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Abstract 
 

Process Intensification in the Demulsification of Water-in-Crude Oil Emulsions 

via Crossflow Microfiltration through a Hydrophilic PolyHIPE Polymer (PHP) 

 

A. M. Shakorfow 

 
In petroleum industry, highly stable water-in-oil (w/o) emulsions are formed during extraction 

process and these emulsions are stabilized by the indigenous surface active species in the oil.  The 

recovery of crude oil through emulsion breakdown and subsequent separation (demulsification) should 

be carried out at source in order to avoid costly pumping and cooling of emulsion which enhances 

emulsion stability. Although conventional methods available for emulsion breakdown using 

demulsifiers and electric field separation, in the case of viscous crude oils with large amounts of 

indigenous surfactants, such methods are not satisfactory to achieve on-site oil-water separation. 

Therefore, such emulsions may have to be chemically treated.  

It was previously shown that when hydrophilic micro-porous polymers, known as PolyHIPE 

Polymers (PHPs) were added to the emulsion, it caused emulsion to separate as a result of selective 

removal of surfactants. This separation process was further enhanced in the presence of electric field. 

This current study focuses on cross-flow microfiltration of w/o emulsions through a sulphonated 

hydrophilic microporous polymeric material in the absence or presence of electric field. However, 

sulphonated PHPs used in the experiments do not have an active membrane layer with pores at micron- 

or nano- scale. The thickness of the separation layer is ca. 4 mm and pore size is in 10 micrometer 

range. We used either 50 or 70 vol. % oil phase in the w/o emulsions. Effect of: pore size, crossflow 

velocity and electric field strength on permeate flux rate decay and separation efficiency of emulsions 

which are stable for more than 70 days otherwise was investigated. It was found that the permeate flux 

rate decayed rapidly with crossflow filtration time before the flux reached steady state. The application 

of electric field enhanced the permeate flux rate. Under steady state conditions, permeate flux rate was 

not significantly affected by the PHP pore size.  

Permeate from the crossflow filtration was collected in glass cylinders and allowed to separate 

under gravity as a function of time. It was found that the demulsification time was affected primarily by 

the applied electric field, emulsion water content, crossflow velocity and PHP pore size. 

Demulsification rate increased with increasing electric field and water fraction of emulsion and with 

decreasing pore size of PHP. Demulsification was achieved within 6-7 hr. The results were interpreted 

in terms of ‘confinement phenomenon’ in which it was postulated that the PHP filtration media 

selectively retained the surface active agents and; thus, causing the demulsification of the emulsions. 

The surface active agents were deposited within the pores of the separation media and; thus, causing 

flux decay. Although the deposits of surface active agents could break-up due to permeate flow through 

the separation media, they could not be re-distributed at the oil-water interface to re-stabilize the 

emulsion. However, some water can be trapped within the oil as oil-in-water-in-oil multiple emulsion 

which would be more resistant to demulsification. 
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Preface 
 

Back in March 2007, I have commenced my studies for the degree of Doctor 

of Philosophy (Ph D) in the School of Chemical Engineering and Advanced Materials 

(CEAM), at Newcastle University under the supervision of Professor G. Akay. For the 

completion of this study, 3-3.5 years were required. Now, it is October 2012. During 

this period, extensive research and experimental work have been carried out. Initially, 

I thought that these tasks are easy, clear and straight forward to achieve; nevertheless, 

I can say that they are typically in reality are unfortunately not. In fact, they are 

dodgy, expensive, time consuming and tedious; it is always more. Frustration may 

perhaps have always been there. Therefore, personally speaking; I think that these 

tasks require patience, understating, flexibility and keenness to have them running 
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worst obstacle. In fact, one should have patience and be inspired since, according to 

Rohn, E. J.: ‘the worst days of those who enjoy what they do, are better than the best 

days of those who don’t’. 

 

This study has aimed to investigate the feasibility of microfiltering 

(breakdown) of water-in-crude oil emulsion through a bespoke hydrophilic polymeric 

membrane. High internal phase emulsion was used to prepare this polymeric 

membrane. The study has also aimed to investigate the possibility of enhancement of 

demulsification efficiency in the presence of an electrical field at different intensities. 

The study was based on a model water-in-crude oil emulsion(s). It is hoped that the 

results obtained from this work can provide information that can benefit the oil 

industry, although it may still require further consideration from both technical and 

economical viewpoints.     
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If we begin with certainties, we shall end in doubts;  

                                                    but if we begin with doubts, and are patient in  

                                                    them, we shall end in certainties. 
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Chapter One  

 

General Introduction  
 

  

                                                           And when all is said, he that publishes a book    

                                                           runs a very great hazard, since nothing           

                                                           can be more impossible than to compose one    

                                                           that may secure the approbation of every 

                                                           reader. 

 

                                                                           Miguel de Cervantes Saavedra. 

                                                                                             (1547-1616) 

 

 

                                                                

1.1 Background 
    

In petroleum industry, natural emulsion formation is a common phenomenon. 

Indigenous crude components with surface-active properties upon oil-water contact 

have been quoted to be responsible for the formation of highly stable emulsions. 

Although, most of this water in contact with crude can readily be removed; 

nevertheless, a considerable amount remains as emulsified droplets dispersed 

throughout it creating an emulsion (Moran and Czarnecki, 2007a). Such components 

include: asphaltenes, resins, waxes, acids and solids. Since concentrations of these 

components in different crudes may be different, one can expect that the stability level 

of the resultant emulsion can be accordingly different. The stability level of an 

emulsion can be days or even years. Such emulsions should not be underestimated as 

large amount (almost two thirds) of extracted petroleum exists in an emulsion form 

(Elsharkawy et al., 2005). In addition to stability-related problems due to the presence 

of these components in a crude, asphaltenes in particular adversely have an effect on 

the value of crude oil and obstruct production, transportation due to high viscosities 

and refining due to their metal content at high temperatures in particular.     

 

There are several occasions where oil and water become in contact during oil 

exploitation, production and processing while which water/oil droplets become 

dispersed through the oil/water as small droplets, respectively. Down in a reservoir, 

crude oil and water are naturally accompanied (formation water). Besides, in 
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enhanced oil recovery (EOR) processes water is also injected into depleted reservoirs 

in order to help force the crude oil out of a reservoir (produced water). Other refinery 

units may also comprise water injection. This binary system (oil and water) along its 

journey through choke vales, pipes and pumps undergoes further agitation through 

which emulsification is further promoted. Moreover, large amount of crude oil spills 

into seas and oceans during crude tankers accidents can also be a source of such 

emulsions.  

 

1.2 Problem Statement 
 

Emulsions are undesirable because in the first instance they have the impact of 

increasing the crude viscosity resulting in crude transportation problems. In fact, this 

entails additional operational and capital costs. Furthermore, they lead to production 

losses and may provoke corrosion of pipes, equipment and pumps, etc. Efficient 

demulsification of these emulsions is; therefore, an important and of great 

significance element for oil producers to avoid such emulsion-based problems. One 

vital requirement to attain sound demulsification efficiency is understanding how 

these emulsions are stabilized through studying nature, properties and behaviour of 

their indigenous emulsifiers.  

 

So far, conventional methods that have been employed to break down such 

emulsions have included chemical and/or electrical and thermal methods. Although 

these methods have been successful in the demulsification task; however, they still 

have been a major challenge to the petroleum industry world-wide. They generally 

demonstrate limited efficiencies and inevitably may multiply the problem as they are 

associated with problems of side products in case of chemical processes as a result of 

chemicals use and possibility of crude degradability under the influence of excessive 

temperature elevation in thermal methods. Obviously, chemical methods rely on 

introducing chemical(s) to the emulsion investigated by which the interface between 

oil and water is restructured leading to emulsion breakdown; that’s to an extent 

dependable on emulsion stability extent and the efficiency of the employed 

commercial demulsifier. However, removal of these chemicals from the emulsion 

system is required which entails additional units and cost. In order to meet the 

growing crude oil demand along with good specifications, it becomes more and more 
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essential to develop better techniques to efficiently deal with such crude oil-based 

emulsions.     

 

1.3 Process Intensification (PI)  
 

Such limitations can be overcome or at least minimized through the 

implementation of process intensification (PI) strategy. In fact, due to some financial 

and resources concerns, technical problems in the current technologies and other 

related environmental problems, PI has been a necessity. Historically, the term PI was 

used in the mid- 1960s and early 1970s. It was mainly used in Eastern Europe 

publications in the field of metallurgical processing referring to improved processing. 

It took until 1983, when a paper on the application of centrifugal fields (HiGee) in 

distillation processes published by Colin Ramshaw of the ICI, New Science Group, 

London, UK, for the PI to be first used in the field of chemical engineering. He 

described PI as ‘devising an exceedingly compact plant which reduces both the main 

plant item and installation’s costs’. PI until the early 1990s, was mainly studied in 

Britain mainly in the areas of: use of centrifugal forces, compact heat transfer, 

intensive mixing and combined technologies. Then, it has found increased attention 

worldwide; in Holland, France, Germany, China and also in the United States. 

Commercialization of PI by several companies was also introduced. It was applied in 

the methyl acetate process of Eastman Chemical, the hydrogen peroxide distillation 

system of Sulzer and the hypochlorous acid process of Dow Chemical. By the end of 

the 20
th

 century and beginning of the 21
st
, PI, due to reduced costs, number of process 

steps, emissions and waste, and risks of chemicals processed and low energy 

consumption, has been involved in wider academic and industrial applications 

(Stankiewicz and Drinkenburg, 2004).   

 

PI is characterized by four words: smaller, cheaper, safer and slicker 

(Stankiewicz and Drinkenburg, 2004). Unlike traditional processes,  through PI not 

only chemical reactions rates, fluid dynamics and heat/mass transfer rates are 

optimized, but also capital and operating costs, number and size of the required 

facilities/units, power consumption and generated waste are reduced by several orders 

of magnitude. Essentially important, with no compromise in the process output. For 

instance, sky-scraping distillation columns of DSM (Dutch state mines) are replaced 

by a compact, clean and tidy indoor plant, see Fig. (1.1). PI offers several benefits 
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including reduced costs, increased process safety and reduced time to market. 

Reduced costs are due to reduced costs of: land, raw materials, piping, utilities and 

waste processing, etc. (Stankiewicz and Drinkenburg, 2004). PI also increases the 

process safety. Unlike add-on safety where safety devices such as interlocks, etc. are 

used with a finite failure probability, PI offers an increased process safety. As the 

inventory of hazardous material(s) or energy in an intensified process is reduced, 

failure to control that hazardous material(s) or energy can accordingly be reduced 

(Ehrfeld, 2004; Hendershot, 2004). Also, by PI time required to deliver a product to 

market can be shortened, e.g. fine chemicals and pharmaceutical sectors. In Figs. (1.2-

3), main benefits from PI are shown. To this end, PI can be considered as an 

indispensable route if in the first instance; consumption of both energy and raw 

materials is to be minimized with a great opportunity to discover novel materials, 

production units as well as control procedures and equally important protecting the 

environment.  

 

 

Fig. (1.1): DSM’s vision of process intensification (Stankiewicz and Drinkenburg, 

2004)  
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Fig. (1.2): Main benefits from process intensification (Stankiewicz and Drinkenburg, 

2004) 

 

Fig. (1.3): Evolutionary development through process intensification (Ehrfeld, 2004). 
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PI is usually delivered through a synergic effect of at least two effects and/or 

field forces. The toolbox that’s process-intensifying equipment (hardware) and 

process intensifying methods (software) for PI is schematically shown in Fig. (1.4). 

Successful implementations of PI technique have been involved in: compact heat 

exchangers, spinning disk reactors (SDR), utilization of in-line devices such as rotor-

stator mixers, etc. Some examples of processes in which PI is applied have included: 

nitration reactions, polymerization, tubular/jet reactors, heat exchangers, distillation, 

combined unit operations (reactive distillation), extraction and innovative energy 

sources (laser light, ultraviolet light, microwaves and ultrasonic energy), etc. 

(Hendershot, 2004). Key factors of these processes are: increased surface area per unit 

volume, increased heat and mass transfer coefficients following formation of thin 

unstable liquid films and increased mixing rates by several orders of magnitude in 

comparison to the conventional processes; respectively. Another route to achieve PI is 

through the application of different fields such as acoustic, electrostatic, magnetic, 

centrifugal, solar and/or microwave radiation (Akay et al., 2005; Zanfir and 

Gavriilidis, 2001; Mason and Cordemans, 1996). 

 

Fig. (1.4): Process intensification toolbox (Stankiewicz and Drinkenburg, 2004) 
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1.4 Thesis Hypothesis, Aims and Objectives  

 

The hypothesis of this research is that a bespoke hydrophilic polymer prepared 

through high internal phase emulsion and traditionally known as PHP would be 

capable to breakdown a model w/o emulsion.    

The main aim of this work is to investigate the feasibility of microfiltration 

(breakdown) of water-in-crude oil emulsion through a bespoke hydrophilic polymeric 

membrane, prepared in-house in Newcastle University laboratory. The study is also 

extended to investigate the possibility of enhancement of demulsification efficiency 

via PI approach; that’s crossflow microfiltration in the presence of an electrical field 

at different intensities. With such intensified approach important economical, 

operational and environmental advantages can be offered. The required equipment can 

be made compact, portable, robust and efficient, by which it is; therefore, possible to 

conduct the demulsification task as close to the source of crude production as possible 

in which the space for operation and maintenance is usually confined, e.g. offshore 

sites. This is also crucially important to utilize the chemistry of the extracted crude at 

both high pressure and temperature before it is pumped to the oil platform where its 

temperature may fall rapidly due which separation of oil from water may become a 

more difficult process. In addition, significant crude transportation costs over 

considerable distances through undersea pipelines from wellheads to onshore 

refineries can also be reduced. Further, according to the literature, employing 

electrical fields in filtration processes offers the potential of reduced pumping costs 

since lower crossflow velocities in such processes can deliver what higher velocities 

can deliver but in the absence of an electrical field (Tarleton, 1992). In both 

configurations, effect of parameters such as water content of emulsions, feed cross 

flow velocity (CFV) and membrane properties on both membrane flux rate and 

demulsification efficiency is investigated.  In order to conduct the experiments 

required to achieve this aim, the following objectives were set: 

- Preparation and Characterization of Model w/o Emulsions: W/o emulsions will 

be prepared. The oil phase (continuous phase) is a crude oil, provided by BP-Amoco, 

whereas the aqueous phase (dispersed phase) is model sea water containing 0.6 g/l 

CaCl2, 5 g/l MgCl2 and 28.1 g/l NaCl. Emulsions will be made out with two different 

water contents, namely 30 and 50 vol. % in an effort to imitate emulsions that are 
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usually found in oil industry. Having prepared these emulsions, they will be 

characterized by measuring their conductivities and their stability level by bottle tests. 

- Preparation and Modification of Several PHP Membranes: Several batches of 

PHP membranes will be prepared using high internal phase emulsion (HIPE) 

polymerization route. In order to produce membranes with different pore size ratings, 

time of mixing throughout polymerization will be different. Chemistry of the prepared 

membranes will be modified by means of sulphonation. In terms of characterization of 

these membranes, surface area analysis (SAA) and environmental scanning electron 

microscope (ESEM) will be employed.  

- Investigation of the Main Factors that Influence Microfiltration and 

Demulsification of w/o Emulsions: Effect of influent emulsion water content, 

filtration duration, feed crossflow velocity (CFV), electric field and membrane pore 

size on the permeate flux rate will be studied. This will then be followed by an 

investigation of the effect of these filtration variables on demulsification efficiency. 

 

1.5 Thesis Overview 

 

This thesis covers the work undertaken over the last five and half years. The 

thesis has been organized into seven chapters. It first provides a survey of the relevant 

literature in the fields of emulsions, demulsification techniques and emulsion 

microfiltration processes. Chapter two represents a summary of emulsion principles 

and stability issues as explained in the literature. These include the emulsion systems, 

origin of crude emulsions, issues of stability of such emulsions and problems arisen 

from them. Also, multiple emulsions, crude oil and its characteristics are briefly 

examined. Finally, this Chapter represents emulsion instabilities processes such as 

sedimentation (creaming), flocculation, coalescence, Ostwald ripening and emulsion 

phase inversion. Chapter three gives the state-of-the-art review on demulsification 

methods of water-in-oil emulsions. It describes the mechanisms involved in chemical, 

thermal and electrical demulsification procedures of water-in-oil emulsion.  

In Chapter four, principles and mechanisms of microfiltration and electro-

microfiltration and those involved in crossflow microfiltration (with and without 

electrical field) are discussed. In Chapter five, the experimental procedure details and 

equipment description, chemicals used to prepare the PHP polymer and the emulsion 

and the analytical methods involved in this work are all described. Chapter six 
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contains results and discussion for crossflow microfiltration of water-in-oil emulsions. 

Results and discussion for crossflow microfiltration of water-in-oil emulsions in the 

presence of electrical fields of different strengths are also discussed in this Chapter. 

Conclusions based on these results are highlighted in Chapter seven along with the 

outstanding issues that require further investigation and evaluation.  

 

A synopsis plan showing the layout of this thesis is illustrated in Fig. (1.5) 
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Fig. (1.5):  Thesis structure showing areas of study according to Chapter.
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Chapter Two 

Literature Review 

Emulsions and Their Stabilities/Instabilities 

 

We can be absolutely certain only about things  

we do not understand. 

 

Eric Hoffer 

(1902-1983) 

 

  2. 1 Introduction 

 

Problematic emulsions are ubiquitously found in oil industry (Sullivan et al., 

2007; Havre and Sjöblom, 2003; Sjöblom et al., 2003; Eow and Ghadiri, 2002a; 

Angle, 2001; Yang et al., 2001; Sams and Zaouk, 2000; Sams and Zaouk, 1999). 

These emulsions are encountered in as early stages as the exploitation stage down 

through the different refining and processing stages (Mohebali et al., 2012). In this 

literature review, an overview of the existing knowledge and researchers findings on 

the chemistry of emulsion formation is provided. It is intended to spotlight and 

summarize what is available in the relevant literature about the emulsion formation 

process. Among the examined studies, there has not been a general agreement on what 

the cause(s) or factor(s) which may lead to or influence emulsion formation and 

stabilization. It seems that the topic is somewhat associated with some uncertainty in 

which there has been no general notion that can be precisely used to identify which 

crude component(s) are responsible for emulsion formation or describe an universal 

mechanism that explains the role played by these component(s) whether individually 

or collectively. 

Within the scope of this review basic principles of water-in-oil emulsions, 

origin and the problems associated with emulsion formation highlighting the necessity 

for emulsion demulsification and subsequent separation, multiple emulsions and crude 

oil and its general characteristics have been briefly addressed. This was then followed 

by an extensive review of some research studies concerned with emulsion stability. 

This section was structured with a great deal of attention to study asphaltenes and 

resins as they were, according to several studies, undoubtedly considered as the most 

important crude components behind the formation of tremendously stable emulsions. 
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In fact, knowledge of crude components structure properties, their association 

tendencies, accommodation at water-oil interface, solubilities and sensitivity towards 

changes in ambient pressure and/or temperature, is necessary (Ekott and Akpabio, 

2010). Next, a brief discussion was given to highlight the contribution of other 

indigenous and non-indigenous crude oil components towards emulsion formation and 

stabilization. Although it may seem, to some extent, digressive to include in this 

literature review, emulsifying agents other than the crude components with surfactant 

properties such as asphaltenes and resins. In fact, based on the identified literature; 

however, it was felt that it is difficult to disregard the interaction between 

asphaltenes/resins and other emulsifying agents such as waxes, acids and solids and 

the resultant role towards emulsion stability. This was inferred from some studies 

concluding that emulsion stability is influenced not only by asphaltenes and resins, 

but also by a synergic interaction between other stabilizers. Therefore, in an effort to 

obtain a better understanding as possible, it was decided to disclose some basic 

information about the other emulsifying agents than asphaltenes and resins. At the tail 

of the review, emulsion instabilities including sedimentation, flocculation, 

coalescence, Ostwald ripening and emulsion phase inversion are also discussed.   

 

2.2 Emulsion Systems 

 

An emulsion can be defined as a system of at least two immiscible liquids one 

of which is mono/poly-dispersed in the other. For instance, if water is dispersed in oil, 

the resultant emulsion is called water-in-oil emulsion (w/o) with droplet diameter in 

the range of 10-100 microns (Johansen et al., 1989); on the other hand, when oil is 

dispersed in water; this produces oil-in-water emulsion (o/w). Hereafter, throughout 

this thesis w/o is used to refer to water-in-oil emulsions and o/w is used to refer to oil-

in-water emulsions. The dispersed phase is also sometimes referred to as the internal 

phase; the other phase (continuous) is referred to as the external phase (Holmberg et 

al., 2002; Kokal, 2002; Becher, 2001; Pal, 1994; Schramm 1992). According to their 

droplet size, emulsions are classified into three broad groups: micro-emulsions (10-

100 nm) in the form of small aggregates, mini (nano, ultrafine or submicron) 

emulsions (20-1000 nm) in the form of relatively large droplets and macro-emulsions 

(0.5-100 µm) (Jafari et al., 2008; Solans et al., 2005; Angle, 2001; Becher, 2001). As 

a rule of thumb, the smaller the average size of the dispersed phase droplets, the more 
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stable the emulsion is. Interfacial tension, nature of emulsifying agents, presence of 

solids, shear and bulk properties of both oil and water influence the droplet size 

distribution of the resultant emulsion (Kokal, 2002). Generally, these emulsions apart 

from micro-emulsions are thermodynamically unstable (Drelich et al., 2010; Ekott 

and Akpabio, 2010; Fredrick et al., 2010; Gutiérrez et al., 2008; Jafari et al., 2008; 

Samanta and Basak, 2008; Lif and Holmberg, 2006; Solans et al., 2005; Ichikawa and 

Nakajima, 2004; Bouchama et al., 2003; Buist and Lewis, 2002; Holmberg et al., 

2002; Kokal, 2002; Angle, 2001; Becher, 2001; Kilpatrick and Spiecker, 2001; 

Liggieri et al., 2001; Bibette et al., 1999; Márquez et al., 1996; Kellay et al., 1994; 

Schramm 1992; Aveyard et al., 1990; Isaacs et al., 1990; Kenneth J, 1988); however, 

they are kinetically are for months or years due to the presence of surface active 

compounds with their surfactant properties (Márquez et al., 1996; Schramm 1992; 

Aveyard et al., 1990). A stable emulsion is the one that its structure does not change 

with time, nor does it depend on how it was prepared and is characterized by small 

water droplets and a low conductivity (de Morais Coutinho et al., 2009; Gutiérrez et 

al., 2008; Jafari et al., 2008; Othman et al., 2008; Samanta and Basak, 2008; Chen and 

Tao, 2005; Clausse et al., 2005; Ichikawa et al., 2004; Sjöblom et al., 2003; Robins et 

al., 2002; Lagaly et al., 1999; Mason, 1999; Fingas, 1995; Davis, 1994; Israelachvili, 

1994; Pal, 1994; Schramm 1992; Arirachakaran et al., 1989; Thomas and Ali, 1989). 

The stability of an emulsion can be affected by density difference of its phases, 

viscosity of the oil phase, interfacial viscosity, water droplet size, surfactant 

concentration, interfacial tension, film compressibility, electrolyte concentration in the 

water phase and also by the operating conditions (Isaacs et al., 1990). Indeed, 

although in food industries; for instance, high emulsion stability for long periods of 

time is usually sought, in crude oil processes; however, a great deal of efforts is 

devoted to destabilize these undesirable highly stable emulsions, mostly, through a 

difficult, complex and costly task (Drelich et al., 2010; Fredrick et al., 2010; Sullivan 

and Kilpatrick, 2002; Liggieri et al., 2001). Fig. (2.1) illustrates these two emulsions 

(Kilpatrick and Spiecker, 2001). 
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Fig. (2.1): Schematic drawing of emulsion types. Reproduced from (Kilpatrick and 

Spiecker, 2001). 

 

Basically in the oil industry, emulsions are either w/o which usually refers to 

oil field emulsions (regular emulsions) or o/w (reverse emulsions), with the latter type 

accounts for less than 5 % of the resultant emulsions (Ekott and Akpabio, 2010; 

Fredrick et al., 2010; Fingas and Fieldhouse, 2009; Nour et al., 2007a; Elsharkawy et 

al., 2005; Noïk et al., 2005; Pena et al., 2005; Xia et al., 2004; Bouchama et al., 2003; 

Fingas and Fieldhouse, 2003; Kokal, 2002; Angle, 2001; Becher, 2001; Dalmazzone 

and Clausse, 2001; Kilpatrick and Spiecker, 2001; Ali and Alqam, 2000; Ahmed et 

al., 1999; Tirmizi et al., 1996; Fingas, 1995; Pal, 1994; Tambe and Sharma, 1993; 

Schramm 1992; Eley et al., 1988a). The role by which emulsion type is determined is 

known as Bancroft’s rule, which was known in the second decade of the twentieth 

century. This rule states that an emulsion continuous phase would be the phase that 

the surfactant is preferentially soluble in. Therefore, a surfactant with a solubility 

tendency into water phase will favour the formation of o/w emulsions; likewise, a 

surfactant that’s soluble into oil phase prefers the formation of w/o emulsions (Ekott 

and Akpabio, 2010; Langevin et al., 2004; Holmberg et al., 2002; Angle, 2001; 

Water 
Oil 
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Becher, 2001; Akay, 1998). This rule had been in use until 1949 when Griffin 

introduced the concept of hydrophile- lipophile balance (HLB) number (Holmberg et 

al., 2002; Boyd et al., 1972). HLB is a quantitative measure of Bancroft’s rule; it is an 

important variable in determining the type of the resultant emulsion based on 

surfactant molecular composition and structure. The maximum value of HLB number 

is 20; low values of this number (1-10) relate to hydrophobic surfactants that are oil 

soluble, whereas higher values up to 20 correspond to hydrophilic surfactants by 

which o/w emulsions are formed (Othman et al., 2008; Binks, 2002; Buist and Lewis, 

2002; Holmberg et al., 2002; Vander Kloet et al., 2002; Pal, 1997; Davis, 1994). 

Although HLB has been used to characterize the nature of the resultant emulsion, it; 

however, does not take into account the nature of the oil phase and the additives  in 

the aqueous phase, the effect of temperature and the interactions between the aqueous 

phase and the hydrophilic groups of the emulsifiers and between the oil phase and the 

lipophilic groups (Boyd et al., 1972). Furthermore, volumes of emulsion phases can 

also dictate the resultant emulsion since a phase with a very small volume will usually 

be the dispersed phase (Ekott and Akpabio, 2010; Othman et al., 2008; Schramm 

1992). In Table (2.1), some examples of petroleum emulsions are given. 

 

Table(2.1): Examples of emulsions in the petroleum industry (Schramm 1992). 
 

Occurrence Usual type 

 

 

 

 

 

 

 

 

 

 

In real applications in petroleum industry, there are different routes where 

these emulsions may be formed. O/w emulsions may be formed when it is necessary 

to reduce a heavy crude’s viscosity; that’s usually between 1000 cP to at least 100000 
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cP at 25 C (Ahmed et al., 1999; Eley et al., 1988a), for transportation purposes. 

Although it is feasible to achieve this either by heating (by steam/water injection) or 

addition of low viscosity meanwhile cheap hydrocarbon diluents, these techniques are 

either costly/inconvenient or inapplicable; respectively (Abdurahman et al., 2012; 

Shigemoto et al., 2007; Angle, 2001; Ahmed et al., 1999; Zaki, 1997; Pal, 1994). 

Alternatively, in order to turn a heavy crude pipelineable by reducing its tremendously 

high viscosity down to 200 cP (Ahmed et al., 1999), water injection is usually 

practised. As a result o/w emulsion is deliberately made (Langevin et al., 2004; 

Kilpatrick and Spiecker, 2001; Ahmed et al., 1999; Zaki, 1997; Pal, 1994; Schramm 

1992; Arirachakaran et al., 1989; Plegue et al., 1986). It is also found in massive 

amounts in emits of metal finishing industries, most different food industries and also 

from refineries (Fredrick et al., 2010; Mohammadi et al., 2005a; Gomez and Lin, 

2004; Holmberg et al., 2002; Tirmizi et al., 1996). Further details on these emulsions 

including the methods used to break them are beyond the scope of this review; hence, 

they will not be further discussed; however, they are studied in a series of different 

publications, some of which are: (Qiu et al., 2009); (Gutiérrez et al., 2008); (Lobo et 

al., 2006); (Hu et al., 2002); (Faibish and Cohen, 2001); (Park et al., 2001); (Ahmed et 

al., 1999);  (Kong and Li, 1999);  (Srijaroonrat et al., 1999); (Zaki, 1997); (Daiminger 

et al., 1995); (Marc, 1995); (Lipp et al., 1988), etc. The first emulsion type (w/o); the 

main focus of this work, is mostly encountered in the oil industry as a result of high 

solubility of indigenous crude surfactant molecules in oil rather than in the water 

phase (Langevin et al., 2004). These emulsions are unfortunately encountered 

throughout crude oil exploitation, processing and transportation. This widespread and 

occurrence of w/o emulsions have made emulsion-based systems an important subject 

of investigation as demonstrated in the literature. 

 

2.3 Formation of Water-in-Oil Emulsions 

Water-free-crude is rarely produced (Maia Filho et al., 2012; Noïk et al., 2005; 

Kokal, 2002). Depending on the oil reservoir condition, between 10-50 % of produced 

crudes is water (Aveyard et al., 1990). In fact, in crude oil industry, there have been 

several processes which promote emulsion formation. The crude oil in a virgin 

reservoir is naturally accompanied with gas and water ‘formation water’(Mohebali et 

al., 2012); this seems to be a reservoir-wide property. This water contains large 

amounts of divalent cations such as calcium, magnesium, barium and strontium 
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(Dudásová et al., 2008). The amount of this water is constantly expected to rise from 

both onshore and offshore fields where the production environment is more 

challenging, risky and more expensive; at higher rates in the latter case as the 

reservoir depletes as shown in Fig. (2.2) (Alinezhad et al., 2010; Ekott and Akpabio, 

2010; Dudásová et al., 2009; Fakhru'l-Razi et al., 2009; Nour et al., 2007a/b; Sullivan 

et al., 2007; Elsharkawy et al., 2005; Ezzati et al., 2005; Pena et al., 2005; Sjöblom et 

al., 2003; Sullivan and Kilpatrick, 2002; Angle, 2001; Kilpatrick and Spiecker, 2001; 

Goldszal and Bourrel, 2000; Sams and Zaouk, 2000; Sams and Zaouk, 1999; Pal, 

1994; Bhattacharyya, 1992; Schramm 1992; Isaacs et al., 1990). In addition to that, 

water is also injected into depleted reservoirs; for enhancing oil recovery (EOR), in 

order to help force the crude oil out of the reservoir (Mohebali et al., 2012). As a 

result, some of this water ‘produced water’ is coproduced with oil as free water and 

some of it may be in the emulsion form (water ubiquitously dispersed through oil) due 

to turbulence and pressure drop in valves at the wellhead (Maia Filho et al., 2012; 

Ekott and Akpabio, 2010; Dudásová et al., 2009; Dudásová et al., 2008; Nour et al., 

2007a; Moran and Czarnecki, 2007a; Sullivan et al., 2007; Elsharkawy et al., 2005; 

Pena et al., 2005; Sjöblom et al., 2003; Kokal, 2002; Sullivan and Kilpatrick, 2002; 

Angle, 2001; Kilpatrick and Spiecker, 2001; Sjöblom et al., 2001; Cumming et al., 

2000; Holdich et al., 1998; Pal, 1994; Mohammed et al., 1993; Thomas and Ali, 1989; 

Eley et al., 1988b; Taylor, 1988; Thompson et al., 1985). Dissolved organic 

compounds (hydrocarbons), dissolved minerals and suspended solids, chemical 

additives from production line and heavy metals are the main constituents of this 

artificial water (Dudásová et al., 2009; Dudásová et al., 2008). Free water may settle 

out quite easily and quickly; however, that water in the emulsion form does require 

treatment technique(s) to be resolved (Kokal, 2002).  

 

 

Fig. (2.2): Global onshore/offshore water production. (Fakhru'l-Razi et al., 

2009). 
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         Also, in order to desalt crude oils, to prevent refinery catalysts fouling and 

overhead distillation corrosion, wash water; in the preliminary refinery treatment, is 

deliberately brought into contact with oil where some interactions may take place 

between the crude oil hydrophilic materials and water, as a result water becomes 

emulsified through oil. Moreover, in heavy oil production fields where hot water is 

used to extract the bitumen, stable emulsions are also created (Sullivan et al., 2007; El 

Gamal et al., 2005; Sullivan and Kilpatrick, 2002; Angle, 2001; Sams and Zaouk, 

2000; Sams and Zaouk, 1999; McLean and Kilpatrick, 1997a; Schramm 1992). 

Emulsions are also created as the crude oil with its water (formation/injected water) 

content is passed through choke valves and pumps due to the turbulent flow pattern 

which develops some eddies by which a mixing effect is imposed; hence an emulsion 

is formed (Alinezhad et al., 2010; Verruto et al., 2009; Less et al., 2008; Nour et al., 

2007a; Pena et al., 2005; Sjöblom et al., 2003; Angle, 2001; Janssen et al., 2001; 

Márquez et al., 1996; Sjöblom et al., 1992a; Bhattacharyya, 1992; Schramm 1992; 

Aveyard et al., 1990; Isaacs et al., 1990; Taylor, 1988). A schematic diagram of 

petroleum production and refining processes in which emulsions are encountered is 

given in Fig. (2.3). Besides, large amount of crude oil spills, which known as 

chocolate mousse or mousse, into seas and oceans during crude tankers accidents is 

also a source of w/o emulsions with agitation required for emulsification is facilitated 

by wind (Buist and Lewis, 2002; Angle, 2001). Catastrophic oil rig explosion in the 

Gulf of Mexico resulting in months of oil leakage into the Atlantic ocean without a 

hope to manage it until several months have elapsed has also been a source for such 

emulsions. It is worth mentioning that these emulsions sooner or later will separate 

into water and oil phases, unless there are some surface active compounds that can 

stabilize them hampering the settlement process (Kenneth J, 1988).  
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Fig. (2.3):  A schematic diagram of petroleum production and refining processes in  

            which emulsions are encountered (Sullivan and Kilpatrick, 2002). 

 

Upon emulsion formation, the properties of the starting oil change to some 

extent (Fingas and Fieldhouse, 2004; Fingas, 1995). In studies by El Gamal and co-

workers and Fingas (El Gamal et al., 2005; Fingas, 1995), it was shown that w/o 

emulsion density is slightly increased as the crude’s asphaltene amount increases. It 

was also demonstrated that an increase in the asphaltene content leads to a decrease in 

the emulsion’s kinematic viscosity. Also, Fingas, Fingas and Fieldhouse (2003), 

(2004) and (2009) (Fingas and Fieldhouse, 2009; Fingas and Fieldhouse, 2003; 

Fingas, 1995) stated that the viscosity of stable emulsions; where the asphaltene 

content is expected to be high, increases by 1000 fold and 500 fold; respectively, 

creating a heavy semi-solid material and that the density only increases by nearly 25 

% which means an increase in the kinematic viscosity. An emulsion viscosity is a 

function of viscosities of both oil and water, volume fraction of water dispersed, 

droplet size distribution, temperature, shear rate and amount of solids present (Kokal, 

2002). The acidity of w/o emulsions was linearly correlated with the asphaltene 

content of the emulsion. Clays were reported to increase the emulsion density and 

kinematic viscosity.  
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2.4 Issues of Stability of Water-in-Oil Emulsions 

    

It was reported by Lee (Lee, 1999) that stable w/o emulsions, ‘in which the 

water persists for 5 days or longer’ or for years (Bibette et al., 1999; Mason, 1999) are 

highly viscous, with high water content of 50-90 % or 60-80 % somewhere else 

(Fingas and Fieldhouse, 2003), small water droplets (1-10 µm), low conductivity 

(Fingas, 1995; Pal, 1994; Schramm 1992) and more dense than the original oil. The 

stability of an emulsion is largely dependent on the stability of the interface layer 

between oil and water phases (Alinezhad et al., 2010; Sztukowski and Yarranton, 

2005; Kim, 1999; Kim and Wasan, 1996; Taylor, 1988). Size of emulsified phase 

droplets (water in case of w/o emulsion), viscosity of the continuous phase (oil in case 

of w/o emulsion), difference in density of the two liquids and volume percentage of 

water cut are also some other important factors that may influence the stability of an 

emulsion (Othman et al., 2008; Buist and Lewis, 2002; Sams and Zaouk, 2000; Sams 

and Zaouk, 1999). Un-stable emulsions; however, are characterized by bigger droplet 

size and; therefore, coalesce sooner (El Gamal et al., 2005).  

 

In a study by Kumar and others (Kumar et al., 2001) the mechanism by which 

w/o emulsions are stabilized was explained. It was claimed that although in a w/o 

emulsion water droplets are ubiquitously dispersed in the crude oil and; therefore, will 

be surrounded by a film of layers consist of surface active components of the crude oil 

such as asphaltene and resins. However, these droplets (water droplet) due to multiple 

body interactions will still endeavour to approach each other. On the other hand; 

however, some repulsive forces between water droplets are induced by the oily film 

around water droplet. These forces hinder water droplets from approaching each 

other; therefore, can neither flocculate nor coalescence (stable emulsion) (Schramm 

1992).  

High emulsifying agents concentrations hinder water droplet coalescence 

resulting in stable emulsions (El Gamal et al., 2005). Traditionally, surfactants such as 

asphaltenes and resins, oil soluble organic acids and other finely divided substances 

such as iron, zinc and aluminium sulphates, calcium carbonate, silica and iron 

sulphide of which they are less soluble, wettable or dispersible in the water phase than 

in oil phase, have been cited as the responsible components for crude oil emulsions 

through the formation of a film around the surface of the dispersed droplets. These 
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emulsifying agents with their ability to diffuse from the bulk phase or from within the 

interface can reduce the interfacial tension between oil and water leading to 

broadening the interfacial layer meanwhile impeding droplet coalescence i.e., 

promoting emulsion stability (Maia Filho et al., 2012; Yarranton et al., 2007a; Pena et 

al., 2005; Pekdemir et al., 2003; Holmberg et al., 2002; Kokal, 2002; Vander Kloet et 

al., 2002; Akay, 1998; Davis, 1994; Pal, 1994; Nordli Børve et al., 1992; Schramm 

1992; Thomas and Ali, 1989; Ogino and Umetsu, 1978). A description of the interface 

matrix has been given by Angle (2001) showing that crude components are assembled 

around water droplets with their hydrophilic heads in the water phase and their 

hydrophobic tails oriented toward the oil phase as depicted in Fig. (2.4). 

 

Fig. (2.4): Schematic of droplet of w/o emulsion with petroleum fractions arranged in 

the interfacial layer of skin around the droplet at early stage of formation. From 

(Angle, 2001). 

 

Higher resins to asphaltenes concentration ratios keep more of the asphaltenes 

aggregate dissolved in the oil phase; thereby, minimize the amount of asphaltene 

aggregates (less stable emulsion). Also, a reduction in the pressure but above the 
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bubble point results in a reduced asphaltene solubility, but further reduction in the 

pressure below the bubble point results in increased asphaltene solubility (Carnahan et 

al., 2007; Ali and Alqam, 2000). In addition, Ali and Alqam (2000) have also reported 

that asphaltenes contribute to the stability of w/o emulsions through the formation of a 

viscous interfacial film at the interface between oil and water. This film is built up 

through the adsorption of asphaltenes on the finely divided solids, due to the 

hydrophobicity of these solids, which are naturally present in a crude such as iron and 

calcium carbonate, etc. Therefore, a change in the wettability and other characteristics 

of these solids occurs allowing further adsorption and; thus, re-structuring. However, 

due to the complexity of chemical nature of crude oils as well as differences in each 

crude characteristics, it is difficult to generate an universal mechanism that describes 

the dispersion behaviour through the physico-chemical properties at the oil-water 

interface (Ali and Alqam, 2000). 

Furthermore, clay particles and the organic-clay particulates in the sea are like 

surfactants, i.e. have hydrophilic and hydrophobic parts and; therefore, will choose the 

interface between oil and water to reside at (Buist and Lewis, 2002; Holmberg et al., 

2002; Kokal, 2002). As a result, some interactions occur between the asphaltene 

particles (hydrophobic) and the hydrophobic-hydrophilic clay particles; thus, a highly 

hydrophobic asphaltene-based matrix is produced which further stabilizes the 

emulsion (Menon and Wasan, 1988). Also, according to Lee (Lee, 1999) crude 

indigenous surfactants such as metallic salts, organic acids and bases and 

organometallics and particles such as waxes and asphaltenes and water phase particles 

such as particulates and sediments play an important role in stabilizing an emulsion by 

somehow residing them selves at the oil-water interface, see Fig. (2.5) below. 

Moreover, at high concentrations of these particles and surfactants stable emulsions 

are formed in which water droplet coalescence is prevented. 
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Fig. (2.5): Schematic of components of crude oils and bitumen to be considered in an 

emulsion droplet and the interfacial layer (Angle, 2001) 

 

Ali and Alqam (2000) stated that there are two grades of emulsions stability, 

namely, stable (tight) emulsions and un-stable (loose) emulsions; physical and 

chemical properties of each type are distinctive (Khadim and Sarbar, 1999). The 

former grade refers to an emulsion that’s difficult to break (when it does, it requires 

hours, days, weeks, months or even years) whereas in the latter one an emulsion is 

easily broken in a matter of few minutes (Elsharkawy et al., 2005; Kokal, 2002). This 

to a large extent depends on the properties and amount of both oil and water phases, 

agitation severity (energy input) and on the nature and concentration of emulsifying 

agents that indigenously exist in the crude. In subsequent studies by Fingas and 

Fieldhouse (Fingas and Fieldhouse, 2004; Fingas and Fieldhouse, 2003) based on the 

lifetime of the emulsion and its visual appearance, elasticity and differences in 

viscosity, the stability was categorized into four classes, namely, stable, unstable and 

mesostable emulsions and entrained water. The last one is a black colour emulsion 

with water content of less than 10 % entrained by viscous oil. Stable emulsions are 

reddish to brown in colour and contain 80 % water and can exist for several weeks 

with higher viscosity at least three times than the original oil viscosity. This viscosity 

increase is attributed to the asphaltenes and resins ability to align at the interface 
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creating strong visco-elastic films. In unstable emulsions water and oil separate out in 

a matter of few hours with water content lower than 50 %. Their final viscosity is less 

than 20 times greater than the original oil viscosity. The emulsion’s colour is the same 

as the starting oil’s colour which can be black or brown. Mesostable emulsions are 

red, black or brown in colour. They, due to their aromatic and aliphatic/paraffinic of 

little asphaltene content, may produce emulsions with low stability and a tendency to 

destabilize, but their high viscosity renders them stable for a period of time. Upon 

decomposition, they produce layers of oil and stable emulsions (Sztukowski and 

Yarranton, 2005; Fingas and Fieldhouse, 2004). 

In addition, due to the acidic nature of the active compounds at the oil-water 

interface, pH was also reported to have an effect on the film stability and; therefore, 

on the emulsion stability. Increasing the pH was found to be associated with 

ionization of the polar functional groups in both asphaltene and resin molecules. Due 

to this ionization, high surface charge densities are developed resulting in changing 

(destroying) the mechanical film properties through some internal repulsive 

interactions which ultimately may help reduce the emulsion stability (McLean and 

Kilpatrick, 1997a). Temperature was also found to have an influence on emulsion 

stability. Increasing the emulsion temperature leads to a decrease in the oil phase 

viscosity and to an increase in the collision rate between aqueous phase droplets 

which ultimately means reduced system stability (Kokal, 2002; Thompson et al., 

1985).  

The stability of this layer can; however, be influenced by some processes 

which lead to weakening it. Such processes may include dispersed phase drops 

flocculation and coalescence. For the flocculation to take place, surface forces such as 

repulsion forces and adhesion energies are important. Fairly, low repulsion forces and 

fairly high adhesion character lead to drops flocculation. Once drops approach each 

other (flocculation), the film around the dispersed droplets which is made from the 

continuous phase undergoes thinning and eventually ruptures, this latter process is 

referred to as coalescence. However, the complexity of such a process further 

complexes with increased amounts of asphaltenes along with solid particles in the 

form of thick, irregular and large aggregate films around water droplet. This in turn 

promotes the emulsion stability (Langevin et al., 2004). In the following sections, the 

focus will be devoted to discuss in detail the functionality of these compounds in 
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stabilizing w/o emulsions based on a number of review articles among the available 

literature.  

 

2.5 Problems of Crude Oil Emulsions 

 

There are a number of reasons as to why w/o emulsions should be thoroughly 

studied. There are many operational and commercial indications reveal that emulsions 

are problematic, undesirable and require attention. Among these are the production of 

off-specifications crude oil, production losses, tripping of separation equipment in 

gas-oil separation units, corrosion of pipes, equipment and pumps through 

contaminants such as chloride, catalyst poisoning, organics deposition in processing 

equipment, increased demulsifier(s) usage, increased oil viscosity and the additional 

transportation pipeline infrastructure, which may also entail additional capital and 

operational costs, required to accommodate the volume increment resulted from water 

existence and to produce a crude oil that’s in accordance with the specifications 

(Alinezhad et al., 2010; Ekott and Akpabio, 2010; Dudásová et al., 2009; Verruto et 

al., 2009; Less et al., 2008; Nour et al., 2007a; Moran and Czarnecki, 2007; Sullivan 

et al., 2007; Elektorowicz et al., 2006; El Gamal et al., 2005; Elsharkawy et al., 2005; 

Noïk et al., 2005; Pena et al., 2005; Pekdemir et al., 2003; Eow and Ghadiri, 2002a; 

Kim et al., 2002; Kokal, 2002; Sullivan and Kilpatrick, 2002; Angle, 2001; Kilpatrick 

and Spiecker, 2001; Yang et al., 2001; Sams and Zaouk, 2000; Khadim and Sarbar, 

1999; Sams and Zaouk, 1999; Førdedal et al., 1996; Mohammed et al., 1993; Urdahl 

et al., 1993; Sjöblom et al., 1992a; Bhattacharyya, 1992; Schramm 1992; Aveyard et 

al., 1990; Isaacs et al., 1990; Thompson et al., 1985). Therefore, breaking these 

emulsions is of great importance and practicality for crude oil producers.  

 

2.6 Multiple Emulsions 

 

In addition to the binary w/o and o/w emulsions, multiple, double, complex or 

emulsified emulsions are also encountered. There are two kinds of these emulsions; 

one kind is water-in-oil-in-water emulsion (w/o/w) (Kilpatrick and Spiecker, 2001) 

and the other is oil-in-water-in-oil emulsion (o/w/o) as shown in Fig. (2.6) 

(Lindenstruth and Muller, 2004; Holmberg et al., 2002; Kokal, 2002; Bibette et al., 

1999; Davis, 1994) with a bigger droplet size compared to the simple parent emulsion 
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droplets. A droplet in a multiple emulsion can be only one big internal droplets, some 

small internal droplets or great number of internal droplets (Pal, 2008). Type of 

internal, intermediate and continuous phases is crucial in determining the resultant 

emulsion. Volume fraction, water to oil ratio or oil to water ratio and water or oil 

droplet size are important parameters in the preparation of (w/o/w) or (o/w/o); 

emulsions; respectively (Balinov and Soderman, 2001). 

    

 
Fig. (2.6): Schematic drawing of w/o/w emulsion. Taken from (Kilpatrick and 

Spiecker, 2001) 

  

     

These emulsions can be formed spontaneously or artificially. Spontaneous 

formation is achieved through the inversion of a simple emulsion i.e. w/o to o/w or 

vice versa during which an intermediate phase is formed which represents the 

multiple emulsion phase (Dalmazzone and Clausse, 2001). Artificial formation of 

these emulsions, so as to trap some substances and control their release in food, drug, 

cosmetic and food industries, is facilitated by dispersing an existing simple emulsion 

into its dispersed phase (Balinov and Soderman, 2001; Dalmazzone and Clausse, 

2001; Bibette et al., 1999). In case of (w/o/w) emulsions, oil globules which contain 

water droplets are dispersed in water phase (Dalmazzone and Clausse, 2001; Muguet 

et al., 2001). Whereas in (o/w/o) emulsions, the emulsion is created through the 

dispersion of water globules, where the oil droplets are contained, in oil (Dalmazzone 

and Clausse, 2001). Two surfactants of different solubility character with respect to 

Water 

Oil 

Water 
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HLB number are commonly employed to prepare these multiple emulsions (Binks, 

2002; Pays et al., 2002; Bibette et al., 1999). In terms of the stability, double 

emulsions are unstable and eventually turn to simple ordinary emulsions; however, 

with lower w/o ratios, the stability is promoted where the multiple droplet breakdown 

is delayed (Bibette et al., 1999; Csoka and Eros, 1997). It is again outside the scope of 

this survey to discuss these multiple emulsions in detail; therefore, these are only 

briefly highlighted. 

 

2.7 Crude Oil and its Characterization 

 

A crude oil is a mixture of organic and inorganic compounds. Carbon and 

hydrogen constitute the organic portion; inorganic compounds (heteroatoms) include 

nitrogen, oxygen and sulphur. In terms of composition, carbon and hydrogen are the 

major constituents of a crude due to their large presence ranging between (83-87 %) 

and (10-14 %), respectively (Sjöblom et al., 2003; Angle, 2001). Inorganic 

compounds; however, represent a trivial amount of the elemental composition with 

sulphur is the most predominant compound among them. Metals in the form of 

porphyrins are also found which contribute towards increased polarity of the crude. 

Among these metals are vanadium, nickel and iron (Sjöblom et al., 2003; Angle, 

2001). Although carbon content of most crudes may be relatively invariable; 

hydrogen and heteroatoms contents are; however, different from a crude to another. 

This difference is considered to be a significant route for crudes differences from a 

well to another. Indeed, even crudes from two different adjacent wells can be different 

in composition (Ekott and Akpabio, 2010; Angle, 2001). This largely depends on the 

nature of the biomass sediment, temperature and pressure in the underground 

environment, the migration process and the method of crude extraction. To this end, it 

is expected; therefore, physical, chemical and surface properties of the resultant 

emulsion are to be different with respect to the crude source (Angle, 2001). 

As a sequence of crude composition complexity, characterization by 

individual molecular types is unachievable (Sjöblom et al., 2003). Therefore, crudes 

are traditionally characterized by fractionation into four fractions through boiling-

point, solubility and polarity differences among these fractions. These fractions 

include saturates (alkanes/paraffins/aliphatics), aromatics (rings), resins and 

asphaltenes (SARA) (Sjöblom et al., 2003; Wang and Buckley, 2003; Angle, 2001; 
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Vazquez and Mansoori, 2000; Bobra, 1991). Fig. (2.7) below gives a schematic 

representation of petroleum demonstrating its native components interaction (Angle, 

2001). According to SARA analysis, the first fraction (saturates or aliphatics) 

embodies the non-polar part of a crude with a trend of increased aromaticity, polarity 

and molecular weight with the transition from a fraction to another towards the 

asphaltenes fraction (Sjöblom et al., 2003; Aske et al., 2002; Bobra, 1991). A typical 

schematic of SARA analysis is illustrated in Fig. (2.8). Reviewing such components 

along with their physical and chemical properties is a huge topic and may further 

widen the scope of this study. Therefore, only resins and asphaltenes will be 

addressed in the subsequent parts throughout this Chapter due to their significant 

contribution towards emulsion stability perhaps due to their polar character. Wax, 

some acids, clays are also briefly highlighted revealing their interaction with 

asphaltenes and resins which has the consequence of emulsion stability promotion. 

 

 

Fig. (2.7): Schematic of petroleums. Taken from (Angle, 2001). 
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Fig. (2.8): SARA-separation scheme (Sjöblom et al., 2003) 

 

2.8 Stability of Water-in-Oil Emulsions 

 

  2.8.1 Introduction 

    

Crude oil emulsions are inevitably formed during oil recovery (wellhead 

emulsion/oil sands production), processing (refinery slop emulsion) and transportation 

(Sztukowski and Yarranton, 2005). Unfortunately, the viscosity of an emulsion is 

higher than that of the oil phase or the aqueous phase leaving behind a fluid that’s 

difficult to transport and/or process (Pena et al., 2005; Schramm 1992; Eley et al., 

1988b). Also, although these emulsions are thermodynamically unstable they exhibit a 

good resistance to coalescence. Crude emulsions stability studies have routinely been 

with the interest to study the characteristic properties, interactions and solubility of 

asphaltenes and resins due to their ability to create mechanically very stable 

interfacial films at the interface between oil and water (Fingas and Fieldhouse, 2009; 

Nour et al., 2007a; Yang et al., 2007; Yarranton et al., 2007a/b; Fingas and 

Fieldhouse, 2004; Aske et al., 2002; Sullivan and Kilpatrick, 2002; Angle, 2001; Eow 

et al., 2001; Li et al., 2001; Liggieri et al., 2001; Goldszal and Bourrel, 2000; Sams 

and Zaouk, 2000; Andersen and Speight, 1999a; Sams and Zaouk, 1999; Schorling et 

al., 1999; Ese et al., 1998; Friberg et al., 1998; Førdedal et al., 1996; Márquez et al., 

1996; Fingas, 1995; Kim et al., 1995; Bhattacharyya, 1992; Nordli Børve et al., 1992; 

Schramm 1992; Aveyard et al., 1990). 
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Kokal classified these films with respect to their mobility into two categories; 

rigid/solid and mobile/liquid films. Rigid films are characterized with high interfacial 

viscosities whereas mobile ones are characterized with low interfacial viscosities. 

Occurrence of rigid films is due to the presence of crude oil emulsifiers; however, 

mobile films are formed when a demulsifier has been added to an emulsion (Kokal, 

2002). On the other hand, there has also been another approach suggesting that wax, 

clay and some acids also play a role with asphaltenes and resins in stabilizing 

emulsions (Coutinho et al., 2010; de Morais Coutinho et al., 2009; Fingas and 

Fieldhouse, 2009; Less et al., 2008; Fortuny et al., 2007; Moran and Czarnecki, 

2007b; Elektorowicz et al., 2006; El Gamal et al., 2005; Elsharkawy et al., 2005; Noïk 

et al., 2005; Pena et al., 2005; Alboudwarej et al., 2003; Havre and Sjöblom, 2003; 

Sjöblom et al., 2003; Ekholm et al., 2002; Kokal, 2002; Eow et al., 2001; Kilpatrick 

and Spiecker, 2001; Li et al., 2001; Sjöblom et al., 2001; Yang et al., 2001; Khadim 

and Sarbar, 1999; Lee, 1999; Pal, 1994; Schramm 1992; Bobra, 1991; Aveyard et al., 

1990; Isaacs et al., 1990; Johansen et al., 1989). They, in association with asphaltenes 

and/or resins, hinder droplets growth and; therefore, coalescence by their ability to 

adsorb at the oil-water interface through the formation of rigid films around water 

droplets (Alinezhad et al., 2010; Verruto et al., 2009; Nordgard et al., 2008; Fortuny 

et al., 2007; Elektorowicz et al., 2006; Langevin et al., 2004; Kilpatrick and Spiecker, 

2001; Førdedal et al., 1996; Fingas, 1995; Bobra, 1991; Johansen et al., 1989). El 

Gamal and co-workers (El Gamal et al., 2005) pointed out that the stability of the 

resultant emulsions is directly related to the concentration of these crude oil 

compounds. With this in mind, several investigators have stated that asphaltene alone 

irrespective of the presence of other emulsifiers can stabilize emulsions (Verruto et 

al., 2009; Dudásová et al., 2008; Yarranton et al., 2007a/b; Elsharkawy et al., 2005; 

Fingas and Fieldhouse, 2004; Havre and Sjöblom, 2003; Sjöblom et al., 2003; Buist 

and Lewis, 2002; Vander Kloet et al., 2002; Sjöblom et al., 2001; Yang et al., 2001; 

Lee, 1999; Eley et al., 1988a). This observation has also been emphasized by 

Langevin and his colleagues (Langevin et al., 2004) in which they found that 

asphaltenes presence is essential for these other emulsifiers to be able to stabilize 

emulsions.   

In fact, although the significance of the everlasting stability of this elastic, 

physically strong, viscous and rigid film surrounding water droplets ,acting like an 
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artificial skin, is well established; nevertheless, there has been a lack of a rudimentary 

methodology that precisely interprets the stability of w/o emulsions. By far, this 

ambiguousness is attributed to a poor understanding of complex crude oil 

composition, lack of knowledge of molecular weights of asphlatenes and their 

distribution along with their flocculation mechanisms, properties of the film layer as 

well as the chemistry of the surfactants in the crude (Sun et al., 2010; Nordgard et al., 

2008; Sullivan et al., 2007; Yarranton et al., 2007a/b; Langevin et al., 2004; Andersen 

and Speight, 1999a; McLean and Kilpatrick, 1997a). In fact, while some studies have 

cited some crude oil indigenous non-hydrocarbon components, namely, asphaltenes 

and resins, due to their active surface properties i.e. they have a tendency towards the 

oil-water interface, as the culprit components for w/o emulsions formation (Ekott and 

Akpabio, 2010; Xia et al., 2004; Khadim and Sarbar, 1999; Schorling et al., 1999; Ese 

et al., 1998; Førdedal et al., 1996; Rønningsen et al., 1995). Other studies; however, 

have concluded that waxes, acids and non-indigenous inorganic fine solids are also of 

great importance in the formation of w/o emulsions (Xia et al., 2004; Lee, 1999; 

Márquez et al., 1996; Nordli Børve et al., 1992). However, in recent studies by 

(Sjöblom et al., 2003; Auflem et al., 2001; Dalmazzone and Clausse, 2001) it was 

emphasized that none of these single components is individually capable of stabilizing 

w/o emulsions. Instead, it was suggested that the interaction between these 

components within the crude is the driving force for emulsion stabilization. It is; 

therefore, evident that the presence of these ‘native’ and ‘foreigner’ crude oil 

emulsions emulsifiers is with immense problematic impact on the oil industry through 

refinery problems through emulsion stabilization. Emulsion stability level is 

proportional with crude content of these emulsifiers and their interactions; higher 

content of these compounds; of-course, grants the emulsion a higher stability extent. 

Indeed, understanding the properties and behaviour of these indigenous emulsifiers is 

crucial in understanding the mechanism by which an emulsion is formed. The 

preceding discussion gives a summary of the contribution of these natural crude oil 

stabilizers towards w/o emulsions stability. 
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2.8.2 Indigenous and Non-indigenous Stabilizers of Water-in-Oil Emulsions  

 

2.8.2.1 Asphaltenes and Resins as Water-in-Oil Emulsions Stabilizers 
 

 2.8.2.1.1 Chemistry of Asphaltenes and Resins: 
 

Perusal of the relevant literature in petroleum industry reveals the 

responsibility of both asphaltenes and resins, which are irrespective of the crude type 

and/or location always present in crude oils with different amounts, in creating crude 

oil emulsions. This responsibility may have arisen from the fact that, these indigenous 

crude oil components, due to their surface activities, have been considered the main 

cause(s) of these emulsions. They have an affinity towards the interface between oil 

and water at which a firm film is; therefore, created hindering water droplets 

coalescence leaving behind emulsions with different levels of stability. To this end, it 

is necessary to understand the characteristics of emulsion systems including the 

nature, role and behaviour of the interfacial layer so as to understand the grounds 

behind emulsion stability. In order to understand this, a thorough understanding of the 

complex behaviour and physical and chemical properties of asphaltenes and resins is 

required. In fact, their structural properties, surface-activity and state of aggregation 

do influence the rigidity and; therefore, the stability of this layer. In addition to 

asphaltenes and resins there are also other crude components including waxes, acids 

and solids which can interact with asphaltenes and resins, have been reported to have 

a significant contribution in emulsion formation and stabilization. In the following 

sections; therefore, the first two indigenous crude oil components, i.e., asphaltenes 

and resins will be comprehensively discussed whereas the rest of previously 

mentioned other crude components will be briefly touched upon.  

 

The term asphaltenes was first used by Boussingault in 1837 in France to 

describe the constituents of some bitumen (asphalts). Asphaltenes are extremely polar, 

complex and high molecular weight polynuclear molecules with the core is condensed 

poly-aromatic condensed rings and aliphatic chains as peripherals (Maia Filho et al., 

2012; Alinezhad et al., 2010; Sun et al., 2010; Verruto et al., 2009; Dudásová et al., 

2008; Nour et al., 2007b; Nour et al., 2007a; Sullivan et al., 2007; Yasar et al., 2007; 

Elektorowicz et al., 2006; Alboudwarej et al., 2003; Havre and Sjöblom, 2003; 

Sjöblom et al., 2003; Buist and Lewis, 2002; Sullivan and Kilpatrick, 2002; Angle, 

2001; Yang et al., 2001; Fingas, 1995; Eley et al., 1988b). Their ring structure, in 
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contrast; for instance, to benzene or naphthalene of which they are monocyclic or 

dicyclic respectively, is largely pericyclic (Badre et al., 2006). Several studies have 

also identified carboxylic acids, carbonyl groups and phenols as other functional 

groups that do exist among an asphaltene molecule structure (El Gamal et al., 2005; 

Langevin et al., 2004). The asphaltene intermolecular interactions are greatly 

influenced by the aromatic and aliphatic groups attached to their structure (Islas-

Flores et al., 2006).  

Asphaltenes are non-hydrocarbons due to their content of polar heteroatom 

groups in addition to carbon and hydrogen such as nitrogen, sulphur and oxygen, 

(NSO functionality) and trivial amounts of metals including iron which its ions (Fe
3+

) 

were found crucial in the asphaltene polarity (Havre and Sjöblom, 2003; Sjöblom et 

al., 2003; Buist and Lewis, 2002; Yang et al., 2001; Nalwaya et al., 1999), nickel and 

vanadium as work conducted by Ball and co-workers (Ball et al., 1960) showed a 

substantial reduction in the metal content of the crude oil following deasphaltening 

process (Dudásová et al., 2008; Nordgard et al., 2008; Yasar et al., 2007; Nalwaya et 

al., 1999; Taylor, 1998; Yen et al., 1961). X-ray absorption near-edge structure 

(XANES) spectroscopy studies by Mitra-Kirtley and others (Mitra-Kirtley et al., 

1993) revealed that nitrogen exists in the aromatic form with the main type is 

pyrroles, pyridines, pyridones and aromatic amines, respectively. Sulphur is the 

dominant heteroatom with concentrations of up to 10 wt %, in some crudes (Waldo et 

al., 1991).  

Operationally, asphaltenes are described by a solubility classification, as the 

component of crude oil that is insoluble in an excess of a light low-boiling liquid 

hydrocarbon (n-alkanes) such as n-pentane, C5 or n- heptane, C7 ; however, it is 

soluble in aromatic solvents such as toluene, benzene or xylene at room temperature 

(Verruto et al., 2009; Dudásová et al., 2008; Nordgard et al., 2008; Carnahan et al., 

2007; Nour et al., 2007a; Sullivan et al., 2007; Yasar et al., 2007; Badre et al., 2006; 

Oh et al., 2004; Havre and Sjöblom, 2003; Sjöblom et al., 2003; Wang and Buckley, 

2003; Kilpatrick and Spiecker, 2001; Yang et al., 2001; Andersen and Speight, 

1999a/b; Førdedal et al., 1996; Kim et al., 1996; Rogel, 1995). They possess H/C 

ratios roughly between 1.14-1.29 and it is to a large extent dependent on the crude 

source (Spiecker et al., 2003; Førdedal et al., 1996). Asphaltenes from stable 

emulsions have higher carbon and lower hydrogen contents than those from less 

stable emulsions (Khadim and Sarbar, 1999). Although asphaltenes due to their 
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physical properties, complex chemistry and uncertainty cannot be studied by gas 

chromatography, gas chromatography-mass spectrometry or liquid chromatography as 

the case with hydrocarbons (Buist and Lewis, 2002; Yang et al., 2001; Behar et al., 

1984). There have been some NMR and X-ray studies, based on analyses of nitrogen, 

oxygen and sulphur and the other aforementioned functional groups of carboxylic 

acids, carbonyls and phenols, have endeavoured to approximate the asphaltene 

structure. Figs. (2.9-10) illustrate some various chemical asphaltene structures; in 

these structures complexity of asphaltene molecule, high molecular weight and NSO 

compounds can be seen (Nordgard et al., 2008; Kilpatrick and Spiecker, 2001; 

Speight, 1999). 
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Fig. (2.9): Hypothetical structure of a petroleum asphaltene (Kilpatrick and 

Spiecker, 2001). 
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In another two separate studies by Rogel (Rogel, 1995) and Langevin and co-

workers (Langevin et al., 2004) on Venezuelan crude oils, average molecules of 

asphaltene fractions were depicted as in Fig. (2.10) below: 

 

 

Fig. (2.10): Average molecules of asphaltene fractions (Langevin et al., 2004; 

Rogel, 1995). 

Asphaltenes have a wide range of molecular weight between 1000 and 

2000,000 g/mole. The accuracy of the measured molecular weight varies with the 

employed measurement method and is highly affected, in some methods, by the 

measurement conditions such as solvent molecular properties and measurement 
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temperature (Rogel, 1995). Among the methods implemented to determine the 

asphaltenes molecular weight have been: ultracentrifuge, electron microscope, 

solution viscometery and cryoscopic methods, time resolved fluorescence 

depolarization spectroscopy and vapour pressure osmometry, etc. with the latter 

method being the most widely used one (Speight, 1999).  

 

With regards to resins, they in spite of the major role they play in stabilizing 

w/o emulsions through asphaltene-resin interactions due to their interfacial activity, 

have not received considerable attention as asphaltenes (Islas-Flores et al., 2006; 

Schorling et al., 1999; Kim et al., 1996). High polarity and molecular weight are 

features differentiate resins from saturates and aromatics. Resins are described as 

naphthenic aromatic hydrocarbons with long alkyl chains and aliphatic substitutions 

and small aromatic rings (Nour et al., 2007a; Islas-Flores et al., 2006; Sullivan and 

Kilpatrick, 2002; Schorling et al., 1999). A hypothetical resin structure is illustrated in 

Fig. (2.11). Among their structure are polar heteroatom groups such as N, S and O and 

non-polar paraffinic groups (Boukir et al., 2001). Also, resins are characterized by 

higher H/C ratios than asphaltenes between 1.2-1.7, they; however, are reported to 

have a lower molecular weight than asphaltenes < 1000 g/mole (Aske et al., 2002; 

Buist and Lewis, 2002). Resins from stable emulsions have higher carbon and lower 

hydrogen contents than those from less stable emulsions (Khadim and Sarbar, 1999). 

Resins polarity, aliphaticity, aromaticity and dipole momentum are characteristics 

stimulate them to interact with asphaltenes through hydrogen bonding (Islas-Flores et 

al., 2006; Oh et al., 2004; Kilpatrick and Spiecker, 2001). This fraction (resins) of 

crude oil is procedurally defined with respect to the fractionation procedure used in 

which they are defined as the crude oil fraction soluble in light alkanes such as 

pentane C5 and heptane C7, but insoluble in liquid propane C3 (Islas-Flores et al., 

2006; Havre and Sjöblom, 2003; Kokal, 2002; Kim et al., 1996).  
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Fig. (2.11): Hypothetical structure of a petroleum resin (Spiecker, 2001).  

 

Fig. (2.12): Resin molecular structure (Langevin et al., 2004). 

 

2.8.2.1.2 Asphaltenes and Resins as Water-in-Oil Emulsions Stabilizers 

 

The crude oil in a virgin reservoir is naturally accompanied with water 

‘formation water’ and gas. In addition to that, water is also injected into depleted 

reservoirs in order to help force the crude oil out of the reservoir. As a result, water is 

coproduced with oil in the emulsion form due to turbulence and pressure drop in the 

valves at the wellhead (Thompson et al., 1985) as well as a result of some interactions 

that take place between the crude oil hydrophilic materials and water (McLean and 

Kilpatrick, 1997a). Crude emulsions stability studies have routinely been with the 

interest to study the characteristic properties, interactions and solubility of asphaltenes 

and resins due to their ability to create mechanically very stable interfacial films at the 

interface between oil and water (Nour et al., 2007a/b; Yang et al., 2007; Sjöblom et 

al., 2003; Kokal, 2002; Angle, 2001; Auflem et al., 2001; Eow et al., 2001; Schorling 

et al., 1999; Ese et al., 1998; Mohammed et al., 1993).  

    

However, although the importance of these compounds (asphaltenes and 

resins) in the oil industry is well established, it seems that identifying the asphaltene’s 

nature is still a matter of controversy. Among the identified literature there have been 

two viewpoints regarding the asphaltenes existence in a crude oil (Carnahan et al., 
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2007; Leontaritis and Ali Mansoori, 1988); one perspective states that asphaltenes are 

solid particles dispersed microcolloidally through the crude oil by means of resins 

molecules (Carnahan et al., 2007; Badre et al., 2006; El Gamal et al., 2005; Oh et al., 

2004; Xia et al., 2004; Sjöblom et al., 2003; Aske, 2002; Sjöblom et al., 2001; Ali and 

Alqam, 2000; Lee, 1999; Schorling et al., 1999; Speight, 1999; Ese et al., 1998; 

McLean and Kilpatrick, 1997a; Kim et al., 1996; Acevedo et al., 1995; Sheu et al., 

1995; Tadros, 1994; Bobra et al., 1992; Leontaritis and Ali Mansoori, 1988). 

However, there is also another scenario in which asphaltenes were diagnosed as 

molecules in liquid phase (Carnahan et al., 2007; McLean and Kilpatrick, 1997a; 

Leontaritis and Ali Mansoori, 1988). The latter hypothesis; however, seems not to be 

generally agreed on in the research community (Leontaritis and Ali Mansoori, 1988). 

In the following paragraphs, the structure, properties, solubility of asphaltenes and 

resins and their tendency to accumulate at the interface between oil and water are 

elucidated. 

 

Alboudwarej et al. (2003) investigated the behaviour of asphaltene self-

association in model emulsions-water systems. They found that asphaltenes adsorb as 

a monolayer micelles of different shapes such as cylinders, disks or spheres (Mousavi-

Dehghani et al., 2004; Oh et al., 2004; Sjöblom et al., 2003; Yang et al., 2001), at the 

oil-water interface, owing to their amphiphilic nature and surface activity, 

contributing to the stabilization of the emulsion (Sullivan et al., 2007; Kokal, 2002). 

The hydrophilic (polar) part of an asphaltene molecule sits at the water side whereas 

the other part (hydrophobic) assembles at the oil side (Langevin et al., 2004). Sjoblom 

and co-workers (Sjöblom et al., 2003) performed some interfacial tension 

measurements between distilled water and a crude oil. Such measurements provide an 

imperative information regarding the properties of an emulsion including shear 

properties, mechanisms and kinetics of film formation, surfactant adsorption, film 

rupture and emulsion bulk viscosity (Ekott and Akpabio, 2010). They found that 

resins have the greatest tendency to reside at the interface. Resins were able to reduce 

the crude’s interfacial tension by 50 % whereas asphaltenes reduced it by less than 20 

%. The interface is then stretched due to the presence of asphaltenes and resins 

molecules, this is schematically shown by Langevin et al. (2004) as shown in Fig. 

(2.13) below. As a result, an interfacial gradient is generated; this in turn opposes the 

stretching and acts to restore the interface original state. Due to stretching and its 
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opposition force the interface becomes elastic-like (Gibbs-Marangoni effect). Also, 

studies of adsorption kinetics of asphaltenes at toluene/acid solution interface, by 

Sheu and others (Sheu et al., 1995), have pointed out that the interfacial tension is 

diminished upon asphaltene adsorption at the interface between asphaltene and 

toluene/acid. The asphaltene critical micelle concentration (CMC) was not with an 

influence on the experiments since the results were in the same trend at both below 

and above the CMC. 

 

a- b- 

Fig. (2.13): Schematic representation of emulsion interface structures. a- o/w 

emulsion; b- w/o emulsion (Langevin et al., 2004). 

 

Acevedo and co-workers (Acevedo et al., 1995) proposed that the formation of 

multilayers of asphaltenes at the oil-water interface is attributed to the asphaltenes 

chemical potential and total free energy. Emulsions stabilized by surfactant layers 

such as asphaltenes and resins are similar in their behaviour to hard sphere dispersions 

(Tadros, 1994). In a study investigating film forming properties of asphaltenes and 

resins, by Ese and others (Ese et al., 1998), it was found that asphaltene film is rigid 

and packs closer at the water surface. Also, it was stated that, based on molecular 

weight studies, asphaltenes form molecular aggregates as shown in Fig. (2.14) below. 

In these aggregates, asphaltene molecules are arranged in a sandwich-like network. It 

is not surprising that this network may be further solidified in the presence of other 

emulsion solid stabilizers such as wax and clay particles (Auflem et al., 2001). The 

size of these aggregates increases as the solvent aliphaticity and bulk concentration of 

asphaltene increase. Resins; however, were reported to be compressible, more polar 

than asphaltenes with a higher degree of sensitivity to oxidation and with a faster 

speed to reach and cover the interface layer but with a lower ability to contribute to 

the emulsion stability (Ekott and Akpabio, 2010; Fingas and Fieldhouse, 2004; Aske 
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et al., 2002; Auflem et al., 2001; Eow et al., 2001; Li et al., 2001; Sjöblom et al., 

2001; Førdedal et al., 1996). 

 

 

Fig.(2.14): Asphaltene micelle (Speight, 1999) 

 

Sjoblom et al. (2001) strongly emphasized the interaction between asphaltenes 

and resins which is to a large extent thought to be a significant contributor towards 

asphaltenes aggregation and; therefore, towards the stability of w/o emulsions. 

Traditionally, this asphaltene-resin interaction is explained through the development 

of a steric repulsive layer structured with a core of asphaltene particles surrounded by 

an assembly of resins polar heads (Yarranton et al., 2007a; Carnahan et al., 2007; 

Sullivan et al., 2007; Yang et al., 2007; Wang and Buckley, 2003; Buist and Lewis, 

2002; Kokal, 2002; Sjöblom et al., 2001; Andersen and Speight, 1999a; Kaminski et 

al., 1999; Nalwaya et al., 1999; Førdedal et al., 1996; Márquez et al., 1996; 

Mohammed et al., 1993). It is well known that, since 1940, resins are adsorbed on the 

surfaces or within the structure of asphaltenes particles forming micelles as shown in 

Fig.(2.15) (Andersen and Speight, 1999a; Speight, 1999). They, due to their surface-

active properties, gather at the oil-water interface and construct an elastic film around 

water droplets ‘acting as a bag encapsulating water droplets’; thus, water droplets 

unity is obstructed meanwhile emulsion stability is established (Li et al., 2001; 

Mason, 1999; Mohammed et al., 1993). In a stability study by Xia et al. (2004) on 

Daqing crude oils in China, different emulsions with different asphaltene and resin 

contents were prepared. Results suggest that asphaltenes and resins stabilize w/o 
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emulsions through the formation of mechanical films through adsorption. It was also 

reported that the state of dispersion of asphaltene and resin is important for the 

rigidity of the formed films which in turn further complexes the stability of the 

emulsion. 

 Fig.(2.15): Asphaltene-resin micelle (Speight, 1999) 

 

Studies by (Andersen and Speight, 1999a; Speight, 1999; McLean and 

Kilpatrick, 1997a/b) directly linked the stability of an emulsion to its asphaltenes 

solubility state which is mainly governed by the resins/ambient crude medium- 

asphaltenes interaction. Experimental evidence suggests that there is a relationship 

between reins to asphaltenes ratios and the resultant crude emulsion (Carnahan et al., 

2007). Crudes with higher resins to asphaltenes ratios tend to produce loose (unstable) 

emulsions (Speight, 1999). This is believed due to the fact that higher resins 

concentrations lead to an increase in the asphaltene solubility in the oil phase and; 

therefore, to a decrease in the interaction between asphaltenes and water droplets. In 

fact, this mechanism further highlights the importance of asphaltenes in stabilizing 

emulsions (Ali and Alqam, 2000). Asphaltenes and resins interact with each other 

through the adsorption of resins on the surfaces of asphaltenes as shown in Fig. (2.16). 

This layer of resins is less surface-active since the resin molecule is exposed to some 

internal forces due to electron cloud quenching and; thus, tends to weaken the surface-

active character of the asphaltenes through the interaction with each other and with 

the surrounding crude medium. Following this interaction a resin-solvated asphaltene 

aggregate is formed (Yang et al., 2001; McLean and Kilpatrick, 1997a) as depicted 

schematically in Fig. (2.16) below. 
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Fig. (2.16): Schematic of the proposed mechanism of asphaltenes-resins interaction 

(McLean and Kilpatrick, 1997a). 

 

However, partial resin-solvated asphaltene is also possible in case the resin-

asphaltene aggregate is able to reduce its free energy by shedding the adsorbed resins 

from one side of its surface, this is shown in Fig. (2.17). This in turn will re-facilitate 

the aggregate with surface activity (i.e. resides at the interface again). This asphaltene 

solubility scenario; however, does not take place in the distillate part of the crude oil 

or residual oil in the absence of resins. 

 

 

Fig. (2.17): Partial resin-solvated asphaltene (McLean and Kilpatrick, 1997b). 
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This shift from non-soluble asphaltenes to soluble asphaltenes was found to 

lessen the capability of asphaltenes to stabilize emulsions in comparison with 

colloidally non-soluble dispersed asphaltenes. On this basis, the lower the asphaltenes 

to resins ratio is, the lower the emulsion stability will be since asphaltenes have 

become less surface-active. The resins contribution to achieve this task (asphaltene 

solvating) is reported by creating an environment that’s more ‘like’ the nature of the 

condensed and polyaromatic asphaltene molecules through increased aromaticity 

(McLean and Kilpatrick, 1997a). The effect of alkane and aromatic composition on 

the strength of asphaltene solvency was examined by Bobra and co-workers (Bobra et 

al., 1992). They concluded that heavier alkanes and aromatics demonstrated lower 

asphaltenes solubility; thereby, more asphaltene precipitation which accounts for 

stronger emulsion stability. 

 

There are conditions; however, when resins may desorb from the asphaltenes 

resulting in an increase in the asphaltenes aggregate size which ultimately may lead to 

a difficult and irreversible asphaltene precipitation (Aske, 2002; Kaminski et al., 

1999). Asphaltenes precipitation is a subject of interest in the oil industry and a great 

deal of efforts is exerted to predict its onset and amount (Mansoori, 1997). It has been 

repeatedly reported in a number of investigations that asphaltene deposition during the 

crude oil production, transportation and processing is a significant issue (Carnahan et 

al., 2007; Elsharkawy et al., 2005; Oh et al., 2004; Rejon et al., 2004; Vazquez and 

Mansoori, 2000; Nalwaya et al., 1999; Bobra, 1991; Leontaritis and Ali Mansoori, 

1988). Pore spaces blockage and permeability drop; hence, production drop are all 

possible symptoms of asphaltene deposition downhole in a reservoir (Carnahan et al., 

2007; Elsharkawy et al., 2005; Rejon et al., 2004; Sjöblom et al., 2003; Angle, 2001; 

Nalwaya et al., 1999; Kokal et al., 1995). Asphaltene precipitation can also be a 

source of several stability-based problems even after oil exploitation making emulsion 

separation a more difficult task (Elsharkawy et al., 2005; Oh et al., 2004; Rejon et al., 

2004; Buist and Lewis, 2002; Sams and Zaouk, 2000; Khadim and Sarbar, 1999; 

Sams and Zaouk, 1999).   

 

Different models have been developed to explain the nature of asphaltenes 

deposition due to asphaltene-oil interaction during crude processing (Speight, 1999). 
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In these models, it was hypothesized that asphaltenes are considered as solid particles 

suspended colloidally in the crude oil stabilized by resin molecules adsorbed on their 

surface (Sjöblom et al., 2003; Speight, 1999; Leontaritis and Ali Mansoori, 1988). 

One model is the continuous thermodynamic model in which asphaltenes are regarded 

as molecules dissolved in the oil phase. It utilizes the theory of heterogeneous 

polymer solutions to predict the onset point and amount of organic deposits from 

crudes. In this model, the chemical composition of the crude has an influence on the 

extent of dispersion of high molecular weight asphaltenes. This model predicts that 

solid-asphaltene formation and then precipitation is reversible and influenced by 

thermodynamic conditions of pressure, temperature and crude composition (Sjöblom 

et al., 2003; Kaminski et al., 1999; Speight, 1999; Leontaritis and Ali Mansoori, 

1988). The other model is the steric colloidal model which is also able to predict the 

onset of organic deposition. The third model is the fractal aggregation model which 

combines both the continuous thermodynamic model and the steric colloidal model. 

This model postulates that asphaltenes associate together by means of π-π interactions 

between aromatic sheets. This assumption; however, was criticized by Speight as 

being not completely valid on the ground that resin-asphaltene interactions may 

prevail over asphaltene-asphaltene (π-π) interactions (Speight, 1999).  

 

Asphaltene precipitation is governed by a mechanism that can be described as 

complicated and that not generally agreed on owing to the complexity of asphaltene’s 

nature (Khadim and Sarbar, 1999; Speight, 1999). It is undesirable phenomenon as it 

can be associated with formation blockage, decreased reservoir yield and tubing 

plugging; thus, increased cost (Kokal, 2002; Rogel, 1995; Leontaritis, 1989). This in 

turn, has led to a number of investigations to identify the main factors that may lead to 

asphaltene precipitation (Rogel et al., 1999; Leontaritis, 1989). Among these, are 

studies by Rejon and co-workers and Wilhelms and Larter (Rejon et al., 2004; 

Wilhelms and Larter, 1994b) in which they concluded that the main controlling 

factors on asphaltene solubility in petroleum are flow regime, electro-kinetics effects, 

pressure, temperature, oil composition and the chemistry of asphaltenes in response to 

mixing with other oils/solvents, with the first factor being the most important and the 

last one is the less important.  
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Also, Speight (Speight, 1999) highlighted the impact of temperature and/or 

pressure on asphaltene precipitation stating that temperature and/or pressure reduction 

results in asphaltenes precipitation. In addition to that, due to the natural flow through 

the formation or during oil transportation, asphaltene particles can be deposited under 

the influence of the potential field generated through the oil stream by means of flow. 

This field is caused by the charge the asphaltenes particles carry as a result of 

polarization effect through the species that constitute the asphaltenes molecules. Little 

amount of aromatic compounds in a crude can also be a cause of asphaltene 

precipitation (Sams and Zaouk, 2000; Sams and Zaouk, 1999; Fingas, 1995).  

 

Commingling crudes of different compositions is also another factor that 

influences asphaltene precipitation. Characterization work of some samples of natural 

gas from Ring Border Montney formation collected from a number of operating units 

by Catalan and others (Catalan et al., 1998) revealed that asphaltene, in addition to 

other precipitants, deposition was the most significant precipitant. Asphaltene 

deposition was found to be caused by mixing together two crudes of different 

compositions. 

 

The finding by Wilhelms and Larter (Wilhelms and Larter, 1994a) is in line 

with work conducted by Branco and co-workers (Branco et al., 2001) to model the 

mechanism of asphaltene precipitation via statistical mechanics of polydisperse 

polymer solutions combined with kinetic theory of aggregation to predict the onset 

and amount of asphaltene precipitation. Their model was tested against variations in 

oil pressure, temperature and composition in which they found that there is a good 

consistency between the predicted and experimental data reflecting the accuracy of 

the model. Fingas and Fieldhouse (2009) and McLean and Kilpatrick (1997a) stated 

that w/o emulsions are stabilized by asphaltenes only when the latter are near or above 

their initial precipitation point. At this condition, asphaltene particles are finely 

divided and are with greater tendency to reside at the oil-water interface through 

increased surface-activity than sufficiently solvated or molecularly dispersed 

asphaltenes (Eley et al., 1988a). 

    

It should be noted that asphaltenes amount in a crude seems not to be 

necessarily related to the formation of w/o emulsions (Lee, 1999). For instance, 
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although a crude with 1.6 % asphaltenes concentration was found to form a very tight 

emulsion, another crude with 1.03 %; however, did not form a stable emulsion. 

Another example was given by Leontaritis and Ali Mansoori (Leontaritis and Ali 

Mansoori, 1988) that crudes with asphaltenes concentration between 0.4 to 9.8 % 

were susceptible to deposition, on the contrary; however, heavier crude with 17.2 % 

asphaltene content demonstrated no asphaltenes deposition. Therefore, it can be 

concluded that asphaltenes composition but not the concentration what contributes to 

asphaltenes capability to form stable emulsions (Lee, 1999).  

 

Another factor that was reported to have an influence on the asphaltene 

solvency is the hydrogen bonding between asphaltene-asphaltene molecules and resin 

molecules through their functional groups (Nordgard et al., 2008; Islas-Flores et al., 

2006; Fingas and Fieldhouse, 2004; Yang et al., 2001; Khadim and Sarbar, 1999). 

This system works well in case an asphaltene fraction contains a high concentration of 

C = O groups and that the resin fraction is in excess of carboxylic acid or other 

proton-donating polar functional groups. According to this last recipe (higher 

concentrations of functional groups on both asphaltenes and resins) strong asphaltene-

resin interactions are possible by which the ability of asphaltenes to shed their resins 

layer, to become surface-active again, is minimal (McLean and Kilpatrick, 1997a). 

 

Contrary to the approach that asphaltenes are solid particles is work conducted 

by Wilhelms and Larter (1994a) in which they stated that asphaltenes are not found as 

colloids solubilized by the resin fraction. They instead, based on various organic 

geochemical techniques, suggested that steric stabilization through n-alkyl groups is 

the driving force to keep the asphaltenes molecules (asphaltene precursor entities, 

APE) in solution. These APEs form a polymer solution in a maltene solvent and are 

with a diverse band of alkylated compounds. They, as a result of pressure, volume, 

temperature and compositional changes in the crude oil may undergo aggregation with 

the possibility to create lyophilic micelles (Carnahan et al., 2007; Zhu et al., 2003; 

Auflem et al., 2001; Andersen and Speight, 1999a). 

    

In addition, due to the acidic nature of the active compounds at the oil-water 

interface, pH was also reported to have an effect on the film stability and; therefore, 

on the emulsion stability. Increasing the pH was found to be associated with 
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ionization of the polar functional groups in both asphaltene and resin molecules. Due 

to this ionization high surface charge densities are developed resulting in changing 

(destroying) the mechanical film properties through some internal repulsive 

interactions which ultimately may help reduce the emulsion stability (McLean and 

Kilpatrick, 1997a). 

 

2.8.2.2 Waxes as Water-in-Oil Emulsions Stabilizers 

 

Waxes are high molecular weight alkanes and include normal, branched, iso- 

and cyclo- paraffins (Ali and Alqam, 2000; Lee, 1999). According to Thompson and 

co-workers (Thompson et al., 1985) wax crystallites in the North sea crudes are found 

in a diverse size range from sub-micrometer to micrometer (50µm) particles 

depending on crude type and temperature. There are two types of wax found in the 

oils, namely, macrocrystalline wax and microcrystalline (amorphous) wax (Ali and 

Alqam, 2000; Elsharkawy et al., 2000; Misra et al., 1995). In the first type, crystals 

are needle-shaped crystals and it includes normal or straight-chain paraffin (n-

alkanes) hydrocarbons of 20-50 carbon atoms. Whereas microcrystalline wax contains 

isoparafins or cycloalkanes and naphthenes hydrocarbons of 30-60 carbon atoms. 

Macrocrystalline wax contributes to problems in production and transportation; tank 

bottom sludges are mainly attributed to microcrystalline wax (Angle, 2001; Misra et 

al., 1995).  

 

In the oil industry during transportation and processing, temperature drop; 

below the oil’s cloud point, is a common practice at which wax particles are prone to 

precipitate through solubility reduction (Abdurahman et al., 2012; Kokal, 2002; 

Angle, 2001; Menon and Wasan, 1988). Crudes with high cloud point generally tend 

to form less stable and tight emulsions than those formed from emulsions with lower 

cloud point (Kokal, 2002). These wax precipitates can shift the crude oil flow pattern 

from Newtonian to non-Newtonian. Hence, the crude oil viscosity, pressure drop, due 

to clogging of production lines and vessels and; therefore, the cost of pumping are 

increased meanwhile tubing efficiency is reduced (Abdurahman et al., 2012; Angle, 

2001; Kilpatrick and Spiecker, 2001; Elsharkawy et al., 2000; Vazquez and Mansoori, 

2000). Due to the problematic existence of wax throughout a crude oil, several 

measurement methods have been implemented to determine the wax appearance 
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temperature (WAT) such as differential scanning calorimetry, polarized microscopy 

and low-resolution NMR (Elsharkawy et al., 2000).  

 

According to Li and co-workers; Lee; Fingas and Sjoblom and co-workers (Li 

et al., 2001; Lee, 1999; Fingas, 1995; Sjöblom et al., 1992a) some compounds in the 

crude oil such as waxes, asphaltenes and resins play a key role in stabilizing w/o 

emulsions. In fact, waxes in the presence of asphaltenes or resins were found to be 

able to produce stable emulsions, but were not able in the absence of asphaltenes or 

resins (Buist and Lewis, 2002; Kokal, 2002; Angle, 2001). This is justified by the 

extreme hydrophobic nature of waxes; however, this nature is altered when waxes 

interact with asphaltenes making them able to influence the interface and; therefore, 

stabilize the emulsion (Angle, 2001; Bobra et al., 1992). On the contrary, asphaltenes 

alone have the capability of producing a stable emulsion and so the resins but the most 

stable emulsion can be produced if resins are combined with asphaltenes and/or waxes 

(Sullivan et al., 2007; El Gamal et al., 2005; Elsharkawy et al., 2005; Angle, 2001; 

Lee, 1999; Førdedal et al., 1996). It should be noted that in order for all these wax 

particles to be effective emulsifying agents they should be in the form of finely 

divided sub-micrometer particles (Bobra et al., 1992) and have higher solubility in the 

oil phase than that in the aqueous phase (Lee, 1999). 

 

Fig. (2.18): Schematic diagram showing a water droplet in a w/o emulsion    

stabilized by asphaltenes particles, surfactants and waxes (Lee, 1999). 
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2.8.2.3 Acids as Water-in-Oil Emulsions Stabilizers 

 

According to Lee (Lee, 1999) in addition to asphaltenes and resins there are 

also other compounds in the crude oil with surfactant properties and can stabilize w/o 

emulsions, among these are carboxylic acids and porphyrins. Carboxylic acids have 

the general formula RCOOH, where R represents a cycloaliphatic structure (Havre 

and Sjöblom, 2003). In a crude oil, they include straight and branched fatty acids and 

saturated cyclic naphthenic acids which are included among the resins fraction and 

can produce dispersions with different sizes and structures with concentration of up to 

3 % in some crudes. The structure of these carboxylic acids is shown schematically in 

Fig. (2.19). These acids are identified to exist in a polydispersed state of size and 

structure (Sjöblom et al., 2003).  

 

 

Fig. (2.19): Carboxylic acids found in crude oil (Langevin et al., 2004; Lee, 

1999). 

 

Meredith and co-workers (Meredith et al., 2000) stated that carboxylic acids 

are produced during in-reservoir biodegradation of petroleum hydrocarbons. The 

content of these acids in a heavy crude, from a fresh well, is much higher than in a 

paraffinic crude (Sjöblom et al., 2003). The composition of these carboxylic acids 

depends on the crude oil source and distillate fraction; however, they in general 

encompass C10-C50 compounds of polycyclic fused saturated and unsaturated 

hydrocarbon rings with a carboxyl group attached to a ring with a short side chain. 

Another source for these acids that may help stabilize w/o emulsions is the photo-

oxidation products (Fingas, 1995). Photo oxidation takes place once the crude oil, 
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aromatic fractions in particular, is exposed to sunlight. In such oxidation reactions, 

polar products with surfactant properties (Fingas, 1995) such as carboxylic 

sulphonated acids are produced (Fingas, 1995).  

 

Carboxylic acids are thought to play a direct or indirect role, through the 

interactions with other crude oil constituents, in the stability of crude oil emulsions 

(Havre, 2002). They, in addition to their corrosive nature, have a tendency to 

accumulate at the oil-water interface due to their surface activity in the form of 

particles reducing the interfacial tension and; therefore, stabilize w/o emulsions 

(Othman et al., 2008; Havre and Sjöblom, 2003; Sjöblom et al., 2003; Ekholm et al., 

2002). These acids are natural surfactants with the carboxylic group being hydrophilic 

and carbon moiety being hydrophobic and have the ability to gather together at the 

oil-water interface. On this basis; with the presence of this hydrophilic acidic group, 

acids are more prone to be solubilized in water, producing micelles of these molecules 

aggregates, than in other crude oil constituents. It is also suggested that the acidic 

content of crude oil is associated with density increase, due to living micro-organisms 

due to biodegradation and paraffins content decrease (Rousseau et al., 2001). A 

micelle is structured with the hydrophobic part positioned at the micelle centre and the 

hydrophilic part pointing towards the water phase. Therefore, droplets coalescence is 

hindered through this micelle formation (Havre, 2002).  

 

In addition, there are also crude oil porphyrins which are expected to stabilize 

w/o emulsions (Fingas, 1995). These porphyrins contain four indole nuclei and/or 

some metals including nickel or vanadium within their structure (Kaminski et al., 

1999). Examples of these porphyrins are shown in Figs. (2.20-21). Vanadium 

porphyrins are more polar (more hydrophilic) than nickel porphyrins and; therefore, 

nickel porphyrins are more able to stabilize emulsions than non-metal porphyrins and 

vanadium porphyrins; respectively. These porphyrins are thought to locate at the oil-

water interface and; therefore, contribute to the film formation which acts as a barrier 

for water droplets coalescence (Lee, 1999). 
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Fig. (2.20): Porphyrins from crude oil tested as emulsifying agents in the formation of 

w/o emulsions (Lee, 1999). 

 

 

 

Fig. (2.21): Porphyrin structure (Kaminski et al., 1999). 

 

2.8.2.4 Solids as Water-in-Oil Emulsions Stabilizers 

 

Clay particles (inorganic fine solids) such as calcite and clay minerals such as 

Al, Ca, Na, Fe and Mg orient at the oil-water interface due to their possession of 

hydrophobic and hydrophilic parts, this orientation is envisaged help stabilize w/o 

emulsions (El Gamal et al., 2005; Sams and Zaouk, 2000; Sams and Zaouk, 1999; 
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Tambe et al., 1995; Tambe and Sharma, 1994; Tambe and Sharma, 1993) with the 

resultant emulsion called ‘Pickering emulsion’ (Langevin et al., 2004; Binks, 2002). 

Ali and Alqam (2000) have reported that asphaltenes contribute to the stability of w/o 

emulsions through the formation of a viscous interfacial film at the interface between 

oil and water as shown in Fig. (2.22). This film is built up through the irreversible 

adsorption of asphaltenes on the surfaces of finely divided solids, due to the 

hydrophobicity of these solids, which are naturally present in a crude which are as 

mentioned above such as iron and calcium carbonate, clay, etc. (Dudásová et al., 

2009; Dudásová et al., 2008; Binks, 2002; Sams and Zaouk, 2000; Lee, 1999; Tambe 

and Sharma, 1994; Tambe and Sharma, 1993; Menon and Wasan, 1988). This in turn 

increases the ability of asphaltenes to stabilize w/o emulsions through increased 

hydrophobicity (Lee, 1999). Therefore, a change in the wettability of these solids 

occurs allowing further adsorption and; thus, re-structuring. 

 

Fig. (2.22): W/o emulsions. Water droplet in oil showing stabilization by surfactants 

and particles (Lee, 1999).  
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Particles are originally oil wet (hydrophobic), probably due to the exposure to 

the crude, and; therefore, will remain in the oil phase. However, following adsorption 

of polar molecules such as asphaltenes and resins on their surfaces (Dudásová et al., 

2008; Elsharkawy et al., 2005; Sullivan and Kilpatrick, 2002; Khadim and Sarbar, 

1999; Kokal et al., 1995) which leads to the creation of a partially solvated particle, 

their wettability will shift from completely oil wet to an intermediate wettability 

particles (i.e. affinity to the water phase in addition to their original affinity towards 

the oil phase). Due to this change in their wettability, particles will also reside at the 

interface where both oil and water are present; thereby, stabilizing the emulsion 

(Dudásová et al., 2008; El Gamal et al., 2005; Tambe and Sharma, 1993). If these 

solids are also charged, they may further enhance the stability of the emulsion through 

electrostatic repulsion (Tambe and Sharma, 1993). Fig. (2.23), illustrates adsorption 

of asphaltenes/resins aggregates to a solid particle. Hence, with increased particles ,at 

the interface, it is accordingly expected that particle size is decreased which results in 

an increase in their surface area which in turn leads to an increase in the rate of the 

adsorption of surface-active materials (asphaltenes and resins, etc.) on their surfaces. 

In fact, trivial solid concentrations of less than 0.2 g/l were reported to be an adequate 

amount to generate tight stable emulsions (Ali and Alqam, 2000). These particles are 

reported to effectively contribute toward emulsion stabilization when a particle 

volume is so small compared to the emulsion’s droplet volume and that the particle 

has a large contact angle at the three-phase interfaces (oil/water/solid) (Elektorowicz 

et al., 2006; Langevin et al., 2004; Kokal, 2002; Sullivan and Kilpatrick, 2002; Tambe 

and Sharma, 1993; Bobra, 1991; Thompson et al., 1985). These particles form a mono 

densely packed layer at the oil-water interface which inhibits the coalescence of 

emulsion droplets (Tambe and Sharma, 1995; Tambe and Sharma, 1994). 
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Fig. (2.23): Adsorption of asphaltenes/resins aggregates to a solid particle (Sullivan 

and Kilpatrick, 2002). 

 

2.9 Emulsion Instabilities  

   

Although crude oil emulsions might be extremely stable for long periods of 

time as discussed throughout Sec. 2.8, on the other hand; however, there exist 

emulsions which may thermodynamically, on standing, demonstrate instability 

behaviour, i.e. droplets are prone to combine together (emulsion physical 

degradation), perhaps due to their content(s) ‘seeds of its own destruction’, which 

may undergo a reduction in the interfacial energy (Badre et al., 2006). Several 

processes can occur in emulsion systems by which an emulsion is destroyed or 

altered, including creaming (sedimentation), flocculation, coalescence, Ostwald 

ripening and phase inversion (Becher, 2001; Li et al., 2001; Bibette et al., 1999; Smet 

et al., 1997; Tadros, 1994; Schramm 1992). These phenomena may occur 

concomitantly or consecutively making understanding and modelling of emulsion 

breakdown a rather difficult assignment (Drelich et al., 2010; Fredrick et al., 2010; 

Angle, 2001; Becher, 2001). These processes are shortly discussed in the following 

paragraphs. 

 

2.9.1 Sedimentation (Creaming) 

    

Sedimentation is the opposite of creaming; it refers to the formation of a 

droplet concentration gradient within the emulsion (Robins, 2000). This phenomenon 

is attributed to the density difference between emulsion constituents of oil phase and 

the aqueous phase (gravity effects) (Fredrick et al., 2010; Angle, 2001; Becher, 2001; 
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Schramm 1992). On this basis, oil droplets will aggregate to form a creaming layer 

sitting on top of water phase (settling). In this sense, it can be said that creaming 

induces droplets coalescence process as a result of droplet proximity. This reversible 

process, as original emulsion appearance can be brought back by a kind of 

homogenization (Drelich et al., 2010; Holmberg et al., 2002; Becher, 2001), is 

dependent on emulsion viscosity as high viscosity may hinder its rate. Elucidation of 

physical mechanisms involved in creaming process is given in a study by Robins 

(Robins, 2000). Monitoring this phenomenon has traditionally been through visual 

observation or ultrasound methods (Drelich et al., 2010; Langevin et al., 2004; 

Sjöblom et al., 2003; Holmberg et al., 2002; Robins et al., 2002; Robins, 2000; Lagaly 

et al., 1999; Sjöblom et al., 1992a; Schramm 1992). The creaming process is governed 

by Stoke’s law, which states that: 

u= 2 r
2
(ρ2-ρ1)g/ 9µ 

Where u is the terminal droplet velocity, r droplet radius, ρ1 and ρ2 external 

fluid and droplet density; respectively, g the gravitational constant and µ is the bulk 

viscosity. According to this law, if droplets are with lower density than that of the 

external phase, e.g. o/w emulsion; then the term (ρ2-ρ1) will be negative which results 

in negative sedimentation (creaming) (Fredrick et al., 2010; Holmberg et al., 2002; 

Sullivan and Kilpatrick, 2002; Becher, 2001). Faster creaming or sedimentation will 

occur as a result of larger density difference (ρ2-ρ1) and larger droplets diameters (r). 

 

2.9.2 Flocculation 

 

           Flocculation, aggregation or coagulation is frequently used 

interchangeably. Due to flocculation the distance between emulsion droplets is largely 

reduced in a Brownian motion pattern under the influence of net attraction between 

the droplets. Interaction forces may include Van der Waals attraction as well as 

hydrodynamic effects which caused by motion of the liquid itself (Fredrick et al., 

2010). However, due to this reversible process emulsion droplets undergo no change 

in their identity nor change in the total surface area (Drelich et al., 2010; Holmberg et 

al., 2002; Kokal, 2002; Becher, 2001; Sjöblom et al., 2001; Robins, 2000; Kim, 1999; 

Sjöblom et al., 1992a; Schramm 1992). 
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2.9.3 Coalescence 

    

           As the term dictates, emulsion droplets, in comparison to flocculation 

lose their identity, approach each other following losing the film, which as it has been 

demonstrated earlier within the scope of this study mainly constituted from surface-

active species that naturally present within the crude, which surrounds them to form 

larger droplets with reduced total surface area. Ultimately, this leads to phase 

separation, which under normal conditions by no means can be reversible. High 

emulsion viscosity may slow down the rate of this process (Fredrick et al., 2010; 

Othman et al., 2008; Holmberg et al., 2002; Kokal, 2002; Angle, 2001; Becher, 2001; 

Sjöblom et al., 2001; Bibette et al., 1999; Kim, 1999; Lagaly et al., 1999; Sjöblom et 

al., 1992a; Schramm 1992). 

 

2.9.4 Ostwald Ripening 

    

Another irreversible phenomenon that may take place against emulsion 

stability is Ostwald ripening which seems first used by Liesegang in 1911 (Becher, 

2001). According to Ostwald ripening, molecules of the dispersed phase diffuse 

through the continuous phase to form larger droplets while reducing their number on 

the expense of smaller ones. This mechanism in comparison to coalescence does not 

involve film rupture (Langevin et al., 2004; Holmberg et al., 2002; Bibette et al., 

1999; Smet et al., 1997; Sjöblom et al., 1992a). On the one hand, Ostwald ripening in 

w/o emulsions may be due differences in water chemical potential due to capillary 

phenomena (Drelich et al., 2010). On the other hand, in o/w emulsions Ostwald 

ripening is attributed to the solubility of oil droplets in the aqueous phase and to 

differences in Laplace pressure (Fredrick et al., 2010; Holmberg et al., 2002). In either 

cases; however, Ostwald ripening can be negligible in case of highly immiscible 

liquids in which diffusion of dispersed phase droplets may not be favoured (Mason, 

1999; Smet et al., 1997). Presence of salts in an emulsion slows down Ostwald 

ripening by decreasing the miscibility of the organic and aqueous phases. This 

accordingly results in an increased emulsion stability (Haibach et al., 2006; Sergienko 

et al., 2002). A schematic representation of these various phenomena is illustrated in 

Fig. (2.24).  
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Fig. (2.24): Schematic presentation of potential instability mechanisms in w/o 

emulsions.   Modified from (Fredrick et al., 2010). 

 

2.9.5 Emulsion Phase Inversion 
 

In addition to creaming (sedimentation), flocculation, coalescence and 

Ostwald ripening, there are also some conditions where phase inversion may take 

place; that’s a w/o emulsion turns to an o/w emulsion, or vice versa (Bouchama et al., 

2003; Becher, 2001; Akay, 1998; Tadros, 1994; Schramm 1992; Arirachakaran et al., 

1989). Such conditions may include changes in: the ambient temperature, the 

emulsion water-to-oil ratio, relative viscosities of emulsion phases, surfactant 

composition and/or its affinity for the two phases, concentration and its HLB balance, 

flow conditions and also the application of mechanical shear can also induce phase 

inversion. Phase inversion may be associated with the formation of multiple 

emulsions. Furthermore, once an emulsion has been inverted, its dispersed droplets 

are usually much smaller than those of the original emulsion with a very narrow 

droplet size distribution. Therefore, it is envisaged that an inverted emulsion will 

possess a higher level of stability compared to that of the parent emulsion. Another 

explanation of this stability difference could be attributed to the reduced free energy 

of the inverted emulsion compared to that of the original one (Akay, 1998; Schramm 

1992). Fig. (2.25) illustrates a mechanism of phase inversion of o/w emulsion 

proposed by Schulman and Cockbain in 1940 (Becher, 2001).  
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Fig. (2.25). Mechanism of phase inversion of an o/w emulsion (Becher, 2001). 

 

 

2.10 Summary 

 

 In this Chapter, emulsion basics, emulsion formation routes, problems 

associated with their formation and factors which promote their stability have been 

examined. An emulsion is a collection of two or more immiscible liquids such as oil 

and water; one liquid is dispersed in the other. Crude oil emulsions can be in the form 

of binary emulsions such as w/o, o/w or multiple emulsions such as w/o/w or o/w/o. 

In the oil industry throughout exploitation, refinery and processing stages, although 

formation of both w/o and/or o/w emulsions is problematic it is unfortunately 

inevitable. Existence of formation water (natural water) with crude oil down in a 

reservoir and injection of artificial water (produced water) to enhance reservoir 

pressure; remove crude oil salts during crude processing to avoid catalyst poisoning 

and to extract bitumen in heavy oil production are means of emulsion formation. Flow 

through valves and pipes serves the energy input which has the effect of emulsifying 

water into oil, or vice versa. Based on the literature, what this investigation proves is 
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that existence of these emulsions may give rise to a variety of problems. These 

broadly represent processing difficulties, increased infrastructure and increased cost.  

 

Generally, these emulsions possess high level of stability against coalescence. 

Indeed, crude oil heavy polar materials meanwhile surface active (surfactants) are 

decisive with regards to the stability of these emulsions; without them emulsion 

breakdown though might be a lengthy task, it can be spontaneous. Asphaltenes, resins, 

waxes, acids and solids are among these surfactants. Asphaltenes and resins are 

believed to play a pivotal role in emulsion stabilization; other crude compounds on 

their own do not. In fact, different studies have concluded that stable emulsions are 

created mainly due to the presence of surfactants such as asphaltenes and resins; 

however, other emulsifying agents within the crude rely on the interaction with the 

asphaltenes and resins to be able to stabilize an emulsion. A summary of the rule 

played by these compounds is given below.  

 

-     Asphaltenes may be found in solid particles dispersed microcolloidally 

through the crude oil by means of resins molecules or as molecules in liquid 

phase. They have been found to be responsible to create stable emulsions 

through the formation of very stable interfacial films between oil and water. 

Asphaltenes at the interface have been found in different forms such as 

micelles, through self-association, of different shapes (cylinders, disks, 

spheres) or as monolayer as a result of their amphiphilic nature and their 

surface activity. They also can be found in multilayers due to their chemical 

potential and total free energy. Furthermore, they exist in molecular 

aggregates in a sandwich-like network. The rigidity of this network may 

further increase in the presence of wax and clay particles.  

 

-     Asphaltene-resin interaction is another major source of concern in terms of 

emulsion stability through the development of a steric repulsive layer in which 

asphaltene particles are contained in a resin assembly. Again, surface 

properties render this asphaltene-resin assembly capable of migrating and 

residing at the interface between oil and water, creating elastic films around 

water droplets (w/o emulsion). 
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-     In addition, asphaltene solubility largely influences emulsion stability. 

Asphaltene solubility is influenced by crude characteristics such as resins or 

ambient crude medium-asphaltenes interaction. Unstable emulsions are 

produced with high resins to asphaltenes ratios since higher resins 

concentrations lead to an increase in asphaltene solubility; thereby, to a 

decrease in asphaltene-water interaction (reduced stability). Asphaltene 

solubility is also a function of alkane and aromatic composition within the 

crude. Heavier alkanes and aromatics provide an environment in which 

asphaltene is less soluble, i.e., more asphaltene deposits (increased stability). 

-     Asphaltenes precipitation is mainly due to mixing crudes of different 

compositions, temperature and/or pressure reduction and hydrogen bonding 

between asphaltene-asphaltene molecules and resins molecules. Indeed, 

asphaltene deposition is a difficult issue to deal with once it has happened as it 

is highly likely to be irreversible. It also should be noted that asphaltenes are 

more prone to stabilize emulsions when asphaltenes are near or above their 

initial precipitation point. Asphaltene deposition is undesirable phenomenon as 

it is associated with pore spaces blockages, permeability drop, tubing 

plugging, production drop and stability promotion; this all, of-course, entails 

additional cost(s).  

-     Asphaltenes interaction with waxes found in the crude can further promote 

emulsion stability. They, due to their hydrophobic character in collaboration 

with asphaltenes and/or resins can assemble at the interface giving a kind of 

strength to it. In addition to that, wax particles as a result of temperature drop 

can create precipitates by which the crude viscosity is dramatically increased. 

-     Carboxylic acids, which are found in high quantities in heavy crudes in 

comparison to light crudes, are thought to be generated during in-reservoir 

biodegradation and photo oxidation products when aromatic fraction in a 

crude is subjected to sunlight. These polar acids with their surfactant 

properties through interactions with other crude oil compounds have a 

tendency to accumulate at the oil-water interface in the form of particles 

giving rise to emulsion stability. This is also the case with crude porphyrins 

with their variable metal content.  

-     Finally, due to their amphiphilic nature clay particles and clay minerals can 

also head towards the interface between oil and water. As a result, they 
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provide surfaces for asphaltenes irreversible adsorption which can further 

promote the pickering emulsion stability. 

-     On the other hand, Phenomena like: creaming/sedimentation, flocculation, 

coalescence, Ostwald ripening and/or emulsion phase inversion may work 

against emulsion stability resulting in emulsion physical degradation whether 

individually or collectively. Also, due to some conditions phase inversion may 

be favoured resulting in an emulsion with finer droplets by which its stability 

is further promoted.  

 

 

It is; therefore, of crucial importance to understand the contribution these 

compounds may have in terms of emulsion stabilization, so as to develop preventive 

measures for asphaltenes deposition and other asphaltenes-related problems, and; 

thus, be able to characterize crude oils and, ultimately, facilitate optimum emulsion 

destabilization, to completely separate water from the crude in a reasonable time scale 

prior to transportation and refining stages. 
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Chapter Three 

Literature Review  

Destabilization Methods 

 
….we are suffering from a plethora of surmise, conjecture and hypothesis. 

       The difficulty is to detach the framework of fact-of absolute 

 undeniable fact-from the embellishments of theorists and reporters.  

Then, having established ourselves upon this sound basis, 

 it is our duty to see what inference may be drawn  

and what are the special points upon which the whole mystery turns. 

 

Sir Arthur Conan Doyle 

Silver Blaze in Memoirs of Sherlock Holmes 

(1859-1930) 

 

 

3.1 Introduction 

    

Emulsion formation is an inevitable phenomenon in crude oil industry due to 

multiple water and oil contact during oil processing (Nour et al., 2007b). In the 

previous parts of this study it was clearly elucidated that existence of surface-active 

compounds has an enormous problematic influence on the oil industry throughout 

production and refinery stages through emulsion stabilization. Emulsion stability level 

is proportional with crude content of these emulsifiers and their interactions; higher 

content of these compounds; of-course, grants the emulsion a higher stability extent. 

Therefore, in order to meet pipeline and exportation specifications; demulsifying of 

these emulsions (i.e. reversible flocculation/coagulation followed by irreversible 

coalescence of the dispersed phase droplets and eventually creating two distinctive 

layers of oil phase on top and water/aqueous phase at the bottom (Othman et al., 2008; 

Chen and He, 2003; Kokal, 2002; Liggieri et al., 2001; Wanli et al., 2000; Kim, 1999; 

Kenneth J, 1988) is an important but has been a difficult process in petroleum industry 

(Less et al., 2008; Nour et al., 2007b; Fortuny et al., 2007; Pena et al., 2005; Eow and 

Ghadiri, 2002a; Kim and Wasan, 1996; Márquez et al., 1996; Taylor, 1996; Tirmizi et 

al., 1996; Tambe and Sharma, 1993) as otherwise severe processing problems will 

arise. These generally include pipes and equipment corrosion, catalyst poisoning and 

difficulties in transportation. 
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In order meanwhile to effectively and economically demulsify w/o emulsions, 

it is crucial to understand how they have been stabilized. This, as shown in the 

previous Chapter, requires knowledge of asphaltenes and resins properties and 

interactions as they have been considered as the main emulsion stabilizers. Other 

aforementioned stabilizers are also of considerable importance due to their strong 

tendency to interact with asphaltenes and/or resins.   

 

Although, Kenneth J back in 1988 (Kenneth J, 1988) concluded that not much 

work was reported about demulsification of emulsions for reasons that the basic work 

was already done and that no more work to be done, most of the work was 

commercially conducted; thus, cannot be published unless patented and also due to a 

difficulty of the area of emulsions. Currently, there has been progress; chemical, 

thermal and electrical demulsification works are underway. Chemical treatment 

through the use of chemical demulsifiers (surface active agents) have been the main 

methods used to separate these problematic emulsions, heating/ microwave 

demulsification and electro- demulsification have also been in use. Combination of 

these two techniques, in order to enhance demulsification efficiency, was also 

reported (Ekott and Akpabio, 2010; Less et al., 2008; Othman et al., 2008; Nour et al., 

2007b; Nour et al., 2007a; Fortuny et al., 2007; Sullivan et al., 2007; Pena et al., 2005; 

Pangu and Feke, 2004; Eow and Ghadiri, 2002a; Buist and Lewis, 2002; Kokal, 2002; 

Angle, 2001; Eow et al., 2001; Sams and Zaouk, 2000; Førdedal et al., 1996; Kim et 

al., 1995; Mohammed et al., 1993; Tarleton and Wakeman, 1990). Microfiltration has 

also been used to breakdown w/o emulsions. It is worth observing that there has been 

no universal method that can be applied for all emulsions, i.e., methods are very 

application/crude specific, with the trial and error principle has been the basis to 

decide on the applied method for a given emulsion (Ortiz et al., 2010; Sun et al., 

2010; Kang et al., 2006; Xia et al., 2004; Vander Kloet et al., 2002). This is simply 

due the diversity of crude oils as well as brines and; hence, resultant emulsions 

(Kokal, 2002). 

 

This Chapter shall try to give a summary of these techniques, apart from 

microfiltration, demonstrating their theoretical aspects and practical applications 

highlighting the mechanism(s) by which these methods proceed in the demulsification 
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task. Microfiltration of emulsions is the topic of this thesis and will be separately 

discussed in detail in the next Chapter.  

 

  3.2 Chemical Demulsification Methods 

 

Various chemicals (chemical cocktails) which are of different surface-active 

characteristics have been widely implemented to destabilize w/o emulsions such as 

acids, bases, fatty acids and their derivatives, alcohols, amines, acetone, copolymers 

of ethylene oxide, polyoxyethylene, polypropylene or polyester and propylene oxide, 

etc. and some other commercial demulsifiers (Nour et al., 2007b; Noïk et al., 2005; 

Pena et al., 2005; Zhang et al., 2005; Sjöblom et al., 2001; Goldszal and Bourrel, 

2000; Márquez et al., 1996; Urdahl et al., 1993; Aveyard et al., 1990; Menon and 

Wasan, 1988). Owing to their surface active character, demulsifier molecules consist 

of hydrophilic and hydrophobic groups. At an interface, hydrophilic groups will orient 

toward the polar phase (water) while hydrophobic groups will choose the oleic phase 

to orient toward (Zhang et al., 2005). For further information on the various employed 

chemical demulsifiers a rather comprehensive list is available (Angle, 2001). 

    

Demulsifiers according to their molecular weight are classified into two 

grades; these are low molecular weight (LMW) demulsifiers, typically below 3000 

Da, and high molecular weight (HMW) demulsifiers, usually above 10,000 Da. The 

latter demulsifiers due to their higher molecular weight diffuse slower than the former 

ones (Pena et al., 2005). For petroleum emulsions (w/o) the latter type is mostly used 

in comparison to the former one. In addition to high molecular weight, these 

demulsifiers should be highly branched and with a great affinity towards water 

droplets (Ekott and Akpabio, 2010). Generally, demulsifiers of the first class are some 

types of oil-soluble surfactants such as pure paraffinic hydrocarbons, aromatic 

hydrocarbons, alcohols and diols and they function through increasing the interfacial 

activity (suppression of the interfacial tension) and changing the wettability of surface 

active components, respectively. HMW demulsifiers represent polyelectrolytes and 

various types of oil-soluble polymers and macromolecules like block copolymers. 

These demulsifiers influence the interfacial film via their ability to penetrate through 

this film modifying the rheological properties inducing film drainage which has the 
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sequence of droplet coalescence and subsequently phase separation (Pena et al., 2005; 

Sjöblom et al., 2001; Tambe et al., 1995). 

    

Prior to the addition of a demulsifier to an emulsion, surface active 

components maintain a high interfacial tension within the interfacial film (Schramm 

1992) and a low interfacial tension elsewhere away from the film within the emulsion. 

This set-up is reversed once a demulsifier has been added, owing to its strong surface-

active properties, and that binding forces between water and oil droplets are reduced 

and the film is drained, i.e. the emulsion becomes unstable and; therefore, water 

droplets are flocculated and then coalesced (Ekott and Akpabio, 2010; Daniel-David 

et al., 2005; Zhang et al., 2005). Therefore, it can be inferred that the main 

contribution of a chemical demulsifier to reduce the stability of an emulsion (speed up 

droplet coalescence) is its ability to improve film drainage by suppressing the tension 

gradient (Gibbs-Marangoni effect) (Nour et al., 2007b; Pangu and Feke, 2004; Xu et 

al., 2004; Kim and Wasan, 1996; Kim et al., 1995; Urdahl et al., 1993). Interfacial 

tension measurements have been widely used to relate the adsorption of a demulsifier 

at the oil/water interface so that demulsifier/interface based-interactions (demulsifier 

functionality) can be studied (Yang et al., 2001; Wanli et al., 2000). 

 

The structure of the demulsifier, its ability to distribute throughout the bulk of 

emulsion, speed of agitation, its partitioning character between the phases at the 

interface, ambient temperature, stability of the emulsion and pH and salinity of the 

water phase are all factors influence the demulsifier’s performance (Ekott and 

Akpabio, 2010; Khadim and Sarbar, 1999; Kim, 1999; Mohammed et al., 1994a). 

Concentration of the demulsifier is also an important factor as it was suggested that 

too high demulsifier concentration, that’s too higher than critical micelle 

concentration (CMC), weakens the demulsifier action through asphaltene 

solubilization. In fact, demulsifier(s) should be carefully dosed. Too little demulsifier 

will not be beneficial in term of emulsion breakdown, too much demulsifier(s); on the 

other hand, may further complicate the emulsion stability (Kokal, 2002; Aveyard et 

al., 1990). Too high demulsifier(s) concentration(s) may result in increased emulsion 

stability, perhaps as a result of a new stabilizing film around emulsion droplets by the 

demulsifier(s) (Pena et al., 2005). Experimental evidence shows that the rate of 

demulsification was increased with surfactant concentration until a threshold of 



69 

 

surfactant aggregation is reached at which lower demulsification rates were obtained 

or the rate of demulsification became independent on the demulsifier concentration 

(Mohammed et al., 1994a; Mohammed et al., 1993).  

 

In addition, there are some properties a good chemical demulsifier should 

possess. A good demulsifier in the first instance should be a poor emulsifier with a 

high molecular weight and amphiphile character with a tendency to thoroughly mix 

through the emulsion to speed up water-oil separation (Buist and Lewis, 2002; Angle, 

2001; Márquez et al., 1996; Mohammed et al., 1994a; Menon and Wasan, 1988). 

Also, equal partitioning between both phases at the interface (water and oil) is 

considered as an important factor for swift demulsifier adsorption at the interface to 

reduce interfacial tension gradient and; therefore, it increases the demulsifier’s 

performance (Ekott and Akpabio, 2010; Daniel-David et al., 2005; Buist and Lewis, 

2002; Angle, 2001; Sjöblom et al., 2001; Sams and Zaouk, 2000; Kim and Wasan, 

1996; Márquez et al., 1996). Its interfacial tension has to be notably lower than that of 

the indigenous surfactants of the crude so that demulsifier molecules can absorb at the 

interface so as to displace emulsifier molecules (Buist and Lewis, 2002; Vander Kloet 

et al., 2002; Angle, 2001; Sjöblom et al., 2001; Márquez et al., 1996; Isaacs et al., 

1990). Furthermore, a successful demulsifier should have a high diffusivity and 

activity through the interfacial film so that it functions to reduce interfacial film 

elasticity and dynamic film tension (Ekott and Akpabio, 2010; Daniel-David et al., 

2005; Kokal, 2002; Angle, 2001; Sjöblom et al., 2001; Kim, 1999; Sjöblom et al., 

1992b).  

  

Upon the successfulness of demulsifier(s) to demulsify an emulsion, there are 

two different water resolution profiles. One is the immediate water resolution profile 

which occurs when the demulsifier is not mixed with a carrier solvent prior to its 

addition to the emulsion. The second one is the inductive water resolution profile (not 

instantaneous) which was demonstrated as a result of mixing the demulsifier with 

carrier solvent before its usage as a demulsifier. It was stated that the mechanism by 

which a demulsifier disturbs oil/water interface is dependent on the nature of the 

demulsifier it self, as demulsifiers of alcoholic character act by altering the rigidity of 

the interfacial layer through diffusion/partitioning process, whereas aminic 

demulsifiers were reported to increase the hydrophilicity of the interfacial layer 
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through the attachment to the functional groups of the compounds at the interface 

layer (Mohammed et al., 1994a). 

    

Mohammed et al. (1994a) investigated the demulsification of w/o emulsions 

by using different non-ionic demulsifiers of different HLB numbers as shown in Fig. 

(3.1).   At a glance, this investigation demonstrated that higher separation efficiency is 

obtained as the demulsifier concentration increases. Using Unidem120 demulsifier at 

low concentrations gave a very little separation. Hence, in practical applications this 

demulsifier is used at lower concentrations but with the assistance of heat and 

electrical treatment to help resolve the emulsion. However, higher demulsifier 

concentrations led to demulsification profiles with higher separation efficiencies until 

a plateau in demulsification efficiency is reached against concentration increment. In 

addition, the water resolved from this test was murky in its appearance.   

 

 

Fig. (3.1): The structure of the demulsifiers used (Mohammed et al., 1994a).  

 

Adding T1301 (which displaces the asphaltene from the interface layer), 

T1302 (which partitions to the water phase due to its high ethylene oxide, EO 

number), T701 (which partitions to the oil phase due to its low solubility in water due 

to its small EO number) and T803 (which partitions to the water phase due to its high 
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EO number) to the emulsion increased the percentage of water being resolved. 

However, with overdosing, the separation efficiency collapsed to a plateau value even 

at higher concentrations. Different pattern was attained when BJ18 (which lacks 

enough wetting agent to drag the asphaltic film into the oil) or T150l (which displaces 

the asphaltene from the interface layer) were used, with higher deterioration to zero 

water separation. Nevertheless, Adding IL2 (wetting agent) which wets waxes and 

neutralizes basic groups found in the interfacial film increasing its hydrophilicity, 

DI12 and DW12 demonstrated increased separation efficiency with their 

concentrations without any drop with increased concentrations.  In all these tests, 

water quality was good.  

 

In summary, the variety of the employed demulsifiers apart from IL2 and BJ18 

has shown ability to demulsify w/o emulsions by a similar mechanism. They head 

towards the interface and displace the asphaltic layer around water droplets and 

reduce the viscosity of the interfacial film (Li et al., 2001; Sjöblom et al., 2001; 

Taylor, 1988). Water droplets then flocculate and coalesce where larger water droplets 

are formed. IL2; however, was used to disturb the interface layer to provide places for 

the other demulsifiers at the interface, whereas BJ18 acted as a film inhibitor.    

    

Sun and others (Sun et al., 2010) examined the influence of branch-chain (AE-

121) and straight-chain (SP-169) demulsifiers on the interfacial properties of an oil-

water interface that possesses surface active fractions from crude oil. They concluded 

that crude surfactants can be replaced by a chemical demulsifier through its tendency 

to adsorb at the interface owing to its structure of hydrophilic and hydrophobic 

(libophilic) ends. In this study, demulsifier adsorption and its capability to substitute 

the film making components were evidenced by the enlargement of interface film that 

took place upon the addition of a demulsifier. At the interface, demulsifier molecules 

in their vacancies can accommodate molecules of surface active components. This can 

be imagined as a new layer that consists of a mixture of demulsifier and surface active 

molecules, with mixed interfacial properties of both the emulsifier and demulsifier 

molecules.  

    

The surfactant accommodation is dependent on the size of the surface active 

molecules; large molecules will find it difficult to enter the demulsifier vacancies, 
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smaller ones would not as demonstrated in Fig. (3.2). If the surfactant molecules are 

smaller than the demulsifier vacancies, they can get through the demulsifier 

vacancies. In this case, the properties of the interface are; therefore, a mix-adsorption 

layer. If they are fairly larger than the demulsifier vacancies they; therefore, cannot 

enter the demulsifier vacancies and accordingly the interface layer properties are just 

of that of the demulsifier. In addition to the size of surface active molecules, the 

demulsifier structure is also important for the surfactant molecules not to be trapped in 

between the demulsifier vacancies at the interface and that the interface film is only 

composed of the demulsifier molecules (unstable interface).  

 

Fig. (3.2): Schematic diagram for mix-adsorption of demulsifier and surface  

   active fraction molecules. (a) Straight-chain (SP-169) ;( b) Branch-chain 

(AE-121) (Sun et al., 2010). 

 

In fact, in this study it has been demonstrated that the structure of the 

demulsifier plays an important role in the demulsification performance. A branched 

demulsifier, in comparison to a straight chain demulsifier, demonstrated a higher 

ability in replacing the surfactant molecules at the oil-water interface, i.e. more 

effective demulsification, irrespective of the surfactant molecules sizes examined. 
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This result was also supported by Zhang and co-workers in their work to demulsify 

w/o emulsions from Shengli Oilfield in China through the use of amphiphilic 

denderimer copolymers (Zhang et al., 2005). The other demulsifier; that’s with 

straight chain structure showed a partial replacement of surfactant molecules from the 

interface; larger molecules were replaced and could not re-enter the demulsifier 

vacancies due to their sizes, whereas smaller ones were not replaced. Such a higher 

ability of branched demulsifiers over straight demulsifiers to replace crude surface 

active molecules is attributed to the small vacancies due to congested structure of the 

former type. 

 

There is also another more recent study by Kang and co-workers (Kang et al., 

2006) concerned with the interfacial properties between oil and water in the presence 

of a demulsifier which offers support to this mechanism. This study aimed to 

investigate the effect of four different demulsifiers (water/oil soluble) concentrations 

on film strength, film thinning, emulsion dewatering rate, interfacial tension and 

interfacial viscosity in a synthetic w/o emulsion. They concluded that high demulsifier 

concentrations result in more demulsifier adsorbed at the interface film. This in turn 

leads to film strength reduction and; therefore, accelerates film thinning which 

eventually leads to film rupture. The mechanism by which this process can be 

explained is that upon demulsifier adsorption at the interface, it partially replaces the 

emulsifiers leading to weakening the interfacial film (Goldszal and Bourrel, 2000; 

Kim, 1999; Mohammed et al., 1994b). Dewatering rate is also increased with 

increasing demulsifier concentration. However, increasing the demulsifier 

concentration has an opposite effect on both interfacial tension and interfacial 

viscosity. Indeed, this interfacial tension and interfacial viscosity reduction, as a result 

of increased demulsifier concentration is a key factor to improve the demulsification 

efficiency and dewatering rate (Buist and Lewis, 2002; Kim et al., 1995). It was also 

found that water-soluble demulsifiers such as polyoxyethylene and polyoxyethylene 

polymers have a higher ability in this regard than oil-soluble demulsifiers such as 

phenol-formaldehyde resin polyoxyethylene and polyoxyethylene.      
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3.3 Thermal Demulsification Methods 

 

The application of heat to an emulsion results in a reduction in the mechanical 

strength of the interfacial film after which droplet coalescence is likely (Angle, 2001; 

Taylor, 1988). Both conventional and microwave heating have been extensively 

implemented to demulsify w/o emulsions. Microwave irradiation technique is 

considered advantageous over the conventional heating procedures which are 

labourious and time-consuming (Coutinho et al., 2010; Lemos et al., 2010; Fortuny et 

al., 2007; Xia et al., 2004). With microwave heating, the heating can be selective, the 

equipment can be miniaturized, electrical power consumption cost and environmental 

pollution can be reduced (Coutinho et al., 2010). Historically, first successful patent 

applications in demulsifying w/o emulsions by means of microwave heating were 

registered by Klaila in 1983 and Wolf in 1986. Microwave irradiation offers a clean, 

chemicals-free, inexpensive and convenient method of heating leading to the 

acceleration of the demulsification task. Microwave heating offers faster heat transfer 

rates as the energy is delivered to the targeted object directly through molecular 

interaction with the electromagnetic field in volumetric heating effects. Also, with 

microwave radiation uniform heating throughout the object volume is possible. It is 

recognized that the key for microwave heating, which is facilitated by dipole rotation 

and ionic conduction, is material-wave interactions which lead to thermal effects and 

selective absorption of microwave energy by polar molecules within the crude 

(Coutinho et al., 2010; Nour et al., 2010; Samanta and Basak, 2008; Fortuny et al., 

2007; Fang and Lai, 1995). In case of crude oil emulsions in particular, microwaves 

interact with water molecules, dissolved salts and polar crude compounds such as 

asphaltenes and resins, leading to phase separation (Lemos et al., 2010). Water 

content of an emulsion and its salinity influence the microwave demulsification 

efficiency. The higher the water content, the larger the heating effect would be. 

Nevertheless, increased salinity level of water content results in a reduced microwave 

demulsification efficiency (Coutinho et al., 2010). Although microwave irradiation 

has been a successful process to demulsify w/o emulsions, the literature on this topic 

has been scarce.  

 

Xia and his colleagues (Xia et al., 2004) employed microwave radiation to 

demulsify an emulsion stabilized by asphaltenes or resins. W/o model emulsions were 
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prepared by dispersing distilled water in jet kerosene in the presence of different 

amounts of asphaltenes or resins as emulsifiers. They investigated the possibility of 

demulsifying the resultant emulsions (at low asphaltenes and resins concentrations; 

lowest of concentrations ranges examined) by means of microwave radiation. The 

successfulness of this technique for both emulsions stabilized by asphaltenes or resins 

was demonstrated via 100 % of water separation in a matter of hundred of seconds. In 

another study, Nour et al. (2010) used microwave heating instead of conventional 

heating to demulsify w/o emulsions. Having applied microwave heating to a w/o 

emulsion, results show that this technique is powerful to demulsify w/o emulsions. 

Microwave irradiation as a consequence of temperature elevation reduces emulsion 

viscosity and due to the expansion of the dispersed phase due to increased internal 

pressure of water droplets reduces the thickness of the interfacial surfactant(s) film 

and also reduces emulsion stability as a result of breaking hydrogen bonds between 

surfactant and water molecules (Nour et al., 2010; Eow and Ghadiri, 2002a; Angle, 

2001; Bolster and Little, 1980). 

    

Due to temperature increase, emulsion viscosity is decreased (decreased fluid 

flow resistance) and; therefore, water droplets settling velocity and collision rates, due 

to increased thermal energy of the droplets, will increase (Stoke’s law) (Coutinho et 

al., 2010; Ekott and Akpabio, 2010; Nour et al., 2010; Eow and Ghadiri, 2002a; Kim 

et al., 2002; Kokal, 2002; Angle, 2001; Johansen et al., 1989; Menon and Wasan, 

1988; Bolster and Little, 1980). These new conditions (high temperature and low 

viscosity) lead to faster coagulation producing droplets of larger size which ultimately 

leads to phase separation with improved rate of film drainage (Angle, 2001). In 

addition, increasing an emulsion’s temperature results also in an increased density 

difference between oil and water phases as the density of the oil phase is reduced at a 

rate that’s faster than that of the aqueous phase. This; therefore, leads to increased 

frequency of droplets collision as well as increased settling velocity (Ekott and 

Akpabio, 2010; Angle, 2001). Solubility of surfactants in both oil and aqueous phases 

of an emulsion can be increased at higher temperatures (Larson et al., 1994). 

Furthermore, when heat and chemical methods are employed synergically to 

demulsify an emulsion, the former augments the performance of the latter (Angle, 

2001). Microwave heating performance, to a large extent, depends on dielectric 

properties of emulsion components, emulsion viscosity, density and composition 



76 

 

(water content), size and distribution of the dispersed phase within the emulsion, 

salinity level, pH of the aqueous phase, temperature level and frequency of 

microwave radiation (Coutinho et al., 2010; Fortuny et al., 2007). Effects of such 

variables were investigated in a patent by Coutinho and co-workers (Coutinho et al., 

2010).  

 

Also,  Rajakovic and Skala (Rajakovic and Skala, 2006) obtained very good 

results of separating w/o emulsions via coupling freeze/thaw with microwave 

irradiation method. Freeze/thaw demulsification method has been found to be so 

successful to remove water from w/o (oily sludges) emulsions with 90 % water 

removal containing some organic materials. Freezing is used to expel surfactant 

molecules from ice lattice whereas thawing is to create surfactant micelles. In their 

work, they used microwave radiation to induce the freeze/thaw demulsification 

efficiency. The benefit of employing heat in freeze/thaw demulsification experiments 

is to selectively utilize the adsorption of radiation energy by surfactant molecules; 

therefore, these molecules become energized, leading to superheating at which 

reaction rates are increased. Also, heat is applied in order to reduce the viscosity of oil 

(continuous) phase and to help rupture the outer oily film around water droplets so 

that water droplets can coalesce together. In addition, Chen and He (Chen and He, 

2003) used freeze/thaw process to demulsify w/o emulsions. Out of their work, it is 

concluded that demulsification is dependent on initial water content, freezing 

temperature and duration and thawing rate and temperature.    

 

3.4 Electrical Demulsification Method 

 

Although various chemical and thermal demulsification methods of w/o 

emulsions, as demonstrated in previous sections, have been to a large extent 

successful processes, in addition to the high cost of these demulsifiers, emulsion 

contamination irrespective of the chemical demulsifier used seems inevitable which 

entails further processing and cost (Luo et al., 2009; Hu and Scott, 2008; Hu and 

Scott, 2007; Nour et al., 2007a; Ezzati et al., 2005; Ichikawa and Nakajima, 2004; 

Pangu and Feke, 2004; Eow and Ghadiri, 2002a; Dezhi et al., 1999; Tirmizi et al., 

1996; Larson et al., 1994). With regards to thermal methods, loss of crude oil light 

components which determine the crude price is likely (Alinezhad et al., 2010; Kim et 
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al., 2002; Kokal, 2002; Sams and Zaouk, 2000). Also, due to temperature increase 

while heating the crude, separation efficiency may decline due to the formation of air 

bubbles which can absorb the surfactants found within the crude (Alinezhad et al., 

2010; Eow and Ghadiri, 2002a; Kim et al., 2002; Sams and Zaouk, 2000; Dezhi et al., 

1999). Furthermore, if thermal treatment is integrated with chemical methods in 

particular in case of heat-sensitive demulsifiers, heat may deactivate the performance 

of the demulsifier (Angle, 2001). Finally, heating a crude may also lead to increased 

propensity towards scale deposition and an increased risk of corrosion in treating 

vessels (Kokal, 2002).  

 

Therefore, a physical method featured with simplicity of operation, efficiency 

and affordability and equally important with no chemical waste or moving parts, 

would clearly be advantageous. A candidate that may possess these features is 

electrical demulsification. In the petroleum industry during different processing units, 

electrical destabilization is widely used to break w/o emulsions that may develop 

throughout crude production and refining as reported in Chapter 2 in Sec. 2.3 of this 

review. It is a physical process and can be used alone or in conjunction with both 

chemical and/or thermal demulsification methods in an attempt to augment the 

performance of these methods (Lu et al., 1997; Taylor, 1988). Emulsion coalescence 

can be accelerated when gravity coalescence is coupled with an electrical field 

(Sjöblom et al., 2003; Larson et al., 1994). Using electrokinetic phenomenon in the oil 

industry application to disrupt w/o emulsions is advantageous due to simplicity and 

possibility of attaining good separation efficiencies at low power consumption levels. 

This; therefore, has inspired several researchers to further investigate this technique in 

dealing with w/o emulsions. 

 

Electrical demulsification of w/o emulsions goes back in time to 1911 by 

Cottrell in the USA (Eow and Ghadiri, 2002a; Taylor, 1996; Chen et al., 1994). In 

electrical destabilization techniques different currents are applied; of these, are AC 

and DC fields; continuous or pulsed (Alinezhad et al., 2010; Luo et al., 2009; Eow 

and Ghadiri, 2002a/b; Kim et al., 2002; Wakeman and Williams, 2002; Sams and 

Zaouk, 2000; Taylor, 1996; Chen et al., 1994; Bowen and Sabuni, 1991; Hano et al., 

1988; Zhong et al., 1987). AC field is the oldest and the commonest used current to 

demulsify crude emulsions (Eow et al., 2001; Taylor, 1996) and may be more 
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economical than pulsed electric fields. The latter one; however, in particular in the 

case of emulsions with high water contents, is characterized with higher droplet 

coalescence efficiency (Luo et al., 2009; Taylor, 1996; Chen et al., 1994). When a DC 

current is applied throughout an emulsion, which mainly used in the treatment of low 

water content emulsions (Eow et al., 2001; Taylor, 1996), droplets coalescence is 

improved via electrophoretic motion of droplets. In AC fields; however, droplets 

coalescence is improved through the motion in the bulk field; therefore, this type of 

electrical fields is more suitable for continuous demulsification processes (Kim et al., 

2002).  

 

Depending on the placement of the electrodes in the demulsification cell, there 

are two types of fields may develop. These are uniform and non-uniform electric 

fields. When both electrodes are positioned in the emulsion, a uniform electrical field 

is created between these electrodes. Non-uniform electric field is resulted when only 

one electrode is contained within the emulsion whereas the other one is in an 

electrolyte solution. With this configuration, short circuiting due to development of 

water droplets chains is overcome. Electrode insulation with thin coatings of materials 

that are non-water wetting (hydrophobic) can also serve this purpose in the former 

setup (uniform field) (Eow and Ghadiri, 2002a; Eow et al., 2001; Chen et al., 1994; 

Larson et al., 1994). 

 

Spontaneous but slow coalescence of droplets of an emulsion is well known to 

occur according to three consecutive steps. First, droplets approach each other with 

their surrounding film, which as stated before mainly composed of asphaltenes and 

resins, etc.; this process is called flocculation. This step is then followed by film 

thinning and drainage during which the thickness of interfacial film is reduced. 

Capillary and disjoining pressures affect the film thinning rate; according to 

Marangoni effect, film thinning rate is delayed in the presence of surfactants. At high 

shear rates, rate of film thinning is inversely proportional to the square of droplet 

diameter (Alinezhad et al., 2010; Kim et al., 2002; Márquez et al., 1996). Finally, 

further film thickness reduction; that’s to a critical thickness, by disturbance effects, 

leads to film rupture which eventually results in internal phase droplet-droplet 

coalescence. The coalescence phenomenon is accompanied with an increase of 

droplets size, meanwhile a reduced number of droplets (Less et al., 2008; Othman et 
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al., 2008; Elektorowicz et al., 2006; Aske et al., 2002; Kim et al., 2002; Sullivan and 

Kilpatrick, 2002; Eow et al., 2001; Wanli et al., 2000; Lu et al., 1997; Chen et al., 

1994; Isaacs et al., 1990). 

 

Applying an electrical field across a flowing or a stationary emulsion to attain 

an appropriate droplets size, with which phase separation is possible, is evidently 

known to enhance the demulsification rate through some interactions between water 

droplets, small ones in particular, and the applied field (Less et al., 2008; Othman et 

al., 2008; Eow and Ghadiri, 2002a; Eow et al., 2001). This interaction leads to droplet 

charging and agglomeration which subsequently lead to droplet-droplet coalescence 

(Akay and Wakeman, 1996; Taylor, 1996). Generally, emulsion resolution by an 

electrical field has been irreversible; however, low electric fields (that’s not high 

enough to induce droplet coalescence) have only been found to result in a linear 

chain-like configuration; these chains are prone to disappear upon switching off the 

applied field (Sjöblom et al., 2003; Eow et al., 2001; Førdedal et al., 1996). The 

success of high enough fields to achieve irreversible demulsification is credited to 

their ability to permanently rupture the protective film around water droplets, leading 

to irreversible droplets coalescence (Sjöblom et al., 2003; Førdedal et al., 1996). 

Electrical fields increase the internal droplets collision (motion energy) due to the 

oscillation of these droplets under the electric field. Water droplets attraction force is 

proportional to the square of the applied current as shown in the equation below 

(Larson et al., 1994; Taylor, 1988). Therefore, large groups of droplets flock, but with 

their surfactant film around them are formed. By this droplet-droplet proximity, the 

influence of electricity becomes further pronounced (Kim et al., 2002). This film is 

then stripped by the tearing force of the electric field, which also results in charging 

and agglomeration of water droplets, so that water droplets contained within this film 

have nothing halt them to prevent them combining with each other (coalescence) 

(Othman et al., 2008; Elektorowicz et al., 2006; Kim et al., 2002; Lu et al., 1997; 

Chen et al., 1994; Taylor, 1988). 

 

 F α E
2 

r
6 

d 
- 4 

 

 

Where F is the attractive force between droplets, E the electric field strength 

(V/cm), r the droplet radius and d the droplet separation (Larson et al., 1994).  
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These larger droplets will then settle down into the water phase under the 

influence of both gravity and electric forces (Kim et al., 2002; Hano et al., 1988). 

Behaviour of droplets of an emulsion under the influence of an electrical field is 

depicted in Fig. (3.3). According to this figure, water droplets are initially dispersed 

everywhere through the emulsion; Fig. (3.3- a). Following application of an electrical 

field, water, droplets due the effect of increased conductivity by water ions, become 

polarized as shown in Fig. (3.3- b). Further increase of the field makes water droplets 

line up between the two electrodes (chain formation), see Fig. (3.3- c) (Aske et al., 

2002). Similar observations were also made by Sullivan et al. (2007), Havre and 

Sjöblom (2003) and (1994).  

   
                         (a)                                        (b)                                     (c) 

 

Fig. (3.3): Emulsion behaviour under the influence of an electrical field (Aske 

et al., 2002). 

 

Several mechanisms have been put forward to explain the principal effect(s) 

that may develop during electrocoalescence. Among these are: chain formation of 

droplets, formation of intermolecular bonds, electrophoresis, dielectrophoresis, dipole 

coalescence, random collision and electrofining (Ekott and Akpabio, 2010; Eow et al., 

2001; Taylor, 1996). A synopsis of these mechanisms along with the most prevailing 

factors which are with influential effect on separation efficiency is given by Eow and 

co-workers (Eow et al., 2001) as shown in Fig. (3.4). Chain formation occurs due to 

potential differences, with both AC/DC currents, among emulsion droplets due to 

their induced charges. Chains of droplets are then created as a result of individual 

droplets movement. It is worthwhile noting that these chains do not necessarily 

start/finish at an electrode nor touch neither electrode, also they are arranged in such a 

way that they are aligned in line with the field intensity direction. Droplet-droplet 
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coalescence through chain formation depends on oil phase viscosity, dispersed phase 

fraction and intensity of the applied electric field (Sullivan et al., 2007; Eow et al., 

2001).  

 
Fig. (3.4): Mechanisms and factors influencing the coalescence efficiency of  

     electrostatic separation of w/o emulsions. Reproduced from (Eow et al., 

2001). 

 

Electrophoresis is concerned with applying an electrical field through a 

stationary fluid in which a charged particle is encouraged to move through it; particle-

neighboured fluid is also susceptible to move. This process is based on charge 

separation between the particle surface and the fluid that’s immediately adjacent to it. 

Applying a non-uniform electric field results in the movement of water droplets in 

w/o emulsion towards the direction of field strength under the influence of 

polarization; this is known as dielectrophoresis. Practically, dielectrophoresis is less 

significant in terms of droplets coalescence than electrophoresis since a droplet 
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velocity due to the first phenomenon is somewhat low in comparison to that resulting 

from electrophoresis. However, dielectrophoresis becomes crucial in case of 

moderately charged droplets when; for instance, insulated electrodes are used. In 

dipole coalescence, Brownian motion, sedimentation, flocculation or electrophoresis 

are required to bring emulsion droplets together. Electrofining involves 

electrophoresis, dipole coalescence, collision of drops of different charges meanwhile 

flowing in opposite directions and also collision of drops of different sizes moving in 

the same direction as the direction of the applied DC current (Alinezhad et al., 2010; 

Eow and Ghadiri, 2002a; Eow et al., 2001; Førdedal et al., 1996; Taylor, 1996; Chen 

et al., 1994; Larson et al., 1994).  

 

Electrical demulsification kinetics can be influenced by some factors 

including: dielectric properties of both dispersed and continuous phase, volume 

fraction of the dispersed phase along with its droplets size distribution, temperature, 

emulsion viscosity and density, conductivity, electrode geometry, intensity of the 

applied electric field and its type (AC/DC), etc. (Sjöblom et al., 2003; Eow et al., 

2001). Generally, separation efficiency is increased with voltage intensity (Alinezhad 

et al., 2010; Luo et al., 2009; Sullivan et al., 2007; Eow et al., 2001; Wang et al., 

1994; Hirato et al., 1991). However, this was shown not always necessarily to be the 

case as shown by Eow and Ghadiri (2002b) and Kim et al. (2002). In the systems they 

examined, although separation efficiency increased as the strength of the applied field 

increased it decreased when the applied field passed a certain value by which droplet 

deformation and break-up took place; consequently, separation efficiency was 

decreased. Furthermore, emulsions with higher water volume fractions give higher 

separation efficiencies under the effect of electric field due to increased polarization 

effects (Alinezhad et al., 2010; Sams and Zaouk, 2000; Schramm 1992). To this end, 

it is expected that in crude oil emulsions with a high content of oil; that are less 

conductive than water, the separation efficiency may be reduced (Becher, 2001; Eow 

et al., 2001; Sams and Zaouk, 2000; Schramm 1992). Hano et al. (1988), in their 

investigation of kinetics of demulsification of w/o emulsions in an AC electric field, 

concluded that the viscosity of an emulsion has an important effect on electrostatic 

demulsification. With decreased emulsion viscosity, the rate of demulsification 

increases. Also, coalescence and water droplets settling increase as water droplet size 

is increased. 
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Furthermore, Taylor (Taylor, 1988) in his investigations into the electrical and 

coalescence behaviour of water in three different crude oils emulsions (Kuwait, 

Ninian and Romashkino crudes) in high voltage gradients noticed that electrical 

destabilization of w/o emulsions is largely dependent upon the nature of the resultant 

interfacial film between oil and water. Emulsions based on crudes that contain 

incompressible interfacial films tend to form chains of water droplets through the 

emulsion. In these emulsions, as water droplet-droplet coalescence was limited, 

emulsion conductivity was increased. However, in emulsions that possess surfactants 

at the interfacial film, rapid water droplets coalescence with low emulsion 

conductivity was demonstrated with no chain formation. This was ascribed to 

enhanced interfacial film mobility as a result of surfactants presence. A synopsis of 

these two mechanisms is given in Fig. (3.5). A similar conclusion was put forward by 

Chen and his colleagues (Chen et al., 1994), in terms of the influence of nature of the 

interfacial film on the coalescence mechanism, when they investigated emulsion 

resolution by the application of an electric field. 

 

Fig. (3.5): Schematic representation of the stages of electrical coalescence 

process of an emulsion (Taylor, 1988). 
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In another study by Eow and Ghadiri (2002b) two novel compact 

electrocoalescer- separators to separate aqueous drops dispersed in flowing viscous oil 

were developed. One separator was based on coupling gravity forces with electrical 

potential, whereas in the other separator, centrifugal force was coupled with electrical 

forces. Successful separation results were obtained by using either separator, 

particularly when an optimum electrical field was applied. Optimum field is 

somewhere between a too low field value and a too high field value. Fields at values 

beyond this optimum field gave reversed results of decreased separation efficiencies 

due to water droplet deformation and break-up (smaller droplets).     

 

3.5 Overview of Current Methods of Demulsification  

 

It seems that currently implemented treatment techniques to demulsify w/o 

emulsions, mainly due to their high stability, have not been efficient enough to 

effectively and entirely deal with this problem (Lemos et al., 2010). Chemical 

treatment requires addition of chemicals (contamination) which in turn brings more 

complication to the emulsion system as it is required to remove these chemicals, at an 

additional cost, prior to the next downstream processes (Mohebali et al., 2012). 

Another obstacle with chemical methods is that for highly viscous w/o emulsions 

(which is usually the case), it might be difficult to mix the required chemical(s) with 

the emulsion (Fang and Lai, 1995). 

Although thermal demulsification has been useful in the demulsification 

procedures, since, following heating up an emulsion its oil phase viscosity will 

accordingly be reduced; therefore, its fluidity will increase and more droplet collision 

takes place. By increasing the emulsion temperature, solubility of surfactants in both 

oil and aqueous phases of an emulsion can be increased (Larson et al., 1994). Also at 

elevated temperatures,  difference in density of the phases, resulting in the heavier 

fluid (water) settles down and that the lighter fluid (oil) raises up to build the top 

layer, is increased (Eow and Ghadiri, 2002a; Sams and Zaouk, 2000; Mohammed et 

al., 1994a). In addition, due to elevated temperatures within a crude wax precipitation 

is reduced which, accordingly, can help mitigate emulsion stability (Sams and Zaouk, 

2000). Also, demulsification by freeze/thaw method is safe, no chemicals are 

required; hence, no additional treatment is entailed, convenient and effective with 
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demulsification efficiencies up to 90 % (Rajakovic and Skala, 2006). Thermal 

demulsification methods are; however, energy-intensive processes, heating a crude oil 

can promote loss of light components which dictate crude price. Also, due to 

temperature increase while heating the crude, separation efficiency declines due to the 

formation of air bubbles, which can adsorb the surfactants found within the crude. 

Furthermore, if thermal treatment is integrated with chemical methods, in particular in 

case of heat-sensitive demulsifiers, heat may deactivate the performance of that 

demulsifier (Angle, 2001).  

Electrical and acoustic fields in membrane applications were reported to help 

enhance demulsification rates through electro-kinetic effects and high internal forces, 

respectively (Tarleton and Wakeman, 1990). However, most of electrococoalescer 

equipment currently in use are huge and bulky (Ekott and Akpabio, 2010). In 

addition, the need to use extremely high voltages to attain droplet coalescence may 

limit the use of this method (Ezzati et al., 2005; Tirmizi et al., 1996). Also, this 

method is considered ineffective to demulsify emulsions with high water contents 

(Dezhi et al., 1999). Likewise, electrical resolution of crude oil emulsions with low 

water contents can be ineffective due to low conductivity (Ekott and Akpabio, 2010). 

Another problem with this method particularly in offshore fields, where space is 

usually restricted, is that it is usually coupled with chemical methods to speed up the 

demulsification task (Daniel-David et al., 2005) for which additional hardware would 

be required. 
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Chapter Four  

Literature Review 

Microfiltration  

 

The art of our necessities is strange,  

that can make vile things precious. 

William Shakespeare 

 

(1564-1616) 

 

 

4.1 Introduction 

 

Bearing in mind the chemical, thermal and electrical processes for 

demulsification of w/o emulsions with their limitations as discussed previously, 

membrane technology, in comparison, is an inexpensive pressure-driven process. It 

can be operated continuously and is characterized by flexibility and simplicity of use 

and high separation efficiencies, which may not be easily achieved by other 

techniques. Meanwhile low operating cost and low energy consumption particularly 

when run at low pressures. Most importantly, chemical contamination, additional 

safety concerns and possibility of crude degradation encountered in chemical, 

electrical and thermal demulsifications; respectively, can all be eliminated (Salahi et 

al., 2010; de Morais Coutinho et al., 2009; Hu and Scott, 2008; Kukizaki and Goto, 

2008; Mohammadi et al., 2005a; Ezzati et al., 2005; Mohammadi et al., 2004; 

Kocherginsky et al., 2003; Hu et al., 2002; Srijaroonrat et al., 1999; Ohya et al., 1998; 

Mueller et al., 1997; Scott, 1996; Tirmizi et al., 1996; Belfort et al., 1994; Fell et al., 

1990).  

In this Chapter, the intention is to first review general membrane separation 

processes from the varieties of processes available, historical aspects and mechanistic 

points of view. Next, characterization of microfiltration performance, mechanism of 

flux declination along with some various strategies being implemented to 

avoid/reduce membrane fouling and membrane cleaning are discussed. The effect of 

different operating conditions on membrane performance is also summarized. 

Towards the end of the Chapter, application of microfiltration in the separation of w/o 

emulsions is examined.      
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4.2 Introduction to Membrane Filtration Process  

 

4.2.1 Definition of Crossflow Filtration 

 

In crossflow filtration, the stream to be filtered (feed) is forced to flow in a 

parallel mode to the filtration media surface (Al-Malack and Anderson, 1997; 

Wakeman and Akay, 1997; Schulz and Ripperger, 1989; Wakeman and Tarleton, 

1986). While some of this stream with molecules/particles smaller than membrane 

pores, due to pressure drop across the membrane (pressure-driven process), will 

penetrate through the filter as permeate/filtrate. Filtrate flow and feed flow are 

perpendicular to each other. Meanwhile, molecules/particles that are larger than 

membrane pore size will be retained; this is termed retentate (concentrate) which is 

usually recycled for further filtration. A typical crossflow filtration unit is 

schematically represented in Fig. (4.1).  

Fig. (4.1): Schematic representation of a typical crossflow filtration unit. 

 

A simple material balance, gives:  

QF  = QR + QP 

QF  * CF  = QR * CR + QP * CP 

  

QF , CF 

QP, CP 

 

QR , CR 

 

Permeate 

Feed 
Retentate 

 

Filter (membrane) 
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Where QF , QR and QP are feed, retentate and permeate volumetric flow rates, 

respectively. CF, CR and CP are the corresponding concentrations.  

 

Fundamentally, emulsions microfiltration and other colloidal suspensions 

microfiltration are similar. However, from the operational point of view they are more 

different than they are alike. In the former process large emulsion dispersed droplets, 

in particular when compared to small ones are inevitably susceptible to deformation 

‘flattening in the zone of contact’ (Ivanov and Kralchevsky, 1997), see Fig. (4.2) 

below, under the influence of high process pressure, coalescence and phase inversion 

(Chakrabarty et al., 2008; Kukizaki and Goto, 2008; Kocherginsky et al., 2003; 

Robins et al., 2002; Angle, 2001; Park et al., 2001; Cumming et al., 2000; Scott et al., 

2000; Sun et al., 1998; Wakeman and Akay, 1997; Koltuniewicz et al., 1995; 

Schramm 1992). Droplets deformability largely depends on emulsion droplets-

membrane interactions, emulsion concentration and surfactants concentration, 

transmembrane pressure (TMP) with respect to membrane pore size, size distribution 

and surface properties of droplets through the emulsion and the extent of imposed 

shear during filtration process (Saiki et al., 2007; Robins et al., 2002; Matsumoto et 

al., 1999; Srijaroonrat et al., 1999; Xu et al., 1999; Nazzal and Wiesner, 1996; Lipp et 

al., 1988).  

 
                  

a- b- 

 

 

Fig. (4.2): Droplet deformation mechanism. In a- emulsion droplet size is    

                  much smaller than emulsion droplet size in b. Modified from (Park et al., 

2001). 
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4.2.2 Varieties of Some Pressure-Driven Membrane Crossflow Processes  
 

          Currently, membrane-based processes are well established technology and 

cover a wide range of applications including gas separation, water desalination, the 

food industry as well as the oil industry (Kong and Li, 1999). Among membrane 

processes there have been various modes of operation including microfiltration, 

reverse osmosis, nanofiltratio/ ultrafiltration. Although the driving force for such 

processes is the pressure difference that results from higher pressure above the porous 

membrane than that below the membrane, the extent of this difference; however, is 

different in each process (Lonsdale, 1982). Another common feature of these 

processes is that the separation is facilitated by size exclusion phenomenon and/or 

chemical interaction with the membrane matrix (de Morais Coutinho et al., 2009; 

Tansel et al., 2000; Elmaleh et al., 1998). The principle ranges of membrane pore size 

used in each technique are shown in Fig. (4.3). 

   

Membrane pore diameter 

 

Fig. (4.3): Classification of the different pressure-driven membrane separation 

processes according to average membrane pore diameter (Wakeman and 

Akay, 1997; Noble and Stern, 1995; Lonsdale, 1982). 

 

A summary of the main membrane pressure driven processes is given below 

highlighting some important features in each process. There are also some other 

processes in which membranes are also used but governed by other driving forces 

including dialysis, electro-dialysis and pervaporation, etc. (Noble and Stern, 1995; 

Strathmann, 1985). Due to their irrelevance to this study, these processes; however, 

will not be considered any further. Crossflow membrane processes can be conducted 

by various configurations. These encompass: microfiltration, ultrafiltration, 
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hyperfiltration and nanofiltration. Membrane pore size and operational pressure are 

distinctive for each process.  

 

4.2.2.1 Microfiltration (MF) 

 

Microfiltration is one of the oldest pressure-driven membrane processes 

(Belfort et al., 1994). In microfiltration, the pressure drop across microfilters is 

relatively low < 2 bar, with separation principle is the sieving mechanism. The pore 

sizes of microfiltration membranes vary between 0.1-10 µm (Saxena et al., 2009). 

This range renders microfiltration membranes appropriate for separating suspensions 

and emulsions. Both organic (polymeric i.e. hydrophilic/polymeric) and inorganic 

(ceramic, metallic or glass) membranes are used in microfiltration membranes. 

Generally, the latter membranes are featured with high chemical and thermal 

resistances and very narrow pore size distribution. In microfiltration membranes, the 

pores exist over the total membrane thickness, accordingly, membrane resistance is 

determined by the whole membrane thickness.  

 

4.2.2.2 Ultrafiltration (UF) 

 

In ultrafiltration processes, the operational pressures range between 1-10 bar, 

with the separation principle again the sieving mechanism. The pore sizes of 

ultrafiltration membranes vary between 1-100 nm (Saxena et al., 2009). Ultrafiltration 

is used over a wide range of applications including food, dairy, textile and 

pharmaceutical industries (Scott and Hughes, 1996). Both organic (polymeric) and 

inorganic (ceramic) membranes have been used for ultrafiltration membranes. In 

ultrafiltration membranes, generally the pores are within the top porous-layer, 

membrane resistance is; therefore, determined only by this layer (asymmetric 

membrane). The former process (microfiltration) may be better than this process 

(ultrafiltration) in terms of higher permeate fluxes as well as higher strength of 

membranes used in microfiltration applications. On the other hand; however, in 

microfiltration it is possible for macromolecules or finer particles to pass into the 

permeate stream (Wakeman and Tarleton, 1987).  
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4.2.2.3 Hyperfiltration (HF)/Reverse Osmosis (RO) 

   

In hyperfiltration, the operational pressure is somewhat high 15-80 bar or 

higher (Scott and Hughes, 1996), with solution-diffusion the mechanism of 

separation. Membranes used in this process possess pore sizes smaller than those 

present in micro/ultrafiltration processes. Hyperfiltration technique is mainly used for 

desalination of seawater, production of ultrapure water for electronic industry and for 

concentration of milk in dairy industry (Scott and Hughes, 1996). Asymmetric 

(integral and composite) membranes are used in this process. In integral asymmetric 

membranes, both top layer and sub-layer are made of the same material. Cellulose-

based membranes are used in this process for their high permeability towards water in 

combination with a very low solubility towards the salt. Aromatic polyamides 

membranes are also used but their water flux is somewhat lower. In composite 

asymmetric membranes, the top layer and sub-layer are made of different polymeric 

materials. It is worthwhile mentioning that, typical flux rates with a clean membrane 

in a microfiltration process is much higher than that obtained from an ultrafiltration 

and reverse osmosis processes (Hu and Scott, 2008). In Table (4.1) and Fig. (4.4), 

performance of these three processes is summarized and depicted, respectively.  

 

Table (4.1): Principle method of particle retention with respect to membrane 

process. 
 

Membrane process Principle method of 

particle retention 

As shown in Fig.  

Microfiltration Suspended solids, cells 

and colloids. 

(4.4-a) 

Ultrafiltration Dissolved solid and 

macromolecules 

(4.4-b) 

Hyperfiltration macromolecules (4.4-c) 

 

 

 

 

 

 



93 

 

 
(a) 

 

 
(b) 

 

 

 

 

 

 
 

 

(c) 

 

Fig. (4.4): Separation using different membranes: a- microfiltration membrane, b- 

ultrafiltration membrane and c- hyperfiltration membrane (Scott, 1996). 

 

 

 

4.2.3 Historical Perspective of Microfiltration 
 

In 1855, Frick made a membrane by dipping a test tube in a collodion solution. 

Production of membranes with different pore size was reported by Bechhold in 1906. 

Later, Zsigmondy and Bachmann in 1918 were able to produce small quantities of 

‘parchment-like’ microfiltration membranes with various pore sizes. An U.S. patent in 

1922 was awarded to Zsigmondy for his work involving exposing a thin coating of a 

Macromolecules 

Water 

Membrane 

Salt 

Dissolved solids and macromolecules 

Salts Water 

Membrane 

Suspended solids, cells and colloids 

Selected macromolecules 

and salts 

Water 

Membrane 
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nitrocellulose solution to humid air. Five years later, the first commercial membrane 

production by Sartorius saw the light (Noble and Stern, 1995). Since then, no major 

commercial advances took place until World War ІІ had come to an end (Noble and 

Stern, 1995; Belfort et al., 1994; Lonsdale, 1982). 

A revolutionary invention was made by Gertrude Mueller at the Hygiene 

Institute in Germany which led to large-scale commercialization of microfilters. In 

this discovery, it was proposed that the micro flora from a large volume of water 

could be deposited intact on a small disk of microfiltration membrane. By culturing 

the membrane and counting the colonies, rapid and accurate determinations of the 

safety of drinking water could be made. Indeed, this invention at that time was a 

particular breakthrough (Noble and Stern, 1995). 

Soon after, Alexander Goetz and co-workers from the U.S. Joint Intelligence 

Objectives Agency in their post-war assessment of German science and technology, 

scrutinized microfiltration technology. Their work was then further developed by 

Lovell Chemical Company in 1950. Through late 1950 to early 1954, intensive work 

was underway in an effort to widen microfiltration membrane synthesis from 

laboratory-based production to semi-commercial production. Later, Lovell Chemical 

Company sold the technology to Millipore Corporation which until now still a 

company that goes from strength to strength with regards to membrane fabrication 

(Noble and Stern, 1995; Lonsdale, 1982). Since then, membrane technology has 

received increased attention, which in turn has led to continuous developments.   

 

4.2.4 Varieties of Membrane Modules, Materials and Structures 
 

According to the application, different membrane designs such as flat sheet, 

spiral wound, tubular, capillary and hollow fibers as well as different materials have 

been in use (de Morais Coutinho et al., 2009; Fell et al., 1990; Tarleton and 

Wakeman, 1988; Wakeman and Tarleton, 1986). These materials include organic 

(porous) and inorganic (ceramic, glass and metallic) membranes. For an effective 

filtration, a membrane material should be chemically resistant to both feed and 

cleaning agent(s) in a range of operational conditions, mechanically and thermally 

stable along with high permeability and selectivity and with a stable operation (Merry, 

1996; Scott and Hughes, 1996). Organic membranes can be synthesized from a 

variety of hydrophobic and hydrophilic polymeric materials of different molecular 

weight cut-off of 20000- 50000 such as: polypropylene, polyethylene, poly 
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(vinylidene-fluoride), polycarbonate, poly (ether-imide), polyetherimide, polysulfone, 

acrylic zirconia, borosilicate glass, stainless steel, aluminum, silver and nickel (de 

Morais Coutinho et al., 2009; Saxena et al., 2009; Kong and Li, 1999; Belfort et al., 

1994; Gekas and Hallström, 1990; Hsieh et al., 1988; Mulder, 1951). Due to their 

excellent chemical, mechanical and thermal resistance, chemical inertness to a wide 

range of feed conditions (high temperatures and concentrations) as well as very 

narrow pore size distribution, inorganic membranes have seen more applications 

compared to organic ones (Chen et al., 2009; Del Colle et al., 2007; Lobo et al., 2006; 

Mohammadi et al., 2005a; Mohammadi et al., 2004; Nicolaisen, 2002; Faibish and 

Cohen, 2001; Srijaroonrat et al., 1999; Xu et al., 1999; Gekas and Hallström, 1990; 

Hsieh et al., 1988). In spite of these advantages they are; however, associated with 

high cost; perhaps due to expensive raw materials used in their preparation, low 

membrane surface area/volume ratio and sophisticated manufacturing procedures. As 

a result, organic membranes which are relatively cheap, highly selective and easy to 

manufacture are still used (Chen et al., 2009; Qiu et al., 2009; Gekas and Hallström, 

1990).  

 

These membranes can be symmetric (uniform) or asymmetric (non-uniform) 

(Scott and Hughes, 1996). The former type can be porous or non-porous with 

membrane thickness varies between 10 to 200 µm. The permeation rate of these 

membranes is determined by the total membrane thickness, i.e., the thicker the 

membrane is, the lower the membrane permeate rate is. These membranes are usually 

used in microfiltration processes (Strathmann, 1985; Mulder, 1951). Asymmetric 

membranes can be either porous or composite and made of a very thin dense top layer 

with a thickness of < 0.5 µm; this layer controls the transport rate. Underneath this 

layer there is a porous sub-layer or multiple layers with a thickness range between 50-

200 µm which serves no other purpose than to support the top layer as well as to add a 

strength to the membrane body (Xu et al., 1999). Since permeate flow rate is inversely 

proportional to the actual membrane thickness, asymmetric membranes are featured 

with higher permeation rates than symmetric membranes of a comparable thickness 

(Mulder, 1951). An organic polymer, in the acronym form referred to as ‘PHP’ as will 

be defined later, is a subdivision of these organic membranes and has been utilized 

throughout this study and; therefore, will be further discussed within the next section.  
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4.2.5 Overview on PolyHIPE Polymer (PHP) 
 

           Polymer is derived from the Greek, poly means many and meros means parts 

(Katz, 1998). Among the polymerization techniques is emulsion polymerization. Back 

in the 1970s, a high internal phase emulsion (HIPE) polymerization process of the 

continuous organic phase to produce microcellular, polymeric foam was described by 

Lissant and Mayhan (Menner et al., 2006; Hoisington et al., 1997). PolyHIPE 

polymers (PHPs) were then first patented by Barby and Haq of Unilever in 1985 

(Zhang and Cooper, 2005; Benson, 2003; Deleuze et al., 2002; Hoisington et al., 

1997). HIPEs are emulsions in which the internal (aqueous) phase that comprises 

water and a polymerization initiator such as potassium persulphate/peroxide, 

represents at least 74 vol. % of the emulsion volume. The continuous (organic) phase 

consists of monomers such as styrene or acrylates, crosslinking components such as 

divinylbenzene (DVB) and a surfactant to stabilize the emulsion such as sorbitan 

monooleate (Span80) (Ergenekon et al., 2011; Livshin and Silverstein, 2008; Haibach 

et al., 2006; Menner et al., 2006; Cameron, 2005; Krajnc et al., 2005; Zhang and 

Cooper, 2005; Deleuze et al., 2002; Sergienko et al., 2002; Tai et al., 2001; 

Hoisington et al., 1997; Bhumgara, 1995; Aronson and Petko, 1993; Hainey et al., 

1991). In polymerization, a crosslinker is used in an effort to enhance the 

physical/structural stability of the produced polymer by tying together its backbones 

and also to prevent them not to separate to the larger intermolecular distances 

favoured for side-chain crystallization (Livshin and Silverstein, 2008). Alternatively, 

other monomers such as methacrylate, isobornyl acrylate, butyl acrylate, 4-

vinylbenzyl chloride, 4-nitrophenyl acrylate, 2-ethylhexyl acrylate and 2,4,6-

trichlorophenyl acrylate have also been in use (Haibach et al., 2006; Menner et al., 

2006; Cameron, 2005).  

 

Preparation of PHPs has been described in a number of studies. While 

depending on the features of the desired PHP, procedures of synthesis of different 

PHPs through a polymerization route may vary as demonstrated in the literature 

reviewed (Haibach et al., 2006; Menner et al., 2006; Barbetta et al., 2005; Bokhari et 

al., 2005; Cameron, 2005; Krajnc et al., 2005; Akay et al., 2004; Brown et al., 1999; 

Sotiropoulos et al., 1998; Hoisington et al., 1997; Walsh et al., 1996; Bhumgara, 

1995; Hainey et al., 1991). However, it appears that in all cases the polymerization 
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process principle remains the same and follows a two-stage process but with various 

compositions in accord to the application. In the first stage, an emulsion is created 

from an oil phase that contains a monomer mixture of styrene linked with DVB, and a 

dispersed phase which is made up from distilled water, a polymerization initiator such 

as potassium persulphate and a surfactant like Span80.  This emulsion is afterwards 

rapidly stirred for a preset period of time depending on the desired PHP pore size. The 

longer the mixing time, the smaller the pore size of the PHP would be. A schematic 

representation of polymerization process is illustrated in Fig. (4.5). In addition, with 

respect to final production application, a third stage that involves product post-

functionalization may also be required. Produced solid PHP can be of the 

closed/open-cell type and the internal aqueous phase is trapped within the cellular 

structure but can be readily and quickly removed (Hainey et al., 1991). PolyHIPEs are 

also known as aphrons, biliquid foams, hydrocarbon gels, gel emulsions and high 

internal phase ratio emulsions (HIPRE) (Aronson and Petko, 1993).  

 

                                             

Fig. (4.5): Illustration of PHP production process.                                                            

    

Following polymerization, drying of the obtained PHPs is necessary so as to 

remove any residual water (Hoisington et al., 1997). In addition to that; depending on 

the application of the produced PHPs, further processing, e.g. sulphonation at 

different levels may also be required to modify their surface characteristics 

(hydrophobicity/hydrophilicty) (Al-Malack and Anderson, 1997). Once synthesized, a 

styrene-DVB PHP is with a hydrophobic character and it; therefore, prefers to absorb 

oil-based liquids. In order to modify this character, PHPs which comprise 

Variable speed stirrer 

DVB, styrene and Span 

80 

Mixing vessel 
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hydrocarbon residues (Haq, 1985) are sulphonated so as to become a hydrophilic 

(acidic) material instead (Shen et al., 2003; Smitha et al., 2003; Wakeman et al., 1998; 

Bhumgara, 1995). Sulphonated PHPs can possess higher conductivity, thermal 

stability, water absorption capability, biocompatibility, ion exchange capacity and 

swelling. Besides, in filtration applications, they can produce an improved permeate 

flux rates as a result of improved solute rejection/reduced solute-membrane adhesion 

through their modified surface chemistry (Howarter and Youngblood, 2009; Ochoa et 

al., 2003; Smitha et al., 2003; Faibish and Cohen, 2001; Srijaroonrat et al., 1999; Xu 

et al., 1999; Wakeman et al., 1998; Parvatiyar, 1996; Gatenholm et al., 1988; 

Anderson et al., 1987). To this end; therefore, the applicability of these hydrophilic 

PHPs is widened to be good candidates for numerous applications including chemical 

and wastewater treatment processes and fuel cell applications for their low methanol 

permeability and ion-conductive structure (Ergenekon et al., 2011; Naim et al., 2004; 

Shen et al., 2003; Cornelissen et al., 1998).  

 

           Sulphonation is a substitution reaction in which a ~SO3H group is attached to a 

molecule of an organic compound via a chemical bond to a carbon or, rarely, to a 

nitrogen atom, of that organic compound. By far with respect to the application, 

sulphonating agents such as H2SO4, SO3 and its complexes like acyl and alkyl 

sulphates and chlorosulphonic acid are the most extensively employed ones. Others 

such as fluorosulphonic acid, sulphur dioxide, sulphites and acid sulphites, sulphuryl 

chloride alkyl sulphates, oleum and N-pyridinium sulphonic acid, etc. are rarely used 

(Ergenekon et al., 2011; Gopichandran et al., 2003; Kučera and Jančář, 1998; Foster, 

1997; Regas, 1984; Turbak, 1962; Gilbert and Jones, 1960; Roth, 1957). Sulphonation 

reaction schemes of aromatic systems with sulphur trioxide and sulphonic cation are 

shown in Fig. (4.6 a-b); respectively, and a general mechanism for the reaction is 

given in Fig. (4.7). Reaction conditions for sulphonation are usually set in accord to 

the desired final PHP. In the choice of these conditions, the following factors are 

taken into account: a- sulphonation level that’s the number of ~SO3H group entering 

into the aromatic ring, b- type of formed isomers and c- yield of sulphonic acid. There 

are some parameters that to an extent determine the overall efficiency of a 

sulphonation reaction. An important factor is temperature (Barona et al., 2007). 

According to the literature, successful sulphonation reactions over a wide range of 

temperatures from -20 to 300 C have been reported (Kučera and Jančář, 1998). Inner 
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surface area, physical and chemical properties of the polymer to be sulphonated, 

concentration and purity of sulphonating agent, contact time with the sulphonating 

agent and intensity of agitation are also decisive factors with regard to sulphonation 

efficiency (Ergenekon et al., 2011; Barona et al., 2007; Roth, 1957). The chemical 

structure of a sulphonated crosslinked PHP is shown in Fig. (4.8). 

 

a- 

 

b- 

Fig.(4.6): Sulphonation of aromatic systems with; a-sulphur trioxide and b- 

sulphonic cation (Kučera and Jančář, 1998). 

 

Fig. (4.7): General mechanism of the sulphonation reaction: Step 1: Formation 

of the π-complex, Step 2: Formation of the arenium ions (δ-complex), Step 3:  

  Termination of the sulphonation by the release of X
+
 (Kučera and Jančář, 

1998). 
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Fig. (127): Chemical structure of a sulphonated crosslinked PHP (Wakeman et 

al., 1998). 

 

 

 

 Sulphonation of polymers can be carried out as a homogenous or 

heterogeneous reaction (Kučera and Jančář, 1998) in a batch or a continuous process 

(Foster, 1997). The first homogenous sulphonation reaction was carried out using 

SO3H /SO3Cl as a sulphonating agent in a chloroform solution at -20 C (Kučera and 

Jančář, 1998). Details of different homogenous sulphonation processes are well 

described in the literature (Lin et al., 2004; Huang et al., 2001; Hanying et al., 1999; 

Feng et al., 1998; Kahraman et al., 1998; Weiss et al., 1991; Bagrodia et al., 1987; 

Bailly et al., 1987; Lundberg and Thaler, 1983; Thaler, 1983; Turbak, 1962). In 

heterogeneous sulphonation, as the name implies, the compound and sulphonating 

agent exist in different phases. Since in this sulphonation method there is no solvent 

problems nor it is necessary to separate out the sulphonated product from the reaction 

mixture, this method is considered advantageous over the homogenous one (Kučera 

and Jančář, 1998). There have been several studies in the literature disclosing 

sulphonation attempts based on this method (Toro et al., 2008; Hamza et al., 1997; 

Akovali and Ozkan, 1986; Regas, 1984). The degree of sulphonation can be expressed 

as the percentage of available benzene rings within the polymer structure that attain 

SO3H groups. Due to polymer internal stresses as a result of polymer swelling and 

subsequently inability of the sulphonating agent to effectively penetrate through the 

material/polymer to be sulphonated (Akay et al., 2005), complete (100 %) 
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sulphonation is impossible (Wakeman et al., 1998). Also, Wakeman et al. (1998) 

concluded that temperature has an effect on the degree of sulphonation attained. It 

was found that the higher the temperature, the higher the degree of sulphonation and 

the shorter the required time to attain that degree of sulphonation.      

 

Although, current sulphonation techniques might be powerful and; therefore, 

have found a wide range of applications; however, they reportedly suffer from some 

drawbacks. Among these are: 

-      Production of hazardous waste; that’s the spent acid (dilute sulphuric acid) which     

   requires a special disposal procedure; otherwise, it can be dangerous (Akay et al., 

2005; Gopichandran et al., 2003); 

- Promotion of side reactions, particularly at elevated temperatures (Gopichandran 

et al., 2003; Roth, 1957);  

- Though sulphonation is a very rapid reaction; nevertheless, it is highly exothermic  

and does require some sort of cooling to avoid occurrence of side reaction(s) 

(Gopichandran et al., 2003);  

- Necessity for precise control and difficulty to scale up (Gopichandran et al., 2003; 

Roth, 1957);  

- Use of excessive amounts of sulphonating agents, perhaps due to low solubility  

of product in the reaction environment (Ergenekon et al., 2011; Gopichandran et al., 

2003); and  

- A long processing time is required (Ergenekon et al., 2011).  

 

           These light weight PHPs are produced with open cellular microstructures with 

a very high degree of porosity (of up to 97 %) and interconnectivity and homogenous 

morphology, low bulk density less than 0.15 g/m
3
 (Sergienko et al., 2002) and good 

mechanical/thermal properties (Livshin and Silverstein, 2008; Haibach et al., 2006; 

Menner et al., 2006; Krajnc et al., 2005; Benson, 2003; Hoisington et al., 1997; 

Bhumgara, 1995). In fact, these polymers are characterized with accessibility of their 

pores, controllability of the pore and interconnected structures (pore sizes of 0.5-5000 

µm have been reported), flexibility of production and chemical modification of their 

walls (Akay et al., 2005). Internal morphology of a PHP polymer can be revealed by 

an environmental scanning electron microscopy (ESEM). Within its internal network, 

PHP polymer pores, which in reference to the preparation conditions usually have a 
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size of (5-100) μm (Haibach et al., 2006; Zhang and Cooper, 2005; Sergienko et al., 

2002) connected via pore throats, are shown in Fig. (4.9) and an average surface area 

of 5 m
2 

/g is reported (Haibach et al., 2006; Hainey et al., 1991). According to 

Williams et al. (1990), the concentration of polymerization initiator (e.g. potassium 

persulphate) in the aqueous phase has an adverse effect on the pore size of the 

resultant polymer. Likewise, this is also the case with a PHP pore size and the 

concentration of crosslinker (DVB) used, i.e., the lower the concentration of DVB is, 

the bigger the pores would be (Benson, 2003).  

 

Fig. (4.9): Definition of pore and pore throat (Menner et al., 2006). 

 

Due to their unique properties pointed out above, these post-functionalized 

(sulphonated) PHPs have found numerous applications in quite diverse ranges. Some 

of these are: filtration media (Haibach et al., 2006; Akay et al., 2005; Krajnc et al., 

2005; Zhang and Cooper, 2005; Kučera and Jančář, 1998; Akay et al., 1995; 

Bhumgara, 1995; Hainey et al., 1991), support for heterogenic catalytic reactions 

(Haibach et al., 2006; Zhang and Cooper, 2005), tissue engineering applications 

(Ergenekon et al., 2011; Burke et al., 2010; Haibach et al., 2006; Menner et al., 2006; 

Akay et al., 2005; Barbetta et al., 2005; Zhang and Cooper, 2005; Busby et al., 2002; 

Busby et al., 2001; Hoisington et al., 1997), ion exchange module systems (Ergenekon 

et al., 2011; Menner et al., 2006; Naim et al., 2004; Benson, 2003; Kučera and Jančář, 

1998; Wakeman et al., 1998; Hoisington et al., 1997), monolithic polymer supports 

for catalysis applications (Menner et al., 2006; Sergienko et al., 2002), removal of 

arsenic from contaminated water sources (Katsoyiannis and Zouboulis, 2002), 

production of nickel electrodeposits (Brown et al., 1999; Sotiropoulos et al., 1998), 

cleaning materials (Hoisington et al., 1997), medical applications, e.g., absorbent for 

body fluids (Hoisington et al., 1997; Hainey et al., 1991; Haq, 1985) and to enhance 
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osteoblast growth and differentiation in vitro (Bokhari et al., 2005) and help growth of 

human stem cell-derived neurons (Hayman et al., 2005; Hainey et al., 1991), 

immobilization of pseudomonas syringe for the degradation of phenol (Erhan et al., 

2004) and they also have even been used in the aerospace industry as well 

(Hoisington et al., 1997), etc. 

 

4.2.6 Mechanism of Microfiltration 
 

Generally, during microfiltration there are two scenarios encountered; surface 

filtration (sieving) and depth filtration. This is largely influenced by particle 

size/membrane pore size ratios. Surface filtration is usually used in crossflow 

filtration whereas depth filtration is used in dead-end filtration mode (Matsumoto et 

al., 1999)  At larger ratios compared to unity, membrane pores, particularly those 

membranes with uniform pore size distribution, are not able to permit particles to pass 

through i.e. high permeate quality. Accordingly, particles will accumulate on the 

membrane surface (surface filtration) creating a filter cake layer. This is known as 

sieving mechanism in which smaller particles can easily go through the membrane 

pore, comparatively larger particles will block the membrane pore and other particles 

will stick to the membrane surface as shown in Fig. (4.10) (Kosvintsev et al., 2004; 

Starov et al., 2002; Filippov et al., 1994). On the other hand, in depth filtration, 

membranes with broad pore size distribution and larger than particle size can, 

accommodate these particles into their pore structure (Matsumoto et al., 1999). In real 

applications; however, the filtration behaviour cannot be described distinctively as 

surface filtration nor depth filtration, as both mechanisms may exist.  
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Fig. (4.10): Sieving mechanism. Reproduced from Filippov et al. (1994) 

 

 

4.2.7 Conventional Filtration vs. Crossflow Filtration 

 

Traditionally, filtration processes were conducted by supplying the feed 

stream in a normal mode against the filtration media; that’s perpendicular to the 

membrane surface (Dead-end filtration) (de Morais Coutinho et al., 2009; Kosvintsev 

et al., 2004; Starov et al., 2002; Al-Malack and Anderson, 1997; Wakeman and Akay, 

1997; Scott, 1996; Belfort et al., 1994). Due to pressure drop between the two sides of 

the filter, separation takes place which is also dependent on filter thickness, pore size 

and feed particles size. Larger particles than filter pores are retained which with time 

result in gel/cake layer formation; that’s continuously growing as the filtration 

proceeds, and filter fouling. Gel/cake layer and membrane fouling result in a 

continuous catastrophic deterioration in filter performance as the filtration process 

proceeds (de Morais Coutinho et al., 2009; Song, 1998). A schematic representation 

of a standard dead-end filtration process is shown in Fig. (4.11). 
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Fig. (4.11): Dead-end Filtration (Noble and Stern, 1995). 

 

However, in crossflow filtration, as the name suggests, the feed stream flows 

parallel to the filter as shown in Fig. (4.12). Larger particles will be caught by the 

filter, but instead of complete accumulation on the filter surface, some of them will be 

continuously forced to flow away from the filter surface under the influence of 

crossflow; this in turn maintains a steady state operation over a prolonged period of 

operation time (de Morais Coutinho et al., 2009; Hu and Scott, 2008; Fradin and 

Field, 1999; Elmaleh et al., 1998; Song, 1998; Al-Malack and Anderson, 1997; 

Wakeman and Akay, 1997; Scott, 1996; Akay and Wakeman, 1994a; Belfort et al., 

1994; Tarleton and Wakeman, 1988; Wakeman and Tarleton, 1987).  

 

 

 

Fig. (4.12): Crossflow filtration (Noble and Stern, 1995). 

 

There are some features that make crossflow microfiltration processes 

advantageous over conventional ones. In crossflow microfiltration, with respect to its 

underlying principle of tangential flow which inhibits the growth of gel/cake layer 

through shear forces in case of dispersion/suspension filtration; respectively, it is 

possible to control permeate flux decline with time (steady-state operation), refer to 
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Fig. (4.13) (de Morais Coutinho et al., 2009; Wakeman and Akay, 1997; Akay and 

Wakeman, 1996; Scott, 1996; Scott and Hughes, 1996; Tarleton and Wakeman, 1993; 

Roy et al., 1989). To this end, it is feasible to produce higher permeate fluxes 

compared to those obtained from conventional filtration processes (i.e. no crossflow) 

in which the gel/cake layer is continuously growing (Al-Malack, 2003; Fradin and 

Field, 1999; Belfort et al., 1994; Romero and Davis, 1988; Wakeman and Tarleton, 

1987; Baker et al., 1985). In addition, in terms of product quality, effluent quality 

deterioration is present in conventional filters, whereas permeate quality in crossflow 

microfiltration is constant and reliable, irrespective of solute concentrations. It was 

also claimed that a pre-treatment is required for a conventional filter to be capable of 

producing an effluent that’s comparable with a permeate quality obtained from a 

crossflow microfiltration process in which no pre-treatment is necessary in doing so. 

Compactness and capital cost reduction are also achieved with crossflow microfilters 

implementation (Al-Malack, 2003).  

 
                                  a-                                                             b- 

                                

Fig. (4.13): Membrane flux and cake growth rate variation with time: a- conventional   

                 (perpendicular) filtration; b- crossflow (tangential) filtration. 

Modified from (de Morais Coutinho et al., 2009). 

 

4.3 Characterization of Microfiltration Membrane Performance 
 

4.3.1 Transient Filtration 

 

‘Permeation rate or flux is the volumetric (mass or molar) flow rate of fluid 

passing through the membrane per unit area of membrane per unit time’ (Scott and 

Hughes, 1996). Permeate flux rate (J) according to Darcy’s law, introduced by Henry 

Darcy in 1856, is usually used to characterize microfiltration of viscous 

incompressible flows through a porous media (Waeger et al., 2010; de Morais 

Coutinho et al., 2009; Kukizaki and Goto, 2008; Belkacem et al., 2007; Hu and Scott, 
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2007; Li et al., 2006a; Lobo et al., 2006; Mohammadi et al., 2005b; Mohammadi et 

al., 2004; Mohammadi et al., 2003; Tay et al., 2003; Waniek et al., 2002; Tansel et al., 

2000; Akay et al., 1998; Choo and Lee, 1998; Nassehi, 1998; Mueller et al., 1997; 

Elmaleh and Ghaffor, 1996; Nazzal and Wiesner, 1996; López et al., 1995; Juang and 

Jiang, 1994; Scott et al., 1994; Blanpain et al., 1993; Scott et al., 1992; Baker et al., 

1985; Hubbert, 1956). In this formula, filter/membrane permeate is related to the 

driving force (pressure drop), flow resistance and viscosity of the filtered medium. As 

it will be indicated in the equation below, permeate flux is proportional with pressure 

drop but inversely with the summation of external resistance due to concentration 

polarization, membrane and deposits resistances. In addition, membrane permeation 

may also be directly influenced by the dynamics of the stream being processed i.e. too 

viscous systems will, to a large extent, obstruct membrane permeation. In case of both 

emulsion viscosity and membrane resistances are constant throughout the filtration 

process; TMP is proportional to membrane flux.  

 

J= driving force/ (viscosity)(total resistance) 

J= P/µ (Ref +Rm+Rd) = 1/A dV/dt 

 

Where P is the driving pressure (pressure drop across the membrane), µ the 

dynamic viscosity, Ref the external and reversible resistance due to concentration 

polarization on the membrane surface, Rm the membrane resistance, Rd the deposit 

resistance, A filter/membrane surface area and V is the filtrate volume. 

 

4.3.2 Particle/Droplet Retention by the Membrane 

     

In addition to permeate flux, particles/droplets of solute rejection R by the 

membrane body is also another important feature in crossflow microfiltration 

processes; the latter highly influences the former. In fact, under steady state 

conditions, the permeate flux decreases as the rejection increases (Akay and 

Wakeman, 1994a; Wakeman and Akay, 1994). This to a large extent determines the 

efficiency of the membrane separation process. The rejection of a filtration process R 

is defined as:  
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R (%) = (CF - CP)/ CF* 100 

        = (1- CP/ CF)/* 100 

  

Where CF and CP as were shown in Sec. 4.2.1, are the concentration of the 

solute in the feed stream and permeate, respectively. According to this formula, for a 

given membrane, too low solute concentrations in the permeate side in comparison to 

those of the feed stream result in complete rejection ca. 100 %. Also, solute 

droplet/particle size and membrane pore size are important parameters in membrane 

rejection tendency, as membranes with smaller pores than particle size can 

demonstrate total rejection (Chen et al., 2009; de Morais Coutinho et al., 2009; Qiu et 

al., 2009; Chakrabarty et al., 2008; Barona et al., 2007; Li et al., 2006a; Lobo et al., 

2006; Mohammadi et al., 2003; Shen et al., 2003; Herath et al., 2000; Xu et al., 1999; 

Akay et al., 1998; Ohya et al., 1998; Field, 1996; Scott, 1996; Yildiz et al., 1996; 

Karakulski et al., 1995; Akay and Wakeman, 1994b; Akay and Wakeman, 1994a; 

Juang and Jiang, 1994; Fell et al., 1990) 

 

4.4 Mechanism of the Permeate Flux Decline 

 

Membrane fouling is a source of concern in membrane technology (Huang et 

al., 2012; Waeger et al., 2010; Field, 1996). It mainly results from building up of 

some components of the stream to be filtered on the membrane surface or within the 

membrane pores (Huang et al., 2012; de Morais Coutinho et al., 2009; Fakhru'l-Razi 

et al., 2009; Mohammadi et al., 2004; Matsumoto et al., 1999; Cornelissen et al., 

1998; Akay and Wakeman, 1994a; Scott et al., 1994). It is; therefore, obvious that 

streams with higher fouling material(s) concentration(s) may further multiply the flux 

decline problem (Palacios et al., 2002). There are two types of fouling; these are 

external and internal fouling. External fouling (cake formation/concentration 

polarization) is often reversible and it is thought to take place in the initial stages of 

filtration (Howarter and Youngblood, 2009; Mohammadi et al., 2003; Vernhet et al., 

2003; Field et al., 1994; Bowen and Sabuni, 1991; Gekas and Hallström, 1990). It 

occurs in cases where membrane pores are smaller than the solute molecules in the 

feed solution; thus, solute molecules cannot pass through the membrane and will 

gather at the membrane surface leading to the formation of a gel-like layer that seals 

the membrane pores (de Morais Coutinho et al., 2009; Vincent Vela et al., 2009; Ohya 
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et al., 1998; Belfort et al., 1994; Tarleton and Wakeman, 1993; Wakeman and 

Tarleton, 1987). Internal fouling (membrane fouling); however, is most of the time 

irreversible and is the main type of fouling in microfiltration processes (Howarter and 

Youngblood, 2009; Wenten, 1995; Bowen and Sabuni, 1991). This type of fouling 

occurs when membrane pores are larger than the solute molecules. The latter will 

easily enter the membrane pore resulting in deposition and adsorption of solute 

molecules on membrane pore walls leading to fouling that can be described as 

irreversible (de Morais Coutinho et al., 2009; Vincent Vela et al., 2009; Mohammadi 

et al., 2003; Vernhet et al., 2003; Tansel et al., 2000; Ohya et al., 1998; Field et al., 

1994; Tarleton and Wakeman, 1993). If the membrane pores and solute molecules are 

similar in size, partial pore blocking is the outcome (de Morais Coutinho et al., 2009; 

Vincent Vela et al., 2009; Tansel et al., 2000; Ohya et al., 1998; Tarleton and 

Wakeman, 1993).  

 

Both of these mechanisms can lead to membrane flux decline. External fouling 

creates an additional layer of resistance to permeate flow, while internal fouling 

increases the membrane resistance by reducing the effective size of the membrane 

pores (Mohammadi et al., 2003; Nicolaisen, 2002; Wakeman and Williams, 2002; 

Belfort et al., 1994; Le et al., 1984). Although membrane fouling is, to an extent, 

found in all membranes, the mechanism by which it occurs is largely dependent on the 

system under scrutiny including: emulsion droplet size, operating parameters and the 

type of membrane used (Salahi et al., 2010; Cornel and Krause, 2008; Vernhet et al., 

2003; Cumming et al., 2000; Mueller et al., 1997; Trägårdh, 1989). These phenomena 

of concentration polarization, gel layer formation, adsorption of contaminants within 

the membrane pores and pore blockage are all shown in Fig. (4.14). Ultimately as a 

result of membrane fouling, membrane performance is reduced, operational cost, e.g. 

pumping costs and energy consumption  are increased and risk of membrane 

replacement, in case of severe fouling becomes inevitable (Chen et al., 2009; 

Howarter and Youngblood, 2009; Lobo et al., 2006; Shen et al., 2003; Tay et al., 

2003; Vernhet et al., 2003; Mohammadi et al., 2002; Nicolaisen, 2002; Srijaroonrat et 

al., 1999; Field, 1996; Scott, 1996; Wenten, 1995; Field et al., 1994; Roesink et al., 

1991; Gekas and Hallström, 1990; Wakeman and Tarleton, 1986). In the following 

two sections, these two phenomena are further discussed.  
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Fig. (4.14): Membrane fouling mechanisms (Tansel et al., 2000).  

 

 

4.4.1 Concentration Polarization 
  

As far as the filtration process is concerned, some molecules/particles of the 

liquid/colloid to be filtered will pass through the membrane while others will be 

retained depending on their size and membrane pore size distribution. Those retained, 

due to their larger size than membrane pores and under the influence of process 

conditions, will deposit on the membrane surface and eventually a layer of these 

deposits will build-up and work as a secondary membrane, as shown in Fig. (4.15) 

(Salahi et al., 2010; de Morais Coutinho et al., 2009; Del Colle et al., 2007; 

Mohammadi et al., 2003; Herath et al., 2000; Srijaroonrat et al., 1999; Al-Malack and 

Anderson, 1997; Akay and Wakeman, 1996; Wenten, 1995; Akay and Wakeman, 

1994b; Akay and Wakeman, 1994a; Belfort et al., 1994; Wakeman and Tarleton, 

1986). Mathematical models that illustrate the development of this secondary 

membrane are described by Akay and Wakeman (Akay and Wakeman, 1996). The 

thickness of this layer at steady-state is constant with time but it builds up with the 

distance from the membrane (Romero and Davis, 1988). One important aspect of this 

layer is that its high concentration of solute molecules (particles) at the side that’s 

adjacent to the membrane surface, with this concentration diminishes as the distance 

to the membrane surface increases. As a result, a concentration gradient generates in 

the perpendicular direction to the membrane surface (Concentration 

polarization/concentration boundary layer) as shown in the schematic diagrams below 

Fig. (4.15-16) (Herath et al., 2000; Wakeman and Akay, 1997; Field, 1996; 
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Parvatiyar, 1996; Akay and Wakeman, 1994a; Belfort et al., 1994; Schulz and 

Ripperger, 1989; Romero and Davis, 1988; Wakeman and Tarleton, 1987; Baker et 

al., 1985; van Gassel and Ripperger, 1985). Understanding the behavioural nature of 

this layer is a key in membrane processes.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4.15): Schematic diagram of concentration polarization. Reproduced from 

(Herath et al., 2000). 

 

 

Fig.(4.16): Schematic diagram of concentration polarization (van Gassel and 

Ripperger, 1985). 
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Once this layer has established, which usually does not require a long time 

(Del Colle et al., 2007; Field, 1996; Fell et al., 1990; Gatenholm et al., 1988), it acts 

as a new membrane (dynamic membrane) for smaller molecules which normally 

would not be retained by the original membrane. In fact, this layer leads to a 

performance decay (permeate reflux degradation) of microfiltration membranes 

through the alteration of interactions between solvent, solutes and membrane surface 

(Mohammadi et al., 2003; Akay and Wakeman, 1994b). The properties of the liquid to 

be filtered, such as: its particle size distribution, concentration and viscosity along 

with filtration operational factors including membrane pore size, feed velocity and 

TMP, have an important effect on the development of this layer (Akay and Wakeman, 

1994b; Fell et al., 1990; Schulz and Ripperger, 1989). Under steady-state conditions, 

the concentration gradient is constant since the same amount of large deposits diffuses 

back to the bulk lending their place, on the membrane surface, to new deposits 

brought in under convective flow (Wakeman and Williams, 2002; Elmaleh et al., 

1998; Benkahla et al., 1995; Fell et al., 1990; van Gassel and Ripperger, 1985). In 

another detailed studies by Romero and Davis (1990; 1988), a deeper insight into this 

layer, suggests that depending on the flow conditions on the membrane surface 

(Tarleton and Wakeman, 1993), it comprises two layers; a flowing layer and a 

stagnant layer, the latter layer is beneath and more concentrated than the former one. 

This layer increases the hydraulic resistance to flow which means a declined flux 

(Herath et al., 2000; Field, 1996; Wu and Howell, 1992; Schulz and Ripperger, 1989; 

Romero and Davis, 1988; van Gassel and Ripperger, 1985). In addition, with regards 

to the non-linear velocity profile within this layer that molecules/particles close to the 

membrane surface are stationary i.e. their velocity is zero; however, the difference in 

velocity diminishes with the distance from the membrane surface until it becomes nil 

in regions away from the surface where the dominant velocity is the bulk one (Field, 

1996; Gatenholm et al., 1988; van Gassel and Ripperger, 1985). However, an opposite 

trend is reported on viscosity, as this layer is characterized with higher viscosity at the 

membrane surface compared to that of the bulk stream (Field, 1996; Fell et al., 1990; 

Gatenholm et al., 1988; Romero and Davis, 1988). 
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4.4.2 Membrane Fouling 
 

Membrane fouling means reduced membrane permeability, it has the units of: 

permeate volume/ (membrane area) (time) (pressure) (Cornel and Krause, 2008). 

There are two mechanisms that lead to membrane fouling: membrane pore blocking 

and cake formation; the former, as filtration time elapses, results in the latter. 

Membrane pore blocking by retained particles contributes to the sharp flux decline 

that takes place in the early stage of filtration through increased membrane resistance. 

Long-term and gradual flux degradation; however, is attributed to the formation and 

growth of cake layer which performs as an additional layer of resistance to the 

permeate flow. Solute adsorption, particle deposition within membrane pores and 

changes in the cake layer can further complicate/simplify membrane fouling (de 

Morais Coutinho et al., 2009; Howarter and Youngblood, 2009; Srijaroonrat et al., 

1999; Song, 1998).  

 

Prior to membrane pore blocking; once filtration has commenced, permeate 

flux rate is virtually a maximum since all membrane pores are available (unblocked). 

As filtration proceeds, a time will come when membrane pores are blocked. Shape 

and relative size of particles and membrane pores dictate the degree of blockage. For 

instance, complete pore blocking occurs when both particles and pores are of 

comparable shape and size. Further particles retention by the membrane body with 

pre-blocked pores leads to the formation of a growing cake layer on the membrane 

surface. Due to this layer, permeate flux rate further declines through increased 

resistance to the permeate flow (Tay et al., 2003; Song, 1998).  

 

This resistance is largely influenced by membrane properties and its tendency 

to pore blockage as well as by the permeability of the formed fouling layer on the 

membrane surface. Chemical compatibility, wettability and resistance to temperature, 

pressure and pH may help tackle the problems associated with membrane properties 

and its susceptibility to pore blocking. The permeability of the resultant layer is a 

sensitive function of some operational parameters, which have considerable effect on 

the filtration hydraulic system, such as: feed velocity, pressure, temperature and 

concentration, as they determine the extent of turbulence, shear stresses and layer 

thickness (Koltuniewicz et al., 1995). Both pore blocking and cake formation have 
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been used to explain flux decline mechanism(s) in filtration processes. For this, 

several physical models based on constant pressure filtration (Hermia’s model) and 

surface renewal model have been developed. According to Hermia’s model the 

mechanism of flux decline in microfiltration can be explained by the following 

(Saxena et al., 2009; Mohammadi et al., 2003; Waniek et al., 2002; Field, 1996; 

Koltuniewicz and Field, 1996; Koltuniewicz et al., 1995; Belfort et al., 1994):  

 

4.4.2.1 Complete Pore Blocking Model 

This model postulates that each particle participates in blocking of membrane 

pores and particles are not superimposed upon one another as depicted in Fig. 

(4.17- a). The blocked surface area is proportional to the permeate volume. 

 

4.4.2.2 Standard Pore Blocking Model 

According to this model, Fig.(4.17- b), the particle diameter is much less than 

the pore diameter; therefore, particles can enter most pores, deposit on the pore 

walls and; thus, reduce the pore volume. The decrease of pore volume is also 

proportional to the permeate volume.  

 

4.4.2.3 Intermediate Pore Blocking Model 

In this model, see Fig. (4.17- c), it is assumed that the number of blocked 

pores is also proportional to the permeate volume, but it is less restrictive in such 

a way that not every particle necessarily blocks the pores and particles may settle 

on other particles. 

 

4.4.2.4 Cake Filtration Model 

This model states that the permeate flow is reduced by increasing the 

resistance on the membrane surface where retained solute is accumulated as 

shown in Fig. (4.17- d). The total resistance is; therefore, the sum of membrane 

resistance and resistance of the cake layer that’s proportional to the mass of solute 

accumulated and consequently to the volume of filtrate.  
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                  a-                                   b-                                c-                              d- 

 

Fig. (4.17): Mechanisms of pore blocking: a- complete blocking, b- standard blocking,        

c- intermediate blocking and d- cake filtration. Reproduced from (Koltuniewicz and 

Field, 1996) 

 

4.5 Measures for Reducing Concentration Polarization and Membrane Fouling 

 

           Flux decline, due to concentration polarization and membrane fouling, is a 

common and inevitable phenomenon in filtration processes. There have been a 

number of methods to improve microfiltration by reducing concentration polarization 

and membrane fouling. Generally, high crossflow velocities can be employed to 

reduce or mitigate this problem, as was demonstrated in a study by Wu and Howell 

(Wu and Howell, 1992); the higher the flow rates, the lower the concentrations of 

deposits are. Furthermore, moderate/low TMP can be applied as another measure to 

overcome this problem as high pressures were found to increase the amount of 

deposited material (Wu and Howell, 1992). Low pressure is also desirable in order to 

avoid compaction of the deposits on the membrane surface (Wakeman and Williams, 

2002). Membrane surface modification to alter the membrane-molecules/particles 

interaction characteristics may also be useful in this regard (Srijaroonrat et al., 1999; 

Gatenholm et al., 1988; Anderson et al., 1987). A summary of some suggested 

techniques is given in Table (4.2) which is based mainly on a study by Wakeman and 

Williams (Wakeman and Williams, 2002).  

 

Several strategies can be implemented in order to reduce both concentration 

polarization and membrane fouling. By doing so, membrane cleaning can be 

considered as non-compulsory requirement. Factors that lead to concentration 

polarization and membrane fouling reduction include; physical and chemical feed 

treatment/conditioning, membrane properties, flow conditions, enhancement of 
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filtration performance through coupling filtration with some external 

electrical/ultrasonic fields and/or back-flow. An assortment of these techniques used 

to reduce membrane fouling is listed in Table (4.2), which is based on some studies 

and suggestions from some researchers (Fakhru'l-Razi et al., 2009; Cornel and 

Krause, 2008; Nicolaisen, 2002; Wakeman and Williams, 2002; Srijaroonrat et al., 

1999; Akay et al., 1998; Holdich et al., 1998; Akay and Wakeman, 1996; Field, 1996; 

Scott and Hughes, 1996; Belfort et al., 1994; Bowen and Sabuni, 1991; Trägårdh, 

1989; Hsieh et al., 1988).  
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Table (4.2): Measures for reducing concentration polarization and membrane fouling. 
 

No. Technique Approach/procedure Contribution Influence Reference(s) 

1-  

Feed pre-treatment 

a- Physical processes 

b- Chemical 

processes. 

 

 

-Centrifugation. 

- Pre-filtration. 

- pH adjustment. 

- Precipitation. 

- Coagulation. 

- Flocculation. 

- Use of proprietary 

chemicals (antiscalants/ 

disinfectants). 

 

 

- To remove suspended 

macromolecules, 

particulates or solids. 

- To keep 

molecular/colloidal 

foulants away from their 

isoelectric point. 

 

- To avoid deposits on 

membrane surface and 

clogs in the membrane. 

- To reduce 

molecular/colloidal 

foulants propensity to 

form a gel layer. 

 

(Cornel and Krause, 

2008; Nicolaisen, 2002; 

Wakeman and Williams, 

2002; Belfort et al., 1994; 

Bowen and Sabuni, 1991; 

Trägårdh, 1989; Hsieh et 

al., 1988). 

 

 

 

2- Appropriate 

membrane selection. 

- Membrane material with 

low solute interaction 

character as possible 

(hydrophilicity-

hydrophobicity), 

compatibility with feed pH, 

temperature and chemical 

composition. 

 

- To weaken solute(s)-

membrane surface 

attachment. 

- To enhance membrane 

permeability. 

-To make membrane 

cleaning easier since the 

solute is loosely attached 

to the membrane surface. 

(Fakhru'l-Razi et al., 

2009; Matsumoto et al., 

1999; Belfort et al., 1994; 

Bowen and Sabuni, 1991; 

Trägårdh, 1989; Tarleton 

and Wakeman, 1988). 

 

 

 

 

 

3- Flow manipulation 

(adjustment). 

- Turbulence (instability) and 

local vortex promoters via 

- To disturb foulants. 

- To induce fluid mixing 

- To increase shear rate at 

the membrane surface via 

(Cornel and Krause, 

2008; Wakeman and 
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rotational, leakage, helical, 

tortuous or corkscrew flow 

(through inserts), static 

mixing and oscillation 

(pulsation). 

 

at membrane-solution 

interface. 

high feed flow rates. 

 

Williams, 2002; Akay et 

al., 1998; Holdich et al., 

1998; Belfort et al., 1994; 

Bowen and Sabuni, 

1991). 

4- Dynamic filtration. - Rotating membrane. 

- Vibrated membrane. 

- To develop high shear 

stress (higher than that 

obtained via high flow 

rates) at the membrane 

surface and pores. 

- Increased filtration rate. 

 

 

 

 

(Wakeman and Williams, 

2002; Belfort et al., 

1994). 

 

5- Gas spargeing. - Gas spargeing. - To disrupt polarization 

concentration layer. 

 

- Increased filtration 

rates. 

(Wakeman and Williams, 

2002). 

6- Electric field. - Electric field. - To supply stream 

particles/molecules with 

electrophoretic velocity. 

- Increased filtration 

rates. 

(Wakeman and Williams, 

2002; Akay and 

Wakeman, 1996; Bowen 

and Sabuni, 1991; 

Tarleton, 1988; Tarleton 

and Wakeman, 1988; 

Wakeman and Tarleton, 

1986).  

7- Ultrasonic field. - Ultrasonic field. - To reduce stream 

viscosity and bring 

changes in particles 

surface properties. 

- Increased filtration 

rates. 

(Wakeman and Williams, 

2002; Tarleton, 1988). 

 

8- Combined electrical 

and ultrasonic fields. 

- Simultaneous electric and 

ultrasonic fields. 

- Refer to the above. - Increased filtration 

rates. 

(Wakeman and Williams, 

2002; Akay et al., 1998; 
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Tarleton, 1988). 

9- Periodic 

backflushing. 

- Use of chemicals. 

- Reversing flow direction. 

To clean the membrane 

by removing deposited 

material(s) from 

membrane surface 

To clean the membrane 

by removing pore fouling 

if deposits are not firmly 

adhering to pores walls. 

To restore original 

membrane performance 

characteristics. 

(Cornel and Krause, 

2008; Wakeman and 

Williams, 2002; 

Srijaroonrat et al., 1999; 

Hsieh et al., 1988; 

Tarleton and Wakeman, 

1988).  
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In fact, some of these techniques might not be applicable due to some process 

constraints; others may not have a significant effect. According to Tarleton (Tarleton, 

1992) such techniques, due to either economic grounds or practical difficulties, have been 

considered as ‘technologies awaiting applications’. Although with turbulence flow 

inserts, energy saving of 20 % can be achieved and that membrane fluxes are 50-300 % 

enhanced in comparison to conventional microfiltration processes. However, employing 

such inserts does not appear widely applied in commercial applications. The gas sparging 

technique is less efficient (60-270 % flux rates improvement) than turbulence/vortex 

promoters and with some complexity that’s imposed by gas injection. Also, with respect 

to backflushing, it may only be able to deal with membrane-surface deposits; however, 

this technique becomes limited when severe foulants adhesion or pore fouling has taken 

place. Furthermore, in the two available cleaning approaches; cleaning-in-place (CIP) and 

cleaning-out-off-place (COP), downtimes are present; they are shorter in CIP than COP. 

In addition, when considering backflushing with chemicals, care should be taken to select 

an appropriate cleaning solution that’s efficient to remove membrane foulant(s) whilst 

being compatible with membrane material(s) as; otherwise, membrane swelling/damage 

is envisaged (Wakeman and Williams, 2002; Schulz and Ripperger, 1989).  

 

4.5.1 Enhancement of Membrane Crossflow Microfiltration by External Electric 

Field 
 

As demonstrated in Sec.4.4 flux decline in crossflow microfiltration due to 

concentration polarization and membrane fouling is a serious problem and seems 

inevitable. Techniques to enhance permeate flux rates through a membrane are; therefore, 

essential. Many of these techniques were listed in Table (4.2). Among of these techniques 

was the application of an external electric field to the unit of crossflow microfiltration 

(electro-microfiltration), which can be through a continuous or pulsed application. 

Enhancements based on electrical field application have significant potential than other 

enhancements techniques which rely on changing membrane modules and/or 

hydrodynamic conditions (Huotari et al., 1999a; Akay and Wakeman, 1996). To this end, 

throughout this study these enhancements were introduced so as to improve the 

membrane performance. On the other hand; however, due to some restrictions this 

approach has not found wide commercial applications. These restrictions include 
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unavailability of cheap and corrosion-resistant electrodes, high power consumption in 

some circumstances and inefficiency in case of processing streams with relatively low 

conductivity levels as well as unavailability of engineering aspects to design a suitable 

module by which the cost can be reduced (Wakeman and Williams, 2002; Huotari et al., 

1999b; Huotari et al., 1999a; Bowen and Sabuni, 1991).  

    

There are two possibilities by which an electrical field can be applied in an 

electrofiltration cell. The electric field can be applied across the membrane with one 

electrode on either side of the membrane. Alternatively, the electric field can be applied 

between the membrane that’s made of a conductive material, and another electrode, i.e., 

the membrane here serves as an electrode (Wakeman and Williams, 2002; Huotari et al., 

1999b; Huotari et al., 1999a). In this latter setup, energy consumption can be reduced and 

module construction can be simpler (Huotari et al., 1999a). Electro-microfiltration 

induces the movement of particles away from the membrane at a rate dependable on their 

electrophoretic mobility (Wakeman and Williams, 2002; Huotari et al., 1999a; Bowen 

and Sabuni, 1991; Bowen et al., 1989). This movement; therefore, can help reduce 

membrane fouling (cake formation) and; therefore, can increase membrane permeate flux 

rate (Saxena et al., 2009; Wakeman and Williams, 2002; Bowen et al., 1989; Wakeman 

and Tarleton, 1987). Applying an electrical field across a microfiltration system can 

further help prevent membrane fouling by gas bubbles, such as hydrogen and oxygen at 

the cathode and anode; respectively, which may generate by electrolysis (Wakeman and 

Williams, 2002; Huotari et al., 1999b; Akay and Wakeman, 1996; Scott, 1996). 

Furthermore, Wakeman and Williams (2002) stated that applying an electrical field to a 

microfiltration system is more influential when coupled with fairly low feed crossflow 

velocities. This in addition can directly lead to reduced pumping costs. 

 

The effect of an electric field on the microfiltration behaviour was also examined 

by Wakeman and Williams (2002), Tarleton and Wakeman (1990) and Wakeman and 

Tarleton (1987). They observed that introducing an electrical field across the filtration 

system, as long as it is higher than the threshold current necessary to lift the particles 

away from the membrane surface, does result in enhanced flux rate compared to that 
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obtained with no electric field. Tarleton and Wakeman (1990) have also examined the 

combined effect of both acoustic and electric fields. Their conclusions show that 

simultaneous application of the two fields through a synergic effect, further enhances the 

flux rate with no sharp drop due to fouling. Furthermore, Wakeman and Williams (2002) 

observed that the enhancement of flux rate through the application of the latter fields 

(acoustic and electric) is constantly largely greater, in particular in case of small 

suspension particles with high zeta potentials, than that obtained via the application of the 

former field (electrical field only). In addition, Tarleton and Wakeman (1990) analyzed 

the flux decline behaviour in microfiltration of two different suspensions with and 

without an acoustic field. At the examined conditions, microfiltering both suspensions 

with no acoustic field gave a lower flux rates in comparison to when an acoustic field was 

applied. Flux decline was obvious in both cases, i.e. with and without the application of 

the acoustic field. It was also shown that the distance between the acoustic field source 

and the membrane is of great importance since higher flux rates were obtained as this 

distance was shortened. The contribution of acoustic fields in improving the membrane 

flux rate can be viewed by the high internal forces (vibratory input) being produced near 

the membrane surface upon its application. Such forces include particle dispersion, 

viscosity reduction, alterations in particle surface properties and cavitation (Pangu and 

Feke, 2004; Robins et al., 2002; Wakeman and Williams, 2002; Mason and Cordemans, 

1996; Tarleton and Wakeman, 1992). These forces may be able to carry the fouling 

particles through the filtered stream away from the membrane surface which in turn may 

help reduce pore blockages. 

 

4.6 Membrane Cleaning 

 

Trägårdh (1989) defined membrane cleaning as ‘a process where material is 

relieved of a substance which is not an integral part of the material’. Membrane cleaning 

is usually used in an attempt to restore the original membrane performance characteristics 

as far as possible. It can be achieved mechanically, thermally and/or chemically. In 

addition, as it was stated, in the previous section, Sec. 4.5.1, applying an electrical field 

across a microfiltration system can further help prevent membrane fouling or serve the 
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purpose of membrane cleaning by the microscopic H2 or O2 bubbles that generate from a 

conducting membrane by which fouling deposits on the membrane surface are dislodged 

(Scott, 1996). Mechanical cleaning relies on introducing a high shear rate at the 

membrane surface by; for instance, reversing the flow direction (back-flush) so that a part 

of the permeate/water is forced to flow back through the membrane (Lipp et al., 2005; 

Cakl et al., 2000; Srijaroonrat et al., 1999; Belfort et al., 1994; Gekas and Hallström, 

1990; Trägårdh, 1989; van Gassel and Ripperger, 1985) as shown in Fig. (4.18). Air can 

also be used to enhance cleaning efficiency and minimize the use of chemicals, if 

required (Lipp et al., 2005). This should be achieved at a higher circulation flow rate as 

well as a lower pressure than those applied during the actual filtration procedure.  

 

Fig. (4.18): Schematic representation of back-flushing technique (Srijaroonrat et 

al., 1999). 

 

Reversible fouling, that as mentioned earlier, takes place on the membrane surface 

and can be dealt with by a physical washing with water. Chemical cleaning procedures; 

however, have to be employed to conquer irreversible fouling (that may persist after 

air/water washing) which is encountered in membrane pores (Howarter and Youngblood, 

2009; Cornel and Krause, 2008). In chemical cleaning, some chemicals (agents) are 

employed to restore the original separation membrane characteristics, usually in a 

negative flow direction (Lipp et al., 2005; Cakl et al., 2000). For this purpose, various 

chemicals have been used with respect to fouling material and nature. Examples of these 

chemicals are: bases such as sodium and potassium hydroxides, acids such as nitric acid, 

different types of surfactants and disinfectants (Mohammadi et al., 2002; Trägårdh, 1989; 

Hsieh et al., 1988). These chemicals should perform the cleaning task by dissolving and 



124 

 

loosening the foulant(s). However, they should not bring new foulant(s) nor damage the 

filtration system; that’s the membrane itself and the rest of the equipment within the 

filtration unit (de Morais Coutinho et al., 2009; Mohammadi et al., 2002; Trägårdh, 

1989). Therefore, selection of cleaning agent, which is usually carried out by trial and 

error, must take into account not only the fouling material’s nature, but also the chemical 

and thermal resistance limits of the membrane system (Mohammadi et al., 2002; 

Trägårdh, 1989). In addition, these chemicals should be chemically in-reactive with the 

membrane, cheap, safe and washable with water (Mohammadi et al., 2002; Scott, 1996).  

 

In fact, although with high crossflow velocities and back-flush technique 

permeate flux in microfiltration processes can be increased, a high velocity requires a 

higher energy consumption; which entails further cost and complexity (Mohammadi et 

al., 2004), and is also accompanied with high pressure losses. Furthermore, despite the 

fact that by back-flushing original permeate flux characteristics can be restored, it 

diminishes the effective filtration time and when permeate, in particular, is employed for 

back-flushing, it leads to the contamination of some of the permeate with the feed 

solution (Mohammadi et al., 2004; Nicolaisen, 2002; Cakl et al., 2000; Wenten, 1995).  

 

4.7 Influence of Operating Conditions and Membrane Properties on Membrane 

Permeate Flux Rate 

Although there are different cleaning techniques, as was shown in Sec. 4.6, that 

can be used to restore original membrane performance characteristics as possible, these 

techniques are generally not always quite efficient or easy to employ, depending on the 

complexity of the filtration system. In response to this, preventive measures by means of 

a collection of some optimum operational conditions of TMP, feed velocity, feed 

concentration and membrane properties, may help reduce fouling and; therefore, enhance 

membrane flux. It is important to mention that in order to attain these optimum 

conditions, a trade-off amongst these conditions is required. However, it cannot by no 

means be claimed that these optimal conditions will render filtration processes fouling-

free, but they may retard fouling making the need for cleaning process(es) less frequent. 
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The influence of these operational conditions on the performance of membrane processes 

is briefly touched upon in the following sections. 

 

4.7.1 Effect of Transmembrane Pressure (TMP) 

 

With the TMP, the membrane flux rate substantially changes. Kocherginsky et al. 

(2003) in their investigation of w/o demulsification via membrane filtration, claimed that 

increasing TMP increases membrane flux rate. This is in line with Darcy’s law which 

states that a membrane flux rate is directly proportional to the applied pressure gradient, 

as explained in Sec. 4.3.1 (Wakeman and Tarleton, 1991). They discovered that 

membranes with bigger pore size at higher pressures gave a higher flux rates. However, 

they produced more water in the permeate stream than other membranes with smaller 

pores. One explanation for this is that increasing the TMP in membranes with big pore 

size reduces the residence time of emulsion droplets on the membrane surface. This; 

therefore, leads to reduced coalescence and; thus, reduced demulsification efficiency 

(more water in the product). On the other hand, results reported by Sun et al. (1998) 

suggest that increasing the TMP increases flowing speed of the emulsions, rupture of the 

droplets and coalescence of internal aqueous phase inside membrane pore; hence, 

demulsification efficiencies increase. Nevertheless, excessive TMP increase can result in 

reduced demulsification efficiencies as it will lead to water droplets desorption which 

means reduced water droplets adsorption and coalescence. Higher TMP gives higher 

permeation flux due to the fact that water droplets will pass through the membrane pore 

very quickly. According to this, a balance should be made between high permeation flux 

and demulsification efficiencies. However, Chakrabarty et al. (2008); Srijaroonrat et al. 

(1999); Song (1998) and Riesmeier et al. (1987) stated that higher TMP than a critical 

pressure leads to a fast membrane pore blockage, cake layer formation and alteration in 

the critical surface tension, contact angle and pore size of the membrane; thus, increased 

membrane rejection, i.e. membrane flux deterioration. This was also demonstrated by 

Koltuniewicz et al. (1995) and Riesmeier et al. (1987) and was ascribed to the fact that 

the applied pressures were able to entrap oil droplets into the membrane pores but were 

not high enough to make them sweep away from the membrane, which in turn leads to 
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pore blocking; hence, membrane flux decline (increased membrane rejection) 

(Chakrabarty et al., 2008). Furthermore, it was also demonstrated that the flux declined at 

higher rates at high pressures.  

 

In another study by Scott et al. (2001), dependency of membrane flux rate on 

TMP was categorized into three trends, refer to Fig. (4.19). Initially, increasing TMP 

gave increased fluxes; this was then followed by a reversal effect of TMP on the flux at 

which concentration polarization layer is formed and membrane pores are blocked by 

water droplets. This effect dominates the process until a pressure called breakthrough 

pressure is applied by which pore blockers (water droplets) can break through with the 

permeate. Ohya et al. (1998) pointed out a similar style of behaviour, that at a particular 

pressure it was shown that the flux declines over time. Initially, this particular pressure 

was able to force oil droplets to settle on the membrane surface to permeate through. 

However, there was a stage where oil droplets are no longer dependant on the applied 

pressure and instead of being pushed out through the membrane they underwent a partial 

deformation, which in turn promotes oil layer compaction; hence, flux decline.    

 
Fig. (4.19): The effect of transmembrane pressure on flux for corrugated membranes. 90º 

angle of corrugation (Scott et al., 2001) 
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4.7.2 Effect of Feed Crossflow Velocity (CFV) 

    

There have been several studies investigating the relationship between membrane 

flux rate and the feed CFV. Generally, higher flux rates are obtained when running the 

filtration experiments at high velocities (Scott et al., 2001; Tarleton and Wakeman, 

1994a; Jiao and Sharma, 1994; Riesmeier et al., 1987). Increasing the feed CFV 

corresponds to higher Reynolds number values (turbulence). Hence, concentration 

boundary layer and membrane fouling can be reduced; therefore, higher permeate fluxes 

are secured. A slightly different behaviour was demonstrated by Ohya et al. (1998) in 

which they reported a slight flux reduction with time as the feed CFV increased 

particularly at lower velocities. This was due to the fact that there was no shift towards 

turbulent flow conditions by which the flux may be improved (de Morais Coutinho et al., 

2009; Gomez and Lin, 2004; Mohammadi et al., 2004; Ohya et al., 1998; Benkahla et al., 

1995; Koltuniewicz et al., 1995; Fell et al., 1990). Tarleton and Wakeman (1992) 

produced an unchangeable filtrate flux rate of the suspensions they examined, regardless 

of the feed CFV utilized. In their study, no interpretation of such a trend was given. 

 

4.7.3 Effect of Feed Concentration 

    

Generally, increasing emulsion concentration leads to flux decline due to a 

fouling layer being formed on the membrane surface (Wakeman and Tarleton, 1991; 

Wakeman and Tarleton, 1986). This layer may be so rigid and; therefore, influential in 

term of fouling if flow forces are too low to remove it. In addition, the nature of the 

membrane (hydrophilic/hydrophobic) does help minimize interactions between this layer 

and membrane body so that flux decline is minimized accordingly (Mohammadi et al., 

2004). Also, in a study by Kocherginsky et al. (2003) the effect of initial dispersed water 

content on the flux rate at different TMPs and on the amount of water in the separated 

stream was studied. It was found that irrespective of the TMPs applied, streams with 

higher initial dispersed water slightly gave lower fluxes. However, the amount of initial 

dispersed water was found with no effect on the final amount of water in the permeate. 

The effect of emulsion concentration on flux decline was also studied by Ohya et al. 

(1998). They found that the lower the emulsion concentration is, the higher the flux rate 



128 

 

is, at a moderate pressure and feed CFV. However, there was a decrease in flux rates over 

time regardless of the feed concentration. This may suggest that there is a minimum 

concentration below which fouling layer formation on the membrane surface is 

insignificant; hence, fouling concentration has no effect on flux rate. Experimental results 

reported by Sun et al. (1998) in their work on demulsification of w/o emulsions by using 

glass membranes also support this trend. 

 

4.7.4 Effect of Membrane Properties 

 

Broadly speaking; for a given membrane, the permeate flux is expected to 

increase in accordance with the increase of its pore size. Experimental evidence 

demonstrated that membranes with bigger pore size produced higher permeate fluxes 

(Kocherginsky et al., 2003; Fell et al., 1990). However, bigger membrane pores may 

result in more contamination of the permeate stream (Kocherginsky et al., 2003). In fact, 

it should be emphasized that this relationship between a membrane performance and its 

pore size distribution seems rather a system specific property; thus, cannot be 

generalized. For instance, although Le et al. (1984) in their analysis of the flux behaviour 

with time of three membranes of different nominal pore sizes (0.2, 0.45 and 0.6 µm) but 

similar membrane material (Asypor) have observed that a 0.6 µm membrane gave a 20 % 

higher permeate flux than that obtained via a 0.2 µm membrane. On the other hand, they 

also found that a 0.45 µm membrane gave a flux almost twice higher than that produced 

by a 0.6 µm over the entire duration of the filtration experiment. An explanation of this 

pattern was attributed to the variation in the size of solute particles relative to the 

membrane pore size and pore-pore proximity. In the 0.6 µm membrane, particles had a 

greater opportunity to penetrate through the membrane surface than in the 0.45 µm 

membrane; therefore, greater fouling (reduced flux) in the former membrane in 

comparison to the latter one. Similar findings were also reported by Waeger et al. (2010) 

and Tarleton and Wakeman (1993) in their investigation of microfiltration/ultrafiltration 

of particle removal from feed suspension and anaerobic digester effluents through 

ceramic membranes, respectively. Membrane material, through membrane-solute 

interactions, in particular during the initial stages of filtration, is also an important 

parameter to enhance membrane performance, i.e. increased flux/reduced rejection. This 



129 

 

membrane-solute interaction, through solute adsorption on membrane surface or within 

its pores, results in an increased polarization which results in an increased membrane 

rejection capacity as the filtration advances (Wakeman and Williams, 2002; Wakeman 

and Akay, 1997; Tarleton and Wakeman, 1994b; Wakeman and Tarleton, 1991; Fell et 

al., 1990).  

 

 

4.8 Application of Crossflow Microfiltration in Water-in-Oil Emulsions 
 

Crossflow microfiltration has increasingly seen continuous developments which 

have led to widening its applicability in several applications including w/o emulsions. 

There has been a wealth of information on o/w separation in multiple studies through 

different processes including: hydrocyclones (Hashmi et al., 2004), ultrafiltration (UF) 

(Salahi et al., 2010; Chakrabarty et al., 2008; Belkacem et al., 2007; Li et al., 2006b; 

Lobo et al., 2006; Gomez and Lin, 2004; Hu et al., 2002; Chang et al., 2001; Faibish and 

Cohen, 2001; Briscoe et al., 2000; Kong and Li, 1999; Srijaroonrat et al., 1999; Lin and 

Lan, 1998), microfiltration (MF) (Zhao et al., 2005; Mohammadi et al., 2004; Hong et al., 

2002; Holdich et al., 1998; Mueller et al., 1997; Koltuniewicz and Field, 1996; Marc, 

1995; Scott et al., 1994), dissolved air flotation (DAF) (Li et al., 2007; Rodrigues and 

Rubio, 2007; Al-Shamrani et al., 2002b; Al-Shamrani et al., 2002a; Rubio et al., 2002; 

Zouboulis and Avranas, 2000), electro-flotation (Bande et al., 2008; Mostefa and Tir, 

2004), electrical demulsification (Tsuneki, 2007; Ichikawa et al., 2004; Ichikawa and 

Nakajima, 2004) and electrochemical processes (Chen-Lu, 2007). In membrane 

processes, although mainly membranes with hydrophobic characters were used, 

hydrophilic membranes were also employed. On the other hand; however, few studies, to 

the best of this thesis author’s knowledge, have described w/o emulsions separation (topic 

of this work) through microfiltration processes (Hu and Scott, 2008; Hu and Scott, 2007; 

Ezzati et al., 2005; Kocherginsky et al., 2003; Scott et al., 2001; Dezhi et al., 1999; Sun et 

al., 1998). It should be noted that the mechanism by which membranes function in the 

destabilization of oil emulsions is different from that in the separation of colloidal 

suspensions. In the latter systems, separation is dependent on sieving mechanism as 

demonstrated in 4.2.6, whereas in w/o emulsion systems membranes encourage emulsion 
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droplets, which are usually of trivial size, to coalesce so that larger droplets are formed 

where gravity separation can then be applied (de Morais Coutinho et al., 2009; 

Chakrabarty et al., 2008; Hong et al., 2002). Explanation of this mechanism is the task of 

the following paragraphs.  

     

Ezzati et al. (2005) in an effort to attain low water content in the permeate side 

used a porous hydrophobic membrane to demulsify w/o emulsion in the presence of an 

emulsifier (Span 80). Hu and Scott (2007) experimentally found that water-in-kerosene 

(oil) emulsion with an oil soluble surfactant (Span 80) can be separated by hydrophilic 

and hydrophobic membranes by crossflow filtration. Of the former membrane 

(hydrophilic), permeate flux rate was much lower than that obtained from the different 

hydrophobic membranes examined. This low flux was as a result of low surfactant 

(hydrophobic)-membrane (hydrophilic) interaction. This membrane; however, exhibited a 

gradual flux decline. Turbulence promoters by means of half-cylinder or triangular 

corrugations were also shown to further enhance flux rates in comparison to flat 

membranes. They enhance mass transfer in regions away from the membrane leading to 

reducing concentration polarization, increase shear rate on the membrane surface leading 

to reducing membrane fouling as well as increase membrane filtration area and improve 

energy consumption. Corrugation was found to be very influential at higher feed flow 

velocities (Scott et al., 2000). Similar results were also obtained in a study by Scott et al. 

(2001). In another study, Hu and Scott (2008) compared their results of microfiltration of 

a w/o emulsion, using a variety of hydrophobic and hydrophilic membranes of different 

pore size, with Hermia’s models at different experimental conditions. They found that, in 

both membranes (PVDF; hydrophobic and regenerated cellulose; hydrophilic), flux 

decline was due to two predominant behaviours, namely, cake formation and intermediate 

pore blocking, respectively.   

    

Successful demulsification work on w/o emulsions using a hydrophilic porous 

glass membrane that functions as a wetting and coalescing medium has also been carried 

out by Kukizaki and Goto (2008) and  Sun et al. (1998). Glass membranes were 

employed in these studies due to their high strength, narrow pore size distribution, rigid 
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pore structure as well as ease of cleaning. Due to some interactive forces between 

membrane surface (hydrophilic) and emulsion water droplets, emulsion droplets; with the 

protective surfactant film, begin to congregate on the membrane surface. Under the 

influence of TMP, this collection of droplets will be forced to enter the membrane pores. 

Three scenarios are then envisaged: a- emulsion droplets diameter (Dd) is smaller than the 

membrane pore diameter (Dp) i.e. (Dd/ Dp<1), this will permit droplet(s) to pass through 

the membrane, as a result, no demulsification or at most ineffective demulsification will 

occur, b- when emulsion droplets are in the same range as that of the membrane pore 

diameter (Dd/ Dp≈1), only part of the droplets can pass through the membrane which 

accordingly will be partially demulsified and c- better demulsification efficiencies but 

lower permeation fluxes are obtained if emulsion droplets size is larger than membrane 

pore diameter (Dd/ Dp>1) (de Morais Coutinho et al., 2009). Droplet deformation is a 

mandatory process for this last mechanism by which droplets enter the membrane pore 

and can be squeezed and collided, leading to destroying their protective film. As a result, 

the internal phase (water) is released and contacts with the hydrophilic pore wall. As the 

process advances, water droplets will wet, adsorb and coalesce on the internal surface of 

the porous hydrophilic membrane wall creating larger water droplets. The latter (water 

droplets) will be pushed out of the membrane pore under the influence of TMP at a 

velocity similar that of the permeate stream (Cumming et al., 2000). By this mechanism, 

w/o emulsions are separated into water phase and oil phase. The sequence of this 

demulsification process is presented in Fig (4.20) below. 
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                       (a)                                   (b)                                               (c) 

 

Fig. (4.20): Schematic diagram of demulsification by porous glass membranes: (a) 

emulsion droplets with the protective surfactant film congregate on the membrane 

surface, (b) droplet deformation and (c) larger droplets are formed. Reproduced from 

(Sun et al., 1998). 

 

Comparable results were also reported by Kocherginsky et al. (2003) in their 

investigation of the demulsification of w/o emulsions through filtration via a hydrophilic 

nitrocellulose polymeric membrane. The emulsion was made up from kerosene with di-2-

ethylhexyl phosphoric acid as a surfactant comprising the oil phase while the aqueous 

phase was NaOH solution. The emulsion droplet size distribution was wide (0.5- 50) µm. 

The membrane pore size was between (0.05-0.45) µm. Therefore, there were two 

possibilities when the emulsion was fed against the hydrophilic membrane to which water 

droplets are attached. Droplets that are smaller than the membrane pore size will go 

through easily and coalescence occurs inside the pores. However, larger droplets have to 

deform in order to pass through the membrane under the effect of TMP that’s higher than 

the critical pressure (Kocherginsky et al., 2003; Park et al., 2001). Critical pressure is 

defined as the least TMP at which droplets are permeated through a membrane (Park et 

al., 2001; Kong and Li, 1999). Adsorption of these larger emulsion droplets on the 

membrane surface is also probable, leading to droplet coalescence creating a thin layer of 

water on membrane surface. This is granted by the interactions between the membrane 
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surface and water droplets and the surfactant film around water droplets. Hence, the top 

surface of the droplet becomes flatter losing its surfactant molecules. Thus, this flat 

surface (attached to the membrane surface) in turn would have its surface area reduced 

and; therefore, would have a higher surface tension than that of other parts of the droplets 

that’s not physically in contact with the membrane surface (Park et al., 2001). This leads 

to surface instability, droplet fusion and transport through the membrane. As a result of 

surfactant film destruction and increased surface tension (instability), more interaction 

and fusion with the incoming new droplets take place as shown in Fig. (4.21). Therefore, 

emulsion droplets are not stabilized anymore (demulsified). Larger water droplets will 

then form, which eventually will settle down forming a water phase. Meanwhile the oil 

phase will form the top layer. 

 

 

Fig. (4.21): Schematic diagram of demulsification by hydrophilic nitrocellulose 

membrane (Kocherginsky et al., 2003). 
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Moreover, Dezhi et al. (1999) investigated the use of hydrophilic coalescence 

materials in stirred/packed columns to breakdown w/o emulsions of kerosene in aqueous 

HCl solution with Span80 as an emulsifier. Due to good wetting properties, mechanical 

strength and low capital cost, silica gel, porous glass and some other natural fibers were 

utilized in this study. Their experimental findings demonstrated that demulsification of 

this emulsion under study is feasible. In such a technique, emulsion droplets are captured 

within the fibrous bed until larger droplets are formed, which later can be separated by 

gravity settlers (Daiminger et al., 1995). In addition, they also concluded that silica gel 

and porous glass in stirred-column set-up gave lower demulsification rates than that 

obtained via natural fibrous wetting materials. This was explained by the fact that natural 

fibrous wetting materials are relatively characterized by higher surface area than 

inorganic ones. Similar results were also obtained in the packed-column configuration 

using natural fibrous wetting materials and inorganic materials, as they gave good 

demulsification results. However, higher pressure differences throughout the column 

were necessary when using the latter one (inorganic materials). It is; therefore, concluded 

that inorganic materials have poorer wetting properties for the emulsion droplets than 

natural fibers.  
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Chapter Five 

Apparatus, Experimental Procedure and Analytical Methods 

 

 

When you are inspired by some great purpose, some extraordinary 

 project, all your thoughts break their bounds. Your mind transcends  

limitations, your consciousness expands in every direction and you  

find yourself in a new, great and wonderful world. Dormant forces, 

 faculties and talents become alive, and you discover yourself to be a  

greater person by far than you ever dreamed yourself to be. 

  

Patanjali (150 BCE) 

 

Better is the enemy of the good. 

 

Voltaire 

(1694-1778) 

 

 

5.1 Introduction 

 

In this Chapter, details of the experimental procedures followed to achieve the 

main aim of this study, that’s, microfiltration of w/o emulsions through the use of a 

hydrophilic membrane in the absence and presence of electric fields (process 

intensification technique) in which various electrical fields were applied are presented 

and provided. The analytical techniques which were employed to characterize the 

prepared w/o emulsions and the produced PHP membranes, along with the chemicals and 

other resources used, are also discussed. The experimental work in this study was carried 

out in three stages: emulsion formation, preparation of PHP membranes and 

microfiltration experiments. In the latter stage, two kinds of experiments were performed, 

microfiltration and electro-microfiltration in which a DC electric field was applied, so as 

to investigate what effect an electrical field may have on permeate flux rate.  

    

Part of this experimental work was devoted to the formation of w/o emulsions 

using the supplied BP crude oil and model sea water. Throughout this task, in an effort to 
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reflect various w/o emulsions that are widely encountered in the petroleum industry, 

emulsions were made with two different water contents. Having prepared these 

emulsions, measurements of their stabilities extent and conductivities were performed.  

    

Next, in order to carry out the microfiltration experiments on the prepared w/o 

emulsions, several batches of hydrophobic PHP membranes with various pore sizes were 

prepared. Manipulation of operational parameters such as: dosing and mixing time, 

impeller speed or temperature of the aqueous phase/mixing vessel can allow the 

production of PHP membranes with different pore sizes (Calkan, 2007). These PHP 

membranes were then cut into a shape according to the microfiltration module 

dimensions. In an attempt to alter the surface chemistry of these hydrophobic PHP 

membranes, a sulphonation procedure was carried out on them and then they were 

employed to perform the microfiltration tests.  

Microfiltration experiments were conducted at different operating conditions of 

emulsion water content, filtration duration, feed CFV and membrane pore size. These 

filtration experiments were then repeated at identical operating conditions to those used 

in the first set of experiments but in the presence of a DC electrical field to investigate the 

flux enhancement. Equally important, to fulfil the aims of this investigation it was also 

necessary to perform some analytical techniques, such as environmental scanning 

electron microscopy (ESEM) investigations, on both fresh un-sulphonated and 

sulphonated membranes. ESEM imaging of oil-fouled membranes (used membranes after 

microfiltration experiments) may give an idea of the extent of deposition of surfactants 

and/or any other crude oil constituent’s on the PHP membrane and/or within the pores, in 

an effort to correlate the PHP performance to its internal structure. However, due to some 

restrictions of appropriate use of an ESEM microscope such as contamination and 

damage of the column by oil vaporization during analysis, it was not possible to take any 

ESEM images of oil-fouled membranes. In addition, surface area analysis (SAA) was 

performed on fresh PHP membranes.  
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5.2 Materials 

 

The crude oil implemented in this work was obtained from a BP-field in the North 

sea and used as supplied. The aqueous phase of the prepared w/o emulsions was 

simulated sea water which was prepared by dissolving some salts such as CaCl2, MgCl2 

and NaCl in double distilled water. The filter used was a PHP polymer prepared in 

Newcastle University laboratory. Chemicals required for PHP preparation included: DVB 

(crosslinker), span80 (surfactant), styrene (monomer), potassium persulphate 

(polymerization initiator) and 98 % concentrated sulphuric acid which was also used for 

PHP sulphonation. In addition, isopropanol was also required for PHP washing. All 

required chemicals for this study were purchased from Sigma-Aldrich (Gillingham-

Dorset, UK) and used as received without further purification/modification. These 

chemicals according to their application in this investigation are listed in Table (5.1). 

 

Table (5.1): Chemicals used in this study and their applications. 

Material Application 

Crude oil Emulsion formation/oil phase 

CaCl2  

Emulsion formation/aqueous phase MgCl2 

NaCl 

DVB 

(hydrophobic crosslinker) 

 

 

Membrane preparation/organic phase 

 

Span80 

(surfactant) 

Styrene 

(water-immiscible monomer) 

potassium persulphate 

(polymerization initiator) 

Membrane preparation/aqueous phase 

 

98 % conc. H2SO4 

Isopropanol Membrane washing 

98 % conc. H2SO4 Membrane sulphonation 
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5.3 Methods 

 

5.3.1 Formation of Water-in-oil Emulsions 

 

A crude oil, provided by BP-Amoco, was employed in preparing the w/o 

emulsions. Relevant physical properties of this crude are given in Table (5.2). In this 

work, the continuous phase was the crude oil in which model sea water containing 0.6 g/l 

CaCl2, 5 g/l MgCl2 and 28.1 g/l NaCl was dispersed (w/o emulsion). Since in real 

applications, depending on crude composition, emulsions are comprised of various ratios 

of internal and external phases; in this work, emulsions were prepared with two different 

compositions, to reflect the influence of emulsion water content on emulsion stability 

level and; therefore, on the extent of emulsion destabilization by means of microfiltration. 

Although in real applications emulsions are also formed due to different mixing 

conditions; however, in this study this has not been considered and only a mixing rate of 

1000 rpm (revolution per minute) was used. Since indigenous crude oil surfactants in 

preliminary experiments have sufficiently stabilized the emulsion over a period of time, it 

was decided not to add any other emulsifiers. All emulsification experiments were 

conducted at laboratory temperature.    

 

Table (5.2): Physical properties of BP-Amoco crude oil (Noor, 2006). 

Property Value/colour 

Specific gravity 0.80 

Dynamic viscosity, cP at 25 ºC 153 

Colour Dark brown to black 

 

 

Prior to the emulsion formation procedure, the crude oil in its metal container was 

warmed in a 60-70 ºC water bath to attain good mixing of the contents of the container. 

Then, the crude oil was poured from its metal supplier container into a well-sealed metal 

vessel, to avoid spillage of the crude throughout the course of mixing. Here the crude was 

thoroughly homogenized, using an ABB motor attached to an ACS-150 drive (Lowara, 
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CE) at 300 rpm for 2.5 hr. Mixing of the crude was made in an attempt to ensure that the 

crude contents are uniformly distributed prior to the emulsification process. The 

homogenization process is schematically shown in Fig. (5.1). Stirring was carried on until 

the crude oil was loaded into the emulsification setup, refer to Fig. (5.2). W/o emulsions 

with different model seawater concentrations, as required, were prepared according to the 

following procedure.  

 

Fig. (5.1): A schematic representation of crude oil homogenization process. 

 

This model seawater was made by dissolving salts such as CaCl2, MgCl2 and 

NaCl at concentrations of 0.6 g/l, 5 g/l and 28.1g/l, respectively, in deionized water 

(brine). Such a brine was made in an effort to imitate the brine that’s normally in contact 

with the crude in an oil field (Noor, 2006). In order to form emulsions with different 

water contents, the water content in the emulsion was varied from 30 to 50 vol. % (EI and 

EII, respectively). Within the emulsification setup, shown in Fig. (5.2), a preset volume 

of model seawater (6 L in case of EI emulsions and 10 L in case of EII emulsions) was 

gradually added to a preset volume of crude oil (14 L in case of EI emulsions and 10 L in 

case of EII emulsions) which was previously contained in a 35 L PTFE rectangular feed 

tank (F) with a lid. In order to create the desired w/o emulsions, vessel contents were then 

re-circulated through a by-pass recycle loop by a pump (model U30), Lowara, CE, at 

1000 rpm for 2 hr. This flow diversion (by-pass) was facilitated by completely opening 

valve V1 meanwhile completely closing valve V2. Although it was possible to run the 

Crude 

oil in 

Stirrer speed 

control 
Power 

supply 
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pump at higher speeds, the assigned pump speed of 1000 rpm and the duration of 2 hr 

were chosen on the basis of the stability of the synthesized emulsions, as will be shown in 

Chapter 6, Sec. 6.5. This pump speed was also chosen to avoid any vibrations that did 

occur at higher speeds within the system. To avoid the formation of a stagnant layer of 

water and/or oil at the bottom of the vessel and to attain stream uniformity, the pump 

suction line was always positioned in a way that was not too away from the vessel’s 

bottom. The experimental set-up used for emulsion preparation is shown in Fig. (5.2) 

along with a synopsis of the processes carried out on the crude in order to produce the 

desired w/o emulsion represented in Fig. (5.3). Pictorial representation of the 

experimental rig is given in Appendix C. Specimens from the prepared emulsions were 

allowed to age for some days, until no phase separation was observed, during which their 

separation profiles were carefully monitored and recorded. Fresh prepared emulsions 

were directly used in the microfiltration experiments. Two routines were implemented; 

the first one is microfiltration experiments in the absence of an electrical field; and in the 

second one, microfiltration was coupled with the application of electrical fields at 

different intensities. Details of the microfiltration unit will be given in Sec. 5.3.4 of this 

Chapter and in Fig. (5.8). 

 

 

 

 



143 

 

 

Fig. (5.2): A schematic representation of the emulsification process. 

F: feed tank and V1/V2: valves.  

 

 

 

 

 

Fig. (5.3): A synopsis of the processes of w/o emulsion formation. 
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5.3.2 Measurement of the Stability of the Prepared Emulsions and Permeate 

Samples with Time 

 

In order to examine their stabilities, prepared w/o emulsions with different water 

contents were analyzed for their stability by bottle tests under gravity at laboratory 

temperature. Bottle test analysis provides a measure of the extent of phase separation, if 

there is any, monitored over time. Samples were transferred into plastic tubes, of 50 ml 

graduated in 2.5 ml graduations and tightly stoppered with PTFE lids to avoid any escape 

of crude components. Samples were then allowed to stand under gravity for some days 

(until no further water was separated). During this period of time, separated water 

volume, which is a measure of the emulsion stability, was registered at regular time 

intervals. This procedure was also followed for permeate samples to examine the 

demulsification capability of the prepared PHPs. Figs. (5.4) and (5.5) schematically 

represent a summary of this procedure giving sample(s) volume of the prepared fresh 

emulsions and demulsified permeate streams vs. phase separation time, respectively.   

 

 

Fig. (5.4): Sample volume of the prepared fresh emulsions vs. phase separation time. 
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Fig. (5.5): Sample volume of permeates vs. phase separation time. 

 

5.3.3 Preparation, Processing and Post-functionalization of PHP  

 

The preparation of PHP polymers has been described by several workers 

elsewhere (Ergenekon et al., 2011; Livshin and Silverstein, 2008; Haibach et al., 2006; 

Menner et al., 2006; Akay et al., 2005; Barbetta et al., 2005; Cameron, 2005; Krajnc et 

al., 2005; Zhang and Cooper, 2005; Deleuze et al., 2002; Sergienko et al., 2002; Brown et 

al., 1999; Akay, 1998; Wakeman et al., 1998; Hoisington et al., 1997; Walsh et al., 1996; 

Hainey et al., 1991). PHP is a highly porous material that is prepared through a high 

internal phase emulsion (HIPE) polymerization route of the monomeric continuous phase. 

The development of a PHP polymer involves three stages. These are HIPE formation, 

polymerization of this emulsion and then, according to the final application, final post-

functionalization, respectively. Among the ingredients of the continuous phase were: 
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monomer(s), a cross-linker and a suitable surfactant. All PHP membranes used in this 

work were prepared in-house in a Newcastle University laboratory.  In this study, in line 

with procedures described by Akay and co-workers (Akay et al., 2005; Akay et al., 2004; 

Akay, 1998), PHP polymer was prepared by mixing the ‘oil phase’ (25 ml) which 

consisted of styrene as a monomer, divinyl benzene (DVB) as a cross linker and sorbitan 

monooleate (Span80) as a surfactant (w/o emulsifier); and the ‘aqueous phase’ (225 ml) 

which comprised double distilled water, potassium persulphate as the aqueous phase 

initiator and concentrated sulphuric acid (98 %). Chemical formulas of oil phase 

components are given in Fig. (5.6) below. The recipe for preparing the PHP is listed in 

Table (5.3). The PHP was prepared by adding the aqueous phase drop-wise by two 

peristaltic pumps to the organic phase in a mixing vessel.  

 

Table (5.3): Recipe for PHP preparation. 

 Compound Volume, ml Percentage, % 

 

 

Organic phase 

Styrene 19 76 

DVB 2.50 10 

Span80 3.50 14 

Total  25 100 

 

 

Aqueous phase 

Double distilled 

water 

211.50 94 

Potassium 

persulphate 

2.25 1 

98 % conc. H2SO4 11.25 5 

Total  225 100 
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                      Styrene 

                           Divinyl benzene (DVB) 

       Sorbitan monooleate (Span 80) 

 

Fig. (5.6): Chemistry of oil phase components (Hoisington et al., 1997) 

 

 

The detailed procedure for preparing PHP was as follows: the oil phase of 25 ml 

(10 vol. % of the total emulsion) was prepared first by commingling its aforementioned 

components according to the recipe given in Table (5.3). A typical oil phase composition 

was styrene 76 %, DVB 10 % and Span 80 14 % (by volume). This mixture was then 

placed at the bottom of a mixing vessel (internal diameter = 12 cm). All the aqueous 

phase of 225 ml (90 vol. % of the total emulsion) that contains 211.50 ml double distilled 

water, 2.25 ml potassium persulphate and 11.25 ml H2SO4 was then dosed drop-wise to 

the vessel by using two peristaltic pumps within 5 min, while constant mixing to break up 

large droplets. Mixing is facilitated by two flat impellers (8 cm in diameter) which were 

stacked at right-angles to each other with the bottom impeller positioned as close to the 

bottom of the vessel as possible. Rotational speed of the impellers was kept constant at 

300 rpm. The impeller was started at the same time as dosing the aqueous phase into the 

mixing vessel. Since polymerization factors such as temperature of emulsification and 

mixing speed and duration are decisive with regards to the structure and pore size of the 

produced PHP. Control of pore size and structure of a produced PHP has been described 
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in previous works of Akay and others (Akay et al., 2004; Akay et al., 1995). Mixing time 

was changed when preparing each polymer. Stirring of both phases was continued for an 

additional 1 min after dosing all the aqueous phase (225 ml) into the mixing vessel. A 

simplified schematic diagram of the experimental setup used to produce PHPs is given 

Fig. (5.7).  

Once the emulsion has been prepared, it was then transferred to plastic containers 

through an outlet situated at the bottom of the vessel. To ensure wasted emulsion is 

minimal, having no emulsion is collected from the bottom of the vessel, the vessel was 

taken apart to recover any trapped emulsion within the vessel and on the impellers. The 

plastic containers were then placed in a pre-heated oven at 60 ºC for at least 8 hr for 

polymerization. Once the HIPE is polymerized, solidified PHP blocks were removed 

from plastic containers and sliced with care with a bandsaw into rectangular sheets of 

dimensions that fit into the filtration cell ready for further processing and modification. 

Water was rapidly removed from the produced PHP by drying in a fume cupboard 

overnight, reflecting its open-cell structure.  

 

 

Fig. (5.7): A simplified schematic diagram of the experimental setup used for the 

preparation of PHP. 
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Any residues of chemicals such as surfactants and initiators, which may have 

remained in the pores and interconnects of the produced PHP following drying, were 

removed by soaking the PHP with isopropanol for 2 hr and then washing with double 

distilled water for 8 hr followed by drying a fume cupboard overnight. Once washed and 

dried, surface chemistry of the produced PHP was modified by means of sulphonation in 

an attempt to improve its hydrophilicity (water up-take), increase its surface area and 

render it a conductive media. Of the first point with regards to sulphonation, since in w/o 

emulsions oil (continuous phase) content is by definition higher than, or equal to, that of 

water (dispersed phase) content, it is; therefore, intuitive that using a hydrophobic 

membrane instead of a hydrophilic one, in treating such emulsions, may lead to the 

production of massive amounts of oil in the permeate side with greater susceptibility to 

membrane fouling by oil droplets. In addition, for a given process, in which a 

hydrophobic membrane is used, this means that a larger membrane area may be required. 

Therefore in this work, in an attempt to make the filtration process more viable, a 

hydrophilic PHP membrane with which oil attraction is minimal was required in order to 

reduce membrane fouling by oil droplets; thus, increasing membrane flux rate. However, 

it should not be expected that hydrophilicity/ hydrophobicity is the only means towards 

an optimum membrane system. Other filtration operational factors should also be 

considered.   

 

A sulphonation process was carried out according to the procedure described by 

Akay and co-workers (Akay et al., 2005). PHP sheets were placed in a 500 ml beaker that 

contained 98 % concentrated sulphuric acid for 2 hr without stirring at laboratory 

temperature. Next, PHP sheets were microwaved until cooked. To ensure the removal of 

surfactants and initiators as well as the excess sulphuric acid, double distilled water was 

then used to wash the PHP for 2 hr in a 500 ml beaker with stirring with a magnetic bar. 

During these two hours, used distilled water was disposed of in a specified container and 

replaced with a fresh one every 30 min. Finally, sulphonated PHP sheets were left in a 

fume cupboard overnight to dry out ready for use in the filtration experiments. 
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5.3.4 Filtration Equipment and Procedure 

 

In order to investigate the capability of the hydrophilic polymeric membranes 

(PHP) that were prepared and processed according to the procedures outlined in Sec. 

5.3.3, the emulsion formed through the steps shown in Sec. 5.3.1 was passed through a 

micro/electro-filtration separation cell mounted in a closed circuit crossflow rig, as shown 

in Fig. (5.8). There were two modes followed whilst performing the experiments, namely, 

microfiltration and electro-microfiltration. As the names imply, in the former practice no 

electrical field was applied; nevertheless, in the latter there was. Experiments were 

conducted on fresh emulsions i.e. immediately used following formation. In 

microfiltration experiments, the effect of factors which have an influence on the extent of 

stability of the emulsion such as water content of w/o emulsion and upon the membrane 

performance (flux and retention) of microfiltration of w/o emulsions was investigated. 

This was accomplished by examining the effect of changing the following parameters: 

emulsion water content, filtration duration, feed CFV and membrane pore size. The 

influence of these parameters was also studied in a second set of crossflow electro-

microfiltration experiments in the presence of an electrical potential which is thought can 

help reduce the flux decline caused by membrane fouling. In this work, an electrical field 

corresponds to the voltage applied (0-300) V across a crossflow space of a 0.30 cm 

sandwiched between the hydrophilic polymeric membrane and the other electrode. This 

distance was measured by a depth micrometer.  

 

Filtration cell (C) is constructed from clear acrylic, trade name ‘Perspex’. 

‘Perspex’ was first disclosed in a patent in 1932 by I.C.I. research laboratories (UK). 

‘Perspex’ is fabricated in clear/ coloured acrylic sheets, blocks, rods or corrugated sheets. 

Due to good properties such as light weight, toughness, transparency, moderate heat 

resistance up to 130-150 ºC and resistance to chemical attack by concentrated solutions 

and organic liquids at both normal and elevated temperatures, ’Perspex’ has been suitable 

for many applications, including this work.  
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The cell consists of two rectangular compartments/blocks assembled together with 

eight brass screws and bolts and has the dimensions of 26.30*9.80*8.25 cm 

(length*width*depth) measured by a vernier caliper. On each block, two channels were 

drilled for feed inlets and another two channels for feed outlets. On one block, a channel 

for permeate outlet and another one for ventilation outlet were machined. A ventilation 

outlet is to allow the escape of electrolysis gases that may generate following applying an 

electrical field through the system. To prevent any emulsion leakage from between the 

blocks, O-rings were used. In between the blocks, there was a gap of 30 mm (0.30 cm) 

which was meant to be the distance for the electrical field intensity. One block has a 

cavity with an area of 48 cm
2
 (8 cm * 6 cm) and a depth of 1.75 cm, which was measured 

by depth micrometer. This cavity precisely accommodates the flat hydrophilic polymeric 

membrane (PHP) sheets which, due to their conductivity, were used as an electrode 

(EC1). Underneath where a polymeric membrane sheet sits, some rectangular grooves 

(flow channels) on the surface of the block were made to assist the permeate stream to 

flow out of the cell. To ensure that all the liquid (emulsion) to be filtered only passes 

thorough the membrane, avoiding any escape out side of the membrane, borders of the 

membrane were thoroughly sealed to the adjacent cell surface with silicon. On this block, 

an electrode (hydrophilic polymeric membrane) contact point was also machined. The 

other block carried a foil sheet that was 20 µm thick and acted as an electrode (EC2) 

which can be negative or positive as required. Both electrodes were wired up for 

connection to a voltage source (DCR-T series 5 KW-power supplier supplied by 

Sorensen). All metal elements in the system were grounded.  The following items were 

also among the essential elements included in the rig: 

1- A Waukesha model U30 pump 200 V which was utilized to deliver the emulsion 

from the feed tank (F) into the membrane unit and to pressurize and re-circulate 

the emulsion, connected to a variable speed gear motor drive unit model VLT
® 

3000 Series controller supplied by Danfoss to adjust the emulsion flow rate by 

changing the revolutions of the gear pump. 

2- In-line bypass valves (V2 and V2) to control the transmembrane pressure.  

3- Two digital pressure manometers (P1 and P2) model XML-F, supplied by 

Nautilus were fitted at the inlet/outlet of the membrane unit; respectively, to 
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monitor the transmembrane pressure. The experimental equipment used in the 

filtration experiments is illustrated schematically in Fig. (5.8). 

 

Fig. (5.8): Schematic diagram of the MF experimental apparatus. 

F: feed tank; V1/V2: valves; P1/P2 pressure manometers and C: filtration cell. 

 

By completely opening valve V2, meanwhile gradually closing the by pass valve 

V1, the emulsion was pumped from the feed tank (F) to the membrane unit tangentially 

across the membrane surface through two inlets and the retentate was continuously 

recycled to the feed tank (F). Feed samples prior to and after filtration were collected in 

plastic tubes, 50 ml graduated in 2.5 ml graduations, and tightly stoppered with PTFE lids 

to measure their stability and conductivity. Filtration experiments were run for 30 min 

throughout which permeate samples were collected in similar tubes as those used for feed 

samples every 5 min, so as to monitor the initial and final permeate fluxes throughout the 

filtration experiment, and then analyzed for their conductivity and emulsion stability over 
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a period of time. Once permeate analysis was finished, permeate was then returned to the 

feed tank (F) in an effort to keep the emulsion’s water content approximately constant. 

This procedure was repeated at different emulsion flow rates using the different prepared 

PHP membranes. For all samples taken, volume of separated water was recorded as a 

function of time at laboratory temperature, in order to calculate the efficiency of the 

separation experiments according to the phase collected. Feed flow rate was changed 

between 4.8 and 57 L/min. For each experiment, a fresh PHP membrane was used. Also, 

the pressure on the permeate manometer was measured whilst the permeate was being 

collected. Throughout the course of the filtration experiments, feed and permeate flow 

rates were recorded. All experiments were carried out at laboratory temperature. At 

certain time intervals, the filtration flux, J (L/m
2
 hr) was calculated by dividing the 

permeate volume (L) by the product of the effective membrane area A (m
2
) and sampling 

time τ (hr). Immediately, at the end of each experiment, the PHP membrane was taken out 

from the cell. 

 

In electro-microfiltration experiments, as a contingency step, the rig was designed 

to electrically disconnect through an interlock switch, if the guard, that covers the whole 

system was left while the experiment is running. Also, attention was carefully paid when 

taking samples while the electrical field was applied, making sure that no direct hand-

emulsion contact occurs. In addition, as a precautionary measure, insulated gloves were 

worn. As a summary, the ranges of parameters were as follows: 

Crossflow velocity: 1-12 m/sec 

Water contents of w/o emulsions: 30-50 vol. % 

Electric field: 0-666.70 V/cm, and  

Filtration duration: 30 min 

Prior to the operation, it was essential to ensure that the rig is assembled in a correct 

manner that complies with the safety procedures, as the power supplier used is designed 

for use at up to 300 V. In addition, to ensure safe operation to avoid an electrical shock, 

the following guidelines were followed:  

1- Before any work is carried out on cell connections from DC power supplier, 

ensure all system power is isolated. 
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2- Make sure that the guard is down otherwise there will be no power across the rig. 

3- Turn on system power when all guard’s and system interlocks are in place. 

4- Put the pump on first and then the power supplier unit. 

5- Using manufacturer’s guide, turn on the power supply and select the power 

intensity as required via the adjustment knob/key. Voltage and current knobs 

should always be fully counter clockwise before start. 

6- In case of an emergency, push the emergency button immediately and ask the 

technician for keys to re-activate the circuit again once the problem is rectified. 

  

5.3.5 Cleaning Procedure 

 

In order to ensure that no emulsion has remained within the filtration system 

which may cause measurement error(s) or damage the pump sealings or piping 

connections, a cleaning procedure was adopted. Immediately following each set of 

experiments, the emulsion was completely drained out from the system. The unit is then 

flushed with used isopropanol in a recycling mode at 300 rpm for 30 min. Next, the same 

procedure was repeated with warm tap water. Both isopropanol and water were then 

disposed of in specified waste containers. 

 

5.4 Analytical Methods 

 

Among the analytical techniques employed in this study were the following: 

 

1- Water-in-Oil Emulsions Analytical Measurements: 

 

I-  Conductivity Measurements; and 

II- Transmission Electron Microscope (TEM). 

 

2- Membrane Analytical Methods: 

 

          I- Surface Area Analysis (SAA), and 

II- Environmental Scanning Electron Microscope (ESEM). 
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  5.4.1 Water-in-Oil Emulsions Analytical Measurements: 

 

  5.4.1.1 Conductivity Measurements 

 

The conductivity (G) of a solution is an important property. Conductivity 

represents an indication of how conductive a solution is, that’s able to carry an electrical 

current or not. To a large extent it depends on the amount and nature of the ions present 

in the solution. The higher the ion concentration, the higher the solution conductivity. 

However, there are also conditions at which conductivity is not linearly dependant on the 

solution concentration; this may be attributed to the ionic interactions that may modify 

the conductivity-solution concentration behaviour. 

Conductivity, on this basis, is the reverse of the solution resistance which 

embodies the electrical field impedance. Therefore, Ohm’s law can be re-written as: 

 

G= 
R

1
 (Ohm

-1
) = 

)(

)(

VE

AI
 

Where: G is the conductivity, Ohm
-1

. 

             R is the resistance, Ohm. 

             I is the current, A; and 

             E is the electrical field, V. 

 

As shown above from the definition, the unit of the conductivity is Ohm
-1

 which 

can be read reversely as mho. Currently, this unit is no longer used and has been replaced 

with Siemens/cm or more commonly micro/milli-Siemens/cm (µ/m-S/cm). 

 

Conductivity is mainly used as a measure of the total impurities present in a 

solution. However, conductivity measurements do not give a specific identification of an 

ion present in a solution. In fact, it provides a collective measure of all of the ions found 

in the solution in one reading. In emulsion systems, the conductivity can be used to 

distinguish w/o from o/w emulsions because it is a well known fact that in emulsions of 

which the oil is the continuous medium (w/o emulsion), the conductivity is expected to be 
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low compared to that of water itself, or in the case where water is the continuous phase, 

of an o/w emulsion (Schramm 1992).  

 

Feed and permeate conductivities were measured immediately after sampling. 

They were measured by using an InoLab, Terminal level 3 manufactured by 

Wissenschaftlich Technische Werk Staten German Company. The conductivity probe 

was a WTW Tetracon
®

 Model 325, see Fig. (5.9). 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5.9): Conductivity meter.  

 

5.4.1.2 Transmission Electron Microscope (TEM) 

 

In this section, the principle of operation of a TEM is summarized. Generally, a 

TEM operates much like an overhead projector. In a projector, a beam of light is shone 

through the slide. Depending upon the structure and objects present on the slide, certain 

part(s) of the beam of light would pass through the slide. A TEM works in the same way, 

but it sends a beam of electrons, instead of light, through an ultra thin specimen. Part of 

this beam transmits on a fluorescent screen (phosphor) which represents the image. 

Darker areas of the image indicate that fewer electrons were transmitted through the 

specimen indicating that those areas are thick/dense. By contrast, lighter areas of the 

image indicate thinner or less dense areas of the specimen through which more electrons 
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were transmitted. With its low wavelength of electrons, a TEM produces a very high 

image resolution. 

Technically, a virtual source of electrons (electron gun) produces a beam of 

monochromatic electrons. By means of condenser lenses (lenses 1 and 2), refer to Fig. 

(5.10), this beam of electrons is narrowed to a small, thin and coherent beam. Lens 1 

determines the general size of the final spot that hits the sample. The second lens changes 

the beam from a wide dispersed spot to a pinpoint beam. This beam is then restricted by 

the condenser aperture after which it hits the specimen where parts of it are transmitted. 

These transmitted parts are focused by the objective lens into an image. The contrast of 

this beam can be enhanced by the objective aperture by blocking out high-angle 

diffracted electrons. Selected area aperture enables the user to examine the periodic 

diffraction of electrons by ordered arrangements of atoms in the sample. Next, through 

the intermediate and projector lenses, the image passes down through the column by 

which it can be enlarged. Finally, the image strikes the fluorescent image screen where a 

light is generated, producing the image.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5.10): Schematic drawing of a transmission electron microscope (TEM). 
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In this work, the microscope used was a Philips CM 100 Compustage (FEI) 

Transmission Electron Microscope with digital images collected using an ATM CCD 

camera (Deben). Pictorial representation of the microscope is shown in Fig. (5.11). 
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Fig. (5.11): Photograph of Philips CM 100 Compustage (FEI) TEM. 
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5.4.2 Membrane Analytical Methods: 

 

5.4.2.1 Surface Area Analysis (SAA) 

 

Surface area is one of the main physical features of a PHP. Based on the value of 

its surface area, more information can be drawn about a particular PHP material such as 

physical structure and water/solvent (depending on the polarity of the polymer) uptake 

capacity. Although it is not always the case, a PHP material with high surface area 

usually has high water/solvent uptake capacity to match. Since the PHP efficiency to 

absorb water is important in the oil/water separation experiments, surface area of the PHP 

materials utilized in the experiments needs to be evaluated. The measurement of surface 

area may be performed in several different ways but gas sorption by far is the most 

widely used and accurate method for total surface area measurements. Furthermore, this 

method can also be applied to measure pore size distributions within the approximate 

range of 0.4 to 200 nm. This method provides very high resolution data and has a vast 

applicability.  In this study, the instrument used to measure the surface area of the PHP 

material was a Coulter SA 3100 analyzer Fig. (5.12), which is manufactured by the 

Beckman-Coulter company.  

This instrument uses a gas sorption technique to obtain the surface area and pore 

size distributions. This technique may be defined as the physical characterization of 

material structures using a process where gas molecules of known volume, at fairly low 

temperatures (cryogenic conditions), are condensed and the resultant sample pressures are 

recorded and used for subsequent calculation. Within low temperature environment, 

molecular attractive forces are weak; hence, gas molecules will find it easy to attach to 

the solid surface. This data, when measured at a constant temperature, allows an isotherm 

to be constructed.  
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Fig. (5.12): Coulter SA 3100 analyzer. 

 

Materials such as powders and solid pieces of inorganic and organic compounds 

or mixtures are capable of retaining amounts of gases and vapours within their structure 

which may occur through either of two processes; absorption or adsorption. Absorption is 

a process where a material such as gas, vapour or liquid is retained within the body of a 

material. On the other hand, adsorption occurs when material(s) attach to the surface of 

another material. During the adsorption process, the adsorbate molecules (the molecules 

that attached themselves to the surface of the other material) are retained by either 

physisorption or chemisorption forces. Different adsorbates are used, depending on the 

application, including: argon, krypton or nitrogen. Differences in these two mechanisms 

are summarized in Table (5.4).  
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Table (5.4): Differences between physisoprtion and chemisorption. 

Physisorption Chemisorption 

Readily reversible process at adsorption 

temperature 

Irreversible process at adsorption 

temperature 

Bonding is a result of physical attraction Bonding is formed chemically 

Involves lower energy due to process 

condensation 

Involves much higher energy of 

adsorption due to covalent bonding 

 

The adsorption of nitrogen and other gases such as argon and krypton used in the 

SA 3100 analyzer may be characterized as physisorption processes. It assumes that all 

adsorption detected is due to the physically adsorbed gas. No calculation models are 

provided to account for adsorption caused by chemisorption processes.  

 

The surface area and pore size distribution of a sample are calculated from all or 

part of the adsorption and desorption isotherms. The adsorption isotherms are an 

incremental set of data which describe the amount of adsorbate gas (in volume) which 

condense on to a material at a given pressure and at a fixed temperature specifically at 

STP condition (Standard Temperature and Pressure). The volume is reported by the SA 

3100 analyzer in units of cm
3
/g. Desorption on the other hand, is the exact reverse 

process and is a decremental set of data reported in the same unit. In order to form 

accurate isotherms, the saturation vapour pressure of the adsorbate gas during analysis 

needs to be known precisely. The saturation vapour pressure may be considered to be the 

boiling pressure of the liquid gas, which is temperature-dependent. Typical analysis setup 

usually requires liquid nitrogen as the sample coolant bath. However, the bath 

temperature will change with atmospheric pressure and the purity of the nitrogen used. 

Since the liquid nitrogen is usually put in an open container throughout the duration of 

the analysis, the liquid tends to be contaminated by the atmospheric gases. In order to 

obtain accurate results, the saturation vapour pressure is measured during the whole 

length of sample analysis.  
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The adsorption process is measured volumetrically with a static fully equilibrated 

procedure. The adsorption and desorption isotherms can be formed from a few to more 

than a hundred individual data points. The isotherm volume data (Y-axis) is calculated by 

subtracting the free space of the sample tube (volume of the tube that is not occupied by 

sample) which is measured using helium gas, from the total volume of gas closed to the 

sample. Each data point processed is calculated by calculating the volume adsorbed and 

measuring the sample pressure which is then divided by the saturation vapour pressure. 

This is known as the relative pressure and is recorded as the X-axis.  

Since the absorption process is reported at STP, the Ideal Gas Law can be applied 

for the calculation of both free space and the volume of adsorptive dosed. Then, the 

volume of the adsorbed gas by the sample can be determined by the following equation: 

 

PMVM  = nRTM 

 

Where: 

PM = Pressure of the dose manifold 

VM = Volume of the dose manifold 

TM = Temperature of the dose manifold, and  

R = Gas Constant 

 

Helium gas is used to measure the free space of the sample tube. Since free space 

is the volume in the sample tube, it tends to vary with the volume occupied by the sample 

itself. The volume of helium dosed to the sample tube, i.e. the free space is calculated 

after opening and closing the sample valve. The free space may be found from the 

resultant pressure drop. The temperature or the volume of the intermediate space above 

the level of the liquid nitrogen or below the manifold volume is not accounted for. This 

intermediate volume varies with the sample tube, room temperature and also with the 

level of the liquid nitrogen; therefore, the free space value will change over the course of 

a long measurement as the liquid nitrogen level drops due to evaporation. However, this 

effect is minimized by the instrument during a long analysis. 
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Volume dosed Vdn, is calculated from the equation below: 

 

1
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M
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Where: 

PM1 = Initial manifold pressure 

PM2 = Final manifold pressure 

VM = Volume of the dose manifold 

TM = Manifold temperature 

Vdn-1 = Volume dosed from previous data point, and  

273.15/760 = Standard temperature and pressure conversion 

 

The helium data points are measured at incremental pressure to ensure accuracy. 

The helium free space correction is obtained from the linear plot of volume dosed vs. 

sample pressure. The slope of this line is equivalent to the volume of the sample tube per 

unit of sample tube pressure. After the helium measurement has been completed, the 

adsorption isotherm is measured. The volume of adsorptive dosed to the sample is 

calculated the same way as for the helium free space dose. The volume of gas adsorbed 

by the sample Vadsn, is calculated for each measured data point using the following 

equation: 

 

Vadsn = Vdn – (PSn x slope + intercept) 

Where: 

Vadsn = Volume adsorbed 

Vdn = Volume dosed 

PSn = Sample pressure 

slope = Free space measurement slope, and  

intercept = Free space measurement intercept 

 

A complete isotherm data can now be plotted. Isotherm data is then subjected to a 

variety of mathematical models to obtain surface area and pore size distribution results, 
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respectively. There are several other mathematical models that may be used to calculate 

the surface area from the isotherm data but BET (Brunaeur, Emmet and Teller) is the 

most commonly used technique since it was first introduced in 1938. However, Barret, 

Joyner and Halenda (BJH) is the only calculation model that is used by this instrument to 

determine the pores size distributions. The BET surface area which includes all internal 

structure is calculated from a multilayer adsorption theory which is based upon the 

assumption that the first layer of molecules adsorbed on the surface involves adsorbate-

adsorbent energies, and subsequent layers of molecules adsorbed involve the energies of 

vaporization of the adsorbate-adsorbate interaction. 

 

At relative pressures from 0.05 to 0.2, the BET adsorption isotherm normally 

produces straight line plot (in linear form) which usually is represented as the following 

relation: 
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Where: 

Vm = Volume of monolayer 

Vadsn = Volume adsorbed 

PS = Sample pressure 

P0 = Saturation pressure, and  

C = Constant related to the enthalpy of adsorption 

 

The BET surface area, SBET in m
2
/g is then evaluated from the following expression: 
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Where: 

NA = Avogadro’s number 
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AM = Cross-sectional area occupied by each adsorbate molecule (AM = 0.162 m
2
 for 

nitrogen), and  

MV = Gram molecular volume (22414 ml) 

 

In this study, the surface area analysis of the PHP samples was conducted by 

placing the sample in the sample tube, which comes in three different sizes namely 3 cm
3
, 

9 cm
3 

and 12 cm
3
 (depending on the amount of sample required where a minimum of 

weight of 1.00 g per analysis is ideal in order to obtain an accurate result), after being 

pre-heated in the oven at 60
o
C for a few hours. Then the sample (in the tube) was out-

gassed for another five hours at a particular temperature (for PHP samples, out-gassed 

temperature of 40 to 60
o
C was normally used). Nitrogen was used as an adsorbate in this 

analysis. This was immediately followed by the analysis which was carried out by 

connecting the out-gassed sample in the tube to the analytical port and immersing the 

tube in the liquid nitrogen while the BET surface area was calculated by the equipment. 

Depending on the nature of the sample and the type of analysis performed (BET or BET 

and BJH), the analysis would usually take from half an hour up to two hours. After the 

analysis was completed the results were displayed on the screen of the equipment.  

 

5.4.2.2 Environmental Scanning Electron Microscope (ESEM)  

 

In addition to surface area analysis, among the analytical investigations carried 

out on the prepared PHPs is the morphological characterization by means of 

environmental scanning electron microscopy (ESEM). Both un-sulphonated and 

sulphonated PHPs were ESEMed. Although SEM was first discovered in 1930’s, with the 

first SEM image taken by Max Knoll, it took decades for commercial marketing, until 

1965 when Charles Oatley and Gary Stewart first introduced it to the market by the 

Cambridge Instrument Company under the name of Stereoscan. Since then, SEM has 

seen continuous improvements in terms of the image resolution and image recording 

time. To this end, its use has become widespread, both in terms of production by different 

companies worldwide and the extent of the application for material research laboratories. 
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Due to multiple signals generated in a SEM analysis, a wide (low/high 3-150,000 

times or more) magnification range, simple image formation of the morphology of a 

specimen with high resolution and great depth of field (300 times higher than that of an 

ordinary light microscope) which facilitates more exposure of the specimen at different 

distances from the lens which gives the image three-dimensional information, have made 

ESEM a good candidate for imaging techniques. The actual magnification results from 

the ratio of the area scanned on the specimen to the area of the television screen, rather 

than by the lens. A photograph of an ESEM is illustrated in Fig. (5.13).  

 

Fig. (5.13): Photograph of an Environmental Scanning Electron Microscope (ESEM). 

 

Therefore, ESEM was used to reveal the internal architecture of the post-

functionalized fresh PHP membranes such as the PHP pore size distribution, 

interconnecting structure and the wall porosity. Depending on the possibility of having 

the oil-fouled membrane(s) compatible with the normal requirement of use of an ESEM 

microscope that a sample should be dry and that no volatile component(s) of oil might 

vaporize and contaminate the unit, some ESEM images may also be taken for these 

membranes. The electron microscope used in this present work was a FEI XL30 ESEM, 

field emission gun (FEG) at the Advanced Chemical and Materials Analysis (ACMA) 

Centre at Newcastle University, UK. This instrument can analyze wet and nonconductive 

samples due to its capability to work at high vacuums. Although it is intuitive to coat 



168 

 

ESEM non-conductive specimens with a conductive media to attain the necessary 

conductivity, usually with carbon/gold. In this work; however, specimens were examined 

after being processed, modified and dried as they are without any coating since they are 

hydrophilic and; therefore, conductive. Each specimen was cut and mounted on stainless 

pin stub 12.7 mm diameter.  

The principle of operation of a SEM is as follows. An electron microscope uses an 

electron beam (not light as in traditional microscopes) to generate a highly magnified 

image of the specimen under analysis. This electron beam is fired from a gun which sits 

at the top of the microscope. This beam then, in a vertical direction, enters a chamber 

which is maintained at a vacuum pressure to allow the effective travel of an electron 

beam. Within this chamber, the electron beam passes a series of: an electrode (anode), a 

magnetic lens (to focus the electron beam onto the sample surface) and scanning coils. 

Having passed these consecutive stages, but still within the vacuum chamber, the electron 

beam finally strikes the sample/specimen resulting in electron and x-ray ejection from the 

sample. These electrons are the primary back-scattered, secondary and Auger electrons. 

A detector then collects these electrons and x-rays into a signal which is then sent to a TV 

screen to represent the specimen image. Fig. (5.14) illustrates this procedure 

schematically. 
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Fig. (5.14): Schematic drawing of a scanning electron microscope with secondary 

electrons forming the images on the TV screen. 

 

The secondary electrons are selectively attracted to a grid held at a low (50 volt) 

positive potential with respect to the specimen. Behind the grid there is a disc held at 

about 10 kilovolts and positive with respect to the specimen. The disc consists of a layer 

of scintillant, coated with a thin layer of aluminium. The strength of this voltage depends 

on the number of secondary electrons that are striking the disc. Thus, the secondary 

electrons produced from a small area of the specimen gives rise to a voltage signal of a 

particular strength. The voltage is led out of the microscope column to an electronic 

console, where it is processed and amplified to generate a point of brightness on a 

cathode ray tube (television) screen.  
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Chapter Six 

Results and Discussion 

 

Whatever course you decide upon there is always someone  

   to tell you that you are wrong. There are always difficulties  

arising which tempt you to believe that your critics are right.  

To map out a course of action and follow it to an end  

requires courage. 

 

Ralph Waldo Emerson 

(1803-1882) 

 

6.1 Introduction 

 

Several w/o emulsions demulsification processes including chemical, thermal 

and electrical and microfiltration have been reviewed and discussed in Chapters 3 and 

4, respectively. Being the main aim of this study, water phase separation from w/o 

emulsion by membrane technology was tested with a hydrophilic membrane, prepared 

‘in-house’, by the methods explained in Chapter 5 and the results are represented and 

discussed in this Chapter. This Chapter starts first by referring to  the measurement of 

pump flow rate for the system (pump and emulsion) used in this work as well as some 

related calculations including calculation of total crossflow velocity (CFV), permeate 

flux rate (J) and electrical field intensity (E). Results of bottle test analysis to measure 

the extent of phase separation of the prepared emulsions are also provided. Next, 

measurements of feed and permeate conductivities are also given. The effect of influent 

emulsion water content, filtration duration, feed CFV, electric field and membrane pore 

size on the permeate flux rate was studied. This was then followed by an investigation 

of the effect of these filtration variables on demulsification efficiency. Investigations 

were carried out using two emulsions of two different water contents, namely 30 and 50 

vol. % of water (dispersed phase), referred to henceforth as EI and EII, respectively. 

Unless stated otherwise, data for all tests are given in Appendices (A-B).  

 

6.2 Measurement of Pump Flow Rate  
 

Having turned on the pump and allowed the circulation of the emulsion EI for 

15 min; to ensure steady state operation, a procedure of pump flow rate measurement 

based on its rpm as explained in Sec. 5.31 in Chapter 5 was followed. The pump drive 
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speed was used to alter the operational speed gradually from 100 to 1000 rpm. 

Although the pump is designed to operate at higher speeds it was only run up to this 

maximum (1000 rpm) to avoid any vibrations. To ensure the reproducibility of the 

results at each rpm, measurements were repeated twice and the average reported. 

Details of these measurements are tabulated in Table (6.1) below which reveal a linear 

relationship, with a slight deviation from linearity, between the pump rpm’s (up to 700 

rpm) and the obtained flow rate. According to Fig. (6.1), a non-linear behaviour; 

however, is noticed at higher rpms. This means, at higher rpm levels, changing the 

pump speed to attain a change of flow, is rather different and dependent upon the 

correspondent rpm. For instance, increasing the pump rpm from 800 to 900 has led to 

increasing the flow rate from 1485 to 1980 L/hr (4.125*10
-4

 to 5.5*10
-4 

m
3
/sec), 

whereas the flow rate increased to 3420 L/hr (9.5*10
-4 

m
3
/sec) when the rpm was 

increased from 900 to 1000 rpm. It should also be mentioned that measurements curves 

obtained from both emulsions (EI and EII) are with a very trivial difference in terms of 

the obtained flow rate. To this end, the measurement curve of emulsion EI has been 

considered as a typical one for both emulsions in this study.     

Table (6.1): Measurements of pump flow rate with respect to emulsion EI. 

Rpm Volume, ml Time, 

sec 

 

Flow arte, ml/sec Average 

flow 

rate, 

m1/sec 

Average 

flow 

rate, l/hr 
1

st
 

attempt 

2
nd

 

attempt 

1
st
 attempt 2

nd
 attempt 

1000 900 1000 1 900 1000 950 3420 

900 1100 1100 2 550 550 550 1980 

800 820 830 2 410 415 412.50 1485 

700 810 830 2 405 415 410 1476 

600 1050 1100 3 350 366.70 358.40 1290.20 

500 860 860 3 286.70 286.70 286.70 1032.10 

400 780 800 3 260 266.70 263.40 948.20 

300 680 690 3 226.70 230 228.40 822.20 

200 520 530 3 173.30 176.70 175 630 

100 400 400 5 80 80 80 288 

50 380 380 10 38 38 38 136.80 

0 0 0 0 0 0 0 0 
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Fig. (6.1): Average pump flow rate vs. pump rpms.  

 

 

 6.3 Calculation of Total Crossflow Velocity (CFV) 

 

The total volumetric flow rate of a fluid in a system of n pipes connected to a 

reservoir in parallel, as the pressure drop is the same, is the sum of the flow in each 

individual pipe. Such a system is schematically depicted in Fig. (6.2). 

 

 

 

Fig. (6.2): Pipes in parallel (Kothandaraman and Rudramoorthy, 2007).  
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Q = Q1+Q2 + Q3 +……+ Qn 

 

Where Q denotes the total volumetric flow rate whereas Q1 through Qn denote flow rate 

through pipes 1 through n, respectively (Kothandaraman and Rudramoorthy, 2007).  

In this work, the number of pipes is two, i.e.: 

Therefore:                                          Q = Q1+Q2 

Since the two pipes are of identical diameter, it can be assumed that individual 

volumetric flow rate in each pipe is equal, i.e.,  Q1 = Q2. 

Since:                                                Q = Q1 + Q1 

Thus:                                                 Q  = 2 Q1 

Solving for Q1, gives:                      Q1 = ½ Q= Q2 

 

   In order to convert a volumetric flow rate of whatever fluid through a pipe into a 

crossflow velocity, V, the former is simply divided by the cross-sectional area of that 

pipe. 

V1= Q1/ Ap = V2 

Where V1 and V2  are the velocity of the fluid in pipe 1 and pipe 2, m/sec, respectively, 

Ap is the cross-sectional area of the pipe, m
2
. 

Finally, the total crossflow velocity (CFV) that the emulsion is fed by to the cell is: 

V = V1 + V2 

Therefore, the CFV at a flow rate of 3420 l/hr, which is equivalent to 1000 rpm, see 

Table (6.1), has been calculated as follows: 

 

V1= Q1/ Ap 

Q= 1000 rpm= 3420 l/hr= 9.50*10
-4 

m
3
/sec=2 Q1=2 Q2 

Therefore:  

V1= (9.50*10
-4

)/2/ (π*(0.005*0.005)) 

                                            =6 m/sec= V2 

Thus:                               V = 6 +6 

                                            =12 m/sec. 

    

   Accordingly, the remainder of CFVs at lower rpms have been calculated and are 

tabulated in the following table, Table (6.2). 
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Table (6.2): Conversion of pump rpms onto feed CFV. 
 

Rpm Total CFV, m/sec 

900 7 

800 5.25 

700 5.20 

600 4.60 

500 3.65 

400 3.35 

300 2.90 

200 2.25 

100 1 

50 0.50 

0 0 

 

6.4 Calculation of Permeate Flux Rate (J) and Electrical Field Intensity (E) 

 

Although the permeate flux rate has already been defined in Sec. 4.3.1 in 

Chapter 4, it might be useful in this Chapter to repeat its definition again. The permeate 

flux rate (J) measures the permeate volume, V (L) collected during the filtration process 

per unit of cross sectional area of membrane, A (m
2
) that’s perpendicular to the 

direction of the feed flow as a function of time, τ (hr) as expressed in the following 

equation (Cheryan, 1998): 

 

J = V (L)/ (A, m
2
) (τ, hr) 

 

In this work, as has been previously mentioned in Sec. 5.3.4 in Chapter 5, τ was 

randomly chosen in a way it allowed the collection of a readable volume of the sample 

on the tube’s scale, and also to ensure that the sampling tube can accommodate the 

entire permeate sample without a risk of flooding since the valve used did require a 

time to fully close. To take this into account, the following tables were constructed. The 

cross sectional area of membranes used was always constant at 38.5 cm
2
 (7cm length 

*5.5 width). The permeate flux rate of emulsion EI when using no electrical field, as 

shown in the first row from top in Table (6.6) below, was calculated through the 

equation given below as shown next. The volume of permeate sample collected was 

2.70 ml/sec (which is equivalent to 9.72 L/hr) which was then divided by the membrane 

cross sectional area (0.00385 m
2
). This yields a permeate flux rate of 2524.70 L/m

2
. hr 

as indicated in Tables (6.6-23).  
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J = 9.72(L)/ 0.00385(m
2
) 1(hr) 

= 2524.70 l/m
2
 hr 

Also, the electric field (E) across the cell has been calculated by dividing the 

voltage applied by the DCR-T power supplier by the distance between the electrodes (3 

mm = 0.3 cm). Therefore, the correspondent E when for example applying 10 V is as 

follows: 

E = 10/0.30 

          = 33.30 V/cm. 

The following table, Table (6.3), shows the complete range of electrical fields applied. 

 

Table (6.3): Electric field vs. voltage applied. 
 

Voltage, V 0 10 25 50 100 200 

Electric field, V/cm 0 33.30 83.30 166.70 333.30 666.70 

 

6.5 Assessment of Phase Separation of Fresh Emulsions 
 

As stated earlier in the methodology section in Chapter 5, Sec. 5.3.2, the bottle 

test method was utilized to assess the stability of the prepared w/o emulsion(s) by 

monitoring water phase separation against time. The amount of resolved water is the 

most suitable measure of the emulsion stability of w/o emulsions, since the coalescence 

of the droplet phase is the limiting step in the demulsification process (Xia et al., 2004). 

Typical water phase separation data against settling time for fresh emulsions EI and EII 

are reported in Table (6.4) and Fig. (6.3). Prepared emulsions have remained intact over 

a period of time, in which no water phase separation was observed until 79/71 days 

(1896/1704 hr) in the case of emulsion EI/EII; respectively, have elapsed. In the case of 

emulsion EI, a maximum percentage of 43 vol. % of the collected sample was water, 

and in the case of emulsion EII, the sample contained 48 vol. % water, see Fig. (6.3). It 

is also of interest to observe that emulsion EI, that originally had a lower water content 

than emulsion EII, when broken down has ultimately exhibited less water than 

emulsion EII and that it required longer time to do so.   
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Table (6.4): Bottle test results of phase separation observed as a function of time for 

both EI and EII w/o emulsions. 
 

Water phase separation, % 

Settling time, days 

 

Emulsion water content, vol. % 

30 50 

0 0 0 

Up to 14 0 0 

Up to 28 0 0 

Up to 42 0 0 

Up to 56 0 0 

Up to 70 0 0 

Up to 84 43 48 

Up to 98 43 48 
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Fig. (6.3): Bottle test results of phase separation observed as a function of time for both 

EI and EII w/o emulsions. 

 

6.6 Conductivity Measurements 

 

 Conductivities of feed and permeate samples were recorded once collected. 

Table (6.5) gives the obtained conductivities, with respect to feed EI and EII stream 

using membrane MI, at different filtration conditions. It is clear that samples of fresh 

emulsion EII (50 % vol. water content) have higher conductivities than those of 

samples of fresh emulsion EI (only 30 % vol. water content). This difference in 

conductivity value can be attributed to the corresponding amount of water in each 

emulsion, since the higher the water content in an emulsion is, the higher the 
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conductivity would be (Becher, 2001). In fact, w/o emulsions are characterized with 

very low conductivities, whereas o/w emulsions have a very high conductivity very 

close to that of water (Schramm 1992). Conductivities of permeate samples are 

generally higher than those of the parallel fresh feed samples. This indicates that 

permeate samples are with higher water content than that of feed samples, see Tables 

(6.25-38). A good reason for this water content is perhaps the hydrophilicity of the PHP 

membrane that has resulted in more water in the permeate stream.    

Table (6.5): Conductivities of feed and permeate samples from memebrane MI. 

Stream Conductivity, µs/cm 

Feed 

EI 

0.4 

Feed 

EII 

0.52 

Permeate 

Based on 

E1 using 

MI 

No current and 1 m/sec With 33.30 V/cm and 

1 m/sec 

With 83.30 V/cm and 

1 m/sec 

0.51 0.51 0.53 

Permeate 

Based on 

E2 using 

MI 

No current and 1 m/sec With 33.30 V/cm and 

1 m/sec 

With 83.30 V/cm and 

1 m/sec 

0.52 0.54 0.58 

 

6.7 Results of Transmission Electron Microscope (TEM) 

 

Figs. (6.4-a-b) show TEM micrographs of permeate samples. Presence of 

coalescing oil droplets in the separated water layer in permeate is shown, see Fig. (6.4-

a). Presence of water droplets in the separated oil phase in permeate possibly showing 

that the water phase is stabilized by a thick layer of surface active material (asphaltenes 

and resins), see Fig. (6.4-b). Figs. (6.5-a-b) show TEM micrographs of retentate 

samples. Fig. (6.5-b) shows the presence of small oil phase droplets. Distortion is 

possibly due to sample preparation as a result of spreading it on the grid.  
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a 

 

 
 

b 

 

Fig. (6.4): TEM micrographs of permeate samples. 

 

Oil phase 

Water phase 
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b 

 

Fig. (6.5): TEM micrographs of retentate samples. 

 

  

Oil phase 

Water phase 
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6.8 Results of Environmental Scanning Electron Microscope (ESEM) 

 

In Figs. (6.6-a-c), the ESEM micrographs for un-sulphonated PHPs 

(membranes: MI, MII and MIII) are shown; respectively. Similarly, Figs. (6.6-d-f) 

show the effect of sulphonation by sulphuric acid on the morphology of sulphonated 

membranes. In the first set of these micrographs (a-c), a typical PHP microstructure 

showing the pores and the interconnects between them is shown. The rest of these 

micrographs evidently demonstrate a morphological change in the structure of the 

relevant PHPs. Generally, such a change causes the PHP to expand and renders it with 

larger pore sizes, wider walls whilst maintaining the holes on them. This may result in 

higher absorption capability and improved permeate flux rates as filtration processes 

are concerned.  

 

 
 

a 
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Fig. (6.6): ESEM micrographs for un-sulphonated and sulphonated PHPs. a- Membrane 

MI un-sulphonated; b- Membrane MII un-sulphonated; c- Membrane MIII un-

sulphonated; d- Membrane MI sulphonated; e- Membrane MII sulphonated and f- 

Membrane MIII sulphonated. Magnification 10000X. 

 

                                

6.9 Effect of Influent Emulsion Water Content on Permeate Flux Rate 

 

The effect of feed water content on membrane permeation was tested at 

different feed flow rates (8*10
-5

-9.5*10
-4

 m
3
/sec) and electric field intensities (0-666.70 

V/cm) using three different membranes in terms of their pore sizes for invariable 

filtration duration of 30 min. This investigation was carried out on both emulsions EI 

and EII. The influence of influent emulsion water content on the permeate flux rate 

from membrane MI at flow rate of 8*10
-5 

m
3
/sec and electric fields of 0, 33.30 and 

83.30 V/cm as a function of filtration time has been placed in the main body of this 

study as shown in Table (6.6) and Fig. (6.7), respectively. Similarly, permeates 

obtained from membranes MII and MIII at the same conditions are also presented in 

Tables (6.7-8) and Figs. (6.8-9), respectively. However, further experimental results of 

these investigations at higher conditions are collated in Appendix A.  

f 
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Table (6.6): Effect of emulsion water content on permeate flux rate for membrane MI 

for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

Filtration time, min 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

Emulsion water 

content, vol. % 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 2524.7 2646.2 2922.1 3272.7 3039 3422.3 

5 2758.4 2898.7 3272.7 3581.3 3422.3 3889.8 

10 2945.5 3039 3506.5 3740.3 3581.3 4516.4 

15 1963.6 2103.9 2197.4 2487.3 2571.4 2954.8 

20 1753.3 1963.6 2010.4 2337.7 2103.9 2646.2 

25 1355.8 1552.2 1402.6 1963.6 1711.2 2337.7 

30 1192.2 1402.6 1262.3 1636.4 1355.8 1870.1 
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Fig. (6.7): Effect of emulsion water content on permeate flux rate for membrane MI for 

30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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Table (6.7): Effect of emulsion water content on permeate flux rate for membrane MII 

for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

Filtration time, min 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 2244.2 2337.7 2646.2 2805.2 2805.2 3113.8 

5 2618.2 2618.2 3039 3113.8 3113.8 3272.7 

10 2758.4 2898.7 3113.8 3422.3 3740.3 4048.8 

15 2178.7 2337.7 2459.2 2805.2 2805.2 3272.7 

20 2010.4 2178.7 2057.1 2646.2 2487.3 2898.7 

25 1916.9 2103.9 2010.4 2103.9 2487.3 2805.2 

30 1711.2 1870.1 1870.1 1870.1 2057.1 2646.2 
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Fig. (6.8): Effect of emulsion water content on permeate flux rate for membrane MII 

for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 
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Table (6.8): Effect of emulsion water content on permeate flux rate for membrane MIII 

for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

Filtration time, min 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 2618.2 2805.2 3039 3422.3 3272.7 3581.3 

5 3422.3 3740.3 3740.3 4207.8 4048.8 4768.8 

10 3553.3 3974 4048.8 4909.1 4675.3 5451.4 

15 3506.5 3581.3 3740.3 4357.4 4357.4 4675.3 

20 2711.7 2898.7 3039 3581.3 3506.5 3974 

25 2178.7 2337.7 2487.3 3039 2646.2 3272.7 

30 1309.1 1552.2 1711.2 1963.6 1870.1 2337.7 
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Fig. (6.9): Effect of emulsion water content on permeate flux rate for membrane MIII 

for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 

 

Throughout the course of microfiltration of both emulsions, that’s with 30 and 

50 vol. % water content, using membrane MI for half an hour, Fig. (6.7) indicates that 

there was an increase in the membrane flux for the first ten minutes from 2524.7 to 

2945.5 l/m
2
 hr in case of emulsion EI and from 2646.2 to 3039 l/m

2
 hr in case of 

emulsion EII . This was also the case with other membranes MII and MIII as they 
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initially produced 2244.2 and 2337.7 l/m
2
 hr following microfiltering emulsion EI and 

2618.2 and 2805.2 l/m
2
 hr following microfiltering emulsion EII, respectively. With 

reference to that, by the end of the first third of filtration time for emulsions EI and EII, 

these membranes produced 2758.4 and 2898.7 l/m
2
 hr and 3553.3 and 3974 l/m

2
 hr; 

respectively. This was then followed by a decrease in flux rate as filtration time elapsed 

until it mostly became independent of filtration time. For instance, by using membrane 

MI it reached a plateau of 1192.2 and 1402.6 l/m
2
 hr for emulsion EI and EII by the end 

of the filtration time, respectively. A similar trend was also observed on the 

permeation-time relationship for membranes MII and MIII.   

    

The declination of permeate flux rate with time is perhaps due to the increase of 

membrane resistance as a result of the development of an oily layer on the membrane 

surface or within its pore structure (Wakeman and Tarleton, 1991; Wakeman and 

Tarleton, 1986). In fact, larger oil droplets than the membrane pores may have attached 

to the membrane surface, whereas smaller ones would have penetrated throughout the 

membrane structure leading to internal pore fouling. These phenomena can modify the 

surface properties of the hydrophilic membrane as well as diminish the effective 

available pore diameter prior to membrane fouling, respectively, which in turn results 

in a reduced membrane flux.  

    

The application of an electric field(s) (33.30 and 83.30 V/cm) to both emulsions 

resulted in increased permeates obtained from all used membranes. In comparison to 

filtration with no electrical field, permeate flux rates after 15 minutes of filtration of 

emulsion EI, from membranes MI, MII and MIII were 1963.6, 2178.7 and 3506.5 l/m
2
 

hr, respectively. By comparison, the permeate flux rate was 2197.4 l/m
2
 hr from 

membrane MI, 2459.2 l/m
2
 hr from membrane MII and 3740.3 l/m

2 
hr from membrane 

MIII when applying an electric field of 33.30 V/cm. Also, following increasing the 

electric field to 83.30 V/cm using membranes MI, MII and MIII, the permeate flux rate 

at 15 minutes of filtration increased to 2571.4, 2805.2 and 4357.4 l/m
2
 hr, respectively. 

Likewise when using emulsion EII, the permeate flux rate obtained from membrane 

MI; for example, at 15 minutes of filtration, with no electric field and with 33.30 and 

83.30 V/cm, was 2103.9, 2487.3 and 2954.8 l/m
2
 hr, respectively. For the permeates 

collected from MII and MIII, the reader is referred to Tables (6.7-8). A later section in 

this Chapter shall examine such effect of electric field on permeate flux rate. Among 
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the two emulsions filtered at all conditions, it is obvious that the emulsion with higher 

oil content (70 vol. %) produced a lower membrane flux rate throughout the entire 

period of filtration than that obtained in case of microfiltering the emulsion with only 

50 vol. % oil content. An increase in the oil content in the feed stream leads to an 

increased oil concentration in the boundary layer of oil droplets on the hydrophilic 

membrane and; thus, a lower membrane flux rate would be the outcome as the filtration 

proceeds. These hydrophobic rejected oil droplets, or at least with no strong affinity 

towards the membrane surface, compared to water droplets, will gather at the 

membrane surface and build a boundary layer, which perhaps is mainly composed of 

oil. With time, these retained oil droplets, to an extent, tend to accumulate at the 

membrane surface which eventually has the sequence of reducing the membrane flux.  

 

6.10 Effect of Filtration Time on Permeate Flux Rate 

    

In order to investigate the effect of filtration time on permeate flux rate at 

various filtration conditions, several experiments at various conditions of emulsion 

water contents, flow rates and electric fields strengths using three PHP membranes with 

different pore sizes were performed. In these experiments, two emulsions with different 

water contents were used, namely, 30 and 50 vol. % of water content. Inlet flow rate 

was changed in the range of (8*10
-5

-9.5*10
-4

 m
3
/sec) with applying electric fields of (0-

666.70 V/cm). A sample of the results of these experiments for each membrane is 

separately shown below in Tables (6.9-11) and Figs. (6.10-15). For a complete set of 

results, refer to Appendix A. Initially, for both emulsion water contents, the flux 

increased as filtration time increased, and then it started to decline with time until it 

underwent no change with filtration time, i.e., steady state operation.  

The permeate flux rate declination may be caused by membrane pore blockage 

and/or settlement of emulsion droplets on the membrane surface as filtration time 

increases. Based on these graphs in Figs. (6.10-15), it seems that emulsion water 

content, membrane pore size, flow rate, or presence of electric field with different 

intensities, has no influence on the shape of the relationship between membrane 

permeation rate and filtration time, as the trend of variation of permeate flux rate from 

each membrane examined, with time, is almost identical, irrespective of emulsion water 

content, membrane pore size, flow rate or presence of an electric field. However, using 

a membrane with larger pore size, increasing the flow rate and/or applying an electrical 
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field across the filtration module does increase the value of the permeate flux rate 

accordingly over the whole period of filtration time. Interpretations of this increment of 

permeate flux rate with membrane pore size, feed flow rate and/or electric field will be 

discussed in later sections of this Chapter. 

With time, where a secondary membrane of deposits (surfactants) appears to 

have formed on the membrane surface, it seems that membrane-solute interactions, 

which are mainly the driving force for emulsion filtration, have become less active. 

This can be understood from the drop in difference in membrane permeates in the 

second half of filtration, in comparison to the first half. By way of example, not 

exhaustive enumeration, the difference in permeate flux rate at 15 min of filtration 

through membrane MI, with an electrical field of 83.30 V/cm and without an electrical 

field, at 8*10
-5

 m
3
/sec was 1009.9 and 981.9 l/m

2
 hr for emulsion EI and 1561.6 and 

935.1 l/m
2
 hr for emulsion EII, respectively. However, this difference by the end of the 

filtration period under the same filtration conditions was only 355.4 and 163.6 l/m
2
 hr, 

for emulsion EI and 467.6 and 149.6 l/m
2
 hr, for emulsion EII, respectively. Under 

higher filtration rate conditions of feed CFV and/or electrical field, this observation is 

also applicable.  
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Table (6.9): Time dependent-permeate flux rate for membrane MI for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25 and 2.90 m/sec; 

electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

Filtration time, 

min 

     CFV, m/sec 

1 2.25 2.90 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

30 50 30 50 30 50 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 

0 2524.7 2922.1 3039 2646.2 3272.7 3422.3 5919 6919.5 7013 6077.9 7321.6 7480.5 10594.3 11220.8 11529.4 10902.9 12389.6 12857.1 

5 2758.4 3272.7 3422.3 2898.7 3581.3 3889.8 6264.9 8228.6 8724.2 6386.5 7574 8097.7 11875.3 13090.9 14026 12155.9 13867 14493.5 

10 2945.5 3506.5 3581.3 3039 3740.3 4516.4 6639 8415.6 9116.9 6779.2 8724.2 9350.7 12857.1 14026 14334.6 13090.9 14727.3 15194.8 

15 1963.6 2197.4 2571.4 2103.9 2487.3 2954.8 6358.4 7013 7246.8 6545.5 7574 7948 7901.3 8415.6 8883.1 8415.6 9724.7 10594.3 

20 1753.3 2010.4 2103.9 1963.6 2337.7 2646.2 5292.5 5610.4 5844.2 5610.4 6311.7 6779.2 6639 7480.5 8097.7 7013 7948.1 8565.2 

25 1355.8 1402.6 1711.2 1552.2 1963.6 2337.7 5049.4 5329.9 5703.9 5142.9 5919 6227.6 5563.6 6227.5 6386.5 5844.2 6854 7480.5 

30 1192.2 1262.3 1355.8 1402.6 1636.4 1870.1 4909.1 5142.9 5292.5 5142.9 5610.4 5919 5292.5 5919 6227.5 5610.4 6639 6854 
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Fig. (6.10): Time dependent-permeate flux rate for membrane MI for 30 minutes 

filtration for emulsion water content of 30 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 
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Fig. (6.11): Time dependent-permeate flux rate for membrane MI for 30 minutes 

filtration for emulsion water content of 50 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 
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Table (6.10): Time dependent-permeate flux rate for membrane MII for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25 and 

2.90 m/sec; electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

Filtration 

time, min 

     CFV, m/sec 

1 2.25 2.90 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 
 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 

0 2244.2 2646.2 2805.2 2337.7 2805.2 3113.8 4862.3 5610.4 5844.2 4983.9 5919 6227.5 9350.7 10285.7 11529.4 9818.2 11314.3 12623.4 

5 2618.2 3039 3113.8 2618.2 3113.8 3272.7 5423.4 6227.5 6854 5610.4 6386.5 6854 10052 11594.8 12464.4 10379.2 12389.6 12932 

10 2758.4 3113.8 3740.3 2898.7 3422.3 4048.8 5844.2 6854 7597.4 6077.9 6779.2 7789.1 10519.5 11837.9 13090.9 10902.9 13090.9 13708.1 

15 2178.7 2459.2 2805.2 2337.7 2805.2 4048.8 5516.9 5919 6854 5703.9 6386.5 7321.6 7293.5 7948 8649.4 7480.5 8724.2 9032.7 

20 2010.4 2057.1 2487.3 2178.7 2646.2 2898.7 4161 4488.3 4909.1 4675.3 5610.4 5844.2 4909.1 5236.4 5844.2 5292.5 6077.9 6545.5 

25 1916.9 2010.4 2487.3 2103.9 2103.9 2805.2 3927.3 4357.4 4675.3 4048.8 4909.1 4983.9 4161 4675.3 5292.5 4357.4 5142.9 5703.9 

30 1711.2 1870.1 2057.1 1870.1 1870.1 2646.2 3646.8 4114.3 4207.8 3974 4357.4 4768.8 4048.8 4301.3 4909.1 4207.8 4768.8 5292.5 
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Fig. (6.12): Time dependent-permeate flux rate for membrane MII for 30 minutes 

filtration for emulsion water content of 30 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 
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Fig. (6.13): Time dependent-permeate flux rate for membrane MII for 30 minutes 

filtration for emulsion water content of 50 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 
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Table (6.11): Time dependent-permeate flux rate for membrane MIII for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 2.25 and 

2.90 m/sec; electric field: 0, 33.30 and 83.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

Filtration 

time, min 

     CFV, m/sec 

1 2.25 2.90 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 

Electric field, V/cm 

 
 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 

0 2618.2 3039 3272.7 2805.2 3422.3 3581.3 6779.2 7480.5 7854.6 7321.6 8649.4 9350.7 10285.7 11061.8 11529.4 10902.9 12773 13090.9 

5 3422.3 3740.3 4048.8 3740.3 4207.8 4768.8 7013 8097.7 8649.4 7574 9116.9 9818.2 11922.1 12623.4 13867 12623.4 14493.5 15194.8 

10 3553.3 4048.8 4675.3 3974 4909.1 5451.4 8228.6 9818.2 10285.7 9191.7 11220.8 11529.4 12464.4 13324.7 13558.4 13558.4 15269.6 15896.1 

15 3506.5 3740.3 4357.4 3581.3 4357.4 4675.3 6854 8415.6 9584.4 7480.5 9818.2 10126.8 7948.1 8649.4 9191.7 8883.1 10594.3 11220.8 

20 2711.7 3039 3506.5 2898.7 3581.3 3974 6358.4 7162.6 7789.1 6854 8097.7 8649.4 6545.5 7321.6 7574 7162.6 8256.6 8883.1 

25 2178.7 2487.3 2646.2 2337.7 3039 3272.7 4983.9 5919 6386.5 5610.4 6779.2 7321.6 5844.2 6662.3 7013 6386.5 7714.3 8256.6 

30 1309.1 1711.2 1870.1 1552.2 1963.6 2337.7 3740.3 4516.4 5142.9 4207.8 5610.4 6077.9 4488.3 5142.9 5292.5 5292.5 6311.7 6545.5 
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Fig. (6.14): Time dependent-permeate flux rate for membrane MIII for 30 minutes 

filtration for emulsion water content of 30 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 
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Fig. (6.15): Time dependent-permeate flux rate for membrane MIII for 30 minutes 

filtration for emulsion water content of 50 vol. %; CFV: 1 and 2.25 m/sec; electric 

field: 0 and 83.30 V/cm. 

 

6.11 Effect of Feed Crossflow Velocity (CFV) on Permeate Flux Rate 

    

In this section, the effect of feed CFV on membrane permeate flux rates is 

discussed. To accomplish this, experiments were performed whilst varying feed CFV 

step by step from 1 to 12 m/sec. Each experiment was repeated at different electrical 

fields in the range of (0-666.70 V/cm) on the two different emulsions (30 and 50 vol. 

% of water content) using three different PHP membranes of different pore diameter 
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for the same duration of 30 min. The effect of feed CFV from 1 to 3.35 m/sec on 

membrane MI permeate flux rate for both emulsions in the absence of electrical fields 

is given in Table (6.12) and demonstrated in Fig. (6.16) as a function of filtration 

time. The effect of higher velocities (3.65-12 m/sec) is tabulated in Appendix A. 

Similarly, permeate flux rates obtained from membranes MII and MIII under these 

conditions are tabulated in Tables (6.13-14) and illustrated in Figs. (6.17-18), 

respectively. As was the case with membrane MI, the influence of higher feed CFVs 

(3.65-12) m/sec on the permeate flux rates of membranes MII and MIII is shown in 

Appendix A.   

 

Table (6.12): Effect of feed CFV on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 2524.7 2646.2 5919 6077.9 10594.3 10902.9 12623.4 13090.9 

5 2758.4 2898.7 6264.9 6386.5 11875.3 12155.9 15194.8 15737.1 

10 2945.5 3039 6639 6779.2 12857.1 13090.9 15896.1 16831.2 

15 1963.6 2103.9 6358.4 6545.5 7901.3 8415.6 11688.3 12623.4 

20 1753.3 1963.6 5292.5 5610.4 6639 7013 9967.8 10753.3 

25 1355.8 1552.2 5049.4 5142.9 5563.6 5844.2 6545.5 7321.6 

30 1192.2 1402.6 4909.1 5142.9 5292.5 5610.4 6031.2 6545.5 
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Fig. (6.16): Effect of feed CFV on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 

 

Table (6.13): Effect of feed CFV on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 2244.2 2337.7 4862.3 4983.9 9350.7 9818.2 15428.6 15989.6 

5 2618.2 2618.2 5423.4 5610.4 10052 10379.2 16597.4 17064.9 

10 2758.4 2898.7 5844.2 6077.9 10519.5 10902.9 19870.1 20412.5 

15 2178.7 2337.7 5516.9 5703.9 7293.5 7480.5 12623.4 13184.4 

20 2010.4 2178.7 4161 4675.3 4909.1 5292.5 11220.8 11837.9 

25 1916.9 2103.9 3927.3 4048.8 4161 4357.4 7293.5 7714.3 

30 1711.2 1870.1 3646.8 3974 4048.8 4207.8 6639 7480.5 
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Fig. (6.17): Effect of feed CFV on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 

 

 

Table (6.14): Effect of feed CFV on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 2618.2 2805.2 6779.2 7321.6 10285.7 10902.9 16204.7 17298.7 

5 3422.3 3740.3 7013 7574 11922.1 12623.4 16831.2 18383.4 

10 3553.3 3974 8228.6 9191.7 12464.4 13558.4 18233.8 20571.4 

15 3506.5 3581.3 6854 7480.5 7948.1 8883.1 12932 14119.5 

20 2711.7 2898.7 6358.4 6854 6545.5 7162.6 10285.7 11688.3 

25 2178.7 2337.7 4983.9 5610.4 5844.2 6386.5 7013 7789.1 

30 1309.1 1552.2 3740.3 4207.8 4488.3 5292.5 5610.4 6386.5 
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Fig. (6.18): Effect of feed CFV on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec. No electrical field. 

 

According to theses figures, the effect of feed CFV on membrane flux is 

evident. As can be observed, increasing the CFV increased the permeate flux rate for 

both emulsions. For instance, the permeate rate from membrane MI at the middle of 

filtration time, 15 min, was 1963.6 l/m
2
 hr at CFV of 1 m/sec and 6358.4 l/m

2
 hr at 

CFV of 2.25 m/sec for emulsion EI and 2103.9 l/m
2
 hr at CFV of 1 m/sec and 6545.5 

l/m
2
 hr at CFV of 2.25 m/sec for emulsion EII. Doubling the feed CFV from 1 to 2.25 

m/sec corresponded to an increase of more than 3 fold in the permeate for both 

emulsions. This observation also applies to membranes MII and MIII when using 

either emulsion as a filtration media; doubling the CFV led to doubling the permeate 

flux rate. The collected permeates, after 15 min of filtration of emulsion EI at 1 m/sec, 

were 2178.7 and 3506.5 l/m
2
 hr, 5516.9 and 6854 at 2.25 m/sec, respectively. 

Employing emulsion EII has made no difference, as feeding it at a CFV of 1 m/sec to 

membranes MII and MIII, the permeates at 15 min were 2337.7 and 3581.3 l/m
2
 hr. 

Similarly, with increasing the CFV to 2 m/sec, membrane MII gave 5703.9 and 

membrane MIII 7480.5 l/m
2
 hr.    

 

In addition, Figs. (6.19-20) below show the quantitative correlation between 

the permeate flux rates of the examined membranes and feed CFV in the range of 1 to 

3.35 m/sec for both emulsions. Overall, it is clear that membranes MI and MII did not 

produce a linear relationship between their permeate flux rates and feed CFVs for 



201 

 

both of the emulsions tested. In the case of membrane MIII; however, a slightly linear 

relationship can be observed. Deviation from linearity in the relationship between a 

membrane’s permeate flux rate and the applied feed CFV can be explained by the 

possibility of emulsion droplet deformation as well as their interactions/rejection 

with/by the membrane surface. 
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Fig. (6.19): Correlation of membranes MI, MII and MIII permeate flux rates and feed 

CFV after 30 min of filtration of emulsion EI. 
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Fig. (6.20): Correlation of membranes MI, MII and MIII permeate flux rates and feed 

CFV after 30 min of filtration of emulsion EII. 
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However, it seems that the composition of the emulsion does not have a role to 

play in determining the nature of dependence of permeation rate on feed CFV, since 

both emulsions responded quite similarly to the alterations in feed CFV irrespective of 

their water contents. The success of higher feed CFVs in increasing the membrane 

permeate flux rate may be attributed to the higher shear forces that may be generated 

on the membrane surface which limits the thickness of the oily layer which may 

develop on the membrane surface due to membrane rejection, resulting in increased 

permeate flux rate. Increased turbulence and mass transfer rates and removal of oil 

droplets from the membrane surface back to the bulk stream, which can lead to a 

reduced level of concentration polarization can also be achieved by increasing the 

CFV (Kong and Li, 1999). In fact, this can maintain a high membrane permeate flux 

rate over a prolonged period of time. Therefore, it can be concluded that increasing 

the CFV of the feed leads to improvements in the membrane flux rate (Scott et al., 

2001; Tarleton and Wakeman, 1994a; Jiao and Sharma, 1994; Riesmeier et al., 1987). 

 

Furthermore, it is interesting to observe that the effect of feed CFV on 

membrane permeation flux for both emulsions, in the absence or presence of an 

electrical field, is identical, as shown below in Tables (6.15-17) and Figs. (6.21-23) 

for membranes MI, MII and MIII, respectively. These tables and figures show the 

permeates obtained from all membranes (MI, MII and MIII), as a function of filtration 

time, at a randomly chosen electrical field of 83.30 V/cm. For example; at 10 min of 

filtration, increasing the feed CFV from 1 to 2.25 m/sec, while using membrane MI 

for both emulsions, led to a doubling of the permeate flux rate from 3581.3 to 9116.9 

l/m
2
 hr, in the case of emulsion EI, and from 4516.4 to 9350.7 l/m

2
 hr, in the case of 

emulsion EII. This was also the case when doubling the feed CFV from 1 to 2 m/sec 

while applying no electric field in which the membrane permeate flux rate increased 

from 2945.5 to 6639 l/m
2
 hr and from 3039 to 6779.2 l/m

2
 hr, for emulsion EI and 

EII, respectively. These results are also true with regard to the permeates collected 

from membranes MII and MIII. The contribution of increasing the electrical field to 

improve the membrane flux rate at a given feed CFV will be discussed in the 

following section.   
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Table (6.15): Effect of feed CFV on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field: 83.30 V/cm. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 3039 3422.3 7013 7480.5 11529.4 12857.1 14493.5 15989.6 

5 3422.3 3889.8 8724.2 8097.7 14026 14493.5 17607.3 19168.8 

10 3581.3 4516.4 9116.9 9350.7 14334.6 15194.8 21188.6 19944.9 

15 2571.4 2954.8 7246.8 7948 8883.1 10594.3 13867 15428.6 

20 2103.9 2646.2 5844.2 6779.2 8097.7 8565.2 11688.3 13184.4 

25 1711.2 2337.7 5703.9 6227.6 6386.5 7480.5 7789.1 9191.7 

30 1355.8 1870.1 5292.5 5919 6227.5 6854 7321.6 8097.7 
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Fig. (6.21): Effect of feed CFV on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field; 0 and 83.30 V/cm. 
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Table (6.16): Effect of feed CFV on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field: 83.30V/cm. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 2805.2 3113.8 5844.2 6227.5 11529.4 12623.4 17766.2 19636.4 

5 3113.8 3272.7 6854 6854 12464.4 12932 19636.4 20664.9 

10 3740.3 4048.8 7597.4 7789.1 13090.9 13708.1 21974 24077.9 

15 2805.2 3272.7 6854 7321.6 8649.4 9032.7 15428.6 15896.1 

20 2487.3 2898.7 4909.1 5844.2 5844.2 6545.5 13399.5 14119.5 

25 2487.3 2805.2 4675.3 4983.9 5292.5 5703.9 8883.1 9116.9 

30 2057.1 2646.2 4207.8 4768.8 4909.1 5292.5 7789.1 8724.2 
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Fig. (6.22): Effect of feed CFV on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field: 0 and 83.30 V/cm. 
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Table (6.17): Effect of feed CFV on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field: 83.30 V/cm. 
 

Permeate flux rate, l/m
2
. hr 

 

 

 
Filtration 

time, 

min 

CFV, m/sec 

1 2.25 2.90 3.35 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 30 50 

0 3272.7 3581.3 7854.6 9350.7 11529.4 13090.9 18233.8 21039 

5 4048.8 4768.8 8649.4 9818.2 13867 15194.8 19870.1 23376.6 

10 4675.3 5451.4 10285.7 11529.4 13558.4 15896.1 21347.5 24779.2 

15 4357.4 4675.3 9584.4 10126.8 9191.7 11220.8 15428.6 17298.7 

20 3506.5 3974 7789.1 8649.4 7574 8883.1 12773 15194.8 

25 2646.2 3272.7 6386.5 7321.6 7013 8256.6 8415.6 10285.7 

30 1870.1 2337.7 5142.9 6077.9 5292.5 6545.5 6639 8097.7 
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Fig. (6.23): Effect of feed CFV on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1, 2.25, 2.90 and 

3.35 m/sec; electric field: 0 and 83.30 V/cm. 

 

6.12 Effect of Electric Field (E) on Permeate Flux Rate 

 

The effect of electric field strength on membrane permeate flux rate of both 

emulsions (30 and 50 vol. % of water content) was tested at three levels: low, medium 

and high, as indicated in Table (6.18) below. The medium level was used to provide a 

simulation of any possible curvature in the permeate value in between the low and 

high levels chosen. At each electric field, eight feed CFVs, ranging from 1 to 12 
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m/sec, were tested. This procedure was performed using three PHP membranes of 

different pore sizes for 30 min in each run. The effect of electric field on the 

permeation of both emulsions from each membrane at 0, 83.30 and 333.30 V/cm 

(that’s the onset of each level) with 1 and 4.60 m/sec as a function of filtration time is 

provided in this section, see Tables (6.19-20) and Figs. (6.24-35). Due to the 

similarity of the results, the rest of the results obtained from these runs are given in 

Appendix A. 

Table (6.18): Grades of applied electric fields. 

Level of electric field Value of electric field, v/cm 

Low 

Medium 

High 

0-33.30 

83.30-166.70 

333.30-666.70 
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Table (6.19): Effect of electric field on permeate flux rate for membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 30 

and 50 vol. %; CFV: 1 m/sec. 
 

                 Permeate flux rate, l/m
2
. hr 

 

 

 

 

 

Filtration 

time, 

min 

Electric field, V/cm 

0 83.30 333.30 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII 

0 2524.7 2244.2 2618.2 2646.2 2337.7 2805.2 3039 2805.2 3272.7 3422.3 3113.8 3581.3 4207.8 3740.3 4207.8 4048.8 3974 4441.6 

5 2758.4 2618.2 3422.3 2898.7 2618.2 3740.3 3422.3 3113.8 4048.8 3889.8 3272.7 4768.8 4441.6 4675.3 5376.6 4768.8 4768.8 5703.9 

10 2945.5 2758.4 3553.3 3039 2898.7 3974 3581.3 3740.3 4675.3 4516.4 4048.8 5451.4 4768.8 4675.3 5919 4983.9 4983.9 6386.5 

15 1963.6 2178.7 3506.5 2103.9 2337.7 3581.3 2571.4 2805.2 4357.4 2954.8 3272.7 4675.3 3113.8 3422.3 5292.5 3422.3 3833.8 5610.4 

20 1753.3 2010.4 2711.7 1963.6 2178.7 2898.7 2103.9 2487.3 3506.5 2646.2 2898.7 3974 2646.2 3039 3974 3272.7 3422.3 4516.4 

25 1355.8 1916.9 2178.7 1552.2 2103.9 2337.7 1711.2 2487.3 2646.2 2337.7 2805.2 3272.7 2178.7 2805.2 3422.3 2898.7 3272.7 3833.8 

30 1192.2 1711.2 1309.1 1402.6 1870.1 1552.2 1355.8 2057.1 1870.1 1870.1 2646.2 2337.7 1776.6 2571.4 2103.9 2646.2 2898.7 2805.2 
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Table (6.20): Effect of electric field on permeate flux rate for membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 30 

and 50 vol. %; CFV: 4.60 m/sec. 
 

Permeate flux rate, l/m2. hr 

 

 

 

 

Filtration 

time, min 

Electric field, V/cm 

0 83.30 333.30 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII 

0 14643.1 18383.4 18074.8 14961 19477.4 19477.4 17859.7 22441.6 21974 19318.4 24545.5 24545.5 24928.8 29604.2 29763.1 25714.3 31792.2 32727

.3 

5 16597.4 20384.4 19636.4 17298.7 21272.7 21188.6 20412.5 26490.4 23376.6 22282.6 27584.4 26022.9 26649.4 29922.1 31792.2 29454.6 32961 35214

.6 

10 18383.4 23096.1 21815.1 19636.4 24311.7 23376.6 22441.6 28052 25246.8 25087.8 30389.6 28828.1 29220.8 34129.9 33662.3 31885.7 36561 37243

.6 

15 15428.6 20412.5 17298.7 16831.2 21506.5 19009.9 19636.4 25087.8 20103.9 21506.5 27584.4 23470.1 22441.6 28052 26181.8 26649.4 30857.2 29604

.2 

20 12857.1 13090.9 15194.8 13867 14643.1 16672.2 15428.6 16513.3 18074.8 17766.2 19009.9 21039 19009.9 20571.4 23993.8 22441.6 24311.7 27116

.9 

25 12155.8 12389.6 11454.6 13090.9 13558.4 12932 14961 16129.9 14119.5 16924.7 18383.4 16363.6 17766.2 19168.8 17298.7 20664.9 21974 20664

.9 

30 10005.2 8724.2 8883.1 11061.8 11220.8 10126.8 11837.9 11688.3 11220.8 14727.3 15578.2 13090.9 13090.9 14961 12623.4 15428.6 18383.4 15896

.1 
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Fig. (6.24): Effect of electric field on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.25): Effect of electric field on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.26): Effect of electric field on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.27): Effect of electric field on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.28): Effect of electric field on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.29): Effect of electric field on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
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Fig. (6.30): Effect of electric field on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 
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Fig. (6.31): Effect of electric field on permeate flux rate for membrane MI for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 
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Fig. (6.32): Effect of electric field on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30

Filtration time, min

P
er

m
ea

te
 f

lu
x
 r

a
te

, 
L

/m
2
 h

r. E I. 0 V.
E II. 0 V.
E I. 25 V.
E II. 25 V.
E I. 100 V.
E II. 100 V.

 

Fig. (6.33): Effect of electric field on permeate flux rate for membrane MII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 
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Fig. (6.34): Effect of electric field on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 
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Fig. (6.35): Effect of electric field on permeate flux rate for membrane MIII for 30 

minutes filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 

 

The effect of electric field on the permeate flux rate from membranes MI, MII 

and MIII at 0, 83.30 and 333.30 V/cm with 1 and 4.60 m/sec of CFV as a function of 

filtration time is shown in Tables (6.19-20) and Figs. (6.24-35); respectively. At a 

given CFV, it can be seen that, the permeate from all membranes tested always 

increased during the first third of operation time. This increase reached a plateau and   

then started to decline with filtration time until almost a constant permeate value was 

attained regardless of time. It seems that applying an electrical field tends to augment 

the permeate flux rate at a given set of filtration condition(s). For example, the 

permeate flux rate after the first twenty minutes increased from 1753.3 l/m
2
 hr to 

2103.9 l/m
2
 hr when employing membrane MI to filter emulsion EI (30 vol. % water) 
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at 1 m/sec with no electric field and with electric field of 83.30 V/cm, respectively 

(see Table (6.19)). Likewise, it increased from 2010.4 to 2487.3 l/m
2
 hr and from 

2711.7 to 3506.5 l/m
2 

hr when using membranes MII and MIII to filter emulsion EI at 

the same conditions stated previously, respectively. Membrane permeate flux rate 

augmentation is perhaps due to membrane surface cleaning, while the filtration is 

running, due to gas evolution through electrolysis (Akay and Wakeman, 1996) 

 

In addition, as illustrated in Figs. (6.24-27), the change in membrane permeate 

flux rate of both membranes MI and MII with both emulsions at a feed CFV of 1 

m/sec, is somewhat retarded at the end of filtration time compared to that observed at 

earlier filtration times. For example, the decline in permeate flux rate at the middle of 

the filtration time when applying 83.30 V/cm across emulsion EI using membrane MI, 

was 1009.9 l/m
2 

hr, and at the end of filtration was only 355.4 l/m
2 

hr. Similarly, in the 

case of emulsion EII, the decline was 1561.6 l/m
2 

hr at the middle of filtration time 

and only 467.6 l/m
2 

hr at the end of filtration period. This observation could also be 

made at higher fields (e.g. 333.30 V/cm) when using membrane MII at these voltages. 

However, membrane MIII, possibly due to its larger pore diameter, followed a 

different trend, in which the decline was higher at the end of filtration than that 

obtained at the middle of filtration time. For instance, in case of emulsion EI it was 

776.1 and 317.9 l/m
2 

hr at the end and middle of filtration time, respectively and 935 

and 776.1 l/m
2 

hr at these filtration times for emulsion EII. An explanation to this 

pattern of permeate change could be that, with the progress of filtration time the 

concentration of oil in the emulsion is relatively increased. Since most of the collected 

permeates is always water, i.e. the volume ratio of oil to water in the emulsion 

increases, and as a result, the emulsion’s water content is lowered restricting the effect 

of the applied electrical field. Another possible reason for this decline in membrane 

permeates flux rates change is perhaps the increased membrane fouling as filtration 

time elapses.     

 

In addition, as it has been shown in Sec. 6.11 that increasing feed CFV 

improved the obtained permeate flux rates from all membranes tested; it is likely that 

the combination of simultaneously increasing both feed CFV and electrical field  

further increases the membrane flux rate. For instance, at the beginning of the 

filtration period, increasing the feed CFV from 1 to 4.60 m/sec with no electrical field 
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applied, resulted in increasing the permeate flux rate from 2524.7, 2244.2 and 2618.2 

to 14643.1, 18383.4 and 18074.8 l/m
2 

hr from membranes MI, MII and MIII, 

respectively. On the other hand; however, increasing the feed CFV from 1 to 4.60 

m/sec while applying an electrical field of 83.30 V/cm, increased the permeate flux 

rate to 17859.7, 22441.6 and 21974 l/m
2 

hr, from membranes MI, MII and MIII, 

respectively.     

 

Furthermore, it appears that the influence of an electric field is further 

prominent in the case of emulsion EII in comparison to emulsion EI, perhaps due to 

its higher water content of 50 vol. % instead of only 30 vol. % in emulsion EI. From 

Fig. (6.24) using a CFV of 1 m/sec, a filtration time of 0 minutes. it is observed that 

the permeate flux rate of emulsion EI from membrane MI with an electrical field of 

83.30 V/cm was 3581.3 l/m
2
 hr, whereas that obtained from the same membrane and 

at the same electric field, but with emulsion EII, was 4516.4 l/m
2
 hr. With reference to 

Figs. (6.26) and (6.28), under the same set of conditions as given above, similar 

findings were also observed for membranes MII and MIII. For membrane MII, 3740.3 

l/m
2
 hr were obtained using emulsion EI and 4048.8 l/m

2
 hr using emulsion EII. 

Likewise, membrane MIII produced 4675.3 l/m
2
 hr and 5451.4 l/m

2
 hr when filtering 

emulsion EI and EII, respectively. It is a matter of fact that emulsions with higher 

water content tend to pass electrical current more efficiently than those emulsions 

with lower water contents (Becher, 2001).  

 

In terms of the allocated electrical field levels at both feed CFVs (1 and 4.60 

m/sec) as shown in Figs. (6.32-33), increasing the applied electric field from low to 

high through medium levels across both emulsions EI and EII, did not show a quite 

linear relationship with the collected permeate flux rate. In fact, a linear relationship is 

demonstrated only by membrane MII at a feed CFV of 1 m/sec with both emulsions, 

and at a feed CFV of 4.60 m/sec only by membrane MIII.  
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Fig. (6.36): Permeate flux rate of membranes MI, MII and MIII at different electric 

field grades after 30 min of filtration. Emulsion water content: 30 and 50 vol. %; 

CFV: 1 m/sec. 
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Fig. (6.37): Permeate flux rate of membranes MI, MII and MIII at different electric 

field grades after 30 min of filtration. Emulsion water content: 30 and 50 vol. %; 

CFV: 4.60 m/sec. 

 

6.13 Effect of Membrane Pore Size on Permeate Flux Rate 

 

Among the important membrane properties is the average pore size as it, to a 

great extent, determines the membrane performance. In this part of this study, the 

effect of membrane pore size on membrane permeate flux rate is investigated. For this 

purpose, three PHP membranes of different pore sizes were used in microfiltering two 
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emulsions of different water contents (30 and 50 vol. %). In each experiment, a fresh 

membrane was used, the feed CFV was changed from 1 to 12 m/sec and the electric 

field from 0 to 666.70 V/cm; however, the filtration time was always kept constant at 

30 minutes. The variation of membrane permeate flux rate with filtration time with 

respect to membrane pore size for membranes MI, MII and MIII at 1, 4.60 and 12 

m/sec for both emulsions using no electric field is given in Table (6.21) and shown in 

Figs. (6.38-39), while those data obtained with the application of 333.30 and 666.70 

V/cm are tabulated separately in Tables (6.22-23) and shown in Figs. (6.40-43).  
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Table (6.21): Effect of membrane pore size on permeate flux rate for membranes MI, MII and MIII for 30 minutes filtration. Emulsion water 

content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec. No electric field. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

 

Filtration 

time, min 

Membrane 

MI MII MIII 

CFV, m/sec 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

0 2524.7 14643.1 18383.4 2646.2 14961 19477.4 2244.2 18383.4 21600 2337.7 19477.4 23058.7 2618.2 18074.8 23685.2 2805.2 19477.4 25555.3 

5 2758.4 16597.4 20103.9 2898.7 17298.7 21188.6 2618.2 20384.4 24779.2 2618.2 21272.7 26181.8 3422.3 19636.4 25714.3 3740.3 21188.6 27734 

10 2945.5 18383.4 24311.7 3039 19636.4 25246.8 2758.4 23096.1 26181.8 2898.7 24311.7 28285.7 3553.3 21815.1 28285.7 3974 23376.6 31885.7 

15 1963.6 15428.6 21272.7 2103.9 16831.2 22441.6 2178.7 20412.5 25555.3 2337.7 21506.5 26649.4 3506.5 17298.7 22441.6 3581.3 19009.9 24311.7 

20 1753.3 12857.1 19075.3 1963.6 13867 20571.4 2010.4 13090.9 20571.4 2178.7 14643.1 22535.1 2711.7 15194.8 21039 2898.7 16672.2 22909.1 

25 1355.8 12155.8 16480.5 1552.2 13090.9 18000 1916.9 12389.6 18074.8 2103.9 13558.4 19636.4 2178.7 11454.6 19402.6 2337.7 12932 21039 

30 1192.2 10005.2 15054.5 1402.6 11061.8 15896.1 1711.2 8724.2 13792.2 1870.1 11220.8 15194.8 1309.1 8883.1 17607.3 1552.2 10126.8 19636.4 
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Fig. (6.38): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 30 vol. %; CFV: 1, 

4.60 and 12 m/sec. No electric field. 
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Fig. (6.39): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 50 vol. %; CFV: 1, 

4.60 and 12 m/sec. No electric field. 

 

 

Generally, with reference to Figs. (6.38-43), whether with/without an electrical 

field, at a given set of filtration conditions, the data suggest that there was no common 

trend with regards to the permeates obtained from various membranes used when 

dealing with both emulsions. Initially, considering emulsion EI at 1 m/sec, membrane 
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MI gave 2524.7, membrane MII 2244.2 and membrane MIII 2618.2 l/m
2
 hr (i.e., 

MIII>MI>MII). Likewise, in case of emulsion EII, membrane MI produced 2646.2, 

membrane MII 2337.7 and membrane MIII 2805.2 l/m
2
 hr in which the order again is 

as following: MIII>MI>MII. Increasing the feed CFV to 4.6 m/sec shuffled the order 

of obtained permeates to: MII>MIII>MI in case of both emulsions. Further increasing 

the feed CFV to 12 m/sec produced another pattern among the collected permeates, 

according to the following order: MIII>MII>MI with respect to both emulsions. At 

the end of filtration time for both emulsions, a different order of permeate flux rate 

was again observed.        

 

The variation of permeate flux rate among the various membranes employed 

can be partly attributed to differences in their morphological structure which may 

eventually result in different membrane porosity. Permeate variation can also be due 

to differences in the degree of hydrophilicity of each membrane. Under such 

conditions, it is envisaged that the oily layer that may form on the membrane surface, 

or within its pores, may be of different thickness, according to which the membrane 

permeate flux rate is proportional. The thicker the oil layer is, the lower the permeate 

flux rate would be, and vice versa. Another possible reason for permeate flux rate 

variation is swelling of the membrane. Depending on emulsion water content and/or 

membrane pore diameter, oil droplets may settle on the membrane surface creating an 

obstacle for permeate flow and/or sit at its pores leading to pore blockage. Amongst 

the tested membranes which were of different pore sizes, flux rate was not observed to 

be proportional to pore size. In this regard, it should not be expected that membranes 

with larger pore diameter will always deliver higher permeate flux rates than those 

with smaller pore diameter, as it is expected that the former membranes are more 

vulnerable to internal blocking by smaller droplets, by which membrane permeation 

can accordingly decline (Wakeman and Williams, 2002; Wakeman and Akay, 1997; 

Tarleton and Wakeman, 1994b; Wakeman and Tarleton, 1991; Fell et al., 1990).   

 

With regard to flux declination as demonstrated in Figs. (6.38-43), it can be 

understood that each membrane has experienced different pattern of flux declination 

with time. In membrane MI, the flux declined nearly 40 % when feeding emulsion EI 

at a CFV of 1 m/sec from 1963.6 to 1192.2 l/m
2
 hr in the last fifteen minutes of 

filtration. Flux deterioration was lesser at higher feed CFVs of 4.60 and 12 m/sec, in 
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which it was 35 and less than 30 %, respectively. Generally, at all feed CFVs used, 

emulsion EII exhibited a smaller flux decrease with time, as the declination 

percentages were less than 30 to 34 % at the used feed CFVs. However, during the 

same period of filtration, the percentages of flux declination in membrane MII was 

21.5-57 % in case of emulsion EI and 20-48 % in case of emulsion EII. For membrane 

MIII the corresponding figures were 21.5-49 % in case of emulsion EI and 20-57 % in 

case of emulsion EII, respectively. 
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Table (6.22): Effect of membrane pore size on permeate flux rate for membranes MI, MII and MIII for 30 minutes filtration. Emulsion water 

content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec; electric field 333.30 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

 

Filtration 

time, 

min 

Membrane 

MI MII MIII 

CFV, m/sec 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

30 50 30 50 30 50 

0 4207.8 24928.8 27893 4048.8 25714.3 30230.7 3740.3 29604.2 34597.4 3974 31792.2 37870.1 4207.8 29763.1 39272.7 4441.6 32727.3 43480.5 

5 4441.6 26649.4 30389.6 4768.8 29454.6 32409.4 4675.3 29922.1 38337.7 4768.8 32961 41142.9 5376.6 31792.2 40207.8 5703.9 35214.6 44415.6 

10 4768.8 29220.8 36000 4983.9 31885.7 38805.2 4675.3 34129.9 39272.7 4983.9 36561 43789.1 5919 33662.3 41376.6 6386.5 37243.6 48305.5 

15 3113.8 22441.6 32727.3 3422.3 26649.4 34129.9 3422.3 28052 37870.1 3833.8 30857.2 41376.6 5292.5 26181.8 35532.5 5610.4 29604.2 40207.8 

20 2646.2 19009.9 28669.1 3272.7 22441.6 31090.9 3039 20571.4 30230.7 3422.3 24311.7 35064.9 3974 23993.8 33662.3 4516.4 27116.9 38337.7 

25 2178.7 17766.2 25246.8 2898.7 20664.9 26957.9 2805.2 19168.8 25863.9 3272.7 21974 29080.5 3422.3 17298.7 31090.9 3833.8 20664.9 35373.5 

30 1776.6 13090.9 22909.1 2646.2 15428.6 22909.1 2571.4 14961 22282.6 2898.7 18383.4 24779.2 2103.9 12623.4 27116.9 2805.2 15896.1 31792.2 
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Fig. (6.40): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 30 vol. %; CFV: 1, 

4.60 and 12 m/sec; electric field: 333.30 V/cm. 
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Fig. (6.41): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 50 vol. %; CFV: 1, 

4.60 and 12 m/sec; electric field: 333.30 V/cm. 
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Table (6.23): Effect of membrane pore size on permeate flux rate for membranes MI, MII and MIII for 30 minutes filtration. Emulsion water 

content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec; electric field 666.70 V/cm. 
 

                                    Permeate flux rate, l/m
2
. hr 

 

 

 

 

Filtration 

time, 

min 

Membrane 

MI MII MIII 

CFV, m/sec 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

0 5292.5 31792.2 52363.6 5703.9 33503.4 52204.7 4516.4 35841 53298.7 5142.9 38805.2 57974 4983.9 33194.8 61555.3 5610.4 36467.5 69035.9 

5 5610.4 35373.5 49867 6077.9 37711.2 53607.3 5451.4 40824.9 57974 5451.4 43480.5 63677.9 5610.4 40048.8 64828.1 6386.5 43480.5 71532.5 

10 6077.9 43013 49090.9 6386.5 40207.8 58909.1 5844.2 48155.9 55168.8 6227.5 51737.2 64519.5 7013 44883.1 63677.9 8097.7 48155.9 75272.7 

15 3974 32727.3 45818.2 4441.6 36701.3 50727.3 4516.4 42077.9 53607.3 4983.9 46285.7 57506.5 6545.5 36467.5 48932 6854 41142.9 54233.8 

20 3581.3 26957.9 41919 3740.3 30857.2 46126.8 4048.8 31792.2 47370.4 4516.4 36467.5 53766.2 5292.5 31792.2 45350.7 5844.2 35064.9 51522.1 

25 2646.2 24077.9 38337.7 3113.8 27893 41610.4 3506.5 27584.4 43480.5 4207.8 30857.2 48857.2 4207.8 22282.6 40675.3 4675.3 25863.9 46126.8 

30 2178.7 19636.4 36935.1 2646.2 22441.6 37496.1 3366.2 18383.4 31792.2 3740.3 24311.7 37084.7 2487.3 16831.2 38337.7 3113.8 19636.4 43480.5 
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Fig. (6.42): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 30 vol. %; CFV: 1, 

4.60 and 12 m/sec; electric field: 666.70 V/cm. 
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Fig. (6.43): Effect of membrane pore size on permeate flux rate for membranes MI, 

MII and MIII for 30 minutes filtration. Emulsion water content: 50 vol. %; CFV: 1, 

4.60 and 12 m/sec; electric field: 666.70 V/cm.
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6.14 Evaluation of Permeate Flux Rate  

 

 Membrane flux rate is an important performance characteristic to determine. 

In fact, as was explained in Secs. 4.3.1 and 4.3.2, the performance of a membrane is 

described by the flux rate of the liquid through it and the retention/selectivity of that 

membrane for a part of the treated stream, respectively. In this work, a range of 

operational conditions using different membrane sizes including: 1-emulsion water 

content, 2-filtration duration, 3-feed CFV and 4-electric field, has been thoroughly 

scrutinized. It was found that with increasing the oil content in an emulsion, the 

permeate flux rate decreases. Nevertheless, with increasing both feed CFV and/or 

electric field, it was found that the permeate flux rate from all membranes tested 

generally increases, although with different patterns. However, despite the efforts 

been made to optimize the permeate flux rate, obtained fluxes still correspond to no 

more than 5.50 % of the total inlet flow rate to the filtration unit. However, if 

permeate flux rate and demulsification efficiency (as will be shown next) are the 

important goals regardless of the economics, such permeate percentage(s) can be 

accepted. According to some work available in the literature concerned with 

microfiltration of w/o emulsions (Hu and Scott, 2008; Hu and Scott, 2007; Ezzati et 

al., 2005; Kocherginsky et al., 2003; Scott et al., 2001; Dezhi et al., 1999; Sun et al., 

1998; Akay and Wakeman, 1996), details of permeate flux rate with respect to the 

total inlet were not disclosed. However, emulsions investigated and/or membranes 

used might have been system-specific and; therefore, such a comparison between the 

results of this work and those reported in the literature may not be valid.  

According to the literature, emulsion viscosity, water content and droplet size 

relative to membrane pores and phenomena like: concentration polarization at the 

membrane surface, membrane fouling within its pores; membrane-emulsion droplets 

interactions and membrane internals can accordingly influence the performance of a 

membrane and ; therefore, can be held responsible to this limitation in permeate flux 

rate encountered in this study (Huang et al., 2012; de Morais Coutinho et al., 2009; 

Fakhru'l-Razi et al., 2009; Mohammadi et al., 2004; Cornelissen et al., 1998; Akay 

and Wakeman, 1994a; Scott et al., 1994). Details of fluxes obtained at these 

conditions are given in previous sections of this Chapter. To avoid repetition, only 

selective values are repeated in Table (6.24) below for citation purposes only. This 

table has been constructed with the highest permeates obtained from each membrane 
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according to emulsion water content at the top of the table, scrolling down to lower 

ones. The last column of the table represents the percentage of the permeate collected 

relative to the total inlet flow rate (pro-rata).
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Table (6.24): Percentage of obtained permeate flux rates at various filtration conditions relative to the total inlet flow rate. 

 

Membrane 

 

Emulsion 

 

Filtration 

condition(s) 

 

Permeate flux rate, l/m
2 

hr, 

after 30 min of filtration 

 

Total inlet 

flow rate, 

l/hr. 

 

Total inlet flow 

rate, l/m
2 

hr, 

 

Percentage, % 

 

 

MI 

EII  

333.30 V/cm & 

4.60 m/sec 

15428.60  

 

1290.20 

 

 

335116.90 

4.60 

EI 13090.90 3.90 

EII  

333.30 V/cm & 1 

m/sec 

2646.20  

 

288 

 

 

74805.20 

3.50 

EI 1776.60 2.40 

 

 

MII 

EII  

333.30 V/cm & 

4.60 m/sec 

18383.40  

 

1290.20 

 

 

335116.90 

5.50 

EI 14961 4.50 

EII  

333.30 V/cm & 1 

m/sec 

2898.70  

 

288 

 

 

74805.20 

3.90 

EI 2571.40 3.45 

 

 

MIII 

 

EII  

333.30 V/cm & 

4.60 m/sec 

15896.10  

 

1290.20 

 

 

335116.90 

4.70 

EI 12623.40 3.80 

EII  

333.30 V/cm & 1 

m/sec 

2805.20  

 

288 

 

 

74805.20 

3.75 

EI 2103.90 2.80 
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6.15 Trend of Permeate Flux Rate 

 

Based on the results obtained, as reported in Secs. 6.9-13, a number of typical 

stages of permeate flux rate behaviours can be identified. With reference to the 

schematic given in Fig. (6.44), a description of physical processes and fouling effects 

believed to have taken place is given below. Each stage is clearly labelled on this 

figure.   

1- Saturation of the membrane with emulsion droplets: Initially during 

this stage, it seems that membrane pores are more prone to adsorb 

emulsion droplets within their internal structure rather than 

permeating them. However, towards the end of this period (after 10 

min of filtration), it is obvious that permeate flux rate is increasing 

maxima, indicating that membrane pores are no longer adsorbing 

emulsion droplets, but start to push them out of the membrane body 

once a pore is fully occupied and that cannot accommodate further 

droplet(s). The chemistry of the membrane surface with respect to 

emulsion droplets, membrane pore size and filtration conditions are 

vital for this stage.  

                 

 

Fig. (6.44): Stages of permeate flux rate behaviour. 

 

2- Build-up of a secondary membrane: Following the first stage, 

emulsion droplets seem have begun to deposit onto the membrane 
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surface creating what’s known as secondary membrane. Eventually, 

such a trend weakens the chemistry of interaction between the 

primary membrane surface and emulsion droplets. Further, this 

secondary membrane, which is composed of emulsion droplets, 

clogs the pores of the primary membrane. As a result, the permeate 

flux rate begins to substantially decline. This declination is; of-

course, a function of the filtration conditions. 

3- Densification/compaction of secondary membrane: During this 

final stage in which the growth of secondary membrane seems to 

have finalized, permeation rate declination is somewhat retarded in 

comparison to that observed in the former stage. As the name 

implies, densification owing to the crossflow filtration principle of 

feed tangential flow, involves no deposition of additional/newer 

emulsion droplets but rather a re-arrangement. This; in turn, brings 

no much change to the permeate flux rate (plateau).  

 

6.16 Effect of Influent Emulsion Water Content on Demulsification 

 

The effect of water phase content in w/o emulsion on demulsification using 

three different PHP membranes in terms of their pore sizes was investigated at 

different feed flow rates (8*10
-5

-9.5*10
-4

 m
3
/sec) and electric field intensities (0-

666.70 V/cm) for a fixed filtration duration of 30 min. This investigation was carried 

out using two emulsions of two different water contents, namely 30 and 70 vol. % of 

water (dispersed phase). The influence of water phase content in w/o emulsion on 

demulsification using membrane MI at flow rate of 8*10
-5 

m
3
/sec and electric fields of 

0, 33.30 and 83.30 V/cm as a function of settling time, has been shown in Table (6.25) 

and Fig. (6.45), respectively. Similarly, demulsification profiles following the use of 

membranes MII and MIII using the same conditions, are presented in Tables (6.26-27) 

and Figs. (6.46-47), respectively. However, detailed experimental results of these 

investigations at higher conditions are collated in Appendix B. 

 

In this study as shown in the preceding Chapter, the extent of separation 

(demulsification) efficiency has been calculated by working out the percentage of 
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volume of water that comes out of the permeate sample as a watery layer at the 

bottom of the sample as a fraction of the total volume of the whole sample.   

 

DE = W (ml)/ S (ml)* 100 

 

Where DE is the demulsification efficiency; W is the volume fraction of water 

in the permeate sample and S is the total volume of permeate sample. The 

demulsification efficiency was recorded as a function of settling time until no more 

water has come out. Substituting the results obtained from the experimental studies in 

this thesis into this equation can directly lead to the generation of the tables referred to 

hereafter. For instance, the demulsification efficiencies using membrane MI with no 

any electrical field, when demulsifying emulsion EI,, as shown in Table (6.25) are 0, 

19.60, 23.50, 31.40 and 54.90 vol. %, after 0, 2, 4, 6, 7 hr of emulsion settling, 

respectively.  

 

DE = 0.7 (ml)/ 1.275 (ml)*100 

                                                       = 54.90 % 

Table (6.25): Bottle test results of phase separation of water as a function of time for 

membrane MI. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
 

                                    Separation efficiency, % 

 

 

 

Time, hr 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 0 0 0 0 0 0 

2 19.60 33.30 18.50 57.10 17.20 50 

4 23.50 50 29.60 57.10 34.50 50 

6 31.40 56.70 44.40 57.10 51.70 62.50 

7 54.90 56.70 55 57.10 55.20 62.50 
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Fig. (6.45): Phase separation of water as a function of time for EI and EII w/o 

emulsions using memebrane MI. CFV: 1 m/sec; electric field: 0, 33.30 and 83.30 

V/cm. 

 

 

Table (6.26): Bottle test results of phase separation of water as a function of time for 

membrane MII. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
 

                                    Separation efficiency, % 

 

 

 

Time, hr 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 0 0 0 0 0 0 

2 27.30 50 25 50 22.70 53 

4 41 50 50 50 45.50 53 

6 41 50 50 50 54.50 61.80 

7 43.70 50 50 50 54.50 61.80 
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Fig. (6.46): Phase separation of water as a function of time for EI and EII w/o 

emulsions using membrane MII. CFV: 1 m/sec; electric field: 0, 33.30 and 83.30 

V/cm. 

 

 

Table (6.27): Bottle test results of phase separation of water as a function of time for 

membrane MIII. Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
 

                                    Separation efficiency, % 

 

 

 

Time, hr 

Electric field, V/cm 

0 33.30 83.30 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

Emulsion water 

content, vol. % 

 

30 50 30 50 30 50 

0 0 0 0 0 0 0 

2 35.70 0 54.60 47.60 25 60 

4 35.70 45.20 54.60 57.10 50 60 

6 35.70 54.20 54.60 57.10 55 60 

7 53.60 54.20 54.60 57.10 55 60 
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Fig. (6.47): Phase separation of water as a function of time for EI and EII w/o  

emulsions using memebrane MIII. CFV: 1 m/sec; electric field: 0, 33.30 and 83.30 

V/cm. 

    

As shown in Figs. (6.45-47), water content had an effect on demulsification 

efficiency. It is obvious that the higher the water content in the emulsion, the higher 

the demulsification efficiency. For example, using membrane MI with applying no 

external electrical field, emulsion EI exhibited water phase separation percentage of 

54.90 vol. % whereas 56.70 vol. % of the demulsified sample of emulsion EII was 

water. Applying an electrical field across the emulsions led to further increase in the 

water being separated in comparison to that when no electrical field applied. It should 

also be noted that when applying an electrical field emulsion EII again produced more 

water than emulsion EI. For example, by applying 33.30 V/cm to emulsion EI, it gave 

55 vol. % and that emulsion EII gave 57.10 vol. %. This observation is also valid for 

both membranes MII and MIII. A likely explanation to this finding is that the stability 

of an emulsion that’s originally with higher water phase content is lower than that of 

an emulsion with lower water content (higher oil content) which in turn would render 

the former emulsion to be more vulnerable to destabilize than the latter one. Higher 

oil content means more emulsion stabilizers (asphaltenes/resins) which accordingly 

result in an increased level of stability; that’s more difficult to demulsify. With this in 

mind, it is fairly logic; therefore, to have the demulsification efficiency increased with 

the increase in the water content, and vice versa.       

 



236 

 

6.17 Relationship between Settling Time and Demulsification 

 

To understand the relationship between settling time and demulsification 

efficiency at various filtration conditions, a number of experiments at various 

conditions of emulsion water contents, flow rates and electric fields strengths using 

three PHP membranes with different pore sizes were performed. These experiments 

were based on using two emulsions with different water contents, namely, 30 and 50 

vol. % of water content. Inlet flow rate was changed in the range of (8*10
-5

-9.5*10
-4

 

m
3
/sec), whilst applying electric fields of (0-666.70 V/cm). A sample of the results of 

these experiments for each membrane is separately shown below in Tables (6.28-30) 

and Figs. (6.48-53). For a complete set of results, refer to Appendix B. 

 

It is clear from these figures that, as settling time elapsed, demulsification 

efficiency of both emulsions increased at each voltage or feed CFV used. In other 

words, no water separation was noticed at the onset of settling time and that a water 

layer was gradually developing at the bottom of the sample. For example, in case of 

emulsion EI, running the filtration experiment at 1 m/sec using membrane MI in the 

absence of any electrical field, the demulsification efficiency was increasing from 

zero to 54.90 vol. %. Applying an electrical field of 33.30 V/cm through emulsion EI 

has also produced a similar trend in which the demulsification efficiency was nil at 

the start of settling time and was 55 vol. % at the end of settling time. It can also be 

noted that the demulsification rate was somewhat retarded towards the end of the 

settling time for both emulsions examined. It is very likely that the sample collected 

with time, approached its final distribution with which there is a suppression in the 

tendency towards a further change in its composition. After some time, an apparent 

upper oil phase and a distinctive lower water phase were visually identified.      
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Table (6.28): Demulsification efficiency vs. settling time using membrane MI for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; 

CFV: 1, 2.25 and 2.90 m/sec; electric field: 0, 33.30 and 83.30 V/cm. 
 

Demulsification efficiency, % 

 

 

 

Settling 

time, hr 

Emulsion EI Emulsion EII 

CFV, m/sec CFV, m/sec 

1 2.25 2.90 1 2.25 2.90 

Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm 

0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 19.60 18.50 17.20 9.50 13.60 35.30 13.30 11.80 26.30 33.30 57.10 50 36.40 50 31.60 33.30 42.30 27.30 

4 23.50 29.60 34.50 24.80 31.80 44.20 26.50 15.80 37.50 50 57.10 50 63.60 66.70 55.30 37.50 49.30 54.60 

6 31.40 44.40 51.70 38.10 40.90 57.40 35.30 31.60 45 56.70 57.10 62.50 63.60 70.80 71.10 65 73.90 75 

7 54.90 55 55.20 55.20 56.40 57.40 58.30 58.50 58.60 56.70 57.10 62.50 63.60 70.80 71.10 65 73.90 75 
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Fig. (6.48): Demulsification efficiency vs. settling time using membrane MI for 30 minutes 

filtration for emulsion with water content of 30 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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Fig. (6.49): Demulsification efficiency vs. settling time using membrane MI for 30 minutes 

filtration for emulsion with water content of 50 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 

 



239 

 

Table (6.29): Demulsification efficiency vs. settling time using membrane MII for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; 

CFV: 1, 2.25 and 2.90 m/sec; electric field: 0, 33.30 and 83.30 V/cm. 
 

Demulsification efficiency, % 

 

 

 

Settling 

time, hr 

Emulsion EI Emulsion EII 

CFV, m/sec CFV, m/sec 

1 2.25 2.90 1 2.25 2.90 

Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm 

0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 27.30 25 22.70 25.60 22.70 22.20 23.10 21.70 28.60 50 50 53 47.10 32.20 39.20 33.30 19.60 26.50 

4 41 50 45.50 51.30 34.10 55.60 34.60 27.20 28.60 50 50 53 58.80 42.90 49 44.40 49 53 

6 41 50 54.50 51.30 45.50 55.60 34.60 43.50 38.10 50 50 61.80 58.80 59 62.70 61.10 63.70 66.30 

7 43.70 50 54.50 51.30 56.80 57.80 52 59.80 61.90 50 50 61.80 58.80 59 62.70 61.10 63.70 66.30 
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Fig. (6.50): Demulsification efficiency vs. settling time using membrane MII for 30 minutes 

filtration for emulsion with water content of 30 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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Fig. (6.51): Demulsification efficiency vs. settling time using membrane MII for 30 minutes 

filtration for emulsion with water content of 50 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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Table (6.30): Demulsification efficiency vs. settling time using membrane MIII for 30 minutes filtration. Emulsion water content: 30 and 50 vol. %; 

CFV: 1, 2.25 and 2.90 m/sec; electric field: 0, 33.30 and 83.30 V/cm. 
 

Demulsification efficiency, % 

 

 

 

Settling 

time, hr 

Emulsion EI Emulsion EII 

CFV, m/sec CFV, m/sec 

1 2.25 2.90 1 2.25 2.90 

Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm Electric field, V/cm 

0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 0 33.30 83.30 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 35.70 54.60 25.00 12.50 0 27.30 20.80 18.20 17.70 0 47.60 60.00 33.30 16.70 15.40 26.50 22.20 42.90 

4 35.70 54.60 50.00 25 31.10 36.40 31.30 45.50 35.30 45.20 57.10 60.00 55.60 41.70 46.20 53 66.70 50 

6 35.70 54.60 55.00 50 41.40 54.50 52.10 45.50 44.20 54.20 57.10 60.00 61.10 62.50 65.40 61.80 66.70 67.90 

7 53.60 54.60 55.00 55 55.90 56.40 57.30 58.20 58.30 54.20 57.10 60.00 61.10 62.50 65.40 61.80 66.70 67.90 
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Fig. (6.52): Demulsification efficiency vs. settling time using membrane MIII for 30 minutes 

filtration for emulsion with water content of 30 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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Fig. (6.53): Demulsification efficiency vs. settling time using membrane MIII for 30 minutes 

filtration for emulsion with water content of 50 vol. %; CFV: 1, 2.25 and 2.90 m/sec; electric 

field: 0, 33.30 and 83.30 V/cm. 
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6.18 Effect of Feed Crossflow Velocity (CFV) on Demulsification 

 

The effect of feed CFV on demulsification efficiency of w/o emulsions was 

investigated. For this purpose, filtration experiments were performed within a feed 

CFV range of (1-12 m/sec). Each experiment was repeated at different electrical fields 

in the range between (0-666.70 V/cm) on the two different emulsions (30 and 50 vol. 

% of water content) using three different PHP membranes of different pore diameter 

for the same duration of 30 min. The effect of feed CFVs from 1 to 3.35 m/sec on the 

demulsification efficiency using membrane MI for both emulsions in the absence of 

electrical fields is given in Table (6.31) and demonstrated in Figs. (6.54-55) as a 

function of settling time. The effect of higher velocities (3.65-12 m/sec) is tabulated in 

Appendix B. Likewise, demulsification profiles obtained when using membranes MII 

and MIII under these conditions are tabulated in Tables (6.32-33) and illustrated in 

Figs. (6.56-59), respectively. As is the case with membrane MI, the influence of 

higher velocities (3.65-12 m/sec) on demulsification efficiency using membranes MII 

and MIII is shown in Appendix B.   
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Table (6.31); Effect of feed CFV on demulsification efficiency of emulsions EI and EII using membrane MI for 30 minutes filtration. CFV: 1, 

2.25, 2.90 and 3.35 m/sec. No electrical field. 
 

 

 

 

Settling 

time, hr 

Demulsification efficiency, % 

Feed CFV, m/sec  

1 2.25 2.90 3.35 

Emulsion 

water content, 

vol. % 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

30 50 30 50 30 50 30 50 

0 0 0 0 0 0 0 0 0 

2 19.60 33.30 9.50 36.40 13.30 33.30 34.90 57.10 

4 23.50 50 24.80 63.60 26.50 37.50 42.60 64.30 

6 31.40 56.70 38.10 63.60 35.30 65 46.50 75 

7 54.90 56.70 55.20 63.60 58.30 65 58.90 75 
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Fig. (6.54): Demulsification efficiency vs. settling time using membrane MI for 30 

minutes filtration for emulsion EI. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 
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Fig. (6.55): Demulsification efficiency vs. settling time using membrane MI for 30 

minutes filtration for emulsion EII. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 

 

With respect to demulsification, it can be assumed that emulsion droplets are 

at least of two sizes in comparison to membrane pore diameter; these are smaller or 

larger than membrane pore diameter. Emulsion droplets that are smaller than 

membrane pore diameter would easily pass through the membrane; of course, at an 

increased rate at higher feed CFVs, see Figs. (6.54-59). No demulsification is 

expected to have taken place on these small emulsion droplets and that passed as they 

are into the permeate side. Thus, these droplets can be considered as the main oil 

source in the permeate side, the rest of oil in the permeate side can be linked with the 
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carry over by water droplets while filtration is running. Larger emulsion droplets than 

the membrane pore diameter inlets; however, have to deform to adopt the shape of 

membrane pores after which membrane-droplet interactions occur. It seems that at a 

low feed CFV, these droplets did not have enough force to deform, have their oil film 

stripped by the pore walls, coalesce, adsorb on the pore walls and then pass through 

the membrane pore outlets, i.e. a lower demulsification efficiency in comparison to 

that obtained as the feed CFV is increased. For example, using membrane MI with a 

CFV of 1 m/sec with no electrical field applied across either emulsion, EI or EII, the 

demulsification efficiency at maximum was 54.90 and 56.70 vol. %, respectively. The 

demulsification efficiency; however, with a CFV of 3.35 m/sec increased to 58.90 vol. 

% in the case of emulsion EI, and to 75 vol. %, in the case of emulsion EII. In fact, 

higher feed CFVs one can argue that emulsion droplets may swiftly leave the 

membrane pore internals resulting in a relatively decreased demulsification efficiency. 

On the other hand, it may be expected that as the feed CFV is increased, emulsion 

droplet collision rate and deformation within membrane pores are expected to increase 

accordingly, by which demulsification efficiency is ultimately improved. Therefore, 

the overall effect of higher feed CFV can be considered as a means of improving 

demulsification efficiency and not the opposite. 
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Table (6.32); Effect of feed CFV on demulsification efficiency of emulsions EI and EII using membrane MII for 30 minutes filtration. CFV: 1, 

2.25, 2.90 and 3.35 m/sec. No electrical field. 
 

 

 

 

Settling 

time, hr 

Demulsification efficiency, % 

Feed CFV, m/sec  

1 2.25 2.90 3.35 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

30 50 30 50 30 50 30 50 

0 0 0 0 0 0 0 0 0 

2 27.30 50 25.60 47.10 23.10 33.30 35.20 18.80 

4 41 50 51.30 58.80 34.60 44.40 42.30 50 

6 41 50 51.30 58.80 34.60 61.10 56.30 68.80 

7 43.70 50 51.30 58.80 52 61.10 59.90 68.80 
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Fig. (6.56): Demulsification efficiency vs. settling time using membrane MII for 30 

minutes filtration for emulsion EI. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 
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Fig. (6.57): Demulsification efficiency vs. settling time using membrane MII for 30 

minutes filtration for emulsion EII. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 
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Table (6.33); Effect of feed CFV on demulsification efficiency of emulsions EI and EII using membrane MIII for 30 minutes filtration. CFV: 1, 

2.25, 2.90 and 3.35 m/sec. No electrical field. 
 

 

 

 

Settling 

time, hr 

Demulsification efficiency, % 

Feed CFV, m/sec  

1 2.25 2.90 3.35 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

Emulsion 

water content, 

vol. % 

 

30 50 30 50 30 50 30 50 

0 0 0 0 0 0 0 0 0 

2 35.70 0 12.50 33.30 20.80 26.50 8.30 36.60 

4 35.70 45.20 25 55.60 31.30 53 33.30 58.60 

6 35.70 54.20 50 61.10 52.10 61.80 50 73.20 

7 53.60 54.20 55 61.10 57.30 61.80 58.30 73.20 
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Fig. (6.58): Demulsification efficiency vs. settling time using membrane MIII for 30 

minutes filtration for emulsion EI. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 
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Fig. (6.59): Demulsification efficiency vs. settling time using membrane MIII for 30 

minutes filtration for emulsion EII. CFV: 1, 2.25, 2.90 and 3.35 m/sec. No electrical 

field. 
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6.19 Effect of Electric Field (E) on Demulsification 

 

The effect of electric field strength on demulsification efficiency when 

filtering both emulsions (30 and 50 vol. % of water content) was tested at three levels: 

low, medium and high as indicated previously in Table (6.18) in Sec. 6.12. At each 

electric field strength, eight feed CFVs, ranging from 1 to 12 m/sec, were tested. This 

procedure was performed using three PHP membranes of different pore sizes for 30 

min in each run. The effect of electric field on demulsification efficiency of both 

emulsions by each membrane at 0, 83.30 and 333.30 V/cm (that’s the onset of each 

level) with a CFV of 1 and 4.60 m/sec, as a function of settling time is provided in 

this section, see Tables (6.34-35) and Figs. (6.60-65). Due to the similarity of the 

results, the rest of the results obtained from these runs are given in Appendix B. 
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Table (6.34): Effect of electric field strength on demulsification efficiency by membranes MI, MII and MIII after 30 minutes of filtration. 

Emulsion water content: 30 and 50 vol. %; CFV: 1 m/sec. 
 

                 Demulsification efficiency, % 

 

 

 

 

 

Settling 

time, hr 

Electric field, V/cm 

0 83.30 333.30 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 19.60 27.30 35.70 33.30 50 0 17.20 22.70 25 50 53 60 13.20 36.40 22.20 35.30 48.40 33.30 

4 23.50 41 35.70 50 50 45.20 34.50 45.50 50 50 53 60 39.50 54.50 44.40 70.70 64.50 50 

6 31.40 41 35.70 56.70 50 54.20 51.70 54.50 55 62.50 61.80 60 57.90 63.60 57.80 74.20 64.50 66.70 

7 54.90 43.70 53.60 56.70 50 54.20 55.20 54.50 55 62.50 61.80 60 57.90 63.60 57.80 74.20 64.50 66.70 
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Table (6.35): Effect of electric field strength on demulsification efficiency by membranes MI, MII and MIII after 30 minutes of filtration. 

Emulsion water content: 30 and 50 vol. %; CFV: 4.60 m/sec. 
 

                 Demulsification efficiency, % 

 

 

 

 

 

Settling 

time, hr 

Electric field, V/cm 

0 83.30 333.30 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII MI MII MIII 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 9.30 21.40 26.30 29.60 33.30 18.50 31.60 24 25 25.40 24 7.10 23.20 21.90 37 27.30 12.70 32.40 

4 23.40 37.50 42.10 50.70 45.80 46.20 43.40 32 29.20 41.30 39 32.10 50 53.10 48.10 48.50 40.70 47.10 

6 30.40 42.90 52.60 78.20 72.90 76.20 55.30 44 50 81 75 78.60 67.90 68.80 64.80 83.30 76.30 80.90 

7 63.10 61.60 62.10 78.20 72.90 76.20 64 66 64.60 81 75 78.60 67.90 68.80 64.80 83.30 76.30 80.90 
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Fig. (6.60): Effect of electric field on demulsification efficiency by membrane MI 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 

m/sec. 
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Fig. (6.61): Effect of electric field on demulsification efficiency by membrane MII 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 

m/sec. 

 



255 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Settling time, hr

W
a
te

r 
se

p
a
ra

te
d

, 
v
o
l.
  
%

EI, 0 V/cm
EII, 0 V/cm
EI, 25 V/cm
EII, 25 V/cm
EI, 100 V/cm
EII, 100 V/cm

 
 

Fig. (6.62): Effect of electric field on demulsification efficiency by membrane MIII 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 1 

m/sec. 
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Fig. (6.63): Effect of electric field on demulsification efficiency by membrane MI 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 

m/sec. 
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Fig. (6.64): Effect of electric field on demulsification efficiency by membrane MII 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 

m/sec. 
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Fig. (6.65): Effect of electric field on demulsification efficiency by membrane MIII 

after 30 minutes of filtration. Emulsion water content: 30 and 50 vol. %; CFV: 4.60 

m/sec. 

 

When using a membrane to filter a given emulsion at a certain feed CFV, it 

can be generally noted that increasing the applied electrical field led to higher 

demulsification efficiency. For example, the demulsification efficiency by membrane 

MI when running the filtration experiment at 1 m/sec increased from 55.20 vol. % to 

57.90 vol. % when the applied electrical field was increased from 83.30 to 333.30 

V/cm, respectively. This pattern of increasing demulsification efficiency when 
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increasing the applied electrical field is more pronounced in the case of emulsion EII. 

For example, the demulsification efficiency increased from 62.50 vol. % to 74.20 vol. 

% following application of electrical fields of 83.30 and 333.30 V/cm, respectively. 

This finding may be explained by the fact that emulsion EII originally contains more 

water (50 vol. %) than emulsion EI (30 vol. %), and this was another factor for this 

emulsion (EII) to be more prone to be further demulsified and producing more water. 

Applying an electrical field across emulsion droplets can aid emulsion demulsification 

by increasing the chance of water droplets colliding (Kim et al., 2002). On this basis; 

therefore, the emulsion is to an extent easier to be dealt with by the hydrophilic 

membrane, resulting in an increased demulsification efficiency, when compared to 

that obtained when no electrical field is applied, refer to Tables (6.34-35).  

 

6.20 Effect of Membrane Pore Size on Demulsification 

 

The effect of membrane pore size on demulsification efficiency was 

investigated. To achieve this, three PHP membranes of different pore sizes were 

employed to microfilter two emulsions of different water contents (30 and 50 vol. % 

of water content). In each experiment, a fresh membrane was used with changing the 

feed CFV from 1 to 12 m/sec and the electric field from 0 to 666.70 V/cm; however, 

the filtration time was always kept constant at 30 minutes. The demulsification 

profiles with respect to membrane pore size for membranes MI, MII and MIII at 1, 

4.60 and 12 m/sec for both emulsions using no electric field are given in Table (6.36) 

and shown in Figs. (6.66-67), while those data obtained with the application of 333.30 

and 666.70 V/cm are tabulated separately in Tables (6.37-38) and shown in Figs. 

(6.68-71).  
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Table (6.36): Effect of membrane pore size on demulsification efficiency by membranes MI, MII and MIII for 30 minutes filtration. Emulsion 

water content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec. No electric field. 
 

                                    Demulsification efficiency, % 

 

 

 

 

Settling 

time, hr 

Membrane 

MI MII MIII 

CFV, m/sec 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 19.60 9.30 18.60 33.30 29.60 20.60 27.30 21.40 13.60 50 33.30 36.90 35.70 26.30 29.20 0 18.50 23.80 

4 23.50 23.40 43.50 50 50.70 47.10 41 37.50 23.70 50 45.80 64.60 35.70 42.10 53.10 45.20 46.20 50 

6 31.40 30.40 55.90 56.70 78.20 79.40 41 42.90 40.70 50 72.90 76.90 35.70 52.60 58.40 54.20 76.20 78.60 

7 54.90 63.10 66.80 56.70 78.20 79.40 43.70 61.60 66.10 50 72.90 76.90 53.60 62.10 63.70 54.20 76.20 78.60 
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Fig. (6.66): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 30 

vol. %; CFV: 1, 4.60 and 12 m/sec. No electric field. 
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Fig. (6.67): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 50 

vol. %; CFV: 1, 4.60 and 12 m/sec. No electric field. 

 

 

By reference to Figs. (6.38-43) in Sec. 6.13 it can be generally noted that a 

membrane with a larger pore diameter produced a higher permeate flux rate compared 

to that obtained via a membrane with a smaller pore diameter. However, with regard 

to demulsification efficiency, membranes with larger pore diameter exhibited a lower 
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demulsification efficiency of either emulsion in comparison to those membranes with 

smaller pore diameter. For instance, membrane MIII, which has a larger pore diameter 

than membrane MI, at feed CFV of 1 m/sec and applying no electrical field, was only 

capable of achieving a maximum demulsification efficiency of 53.60 vol. %, with 

regard to emulsion EI and 54.20 vol. % in the case of emulsion EII, as shown in Figs. 

(6.66-67). Whereas membrane MI, as depicted in Figs. (6.68-69) under the same 

conditions, achieved a relatively higher demulsification efficiency of 54.90 vol. % in 

case of emulsion EI and 56.70 vol. % in case of emulsion EII. The difference in 

performance of these membranes is more notable at higher feed CFVs. This was 

concluded by the pattern of increase of demulsification efficiency with feeding either 

of the emulsions at a feed CFV of 12 m/sec; from 66.80 vol. % to 79.40 vol. %, in the 

case of emulsion EI, and from 63.70 vol. %  to 78.60 vol. % , in the case of emulsion 

EII.  
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Table (6.37): Effect of membrane pore size on demulsification efficiency by membranes MI, MII and MIII for 30 minutes filtration. Emulsion 

water content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec; electric field 333.30 V/cm. 
 

                                    Demulsification efficiency, % 

 

 

 

 

Settling 

time, hr 

Membrane 

MI MII MIII 

CFV, m/sec 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 13.20 23.20 16.30 35.30 27.30 44.90 36.40 21.90 29.40 48.40 12.70 30.20 22.20 37 27.60 33.30 32.40 23.50 

4 39.50 50 38.80 70.70 48.50 57.10 54.50 53.10 39.90 64.50 40.70 64.20 44.40 48.10 41.40 50 47.10 42.60 

6 57.90 67.90 69.40 74.20 83.30 86.70 63.60 68.80 70.30 64.50 76.30 79.20 57.80 64.80 66.40 66.70 80.90 83.10 

7 57.90 67.90 69.40 74.20 83.30 86.70 63.60 68.80 70.30 64.50 76.30 79.20 57.80 64.80 66.40 66.70 80.90 83.10 
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Fig. (6.68): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 30 

vol. %; CFV: 1, 4.60 and 12 m/sec; electric field: 333.30 V/cm. 

 

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Settling time, hr

W
a
te

r 
se

p
a
ra

te
d

, 
v
o
l.
 %

1 m/sec, MI
4.60 m/sec,  MI
12 m/sec,  MI
1 /m/sec, MII
4.60 m/sec, MII
12 m/sec, MII
1 m/sec, MIII
4.60 m/sec, MIII
12 m/sec, MIII

 
 

Fig. (6.69): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 50 

vol. %; CFV: 1, 4.60 and 12 m/sec; electric field: 333.30 V/cm. 
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Table (6.38): Effect of membrane pore size on demulsification efficiency by membranes MI, MII and MIII for 30 minutes filtration. Emulsion 

water content: 30 and 50 vol. %; CFV: 1, 4.60 and 12 m/sec; electric field 666.70 V/cm. 
 

                                    Demulsification efficiency, % 

 

 

 

 

Settling 

time, hr 

Membrane 

MI MII MIII 

CFV, m/sec 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1 

  

4.60  12 

 

1  

 

4.60  12 

 

1  

 

4.60  12 

 

1  4.60  12 

 

Emulsion water content, vol. % 

 

30 50 30 50 30 50 

1 

 

m/sec 

4.60 

m/sec 

12 

m/sec 

1  

m/sec 

4.60 

m/sec 

12 

m/sec 

1 

 

m/sec 

4.60 

m/sec 

12 

m/sec 

1  

m/sec 

4.60 

m/sec 

12 

m/sec 

1  

m/sec 

4.60 

m/sec 

12 

m/sec 

1 

m/sec 

4.60 

m/sec 

12 

m/sec 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 10.70 9.50 27.80 26.50 27.10 24.90 27.80 25.40 29.40 25 15.40 27.70 18.80 16.70 26.80 45 23.80 12.90 

4 32.20 22.60 36.70 35.30 45.80 41.10 41.70 43.20 51.50 62.50 42.30 54.20 37.60 25 47.60 60.10 52.40 53.80 

6 60.10 67.90 69.60 74.20 83.30 86.70 63.90 71.20 71.30 68.80 77.90 79.40 60.20 65.30 67.10 72.10 81 84.40 

7 60.10 67.90 69.60 74.20 83.30 86.70 63.90 71.20 71.30 68.80 77.90 79.40 60.20 65.30 67.10 72.10 81 84.40 
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Fig. (6.70): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 30 

vol. %; CFV: 1, 4.60 and 12 m/sec; electric field: 666.70 V/cm. 
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Fig. (6.71): Effect of membrane pore size on demulsification efficiency by 

membranes MI, MII and MIII for 30 minutes filtration. Emulsion water content: 50 

vol. %; CFV: 1, 4.60 and 12 m/sec; electric field: 666.70 V/cm. 

 

Applying an electrical field and/or increasing the feed CFV did increase the 

demulsification efficiency, but again it was higher in the case of membrane MI than in 

the case of membrane MIII. For instance, as shown in Figs. (6.68-69), by increasing 

the feed CFV from 1 to 4.60 m/sec, coupled with applying an electrical field of 

333.30 V/cm across emulsion EI and EII while using membrane MIII, the 

demulsification efficiency increased from 57.80 to 64.80 vol. % with regard to 
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emulsion EI and from 66.70 to 80.90 vol. % in case of emulsion EII. Under these 

conditions using membrane MI, the demulsification efficiency was 57.90 and 67.90 

vol. % in case of emulsion EI and 74.20 and 83.30 vol. % in case of emulsion EII. It 

can be concluded that a membrane with a smaller pore diameter in comparison to a 

membrane with larger ones, seems more able to contribute to emulsion droplet 

deformation and tearing of the oily film around water droplets, which in turn can lead 

to higher demulsification efficiency.    

 

6.21 Assessment of Phase Separation of Fresh Emulsions and Permeate 

Stream(s) 

 
 

As stated earlier in the methodology section in Chapter 5, Sec. 5.3.2, the bottle 

test method was utilized to assess the stability of the prepared w/o emulsion(s) as well 

as of the permeate streams (demulsified emulsion), by monitoring water phase 

separation against time. The amount of resolved water is the most suitable measure of 

the emulsion stability of w/o emulsions, since the coalescence of the droplet phase is 

the limiting step in the demulsification process (Xia et al., 2004). Typical water phase 

separation data against settling time, for fresh emulsions EI and EII, were reported in 

Table (6.4) and Fig. (6.3). For the freshly prepared emulsion(s), no water phase 

separations were observed until 79/71 days (1896/1704 hr) have elapsed in the case of 

emulsion EI/EII, respectively. In the case of emulsion EI, a maximum percentage of 

43 vol. % of the collected sample was water, and in the case of emulsion EII, the 

sample contained 48 vol. % water, see Fig. (6.3).  

 

On the other hand, in the case of demulsified emulsions, owing to the 

interactions between the hydrophilic PHP membrane and emulsion droplets as well as 

to the influence of various microfiltration operating variables tested, only a few hours 

were required to initially observe phase separation in the permeate stream, which did 

not require a long time to take place and the to finalize. In general, in the permeate of 

both emulsions, a water layer at the bottom of the sample was observed after 2 hr of 

settlement, and that this layer only required 6-7 hr to completely form. Depending on 

the filtration conditions and/or emulsion composition, this layer required less/more 

time to be completely created. For instance, samples of emulsion EI collected 

subsequent to either membrane (MI, MII or MIII) always, apart from those taken at 
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higher electrical fields which required 6 hr to completely form, required 7 hr to do so. 

In addition, when using either membrane, all samples of emulsion EII always required 

6 hr to finally form. It is also worthwhile mentioning that, although higher feed CFVs 

did boost the demulsification efficiency as was previously discussed in Sec. 6.18, they 

did not contribute in shortening the required time for final phase separation. For 

instance, when using membrane MI, increasing the feed CFV from 2.25 to 3.35 m/sec 

while applying no electrical field, led to increasing the demulsification efficiency 

from 55.20 to 58.90 vol. % in case of emulsion EI and from 63.60 to 75 vol. % in case 

of emulsion EII. However, the time required to achieve the corresponding 

demulsification efficiency was the same (generally 7 hr in case of emulsion EI and 6 

hr in case of emulsion EII) irrespective of feed CFV used.  

   

A brief summary of the demulsification experiments undertaken and observations 

made is given here: 

a) The demulsification process is carried out in two stages; 

  i) passing of the emulsion through a hydrophilic micro-porous PHP in a  

       crossflow filtration mode;  

ii) gravity settling 

b) Gravity settling rate is affected by the processing conditions in Stage 

1(crossflow filtration). Therefore, this investigation focuses on Stage 1 only. 

c) Crossflow is carried out with or without an electric field which is orthogonally 

superimposed on the crossflow. 

d) The crossflow filtration system is such that it has the elements of membrane 

filtration and flow through porous media. Although the filtration media has no 

active membrane layer, and that the interconnecting holes of PHP are very 

large compared with the molecular size of the crude oil components; 

nevertheless, there is ‘fouling’ of the membrane, as a result of which the 

permeate flux rate decays and subsequently reaches equilibrium. 

e) Without the electric field, this decay starts immediately, but in the presence of 

the electric field permeate flux rate does , in fact,  increase with increasing 

filtration time, followed by decay. Nevertheless, the equilibrium permeate flux 

rate when applying an electric field is always higher compared with the flux 

with no electric field. 
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f) It was found that the permeate flux rate increased with increasing PHP pore 

size. 

g) Demulsification rate increased with decreasing PHP pore size, and  

h) Permeate flux rate was higher for the water-rich emulsion (50 vol. % water) 

compared to the emulsion containing only 30 vol. % water. 

 

6.22 Mechanism of Demulsification 

 

Based on the summarized results above, a mechanism of crossflow filtration 

and subsequent separation is proposed. 

 

- Similarities of Crossflow Membrane Filtration of Water- in-Crude Oil  

    Emulsions with the Crossflow Membrane Filtration of Solutions or  

    Dispersions of Surface Active Molecules or Molecular Aggregates 

  

The results in (d) and (e) have also been observed for the crossflow filtration 

of dilute surfactant solutions or diluter solutions of  hydrophobically modified water 

soluble polymers which act as surface active species without the formation of  ordered  

structured encountered in molecular surfactants (Akay and Wakeman, 1996; Akay 

and Wakeman, 1994b; Akay and Wakeman, 1994a). In these studies, both non-

sulphonated PHP and several different membranes were used with or without an 

electric field. It was concluded that a secondary membrane was formed by the surface 

active components on the surface and within the pores of the membrane. Secondary 

membrane dictated the permeate flux rate and the rejection of the surface active 

molecules or sub-micron/nano-sized molecular aggregates (of nano-sized) dissolved 

or dispersed in water. It was shown that irrespective of pore size of the membrane,  

ultimate equilibrium permeate flux rates and rejection of the surface active molecules 

(molecular or polymeric) or molecular aggregates were dictated by the nature of the  

secondary membrane. If the pore size of the primary membrane was small, permeate 

flux reached equilibrium rapidly due to rapid formation of the secondary membrane.   
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The effect of the electric field was three fold; it degraded some of the 

surfactants; rejected surface active molecules; and allowed the formation of larger 

pore size secondary membrane formation. It was shown that there was no real ‘gel 

polarization’ when permeate flux rate became zero. Therefore, both permeate flux rate 

and rejection were high under an electric field.   

 

- Filtration of Whole Crude Oil from Sulphonated PolyHIPE Polymer 

Filtration of various crude oils with differing indigenous surface active 

profiles was carried out in syringes.  The chemical constituents of the crude oil before 

and after filtration were analyzed using GC-MS (Akay et al., in preparation). The 

results are shown below and indicate that sulphonated PHP retained large amounts of 

polar molecules. 

 

 

 

Fig. (6.72): Concntration of alkylphenols with/out PHP. 
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Fig. (6.73): Concntration of alkylphenols with/out PHP. 

 

 

 

 

 

Fig. (6.74): Concntration of alkylphenols with/out PHP. 
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Sulphonated PHPs also retained tars from syngas generated by the gasification 

of biomass.  The GC-MS tar profile before and after passing of syngas through a PHP 

bed are shown in Figs. (6.75-76) (Akay and Jordan, 2012).  

 

 

Fig. (6.75): Tar profile of syngas before cleaning with sulphonated PHP. 

 

 

 

 

Fig. (6.76): Tar profile af syngas after cleaning with sulphonated PHP. Note that the 

abundance scale is approximately 50 % reduced. 
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The above results indicate that, irrespective of the system, polar molecules are 

selectively adsorbed by PHP, as indeed has also been shown recently for emulsions 

stabilized by particulate matter (Akay et al., 2012). In the above results, adsorption of 

surface active molecules by sulphonated PHP have been explained by a ‘confinement 

phenomenon’ as discussed below. 

 

- Confinement Phenomenon 

 

The confinement phenomenon (Akay, 2006) has been utilized in process 

intensification including bioprocess intensification, tissue engineering, separation 

processes and agro-process intensification. In general terms, according to the 

confinement phenomenon, the behaviour of a matter is dictated by the size and 

biochemical structure of the confinement media in which the matter is present.  

Clearly, the size of the confinement media must be comparable with the size of the 

matter that is confined. Although the size of the individual surface active molecules is 

small compared to that of the pores of PHP; nevertheless, surface active molecules 

grow in size through aggregate or super-molecular structures. These structures are 

highly stable (low entropy), especially in the presence of confinement media and; 

hence, there is a driving force for such molecules to diffuse from the bulk fluid (liquid 

or gas) into the confinement media, where they are stabilized. 

 

- Mechanism of Demulsification 

 

The mechanism of demulsification can be explained through a model based on 

the confinement phenomenon. In Fig (6.77a-c), mechanisms of surfactant migration 

from the bulk of crude oil and from water-oil interface to the PHP wall and 

subsequent formation of a [-surfactant-water-surfactant-oil-] structure are illustrated 

diagrammatically.  Although the surface active species (resins and asphaltenes) do not 

have the well ordered chemical structure of molecular surfactants; nevertheless, their 

interactions with oil and water are similar to that of the molecular surfactants.  

Therefore, in Fig (6.77a-c), we represent the indigenous surfactants in crude oil as 

molecular surfactants. 
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Oil-in-water-in-oil multiple emulsion 

formation, leading to highly stable 

water droplets in bulk oil. 

Fracture of surfactant/water/oil structures and formation 

of oil- in-water-in-oil multiple emulsions and entrapping 

water which cannot be easily removed. 

Fracture 

 

a- 
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Fig. (6.77): A schematic representation of mechanism of demulsification 
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The chemical structure of the PHP is also like a surfactant, in which the 

hydrophilic and hydrophobic regions are present on the 3D-crosslinked PHP.  The 

hydrophilic regions will be wetted by water while the hydrophobic regions will have 

adsorbed surface active species. Wetting of the PHP will be enhanced as water 

droplets deform when entering or exiting in and out of the pores of PHP during 

permeate flow through the separation media.  Deformation of the droplets increases 

the surface area per unit volume of the droplets and; thus, causes instability to the 

emulsion (Akay, 1998).  

 

As shown previously (Akay and Wakeman, 1994b; Akay and Wakeman, 

1994a), the lamellar structure of the [-surfactant-water-surfactant-oil- surfactant-] 

phases can cover a large portion of the pore volume of the PHP; thus, causing flux 

decay.  These lamellar structures are also porous due to the presence of permeate 

flow.  However, it is likely that the volume of these lamellar structures will  reach an 

equilibrium value through a dynamic process of building and break-up as a result of 

stresses generated by the permeate flow.  However, when such lamellar structures 

breakup from the main aggregate, they will reform into spherical multi-lamellar 

droplets dispersed into the continuous oil-phase. This transformation will create 

highly stable multiple emulsions entrapping some water which will not be easily 

accessed. Nevertheless, this process removes the indigenous surfactants from the   

crude oil and; hence, de-stabilize the emulsions due to reduced surfactant 

concentration in the oil phase which will in turn cause water droplet coalescence. 

Therefore, upon standing, emulsion will separate into oil and water phases. 

 

In this mechanism, we have utilized the fact that surface active species are 

more stable within the pores of PHP since they are preferentially retained and form 

highly stable phases.  The addition of PHP particles to water-in-crude oil also causes 

demulsification since the surface active species selectively diffuse into the PHP pores 

(Akay et al., 2012; Noor, 2006) (Akay and ZZ Noor et al 2005, Akay et al 2012).  In 

the present method, the migration of surface active species is by convection, rather 

than diffusion; thus, accelerating the surfactant capture process.  Both methods can be 

combined by dispersing PHP particles into the emulsion and subjecting the resulting 

system to crossflow filtration.  This will also help to stop surface fouling of the PHP 

separation media during crossflow filtration. 
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The application of an electric field results in enhanced permeate flux rate and 

shorter oil-water separation time. The function of the electric field includes the 

degradation of the surfactants and enhancement of flux due to the modification of the 

secondary membrane pore structure. 

 

6.23 Summary of Results 
 

- Under the emulsification conditions and according to the emulsion recipe 

implemented, prepared emulsions, EI/EII, have remained stable (intact) for 79/71 

days (1896/1704 hr), respectively.  

- Several batches of three hydrophilic PHP membranes with different pore size 

ratings have been developed.  

- Via employing these hydrophilic membranes, permeate flux rate, in a 

microfiltration configuration with/without electrical field, of each membrane was 

evaluated against: 1-influent emulsion water content (30 and 70 vol. % of water 

(dispersed phase) content), 2- filtration duration, 3- feed CFV, 4- electric field and 5- 

membrane pore size. This study was also extended to focus on the effect of these 

variables on demulsification efficiency (DE). A summary of these results is given 

here: 

 

- Higher flux permeates were favoured by increasing the feed CFV and 

applying an electrical field across either emulsion. Increasing the feed CFV of both 

emulsions demonstrated a high permeate flux rate from all membranes used. With 

high CFVs higher shear forces on the membrane surface are generated, by which the 

thickness of the oily layer that may have developed on membrane surface, is limited. 

Also, turbulence and mass transfer of oil droplets from the membrane surface back to 

the bulk stream can also help reduce the level of concentration polarization and; 

therefore, increases membrane flux rate. Similarly, applying an electrical field across 

either emulsion augmented the permeate flux rate at a given filtration condition(s). 

Gas evolution through electrolysis while the filtration is running, by which the 

membrane surface is continuously cleaned, increasing the chance of emulsion droplets 

collision, are believed to be a key in the successfulness of an electrical field to 

improving permeate flux rate. The influence of an electrical field across the emulsion 

with higher water content (EII), in comparison to the other emulsion with lower water 
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content (EI), has appeared more prominent. In fact, as the water content of both 

emulsions is concerned, the conductivity of the former emulsion (EII) is higher than 

that of the latter one (EI) and; therefore, the electrical current was passed more 

efficiently in the former emulsion than in the latter one.   

- On the other hand, flux permeates from all tested membranes were affected 

by emulsion water content and duration of filtration. Throughout the course of 

filtration, the effect of emulsion water content on membrane permeate flux rate was 

rather reversal. Emulsions with higher oil content produced a lower membrane flux 

rate. An explanation of this is that, with increasing oil concentration in an emulsion, 

the contamination of a hydrophilic membrane with oil droplets is increased; thus, 

membrane permeate flux rate is reduced. As a function of filtration time, it seems a 

secondary membrane made up of an oily layer (surfactants) appears to have formed 

on the membrane surface. In doing so, it seems that the membrane surface properties 

are modified. As a consequence, membrane-solute interactions, which are mainly the 

driving force for emulsion filtration, have become less active, leading to flux 

declination. Settlement of emulsion droplets on membrane pores, by which effective 

available membrane pore diameter may have been reduced, may also be another 

contributor to permeate flux rate declination. 

- With regards to the effect of membrane pore size on membrane flux rates 

from the tested membranes with time, experimental evidence suggests that there was 

not a common trend when considering both emulsions. Permeates from different 

membranes randomly changed with respect to changes in filtration conditions. In case 

of both emulsions, membranes with larger pore sizes did not necessarily produce the 

highest permeates in comparison to those with smaller pore sizes. Differences in their 

morphological structure (porosity), hydrophilicity degree (concentration polarization) 

and also susceptibility to swelling (blocking) may have been the driving forces for 

such a relationship between the permeate flux rates from the used membranes and 

their pore sizes.  

 

- Higher DEs were favoured by increasing an emulsion’s water content, 

settling time, feed CFVs and intensity of the applied electrical field. The higher the 

water content, the higher the DE was. Such a result is directly correlated to the 

stability level of the corresponding emulsion. With settling time DE was increasing 

but at a lower rate at the end of settling time, perhaps due to suppression in the 
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tendency towards a further change in the sample composition. Due to increased 

droplet collision rate and deformation facilitated by higher feed CFVs, higher DEs 

were obtained. Likewise, increasing the applied electrical field produced higher DEs. 

On the other hand, demulsification efficiencies were affected when using a membrane 

with bigger pore sizes.  
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Chapter Seven 

Conclusions, Suggestions and Future Work/Research  

 
A conclusion is the place where you get  

tired of thinking. 

 

Steven Wright 

(1955-present) 

 

We are afraid of ideas, of experimenting,  

of change. We shrink from thinking a 

 problem through to a logical conclusion.  

 

Anne Sullivan Macy  

(1866-1936) 

 

7.1 Introduction        

 

Over the past five and half years, work has been carried out to implement a 

process intensification (PI) philosophy in the demulsification of w/o emulsions via 

crossflow microfiltration through a hydrophilic PolyHIPE Polymer (PHP). To achieve 

this, w/o emulsions with two different water contents, namely 30 and 50 vol. %, in an 

effort to imitate emulsions that are usually found in oil industry, were made.   

Hydrophobic PHP membranes have been prepared through an HIPE 

polymerization technique. These membranes were then sulphonated to render them 

hydrophilic. These membranes were then used for microfiltration of prepared w/o 

emulsions. During the course of this work, the potential of microfiltration for 

demulsifying w/o emulsions has been investigated. Membrane permeate flux rates and 

demulsification efficiencies were examined. The effect of influent emulsion 

concentration, filtration duration, feed crossflow velocity (CFV), electric field and 

membrane pore size, on the permeate flux rate and demulsification efficiencies, was 

investigated. A summary and conclusions drawn from the results obtained are given 

here. 
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7.2 Conclusions 

 

7.2.1 Emulsions 

 

Two kinds of w/o emulsions of different water contents were prepared and 

characterized. Since both emulsions (EI and EII) had been stable for 79/71 days; 

respectively, no other emulsifiers were added. In the case of emulsion EI, a maximum 

percentage of 43 vol. % of the collected sample was water, and in the case of 

emulsion EII, the sample contained 48 vol. % water, see Fig. (6.3). It is also of 

interest to observe that emulsion EI; that originally had a lower water content than 

emulsion EII, when broken down has, ultimately produced less water than emulsion 

EII and required a longer time to do so.  

 

7.2.2 Membranes 

 

A number of PHP membranes, modified by means of sulphonation and 

characterized. Sulphonation of prepared PHP membranes was carried out in an 

attempt to improve their hydrophilicity (water absorption). ESEM micrographs for 

un-sulphonated and sulphonated PHPs membranes (membranes: MI, MII and MIII) 

showed a morphological change in the structure of the latter PHPs. Generally, such a 

change causes the PHP to expand and renders it with larger pore sizes and wider 

walls, whilst maintaining the holes on them. This may result in higher absorption 

capability and improved permeate flux rates as filtration processes are concerned. 

 

7.2.3 Membranes Flux Rates 

 

What this investigation also proves is that membrane performance is 

dependent on: influent emulsion water content, filtration duration, feed crossflow 

velocity (CFV), electric field and membrane pore size.  

 In all tested membranes, influent emulsion water content has been one 

of the factors that have an important effect on permeation flux rate. 

Out of all tested membranes, the permeation rate was found to decrease 

with an increase in the feed oil content. As a function of emulsion 

water content, the permeate flux rate from all used membranes initially 

increases with filtration time. However, after a while it is the opposite 
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as filtration advances. With time where a secondary membrane made 

out from an oily layer (surfactants) appeared to have formed on the 

membrane surface, it seems that membrane surface properties are 

modified. As a consequence, membrane-solute interactions, which are 

mainly the driving force for emulsion filtration, have become less 

active leading to flux declination. Settlement of emulsion droplet on 

membrane pores, by which effective available membrane pore 

diameter may have been reduced, can also be another contributor to 

permeate flux rate declination. Through out the course of filtration, the 

effect of emulsion water content on membrane permeate flux rate is 

rather reversal. Emulsions with higher oil contents produce a lower 

membrane flux rate. A possible reason for this is that, with increasing 

oil content in an emulsion, the contamination of a hydrophilic 

membrane with oil droplet is increased; thus, membrane permeate flux 

rate is reduced. 

 Irrespective of emulsion water content, increasing the feed CFV 

demonstrate a higher permeate flux rate from all membranes used. The 

relationship between feed (both emulsions) CFV and the resultant 

permeate flux rate from both membranes MI and MII is non-linear, but 

it is slightly linear in case of membrane MIII. Non-linearity of 

membranes MI and MII can be explained by droplet deformation and 

droplet interactions and/or rejection with/by the membrane surface. 

With high CFVs higher shear forces on the membrane surface are 

generated, by which the thickness of the oily layer that may have 

developed on membrane surface is limited. Also, turbulence and mass 

transfer of oil droplets from the membrane surface back to the bulk 

stream can also help reduce the level of concentration polarization and; 

therefore, increase membrane flux rate.   

 Similarly, applying an electrical field across either emulsion augments 

the permeate flux rate at a given filtration condition(s). Gas evolution 

through electrolysis while filtration is running by which the membrane 

surface is continuously cleaned and resulting in an increased chance of 

emulsion droplet collision, are believed a key in the success of an 

electrical field to improving permeate flux rate. The influence of an 
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electrical field across the emulsion with higher water content (EII), in 

comparison to the other emulsion with lower water content (EI), has 

appeared more prominent. In fact, as far as the water content of both 

emulsions is concerned, the conductivity of the former emulsion is 

higher than that of the latter one and; therefore, the electrical current 

was passed more efficiently in the former emulsion than in the latter 

one.   

 With regards to the effect of membrane pore size on membrane flux 

rates from the tested membranes with time, experimental evidence 

suggests that there is not a common trend when considering both 

emulsions. Permeates from different membranes randomly change with 

respect to changes in filtration conditions. In the case of both 

emulsions, membranes with larger pore sizes do not necessarily 

produce the highest permeates in comparison to those with smaller 

pore sizes. Differences in their morphological structure (porosity), 

degree  of hydrophilicity (concentration polarization) and susceptibility 

to swelling (blocking), may have been the driving forces for such a 

relationship between the permeate flux rates from the used membranes 

and their pore sizes. In accordance to this, retained emulsion droplets 

will either deposit on or within the membrane surface or membrane 

internals, respectively. In either case, with filtration time this 

deposition seems to have changed the way fresh membrane pore sizes 

respond to the produced permeate. In fact, membranes with larger pore 

size in comparison to those with smaller pore sizes, might be more 

vulnerable to internal blocking by small emulsion droplets, by which 

the volume of permeate collected from such membranes might be 

lower than that obtained from membranes with smaller pores. 

 A possible mechanism to explain the trend of obtained permeate flux 

rates is proposed. The trend of permeate flux rates obtained can be 

described through physical processes and fouling effects believed to 

have taken place while filtration is advancing as follows: 

1- Saturation of the membrane with emulsion droplets: As filtration 

commences, it seems that the membrane is getting saturated with 

emulsion droplets during which membrane pores are more prone to adsorb 
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emulsion droplets within their internals rather than allowing them to 

permeate through. However, towards the end of this period, it is obvious 

that permeate flux rate is increasing (maxima). This suggests that the 

membrane pores are no longer adsorbing emulsion droplets, but start to 

push them out of the membrane body once a pore is fully occupied and 

cannot accommodate further droplet(s). The chemistry of the membrane 

surface with respect to emulsion droplets, membrane pore size and 

filtration conditions are vital for this stage. 

2- Build-up of a secondary membrane: Following the first stage, emulsion 

droplets seem to have begun to deposit onto the membrane surface, 

creating what’s known as secondary membrane. Eventually, such a trend 

weakens the chemistry of interaction between the primary membrane 

surface and emulsion droplets. Further, this secondary membrane, which 

is composed of emulsion droplets, clogs the pores of the primary 

membrane. As a result, the permeate flux rate begins to substantially 

decline. This declination is; of- course, a function of the filtration 

conditions. 

3- Densification/compaction of secondary membrane: During this final stage 

in which the growth of secondary membrane seems has finalized, 

permeation rate declination is somewhat retarded in comparison to that 

observed in the former stage. As the name implies, densification, owing to 

the crossflow filtration principle of feed tangential flow, involves no 

deposition of additional/newer emulsion droplets but rather a re-

arrangement. This; in turn, brings little change in the permeate flux rate 

(plateau).  

 

7.2.4 Demulsification Efficiencies  

 

This study has confirmed that the hydrophilic membranes prepared have been 

capable of demulsifying the prepared emulsions. Though it may still require further 

consideration from both technical and economical viewpoints. During the course of 

this work, the effect of several factors on demulsification efficiency (DE) was 

investigated. These factors have included: emulsion water content, filtration duration, 

feed CFV, presence of an electrical field and membrane pore size. DE relates the 
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volume fraction of water in the permeate sample to the total volume of permeate 

sample. It is concluded that demulsification can be influenced by emulsion water 

content, feed CFV, electrical field and membrane pore size. Experimental results 

show that emulsion water content was found to be an important factor in DE. The 

higher the water content (and consequently the lower the concentration of emulsion 

stabilizers), the higher the DE. Such a result is directly correlated to the stability level 

of the corresponding emulsion. With settling time, DE is increasing but at a lower rate 

at the end of the settling period, perhaps due to a suppression in the tendency towards 

a further change in the sample composition. Due to increased droplet collision rate 

and deformation, facilitated by higher feed CFVs, higher DEs are obtained. Likewise, 

increasing the applied electrical field produces higher DEs. It was also found that 

membrane pore size can significantly affect DE. Although membranes with larger 

pore diameter, in comparison to those with smaller ones, generally produce higher 

permeate flux rates, membranes of the latter type exhibit a much better performance 

in demulsification than those membranes of the former type. DEs of 66.80, 79.40, 

69.60 and 86.70 vol. % have been obtained when using membrane MI to filter 

emulsions EI and EII, without and with applying an electrical field, respectively. 
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7.3 Suggestions and Future Work/Research 

Map out your future – but do it in pencil.  

The road ahead is as long as you make it.  

Make it worth the trip. 

 

 Jon Bon Jovi (1962-present) 
 

Future work should be targeting the following research objectives.  

- Although in this work, flat sheets of PHP membranes were successfully used, 

other membrane configurations with similar characteristics should also be 

tested in future studies.  

- This study was applied on synthesized emulsions with two water contents 

only; emulsions with lower/higher water contents should also be investigated. 

In addition, demulsification work should also be carried out on real emulsions.  

- Since for technical reasons relating to the appropriate use of an ESEM 

microscope, it was not possible to carry out any ESEM observations on fouled 

membranes, visualization of filtration phenomena to obtain information on the 

permeation flow of emulsion droplets and on membrane fouling might be a 

good alternative.  

- Although improvement in permeate flux rates from all tested membranes by 

introducing an electrical field across both emulsions is evident, the relative 

total energy consumption and associated costs should be economically 

assessed.  

- Since using an electrical field has been demonstrated o have  a positive effect 

on both membrane(s) flux rate(s) and demulsification efficiencies, the effect of 

higher electrical fields should also be tested.   

- The mechanism of membrane fouling has not been thoroughly investigated in 

this study. To this end, a mathematical model should be developed so as to 

understand the mechanism of membrane fouling and to interlink it with the 

effect of operational parameters on flux declination.  

      -     In order to prevent breakup of the lamellar phase in the secondary membrane;    

             thus, causing water entrapment, it is possible to periodically wash the PHP  

             separation media using a suitable solvent and recover the surfactants. This  
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             can be achieved by operating in tandem using two separation filtration   

             modules.   

           While one module is operating in crossflow mode, the second module can be  

            washed to remove the surface active species.  

- In case of both emulsions, since permeate flux rates obtained were relatively 

low, perhaps due to high emulsions viscosities, measures that restore a 

membrane’s original performance should be investigated. Such measures may 

include: periodic backflushing and efficient membrane cleaning for reuse.
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Appendix A 

 

Permeate Flux Rate  

 

N. B. Samples were measured in ml/sec when collected. For the purpose of 

calculations, this was converted to L/m
2
 hr taking into account the membrane cross 

sectional area of (0.00385 m
2
). For instance, a membrane permeate flow rate of 2.7 

ml/sec can be converted to permeate flux rate (J, L/m
2
 hr) as follows: 

 

2.7 ml/sec * 3600 sec/ 1 hr * 1 L/1000 ml * 1/ 0.00385 m
2 

= 2524.7 L/m
2
 hr. 

According to this, a conversion factor of 935.065 can be used. 

 

A.1- Membrane MI 

 

A.1.1- Emulsion EI 

 

A.1.1.1- Permeate Flow Rate (ml/sec) 

 

A.1.1.1.1- No current 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.7 2.95 3.15 2.1 1.875 1.45 1.275 

200 6.33 6.7 7.1 6.8 5.66 5.4 5.25 

300 11.33 12.7 13.75 8.45 7.1 5.95 5.66 

400 13.5 16.25 17 12.5 10.66 7 6.45 

500 14.75 17.1 18.4 13.25 11 9.25 7.66 

600 15.66 17.75 19.66 16.5 13.75 13 10.7 

800 16 18.33 20.7 17.7 15.5 13.75 12 

1000 19.66 21.5 26 22.75 20.4 17.625 16.1 

 

A.1.1.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.125 3.5 3.75 2.35 2.15 1.5 1.35 

200 7.4 8.8 9 7.5 6 5.7 5.5 

300 12 14 15 9 8 6.66 6.33 

400 15 18.5 19.33 14 12.33 8 7.4 

500 17 20.33 21 15.75 12.83 10.5 8.75 

600 18.66 21.5 23.5 20.33 16.33 15.75 12.5 

800 19.5 22.75 24.83 20.83 18.66 16.33 14.66 

1000 23 25.33 28 27 24.5 19.66 19 
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A.1.1.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.25 3.66 3.83 2.75 2.25 1.83 1.45 

200 7.5 9.33 9.75 7.75 6.25 6.1 5.66 

300 12.33 15 15.33 9.5 8.66 6.83 6.66 

400 15.5 18.83 22.66 14.83 12.5 8.33 7.83 

500 17.25 19.83 23 16.1 13 10.66 9 

600 19.1 21.83 24 21 16.5 16 12.66 

800 19.83 23.33 24.83 21.83 19.1 17 14.33 

1000 23.25 25.83 28.83 27.5 25.33 22.5 20 

 

A.1.1.1.4- 50 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.83 4 4.05 2.83 2.5 2 1.66 

200 8 9.66 10.33 8 6.4 6.25 6 

300 12.66 15.5 15.66 10 9 7 6.83 

400 15.66 19.25 23.25 15.5 13 9.1 8.25 

500 17.5 20.1 21.5 16.5 13.33 10.83 9.33 

600 19.4 22.75 25 21.25 17.66 16.5 13 

800 20.1 23.66 26 22.66 19.5 18.5 15.1 

1000 24.33 26.5 29.66 28.25 30 22.75 20.75 

 

A.1.1.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.5 4.75 5.1 3.33 2.83 2.33 1.9 

200 8.83 10.33 11 9.75 8.1 7.83 7.25 

300 16.1 18 20.33 12 10.33 8.75 8.1 

400 23 26 27.83 19.83 18.33 12.5 10.75 

500 24.2 27.5 28.83 21.75 18.5 15.75 12.4 

600 26.66 28.5 31.25 24 20.33 19 14 

800 28 31 33 27 23 20.75 17.5 

1000 29.83 32.5 38.5 35 30.66 27 24.5 
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A.1.1.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5.66 6 6.5 4.25 3.83 2.83 2.33 

200 12.1 13 14 13 10.66 9.83 9 

300 21 23 25.83 14.83 12.75 10.5 10.5 

400 27 31.33 33 23.75 21.33 13.66 13 

500 30.5 34 36.83 27.83 22.83 18 15.33 

600 34 37.83 46 35 28.83 25.75 21 

800 41 46 50.5 42 37.25 33.5 25.25 

1000 56 53.33 52.5 49 44.83 41 39.5 

 

A.1.1.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.1.1.2.1- No current 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2524.7 2758.4 2945.5 1963.6 1753.3 1355.8 1192.2 

200 5919 6264.9 6639 6358.4 5292.5 5049.4 4909.1 

300 10594.3 11875.3 12857.1 7901.3 6639 5563.6 5292.5 

400 12623.4 15194.8 15896.1 11688.3 9967.8 6545.5 6031.2 

500 13792.2 15989.6 17205.2 12389.6 10285.7 8649.4 7162.6 

600 14643.1 16597.4 18383.4 15428.6 12857.1 12155.8 10005.2 

800 14961 17139.7 19355.8 16550.7 14493.5 12857.1 11220.8 

1000 18383.4 20103.9 24311.7 21272.7 19075.3 16480.5 15054.5 

 

A.1.1.2.2- 10 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2922.1 3272.7 3506.5 2197.4 2010.4 1402.6 1262.3 

200 6919.5 8228.6 8415.6 7013 5610.4 5329.9 5142.9 

300 11220.8 13090.9 14026 8415.6 7480.5 6227.5 5919 

400 14026 17298.7 18074.8 13090.9 11529.4 7480.5 6919.5 

500 15896.1 19009.9 19636.4 14727.3 11996.9 9818.2 8181.8 

600 17448.3 20103.9 21974 19009.9 15269.6 14727.3 11688.3 

800 18233.8 21272.7 23217.7 19477.4 17448.3 15269.6 13708.1 

1000 21506.5 23685.2 26181.8 25246.8 22909.1 18383.4 17766.2 
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A.1.1.2.3- 25 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3039 3422.3 3581.3 2571.4 2103.9 1711.2 1355.8 

200 7013 8724.2 9116.9 7246.8 5844.2 5703.9 5292.5 

300 11529.4 14026 14334.6 8883.1 8097.7 6386.5 6227.5 

400 14493.5 17607.3 21188.6 13867 11688.3 7789.1 7321.6 

500 16129.9 18542.3 21506.5 15054.6 12155.9 9967.8 8415.6 

600 17859.7 20412.5 22441.6 19636.4 15428.6 14961 11837.9 

800 18542.3 21815.1 23217.7 20412.5 17859.7 15896.1 13399.5 

1000 21740.3 24152.7 26957.9 25714.3 23685.2 21039 18701.3 

 

A.1.1.2.4- 50 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3581.3 3740.3 3787 2646.2 2337.7 1870.1 1552.2 

200 7480.5 9032.7 9659.2 7480.5 5984.4 5844.2 5610.4 

300 11837.9 14493.5 14643.1 9350.7 8415.6 6545.5 6386.5 

400 14643.1 18000 21740.3 14493.5 12155.9 8509.1 7714.3 

500 16363.6 18794.8 20103.9 15428.6 12464.4 10126.8 8724.2 

600 18140.3 21272.7 23376.6 19870.1 16513.3 15428.6 12155.9 

800 18794.8 22123.6 24311.7 21188.6 18233.8 17298.7 14119.5 

1000 22750.1 24779.2 27734 26415.6 28052 21272.7 19402.6 

 

A.1.1.2.5- 100 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4207.8 4441.6 4768.8 3113.8 2646.2 2178.7 1776.6 

200 8256.6 9659.2 10285.7 9116.9 7574 7321.6 6779.2 

300 15054.6 16831.2 19009.9 11220.8 9659.2 8181.8 7574 

400 21506.5 24311.7 26022.9 18542.3 17139.7 11688.3 10052 

500 22628.6 25714.3 26957.9 20337.7 17298.7 14727.3 11594.8 

600 24928.8 26649.4 29220.8 22441.6 19009.9 17766.2 13090.9 

800 26181.8 28987 30857.2 25246.8 21506.5 19402.6 16363.6 

1000 27893 30389.6 36000 32727.3 28669.1 25246.8 22909.1 
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A.1.1.2.6- 200 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5292.5 5610.4 6077.9 3974 3581.3 2646.2 2178.7 

200 11314.3 12155.9 13090.9 12155.9 9967.8 9191.7 8415.6 

300 19636.4 21506.5 24152.7 13867 11922.1 9818.2 9818.2 

400 25246.8 29295.6 30857.2 22207.8 19944.9 12773 12155.9 

500 28519.5 31792.2 34438.4 26022.9 21347.5 16831.2 14334.6 

600 31792.2 35373.5 43013 32727.3 26957.9 24077.9 19636.4 

800 38337.7 43013 47220.8 39272.7 34831.2 31324.7 23610.4 

1000 52363.6 49867 49090.9 45818.2 41919 38337.7 36935.1 

 

A.1.2-Emulsion EII 

 

 A.1.2.1- Permeate Flow Rate (ml/sec) 

 

A.1.2.1.1- No current 

 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.83 3.1 3.25 2.25 2.1 1.66 1.5 

200 6.5 6.83 7.25 7 6 5.5 5.5 

300 11.66 13 14 9 7.5 6.25 6 

400 14 16.83 18 13.5 11.5 7.83 7 

500 15.1 17.83 19 14.25 12 10.33 8.5 

600 16 18.5 21 18 14.83 14 11.83 

800 17.25 19 22 18.5 16.83 14.5 13.33 

1000 20.83 22.66 27 24 22 19.25 17 

 

A.1.2.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.5 3.83 4 2.66 2.5 2.1 1.75 

200 7.83 8.1 9.33 8.1 6.75 6.33 6 

300 13.25 14.83 15.75 10.4 8.5 7.33 7.1 

400 16.25 19.33 20.66 16 13.75 9.33 8.25 

500 18 21 23 17.5 14.83 12.5 10.5 

600 20.25 23.5 26.5 22.33 18.66 17.75 14.5 

800 21.33 24.33 27.83 23.5 21 18.1 16.5 

1000 25.83 27.1 32 28.33 27.1 22.75 21.25 
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A.1.2.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.66 4.16 4.83 3.16 2.83 2.5 2 

200 8 8.66 10 8.5 7.25 6.66 6.33 

300 13.75 15.5 16.25 11.33 9.16 8 7.33 

400 17.1 20.5 21.33 16.5 14.1 9.83 8.66 

500 18.5 22.5 24.1 18.25 15.5 13.5 11.1 

600 20.66 23.83 26.83 23 19 18.1 15.75 

800 21.83 24.75 28.66 23.83 21.5 18.66 16.66 

1000 26.5 27.5 33 29 27.66 23.5 21.75 

 

A.1.2.1.4- 50 kV 
 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.25 4.5 5.1 3.33 3 2.83 2.25 

200 8.66 9 10.5 9.33 8.1 7.25 7 

300 14.1 16 16.83 11.83 9.66 8.5 8 

400 17.66 21.1 22.25 17.1 15 10.5 9.1 

500 19 22.83 25 18.66 16.1 14.25 12 

600 21.1 24.25 27.25 23.83 20 19 17.66 

800 22.25 26 30 26.1 23 20 18.25 

1000 27.25 28.33 34.33 29.5 28.5 24.25 22.1 

 

A.1.2.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.33 5.1 5.33 3.66 3.5 3.1 2.83 

200 9.1 10 10.83 10.25 9 8.1 8 

300 16 17 18.25 12.5 11 10.1 9.83 

400 23.83 26 27.33 22.5 17.83 13 10.75 

500 25 26.83 29.25 24.33 22.1 18 14.33 

600 27.5 31.5 34.1 28.5 24 22.1 16.5 

800 29.66 33 37.5 32 26.66 24 19.33 

1000 32.33 34.66 41.5 36.5 33.25 28.83 24.5 

 

 

 

 

 

 



360 

 

A.1.2.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 6.1 6.5 6.83 4.75 4 3.33 2.83 

200 12 13 14.33 13.66 11.83 10.5 10.33 

300 22.1 24.25 26.66 17 14 11.66 10.83 

400 27 33 35.66 27.1 22.5 15.5 13.66 

500 32 35 36.5 28 24.5 21 20 

600 35.83 40.33 43 39.25 33 29.83 24 

800 42 46.5 52 46 41.75 36 32.25 

1000 55.83 57.33 63 54.25 49.33 44.5 40.1 

 

A.1.2.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.1.2.2.1- No current 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2646.2 2898.7 3039 2103.9 1963.6 1552.2 1402.6 

200 6077.9 6386.5 6779.2 6545.5 5610.4 5142.9 5142.9 

300 10902.9 12155.9 13090.9 8415.6 7013 5844.2 5610.4 

400 13090.9 15737.1 16831.2 12623.4 10753.3 7321.6 6545.5 

500 14119.5 16672.2 17766.2 13324.7 11220.8 9659.2 7948.1 

600 14961 17298.7 19636.4 16831.2 13867 13090.9 11061.8 

800 16129.9 17766.2 20571.4 17298.7 15737.1 13558.4 12464.4 

1000 19477.4 21188.6 25246.8 22441.6 20571.4 18000 15896.1 

 

 

A.1.2.2.2- 10 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3272.7 3581.3 3740.3 2487.3 2337.7 1963.6 1636.4 

200 7321.6 7574 8724.2 7574 6311.7 5919 5610.4 

300 12389.6 13867 14727.3 9724.7 7948.1 6854 6639 

400 15194.8 18074.8 19318.4 14961 12857.1 8724.2 7714.3 

500 16831.2 19636.4 21506.5 16363.6 13867 11688.3 9818.2 

600 18935.1 21974 24779.2 20880 17448.3 16597.4 13558.4 

800 19944.9 22750.1 26022.9 21974 19636.4 16924.7 15428.6 

1000 24152.7 25340.3 29922.1 26490.4 25340.3 21272.7 19870.1 
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A.1.2.2.3- 25 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3422.3 3889.8 4516.4 2954.8 2646.2 2337.7 1870.1 

200 7480.5 8097.7 9350.7 7948 6779.2 6227.6 5919 

300 12857.1 14493.5 15194.8 10594.3 8565.2 7480.5 6854 

400 15989.6 19168.8 19944.9 15428.6 13184.4 9191.7 8097.7 

500 17298.7 21039 22535.1 17064.9 14493.5 12623.4 10379.2 

600 19318.4 22282.6 25087.8 21506.5 17766.2 16924.7 14727.3 

800 20412.5 23142.9 26799 22282.6 20103.9 17448.3 15578.2 

1000 24779.2 25714.3 30857.2 27116.9 25863.9 21974 20337.7 

 

A.1.2.2.4- 50 kV 
 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3974 4207.8 4768.8 3113.8 2805.195 2646.2 2103.9 

200 8097.7 8415.6 9818.2 8724.2 7574.027 6779.2 6545.5 

300 13184.4 14961 15737.1 11061.8 9032.728 7948.1 7480.5 

400 16513.3 19729.9 20805.2 15989.6 14026 9818.2 8509.1 

500 17766.2 21347.5 23376.6 17448.3 15054.6 13324.7 11220.8 

600 19729.9 22675.3 25480.5 22282.6 18701.3 17766.2 16513.3 

800 20805.2 24311.7 28052 24405.2 21506.5 18701.3 17064.9 

1000 25480.5 26490.4 32100.8 27584.4 26649.4 22675.3 20664.9 

 

A.1.2.2.5- 100 kV 
 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4048.8 4768.8 4983.9 3422.3 3272.7 2898.7 2646.2 

200 8509.1 9350.7 10126.8 9584.4 8415.6 7574 7480.5 

300 14961 15896.1 17064.9 11688.3 10285.7 9444.2 9191.7 

400 22282.6 24311.7 25555.3 21039 16672.2 12155.9 10052 

500 23376.6 25087.8 27350.7 22750.1 20664.9 16831.2 13399.5 

600 25714.3 29454.6 31885.7 26649.4 22441.6 20664.9 15428.6 

800 27734 30857.2 35064.9 29922.1 24928.8 22441.6 18074.8 

1000 30230.7 32409.4 38805.2 34129.9 31090.9 26957.9 22909.1 
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A.1.2.2.6- 200 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5703.9 6077.9 6386.5 4441.6 3740.3 3113.8 2646.2 

200 11220.8 12155.9 13399.5 12773 11061.8 9818.2 9659.2 

300 20664.9 22675.3 24928.8 15896.11 13090.9 10902.9 10126.8 

400 25246.8 30857.2 33344.4 25340.3 21039 14493.5 12773 

500 29922.1 32727.3 34129.9 26181.8 22909.1 19636.4 18701.3 

600 33503.4 37711.2 40207.8 36701.3 30857.2 27893 22441.6 

800 39272.7 43480.5 48623.4 43013 39039 33662.3 30155.9 

1000 52204.7 53607.3 58909.1 50727.3 46126.8 41610.4 37496.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



363 

 

A.2- Membrane MII  

 

A.2.1- Emulsion EI  

 

A.2.1.1- Permeate Flow Rate (ml/sec) 

 

A.2.1.1.1- No current 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.4 2.8 2.95 2.33 2.15 2.05 1.83 

200 5.2 5.8 6.25 5.9 4.45 4.2 3.9 

300 10 10.75 11.25 7.8 5.25 4.45 4.33 

400 16.5 17.75 21.25 13.5 12 7.8 7.1 

500 17.33 19 23.33 15.8 12.7 9.83 7.85 

600 19.66 21.8 24.7 21.83 14 13.25 9.33 

800 21 22.33 25.83 24 17.83 14 11.25 

1000 23.1 26.5 28 27.33 22 19.33 14.75 

 

A.2.1.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.83 3.25 3.33 2.63 2.2 2.15 2 

200 6 6.66 7.33 6.33 4.8 4.66 4.4 

300 11 12.4 12.66 8.5 5.6 5 4.6 

400 18.5 19.5 22.66 15 12.66 8.5 7.7 

500 21 26.66 27.66 17.5 13.25 10.4 8.66 

600 23 28 29 26 16.83 16.83 12 

800 25 28 30 27.83 18.5 17.33 14 

1000 27 30 31 29 26.83 22 20 

 

A.2.1.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3 3.33 4 3 2.66 2.66 2.2 

200 6.25 7.33 8.125 7.33 5.25 5 4.5 

300 12.33 13.33 14 9.25 6.25 5.66 5.25 

400 19 21 23.5 16.5 14.33 9.5 8.33 

500 21.66 27 28 18.5 14 10.83 9.1 

600 24 28.33 30 26.83 17.66 17.25 12.5 

800 25 29 31 28.5 20 17.5 14.83 

1000 27.75 31 32 31 27.75 23.25 20.5 
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A.2.1.1.4- 50 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.5 4 4.25 3.33 3.1 3 2.5 

200 6.5 8.1 8.75 7.83 5.66 5.25 4.66 

300 12.66 14 14.66 9.83 6.83 6 5.66 

400 19.83 21.66 24.66 17.5 14.83 10 9.5 

500 22.5 27.5 29 19 14.66 11.83 9.66 

600 24.75 29.83 31 28.5 18.25 17.66 13 

800 26.5 30.83 33.1 31.25 24 20 18 

1000 28.66 31.83 33 32 28.66 24.5 22 

 

A.2.1.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4 5 5 3.66 3.25 3 2.75 

200 7 8.5 10 8.5 6.33 6 5.83 

300 13.83 14.66 15.5 11.33 7.75 6.25 6 

400 26.83 27.5 28 20.5 19 14 12 

500 27.75 30.5 34 25 20 16.1 14 

600 31.66 32 36.5 30 22 20.5 16 

800 34.25 36.83 41.33 36.83 27.66 22 20.5 

1000 37 41 42 40.5 32.33 27.66 23.83 

 

A.2.1.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.83 5.83 6.25 4.83 4.33 3.75 3.6 

200 9.66 11 11.83 11.5 8.5 7.33 6.25 

300 18.5 19.66 20.33 14 9.66 8.1 7.83 

400 28 32 34 23.75 22 14.83 13.5 

500 32.5 35 38 30 23.83 18.66 14.83 

600 38.33 43.66 51.5 45 34 29.5 19.66 

800 51 53 54.5 53 41 33.5 26 

1000 57 62 59 57.33 50.66 46.5 34 

 

 

 

 

 

 



365 

 

A.2.1.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.2.1.2.1- No current 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2244.2 2618.2 2758.4 2178.7 2010.4 1916.9 1711.2 

200 4862.3 5423.4 5844.2 5516.9 4161 3927.3 3646.8 

300 9350.7 10052 10519.5 7293.5 4909.1 4161 4048.8 

400 15428.6 16597.4 19870.1 12623.4 11220.8 7293.5 6639 

500 16204.7 17766.2 21815.1 14774 11875.3 9191.7 7340.3 

600 18383.4 20384.4 23096.1 20412.5 13090.9 12389.6 8724.2 

800 19636.4 20880 24152.7 22441.6 16672.2 13090.9 10519.5 

1000 21600 24779.2 26181.8 25555.3 20571.4 18074.8 13792.2 

 

A.2.1.2.2- 10 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2646.2 3039 3113.8 2459.2 2057.1 2010.4 1870.1 

200 5610.4 6227.5 6854 5919 4488.3 4357.4 4114.3 

300 10285.7 11594.8 11837.9 7948 5236.4 4675.3 4301.3 

400 17298.7 18233.8 21188.6 14026 11837.9 7948.1 7200 

500 19636.4 24928.8 25863.9 16363.6 12389.6 9724.7 8097.7 

600 21506.5 26181.8 27116.9 24311.7 15737.1 15737.1 11220.8 

800 23376.6 26181.8 28052 26022.9 17298.7 16204.7 13090.9 

1000 25246.8 28052 28987 27116.9 25087.8 20571.4 18701.3 

 

A.2.1.2.3- 25 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2805.2 3113.8 3740.3 2805.2 2487.3 2487.3 2057.1 

200 5844.2 6854 7597.4 6854 4909.1 4675.3 4207.8 

300 11529.4 12464.4 13090.9 8649.4 5844.2 5292.5 4909.1 

400 17766.2 19636.4 21974 15428.6 13399.5 8883.1 7789.1 

500 20253.5 25246.8 26181.8 17298.7 13090.9 10126.8 8509.1 

600 22441.6 26490.4 28052 25087.8 16513.3 16129.9 11688.3 

800 23376.6 27116.9 28987 26649.4 18701.3 16363.6 13867 

1000 25948.1 28987 29922.1 28987 25948.1 21740.3 19168.8 
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A.2.1.2.4- 50 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3272.7 3740.3 3974 3113.8 2898.7 2805.2 2337.7 

200 6077.9 7574.03 8181.8 7321.6 5292.5 4909.1 4357.4 

300 11837.9 13090.9 13708.1 9191.7 6386.5 5610.4 5292.5 

400 18542.3 20253.5 23058.7 16363.6 13867 9350.7 8883.1 

500 21039 25714.3 27116.9 17766.2 13708.1 11061.8 9032.7 

600 23142.9 27893 28987 26649.4 17064.9 16513.3 12155.9 

800 24779.2 28828.1 30950.7 29220.8 22441.6 18701.3 16831.2 

1000 26799 29763.1 30857.2 29922.1 26799 22909.1 20571.4 

 

A.2.1.2.5- 100 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3740.3 4675.3 4675.3 3422.3 3039 2805.2 2571.4 

200 6545.5 7948.1 9350.7 7948.1 5919 5610.4 5451.4 

300 12932 13708.1 14493.5 10594.3 7246.8 5844.2 5610.4 

400 25087.8 25714.3 26181.8 19168.8 17766.2 13090.9 11220.8 

500 25948.1 28519.5 31792.2 23376.6 18701.3 15054.6 13090.9 

600 29604.2 29922.1 34129.9 28052 20571.4 19168.8 14961 

800 32026 34438.4 38646.2 34438.4 25863.9 20571.4 19168.8 

1000 34597.4 38337.7 39272.7 37870.1 30230.7 25863.9 22282.6 

 

A.2.1.2.6- 200 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4516.4 5451.4 5844.2 4516.4 4048.8 3506.5 3366.2 

200 9032.7 10285.7 11061.8 10753.3 7948.1 6854 5844.2 

300 17298.7 18383.4 19009.9 13090.9 9032.7 7574 7321.6 

400 26181.8 29922.1 31792.2 22207.8 20571.4 13867 12623.4 

500 30389.6 32727.3 35532.5 28052 22282.6 17448.3 13867 

600 35841 40824.9 48155.9 42077.9 31792.2 27584.4 18383.4 

800 47688.3 49558.5 50961 49558.5 38337.7 31324.7 24311.7 

1000 53298.7 57974 55168.8 53607.3 47370.4 43480.5 31792.2 
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A.2.2- Emulsion EII 

 

A.2.2.1- Permeate Flow Rate (ml/sec) 

 

A.2.2.1.1- No current 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.5 2.8 3.1 2.5 2.33 2.25 2 

200 5.33 6 6.5 6.1 5 4.33 4.25 

300 10.5 11.1 11.66 8 5.66 4.66 4.5 

400 17.1 18.25 21.83 14.1 12.66 8.25 8 

500 18 19.66 24.5 17.5 14.1 11 8.5 

600 20.83 22.75 26 23 15.66 14.5 12 

800 22 23.5 27 25.25 19.1 16 12.66 

1000 24.66 28 30.25 28.5 24.1 21 16.25 

 

A.2.2.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3 3.33 3.66 3 2.83 2.25 2 

200 6.33 6.83 7.25 6.83 6 5.25 4.66 

300 12.1 13.25 14 9.33 6.5 5.5 5.1 

400 20.25 21.5 24.83 16.1 14.33 9.5 9.25 

500 22.33 24.1 27.5 21 16.66 12.75 9.66 

600 25.83 27.5 31 27.5 19.5 18 15.5 

800 26.5 27.75 32.33 30 23 20.25 16.5 

1000 29 32.5 35.1 32.75 29.66 24.75 21.5 

 

A.2.2.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.33 3.5 4.33 3.5 3.1 3 2.83 

200 6.66 7.33 8.33 7.83 6.25 5.33 5.1 

300 13.5 13.83 14.66 9.66 7 6.1 5.66 

400 21 22.1 25.75 17 15.1 9.75 9.33 

500 23.1 25.33 29 21.75 17.25 13.5 10.33 

600 26.25 29.5 32.5 29.5 20.33 19.66 16.66 

800 27.66 29.1 33.5 31 23.83 20.75 17.1 

1000 30.5 33.83 36.33 35.1 31.33 25.83 23 
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A.2.2.1.4- 50 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.83 4.25 4.66 3.75 3.5 3.33 2.83 

200 6.83 7.66 8.83 8.1 6.75 6 5.33 

300 13.66 14.66 15.5 10.25 7.83 6.33 6 

400 21.5 23 26.66 18 15.75 10.5 9.75 

500 23.66 26.33 31 22.5 18 13.83 11 

600 26.83 31.5 33.66 31 21 19.83 17 

800 28.5 31.75 34.5 33.83 26 23 17.5 

1000 31.66 35.1 38.66 36 32 27.83 25 

 

A.2.2.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.25 5.1 5.33 4.1 3.66 3.5 3.1 

200 7.33 9 10.66 9.1 7.66 6.5 6.5 

300 15.1 15.5 16.5 11.83 8.5 6.75 6.5 

400 28.25 29.1 31 22.5 20.66 15.5 13.25 

500 29.5 32.5 37.5 28.83 23 18.5 14.5 

600 34 35.25 39.1 33 26 23.5 19.66 

800 37 38.83 43.5 40.5 31 26 22 

1000 40.5 44 46.83 44.25 37.5 31.1 26.5 

 

A.2.2.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5.5 5.83 6.66 5.33 4.83 4.5 4 

200 10.1 11.5 12.5 12 9.75 8 7.25 

300 20.25 21 22.25 15.5 10.75 8.83 8.33 

400 31 33.5 37.25 25 23.83 16.25 14.83 

500 34.5 37 42 34.83 27.25 21.5 16.83 

600 41.5 46.5 55.33 49.5 39 33 26 

800 54.5 57.1 58.83 58 46 39 31 

1000 62 68.1 69 61.5 57.5 52.25 39.66 

 

 

 

 

 

 



369 

 

A.2.2.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.2.2.2.1- No current 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2337.7 2618.2 2898.7 2337.7 2178.7 2103.9 1870.1 

200 4983.9 5610.4 6077.9 5703.9 4675.3 4048.8 3974 

300 9818.2 10379.2 10902.9 7480.5 5292.5 4357.4 4207.8 

400 15989.6 17064.9 20412.5 13184.4 11837.9 7714.3 7480.5 

500 16831.2 18383.4 22909.1 16363.6 13184.4 10285.7 7948.1 

600 19477.4 21272.7 24311.7 21506.5 14643.1 13558.4 11220.8 

800 20571.4 21974 25246.8 23610.4 17859.7 14961 11837.9 

1000 23058.7 26181.8 28285.7 26649.4 22535.1 19636.4 15194.8 

 

A.2.2.2.2- 10 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2805.2 3113.8 3422.3 2805.2 2646.2 2103.9 1870.1 

200 5919 6386.5 6779.2 6386.5 5610.4 4909.1 4357.4 

300 11314.3 12389.6 13090.9 8724.2 6077.9 5142.9 4768.8 

400 18935.1 20103.9 23217.7 15054.6 13399.5 8883.1 8649.4 

500 20880 22535.1 25714.3 19636.4 15578.2 11922.1 9032.7 

600 24152.7 25714.3 28987 25714.3 18233.8 16831.2 14493.5 

800 24779.2 25948.1 30230.7 28052 21506.5 18935.1 15428.6 

1000 27116.9 30389.6 32820.8 30623.4 27734 23142.9 20103.9 

 

 

A.2.2.2.3- 25 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3113.8 3272.7 4048.8 3272.7 2898.7 2805.2 2646.2 

200 6227.5 6854 7789.1 7321.6 5844.2 4983.9 4768.8 

300 12623.4 12932 13708.1 9032.7 6545.5 5703.9 5292.5 

400 19636.4 20664.9 24077.9 15896.1 14119.5 9116.9 8724.2 

500 21600 23685.2 27116.9 20337.7 16129.9 12623.4 9659.2 

600 24545.5 27584.4 30389.6 27584.4 19009.9 18383.4 15578.2 

800 25863.9 27210.4 31324.7 28987 22282.6 19402.6 15989.6 

1000 28519.5 31633.3 33970.9 32820.8 29295.6 24152.7 21506.5 
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A.2.2.2.4- 50 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3581.3 3974 4357.4 3506.5 3272.7 3113.8 2646.2 

200 6386.5 7162.6 8256.6 7574 6311.7 5610.4 4983.9 

300 12773 13708.1 14493.5 9584.4 7321.6 5919 5610.4 

400 20103.9 21506.5 24928.8 16831.2 14727.3 9818.2 9116.9 

500 22123.6 24620.3 28987 21039 16831.2 12932 10285.7 

600 25087.8 29454.6 31474.3 28987 19636.4 18542.3 15896.1 

800 26649.4 29688.3 32259.7 31633.3 24311.7 21506.5 16363.6 

1000 29604.2 32820.8 36149.6 33662.3 29922.1 26022.9 23376.6 

 

A.2.2.2.5- 100 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3974 4768.8 4983.9 3833.8 3422.3 3272.7 2898.7 

200 6854 8415.6 9967.8 8509.1 7162.6 6077.9 6077.9 

300 14119.5 14493.5 15428.6 11061.8 7948.1 6311.7 6077.9 

400 26415.6 27210.4 28987 21039 19318.4 14493.5 12389.6 

500 27584.4 30389.6 35064.9 26957.9 21506.5 17298.7 13558.4 

600 31792.2 32961 36561 30857.2 24311.7 21974 18383.4 

800 34597.4 36308.6 40675.3 37870.1 28987 24311.7 20571.4 

1000 37870.1 41142.9 43789.1 41376.6 35064.9 29080.5 24779.2 

 

A.2.2.2.6- 200 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5142.9 5451.4 6227.5 4983.9 4516.4 4207.8 3740.3 

200 9444.2 10753.3 11688.3 11220.8 9116.9 7480.5 6779.2 

300 18935.1 19636.4 20805.2 14493.5 10052 8256.6 7789.1 

400 28987 31324.7 34831.2 23376.6 22282.6 15194.8 13867 

500 32259.7 34597.4 39272.7 32568.3 25480.5 20103.9 15737.1 

600 38805.2 43480.5 51737.2 46285.7 36467.5 30857.2 24311.7 

800 50961 53392.2 55009.9 54233.8 43013 36467.5 28987 

1000 57974 63677.9 64519.5 57506.5 53766.2 48857.2 37084.7 
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A.3- Membrane MIII 

 

A.3.1- Emulsion EI  

 

A.3.1.1- Permeate Flux Rate (ml/sec) 

 

A.3.1.1.1- No current 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2.8 3.66 3.8 3.75 2.9 2.33 1.4 

200 7.25 7.5 8.8 7.33 6.8 5.33 4 

300 11 12.75 13.33 8.5 7 6.25 4.8 

400 17.33 18 19.5 13.83 11 7.5 6 

500 18.25 19.75 21 16 12.33 10.33 7.83 

600 19.33 21 23.33 18.5 16.25 12.25 9.5 

800 22 23.75 26.1 21.33 18.1 16.5 13 

1000 25.33 27.5 30.25 24 22.5 20.75 18.83 

 

A.3.1.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.25 4 4.33 4 3.25 2.66 1.83 

200 8 8.66 10.5 9 7.66 6.33 4.83 

300 11.83 13.5 14.25 9.25 7.83 7.125 5.5 

400 19.5 20 22.25 15.66 13 8.5 6.83 

500 21 21.75 23 18.75 14.5 12 9.25 

600 22.83 24.5 26 21 18.5 14.75 11.5 

800 26 28.5 31 24.5 22.1 19.5 19 

1000 30.5 32 34 28.5 26.33 24 23 

 

A.3.1.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.5 4.33 5 4.66 3.75 2.83 2 

200 8.4 9.25 11 10.25 8.33 6.83 5.5 

300 12.33 14.83 14.5 9.83 8.1 7.5 5.66 

400 19.5 21.25 22.83 16.5 13.66 9 7.1 

500 22 22.5 24 19.5 15.5 12.66 9.83 

600 23.5 25 27 21.5 19.33 15.1 12 

800 26.83 29.66 31.33 25.1 22.66 20.83 20 

1000 31.83 33 34.83 29 27.1 25 24 
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A.3.1.1.4- 50 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.83 5 5 4.83 4 3.33 2.125 

200 9.33 10.33 12.25 10.66 9 7.1 6 

300 12.75 16 16.83 10.5 9 8.1 6.83 

400 21 22 23.1 18 15.5 10.33 8.25 

500 23 24.5 25.83 21 18.1 15.5 11 

600 25 27 28 22 21 16.5 13 

800 28 30.5 33 27 24.5 23 20.5 

1000 33 34.33 36 31 28 26 24.5 

 

A.3.1.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.5 5.75 6.33 5.66 4.25 3.66 2.25 

200 10 11 12.83 11.5 9.83 7.83 7 

300 15.25 17.83 18.66 11.33 9.75 9 7.25 

400 28.25 29 31 22 18 12.25 9.5 

500 30 32 34.75 25.25 19.75 17.25 12.5 

600 31.83 34 36 28 25.66 18.5 13.5 

800 40 40.5 42 34 27.25 24.25 21 

1000 4.5 5.75 6.33 5.66 4.25 3.66 2.25 

 

A.3.1.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5.33 6 7.5 7 5.66 4.5 2.66 

200 13 14.25 16 14 13 10.5 7.75 

300 20 22 25 16 12.5 11.5 9 

400 31 32.5 34 27.66 21 13.5 11.5 

500 34.66 36.5 39 30.5 24 20 15.5 

600 35.5 42.83 48 39 34 23.83 18 

800 48 56 57.5 51 42 38 37 

1000 65.83 69.33 68.1 52.33 48.5 43.5 41 
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A.3.1.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.3.1.2.1- No current 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2618.2 3422.3 3553.3 3506.5 2711.7 2178.7 1309.1 

200 6779.2 7013 8228.6 6854 6358.4 4983.9 3740.3 

300 10285.7 11922.1 12464.4 7948.1 6545.5 5844.2 4488.3 

400 16204.7 16831.2 18233.8 12932 10285.7 7013 5610.4 

500 17064.9 18467.5 19636.4 14961 11529.4 9659.2 7321.6 

600 18074.8 19636.4 21815.1 17298.7 15194.8 11454.6 8883.1 

800 20571.4 22207.8 24405.2 19944.9 16924.7 15428.6 12155.9 

1000 23685.2 25714.3 28285.7 22441.6 21039 19402.6 17607.3 

 

A.3.1.2.2- 10 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3039 3740.3 4048.8 3740.3 3039 2487.3 1711.2 

200 7480.5 8097.7 9818.2 8415.6 7162.6 5919 4516.4 

300 11061.8 12623.4 13324.7 8649.4 7321.6 6662.3 5142.9 

400 18233.8 18701.3 20805.2 14643.1 12155.9 7948.1 6386.5 

500 19636.4 20337.7 21506.5 17532.5 13558.4 11220.8 8649.4 

600 21347.5 22909.1 24311.7 19636.4 17298.7 13792.2 10753.3 

800 24311.7 26649.4 28987 22909.1 20664.9 18233.8 17766.2 

1000 28519.5 29922.1 31792.2 26649.4 24620.3 22441.6 21506.5 

 

A.3.1.2.3- 25 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3272.7 4048.8 4675.3 4357.4 3506.5 2646.2 1870.1 

200 7854.6 8649.4 10285.7 9584.4 7789.1 6386.5 5142.9 

300 11529.4 13867 13558.4 9191.7 7574 7013 5292.5 

400 18233.8 19870.1 21347.5 15428.6 12773 8415.6 6639 

500 20571.4 21039 22441.6 18233.8 14493.5 11837.9 9191.7 

600 21974 23376.6 25246.8 20103.9 18074.8 14119.5 11220.8 

800 25087.8 27734 29295.6 23470.1 21188.6 19477.4 18701.3 

1000 29763.1 30857.2 32568.3 27116.9 25340.3 23376.6 22441.6 
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A.3.1.2.4- 50 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3581.3 4675.3 4675.3 4516.3 3740.3 3113.8 1987 

200 8724.2 9659.2 11454.6 9967.8 8415.6 6639 5610.4 

300 11922.1 14961 15737.1 9818.2 8415.6 7574 6386.5 

400 19636.4 20571.4 21600 16831.2 14493.5 9659.2 7714.3 

500 21506.5 22909.1 24152.7 19636.4 16924.7 14493.5 10285.7 

600 23376.6 25246.8 26181.8 20571.4 19636.4 15428.6 12155.9 

800 26181.8 28519.5 30857.2 25246.8 22909.1 21506.5 19168.8 

1000 30857.2 32100.8 33662.3 28987 26181.8 24311.7 22909.1 

 

A.3.1.2.5- 100 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4207.8 5376.6 5919 5292.5 3974 3422.3 2103.9 

200 9350.7 10285.7 11996.9 10753.3 9191.7 7321.6 6545.5 

300 14259.7 16672.2 17448.3 10594.3 9116.9 8415.6 6779.2 

400 26415.6 27116.9 28987 20571.4 16831.2 11454.6 8883.1 

500 28052 29922.1 32493.5 23610.4 18467.5 16129.9 11688.3 

600 29763.1 31792.2 33662.3 26181.8 23993.8 17298.7 12623.4 

800 37402.6 37870.1 39272.7 31792.2 25480.5 22675.3 19636.4 

1000 39272.7 40207.8 41376.6 35532.5 33662.3 31090.9 27116.9 

 

A.3.1.2.6- 200 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4983.9 5610.4 7013 6545.5 5292.5 4207.8 2487.3 

200 12155.9 13324.7 14961 13090.9 12155.9 9818.2 7246.8 

300 18701.3 20571.4 23376.6 14961 11688.3 10753.3 8415.6 

400 28987 30389.6 31792.2 25863.9 19636.4 12623.4 10753.3 

500 32409.4 34129.9 36467.5 28519.5 22441.6 18701.3 14493.5 

600 33194.8 40048.8 44883.1 36467.5 31792.2 22282.6 16831.2 

800 44883.1 52363.6 53766.2 47688.3 39272.7 35532.5 34597.4 

1000 61555.3 64828.1 63677.9 48932 45350.7 40675.3 38337.7 
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A.3.2- Emulsion EII 

 

A.3.2.1- Permeate Flow Rate (ml/sec) 

 

A.3.2.1.1- No current 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3 4 4.25 3.83 3.1 2.5 1.66 

200 7.83 8.1 9.83 8 7.33 6 4.5 

300 11.66 13.5 14.5 9.5 7.66 6.83 5.66 

400 18.5 19.66 22 15.1 12.5 8.33 6.83 

500 19.33 20.83 22.5 17.66 13.5 11.25 9 

600 20.83 22.66 25 20.33 17.83 13.83 10.83 

800 23.1 25.83 28.25 24 20.25 17.83 14.66 

1000 27.33 29.66 34.1 26 24.5 22.5 21 

 

A.3.2.1.2- 10 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.66 4.5 5.25 4.66 3.83 3.25 2.1 

200 9.25 9.75 12 10.5 8.66 7.25 6 

300 13.66 15.5 16.33 11.33 8.83 8.25 6.75 

400 21.83 23 25.5 18.1 15.5 10 8.33 

500 22.83 24.83 26.5 21.66 16.5 13.66 11 

600 25 27.25 30.5 24.66 21.5 16.83 13.25 

800 28.25 32 34.66 28.83 26 21.75 19 

1000 34 36.25 41.83 33 29.5 27.66 27 

 

A.3.2.1.3- 25 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3.83 5.1 5.83 5 4.25 3.5 2.5 

200 10 10.5 12.33 10.83 9.25 7.83 6.5 

300 14 16.25 17 12 9.5 8.83 7 

400 22.5 25 26.5 18.5 16.25 11 8.66 

500 23.5 27 28.1 23 17.5 14.66 12 

600 26.25 27.83 30.83 25.1 22.5 17.5 14 

800 29.5 33.1 35.66 30 27 24 20.66 

1000 35.5 38 42.25 34.66 31 29 27 
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A.3.2.1.4- 50 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.25 5.66 6.1 5.25 4.5 3.83 2.66 

200 10.33 11.5 14 12.1 10 8.5 7.1 

300 15 17 18.25 13 11 10.25 8 

400 23.66 24.83 27.1 20.83 17 11.5 9 

500 25.1 27 28.5 24 19.5 16.5 13 

600 27.5 29.66 32 27 23.5 19.1 15 

800 30.1 34 36.75 31 28.5 26 22 

1000 36 38.1 42.5 35.5 31.66 29.5 28 

 

A.3.2.1.5- 100 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4.75 6.1 6.83 6 4.83 4.1 3 

200 11 12 14.66 12.1 11 9.5 8.33 

300 16.5 19.25 20.33 13 11.1 10 9 

400 30.5 32.5 35.25 24.5 21 14.1 11.5 

500 32.5 34.5 37.1 29 23 19.5 15.66 

600 35 37.66 39.83 31.66 29 22.1 17 

800 42 44.25 46.66 40 33 27.66 24.5 

1000 46.5 47.5 51.66 43 41 37.83 34 

 

A.3.2.1.6- 200 kV 

 

Permeate flow rate, ml/sec 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 6 6.83 8.66 7.33 6.25 5 3.33 

200 14.5 15.83 18.5 15.66 14.5 12 9.1 

300 22 24.33 26.5 18.5 14.5 13 11.25 

400 32.83 36 38.5 31.5 24.5 15.83 13.5 

500 37.1 39.5 42.75 34.5 26.66 22 18.1 

600 39 46.5 51.5 44 37.5 27.66 21 

800 50.83 61 66.83 59 49.1 44 38.5 

1000 73.83 76.5 80.5 58 55.1 49.33 46.5 
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A.3.2.2- Permeate Flux Rate (L/m
2
 hr) 

 

A.3.2.2.1- No current 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 2805.2 3740.3 3974 3581.3 2898.7 2337.7 1552.2 

200 7321.6 7574 9191.7 7480.5 6854 5610.4 4207.8 

300 10902.9 12623.4 13558.4 8883.1 7162.6 6386.5 5292.5 

400 17298.7 18383.4 20571.4 14119.5 11688.3 7789.1 6386.5 

500 18074.8 19477.4 21039 16513.3 12623.4 10519.5 8415.6 

600 19477.4 21188.6 23376.6 19009.9 16672.2 12932 10126.8 

800 21600 24152.7 26415.6 22441.6 18935.1 16672.2 13708.1 

1000 25555.3 27734 31885.7 24311.7 22909.1 21039 19636.4 

 

A.3.2.2.2- 10 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3422.3 4207.8 4909.1 4357.4 3581.3 3039 1963.6 

200 8649.4 9116.9 11220.8 9818.2 8097.7 6779.2 5610.4 

300 12773 14493.5 15269.6 10594.3 8256.6 7714.3 6311.7 

400 20412.5 21506.5 23844.2 16924.7 14493.5 9350.7 7789.1 

500 21347.5 23217.7 24779.2 20253.5 15428.6 12773 10285.7 

600 23376.6 25480.5 28519.5 23058.7 20103.9 15737.1 12389.6 

800 26415.6 29922.1 32409.4 26957.9 24311.7 20337.7 17766.2 

1000 31792.2 33896.1 39113.8 30857.2 27584.4 25863.9 25246.8 

 

A.3.2.2.3- 25 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3581.3 4768.8 5451.4 4675.3 3974 3272.7 2337.7 

200 9350.7 9818.2 11529.4 10126.8 8649.4 7321.6 6077.9 

300 13090.9 15194.8 15896.1 11220.8 8883.1 8256.6 6545.5 

400 21039 23376.6 24779.2 17298.7 15194.8 10285.7 8097.7 

500 21974 25246.8 26275.3 21506.5 16363.6 13708.1 11220.8 

600 24545.5 26022.9 28828.1 23470.1 21039 16363.6 13090.9 

800 27584.4 30950.7 33344.4 28052 25246.8 22441.6 19318.4 

1000 33194.8 35532.5 39506.5 32409.4 28987 27116.9 25246.8 
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A.3.2.2.4- 50 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 3974 5292.5 5703.9 4909.1 4207.8 3581.3 2487.3 

200 9659.2 10753.3 13090.9 11314.3 9350.7 7948.1 6639 

300 14026 15896.1 17064.9 12155.9 10285.7 9584.4 7480.5 

400 22123.6 23217.7 25340.3 19477.4 15896.1 10753.3 8415.6 

500 23470.1 25246.8 26649.4 22441.6 18233.8 15428.6 12155.9 

600 25714.3 27734 29922.1 25246.8 21974 17859.7 14026 

800 28145.5 31792.2 34363.6 28987 26649.4 24311.7 20571.4 

1000 33662.3 35626 39740.3 33194.8 29604.2 27584.4 26181.8 

 

A.3.2.2.5- 100 kV 

 

Permeate flux rate, J, l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 4441.6 5703.9 6386.5 5610.4 4516.4 3833.8 2805.2 

200 10285.7 11220.8 13708.1 11314.3 10285.7 8883.1 7789.1 

300 15428.6 18000 19009.9 12155.9 10379.2 9350.7 8415.6 

400 28519.5 30389.6 32961 22909.1 19636.4 13184.4 10753.3 

500 30389.6 32259.7 34690.9 27116.9 21506.5 18233.8 14643.1 

600 32727.3 35214.6 37243.6 29604.2 27116.9 20664.9 15896.1 

800 39272.7 41376.6 43630.1 37402.6 30857.2 25863.9 22909.1 

1000 43480.5 44415.6 48305.5 40207.8 38337.7 35373.5 31792.2 

 

A.3.2.2.6- 200 kV 

 

Permeate flux rate, J , l/m
2
 hr 

 

Rpm 

Filtration time, min 

0 5 10 15 20 25 30 

100 5610.4 6386.5 8097.7 6854 5844.2 4675.3 3113.8 

200 13558.4 14802.1 17298.7 14643.1 13558.4 11220.8 8509.1 

300 20571.4 22750.1 24779.2 17298.7 13558.4 12155.9 10519.5 

400 30698.2 33662.3 36000 29454.6 22909.1 14802.1 12623.4 

500 34690.9 36935.1 39974 32259.7 24928.8 20571.4 16924.7 

600 36467.5 43480.5 48155.9 41142.9 35064.9 25863.9 19636.4 

800 47529.4 57039 62490.4 55168.8 45911.7 41142.9 36000 

1000 69035.9 71532.5 75272.7 54233.8 51522.1 46126.8 43480.5 
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Appendix B 

 

Demulsification Efficiency 

 

B.1- Membrane MI 

 

B.1.1- Emulsion EI 

 

B.1.1.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 19.6 9.5 13.25 34.9 29.4 9.3 13 11 

4 23.5 24.77 26.5 42.6 39.2 23.4 22 19 

6 31.4 38.1 35.3 46.5 45.7 30.4 34 36 

7 54.9 55.2 58.3 58.9 62 63.1 63.3 66.8 

 

 

B.1.1.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 18.5 13.6 11.8 33.8 25.7 22 16.5 18 

4 29.6 31.8 15.8 40.5 34.3 38 34 31 

6 44.4 40.9 31.6 50.7 45.7 52 55 27 

7 55 56.4 58.5 59.5 62.9 64 64.1 68.4 

 

 

B.1.1.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 17.2 35.3 26.3 25.5 39 31.6 21 20.5 

4 34.5 44.2 37.5 38.3 44.4 43.4 41.5 38 

6 51 57.4 45 54.3 55.6 55.3 57 60 

7 55.2 57.4 59.6 60.7 63.9 64 64.5 68.8 
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B.1.1.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 15.1 16.7 14.6 24.2 10.7 9.6 13 13 

4 45.2 29.2 32.9 39.4 26.8 21.2 22 25 

6 51 33.3 43.9 48.5 42.9 34.6 38 44.5 

7 55.7 58.3 58.6 61.8 64.3 64.6 66.2 68.9 

 

B.1.1.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 13.2 27.6 33.9 37.2 36.3 23.2 26 28 

4 39.5 37.9 49.4 41.9 48.4 50 48 49 

6 57.9 60.7 61.7 63.3 66.6 67.9 68.6 69.4 

 

B.1.1.6- 200 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 10.7 44.4 42.9 30.8 16.3 9.5 14 14 

4 32.2 52.8 61.9 48.1 35.9 22.6 26 28.5 

6 60.1 63.9 64.8 64.4 66.9 67.9 69.3 69.6 
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B.1.2- Emulsion EII  

 

B.1.2.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 33.3 36.4 33.3 57.1 50 29.6 26 29.5 

4 51 63.6 37.5 64.3 70.6 50.7 47 44 

6 56.7 63.6 65 75 76.5 78.2 78.8 79.4 

 

B.1.2.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 57.1 50 42.3 48.5 42.9 41.4 40.5 42.5 

4 57.1 66.7 49.3 60.6 57.1 58.6 61 64 

6 57.1 70.8 73.9 75.8 77.1 81 83.3 83.5 

 

B.1.2.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 50 31.6 27.3 34.6 40.5 25.4 22 24 

4 58.5 55.3 54.6 57.7 54.1 41.3 45.5 48.5 

6 62.5 71.1 75 77.9 78.8 81 84 85.1 

 

B.1.2.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 44.4 28.6 50 38.5 37.5 34 33 37.5 

4 66.7 50 75 54.9 58.3 48.1 51.5 49 

6 66.7 71.4 75 78 79.2 82.1 84.9 86 
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B.1.2.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 35.3 25 30.5 18.6 31.4 27.3 29.5 33 

4 44 56.3 53.4 41.9 41.9 48.5 50 52 

6 47.2 75 76.3 79.1 80.3 83.3 84.4 86.7 

 

B.1.2.6- 200 kV 

 

demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 26.5 29 36.9 25.6 40 27.1 29 31 

4 35.3 38.7 46.2 43.9 47.5 45.8 46.5 52 

6 74.2 77.4 77.6 80.5 81.3 83.3 86 86.7 
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B.2- Membrane MII 

 

B.2.1- Emulsion EI 

 

B.2.1.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 27.3 25.6 23.1 35.2 25.5 21.4 24 28 

4 41 51.3 34.6 42.2 51 37.5 38 40 

6 41.5 51.3 34.6 56.3 57.3 42.9 44.5 44 

7 43.7 51.3 52 59.9 60.5 62 64.4 66.1 

 

B.2.1.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 25 22.7 21.7 26 23.1 25 26.5 26.5 

4 47 34.1 27.2 45.5 34.6 37.5 41 43.5 

6 50 45.5 43.5 52 46.2 58.3 60 48 

7 50 56.8 59.8 61.7 63.5 65.8 67.1 68 

 

B.2.1.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 45.5 22.2 28.6 18 27.5 24 18 26 

4 46 55.6 28.6 24 33 32 29 33 

6 47 57.25 38.1 48 49.5 44.5 40.5 47 

7 54.5 57.8 61.9 64.8 65.9 66 67.4 68.3 

 

B.2.1.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 40 32.2 26.5 10.5 25.9 32.7 22 21.5 

4 51 32.2 53 26.3 38.8 38.5 37.5 39 

6 52.5 42.9 61.8 42.1 54.3 46.2 51 54 

7 56 59 63.6 65.8 67.3 67.3 68.1 69.3 
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B.2.1.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 36.4 17.2 25 20.8 32.1 21.9 23 28 

4 54.5 42.9 33.3 33.3 42.9 53.1 42.5 44 

6 63.6 64.3 66.7 66.7 67.9 68.8 69.5 70.3 

 

B.2.1.6- 200 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 27.8 16 19.2 33.3 27 25.4 23 28 

4 41.7 48 44.7 44.4 43.8 43.2 49 46 

6 63.9 68 70.2 70.4 70.8 71.2 71.2 71.3 
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B.2.2- Emulsion EII 

 

B.2.2.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 50 47.1 33.3 18.8 35.3 33.3 37 38.5 

4 50 52.5 44.4 50 64.7 45.8 49 52 

6 50 58.8 61.1 68.8 70.6 72.9 75 76.9 

7         

 

B.2.2.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 44.5 32.2 19.6 32.4 25.9 25.8 27 30.5 

4 48 42.9 49 48.7 51.8 54.8 51 55 

6 50 59 63.7 70.3 72.5 74.2 75.8 77.9 

 

B.2.2.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 53 39.2 26.5 26.8 24.2 24 26 29 

4 53 49 53 48.2 58.1 39 40.5 46 

6 61.8 62.7 66.3 72.3 72.6 75 76 78.3 

 

B.2.2.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 53 37.5 25 15.4 18.2 20.6 23 22 

4 55.5 65.7 66.7 51.3 40.9 47.1 49 51.5 

6 61.8 65.7 70.8 74.4 75 75 77.1 79 
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B.2.2.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 48.4 23.1 15.4 34 20.7 12.7 19.5 22 

4 64.5 46.2 38.5 49.1 37.9 35.6 40 43 

6 64.5 69.2 73.1 75.5 75.9 76.3 77.3 79.2 

 

B.2.2.6- 200 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 25 34.5 30 27 20.8 15.4 24 29 

4 62.5 55.2 42 33.7 35.7 42.3 40.5 44 

6 68.8 72.4 75 75.9 77.2 77.9 78.2 79.4 
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B.3- Membrane MIII 

 

B.3.1- Emulsion EI 

 

B.3.1.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 35.7 12.5 20.8 8.3 12.8 26.3 30 29 

4 35.7 25 31.3 33.3 44.7 42.1 44.5 44 

6 35.7 50 52.1 50 57.5 52.6 54 51.5 

7 53.6 55 57.3 58.3 60.7 62.1 62.3 63.7 

 

B.3.1.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 54.6 0 18.2 7.3 16.2 21.7 20 23 

4 54.6 31.1 45.5 7.3 32.5 34.8 38 39 

6 54.6 42.5 45.5 30.3 43.5 56.5 55 57.5 

7 54.6 55.9 58.2 58.6 62.2 63.5 63.7 64.1 

 

B.3.1.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 25 27.3 17.7 7 5.1 25 28 29 

4 50 36.4 35.3 28.2 15.3 29.2 31.5 33 

6 52 44 44.2 49.3 40.7 50 52 53 

7 55 56.4 58.3 59.9 63.6 64.6 65 65.6 

 

B.3.1.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 23.5 25 22 12.1 18.2 23.1 22 22 

4 30.5 50 29.3 30.3 40.9 26.9 29 33 

6 35 50 51.2 34 50 38.5 40 43.5 

7 56.5 58.3 58.6 60.6 63.6 64.6 65.9 66.3 
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B.3.1.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 22.5 28.6 20.7 10.5 20 37 38 38.5 

4 44.4 35.7 41.4 42.1 56 48.1 49.5 41 

6 57.8 58.6 58.6 61.1 64 64.8 65.5 66.4 

 

B.3.1.6- 200 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 18.8 38.7 22.2 30.4 9.7 16.7 18 22 

4 37.6 45.2 44.4 52.2 41.9 25 26.5 30 

6 60.2 61.3 63.9 65.2 65.2 65.3 66.2 67.1 
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B.3.2- Emulsion EII 

 

B.3.2.1- No current 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 22 33.3 26.5 36.6 44.4 18.5 21 21 

4 40.5 55.6 53 58.6 50 46.2 47 53 

6 54.2 61.1 61.8 73.2 75 76.2 78.4 78.6 

 

B.3.2.2- 10 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 47.6 16.7 22.2 12 18.2 22.6 24 24 

4 52 41.7 66.7 36 45.5 64.2 51 53 

6 57.1 62.5 66.7 73.2 75 77.7 78.9 79.6 

 

B.3.2.3- 25 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 60 15.4 42.9 46.2 29.2 7.1 18.5 22 

4 60 46.2 50 52 41.7 32.1 38 43 

6 60 65.4 67.9 75.1 77.1 78.6 79.9 80.6 

 

B.3.2.4- 50 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 37.6 28.2 37.5 22.2 26.9 26.7 29 29 

4 56.4 49.3 62.5 33.3 38.5 43.3 45 47 

6 65.8 70.4 71.9 77.8 78.8 80 81.8 83 
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B.3.2.5- 100 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 33.3 24 27.8 39.1 19.2 32.4 33 27.5 

4 50 36 44.4 47.8 25.5 47.1 62.5 50.5 

6 66.7 72 72.2 78.3 79.8 80.9 82.7 83.1 

 

B.3.2.6- 200 kV 

 

Demulsification efficiency, DE, % 

Time, 

hr 

Rpm 

100 200 300 400 500 600 800 1000 

0 0 0 0 0 0 0 0 0 

2 45 33 17.8 11.1 16.6 23.8 27.5 29 

4 60 38.5 40 44.4 38.7 52.4 54 51 

6 72.1 72.5 73.3 79.6 80.1 81 83.8 84.4 
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Appendix C 

 

The Experimental Rig 

 

 

 
 

Fig. (C.1): A photograph of the inside of the electrofiltration cell. 

 



392 

 

 
 

Fig. (C.2): A photograph of the outside of the electrofiltration cell. 
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Fig. (C.3): A photograph of the inside of the electrofiltration cell along with the other 

components. 

 

 

 

 



394 

 

 
 

Fig.(C.4): A pictorial representation of the experimental rig. 
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Fig. (C.5): Engineering drawing of the electrofiltration cell. 
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Fig. (C.6): A photograph of both fresh and oil-fouled membranes. 
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