of this thesis was a period of reflection on the work

undertaken. Chapter 6 took the work from Chapters 4 and 5 and subjected Vorlon to the

same taxonomy process as was presented in Chapter 3 for previous visual parallel

programming languages. From this taxonomy, reflections on both linguistic and software

engineering aspects of the language were presented, and the reason why Vorlon

applications tend to be larger than their equivalents was explained as a necessary

symptom of an extensible language that encourages structured re-use.

7.2 Reflections on Software Engineering Aspects

The fact that Vorlon is an object-oriented language provides significant software

engineering benefits. Since object-orientation supports the whole of the software

lifecycle, so too can Vorlon applications enjoy such support. Problems can be analysed,

solutions designed, and applications implemented within a common framework – in

short because of object-orientation, applications can be engineered.

However, the engineering benefits come at a cost. In this case the cost is the size of

the applications compared to the equivalent written in previous visual parallel

programming languages. The overwhelming majority of this additional cost of

Visual Object-Oriented Development of Parallel Applications

 231

developing with Vorlon is invested in building types to match the problem domain

requirements. Since previous visual parallel programming languages were not object-

oriented, the development of such types was not an issue since all the available

abstractions came built into the language syntax.

However, it was noted that there are significant benefits associated with the ability to

extend a language through types. Importantly, this extensibility allows the language to

adapt to new situations which the language designer may not have foreseen, which had

the abstractions been built directly into the language would not be possible. Furthermore,

the re-use of types (as opposed to the functional re-use pattern seen in previous

languages) means that re-use can occur much earlier in the lifecycle (at the analysis and

design phases) which will have the effect of shortening development times for

subsequent software projects.

7.3 Vorlon Language Issues

The main problem with Vorlon was the fact that parallelism is explicit in some of the

syntactic elements whereas the goal of the language was to encapsulate parallel activity

away from the developer. In particular, the explicit data-parallel aspects of the parallel

computation node and parallel method call node were cited as mechanisms which should

be removed from the language in favour of implicitly parallel mechanisms.

Improvements to the current language which would enable a purely implicitly parallel

style of programming were suggested, but it was noted that such approaches would not

be extensible. Instead, it was suggested that a more fundamental re-appraisal of the data-

parallel mechanisms was required and that generic, extensible, type-driven mechanisms

should be employed to implicitly control data-parallel activity.

The prototypical nature of the language meant that the overall look-and-feel of the

language was basic, and that some of the syntactic elements (and conditional execution

nodes in particular) were poorly designed. Thus, although the overall style of execution

was found to be acceptable, the construction of applications with Vorlon was harder

than it should have been, such problems could be rectified given time since they are not

fundamental.

7.4 Performance Results

The performance results presented in Chapter 5 showed a clear distinction in

performance between the matrix multiplication and compilation system applications. The

Conclusions and Further Thoughts

 232

matrix multiplication program performed badly on all test platforms, including shared

memory multiprocessor, whereas the compilation system performed reasonably well on

all platforms and particularly well on the shared memory system.

For the matrix multiplication application, it was found that the costs of memory

access (predominantly locking of fine-grained objects) as the cause of the poor

performance. It follows that if locking can be minimised, Vorlon programs may perform

significantly better, and it was suggested that adopting message-passing under certain

circumstances may help to avoid locking overheads. The problem of efficiency would

then become one of grain size – communication costs version computation time – and

mechanisms such as NIP’s lazy task creation and load balancing would help under such

circumstances.

For the compilation system, the problem was not with Vorlon, nor the NIP run-time

system. Whilst both Vorlon and NIP concentrate on memory and processor abstractions,

neither pays any attention to I/O device abstractions which would work efficiently in a

parallel environment. Since such mechanisms are outside of the research area for this

thesis, no solution was developed. As such it would be fair to say that applications which

are heavily I/O dependent do not scale well using the techniques outlined in this thesis,

in the absence of appropriate library support such as that discussed in Chapter 5.

7.5 Future Work

When offering suggestions for future work, it is often the case that less well received

aspects of the current work are presented and purified as if that action would resolve all

outstanding issues. It is not the intention here to follow suit, since aspects of the current

work which could be improved upon have already been discussed. Instead, more generic

aspects of parallel application development are considered and, where germane, opinions

based on experience with the Vorlon language are offered.

It is wholeheartedly felt that a visual approach to parallel application development is

an eminently practical and sensible approach to take. During the period of research for

this thesis a range of visual and textual parallel programming languages/libraries were

investigated. Even those textual approaches which were considered to be at the cutting

edge of their field (in particular the NIP run-time system which Vorlon utilised) were

found to be significantly more difficult to develop with than a visual language. As for

scalability of visual languages (a problem which is often quoted as being the downfall of

visual programming), experience demonstrates that textual parallel programming scales

Visual Object-Oriented Development of Parallel Applications

 233

little better since the source code can be incredibly intricate. In short, the visual approach

to parallel application development is good and should be pursued.

Saying that a visual approach is desirable is, however, an incomplete argument. In

Chapter 2, several visual parallel programming systems were surveyed and each exhibited

it own semantics and style – and there are still other visual programming systems which

were not considered in the survey which have still different styles. However, in the

parallel programming arena where issues of synchronisation are of paramount

importance, the style of programming language can have a serious impact on the overall

performance of the developer. Specifically, it was felt that the notion of flows of items

(be those items data or object handles in the case of Vorlon) was valuable since it

provided implicit communication and synchronisation, whilst giving the developer a clear

picture of dependencies. It was thus felt that flows are a useful syntactic element which

should be preserved in future languages.

Following on from the suggestion that flows are a useful means of implicitly

describing communication and synchronisation patterns, and therefore of implicitly

describing task- and (where supported) pipeline-parallelism, there is the more general

implication that mechanisms which implicitly support parallel activity are good.

Languages which support the implicit exploitation of parallelism from an application’s

structure remove the “parallelism burden” from the developer and thus free the

developer to concentrate on more important issues like ensuring the software meets its

specification.

A complementary argument to the fact that languages should support implicit

exploitation of parallel activity is the fact that they should not permit explicit mechanisms

for introducing parallel activity. Whilst this may seem an obvious, if not superfluous,

point to make, it is not. Previous work, notably ParADE, and this work both

acknowledged the fact that a suitably intelligent developer may want to be able to specify

parallelism at will, rather than allowing the underlying development environment to

control such issues. Both ParADE and Vorlon were languages which attempted to

support the novice parallel programmer to write parallel programs, whilst permitting the

expert to optimise. Only at this point in the work it is possible to acknowledge that such

a philosophy is ultimately wrong. An expert developer should not be expected to

shoulder the parallelism burden any more than a novice. Instead an expert developer

should be expected to better apply proper software engineering principles to the problem

Conclusions and Further Thoughts

 234

than a novice, and if the programming language is suitably advanced (such as Vorlon

with the suggested type-driven modifications), then the application of those principles

will implicitly invoke more parallel activity. That is, explicit parallelism, even in the hands

of an expert developer, may not prove to be a particularly good idea, and future visual

parallel programming languages should not support it.

Given that typing is thought to be key in the future success of visual parallel

programming, the final and most important suggestion for future work is that it continue

to support object-orientation. Not only will object-orientation provide the primary

means of exploiting parallelism from an application, but it will continue to provide full

lifecycle support for the development process which will be fundamental in the shift

from parallel programming to parallel application development.

7.6 Closing Remarks

The main contribution of this thesis has been to demonstrate that parallel applications

can be engineered, and that paradigms which support both performance and software

engineering aspects of application development can be developed. Vorlon has made a

positive contribution to the field of visual parallel programming. Certainly Vorlon does

not solve all the difficulties of parallel programming – it is not a universal panacea – but

it is a step in the right direction.

Visual Object-Oriented Development of Parallel Applications

 235

Appendix A Development of a Parallel Compilation System

The most salient graphs from the parallel compilation system were presented in

Chapter 5, where those graphs provided the context within which performance

results could be investigated. For completeness, the whole development of the

application (excluding performance analysis) is presented in this appendix.

A.1 Introduction

The UNIX make tool is a utility for managing software builds. It is particularly useful

for projects where an application may be dependent on a number of source files, and

where not all source files are changed between successive application builds. In such

cases make only re-compiles object code for those source files that have changed. At

present, most implementations of make use an iterative approach to compilation, in that

the date of a file is checked, and if found to be out-of-date it is compiled, before the next

file is checked, and so on.

However, given that the only dependency in a build operation is between the

production of object code and the link phase of the build, and that the production of the

object code from each source file is an independent task, there is the potential to

parallelise the build process. This appendix discusses the construction of a simple parallel

implementation of a make-like tool which uses a data-parallel, rather than an iterative

approach in the compilation of source code files.

A.2 High Level Analysis

As with any software project, the first development stage is to perform an analysis of

the problem domain. In an object-oriented analysis, the goal is to look for objects in the

problem domain, and reason about those objects in order to extract a set of types. In the

parallel compilation system problem domain, there are three types which are immediately

obvious:

The intermediate language (C++) compiler;

The project which describes the relation between Vorlon graphs in an application;

The (intermediate language) source files, derived from the Vorlon graphs, which

are built to produce the final executable application.

Development of a Parallel Compilation System

 236

As the first step in the analysis of the parallel compilation system, it is helpful to place

those types on a class diagram, and add any obvious operations (methods) and attributes

(data members) to their interfaces. This can be seen in Figure A-1.

Figure A-1 Initial Class Diagram for the Parallel Compilation System

The class diagram shown in Figure A-1 depicts the three main types for this problem

domain, along with their corresponding operations and attributes. At this point in the

development, what is understood about the problem is as follows:

1. There exist a number of named SourceFiles, and each has an

associated age;

2. The Compiler compiles source files, and may be parameterised via

compiler flags to link code with appropriate libraries as specified by

the user of the application;

3. The overall activity of the system is coordinated by a Project

which is responsible for determining out-of-date source files, and

compiling those files in order to build the resultant application.

Having established the functionality of each of the primary types in the problem

domain, the development process can progress to the high-level design stage.

Visual Object-Oriented Development of Parallel Applications

 237

A.3 Application Design

The real beauty of the object-oriented methodology is its seamlessness. The work

undertaken in the analysis phase is carried forward directly into the design phase of the

development cycle. The primary distinction between the analysis and design phases is the

fact that the design phase begins the process of “concreting” the components from the

analysis phase such that they can be used as a basis in the construction of the final

software artefact.

In the design presented in Figure A-2, the types needed to support those introduced

in Figure A-1, are shown and the relations between those types have been added.

Figure A-2 Initial Design-Stage Class Diagram

The class diagram in Figure A-2 presents a full static view of the types arising from

the problem domain and the types which the problem domain types require in order to

fulfil their own functionality. This diagram presents a number of important relations,

including:

Development of a Parallel Compilation System

 238

1. The Project type is dependent on the String type, which itself

contains references to a number of instances of the

Object<char> type.

2. A Project object contains a list of source files

(List<SourceFile>).

3. The List<SourceNode> type contains an instance of the

ListNode<SourceFile> type.

4. All instances of the ListNode<SourceFile> type contain a

reference to another instance of ListNode<SourceFile>

which is used to link ListNode<SourceFile> objects into a

List.

5. The List<SourceFile> class is aware of the interface of the

SourceFile class, as is the Compiler class.

6. The SourceFile class depends on the String class to fulfil its

responsibilities, and is aware of the String type’s interface.

Having introduced the overall structure of the types in the application, it is

worthwhile discussing some of the responsibilities and behaviours of those types.

 The Project type maintains data on the build state of the source

files that comprise the application. Most of this data is kept in the

form of text string representing filenames and other compiler

options, and numerical values which represent the last build time of

the application, along with some other housekeeping data. Apart

from the get /set methods, the only other method supported by the

type is the getOutOfDateFiles(…) method which returns a

list of out-of-date source files to the caller.

 The List<SourceFile> and ListNode<SourceFile> are

used to simply build lists of SourceFile objects. They support a

standard compliment of list methods and attributes to facilitate this

functionality.

Visual Object-Oriented Development of Parallel Applications

 239

 The SourceFile type is a very simple representation of a physical

file, containing a filename and age as attributes and a pair of get/set

methods for those attributes.

 The Compiler type is a representation of an external C++

compiler. It supports only one method called compile(…)which is

used to invoke the external compiler on the specified source file. Its

attributes are set on construction on include the compiler flags and

the fully qualified path to the external compiler.

 String is simply a NIP-safe array of Object<char> objects. It

supports two concatenation methods (one for char objects and one

for String objects), and one method called c_str()

(convention adopted from the C++ STL) which is used to produce

strings in a form suitable for passing to the environment via the C

system(…) call, so that the external compiler can be invoked.

The final stage in the development of the application is to refine the full static view of

all programmatic components, including the starting point for the application and its

relations with the other types. This can be seen in Figure A-3.

Development of a Parallel Compilation System

 240

Figure A-3 Final Application Design

The class diagram shown in Figure A-3 shows the Main class and the main(…)

method in conjunction with the other types. The Main class contains one instance of

the Project class, and one instance of the Compiler class, and is dependent on the

List<SourceFile> type to fulfil its responsibilities. The main(…)method

interrogates the Project object for a List<SourceFile> object which it then uses to

call the compile(…) method from the Compiler object that it contains. Note that is

parallel calls on the compile(…) method that is the main source of parallelism in this

application.

Having introduced the responsibilities of, and the operations supported by each of the

types that constitute the application, it is now possible to implement those types, which

is the subject of the following section.

Visual Object-Oriented Development of Parallel Applications

 241

A.4 Implementation

Once the static structure of the application has been determined, the next stage in the

development of the software is to build the functionality of the application by

implementing the types from the design phase. In the case of the compilation

application, it makes most sense to tackle the problem top-down. That is, implement the

most important classes first, and the more minor classes later. As such, the Main type’s

main(…) method is the first to be implemented, followed by the Project class, the

Compiler class, SourceFile class, the List class (and associated ListNode

class), and finally the String class.

A.4.1 The Main Class

The Main class is composed from only a single method called main(…) the

implementation of which can be seen in Figure A-4.

Development of a Parallel Compilation System

 242

Figure A-4 The main(…) Method

The main(…) method depicted in Figure A-4 is responsible for the majority of the

work undertaken by the application. It first accepts an instance of the String type as a

filename of a file that contains the project data. This is then used to create an instance of

the Project type.

The instance of the Project type is then used to service three method calls in

parallel. Two of the method calls are simple get methods, which retrieve the compiler

name and the compiler flags to be activated, which are then used to instantiate an

instance of the Compiler type. The third of the method calls requests a list of out-of-

date source files, and causes the Project object to search its internal data structures

Visual Object-Oriented Development of Parallel Applications

 243

looking for files which are more recent than the target executable. It is the resultant list

of objects that this method call releases which drives the majority of the subsequent

parallel activity within the graph, when the List is sent as a parameter to a parallel

method call node. The parallel method call node invokes the Compiler type’s

compile(…) method on each of the SourceFile objects contained within the

input List of SourceFiles. Having compiled each of the source files into object

code, the final stage of the build process is to perform a link to produce the final

executable. This functionality is supported by the link(…) method in the Compiler

class.

A.4.2 The Project Class

The Project class contains a total of four methods and one constructor. Three of

those methods are trivial get methods which return particular project attributes such as

the compiler name to the caller. The implementation for get methods that the Project

class supports can be seen in Figure A-5,Figure A-6, and Figure A-7.

Figure A-5
getCompilerName(…)

Method

Figure A-6
getCCFlags(…) Method

Figure A-7
getTarget(…) Method

In addition to the get methods, the other method that the Project type supports is

getOutOfDateFiles(…) whose implementation can be seen in Figure A-8 and

Figure A-9 below.

Development of a Parallel Compilation System

 244

Figure A-8 getOutOfDateFiles(…)
Method

Figure A-9 getOutOfDateFiles(…)
Method Sub-Graph

The getOutOfDateFiles(…)method has already been discussed in depth in the

main text, and it is not the intention to repeat that discussion here, save for the fact that

the parallel computation node is used to build the list of out-of-date files, but it is not

used in its canonical form since not all inputs are to be decomposed. This raised several

syntactic issues about decomposition of structures and implicit data parallel activity

which are themselves tackled in Chapter 6.

The final operation supported by the Project type is its constructor (the provision of a

copy constructor can be left to the translator in this case). The implementation of the

default constructor is shown in Figure A-10.

Visual Object-Oriented Development of Parallel Applications

 245

Figure A-10 The Default Constructor of the Project Type

The graph shown in Figure A-10 is straightforward with only an assignment and a

piece of sequential C++ code running concurrently. The sequential C++ code merely

reads in a number of parameters from the file and assigns them to appropriate places

within the Project object’s internal data structures. The sequential C++ was used in

preference to a Vorlon graph because C++ has far better facilities for handling I/O than

Vorlon does (since Vorlon does not have an I/O library), and since file I/O is sequential

in this case there would be little added performance benefit by developing the routines in

Vorlon.

Development of a Parallel Compilation System

 246

A.4.3 The Compiler Class

Figure A-11 The compile(…) method of the Compiler Class

The Compiler type’s compile(…) method has already been discussed in the

main text. It suffices to say here that it merely forms a command-line argument which

represents the compiler options and the source file to be compiled, and passes that

argument to the command-line interpreter (via a C standard library system(…) call).

For a fuller description of the activity of the graph, refer to Chapter 5.

Visual Object-Oriented Development of Parallel Applications

 247

Figure A-12 The link(…) method of the Compiler Class

The link(…) method of the Compiler type simply issues a call to the command-

line interpreter to link all source files together to build the target executable. In this case,

the command-line argument passed is simply the name of the compiler with the link

switch set and passing the name of all object code files, an example of which can be seen

here:

g++ -o *.o

Although more complex behaviour might be expected from an industrial-strength

software build system, for purposes of experimentation all object files in the build

directory (and only that directory) are used in the link process.

Development of a Parallel Compilation System

 248

A.4.4 The SourceFile Class

Figure A-13 SourceFile Class
Constructor

Figure A-14 SourceFile Class Copy
Constructor

The standard and copy constructors for the SourceFile class can be seen in

Figure A-13 and Figure A-14 respectively. In both cases the majority of the work

performed is the assignment of attributes passed as arguments to the constructor call to

local attributes within the new object. In the default constructor, the _filename

attribute is set from the parameter passed to the constructor call and the _age attribute

is set by a call to the operating system to retrieve the age of the file. In the copy

constructor a similar process occurs except that the attributes are retrieved from a

method call on the parameter object, rather than directly from the parameter or from the

operating system.

Visual Object-Oriented Development of Parallel Applications

 249

Figure A-15 SourceFile Class
getName(…) Method

Figure A-16 SourceFile Class
getAge(…) Method

Figure A-15 and Figure A-16 show the two get methods supported by the

SourceFile class. Both get methods simply return a handle to one of the attributes of

the class.

A.4.5 The List and ListNode Classes

The List class acts as a repository of SourceFile objects which represent the

source code files of the application which is being built. The ListNode class is used to

hold the actual SourceFile objects, and to link the List together in a classical

linked list structure.

Figure A-17 List Class Default Constructor

The constructor for the List class is shown in Figure A-17. The functionality of the

default constructor is straightforward in that it simply initialises the attributes of the

List object to their starting values. In this case the reference to the first item (a

ListNode object) in the List is set to null (since the List is empty on creation),

and the length of the List is set to zero.

Development of a Parallel Compilation System

 250

Figure A-18 List Class addNode(…) Method

The addNode(…) method of the List class is the means by which items are added

to the tail of a List. In this method, two distinct activities take place in parallel. In the

first of these activities, the current last node in the List (the node at position

_totalNodes–1 in the List) is retrieved through a call to the nodeAt(…)

method, and that node’s _next reference (the reference to the next node in the List)

is accessed via a method call node. At the same time, the SourceFile object passed as

a parameter to the method call is used to create a new ListNode object. Once the

ListNode object has been created, the _next reference obtained from the current

last node in the List is updated to refer to the new ListNode object, and the number

of nodes in the List is incremented.

Visual Object-Oriented Development of Parallel Applications

 251

Figure A-19 List Class nodeAt(…) Method

The nodeAt(…) method is used to retrieve data from a List. The implementation

of the top-level graph of the method is shown in Figure A-19. There is no parallelism in

this method since it simply involves iterating over a number of ListNode objects until

a counter value is met, at which point the attribute _data (a reference to a

SourceFile object) of that node is returned to the caller of the method. The

decomposed loop node sub-graph of the nodeAt(…) method can be seen in Figure

A-20.

Development of a Parallel Compilation System

 252

Figure A-20 List Class nodeAt(…) Method Sub-Graph

The sub-graph shown in Figure A-20 is used to access subsequent ListNode

objects from a List. It simply assigns the _next attribute of the current ListNode

object to an object handle called current which is maintained between successive

executions of the graph. Once all executions of the graph have completed, the

current handle references the node that the caller of the method requires.

Figure A-21 List Class noOfNodes() Method

The noOfNodes(…) method is a simple get method which returns a handle to the

attribute _noOfNodes from the current object. Its implementation is shown in Figure

A-21.

Visual Object-Oriented Development of Parallel Applications

 253

Figure A-22 ListNode
Default Constructor

Figure A-23 ListNode
Copy Constructor

Figure A-24 ListNode
Constructor

The ListNode class is used to store objects within a List. It is an extremely basic

data type, consisting only of constructors and public attributes. The constructors of the

class can be seen in Figure A-22, Figure A-23, and Figure A-24 above. The default

constructor simply sets both of the attributes of the new object to null. The copy

constructor sets the _data attribute to be identical to that of the ListNode object

passed in as its parameter, and sets its _next attribute to be null (since the _next

attribute is set by a List object as part of an insertion operation). The final ListNode

constructor takes a handle to a SourceFile object, and a handle to another

ListNode object as its parameters, and simply uses them to initialise its attribute set.

A.4.6 The String Class

The String class is an abstraction of a sequence of characters, supporting common

options such as concatenation. In this application, String objects are used to hold

filenames, compiler switches, and other project data.

Development of a Parallel Compilation System

 254

Figure A-25 String Class Default Constructor

The default constructor for the String class can be seen in Figure A-25. It creates a

zero-length array of Object<char> objects which is then assigned to the _data

attribute of the new object, and sets the _length attribute of the String object to zero.

Figure A-26 String Class Copy Constructor

Visual Object-Oriented Development of Parallel Applications

 255

The copy constructor of the String class is shown in Figure A-26. It sets the

_length attribute of the new object to be identical to that of the parameter object, and

in parallel makes a copy of the parameter object’s internal array structure and assigns that

copy to the local _data attribute.

Figure A-27 String Class Constructor

The final constructor for the String class, shown in Figure A-27, takes a single char as

its input parameter, and uses that input to create an instance of Object<char>. In

parallel with the creation of the Object<char> instance, an Object<char> array

of length one is created. Once the array and the single instance have been instantiated,

the single instance of Object<char> is inserted into the array at location 0 and the

_length attribute of the new String object is set to 1.

Development of a Parallel Compilation System

 256

Figure A-28 String Class concat(String) Method

Visual Object-Oriented Development of Parallel Applications

 257

Although the concat(…) method shown in Figure A-28 is a highly-connected

graph, its functionality is actually straightforward. The _data and _length attributes

are extracted from the parameter String object, and the _length attribute is then

added to the _length of the current object and the value yielded is used to create a

new array of type Object<char>, big enough to hold the contents of both String

object’s data. Once created, the new array is operated upon in parallel by two loop nodes

which iterate over the current object’s _data attribute, and that of the parameter object,

copying element each into an appropriate position in the previously instantiated (larger)

array structure. Once the copying process has finished, the new, large array of

Object<char> objects is assigned to the _data attribute of the current object,

leaving the old structure to be garbage collected. The final action performed is to update

the _length attribute of the current object to reflect the increased size of the String

after the concatenation.

Development of a Parallel Compilation System

 258

Figure A-29 String Class concat(char) Method

The other concatenation method supported by the String class is the that of a

single character to an existing String. The implementation for this method can be

seen in Figure A-29. The character concatenation method is not dissimilar to the

String concatenation method with the exception that one of the iterated copy

Visual Object-Oriented Development of Parallel Applications

 259

operations present in the String concatenation is replaced by a single array insertion

for the char-oriented version. In the method graph of Figure A-29, a new array which

is one element larger than the current array referenced by the _data attribute of the

object is created, and the contents of the current internal state are copied into the new

array. Once the copy has finished, the instance of Object<char> created from the

parameter passed to the method is inserted at the final position in the new array, and it is

assigned to the current _data attribute, leaving the old array to be garbage collected.

Figure A-30 String Class length(…) Method

The length(…) method of the String class is a simple get method which returns a

handle to the _length attribute of the object that it is invoked on. Its implementation

can be seen in Figure A-30 above.

Development of a Parallel Compilation System

 260

Figure A-31 String Class c_str() Method

The c_str() method of the String class, shown in Figure A-31, is used to

extract a C-style null-terminated array of characters from a String, to be used where

elements of the C or C++ standard libraries requiring such structures as parameters are

to be invoked. The functionality of the method is straightforward (if a little crude), in

that a computation node is used to create a C-style array (since the Vorlon new object

nodes create Vorlon, not C, arrays) which is then passed onto a loop node which iterates

over that array and the array referenced by the _data attribute of the current object

performing a copy operation on each element. Once the copy operation has finished, the

C-style char array is returned to the caller of the method. It should be noted that this

method is “unsafe” insofar as it is not guaranteed to work in a distributed memory

environment if subsequent operations do not occur on the same processing node. It

should not be called if there is any parallelism below the call to this method further down

in the calling graph. Furthermore since C-style memory mechanisms are used, the objects

created are not managed by the run-time support and will not benefit from garbage

Visual Object-Oriented Development of Parallel Applications

 261

collection, transparent distribution, caching, and so forth22. However, since it has been

acknowledged that external library support is required until Vorlon library support is

available, such mechanisms are unavoidable, and the developer must simply be cautious

in their use.

A.5 Summary

This appendix has shown the development of the parallel compilation system for

building Vorlon applications. The project was developed from its inception through to

implementation with each step in the process discussed. It has not shown performance

figures for the application, nor drawn any claims as to the suitability of the Vorlon

language for developing such applications, since those topics were covered in the main

text (Chapter 5 and Chapter 6). However, it has shown the complete construction of a

fully object-oriented application, including the implementation of a classical data

structure with the Vorlon language, which adds some credibility to the approach.

22 Such notions of “managed” and “unsafe” code are also supported by textual languages such as C#

{Wille 2000}, and similar warnings about usage abound.

Visual Object-Oriented Development of Parallel Applications

 263

References

Agha, G. and C. Hewitt (1987). Actors: A Conceptual Foundation for Concurrent

Object-Oriented Programming. Research Directions in Object-Oriented Programming.

B. Shriver and P. Wegner (editors), MIT Press: 49-74.

Allen, R. S. (1998). A Graphical System for Parallel Software Development. Ph.D.

Thesis, Department of Computing Science, The University of Newcastle upon Tyne.

Amdahl, G. (1967). The Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. AFIPS.

Annot, J. K. and P. A. M. d. Haan (1990). POOL and DOOM: The Object-Oriented

Approach. Appearing in: Parallel Computers: Object-Oriented, Functional, Logic. P. C.

Treleaven (editor), Wiley: 49-79.

Babaoglu, O., L. Alvisi, et al. (1992). Paralex: An Environment for Parallel

Programming in Distributed Systems. 6th ACM International Conference on

Supercomputing, ACM Press.

Barnes, J. and P. Hut (1986). A Hierarchical O(N log N) Force Calculation Algorithm.

Nature 324: 446.

Beguelin, A., J. Dongarra, et al. (1994). HeNCE: A User's Guide.

http://www.netlib.org/hence/hence-2.0-doc-html/hence-2.0-doc.html

Bik, A. J. C. and D. B. Gannon (1997). Automatically Exploiting Implicit Parallelism

in Java. Concurrency: Practice and Experience 9(6): 579-619.

Booch, G. (1994). Object-Oriented Analysis and Design, Benjamin/Cummings.

Booch, G. (1996). Object Solutions: Managing the Object-Oriented Project, Addison-

Wesley.

Booch, G., J. Rumbaugh, et al. (1999). The Unified Modelling Language User Guide.

Addison-Wesley.

Browne, J. C., S. I. Hyder, et al. (1995). Visual Programming and Debugging for

Parallel Computing. IEEE Parallel and Distributed Technology (Spring 1995).

Bruegge, B., J. Blyth, et al. (1992). Object-Oriented Modeling with OMT. OOPSLA

'92, ACM Press.

Development of a Parallel Compilation System

 264

Burnett, M. M., A. Goldberg, et al (editors). (1995). Visual Object-Oriented

Programming, Manning.

Carriero, N. and D. Gelernter (1989). How to Write Parallel Programs: A Guide for

the Perplexed. ACM Computing Surveys 21(3): 322-357.

Citrin, W., M. Doherty, et al. (1995). The Design of a Completely Visual OOP

Language. Appearing in: Visual Object-Oriented Programming: Concepts and

Environments. M. M. Burnett, A. Goldberg and T. G. Lewis, Prentice-Hall: 67-93.

Coad, P. and J. Nicola (1993). Object-Oriented Programming, Yourdon Press.

Coad, P. and E. Yourdon (1991). Object-Oriented Analysis, Yourdon Press.

Coad, P. and E. Yourdon (1991). Object-Oriented Design, Yourdon Press.

Cox, P. T., F. R. Giles, et al. (1995). Prograph. Appearing in: Visual Object-Oriented

Programming: Concepts and Environments. M. M. Burnett, A. Goldberg and T. G.

Lewis, Prentice Hall: 45-66.

Deitel, H. M., P. J. Deitel, et al. (1999). Visual Basic 6: How To Program. Prentice

Hall.

Dozsa, G., P. Kacsuk, et al. (1997). GRADE: A Graphical Programming

Environment for PVM Applications. 5th Euromicor Workshop on Parallel and

Distributed Processing, London.

Flanagan, D. (1997). Java Examples in a Nutshell, O'Reilly & Associates.

Flanagan, D. (1997). Java in a Nutshell, O'Reilly & Associates.

Fowler, M. and K. Scott (1997). UML Distilled: Applying the Standard Object

Modelling Language, Addison-Wesley.

Geist, A., A. Beguelin, et al. (1994). PVM 3 User's Guide and Reference Manual, Oak

Ridge National Laboratory. http://www.epm.ornl.gov/pvm/pvm_book.html

Geist, A., W. Gropp, et al. (1996). MPI-2: Extending the Message-Passing Interface.

Europar '96, Springer-Verlag.

Gelernter, D. (1985). Generative Communication in Linda. ACM Transactions on

Programming Languages and Systems 7: 80-112.

Gurd, J. R., C. C. Kirkham, et al. (1985). The Manchester Prototype Dataflow

Computer. Communications of the ACM 28(1): 34-52.

Visual Object-Oriented Development of Parallel Applications

 265

Harley, J. W. (1993). Dataflow Development of Medium Grained Parallel Software.

Ph.D. Thesis, Department of Computing Science, The University of Newcastle upon

Tyne.

Hoare, C. A. R. (1985). Communicating Sequential Processes, Prentice-Hall

International.

Jacobson, I., M. Christerson, et al. (1992). Object-Oriented Software Engineering: A

Use Case Driven Approach, ACM Press / Addison-Wesley.

Kacksuk, P. and S. Forrai (1999). GRADE - Graphical Environment for Parallel

Programming. ERCIM News(36): 30-33.

Kacsuk, P., J. C. Cunha, et al. (1997). A Graphical Development and Debugging

Environment for Parallel Programs. Parallel Computing Journal 22(13): 1747-1770.

Kacsuk, P., T. Dozsa, et al. (1997). A Graphical Environment for Message-Passing

Programs. 2nd International Workshop for Parallel and Distributed Systems, Boston.

Kale, L. V. and S. Krishnan (1993). Charm++: A Portable Concurrent Object-

Oriented System Based on C++. OOPSLA '93, ACM.

Keleher, P., A. L. Cox, et al. (1994). TreadMarks: Distributed Shared Memory on

Standard Workstations and Operating Systems. 1994 Winter USENIX Conference, San

Francisco, CA, USA.

Kennedy, K., C. F. Bender, et al. (1997). A Nationwide Parallel Computing

Environment. Communications of the ACM 40(11): 63-72.

Koelbel, C. H., D. B. Loveman, et al. (1994). The High Performance Fortran

Handbook, MIT Press.

Kramer-Fuhrmann, O. and T. Brandes (1991). Gracia - A Software Environment for

Graphical Specification, Automatic Configuration and Animation of Parallel Programs.

ACM International Conference on Supercomputing, Cologne, Germant.

Lavender, R. G. and D. C. Schmidt (1996). Active Object: An Object Behavioural

Pattern for Concurrent Programming. Appearing in: Pattern Languages of Program

Design 2. J. Vlissides, J. Coplien and N. Kerth, Addison-Wesley.

Layzell, P. and P. Loucopoulos (1989). Systems Analysis and Developement,

Chartwell-Bratt.

Development of a Parallel Compilation System

 266

Loques, O., J. Leite, et al. (1998). P-RIO: A Modular Parallel-Programming

Environment. IEEE Concurrency (Spring 1998): 47-56.

Microsoft (1998). Visual J++ 6.0 Programmer's Guide, Microsoft Press.

Mohr, E., D. A. Kranz, et al. (1991). Lazy Task Creation: A Technique for Increasing

the Granularity of Parallel Programs. IEEE Transactions on Parallel and Distributed

Systems 2(3): 264-280.

Moore, G. E. (1965). Cramming More Components Onto Integrated Circuits.

Electronics Magazine. 38: 114-117.

Moore, G. E. (1997). An Update on Moore’s Law. San Francisco, Intel Developer

Forum Keynote Speech.

Moore, G. E. (1998). What is Moore's Law?, Intel Museum Online.

http://www.intel.com/intel/museum/25anniv/Hof/moore.htm

Morrison, M. (1997). Java 1.1 Unleashed, Sams.

Newton, P. and J. Dongarra (1994). Overview of VPE: A Visual Environment for

Message-Passing Parallel Programming. The University of Tennesse, Knoxville.

Newton, P. W. (1993). A Graphical Retargetable Parallel Programming Environment

and its Efficient Implementation. Ph.D. Thesis, Department of Computer Sciences. The

University of Texas at Austin.

Oram, A. and S. Talbott (1993). Manging Projects with Make. Sebastopol, CA,

O'Reilly.

Protic, J., M. Tomasevic, et al. (1998). Distibuted Shared Memory: Concepts and

Systems, IEEE Computer Society.

Sargeant, J. (1993). United Functions and Objects: An Overview. Manchester,

University of Manchester, Department of Computing Science.

Schaller, R. R. (1997). Moore's Law: Past, Present, Future. IEEE Spectrum 34(6): 52-

59.

Sedgewick, R. (1992). Algorithms in C++, Addison Wesley.

Snir, M., S. Otto, et al. (1996). MPI: The Complete Reference, MIT Press.

Sterling, T., D. Becker, et al. (1998). An Assessment of Beowulf-class Computing for

NASA Requirements. IEEE Aerospace.

Visual Object-Oriented Development of Parallel Applications

 267

Sterling, T. L., J. Salmon, et al. (1999). How to Build a Beowulf. Cambridge, MIT

Press.

Stroustrup, B. (1991). The C++ Programming Language (Second Edition), Addison-

Wesley.

Stroustrup, B. (1997). The C++ Programming Language (Third Edition), Addison-

Wesley.

Treleaven, P. C. (1990). Parallel Computers: Object-Oriented, Functional, Logic.

London, Wiley.

Treleaven, P. C., D. R. Brownbridge, et al. (1982). Data-Driven and Demand-Driven

Computer Architecture. ACM Computing Surveys 14(1): 93-143.

Veen, A. H. (1986). Dataflow Machine Architectures. ACM Computing Surveys 18(4):

366-396.

Watson, P. and S. Parastatidis (1999). The NIP Parallel Object-Oriented

Computational Model. Network-based Parallel Computing: Communication,

Architecture, and Applications. Orlando, Florida, USA, Springer-Verlag.

Watson, P. and S. Parastatidis (1999). An Optimised Lazy Task Creation Technique

for Iterative and Recursive Computations. International Conference on Parallel and

Distributed Processing Techniques and Applications, Las Vegas, Nevada, USA.

Webber, J. (1998). Vorlon: A Visual Object-Oriented Approach to Parallel

Application Development. Doctoral Symposium, Automated Software Engineering,

Honolulu, Hawaii, IEEE.

Webber, J. (2000). Visual, Object-Oriented Development of Parallel Applications.

IEEE VL 2000 Workshop on Visual Methods for Parallel and Distributed Systems,

Seattle, IEEE Press.

Whitley, K. N. (1997). Visual Programming Languages and the Empirical Evidence

for and Against. Journal of Visual Languages and Computing(8): 109-142.

Wille, C. (2000). Presenting C#, Sams.

Winbald, A., L., S. Edwards, D., et al. (1990). Object-Oriented Software, Addison-

Wesley.

Development of a Parallel Compilation System

 268

Wolf, K. and O. Kramer-Fuhrman (1996). An Integrated Environment to Design

Parallel Object-Oriented Applications. Europar '96, Springer-Verlag.

Yonezawa, A. and M. Tokoro (1987). Object-Oriented Concurrent Programming,

MIT Press.

	Chapter 1 Introduction
	1.1 An Overview of Parallel Computing
	1.2 Parallel Computing Drivers
	1.3 Moore’s Law and the Road to Parallel Computing
	1.4 Affordable Parallel Platforms
	1.5 Visual Programming Techniques
	1.6 The Object-Oriented Paradigm
	1.7 Research Goals
	1.8 Summary

	Chapter 2 Visual Parallel Programming Languages
	2.1 Introduction
	2.2 Visual Programming
	2.2.1 Visual Development Environments
	2.2.2 Visual Programming Languages and Techniques
	2.2.3 Visual Parallel Programming

	2.3 A Survey of Visual Parallel Programming Tools
	2.3.1 HeNCE – Heterogeneous Network Computing Environment
	2.3.1.1. HeNCE Language and Paradigm
	2.3.1.2. The HeNCE Language Constructs
	2.3.1.3. Arc
	2.3.1.4. The Computation Node
	2.3.1.5. The Loop Begin and Node End Nodes
	2.3.1.6. The Conditional Begin and Conditional End Nodes
	2.3.1.7. The Fan Nodes
	2.3.1.8. The Pipeline Nodes
	2.3.1.9. HeNCE Matrix Multiplication Example
	2.3.1.10. HeNCE Observations

	2.3.2 CODE – Computationally Oriented Display Environment
	2.3.2.1. CODE Paradigm
	2.3.2.2. The CODE Language Constructs
	2.3.2.3. UC (Unit of Computation) Node
	2.3.2.4. Call Node
	2.3.2.5. Input and Output Interface Nodes
	2.3.2.6. Creation Parameter Node
	2.3.2.7. Name Sharing Relation Node
	2.3.2.8. Arcs
	2.3.2.9. CODE Matrix Multiplication Example
	2.3.2.10. CODE Observations

	2.3.3 VPE – Visual Programming Environment
	2.3.3.1. The VPE Paradigm
	2.3.3.2. VPE Node Icons
	2.3.3.3. Compute Node
	2.3.3.4. Replication Box
	2.3.3.5. Port Nodes
	2.3.3.6. Call Node
	2.3.3.7. Input and Output Nodes
	2.3.3.8. VPE Matrix Multiplication Example
	2.3.3.9. VPE Observations

	2.3.4 ParADE –Parallel Application Development Environment
	2.3.4.1. The ParADE Paradigm
	2.3.4.2. The ParADE Notation
	2.3.4.3. General Purpose Actors
	2.3.4.4. Datapaths
	2.3.4.5. Source and Sink Actors
	2.3.4.6. Merge Actor
	2.3.4.7. Replicator Actor
	2.3.4.8. Loop Actor
	2.3.4.9. ParADE Matrix Multiplication Example
	2.3.4.10. ParADE Observations

	2.4 Related Work
	2.5 Closing Remarks

	Chapter 3 An Analysis of Visual Parallel Programming
	3.1 Introduction
	3.2 A Taxonomy of Visual Parallel Programming Languages
	3.2.1 Syntactic Elements of Visual Parallel Programming Languages
	3.2.2 Graph
	3.2.2.1. Graph Discussion
	3.2.2.2. Graph Examples

	3.2.3 Node
	3.2.3.1. Node Discussion

	3.2.4 Arcs
	3.2.4.1. Arc Discussion
	3.2.4.2. Arc Examples

	3.2.5 Node Syntactic Elements
	3.2.6 Node: Firing Rule
	3.2.6.1. Firing Rule Semantics
	3.2.6.2. Firing Rule Discussion

	3.2.7 Node: Inputs and Outputs
	3.2.7.1. Data Input Semantics
	3.2.7.2. Node: Inputs and Outputs Discussion

	3.2.8 Node: Program
	3.2.8.1. Node Program Semantics
	3.2.8.2. Node Program Discussion
	3.2.8.3. Node Program Examples

	3.2.9 Node: Output Token Production Rule
	3.2.9.1. Output Production Rule Semantics
	3.2.9.2. Output Production Rule Discussion
	3.2.9.3. Output Production Rule Examples

	3.2.10 Support for Modes of Parallel Execution
	3.2.10.1. Parallel Execution Mechanisms
	3.2.10.2. Parallel Execution Mechanisms Discussion
	3.2.10.3. Parallel Execution Mechanisms Examples

	3.3 Development Paradigm versus Execution Model
	3.4 Requirements for Visual Parallel Programming Languages
	3.5 Flow-Based Visual Parallel Programming
	3.6 Object-Oriented Development
	3.7 Summary

	Chapter 4 A New Paradigm and Language for Visual Parallel Programming.
	4.1 Introduction
	4.2 Parallel Object-Flow: A New Paradigm for Parallel Application Development
	4.2.1 The Parallel Object-Flow Development Paradigm
	4.2.2 The Parallel Object-Flow Execution Model
	4.2.3 Execution of a Parallel Object-Flow Application

	4.3 The Vorlon Programming Language
	4.3.1 Methods in the Vorlon Programming Language
	4.3.1.1. Arc
	4.3.1.2. Replicate and Merge Nodes
	4.3.1.3. Computation Node
	4.3.1.4. Parallel Computation Node
	4.3.1.5. Conditional Computation Node
	4.3.1.6. Graph Start and Halt Nodes
	4.3.1.7. Literal Source
	4.3.1.8. Attribute Source
	4.3.1.9. Object Interface Source Node
	4.3.1.10. Loop Node
	4.3.1.11. New Object Node and Constant New Object Node
	4.3.1.12. Method Call Node
	4.3.1.13. Parallel Method Call Node
	4.3.1.14. Comments

	4.3.2 The Vorlon Class Model
	4.3.3 Built-in Types, Primitives, and Library, and Array Support

	4.4 Summary

	Chapter 5 Experimental Performance Results and Analysis
	5.1 Introduction
	5.2 Software Support - The NIP Parallel Run-Time System
	5.3 Code Generation
	5.4 Experimental Environment
	5.5 Matrix Multiplication
	5.5.1 Aims
	5.5.2 Experimental Method
	5.5.3 Matrix Multiplication Performance Results
	5.5.3.1. Shared Memory Multiprocessor
	5.5.3.2. Uniform Cluster
	5.5.3.3. Ad-Hoc Environment

	5.5.4 Matrix Multiplication Conclusions

	5.6 Parallel Compilation System
	5.6.1 Aims
	5.6.2 Experimental Environment
	5.6.3 Experimental Method
	5.6.4 Parallel Compilation System Performance Results
	5.6.4.1. Shared Memory Multiprocessor
	5.6.4.2. Uniform Cluster
	5.6.4.3. Ad-Hoc Environment

	5.6.5 Parallel Compilation System Conclusions

	5.7 Summary

	Chapter 6 Reflections on the Vorlon Language
	6.1 Introduction
	6.2 Applying the Taxonomy Criteria to Vorlon
	6.2.1 Graph
	6.2.2 Nodes
	6.2.3 Arcs
	6.2.4 Node: Firing Rule
	6.2.5 Node: Inputs and Outputs
	6.2.6 Node: Program
	6.2.7 Node: Output Token Production Rule
	6.2.8 Support for Parallel Modes of Execution
	6.2.9 Notable Omissions from the Vorlon Language
	6.2.9.1. Pipelined Parallelism and Related Syntactic Elements
	6.2.9.2. Streaming Nodes and Streamed Graphs

	6.3 Software Engineering Issues from the Experiments
	6.4 Syntactic and Semantic Improvements for Vorlon
	6.4.1 Improvements for Current Language Syntax
	6.4.2 Possible Future Additions to and Removals from Vorlon

	6.5 Closing Remarks

	Chapter 7 Conclusions and Further Thoughts
	7.1 Overview
	7.2 Reflections on Software Engineering Aspects
	7.3 Vorlon Language Issues
	7.4 Performance Results
	7.5 Future Work
	7.6 Closing Remarks

	Appendix A Development of a Parallel Compilation System
	A.1 Introduction
	A.2 High Level Analysis
	A.3 Application Design
	A.4 Implementation
	A.4.1 The Main Class
	A.4.2 The Project Class
	A.4.3 The Compiler Class
	A.4.4 The SourceFile Class
	A.4.5 The List and ListNode Classes
	A.4.6 The String Class

	A.5 Summary

	References

