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Abstract 

Developing software for parallel architectures is a notoriously difficult task, 

compounded further by the range of available parallel architectures. There has been little 

research effort invested in how to engineer parallel applications for more general 

problem domains than the traditional numerically intensive domain. This thesis addresses 

these issues. An object-oriented paradigm for the development of general-purpose 

parallel applications, with full lifecycle support, is proposed and investigated, and a visual 

programming language to support that paradigm is developed. This thesis presents 

experiences and results from experiments with this new model for parallel application 

development. 
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Chapter 1 Introduction 

Parallel computation is a vast discipline with researchers and practitioners 

involved in a bewildering array of projects, unified by the common goal of 

achieving rapid computation. The vastness of the field and the many complex 

interrelations between its subdivisions means that research in parallelism often 

transcends several areas of work. This thesis is no exception. 

It is certainly accurate to suggest that for a piece of research to be successful, it 

must not solely focus on one key area, but draw upon related research areas to gain 

depth and context. To this end, this chapter introduces the main focus of the 

research, visual parallel programming, and sets the context for the importance of 

this technique in terms of both technological and economic issues pertaining to 

today’s and tomorrow’s parallel computing world.  

1.1 An Overview of Parallel Computing 

As society evolves, it places an ever-increasing dependence on, and demands more 

power from, its computing systems. One way in which researchers are tackling the 

requirement for increased computing power is through the application of parallel 

processing. Parallel processing is the act of executing streams of instructions 

simultaneously with the intention that concurrent execution will decrease the amount of 

time taken to complete a computational task compared to the same program running on 

a single CPU. The ratio of decrease in computational time compared to a sequential 

application is known as speedup, and is fundamental to the entire discipline of parallel 

processing. 

Though the performance benefits of parallel computation are potentially very 

attractive, parallel programming itself remains a notoriously difficult mode of 

computation to achieve. Simplistically, it seems reasonable to assume a linear relationship 

between the number of processors available to solve a problem, and the speedup which 

is attained. It is unfortunate that in practice such optimal speedups cannot be achieved. 

Amdahl’s Law {Amdahl 1967} formalises the maximum speedup attainable as follows: 
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If N is the number of processors, s is the amount of time spent by a serial processor on 

serial parts of a program and p is the amount of time spent by a serial processor on parts 

of the program that can be done in parallel, speedup is given by the following: 

N
ps

psSpeedup
+

+
=

 

Speedup is measured as the ratio between the total time taken for the serial program to 

complete and the total time for the hybrid serial-parallel program to complete. 

Amdahl’s Law demonstrates the primary obstacle between a problem domain and the 

goal of a high-performance parallel application, in that certain parts of the problem may 

not be parallelism-amenable. Unfortunately, Amdahl’s Law is not the only barrier; indeed 

it is only the very tip of the iceberg. Assuming that a reasonable proportion of an 

application is amenable to parallelism, which is not always the case, extracting and 

utilising that potential parallelism is often a non-trivial task.  

In addition to Amdahl’s Law, several other factors which complicate the task of 

developing parallel applications have been identified. Most significantly the tasks of co-

ordinating the exchange of information between the multiple processors in a parallel 

machine, known as communication, and ensuring that communication occurs at the 

correct time, or synchronisation, are recognised as being key problem areas in the 

construction of parallel software. Failure to optimise the communication and 

synchronisation pattern between concurrent tasks will lead to poor application 

performance, and in the worst case render parallel applications slower than their serial 

equivalents. 

It is not only the fact that communication and synchronisation patterns within an 

application are often difficult to understand, but the fact that the implementation of 

those patterns is often highly intricate and by necessity platform-dependent. To support 

the exploitation of parallel hardware, each platform provides the developer with a set of 

primitives which support communication and synchronisation abstractions specifically 

for that platform. Once an application is written for a specific platform, porting it to 

another platform offering different facilities may be non-trivial. Even if the application is 

to be ported between two broadly similar architectures, there still exists the problem of 

substituting one set of parallelism directives from the first architecture with those of the 
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second. To make matters worse, if the architectural differences are substantial, such as 

moving from a shared to a distributed memory platform, the entire application may have 

to be re-written, or in the worst case porting the application may be completely 

infeasible. 

The problems of efficiency, portability and ease of implementation associated with 

programming a wide variety of parallel machines have not gone unaddressed by 

researchers within the parallelism community. The creation of source code which is both 

portable and provides efficient execution over a wide variety of parallel platforms 

remains an active research topic. Currently three solutions to the problem are popular 

{Allen 1998}: 

 Automatically parallelising compilers for existing sequential 

languages; 

 New parallel languages; 

 Parallelism extensions to existing sequential languages, including 

parallelism libraries such as PVM/MPI. 

Whilst each of the approaches provides some benefits, and ultimately provide some 

abstraction from the underlying parallel hardware, it is believed that even these methods 

do not sufficiently abstract the complexity inherent within a parallel computer, or do not 

exploit sufficient parallelism {Allen 1998}. The main drawback with using such methods 

is that the developer either has to be content with relatively simple forms of parallel 

activity such as those provided by parallel compilers, or explicitly program all parallel 

activity using language keywords or library calls. Using the compiler option may not 

necessarily yield an optimal parallel application, since such compilation techniques are 

only sufficiently advanced to extract simple data-parallel, or iterative activity. That is not 

to say that such tools are without merit, indeed in situations where loop or data-parallel 

activity is predominant, such tools would be able to achieve speedups with no further 

user intervention. If the problem domain contains more subtle forms of parallel activity, 

such as pipelined or task parallelism, then the compiler method is much less appropriate. 

Instead, it is likely that the developer will be charged with the identification and 

specification of parallelism, making use of language constructs as in the case of 

parallelism oriented languages, or making library calls in the case of a sequential language 

augmented by parallelism facilities. 
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The common difficulty in applying any of the current textual programming solutions 

to implement parallel applications lies in the fact that the linear form of the source code 

does not intuitively represent the non-linear parallel control-flow within an application. 

The significant burden of conceptualising parallel control-flow within the application is 

placed on the developer. Experience has demonstrated that the act of programming is 

itself intellectually demanding without the encumbrance of parallel control-flow and 

concurrency control mechanisms being added. Parallel applications development 

currently relies heavily upon the individual skills of the parallel programmer to manage 

the extra intellectual workload, and is fraught with potential pitfalls, making development 

slow and complicated. However, despite the inherent drawbacks to developing parallel 

applications, the demand for parallel software is set to increase rapidly in the coming 

decades, driven by increasingly performance dependent scientific and general-purpose 

computing applications. 

1.2 Parallel Computing Drivers 

Notwithstanding the difficulties associated with parallel computation, the need for 

very high performance computing facilities is already significant and set to increase. 

Members of the scientific and engineering communities have been able to absorb every 

performance increase that computing research has managed to win, for larger and ever 

more accurate numerically oriented applications. Interestingly, even desktop computer 

users have recently begun to require increasing hardware capabilities to run increasingly 

computationally intensive application and entertainment software. Whilst scientific and 

desktop users have historically formed distinct groups, both now have the common 

requirement for increased computational capacity, though they remain distinct from an 

economic viewpoint. 

In the past the scientists and engineers have been able to increase the power of their 

computing systems by investing significant sums of money in specialised high-

performance computing equipment. Conversely, desktop users have been supported by 

steady increases in the power of personal computers, and secured much reduced pricing 

due to market economics. Where the two groups differ is that scientific users are used to 

exploiting multiprocessor hardware to solve typically numerically-oriented problems with 

well known algorithms and requirements using parallel processing, whereas personal 

computer users have been using functionality-rich software on single processor systems 

to support a variety of tasks. Unlike the scientific community, developers of personal 
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computer applications have not yet embraced parallel computing technologies to 

facilitate a continued increase in software response and functionality. 

Whilst the scientific community is implicitly prepared for the future from a 

technological viewpoint because parallel computing technology is already commonplace, 

the same cannot be said for the personal computing domain. Conversely, the personal 

computer users are already accustomed to utilising off-the-shelf hardware, an approach 

which remains uncommon in scientific computation. However, what is certain is that 

these two disjoint approaches must converge. Many scientific users can no longer afford 

to fund powerful proprietary architectures upon which to execute calculations, and by 

the same token no longer can the personal computer users be satisfied with a single 

commodity processing unit. This convergence of requirements by the two parties has set 

us along the path to parallel computation. 

1.3 Moore’s Law and the Road to Parallel Computing 

Alongside the social drivers applying pressure to the computing community, 

economic factors have also forced a great deal of change. Perhaps the single most 

important economic factor currently impacting the discipline of computing is Moore’s 

Law. In 1965, Gordon Moore made the observation that the number of transistors that 

could fit on a single silicon-based integrated circuit had doubled approximately every 

eighteen to twenty-four months {Moore 1965; Moore 1998}. Moore’s First Law as it is 

now more commonly known, has been somewhat reinterpreted since it was first 

formulated and is now often cited as being the fact that computer hardware doubles in 

terms of performance every eighteen to twenty-four months. It has remained a 

remarkably accurate prediction, even some thirty years later as borne out by Figure 1-1 

below: 

 

Figure 1-1 Moore’s First Law 
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However, Moore himself has recently issued a warning as to the continued accuracy 

of his prediction {Moore 1997}. He notes that although there is no technical reason not 

to expect the First Law to hold, economic factors will eventually cause its breakdown as 

the capital outlay required to build each new generation of fabrication facilities increases. 

Moore predicts the breakdown in the First Law to occur at some point between 2010 

and 2020, whereupon it will be no longer economically viable to develop and release next 

generation integrated circuits as frequently as the industry has come to expect. This 

observation has been termed Moore’s Second Law {Moore 1997; Schaller 1997}, and its 

progress can be seen as the ogive in the figure below {Webber 1998}: 

 

 

Figure 1-2 Moore’s Second Law and the Origin of the “Software Stretch”  
Plotted on a linear scale, as opposed to the logarithmic scale of Figure 1-1, Figure 1-2 

shows the ogive-shaped curve of Moore’s Second Law intersected by a second, linear 

relationship. The linear relation illustrates the user expectation that technology will 

simply improve over time, and is a far simpler relationship than Moore’s: the user always 

requires that the functionality and response of computing systems improves – the next 

version of a software product should be both faster and more functionality rich. The 

relationship between Moore’s Law and user expectation is punctuated by five points on 

the graph each marking an event in modern computing history: 

A. Mainframe technologies are utilised in large corporations whilst 

minicomputers proliferate smaller companies. User expectation is low, and 

largely reconciled to a batch mode of operation. 

B. Personal computers begin to appear and gain in popularity over the use of 

timeshared systems. Users begin to expect interactivity with their 
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computing systems. At this point, personal computer systems although 

interactive are woefully underpowered. 

C. The first workstations with sufficient computational power to comfortably 

run graphical user interfaces and WIMP style applications appear. GUI-

based computing becomes the normal mode, though GUI interaction is 

often unresponsive. 

D. The raw computational power of computing hardware facilitates the 

production of highly functional and responsive software. For the time 

being, hardware power outstrips the computational requirements of all but 

the most demanding user group (the scientific and engineering users). 

E. Moore’s Second Law {Moore 1997} heralds the beginning of the 

“Software Stretch” {Webber 1998; Webber 2000}, where increases in 

hardware power become less frequent and profound. The functionality and 

response required by the users can no longer be supported solely in 

hardware. Software begins to bear the responsibility for meeting user 

requirements from a proportionally less powerful hardware base. In effect, 

the software is stretched between the falloff in computation power 

provided by uniprocessor hardware, and the relentless growth in 

expectation of the user base. 

Computing has ridden the curve of Moore’s First Law for some thirty years. Today, 

computing is in a time of plenty where, for the majority of users, the power of standard 

off-the-shelf hardware is more than sufficient. Nevertheless, as Moore’s Second Law 

begins to encroach, other methods of providing increased computing power in addition 

to gains in raw processor speed are needed. For this, the computing community looks 

towards its current generation of high-performance computer users for guidance, and 

finds that utilising parallel processing techniques could provide the necessary 

performance increases as the single-processor approach begins to falter. However, the 

software engineering methodologies endorsed by the current parallel processing users 

have been low-level, and largely unsuitable for general-purpose parallel application 

development, and hardware costs involved have been prohibitively expensive. If the 

computing community is to survive the onslaught of Moore’s Second Law, it will need to 

develop new technologies that bring the power of parallel computing into the domain of 
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mainstream software engineering practice, and crucially bring the cost of multiprocessor 

hardware further into the commodity price range. 

1.4 Affordable Parallel Platforms 

Access to parallel computing facilities has traditionally been the domain of universities 

and businesses with sufficient funding available to purchase expensive specialised parallel 

hardware. Even though computing hardware has increased in terms of power, whilst 

decreasing in terms of cost, specialist parallel hardware has remained enormously 

expensive. However, as technology has advanced, multiprocessor hardware has begun to 

move into the mainstream from two directions: downward from the expensive specialist 

parallel hardware, and upward from standard single-processor workstations {Sterling, 

Becker et al. 1998}. Perhaps most interestingly combinations of both technologies have 

been recently suggested.  

The network of workstations, or NOW, approach to providing affordable parallelism 

was the first of the new affordable parallel technologies to make headway. Building upon 

the increasing computational abilities of single processor workstations, and the ubiquity 

of computer networks, it is a logical step forward to use networked workstations together 

to solve computationally intensive problems. In fact the architecture, as seen in Figure 

1-3 below, had already been successfully used in massively parallel computing systems. 

The NOW approach offers the advantage that workstations can be used to provide 

scaleable parallel computing facilities for computationally intensive tasks for the price of 

commodity hardware. 
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Memory
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Memory

CPU

Memory

CPU

 

Figure 1-3 The Network of Workstations Architecture 

The downside of a NOW, or for that matter any other distributed architecture, is the 

difficulty of the associated programming model. Each CPU in a NOW has its own local 
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memory which is not directly accessible to any of the other CPUs. Instead, when data is 

to be exchanged between concurrent processes, explicit message-passing must occur 

between sender and receiver. As messages travel over an interconnection network, data 

rates are slow and latency is high; because of this, NOWs are suited to classes of 

applications where the ratio between computation and communication is low. That is to 

say, the NOW architecture is well-suited to problems which have a naturally large grain-

size.  

A much more recent arrival to the field of affordable parallel computing is the shared 

memory multiprocessor, or SMP, which can be seen in Figure 1-4. SMPs began their 

migration from large, high-performance mainframes into low-cost server platforms, in 

response to the need for high-performance workgroup-level servers. As market forces 

push the cost of SMP hardware downward, proliferation of SMPs to the desktop is to be 

expected within the short term making them a viable proposition as a personal computer 

for executing parallel applications {Kennedy, Bender et al. 1997}. 

Memory Memory Memory Memory

CPU CPU CPU CPU

backplane bus

 

Figure 1-4 A Typical Commodity SMP Architecture 

 
Though the SMP platform is generally limited to fewer processors than the NOW 

approach to parallel computing, SMPs benefit from a far simpler parallel programming 

model than the NOW architecture. Since all processors in an SMP share the same 

memory, moving data between concurrent processes is merely a matter of reading and 

writing between shared memory locations. Furthermore, using shared memory as a 

means of exchanging data between processes is not only simpler than the message-

passing approach, but is also quicker because of the low latency of memory access. Using 

a low-latency, high-bandwidth backplane bus to support communication permits SMPs 
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to efficiently exploit much more finely grained parallelism than the NOW architecture 

permits, since the relative cost of communication within an SMP is lower. However, it is 

this backplane bus which limits the number of processors that an SMP can comfortably 

accommodate, and for problems requiring vast computational power, the SMP 

architecture alone may not suffice. 

As SMPs make their way onto desktops and into clusters, the possibility of utilising a 

third affordable parallel architecture class emerges, such as that seen in Figure 1-5. In this 

hybrid class, networks of SMPs are used to provide the computing platform. This third 

approach, though rare at the moment, promises the same advantages as the NOW 

approach, but with potentially far higher performance. 
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Figure 1-5 A Possible SMP-NOW Architecture 

The hybrid architecture seen in Figure 1-5 is exciting in that it provides facilities for 

exploiting both medium-grained parallelism within individual (SMP) network nodes, and 

coarse-grained parallelism across network nodes. Unfortunately, the hybrid architecture 
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also inherits communication methods from both the standard NOW and SMP 

architectures, complicating programming as message-passing and shared-memory models 

of programming must be reconciled within a single application. 

Though it is clear that there are some significant problems to be addressed before 

affordable parallel platforms will become mainstream computing devices, the promise of 

high performance computing at a significantly reduced cost compared to that of 

specialist machines is highly attractive. That is not to say that performance of the 

affordable and specialist architectures would be comparable, as that is unlikely, but the 

cost effectiveness of affordable parallelism is certain to be a priority of those investing in 

such equipment. 

The effectiveness of the affordable parallel platform for parallel processing remains a 

function of the tool support provided to abstract away from the complexity and 

inefficiencies inherent within any of the three affordable architectures. There is no reason 

to think that affordable parallel platforms will succeed on their cost-effectiveness alone. 

If the true benefits of low-cost, high-performance computing are to be realised, suitable 

methods for developing software for such open platforms still need to be developed. The 

comparative level of comfort enjoyed by the software developers on proprietary parallel 

platforms, such as homogeneity and high-speed, low latency interconnection between 

processing nodes, is unlikely to be repeated by the affordable parallel platforms. Any 

applications development must acknowledge the complicated computing environment 

provided by affordable platforms, and mask their potential shortcomings. 

1.5 Visual Programming Techniques  

Since the advent of workstations with high-performance graphics capabilities, 

researchers have attempted to utilise visual techniques to improve application 

development. To date, a variety of graphics-based tools have been devised, from 

development environments for textual programming languages through to tools 

providing sophisticated graphical modelling facilities and pure visual programming 

languages. 

The success of graphical application development tools and the potential held by 

graphics-enabled workstations has not gone unnoticed by researchers within the 

parallelism community. Language developers noted that the complicated control flow 

behaviour exhibited by parallel programs could be more eloquently expressed graphically 

rather than textually. This axiom continues to underpin the development of visual parallel 
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programming languages, and several visual language implementations based upon flow-

like semantics have been developed as research prototypes. Typically, visual parallel 

programming languages consist of graphical objects interconnected by arcs which specify 

either control-flow or data dependencies between those objects. Where there are no 

interdependencies between objects, or a pipeline structure is present, parallel execution 

may occur. Thus, flow-based graphs provide a level of implicit parallelism which can be 

exploited without burdening the developer with the low-level programming detail. 

As well as providing a means of abstracting low-level programming details, visual 

parallel programming languages also provide an architecture-independent programming 

model. Often, a language will be designed to exploit particular architecture features, or 

provide language constructs to optimise away potential inefficiencies. The abstract, visual 

nature of the languages helps to prevent them from being closely coupled to any one 

particular architecture, and thus aids software portability. 

Nonetheless, current visual parallel programming languages do not provide the 

necessary level of abstraction required to build general purpose parallel software. Whilst 

they simplify the act of parallel programming, in that machine details can be effectively 

hidden from the developer, the programming models used by contemporary visual 

parallel programming languages support paradigms that are distinctly underpowered 

when considering the development of large-scale software projects. At best, the 

languages offer something akin to the procedural abstraction through visual black-box 

like mechanisms, whilst some do not even offer that level of abstraction, a topic which is 

explored in greater depth in Chapter 2. 

If visual parallel programming is to make the leap from niche research area into 

mainstream software engineering practice, the programming paradigms in use must grow 

from being simple value-passing between processes into something more abstract and 

powerful. Examining modern sequential software engineering practice, it is clear that the 

object-oriented paradigm, amongst others, has been cited as being a good example of a 

high-level software paradigm. When the object-oriented paradigm is compared to the 

predominant procedural abstraction used in visual parallel programming, it is clear that 

the paradigms supported by visual programming languages are immature. If visual 

languages are truly to flourish, they must adopt more highly abstract paradigms which 

support the development of software, from inception through to release and beyond. 
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1.6 The Object-Oriented Paradigm 

Whilst accepting that programming languages are of key importance to the process of 

software development, it must also be recognised that programming languages 

themselves are not a universal panacea. Indeed, when considering the lifecycle of any 

non-trivial software system, the actual implementation is but one of several important 

stages in the development of the application. What supports each of the stages is the 

underlying paradigm through which software is developed. 

It is clear that today in software engineering the object-oriented paradigm has gained 

considerable favour amongst software practitioners. The object-oriented paradigm 

provides a single, coherent approach that underpins all stages of the software 

development process from analysis through to maintenance. Supported by a powerful 

and unified paradigm, modern (sequential) software has been able to increase in size and 

complexity and yet remains, to a large extent, well managed and maintainable. 

Applying the same level of object-orientation to parallel application development has 

several important benefits. Object-orientation provides a powerful conceptual model 

with which a problem can be taken from inception through to release. All stages of the 

software lifecycle can be conceptualised in a completely machine-independent fashion, 

permitting the developer to concentrate upon getting the software correct, rather than 

having to be concerned about low level machine-specifics. In short, the abstraction 

provided by the object-paradigm manages the complexity of software, and thus allows 

highly ambitious, complex software projects to be managed through to completion. 

Furthermore, the object-paradigm provides a structured method of re-use through the 

inheritance mechanism. Re-use is particularly valuable when considering the increased 

cost of producing robust parallel code, and the potential to introduce bugs into an 

application when adding new routines – a problem which is exacerbated by the 

complicated nature of parallel code.  

Object-orientation provides a further useful abstraction to the parallel application 

developer, in that objects themselves are a natural unit of parallelism. Traditionally, 

parallel programs have been written with a data-centric mindset, where the problem is 

viewed as a single data set which is partitioned, operated upon in parallel and recombined 

to recover a solution. Objects encapsulate this behaviour in a much more abstract 

fashion. As parallelism can be achieved through concurrent method invocation on 

several objects, as well as within an object’s methods, the user is not forced into a low-
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level parallelism-oriented view of a system, yet the potential for extracting parallel activity 

remains. Instead the decisions about the parallel activity are made at the design stage, 

where types are developed to provide problem domain abstractions and encapsulate 

parallel behaviour. 

The object-oriented paradigm has been shown to work for serial application 

development, and offers some potentially attractive benefits for the parallel application 

developer. Although object-orientation constitutes a highly useful programming model, 

textual object-oriented programming does not offer assistance in managing the control-

flow complexity of parallel applications. If object-orientation is to be successfully applied 

in producing high-performance parallel applications, programming environments which 

support the paradigm must also be able to abstract parallel activity. It is this hypothesis 

which suggests that an object-oriented visual parallel programming language could be an 

invaluable tool in producing software for the parallel machines of the future, and 

consequently is the main topic of this thesis. 

1.7 Research Goals 

The aim of the research is to investigate methods for the construction of parallel 

software and to develop new approaches for building general-purpose parallel 

applications, utilising parallel computing facilities composed from off-the-shelf 

computing and networking equipment. The objectives of the work undertaken were: 

 to provide an architecture-independent programming model, and in 

particular enable the exploitation of parallelism from affordable 

parallel platforms, 

 to exploit parallelism in as natural a fashion as possible, without 

forcing the developer into a data-centric mode of computation, 

 to enable the development of general-purpose parallel applications, 

 to support the non-specialist developer in producing high-

performance parallel applications, 

 to produce a programming language with the facilities to abstract 

complicated parallel activity and computation platforms using 

computer graphics. 
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1.8 Summary 

This chapter has introduced some of the basic concepts and terminology of 

parallelism, and provided a justification for parallelism based upon Moore’s Laws. The 

problems facing the software community because of the impact of Moore’s Second law 

have been discussed and potentially valuable techniques for alleviating the “Software 

Stretch” have been identified. Furthermore, the problem of developing general-purpose 

applications has been described, and object-oriented development offered as a suitable 

paradigm through which parallel applications could be developed. 

The following chapters each build upon and refine the basic concepts developed here. 

Chapter 2 presents a survey of visual parallel programming tools. It describes current 

research efforts in visual parallel programming, and discusses the range of abstractions 

available in contemporary visual parallel programming systems. 

Continuing from the survey results of the second chapter, Chapter 3 presents a 

detailed analysis of visual parallel programming. The analysis consists of a discussion on 

execution and programming models, a taxonomy of key features of each of the languages 

surveyed, and proceeds to develop requirements for future languages. 

Chapter 4 introduces the Parallel Object-Flow paradigm which is a novel 

methodology for object-oriented parallel programming, that seeks to address 

shortcomings in contemporary parallel programming methodologies by reinforcing them 

with object-orientation as a software development model. Additionally, it presents a new 

language for visual parallel programming,  called Vorlon, which implements the Parallel 

Object-Flow paradigm. The syntax semantics of the Vorlon language are described 

alongside a discussion on the architecture of a Vorlon application. 

In Chapter 5, the step-by-step development of two Vorlon applications presented.  

The development of each application is performed in stages from high-level analysis and 

design through to release, and performance characteristics of the final applications are 

also presented and analysed. 

Evaluation and conclusions on the success of developing with Vorlon are given in 

Chapter 6. Problems with the language are discussed and possible solutions to those 

problems are offered. The overall validity of the Vorlon approach is debated with respect 

to the taxonomy criteria that previous visual parallel programming languages were subject 
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to, and a number of conclusions about software engineering aspects of Vorlon are drawn 

up. 

Chapter 7 finalises the thesis. It considers current and likely future practice in parallel 

programming in light of the experience with Vorlon, and presents a number of 

suggestions for future work. Furthermore a discussion as to which aspects of visual 

parallel programming languages should be retained and which should be left out is 

offered before some closing remarks are presented. 
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Chapter 2 Visual Parallel Programming Languages 

The concept of visual parallel programming languages, using computer graphics 

to develop parallel programs, is relatively young, stretching back no further than a 

decade. Even so, significant research effort has been invested in the development 

of graphical methods for parallel programming. However, there are other tools in 

contemporary computing science competing for the attribute “visual.” In order to 

clarify the situation, it is necessary to dispel programming technologies often 

considered to be visually oriented (through clever brand management), and 

understand in detail the underlying philosophy of true visual application 

development. Once the core visual parallel programming issues have been 

separated, the task of identifying features within those technologies is simplified, 

and accelerates the process of building on those languages’ strong points. 

2.1 Introduction 

This chapter begins by introducing the discipline of visual programming, covering 

both the fundamental principles of the field, and the impact of visual programming 

techniques on mainstream software engineering. The discussion then turns to the 

application of visual programming techniques to developing parallel applications and a 

survey of four earlier research projects in the field of visual parallel programming is 

presented. The survey presents, the development paradigm, execution model, and 

language syntax and semantics from each of the four surveyed languages, and an example 

application written in each of the languages. Drawing upon experience in developing 

with the surveyed languages, the chapter concludes by offering an informal critique of 

the languages as a whole, and identifies the need to formalise language characteristics in 

order to further extract useful concepts. 

2.2 Visual Programming 

Since computers became sufficiently powerful to support user interaction through 

graphical user interfaces (GUI), researchers have attempted to harness that same ease-of-

use offered by GUIs to simplify the process of programming the machines themselves. 

To this end, a variety of graphics-based solutions have been developed, from enhanced 

GUI-based textual code editors through to languages with purely visual syntactic 

elements. The underlying principle of all of the graphics-based software engineering tools 



Visual Parallel Programming Languages 

 36 

is similar, regardless of the degree to which computer graphics has been applied: to 

simplify the act of building software. 

Though modern (sequential) software continues to grow rapidly in terms of in size 

and complexity, the potential to simplify software construction should hold particular 

appeal to the developers of parallel applications whose software complexity far exceeds 

that of sequential software developers. It is hoped that if visual language techniques can 

truly deliver on their promise to simplify application development, parallel programmers 

may reap the rewards. However, it is by no means certain that current visual software 

engineering tools, including visual languages, are sufficiently well developed to deliver on 

that promise. 

2.2.1 Visual Development Environments 

More so than any point in the past, the adjective “visual” adorns a multitude of 

software engineering tools. In many cases the prefix does not refer to using a graphical 

syntax with which to program, but instead to the fact that software projects can be 

managed using graphical tools, and cosmetic details such as the appearance of an 

application’s user interface can be constructed in a graphical environment. 

Experience has demonstrated that graphics-enhanced software engineering tools 

provide significant productivity gains over their textual counterparts. The richness of 

information conveyed by good use of computer graphics is invaluable in giving the 

developer a better understanding of the construction of the application. Whilst it is true 

that there are few fundamental differences in methodology between the techniques used 

in a purely text-driven environment and the graphics-enabled versions, graphical tools 

are often simply easier to use. Even integrating several traditional tools behind a single 

consistent graphical interface, such as integrating a compiler and debugger with a source 

code editor, provides a far richer programming environment than the sum of the 

individual parts.  

Though valuable, graphics-enhanced development environments do not themselves 

constitute a complete solution to the problems of producing high-quality software 

systems. Indeed, such environments are merely tools in the software engineer’s toolkit, 

and whilst software engineering tools are certainly of a higher quality today than at any 

other time in the history of software, tools alone are only one aspect of a complete 

software engineering solution. What is actually required is a combination of a paradigm 
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through which to conceptualise a problem domain, and high-quality software engineering 

tools and techniques which may draw upon computer graphics for support. 

Even with considerable support in terms of paradigms and software engineering tools, 

the fact remains that the level of abstraction offered by textual programming languages is 

low. Whilst modern textual languages support paradigms which are themselves highly 

abstract, actual source code remains at a low level of abstraction. Software engineering 

paradigms have evolved over the years, and now endorse highly abstract software models 

and programming languages, and are supported by sophisticated visually enhanced tools, 

and yet have remained at the same low-level of syntactic abstraction since their inception. 

Realising that attaining a further level of abstraction at the source code level may 

prove to be valuable, researchers have begun to look past merely wrapping textual 

programming tools in graphical support, and begun to focus considerable effort on 

applying graphics to software development from the ground up. As the power of 

workstations has increased, the software community has begun to realise that the 

application of visual programming techniques may no longer be a pipe dream. 

2.2.2 Visual Programming Languages and Techniques 

Like graphics-enhanced textual programming environments, visual programming 

languages and their graphical environments also constitute one part of some larger 

development methodology. Unlike textual programming, visual programming offers 

abstraction not only through the underlying paradigm, but also at the source code level 

where previously, in textual programming there was little support. 

The field of visual programming is underpinned by the axiom that in some cases, an 

iconic representation of program behaviour is better than a textual representation, 

though the extent to which this concept is applied varies between languages. At opposite 

ends of the spectrum, there exist languages whose syntax is purely visual, and languages 

which mix visual syntax with textual. Visual languages themselves may be further 

classified into general-purpose and application-specific forms, where the general-purpose 

languages tend to be of the hybrid style, whilst application-specific languages tend 

towards being more purely visual. The choice of one style of visual language over 

another thus depends upon the target application area and the availability of a suitable 

visual programming language. 

The great advantage of visual programming is the additional level of abstraction that it 

offers. Visual programming is one way in which low-level primitives can be abstracted 
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away from the developer, which in turn frees the developer to concentrate upon higher 

concerns such as ensuring the correctness of the application rather than investing effort 

in low-level programming detail. 

Unfortunately, though they brim with potential, visual programming techniques are 

still rather immature. There is a wide variance amongst visual languages which suggests 

that the field has not settled on any particular style, and opinion on their overall value to 

the field of software engineering remains diverse {Whitley 1997}. 

Concerns over the migration from textual to visual programming are similar to that 

observed during the migration from assembly code programming to textual high-level 

languages. Developers are comfortable with current programming methods, and are 

often reluctant to experiment with what amounts to an unknown quantity, especially 

since current textual programming techniques appear to be delivering. 

Having acknowledged that excellent results are being produced by software engineers 

world-wide, the higher level of abstraction offered by visual programming techniques 

may be considered superfluous to the current needs of developers. Though the 

complexity of the software may be high, the ability to manage complexity is well within 

the ability of text-based programming given a suitably simple execution platform such as 

a uniprocessor computer. However, when developing applications for parallel computing 

platforms, it is apparent that textual programming can be extremely difficult. 

2.2.3 Visual Parallel Programming 

The field of visual parallel programming seeks to address the problems traditionally 

associated with developing software for multiprocessor computers, namely the enormous 

complexity of building parallel applications. The rationale behind visual parallel 

programming is simple: parallel applications exhibit high levels of control-flow 

complexity; that complexity in turn can be managed through abstraction, and visual 

programming techniques provide a more abstract language syntax than textual 

programming. 

The goal of visual parallel programming languages is to encapsulate low-level 

concurrency control primitives and abstract architectural details using a visual syntax, 

whilst ensuring that run-time efficiency of the parallel application is not seriously 

compromised. Once low-level concerns such as concurrency control and machine 

architecture are removed from the developer’s workload, and efficiency issues addressed 

automatically by the language or compilation system, development effort can be focussed 
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ensuring that the application meets its specification. This in itself is a major step forward 

for the parallelism community who, until now, have spent a great deal of effort in dealing 

with precisely such issues and which certainly are not primary problem domain 

considerations. Free from the burden of low-level detail, developers should be able to 

target increasingly ambitious software projects which need the performance increases 

offered by a parallel mode of computation. 

It is not therefore unreasonable to assume that applying visual programming 

techniques to parallel programming may yield programming techniques which support 

highly abstract, machine independent methods for developing general-purpose parallel 

applications. However, as with mainstream visual programming technology, visual 

parallel programming may not yet have reached that goal. Indeed, it is becoming 

increasingly clear that current visual parallel programming systems have a significant 

amount of ground to cover before general-purpose parallel application development 

becomes possible. 

2.3 A Survey of Visual Parallel Programming Tools 

This section introduces four visual parallel programming tools from recent research 

projects. For each tool this section presents: the authors abstract; a discussion of the 

programming paradigm used; and a review of the visual syntax. Furthermore, a simple 

parallelism-amenable problem, matrix multiplication, is completed in each of the 

languages and a discussion on the experience of developing with each is presented. 

2.3.1 HeNCE – Heterogeneous Network Computing Environment 

HeNCE, Heterogeneous Network Computing Environment, is a graphical parallel 

programming environment. HeNCE provides an easy to use interface for creating, 

compiling, executing and debugging parallel programs which run under the PVM system. 

HeNCE programs can be run on a heterogeneous network of UNIX 

workstations.{Beguelin, Dongarra et al. 1994} 

2.3.1.1. HeNCE Language and Paradigm 

The HeNCE development paradigm takes the view that a parallel application is 

composed from a set of computational tasks related by a set of control-flow 

interdependencies. In HeNCE, both computational tasks and control-flow dependencies 

are represented graphically, where computation takes the form of nodes and control-flow 

dependencies take the form of arcs connecting nodes on a graph. In addition, HeNCE 
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provides a number of special node types, which in combination with the graph arcs, 

direct control-flow within an application. 

Parallelism, essentially being a sophisticated form of program control-flow, is also 

managed graphically by HeNCE. Implicit parallelism is available wherever there exist no 

control-flow dependencies between computations, allowing any task-parallelism within 

an application to be exploited without explicit programmer intervention. Conversely, 

parallelism may be explicitly induced in HeNCE applications using the data-parallel and 

pipelining abstractions provided. The crux of the matter is that whether parallelism is 

implicit within the structure of an application, or explicitly invoked by the developer, no 

system-level features are exposed to the developer – all parallel activity is expressed in a 

highly abstract graphical form. 

In addition to the graphical specification of parallel activity, HeNCE also provides a 

comfortable level of abstraction from the underlying parallel machine, in that the low-

level concurrency issues such as locking and synchronisation are implicit within the 

structure of a HeNCE graph. Although nodes in a HeNCE program operate in a 

synchronous fashion, the overall execution of a HeNCE program is asynchronous, in 

that there is no global timing mechanism which governs execution – the only condition 

for the execution of a node is the completion of its predecessors. The consequence of 

this mode of operation is that execution can only be delayed by latent communication. 

The determinism of the program cannot be compromised by the unpredictable 

behaviour of the underlying network architecture. Thus, by applying graphical 

abstraction to the implementation of parallel applications, HeNCE affords developers 

the luxury of being able to concentrate on higher-level aspects of the program control-

flow structure, rather than low-level locking and synchronisation issues. 

Unlike the control-flow structure of a HeNCE application, computational tasks are in 

fact expressed textually. Within each of the computational nodes on a HeNCE graph, the 

developer embeds a call to an external program written in either C or Fortran. 

Bindings between graphical and textual objects in HeNCE are managed by an entity 

known as the node program. The node program is a piece of textual source code written 

in a HeNCE-proprietary language, which forms an interface between the textual and 

graphical aspects of an application. Since HeNCE arcs provide only control-flow signals, 

the node program also bears the responsibility for obtaining any data which the node 

requires in order to carry out its computational requirements. This data is kept in a 
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globally accessible space, and in order for a node to use a piece of that data, its node 

program must be specified to obtain it. 

At runtime, the mapping between the logical parallelism inherent within a HeNCE 

application, and the physical parallelism offered by the underlying network of 

workstations architecture is controlled by a mechanism known as the cost matrix, and 

allows HeNCE applications to take advantage of the underlying network-centric parallel 

architecture. The cost matrix is a static data structure which the developer specifies at 

compile-time, containing the relative costs of running each computation in the 

application on each of the available processors, or even architecture classes, in the 

underlying network multiprocessor. Using knowledge of the likely power and loading of 

nodes on the network, the developer can bias an application in favour of more powerful 

architecture types, or less heavily loaded hosts. A further burden managed by the 

HeNCE system is that for each of the architecture classes that appear in the cost matrix, 

HeNCE assumes the responsibility for compiling and distributing binaries of the user-

specified textual computations to each workstation in the cluster. 
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2.3.1.2. The HeNCE Language Constructs 
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Figure 2-1 The HeNCE Node Icons 

2.3.1.3. Arc 

The arc in HeNCE describes a control-flow dependency between two nodes, where 

the node at the tail of an arc must have completed its execution before the node at the 

head of the arc can begin. Note that in HeNCE, graphs are read bottom-upwards which 

is why an arc’s head is (somewhat counter intuitively) above its tail. 

2.3.1.4. The Computation Node 

The computation node is the fundamental building block of HeNCE programs. Each 

computation node contains a node program, which handles logistical aspects of the 

node’s execution, and the name of an external procedure written in C or Fortran to 

execute when the node becomes active.  The computation node is unique in HeNCE, 

since it is the only node type that is not specifically meant as a control-flow modifier. 
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2.3.1.5. The Loop Begin and Node End Nodes 

The loop begin and end nodes define a section of iteration within a HeNCE graph, 

much like a for loop in the C programming language. The computations declared in 

the nodes between the loop begin and loop end nodes are repeated whilst the condition 

in the loop begin node specification holds true. It is perhaps noteworthy that HeNCE 

does not provide a parallel loop execution strategy such as that offered by the HPF 

programming language {Koelbel, Loveman et al. 1994}. Instead, HeNCE looping is used 

purely for iteration – all parallel activity is initiated through fan or pipeline nodes, or is 

implicit within the control-flow structure of the program graph itself. 

2.3.1.6. The Conditional Begin and Conditional End Nodes 

The conditional begin and conditional end nodes provide an if-then clause in the 

control flow of the graphs. If the condition specified within the specification of the 

conditional begin node evaluates to true, the graph elements contained within the begin-

end node pair are executed, otherwise control flow moves directly to the successor(s) of 

the conditional end node. 

2.3.1.7. The Fan Nodes 

Pairs of fan nodes are used to delimit sections of data-parallel activity in a HeNCE 

graph. Copies of the nodes contained within fan node begin/end pairs are replicated and 

executed in parallel, with the intention that each set of parallel computations will 

manipulate a different set of input data. The overall partitioning strategy for the input 

data is determined by the node specification of a fan begin node, which may be 

determined either at compile-time or by runtime conditions. 

2.3.1.8. The Pipeline Nodes 

Pipeline nodes offer the second form of explicit parallel activity in the HeNCE 

language. A pipeline in HeNCE retains is common-use meaning, whereby data at each 

stage in the pipeline can be operated upon in parallel, whilst maintaining a particular 

sequential ordering. The number of steps, and thus the level of parallelism, in a pipeline 

is determined by the number of nodes in the area of the graph delimited by the pipeline 

begin and end nodes. 
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2.3.1.9. HeNCE Matrix Multiplication Example 

 

Figure 2-2 HeNCE Matrix Multiplication Example 

The diagram in Figure 2-2 shows the HeNCE graph for a very simple, parallel, matrix 

multiplication algorithm, as follows: 

 Two matrices are created. 

 One of the matrices is split into a series of row vectors. 

 Each row vector is multiplied with a copy of the second matrix in 

parallel. 

 The final matrix is assembled from the results of the matrix-vector 

multiplication. 

It should be noted that the algorithm employed is very crude. Firstly, the algorithm 

will fail if the matrices to be multiplied are not compatible. Secondly maximal parallelism 

(the parallel multiplication of individual matrix elements) has not been chosen for 

reasons of efficiency as the very fine granularity of multiplying two single matrix 

elements is difficult to exploit efficiently within the network of workstations architecture, 
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which is better suited to the exploitation of coarse-grained parallelism. With this in mind, 

the appearance of Figure 2-2 can be explained: 

1. One of the matrices is created, and passed to a successor for 

splitting into its component vectors. 

2. The same matrix, consisting of an array of floating point 

values is split into several smaller arrays, each representing 

one row in the original matrix. 

3. A second matrix is created in parallel with the first and is 

made available to its successor node. 

4. The fan out node distributes a copy of a whole matrix along 

with one unique row vector to each of its successor nodes. 

5. The data arrives at the matrix-vector multiplication node for 

processing in parallel. Multiple copies are executed in parallel 

by dint of the fact that the node which carries out the 

operation is contained within a fan begin and fan end node 

pair. Each of the replicated nodes performs a matrix-vector 

multiplication and produces a single row vector along with a 

row identifier, which is passed to its successor. 

6. The end fan out node collects the vectors produced by the 

matrix-vector multiplication node and passes them to its 

successor. 

7. The vectors produced by the end fan out node are assembled 

into a matrix, using their associated row identifiers to ensure 

correct placement, and the result is output. 

Whilst the graph clearly demonstrates the (parallel) structure of the program, it should 

be noted that the graph alone does constitute the entirety of the program. In addition to 

the construction of the graph, each of the nodes needs to be equipped with a node 

program, and the computations themselves need to be written. 

2.3.1.10. HeNCE Observations 

The originators of HeNCE suggest that it is non-exclusively geared to problems 

within the domain of computational science. HeNCE is intended to abstract away details 



Visual Parallel Programming Languages 

 46 

of underlying architectures, libraries and run-time systems thus alleviating the intellectual 

burden of handling low-level parallelism detail from the developer. 

Insofar as its aims reach, HeNCE is a successful language in that it allows for 

problems which are currently solved using low-level parallel programming to be solved at 

a higher level of abstraction from the underlying parallel architecture. However, the goals 

set by the HeNCE research project were somewhat lacking in ambition by today’s 

standards. That is not to say that HeNCE is a poor language, as it is not, but within the 

era from which HeNCE derives there was little to suggest that parallelism would be a 

tool for anything other than large, computational problems. As a result, HeNCE adopts 

the same low-level problem solving paradigm as any textual parallel-programming 

strategy from the same period, whereby problems are conceptualised as sequential 

processes, exchanging data from time to time, as typified by Hoare’s CSP language 

{Hoare 1985}. Such an approach necessarily presents the developer with a cognitive 

model close to that of the computing system (distributed memory, and message-passing). 

Whilst it is true that HeNCE abstracts the lowest level of detail, the locking and message-

passing primitives and so forth, the lack of a suitably highly abstract development 

paradigm to support HeNCE is its biggest downfall. Relying on a paradigm which itself 

in remarkably similar to the underlying parallel system seems almost self-defeating when 

the goal of HeNCE was to abstract that same system and manage implementation 

complexity. That being said, HeNCE is quite a suitable tool for expressing parallel 

applications whose structure is straightforward enough not to require highly abstract 

cognitive models. Indeed, where the communicating sequential processes view of a 

parallel application is sufficient to enable its construction, HeNCE is a valuable tool, 

allowing developers to concentrate on extracting as much parallelism as possible from 

the structure of the program, without the intellectual load of managing low-level detail. 

On a positive note, HeNCE supports an important aspect of parallel programming, in 

that it separates control-flow and computation. Whilst in imperative sequential languages 

it has been accepted that computation and control flow can exist within the same body 

of source code and even using the same syntax, in a parallel application the control flow 

may exhibit far more complicated behaviour than its sequential counterpart. In a HeNCE 

program, the parallel behaviour of the application does not pollute the actual source code 

for computations. As control-flow and computation are somewhat orthogonal issues, the 

complexity of both can be managed individually. 
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Where parallel control-flow problems are concerned, HeNCE receives a mixed 

response. On the positive side, the ability to exploit parallelism implicit within the 

structure of the graphs is a great bonus, in that tasks which are mutually exclusive are 

free to execute in parallel without explicit intervention by the user. On the negative side, 

pipelined parallelism must be explicitly induced since HeNCE has a control-flow 

execution model, where under normal circumstances all a nodes predecessors must have 

completed before subsequent nodes may execute. The HeNCE pipeline nodes allow this 

model to be circumvented, permitting successor nodes to execute whilst their 

predecessors are still themselves computing, but only within the graph area delimited by 

pipeline begin/end node pairs. To the graph containing the section of pipelined activity, 

the image of a strict control-flow model is maintained. However, in other languages 

pipelined parallelism is claimed to be implicit within the structure of the application, and 

as such provides the facility at no cost to the developer. Data-parallel activity in HeNCE 

is once again explicitly induced, though here the penalty on the developer is not 

significant, since HeNCE’s target computational problems (numerical analysis) often 

involve a great deal of data-parallelism, and it is often the case that data-parallelism is 

obvious for the developer to identify. Thus explicitly activating data-parallel activity in a 

HeNCE program is perhaps not an unreasonable burden for the developer, for whom 

the identification of data-parallelism is trivial, and for whom the implementation of data-

parallel activity is simplified through visual abstractions. 

Having said that HeNCE satisfies its goals comfortably, it does not satisfy them 

completely. HeNCE applications should, in theory, be portable across any architecture 

supporting the PVM {Geist, Beguelin et al. 1994} message-passing system, as HeNCE 

ultimately produces C/Fortran code containing PVM calls. In practice, things turn out to 

be a little more complicated. When a developer builds a HeNCE application, that 

application will run on the developer’s own target architecture. However, just because a 

set of workstations supports the execution of PVM tasks, this does not mean that all 

PVM clusters are architecturally identical, and in fact the reality is often far from that. 

There is little chance that an application written with one PVM cluster in mind will 

execute with the same performance characteristic on another cluster. At the very least, a 

new cost matrix will have to be constructed for each PVM cluster that a HeNCE 

application is ported to, at worst applications may need considerable changes in order to 

run efficiently. However, the reduced portability of HeNCE applications is not a 

function of the language syntax itself. Theoretically, HeNCE programs, because of their 
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graphical construction, could be made portable across a range of parallel architectures. It 

is the fact that HeNCE targets the PVM run-time system as its target architecture which, 

ironically, reduces its portability. 

Though the language is to be considered blameless for the fact that HeNCE 

applications are somewhat less portable than its name suggests, the language is to blame 

for introducing implementation work outside the scope of the problem domain. 

Moreover, the fact that each of the nodes in a HeNCE program requires a specification, 

which governs the control-flow logistics and bindings between text-level and graph-level 

objects, is detrimental. The addition of a third language component provides another 

route via which bugs could be introduced into programs, and although the language used 

to program each of the node specifications is simple, it is nevertheless an aspect outside 

the problem domain that a developer must contend with. 

A further shortcoming of the HeNCE language is the lack of facilities for source code 

management. Though HeNCE may seem amenable to and could benefit from some 

graphical function-call mechanism or similar black-box mechanism, it has not been 

equipped with such {Browne, Hyder et al. 1995}. If a particular application consists of 

many nodes then the HeNCE graph representing that program may become very large, 

and ultimately become so dense with information that continuing development becomes 

difficult. It is perhaps an obvious deficiency that even well known control-flow 

mechanisms, such as the procedure call abstraction, are missing. 

On a more positive note, HeNCE is supported by a useful post-mortem program 

animation facility as part of the development environment. The animation facility is 

useful in debugging and optimisation, providing an insight into both the activities of the 

program and the run-time system. From this, not only the high-level information about 

the program can be obtained, but also the low-level machine details are available, thus 

revealing both programming errors, and optimisations with respect to utilising the 

underlying hardware more effectively. The downside of this information is that the 

programmer must possess sufficient skill to make the optimisations required by the 

architecture, which itself may be non-trivial. 

Though far from perfect, HeNCE provides a useful starting point into the field of 

visual parallel programming. Its virtues and weaknesses have been observed by 

contemporary projects, and armed with this knowledge other researchers have attempted 

to build languages which address some of HeNCE’s shortcomings. 
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2.3.2 CODE – Computationally Oriented Display Environment 

The conceptual approach we have taken to providing a solution for the problem of 

programming MIMD parallel architectures is based upon raising the level of abstraction at 

which parallel structures are expressed and moving to a compositional approach to 

programming. The CODE 2.0 model of parallel programming permits parallel programs 

to be created by composing basic units of computation and defining relationships among 

them.  It expresses the communication and synchronisation relationships of computation 

as abstract dependencies and runtime determined communications structures can be 

expressed.{Newton 1993} 

2.3.2.1. CODE Paradigm 

The CODE model of parallel computation views a parallel application as a set of 

potentially parallel computational tasks whose execution ordering is determined by their 

natural data dependencies. In CODE, the structure of an application is described visually 

in terms of a set of computational elements and the data dependencies that exist between 

those computational elements. Computations, though themselves expressed textually in 

the C programming language, are visualised as nodes on a graph and data dependencies 

as arcs interconnecting those computational nodes. 

The CODE model of computation is interesting in that there exist no nodes which 

specifically deal with parallel control-flow aspects of an application. This has some 

profound implications for the way in which execution proceeds in CODE, in that the 

responsibility for routing data, and therefore overall control-flow in the application, rests 

with the Unit of Computation (UC) nodes (the basic computational element in CODE) 

and arcs. The way in which UC nodes manage such logistical aspects is through “node 

stanzas,” which describe a node’s interface in terms of number and type of input and 

output arcs. The node stanzas themselves can be made to co-operate with arc topology 

specifications, which are equivalent to node stanzas but specify arc behaviour, such that 

data from one node can be transmitted via an appropriate arc to an instance of another 

node. 

The upshot of this mode of execution is that data-parallelism must be explicitly 

induced by the programmer, who must write a consistent set of node stanzas and arc 

topology specifications to manage the distribution and recombination of data across the 

set of nodes involved in the data-parallel activity. On a more positive note, other forms 
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of parallelism (pipelining and task) are implicit within the structure of the application and 

occur as and when the natural data dependencies of the application allow. 

CODE retains a reasonably comfortable level of abstraction from the underlying 

parallel architecture with issues such timing and synchronisation being automatically 

managed. Additionally, CODE augments the dataflow programming paradigm by the 

inclusion of a subgraph-level shared memory abstraction. The shared memory 

mechanisms offered are valuable in that they support the construction of applications 

which are not easily modelled by value-passing. As with other low-level concurrency 

control mechanisms, access control to shared resources is handled automatically by 

CODE. 

The problem of mapping such high-level abstractions into efficiently executing 

parallel programs has been central to the CODE model of computation. CODE tries to 

balance the developer’s requirements of high levels of abstraction with the execution 

requirements of optimised machine code by using a proprietary translator. This incurs an 

overhead when compared to targeting a general-purpose run-time system such as PVM 

in that for each parallel architecture that CODE programs are to be executed upon, a 

new translator must be developed. However, the advantage of developing translators on 

a per-architecture basis is that features indigenous to particular architectures can be 

exploited to maximise the efficiency of program execution. Thus CODE allows 

programmers to enjoy the relative luxury of developing in an abstract, graphical 

environment, whilst, uniquely amongst the surveyed tools, offering the capability of 

producing platform-optimised executable programs. 
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2.3.2.2. The CODE Language Constructs 

 

UC Node 
Call Node 

Input Interface Node Output Interface Node 

Creation Parameter Node Name Sharing Relation Node 
 

Figure 2-3 CODE Language Icons 

2.3.2.3. UC (Unit of Computation) Node 

The Unit of Computation, or simply UC, node is the fundamental building block 

within the graphical component of the CODE language. UC nodes represent sequential 

computations which may potentially execute in parallel, data dependencies permitting, 

promoting the exploitation of parallelism at the sub-routine level {Newton 1993}. 

As is the case with other node types in CODE, each UC node within a graph is 

explicitly programmed with a set of node stanzas using a declarative style textual 

programming language. Here, the node stanzas are responsible for determining under 

which conditions the node’s computation may execute (selecting which of the input 

ports containing data will invoke the node through the firing stanza), where the results of 

the computation will be sent, and binding graph-level constructs to local variables. The 

set of stanzas may also contain a computation written in a subset of the C programming 

language, or alternatively contain a procedure call to an external C program where the 

full expressiveness of the C language is required to implement the computation. It is 
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noteworthy that nodes are stateful, in that local variables defined in nodes retain their 

values between each activation of the node, with similar semantics to static variables in 

the C language. If required, the initial state of variables local to a node can be set before a 

graph is executed via the inclusion of an appropriate clause within that node’s stanza. 

2.3.2.4. Call Node 

A typical CODE program may be composed of a number of intercommunicating 

graphs, arranged hierarchically. The call node is used as an interface between the graphs 

from which an application is composed. Graph calls made via a call node exhibit 

identical semantics to any other node in a CODE program. Thus no special measures 

need to be taken, even though activating a call node may cause the execution of an entire 

sub-program. The call node is analogous to a function call in sequential programming 

languages, and as such can be used in a similar fashion, including the ability to make 

recursive calls to the same graph. 

Using call nodes and sub-graphing allows applications to be constructed in a 

structured fashion from components. Provided the interface to each of the components 

is known and adhered to, there is no reason why library components, and components 

from other developers or projects cannot be re-used with no change to the overall 

semantics of the execution model. Furthermore, a procedure-call abstraction mechanism 

can be used as a tool for managing software complexity and allowing top-down 

decomposition of a problem domain, which is valuable. 

2.3.2.5. Input and Output Interface Nodes 

Input and output interface nodes only appear when an application is composed from 

multiple CODE graphs. The function of input and output interface nodes is to provide a 

binding between arcs from a calling graph into the called sub-graph and back again. At 

the sub-graph level the interface nodes are visualised simply as local data sources and 

sinks. When a sub-graph is called through a call node, values pass from the input 

interface node into the main body of the graph where the computation occurs. Similarly, 

the output interface nodes provide a means of returning values from a sub-graph to 

outgoing arcs on the calling graph’s call node. 

The benefit provided by the use of input and output interface nodes is that 

components of an application can be developed independently, with the set of input and 

output nodes providing each component with its own environment. This in turn 
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decreases coupling between nodes and as such increases the scope for potential re-use of 

an application’s code base. 

2.3.2.6. Creation Parameter Node 

The creation parameter node is a shared-memory abstraction whose purpose is to 

allow CODE graphs to be parameterised at their instantiation. The values held in the 

creation parameter nodes act as read-only variables within the scope of the graph within 

which they are declared. Though each creation parameter node must be bound to a 

dataflow arc from the calling graph, only the first value which arrives along that arc will 

be retained and shared by the rest of the graph. Any subsequent values arriving along 

that arc will be ignored by the creation parameter node, in keeping with its read-only 

semantic. 

Within sub-graphs, creation parameter nodes do not obey the normal node-

connected-by-arc syntax which characterises the normal semantic. Instead, the placement 

of a creation parameter node on a CODE graph implicitly connects each node in the 

graph to that creation parameter node. Whilst this contravenes the normal semantics of 

CODE graphs, this approach greatly improves graph readability, reducing the need for 

webs of what amounts to trivial arc interconnections on the graph. 

2.3.2.7. Name Sharing Relation Node 

The name sharing relation node provides a fully mutable shared variable facility. 

Unlike the creation parameter node, the name sharing relation node holds a value which 

may be read from or written to at any point during a graph’s execution, applying the 

limitation that nodes must have declared their possible intentions as readers or writers 

(via the node stanza) before accessing the shared value. Concurrency issues pertaining to 

read, write and read-write access to name sharing relations are automatically resolved by 

CODE, freeing developers from the burden of explicitly programming concurrency 

control mechanisms.  

Name sharing relation nodes, in common with other node types in CODE, require a 

set of stanzas that govern their run-time behaviour. In particular, the name sharing 

relation nodes contain the following stanzas, which differ from the standard UC node 

stanza set: 

 A name for the node. 

 The name and type of the shared variables. 
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 An (optional) activation computation which will activate before the 

node begins to share its shared variables. When instantiated, the 

name sharing relation nodes can perform useful computation which 

may affect the initial state of the shared variables which it contains. 

 A set of external function signatures that may be called by the node’s 

activation computation if any activation computation exists. 

 A set of local variables to be used in the activation computation. 

It is noteworthy that the functions defined with the node are available to the 

activation computation, but they themselves are not shared, for example in the same way 

that an object’s methods would be visible to other objects in an object-oriented 

application. That is to say, the name sharing relation can operate upon the data that it 

exports, but no other nodes can coerce the name sharing relation into repeating those 

operations. Once complete, the name sharing relation becomes a standard shared value 

abstraction, which can be read and updated by other nodes in the graph. 

2.3.2.8. Arcs 

Arcs in the CODE language specify potential paths of communication between nodes 

along which values may pass. Each arc is essentially an unbounded FIFO queue, where 

the head of the queue is accessible to the receiver of the values and the tail accessible to 

the sender. 

Whilst this would seem a suitably simple form for a node to take, arcs, in common 

with the other graphical CODE components, must be annotated. Specifically arcs are 

annotated with arc topology specifications, which map an output port from a source UC 

node to an input port on a destination UC node.  

The reason why CODE requires arc topology rules for each arc is that they govern 

the run-time mapping between nodes and arcs, and thus any parallel activity within a 

graph. For example, using indices associated with each arc, values can be passed to 

multiple instantiations of UC nodes which can then operate on data in parallel which can 

be seen in Figure 2-4 below. 
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[i].output =>. input[i]

.output[i] =>[i] .input

 

Figure 2-4 Arc Topology Specifications Instantiating Data Parallel Activity 

In Figure 2-4, a CODE template for simple data-parallel activity is show. The UC 

nodes uppermost and lowermost are each instantiated once at run-time, whilst the 

middle UC node may be instantiated any number of times in parallel. The way that the 

CODE system knows when to instantiate a node multiple times is, as has been 

previously noted, through the arc topology specification. Here the first arc topology 

specification, .output[i] => [i].input, specifies that the uppermost node in 

fact has a choice of [i] arcs onto which it may deposit data, and that the middle node is 

therefore replicated i times. The second arc topology specification, between the middle 

and lowermost node, performs a similar operation except that in this particular case, 

[i].output => .input[i] maps arcs between multiple instances of the middle 

node with a single instance of the terminal node. 

As is apparent, arc annotation is tightly coupled to the behaviour of both the sender 

and receiver. All must agree on the correct behaviour if the overall program is to 

function as expected, and presents a most opportune situation for the introduction of 

bugs into an application. As such, the developer must be cautious when constructing the 
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arc topology specification, or the behaviour of the final application may be somewhat 

different to that intended. 

2.3.2.9. CODE Matrix Multiplication Example 

 

Read Inputs

.n_out[i] => [i].n.A_out[i] => [i].A

Call VectMult

[i].b_out => b_in.[i]

.b_out[i] =>[i] .b_in

 

Figure 2-5 CODE Matrix Multiplication Main Graph 
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b_in

b_in

b_out

b_out

A n

 

Figure 2-6 CODE Matrix Multiplication Sub-Graph 

The two CODE graphs shown in Figure 2-5 and Figure 2-6 constitute a simple 

parallel matrix multiplication algorithm, an example similar to that offered by the 

originators of CODE {Newton 1993}. The algorithm used is the same as that used in 

the HeNCE example of Figure 2-2, where a matrix-vector multiplication is performed in 

parallel and the results merged to form the final solution. However, the CODE example 

exploits two features that HeNCE does not possess, namely hierarchical graph 

decomposition (procedure-call) and a shared memory abstraction. 

It should also be noted that the CODE graphs are commented. The commenting is 

necessary to show the arc topology specifications, which are of fundamental importance 

to the execution of CODE programs. For those elements referred to by the arc topology 

specifications, it is inferred that there exists a corresponding element within the 

associated nodes. That is to say that for each binding there is the implication that there 

exist appropriate local variables exist for the graphical elements to bind to within each of 

the nodes. 

The function of each of the graphs, and importantly the annotations, will now be 

described starting with the main graph of Figure 2-5. 
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1. The first UC node reads the inputs from the environment and sends the 

values onto three outgoing arcs. Each of these arcs carries one of: a matrix; 

an integer value for the current matrix column size; and a vector. The 

matrix and integer value for the matrix column size will be identical on 

each of their instantiated arcs, whereas each of the vectors may differ. The 

comments near each of the arcs show the actual bindings performed 

between the first UC node and the call node. The arcs marked 

.A_out[i] => [i].A and .n_out[i] => [i].n carry the 

matrix to be multiplied and its dimension to creation parameter nodes 

within the multiplication sub-graph. The indices present on the arc 

topology specifications show that the arcs may be instantiated more than 

once at run time, which  infers that the call node is also instantiated more 

than once at run time. The remaining arc, .b_out[i] => [i].b_in 

carries a single vector to the call node in the same way. 

2. The call node is used to instantiate a sub-graph and divert the flow of 

control from the parent into the newly created sub-graph. In this case, it is 

used to send a matrix, a vector, and an integer to a matrix-vector 

multiplication graph. Again arc topology specifications use indices, which 

indicates that the output from multiple instances of the sub-graph are to be 

gathered.  

3. The output from the parallel matrix-vector multiplication is gathered to 

form the final result. Note that explicit identifiers for each of the vectors 

are not required as the subscript of each of the indices can be used to 

identify each of the incoming data elements. 

Whilst normally the graph call node would be treated as a simple black-box, in the 

case of this example it is prudent to examine the behaviour of its sub-graph, which can 

be seen in Figure 2-6. 

1. The creation parameter node marked A is bound to the arc marked 

.A_out[i] in the calling graph and is used in the sub-graph to 

hold a matrix. The creation parameter node marked n is bound to 

the arc marked .n_out[i] in the parent graph and used to hold 

the size of the matrix for the multiplication in the sub-graph. The 
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values held in both nodes are set when their graph is instantiated, 

and remain constant throughout the execution of the program. 

2. The input interface node binds an arc from the calling graph to the 

local graph. Its output is identical to the input that it receives from 

the arc to which it is bound. The actual arc to which an instance of 

the sub-graph is bound depends on the value of the index of the arcs 

which are incident upon that sub-graph. That is to say that CODE 

allows for multiple instantiations of sub-graphs via the arc topology 

specifications of an application, in the same way that the UC nodes 

may be replicated. 

3. A vector is received by the UC node from the input interface node, 

which in turn has received it from the arc in the calling graph marked 

b[i], where i is the index for this particular instance of the sub-

graph. The UC node also implicitly has access to the values stored in 

both creation parameter nodes as it exists within the same scope as 

those nodes. A simple matrix-vector multiplication is performed and 

the resulting vector is passed onto the successor of the UC node. 

4. The output interface node binds the output from the sub-graph to an 

arc in the calling graph. The arc which is bound to a particular output 

interface node is dependent on the index of the arc, in an analogous 

way to the input interface node. 

2.3.2.10. CODE Observations 

The primary goals of the CODE language and execution model are to provide both 

an efficient and portable programming environment. Portability is attained through the 

use of a language which is abstract in appearance, and not closely coupled to any 

particular architecture class. Efficiency is achieved by providing translators which map 

the CODE language onto particular architecture types, thus enabling the facilities 

provided by each architecture to be exploited without presenting those features directly 

to the developer. To prove the efficiency case for CODE, its originators have developed 

an example using the Barnes-Hut particle simulation algorithm {Barnes and Hut 1986}. 

The CODE program for this simulation demonstrated an impressive speedup curve 

close to that achieved by a hand-crafted piece of C code (though both approaches failed 

to achieve a curve similar to that for ideal speedup {Newton 1993}). 
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Though the translation of CODE programs has indeed been shown to be efficient, 

the language itself presents some barriers to the straightforward development of parallel 

applications, because of its use of textual annotations which manage dataflow logistics. 

This is detrimental to the CODE language in three ways. Firstly, the structure of CODE 

graphs are not a true representation of actual program behaviour. Though it is recognised 

that representing the dynamic behaviour of a program on a static graph is a non-trivial 

problem, CODE graphs do not maximise the amount of potential run-time behaviour 

present in each graph, relying instead upon a proprietary textual language. Thus, it is 

impossible to predict accurately the behaviour of a CODE program by using the graph 

alone. This means that the advantages afforded by the separation of control-flow into a 

graphical language and computation into a textual language diminish, as the graphical 

language becomes increasingly dependent on the supporting textual component. 

Secondly, the introduction of a third language for writing node stanzas and arc topology 

specifications, in addition to the graphical language itself and the textual high-level 

language in which external procedures are created, is another potential entry point for 

bugs into an application. Thirdly,node programs and arc topology specifications do not 

constitute part of the problem domain under consideration and thus are an overhead on 

the use of CODE for constructing applications. 

Bearing in mind that CODE is young and still being actively researched, some of 

these problems may yet be overcome. For instance, it may be possible to automate at 

least the arc topology specifications, as exemplified in ParADE, where graphical-textual 

bindings are resolved automatically {Allen 1998}. Furthermore, experience has 

demonstrated that whilst using CODE the more complex arc topology specifications 

tended to be used where data-parallelism was required. In this case, some form of pre-

defined arc topology specification pattern or specialised node type such as HeNCE’s fan-

out node would provide significant benefits to the software developer. 

Leaving syntax aside, the way in which CODE programs are made portable across a 

range of architectures is another aspect of CODE which distinguishes it from its 

contemporaries. The use of a translation layer for each architecture class that CODE 

programs are to be executed upon produces both benefits and drawbacks. On the 

beneficial side, the use of a specialist translator for each target architecture offers the 

possibility of tailoring CODE software to suit the architectural nuances of each machine 

class, and correspondingly increase application performance through exploiting those 

features. On the downside, the task of producing translation software for new 
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architectures limits the availability of CODE to specific architectures, unlike other 

systems whereby portable run-time systems have been targeted. In an attempt to alleviate 

such a burden, the CODE system is built in an object-oriented fashion, allowing for 

straightforward supplementation of existing translators, and indeed this feature is heavily 

praised in one thesis on CODE {Newton 1993}. 

Although the originators of CODE make much of the fact that developing translators 

for a wide range of machine architectures is greatly eased by the CODE environment’s 

object-oriented architecture, it is ironic that the CODE language itself does not support 

object-orientation. Using an object-oriented approach, it has been demonstrated that the 

existing translators can be supplemented, using useful concepts such as inheritance. In 

the same way, CODE source application could be re-used and extended rather than re-

written. Parallel programming is far more difficult than sequential programming, yet it is 

sequential programs which receive support for re-use and maintainability. CODE’s 

originators seem to suggest by this action that it is desirable to offer a rich development 

paradigm to the tool producers, but deny that paradigm to the users of that tool.  

CODE does however provide a basic mechanism whereby source code can be 

managed via the sub-graphing facility. Source code can be kept in logical groups and 

partitioned to keep modules relatively simple, using a hierarchical graph decomposition 

strategy. With the aid of the call node facility CODE programs can be developed in a 

top-down fashion, using a hierarchical approach to manage complexity, and structure 

applications. Whilst this does lag behind the state of the art in software development, 

CODE is at least equal with contemporary systems in the field. 

Whilst CODE has achieved some success and even managed to provide a portable 

parallel programming methodology, it is not without drawbacks, some of which it holds 

in common with the HeNCE system. For systems which avoid the drawbacks common 

to graphical flow-style languages, researchers from the original HeNCE project have 

progressed with a second visual parallel programming language based upon an entirely 

different parallel programming paradigm, which is discussed next. 
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2.3.3 VPE – Visual Programming Environment 

VPE is a visual parallel programming environment for message-passing parallel computing 

and is intended to provide a simple human interface to the process of creating message-

passing programs. Programmers describe the process structure of a program by drawing a 

graph in which nodes represent processes and message flow on arcs between nodes. They 

then annotate these computation nodes with program text expressed in C or Fortran 

which contains simple message-passing calls. The VPE environment can then 

automatically compile, execute and animate the program. VPE is designed to be 

implemented on top of standard message-passing libraries such as PVM and 

MPI.{Newton and Dongarra 1994} 

2.3.3.1. The VPE Paradigm 

VPE is a hybrid textual-graphical language, intended to simplify the construction of 

message-passing programs built upon the standard PVM and MPI {Snir, Otto et al. 

1996} message-passing libraries. As such, VPE splits an application into two 

components: the graphical aspect which represents the process and inter-process 

communication structure; and the textual part, written in C or Fortran, which forms the 

actual computations to be executed within potentially parallel processes. 

VPE employs a simple top-down design strategy via a sub-graphing mechanism in the 

language, which supports structured, top-down programming techniques. VPE graphs 

show the structure of computations, or processes, and the communication that may 

occur between those computations. For each process (computational node) specified in a 

VPE graph, the programmer is presented with an environment within which to construct 

a sequential textual program. The exact environment presented depends on the 

arrangement of input and output ports attached to a computational node. However, 

because the structure of the overall program has been determined graphically, the text 

embedded within the computation nodes is simpler in comparison to the equivalent 

programs constructed by hand using the message-passing libraries. That is not to say that 

the complexity of the problem domain itself has somehow been reduced, nor that that 

the textual programming languages embedded within the computations are somehow 

made simpler under VPE. The advantage that VPE offers to the programmer at the 

textual level is that communication primitives are relatively simple, compared with the 

primitives offered by PVM and MPI. As the message-passing library calls are not used 

directly, VPE introduces the possibility of porting programs between the two message-



Visual Object-Oriented Development of Parallel Applications 

 63 

passing environments. Furthermore, as VPE calls map directly onto the underlying 

message-passing environment, very little overhead is added when using a VPE 

communications primitive compared to using a PVM or MPI primitive directly {Newton 

and Dongarra 1994}. 

In addition to providing a top-down design strategy, VPE takes further advantage of 

the sub-graphing mechanism by permitting the execution of sub-graphs to be 

parameterised, and when appropriate, initialised before being executed, in a similar vein 

to CODE’s shared variable abstraction introduced earlier. In VPE, graph 

parameterisation is a mechanism used to hold values that will be utilised by the actual 

computations within the same graph. Parameters are fixed before any computation 

begins and may be set either by an initialisation computation or by values received from a 

calling graph. Any of the graph parameters can be read from any of the computational 

nodes in the graph as if the parameters were declared locally within those computations, 

and as such provide a simple shared-memory abstraction. Computational nodes are also 

free to update as well as read the value held by the graph parameters, though any updates 

made by a node are only seen by that same node: communication via the shared memory 

abstraction is not permitted, save for initialising the graph values. 

For those parameters not initialised by value arguments from a calling graph, an 

initialisation computation is used. The purpose of the initialisation computation is purely 

to set values for any graph parameters that are not to be received from a calling graph. It 

is noteworthy that initialisation computations may encapsulate any arbitrary application-

specific functionality, but in the general case they are used merely for initialising graph 

parameters. 

Apart from the shared memory mechanism made available during the initialisation of 

graphs, VPE utilises a message-passing paradigm. As mentioned above, there are no 

other facilities for communicating information through shared memory, as such 

mechanisms are at a higher level of abstraction than the VPE model encompasses. If a 

computational element is dependent upon data from another computational node, the 

data in question can only be transported via the explicit exchange of a message between 

those nodes. 

Though admittedly low-level, the execution model supported by VPE naturally 

encourages parallel activity. Each computational node in a VPE program may potentially 

execute in parallel with any other. The only programming barrier to completely parallel 
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execution are blocking message-passing calls which enforce control-flow dependencies 

between computations. 

As the VPE paradigm is purely message-passing based, there are no separate graphical 

components which control specific forms of parallelism. Task parallelism is the default 

mode of execution if possible, and pipelined parallelism is implicit within a program’s 

structure. It is noteworthy that data parallelism is also available to the developer, though 

exploiting data-parallel activity must be explicitly specified (but not programmed since 

ultimately it is the message passing structure of the application which governs even data-

parallel activity) using the VPE replication node. 

As a consequence of VPE’s approach to parallel application development, the 

programmer does not have to learn a textual language solely for programming the 

communication behaviour of the nodes. Such communication occurs using a binding in a 

language with which the developer is familiar, being either C or Fortran, which is 

significantly less open to accidental misuse than the approach whereby a third language 

element is introduced specifically for mapping textual and graphical level entities. 

Furthermore, unlike its contemporaries VPE does not seek to address parallel control-

flow issues graphically. The fact that VPE does not specify control-flow graphically is not 

a shortcoming, indeed it is not an aim of VPE to be able to do so. VPE is ultimately a 

visual interface to message-passing libraries rather than a fully-fledged parallel 

programming language in itself. 

The VPE programming environment is extensive. Control of the underlying message-

passing mechanism to which VPE is coupled is performed through a graphical console 

window within the development environment. VPE also automates one of the most 

common burdens in message-passing parallel programming in a heterogeneous 

environment, by ensuring that appropriate executable files are distributed around hosts 

within the networked multiprocessor. Without programmer intervention, source files are 

compiled for appropriate architectures and the resulting binaries placed on file systems 

which those hosts can read. Post-mortem style program animations are also available to 

the developer to aid debugging and optimisation. 
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2.3.3.2. VPE Node Icons 
 

Compute Node Compute Node with 
Replication Box 

Compute Node with: 
Above: Output port 
Below: Input port 

Above: Input Interface Tool 
Below: Output Interface Tool 

Call Node  

Figure 2-7 VPE Language Node Icons 

2.3.3.3. Compute Node 

The compute node is the basic building block in VPE. Each compute node is a 

template for the creation of a computational process, which the developer must express 

in either C or Fortran. To enable communications with other compute nodes, 

communication ports are attached to each compute node’s edges. Indeed, a VPE 

program without ports can only be executed as a single serial process. 

A compute node becomes active when its internal program becomes active. This may 

occur at the very beginning of a program’s execution, or the compute node’s execution 

may be suspended, awaiting the arrival of a message. The graphical structure of the 

program itself does not determine the order of execution, it merely describes possible 

communication paths which the internal programs of each compute node are free to use. 

2.3.3.4. Replication Box 

The replication box provides the mechanism for data-parallel execution within VPE. 

The function of the replication box is to execute a particular computation node in 

parallel with other instances of itself, but ideally with each working on disjoint sets of 

data. The amount of replication that occurs is governed by graph parameters which are 

set at run-time, thus permitting the program to adapt its behaviour according to the 
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metrics of the problem under consideration, and potentially modify the level of 

parallelism according to hardware run-time conditions.  

The replication box alone does not fully address the problem of data-parallelism. Any 

messages exchanged with a replicated compute node must specify which of the replicated 

computations is being communicated with, whether they are sending data to, or receiving 

data from any of the replicated computations. To this end, the message-passing calls 

provided by VPE take an identifier of a replicated computation as one of their arguments 

in a manner not dissimilar to CODE’s arc indices. Experience has shown that even with 

this extra burden, the message-passing calls used by VPE remain significantly simpler 

than using the message-passing libraries directly. 

2.3.3.5. Port Nodes 

VPE is unlike other systems where communication via graph level components must 

be explicitly programmed in a textual form. Instead, input and output nodes provide 

typed bindings between the variables used in the compute node programs and the 

communication structure expressed in the graphs. Within the textual computation such 

ports are accessed through function calls, whose usage is consistent with the language 

used to write the node programs, using appropriately typed arguments. For example, if 

an output port is configured to emit an array of integers, calls to that output port must 

supply an array of integers as an argument. The same is true for receive operations using 

input ports. 

2.3.3.6. Call Node 

VPE permits a hierarchical decomposition of programs through a procedure call-like 

mechanism. A call node is used when the programmer needs to call upon the 

functionality encapsulated within a separate VPE graph. The graph called may be another 

graph within the same application, a library component, or another developer’s routine, 

though maintaining a consistent procedure-call semantic throughout.  

2.3.3.7. Input and Output Nodes 

When a VPE program is composed from more than one graph there must exist entry 

and exit points for all except the main graph. Input and output nodes supply that 

functionality by providing a binding between arcs in a sub-graph and arcs in calling 

graphs. 
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Within a sub-graph, there is no concept of coupling to any one calling graph. Instead, 

data is sourced from input nodes, which receive their data from input ports attached to 

the sub-graph’s call node. Similarly data sinks in the form of output nodes send the 

values which they receive to the output ports on the sub-graph’s call node. This reduces 

coupling between graphs and ultimately helps to improve the modularity of VPE source 

code. 

2.3.3.8. VPE Matrix Multiplication Example 

 

Figure 2-8 VPE Matrix Multiplication 

The diagram in Figure 2-8 shows the VPE graph for the parallel matrix multiplication 

algorithm, whereby many matrix-vector multiplications are performed concurrently and 

the results combined to form the final result. In the diagram there are three potentially 

parallel processes, one of which may spawn concurrent copies of itself by means of the 

replication box annotation. The functionality of the graph is outlined below: 

The graph initialisation computation is run and a graph parameter for the size of 

the matrices to be multiplied is set. Though this does not appear on the graph in 

the form of a compute node, it is worth recalling that VPE allows graph 

parameters to be initialised in this way. The graph parameters are themselves 

needed as they control the level of replication that occurs in the replicated 

compute node. 

The initialise compute node creates two matrices, sizing them using the graph 

parameters. One of the matrices is split into vectors which are then transmitted via 

the output port V_Out to one of the replicated compute nodes identified by the 

index of the current row vector. For each outgoing vector, a copy of the matrix 

which is to be multiplied by the vector is sent to the output port M_Out. A single 

port could have been used to send both the matrix and the vector, but for the sake 

of clarity and ease of comparison this approach has not been adopted. 

Upon receiving a matrix and a vector to multiply, an instance of the multiply node 

is invoked. The actual number of parallel instances invoked depends on the graph 
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parameter set for the number of rows in a matrix. The number of rows is read 

from the graph parameter that is set before the program is started. Each 

instantiated compute node outputs the results of its calculation to the output port 

V_Out, using the index of the replication to act as an identifier for the newly 

created vector. 

The finalise node receives vectors through its input port V_IN. From the index of 

the replicated node which delivers values to V_IN, the finalise compute node 

places the vectors in the appropriate part of the matrix. When all vectors have been 

received and the final result assembled, the program outputs the result and 

terminates. 

2.3.3.9. VPE Observations 

The VPE graph, despite its small size, manages to exploit a great deal of parallelism. 

Data-parallel activity occurs due to the replication of the main part of the program, in the 

compute node marked multiply. Pipeline parallelism is also evident in that each of 

the compute nodes can be viewed as a stage in a pipeline, where each compute node 

works on the data sent to it by the previous node in the pipeline. In this example, it is 

entirely feasible that all parts of the program could be working on splitting, multiplying 

and re-assembling matrices in parallel, thus maximising parallel activity. 

Though the VPE graph is compact and the program is highly parallel, there is a price 

to be paid. The price comes in the form of node programs that are of greater length and 

higher complexity than contemporary systems. Furthermore there are no facilities to 

support the development of these compute node programs, other than the simplified 

calls to the message-passing libraries, and thus had the problem under consideration been 

of significantly greater complexity it is uncertain whether VPE alone would have been a 

sufficiently powerful tool. 

Unlike contemporary systems, VPE is not meant to be a visual parallel-programming 

language per se. Its aims from the outset have been somewhat different, in that VPE is 

designed purely to simplify explicit message-passing parallel programming with the 

standard PVM and MPI message-passing environments. As such, it is expected that the 

programmer will already be familiar with parallel programming and be able to construct 

parallel algorithms without assistance from VPE. 
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Where VPE excels is the fact that there are only two elements to the language, both 

of which are directly connected to the algorithm under consideration. Unlike 

contemporary systems where it is common that a third, proprietary language element is 

added to control the communication structure of the graph, the communication structure 

of a VPE program is entirely specified in terms of VPE graphs and standard high-level 

textual programming languages. Thus, in comparison to contemporary systems, VPE 

presents one less opportunity to introduce bugs into an application. 

However, the fact that VPE is meant to be used as a front-end to the message-passing 

libraries and not as a language in its own right means that there is no clear distinction 

between computation and communication. In a VPE graph, possible communication 

routes are shown, though from the graph alone it is impossible to tell which nodes will 

execute under which circumstances. Whilst this is not a goal of VPE, its contemporaries 

are able to actually show sequencing and dependencies which may well be of value to the 

developer of a parallel application. 

Run-time aspects such as load balancing and task creation strategies are not a 

consideration of VPE. However, VPE does allow computations to be mapped to 

particular hosts or architecture classes in the underlying virtual machine environment. 

Thus computations suited to particular architectures can be accommodated, or less 

heavily loaded machines can be utilised, in a similar fashion to the HeNCE cost matrix 

facility. 

Furthermore, as VPE maps directly onto the standard message-passing systems, it can 

benefit directly from software that enhances those systems. Thus as the message-passing 

environments are improved, the performance of VPE programs will also improve. 

In short, VPE’s departure from the normal approach to building visual parallel 

programming tools has yielded a certain amount of promise. The paradigm used is close 

to the paradigm in use by many parallel programmers, and furthermore VPE is 

sufficiently low-level to not incur run-time overheads often associated with using higher-

level visual parallel programming languages. As a tool for simplifying the implementation 

of today’s parallel programming problems, VPE is a good effort. When considering the 

needs of future parallel application developers VPE may simply be too low-level. 
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2.3.4 ParADE –Parallel Application Development Environment 

While the benefits of parallel computing – the performance increase due to simultaneous 

computations – are clear, achieving those benefits has proved difficult. The wide variety of 

parallel architectures has led to a similarly diverse range of parallel languages and methods 

for parallel programming, many of which feature complicated architecture-specific 

language mechanisms. The lack of good tools to assist in the development of parallel 

software has compounded the problem of parallel programming being limited to a field 

which is both specialist and fragmented. 

The ParADE system provides a means for the graphical specification of parallel programs 

using an architecture-independent graph-based notation representing the design of the 

program, combined with conventional sequential languages. Furthermore, the ParADE 

language provides a graphical means for adjusting the granularity of parallel tasks to tune 

programs to the particular architecture upon which they execute. {Allen 1998} 

2.3.4.1. The ParADE Paradigm 

ParADE is a mixed textual-graphical parallel programming language based upon the 

dataflow execution model. The structure of a parallel application, including 

synchronisation and communication, is determined graphically, whilst computations are 

described textually in C.  

The visual programming component in ParADE takes the form of directed, acyclic, 

top to bottom graphs where nodes, known as actors, represent computation or routing 

elements, and arcs represent data dependencies between nodes along which values may 

be passed. Actors become active when there is data on each of their input arcs. When 

activated, actors will either execute a user defined computation, or a predefined action 

depending on whether the actor is general or special purpose respectively. 

In ParADE, general-purpose actors are the only components which must be 

programmed using a high-level textual programming language. The developer is not 

charged with maintaining interfaces between the graphical and textual programming 

components.  Instead, tool support bears the responsibility for binding arcs onto local 

program variables within the actor source code. All the programmer must do is use those 

variables in a manner consistent with the high-level textual language with which the 

actors are programmed. That is to say that the programmer sees arcs merely as standard 

C programming language variables when writing the actor source code, omitting the 

extra interface code required by some of ParADE’s contemporaries. 
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ParADE permits the exploitation of both parallelism implicit within the structure of 

its graphs, and parallelism explicitly programmed by the developer. Implicit parallelism is 

a strength of dataflow based languages such as ParADE, in that tasks which are mutually 

independent may execute in parallel by default. Furthermore, to some degree tasks that 

are not mutually independent may be able to execute in parallel through pipelined 

parallelism, which is also claimed to be implicit within the graph structure. 

Data-parallelism is explicitly expressed by the programmer, using a general-purpose 

parallel activity actor, known as the depth actor. Unlike contemporary systems, 

ParADE’s depth actor encapsulates the decomposition and recomposition of data which 

is operated upon in parallel. Furthermore, ParADE comes equipped with several 

common visual templates for data decomposition and recomposition, and the 

architecture of the ParADE tool support is such that it is possible to supplement the 

built-in templates with user-defined patterns. 

Along with automated data distribution, ParADE also has a facility for controlling the 

grain size of a computation in order to tailor the characteristics of the application to the 

particular platform upon which it will be run. ParADE’s predecessor, MeDaL {Harley 

1993}, used a mechanism for grouping data to be sent along arcs as its mechanism for 

increasing granularity, though in practice the grouping of messages was found to be an 

unsatisfactory solution which was not pursued in ParADE. ParADE’s unique graphical 

mechanism for altering the granularity of processes is known as actor folding. Actor 

folding is accomplished by selecting a group of actors to execute sequentially as a single 

task. The ParADE system itself automatically sequences the execution and optimises the 

communications of the folded actors without assistance from the developer. 

As a design aid and code management facility, ParADE utilises hierarchical 

decomposition of programs through actor decomposition. Actor decomposition is 

similar to the use of sub-graphs in visual programming or procedure calls in textual high-

level languages. However, ParADE does not seek to visually differentiate between an 

actor which has been decomposed and one which has not. In this way it seeks to simplify 

the black box approach to a level whereby a decomposed actor is identical even in 

appearance to a standard actor, which helps to reinforce the notion of the black-box 

semantic. 
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2.3.4.2. The ParADE Notation 
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Figure 2-9 The ParADE Node Icons 

2.3.4.3. General Purpose Actors 

ParADE’s general-purpose actor provides a harness within which the developer’s 

textual source code resides. There is no default action specified for either the standard 
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actor or depth actor, and as such the programmer must always provide an action in C 

code for the actor to execute when it is activated. 

Both the standard and depth actors are activated when there is data present on their 

input data arcs, which are incident upon their topmost edges. Upon activation the actor 

immediately consumes the data on the input arcs. If the consumer is a depth actor, the 

data may be partitioned according to the partition strategy specified by the programmer 

and the data operated upon in parallel by multiple instances of the actor code.  

Operation of both standard and depth actors is synchronous in that each time the 

actor is activated there will be one set of input data consumed and one set of output data 

produced. Even the parallel activity that occurs within the execution of depth actor is 

abstracted away from the rest of the application in that for each set of input data, there 

exists a single set of output data. As the depth actor will be responsible for not only 

partitioning, but re-combining the data according to the specified template, a consistent 

set of semantics is maintained across both actor types. 

2.3.4.4. Datapaths 

ParADE provides two types of datapaths along which values can be passed between 

actors. The purpose of providing two types of datapath is for programming convenience 

and optimisation. The first of these datapaths, the discrete datapath, visualised as a white-

headed arrow, is implemented as a classic FIFO queue. A producing actor will supply 

data, which then enters the datapath at its tail, and later leaves at the head when the 

receiving actor consumes the data. The second type of datapath, the continuous 

datapath, represented by a solid-headed arrow, is a similar structure to the discrete 

datapath, except that it has the additional property that under certain circumstances it will 

retain a copy of the last item of data in the queue. This retention of data occurs when the 

queue would otherwise be empty, and thus a continuous datapath will always offer data 

to actors once it has been used for the first time. The continuous datapath can therefore 

be used in programs where repeated transmission along datapaths would otherwise incur 

an overhead. Using a mixture of discrete and continuous datapaths it is possible to 

minimise communication overheads in a program, whilst maintaining the correct 

dependencies between actors. 
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2.3.4.5. Source and Sink Actors 

The library of source and sink actors in the ParADE language provides facilities for 

ParADE programs to communicate with their environment.  Source actors allow 

information from the environment to be used during the execution of the application, 

while sink actors permit the application to send messages out to the environment or to 

terminate the application and return control to the environment. The basic types of 

source and sink actors include the general purpose source and sink actors, the file I/O 

actors, the standard I/O actors, the graph interface nodes, and the halt actor. 

The general-purpose source and sink actors provide a user-programmable means of 

instigating and terminating dataflow. They are somewhat similar to the general-purpose 

actors in that they are permitted to execute computations upon data. However, unlike the 

general-purpose actors, the general-purpose source and sink actors possess only a single 

arc. 

The stdin actor allows the user to specify input to the program via the standard input 

stream, and is represented as a source actor containing a keyboard and mouse icon. 

Conversely the stdout actor permits the application to return values to the standard 

output and is represented by the monitor icon within a sink node.  

Similarly, the file in and file out actors are depicted as being sources and sinks 

containing a floppy disk icon which is symbolic of their file-oriented operation. 

Additionally, the file actors have a second datapath emerging from their sides, which, 

when utilised, signifies some form of exceptional behaviour with respect to the files 

being used, such as lack of disk space, or the non-existence of a file. 

The input interface and output interface nodes provide bindings between datapaths 

on the current graph and datapaths in a decomposed actor. For each datapath incident 

upon a decomposed actor, there exists an input interface node in the sub-graph. 

Correspondingly, for each datapath exiting from the sub-graph, there exists an output 

interface node which performs the binding between the sub-graph datapaths and the 

parent graph. Interface nodes do not alter the flow of data; their function is merely to 

provide an binding mechanism between graphs. 

The only sink node that does not have a complementary sink is the halt node. The 

halt node’s functionality is simply to provide a means by which program execution can 

be terminated. When activated, the halt node stops the execution of program, and 

potentially return values to the application’s environment. 
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2.3.4.6. Merge Actor 

The merge actor in ParADE takes as its input two or more datapaths and outputs the 

data from these paths onto one single datapath. The merge actor is useful for collating 

the output of several actors for further processing by other actors. The order in which 

the data items are placed on the output datapath is strictly chronological. If multiple 

items of data arrive at the input to the actor simultaneously, the order in which they are 

output is undefined. 

2.3.4.7. Replicator Actor 

The semantics of the replicator node are simple. When data is placed on the input 

datapaths copies are broadcast onto all of the going datapaths, though the actual placing 

of copies of data onto the outgoing datapaths may not occur strictly simultaneously. 

2.3.4.8. Loop Actor 

Unlike its predecessor MeDaL, ParADE language graphs are acyclic and thus iteration 

cannot be achieved through a feedback loop. Instead, ParADE provides a loop actor 

purely for iteration, whose semantics are consistent with the synchronous execution 

semantics of the other actor types. 

However, unlike the other actors in the ParADE language, loop actors must be 

further decomposed to implement their behaviour. The loop actor itself thus acts merely 

as a black box at the level of the container graph to which data is provided and from 

which values are returned.  

The actual iterated computation can only be seen at the level of the sub-graph where 

it is supported by four other node types which are specific to the decomposed loop 

actor. These nodes provide an input to the loop at the beginning and after each iteration 

and an output from the loop upon termination and an output after every iteration. These 

nodes are depicted in Figure 2-9 as the loop input and loop output nodes, where each 

type is uniquely identified by the position of the loop symbol and by the direction in 

which each points. 

Within the decomposed loop actor, there must also exist at least one other actor. This 

actor encapsulates the computation that is to be iterated, and communicates with any of 

the data sources or sinks in the normal way. There is no special mechanism for coupling 

the iterated computation to the iteration mechanism, which helps to maintain a modular, 

de-coupled source code base. 
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2.3.4.9. ParADE Matrix Multiplication Example 

MatMult

MatrixA MatrixB

MatrixC

 

Figure 2-10 ParADE Matrix Multiplication Example 

The diagram in Figure 2-10 depicts a ParADE graph for a parallel matrix 

multiplication problem, whereby multiple matrix-vector multiplications are concurrently 

executed. 

1. The file-in actors read two matrices  (MatrixA and MatrixB) in 

from disk files (potentially in parallel). 

2. MatrixB is sent out along a continuous datapath to the depth actor 

marked MatMult. The reason that a continuous datapath is used, is 

because MatrixB is required throughout the operation of the depth 

actor MatMult. Clearly for each parallel task spawned by 

MatMult, a new copy of MatrixB could be sent along a standard 

discrete datapath, though using a continuous datapath offers an 

optimisation in terms of the amount of communication that occurs. 

3. The data sent out from the file-in actor marked MatrixA is 

partitioned by the datapath connecting the file-in actor to the depth 

actor MatMult. This is a novel approach in that ParADE does not 

require the use of further actors to partition data before it can be 
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operated upon in parallel. Instead the data will be partitioned 

according to some graphical template specified for the datapath. 

Here, the decomposition template has been set to columns (not 

shown in Figure 2-10), and using that information, the ParADE 

system can arrange for individual column vectors to be extracted 

from the data, and sent to subsequent parallel computations. 

4. The depth actor MatMult takes a copy of MatrixB and an 

element of the partitioned data from its predecessors, and for each 

data item on the datapaths executes a parallel matrix-vector 

multiplication. The results from these multiplications are 

automatically collated by the outgoing data arc according to the 

graphically defined template. 

5. The final result is written to disk by the file-out actor marked 

MatrixC, and the program terminates. 

2.3.4.10. ParADE Observations 

ParADE aims to support the programmer in developing programs that are 

architecture independent, efficient and which exploit a wide-variety of parallel activity. 

Furthermore, ParADE is also intended to move parallel programming into the domain of 

the non-specialist programmer. In all of these programming-oriented aims, ParADE is 

generally successful. Through the use of a graphical co-ordination language and a 

common computation language (the C programming language), parallel programming 

becomes accessible to non-specialists, and furthermore the abstract computational model 

does not couple ParADE closely to any particular architecture or run-time system. 

Whilst ParADE insulates the developer of an application from the complexities of 

parallel systems, this does not mean that the programmer can ignore parallel computation 

altogether. Though it is true that a great deal of parallelism may be implicit within the 

structure of an application, there are cases when the programmer will need to be aware 

of basic parallel-programming principles in order to exploit all of the available parallelism 

within an application. In particular, the programmer must be aware of when and how to 

apply data-parallelism in order to be able to utilise the depth actor and data partitioning 

facilities available within ParADE. 
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On the positive side, ParADE, unlike its contemporary systems, does not require the 

user to perform bindings between graph level objects and text level objects. The tool 

supporting the ParADE language automates this task, thus removing the potential for 

introducing inconsistencies between the co-ordination and computation components of 

an application. Furthermore as ParADE is data-centric, it provides a graphical 

mechanism for partitioning and combining data which circumvents the need to create 

actors for that purpose, thus removing this significant intellectual burden from the 

developer. 

In addition to the graphical specification of data partitioning, ParADE also provides a 

graphical means of increasing the granularity of parallel tasks, through actor folding. The 

theory behind actor folding is simple, in that multiple fine-grained actors (where 

initialisation or communication costs outweigh the actual computation costs) can be 

combined to form a single medium or coarse-grained computation (where computation 

costs outweigh the costs of setting up the computation). Actor folding is a simple 

operation from the user’s perspective. The developer must identify those actors which 

are to be grouped to form a more coarsely grained computation, and surround them with 

the actor folding box, merely by dragging the boundaries of the box to surround the 

actors. ParADE itself assumes the responsibility for combining the actors into a single 

computation, optimising communications, and ensuring that the computations are 

executed in the correct sequence. 

Uniquely amongst visual parallel programming tools, ParADE extends the standard 

visual parallel programming approach by implementing a basic exception-handling 

schema. Although exception handling is limited to file operations, ParADE’s graphical 

exception handling could be generalised to other node types. Whilst this would certainly 

result in graphs with a higher information density, it would also mean that the exception 

handling structure of a program could be represented in the same way as the non-

exceptional behaviour. That being said, the responsibility for presenting different views 

of an application could be handled quite straightforwardly by a suitable development 

tool. 

It is clear that the ParADE graph is much simpler than the graphs of the previous 

languages. It is perhaps obvious that ParADE graphs are simpler because ParADE does 

not require the developer to manually construct bindings between textual and graphical 

level variables, and encapsulates much more control-flow detail within the each of the 



Visual Object-Oriented Development of Parallel Applications 

 79 

graphical components than its contemporaries. Furthermore, the richer set of graphical 

components that encapsulate common control-flow options mean that there are less 

control-flow issues to be handled at the textual level. 

Although ParADE has impressive support for parallel programming, through its 

novel features and rich set of language constructs, it has very limited support for other 

phases in the software lifecycle. Support for designing programs is limited to a top-down 

approach using actor decomposition and there is no support for anything other than top-

down design and granularity optimisation. Whilst the program visualisation and other 

post-mortem debugging tools could be added to the prototype ParADE system relatively 

easily, it is unclear how ParADE would be adapted to support problem domain analysis 

or more sophisticated design methods. 

2.4 Related Work 

In addition to the surveyed languages, there are a number of other visual 

programming tools and languages, each addressing particular aspects of programming 

parallel architectures. Support ranges from graphical distribution of source code in a 

heterogeneous environment, through novel visual approaches to program construction 

{Kramer-Fuhrmann and Brandes 1991}, reusability {Loques, Leite et al. 1998} and fault 

tolerance issues {Babaoglu, Alvisi et al. 1992}. Some are specifically aimed at a single 

class of parallel architecture, or are sufficiently similar to the surveyed languages not to 

warrant individual discussion {Dozsa, Kacsuk et al. 1997; Kacsuk, Cunha et al. 1997; 

Kacsuk, Dozsa et al. 1997; Kacksuk and Forrai 1999}.  Since this research is primarily 

interested in the development of general-purpose parallel applications, surveys of these 

more specialist systems are not presented. However, the literature more than bears 

testament to the fact that there is a great deal of commonality across all current visual 

parallel programming techniques, and as such a full presentation of all work is neither 

trivial nor warranted. 

2.5 Closing Remarks 

This chapter has set the scene for further research and development work in the field 

of visual parallel programming. During the course of the survey, the work undertaken 

exposed strengths and weaknesses in both the language element and paradigm of each of 

the systems. This experience, coupled with experience of software engineering practice 

and that of developing text-based parallel applications has set in process trains of thought 

as to how improve visual parallel programming. However, a pre-requisite for turning 
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those thoughts into action is to formalise the relationships between the surveyed 

languages, and draw from that formalisation the threads of a new paradigm for building 

parallel applications. This is the topic of the next chapter. 
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Chapter 3 An Analysis of  Visual Parallel Programming 

Given that considerable intellectual effort has already been invested in the field of 

visual parallel programming, and several notations developed, the questions that need to 

be asked are whether there is scope for improving visual parallel programming 

techniques, and if so, where those improvements could be made. To answer those 

questions requires key aspects of each of the existing languages to be captured, 

generalised, and reasoned about such that key strengths and weaknesses can be 

identified.  The answers will provide the basis for the next step in the evolution of visual 

parallel programming techniques. 

3.1 Introduction 

The previous chapter introduced and exemplified four prominent visual parallel 

programming languages. This chapter proceeds by developing a taxonomy of those 

languages, from which a framework for subsequent research efforts in the area was 

derived. 

Once the framework from the taxonomy has been established, the chapter fittingly 

splits into several threads. Each thread either investigates specific aspects of the 

taxonomy, or combines issues identified by the taxonomy with other software 

engineering issues. The overall structure of the threads running through this chapter is 

based upon Figure 3-1 below. 
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Figure 3-1 Visual Programming Technology: A Roadmap 
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Although the overall goal of this chapter is to reach a new paradigm for visual parallel 

programming, intermediate steps towards that goal, based on Figure 3-1, are also 

investigated. However, not all of the elements identified in Figure 3-1 are scrutinised to 

the same level. In particular, work on visual object-oriented programming such as that 

exemplified in {Burnett, Goldberg et al. 1995; Citrin, Doherty et al. 1995}, although 

valuable is not considered further since the goal here is supporting techniques for the 

development of parallel applications, and not on visual languages per se. Similarly work 

on object-oriented parallel programming has been dealt with in-depth by other 

researchers {Yonezawa and Tokoro 1987; Annot and Haan 1990; Treleaven 1990; Kale 

and Krishnan 1993; Wolf and Kramer-Fuhrman 1996}, and a full survey of the discipline 

is not presented although an overview of the salient features of the discipline is. The final 

of the threads from the middle layer of Figure 3-1 on visual parallel programming, has 

already been dealt with in-depth in Chapter 2. Instead, the taxonomy presented in 

Section 3.2 will recap the most pertinent points from the survey of visual parallel 

programming languages, whilst formulating a framework for their future development. 

Once each of the distinct threads has been presented, the chapter then draws aspects 

of each into a single coherent model for parallel application development, using the 

framework provided by the taxonomy as its basis. It is the development of this model 

and supporting language, which form the basis for the work presented in the remainder 

of this thesis. 

3.2 A Taxonomy of Visual Parallel Programming Languages1 

The purpose of this section is to explore the design space for visual parallel 

programming languages and to present a taxonomy that captures the important 

characteristics that underlie them. A number of existing languages, those examined in 

Chapter 2, will be used to exemplify the taxonomy, but the taxonomy will also be of use 

to future language designers for highlighting possibilities that might not otherwise be 

considered. 

Interest here is in languages that take the form of a graphical mechanism for 

structuring and controlling parallel invocations of textually specified code written in a 

traditional (non-parallel) language such as C or FORTRAN. The languages are visual 

coordination languages, in the sense that the Linda system {Gelernter 1985; Carriero and 

                                                 
1 This section adapted from a journal submission jointly authored with P.A. Lee. 
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Gelernter 1989} is a textual coordination language for parallel programming, targeted as 

producing software that will execute on commodity hardware. Languages that are 

targeted at special-purpose hardware systems (e.g. data flow machines {Gurd, Kirkham 

et al. 1985; Veen 1986}, graph-reduction machines) are not considered here. 

Thus the taxonomy presented here concentrates on the parallel processing aspects of 

visual parallel programming languages. A key feature for this taxonomy to explore is the 

interaction between the visual features that a visual parallel programming language 

provides and the parallelism features required. The fact that some parallelism feature (e.g. 

synchronisation between parallel elements) could be obtained through the use of the 

textual programming language parts that a language utilises is not something to be 

considered. What is of interest is the way in which the visual features of the language 

help the implementation of the parallel activity desired by the user, and whether those 

features are appropriate. This interest is reflected by the use of the terms explicit and 

implicit, to represent respectively the situations where the user does and does not have to 

deal with a parallelism feature directly. In other words, implicit features are assumed to be 

helpful to the programmer. 

One feature which does not form part of the taxonomy is tool support. Since each of 

the surveyed languages forms, more or less, a research prototype it is not expected that 

complete environments for software development are available. Therefore, one of the 

non-functional requirements of this taxonomy is to distil features pertaining to the visual 

language, and isolate them from features provided by tool support, since it is the 

language element, and not the tool support, which is of importance. 

3.2.1 Syntactic Elements of Visual Parallel Programming Languages 

Visually, a visual parallel programming language supports a graph structure in which 

the main programming constructs are: 

 Nodes, that are linked together by; 

 Arcs that transport tokens of differing types between nodes. 

The main type of node is a computation node which is where the language user 

specifies the application-specific computation. Other nodes may be provided by a 

language to assist the management of the graph’s structure. Nodes that are independent 

may be executed in parallel. As will be seen, nodes themselves have a number of 

syntactic elements from which they are composed.  
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Arcs interconnect nodes and provide an overall indication of the interdependencies 

between the nodes, amongst other things. Such inter-node dependencies are particularly 

important in a parallel processing environment as they determine the extent to which 

computation nodes may be executed in parallel. 

 Graph 

Sub-graph 

Data 
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Firing 
Rule  

Node 
Program  

Output token 
Production 
Rule 

Data 
Output
 

Arc Node 

 

 
Figure 3-2 Main Syntactic Elements of Taxonomy 

Figure 3-2 shows the main syntactic elements of the taxonomy. The arrows in Figure 

3-2 indicate ‘has-a’ or compositional relationships rather than indicating the syntactic 

rules that dictate the legal ways in which graphs can be composed.  In what follows, each 

of these syntactic elements will be examined in a top-down fashion with respect to: 

 What options exist for the semantics of the syntactic element, and 

some discussion of those options;  

 What sub-elements it is composed from (with those sub-elements 

themselves being examined subsequently); and 

 Exemplification from contemporary languages. 

3.2.2 Graph 
 

 Composed of 
 Sub-Graphs Arcs Nodes 

Table 3-1 Graph Composition 
 

 Graph Semantics 
 Structure Node 

dependencies 
Recursion 

Options Directed Cyclic 
Directed Acyclic 

Explicit via arcs 
Implicit 

Permitted 
Not Permitted 

Table 3-2 Options for Graph Semantics 
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3.2.2.1.  Graph Discussion 

Decomposition or modularisation of a complex system into more manageable (and 

reusable) components is a well-recognised requirement. This requirement is likely to be 

of particular importance in graphical notations which inevitably occupy more space than 

compact textual representations. Visual parallel programming languages can support this 

requirement by permitting one graph to be composed from other (sub-)graphs. Visual 

complexity can then be reduced by permitting a node on one graph to refer to a sub-

graph constructed separately. This feature also permits graph-reuse (c.f. code reuse), a 

useful feature in itself for the usual reasons. 

When sub-graphing is permitted the language will need to provide (visual) means for 

expressing the way in which connections represented on the parent graph are reflected 

onto connections in the sub-graph. These connections are usually represented by special 

types of connector nodes in the sub-graph and appropriate naming conventions to 

identify the cross-coupling. 

The feature of sub-graphs raises the issue of whether recursion (at the graph level) is 

supported or not. A useful comparison may be drawn here between the issues of macros 

and functions in languages such as C. Functions may be recursive, requiring the dynamic 

generation of information at run-time for support. A recursive graph (i.e. a graph that 

“calls” itself) will also require dynamic support in the form of instantiation of a graph 

and its arcs at run-time. Non-recursive graphs (c.f. macros) can be completely 

instantiated at graph-compile time. 

A statically generated system had the advantage that the complete parallel structure is 

known before execution commences, which may provide advantages for statically 

mapping the potential parallelism onto the underlying parallel platform. Dynamic 

generation has the advantage of supporting recursion, but the disadvantage is that 

dynamic run-time load balancing may be needed to support the evolving structure of the 

parallel application efficiently. Note however that run-time load balancing may be a 

requirement in any case if the load on the parallel platform may vary. 

As mentioned earlier, the arcs in a graph show node interdependencies and hence 

impose order relationships on the execution of nodes. As will be discussed subsequently, 

the dependencies may be of the form of control-flow dependencies (e.g. node B must 

execute after node A) or data dependencies (e.g. node B needs data produced by node 

A). Since the graphs capture some of these dependency relationships, all of the languages 
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considered in this paper are directed, and may have a cyclic or acyclic structure. However, a 

language may or may not require explicit connectivity showing all dependencies. Where 

dependencies must appear explicitly, arcs join nodes which are dependent. If implicit 

dependencies are supported, any explicit dependencies created between nodes joined by 

arcs may be supplemented by implicit linking between nodes of certain types on a graph. 

While arcs show the possible links between nodes, it is assumed that these arcs carry 

tokens (of various types) that capture dynamic aspects of the behaviour of the application 

represented by the graph.  

Explicit and implicit dependencies have advantages and disadvantages. On one hand 

the explicit method ensures that dependencies are visible on the graph and can be 

visualised at-a-glance, while implicit dependencies are “hidden” and cannot be discerned 

just from the graph’s appearance. On the other hand, allowing implicit dependencies on a 

graph will minimise the need for arcs and therefore reduce that graph’s visual complexity.  

Cyclic graphs permit the expression of reusability, in an iterative sense. The nodes 

enclosed in a cycle essentially represent what would be a repetition loop in a sequential 

programming language, permitting (a) a section of the graph to be reused; and (b) 

feedback of results from one iteration to be fed back to the next. This is a useful 

programming paradigm to support even in parallel applications, and languages which are 

acyclic generally provide other means for expressing iterative repetitions (normally by 

using a special type of control-flow modifier node). 

3.2.2.2.  Graph Examples 

 Graph Semantics 
 Sub-

Graphs 
Structure Node 

dependencies 
Recursion 

HeNCE Not permitted Directed acyclic Explicit & Implicit Not permitted 
CODE Permitted Directed cyclic Explicit & Implicit Permitted 
ParaDE Permitted Directed acyclic Explicit Not permitted 
VPE Permitted Directed cyclic Explicit Not permitted 

Table 3-3 Graphs Semantics for Specific Languages 
HeNCE graphs are directed and acyclic, and sub-graphs and recursion are not 

supported. While it was claimed [Browne95] that sub-graphing was just a support-tool 

issue, in fact other HeNCE features would make sub-graphing problematical for 

purposes of reuse (although not for managing visual complexity). The reason why 

HeNCE does not readily lend itself to supporting procedure-calls is due to the fact that 

data values within a HeNCE application are stored in a globally accessible namespace. 

Once a node has received sufficient control-flow stimulus from predecessor nodes, it 
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begins its execution and at that point accesses data elements from the global namespace 

according to the interface specified for that node. Since the interface explicitly names 

precise elements from the global namespace which are to be used during the execution of 

that node, there is no means of distinguishing actual and formal parameters, so in effect 

parameters are hard-coded into nodes at compile time. The addition of sub-graphs into 

the language does not alleviate this problem, since sub-graph nodes themselves, and their 

contents, must have their parameters similarly hard-coded. 

CODE is the only language under consideration that offers mechanisms (discussed 

later) which provide a true procedure-call abstraction, and as a consequence that 

supports recursion. Furthermore, unlike the other flow-based languages under 

consideration, CODE also permits implicit dependency relations to occur between nodes 

in a sub-graph. In short, what this means is that a nodes within the confines of a sub-

graph may be involved in a dependency relation with other nodes, without arcs being 

present to signify the existence of that relation. The approach is clearly meant to improve 

the visual clarity, and thus scalability, of the notation whereby obvious dependencies, in 

CODE’s case being shared memory abstractions, do not require the explicit addition of 

arcs to each node in a sub-graph. 

Given that there are no features for procedure call, or for cyclic graphs to provide 

feedback in either HeNCE or ParADE, other means for supporting such activity were 

found. In particular, both HeNCE and ParADE supported the notion of special-purpose 

iterative graph nodes which could circumvent the normal graph semantics, within a 

strictly delimited area of the graph, in order to provide iterative behaviour. In the case of 

HeNCE, areas of a graph which are to be iterated, are delimited by special loop-begin 

and loop-end nodes, whilst in the case of ParADE, a special sub-graphing mechanism 

(the loop actor) is used which is capable of repeating the contents of a whole sub-graph.  

3.2.3 Node 

Nodes in a graph support the specification of the functionality of the parallel application. 

While a visual parallel programming language may provide a variety of different nodes, those 

that support user-defined computations are clearly the fundamental building blocks from 

which a parallel solution is built. 
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 Node Semantics 
 Type Purpose State 

Options Computational 
Graph management 

Special 
General 

Can be retained 
Cannot be retained 

Table 3-4 Node Semantics 

3.2.3.1.  Node Discussion 

It is convenient to distinguish two types of node: computational nodes, that permit a user 

to define computational behaviour; and graph management nodes, that are concerned with 

controlling aspects of the graph such as: 

 Identify particular structures within a graph (e.g. such as node 

replication or parallelism); and 

 Providing behaviour which would not be obtainable by using the 

general-purpose nodes (e.g. they may have different firing rules). 

Nodes may provide special-purpose (i.e. predefined) behaviour or be general-purpose 

(user-programmable), and may use a variety of shapes for their representation, the 

differences in which are not important here.  

All of the languages considered in this paper use a sequential programming language 

as the basis for the computational node. All permit the use of C or FORTRAN (or both). 

The CODE system provides a C-like language for node programming, although permits 

callout from a node to a C function.  

The state issue for a node is a fundamental part of the computational model provided 

to the user. A node may be able to retain state between executions of that node or may 

not. The ability to retain state is useful in that it can avoid the overhead of re-obtaining 

identical input data needed for every execution (e.g. a node repeatedly executing with a 

varying input and a fixed input). In a cyclic graph the ability to retain state can be used to 

reduce the visual complexity of the graph in that a feedback arc is not needed. In acyclic 

graphs state retention can implement the feedback path which otherwise is not available 

by using arcs. 

When executed, as dictated by the firing rule and tokens on incoming arcs, a node 

obtains input data from some other part of the parallel computation, processes that data 

using the normal features of the sequential language, generates data to be consumed 

elsewhere, and produces tokens on any outgoing arcs. Discussion of the constituent parts 

of a node (below) elaborates on how this behaviour can be achieved. 
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3.2.4 Arcs 

Arcs are a fundamental building block of visual parallel programming languages and 

are not decomposable. As discussed earlier, graphs in the surveyed languages are 

directed; arcs therefore capture interdependency relationships between nodes. 

 Arc Semantics 
 Direction Tokens 

Carried 
Structure Capacity Consumpt

ion 
Connect-
ion 

Options Supply 
Demand 

Control 
Data value 
Reference 

Single item 
Container 

Single item 
Infinite 

When used 
Explicit 

1 : 1 
N : M 

Table 3-5 Arc Semantics 

3.2.4.1.  Arc Discussion 

Though arcs are conceptually simple, there are in fact numerous subtle nuances which 

are worthy of further investigation. Several of the semantic options for arcs dictate the 

model of execution for the nodes in a graph, although detailed discussion of these 

models is best left to the section on node firing rules below.  

The direction characteristic of an arc captures whether an arc is used as a supply route 

from a source node to a destination node that follow it, or as a demand route from the 

destination node back to the source node. 

Arcs can carry tokens of various types: control information, data values, references to 

data values, or some combination of these. Arcs that carry just control information 

indicate an execution ordering relationship between two nodes. In effect an arc carries a 

signal indicating completion from the source node to the destination for supply arcs, or a 

signal which requests execution with demand arcs. The input data required by the 

receiving node must then be obtained through some other mechanism; this is discussed 

in the section below on node data inputs. 

Arcs that carry data values are naturally used to carry data that has to be shared 

between nodes. Languages using supply data arcs are based on the dataflow model of 

parallel computation {Treleaven, Brownbridge et al. 1982} where the execution of a 

node is determined primarily by the availability of data on its input arcs. Thus data arcs 

can indicate execution order relationships as well as holding the data a node requires, and 

therefore carry control information implicitly. (This topic is returned to in the discussion 

of firing rules below.) Demand data arcs would be used by a destination node to signal 

the preceding node to commence generation of the required data. 
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Although none of the surveyed languages permit arcs to carry references, conceptually 

there is no reason preventing this type of token. References (or “pointers”) would permit 

nodes to share data, thus avoiding the need to partition and copy data items around. 

Traditionally, references have not been supported on data arcs for two main reasons. 

Firstly, as languages have been targeted at parallel architectures that encompass 

distributed memory there would be some implementation difficulties in implementing 

the abstraction of sharing. A language that targeted just shared memory multiprocessor 

architectures would not suffer from this implementation problem. Secondly, if data is 

shared, concurrency-control mechanisms, such as those found in the shared memory 

abstractions of the CODE language, are required to ensure parallel accesses to that data 

are properly synchronised.  

Data-arcs can be typed in that the language associates a data type with an arc and 

hence can provide traditional “compile-time” error detection on node interconnections. 

A further issue with data arcs is whether they carry individual data values, or whether 

they support the transport of “containers” of values. Since most languages are concerned 

with FORTRAN-like programming languages and numerical applications, arrays are the 

only containers supported although one might imagine that support for C structs 

(i.e. records) could be appropriate when the C language was the textual programming 

language used in the language. Clearly many other container types exist (sets, bags, lists, 

etc.) but as these will depend on user-level programming conventions, it would be 

difficult for a language to be able to automatically transform and transport such 

containers. The limitation in practice of containers being only arrays is not therefore 

surprising. 

Since “supply” arcs connect independent sources and destinations (whether carrying 

data or control), it may be possible for a source to “race ahead” of the consumer. The 

capacity of an arc is therefore an issue to be considered. If an arc can only hold a single 

item then additional synchronisation is implicit in the language using such an arc since a 

producer cannot generate a new item on an arc before the previous has been consumed. 

“Demand” arcs effectively carry only a single item and hence keep source and destination 

nodes in step. If arcs have an infinite capacity (limited by practical considerations of 

course) then the language potentially provides a more relaxed execution model with more 

parallelism opportunities. Note, however, a language that uses control arcs for node 

synchronisations coupled with some sharing mechanism for common data is likely to be 



Visual Object-Oriented Development of Parallel Applications 

 91 

difficult to program if those arcs have a capacity for more than one completion signal, 

since there would be a difficulty in keeping the multiple incarnations in order as has been 

seen in the tagging issues encountered by the Manchester Dataflow Machine researchers 

{Gurd, Kirkham et al. 1985}. 

Arcs normally provide 1:1 connections between nodes in a graph. However, there 

may be N-to-M relationships required between the nodes. For arcs carrying control 

tokens, a 1 to N arc effectively fires N nodes in parallel (e.g. to obtain data parallelism) 

while N to 1 arcs effectively provide a synchronisation point for N parallel nodes. For 

arcs carrying data tokens, a 1 to N arc may be used to provide the same data to N nodes 

for data parallelism, while an N to 1 arc would indicate the recombination of a number 

of separate data streams into one. Such behaviour could be provided by permitting N-to-

M arcs. (Clearly, such arcs would be problematical for data arcs carrying different types 

of data.) 

An alternative to N-to-M arcs which may be adopted in languages is to combine 1:1 

arcs with special node types to split and merge arc contents, or to require the use of a 

general-purpose node which can be explicitly programmed with replicate or merge-like 

facilities.  

Initially, one might question whether arcs other than 1:1 were justifiable, given that 

nodes can be used to achieve splitting and merging. Requiring the user to explicitly 

program a node to do splitting/merging, while straightforward, is perhaps not providing 

the right level of (visual) language support to the parallel programmer, particularly for the 

situation of arcs carrying data values. Here one would prefer the language to take the 

burden of managing the data flows; the use of special-purpose replicate/merge nodes 

goes some way to achieving this, and then the only argument in favour of N-to-M arcs is 

if they simplify the visual complexity of the graph as compared to that containing extra 

nodes. 

Considering further the issue of managing the data together with the ability for an arc 

to carry containers such as arrays, other possibilities emerge. When applying parallel 

processing to arrays of data, it is common to split up those arrays into smaller units 

which can then be processed in parallel before being recombined back into the output 

data structure. Of course all of this data partitioning can be achieved in a general-purpose 

node, but that is an additional requirement on the programmer and adds additional 

complexity (and possible errors) to the code they have to generate. For example, splitting 
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a matrix into rows (or columns) usually requires additional code to permit the rows to be 

explicitly identified for subsequent recombination into a result matrix. In effect what is 

required is a 1:N arc with partitioning capabilities (splitting a structure up for parallel 

processing) and an N:1 arc with recombination capabilities. 

In the languages under consideration, only the CODE language actually takes an 

approach which relies on 1:N and N:1 arcs to achieve this behaviour. Since CODE arcs 

are programmed with the sources and destinations of any data passing through them, it is 

quite feasible for either the sources or destinations to be the same node for many 

instances of the arc. For both the HeNCE and ParADE notations, arcs are somewhat 

simpler, and it is the existence of special purpose nodes which instantiate data 

decomposition and re-composition. The advantage of using special purpose nodes to 

distribute data as opposed to smart arcs, is that the nodes can be given helpful 

behaviours which support the user in data distribution and recombination.  

3.2.4.2.  Arc Examples  

The CODE system with its dynamically instantiated arcs suffers from the fact that not 

all possible execution paths can be seen in its program graphs, but does allow a program 

to alter its structure (to the limited extent of adding or choosing not to add more or less 

of the same arcs specified in a program graph) at run time. 

HeNCE arcs carry control only. Clearly, a language such as Hence that provides only 

control-information arcs has to provide some other means for the communication of 

data between interdependent nodes. 

In all of the surveyed languages, both single values and arrays of values were 

permitted to travel between nodes. However, where the languages differed was in the 

support provided for decomposition of such structures to feed into parallel processes. 

Perhaps the best example came from the ParADE language, where an arc can be 

equipped with a decomposition template (from a variety supplied with the language) 

which automatically decomposes and distributes data from a structure to a number of 

parallel processes before recombining the results of those processes back into a single 

structure. The level of support provided by the other languages was significantly less than 

that provided by ParADE. Although it is possible to decompose, parallel process, and 

recompose data in the other languages, it is left to the developer to implement such 

schemes. 
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The CODE language in common with the ParADE language allows decomposition to 

be specified at the meta (i.e. graphical) level, though unlike the ParADE system there is 

no graphical support for doing such. Instead, arcs in the CODE system are given an 

index as they are instantiated at runtime, which may be used to identify units 

decomposed data to facilitate re-composition. 

3.2.5 Node Syntactic Elements 

In order to understand fully the behaviour of a node in a language, the following 

issues to be considered include:  

 When a node is executed (firing rules); 

 The data inputs - how a node obtains data from other parts of the 

application; 

 The (textual) program within a node and how that interacts with the 

visual features; 

 The data outputs that a node generates for subsequent processing; 

and 

 The rule for the production of output tokens from a node. 

 

 Composed of 
 Firing Rule Input   Data Node 

Program 
Output Token 
Production 
Rule 

Output 
Data 

Table 3-6 Node Composition 

3.2.6  Node: Firing Rule 

The firing rule specifies the conditions under which the execution of a node is 

commenced. In turn this may affect the synchronisation that will be needed between the 

parallel nodes.  

3.2.6.1.  Firing Rule Semantics 

 Node: Firing Rule Semantics 
Options No rule Fixed User-programmable 

Table 3-7 Node Firing Rule Semantics Options 

3.2.6.2.  Firing Rule Discussion 

As has been discussed, the arcs in a visual parallel programming language are directed 

and provide dependency information in a supply or demand direction. Thus one set of 
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semantics for firing rules is naturally based upon the arcs that are incident (i.e. directed 

towards) to the node and their contents. However, some nodes may have no firing rule, 

and instead commence their execution when the graph of which they are a part is 

“executed”. One set of nodes for which this would be the appropriate behaviour is those 

which do not have any incident input arcs. Nodes which represent the starting point(s) 

for the execution of the application represented by a graph using “supply” arcs (or the 

end node for a graph using “demand” arcs), or those that provide an interface between a 

filing system and data to be processed by the application, are cases in point. 

For nodes that have incident input arcs, a “no-rule” firing rule is less appropriate. A 

language that combined a no-firing-rule scheme with arcs carrying control information 

would not make any sense. A language that uses data arcs with the no-firing-rule is 

providing little more than a graphical interface to part of a message passing system for 

parallel programming (VPE is such a language), and would still requires the programmer 

to deal explicitly with synchronisation aspects (e.g. through message read operations). 

Thus most visual parallel programming languages have arc-based firing rules which 

simplify what the parallel programmer has to provide. 

The options for firing a node based on arc contents, coupled with the arc semantics 

discussed earlier, give rise to node executions that follow a common classification 

{Treleaven, Brownbridge et al. 1982} of data-driven, control-driven or demand-driven firing 

rules. When incident arcs have: 

 “Supply” + “data value” semantics, arc-based firing corresponds to 

the data-driven semantics, where a node can execute when its inputs 

are available; 

 “Supply” + “control” semantics, arc-based firing naturally 

corresponds to the control-driven situation, indicating that a 

preceding node has completed its execution  

 “Demand” semantics, arc-based firing would cause a node to fire 

when outputs from that node are needed. Demand-driven semantics 

give rise to a lazy form of execution. 

In the most general case, a node may have multiple incoming arcs which have to be 

considered in the firing rule. Of particular importance is the rule that applies to 

computational nodes, since the programmer has to understand the rule in order to use 
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the system. The rule may be fixed by the language, the simple possibilities being that the 

node fires when all or any of the arcs contain values. (Other special-purpose nodes may 

break the fixed rules in order to provide different semantics.) Flexibility would be 

provided in a user-programmable scheme which would permit the programmer to specify 

the exact firing rules based on logical combinations of arc contents. While this flexibility 

appears on the surface to be desirable, in practice it means that the overall behaviour of 

the graph can only be discerned by examining all of the firing rules in detail. A language 

with fixed firing rules may therefore be easier to comprehend only from the graph level. 

If a computational node can fire when only some of its incoming arcs contain values 

then the language has to provide some means for the program in the node to 

differentiate between the various cases that could arise - for example, to determine which 

data arcs do or do not contain valid values. This is clearly more complex than the “fire 

when all present” case.  

The ability for a node to fire when only some inputs are present provides one form of 

conditional execution within a node in a graph. With the “fire when all present” rule the 

only means by which conditional execution in a graph can be achieved is through the  

conditional production of tokens on output arcs. This is discussed in the output token 

production rule section below. 

3.2.7  Node: Inputs and Outputs 

Interest here concerns the model that indicates how a node obtains data from other 

parts of the parallel computation, and how obtaining that data is supported by the 

language. Issues concerning the mapping of input data to variables in the (sequential) 

programming language used in the computational nodes is addressed in the next section 

(Node: Program). 

3.2.7.1.  Data Input Semantics 

 Node: Data Input Semantics 
Options Copy Shared 

  Implicit Explicit 
Table 3-8 Node Input Semantics Options 

3.2.7.2.  Node: Inputs and Outputs Discussion 

For parallel programming, the key issue concerning non-local data is the issue of copy 

versus shared - that is, whether a node receives copies of data values that it is to process, 

or whether the data is accessed from some shared area. Data copying suffers the 
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overhead of that copying, mitigated by the fact that a node can then access that data 

locally and without restriction. Shared data can avoid the copying overhead but may 

require locking overheads to be imposed to ensure orderly use of the shared space. 

Ideally, locking will be implicitly provided by the language in order to avoid the burden 

of requiring the programmer to deal explicitly with the locking issues. Of course, the 

parallel platform may itself impose further overheads on these semantics - for instance, 

to implement the abstraction of data sharing on a distributed memory machine. 

For arcs that carry data, the most natural semantics are those of copying the data. For 

arcs that carry references, the sharing semantics follow. For arcs that just carry control 

information, the data inputs are an orthogonal issue that has to be supported somehow 

in the language, such as the in the node interfaces in HeNCE, supporting either copy or 

sharing semantics. 

3.2.8  Node: Program 

The node program is where the programmer specifies the computation that a 

particular computational node undertakes. If the language supports a standard sequential 

programming language, programs written can only deal with data through variables as 

supported in those languages. How such variables get mapped onto the data inputs that 

are provided to the computational node, and where any such mappings are specified are 

issues to be addressed here. 

3.2.8.1.  Node Program Semantics 

 Node: Program 
Options Language Variable mapping 

 Proprietary Standard Implicit Explicit 
Table 3-9 Node Program Options 

3.2.8.2.  Node Program Discussion 

Clearly a visual parallel programming language can provide a proprietary programming 

language with features that fit into its graphical framework, such as dealing with data 

inputs. Generally, such languages are likely to be sequential, as the graph-level is where 

the parallelism of the application is meant to be captured. More commonly, languages 

support traditional sequential languages such as C and FORTRAN, because the purpose 

of the language is to build upon programmer’s strengths in those languages while 

implicitly handling the parallelism features (to a greater or lesser extent). 
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Programming the computational nodes, particularly in standard languages, will require 

the use of variables, and an issue therefore to be considered is how the variables in the 

node program are mapped onto the data inputs and outputs. Ideally, a language will 

provide implicit mappings from the data inputs (e.g. those arriving on arcs) to the 

variables in the node program. Alternatively the language could permit the mappings to 

be explicitly specified using some form of (proprietary) language such as the HeNCE 

scheme whereby local variables are mapped to a global namespace in the node’s 

interface. Similar issues arise for data that a node has to generate for its data outputs.  

In either scheme, textual and graphical elements of the application must be closely 

coupled. Conditional execution of nodes based upon arrival of tokens necessitates the 

construction of node programs which understand the node’s interface, which is 

undesirable. 

The issue concerning variable mappings also concerns what in traditional 

programming are called formal and actual parameters. Programming languages allow a 

procedure to have formal parameters that are mapped to actual parameters at run-time. 

This permits a procedure to be reused from a number of places. The same issue arises in 

languages - to permit a computational node to be programmed in a general manner and 

then reused, in a parallel application. 

3.2.8.3.  Node Program Examples  

In HeNCE there is no mechanism for defining formal parameters for a node. Instead, 

the actual parameters are hard-coded into the node interface, and from those hard-coded 

parameters the appropriate variables are accessed from the global namespace. 

In CODE, ParADE, and in some sense VPE too, there exist mechanisms for 

mapping actual onto formal parameters. In CODE, the formal parameters are presented 

by the number and type of data-flow arcs and the actual parameters by data values 

flowing along those arcs. A similar scheme is seen in ParADE, though ParADE 

automates the mapping between graph level parameters and those in the node program 

where CODE does not. 

VPE provides formal parameters in the sense that its port nodes decouple 

intercommunicating processes. The code residing in a VPE compute node has an 

environment consisting of a textual interface to each of the port nodes attached to the 

compute node, and so in some sense has the notion of formal parameters. Actual 
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parameters in VPE are data values exchanged during the message-passing phase of a 

compute node’s program. 

3.2.9  Node: Output Token Production Rule 

Given that the arcs between nodes indicate some kind of dependencies between those 

nodes, the options for the alternatives by which one node can control the generation of 

tokens on its outgoing arcs need to be considered. 

3.2.9.1.  Output Production Rule Semantics 

 Node: Outputs 
Options Arc Coverage Explicit Send/Implicit 

Send 
Streamed 
Output 

 All Some None Implicit Explicit Yes No 
Table 3-10 Node Output Options 

3.2.9.2.  Output Production Rule Discussion 

It is assumed that a computational node may be permitted to have multiple outgoing 

arcs, since a restriction on there only being one arc may be a limitation in a parallel 

application. However, some nodes may have no outgoing arcs, where such nodes act as 

sinks for data (e.g. storing results into a data file, or acting to terminate the execution), 

and other nodes may be permitted to output on N from M possible output arcs. 

The language has to provide some means for indicating when output tokens can be 

generated. This could be explicit, via some special instruction used in the node program 

(such as an explicit send in a piece of VPE textual code). This could be implicit by the 

system taking action when a node program’s execution has completed. Note that the 

former would permit a node to generate a stream of output tokens (e.g. to provide a 

pipeline structure) while the latter would not. Again, special-purpose nodes can provide 

different semantics in order to achieve the streaming behaviour. 

3.2.9.3.  Output Production Rule Examples 

In the CODE language, routing rules specified as part of the node’s compliment of 

stanzas, determine under which conditions the output arcs from the node will become 

active. As such, CODE allows for some arcs (i.e. N:M) to be activated. Sending is 

implicit in CODE since arcs simply appear as variables in the node program, and variable 

access is then equivalent to moving data onto an arc. Streaming from any one arc is 

permitted since a computation may contain a loop which continuously updates the 

variable that represents the output arc and thus continuously cause output on that arc. 
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HeNCE adopts an all arc output rule whereby control-flow signals from a predecessor 

node will reach all successors and instigate their activity. The sending of output tokens is 

implicit in that the completion of the node program causes the tokens to be produced, 

and since the node program can, by definition, complete only once, streaming is not 

permitted at the level of an individual node. 

ParADE’s actor node permits output on a subset of its output arcs for conditional 

execution. Sending is implicit in ParADE since arcs are bound to textual variables and 

any of those variables which are updated during the course of the execution of the node 

program are automatically sent along their output node when the node program finishes. 

Although streaming is supported by ParADE graphs, only the loop actor can instigate it 

since it possesses a per-iteration output semantic. 

VPE also permits output along some arcs. Arcs in VPE represent possible routes of 

message-passing, not dependencies per-se and as such can be used as and when messages 

are to be passed in whatever combination is required at that time. Sending is explicit via 

message-passing calls in the textual node program (as is receiving). Streams are permitted 

through asynchronous sends. 

3.2.10  Support for Modes of Parallel Execution 

A language must, by definition, provide means for expressing parallel activity. Some 

of these, such as pipelining, have already been encountered in the discussion whilst 

others, such as task parallelism, have been alluded to. Each of the languages under 

examination provide a mechanisms or patterns of mechanisms which support parallel 

activity. The functionality of such mechanisms is the concern of this section. 
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3.2.10.1.  Parallel Execution Mechanisms 

Behaviour Parade Hence Code VPE 
Data parallel Depth Actor Fan-in/out  Node stanza Replicate Box 
Task Parallel Yes Yes Yes Yes 
Pipeline Loop Pipeline 

begin/end 
nodes 

Repeated 
output 
generation 
from a Node 

Using 
asynchronous 
sends in node 
program 

Iteration Loop actor Loop 
begin/end 

Cyclic graphs No graph-level 
iteration 

Conditional Conditional 
output 
generation 
from actor. 

Conditional 
begin/end 
nodes 

Node stanza No graph-level 
conditional 
construct. 

Recursion No No Yes Yes 
Table 3-11 Parallel Execution Mechanism Options 

3.2.10.2.  Parallel Execution Mechanisms Discussion 

Whether the means of extracting parallel activity are in the form of patterns, and thus 

supporting implicitly parallel activity like the textual UFO language {Sargeant 1993}, or 

those means are provided through explicit language features, has an effect on the way the 

developer builds a parallel application. In the languages under scrutiny here, mechanisms 

for explicitly instigating parallelism and patterns for implicitly exploiting parallelism are 

present. 

Given that it is preferable for parallel activity to be implicit within the structure of an 

application, rather than to have the developer explicitly identifying parallelism, the main 

issue for the languages is to what degree they encourage the construction of naturally 

parallel applications (and indirectly the suitability of the underlying execution models), 

and what degree of support they provide when they require the developer to explicitly 

invoke parallel computation. 

In general, the languages only support task parallelism implicitly, whereby 

computational elements which are not directly interconnected may execute 

independently. This is rather an odd paradox, since the data-centric execution models 

supported tend to influence the developer into building data-parallel applications, whose 

construction necessitates explicit programming with special languages constructs. Where 

special language constructs for data parallelism are provided, the provision of features to 

deploy those constructs is valuable. In common with data-parallelism, pipelining is also 
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explicitly programmed, though features to aid deployment are of less importance since 

execution is more of a known quantity at compile-time. 

In addition to task, pipeline, and data parallelism, parallel languages have previously 

supported parallel activity from logically distinct loop iterations (such as in HPF), and 

have exploited parallelism from recursive operations. Support for iterative style parallel 

activity is lacking in these languages since data parallel mechanisms are used to achieve 

the same affect. Furthermore, it has been reasoned by Allen that iteration should be a 

purely sequential construct in a visual parallel programming language, and that it is a 

parallel construct in textual languages only because of the limitations imposed by textual 

syntax {Allen 1998}. Parallelism based upon individual instantiations of a recursive 

problem is permitted in some of the languages (those that support formal and actual 

parameters and calls between graphs), though exploitation of such parallelism is left to 

the developer, much as it would have been in a textual language. 

3.2.10.3.  Parallel Execution Mechanisms Examples 

The CODE language provides an explicit form of instantiating data-parallel activity 

through the use of “arc topology specifications” which allow a node to communicate 

with a run-time determined number of successors or predecessors, and to identify which 

nodes are communicating via the index of the arc through which data is being passed. 

Being text-based, the developer has little support in deploying data-parallelism and 

furthermore must bear the burden of cross-referencing graph- and text-level objects. 

Conversely, task parallelism is implicit within the structure of an application and requires 

no explicit developer input, other than the requirement that developers express solutions 

without introducing unnecessary dependencies into the graphs. Pipelines (and iterative 

behaviour) are achieved through a combination of intricate node interfaces and feedback 

loops which can be used to trigger the multiple execution of a node. Recursion is 

supported through the graph call node which can be used to call the current graph. Since 

computational nodes execute in parallel with other computational nodes, recursion is 

naturally parallel in CODE. 

Where CODE uses combinations of textual meta-programming and graphics, 

HeNCE uses only graphical components to initiate parallel activity. Areas of data-parallel 

activity are delimited by special purpose nodes which may take values at run-time to 

determine the level of replication for the contained computations. Pipelined parallelism is 

also delimited by special purpose nodes, but there is no need to specify any further 
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control metrics, since they are implicit within the structure of the pipeline. Task 

parallelism is, once again, implicit within the structure of the application. Iterative 

parallelism is not supported, though there is a graphical mechanism for supporting 

sequential iterative behaviour. As HeNCE does not support sub-graphing (let alone 

formal and actual parameters) recursion is not possible. 

ParADE takes a similar approach to HeNCE in that parallelism is considered purely 

graphically. Data parallelism is achieved through the depth actor, which also takes 

responsibility for decomposing data into pieces for each parallel instance of the actor to 

work on, and for recompiling the results from those actors into a single result structure. 

The process of manipulating the data for the parallel actors is specified graphically, 

whereby the user selects from a number of templates when constructing the application, 

which are then applied to the partitioning of data at run-time. Whilst this is conceptually 

no different to the approach taken by the HeNCE and CODE data parallel mechanisms, 

ParADE’s approach significantly simplifies implementation, and thus eases the 

developer’s job. Pipeline parallel activity is supported through the loop actor (as is 

straightforward iteration), though it is known that pipelining in current versions of 

ParADE leads to non-determinacy. Task parallelism is implicit within the structure of an 

application, though recursion is not supported since ParADE does not provide a 

mechanism whereby a named graph can be called. 

Since it supports an explicit message passing, as opposed to flow-based, approach, 

VPE is somewhat different to the other languages under consideration here. Data 

parallelism is supported in a manner which resembles elements from both CODE and 

ParADE. In VPE, a specific graphical notation is used to denote the potential replication 

of a computation (like ParADE’s depth actor), yet communication with instances of that 

computation are identified through indices (like CODE’s arc topology specifications). 

The result is that at the graphical level, the developer can specify a potentially parallel 

computation, but then must invoke that parallel computation with appropriate 

instructions at the textual level. However, unlike other languages both task and pipeline 

parallelism, are implicit within the structure of the application. Iteration is not supported 

at the graph level, though it is permissible within the textual node program. Similarly 

recursion is not supported at the graph level (and thus cannot be exploited in parallel), 

though sub-graphing is. 
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3.3 Development Paradigm versus Execution Model 

In software development, abstraction is the key element in managing the complexity 

of both problem domain and implementation. In addition to the syntactic abstractions 

outlined in the taxonomy, a common strategy to leverage the benefits provided by 

abstraction, is to utilise a development paradigm whose semantics are close to that of the 

problem domain. That is, to use a development method whose features and vocabulary 

either suit the problem domain at hand, or which can be extended to suit that problem 

domain. Although there may ultimately be constraints from the underlying hardware 

architecture (such as number of processors or interconnection speed), the development 

paradigm remains an expression of the problem, and not of machine-level activity. The 

development paradigm interfaces to an execution model, which provides an abstraction 

of the underlying computing system through programming language syntax and 

semantics. The challenge in developing paradigms for software development lies in the 

fact that the development paradigms and execution models must work in unison to 

support the application developer and the application. Each must provide an appropriate 

abstraction: the execution model to the development paradigm, and the development 

paradigm to the developer, as can be seen in Figure 3-3 below. 

 

Software Developer 
 

Development Paradigm 
(Developer-friendly expression 

of  the problem domain) 
 

Execution Model 
(The programming language 

syntax and semantics) 

Computer System 
(The hardware and software 
that comprise the computing 

system) 

Highly Abstract View 

Concrete View 

 

Figure 3-3 Layers of Abstraction in a Software System 

In the absence of a layered model of abstraction, software developers may be 

unnecessarily exposed to inappropriate detail of a computing system. It is self-evident 

that if either of the development paradigm or execution model is at an inappropriate 

level of abstraction, the software system as a whole will suffer. This was seen in the 
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current generation of visual parallel programming languages where machine-level 

execution models were allowed to permeate through the layers of abstraction to the 

development paradigm. 

Reflecting upon the taxonomy, it is apparent that there is no distinction made 

between execution model and development paradigm in any of the languages surveyed. 

When using any of those languages, the developer’s view of the software system (as 

presented by the development paradigm) and the manner in which processing proceeds 

(as dictated by the execution model), are similar in each case. Each of the development 

paradigms adopted by the languages resemble execution models normally associated with 

lower-level level parallel activity. The programming abstraction utilised consists of values 

passing between (parallel) procedure calls, which in effect gives a semantic not dissimilar 

to processes and inter-process communication. Although each of the languages abstracts 

low-level architectural detail, in that locking and synchronisation primitives are implicitly 

handled, the fact remains that the user is exposed to behavioural patterns which have 

permeated from the computing system level to the development paradigm level. 

The fact that system aspects, like processes, are exposed to the developer cannot but 

lead the developer into a system- rather than problem domain-centric mode of 

development. The result is that developers are left ill-equipped to deal with potentially 

complex problem domains, since their only vocabulary for conceptualising problems is 

biased towards computational rather than cognitive activity. The misuse of low-level 

execution models as high-level development paradigms increases the gap between 

problem-domain and computerised solution. If a low-level execution model is the only 

paradigm through which the problem domain can be conceptualised, the developer is 

forced to bridge a large gap between problem domain and implementation of a solution. 

This results in software whose construction, debugging, porting, and maintenance will all 

be hindered due to source-code complexity. In short, the problem with visual parallel 

programming languages is that whilst they support an abstract mode of implementation 

(through a graphical syntax) they do not offer sufficiently powerful paradigms through 

which problems may be conceptualised – their programming models and development 

paradigms are simply too similar. 

The problem of providing suitable development paradigms and execution models is 

not restricted to visual parallel programming. For example, in a typical sequential-

software project, it is likely that a methodology such as object-orientation will underpin 
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development. The object-oriented paradigm provides a suitably abstract development 

paradigm (through interrelated and intercommunicating objects), though software 

implementation is based upon textual annotations. Since the implementation of object-

oriented software is intricate, the execution model must be simple enough such that 

overall complexity can be managed.  This is reflected in the fact that most object-

oriented software is built for a sequential rather than parallel execution. 

When building parallel application with textual object-oriented languages, the 

developer must bear the intellectual effort of understanding multiple parallel flows of 

control, from an inherently sequential-looking piece of textual code. Coupled with the 

fact that parallel applications demand longer development and testing periods, a pattern 

emerges that not only are parallel applications difficult to build, but are also expensive. 

Contrasting the problems faced by both the object-oriented developer and the visual 

parallel programmer when working on similar software products, it is clear that they face 

two rather orthogonal problems. The visual parallel programmer struggles to represent 

the problem domain since the available vocabulary is limited to that of parallel execution 

models. The object-oriented developer has no such problem-domain difficulties since the 

development paradigm provides abstractions which are extensible. In a parallel 

programming environment, the object-oriented developer will struggle with 

implementation issues since the textual style of the programming language does not lend 

itself particularly well to managing parallel activity, whilst the visual parallel programmer 

will not. The essence of the problem is therefore that visual parallel programming has a 

very low level of abstraction in its development paradigms, whilst offering quite suitable 

methods for implementation, whereas object-oriented (textual) programming may offer 

highly abstract execution models, but provide the user with little in the way of a helpful 

means of implementing (parallel) code. This problem is summarised in Figure 3-4 below. 
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Figure 3-4 The Orthogonal Abstraction Problem 

The Orthogonal Abstraction Problem {Webber 1998; Webber 2000} shown in Figure 

3-4 indicates the primary difficulty that lies between the parallel programming 

community and the mainstream of software engineering. If the overall level of 

abstraction provided by a particular implementation style is given by the area covered on 

the plane, and the horizontal and vertical dimensions give the “strength” of the execution 

model (the power of the source code syntax and semantics) and the development 

paradigm (the power of the software methodology as a whole) respectively, then a 

pattern of abstractions emerges. The textual programming languages in common use 

have tended to provide highly abstract models of computation, through which problems 

can be conceptualised and managed, with object-orientation providing the richest and 

most extensible set of abstractions of any methodology to-date. Although 

implementation may be based on intricate textual syntax, the actual implementation 

complexity, if free of parallel activity, is manageable. The reciprocal problem arises when 

considering visual parallel programming languages which successfully abstract the 

complexities of the underlying (parallel) system, and offer a development paradigm 

which is very well suited to parallel programming. However, visual parallel programming 

languages do not offer a sufficiently abstract execution model to warrant their uptake in 

more general software engineering, since their execution models reflect those of parallel 

machines, and not of typical problem domains (whilst the converse is true for typical 

textual programming). Visual parallel programming to-date is simply underpowered to 

the extent where its use is not feasible for general-purpose application development, and 

likewise standard textual programming techniques are underpowered for developing 

parallel applications. 
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3.4 Requirements for Visual Parallel Programming Languages 

Given that the previous discussion suggests that contemporary visual parallel 

programming languages are not well suited to developing general-purpose parallel 

applications, and that there is a clear and increasing need for such applications {Webber 

1998}, there is a distinct requirement to capture exactly what is required of languages to 

be considered successful. This section introduces a number of requirements for future 

visual parallel programming methodologies.  

 Support Abstract Means of Implementation. Utilising abstract 

programming language syntax (such as a visual syntax) reduces the 

implementation complexity of parallel software. Since contemporary 

visual parallel programming languages have succeeded in 

encapsulating the details of parallel architectures, future languages 

should continue likewise. In short, languages should be visual. 

 Support Abstract Development Paradigms. To facilitate the construction of 

general classes of applications, support for conceptualising and 

managing the complexity of arbitrary problem domains is required. 

The paradigm through which problem domains are conceptualised 

should support detailed analysis and both high-level and unit-level 

design, as is supported by object-orientation. 

 Maximise Potential Parallelism. Whilst the developer should not 

generally be concerned with explicitly instigating parallel activity, the 

amount of potential parallelism available within the source code 

should be maximised. As a consequence, the low-level data-oriented 

view taken by contemporary visual parallel programming tools is to 

be avoided, and higher-level models of parallel activity should be 

embraced. The implication of this is that the language should 

implicitly enable the identification of as much potential parallelism as 

possible, and it is the responsibility of some other mechanism to 

ensure that such (logical) parallelism is mapped efficiently onto the 

available (physical) hardware. 

 Encourage Re-Use. Though visual parallel programming simplifies 

implementation, source code for parallel applications remains 

intricate. To reduce the potential for introducing bugs into 
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applications through the re-implementation of code, visual parallel 

programming languages should encourage the re-use of existing, 

tested code. However, future visual parallel programming languages 

should not adopt the black-box reuse mechanism favoured by the 

surveyed languages. Thought the procedural abstraction 

underpinning most of the contemporary efforts provides a basic 

mechanism for re-using a library of procedures, it is clear that 

software engineering best practice has moved on. Furthermore, 

modern software paradigms such as object-orientation allow re-use 

much earlier in the software lifecycle through, for example, re-use of 

types at design-time, which cannot be supported by existing means. 

 Use Appropriate Implementation Methods. Throughout the visual 

languages community there is the implicit assumption that visual is 

best. For representing parallel activity, a visual notation has certain 

strengths which cannot be matched by a textual language. However, 

there are times in the development of an application where 

algorithms are sequential, and would be better specified textually 

rather than visually. In such cases, the developer should be allowed 

to use a textual representation for implementation purposes, and that 

code should fit into the overall framework provided by the visual 

element of the language. In effect, the visual component of the 

language may be used to coordinate the activity of textual 

computations, in a similar fashion to the textual LINDA 

coordination language {Carriero and Gelernter 1989}. 

3.5 Flow-Based Visual Parallel Programming 

Although this thesis has identified a number of problems with contemporary visual 

parallel programming languages as a solution to the problem of building general-purpose 

parallel applications, it is not the case that existing approaches are entirely without merit. 

Indeed, it has been argued that aspects of current visual parallel programming technology 

are in fact extremely useful. 

Given the track record of visual parallel programming, which has predominantly been 

flow-based, it is a logical step to examine the benefits afforded by flows. Flow-based 

visual programming is based around the notion that flows of information between 
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computational elements, either in the form of data or control-flow signals, can be used to 

govern the overall execution path of an application. For example, in a dataflow language 

such as CODE {Newton 1993}, it is the arrival of data at a computational element which 

triggers the activation of that element. In HeNCE {Browne, Hyder et al. 1995}, it is the 

arrival of control-flow signals from prior computational elements which acts as the 

stimulus for invoking subsequent elements. Regardless of whether control- or data-flows 

are used, the commonality between the two is that both implicitly manage timing and 

synchronisation issues within an application, which is indeed a very desirable property for 

a parallel language to exhibit. 

In addition to the fact that flow-based computing is a natural method of scheduling 

the interaction between concurrent tasks, it also provides the benefit that identifying 

potential parallelism from the overall communication/synchronisation structure of an 

application is straightforward. For example, tasks that are mutually independent with 

respect to either data or control-flow are free to execute in parallel, and are 

straightforward to identify as they do not exhibit any direct interrelationships, as can be 

seen in Figure 3-5.  
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Figure 3-5 Exploiting Natural Parallelism in an Algorithm 

Flow-based visual parallel programming in its current forms is by no means a 

comprehensive solution to the problems inherent within developing general-purpose 

parallel applications. Building applications with contemporary visual parallel 

programming languages remains difficult. Contemporary systems offer little more than a 
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means of transporting values between concurrent processes as a development paradigm, 

which is distinctly underpowered. Undoubtedly the value-passing approach is not 

without merit, though its overall worth is nevertheless limited when considering 

problems outside of traditional numerical applications – a fact which is acknowledged by 

the language developers {Newton 1993; Beguelin, Dongarra et al. 1994}.  

Though visual parallel programming is in its infancy, the fact remains that flows are a 

very natural way of representing dependencies in a parallel application. This thesis 

conjectures that flows are fundamental, and that a new paradigm for visual parallel 

programming should adopt a flow-based approach as its central tenet. 

3.6 Object-Oriented Development 

Object-oriented development is one of the most powerful and widely adopted 

software paradigms in use today. The power of the object-oriented paradigm is that it 

supports the developer with a rich framework for tacking problem domains, and an 

extensible toolset for designing solutions and implementing applications. 

As a concept, object-orientation is as simple as it is elegant, viewing a software system 

as a group of intercommunicating objects which offer certain services in order to 

complete computational tasks. What is more, the objects within an object-oriented 

software system may be of particular types to suit the problem domain at hand and it is 

quite usual for those types to be interrelated. Herein lies the primary benefit of the 

object-oriented approach:  

… in managing complexity and hence improving productivity in the software development 

process {Winbald, Edwards et al. 1990}. 

 In essence, object-orientation allows a problem domain to be conceptualised in its 

own terms, which are then propagated into the design and implementation of software 

product. In addition, the object-oriented methodology encourages the construction of 

highly modular designs and software which provide benefits in terms of reuse and 

maintenance. 

Though the opinions of software engineering researchers and software practitioners 

are coherent in their belief that object-orientation is an important and powerful software 

paradigm {Coad and Yourdon 1991; Coad and Yourdon 1991; Jacobson, Christerson et 

al. 1992; Coad and Nicola 1993; Booch 1994; Booch 1996}, its uptake in the field of 

parallel application development has been slow. Whilst it may seem surprising that 
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benefits of applying object-orientation has not penetrated further into the field of parallel 

programming, reviewing literature reveals that the overwhelming majority of applications 

written are numerical in nature, and low in terms of overall functionality.  As such the 

consensus seems to be that advanced software engineering techniques are unnecessary in 

a field which still maintains from its very name to be a purely implementation-oriented 

discipline. 

Clearly parallel computing and object-oriented development have met beforehand. 

Indeed, there have been some notable attempts to merge object-oriented technology with 

parallel computing technologies {Yonezawa and Tokoro 1987; Annot and Haan 1990; 

Treleaven 1990; Kale and Krishnan 1993; Geist, Gropp et al. 1996}, current parallel 

programmers remain seemingly steadfast in their opinion that the application of object-

oriented technology is superfluous to their needs, and this is reflected in the tool support 

that has attained widespread acceptance within the community (PVM, MPI, and so 

forth). It may simply be the case that the problems tackled by parallel programmers are 

very well understood, and that applying advanced software development methodologies 

would simply be overkill. Furthermore, the perceived overheads of developing with an 

object-oriented language over a purely procedural language are often considered 

unacceptable, in environments where every CPU cycle is deemed precious2.  

Although the parallel programming mainstream may have rejected object-orientation, 

it does not mean that the technology has nothing to offer the field. On the contrary, as 

parallel computing technologies move further into the realm of general-purpose 

computing and the cost of parallel computing platforms at the commodity end of the 

market continues to decrease, it is no longer unthinkable that future practice will become 

quite different to current. However, the kind of applications that the general-purpose 

computing market requires differs greatly from the style of current parallel applications. 

A typical productivity or entertainment application for a commodity parallel system will 

be large, complex, and functionality-rich, and it is precisely here that object-orientation 

has the potential to provide significant benefits. 

Whilst object-orientation wholly endorses the notion of abstraction for managing 

complexity, the common (textual) object-oriented programming languages are deficient 

                                                 
2 Ironically the lack of proper engineering of code may cost more cycles in the long run, since software 

may be crudely built using low-level tools and not be sufficiently sophisticated to take full advantage of the 

computing system as a whole. Concentrating on low-level details may simply detract from the big picture. 
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in terms of facilities for managing parallel activity. In terms of the orthogonal abstraction 

problem of Figure 3-4, they are lacking in terms of a suitable execution model. If the 

current popular object-oriented programming languages such as C++ {Stroustrup 1991; 

Stroustrup 1997} and Java {Flanagan 1997; Flanagan 1997; Morrison 1997; Microsoft 

1998} are considered, it is clear that the concurrency features of those languages often 

seem to be secondary issues. Generally the developer is presented with models which fit 

uncomfortably with objects, such as threading, and is left with the burden of effectively 

managing objects and threads – proverbial chalk and cheese. This is not surprising, in 

that most object-oriented languages were not designed with parallelism in mind. What is 

surprising is that even those languages which were built to address parallelism 

{Yonezawa and Tokoro 1987; Annot and Haan 1990; Kale and Krishnan 1993; Bik and 

Gannon 1997} still place the burden of explicitly managing parallel control-flows upon 

the developer. Furthermore, the mixture of control-flow code and computational code 

means that the source code base may become highly intricate and difficult to maintain 

and debug. As any practitioner in parallel programming will concede, maintaining a clear 

view of program behaviour from textual source code requires significant intellectual 

effort. This is all in stark contrast to the visual flow-based languages which support 

parallel activity with comparative ease, through a separation of control and computation 

aspects, and choosing the most appropriate type of syntax, visual or textual, for each. 

Despite the fact that textual object-oriented languages have not been widely adopted 

by the parallel programming community, the concepts that underpin object-oriented 

technology are sound. Moreover, language developers are beginning to take an interest in 

at least making concurrency control mechanisms a standard part of their languages 

{Flanagan 1997; Flanagan 1997; Morrison 1997; Microsoft 1998}. Whilst this is a far cry 

from fully-fledged parallelism aware languages, it is some measure of the recognition of 

the growing importance of concurrent execution within applications. Given that the 

object-oriented paradigm is valuable, what remains is to deduce the best way of 

combining object-oriented and visual philosophies within the context of parallel 

application development to harness the key strengths of both, and this is the subject of 

the next chapter. 

3.7 Summary 

This chapter has provided a taxonomy for visual parallel programming languages, and 

the results of that taxonomy were used to identify weaknesses in the current generation 
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of visual parallel programming languages. In particular the problems associated with 

closely coupled development paradigms and execution models were highlighted, and 

from the identification of that problem, a set of requirements for future visual parallel 

programming languages was derived.  

Provisions to satisfy the identified requirements were examined, and in particular 

flow-based programming and object-orientation were introduced as a combined solution. 

In subsequent chapters a paradigm based upon visual, object-oriented, and flow-based 

programming is presented, and a language supporting that paradigm is developed and 

evaluated. 
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Chapter 4 A New Paradigm and Language for Visual Parallel 

Programming. 

Visual parallel programming is a technology still in its infancy and it is clear that 

current systems are somewhat lacking in support for the software engineering 

lifecycle. As general-purpose applications begin to demand increases in hardware 

performance, it is unlikely that the current generation of visual parallel 

programming languages will provide a reasonable solution to building such 

functionality-rich applications. 

In order to meet the need for faster and more functional software products, 

visual parallel programming must be endowed with better abstractions in terms of 

cognitive and execution models. Paradigms must be developed and languages to 

support those paradigms must be built and tested to explore solutions to the 

problem of engineering parallel software. 

4.1 Introduction 

The single most important fact that previous chapters have revealed is that the current 

generation of visual parallel programming languages fails to support the developer 

throughout the software engineering process. It is true that current languages fare a little 

better in terms of helping the actual implementation of parallel applications, but 

nonetheless if there is no support for software engineering then, simply put, software 

cannot be engineered. 

In order to identify engineering that could be applicable to the discipline of visual 

parallel programming, it is necessary to look to mainstream software engineering for 

inspiration. In the mainstream, it is clear that the object-oriented paradigm has risen to 

prominence above all others since it alone provides a sufficiently rich and extensible set 

of abstractions to allow arbitrary problem domains to be managed. 

This chapter begins by presenting a new paradigm for parallel application 

development based upon the combination of object-orientation together with the more 

useful aspects of current visual parallel programming technology. This paradigm, Parallel 

Object-Flow, is then used as a basis for the development of a new visual language to enable 

the development (by visual means) of general-purpose (object-oriented), high 

performance (parallel) applications. The syntax and semantics of the language are 
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introduced in this chapter as are its development paradigm and executions models, 

covering both implementation issues and software engineering aspects. 

4.2 Parallel Object-Flow: A New Paradigm for Parallel Application 

Development 

The creation of a new paradigm for application development is non-trivial. However, 

prior work suggests the following as a basis: 

 The application of object-orientation will provide a familiar cognitive 

model and development paradigm; 

 The application of visual programming notations can be used to 

abstract details of parallel computing systems; 

 Flow-based languages support the straightforward identification and 

exploitation of parallelism, and provide the additional benefit of 

implicitly synchronising concurrent tasks. 

It is these three notions that form the essence of the Parallel Object-Flow paradigm. 

This paradigm maintains the view of a parallel application as being composed from a set 

of intercommunicating objects, where each object is a potentially parallel entity. 

Furthermore objects encapsulate methods which may exhibit parallel activity, where such 

parallel activity is obtained by constructing those methods in a visual, flow-based 

language. The use of object-orientation empowers Parallel Object-Flow with a powerful 

development paradigm which provides facilities for the management of complexity 

throughout the software lifecycle, whilst the flow aspects of the paradigm enable high-

performance through an inherently parallel model of computation. 

The way in which a type’s methods are specified in a Parallel Object-Flow application 

differs significantly from the imperative style which traditional object-oriented languages 

have adopted, in order to provide a syntax which both abstracts underlying parallel 

systems and which is amenable to parallelism. To achieve this, the most successful 

aspects of the current generation of visual parallel programming languages (flows 

between computational elements to implicitly support parallel activity, and visual syntax 

to abstract architectural complexity) are used to build larger abstractions (classes). 

Specifically, classes are composed of attributes and methods, but those methods are 

implemented using visual flow-based notations, not textual source code. 
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The fact that distinct paradigms for the development (object-orientation) and 

execution model (flow-based graphs) are available is of importance, since they solve the 

orthogonal abstraction problem introduced previously.  Although approaches based 

upon a mixture of objects and flows, such as the object-flow execution model of 

Prograph language {Cox, Giles et al. 1995} have been investigated within the serial 

programming arena, no similar approach has as yet been applied to parallel computing. 

The premise of the work described in this chapter is that the application of a hybrid of 

flow and object paradigms to parallel computing is novel, and will yield benefits in terms 

of both software engineering and parallelism. 

4.2.1 The Parallel Object-Flow Development Paradigm 

The fundamental abstraction of the Parallel Object-Flow development paradigm is the 

class. During the analysis and high-level design stages of the software lifecycle, the 

developer is concerned with identifying classes and capturing class interrelationships 

from the problem domain. In that sense, Parallel Object-Flow is no different to the 

object-oriented methodology. At the implementation phase, Parallel Object-Flow 

applications diverge from standard object-oriented languages. The primary differences lie 

in the facts that  

 Parallel Object-Flow applications are constructed from an 

intercommunicating set of autonomous objects, and  

 each method in a class is specified by a graph. 

 When constructing a Parallel Object-Flow application, creating such graphs to 

represent the computational activity of the program becomes the developer’s main 

workload. Graphs themselves consist of nodes and arcs, where nodes represent some 

form of computational element and arcs describe dependencies between nodes. In 

addition arcs constitute routes via which parameters may pass from one node to another, 

rather like the dataflow languages CODE and ParADE. However, the parameters passed 

between nodes in Parallel Object-Flow graphs are unlike parameters in other visual 

parallel programming systems, in that they are in fact simply pointers to objects (called 

object handles) stored somewhere within the computing system. The actual detail of 

where objects are stored is of no direct concern to the programmer who deals only with 

object handles within a physically shared memory or perhaps in a logically shared 

memory {Keleher, Cox et al. 1994; Protic, Tomasevic et al. 1998; Watson and 
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Parastatidis 1999; Watson and Parastatidis 1999}, or handles to null objects (which are 

indicative of a temporal, rather than data, dependency). 

Nodes (computational elements) represent either computation local to the current 

method, or method calls on other objects. Nodes act as an interface through which 

parameters (object handles) are passed to textual subroutines (local computation), or to 

other graphs within the application (method call).  

A typical Parallel Object-Flow method graph will resemble that of Figure 4-1 below. 
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Figure 4-1 A Parallel Object-Flow Graph 

Although the overall style of the graph in Figure 4-1 resembles that of contemporary 

visual dataflow languages, there are a number of differences. 

1. Object handles rather than copies of values flow between nodes. 

2. Since object handles travel around Parallel Object-Flow graphs, 

multiple nodes could attempt to invoke methods on the same object 

concurrently3. Any language based upon the Parallel Object-Flow 

paradigm should ensure that concurrency control mechanisms are 

provided to prevent undesired concurrent accesses.  
                                                 
3 In the dataflow paradigm concurrency control is not an issue since the semantic is one of copies of 

values passing between computational elements. This is potentially costly, since it is generally not more 

efficient to pass a copy of an object than to pass a handle to that object, especially on a parallel platform 

where an interconnection network may be involved in the transfer. 
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3. The arrival of the complete set of incoming handles triggers the 

execution of a node, in the style of classic dataflow computation. For 

the sake of elegance and simplicity no other firing rules are 

permitted. This mode of execution ensures that what the developer 

specifies on the graph happens at run-time – there are no situations 

where the firing of a node is unclear. 

4. For each set of input handles received by a node, there is only one 

output handle produced. There is no possibility for a single node to 

generate a “stream” of output object handles. A clean “single shot” 

model of computation at the graph level is thus provided. 

5. Handles in-transit to a node are queued until the destination node is 

able to consume them. Once handles are consumed by a node, they 

are removed from the application as whole. If a particular object is to 

remain accessible from a graph, it must remain referenced elsewhere 

in the application. 

6. Where no handles to an object exist on any graph within an 

application, that object is “garbage” and can be removed by a 

garbage collecting mechanism. 

7. Since the Parallel Object-Flow paradigm supports the use of a 

mixture of textual and visual implementation styles, the automatic 

integration of graph-level and objects in textual subroutines must be 

fully supported.  

4.2.2 The Parallel Object-Flow Execution Model 

Where the goal of a development paradigm is to present the application developer 

with a rich cognitive model within which to express solutions, the execution model 

supporting the application at run-time is not of immediate concern to the developer. In 

essence the execution model is the intermediate step between the semantics of the 

programming language and the semantics of the underlying computing system (run-time, 

operating system, and hardware). 

Given that applications will be composed from objects, the most pertinent place to 

begin the discussion of the Parallel Object-Flow execution model is with an individual 



A New Paradigm and Language for Visual Parallel Programming. 

 120 

object. At the execution model level, the requirements for an object in the Parallel 

Object-Flow paradigm are twofold: 

 The internal data structures of an object must not become corrupted 

through potentially concurrent access; 

 Objects must not constitute a performance bottleneck.  

These requirements clearly are not mutually compatible, and in order to accommodate 

both into the execution model, some compromise is necessary. In the Parallel Object-

Flow paradigm, a multiple readers – single writer protocol derived from the work on 

Actors {Agha and Hewitt 1987} and Active Objects {Lavender and Schmidt 1996} is 

used to mediate access to objects. Using this protocol, an object may simultaneously 

service multiple methods which do not update the state of that object (reader), whilst 

serialising any requests for service which may update the state of the object (writer, 

which may also be a reader). An example of such activity can be seen in Figure 4-2 

below. 
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Figure 4-2 Multiple Readers, Single Writer Method Invocation 

Figure 4-2 demonstrates a hypothetical situation where the object is requested to 

service a number of methods. In this example, it receives requests for three read-only 

methods which it can handle in parallel, and three write methods which the object 

serialises after completing the read-only methods to ensure consistency.  

In addition to the multiple readers / single writers protocol, the Parallel Object-Flow 

paradigm supports parallel activity across multiple objects. Since an application will 

typically comprise a number of objects, it is clear that multiple objects could potentially 

execute (multiple) methods at any one time. The Parallel Object-Flow paradigm allows 

methods themselves to be parallel routines, specified in a visual, parallelism-amenable 

syntax. The execution model for a Parallel Object-Flow application is therefore 
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inherently parallel, where parallel method code, may call multiple (parallel) methods on 

multiple objects. This is illustrated in Figure 4-3. 
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Figure 4-3 Exploiting Parallelism in a Parallel Object-Flow Application 

For the current generation of visual parallel programming languages, exploiting 

potentially high levels of parallelism shown in Figure 4-3 could be seen as troublesome. 

Where most current languages have adopted a rigid mapping of logical to physical 

parallelism (what appears as a parallel task on a graph will be parallel at run-time), the 

Parallel Object-Flow paradigm adopts a more subtle approach in that logically parallel 

tasks may not necessarily be executed concurrently at run-time. In fact, tasks will only be 

executed concurrently if there are sufficient free computational resources available, in a 

scheme similar to that proposed in {Mohr, Kranz et al. 1991}. This lazy scheme inhibits 

swamping of hardware with too many parallel tasks. This is an important point, that the 

exploitation of available parallel hardware is not directly derived from the application, but 

instead is more sensibly managed by the parallel run-time support system itself, and the 

language element merely points out opportunities for parallelism (and may even be able to 



A New Paradigm and Language for Visual Parallel Programming. 

 122 

perform optimisations)4. This is beneficial since it decouples the programming and 

execution of applications, resulting in increased portability and less need for performance 

debugging between hardware platforms. 

4.2.3 Execution of a Parallel Object-Flow Application 

Given that there are several aspects to the Parallel Object-Flow paradigm, it is helpful 

to piece these aspects together to give an overview of how the execution of a Parallel 

Object-Flow application might proceed. This section takes a high-level view of both the 

development paradigm and execution model previously introduced, and shows how 

those components interact in order to support application execution. 

When initially executing an application, a designated method graph begins its 

execution. This method is the entry point to the application and is equivalent to the 

main function in the C/C++/Java languages. Within the main function objects may be 

created and methods called upon those objects. When methods are called, flow of 

control effectively spreads into other method graphs giving rise to parallelism. The 

graphs themselves implicitly handle communication and synchronisation issues as 

previously mentioned. The location of the objects created by an application is 

unimportant to the software developer, and is managed by the run-time system in such a 

way that locality of objects in a multiprocessor environment can be exploited to improve 

application performance. The overall level of parallel activity is also managed by the run-

time system where the logical parallelism found in the application may be constrained to 

suit the physical resources of the target parallel architecture. 

Simplification of constructing parallel applications is not the only benefit afforded by 

the Parallel Object-Flow paradigm. In fact the benefits are threefold: 

1. Parallelism (and thus the potential for application speedup) is 

implicitly obtained, and exploitation of that potential parallelism is not 

explicitly invoked; 

2. System complexity can be managed through the application of visual 

programming techniques; 

                                                 
4 Though current visual parallel programming languages abstract low-level details like locking and so 

forth, they do not provide mechanisms for automatically managing physical hardware. Instead, the 

developer considers the logical to physical mapping of parallelism during the development process. 
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3. Problem domain complexity can be managed through object-

orientation. 

Given that the three major problem areas for developing parallel applications 

(management of problem domain, implementation complexity, and parallelism 

management) are each addressed by the Parallel Object-Flow paradigm, there is room for 

optimism in this approach. What remains for this thesis is the design of a language 

supporting the paradigm, to test whether such a language can be used not only to build 

general-purpose parallel applications, but also show potential for yielding speedup. 

4.3 The Vorlon Programming Language 

This section introduces the Vorlon programming language, which has formed the 

majority of the practical work for this thesis. Vorlon is the primary vehicle for evaluating 

the Parallel Object-Flow as a methodology for developing high-performance parallel 

applications. 

Although Vorlon is intended to be a complete system for the development of parallel 

applications, here only the language element is presented. Issues pertaining to code 

translation and run-time support are left for later chapters. The context within which the 

work is focussed is highlighted in Figure 4-4 below, which shows the architecture of a 

Vorlon application. 
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Figure 4-4 The Architecture of a Vorlon Application 
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Figure 4-4 shows the five levels in the architecture of a Vorlon application. At the 

bottom resides the actual hardware upon which the application is executed. As is 

apparent from the number of layers in between the hardware and the developer, there is 

a high level of abstraction inherent in the application architecture. It is important to 

understand that the layers are not meant as a source of potential inefficiencies, but as a 

framework under which software can be developed. The executable code produced in 

this architecture is no further away from the computer system than it would be if a 

“manual” programming method such as PVM had been used, but the developer is 

granted a higher-level view of the application. 

The run-time system, one level above the hardware, bears the responsibility for taking 

compiled source code from the intermediate language level, and managing its execution. 

The run-time system must provide facilities for managing parallel execution of an 

application, such as supporting mechanisms for communication and synchronisation 

between concurrent computations, and implementing appropriate concurrency controls. 

At the centre of the architecture is the intermediate language layer which is used to 

interface Vorlon graphs with run-time system services. An intermediate language is 

simply used to enable Vorlon to target a range of existing run-time systems via normal 

compilation and linking techniques. 

The translation layer of the Vorlon application architecture is responsible for 

converting Vorlon graphs to textual source code suitable for compilation via traditional 

compilation methods. It is intended that the translation layer will be flexible in terms of 

the intermediate language ultimately produced such that no options, in terms of run-time 

system or machine architecture, are ruled out. In this respect, the translation layer is 

considered a plug-in component, in a similar fashion to the translation model adopted by 

the CODE system {Newton 1993}. 

The uppermost layer of Figure 4-4 is the language element of the architecture, the 

level at which the user develops software. It consists of both a data dictionary {Layzell 

and Loucopoulos 1989} where the issues of modelling the problem domain through 

classes and class-interrelationships are tackled, and a set of methods belonging to those 

classes, which encapsulate computational activity in Vorlon. Both the data dictionary and 

methods are specified graphically. Specifically, the data dictionary is constructed using a 

UML-like notation {Fowler and Scott 1997; Booch, Rumbaugh et al. 1999} where classes 

and interrelationships are specified visually to aid developer comprehension; methods 
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belonging to those classes are specified in a graphical, flow-based notation in accordance 

with the Parallel Object-Flow paradigm. 

As approaches for the object-oriented analysis and design of systems are already well 

known and not a research topic explored by this thesis, the discussion on constructing 

the data dictionary is left until the end of this section. Since the novel work undertaken 

has been in the area of expressing methods graphically, it is the syntax and semantics of 

Vorlon which is examined next. 

4.3.1 Methods in the Vorlon Programming Language 

This section introduces the syntax and semantics of the Vorlon programming 

language. The syntactic elements are presented in a bottom-up style with the simpler 

elements, and those familiar from previous visual parallel programming work presented 

first and the less familiar and more complex elements presented subsequently. 

To construct software which is insulated from the complexities of the underlying 

parallel system, the Vorlon programming language borrows from proven technology in 

visual parallel programming and offers a visual flow-based syntax as stipulated by the 

Parallel Object-Flow paradigm. 

For each method of each of the problem domain classes, a Vorlon method graph 

exists which describes that computation. A Vorlon method graph is an acyclic, top-to-

bottom graph consisting of nodes which represent some form of computation, and arcs 

which describe dependencies between those computations. The arrival of handles to 

objects (including the possibility of handles to null objects) along arcs on a graph triggers 

a computational node’s execution. In Vorlon, the arrival of such handles signifies the 

completion of previous computation(s) and thus signals readiness for successor 

computations to proceed, just as in the HeNCE computational model, which yields a 

clear graph-execution semantic. 

In contrast to previous work in visual parallel programming, Vorlon arcs do not carry 

data values between computational nodes but in general carry handles to objects (i.e. 

Parallel Object Flow) which may be used to invoke methods on referenced objects. As 

an optimisation, for primitive types (coincidentally the same set of types offered by the 

C++ language) values are transmitted such that both pass-by-reference and pass-by-value 

semantics are supported. Pass-by-value for objects is realised by using the type’s copy 

constructor and passing a handle to that newly created copy. As Vorlon arcs carry 

handles to typed objects, the language benefits from being strongly typed. As type 
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information is known at compile-time, unlike previous objects-plus-flows methods {Cox, 

Giles et al. 1995}, it is possible for a Vorlon compiler to perform static type-checking of 

applications. 

Having established the overall flavour of a Vorlon method graph, it is now germane 

to review each of the syntactic elements available to the developer. The following 

sections introduce each piece of graph syntax, its semantics and common use. 

4.3.1.1. Arc 

Arcs are the “glue” with which the computational elements of Vorlon applications are 

linked together. Arcs are used to describe dependencies between nodes, where such 

dependencies may be either temporal (one node must await the completion of a prior 

node) or data dependence (where one node requires the results of another node). 

 The arc has straightforward semantics. Arcs are typed in that only handles to objects 

of a particular type, or subtype, are allowed to flow through any arc. Attempting to pass a 

handle of an incorrect type along an arc will result in a compile-time error. Arcs are 

unidirectional, and to accommodate the acyclic, non-stream nature of Vorlon have a 

capacity for only one item. The visual representation of Vorlon arcs can be seen in 

Figure 4-5.  

Source

Destination
 

Figure 4-5 Vorlon Arc 

4.3.1.2. Replicate and Merge Nodes 

The replicate and merge nodes are inspired by features of the MeDaL and ParADE 

languages where replication and merging were used to distribute and gather data passed 

to different parts of an application. In Vorlon, the replication facility is used to make 

copies of object handles to transmit to multiple nodes in a graph where each of those 

nodes requires access to the same object. The merge node is used where conditions 

occur in graphs (see conditional node discussed later) to maintain consistent firing rules 

even where some paths in a graph may not be used. The replicate and merge node syntax 

is presented in Figure 4-6. 
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Figure 4-6 The Replicate and Merge Nodes 

The replicate node accepts a handle to an object at its uppermost edge and emits one 

handle to the same object along every arc at its lowermost edge. It is important to 

understand that the node does not copy the object itself, but only the handle to that 

object. Copies of actual objects must be created using a copy constructor, as discussed 

below.  

The merge node accepts inputs from any one of its input arcs and echoes that handle 

to the output arc. All input arcs must be of the same type for this node to work, and a 

compile time error will occur if this is not the case. The merge node is the only node in 

the Vorlon language which does not obey the strict all-arcs firing rule, though without 

this node conditional execution at the graph level is not possible. 

4.3.1.3. Computation Node 

Name

Typed input arc(s)

Typed output arc

 

Figure 4-7 Computation Node 

The computational node, shown in Figure 4-7, is represented as a rectangular icon 

with a descriptive name at its centre. Its purpose is to encapsulate a single computational 

task (written textually) or group together a number of such tasks (described graphically), 

and is semantically similar to the procedure call mechanism in the C programming 

language, allowing for multiple arguments (input arcs) and a single return parameter 

(output arc). The choice of a single output arc is defensible since it maintains a familiar 

function call semantic (though it has been noted that additional parallelism could be 

invoked by allowing multiple return paths). 

The encapsulated computation can be expressed either: 



A New Paradigm and Language for Visual Parallel Programming. 

 128 

1. Textually using a subset of the C++ programming language 

{Stroustrup 1997}; or 

2. Graphically, in which case the node acts in a similar fashion to a 

decomposed actor in ParADE, to manage visual complexity. 

 It is permitted for nodes containing graphs to nest arbitrarily, though sub-graph 

recursion is not supported (recursion instead being achieved via method calls as 

discussed later). 

If a computation is expressed in C++ rather than using Vorlon graphs, any code 

within a computational node will be executed sequentially, even if there is potential for 

parallel activity. Since parallelism is potentially restricted by programming computational 

nodes textually, a developer must therefore be aware that the best way to interact with 

objects is via the graphical mechanisms (to be described subsequently). A piece of textual 

code should be used only where it is apparent that there is strict sequential ordering of 

operations, or a piece of computation is trivial enough not to warrant the support of a 

graphical syntax (such as the manipulation of primitive values or where it is obvious that 

there is no parallelism to be extracted from a piece of code).  

Like the ParADE system, the computation node automatically handles conversion 

between graph-level arcs and appropriately typed objects in the textual host language. 

When viewing application structure at the graphical level, the developer is presented with 

a set of typed arcs connected to the computation node. When the developer chooses to 

view a decomposed node, either the encapsulated graph or a piece of source code 

providing a textual representation of the node’s environment will be presented. The 

provision of a textual representation for a textually-programmed node can be seen in 

Figure 4-8 where the automatically generated (C++) code is highlighted5, and the 

developer’s own code can be seen nested within that. 

                                                 
5 Note that there may be other code associated with the node to provide the necessary locking and 

synchronisation for the node program, though the developer would never be presented with such 

information. 
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Graphical 

double
double

bool

double

checkRange

 

Textual 

//////////////////////////////////////// 
// Check Range Computation Node 
//////////////////////////////////////// 
// Inputs: double, double, double 
// Output: bool 
//////////////////////////////////////// 
 
bool checkRange(double d1, double d2, double d3) 
{ 
  if(d1 <= d2 && d2 <=d3) 
  { 
    return true; 
  } 
  else 
  { 
    return false; 
  } 
} 

Figure 4-8 Computation Node: Graphical and Textual Views 

Execution of a node obeys the same strict firing rule as other Vorlon nodes, whereby 

only when items are present on all input arcs will the node program be activated. At 

some point later in time, the node program will finish and a single handle is emitted 

along the single output arc (returning void from a textual program has the effect of 

producing a handle to a null object on the arc). 

4.3.1.4. Parallel Computation Node 

The parallel computation node exhibits a useful behavioural pattern when used in 

conjunction with container-like data structures. Its semantics derive from the data-

parallel mechanisms of other visual parallel programming languages, whereby it is able to 

spawn multiple concurrent instances of its node program, and indeed its look-and-feel 

are adapted from the depth actor in the ParADE language. However, when the situation 

arises where each input arc carries a handle to a suitable data structure such as a List, the 

parallel computation node will automatically perform decomposition and re-composition 

of the elements contained within the list. The visual syntax of this operation can be seen 

in Figure 4-9 below, alongside the decomposition pattern for this mode of operation. 
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Name

Handle(s) to  objectsList

Handle to  objectList  

 

Figure 4-9 Parallel Computation Node using Automatic Data Decomposition 

In Figure 4-9, each element of the list will automatically be extracted and provided as 

an argument to each parallel invocation of the node’s program. This scheme is similar to 

Prograph {Cox, Giles et al. 1995}, where is has been argued that such a scheme is quite 

adequate for the purposes of handling parallelism in an object-oriented application. 

Furthermore, the notion of parallelism being driven by typing is consistent with the 

object-oriented philosophy of Vorlon where the developer concentrates on high-level 

software engineering issues and tool support takes care of the parallelism. Whilst it is 

clear that linear structures such as lists and arrays can easily be dealt with, it may also be 

possible to automatically decompose arbitrary data structures for parallel processing in 

this way, though such research is beyond the scope of this thesis. 

Though the ability to decompose a data structure automatically is desirable, there are 

some conditions that the developer must adhere to: 

1. The type of the objects held in the data structure must be compatible 

with the types expected as individual arguments to instances of the 

parallel computation node’s program. 

2. The number of elements contained in each data structure must be 

identical, otherwise the firing condition for some instances of the 

node program will be satisfied whilst for others it will not. 

If the Vorlon parallel computation node is compared to the depth actor in ParADE, 

the Vorlon version is less flexible in the patterns of decomposition that it supports. 

However, it is thought that the inclusion of the more advanced partitioning schemes seen 

in ParADE is unlikely to yield any additional benefits to the Vorlon language since 
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developers are building object-oriented and not dataflow applications, and as such task- 

and not data-parallelism is the norm. If a situation arises where more intricate 

partitioning strategies are required, the developer must manage their implementation. 

In its other form, the parallel computation node provides the simplest explicit form of 

parallelism in the Vorlon programming language. The iconic representation of the 

parallel computation node can be seen in Figure 4-10 below. 

Name

Typed input arc(s)
Control input (int)

Null handle (void) output arc

 

Figure 4-10 Parallel Computation Node 

The parallel computation node’s only other significant difference from the standard 

computation node is the presence of a control input which governs the level of logical 

replication of the node’s program or sub-graph at run-time, and the imposition of a null 

handle to act as a timing signal when the node has finished on the output arc. The 

control input expects a single integer value to be present on its incident arc which is used 

to specify the logical extent of the replication of parallel instances of the node program at 

run-time.  Inside the parallel computation node, each of the arcs incident on the node are 

presented to the programmer in a manner consistent with the standard computation 

node, including the control input, so that each instance of the node program can be 

identified from within the node program. 

4.3.1.5. Conditional Computation Node 

The conditional computation node behaves in an almost identical fashion to the 

standard computational node with the exception that the execution of its node program 

(but not the activation of the node itself) can be made conditional on the items carried by 

a subset of its input arcs. The visual representation of the conditional computation node 

can be seen in Figure 4-11. 
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Name

Typed input arc(s)

Conditional input arc(s)

Conditional output arc
Typed output arc

?

?

 

Figure 4-11 Conditional Computation Node 

The semantics of the conditional computation node are straightforward. Items arrive 

via the arcs at the topmost edge of the icon, with the conditional input(s) denoted by the 

grey circle containing the question mark symbol. Once all input arcs contain handles, the 

node will activate (though not necessarily execute its node program), and its first 

operation will be to evaluate the condition (written in standard C++ and yielding a 

Boolean result) using the items supplied to the conditional input area, to determine 

whether or not the node program will be run. If the program runs, all input parameters 

from both the normal input arcs and the conditional arcs are supplied to the node 

program (regardless of whether it is an actual C++ computation or another graph). The 

node program then executes and at some point later returns a single item via its typed 

output arc. 

If the condition specified by the node’s condition statement is not satisfied then the 

node program will not be executed. Immediately a null object handle will be sent along 

the conditional output arc to indicate non-execution. This is important since the non-

execution of a conditional node’s program is equally as important to subsequent nodes in 

the graph as the execution would be. That is to say it is not permitted in Vorlon for a 

node to not signal its completion even if it is deemed to have performed no useful work. 

4.3.1.6. Graph Start and Halt Nodes 

A typical Vorlon application will be composed from many graphs (and sub-graphs).  

To manage graphs and their interactions, a visual mechanism is required to decouple 

them – in effect to provide actual and formal parameters such that called graphs can be 

isolated from their calling graphs. To satisfy this requirement, the Vorlon programming 

language borrows technology originally developed for the MeDaL {Harley 1993} system, 

and later implemented by the ParADE {Allen 1998} language, in the form of graph start 

and halt nodes. The visual syntax for those nodes can be seen in Figure 4-12 below. 
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Start Node Halt Node
 

Figure 4-12 Graph Start and Halt Nodes 

The purpose of a start node is to provide a graph icon to act as a formal parameter. It 

isolates an incoming arc from a calling graph, or in the case of an application’s root graph 

to isolate arguments from the environment (to act as command line arguments). 

Similarly, the purpose of the halt node is to provide a binding between the output arc on 

the called graph and its associated arc on the calling graph. To be consistent with the 

computational node, where there may be any number of input arcs yet only a single 

output arc, there can be any number of start nodes in a graph, but only one halt node. 

In addition to its role as a parameter-passing mechanism, the halt node is also 

equipped with certain synchronisation characteristics. It is clear the activation of a halt 

node is in itself a synchronisation, since it indicates the completion of a graph. However, 

the halt node is also able to accommodate any number of arcs carrying null handles (of 

type void), and in the cases where the return type of the graph is not void, up to one 

other arc carrying a handle to any non-null object. In each case the semantics of the halt 

node are that the graph will complete when all incident arcs are carrying object handles, 

though in the first case a null handle will be returned to the graph’s caller whilst in the 

second the non-null handle will be returned. This semantic ensures that all nodes in a 

graph must have completed before a return will occur, and thus avoiding potential race 

conditions. 

4.3.1.7. Literal Source 

To facilitate the introduction of literal values for primitive types into an application, 

the literal source node was developed, whose purpose is simply to accept a literal value at 

compile time and provide a handle to an object holding that value at run time. The 

syntactic element for a literal source can be seen in Figure 4-13 below. 
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Figure 4-13 Literal Source Node 

4.3.1.8. Attribute Source 

Since Vorlon nodes may only operate upon objects to which they possess handles, a 

mechanism which supports access to an object’s attributes (its data members) must be 

provided. Unlike contemporary object-oriented programming languages where attributes 

are implicitly available within the scope of any methods, nodes in the Vorlon language 

must be supplied with handles to any attributes which are required within the scope of a 

graph. The mechanism which provides handles to attributes is known as the Attribute 

Source, which grants access to an object’s attributes to methods in that object’s type.  

The iconic representation of the Attribute Source can be seen in Figure 4-14 below. 

 

Figure 4-14 Attribute Source Node 

Attribute source nodes emit an object handle to part of the current object’s state as 

soon as the graph to which they belong is activated. That is to say that the attribute 

source provides a mechanism by which a method can access the private or protected data 

members of its type. Precisely which of the data members is sourced by a particular 

attribute source is determined by the developer at compile-time. Once the parameters 

have been selected, there is no way to alter which attribute will be sourced at run-time. 

As such the developer must take care to ensure that any attributes which may be required 

during the execution of a graph has a corresponding Attribute Source. 

Providing a visual mechanism through which object state is accessed is certainly 

unusual in object-oriented languages, where attributes are normally implicitly available 

throughout the execution of all methods. In the case of the Vorlon programming 

language, it is actually beneficial. Attributes will be referenced in only the scopes in which 

they are needed, and as such will need to be locked only for those scopes. This allows for 
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a fine granularity of locking involving parts of an object’s state, which in turn promotes 

parallelism. 

4.3.1.9. Object Interface Source Node 

In addition to the fact that a method in the current object may require access to the 

attributes of the current object, there may be cases when a method may need to call 

another method on the same object. Since methods can only be invoked upon objects 

whose handles appear in the current graph, Vorlon requires a syntactic mechanism for 

introducing handles to the current object’s interface into a method graph (equivalent to 

the this pointer in C++/Java). This is the function of the Object Interface Source 

node, which can be seen in Figure 4-15. 

 

Figure 4-15 Object Interface Source Node 
When activated, the Object Interface Source node provides a single handle to the 

current object on its output arc. That handle may then be used in a consistent fashion 

with handles to any other objects in the method graph, with the exception that both 

public and private methods in the local object may be invoked. Using the Object 

Interface Source in conjunction with the Attribute Source allows all of the facilities of the 

referenced object to be exploited in a consistent fashion. 

4.3.1.10. Loop Node  

The loop node is intended to provide a graph-level control-flow abstraction 

mechanism for iteration, and can be seen in Figure 4-16 below. 

Control input(s)

Name

Output

Other parameter(s)

 

Figure 4-16 The Loop Node 
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The look and feel of the loop node has been adopted from the loop actor in the 

ParADE system, although its semantics have been changed to remove the ill-defined 

behaviour of ParADE’s loop actor which possessed both iterative and parallel aspects. In 

particular, the Vorlon loop node removes the per-iteration loop input and loop output 

that characterised the ParADE version. Removal of the per-iteration input and output 

renders the loop node suitable for iteration only, and not as a mechanism for invoking 

streamed activity, since Vorlon does not support streaming (or pipelines for that matter) 

for reasons discussed in Chapter 7. 

Having established that the loop node is a purely iterative construct, the syntax for 

loop node usage can now be introduced. It should be noted that the loop node has two 

areas upon which arcs carrying object handles can be incident. Any arcs incident upon 

the uppermost grey circle are taken as being variables used within the loop control 

statement (discussed next). These variables are consumed according to the normal firing 

rules, once per node activation, and determine the conditions under which iteration is 

allowed to proceed. The loop control statement is expressed textually in a subset of the 

C++ programming language. Arcs incident on the uppermost edge of the loop node, 

though not incident on the grey circle, provide handles for use inside the loop in much 

the same fashion as arcs incident upon the uppermost edge of a computation node 

provide handles for use within that particular sub-graph or computation. Handles 

transmitted along such arcs are made available to each iteration of the loop. 

The output arc provides a means of returning a handle to the environment once all 

iterations of the loop have completed. Whilst it may at first seem strange that a loop can 

return an object, as opposed to merely iterating over objects, it makes more sense when 

considering the loop node as a specialisation of the computational node which repeats 

the body of the function until a certain condition is met. Once the loop condition has 

been met, the node can then release a handle onto its output arc. This handle can be any 

handle within the scope of the node (its parameters), or can be a null handle, as depicted 

in Figure 4-17. 
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Foo bar(Bar b) //node interface 
{ 
  for(…) //loop condition (user specified) 
  { 
    //body of function (user code) here 
  } 
  //return statement 
  return b; //returns a handle from current scope 
} 

Figure 4-17 Textual Representation of a Loop Node 

Since each instantiated Vorlon graph can be used only once in the execution of an 

application, during the execution of a loop each iteration is presented with a fresh copy of 

the loop’s sub-graph. This semantic can be seen as being somewhat akin to a macro 

expansion semantic, in that each iteration effectively creates and uses a new copy of the 

sub-graph defined within the loop node.  

4.3.1.11. New Object Node and Constant New Object Node 

The new object node is the means by which objects are instantiated and introduced 

into a Vorlon graph. The semantics of a new object node are relatively simple. Handles 

representing arguments to a constructor call for a new object flow into the node via its 

input arcs, causing the construction of a new object (the location of which is of no 

concern to the developer). Once the new object has been constructed, a handle to that 

object flows out of the node along its single output arc. 

The visual syntax of the new object node is shown in Figure 4-18 below. The new 

object node is oval in shape, in common with other object interaction nodes, to 

distinguish it from control-flow and computational elements of a Vorlon graph. The type 

of object to be created appears in textual form towards the bottom of the icon along 

with any parameters required to instantiate the object (in effect the signature of its 

constructor). The mapping between input arcs and parameters is performed left to right, 

such that the leftmost arc maps onto the leftmost parameter and so forth. 

Constructor

Input Arc(s)

 

Figure 4-18 The New Object Node 

It should be noted that the new object node does not support functional 

polymorphism with respect to selecting the most appropriate of any available 
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constructors based upon the handles received as its input arguments. The new object 

node obeys the strict firing rule that all other nodes obey, in that it will only become 

active when all of its input arcs are carrying handles. If other constructors are to be 

invoked on an object, then their invocation will have to occur within other new object 

nodes, where the number and type of arguments required for construction is in 

agreement with the number and type of input arcs to the new object node itself. 

In addition to the new object node, the Vorlon language also supports a simple 

variant called the Constant New Object Node. The constant version of the node shares 

similar syntax and semantics as the standard version of the new object node, but 

produces handles to immutable objects. That is to say, the constant new object node 

produces objects whose state cannot be updated, and therefore upon which only 

methods that do not update state may be invoked (methods that are declared as const). 

This may in turn have implications for locking optimisations, in addition to the software 

engineering benefits provided (some objects simply don’t change their state, and a way of 

modelling this is useful). The icon for the constant new object node is shown in Figure 

4-19. 

Constructor

Input Arc(s)

 

Figure 4-19 The Constant New Object Node 

4.3.1.12. Method Call Node 

Method Call

Serving Object Input

other input arc(s)

 

Figure 4-20 Method Call Node 

The method call node as seen in Figure 4-20, provides the primary means in Vorlon 

by which parallelism is expressed, since it is the activation of multiple method call nodes 
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which propagate control-flow between graphs. Whilst it may seem strange that a method 

call node is the primary abstraction for parallel execution in Vorlon, consider the 

traditional approach to building concurrent applications, using some imperative textual 

language. Since textual code is written in a single dimension and effectively executes one 

statement at a time synchronously, where one statement completes before another starts, 

asynchrony was developed as a mechanism through which the normal control-flow rules 

could be circumvented. With the aid of asynchrony, it became possible to execute 

multiple one-dimensional flows of control within an application, as illustrated in Figure 

4-21 below. 

 

 Execute 1st Statement 
Execute 2nd Statement 
Spawn New Task 
Execute 3rd Statement 
… 
… 
… 
Execute nth Statement 
Join Tasks 
Execute n+1th Statement 

Execute 1st Statement 
Execute 2nd Statement 
Execute 3rd Statement 
… 
… 
… 
Execute ith Statement 

Communication between concurrent tasks 

Parallel control flows 
 

Figure 4-21 Asynchrony in Textual Programming Environments 

Figure 4-21 shows a typical textual parallel program, where an initial computation 

spawns a second computation, both of which then proceed concurrently until the 

spawned computation has completed. Upon completion, the spawned computation waits 

until the main computation is ready to allow its spawned task to re-join. 

In the Vorlon programming language, using asynchronous mechanisms to invoke 

concurrent methods does not fit comfortably with the programming model. Unlike 

imperative textual programming languages where asynchronicity is used to circumvent 

the sequential execution of statements, Vorlon method graphs have the ability to route 

flows of control around nodes, and thus permit further potentially parallel computations 

to execute without employing asynchronous mechanisms. Figure 4-22 demonstrates a 

situation similar to that exemplified in Figure 4-21, whereby two distinct parallel flow of 

control are present in the example code. However, Figure 4-22 makes no use of explicit 

asynchrony to achieve this situation, instead using routing to spread control-flow to parts 

of the graph that can be active concurrently. 



A New Paradigm and Language for Visual Parallel Programming. 

 140 

Method n+1

Method n

Method 2

Method 2

Method 1

Method 1

 

Figure 4-22 Task Parallelism without Explicit Asynchronicity 

Having understood the importance of the Method Call node pertaining to parallel 

activity, it is now germane to investigate the mechanics of the node. Arcs incident upon 

the method call node may be attached at one of three possible points. The simplest to 

explain is the output arc. The output arc of a method call node is attached at the lowest 

point of the node’s lower edge. Since Vorlon methods are permitted to return only a 

single object handle, a single output arc must be present at the base of a method call 

node which enables the return of a result, with the possibility that result may be a null 

object handle. Upon completion of a method, a handle is transmitted to subsequent 

nodes via this arc. 

Arcs carrying input handles to the method call node are a little more intricate in that 

the positioning of those arcs is of importance to the functioning of the method call node. 

This importance stems from the fact that object handles flowing into the method call 

node fall into one of two categories. An object handle can:  

1. Refer to the object upon which a method is to be invoked; or 
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2. Refer to parameters for that method invocation. 

 This distinction is of such significance that it warrants acknowledgement in the visual 

syntax of the language. It was decided that the single handle pertaining to the serving 

object should attach to the method call node differently from the potentially more 

numerous parameter object handles. As such, the arc carrying the handle to the object 

which is to service the method call is attached to the grey circle, or serving object input, 

uppermost on the method call node’s icon, and is the only arc permitted to be incident 

upon that area of the icon. Other arcs providing parameters to the method call must only 

be attached to the upper side of the node’s icon. Any attempts to attach multiple arcs to 

the server object input will result in a compile-time error. Actual parameters are mapped 

onto formal parameters with a simple left-to-right ordering of arcs. 

Visual syntax aside, the method call node has the same semantic as a method call in 

C++ or Java – similar to that of the computational node introduced earlier. Method call 

nodes invoke a method on a specified object, pass any parameters to that method call as 

required, and await the completion of that method before returning control to their 

caller. In Vorlon, this involves passing the flow of control to the graph representing the 

method, and awaiting completion of that method graph before control is returned to the 

caller. In addition, the method call node can be used to access public attributes from an 

object by specifying the name of that attribute and no other parameters. 

There remains one aspect of the method call node semantics which warrants further 

explanation. In general, when a method is invoked through a method call node, handles 

to objects are transmitted as parameters. When parameter is an instance of a built-in 

primitive type, it is not a handle which is sent, but a copy of its value (c.f. Java). If there 

exists a requirement for such types to be transmitted by reference, all that is required is 

for the developer to wrap a primitive value within a user-defined type, or within the 

built-in Object type provided by Vorlon (discussed below). Once a user defined type 

wrapper has been written for a particular primitive type, the user-defined type can be 

used to implement pass-by-reference semantics for primitive types, allowing both pass-

by-value and pass-by-reference semantics, benefiting from both approaches. A pass-by-

value semantic can also be achieved for non-primitive types by making copies of an 

object via the type’s copy constructor and passing a handle to that newly created object. 
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4.3.1.13. Parallel Method Call Node 

The parallel method call node behaves in an almost identical manner to the standard 

method call node, but with the exception that it implicitly supports “data-parallel” 6 

activity, whereas the standard method call does not. The icon for the parallel method call 

node can be seen in Figure 4-23 below. 

Vector multiply(Vector)

List<Matrix>

List<Vector>

List<Vector>  

Figure 4-23 Parallel Method Call Node 

Although in many respects the parallel version of the method call node is similar to 

the original method call node, its intended usage is somewhat different. Whilst it is clear 

that parallelism can be achieved using multiple instances of the method call node 

together with the replicate node, this is a limited data-parallel pattern where the level of 

parallelism invoked is determined at compile-time. Since the level of data-parallelism 

available in a particular circumstance is often unknown until run-time, using several 

instances of the standard method call node is an unsatisfactory solution. Instead it will 

usually be the case that method call nodes will be used to invoke task-parallel activity, 

where distinct methods are invoked concurrently through multiple method call nodes. 

True data-parallel activity will be exploited through the parallel method call nodes. 

Where a standard method call node will consume a single set of input object handles, 

and execute a method before returning a single object handle, the parallel method call 

node is equipped to decompose linear data structures (such as a List) in the same way 

as the parallel computation node (Section 4.3.1.4). The size and type of any incident data 

structures must be both mutually compatible in terms of size, and compatible with the 

method call’s parameter list in terms of type, lest a compile-time error occur. If handles 

                                                 
6 The term “data parallel” is used here is a cognitive aid to described a replicated computation operating 

on different inputs. Since Vorlon is not a dataflow language, parallel method call or a similar term would be 

a better interpretation. 
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to single objects, as opposed to structures of objects, are presented on any arcs, then 

those handles will be made available to all instances of the method call. 

4.3.1.14. Comments 

This graph parses the
input data, and passes
it into the initialisation

mechanism.

 
Figure 4-24 Comment Icon 

During the construction of software, extra information on particularly interesting or 

intricate aspects of source code will require additional documentation than the source 

code (Vorlon graph) itself provides. Acknowledging this need, the Vorlon programming 

language provides a mechanism adapted from UML {Fowler and Scott 1997}, seen in 

Figure 4-24 above, via which comments can be added to the application source code. 

4.3.2 The Vorlon Class Model 

The Vorlon class model is the means by which the data dictionary, or repository of 

types used within an application, is described. The class model supports the analysis and 

high-level design phases of the software lifecycle where the problem domain is 

decomposed in terms of types, interrelations between those types, and the methods that 

those types support. 

The modelling of classes and interrelationships was never an area of research which 

was to be covered by this thesis, particularly since aspects of the Unified Modelling 

Language, or UML {Fowler and Scott 1997; Booch, Rumbaugh et al. 1999} were 

thought adequate for the modelling of classes and interrelationships. It was therefore 

proposed that UML could be used as a suitable notation for object-oriented analysis and 

design in Vorlon. UML is composed from a comprehensive set of modelling methods to 

capture the behaviour of an object-oriented system at several different levels, but it is the 

UML class model which is of particular interest with respect to the Vorlon programming 

language. Whilst several other notable object-modelling languages exist {Coad and 

Yourdon 1991; Coad and Yourdon 1991; Bruegge, Blyth et al. 1992; Booch 1994}, UML 

has sought to extract the salient features of these and condense them into a single unified 

methodology. It is precisely this refinement which has lead to the belief that the UML is 
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most suitable of the available methods as a notation for representing the Vorlon data 

dictionary. 

Of particular interest in the context of the work presented in this thesis, the UML 

class model provides a graphical method of expressing the interfaces and interrelations 

between the types that exist within a particular problem domain. The UML class model 

presents the developer with a set of icons representing types, and allows those icons to 

be connected via various relations including: 

1. Inheritance – to permit the specialisation of types to manage particular 

problem domain requirements, and promote source code re-use. 

2. Composition – to allow new types to be formed by the aggregation of 

objects from existing types. 

3. Association – to allow objects of one type to maintain references to other 

objects. 

4. Uses – publishes interface details of one type to a second type, permitting 

the second type to manipulate objects of the first type. 

The UML class model was never intended as a language for programming, but as a 

means of modelling object-oriented systems. As such, raw UML is unsuitable for use 

within the context of a programming language. Specifically UML’s class model lacks the 

ability to specify a starting point for an application. To remedy this, inspiration was 

drawn from object-oriented programming languages such as C++ and Java, where a 

single static method called main is used as an entry point into an application. In C++, 

the main method is a function at global scope, whilst in Java the main method is given 

static scoping within a particular class in an application. The Vorlon approach takes 

aspects of both the C++ and Java approaches in that it both enforces class membership 

for methods, yet acknowledges the semantic importance of the main method as a 

separate entity. The result is the Vorlon Main class which can be seen in Figure 4-25. 

The semantics of the Main class icon are that it has only a single method called main 

which executes immediately, and once only, upon application startup. 
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Main

+int main
  (in:String[] args)

 

Figure 4-25 The Main Class 

Main class is also abstract, which prevents objects of type Main from being created. 

The fact that the Main class is abstract implies that it cannot form part of a two-way 

relationship with other classes; whilst it is permitted for the Main class to use, associate 

or be composed from objects of other classes, the reciprocal is not true. In addition, the 

Main class, to use Java terminology, is said to be final which implies that it cannot be 

sub-classed by other types through the inheritance relationship. It is not permitted for 

the inheritance relationship to be attached to a Main class, nor is it permitted for 

another class to instigate an interrelation with the Main class. 

It is clear that UML has a great deal of expressive power. Coupled with the notion of 

a Main class, the notation becomes not only suitable for modelling object-oriented 

systems, but with the Vorlon methods graphs and suitable library support, also as a basis 

for programming them. 

4.3.3 Built-in Types, Primitives, and Library, and Array Support 

It has become commonplace to consider a modern programming language not only in 

terms of its keywords and its syntax, but also in terms of any built-in types and library 

support. For example, the C++ programming language definition now contains not only 

rules governing syntax and semantics, but also contains a number of built-in primitive 

types and the definitions of the C++ standard library which must accompany any 

vendor’s C++ implementation {Stroustrup 1997}. It is thus reasonable to assume that 

the Vorlon programming language should also provide a degree of developer support in 

the form of robust and re-useable library components and a number of useful built-in 

types. The provision of a set of built-in types is relatively straightforward. Since Vorlon 

targets the C++ as its intermediate language, it is simple to allow instances of C++ 

primitive types to appear in Vorlon programs. 

In addition to these primitive types, Vorlon also provides three additional types: 

Object, List, and String. The List type has already been discussed as one 
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means by which parallel computation nodes and parallel method call nodes can 

automatically decompose regular data structures into individual elements for parallel 

processing. List is a parametric type (influenced by C++ templates) allowing a List 

to contain objects of any type. 

Object is another parametric type used as a generic wrapper class for primitive 

types. If the execution semantics of a Vorlon graph are recalled, usually only non-

primitive types are passed by reference, whereas primitive types are passed by value (as 

an optimisation). The Object type can be used to wrap primitives when pass-by-

reference, as opposed to pass-by-value, semantics are needed. 

The final non-primitive type which Vorlon supports is String. The main purpose 

of the String type is to represent sequences of characters in an object-oriented 

fashion. To that end, the String type supports a variety of operations for application 

use (substring operations and the like). 

The construction of high-quality libraries for general-purpose programming relies not 

only on the availability of stable versions of the language in which to develop the 

libraries, but also on experience drawn from using the language to determine precisely 

what should and should not form part of its standard library. In addition, the sheer size 

of a typical standard library for a modern programming language means that considerable 

resources are required for their construction. Since the Vorlon programming language is 

intended as a vehicle primarily for validating the Parallel Object-Flow paradigm, no such 

library support was developed. 

Notwithstanding the fact that a standard library for Vorlon was not available, the 

requirement for some form of support to handle issues such as input and output 

remained. To satisfy this requirement, the experimental version of the Vorlon 

programming language implemented a scheme of Vorlon-safe wrappers whereby the 

library support of the intermediate language component could be exploited by a Vorlon 

application. Thus the architecture of Vorlon applications was modified to reflect 

experimental needs, as can be seen in Figure 4-26. 
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Figure 4-26 Vorlon Application Architecture at the Experimental Phase 

Figure 4-26 shows the approach taken in creating an architecture for the experimental 

version of Vorlon. This architecture is unlike the set of well-defined interfaces presented 

in Figure 4-4, where the translator level provided the language component of the 

architecture with complete isolation from the intermediate language which is ultimately 

compiled and executed. Instead, the method component of the Vorlon language 

environment is presented with a set of hand-generated wrappers that encapsulate the 

functionality of the libraries supplied with the targeted intermediate language (C++). The 

wrappers implement the necessary concurrency controls around the components 

supplied by the intermediate language library, so that they can be called safely from 

Vorlon language components, though this is certainly not an optimal solution. In 

particular, the fact that non-native libraries were not written with parallelism in mind 

implies that their performance will not approach that of a set of native Vorlon language 

libraries. This has the implication that although a large body of functionality becomes 

available to the Vorlon developer, each time part of that functionality is utilised the 

performance of the application may be compromised. 

The final aspect of the Vorlon language to be introduced is its support for arrays. In 

Vorlon, arrays are considered to be objects in their own right, as in Java, though in 

Vorlon arrays are more akin to optimisations for multiple instantiation since their 

functionality is low (similar to C/C++ arrays). Since Vorlon arrays support methods, 

albeit a limited set, they are accessed through method called nodes. 
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Creation of and access to arrays is facilitated by the New Object Node and Method 

Call Node respectively, where the node name is used to indicate either creation of an 

array or array subscripting. Examples of array creation and access can be seen in Figure 

4-27, Figure 4-28, and Figure 4-29. 

Object[ ]

int or Object [ ]

Object [ ]

 

Object [ ]

[ ]

int

null handle

Object

 

Object [ ]

[ ]

int

Object

 

Figure 4-27 Creating an 
Array of Objects 

Figure 4-28 Setting an 
Array Element 

Figure 4-29 Retrieving 
an Array Element 

Figure 4-27 shows the familiar New Object Node as introduced in Section 4.3.1.11, 

except in this example, the type of the object the be created (Object) is suffixed with 

square brackets ( [ ] ) indicating that it is an array which is to be created and not a 

single instance. Only one input parameter is allowed, either an integer or another array 

whose contents will be copied, and this parameter is used to set the size of the array and 

where the input is another array of objects to fill the new array. The implication of 

allowing only a single parameter is that only the default constructor of a type can be 

called when an array of objects is to be created, and that instances of types which do not 

support a default constructor cannot be held in an array (in common with C++ and 

Java). 

Figure 4-28 shows the syntax for setting an element of an array. In this case, the array 

which is to be operated upon arrives via the serving object input (uppermost grey circle). 

A handle to the object which is to be inserted into the array arrives along an arc, as does 

the index of the desired array element. Once all arcs are carrying handles, the node 

overwrites the handle currently held in the indexed array element with the new handle, 

and emits a null handle along the output arc to signify the completion of the node’s 

execution. 

Figure 4-29 shows the opposite action to Figure 4-28, where an element is retrieved 

from an array. In this case, a handle to the array to be operated upon is presented at the 

serving object input and the index of the required handle is also transmitted to the node. 
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When these two handles arrive, the node executes and sends a copy of the handle at the 

specified location onto the output arc. 

It should be noted that the array mechanism in Vorlon is only suitable for reference 

types, and not for primitives (c.f. Java). If arrays of primitive types are required, then 

each primitive must be wrapped in an instance of Object as described previously in this 

section. Furthermore it is important to remember that arrays in Vorlon are not range 

checked, and if an array operation causes an out of bounds error then it is likely that a 

run-time failure will occur. 

4.4 Summary 

This chapter has introduced the Parallel Object-Flow paradigm. The notion of a flow-

based semantic has been introduced whereby object handles flow between graph nodes 

representing method calls and computation, alongside a set of other requirements, such 

as concurrency control and communication mechanisms, needed to support execution. 

In addition the aspects of the Parallel Object-Flow paradigm which address both system 

(visual language and execution model) and problem domain complexity (object-

orientation) were discussed. The notion of building parallel software visually from 

objects was proposed as a major improvement over traditional approaches to parallel 

programming. 

This chapter also introduced the Vorlon language for visual, object-oriented parallel 

programming. The architecture of a Vorlon-based application was described, with 

particular attention being paid to the way in which methods are constructed, and the 

parallel-by-default execution model which methods in the Vorlon language exhibit. The 

way in which parallelism is expressed not only through concurrent method calls on 

objects, but also through the traditional means of extracting parallelism from a flow-

based graphs, was also explained. 

The next chapter presents an investigation of the development of two applications 

using the Vorlon programming language, with an aim to evaluate the language both in 

terms of software engineering and performance. 
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Chapter 5 Experimental Performance Results and Analysis 

Given that a methodology and tools - the Parallel Object-Flow paradigm and 

the Vorlon programming language - have been developed on paper, the evaluation 

of that technology must follow. This chapter presents a set of experimental test-

beds and procedures designed to test the performance capabilities of application 

developed with the Vorlon language, and analyses the performance of two 

applications developed with Vorlon. This chapter does not cover language and 

other higher-level software issues, which are discussed in-depth in the next 

chapter. 

5.1 Introduction 

This chapter investigates the Vorlon programming language within a formal 

experimental framework. As with formal experimentation in the pure sciences, this 

chapter adopts the approach of introducing aims, experimental apparatus, methodology, 

and results before presenting conclusions. The parallelism community has often fallen 

into the trap of providing benchmarks which are specifically designed to demonstrate a 

system in its prime. It the aim of this experiment to check whether the prototype Vorlon 

programming language is a useful tool, and not to prove that it is. 

In order to validate the Vorlon language and the Parallel Object-Flow paradigm as a 

means by which high-performance parallel applications can be constructed, of necessity 

requires experimentation with software systems. To that end, the main thread of this 

chapter charts the course of two software experiments, a matrix multiplication 

application and a Vorlon compilation system, from inception through to release. The 

matrix multiplication experiment allows for direct comparison between Vorlon and its 

predecessors within the problem domain favoured by previous programming methods. 

The production of a (parallel) compilation system for a language has traditionally been 

the starting point for that language to become self sufficient, and indeed writing such a 

tool in the Vorlon language itself is a robust test of the language and paradigm, as well as 

an opportunity to investigate a more object-oriented system than problems in numerical 

analysis. 

After describing the construction, experimentation, and evaluation of each of the 

software projects individually, the chapter closes by drawing together the experiences of 

developing Vorlon applications. However, before experimentation can begin, the systems 

used to run the experiments must be introduced. To that end, the discussion diverges at 



Experimental Performance Results and Analysis 

 152 

this point to tackle issues of run-time support and mappings between that run-time 

support and the Vorlon language itself. 

5.2 Software Support - The NIP Parallel Run-Time System 

The NIP (Newcastle Implicit Parallelism) parallel run-time system {Watson and 

Parastatidis 1999} is an experimental system whose goals are to abstract the complexity 

of a parallel computer, and present the abstraction of an idealised parallel computer to a 

compilation system7. The NIP system does not reveal the details of the underlying 

architecture, but instead portrays that hardware as an abstract machine with large 

memory and a similarly large number of processors, regardless of the physical 

configuration of hardware (shared memory, distributed memory, or a mixture of both). 

Thus NIP is responsible for the efficient exploitation of the underlying hardware, since it 

is encapsulated away from the compilation system and developer. This is a major 

advance compared to previous tools, such as PVM and MPI, where the developer had to 

bear the responsibility of managing computational resources, and ensuring that 

application-level parallelism was mapped correctly to physical resources.  

However, it is important to understand that the normal “rules” for parallelism apply 

even though optimisations are supported. If the parallelism that the user identifies is 

relatively coarse grained, then the NIP run-time system will have far more chance of 

successfully optimising its exploitation than with fine grained parallelism. Still, the NIP 

philosophy rejects the notion of explicit logical to physical mappings of parallelism, and 

instead conjectures that it is the run-time system which is ideally positioned to exploit 

hardware resources efficiently, and not the developer – characteristics which were 

assumed in the Vorlon architecture, as discussed in Chapter 4. NIP provides two 

important mechanisms to support this notion in the form of a lazy task creation scheme 

and a distributed shared memory abstraction.  

NIP’s lazy task creation scheme {Watson and Parastatidis 1999} provides the illusion 

of an arbitrary number of processors. It is based around a unit of parallelism known as 

the “Tasklet” {Watson and Parastatidis 1999} which is a logical unit of work which may 

be executed in parallel, should sufficient computational resources exist. If resources are 

available then a parallel task will be extracted from the Tasklet, and executed on an 
                                                 
7 Originally, NIP was designed to support functional-plus-objects languages such as UFO {Sargeant 

1993}, though it was also found to be suitable to support declarative-style language semantics, such as 

those exhibited by Vorlon. 
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available processor. If sufficient resources are not available then the work will be 

executed serially. What distinguishes NIP from contemporary lazy task creations schemes 

is the fact that the NIP API provides a number of Tasklets which implement common 

parallel patterns (iteration, recursion, etc.) on behalf of the user, without requiring the 

instantiation of multiple Tasklets, and thus optimising run-time overheads. The API also 

provides an excellent target for syntactic elements from the Vorlon language to map 

onto. 

The general behaviour of NIP lazy task creation can be seen in Figure 5-1, where two 

snapshots of potential activity are presented. In the earlier of the two snapshots, at time 

T1, two processors are shown busy processing parallel tasks. Some time later, at time T2, 

one of the processors has become idle after finishing all of the tasks in its task queue. 

The NIP load balancing mechanism will then steal available work from a non-empty task 

queue in order to keep all processors busy. Under a normal lazy task execution scheme 

one potentially parallel task could be moved from one queue to another. Since one 

Tasklet can potentially describe a number of potential parallel tasks, it is possible for its 

load balancing mechanism to steal whole parts of the work described by that Tasklet. 

This optimisation reduces the need for many potentially parallel tasks in situations such 

as loop unrolling where traditionally the overhead of creating potentially parallel tasks for 

each unrolled iteration has had to be paid. The upshot of this mode of execution is that 

the NIP user can assume that swamping of hardware will not occur, and that execution 

of all potentially parallel tasks is sensibly managed. Furthermore, since the NIP user deals 

only with identifying potentially parallel tasks and not executing them, the user not need 

to be concerned with the actual processor configuration of the underlying system8. 

                                                 
8 The closest that contemporary visual parallel programming has come to achieving a model like this, is 

the “cost matrix” of the HeNCE language, but that influences the load balancing mechanism and not the 

task creation strategy. 
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Figure 5-1 NIP Lazy Task Creation 

NIP’s distributed shared memory (DSM) abstraction provides the communications 

mechanism through which objects in an application may interact9. The NIP DSM 

provides the illusion of a logically shared object-based memory across a number of 

computational nodes, and provides a means of locking and accessing objects stored in 

that memory space. Additionally the NIP system provides a level of insulation from the 

non-uniform memory access (NUMA) nature of its shared memory abstraction by the 

inclusion of caching schemes. 

Importantly the NIP DSM model supports a similar access semantic to Vorlon’s 

relaxed active object model. In the NIP DSM, serving objects may be read or write 

locked. Where objects are read locked, multiple (cached) copies of the object in question 

are allowed to be operated upon in parallel, one copy per processing node executing a 

method call on the serving object. When an object is write locked, all read proxies are 

                                                 
9 In addition to providing the shared memory abstraction, NIP also allows explicit message-passing to 

occur, though the mechanism has not been exploited in this thesis, it may be used in future work 

(discussed later). 



Visual Object-Oriented Development of Parallel Applications 

 155 

invalidated and only a single method on a single object is allowed to proceed until the 

write lock is released. 

Having introduced the necessary features of the NIP model of computation, the next 

section describes the approach taken to mapping Vorlon onto NIP, and sets the scene 

for experimental work. 

5.3 Code Generation 

From the Vorlon software architecture introduced in the previous chapter it was seen 

that an intermediate language is used to provide a target for Vorlon to map onto. Since 

NIP provides a C++ interface, and Vorlon has adopted elements from the C++ 

language for its textual and library components, it was clear that Vorlon graphs should 

lead to the production of C++ suitable for linking with the NIP libraries. The steps taken 

to execute a Vorlon application can be seen in Figure 5-2 10. 

 

Figure 5-2 Translation from Vorlon to Machine Code 

Though conceptually simple, there are some issues that arise from Figure 5-2 which 

are influential enough to warrant discussion here. Since parallel languages, and not tool 

support, was the primary focus of this research there was no tools support developed for 

the drawing of Vorlon graphs. Instead graphs were drawn with standard chart-drawing 

packages. The implications of manually drawing graphs are twofold: 

The quality of the graphs may not be as high as if generated with tools support 

since no automatic syntax checking is available; 

                                                 
10 Note that the compilation / linking layer is itself tackled as a Vorlon application in later sections, 

though for prototyping traditional compilation methods were used. 
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There is no way of automatically extracting compilable source code from graphs. 

The first of these problems can be mostly protected against by proof-reading. The 

second is more difficult and requires that rigorous rules are followed in the manual 

conversion from Vorlon graph to C++ source code. It is important to note that the 

translation process, although executed manually, was done mechanistically as an 

automatic translation system would have. No expert knowledge, that is making use of 

information which would not be available to an automatic translator, was applied during 

the translation process in order to ensure a fair test. Thus, although the following text 

make use of phrases like “the compilation system” and “automatic” it should be borne in 

mind that these operations were human-executed (and not completely infallible). 

Having understood the manual nature of code production, there are a number of 

other aspects which must be addressed in the translation of Vorlon graphs into NIP 

compatible C++. Of particular importance are: 

 Creation of NIP compatible (i.e. thread-safe) classes from those 

types identified in the problem domain; 

 Identification of potentially parallel tasks from Vorlon graphs from 

which to create NIP Tasklets; 

 Determining and optimising locking requirements for objects 

referenced in Vorlon graphs. 

Given that NIP itself is a prototype system with known limitations, there exist a 

second set of issues which must also be addressed, though these issues may not be 

directly addressed by features of the Vorlon language. These are: 

 Memory management, and in particular the provision of garbage 

collection in the absence of any such scheme within the NIP DSM; 

 Problem size must be carefully considered since NIP’s internal data 

structures are known to continually consume memory as applications 

execute. 

Since types form the basis of Vorlon applications, it is the generation of NIP-safe 

classes which constitutes the first stage in the code generation process. Fortunately, this 

is a relatively straightforward process since there is simple mapping between syntactic 

elements seen in the Vorlon class model, and components of the NIP system. This can 

best be shown by example. Consider the example class diagram of Figure 5-3. 



Visual Object-Oriented Development of Parallel Applications 

 157 

 
Main 

Car 

Wheel 

Vehicle 

0…4 

2 

 

Figure 5-3 An Example Class Diagram 

In Figure 5-3 a simple problem domain is shown whereby some algorithm embodied 

within the main class interacts with two instances of the Vehicle class, to run some kind 

of simulation with them. The Vehicle class itself is composed from between zero and 

four instances of the Wheel class, and is sub-classed by the Car class, which presumably 

addresses issues pertaining to motor cars rather than other types of vehicles (such as 

hovercraft). The NIP-safe type interfaces for this problem are shown Figure 5-4 below. 

 
Main 

int nipMain(int argc, char* argc[]) 
{ 
  NIPRef<Vehicle> vehicle01; 
  NIPRef<Vehicle> vehicle02; 
 
  //Main program here 
 
  return 0; 
} 

Car 
class Car : public Vehicle, public NIPShared<Car> 
{ 
  public: 
    //specialised methods here 
  private: 
    //specialised data 
}; 

Wheel 
class Wheel : public NIPShared<Wheel> 
{ 
  public: 
    //methods here 
  private: 
    //data here 
}; 

Vehicle 
class Vehicle : public NIPShared<Vehicle> 
{ 
  public: 
    //methods here 
  private: 
    NIPRef<Wheel> wheels; //used like a C-style array 
}; 

0…4 

2 

 

Figure 5-4 Generation of NIP-Safe Types from the Vorlon Class Diagram 

The generation of NIP-safe interfaces is straightforward if certain rules are followed. 

In the first instance, all types (with the exception of the Main class) must sub-class the 

parametric NIP type NIPShared, which encapsulates the necessary functionality 

needed to store instances of those classes within the NIP DSM. 

Secondly, since objects are stored within the NIP DSM rather than in the usual virtual 

memory address space, mechanisms other than virtual memory pointers are required to 

access those objects. The mechanism which is used to access objects in the DSM is the 

NIP Reference, or simply NIPRef, which appears in type interfaces where virtual 

memory pointers would normally be expected. There is one caveat in the use of 

NIPRefs in that only instances of non-primitive types are accessed through this 
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mechanism. Instances of primitive types are accessed directly and cannot be stored in the 

DMS unless they constitute part of the state of a non-primitive type object. 

Apart from the global nature of the NIPRef, the semantics of the mechanism are 

similar to that of C-style pointers. A NIPRef may refer to either a single object as with 

each of the references to vehicles in the Main function, or may refer to a C-style array-

like structure of multiple objects such as the array of Wheel objects in the Vehicle 

class. The mapping for uses and composition relations is therefore straightforward. 

When the extent of the relation is known (i.e. the developer has specified a single value 

for the number of related or contained instances in the class diagram) then that same 

number of NIPRefs to instances is generated. When the extent of the relation is 

unknown, an array, sizeable at run-time, is used to hold NIPRefs to maintain the 

relations. Although semantically different11, both composition and uses relations are 

implemented using NIPRefs and it falls to the developer to ensure that correct use of 

each is maintained, by ensuring that details of encapsulated objects are not revealed to 

outside of their allocated scope. 

Having established the means by which type interfaces can be automatically generated 

from the Vorlon class diagram, the next step is to devise a means by which the 

implementation of those types can be automatically generated from Vorlon method 

graphs. Once again explanation is facilitated by example. Consider the Vehicle 

problem domain, and in particular the main(…) program which is going to manipulate 

instances of the various problem domain types. For this example it is convenient to 

assume the overall goal of the application is to use parallelism to speed up a set of 

simulations involving vehicle collisions with other vehicles, though in this case the 

number of vehicles involved has been limited to two for simplicity (the figure governed 

by the qualified uses relation between Main and Vehicle in the class diagram). The 

assumption will be made that the Vehicle class will support a method called 

collide(…) which takes as its parameters another Vehicle:  

void collide (NIPRef<Vehicle> vehicle) 

                                                 
11 A composition relation implies that the contained objects are private to its container, whilst a uses 

relation implies that objects of one type hold references to objects of another type but which are not 

contained within the first object. Though both relations are implemented with NIP References, the class 

model should be used to enforce the notion of uses versus composition. 
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In this simple example, each of the Vehicles needs to be collided with the other in 

order to ascertain what damage will be done. A possible Vorlon graph for the algorithm 

is depicted in Figure 5-5. 

 

Figure 5-5 Main Method for Vehicle Simulator 

Before continuing to show how parallelism can be automatically extracted from 

graphs, it is worth explaining how the graph in Figure 5-5 actually works. Firstly the 

parameters for the application are received from the environment through the 

uppermost source nodes. These source nodes provide handles to Strings which 

describe each of the Car objects involved in the collision. Two Car objects are created 

and handles to those objects are released, copies of those handles are made, and sent to a 

number of method calls. The method calls invoke the collision(…) method on 

each of the Cars, passing the details of the partner in the collisions as a parameter. At 
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some point later the method for computing collision damage completes and the two cars 

are drawn to show the damage inflicted (encapsulated by a separate sub-graph). Figure 

5-6 illustrates the extraction of potentially parallel activity from this method graph. 

 

Figure 5-6 Main Method for Vehicle Simulator (Tasklet View) 

Figure 5-6 shows each of the potentially parallel tasks (boxes labelled Tasklet1 and 

Tasklet2) where each Tasklet is instantiated twice (since they perform the same 

operations, just on different data). The algorithm used to determine the potentially 

parallel sections of code is straightforward: wherever there are no dependencies between 

computational nodes, those nodes may execute in parallel. Taking Tasklet1 as an 

example, there are clearly no interdependencies between the two New Object Nodes and 

as such they are potentially parallel. The following replicate nodes are graph management 

nodes and therefore have no bearing on the parallel activity within the graph. The 

method call nodes within Tasklet2 are again mutually independent and are identified 
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as potentially parallel tasks. Subsequent nodes exhibit interdependencies and thus cannot 

be executed in parallel. 

Having identified the required Tasklets for the graph, the translation process can then 

produce C++ source code. In this case, the main(…) method graph requires three 

distinct source code items, one for each of the Tasklets and one of the main program 

itself. Since the main program depends on instances of the two Tasklets, it is first useful 

to understand how the Tasklets themselves are represented. An example code fragment 

is given in Figure 5-7. 

NIPRef<Car> Tasklet1Function(NIPRef<String> pString01) 

{ 

  Car* car01 = new Car(pString01); 

 

  ////////////////////////////// 

  // Interface Code 

  ////////////////////////////// 

  return car01->registerObjs(car01, Mutable); 

  ////////////////////////////// 

} 

 

typedef NIPFunctionTasklet<NIPRef<String>, NIPRef<Car>, 
Tasklet1Function> Tasklet1; 

Figure 5-7 C++ Representation of Tasklet1 

The source code in Figure 5-7 consists of a function (Tasklet1Function) which 

encapsulates the computation carried out by the Tasklet, and a type definition 

(Tasklet1) which is used to simplify code which uses this Tasklet. The Tasklet 

function takes as its parameter a handle to an instance of the String class, and using 

that parameter creates an instance of the Car class. The wrapper code (the code which 

deals with locking issues) is automatically generated, and in this case has the effect of 

changing the type of the pointer car01 from a standard virtual memory pointer into a 

NIPRef, which is then returned to the caller. 

class Tasklet2Args : public NIPShared<Tasklet2Args> 

{ 

  public: 
    NIPRef<Car> car01; 
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    NIPRef<Car> car02; 

}; 

 

void Tasklet2Function(NIPRef<Tasklet2Args> 
pTasket2Args01) 

{ 

  ////////////////////////////// 

  // Interface Code 

  ////////////////////////////// 

  Tasklet2Args* Tasklet2Args01 =  

        pTasklet2Args01.lockRead(); 

  Car* car01 = Tasklet2Args01->car01.lockWrite(); 

  ///////////////////////////// 

 

  car01->collide(Tasklet2Args01->car02); 

 

  ////////////////////////////// 

  // Interface Code 

  ////////////////////////////// 

  Tasklet2Args01->car01.unlock(); 

  pTasklet2Args01.unlock(); 

  ////////////////////////////// 

} 

 

typedef NIPFunctionTaskletArgument<NIPRef<Car>, 
Tasklet2Function> Tasklet2; 

Figure 5-8 C++ Representation of Tasklet2 

Figure 5-8 shows a function which encapsulates the computational activity of 

Tasklet2, and a type interface for the argument that the function requires12. The first 

section of interface code for the Tasklet deals with the locking of parameters passed to 

the function so they can be operated upon safely, and return a virtual memory pointer to 

                                                 
12 The NIP API imposes the restriction that a Tasklet’s function can take only one argument, and 

hence a composite type is needed to pass multiple arguments. 
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one of those objects13. The main body of the function simply invokes a method on one 

of the objects via its virtual memory pointer and passes an object into the method call by 

its NIPRef (since the computation invoked by the method may not necessarily take 

place in the same memory address space of the call itself). Once the call has completed, 

the second layer of interface code releases any acquired locks and the function 

completes. A type definition is again provided to simplify the act of instantiating this 

Tasklet. 

int nipMain(int argc, char* argv[]) 

{ 

  ////////////////////////////// 

  // Interface code 

  ////////////////////////////// 

  String* param0 = argv[1]; 

  NIPRef<String> argument00 = param0->registerObjs(param0, Mutable); 

  String* param1 = argv[2]; 

  NIPRef<String> argument01 = param1->registerObjs(param1, Mutable); 

  ////////////////////////////// 

 

  Tasklet1 Tasklet10(argument00); 

  Tasklet1 Tasklet11(argument01); 

 

  Tasklet2Args* Tasklet2Args00 = new Tasklet2Args; 

  Tasklet2Args* Tasklet2Args01 = new Tasklet2Args; 

 

  Tasklet10.waitOrInline(); 

  Tasklet11.waitOrInline(); 

 

  Tasklet2Args00->car00 = Tasklet10.result(); 

  Tasklet2Args00->car01 = Tasklet11.result(); 

  Tasklet2Args01->car01 = Tasklet10.result(); 

  Tasklet2Args01->car00 = Tasklet11.result(); 

 

  NIPRef<Tasklet2Args> nrTasklet2Args00 =  

    Tasklet2Args00->registerObjs(Tasklet2Args00, Mutable); 

  NIPRef<Tasklet2Args> nrTasklet2Args01 =  

    Tasklet2Args01->registerObjs(Tasklet2Args01, Mutable); 

 

  Tasklet2 Tasklet20(nrTasklet2Args00); 

  Tasklet2 Tasklet21(nrTasklet2Args01); 

                                                 
13 A locking optimisation occurs here in that only objects which are to be operated upon within this 

graph are locked, whilst other objects (parameters to method calls) are not. 
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  Tasklet20.waitOrInline(); 

  Tasklet21.waitOrInline(); 

 

  // 

  // Code for drawing cars would go here 

  // eg, Tasklet20.result().lockRead()->draw(); 

  // Tasklet20.result().unlock(); 

  // 

 

  return 0; 

} 

Figure 5-9 C++ Representation of the Main Program 

The code in Figure 5-9 constitutes the main(…) function for the application. The 

first section of interface code merely maps the arguments to the application onto 

instances of the String type, and places those instances into the distributed shared 

memory. Once the command line arguments are available in the distributed shared 

memory, the actual computational work proceeds with the activation of a number of 

Tasklets. In Figure 5-9, each instantiation of a Tasklet corresponds directly to a Tasklet 

identified in the Vorlon graph shown Figure 5-6. Initially only instances of the 

Tasklet1 type are executed whilst the main function continues its own work creating 

the parameter objects for the execution of the Tasklet2 objects. When the instances 

of Tasklet1 have completed their execution, the waitOrInline(…) method 

either forces the in-line execution of the Tasklet’s function or waits until the function has 

completed within another thread of control before allowing further statements in main 

to be executed. Once the waitOrInline(…) methods have returned, the Tasklet is 

then ready to produce its result, which is obtained through the result(…) method 

call. Those results are then used to populate the parameters for the subsequent execution 

of two instances of Tasklet2. Once the execution of the Tasklet2 functions have 

completed, other computation (such as drawing the damage of the collided cars) could 

then occur, before the program terminates via the final return statement. 

Having established the process by which Vorlon graphs are mapped onto NIP 

mechanisms, the following sections detail two experiments and their test-beds designed 

to test Vorlon in typical situations from traditional parallelism areas and new application 

areas for parallel processing. 
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5.4 Experimental Environment 

There were a total of three separate test bed environments used for performance 

analysis during this experiment. The first of these was a single four-way symmetric 

multiprocessor Linux computer, to examine application characteristics on a 

commonplace architecture. The second environment was the network of workstations 

environment, consisting of eight single processor Linux workstations connected by 

shared fast Ethernet, now commonly in use in scientific computing worldwide. The 

intention of using this equipment was to verify that Vorlon applications are suitable for 

execution on a traditional parallel architecture. 

The final system used is somewhat more reflective of the average computer user, 

consisting of a Pentium II Mobile class PC connected via 10Mbit Ethernet to a more 

modern dual Pentium III class machine, where both machines ran an instance of the 

Windows 2000 operating system. This is certainly not a traditional parallel architecture, 

though it is an increasingly commonplace architecture, as new machines are purchased 

before old machines have failed. The intention here is to determine whether typical 

computing equipment could be re-used to provide performance increases to the user, by 

using the processing power of older hardware to bolster that of the new. 

5.5 Matrix Multiplication 

Matrix multiplication is habitually used as an example for parallel programming, 

because it is a well-known problem, which contains a great deal of potential parallelism – 

in fact it has been said of matrix multiplication that it is “embarrassingly parallel.” Most 

previous work in the area of visual parallel programming has used parallel matrix 

multiplication as a benchmark, and to enable a direct comparison with previous research 

efforts, a Vorlon implementation of the matrix multiplication problem, by parallel 

matrix-vector multiplications, is implemented and analysed in the following sections.  

An important point to note for the matrix multiplication application is that a design 

decision was made to use matrix*vector as the fundamental unit of parallelism. There 

were a number of reasons for this decision, including: 

 Maintain parity with the matrix multiplication programs developed in 

Chapter 2; 

 Ensure the grain size of tasks has a reasonable chance of achieving 

good performance (since it is known that fine grain-sizes will not 



Experimental Performance Results and Analysis 

 166 

parallelise efficiently, and may not be efficient even after run-time 

optimisations). 

Therefore, when reviewing method graphs it should not be surprising that there are 

sequential mechanisms, such as loop nodes, in places where there could have been 

parallel ones, such as parallel computation nodes. The upshot of this is that the run-time 

system is presented with tasks with coarser grain sizes to optimise, which should 

therefore result in more efficient performance at run-time. 

5.5.1 Aims 

The aim of the matrix multiplication experiment are to determine whether Vorlon can 

yield speedup given a problem which is known to be parallelism amenable. 

5.5.2 Experimental Method 

The first step in building any object-oriented application is the analysis phase. In the 

analysis phase, the developer considers the problem domain in terms of its constituent 

objects, and forms generalisations of those objects from which types are derived. In the 

case of matrix multiplication, the objects involved are matrices and vectors. Accordingly 

Matrix and Vector types can be derived from the problem domain, and the 

construction of a UML class diagram can then begin, as seen in Figure 5-10. 

 
 

Figure 5-10 High-Level Analysis of 
the Matrix Multiplication Problem 

Figure 5-11 Composition Relation 
Between Matrix and Vector Types 

Once the types have been derived from the problem domain, the developer can then 

begin to examine the interrelationships between those types. In a typical application, 

there may be a high number of types, and complex interrelations between them, although 

in the matrix multiplication example things are somewhat simpler. Here, the only 

relationship that occurs in the problem domain is that a matrix object is composed from 

a number (≥ 2) of Vector objects (representing the columns of the matrix), which contain 

real numbers. A refined class diagram showing this relation can be seen in Figure 5-11. 
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The next development stage is high-level design. High-level design involves 

determining the internal structure (attributes) of each of the problem domain types, and 

the operations (methods) which those types are to support. Beginning with the Vector 

type, it is clear the vector dot product is fundamental to the application as a whole, and 

as such the Vector type is specified as supporting that method. In addition, Vector 

needs to provide subscripting operations, and that functionality is supported by the 

get(…) and set(…) methods. The other operations that the Vector type needs to 

support are two constructors, one which allows the size of the vector to be specified, and 

a copy constructor which is necessary in this prototypical version of the Vorlon 

programming language14. The Vector itself is composed from a single integer value 

which represents the size of the vector, and a pointer which is used to create a run-time 

array to hold the vector’s contents. 

The Matrix type, in addition to its Vectors, also requires a number of other 

attributes to support its functionality. In particular it needs two integer values to hold its 

two dimensions. Matrix supports more operations than Vector, including 

constructors (one of which is the compulsory copy constructor), two multiply methods 

(one for matrix-matrix multiplication and one of matrix-vector multiplication), methods 

for obtaining the dimensions of a matrix, and methods for extracting individual rows or 

columns from a Matrix object. 

                                                 
14 The provision of a copy constructor (or equivalent mechanism) is good practice when building 

object-oriented software, though in Vorlon it is necessary for the sake of type safety in the run-time 

system. It has been found that the lack of a copy constructor may cause the certain aspects of the NIP run-

time system to fail with certain compiler /operating system combinations. The simplest solution to this 

problem is to mandate the provision of the copy constructor either by the user, or by a default 

implementation being provided by the Vorlon to C++ translator. 
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Figure 5-12 Type Interfaces for the Matrix Multiplication Application 

Once this stage has been reached, all of the principal operations that derive naturally 

from the problem domain have been identified. To complete the design of the matrix 

multiplication application, the start and end points to the application are added to yield 

the class diagram seen in Figure 5-13. 

 

Figure 5-13 Matrix Multiplication Final Design 
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At this point the analysis and design phases are complete and what remains is the 

construction of method graphs for each of the operations specified in the class diagram 

of Figure 5-13. 

Whilst there is no strict ordering in which the methods belonging to each class must 

be constructed, it is sometimes helpful to construct applications bottom-up, building 

smaller components first, and amalgamating those smaller components into larger ones. 

Following such an approach, the first type whose methods will be implemented is the 

Vector class. 

 

Figure 5-14 Vector Constructor 

Figure 5-14 shows the default constructor for the Vector class. This method 

receives an instance of the primitive type int through its start node which it uses to 

create an array of doubles which will be used to hold values. The penultimate stage of 

the method involves two assignments within a computation node which assign the size 

of the instance to the attribute representing the vector’s size, and the assignment of the 

newly created double array to the corresponding attribute within the Vector. Note 
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that the Vector constructor will initialise each of the elements of the Vector to a 

random (garbage) value, and that the user of the Vector class should therefore not 

assume that a Vector is ready to be used unless its values have been set. 

The copy constructor follows a similar pattern to the default constructor of Figure 

5-14, with the exception that as well as creating the internal data structures for the 

instance, it also duplicates the values held by the instance passed as a parameter to the 

constructor. The copy constructor can be seen in Figure 5-15. 

 

Figure 5-15 Vector Copy Constructor 
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The major difference between the method shown in Figure 5-15 and that shown in 

Figure 5-14 is the use of the loop node. Within the loop, an assignment operation is 

repeated such that the contents of the _data[] attribute of one Vector object is 

copied to the new object. Once the necessary assignment operations have completed, the 

loop node returns a null handle to the halt node which indicates the termination of the 

graph. 

Although the copy constructor could be made more parallel by replacing the loop 

node with a parallel computation node, it was not since years of use of sequential 

programming generally tends to force the notion of iterating over a data structure. In this 

case the amount of lost parallelism is minimised, since the assignment (a write operation) 

is naturally serialised. However, the issue of using iterative constructs where parallel ones 

would be better is recognised as being important, and is thus dealt with more thoroughly 

in a later chapter. 

 

 

Figure 5-16 Vector Get Method Figure 5-17 Vector Set Method 

Figure 5-16 shows the get method of the Vector class. The _data[] attribute is 

supplied by an attribute source node, and the element to be extracted is supplied as a 

parameter through the graph’s start node. Both handles flow into a method call node 

which performs an array subscript operation and returns an instance of double to the 

calling graph via the halt node. The corresponding set method is shown in Figure 5-17. 
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Figure 5-18 Vector Size Method 

The size()method shown in Figure 5-18 is the simplest of the methods that the 

Vector class supports. Its functionality is merely to return a copy of the value which 

represents the length of a Vector object. The receipt of a null handle (representing no 

parameters) triggers the execution of the graph, which in turn releases a handle to the 

_size attribute of the current object. Both then flow into the halt node which returns 

_size (by value) to the caller of the graph. Note that the graph will not return the null 

handle from the rightmost arc to the caller of the graph due to the special semantics of 

the halt node whereby non-void types have precedence. 

 

Figure 5-19 Vector Multiply Method (Dot Product) 

The method graph shown in Figure 5-19 shows the first of two graphs which 

constitute dot product. In this first graph, three parameters are passed to a loop node 

which iterates over the contents of two Vectors. The first parameter is the size of the 

Vector, used to control the number of iterations the loop node will execute. The 

second parameter is the vector which is to be multiplied with the current object. The 
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final parameter is a double which is used to hold the result of the dot product. Note 

that once again an iterative, rather than parallel, pattern is used here. However in this 

case it is reasonable since the design decision has already been made to sequentialise any 

aspect of the matrix multiplication of finer granularity than matrix*vector (discussed 

earlier). 

 

Figure 5-20 Vector Dot Product Loop Node Sub-Graph 

Figure 5-20 shows the loop node of Figure 5-19 decomposed. In this graph the ith 

element (where i is determined by the control value of the loop node) of both the current 

object’s internal array and of the parameter vector are extracted via a subscript operation 

and a method call respectively. Those values are then sent to a computation node where 

they are multiplied and their product added to the running total for the invocation. Once 

the total has been updated, the graph ends and control returns to the loop node of 

Figure 5-19 which, according to the control condition, may perform further iterations or 

send the result to that graph’s halt node. The latter will end that graph’s execution and 

return the vector dot product to the graph’s caller. 
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Figure 5-21 Matrix Constructor 

The Matrix type is essentially a container for Vectors in the same way that a 

Vector is a container for doubles and as such the default constructor for the 

Matrix type is similar in principle to that of the Vector. The constructor shown in 

Figure 5-21 performs two (separate and potentially parallel) assignment operations before 

creating an array of Vectors15 which the decomposed loop node of Figure 5-22 

subsequently fills with Vector objects. Note that the loop node in the constructor 

                                                 
15 A Vector of Vectors is not used here since the Vector class is a container for doubles, and not a 

generic container like the C++ STL Vector type. The built-in array type is used as an optimisation for 

multiple declarations. 



Visual Object-Oriented Development of Parallel Applications 

 175 

serialises the construction of a Matrix, although like the constructor for the Vector 

class, the serialisation is not (fortunately) critical to performance. 

 

Figure 5-22 Matrix Constructor Loop Node Sub-Graph 

The Matrix copy constructor is similar in form to the default constructor, with the 

exception that instead of creating an array of empty Vectors, it copies the contents of 

the Matrix passed to it as a parameter. The top-level graph for this method is shown in 

Figure 5-23. 
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Figure 5-23 Matrix Copy Constructor 

Figure 5-23 starts by obtaining the dimensions of the parameter Matrix by invoking 

the getRows() and getColumns() methods (in parallel), followed by the 

assignment of those values to the appropriate attributes in the new object. Once the 

_rows and _columns attributes of the new object are set, the loop node then copies 

each of the Vectors from the _data array (which holds columns) from the parameter 

object into _data in the new object. The sub-graph which the loop node encapsulates 

is shown in Figure 5-24. 
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Figure 5-24 Matrix Copy Constructor Loop Node Sub-Graph 

The parameters for the graph shown in Figure 5-24 represent the current iteration of 

the loop, the internal array of the Matrix being constructed and the Matrix which is 

being copied. The appropriate element of the new matrix’s array is accessed via the array 

subscript method call node, and the column to be copied from the parameter Matrix is 

extracted by calling the getColumn(…) method and subsequently used to create a new 

copy of the resulting Vector via a new object node. The final step in this graph is an 

insertion of the newly created Vector into the array of column vectors, performed by 

the array subscript method call node. 
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Figure 5-25 Matrix Multiply Method 

The multiply(…) method of the Matrix class is shown in Figure 5-25. This 

graph instantiates a new Matrix object to hold the result of the matrix multiplication, 

and explicitly initiates a parallel computation node (using its non-canonical form) ready 

to perform parallel Matrix*Vector multiplications. The parallel multiplications are 

themselves executed by the sub-graph shown in Figure 5-26. 
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Figure 5-26 Matrix Multiply Parallel Computation Node Sub-Graph 

Figure 5-26 shows two interdependent method calls. The first is a call on the current 

object (this) to the vector multiplication method (discussed subsequently), which 

returns the product of the current Matrix and the Vector passed as a parameter to 

this graph. The second method call takes that Vector and passes it as a parameter to 

the setColumn(…) method invoked on the result Matrix before the graph returns. 

The matrix-vector multiplication method, which is called by the graph shown in Figure 

5-26, is itself shown in Figure 5-27. 
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Figure 5-27 Matrix-Vector Multiply Method 

The matrix-vector multiplication method, shown in Figure 5-27, takes a Vector as 

its parameter, multiplies that Vector with the contents of the current Matrix in a 

series of row*column multiplications and returns a Vector as its result. The actual 

multiplication matrix*vector work is performed within the loop node16 whose 

encapsulated sub-graph is shown in Figure 5-28. Note that although the graph is 

sequential due to dependencies and iterative activity, parallelism is achieved because 

instances of the graph will be created in parallel by dint of the fact that the graph’s calling 

graph (Figure 5-26) is itself instantiated in parallel. 

                                                 
16 The loop node is not the most parallel construct to use in this situation, however given the design 

decision to serialise any operation below the granularity of matrix*vector to maintain parity with previous 

implementations from Chapter 2, it is understandable. 
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Figure 5-28 Matrix-Vector Multiply Loop Node Sub-Graph 

The sub-graph in Figure 5-28 begins by extracting the appropriate row from the 

current Matrix and multiplying it with the Vector supplied by the parent graph 

(Figure 5-27). Once the vector dot product operation has completed, the resulting double 

value is sent to the set(…) method which is invoked on the result Vector to store 

the result before the graph returns control to its parent. 
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Figure 5-29 Matrix Get Row Method Figure 5-30 Matrix Get Column 
Method 

The Vorlon graph representing the getRow(…) method of the Matrix class can 

be seen in Figure 5-29. Since the internal data structure for the Matrix type is 

represented by an array of column vectors, obtaining a row vector from that structure 

involves accessing each of the columns and extracting just one element. Having accessed 

that element, a copy of it can be made and stored in another Vector object which acts 

as the result of the operation. It is noteworthy that in the getRow(…) method the loop 

node is not decomposed into a sub-graph since the code to be repeated is simple enough 

to be written directly in C++. Although the loop node code operates upon objects which 

may be accessed concurrently, and which may not reside in the local machine’s memory 

space, the developer does not have to contend with such issues which are taken care of 

by the loop node (and its subsequent translation). 

In contrast to the getRow(…) method in Figure 5-29, the getColumn(…) 

method of Figure 5-30 is significantly simpler since the internal Matrix data is arranged 

by column. In this method, the column which is to be retrieved is accessed via an array 

subscript operation which obtains a handle to that column and returns it to the graph’s 

caller. Note that both “get” methods return a read-only handle (const, as depicted in 

the class diagram). This maintains a consistent semantic to the user (and prevents direct 

access to the internals of the object in the case of getColumn(…)). 
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Figure 5-31 Matrix Set Row Method Figure 5-32 Matrix Set Column 
Method 

The setRow(…) and setColumn(…) methods of Figure 5-31 and Figure 5-32 

respectively are the reciprocal of the get methods described earlier. Setting a new row in a 

Matrix composed of column vectors involves access to all columns. In contrast, 

setting a column in a Matrix composed from columns is straightforward in that one 

Vector merely replaces another in the Matrix and the replaced Vector can then be 

garbage collected if not reference elsewhere. 

  

Figure 5-33 Matrix Get Rows 
Method 

Figure 5-34 Matrix Get Columns 
Method 

Accessing the dimensions of a Matrix is done through the getRows() and 

getColumns() methods which can be seen in Figure 5-33 and Figure 5-34. In both 

cases, the dimension to be accessed is introduced into the graph by an attribute source 

which immediately sends that dimension to a halt node. Once the null handle from the 

start node of the graph also reaches the halt node, the non-null handle (being either the 

row or column dimension) is returned to the caller of the graph. 

The final method for this application is the main(…) from the Main class. The 

graph for main(…) can be seen in Figure 5-35, and is remarkably similar in shape to the 
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matrix multiplication graphs with previous visual parallel programming languages seen in 

Chapter 2. In this figure, four parameters representing the dimensions of two matrices 

are supplied via start nodes, and immediately used to create two matrices (potentially in 

parallel). Note that, since the Vectors from which the matrices are built are 

randomised at construction, in effect the matrices themselves will contain random values 

which is useful for experimental purposes, though for real work the matrices would have 

to be initialised with non-random data. Once the matrices are built, the multiply(…) 

method is invoked on the leftmost Matrix passing a handle to the rightmost as a 

parameter. The multiplication then proceeds and later a handle to a third Matrix is 

emitted from the bottom edge of the method call node. This handle is fed into a 

computation node which is responsible for the output of the result (to some output 

device whose characteristics are unimportant here). Once the output of the result has 

completed, the application terminates by sending a null handle to the halt node. 

 

Figure 5-35 Matrix Multiplication Main Method 

5.5.3 Matrix Multiplication Performance Results 

Having followed the development of the matrix multiplication application, the next 

stage in the experimental procedure is to examine its performance. For the performance 

tests, all three test platforms described earlier were used together with a pure sequential 

C++ matrix multiplication program which formed the basis for measuring performance 
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characteristics. The results are presented with shared memory and uniprocessor cluster 

platforms first, followed by the less common ad-hoc parallel platform. 

5.5.3.1. Shared Memory Multiprocessor 

Single four-way Pentium III Xeon 500MHz (512KB cache), 512MB main memory, Ultra 

SCSI disk, running Red Hat Linux 6.2 

The four-way PC SMP is typical of the recent multiprocessor trend the computing 

industry. Often used as powerful servers in corporate workgroup environments, such 

equipment readily lends itself to being utilised as a parallel computation platform. The 

main advantage that this machine provides for this test is size of both memory and CPU 

cache. The large memory means that larger problems can be investigated, whilst the large 

processor cache sizes reduce contention for that memory. 
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Figure 5-36 Slowdown for Matrix Multiplication Application on a Four 
Processor SMP Platform 

The performance results for the matrix multiplication application on the SMP 

platform can be seen in Figure 5-36. The results are shown as relative slowdown when 

compared to a pure sequential C++ version of a matrix multiplication algorithm running 

on a single processor of the same computer for matrix sizes 10 by 10 through to 500 by 

500. 

It is important to understand that characteristics of the NIP run-time system play a 

key role in the results obtained. The SMP version of NIP cannot guarantee that the 

specified number of processors will be utilised at run-time since it does not perform its 

own thread-scheduling (instead leaving such matters to the operating system). NIP 
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instead creates a sufficient resource pool (worker threads, mutexes, etc.) for the specified 

number of CPUs (determined by heuristics), but the operating system is free to allocate 

any thread to any CPU. Thus if one thread suspends and another is active and then the 

suspended thread resumes, the operating system may choose to execute that thread on 

any available processor (and not necessarily on the processors the user believes are 

active). Thus when the following discussion uses terms like “N-processors” it actually 

means that the full complement of run-time resources for N processors is activated, and 

not physically that number of processors. In addition, NIP’s lazy task creation 

mechanism will attempt to optimise the number of tasks that actually end up being 

executed by distinct threads (for the sake of grain-size). Thus, even though the resource 

may have been created for multiple processors, that it not to say that all of those 

resources (or processors) will be exploited. 

Having understood that the underlying run-time system possesses such characteristics, 

the analysis of the performance results can proceed. For smaller matrices the slowdown 

is similar for all processor configurations, and this is due to the fact that the amount of 

work available is so small that it is executed sequentially by one processor – an 

optimisation caused by the lazy task creation mechanism of the underlying run-time 

system. The slight time differences between slowdowns are caused by the increased set 

up times needed for increasing numbers of processors and the slowdown itself caused by 

the fact that all object access is thread safe and thus incurs a significant locking cost 

compared to pure sequential C++ application. 

For medium sized matrices, 50 by 50 through 150 by 150, the increased slowdown is 

caused by contention for matrix access. So while there exists enough work to instigate 

computation on more of the available processors, those active processors all try to access 

a comparatively small number of objects (particularly when accessing the result matrix 

which must be write-locked in places) and are thus in constant competition with, and 

waiting for, one-another.  

The fact that the slowdown increases at first is due to a combination of increasing 

matrix sizes (and thus increasing workload) allowing the run-time system to start work on 

other processors (whereas previously the work available was in such short supply that 

only one CPU was used as an optimisation). As more processors come on-line the 

contention for access to matrix elements increases and correspondingly so do the 

slowdowns experienced.  
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As larger matrices were used, the contention for access to particular elements 

decreases since with more elements to be operated upon, the less is the likelihood of 

multiple processors requiring access to the same element at the same time. For larger 

matrices such as 300 by 300 and upwards, the performance graph settles into a more 

steady state where slowdown becomes a function of number of processors with four 

processors being quicker than either three or two. 

Regardless of the fact that for larger matrix sizes, slowdown becomes more 

predictable, it is nevertheless slowdown and not speedup which is attained. This is clearly 

a source of some disappointment for a parallel solution to have performed an order of 

magnitude worse than its serial equivalent (and thus a likely two orders of magnitude 

worse than its successful parallel equivalents). The source of the slowdown is the amount 

of locking required to access elements of the matrices, and the severity is significantly 

influenced by contention for such locks. In further experiments carried out on the SMP 

platform, the per-element locking was removed by hand, and speedups as close to 

optimal as could reasonably be expected were obtained, and such issues are explored in 

more depth later. 

5.5.3.2. Uniform Cluster 

Eight uniprocessor Pentium II 233MHz, 64MB main memory, IDE disk, running Red Hat 

Linux 6.2 with exclusive access to shared 100Mbit Ethernet network. 

The network of workstations (NOW) approach has become the flagship architecture 

for the parallelism community over the past few years. This “Beowulf” {Sterling, Salmon 

et al. 1999} class architecture has reached particular prominence through the widespread 

uptake of the PVM and MPI programming environments and is now commonly used as 

a parallel platform for scientific and engineering problems. 

The advantage of this configuration for this experiment is the number of processors 

available to undertake work. Whilst the specifications of the machines and 

interconnection network are modest, having access to eight CPUs on which to execute 

work allows insights into scalability of the methods to be drawn. The drawback to using 

this configuration is its low memory per node which, given the current memory use 

pattern of the NIP run-time system, limits experimentation to somewhat smaller matrices 

than on the more powerful SMP platform. Although the total memory available on the 

cluster of workstations used is the same as the SMP platform, NIP’s distributed shared 

memory abstraction does not yet support load balancing across nodes in a cluster. As 
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such objects are created in the memory of the node which happens to execute a Tasklet 

function that contains object declarations. In this experiment most of the objects (and 

the internal NIP data structures which maintain those objects in the DMS) end up being 

created on the primary node of the cluster (the node from which NIP initialises). Since 

there is relatively little computational work in creating objects, the primary node does not 

export such work to other nodes and so the experiment overall is limited by the memory 

of that node (64Mb). 
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Figure 5-37 Slowdown for Matrix Multiplication Application on an Eight 
Node Computer Cluster 

Once again before the analysis of the results can begin, it is helpful to understand the 

salient characteristics of the NIP run-time system on a distributed memory computing 

system. Although task creation is similar to that of the SMP (wherein tasks will only be 

created if there is sufficient work to justify it), unlike the SMP system the specified 

maximum number of processors involved in a computation cannot be exceeded. Thus 

where N nodes (and in a uniprocessor cluster, processors) are assigned to participate in a 

run, no more than N processors will ever participate (though through optimisations less 

than N might). Also important to these experiments is the fact that “page-based” 
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memory caching mechanisms were employed17 (which improved performance by an 

order of magnitude), whereby when an object is accessed in the NIPDSM, a 2 kilobyte 

“page” is filled with subsequent objects with the idea being that such objects will 

probably be needed by the requesting task anyway, and thus optimises the number of 

requests made to the DSM. 

Figure 5-37 shows the performance degradation of the matrix multiplication 

application on two to eight nodes of a distributed memory computing system, compared 

to a pure sequential C++ version of the program running on a single node of that 

system. Once again for small matrix sizes there is significant slowdown since the cost of 

initialising all nodes in the parallel platform is paid, though with little work to be done a 

single processor undertakes the whole of the computation. 

For medium sized matrices the curve is somewhat different to that obtained using the 

SMP. In the distributed environment with NIP page-based caching enabled, copies of 

Vectors are distributed around the system which results in far less contention for locks 

on those Vectors since each processor is more likely to have its own copy cached in its 

local memory space. In this case since there is less contention for access to objects, the 

processors are able to work without considerable interruption of one-another. However, 

the cost of locking objects before accessing them remains and, coupled with the fact that 

transfers between nodes on the network are relatively slow, ensures that slowdown rather 

than speedup is the norm. For larger matrices, there is a similar pattern for that of the 

medium sized matrices where as grain size increases (without significant increase in 

contention for objects because of the caching), slowdown decreases. 

It is interesting to note here that the best case slowdown for the distributed memory 

multiprocessor (7.4 times slower for 5 nodes) is not considerably worse than the best 

case slowdown for the shared memory architecture (6.1 times slower for 4 processors) 

due to the caching optimisation. This bolsters the argument offered by this thesis that 

optimisations are best left to the run-time system, and that introducing layers into an 

architecture for engineering reasons need not necessarily imply that performance will 

significantly suffer. Such performance issues are presented in more depth later in the 

chapter. 

                                                 
17 The NIPDSM is completely object-based and does not use pages as its unit of storage. The so-called 

“page-based” caching is merely a convenient term for a group of objects which are spatially local. 
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5.5.3.3. Ad-Hoc Environment 

Dual Pentium III 800 MHz SMP, 256MB main memory, IDE disk, and Pentium II Mobile 

300MHz, 128MB main memory, IDE disk, both running Windows 2000 SP1 with non-

exclusive access to shared 10Mbit Ethernet networking. 

The ad-hoc computing environment is drawn together from computing peripherals 

that might be found in a typical office (in this case being the range of equipment available 

in the author’s office). There are two particularly interesting aspects to this experiment, 

the first being the fact that a parallel computer is being built from non-specialist 

hardware, and the second is that an operating system not usually associated with high-

performance computing (Microsoft’s Windows 2000) is used to support the 

computational activity. Figure 5-38 shows the performance of matrix multiplication on 

this system. 

The slowdowns seen in Figure 5-38 were measured using a pure sequential C++ 

program executing on one processor of the faster of the two machines in the “cluster,” 

in order to give the most accurate interpretation of speedup (or in fact slowdown). As 

such it must be borne in mind that although the figures seem somewhat worse than 

those that have been previously presented, one of the machines involved is of a previous 

generation of processor and runs at less than half the clock speed of the other, which 

causes the bias. 
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Figure 5-38 Slowdown for Matrix Multiplication Application on an Ad-Hoc 
Parallel Platform 

If the curve for the two-way shared memory platform seen in Figure 5-38 is 

considered, it is similar (though considerably shallower) to those curves seen in for the 

four-way shared memory platform  in Figure 5-36 where slowdown increases for 

medium sized matrices, but decreases for small and large matrix sizes. The reasons for 

the shape of the curve are the same, pertaining to contention and locking of objects and 

so forth. 

The shape of the curve for the “cluster” of two machines is close to the curves 

witnessed in Figure 5-37. Once again the reason for the improvement in performance as 

matrix size is increased is due to the caching mechanism reducing contention between 

the two hosts for access to objects, and perhaps even lessening the effect of the slower 

machine on the faster. The initial large slowdown is exacerbated in this case by the slow 

networking between the two machines which compounds costs of contention between 

processors by acting as a serious bottleneck between the two hosts. 

Thus the notion of bolstering newer hardware by adding in surplus (older) hardware 

in a kind of co-processor arrangement has failed for this application. Even for large grain 

sizes the dual processor computer is burdened by the attached uniprocessor. For small 

grain sizes the usual rules concerning efficiency of exploitation between shared and 

distributed memory architectures applies. 



Experimental Performance Results and Analysis 

 192 

5.5.4 Matrix Multiplication Conclusions 

The crucial factor in such poor performance figures is locking (and not 

communication costs since the performance degradation was consistent between 

platforms, due to caching in the distributed memory experiment). For matrix 

multiplication, the amount of locking required was of the order of three read locks for 

each element of the matrices to be multiplied, and two read locks (which each in turn 

acquire two operating system level locks) and one more expensive write lock for each 

element of the result matrix. For a matrix the potential amount of locking required is 

considerable, of the order of N2 where N is the number of elements in the matrix. 

Thus an unfortunate mismatch between the algorithm and the data structures that 

constitute the application has arisen. Although the algorithm stipulates matrix-vector 

multiplications (which is a relatively coarse grain size), the types that represent vectors 

still require locking at the element level (which is an extremely fine grain size). If 

Amdahl’s law is applied, then the sequential parts of the application (the locking) far 

outweigh the parallel parts (the actual multiplications) and thus the chances of getting 

speedup are nullified.  

In the serial matrix multiplication program, no such locking is required. Though only 

one processor is available to perform calculations, the lack of locking overhead made the 

serial program significantly quicker. 

Matrix multiplication algorithms have of course been parallelised and achieved 

reasonable speedup - indeed previous visual parallel programming languages have all 

achieved this. Even using tools such as PVM which this thesis has claimed are primitive, 

matrix multiplication can achieve speedup with suitably sized matrices (of the order of 

300 by 300 and upwards in experiments undertaken early in this research). One reason 

for the disparity between the Vorlon matrix multiplication application and others is that 

the design of the application involved the wrapping of instances of the double type 

inside instances of the Object type such that they could be stored in the distributed 

shared memory abstraction of the underlying NIP run-time system. Objects in the 

distributed shared memory must be locked before they can be operated upon, whilst with 

other approaches, since copies of values were used, locking was not necessary. Indeed 

the caching of copies of objects providing performance increases bolsters this argument. 

There are thus four possible means of improving performance for this application: 
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1. Change the Vorlon language18; 

2. Change the design of the application; 

3. Change the Vorlon to NIP translation strategy; or 

4. Change (or optimise) the run-time system; 

Since it is quite possible as NIP matures that it will improve and provide some modest 

performance increases, point (4) in the above list can be left aside for the purposes of 

this discussion (or in the unlikely case that NIP fails to improve, other run-time systems 

could be substituted to the same effect). Given that this thesis has argued that delegation 

to the run-time is a sensible notion, reasons for the lack of performance attributed to this 

delegation must be considered. 

If Vorlon is to be changed to delegate less to the run-time system, careful 

consideration must be given to what aspects should be altered. Given that it is locking 

which has caused the disappointing performance figures, means of optimising locking at 

the language level could be introduced. One such scheme could take a similar form to 

the “actor folding” scheme proposed for the ParADE language to build grain-size by 

serialising a number of tasks. In Vorlon, locking could be optimised in a similar way by 

allowing the user to bound specific classes on the class diagram to indicate that they 

should be considered as one logical unit for storage, and thus when one of the objects is 

locked, all associated objects are implicitly locked, but at no extra cost. 

A similar scheme could be employed if the mapping between Vorlon and NIP were to 

be changed (option 3). In an optimised mapping scheme, where the class diagram 

indicates a data structure composed of primitive types (or perhaps even non-primitive 

types with suitably small attribute sets), a single lock could be used to lock the entire 

structure, as opposed to locking individual elements as occurs now. In matrix 

multiplication, the benefits are obvious in that locking overhead would be substantially 

reduced. However, one possible drawback to this scheme is that there may be algorithms 

which exhibit far more complex data access patterns than merely by-row or by-column. 

If that is the case, then locking of such coarse granularity may increase the contention for 

access to data. Given that currently it is the locking cost itself (as opposed to waiting for 

locks) which is the significant penalty, coarse locking would seem to be favourable.  

                                                 
18 In-depth discussion on changes to the language is offered in the next chapter. 
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If the application were to be changed, the developer would have to be aware of both 

the characteristics of the NIPDSM and of the mapping between Vorlon and NIP. Once 

those mappings are understood, the developer would then have to concoct data 

structures which avoided invoking the translator to use the costly parts of NIP. Whilst 

this is possible, it reduces Vorlon to the same level as its predecessors by exposing low-

level (run-time) detail to the developer. As such, adopting this scheme should be 

opposed.  

From the options identified, only (3) would result in performance benefit (for this 

particular application) without the need for further user intervention. Given the 

philosophy of Vorlon is to abstract details of parallel activity from the developer it is the 

most promising scheme. Whether this will eventually lead to further performance 

bottlenecks (because of non-regular access patterns to data structures) is unknown and 

can only be determined through further research. 

This discussion raises a further important point for consideration - that of matching 

types and algorithms. In this experiment, because of the algorithm used it was implicitly 

assumed that coarse grain sizes would arise and that readily exploitable parallel activity 

would follow. Unfortunately, the locking strategy imposed by Vorlon is extremely 

simplistic (since no optimisations were made during the hand-translation of Vorlon 

graphs), and lead to a fine granularity of locks which in turn lead the poor application 

performance.  

Particularly where containers of objects are being considered, the application 

developer must ensure that the algorithm being developed is compatible with the types 

available, and the developer of a (container) type should ensure that the types provide 

access mechanisms suited to a wide range of access patterns (which the Matrix and 

Vector types did not). Despite seeming contrary to the Vorlon philosophy of 

delegation of parallel processing issues to the run-time system, these are in fact higher-

level software engineering issues, but in a context (parallel computing) which developers 

are not yet used to. In sequential software engineering, it is always thought of as good 

practice to harmonise the behaviour between data structures and algorithms and it is not 

therefore a huge step to ask that the same consideration be given to the development of 

classes to be used in a parallel application.  

The fact that such considerations exist at all means that Vorlon in its current form 

does not implicitly support the construction of efficient parallel container types, and 
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relying on good software practice from programmers may be asking too much in this 

case. As such the only recourse for Vorlon at this point is to implement compiler-level 

optimisations, as have been outlined above, whereby for containers (particularly of 

primitive types) groups of elements can be locked with a single lock. Such a scheme 

would support novice users well enough (as has been proven with the hand-optimised 

locking scheme discussed earlier), and leave scope for advanced users to optimise 

application performance by exploiting their insights into likely access patterns for a 

particular container. 

5.6 Parallel Compilation System 

It has become the tradition for programming languages, that the one of the first 

applications to which they are applied is the construction of their own compilers, to 

ensure a language’s self-sufficiency. In order to facilitate self-sufficiency of Vorlon 

applications, and to examine a more object-oriented problem, the second of the 

experiments presents a parallel compilation system for Vorlon applications. 

As Vorlon is a visual language which targets an existing textual language (C++), the 

meaning of a “compiler” is ambiguous. It could be taken to mean the translation of 

graphs into the intermediate language, or the transformation of intermediate language 

code into machine code – though both are simply transformations. For purposes of 

experimentation, the latter of the two options has been chosen. The former, though 

equivalent in terms of overall methodology (translating one form of encoding to another) 

requires additional software support such as a graphical development environment in 

which Vorlon graphs could be built and parsed, which has not been developed during 

this period of research. Instead the approach takes a Vorlon project as might be 

produced by such a software development environment which consists of a number of 

C++ source file representations of Vorlon graphs and some meta-data on how those 

graphs are related, and performs a parallel compilation of all necessary source files into 

machine code. 

It should be noted that the purpose of this experiment is not to explicitly create tool 

support for Vorlon, though tool support for the language would be valuable. Instead this 

experiment tests whether Vorlon can be used to explore an unknown problem domain, 

and via object-orientation, successfully carry forward a solution for that problem domain 

through to a software release. That being said, it is also important that performance gains 
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are achieved, but this is of lesser importance than simply being able to build parallel 

object-oriented software. 

5.6.1 Aims 

To develop a parallel Make-like {Oram and Talbott 1993} system from inception 

through to release underpinned by object-orientation. A secondary aim is to investigate 

the performance characteristics of the application developed. 

5.6.2 Experimental Environment 

The experimental environment for this set of experiments was the same as that 

introduced in Section 5.4. The only significant difference was the issue of disk access, 

since the compilation system is dependent upon ready access to source files. The times to 

access disk files were not identical, and on the shared memory multiprocessor and home 

user architectures, file access was found to be particularly expedient or particularly slow 

respectively. 

5.6.3 Experimental Method 

An abbreviated version of the development of the compilation system is presented 

here. The complete development of the application can be found in Appendix 1. 

As with any object-oriented application, the starting point in the construction of the 

parallel compilation system is the analysis phase. In this problem domain, there exist a 

number of source code files, a project (which is essentially meta-data describing the 

relations between source code files and the final executable) and a compiler. In addition 

there were found to be a number of other data structures and types present to support 

the problem domain-specific types. Having gone through the high level analysis and 

design phases, the final class diagram for this problem was developed and is presented in 

Figure 5-39. 
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Figure 5-39 Class Diagram for the Parallel Compilation System 

The class diagram of Figure 5-39 captures the overall composition of the application 

and shows the relationships between types in the problem domain. There are three 

primary types (Project, Compiler, and SourceFile), and when considering the 

model it is these types which encapsulate the functionality of the underlying system. The 

other types in the diagram (List, String, and Object) are there to support the 

problem domain-derived types and do not occur naturally within the problem. 

The next development stage is to implement each type’s methods. Since there is little 

in the way of compositional relationships as were apparent in the matrix multiplication 

application, there is no need to build the parallel compilation application bottom-up. 

Instead, it was felt that a top-down approach was more appropriate, and as such the 

starting point for this application is its main(…) method which can be seen in Figure 

5-40. 
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Figure 5-40 Parallel Compilation System Main Method 

The main(…) method of the compilation system contains a great deal of potentially 

parallel activity. Once an instance of the Project class has been created, everything 

until the link operation is potentially parallel. These parallel operations include 

obtaining a list of out-of-date files for the build, and information on which compiler is to 

be used and which compiler switches are to be activated in order to create an instance of 

the Compiler class. Once the Compiler object has been instantiated, and the list of 

out-of-date files has been produced, the parallel compilation of each of those files is 

undertaken by a parallel method call node which uses each element of the input List to 

spawn the compile(…) method of the Compiler class. Once all compilation has 
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finished, the final stage is to link the necessary object code files together into an 

executable program which is done by the Compiler type’s link(…) method. 

Although several method calls are made from within the main(…) method, the two 

which are most interesting directly pertain to the compilation of files (as opposed to 

setting up the environment for the compilation to run). The first of these is the 

getOutOfDateFiles(…) method from the Project class which returns a List 

of SourceFile objects that is then consumed by the compile(…) parallel method 

call node which runs a (potentially) parallel compilation on each out-of-date source file. 

The getOutOfDateFiles(…) method is shown in Figure 5-41 and its decomposed 

sub-graph in Figure 5-42. 

 

Figure 5-41 Obtaining Out of Date Files for Compilation 

The method graph shown in Figure 5-41 performs the action of building a List of 

source files whose last modified date is newer than that of the target executable. It does 

this by first creating an empty List of out-of-date files and sending that empty List 

to a parallel sub-graph, shown in Figure 5-42, where it is filled with instances of the 

SourceFile type which are out-of-date. Note that in Figure 5-41 the explicitly parallel 

form of the parallel computation node is used since not all of the input Lists are to be 

decomposed and as such the automatic decomposition semantic of the parallel 
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computation node is unhelpful here. Once the sub-graph has finished its (parallel) 

operations, the method completes and returns a List of all out-of-date files to the 

caller. 

 

Figure 5-42 Obtaining Out of Date Files for Compilation Sub-Graph 
Decomposition 

Although the sub-graph shown in Figure 5-42 is sequential because of its pattern of 

dependencies, it must be borne in mind that executing multiple copies of this graph will 

be activated thus achieving parallelism. It is also important to remember that although 

the sub-graph node takes Lists as its parameters, those Lists are not automatically 

decomposed, and it is the responsibility of the sub-graph itself to access the required 

elements from the data structures. 
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The overall functionality of the sub-graph of Figure 5-42 is straightforward. A List 

structure is presented as a parameter and a SourceFile object is retrieved from that 

List according to which instance of the node program is running (from zero to one 

less than the size of the List). The age of the SourceFile object is compared with 

the age of the target application, and if the SourceFile object is found to be younger 

than the target application it is added to a second List which stores the SourceFile 

that need re-compilation. If the current SourceFile is not out-of-date then the sub-

graph returns immediately. Note that there may be many parallel calls to add SourceFile 

objects into the List of out-of-date files, and as such the order in which they are added 

is undefined. However, this does not affect the program as a whole since order of 

compilation is unimportant. 

The compile(…) method from the Compiler class is the second of the more 

important method calls in the main(…), and is shown in Figure 5-43. 
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Figure 5-43 The compile(…) Method from the Compiler Class 

The compile(…) method is invoked via a parallel method call node from the 

main(…) method of Figure 5-40. Although the method itself is largely serial because of 

dependencies, it still has the potential to exhibit parallel behaviour. The functionality of 

the graph is straightforward and largely involves string concatenation. The string 

concatenation simply builds a compilation command which can be sent to the shell 

command interpreter in order for the compilation of a source file to occur. An example 

of a typical string might be something like: 

g++ -c –I/home/me/include –L/home/me/lib –lmylib myfile.cpp 

The final node in the graph simply calls a C library function (the system(…) call) in 

order to pass that compilation command to the shell. In an ideal situation, each available 

processor in the underlying parallel machine will be used to execute one compilation 

command at a time in order to achieve faster build times for software. 
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5.6.4 Parallel Compilation System Performance Results 

For the performance tests, all three types of test platforms described earlier were used 

to build the resulting C++ source files from the Vorlon graphs, and the performance 

results were compared to an equivalent serial build using the Unix tool Make.  

5.6.4.1. Shared Memory Multiprocessor 

Single four-way Pentium III Xeon 500MHz (512KB cache), 512MB main memory, Ultra 

SCSI disk, running Red Hat Linux 6.2 

The shared memory multiprocessor used for this experiment is designed as a server 

computer, and as such is optimised for typical server applications, importantly including 

file access. Since a great deal of work for this problem involves reading in data from files 

so that it can be compiled (in parallel), an optimised disk system is advantageous. 
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Figure 5-44 Speedup for Compilation System on a Four Processor SMP 
Platform 

The performance data shown in Figure 5-44 shows speedup for all processor 

configurations. For two and three processors, speedup is as good as could be expected in 

practice, taking Amdahl’s Law into account. However, the four processor speedup is not 

in line with what would have been expected if the two and three processor results had 

been projected to four processors. The performance increase in adding the fourth 

processor should have resulted in an execution time being around 3.5 times faster than 

the sequential version, yet the actual figure is more like 2.8 times. The reason for the 

more limited speedup is contention for access to files on disk. Had the source files been 

located on separate disks then, because of the characteristics of the SCSI interface, 



Experimental Performance Results and Analysis 

 204 

concurrent access to files would have been supported and speedup, particularly for the 

four processor experiment, should have been more similar to the projected speedup. 

5.6.4.2. Uniform Cluster 

Eight uniprocessor Pentium II 266MHz, 64MB main memory, IDE disk, running Red Hat 

Linux 6.2 with exclusive access to shared 100Mbit Ethernet network, where one host acts 

as a fileserver. 

The cluster computing environment provides a larger number of processors than the 

SMP, and given sufficient numbers of source files to process, should logically be able to 

complete more compilations in parallel than the SMP. However, unlike the SMP, the 

cluster computer is not optimised for disk access even at the individual host level, since 

IDE disks are used, and certainly not at the cluster level where NFS is used to transport 

file systems between hosts. It is unfortunate that the same network which applications 

use to swap messages via the NIP DSM is also as a route via which NFS traffic, in this 

case the C++ source files, moves between hosts. This situation is further compounded 

by the fact that one of the processing nodes acts as a fileserver and the fact that the 

network is a shared, as opposed to switched, medium which prevents more sensible 

routing of the two types of traffic (communication and file movement). Thus the results 

gained from the cluster experiments represent what might occur in a typical user cluster, 

rather than on a cluster dedicated to parallel processing. 
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Figure 5-45 Speedup for Compilation System on an Eight Node Cluster 
Computer 

The performance data presented in Figure 5-45 is symptomatic of the I/O bottleneck 

that cluster computing suffers from. Although speedup is attained throughout, the fact 

that access to the source files was performed via NFS meant that, even with large 

numbers of processors, performance was modest at best. 

For two nodes, network contention is low and so overall performance is not 

significantly hindered. As the number of nodes increases, so does contention for 

resources, including the network, file services on the file server, and access to the disk 

containing the source files itself. At each successive increase in processors (up to and 

including six nodes) the performance increases are successively less because of the 

contention.  

At seven nodes the performance flattens out. This is not because of reduced 

contention, but because the compilation system application is composed from only six 

source files (which derive from the class diagram of Figure 5-39) and as such there is no 

more parallel activity from the problem domain that the computer can exploit. On eight 

nodes there is a slight performance increase which is attributed to the fact that the eighth 

node is the fileserver, and is thus logically close to the source files. Since the eighth node 

has fast access to the source files, it is in a position to compile more quickly than the 

other nodes, which is does in addition to performing its duties as a fileserver. 
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5.6.4.3. Ad-Hoc Environment 

Dual Pentium III 800 MHz SMP, 256MB main memory, IDE disk, and Pentium II Mobile 

300MHz, 128MB main memory, IDE disk, both running Windows 2000 SP1 with non-

exclusive access to shared 10Mbit Ethernet networking. 

The ad-hoc parallel platform suffered from precisely the same problems as the cluster, 

only more acutely. In the ad-hoc platform not only was the fileserver itself an active 

computational node, but the network joining the two hosts is slow (10Mbits per second) 

and shared amongst a number of users. 
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Figure 5-46 Speedup for Compilation System on an Ad-Hoc Parallel 
Platform 

Within the two-way SMP performance is quite acceptable. For two processors a 

speedup of 1.5 times that of the sequential application running on one of the processors 

in the same machine. In this case the theoretical ~2 times speedup is not attainable since 

the disk architecture of the machine (IDE) is not well suited to efficiently supporting 

concurrent disk access. 

When the second (slower) host is added into the system, performance degrades from 

1.5 times to around 1.2 times speedup. This reduction in speedup happens because of the 

fact that the two-way SMP has to spend some of its time acting as a fileserver, rather 

than as a processing node, and because file access is slow across a low-bandwidth and 

high latency interconnection network. Once again adding older hardware to a 

configuration to support newer hardware has had the opposite affect to that desired. 
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5.6.5 Parallel Compilation System Conclusions 

In the case of the compilation system, performance is generally good insofar as 

speedups are attained across all configurations, and follows a predictable pattern where 

shared memory performance is best, whilst the distributed memory platforms perform 

less well. In this case since the number of objects was much lower compared to the 

matrix multiplication experiments (typically of the order of a few tens per application) 

and the granularity of most of the method calls higher (especially the callouts to the C++ 

compiler), locking was a much less significant aspect of the system. In this experiment it 

was disk access that was the most important factor in determining speedup.  

Even with very coarse grained parallelism such as that present in this problem, adding 

older hardware to help with the computational workload does not necessarily mean that 

better performance will be obtained. Whilst it is true that better networking may have 

helped the ad-hoc cluster a little, the cost benefits of such a scheme may outweigh the 

benefits. 

In order to change the performance characteristics of the application, it is the issue of 

disk access which would need to be addressed. Since disks cannot be made faster by 

software applications, nor network bandwidth higher, the only way in which 

performance can be improved at the application (as opposed to hardware) level is by 

reducing contention for access to such resources. In this case it is not necessary to look 

to changes to the language, or improvements in the run-time system, but instead to look 

at the application structure. One straightforward improvement that could be made is to 

perform a file copy operation before compilation so that when compilation occurs the 

source file is being read from a local disk rather than from a network volume. This could 

be relatively simply achieved in Vorlon by sub-classing the Compiler type in the 

application to include facilities to perform file copies before compilation occurs. This is a 

clear benefit of object-orientation in that all of the work previously invested in building 

the Compiler class is not wasted, but re-used in a structured fashion to build a type 

that more closely suits the device access pattern of the application. Such a scheme would 

mean less contention for the network volume (and less thrashing of that disk) and less 

contention for the network, and given the less contentions state, better performance 

should be achieved. 

With the benefit of expert knowledge of the underlying system, such changes as have 

been suggested above may seem a viable route to take to improve application 
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performance. However, this is in some sense difficult to completely reconcile with the 

Vorlon philosophy of abstracting even the virtual parallel machine that the language 

translator targets. Furthermore, a normal Vorlon developer would be shielded from this 

detail and would not have access to such hardware architectural details. Thus whilst 

object-orientation provides richly for the higher-level aspects of the system development 

(from analysis through to implementation), and parallelism was attained throughout the 

application, there was no optimised support at the execution level for the actual file 

operations that the application was performing. This is not a vastly different problem 

from that experienced with matrix multiplication where the algorithm design and the 

particular type implementation were incompatible. Here a similar mismatch between the 

logically specified parallelism and the physical execution of that parallelism occurs, since 

the only resource taken into consideration for the execution of a task is CPU availability, 

and not other resources such as access to I/O devices.  

This does not suggest that an amendment to the language syntax is required as had 

been contemplated for the matrix multiplication experiment19, but if expert knowledge is 

not available, that better support for device access is needed. This is an issue which 

should most likely be addressed at the Vorlon library level, whereby components 

optimised for a typical parallel hardware architecture could developed (in Vorlon) and 

used in preference to the external language library calls which are non-optimal for parallel 

computing problems. If such components were available for the experiments, then it is 

entirely possible that the true benefits of building object-oriented parallel software (full 

lifecycle support, improved performance) would have shone through, as they did on the 

SMP platform where I/O was much less of a problem.  

5.7 Summary 

This chapter has shown the development of two distinct classes of applications using 

Vorlon. Importantly, is has been shown how Vorlon supports the development of an 

application throughout the software lifecycle, and has demonstrated how the language 

syntax works.  

This chapter has presented the performance of the two applications developed. In the 

case of the matrix multiplication application, slowdown was observed, whilst in the case 

of the compilation system reasonable performance was obtained. Reasons for the 

                                                 
19 Language issues arising from both experiments are dealt with in-depth in the next chapter. 
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performance figures were discussed and means of avoiding those conditions which incur 

performance penalties were also alluded to. In particular, the importance of minimising 

locking from information available at compile-time was identified from the matrix 

multiplication experiment, whilst the cost of file access was identified as a particular 

problem for the parallel compilation system. 

The engineering and language aspects of the work have not been commented upon, 

and will instead be dealt with in the next chapter. 
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Chapter 6 Reflections on the Vorlon Language 

This chapter examines the Vorlon language using the taxonomy criteria that 

have been applied to other visual parallel programming languages in Chapter 3. 

Language issues arising from the experience of developing applications using 

Vorlon are also presented, including possible amendments to the language and 

future directions of some of the techniques developed in this thesis. 

6.1 Introduction 

Chapter 5 introduced two applications developed with Vorlon and presented 

experimental procedure and performance results across a range of hardware platforms. It 

was found that as expected performance varied between applications and across 

hardware platforms, although performance was found to be within reasonable limits. 

However, it is not only performance which is crucial to the success of Vorlon. For the 

language to be successful it must also address higher-level software engineering concerns, 

something that Chapter 2 showed was a significant weakness in prior visual parallel 

programming languages. To see whether the same is true of Vorlon, this chapter 

examines the software engineering aspects of Vorlon, and identifies key strengths and 

weaknesses of the syntactic elements of the language and the execution model. 

6.2 Applying the Taxonomy Criteria to Vorlon 

A taxonomy for visual parallel programming languages was presented in Chapter 3, 

where it was used to characterise four previous languages. The taxonomy provided some 

key insights into the execution models that particular types of syntactic elements support. 

It is fitting at this point to subject Vorlon to the same criteria that its predecessors faced. 

As with the earlier use of the taxonomy, each of the important classes of syntactic 

elements will be scrutinised individually, starting with the graph. 

6.2.1 Graph 

Graph Semantics 
Sub-Graphs Structure Node 

Dependencies 
Recursion 

Decomposition 
and Method 

Graphs 

Directed 
Acyclic 

Implicit Permitted (through 
recursive method 

calls) 
Table 6-1 Vorlon Graph Semantics 

Vorlon supports sub-graphing both for both managing visual complexity 

(computational node decomposition) and for structuring the application to suit the 
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problem domain (multiple method graphs per type). Graphs are acyclic and directed, and 

all dependencies between nodes on a graph are explicit in that, to be mutually dependent, 

nodes must be connected by arcs. Recursion is supported through recursive method 

calls, and does not warrant specific language syntax. 

6.2.2 Nodes 

Node Semantics 
Type Purpose State 

Computational 
Graph Management 

Special 
General 

Cannot be retained 

Table 6-2 Vorlon Node Semantics 
Vorlon supports both computational (method call, computation) and graph 

management (replicate, merge) nodes. Graph management nodes are used to circumvent 

the need for textual graph annotations and to maintain the notion that all control issues 

are dealt with graphically. Special (predefined) and general (user-defined) computational 

nodes are also supported where nodes such as the method call node have a predefined 

action, whilst nodes such as the computational node may encapsulate user-defined 

activity. State cannot be retained by nodes since it is the objects from which applications 

are built that maintain state, and not syntactic elements from the language. 

6.2.3 Arcs 

Arc Semantics 
Direction Tokens 

Carried 
Structure Capacity Consumption Connection 

Supply Handle Single item Single 
item 

When used 1 : 1 

Table 6-3 Vorlon Arc Semantics 
Vorlon arcs are supply driven in that they only carry elements once the producer of 

the element has produced, and not when the consumer of the element demands it. Arcs 

in Vorlon, in keeping with the Parallel Object-Flow paradigm, carry handles (or 

references) to objects, though they are not equipped to carry structures such as arrays of 

references, as previous languages were. This is in fact not a disadvantage in Vorlon since 

the a similar semantic to passing structures is maintained, since arcs can carry handles to 

arbitrary data types including any kind of structure. 

 Since Vorlon graphs are acyclic, and nodes can only activate once per graph, arcs 

carry only a single item per graph instantiation. Once an object handle reaches its 

destination, it is consumed from the arc upon activation of that destination node. Arcs 
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themselves always connect two nodes and as such exhibit a 1:1 mapping, leaving more 

complex schemes to be implemented by special purpose nodes (mentioned earlier). 

6.2.4 Node: Firing Rule 

Node: Firing Rule Semantics 
Fixed 

Table 6-4 Vorlon Firing Semantics 
Since all dependencies in Vorlon graphs must be explicitly maintained via arcs 

connecting nodes, all Vorlon nodes are subject to the firing rule. There are no implicit 

dependencies. An important consideration in the design of Vorlon was to keep control 

flow issues entirely within the graphical element of the language, firing rules were kept 

deliberately simple, and fixed to an all-inputs rule whereby a node would activate only 

when all of its input arcs were carrying handles. The only exception to this rule is the 

merge node which is used where conditional execution is present in a graph. 

6.2.5 Node: Inputs and Outputs 

Node: Data Input Semantics 
Shared 
Implicit 

Table 6-5 Vorlon Data Input Semantics 
Node inputs and outputs in Vorlon consist solely of handles. It is permissible for any 

number of handles to refer to the same object, and although the handles themselves 

cannot be shared (though they can be copied) the overall semantic is one of object 

sharing. Since the graphical syntax of the language encapsulates low-level detail such as 

locking, this sharing is implicit, though the developer must ensure correct sequencing of 

accesses to shared objects through the dependencies in the graph. 

6.2.6 Node: Program 

Node: Program 
Language Variable Mapping 
Standard Implicit 

Table 6-6 Vorlon Node Program Semantics 
For those nodes which permit user programming with textual source code (the 

computation and parallel computation nodes), the main issues are whether a standard or 

proprietary language is used to program those nodes, and whether there is support for 

automatic mapping between graphical and textual objects. In Vorlon, the language used 

to program computation nodes is standard C++. Mappings between textual and 

graphical objects is predominantly a tool support issue, but since the environment of 

Vorlon nodes is dictated solely by the arcs which are incident upon them, automating 
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such mappings would be straightforward to implement. As such they are thought of as 

being implicit. 

6.2.7 Node: Output Token Production Rule 

Node: Outputs 
Arc Coverage Explicit Send/Implicit 

Send 
Streamed 
Output 

All Implicit No 
Table 6-7 Vorlon Node Output Semantics 

Since Vorlon nodes only have one outgoing arc, the arc coverage for the output 

production rule is all arcs. Even in the single exceptional case, the conditional node, the 

arc from one distinct output area of the node carries an output token, though it is 

admittedly a fine distinction. All sends are implicit since nodes are only permitted to 

output handles onto arcs once they have completed their execution, and as such the end 

of a node’s execution implies an output on its output arc.  

6.2.8 Support for Parallel Modes of Execution 

Behaviour Node 
Data parallel Parallel Computation Node 

Parallel Method Call Node 
Task Parallel Implicit in Graph Structure 

Pipeline Not supported 
Iteration Loop node 

Conditional Conditional Node 
Recursion Method Call Node 

Table 6-8 Syntactic Support for Parallel Execution in Vorlon 
Explicit data parallelism is instantiated with either the parallel computation or parallel 

method call nodes, depending on whether its is a textual computation (or a sub-graph) 

which is to be executed in parallel, or a method call on a number of objects. Though the 

developer may be expected to notice the opportunity for data parallel style activity, 

typing can be used to implicitly drive that activity where appropriate.  

There is no specific syntactic element for task parallelism, since mutually independent, 

and thus potentially parallel, tasks can be identified from the overall graph structure. 

There is no syntax for inducing pipeline parallel activity since Vorlon graphs do not 

support pipelines (for reasons discussed later). 

Iteration is not a parallel construct in Vorlon, though the type-driven aspects of the 

explicitly parallel nodes could be seen as a kind of foreach construct. The loop node 

is instead a purely iterative construct as recommended by ParADE {Allen 1998}. 
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Recursion is supported by the Vorlon language insofar as any method graph is free to 

invoke itself via a method call node. If the recursive method does not update the state of 

its associated object (it is a read-only method) then parallelism may occur since multiple 

instances of that method may run concurrently. It is noteworthy that recursion at the 

sub-graph level is not supported by Vorlon since there is no naming convention for sub-

graph nodes which means they cannot be called from any graph node (unlike methods 

which, by definition, are named). 

6.2.9 Notable Omissions from the Vorlon Language 

Compared to contemporary visual parallel programming languages, Vorlon has some 

significant omissions from, and restrictions inherent in, its syntax. That is not to say that 

a range of other syntactic elements was not considered for adoption, but simply that they 

were either incompatible with the Vorlon model, or were found to be unsuitable 

abstractions for application-level parallelism. Specifically, Vorlon provides no 

mechanisms for pipeline parallelism, or for streams of handles to occur either in its 

syntactic elements or its graph semantics. The next sections discuss why such facilities 

were deliberately left out of Vorlon. 

6.2.9.1. Pipelined Parallelism and Related Syntactic Elements 

Mechanisms and execution models supporting pipelined parallelism have been the 

norm in visual parallel programming languages to-date. Value has been placed on the 

ability to exploit parallel behaviour whilst maintaining a strict sequential ordering of 

tasks. This type of parallel activity has been proven in everyday use, from a car 

production line through to pipelines within computer processors. So, given that 

pipelining is seemingly valuable it begs the question as to exactly why it is not supported 

in Vorlon. 

The answers to that question are manifold, and rest on the premise that software is a 

logical, not a physical entity. In the first instance, imagine a car plant or CPU pipeline. 

The designers of that plant or CPU have gone to great lengths to ensure that the 

available real-estate is used to its best potential. That is they seek to address the question, 

“Given a limited physical space, how is maximal concurrent activity achieved?”. In such 

cases the pipeline is useful, providing for a fixed level of parallel activity which given 

careful design can be maximised for the space available. 
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Software does not have a physical dimension. It is then a strange exercise that 

developers impose a parallelism abstraction designed for real-estate economy in the 

physical world onto a world where physical space has little significance (like the idealised 

parallel machine which Vorlon targets where physical computer characteristics are 

unimportant). This is the first problem with application-level pipelined parallelism: it 

does not take into account the “physics” of the environment in which software resides. 

Secondly, again consider the traditional pipeline, be it either software or physical. The 

maximum level of parallelism which can be exploited is equal to the number of stages in 

that pipeline. If sufficient input tokens exist to feed the pipeline then that maximal 

parallelism will be achieved, but no more. This makes perfect sense in the physical world 

where machinery cannot be added and removed at will. In software where “virtual” 

machinery can be added and removed relatively quickly and inexpensively, obeying 

physical world rules for pipelines seems wrong, and yet it is done and furthermore 

encouraged by the abstractions available in some visual parallel programming languages. 

Again consider a pipeline and imagine it turned into a piece of sequential code. If the 

pipeline is executed, there is no potential for parallelism. However, now imagine a 

situation where there are two tokens available to the first stage of the pipeline. If the 

pipeline is sequential again no parallelism is available, but in the virtual environment of 

computer software, another (zero-parallelism) pipeline can be constructed to accept the 

second input token, and immediately there exists parallel activity. Now imagine M 

available input tokens to a the pipeline, where M is greater than the number of stages in 

the original pipeline. In this case, logically there exists parallelism of M, which cannot be 

achieved by the standard pipeline (whose parallelism is restricted to N, the number of 

segments in the pipeline). This is the second problem with application-level pipelined 

parallelism: stifling potential parallel activity (Figure 6-1). 
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Many (M) tokens 

available to head of 
pipeline 

Pipeline length (N) 
giving maximal 

parallelism of  N (< M) 

Single sequential tasks, 
equivalent to pipeline, 

but no parallelism 

M instantiations 
of sequential task 
giving parallelism 

of M (>N) 

Pipeline Replicated Sequential 
Computations  

Figure 6-1 Pipeline Reduces Potential for Parallelism 

Once again consider a physical pipeline. In such a pipeline each stage is significantly 

shorter than the length of the entire pipeline, taking approximately 1/T the duration of a 

pipeline which takes time T to complete. In a software pipeline the same is true.  

In a parallel computing environment the issue of grain size is paramount. In a pipeline 

grain size is reduced since one coarse-grained task is split into several finer-grained tasks. 

Since coarser grain sizes give a much better chance of efficiently exploiting parallel 

activity than finer grain sizes, developers should be looking to increase, not decrease 

grain size. This is the third problem with application-level pipelined parallelism: it 

reduces grain size.  

Parallel software executes within a somewhat unpredictable environment where, 

depending on hardware conditions, identical tasks may take differing amounts of time to 

complete. In a physical pipeline this situation cannot be allowed, and significant effort 

goes into ensuring that each stage of the pipeline takes almost exactly the same amount 

of time. Given that in a parallel computing system there will be contention for resources, 

and that such contention is largely unpredictable, application-level pipelines are far more 

susceptible to underlying hardware conditions than other mechanisms. Imagine a 

situation in a pipeline where one stage requires access to some data which is not currently 
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available, for example it could be residing on another node in the computer system and 

thus require network transfer. Waiting for that data will cause the pipeline to stall, and 

incur associated performance penalties. Compared to a “data parallel” approach, the 

pipeline has multiple points of failure in terms of performance (one at each pipeline 

stage). Here lies the final problem with application-level pipelined parallelism: it requires 

that the developer understands each stage of the pipeline to ensure efficient 

implementation. 

Given the number of drawbacks to logical pipelines, and that more coarsely grained 

tasks with an equivalent behaviour can be obtained using data parallel activity, the 

argument against directly supporting application-level pipelines is strong. Thus Vorlon 

does not support pipelining. 

6.2.9.2. Streaming Nodes and Streamed Graphs 

Streaming occurs in a graph when a node is permitted to produce output repeatedly. 

In the normal case such repeated outputs would be used to invoke more activity in a 

graph and potentially increase parallelism. Streaming is somewhat similar to pipelining, 

except where in a formal pipeline stages are strongly coupled together in terms of 

functionality, in a streamed graph they are not.  

Streaming is clearly a convenient way of keeping active what would otherwise be 

dormant graph nodes in order to obtain a state of maximal parallelism. However, there 

are a number of problems with streaming, as an investigation into the actual semantics of 

the ParADE loop actor revealed. The functionality of the ParADE loop actor was found 

to have unwittingly played a dual role, in that it bears both the responsibility for iterative 

behaviour and for instantiating streaming activity. This duality was not acknowledged in 

the ParADE work, save for the fact that it was known that there were problems in 

halting ParADE applications where streaming was exploited. 

The problems with the ParADE loop actor stemmed from the fact that a loop node 

could output data values on each iteration of the loop. Although the purpose of the per-

iteration output in the loop actor was clearly out of place in a mechanism designed for 

iteration, from a parallelism point of view, it was thought to be very useful. The output 

of values on a per-iteration basis allowed the ParADE programmer to stream data values 

out along an arc, and thus to invoke the activity of nodes further along the graph whilst 

current nodes were still working.  
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However, the way in which the ParADE loop actor was used as a means of invoking 

pipeline parallelism was found to be unsafe. In particular, due to the fact that that there is 

no means of checking for the end of any streaming activity invoked by the loop actor, 

there is the possibility of introducing a race condition into a ParADE graph. Imagine a 

situation, such as that depicted in Figure 6-2, where a loop node positioned towards the 

top of a graph begins streaming out data values, which feed a number of subsequent 

nodes20. At the end of this graph is a halt actor which terminates the program, activated 

when an item of data is transmitted to it. At some point in the execution of the program, 

several nodes in the stream are processing and the node nearest the halt actor emits an 

element of data along its outgoing arc. At this point the program stops, despite 

processing still occurring within the other nodes. Whilst the conscientious programmer 

will be prudent enough to monitor the number of elements streamed by the loop actor, 

and count that number of elements through the stream before allowing the program to 

close, this is not mandated in ParADE. 

 

Figure 6-2 Race Conditions with ParADE Streaming 

Having discovered that the streaming semantics of the ParADE are weak, other 

mechanisms of inducing parallelism had to be investigated. If the other dataflow-like 

languages surveyed in Chapter 2 are recalled, only one other streaming approach was 

found. In the CODE language {Newton 1993} a single computation node is free to 

                                                 
20 For the sake of clarity, a pipeline-like structure is used in the example, though in reality streams of 

data could permeate deep and wide in a graph. 
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produce multiple outputs per activation, which may subsequently instigate graph 

streaming.  

This approach is not easily reconciled with the Vorlon language philosophy. In 

Vorlon, control flow issues are specified purely in graphical form which immediately 

discounts the CODE approach of embedding control flow commands in the textual 

node program. 

Since streaming seemed an unnecessary complication, it was not adopted by Vorlon. 

Initially it was feared that parallelism would suffer, but since most parallelism is based 

upon concurrent invocation of methods (task parallelism), the lack of streaming has not 

been a significant drawback. However, there have been benefits in terms of graph 

readability attributed to the fact that there is no streaming. Since each node activates 

once only, it is possible to see all possible control-flows on a graph at compile-time and 

be certain that the same will occur at run-time, just as was advocated by the execution 

model for HeNCE. 

6.3 Software Engineering Issues from the Experiments 

The single most important feature demonstrated by the experiments developing 

Vorlon applications was the fact that, through object-orientation, support for the entire 

software lifecycle was attained. Each application was developed from early analysis phase 

through to design, development and release within proper engineering framework, which 

allowed seamless transition from one stage to the next (and back again as necessary). No 

such engineering facilities have been seen in a visual parallel programming language to-

date, which are highly implementation-centric. 

Aside from the lifecycle support that object-orientation provides, perhaps the next 

most obvious factor that differentiates Vorlon applications from those developed with 

previous visual parallel programming languages is their size. If any of the matrix 

multiplication programs from Chapter 2 are considered alongside the Vorlon equivalent, 

it is clear that the Vorlon application is considerably larger than any of the others, 

stretching to several tens of nodes across several graphs. When compared to even the 

largest of the previous matrix multiplication programs (CODE, composed from two 

graphs) the Vorlon program seems quite unwieldy. 

Although there are obvious size costs in using Vorlon to implement such applications, 

these are offset to some degree by other benefits. The fact that Vorlon is object-oriented, 
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and thus requires the implementation of types which constitutes the majority of the work 

of an application programmer, also means that it is extensible and encourages re-use. 

Extensibility is an aspect which no other visual parallel programming language has 

been able to offer, outside of limited functional re-use. Once the set of supported 

abstractions was fixed in any of the previous languages, it was fixed permanently. Whilst 

the abstractions are often extremely useful, such as the automatic array decomposition of 

ParADE’s depth actor, they cannot be extended. Being object-oriented, the Vorlon 

language offers extensibility. If there is no suitable abstraction available from the 

language directly, then the developer is free to extend the language by developing types 

to suit the problem under consideration. 

Vorlon does not natively support matrices and must therefore be extended to provide 

them. In the other languages, and most notably ParADE, the notion of a matrix (or at 

least arrays of arrays) is built into the language syntax. The point here is that once the 

Vorlon language has been extended to include matrices by developing a Matrix type, 

the actual implementation of the matrix multiplication program is as straightforward in 

Vorlon as it is in any of the other languages. In fact, the main(…) method in the Vorlon 

matrix multiplication is of the same order of magnitude in terms of number of nodes of 

any of the other matrix multiplication programs seen in Chapter 2. 

Vorlon is extensible since it supports necessary abstractions through typing, and not 

via language syntax. Whilst it is true that the implementation of types may be time 

consuming, it is also true that once a type is implemented it will not need to be re-

implemented often. This is the second key advantage offered by object-orientation – type 

re-use. The re-use of types allows re-use much earlier in the software lifecycle, and is a 

more powerful model of re-use than function libraries since types can be specialised. If, 

for example, a developer needed to investigate another numerical analysis problem using 

matrices then the Vorlon approach pays dividends since the now-developed Matrix 

type can be re-used early in the lifecycle, and where appropriate simply specialised to suit 

the new problem domain. The other visual languages offer no such means of re-use - all 

written code is inapplicable to the new problem unless that new problem specifically uses 

a matrix multiplication subroutine, and even then re-use can only occur much later at the 

implementation stage. 

In short, because of its object-oriented nature, Vorlon provides significant benefits in 

terms of re-use and extensibility. Whilst it is true that Vorlon developers have to develop 
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types for any new problem domains, in the long term the benefits afforded by object-

orientation should outweigh costs, and development cycles should be shortened. 

6.4 Syntactic and Semantic Improvements for Vorlon 

Vorlon is a prototype language for visual object-oriented parallel programming. As 

such, it is by no means perfect but is valuable as a means of exploring new approaches. 

Having gained experience developing applications with Vorlon, it is clear that there are a 

number of aspects of the language which could be improved, removed, or included. The 

following sections discuss such language amendments, including: 

 Possible improvements to the current language. 

 The removal of particular language elements. 

 The possible inclusion of new language elements. 

6.4.1 Improvements for Current Language Syntax 

There are two main aspects of the Vorlon programming language which it is felt 

would warrant further refinement in future versions of the language. These are: 

Conditional execution; and 

Explicit data parallelism. 

The problem with the conditional execution node is simply that it is confusing to use. 

Whilst the node itself always executes when activated by handles on all input arcs, the 

node program or sub-graph which the node encapsulates may not. This is not consistent 

with other nodes in the language where activation implies the execution of the node’s 

functionality. 

As a replacement, conditional execution could be subsumed into the semantics of the 

computation node, whereby multiple outputs could be attached to the node and subsets 

of these outputs could be activated depending on certain conditions within the node 

program. Note that more than one output may also be allowed in a future version of the 

node since such permits multiple return paths which may be desirable for a parallel 

language (as first noted in Chapter 3), though for conditional execution some of these 

multiple outputs would be mutually exclusive. A possible form for the future 

computation node is depicted in Figure 4-1. 
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Computation Node 

Input Arc(s) 

Mutually Exclusive Groups of Output Arc(s)  

Figure 6-3 Possible Future Syntax for Conditional Execution Supporting 
Multiple Return Paths 

Although the conditional execution node shown Figure 4-1 is an improvement over 

the current node, it does not solve all the problems associated with conditional 

execution. The need to alter particular firing rules to accommodate conditional behaviour 

remains, and the only solution proposed in this thesis has been the adoption of the 

merge node for “gathering together” arcs from multiple conditionally executed sub-

graphs, which would have to either remain or be supplanted by additional semantics 

added to (groups of) halt nodes. 

The other aspect of Vorlon which requires refinement is the explicitly parallel aspects 

of the parallel computation node. This node and the corresponding parallel method call 

node have a dual personality whereby they can be explicitly parameterised to perform 

data-parallel operations, or can use the type information from their input arcs to 

implicitly perform operations in parallel. Given that implicit parallelism is the better 

choice since it does not burden the developer, and that one of the aims of Vorlon was to 

present the user with an environment which does not require that parallelism be directly 

identified, it is proposed that the explicitly data-parallel form of the node should be 

removed from the language. Instead, the parallel computation node should be reduced to 

its canonical form where data-parallelism can be automatically extracted from the types 

of the handles carried by the input arcs. 

It is not a significantly bigger step to suggest that the node itself could be removed 

from the language, and its decomposition and data-parallel semantics be added to the 

standard computation node. In this case, if the computation node’s function signature 

takes individual arguments of a certain type as its parameters, and the input arcs provide 

linear data structures (such as lists, vectors, arrays and so forth) composed from instances 

of that type, then it should be possible to automatically decompose the input structures 
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(and correspondingly re-compose the output into a similar structure). This is shown in 

Figure 6-4. 

Bar foo(FooBar)

// Some computational code that
// accepts FooBar objects as
// a parameter, and returns Bar
// objects to the caller.

List<FooBar> List<FooBar>

List<Bar> List<Bar>

 

Figure 6-4 Data Structure Decomposition to Facilitate Type-Driven Data-
Parallelism 

The graph shown in Figure 6-4 shows a computational node whose function 

prototype specifies an instance of the type FooBar as its arguments, and Bar as its 

return type. The input arc is able to carry a handle not to an instance of FooBar but to 

an instance of List<FooBar> whose contents will automatically be extracted and a 

single instance fed to each parallel instance of the computational node. When each 

instance completes, the output from the node is built into a List<Bar> from the 

individual instances of Bar produced by the parallel node programs. 

Whilst such decomposition semantics may be useful, they are not especially generic in 

that they rely details of the decomposable data structures being exposed to the language. 

This is quite contrary to the extensible nature of Vorlon, and so whilst this simple 

decomposition mechanism offers a “quick-fix” to the problem (as did list decomposition 

in the current version of the language) it is clear that any major language revision should 

tackle this issue at a more fundamental level. 

6.4.2 Possible Future Additions to and Removals from Vorlon 

The fact that data-parallelism, which is traditionally explicitly invoked by the user, may 

be attained implicitly through the language’s type system is interesting. The discussion in 

the previous section noted that the parallel computation node should, if its functionality 

is retained in the language, rely solely on type information to decompose linear data 

structures into a form suitable for data-parallel processing. However, it may be possible 

to extend that automatic decomposition of data structures to arbitrary types21. 

Specifically, in a class diagram, there is a great deal of information available which has not 
                                                 
21 With thanks to Savas Parastatidis for his constructive input in formulating these ideas. 
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been capitalised on in the current Vorlon language save for producing skeleton class 

interfaces, but which could be used to facilitate more automated decomposition of data 

structures. Take for example a tree data structure such as that modelled in Figure 6-5. 

Tree

Node

0

0..1

0..*

0

 

Graph

Node

0

1

0..*

0..*

 

Figure 6-5 A Tree Data Structure Figure 6-6 A Graph Data Structure 

Figure 6-5 shows a typical UML representation of a tree. In this case, the Tree class 

is associated with zero or one instance of the Node class, and the node class is 

associated with zero or more instances of itself. A similar pattern is observed in Figure 

6-6, where the Graph class is associated with zero or one instance of the Node class, 

and any instance of the Node class is associated with any number of other instances of 

itself. 

Neither of the patterns seen in Figure 6-5 and Figure 6-6 are especially different to the 

interrelationship pattern exhibited by the List class in Figure 6-7, which has already 

been shown to be an implicitly decomposable data structure that can be used to drive 

data parallel activity.  

List

Node

0

1

1

0

 

Figure 6-7 A List Data Structure 

Given that there are known algorithms for traversing data structures {Sedgewick 

1992}, it is possible to decompose those structures into their individual elements. Once 
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individual elements have been obtained it is straightforward to use them to drive data 

parallel activity. 

In order to facilitate implicit data parallel activity from the automatic decomposition 

of data structures, it is likely that a syntactic element will need to be introduced. Whilst 

the introduction of syntax to explicitly support parallel activity is contrary to the goals of 

reducing such syntax (Section 6.4.1), it is possible to think of such a mechanism without 

necessarily exposing the fact that it exists to support data parallel activity. Furthermore 

the introduction of such a syntactic element would allow data structures to be processed 

serially by “non-parallel” nodes when required. Inspiration for such a syntactic element 

comes from the Visual Basic language {Deitel, Deitel et al. 1999}, where the 

Collection data structure is commonly used with the foreach statement for 

iterating over the contents of a Collection. Since Visual Basic does not (natively) 

support concurrent activity, there is no notion of executing each of the iterations of a 

foreach loop concurrently - it is instead seen as an optimised syntax for unordered 

iteration. 

A foreach node could be added to the Vorlon language whereby one of the inputs 

contains a data structure which is then decomposed and used to drive parallel instances 

of the node’s program. The Vorlon developer would not think of that node as an 

explicitly parallel mechanism, but as a kind of non-ordered iterative construct as does the 

Visual Basic programmer. If such a construct could be supported by the Vorlon language 

then it could remove all notion of explicit parallel programming. Both task- and data- 

parallelism would be totally implicit within the structure of a graph, whereas now only 

task parallelism is completely implicit, and data parallelism only partially implicit. 

Whilst adding features into the language to support implicit parallelism is certainly a 

good idea, it is also a good idea to remove those features from the language which 

explicitly sequentialise code. This is particularly prevalent in the case of the loop node 

which has been (mis-) used in many places in the matrix multiplication application, where 

parallel mechanisms could, or perhaps should, have been used. With the benefit of 

hindsight it is clear that the provision of a sequential control-flow abstraction in a parallel 

programming language is the wrong thing to do. Instead implicitly parallel mechanisms 

(such as the foreach mentioned above) should be used to support iterative activity, 

and ordering of iterations, should the need arise, could be dealt with in the textual 

language element of a computational node. Thus the purely sequential iteration would be 
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supported, though the developer would be less tempted to use that feature since it would 

not be supported at the graph level. 

In addition to parallelism-oriented features, future visual parallel programming 

languages should seek to accommodate new features which modern textual languages 

support. In particular, the ability to handle events would be valuable such that programs 

where there is no top-to-bottom execution could be built, and exceptions and exception 

handling could be implemented. An event handling mechanism would replace the 

current use of loops and busy waiting for conditions in Vorlon, and exceptions and 

exception handling would help to increase the robustness of the produced software. 

The final aspect of the Vorlon language which it is felt needs amendment is the 

replicate node. Whilst the behaviour of the replicate node (making copies of handles) is 

useful in graphs, it is felt that such a semantic could instead be assimilated into the arc – 

i.e. 1:M arcs. This would help to make Vorlon graphs more readable since there would be 

fewer nodes per graph. An example of the upgraded arc can be seen in Figure 6-8 

alongside the equivalent replicate node pattern. 

  

Figure 6-8 Reducing Visual Complexity by Removing Replicate Nodes 

6.5 Closing Remarks 

This chapter has presented Vorlon within the taxonomy framework introduced in 

Chapter 3, and identified areas where the Vorlon language improves on its peers, and 

areas where it lacks. The costs and significant benefits of developing within an object-

oriented framework have been identified - initial implementation costs versus 

extensibility and re-use – and it has been argued that although Vorlon applications tend 

to be large, this is simply because extensibility demands that abstractions are added 

through types, and are not hard-coded into the language syntax. 

The syntax and semantics of the language has also been considered in light of 

experience developing with Vorlon, and suggestions have been made in both tightening 
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the language syntax, and for developing the parallel processing model for future Vorlon 

revisions. 
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Chapter 7 Conclusions and Further Thoughts 

This final chapter draws together the work presented by this thesis. An 

overview of the work is presented which briefly covers the salient features of each 

of the chapters and thus sets the context for the final evaluation of the 

programming technology developed. The results obtained from experiments with 

the developed language technology are recapped and suggestions for aspects of 

current practise to be upheld in future work are also offered. 

7.1 Overview 

The fundamental tenet of this thesis is that the parallel computing will become 

widespread in the near future. Chapter 1 described Moore’s Laws and the software 

stretch which showed how reliant software is on ever-increasing uniprocessor hardware 

performance, and how those performance increases will eventually be limited by 

economic factors; at that point parallel computing platforms could be used to 

compensate for the expected shortfall in computational power. Chapter 1 also pointed 

out that parallel programming is a difficult discipline, complicated by not only a wide 

variety of computing platforms, which is set to get wider as parallel computing moves 

into the commodity computing range, but also by the intricate nature of parallel 

programs themselves. 

Chapter 2 examined four existing visual parallel programming languages whose 

existence is testimony to the fact that parallel programming is an intricate and time-

consuming process. Each of the four surveyed languages uses computer graphics to 

abstract some of the detail of the underlying parallel computing system in an attempt to 

make those systems easier to exploit. Examples of developing parallel programs with 

those languages were given, and discussion on the suitability of each language was 

presented. 

The work presented in Chapter 3 built on Chapter 2, and a taxonomy of the surveyed 

languages was presented and their strengths and weaknesses analysed. The results from 

the taxonomy process, in conjunction with experience from developing examples with 

each of the four languages, lead to the belief that the current generation of visual parallel 

programming languages provide little more than current textual parallel programming 

languages, in that they support parallel programming, and not parallel application development. 

To address this problem a new paradigm for parallel application development, Parallel 

Object-Flow, was developed to deal with both problem domain and architectural 
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complexity. Importantly, object-orientation was proposed as a means of supporting the 

software lifecycle, whilst visual programming languages were proposed as a means of 

abstracting the detail of an idealised parallel computer. 

Chapter 4 introduced the main work developed for this thesis, the Vorlon visual 

parallel programming language which implemented the Parallel Object-Flow paradigm. 

The syntax and semantics of the language were introduced, alongside the development 

methodology and software architecture of a Vorlon application. 

The next stage in the development of this thesis was the collection and analysis of 

results. Chapter 5 presented the construction of two applications (one numeric, one non-

numeric) developed from conception through to release with Vorlon. The results 

obtained from these applications were in the form of practical experience developing 

with Vorlon, and timing data from executing the applications. The performance results 

obtained were mixed and revealed that, in the first version of the Vorlon language, 

applications which exhibit a pattern of fine granularity of locking of objects (such as 

numerical applications using matrices) did not perform well, whilst other types of 

application (in this case a compilation system) performed satisfactorily. 

The penultimate chapter of this thesis was a period of reflection on the work 

undertaken. Chapter 6 took the work from Chapters 4 and 5 and subjected Vorlon to the 

same taxonomy process as was presented in Chapter 3 for previous visual parallel 

programming languages. From this taxonomy, reflections on both linguistic and software 

engineering aspects of the language were presented, and the reason why Vorlon 

applications tend to be larger than their equivalents was explained as a necessary 

symptom of an extensible language that encourages structured re-use. 

7.2 Reflections on Software Engineering Aspects 

The fact that Vorlon is an object-oriented language provides significant software 

engineering benefits. Since object-orientation supports the whole of the software 

lifecycle, so too can Vorlon applications enjoy such support. Problems can be analysed, 

solutions designed, and applications implemented within a common framework – in 

short because of object-orientation, applications can be engineered. 

However, the engineering benefits come at a cost. In this case the cost is the size of 

the applications compared to the equivalent written in previous visual parallel 

programming languages. The overwhelming majority of this additional cost of 



Visual Object-Oriented Development of Parallel Applications 

 231 

developing with Vorlon is invested in building types to match the problem domain 

requirements. Since previous visual parallel programming languages were not object-

oriented, the development of such types was not an issue since all the available 

abstractions came built into the language syntax. 

However, it was noted that there are significant benefits associated with the ability to 

extend a language through types. Importantly, this extensibility allows the language to 

adapt to new situations which the language designer may not have foreseen, which had 

the abstractions been built directly into the language would not be possible. Furthermore, 

the re-use of types (as opposed to the functional re-use pattern seen in previous 

languages) means that re-use can occur much earlier in the lifecycle (at the analysis and 

design phases) which will have the effect of shortening development times for 

subsequent software projects. 

7.3 Vorlon Language Issues 

The main problem with Vorlon was the fact that parallelism is explicit in some of the 

syntactic elements whereas the goal of the language was to encapsulate parallel activity 

away from the developer. In particular, the explicit data-parallel aspects of the parallel 

computation node and parallel method call node were cited as mechanisms which should 

be removed from the language in favour of implicitly parallel mechanisms. 

Improvements to the current language which would enable a purely implicitly parallel 

style of programming were suggested, but it was noted that such approaches would not 

be extensible. Instead, it was suggested that a more fundamental re-appraisal of the data-

parallel mechanisms was required and that generic, extensible, type-driven mechanisms 

should be employed to implicitly control data-parallel activity. 

The prototypical nature of the language meant that the overall look-and-feel of the 

language was basic, and that some of the syntactic elements (and conditional execution 

nodes in particular) were poorly designed. Thus, although the overall style of execution 

was found to be acceptable, the construction of applications with Vorlon was harder 

than it should have been, such problems could be rectified given time since they are not 

fundamental. 

7.4 Performance Results 

The performance results presented in Chapter 5 showed a clear distinction in 

performance between the matrix multiplication and compilation system applications. The 
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matrix multiplication program performed badly on all test platforms, including shared 

memory multiprocessor, whereas the compilation system performed reasonably well on 

all platforms and particularly well on the shared memory system. 

For the matrix multiplication application, it was found that the costs of memory 

access (predominantly locking of fine-grained objects) as the cause of the poor 

performance. It follows that if locking can be minimised, Vorlon programs may perform 

significantly better, and it was suggested that adopting message-passing under certain 

circumstances may help to avoid locking overheads. The problem of efficiency would 

then become one of grain size – communication costs version computation time – and 

mechanisms such as NIP’s lazy task creation and load balancing would help under such 

circumstances. 

For the compilation system, the problem was not with Vorlon, nor the NIP run-time 

system. Whilst both Vorlon and NIP concentrate on memory and processor abstractions, 

neither pays any attention to I/O device abstractions which would work efficiently in a 

parallel environment. Since such mechanisms are outside of the research area for this 

thesis, no solution was developed. As such it would be fair to say that applications which 

are heavily I/O dependent do not scale well using the techniques outlined in this thesis, 

in the absence of appropriate library support such as that discussed in Chapter 5. 

7.5 Future Work 

When offering suggestions for future work, it is often the case that less well received 

aspects of the current work are presented and purified as if that action would resolve all 

outstanding issues. It is not the intention here to follow suit, since aspects of the current 

work which could be improved upon have already been discussed. Instead, more generic 

aspects of parallel application development are considered and, where germane, opinions 

based on experience with the Vorlon language are offered. 

It is wholeheartedly felt that a visual approach to parallel application development is 

an eminently practical and sensible approach to take. During the period of research for 

this thesis a range of visual and textual parallel programming languages/libraries were 

investigated. Even those textual approaches which were considered to be at the cutting 

edge of their field (in particular the NIP run-time system which Vorlon utilised) were 

found to be significantly more difficult to develop with than a visual language. As for 

scalability of visual languages (a problem which is often quoted as being the downfall of 

visual programming), experience demonstrates that textual parallel programming scales 
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little better since the source code can be incredibly intricate. In short, the visual approach 

to parallel application development is good and should be pursued. 

Saying that a visual approach is desirable is, however, an incomplete argument. In 

Chapter 2, several visual parallel programming systems were surveyed and each exhibited 

it own semantics and style – and there are still other visual programming systems which 

were not considered in the survey which have still different styles. However, in the 

parallel programming arena where issues of synchronisation are of paramount 

importance, the style of programming language can have a serious impact on the overall 

performance of the developer. Specifically, it was felt that the notion of flows of items 

(be those items data or object handles in the case of Vorlon) was valuable since it 

provided implicit communication and synchronisation, whilst giving the developer a clear 

picture of dependencies. It was thus felt that flows are a useful syntactic element which 

should be preserved in future languages. 

Following on from the suggestion that flows are a useful means of implicitly 

describing communication and synchronisation patterns, and therefore of implicitly 

describing task- and (where supported) pipeline-parallelism, there is the more general 

implication that mechanisms which implicitly support parallel activity are good. 

Languages which support the implicit exploitation of parallelism from an application’s 

structure remove the “parallelism burden” from the developer and thus free the 

developer to concentrate on more important issues like ensuring the software meets its 

specification. 

A complementary argument to the fact that languages should support implicit 

exploitation of parallel activity is the fact that they should not permit explicit mechanisms 

for introducing parallel activity. Whilst this may seem an obvious, if not superfluous, 

point to make, it is not. Previous work, notably ParADE, and this work both 

acknowledged the fact that a suitably intelligent developer may want to be able to specify 

parallelism at will, rather than allowing the underlying development environment to 

control such issues. Both ParADE and Vorlon were languages which attempted to 

support the novice parallel programmer to write parallel programs, whilst permitting the 

expert to optimise. Only at this point in the work it is possible to acknowledge that such 

a philosophy is ultimately wrong. An expert developer should not be expected to 

shoulder the parallelism burden any more than a novice. Instead an expert developer 

should be expected to better apply proper software engineering principles to the problem 
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than a novice, and if the programming language is suitably advanced (such as Vorlon 

with the suggested type-driven modifications), then the application of those principles 

will implicitly invoke more parallel activity. That is, explicit parallelism, even in the hands 

of an expert developer, may not prove to be a particularly good idea, and future visual 

parallel programming languages should not support it. 

Given that typing is thought to be key in the future success of visual parallel 

programming, the final and most important suggestion for future work is that it continue 

to support object-orientation. Not only will object-orientation provide the primary 

means of exploiting parallelism from an application, but it will continue to provide full 

lifecycle support for the development process which will be fundamental in the shift 

from parallel programming to parallel application development. 

7.6 Closing Remarks 

The main contribution of this thesis has been to demonstrate that parallel applications 

can be engineered, and that paradigms which support both performance and software 

engineering aspects of application development can be developed. Vorlon has made a 

positive contribution to the field of visual parallel programming. Certainly Vorlon does 

not solve all the difficulties of parallel programming – it is not a universal panacea – but 

it is a step in the right direction. 
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Appendix A Development of  a Parallel Compilation System 

The most salient graphs from the parallel compilation system were presented in 

Chapter 5, where those graphs provided the context within which performance 

results could be investigated. For completeness, the whole development of the 

application (excluding performance analysis) is presented in this appendix. 

A.1 Introduction 

The UNIX make tool is a utility for managing software builds. It is particularly useful 

for projects where an application may be dependent on a number of source files, and 

where not all source files are changed between successive application builds. In such 

cases make only re-compiles object code for those source files that have changed. At 

present, most implementations of make use an iterative approach to compilation, in that 

the date of a file is checked, and if found to be out-of-date it is compiled, before the next 

file is checked, and so on. 

However, given that the only dependency in a build operation is between the 

production of object code and the link phase of the build, and that the production of the 

object code from each source file is an independent task, there is the potential to 

parallelise the build process. This appendix discusses the construction of a simple parallel 

implementation of a make-like tool which uses a data-parallel, rather than an iterative 

approach in the compilation of source code files. 

A.2 High Level Analysis 

As with any software project, the first development stage is to perform an analysis of 

the problem domain. In an object-oriented analysis, the goal is to look for objects in the 

problem domain, and reason about those objects in order to extract a set of types. In the 

parallel compilation system problem domain, there are three types which are immediately 

obvious: 

The intermediate language (C++) compiler; 

The project which describes the relation between Vorlon graphs in an application; 

The (intermediate language) source files, derived from the Vorlon graphs, which 

are built to produce the final executable application. 
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As the first step in the analysis of the parallel compilation system, it is helpful to place 

those types on a class diagram, and add any obvious operations (methods) and attributes 

(data members) to their interfaces. This can be seen in Figure A-1. 

 

Figure A-1 Initial Class Diagram for the Parallel Compilation System 

The class diagram shown in Figure A-1 depicts the three main types for this problem 

domain, along with their corresponding operations and attributes. At this point in the 

development, what is understood about the problem is as follows: 

1. There exist a number of named SourceFiles, and each has an 

associated age; 

2. The Compiler compiles source files, and may be parameterised via 

compiler flags to link code with appropriate libraries as specified by 

the user of the application; 

3. The overall activity of the system is coordinated by a Project 

which is responsible for determining out-of-date source files, and 

compiling those files in order to build the resultant application. 

Having established the functionality of each of the primary types in the problem 

domain, the development process can progress to the high-level design stage. 
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A.3 Application Design 

The real beauty of the object-oriented methodology is its seamlessness. The work 

undertaken in the analysis phase is carried forward directly into the design phase of the 

development cycle. The primary distinction between the analysis and design phases is the 

fact that the design phase begins the process of “concreting” the components from the 

analysis phase such that they can be used as a basis in the construction of the final 

software artefact. 

In the design presented in Figure A-2, the types needed to support those introduced 

in Figure A-1, are shown and the relations between those types have been added.  

 

Figure A-2 Initial Design-Stage Class Diagram 

The class diagram in Figure A-2 presents a full static view of the types arising from 

the problem domain and the types which the problem domain types require in order to 

fulfil their own functionality. This diagram presents a number of important relations, 

including: 
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1. The Project type is dependent on the String type, which itself 

contains references to a number of instances of the 

Object<char> type. 

2. A Project object contains a list of source files 

(List<SourceFile>). 

3. The List<SourceNode> type contains an instance of the 

ListNode<SourceFile> type. 

4. All instances of the ListNode<SourceFile> type contain a 

reference to another instance of ListNode<SourceFile> 

which is used to link ListNode<SourceFile> objects into a 

List. 

5. The List<SourceFile> class is aware of the interface of the 

SourceFile class, as is the Compiler class. 

6. The SourceFile class depends on the String class to fulfil its 

responsibilities, and is aware of the String type’s interface. 

Having introduced the overall structure of the types in the application, it is 

worthwhile discussing some of the responsibilities and behaviours of those types. 

 The Project type maintains data on the build state of the source 

files that comprise the application. Most of this data is kept in the 

form of text string representing filenames and other compiler 

options, and numerical values which represent the last build time of 

the application, along with some other housekeeping data. Apart 

from the get /set  methods, the only other method supported by the 

type is the getOutOfDateFiles(…) method which returns a 

list of out-of-date source files to the caller. 

 The List<SourceFile> and ListNode<SourceFile> are 

used to simply build lists of SourceFile objects. They support a 

standard compliment of list methods and attributes to facilitate this 

functionality. 
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 The SourceFile type is a very simple representation of a physical 

file, containing a filename and age as attributes and a pair of get/set 

methods for those attributes. 

 The Compiler type is a representation of an external C++ 

compiler. It supports only one method called compile(…)which is 

used to invoke the external compiler on the specified source file. Its 

attributes are set on construction on include the compiler flags and 

the fully qualified path to the external compiler. 

 String is simply a NIP-safe array of Object<char> objects. It 

supports two concatenation methods (one for char objects and one 

for String objects), and one method called c_str() 

(convention adopted from the C++ STL) which is used to produce 

strings in a form suitable for passing to the environment via the C 

system(…) call, so that the external compiler can be invoked. 

The final stage in the development of the application is to refine the full static view of 

all programmatic components, including the starting point for the application and its 

relations with the other types. This can be seen in Figure A-3. 
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Figure A-3 Final Application Design 

The class diagram shown in Figure A-3 shows the Main class and the main(…) 

method in conjunction with the other types. The Main class contains one instance of 

the Project class, and one instance of the Compiler class, and is dependent on the 

List<SourceFile> type to fulfil its responsibilities. The main(…)method 

interrogates the Project object for a List<SourceFile> object which it then uses to 

call the compile(…) method from the Compiler object that it contains. Note that is 

parallel calls on the compile(…) method that is the main source of parallelism in this 

application. 

Having introduced the responsibilities of, and the operations supported by each of the 

types that constitute the application, it is now possible to implement those types, which 

is the subject of the following section. 
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A.4 Implementation 

Once the static structure of the application has been determined, the next stage in the 

development of the software is to build the functionality of the application by 

implementing the types from the design phase. In the case of the compilation 

application, it makes most sense to tackle the problem top-down. That is, implement the 

most important classes first, and the more minor classes later. As such, the Main type’s 

main(…) method is the first to be implemented, followed by the Project class, the 

Compiler class, SourceFile class, the List class (and associated ListNode 

class), and finally the String class. 

A.4.1 The Main Class 

The Main class is composed from only a single method called main(…) the 

implementation of which can be seen in Figure A-4. 
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Figure A-4 The main(…) Method 

The main(…) method depicted in Figure A-4 is responsible for the majority of the  

work undertaken by the application. It first accepts an instance of the String type as a 

filename of a file that contains the project data. This is then used to create an instance of 

the Project type.  

The instance of the Project type is then used to service three method calls in 

parallel. Two of the method calls are simple get methods, which retrieve the compiler 

name and the compiler flags to be activated, which are then used to instantiate an 

instance of the Compiler type. The third of the method calls requests a list of out-of-

date source files, and causes the Project object to search its internal data structures 
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looking for files which are more recent than the target executable. It is the resultant list 

of objects that this method call releases which drives the majority of the subsequent 

parallel activity within the graph, when the List is sent as a parameter to a parallel 

method call node. The parallel method call node invokes the Compiler type’s 

compile(…) method on each of the SourceFile objects contained within the 

input List of SourceFiles. Having compiled each of the source files into object 

code, the final stage of the build process is to perform a link to produce the final 

executable. This functionality is supported by the link(…) method in the Compiler 

class. 

A.4.2 The Project Class 

The Project class contains a total of four methods and one constructor. Three of 

those methods are trivial get methods which return particular project attributes such as 

the compiler name to the caller. The implementation for get methods that the Project 

class supports can be seen in Figure A-5,Figure A-6, and Figure A-7. 

  
 

Figure A-5 
getCompilerName(…) 

Method 

Figure A-6 
getCCFlags(…) Method 

Figure A-7 
getTarget(…) Method 

In addition to the get methods, the other method that the Project type supports is 

getOutOfDateFiles(…) whose implementation can be seen in Figure A-8 and 

Figure A-9 below. 
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Figure A-8 getOutOfDateFiles(…) 
Method 

Figure A-9 getOutOfDateFiles(…) 
Method Sub-Graph 

The getOutOfDateFiles(…)method has already been discussed in depth in the 

main text, and it is not the intention to repeat that discussion here, save for the fact that 

the parallel computation node is used to build the list of out-of-date files, but it is not 

used in its canonical form since not all inputs are to be decomposed. This raised several 

syntactic issues about decomposition of structures and implicit data parallel activity 

which are themselves tackled in Chapter 6. 

The final operation supported by the Project type is its constructor (the provision of a 

copy constructor can be left to the translator in this case). The implementation of the 

default constructor is shown in Figure A-10. 
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Figure A-10 The Default Constructor of the Project Type 

The graph shown in Figure A-10 is straightforward with only an assignment and a 

piece of sequential C++ code running concurrently. The sequential C++ code merely 

reads in a number of parameters from the file and assigns them to appropriate places 

within the Project object’s internal data structures. The sequential C++ was used in 

preference to a Vorlon graph because C++ has far better facilities for handling I/O than 

Vorlon does (since Vorlon does not have an I/O library), and since file I/O is sequential 

in this case there would be little added performance benefit by developing the routines in 

Vorlon. 
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A.4.3 The Compiler Class 

 

Figure A-11 The compile(…) method of the Compiler Class 

The Compiler type’s compile(…) method has already been discussed in the 

main text. It suffices to say here that it merely forms a command-line argument which 

represents the compiler options and the source file to be compiled, and passes that 

argument to the command-line interpreter (via a C standard library system(…) call). 

For a fuller description of the activity of the graph, refer to Chapter 5. 
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Figure A-12 The link(…) method of the Compiler Class 

The link(…) method of the Compiler type simply issues a call to the command-

line interpreter to link all source files together to build the target executable. In this case, 

the command-line argument passed is simply the name of the compiler with the link 

switch set and passing the name of all object code files, an example of which can be seen 

here: 

g++ -o *.o 

Although more complex behaviour might be expected from an industrial-strength 

software build system, for purposes of experimentation all object files in the build 

directory (and only that directory) are used in the link process. 
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A.4.4 The SourceFile Class 

 

 

Figure A-13 SourceFile Class 
Constructor 

Figure A-14 SourceFile Class Copy 
Constructor 

The standard and copy constructors for the SourceFile class can be seen in 

Figure A-13 and Figure A-14 respectively. In both cases the majority of the work 

performed is the assignment of attributes passed as arguments to the constructor call to 

local attributes within the new object. In the default constructor, the _filename 

attribute is set from the parameter passed to the constructor call and the _age attribute 

is set by a call to the operating system to retrieve the age of the file. In the copy 

constructor a similar process occurs except that the attributes are retrieved from a 

method call on the parameter object, rather than directly from the parameter or from the 

operating system. 
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Figure A-15 SourceFile Class 
getName(…) Method 

Figure A-16 SourceFile Class 
getAge(…) Method 

Figure A-15 and Figure A-16 show the two get methods supported by the 

SourceFile class. Both get methods simply return a handle to one of the attributes of 

the class. 

A.4.5 The List and ListNode Classes 

The List class acts as a repository of SourceFile objects which represent the 

source code files of the application which is being built. The ListNode class is used to 

hold the actual SourceFile objects, and to link the List together in a classical 

linked list structure. 

 

Figure A-17 List Class Default Constructor 

The constructor for the List class is shown in Figure A-17. The functionality of the 

default constructor is straightforward in that it simply initialises the attributes of the 

List object to their starting values. In this case the reference to the first item (a 

ListNode object) in the List is set to null (since the List is empty on creation), 

and the length of the List is set to zero. 
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Figure A-18 List Class addNode(…) Method 

The addNode(…) method of the List class is the means by which items are added 

to the tail of a List. In this method, two distinct activities take place in parallel. In the 

first of these activities, the current last node in the List (the node at position 

_totalNodes–1 in the List) is retrieved through a call to the nodeAt(…) 

method, and that node’s _next reference (the reference to the next node in the List) 

is accessed via a method call node. At the same time, the SourceFile object passed as 

a parameter to the method call is used to create a new ListNode object. Once the 

ListNode object has been created, the _next reference obtained from the current 

last node in the List is updated to refer to the new ListNode object, and the number 

of nodes in the List is incremented. 
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Figure A-19 List Class nodeAt(…) Method 

The nodeAt(…) method is used to retrieve data from a List. The implementation 

of the top-level graph of the method is shown in Figure A-19. There is no parallelism in 

this method since it simply involves iterating over a number of ListNode objects until 

a counter value is met, at which point the attribute _data (a reference to a 

SourceFile object) of that node is returned to the caller of the method. The 

decomposed loop node sub-graph of the nodeAt(…) method can be seen in Figure 

A-20. 
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Figure A-20 List Class nodeAt(…) Method Sub-Graph 

The sub-graph shown in Figure A-20 is used to access subsequent ListNode 

objects from a List. It simply assigns the _next attribute of the current ListNode 

object to an object handle called current which is maintained between successive 

executions of the graph. Once all executions of the graph have completed, the 

current handle references the node that the caller of the method requires. 

 

Figure A-21 List Class noOfNodes() Method 

The noOfNodes(…) method is a simple get method which returns a handle to the 

attribute _noOfNodes from the current object. Its implementation is shown in Figure 

A-21. 
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Figure A-22 ListNode 
Default Constructor 

Figure A-23 ListNode 
Copy Constructor 

Figure A-24 ListNode 
Constructor 

The ListNode class is used to store objects within a List. It is an extremely basic 

data type, consisting only of constructors and public attributes. The constructors of the 

class can be seen in Figure A-22, Figure A-23, and Figure A-24 above. The default 

constructor simply sets both of the attributes of the new object to null. The copy 

constructor sets the _data attribute to be identical to that of the ListNode object 

passed in as its parameter, and sets its _next attribute to be null (since the _next 

attribute is set by a List object as part of an insertion operation). The final ListNode 

constructor takes a handle to a SourceFile object, and a handle to another 

ListNode object as its parameters, and simply uses them to initialise its attribute set. 

A.4.6 The String Class 

The String class is an abstraction of a sequence of characters, supporting common 

options such as concatenation. In this application, String objects are used to hold 

filenames, compiler switches, and other project data. 
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Figure A-25 String Class Default Constructor 

The default constructor for the String class can be seen in Figure A-25. It creates a 

zero-length array of Object<char> objects which is then assigned to the _data 

attribute of the new object, and sets the _length attribute of the String object to zero. 

 

Figure A-26 String Class Copy Constructor 
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The copy constructor of the String class is shown in Figure A-26. It sets the 

_length attribute of the new object to be identical to that of the parameter object, and 

in parallel makes a copy of the parameter object’s internal array structure and assigns that 

copy to the local _data attribute. 

 

Figure A-27 String Class Constructor 

The final constructor for the String class, shown in Figure A-27, takes a single char as 

its input parameter, and uses that input to create an instance of Object<char>. In 

parallel with the creation of the Object<char> instance, an Object<char> array 

of length one is created. Once the array and the single instance have been instantiated, 

the single instance of Object<char> is inserted into the array at location 0 and the 

_length attribute of the new String object is set to 1. 
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Figure A-28 String Class concat(String) Method 
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Although the concat(…) method shown in Figure A-28 is a highly-connected 

graph, its functionality is actually straightforward. The _data and _length attributes 

are extracted from the parameter String object, and the _length attribute is then 

added to the _length of the current object and the value yielded is used to create a 

new array of type Object<char>, big enough to hold the contents of both String 

object’s data. Once created, the new array is operated upon in parallel by two loop nodes 

which iterate over the current object’s _data attribute, and that of the parameter object, 

copying element each into an appropriate position in the previously instantiated (larger) 

array structure. Once the copying process has finished, the new, large array of 

Object<char> objects is assigned to the _data attribute of the current object, 

leaving the old structure to be garbage collected. The final action performed is to update 

the _length attribute of the current object to reflect the increased size of the String 

after the concatenation. 



Development of a Parallel Compilation System 

 258 

 

Figure A-29 String Class concat(char) Method 

The other concatenation method supported by the String class is the that of a 

single character to an existing String. The implementation for this method can be 

seen in Figure A-29. The character concatenation method is not dissimilar to the 

String concatenation method with the exception that one of the iterated copy 
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operations present in the String concatenation is replaced by a single array insertion 

for the char-oriented version. In the method graph of Figure A-29, a new array which 

is one element larger than the current array referenced by the _data attribute of the 

object is created, and the contents of the current internal state are copied into the new 

array. Once the copy has finished, the instance of Object<char> created from the 

parameter passed to the method is inserted at the final position in the new array, and it is 

assigned to the current _data attribute, leaving the old array to be garbage collected. 

 

Figure A-30 String Class length(…) Method 

The length(…) method of the String class is a simple get method which returns a 

handle to the _length attribute of the object that it is invoked on. Its implementation 

can be seen in Figure A-30 above. 
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Figure A-31 String Class c_str() Method 

The c_str() method of the String class, shown in Figure A-31, is used to 

extract a C-style null-terminated array of characters from a String, to be used where 

elements of the C or C++ standard libraries requiring such structures as parameters are 

to be invoked. The functionality of the method is straightforward (if a little crude), in 

that a computation node is used to create a C-style array (since the Vorlon new object 

nodes create Vorlon, not C, arrays) which is then passed onto a loop node which iterates 

over that array and the array referenced by the _data attribute of the current object 

performing a copy operation on each element. Once the copy operation has finished, the 

C-style char array is returned to the caller of the method. It should be noted that this 

method is “unsafe” insofar as it is not guaranteed to work in a distributed memory 

environment if subsequent operations do not occur on the same processing node. It 

should not be called if there is any parallelism below the call to this method further down 

in the calling graph. Furthermore since C-style memory mechanisms are used, the objects 

created are not managed by the run-time support and will not benefit from garbage 
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collection, transparent distribution, caching, and so forth22. However, since it has been 

acknowledged that external library support is required until Vorlon library support is 

available, such mechanisms are unavoidable, and the developer must simply be cautious 

in their use. 

A.5 Summary 

This appendix has shown the development of the parallel compilation system for 

building Vorlon applications. The project was developed from its inception through to 

implementation with each step in the process discussed. It has not shown performance 

figures for the application, nor drawn any claims as to the suitability of the Vorlon 

language for developing such applications, since those topics were covered in the main 

text (Chapter 5 and Chapter 6). However, it has shown the complete construction of a 

fully object-oriented application, including the implementation of a classical data 

structure with the Vorlon language, which adds some credibility to the approach. 

                                                 
22 Such notions of “managed” and “unsafe” code are also supported by textual languages such as C# 

{Wille 2000}, and similar warnings about usage abound. 
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