
 

 

 

 

    

Identification of a Novel Cell Division Protein 

in Bacillus subtilis 

 

 

 

 

 

Katarína Šurdová 

 

 

Thesis submitted for the degree of Doctor of Philosophy 

Newcastle University 

Faculty of Medical Sciences 

Institute for Cell and Molecular Biosciences 

 

 

September 2011 



 

 

 

 

Abstract 

 

 

 

FtsZ is a tubulin-like protein that polymerizes into a ring like structure at midcell, which 

is the first step in septum formation. The dynamics of FtsZ polymerization is regulated 

by a set of proteins, one of which is ZapA. ZapA is a non-essential positive regulator of 

FtsZ polymerization. In this study we have performed a screen for mutations in Bacillus 

subtilis that result in a cell division defect when combined with ∆zapA. Three such 

mutations were found in the yvcL gene. Since this gene is homologous to whiA from 

Streptomyces coelicolor, and the lack of both proteins imposes in some instances similar 

phenotypes, we proposed to rename the gene whiA. Mutation of whiA alone had only 

a mild effect on cells, which became 20-60% longer. However, the double mutant 

∆whiA ∆zapA is filamentous and sick. Evidence is provided that the filamentation is 

caused by delocalization of FtsZ, and that WhiA is implemented in the early stage of 

cell division. Interestingly, WhiA localizes to the nucleoid and is important in cells that 

overinitiate replication. We also found that this protein is essential for survival after 

UV-induced DNA damage. Its binding sites on DNA were identified using a 

ChIP-on-chip method and the dif site, which is important for chromosome dimer 

resolution, was found to be a possible target of WhiA. A transcriptome analysis using 

whole genome microarray showed that WhiA does not function as transcriptional 

regulator. We conclude that WhiA is involved in both cell division and chromosome 

dynamics.  
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Abbreviations 

 

 

ATP  adenosine triphosphate 

B. subtilis  Bacillus subtilis 

BCAA  branched chain amino acid 

C. crescentus Caulobacter crescentus 

CAA  casamino acids 

ChIP  chromatin immunoprecipitation 

DAPI  4,6-diamidino-2-phenylindole 

dH2O  deionised water 

DNA  deoxyribonucleic acid 

DTT   dithiothreitol 

E. coli  Escherichia coli 

EDTA  ethylenediaminetetraacetic acid 

e. g.  exempli gratia (for example) 

EMSA  Electrophoretic mobility shift assay 

et al.  et alii (and others) 

GFP  green fluorescent protein 

Glc  glucose 

GTP  guanosine triphosphate 

h  hour 

IPTG  isopropyl β-D-1-thiogalactopyranoside 

kDa  kilo Dalton 

LB  Luria-Bertani broth 

LTA  lipoteichoic acid 

min  minute 

MOPS  3-(N-morpholino)-2-hydroxypropanesulphonic acid 

NA  nutrient agar 

OD600  optical density; wavelength 600 nm 

oriC  replication origin 

PAB  Penassay broth 

PAGE  polyacrylamide gel electrophoresis 

PBP   penicillin binding protein 
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PBS  phosphate buffered saline solution 

PCR  polymerase chain reaction 

PG  peptidoglycan 

RNA  ribonucleic acid 

S. coelicolor Streptomyces coelicolor 

SD  standard deviation 

SDS  sodim dodecyl sulfate 

SLS  Synthetic Lethal Screen 

SMM  Spizizen minimal medium 

spp.  species (plural) 

TAE  Tris, acetate, EDTA 

TE  Tris, EDTA 

Ter  DNA terminator 

T. maritima Thermotoga maritima 

UDP  uridine diphosphate 

UV  ultraviolet 

vs.  versus 

WB  western blot 

WTA  wall teichoic acid 

X-gal  5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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1.1 Cytokinesis in bacteria  

 

Bacterial cell division is accomplished by a set of more than ten proteins, which 

assemble in a specific order, time and place within the cell. In rod shaped bacteria the 

earliest and crucial structure appearing during the division is a midcell positioned ring 

composed of the protein FtsZ. This so-called Z-ring attracts other cell division proteins 

that are responsible for the synthesis of the septal cell wall. FtsZ remains at the leading 

edge of the nascent septum.  

 

1.1.1 Polymerization of FtsZ 

 

FtsZ (Filamenting temperature sensitive mutant Z) is a tubulin-like protein that is 

essential in almost all bacteria (Erickson, 1995; Lowe and Amos, 1998; Romberg and 

Levin, 2003; Weiss, 2004). It can also be found in Archaea, in the mitochondria of some 

organisms, and in all chloroplasts (Margolin, 2000; Osteryoung and Pyke, 1998; 

Osteryoung et al., 1998; Rothfield et al., 1999). Both tubulin and FtsZ are cytoskeletal 

proteins and are very similar in their tertiary structures. However, their macromolecular 

organization shows fundamental differences. Tubulin forms a heterodimer composed of 

an α and β subunit (Krauhs et al., 1981; Ponstingl et al., 1981). Tubulin dimers 

polymerize head-to-tail into protofilaments in a GTP-dependent manner, and usually 

around 13 of these protofilaments align to form a microtubule (Li et al., 2002; Lowe et 

al., 2001; Nogales et al., 1998). FtsZ does not form dimers, instead, FtsZ monomers 

polymerize into protofilaments in the presence of GTP. These protofilaments can 

assemble or disassemble bidirectionally while GTP is hydrolyzed (Fig. 1.1) (de Boer et 

al., 1992; Huecas et al., 2008; Lowe and Amos, 1998; Romberg et al., 2001). Most of 

the FtsZ molecules in the protofilaments are bound to GTP (Mingorance et al., 2001; 

Oliva et al., 2004b; Romberg and Mitchison, 2004; Scheffers and Driessen, 2002). The 

energy acquired from GTP hydrolysis is not stored within the FtsZ molecule, but causes 

local destabilisation and results in curvature of protofilaments (Huecas and Andreu, 

2004). The exchange of the FtsZ monomers in the protofilament is very dynamic. The 

Z-ring can reconstitute within a few seconds, by means of FRAP experiments the 

halftime of recovery after photobleaching is 8-30s (Anderson et al., 2004; Stricker et 

al., 2002). The GTPase active site is formed by two molecules of FtsZ, and is 
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sufficiently open to rapidly exchange nucleotides (Oliva et al., 2004b; Scheffers et al., 

2002).  
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The GTPase activity of FtsZ is Mg++ dependent and high concentrations of Mg++ can 

stimulate and stabilize protofilaments (Mohammadi et al., 2009; Oliva et al., 2004a; 

RayChaudhuri and Park, 1992). Biochemical and electron microscopy data have 

indicated that FtsZ protofilaments can be organized into bundles, sheets, rings, and 

other higher molecular structures depending on the conditions used (Bramhill and 

Thompson, 1994; Erickson et al., 1996; Lowe and Amos, 1999; Mingorance et al., 

2005; Mukherjee and Lutkenhaus, 1994; Paez et al., 2009). Although extensively 

studied, it is still unclear how the protofilaments are organized in living cells. The 

current view is that the cellular protofilaments are probably no more than 90 FtsZ 

molecules long and that the Z-ring is only around 3 protofilaments thick (Anderson et 

al., 2004; Li et al., 2007). In E. coli, B. subtilis and C. crescentus cells, FtsZ is 

organized into a helical structure (Z-helix) which spans the whole cell length (Peters et 

al., 2007; Thanbichler and Shapiro, 2006; Thanedar and Margolin, 2004) (Fig. 1.2A). 

As the cell grows and becomes longer, the chromosomes segregate, the FtsZ moiety 

'slides' along the helical trajectory from the distal cellular areas to the midcell where it 

forms the Z-ring (Peters et al., 2007). It is not clear what mechanism directs the initial 

helical arrangement of FtsZ. Two mechanisms are thought to guide Z-ring positioning. 

First is the nucleoid occlusion system which allows coordination of septation with 

chromosome segregation. Second is the Min system which prevents the formation of 

septa at the cell poles. 

 

 

 
Fig. 1.1 FtsZ protofilament 
dynamics 
(A) Any molecule can be relieved 
from the polymer (after GTP 
hydrolysis). (B) Polymerization by 
joining one or (C) more single 
molecules of FtsZ, or joining 
another nascent polymer (D). 
Green = preexisting polymer; 
Red = newly polymerized or joined 
FtsZ molecules. 
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Nucleoid occlusion 

 

Cytokinesis must be coordinated with nucleoid replication and segregation to ensure the 

progeny inherits an intact copy of the genetic information. It has been speculated that 

the compacted chromosomal DNA at the centre of the cell, the nucleoid itself, prevents 

assembly of FtsZ into a Z-ring, and this phenomenon was called nucleoid occlusion 

(Mulder and Woldringh, 1989; Woldringh et al., 1990). This was later confirmed by the 

discovery of the Noc protein in B. subtilis and SlmA in E. coli (Bernhardt and de Boer, 

2005; Wu and Errington, 2004). Noc binds DNA and prevents septum formation in 

DNA-occupied regions (Fig. 1.2B). It was shown that deletion of noc causes formation 

of aberrant Z-rings over the nucleoids in sensitized cells (Wu and Errington, 2004). It is 

likely that Noc prevents the transition of Z-helix to Z-ring rather than the 

polymerization of FtsZ (Wu and Errington, 2004; Peters et al., 2007). Direct interaction 

of Noc and FtsZ has not been shown and its modus operandi remains speculative. Noc 

recognizes a specific 14 bp repeat and was found to bind to 74 regions around the 

chromosome, except for the region close to the terminus (Wu et al., 2009). Cell division 

is delayed when Noc is artificially forced to bind to the terminus region (Wu et al., 

2009). This suggests that cells form a Z-ring only after chromosome replication is 

completed and the Noc-bound DNA region is removed from the midcell area (Wu et al., 

2009). Despite this information, the exact localization of Noc in cells is not really clear 

since an active Noc-YFP fusion was found to be associated with the membrane (Wu et 

al. 2009). Although the noc mutant does not have an obvious phenotype, it has been 

speculated that beside Noc there is (are) more proteins(s) involved in nucleoid occlusion 

(Bernard et al., 2010; Wu and Errington, 2004). E. coli SlmA shares no sequence 

homology with Noc. However, it acts in a similar way to Noc. It binds DNA and its 

overpoduction leads to cell division arrest. In vitro, SlmA was shown to interact directly 

with FtsZ and to promote formation of ribbon-like structures (Bernhardt and de Boer, 

2005). In bacteria where no Min homologs are found (e. g. C. crescentus) cell division 

is thought to rely solely on nucleoid occlusion (Quardokus and Brun, 2002). 

 

Min system  

 

The Min system prevents the aberrant formation of Z-rings close to cell poles (de Boer 

et al., 1989; Jacobs et al., 1999). The active inhibitory complex constitutes two proteins: 

MinC and MinD. Their concentration is highest at the cell poles and decreases toward 
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the centre of the cell leaving the midcell free for Z-ring formation (Raskin and de Boer, 

1997). MinC interacts directly with FtsZ, and was shown to prevent FtsZ 

polymerization (Hu et al., 1999). Recent report showed that MinC causes loss of 

elasticity of the FtsZ assemblies (networks) presumably by weakening the longitudinal  

association of FtsZ monomers and also by inhibition of lateral interactions of FtsZ 

protofilaments (Dajkovic et al., 2008). MinD is associated with the membrane through 

its amphipatic C-terminus (de Boer et al., 1991), and is responsible for MinC activation 

(Cordell et al., 2001; Hayashi et al., 2001; Sakai et al., 2001). In E. coli the 

concentration gradient of MinCD is assured by a third protein of the Min system, MinE 

(Rothfield and Zhao, 1996). Interestingly, MinCDE have been shown to oscillate from 

pole to pole (Hu and Lutkenhaus, 1999; Juarez and Margolin, 2010; Pichoff et al., 

1995). The mechanism of oscillation is complicated and not fully understood. However, 

MinD and MinE have been shown to spontaneously self-organize (in the presence of 

ATP) and form sliding waves on membrane surfaces in vitro (Loose et al., 2008). When 

rod-shaped bacteria divide, the areas around the division site become new cell poles 

after cytokinesis. Recent microscopic studies using GFP fused MinD in E. coli 

suggested that the MinCD complex pauses at the midcell position late in the division, 

and then shortly after division it prevents the assembly of functional Z-rings at newly 

formed poles (Gregory et al., 2008; Juarez and Margolin, 2010). This is supported also 

by microscopic experiments in B. subtilis, where GFP-fused MinC was found to 

colocalize with the assembled divisome (Gregory et al., 2008). 

 Oscillation of the Min system was not observed in B. subtilis, and in fact this 

organism does not contain a MinE homologue (Marston and Errington, 1999; Marston 

et al., 1998). Instead, the DivIVA protein, which binds to cell poles, is needed for the 

MinCD gradient (Fig. 1.2B) (Cha and Stewart, 1997; Edwards and Errington, 1997). 

DivIVA and MinE show no sequence homology (Zhang et al., 1998). The interaction 

between DivIVA and MinD is mediated by MinJ (Bramkamp et al., 2008; Patrick and 

Kearns, 2008). DivIVA is the main topological determinant of the Min system in 

B. subtilis. Two recent papers reported that DivIVA targets the cell poles because of its 

preference for negatively curved membranes (Lenarcic et al., 2009; Ramamurthi and 

Losick, 2009). The curvatures produced with proceeding division septum formation 

attract DivIVA and, after septum enclosure, DivIVA becomes a constituent of newly 

formed cell poles (Edwards and Errington, 1997; Gamba et al., 2009). 
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Fig. 1.2 An outline of the interplay between nucleoid occlusion and the 
min system during cell division in B. subtilis 
(A) FtsZ (green) forms a helical structure. (B) FtsZ is remodelled and is more 
abundant at midcell. Nucleoid occlusion facilitated by Noc (binding to DNA) 
prevents the formation of a Z-ring in the proximity of the nucleoid. At the 
same time, a complex of proteins DivIVA, MinJ, MinD, and MinC prevent 
from the formation of Z-rings at the cell poles. (C) Z-ring is formed at 
midcell.  
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1.1.2 FtsZ interacting proteins 

 

In addition to the Min and nucleoid occlusion systems, bacteria possess a number of 

other proteins that interact with FtsZ and modulate its activity. These 'additional' 

proteins are usually dispensable and may be specific to some bacterial species 

(reviewed in (Adams and Errington, 2009).  

 

FtsA is structurally related to actin (van den Ent and Lowe, 2000). Electron microscopy 

imaging revealed S. pneumoniae FtsA polymers form corkscrew-like helixes (Lara et 

al., 2005). FtsA binds to the membrane through its C-terminal amphipatic helix which 

can be surprisingly exchanged by an unrelated membrane-targeting peptide, while FtsA 

remains functional (Shiomi and Margolin, 2008). FtsA also binds FtsZ and thus serves 

as a membrane anchor for FtsZ (Pichoff and Lutkenhaus, 2005). The gene for FtsA 

forms one operon with ftsZ in B. subtilis and in many other organisms (Nikolaichik and 

Donachie, 2000). The transcription of the ftsAZ operon is constitutive and the 

intracellular concentration of FtsA and FtsZ is constant during growth (Rueda et al., 

2003; Weart and Levin, 2003). However, during sporulation, ftsAZ expression is 

enhanced by the sigma factor SigH to secure a higher concentration of FtsZ required for 

sporulation (Gonzy-Treboul et al., 1992; Levin and Losick, 1996). In E. coli the loss of 

FtsA is lethal, but B. subtilis is able to grow without FtsA, although cells are 

filamentous (Beall and Lutkenhaus, 1992; Jensen et al., 2005). It appears that the 

balance of the protein ratio between FtsZ and FtsA is crucial for efficient cell division 

(100/1 in E. coli and 5/1 in B. subtilis) (Dai and Lutkenhaus, 1992; Dewar et al., 1992; 

Feucht et al., 2001; Rueda et al., 2003). Biochemically FtsA binds triphosphates 

(preferentially ATP) which activate FtsA and, while E. coli FtsA exhibits weak (if any) 

hydrolytic activity, the B. subtilis FtsA was shown to hydrolyze ATP although the 

significance of this activity is unclear (Beuria et al., 2009; Feucht et al., 2001; Lara et 

al., 2005). 

 

ZipA is an essential protein in E. coli, however, no homologue is found in B. subtilis. 

ZipA was shown to interact with FtsZ (Hale and de Boer, 1997). ZipA contains a 

transmembrane helix and thus recruits FtsZ to the membrane (Hale et al., 2000). 

In vitro, ZipA was shown to cause bundling of FtsZ protofilaments and it is thought to 

promote lateral interactions of FtsZ protofilaments (Hale et al., 2000; RayChaudhuri, 

1999). Localization of both ZipA and FtsA is dependent on FtsZ, but they act 
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independently on the targeting of the Z-ring to the membrane (Hale and de Boer, 1999; 

Liu et al., 1999). Recent data have indicated that FtsA and ZipA are also required for 

recruitment of later cell division proteins to the division septum (Hale and de Boer, 

2002; Pichoff and Lutkenhaus, 2002). 

 

ZapA (Z-ring associated protein A) is a small (11.6 kDa) conserved protein that directly 

interacts with FtsZ and has a positive effect on Z-ring formation (Gueiros-Filho and 

Losick, 2002). It has been shown that overexpression of ZapA counteracts the division 

inhibition caused by MinCD overexpression (Gueiros-Filho and Losick, 2002). 

Although ZapA is not essential, lower FtsZ levels are lethal when ZapA is absent 

(Gueiros-Filho and Losick, 2002). The ZapA ortholog in E. coli is YgfE. It was shown 

that YgfE and ZapA inhibit GTP hydrolysis by FtsZ and both proteins stabilize FtsZ 

protofilaments (Gueiros-Filho and Losick, 2002; Low et al., 2004; Small et al., 2007). 

The crystal structure of ZapA from Pseudomonas aeruginosa (Fig. 1.3) shows that a 

tetramer is formed by two antiparallel dimers (Low et al., 2004). The N-terminal 

domain of ZapA shows the highest conservation and it is thought to interact with FtsZ. 

ZapA probably acts as a 'clip' which joins FtsZ protofilaments side by side (Low et al., 

2004). This model is also supported by the fact that ZapA and YgfE promote bundling 

of FtsZ protofilaments in vitro (Gueiros-Filho and Losick, 2002; Small et al., 2007). 

A                                             B

 

 

Fig. 1.3 The crystal structure of ZapA from Pseudomonas aeruginosa at 2.8 Å 
resolution (Low et al., 2004) 
(A) Formation of a ZapA dimer through its N-terminal region. (B) Tetramer is 
formed in vitro at high ZapA concentrations.  
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ZapB and ZapC are division proteins that have been recently identified in E. coli, and 

which are present in many Proteobacteria. ZapB localizes to the division site where it 

interacts with FtsZ and is presumably bridging FtsZ and YgfE (Galli and Gerdes, 2010). 

ZapB forms a coiled-coil structure and in vitro the protein forms long filaments 

(Ebersbach et al., 2008b). The role of ZapC seems similar to ZapA or ZapB in that it 

binds FtsZ at the midcell and promotes lateral interactions of FtsZ protofilaments 

(Durand-Heredia et al., 2011).  

 

EzrA (Extra Z-ring Assembly) was found to be important for accurate Z-ring placement 

in B. subtilis (Haeusser et al., 2007; Haeusser et al., 2004; Levin et al., 1999). ezrA 

mutants form multiple Z-rings and additional Z-rings at the cell poles (Haeusser et al., 

2004; Levin et al., 1999). These structures sequester additional division proteins, 

resulting in a delay in septum completion and longer cell length (Chung et al., 2004; 

Haeusser et al., 2004; Levin et al., 1999). Recent studies have indicated that EzrA is 

also involved in septum synthesis by recruiting PBP 1, a major transglycosylase and 

transpeptidase of peptidoglycan subunits, to the division septum (Claessen et al., 2008). 

EzrA is essential in Staphylococcus aureus where it was also shown to fulfil a dual 

function in cell division and peptidoglycan synthesis (Steele et al., 2011). E. coli does 

not encode an EzrA homologue but its membrane domain topology is similar to that of 

ZipA in that both proteins contain a transmembrane anchor at their N-temini. Whether 

they are functional homologues remains to be tested (Errington et al., 2003a). An EzrA 

truncation lacking the N-terminus has been purified and was shown to interact directly 

with FtsZ and perturb FtsZ polymerization (Haeusser et al., 2004). On the other hand, a 

seven amino acid stretch at the C-terminus is essential to direct EzrA to medially 

positioned Z-ring in vivo but is dispensable for FtsZ assembly dynamics in vitro 

(Haeusser et al., 2007). In summary, EzrA has been shown to be involved in both the 

regulation of FtsZ assembly and septum biosynthesis; however, how these processes are 

linked is unclear. 

 

SepF (Septum Forming) was discovered by two groups (Hamoen et al., 2006; Ishikawa 

et al., 2006). sepF mutants are delayed in cell division and their division septa are 

abnormally formed (Hamoen et al., 2006; Ishikawa et al., 2006). Loss of both sepF and 

ezrA leads to a synthetic lethal phenotype which does not result from the lack of the 

Z-rings. It was therefore suggested that SepF functions in a late step in septum 

formation (Hamoen et al., 2006). On the other hand, the absence of sepF is also 
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synthetically lethal with an ftsA deletion, and in this case a conditional double mutant 

does not form Z-rings anymore. In addition, SepF overexpression stimulates Z-ring 

formation in an ftsA mutant, and it was suggested that SepF can take over the function 

of FtsA and it promotes the attachement of the Z-ring to the membrane (Ishikawa et al., 

2006). Yeast two hybrid and in vitro data have shown that SepF interacts directly with 

FtsZ, and promotes FtsZ polymerization (Hamoen et al., 2006; Singh et al., 2008). 

Electron microscopic images of purified SepF indicated that the protein oligomerizes 

into large rings (Gundogdu et al., 2011). Moreover, these rings bundle FtsZ 

protofilaments into long tubular structures. This orderly arrangement was proposed to 

be important during synthesis of the septal wall, which is thicker in Gram-positive 

bacteria (Gundogdu et al., 2011). 

 

ClpX is one of the ATP-binding chaperones that provide substrate recognition for the 

ClpP protease. Interestingly, ClpX also affects cell division. A clpX mutation rescues 

cells that overexpress minCD, suggesting that ClpX is a negative regulator of FtsZ 

polymerization (Haeusser et al., 2009; Weart et al., 2005). In vitro experiments have 

shown that ClpX inhibits FtsZ polymerization and this activity is independent of its 

ATPase activity and does not require ClpP (Weart et al., 2005). However, in E. coli the 

ClpXP complex does regulate cell division by means of FtsZ degradation (Camberg et 

al., 2009, 2011). The N-teminus of E. coli ClpX is responsible for the recognition of the 

C-terminal patch of FtsZ where it competes with FtsA and ZipA for binding (Camberg 

et al., 2009). 

 

SulA is induced in E. coli by DNA damage (SOS response) and it is a potent inhibitor 

of cell division (Huisman and D'Ari, 1981; Huisman et al., 1984). SulA stops cell 

division by directly interacting with FtsZ (Bi and Lutkenhaus, 1993; Justice et al., 2000; 

Mukherjee et al., 1998). It binds to the interface of the nucleotide-binding site of FtsZ 

thereby inhibiting its GTPase activity (Cordell et al., 2003; Mukherjee et al., 1998). 

This leads to destabilization of FtsZ polymers and elimination of Z-ring formation 

(Justice et al., 2000). The cell division arrest induced by SulA provides the cells time to 

repair its DNA. The functional counterpart of SulA in B. subtilis is YneA. The primary 

sequences of SulA and YneA do not share sequence homology and there is no 

indication that YneA binds directly to FtsZ (Kawai et al., 2003). Recent data have 

shown that YneA is anchored to the membrane via its transmembrane domain, which is 

essential for its function (Mo and Burkholder, 2010).  
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1.1.3 Assembly of the divisome and completion of cell division in E. coli and 

B. subtilis 

 

The first set of proteins to localize at midcell are FtsZ, FtsA and ZapA/ZipA (Fig. 1.4) 

(summarized in(Vicente and Rico, 2006). These proteins are referred to as early cell 

division proteins. In E. coli, the first protein to be recruited after the Z-ring is formed is 

FtsK. FtsK is a multifunctional protein that coordinates cell division with chromosome 

segregation (reviewed in(Bigot et al., 2007). FtsK is essential for the recruitment of the 

cell division proteins FtsQ, FtsB and FtsL (Buddelmeijer and Beckwith, 2004). These 

periplasmic proteins are tethered to the membrane by N-terminal membrane spanning 

domains and they form a complex that is required for the localization of proteins that 

synthesise the septal wall, which includes FtsW and FtsI. FtsW transports the 

precursors of cell wall (lipid II) through the membrane (Mohammadi et al., 2011). FtsI 

is an essential septal transpeptidase that catalyzes cross-linking of peptidoglycan strands 

(Nguyen-Disteche et al., 1998). One of the last proteins to localize to the septum is 

FtsN. FtsN is an essential protein that probably promotes septation by interacting with 

FtsI (Lutkenhaus, 2009).  

 The assembly of the divisome is similar in B. subtilis, although there are some 

fundamental differences. Instead of FtsK, it contains two translocases, SftA and 

SpoIIIE that act in concert to complete chromosome segregation. Mutations in either 

sftA or spoIIIE lead to a mild increase in the frequency of bisected chromosomes, and 

the proteins are dispensable for assembly of the divisome under normal growth 

conditions (Biller and Burkholder, 2009; Britton and Grossman, 1999; Kaimer et al., 

2009; Wu and Errington, 1994). After Z-ring assembly, a cluster of several proteins is 

simultaneously recruited to the division site. DivIB, DivIC, FtsL and PBP 2B are 

interdependent and this complex with the exception of PBP 2B is likely to be preformed 

before it localizes to the division site (Daniel et al., 2006). DivIB presumably regulates 

the activity of FtsL (Daniel and Errington, 2000). DivIC and FtsL are unstable proteins 

but interact to form stable heterodimers (Daniel and Errington, 2000; Daniel et al., 

1998; Sievers and Errington, 2000). PBP 2B and other proteins, FtsW and PBP 1, are 

directly involved in the synthesis of septal wall. PBP 2B is a homolog of FtsI protein 

and is targeted to the septum by DivIB (Rowland et al., 2010). FtsW probably functions 

as its E. coli counterpart to translocate peptidoglycan precursors through the membrane 

(Errington et al., 2003b). B. subtilis does not encode a homologue of FtsN. PBP 1 acts 
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as a transglycosylase and transpeptidase (Pedersen et al., 1999) and is also involved in 

the synthesis of the lateral cell wall (Pedersen et al., 1999; Scheffers and Errington, 

2004). Interestingly, PBP 1 is recruited to the septum by EzrA (Claessen et al., 2008). 

Once the new poles had formed, PBP 1 is recycled from the septum back to the lateral 

wall by the action of GpsB (Claessen et al., 2008). Thus, EzrA and GpsB proteins 

facilitate the switch from elongation (lateral wall growth) to the cell division mode of 

peptidoglycan synthesis. These proteins are not essential, therefore the presence of at 

least one of the counterparts is sufficient to fulfil this role (Claessen et al., 2008). 

Division is finalized by specific hydrolases (autolysins) that separate the newly formed 

cells. These include LytC and LytD, that perform 95% of cell wall hydrolytic activity 

and also LytE, LytF and YwbG (reviewed in(Smith et al., 2000). However, a recent 

report suggests that only LytF is required for cell separation (Chen et al., 2009). 

 In a recent paper, Gamba et al. (2009) have shown that the first proteins 

detectable at the division site are FtsZ, FtsA, ZapA and EzrA. The late division proteins 

PBP 2B, FtsL, DivIB, GpsB, FtsW and DivIVA, assemble after a considerable time 

delay (20% of the cell cycle). This is similar to E. coli data (Aarsman et al., 2005; 

Gamba et al., 2009). This delay cannot be altered by premature Z-ring assembly 

induced by FtsZ overexpression (Aarsman et al., 2005; Gamba et al., 2009).  

 

 

 

 

Fig. 1.4 Schematic presentation of the assembly of the divisome in 
B. subtilis (adapted and modified after(Vicente and Rico, 2006) 
The first group of proteins to arrive at midcell are FtsZ, FtsA and ZapA. The 
second group of proteins includes FtsQ, DivIB and DivIC. Finally, the 
peptidoglycan is synthesized by FtsW and Pbp 2B. References in text. 

 

 

ZapA

FtsZ

FtsA

SpoIIIE

SftA
DivIB

DivIC

FtsL
FtsW Pbp2B

Z-ring assembly                                periplasmic linker             peptidoglycan
synthesis

ZapA

FtsZ

FtsA

SpoIIIE

SftA
DivIB

DivIC

FtsL
FtsW Pbp2B

Z-ring assembly                                periplasmic linker             peptidoglycan
synthesis



          Chapter 1.  Introduction 
 

 15

1.1.4 Cellular development - sporulation 

 

One of the possibilities for B. subtilis to survive starvation is to form spores. The first 

morphological landmark of sporulation is the formation of an asymmetric septum, 

which is positioned close to one cell pole (Fig. 1.5) (Losick et al., 1986; Piggot and 

Coote, 1976). This asymmetric division gives rise to two unequally sized cells with 

different fates; the smaller prespore matures into a spore, and the larger mother cell will 

eventually lyse and release the spore. B. subtilis forms a spore within the mother cell 

compartment (endospore). Spore formation is accomplished by a concerted and 

compartmentalized activation of spore-specific sigma factors (reviewed in(Barak and 

Wilkinson, 2005; Errington, 2003; Hilbert and Piggot, 2004).  

 The key response regulator that directs the expression of many 

sporulation-specific genes is Spo0A (Burbulys et al., 1991). Spo0A is activated by 

phosphorylation and it directs expression of 121 genes that are required for different 

stationary phase development processes (Molle et al., 2003a). During sporulation the 

nucleoids are rearranged and form a so-called axial filament that stretches along the 

entire cell length (Bylund et al., 1993). The chromosome in this conformation is 

attached to the cell pole by RacA, which binds to the oriC region of the chromosome 

and to the polar protein DivIVA (Ben-Yehuda et al., 2003; Wu and Errington, 2003). 

This process also requires the Soj/Spo0J chromosome partitioning system (Ben-Yehuda 

et al., 2003; Wu and Errington, 2003). In the initial stage of sporulation, FtsZ is 

rearranged from the medial position to both polar regions (Levin and Losick, 1996) via 

a helical intermediate that slides along the longitudinal axis of the cell (Ben-Yehuda and 

Losick, 2002). For an efficient asymmetric division expression of ftsAZ operon is 

required and this is established by the sigma factor SigH (Gholamhoseinian et al., 1992; 

Gonzy-Treboul et al., 1992). Spo0A activates expression of the bifunctional sporulation 

protein SpoIIE protein (Barak and Youngman, 1996; Feucht et al., 1996). SpoIIE 

interacts with FtsZ and directs repositioning of FtsZ so that Z-rings are formed at both 

polar positions, but only one is destined to form asymmetric septum (Arigoni et al., 

1995; Barak et al., 1996; Levin et al., 1997; Lucet et al., 2000). Usually the old pole is 

chosen for spore compartment formation ( ~ 75% of cells) (Dunn and Mandelstam, 

1977). After the sporulation septum is formed, SpoIIE activates SigF in the prespore by 

facilitating the release of SigF from its anti-sigmafactor (Arigoni et al., 1996; Duncan et 

al., 1995). At this stage, the septum is not fully closed, but entraps one third of the 
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Fig. 1.5 Outline of the B. subtilis lifecycle (modified after(Barak and 
Wilkinson, 2007) 
During vegetative growth cells divide at midcell (A) and this gives rise to 
two equally sized daughter cells (B, C). Sporulation is accompanied by the 
formation of an asymmetric septum (D), engulfment of the endospore (E), 
maturation of the spore (F) and finally mother cell lysis and release of the 
dormant spore (G). Spore outgrowth occurs when the environmental 
conditions improve (H). Referenced in text. 
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chromosome in the prespore. The rest of the chromosome is pumped into the prespore 

compartment by the action of the SpoIIIE translocase that resides at the septum (Bath 

et al., 2000; Wu and Errington, 1994). SigF directs the expression of genes responsible 

for proteolytic cleavage (processing) of pro-SigE and for its activation in the mother cell 

compartment (Karow et al., 1995; Londono-Vallejo and Stragier, 1995; Stragier et al., 

1988). The next morphological change, engulfment of the prespore, is executed by 

genes under SigE control (Illing and Errington, 1991; Londono-Vallejo et al., 1997). 

The late sporulation sigma factors, SigG and SigK are activated in the prespore and in 

the mother cell, respectively. They direct the final stages of cortex assembly and spore 

coat layers (Fukushima et al., 2002; Henriques and Moran, 2000, 2007). The mother 

cell lyses, and releases a spore that is highly resistant to physical and chemical agents. 

 

1.1.4.1 Sporulation in Streptomyces spp. 

 

During my research I have studied a B. subtilis protein that shows a strong resemblance 

to the Streptomyces coelicolor sporulation protein WhiA, and therefore I will shortly 

review sporulation in this bacterium. While B. subtilis is an endospore former, 

Streptomyces spp. form exospores. During vegetative growth, Streptomyces grow as 

so-called substrate mycelium. When the decision to sporulate is made, long aerial 

hyphae (~50 μm in S. coelicolor) grow out of the substrate mycelium. The aerial hyphae 

are long cells with no septa. During sporulation the expression of FtsZ increases (Flardh 

et al., 2000; Kwak et al., 2001) and FtsZ-rings are evenly positioned between the 

nucleoids (Grantcharova et al., 2005; Schwedock et al., 1997). Interestingly, FtsZ 

follows the typical localization pattern seen in B. subtilis or E. coli, firstly accumulating 

at the membrane as intermediate helical structures that are then rearranged into Z-rings 

that lead to septation (Grantcharova et al., 2005). It has recently been shown that the 

protein SsgB orchestrates Z-ring formation (Willemse et al., 2011). So far, no Min or 

Noc orthologs have been found in Streptomyces spp. (Flardh, 2003). 

 FtsZ induction in the aerial hyphae is dependent on the products of the whi 

genes: whiA, whiB, whiH, whiH, whiI and whiJ (Flardh et al., 2000). The whi genes are 

named after the white colonies these mutants produce, which results from their inability 

to produce a grey sporulation pigment (Chater, 1972; Kelemen et al., 1998). whiG 

encodes a sigma factor SigWhiG (Chater et al., 1989; Tan et al., 1998), and this sigma 

factor seems to be the master regulator of sporulation (Ryding et al., 1998; Tan et al., 

1998). In the early phase of sporulation, the aerial hyphae cease to grow but continue to 
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replicate their chromosomes. Based on the phenotype of the mutants, it is believed that 

during this stage, WhiA and WhiB are important (Flardh et al., 1999). Mutants lacking 

whiA form unusually long aerial hyphae with dramatic twists and coils (Fig. 1.6) (Ainsa 

et al., 2000; Chater, 1975; Flardh et al., 1999). Moreover, the DNA in these aerial 

hyphae is not condensed into clear nucleoids (Flardh et al., 1999). As 

sporulation-specific ftsZ expression is dependent on whi genes (Flardh et al., 2000), the 

whiA mutant fails to form Z-rings (Grantcharova et al., 2005; Schwedock et al., 1997). 

Ainsa et al. (2000) have mapped the promoter region of whiA and showed that whiA 

possesses two promoters. The transcription from either promoter is very low and 

constant during vegetative growth. However, about the time sporulation commences, 

the transcriptional level of whiA mRNA from the more proximal promoter, which is 

probably SigWhiG independent, greatly increases, suggesting that WhiA is specifically 

overproduced during sporulation in Streptomyces (Ainsa et al., 2000). In addition, a 

possible auto-regulatory loop was suggested since whiA mutants do not show strong 

transcriptional induction (Ainsa et al., 2000). The function of whiH and whiI genes is to 

complete septation. The expression of the late sporulation sigma factor SigF depends on 

all whi genes, and controls maturation of the external capsule of the spores (Kelemen et 

al., 1996; Potuckova et al., 1995). The exact molecular mechanism by which the Whi 

proteins coordinate sporulation is yet unclear. Based on the primary sequence 

conservation they were predicted to be transcriptional regulators (see Flardh et al., 

1999). 

 

 

A                                      BA                                      B

  

Fig. 1.6 Phenotype of wild type and ΔwhiA S. coelicolor sporulating 
hyphae 
Sporulating hyphae in wild type S. coelicolor (A) and a whiA mutant 
(B). Scale bars 10 μm. Adapted from(Flardh et al., 1999. 
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1.2 Chromosome dynamics 

 

The cell division protein that became central to my PhD study was shown to be 

associated with the nucleoid and its mutation caused phenotypes that are detrimental 

when chromosome replication is altered. That is why chromosome organization, 

replication, and segregation are introduced in the following chapter. 

 

1.2.1 Organization of the chromosomes in the cell 

 

The bacterial cell is several μm long, while the chromosomal DNA is a few millimeters 

long. How do the cells maintain a structure that is ~1000-fold larger than their own 

size? The electron microscopy of isolated chromosomes from E. coli revealed a 

structure with loops protruding from the 'core', a so-called rosette (Delius and Worcel, 

1974; Kavenoff and Bowen, 1976; Kavenoff and Ryder, 1976). Recent data suggest that 

E. coli DNA is divided into 450 loops that are assembled into the rosette by the action 

of proteins (domainins) that probably bear very little sequence specificity (Postow et al., 

2004). The loops are considered to be topological domains. The advantage of DNA 

partitioning into domains is that the introduction of nicks (gaps) leads to relaxation of 

only one domain, thereby limiting the affected region (Worcel and Burgi, 1972). The 

organization of DNA into such structure is essential since relaxation of the 

super-helicity of the chromosome is lethal (Gellert et al., 1976; Worcel and Burgi, 

1972; Zechiedrich et al., 1997). The question of how the chromosomal DNA is 

organized into a rosette was partially answered by the discovery of the first 

topoisomerase (Trucksis and Depew, 1981; Wang, 1971). Topoisomerases are enzymes 

that are able to cut and then rejoin single or both strands of the DNA and introduce 

topological changes like relaxation or supercoiling and thus untangle the DNA 

(Vologodskii and Cozzarelli, 1994). This is important for processes like transcription 

and DNA replication (reviewed in(Witz and Stasiak, 2010).  

 In E. coli another group of proteins that compact the chromosome include H-NS, 

HU, Fis, and IHF (Murphy and Zimmerman, 1997; Varshavsky et al., 1977). These 

proteins do not show clear sequence specificity. H-NS was shown to dimerize and link 

two strands of DNA and it increases the rigidity of DNA (Dame et al., 2000). HU, Fis 

and IHF have been shown to strongly bend DNA (reviewed in(Dame, 2005) and HU is 

capable of introducing helical turns in the DNA (Rouviere-Yaniv et al., 1979; Tanaka et 
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al., 1984). B. subtilis contains a homologue of HU called HBsu, an essential protein that 

is able to compact DNA in vivo (Kohler and Marahiel, 1997; Micka et al., 1991). HBsu 

binds DNA, preferentially when it is distorted (ssDNA, gaps, and sharp bends) and has 

been shown to be involved in recombination (Rowland et al., 2005). Another protein, 

LrpC has been shown to form DNA loops by bridging adjacent tracts of DNA (Tapias et 

al., 2000). Other possible mechanisms that influence the nucleoid structure include 

supercoiling by the transcription machinery, certain stable RNAs, and 

transcription-translation coupled with the insertion of proteins into the membrane, 

a so-called transertion (Cabrera and Jin, 2003; Deng et al., 2004, 2005; Lynch and 

Wang, 1993; Norris, 1995). Interestingly, proteins essential for the structural 

maintenance of chromosomes in eukaryotes, the SMC proteins, can also be found in 

most prokaryotes (Hirano, 2006; Nasmyth and Haering, 2005). In B. subtilis this protein 

is called SMC, and in E. coli it is called MukB (Soppa, 2001). SMC proteins form large 

V-shaped structures. Each arm of the V-shape consists of one molecule that is tagged 

together through two coiled-coil regions. (Haering et al., 2002). The structure is flexible 

as the base of the 'V' acts as a hinge (Hirano and Hirano, 2002). The open ends 

constitute two ABC-type ATPase sites that mediate the interaction with the accessory 

proteins ScpA and ScpB (Hirano, 2002; Mascarenhas et al., 2002; Soppa et al., 2002). It 

is generally believed that the SMC structure can form a ring after the 'closure' of the 

open ends (Schleiffer et al., 2003; Woo et al., 2009). Because the arms are ~50 nm long, 

it is thought that SMC could enclose more than one DNA strand and could thus 

organize the DNA (Dame, 2005). In fact, SMC is also one of the key players during 

chromosome segregation (see more in section 1.2.3 Chromosome segregation). 

 

1.2.2 DNA replication 

 

To initiate replication, the bacterial initiation protein DnaA binds to the AT rich oriC 

region, melts the DNA, and loads the helicase DnaB and the primase DnaC (Marszalek 

and Kaguni, 1994; Wahle et al., 1989; Zyskind and Smith, 1992). Two DnaB-DnaC 

complexes assemble to provide bidirectional replication (Fang et al., 1999). The DNA 

polymerase III holoenzyme complex is recruited next. Recent data show that in 

B. subtilis, 11 proteins are required for the leading strand synthesis, and 13 proteins for 

the lagging strand synthesis (Sanders et al., 2010). B. subtilis possesses two essential 

DNA polymerases: PolC which catalyzes synthesis of both leading and lagging strands 
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and DnaE, which is essential for lagging strand synthesis (Dervyn et al., 2001; Sanders 

et al., 2010). DnaE was found to be a slow polymerase with preference for RNA 

primers, implying that it catalyzes synthesis of short fragments and then 'hands over' to 

PolC which is highly processive (Sanders et al., 2010).  

 

1.2.3 Chromosome segregation 

 

The positioning of the chromosome within bacterial cells does not seem to be random. 

In a newly born E. coli cell the origin of replication (oriC) is positioned at midcell and 

the left and right arms of the chromosome are distributed each into a separate cell half 

(Fig. 1.7) (Nielsen et al., 2006b; Wang et al., 2006). During replication, the duplicated 

origins move to quarter positions, which become midcell positions after cytokinesis 

(Nielsen et al., 2006b; Wang et al., 2006). However, in newly formed B. subtilis cells, 

the oriC and ter (terminus of chromosome) regions are localized bipolarly (Teleman et 

al., 1998; Viollier et al., 2004; Webb et al., 1997; Wu and Errington, 1994). After 

replication initiation, the replication machinery and the oriC colocalize at the midcell 

(Lemon and Grossman, 1998; Migocki et al., 2004) and eventually the duplicated 

origins move toward the old cell poles. After septum formation, the termini become 

located at the new cell poles. 

 The differing organizations of the nucleoid suggests that bacteria have evolved 

dedicated mechanisms to ensure correct positioning of nucleoids, but our current 

knowledge about this topic is limited. An elegant model for chromosome organization is 

proposed in C. crescentus (Fig. 1.7). This organism arranges the origins similarly to 

B. subtilis (Jensen and Shapiro, 1999), however, the replication machinery localizes to 

the pole, and is gradually sequestered to the midcell (Jensen et al., 2001). The 

chromosome is organized through PopZ-ParB interaction. PopZ is a proline-rich protein 

that forms a network at the cell pole and draws in the ParB protein, which associates 

with the region around the origin (Bowman et al., 2008; Ebersbach et al., 2008a). 

Another rare example of chromosome positioning is the attachement of the chromosome 

(axial filament) by RacA-DivIVA proteins during sporulation in B. subtilis. RacA binds 

to a 600 kb region surrounding the origin and is attracted by DivIVA to the poles (Ben-

Yehuda et al., 2005; Ben-Yehuda et al., 2003; Lenarcic et al., 2009). However, RacA is 

expressed only during sporulation so it cannot be accounted for organizing the 

chromosome during vegetative growth (Ben-Yehuda et al., 2003). In B. subtilis the
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Fig. 1.7 Nucleoid arrangement in different bacteria (adapted from Toro and 
Shapiro, 2010) 
B. subtilis has a bipolar orientation of oriC and terminus. During sporulation, the 
axial filament is attached to the polar membrane by RacA and DivIVA interaction, 
usually at the old pole. C. crescentus employs ParB-PopZ mediated anchoring of the 
origin-proximal region to the cell pole. ParB binds parS sites on the chromosome 
and PopZ forms a network of filaments at the cell pole. In E. coli the two arms of the 
chromosome are placed into opposite parts of the cell and the oriC and ter regions 
are located at midcell positions. 

 
 



          Chapter 1.  Introduction 
 

 23

replication factory is placed at the midcell (Lemon and Grossman, 1998). The 

segregation in E. coli and B. subtilis was shown to be 'progressive', in that with ongoing 

replication the origin regions are moved away from midcell toward the poles (Fig. 1.8) 

(Nielsen et al., 2006a; Viollier et al., 2004). So far, two key players are known to be 

required for chromosome segregation: the parABS system and the SMC complex.  

 The parABS system was firstly observed to be encoded and used by plasmids 

(Austin and Abeles, 1983; Gerdes et al., 1985; Ogura and Hiraga, 1983). The parABS 

system was later identified in bacterial genomes as well and although being distinct 

from their plasmid counterparts, the chromosomal parABS do share the main features 

(Ireton et al., 1994; Mohl and Gober, 1997; Ogasawara and Yoshikawa, 1992). When 

parABS is deleted, an increase in the formation of anucleate cells is observed (Ireton et 

al., 1994; Mohl and Gober, 1997). In addition, parABS is able to facilitate inheritance of 

an otherwise unstable plasmid (Dubarry et al., 2006; Godfrin-Estevenon et al., 2002; 

Yamaichi and Niki, 2000). The parABS system consists of the protein couple ParA and 

ParB and a specific DNA sequence, the parS site. The parS sites are usually positioned 

proximal to the origin (Lin and Grossman, 1998; Livny et al., 2007). ParB is a 

DNA-binding protein with a high affinity for parS where it binds and then spreads 

along the DNA (Breier and Grossman, 2007; Murray et al., 2006; Rodionov and 

Yarmolinsky, 2004). ParA proteins are ATPases and the plasmid ParA can form 

polymers that oscillate from pole to pole (reviewed in(Gerdes et al., 2010). Although 

E. coli lacks chromosomal homologues of parABS system, a functional parABS is 

essential in C. crescentus (Gerdes et al., 2000; Ireton et al., 1994; Mohl and Gober, 

1997). In C. crescentus, the ParB-parS complex is initially tethered to the old pole by 

PopZ (Bowman et al., 2008; Ebersbach et al., 2008a). TipN, which is localized at the 

new pole, interacts with ParA (Ptacin et al., 2010). The ParB-parS complex causes 

dissociation of ParA from the ends of the ParA polymer, and so the protein-DNA 

complex is being pulled from the old pole towards the new pole (Ptacin et al., 2010). 

Ten parS sites were identified close to oriC on the chromosome of B. subtilis (Lin and 

Grossman, 1998). Mutations in parA or parB mutants, which in B. subtilis are better 

known as soj and spo0J, respectively, have pleiotropic characteristics. Soj has been 

found to affect the activity of the key replication initiation protein DnaA (Murray and 

Errington, 2008). Deletion of spo0J has only a mild effect on chromosome organization 

and segregation but the strain is defective in sporulation which is a consequence of 

accumulation of active Soj (Autret et al., 2001; Ireton et al., 1994). Two independent 

studies have shown that SMC is recruited to the origins in a Spo0J-dependent
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Fig. 1.8 Segregation of chromosomes in B. subtilis 
(A) Origin and terminus of replication are placed at the opposite poles in 
newly born cells. (B) After replication is initiated, the replication machinery 
(yellow circle), origin and terminus of replication move to midcell. (C) 
Newly replicated origins (green) are moved towards the poles, while the 
replication machinery remains at midcell position. (D) The Z-ring forms just 
before the termination of DNA replication, so that after the DNA is 
replicated, the septum (grey) divides the cell. 
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manner and a proper localization of SMC is essential for efficient chromosome

segregation (Gruber and Errington, 2009; Sullivan et al., 2009). It was proposed that the 

SMC complex organizes the origin region, however, the precise function of SMC in 

chromosome segregation remains unclear (Sullivan et al., 2009). 

 There are also reports that MreB, a bacterial actin homologue (Jones et al., 

2001; van den Ent et al., 2001) is involved in chromosome segregation (Gitai et al., 

2005; Kruse et al., 2006). However, this idea is controversial since inactivation of MreB 

causes strong deformation and leads to round cells and experiments performed in E. coli 

did not detect any segregation phenotype in MreB-depleted cells (Shaevitz and Gitai, 

2010).  

 In E. coli, the DNA translocase FtsK was shown to play an important role 

during the final stages of chromosome segregation. At the end of replication, 

chromosome dimers must be resolved. FtsK activates the XerD recombinase that 

promotes Holliday junction formation at a specific dif site, and the chromosomes are 

finally untangled by the action of the XerC recombinase (Yates et al., 2006). This 

process is coupled with the FtsK-catalyzed translocation of DNA from the septal region 

(Grainge et al., 2011). B. subtilis encodes two DNA translocases that both accumulate at 

the dividing septum. Recently identified SftA localizes to the constricting septum where 

it pumps DNA away from the division site (Biller and Burkholder, 2009; Kaimer et al., 

2009). Second translocase SpoIIIE acts later in division to resolve trapped DNA in the 

septum. SpoIIIE forms channels in septa and translocates the remaining part of the 

chromosome into the cell (Burton et al., 2007). Neither SpoIIIE nor SftA is essential for 

cell division but SpoIIIE is essential for the development of the spore (Fleming et al., 

2010; Liu et al., 2006; Sharp and Pogliano, 2003). 

 

1.3 Coordination of cell division  

 

It has been shown that cells maintain a constant DNA/cell mass ratio (Sargent, 1975; 

Schaechter et al., 1958; Sharpe et al., 1998; Weart et al., 2007). Thus, DNA replication 

and division must be coordinated with cell growth.  

 

1.3.1 Cell division and the growth rate 

 

It has been known for a long time that bacteria are longer in nutrient-rich media (Cooper 

and Helmstetter, 1968; Sargent, 1975; Sharpe et al., 1998), and the formation of the 
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Z-ring is modulated by the growth rate (Den Blaauwen et al., 1999; Weart and Levin, 

2003). In B. subtilis, UgtP was identified to act as a global regulator of cell size and cell 

division (Fig. 1.9) (Weart et al., 2007). UgtP is a UDP-glucose diacylglycerol 

glucosyltransferase involved in the biosynthesis of the lipoteichoic acids (LTA) 

(Jorasch et al., 1998). In fast growing bacteria, UgtP localizes at the septum (Nishibori 

et al., 2005; Weart et al., 2007) and inhibits the cell division. It was shown that the 

protein inhibits lateral assembly of FtsZ-filaments in vitro (Weart et al., 2007). In 

nutrient poor conditions, the concentration of UDP-glucose decreases and UgtP 

detaches from the cell division site and no longer inhibits Z-ring formation. In ugtP 

mutants division occurs even when the cells have not reached the desired cell length, 

and ugtP mutant cells are shorter than wild type cells. A similar phenotype was 

observed when pgcA and gtaB, involved in the UDP-glucose synthesis, were disrupted 

(Lazarevic et al., 2005; Weart et al., 2007). Interestingly, pgcA and ugtP mutations 

increase the frequency of Z-rings over the nucleoids, and with some frequency bisected 

chromosomes were observed in strains that also lacked spoIIIE (Weart et al., 2007). 

These results suggest that UgtP and PgcA may be important for the coordination of cell 

division with chromosome segregation (Weart et al., 2007).  

 

 

 

 

Fig. 1.9 Outline of the link between glucose metabolism and cell division 
Glucose (Glc) or Fructose-6-P are converted to Glucose-6-P (Glc 6-P) which is 
converted to UDP-Glucose by PgcA and GtaB proteins. (A) In nutrient rich 
conditions the UDP-Glucose concentration increases and UgtP (blue) localizes to 
the midcell where it blocks Z-ring assembly. (B) In nutrient poor conditions, 
UDP-glucose concentration drops, UgtP becomes delocalized and the Z-ring is 
formed. 
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1.3.2 Cell division and chromosome dynamics 

 

It has been proposed that replication might serve as a checkpoint for cytokinesis. (Harry 

et al., 1999). This was based on the observation that cells that are blocked in replication 

are delayed in cell division. It is now known that this delay is related to the fact that 

DnaA inhibits ftsL transcription (Goranov et al., 2005). 

 In C. crescentus, chromosome replication is strictly coordinated with cell 

division (Marczynski, 1999). Before the division begins, the origin of replication is 

attached to the old cell pole (Jensen and Shapiro, 1999). MipZ belongs to the parA 

family of ATPases, binds the ParB/parS complex close to the origin (Figge et al., 2003; 

Mohl and Gober, 1997; Thanbichler and Shapiro, 2006). Soon after replication is 

initiated and the origin replicated, the complex splits into two, one remains attached to 

the old pole and the other follows ParB to the new cell pole. Importantly, MipZ protein 

is also a negative regulator of FtsZ polymerization and the Z-ring forms at the only 

place that is left out unocuppied by MipZ, the midcell (Thanbichler and Shapiro, 2006).  

 B. subtilis Noc protein, which is responsible for nucleoid occlusion, might also 

be a transducer of the information that the replication has proceeded into a stage suitable 

for cell division initiation (Wu et al., 2009), or that the segregation of chromosomes has 

relieved the midcell from nucleoid occlusion (Corbin et al., 2002; Yu and Margolin, 

1999). This assumption was based on an experiment where cells became elongated 

when an array of Noc binding sites was placed near the terminus of replication, which is 

normally devoid of Noc and is positioned proximal to the prospective division site (Wu 

et al., 2009). However, cells with intact initiation of replication but with inhibited 

replication elongation are still able to form midcell positioned Z-rings (Regamey et al., 

2000).  

 

1.3.3 Coordination of chromosome replication 

 

The cell cycles of bacteria grown in rich media are shorter than the time needed for 

chromosome replication. A solution to this problem is a multi-fork replication (Cooper 

and Helmstetter, 1968). Cells initiate another round of replication before the previous 

round has come to an end and as a result, the cells possess more origins of replication. 

Yet it remains unclear what the signal is for the initiation of replication. Cell division is 

an unlikely checkpoint since cells replicate DNA when cell division is perturbed (Bates 



          Chapter 1.  Introduction 
 

 28

and Kleckner, 2005). The most recent view is that temporal control of initiation seems 

to be dependent on multiple factors relating to the growth rate (Wang and Levin, 2009).  

 

The intracellular concentration and the activity of DnaA, an essential protein allowing 

the replisome to assemble, are the key determinants of the initiation rate. In nutrient-rich 

conditions the increase in DnaA synthesis causes overinitiation (Ogura et al., 2001; 

Skarstad et al., 1989; Xu and Bremer, 1988). The rate of DnaA transcription is inhibited 

by (p)ppGpp which is produced by the stringent response protein RelA when cells are 

starved for aminoacids or carbon sources (Chiaramello and Zyskind, 1990). The activity 

of DnaA is also regulated by DiaA and Hda in E. coli and Soj and YabA in B. subtilis 

(Keyamura et al., 2007; Murray and Errington, 2008). In B. subtilis YabA was shown to 

promote sequestration of DnaA molecules by DnaN thereby inhibiting its activity (Cho 

et al., 2008; Noirot-Gros et al., 2006; Soufo et al., 2008). Recent data show that YabA 

directly binds DnaA at oriC and lowers the amount of DnaA bound to DNA (Merrikh 

and Grossman, 2011). DnaA regulates the expression of nrdAB gene, which encodes the 

enzyme for the synthesis of dNTPs, and as such affects the pool of dNTPs available for 

DNA polymerization (Augustin et al., 1994; Gon et al., 2006; Sun and Fuchs, 1994). 

(p)ppGpp not only regulates DnaA expression but it directly inhibits DnaC, which is 

essential for replication, and causes replication fork arrest (Wang et al., 2007). Finally, 

Jannière et al have shown an interesting genetic connection between nutrient 

availability and replication elongation (Janniere et al., 2007). Mutants in the three-

carbon part of the glycolysis pathway were found to suppress conditional mutants in the 

polymerase DnaE (Dervyn et al., 2001; Sanders et al., 2010). The mechanism of such 

suppression remains unclear (Janniere et al., 2007). Importantly, DnaA also regulates 

the expression of FtsL, an essential component of the divisome, and thus coordinates 

DNA replication and cell division (Goranov et al., 2005). 
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2.1 Solutions and media 

The composition of solutions and media is listed in Appendix 1. 

 

2.2 Strains and plasmids 

Bacterial strains and plasmids used in this study are summarized in Table 2.1 and  

Table 2.2. 

 

 

Table 2.1 Summary of bacterial strains used in this study 

Strain  

B. subtilis 
Relevant genotype 

Source, construction, 

comment 

   

1282 trpC2 noc::tet (Wu and Errington, 2004) 

1283 trpC2 noc::spc (Wu and Errington, 2004) 

1356 trpC2 ΔzapA-yshB::tet (Feucht and Errington, 2005) 

1801 trpC2 chr:: pJSIZDpble (Pspac-ftsZ ble) (Marston et al., 1998) 

2020 trpC2 amyE::(Pxyl-gfpmut1-ftsZ spc) J. Sievers (unpublished) 

3309 trpC2 minCD::kan JE laboratory stock 

3362 trpC2 ezrA::tet (Hamoen et al., 2006) 

4221 trpC2 gpsB::kan (Claessen et al., 2008) 

BFA2863 trpC2 sepF::(pMut erm)  

HM3 trpC2 Prtp-rtp-gfp cat (Murray et al., 2006) 

HM41 trpC2 Δspo0J::neo (Murray and Errington, 2008) 

HM31 trpC2 ΔsojΔspo0J::tet (Murray and Errington, 2008) 

HM160 trpC2 soj Pspo0J-spo0J-gfpmut2 neo yyaC (Murray and Errington, 2008) 

HM161 trpC2 Δsoj::neo (Murray and Errington, 2008) 

LH4042 trpC2 ΔdivIVA::cat L. Hamoen, unpublished 

JJS142 trpC2 Δupp ΔyabA  (Noirot-Gros et al., 2006) 

JWV042 trpC2 amyE::PHBsu-HBsu-gfp cat J.W.Veening, unpublished 

KS2 trpC2 0168 ED wild-type for this study 

KS6 trpC2 ΔzapA-yshB::tet KS2::chr. DNA 1356 

KS44 trpC2 ezrA::tet KS2::chr. DNA 3362 

KS50 trpC2 ΔlacA::cat ΔzapA-yshB::tet 

pLOSS-ZapAB 

This work 
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KS90 trpC2 ΔdivIVA::cat ΔzapA-yshB::tet 

pLOSS-ZapAB 

This work, ΔdivIVA comes 

from LH4042 

KS115 trpC2 ΔdivIVA::cat pLOSS-ZapAB  LH4042::pLOSS-ZapAB 

KS162 trpC2 ΔzapA-yshB::tet Pspac-ftsZ ble KS6::chr. DNA 1801 

KS180 trpC2 amyE::Pxyl-gfp-yvcL spc KS2::pSG1729YvcL, this 

work 

KS207 trpC2 ΔyvcL::(pMut erm) This work 

KS263 trpC2 sepF::(pMut erm) KS2::chr. DNA BFA2863 

KS267 trpC2 yvcL::TnYLB-1  (pos.171 bp) This work 

KS268 trpC2 Pspac-ftsZ ble KS2::chr. DNA 1801 

KS338 trpC2 minCD::kan KS2::chr. DNA 3309 

KS340 trpC2 sepF::(pMut erm) ΔyvcL::kan KS400::KS263 

KS345 trpC2 noc::spc KS2::chr. DNA 1283 

KS381 trpC2 ΔspoIIIE::aphA-3  JE collection strain 647 

KS382 trpC2 Δspo0J::neo KS2::HM42 

KS383 trpC2 Δsoj::neo KS2::HM161 

KS384 trpC2 amyE::(Pxyl-gfpmut1-ftsZ spc) KS2::chr. DNA 2020 

KS394 trpC2 amyE::Pxyl-yvcL-gfpmut1 KS2::pSG1154YvcL 

KS400 trpC2 ΔyvcL::kan This work 

KS404 trpC2 gpsB::kan KS2::chr. DNA 4221 

KS414 trpC2 gpsB::kan yvcL::(pMut erm) This work 

KS420 trpC2 Pspo0J-spo0Jgfp KS2::chr. DNA HM160 

KS421 trpC2 ΔyvcL::erm Pspo0J-spo0Jgfp KS420::chr. DNA KS207 

KS438 trpC2 yvcL::Pspac-yvcL erm This work 

KS439 trpC2 crh::Pspac-crh erm This work 

KS559 trpC2 ΔspoIIIE::kan ΔyvcL::erm KS381::chr. DNA KS207 

KS560 trpC2 Δspo0J::neo ΔyvcL::pMut erm KS382::KS207 

KS562 trpC2 Δsoj::neo ΔyvcL::pMut erm KS383::KS207 

KS696 trpC2 yvcL This work 

KS701 trpC2 yneA-yneB-ynzC::tet KS2::chr. DNA YK03 

KS702 trpC2 Δnoc::spc yneA-yneB-ynzC::tet 1283::chr. DNA YK03 

KS703 trpC2 yvcL yneA-yneB-ynzC::tet KS696::chr. DNA YK03 

KS742 trpC2 ΔlacA::cat ΔzapA-yshB::tet ΔyvcL 

pLOSS-YvcL 

This work; ΔyvcL originated 

from KS696 

KS745 trpC2 yvcL amyE::(Pxyl-gfpmut1-ftsZ spc) KS696::chr. DNA 2020 

KS748 trpC2 yvcL Pspac-ftsZ ble KS696::chr. DNA 1801 

KS749 trpC2 ΔyvcL::kan amyE::Pxyl-gfp-yvcL KS180::chr. DNA KS400, 
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spc This work 

KS752 trpC2 ΔyvcL::kan amyE::Pxyl-gfpmut1-

yvcL 

This work,  

KS394::chr. DNA KS400 

KS754 trpC2 yvcL::Pspac-yvcL erm 

ΔzapA-yshB::tet amyE::Pxyl-gfp-ftsZ(spc) 

pMAP65(lacI,kan) 

This work 

KS755 trpC2 yvcL::Pspac-yvcL erm Δnoc::cat 

amyE::Pxyl-gfp-ftsZ(spc) 

pMAP65(lacI,kan) 

This work 

KS859 trpC2 yvcL::Pspac-yvcL erm ΔzapA-

yshB::tet aprE::lacI spc 

This work 

KS873 trpC2 ezrA::tet yvcL::Pspac-yvcL erm 

aprE::lacI spc 

This work 

KS877 trpC2 ggaB::TnYLB-1 (kan) yvcL::Pspac-

yvcL erm ΔzapA-yshB::tet aprE::lacI spc 

This work 

KS878 trpC2 pgcA::TnYLB-1 (kan) yvcL::Pspac-

yvcL erm ΔzapA-yshB::tet aprE::lacI spc 

This work 

KS880 trpC2 yusB::TnYLB-1 (kan) yvcL::Pspac-

yvcL erm ΔzapA-yshB::tet aprE::lacI spc 

This work 

KS883 trpC2 braB::TnYLB-1  (kan) yvcL::Pspac-

yvcL erm ΔzapA-yshB::tet aprE::lacI spc  

This work 

KS887 trpC2 speD::TnYLB-1 (kan) yvcL::Pspac-

yvcL erm ΔzapA-yshB::tet aprE::lacI spc 

This work 

KS888 trpC2 amyE::Pxyl-gfp spc This work; used pSG1729 

KS891 trpC2 yvcL::Pspac-yvcL erm aprE::lacI 

spc 

KS438::pAPNC213 

KS902 trpC2 gtaB:: TnYLB-1 kan ΔyvcL::erm This work 

KS903 trpC2 pgcA:: TnYLB-1 kan ΔyvcL::erm This work 

KS904 trpC2 braB:: TnYLB-1 kan ΔyvcL::erm This work 

KS905 trpC2 speD:: TnYLB-1 kan ΔyvcL::erm This work 

KS907 trpC2 yvcL::PyvcL-yvcL-gfp-mut1 (cat) This work 

KS925 trpC2 ezrA::tet gtaB::TnYLB-1 (kan) 

yvcL::Pspac-yvcL erm aprE::lacI spc 

This work 

KS927 trpC2 ezrA::tet pgcA:: TnYLB-1 kan 

yvcL::Pspac-yvcL erm aprE::lacI spc 

This work 

KS930 trpC2 Pspac-ftsZ ble amyE::PHBsuHBsu-gfp 

cat 

This work; using JWV042 
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KS931 trpC2 ΔyvcL Pspac-ftsZ ble 

amyE::PHBsu-HBsu-gfp cat 

This work; using JWV042 

KS991 trpC2 Pspac-ftsZ ble Pspo0J-spo0J-gfp (kan) KS268::chr. DNA HM160 

KS993 trpC2 ΔyvcL Pspac-ftsZ ble Pspo0J-spo0J-

gfp (kan) 

This work 

KS1012 trpC2 crh::Pspac-crh erm aprE::lacI (spc) KS439::pAPNC213 

KS1013 trpC2 crh::Pspac-crh erm ΔzapA-yshB::tet 

aprE::lacI (spc) 

This work 

KS1015 trpC2 ΔyvcL::erm ΔugtP::neo KS207::chr. DNA PG237 

KS1016 trpC2 Pspac-ftsZ ble Prtp-rtp-gfp cat KS268::chr. DNA HM3 

KS1017 trpC2 ΔyvcL Pspac-ftsZ ble Prtp-rtp-gfp cat This work 

KS1025 trpC2 ΔyvcL::erm ggaB:: TnYLB-1 kan This work 

KS1026 trpC2 ΔyvcL::erm yusB:: TnYLB-1 kan This work 

KS1050 trpC2 ugtP::neo yvcL::Pspac-yvcL erm 

ΔzapA-yshB::tet aprE::lacI spc 

KS859::chr. DNA PG237 

KS1063 trpC2 ΔyabA yvcL::Pspac-yvcL erm 

pMAP65 

This work 

KS1064 trpC2 ΔyabA crh::Pspac-crh erm pMAP65 This work, ΔyabA comes 

from JJS142 

KS1069 trpC2 ugtP::spc ΔyabA yvcL::Pspac-yvcL 

erm pMAP65 

This work 

KS1070 trpC2 ugtP::spc ΔyabA crh::Pspac-crh erm 

pMAP65 

This work 

KS1071 trpC2 pgcA::tet ΔyabA yvcL::Pspac-yvcL 

erm pMAP65 

This work, pgcA mutation 

comes from SSB122 

KS1072 trpC2 pgcA::tet ΔyabA crh::Pspac-crh erm 

pMAP65 

This work 

KS1077 trpC2 yvcL::Pspac-yvcL erm 

ΔzapA-yshB::tet aprE::lacI spc 

amyE::Pxyl-ftsZ cat 

This work; Pxyl-ftsZ comes 

from YK059 

KS1098 trpC2 yvcL::Pspac-yvcL erm ΔezrA::tet 

aprE::lacI (cat) amyE::Pxyl-gfp-ftsZ(spc) 

This work 

KS1099 trpC2 yvcL::Pspac-yvcL erm ΔminCD::kan 

aprE::lacI (cat) amyE::Pxyl-gfp-ftsZ(spc) 

This work 

KS1102 trpC2 ΔsojΔspo0J::tet yvcL::Pspac-yvcL 

erm pMAP65  

This work, ΔsojΔspo0J 

comes from HM31 
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KS1116 trpC2 ΔsojΔspo0J::tet crh::Pspac-crh erm 

pMAP65 

This work 

PG237 trpC2 ugtP::neo Pamela Gamba, unpublished 

PG253 trpC2 ugtP::spc Pamela Gamba, unpublished 

SSB122 pgcA(yhxB)::tet (Branda et al., 2006) 

YK03 CRK6000 yneA-yneB-ynzC::tet (Kawai et al., 2003) 

YK059 CRK6000 amyE::Pxyl-ftsZ cat (Kawai and Ogasawara, 

2006) 

Strain - E. coli   

BTH101 F‐cya-99 araD139 galE15 galK16 

rpsL1 (strR) hsdR2 mcrA1 mcrB1 
(Karimova et al., 1998) 

DH5α F‐ φ80lacZΔM15 Δ(lacZYAargF) 

U196 recA1 endA1 hsdR17 (rK‐, mK+) 

phoA supE44 λ‐ thi1 gyrA96 relA1 

Invitrogen 

XL1Blue recA1 endA1 gyrA96 thi1 hsdR17 

supE44 relA1 lac [F´ proA+B+ 

lacIqZΔM15 Tn10 (TetR)] 

Stratagene 

KS432 XL1Blue::pQE60EYvcL This work 

The antibiotic resistance gene names are abbreviated as follows: bla (ampicillin), cat 
(chloramphenicol), erm (erythromycin), kan (kanamycin), neo (neomycin / kanamycin), 
spc (spectinomycin), tet (tetracycline). 
 

 

Table 2.2 Summary of plasmids used in this study 

Plasmid Relevant genotype/comment 
Source, construction, 

comment 

pAPNC213 bla aprE5' spc lacI Pspac-mcs aprE3' (Morimoto et al., 2002) 

pBEST501 bearing the kanamycin cassette (Itaya et al., 1989) 

pKT25 kan Plac cya 1-672 -mcs (Karimova et al., 1998) 

pLOSS* bla spc Pspac-mcs PdivIVA-lacZ lacI 

reppLS20 (GA→CC) 

(Claessen et al., 2008) 

pLOSS-ZapAB pLOSS* containing zapA-yshB This work 

pLOSS-YvcL pLOSS* containing yvcL This work 

pMAP65 pUB110 Ppen-lacI (kan) (Petit et al., 1998) 

pMarB bla erm PctcHimar1 kan (TnYLB-1) (Le Breton et al., 2006) 

pMutin4 bla erm lacZ lacI (Vagner et al., 1998) 
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pMutin4YvcL integrates into yvcL gene This work 

pMutin4YvcLKO pMutin4 containing 3' fragment of yvcK 

and 5' fragment of yvcL 

This work 

pMut4YKO pMutin4YvcLKO introducing a stop 

codon and EcoRI site into yvcL  

Used for construction of a 

markerless yvcL mutant 

(KS696). This work 

pMutiCrh used for construction of a crh conditional 

mutant 

This work 

pMutiYvcL used for construction of an yvcL 

conditional mutant 

This work 

pQE60 expression vector for C-terminal His-Tag 

fusions 

Qiagen 

pQE60E derived from pQE60, allows selection for 

ermR in B. subtilis 

L. Hamoen, unpublished 

data 

pQE60EYvcL pQE60E containing C-terminally fused 

yvcL-his6 

This work 

pSG1151 bla cat gfpmut1 (Lewis and Marston, 

1999) 

pSG1151YvcL used to construct a transcriptional 

yvcL-gfp fusion 

This work 

pSG1154 bla amyE3' spc Pxyl-'gfpmut1 amyE5' (Lewis and Marston, 

1999) 

pSG1154YvcL bla amyE3' spc Pxyl-yvcL-gfpmut1 amyE5' This work, C-terminal 

GFP fusion 

pSG1729 bla amyE3' spc Pxyl-gfpmut1' amyE5' (Lewis and Marston, 

1999) 

pSG1729YvcL bla amyE3' spc Pxyl-gfpmut1-yvcL amyE5' This work, N-terminal 

GFP fusion 

pUT18 bla Plac cya 673-1197  (Karimova et al., 1998) 

pUT18C bla Plac cya 673-1197 -mcs (Karimova et al., 1998) 

p25-N kan Plac -mcs-cya 1-672 (Claessen et al., 2008) 
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2.3 Oligonucleotides 

 

The oligonucleotides were designed primarily using Clone Manager software 

(www.scied.com). Oligonucleotides used in this study are listed in Table 2.3. 

 

Table 2.3 List of oligonucleotides used in this study 

Name 
Restriction 

site 
Sequence (5'-3') 

Reference/ 

comment 

    

ftsZqPCR-F  CATTAACAGTCGGCGTTGTG (Leaver et al., 2009) 

ftsZqPCR-R  ATCCACCGCTTCTTTCATTG (Leaver et al., 2009) 

km3 BamHI GGGGGATCCAAGACGAAGAGGATGAAG kanR amplification 

km4 EcoRI CCCGAATTCAGAGTATGGACAGTTGCG kanR amplification 

KS80  GTACAGGTCTTTCTGTATTG  

KS83  GGCGCTCTGACATGACCATC  

KS84 EcoRI CGGACAGAATTCACCGTCACTTTAAAATAA

C 
 

KS89 BamHI TGAGGTGGATCCATGTCATTTGCATCAGAA

A 

pQE60EYvcL 

construction 

KS90 BglII 
TCTTTAAGATCTTTTTAAAGTGACGGTTTGC 

pQE60EYvcL 

construction 

KS94 HindIII 
GCTAAGCTTGCATTCTTCCCAATTTGCTC 

pMutiYvcL 

construction 

KS95 BamHI 
GATGGATCCCTCATTTCAAGGCTTCATTC 

pMutiYvcL 

construction 

KS96 HindIII 
GCTAAGCTTTAATTGGCGCTCACAATTCG 

pMutiCrh 

construction 

KS97 BamHI 

GATGGATCCTTACGGTTATTTTAAAGTG 

pMutiCrh and 

pLOSSYvcL 

constructions 

KS98 KpnI 
GATCCTCGAGTAAAGTGACGGTTTGCCCTG 

pSG1154YvcL 

construction 

KS99 BglII 
GATCAGATCTTAAAGTGACGGTTTGCCCTG 

pQE60EYvcL 

construction 

KS120  
AATTCTGATAACTGGAAGTGAAGGACTG 

pMut4YKO 

construction 

KS121  CCAGTTATCAGAATTCTTTTTTTGTTTCTGA

TG 

pMut4YKO 

construction 

KS128 NocI ACTGAAAGCGGCCGCCCTTGAAATGAGGTG pLOSSYvcL 
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GC construction 

KS129 KpnI/Asp71

8 

GATCGGTACCTAATGAAACAGCCAACTTAA

AC 

pSG1151YvcL 

construction 

KS130 HindIII 
GCTAAGCTTTTTTAAAGTGACGGTTTGCC 

pSG1151YvcL 

construction 

KS185  AATGGAGACTGGATTGCTGTAG xynD qPCR 

KS186  TTACCGTCTGCACTGTCGAG xynD qPCR 

KS187  ATACGCGCAGCATCTTAACG ynfF qPRC 

KS188  GTATTTCTTGCGGCGTCCAC ynfF qPCR 

KS198  TCTGAGCCAGAACCTGATCC spoVID qPCR 

KS199  AGTCTCCGCTGGAGAGTCTG spoVID qPCR 

KS200  GATACTAAATCCGCCGGAAAC acoC qPCR 

KS201  TCAAATGTCAGGCTGAGTGG acoC qPCR 

KS268  GGAAGTGACGCTGAAAGAGC yvcL Fw qPCR 

KS269  CTGTTCTGCGATTTCGTCAA yvcL Rw qPCR 

KS270  ATACCGGTCTTTGCATGAGC RTP Fw qPCR 

KS271  AGCTTGGCAGCTTCGTAATC RTP Fw qPCR 

KS272  AACGACATTGATACAGAACC ilvA Fw qPCR 

KS273  ACCTTTGTATCAGGAGACAC ilvA Rw qPCR 

KS274  CTGTCGAAACGCTTGATTGA pyrK Fw qPCR 

KS275  CGTCAGCTGTTGCCACATAC pyrK Rw qPCR 

KS276  GATCAAACGGTGAAGGGAAA oppA Fw qPCR 

KS277  CGGATAACACCGCCTGATAC oppA Fw qPCR 

KS278  GGAACGTCAAATCCGTAAGC yvyD Fw qPCR 

KS279  TGTCATCCTGAACCGCAATA yvyD Rw qPCR 

KS280  CATCCAAGCCCATAAAGACG ywaA Fw qPCR 

KS281  TCACCGTTGTTGATCGAAAG ywaA Rw qPCR 

KS282  CATTTGTGATCTGCCAGTCG ytxK Fw qPCR 

KS283  TTGGTATGCTTGACGCTCTG ytxK Rw qPCR 

KS284  ACGTCCTGCTGCTTTGTTTG crh Fw qPCR 

KS285  CTTACCGCAAGGCTCATCA crh Rw qPCR 

KS288  CTGAAACACGTGCGAAAGAA rplQ Fw qPCR 

KS289  GGATGTATGCAGCAGCTTGA rplQ Rw qPCR 

KS290  GCTTTCGGCATCCAGAATTA yktD Fw qPCR 

KS291  AGATGACCCGGAATTGTCAG yktD Rw qPCR 

KS292  AACACTCGGCATTGTGACAG ysfC Fw qPCR 

KS293  ATGTCCGATACCGTTTGAGC ysfC Rw qPCR 

KS294  TCTATCCCGGCTGAGAGATG truA Fw qPCR 
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KS295  TTTGACTGCGCTAAATCGTG truA Rw qPCR 

KS296  CCAATGCCTCAAGAACACTG glpK Fw qPCR 

KS297  TGAGAGGACGGCTTCACTTC glpK Rw qPCR 

KS298  TGTCGCTTTATTATTTGGACGA ylxM Fw qPCR 

KS299  GCATTGCTTCTGTTCGTTTG ylxM Rw qPCR 

OIPCR1  
GCTTGTAAATTCTATCATAATTG 

(Le Breton et al., 

2006) 

OIPCR2  
AGGGAATCATTTGAAGGTTGG 

(Le Breton et al., 

2006) 

OIPCR3  
GCATTTAATACTAGCGACGCC 

(Le Breton et al., 

2006) 

qORI-F  
GATCAATCGGGGAAAGTGTG 

(Murray and 

Errington, 2008) 

qORI-R  
GTAGGGCCTGTGGATTTGTG 

(Murray and 

Errington, 2008) 

qTER-F  
TCCATATCCTCGCTCCTACG 

(Murray and 

Errington, 2008) 

qTER-R  
ATTCTGCTGATGTGCAATGG 

(Murray and 

Errington, 2008) 

STG101  ATACCGCGGAGATACACGAG scpB Fw qPCR 

STG102  TTTGACGGCACTTCAATCAG scpB Rw qPCR 

STG410  TTGACGACAAGCGTGAAAAG rplC Fw qPCR 

STG411  TTcatACGcatCcatTTCCA rplC Rw qPCR 

yshA-F NocI GATGCGGCCGCCACTTTTCGCTGTATATAC

C 

pLOSS-ZapAB 

construction 

yshB-R BamHI GATGGATCCGACGTTCACATATGTTTCCAT

C 

pLOSS-ZapAB 

construction 

yvcL-C5 XhoI GCCTTGGGTACCGGTGGCTATATGTCATTT

G 

pSG1154YvcL 

construction 

yvcL-F1 HindIII 
GCTAAGCTTAAACCGCCATCTCGTACTC 

pMutin4YvcL 

construction 

yvcL-R1 BamHI 
GATGGATCCAATTGACGAGGCGGTTGACC 

pMutin4YvcL 

construction 

yvcL-N5 HindIII 
GCCTTGAAGCTTGGTGGCTATATGTCATTTG 

pSG1729YvcL 

construction 

yvcL-N3 EcoRI GAACTTGAATTCTCTGTTGAACCATAAGAT

C 

pSG1729YvcL 

construction 

Fw = forward primer; Rw = reverse primer 
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2.4 Media supplements 

 

Media supplements are indicated in Table 2.4. 

 

Table 2.4 Media supplements 

Supplement B. subtilis E. coli 

ampicillin  100 μg/ml 

chloramphenicol 5 μg/ml  

erythromycin 1 μg/ml  

glucose  0.4-0.8 % 

kanamycin 5 μg/ml  

phleomycine 2 μg/ml  

spectinomycin 50 μg/ml  

tetracycline 12 μg/ml  

X-gal 160 μg/ml  

IPTG 
0.5-1 mM unless 

otherwise indicated 
 

xylose 0.025-1 %  

 

 

2.5 DNA manipulations 

 

2.5.1 Oligonucleotides 

Oligonucleotides were purchased from Eurogentec, and stored at -20ºC as 100 μM 

stocks. 

 

2.5.2. Polymerase chain reaction (PCR) 

A typical PCR reaction contained 2.5 μM dNTPs, 1 μM primers, supplemented with 

appropriate reaction buffer. For cloning, either Pfu Ultra polymerase (Stratagene) or 

Expand High Fidelity PCR System (Roche) was used. As for colony PCR, GoTaq 

(Promega) polymerase was used routinely to select for recombinants. 
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2.5.3. Purification of PCR products 

The PCR products were purified using a PCR purification kit (Qiagen). In some cases, 

the DNA was separated firstly on agarose gel and purified using Qiagen Gel Extraction 

kit. The DNA was eluted in water. 

 

2.5.4. Plasmid purification 

Plasmids were purified from overnight cultures grown at 30ºC following manufacturer's 

manual (Qiagen Miniprep kit). 

 

2.5.5 Agarose gel electrophoresis of DNA fragments 

DNA samples were mixed with a STOP dye before loading on gel. The electrophoresis 

of DNA fragments in agarose gels was performed using 0.8 % agarose gels 

supplemented with 0.5 mg/ml ethidium bromide, run in TAE buffer (90-130 V), and 

visualized using a UV transilluminator. 

 

2.5.6. DNA modification reactions 

 

2.5.6.1 Digestion with restriction enzymes 

DNA was digested for 3-6 h in conditions suggested by the manufacturer. The enzymes 

were heat-inactivated by 15 min incubation at 65ºC, when possible, and the DNA was 

cleaned using the QIAquick purification kit (Qiagen). 

 

2.5.6.2. Dephosphorylation of 5' ends  

Linearized plasmids were dephosphorylated using alkaline phosphatase (calf intestine 

phosphatase, CIP, Roche). The restriction reaction was directly supplemented with CIP 

buffer and heated to 50ºC for 2min; usually 1 unit of the enzyme was added and the 

reaction was incubated for 20-30 min at 37ºC. The procedure of heating (50ºC for 

2 min), adding the alkaline phosphatase and 20-30 min incubation at 37ºC was repeated. 

The DNA was cleaned using QIAquick purification kit. 

 

2.5.7 Ligation reaction 

DNA fragments were ligated using 1 unit of T4 DNA ligase (Roche) per reaction. The 

ligation volume was usually 20 μl and the aliquots were incubated overnight at 4ºC in a 

bucket filled with water (~21ºC initial temperature). 
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2.5.8 DNA sequencing 

Sequencing analysis of plasmids or PCR products was performed by Dundee 

Sequencing service. 

 

2.5.9 Isolation of chromosomal DNA from B. subtilis 

For preparation of chromosomal DNA from B. subtilis, 2 ml culture was harvested (best 

grown overnight at 30ºC to avoid formation of spores) and resuspended in 750 μl TES 

buffer. The suspension was mixed with 20 μl of lysozyme solution (10 mg/ml), 

incubated at 37ºC until the solution was cleared, then 50 μl of pronase solution and 

30 μl of sarkosyl were added, mixed, and incubated for 30 - 60 min at 37ºC. Then 

250 μl of phenol and 250 μl of chloroform were added to the cell lysate, mixed 

vigorously and centrifuged for 4 min at 13,000 rpm to separate the phases. The top 

aqueous layer was transferred into a new tube, 500 μl of chloroform was added, and 

again the aqueous layer (600 μl) was extracted. Then 1200 ul ethanol was added, the 

tube was inverted a few times until a cloud of DNA precipitated, which was washed two 

times with 70 % ethanol. After the remains of ethanol were removed, the DNA was 

resuspended in 500 μl of MilliQ water, heated for 10 min at 55ºC, and stored at -20ºC.  

 

2.6 Protein manipulations 

 

2.6.1 SDS-polyacrylamide gel electrophoresis 

The protein samples were mixed with loading dye (supplied by the manufacturer), 

incubated for 10 min at 95ºC, and applied to pre-cast Novex Midi Gels 4-12 % Bis-Tris 

(Invitrogen). The electrophoresis was perfomed at 90-150 V in one of the buffers 

supplied by the manufacturer.  

 

2.6.2 Coomassie brilliant blue staining 

The protein bands on SDS-PAGE gels were visualized by incubating the gels in a 

solution P (40% methanol, 12% acetic acid) supplemented with 0.025% Coomassie 

brilliant blue dye and subsequently destained in solution P.  

 

2.6.3 Western Blot analysis 

Before blotting, the SDS-PAGE gels were rinsed with dH2O and placed onto a PVDF 

(HybondP) membrane. The transfer was performed using a BioRad apparatus run at 

30 mA overnight in transfer buffer. The membrane was then washed 2x 10 min with 
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PBSTM, and blocked in blocking buffer for 6 h. The primary antibody was added to the 

blocking buffer and the membrane was incubated for 1 h while shaking. Membrane was 

washed 3-4x in PBSTM and soaked in blocking buffer supplemented with the 

secondary antibody. After 1 h, the membrane was washed 3x in PBSTM and 2x in 

PBST. Finally, ECL Plus Western Blotting Detection System (GE Healthcare) was used 

for autoradiography. 

 

2.6.4 Purification of YvcL-His6 

Strain KS432 was used for purification of YvcL-His6. The growth media had to be 

supplied with >0.4 % glucose to allow tighter repression of the promoter on the plasmid 

pQE60EYvcL. To construct this plasmid, an amplified 967 bp DNA fragment (using 

primers KS89 and KS99) was digested with BamHI and BglII, and cloned into pQE60E 

digested with the same enzymes. E. coli XL1Blue was used as a host both for cloning 

and protein expression. A fresh culture was inoculated into 600 ml LB supplemented 

with ampicillin and 0.8 % glucose and grown to OD600~0.5 at 37ºC. Expression was 

induced by addition of IPTG to a final concentration of 0.025 mM, for 1 h at 30ºC. We 

used short induction and low temperature, since otherwise the protein had a tendency to 

aggregate into inclusion bodies and we were aiming for a soluble protein (although at 

lower concentrations). The cells were cooled on ice and harvested. The cell pellet was 

resuspended in 8 ml buffer A and stored at -20ºC. 

 YvcL-His6 fusion protein was purified using a one-step purification protocol. 

The cell pellet was sonicated until the cells were lysed and the debris was removed by 

ultracentrifugation at 40,000 rpm for 30 min. The supernatant was loaded onto a 

Ni2+-charged 2 ml sepharose column equilibrated in buffer AK. The protein was eluted 

using a linear gradient of KCl (using buffer BK). We used KCl because we thought it is 

less likely to interfere with DNA-protein reactions than imidazole. The protein peak was 

present in fractions corresponding to ~250 mM KCl. Despite our attempts to keep 

YvcL-His6 fusion protein in solution (increasing salt/glycerol concentration, pH change, 

modifying the storage temperature) it precipitated within a few hours. 

 

2.6.5 Raising anti-YvcL-His6 serum 

Strain KS432 was inoculated into 300 ml LB supplemented with ampicillin and glucose 

(0.8%). After the cell density of the culture had reached OD600 ~0.5, the expression of 

the fusion protein was induced by adding 1 mM IPTG. The culture was grown for 3.5 h 

before harvesting. Cells were pelleted and resuspended in 1.2 ml of buffer (100 mM 
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NaCl, 50 mM Tris-Cl pH8.0), and sonicated. After ultracentrifugation, the pellet 

containing inclusion bodies was resuspended in 1.2 ml 1 x sample buffer, the samples 

were heated for 10 min at 95ºC and run on a 12 % SDS-PAGE gel. The protein bands 

were excised from the gel and were used to raise anti-YvcL-His6 antibodies in a rabbit 

(Eurogentec, Ltd). We used a standard 3-months immunisation programme. For western 

blot analysis, the α-YvcL-His6 was used at a dilution of 1:10 000 to detect YvcL in 

lysates from 10 x concentrated B. subtilis cultures.  

 

2.6.6 Electrophoretic mobility shift assay (EMSA) 

To perform gel-shift assay using YvcL-His6, a fresh protein preparation was used. DNA 

probes to test the DNA-binding ability of YvcL-His6 were amplified from chromosomal 

B. subtilis DNA using primers yvcL-F1 and yvcL-R1 (571 bp) and KS94 and KS95, 

(412 bp) which comprised the yvcL region and a region just upstream of yvcL (7 bp 

from start codon), respectively. For all reactions, 5 μl 4x Binding buffer, 8 μl of DNA 

and different concentrations of purified YvcL-His6 (7, 3.5, and 1 μl corresponding to 

~1.75, 0.875 and 0.25 μg) were used per reaction. The sample volumes were adjusted to 

20 μl. The reaction was incubated for 25 min at 30ºC and run on 1.5 % agarose gel in 

TAE buffer at 4ºC. The DNA in the gel was visualized by staining in a solution of 

ethidium bromide (0.5 mg/ml). 

 

2.7 Escherichia coli methods 

 

2.7.1 Preparation of competent E. coli cells 

To prepare competent cells a modified method of Inoue et al., 1990 was used (Inoue et 

al., 1990). In brief, an overnight cell culture was diluted 100 x into fresh LB 

supplemented with 15 mM MgSO4 and 15mM MgCl2 and grown to OD600 ~0.3. The 

flask containing the culture was cooled on ice, and the cells were gently harvested by 

10 min centrifugation at 2250 rpm. The cell pellet was resuspended in 15 ml TB buffer 

and incubated on ice for 10 min. Then the cells were harvested and resuspended gently 

in 2 ml of TB, and incubated on ice for another 10 min. After the addition of DMSO to a 

final concentration of 7 %, cells were kept on ice for 10 min prior to dividing the 

suspension into small aliquots that were flash frozen in liquid nitrogen and stored at 

-80ºC. 
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2.7.2 E. coli transformation 

To transform DNA into E. coli cells, the competent cells that were thawed on ice were 

mixed with DNA and incubated for 40 min on ice. After a heat-shock (42ºC 45 s) 600 μl 

of LB was added to the mixture and the cells were regenerated by vigorous shaking at 

37ºC for 1 h. Transformants were selected on media with appropriate supplements. 

 

2.7.3 Bacterial two hybrid system 

The plasmids for this study were a kind gift from Dr. Robyn Emmins, and from Dr. 

Heath Murray (Murray and Errington, 2008). Pairwise combinations of plasmids 

pUT18C/pKT25 or p25-N/pKT18 (Claessen et al., 2008; Karimova et al., 1998) bearing 

target genes were transformed into competent BTH101 cells, plated onto NA plates 

supplemented with ampicillin, kanamycine, and X-gal. No IPTG was used to express 

WhiA since it was toxic for E. coli. A positive control was pUT18C-Zip x pKT25-Zip 

cotransformation. A negative control was pUT18C x pKT25 cotransformation. Blue 

colony formation after 48 h at 30 ºC indicated an interaction. 

 

2.8 Bacillus subtilis methods 

 

2.8.1 Preparation of competent B. subtilis cells 

To prepare competent cells of B. subtilis, 5 ml overnight culture in competence medium 

was diluted 10-fold into fresh competence medium and grown for 3-4 h at 37ºC, after 

which an equal volume of starvation medium was added and the cells were starved for 

another 1-2 hours at 37ºC.  

 

2.8.2 B. subtilis transformation 

To transform DNA into B. subtilis cells, usually 10 μl of chromosomal or plasmid DNA 

was added to 500 μl of competent cells (in a 2 ml test tube). The cells were 

subsequently incubated for 1 h at 37ºC and plated on selective media. 

 

2.8.3 Construction of strains 

 

2.8.3.1 Construction of yvcL mutant strains 

Three yvcL mutant strains were constructed (Fig. 2.1). Mutant KS207 contains an 

insertion of pMutin4YvcL in yvcL that disrupts yvcL expression. A 581 bp DNA 

fragment, acquired by PCR using primers yvcL-F1 and yvcL-R1 and wild type 
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chromosomal DNA as a template, was digested with HindIII and BamHI and ligated 

with dephosphorylated pMutin4 plasmid cut with the same enzymes. Then correct 

plasmid (pMutin4YvcL) was integrated in B. subtilis by Campbell integration, which 

was checked by PCR. 

 In strain KS400 yvcL is deleted and substituted by a kanamycin resistance 

cassette. To construct strain KS400, the DNA fragments outside of yvcL were amplified 

using primer pairs KS80, KS95 and KS84, KS83 (resulting in 940 bp and 984 bp DNA 

fragments). The kanamycin resistance cassette was amplified from pBEST501 (Itaya et 

al., 1989) with primers km3 and km4. After all three fragments were digested with 

suitable restriction enzymes (BamHI, EcoRI), they were ligated, and the mixture was 

transformed into B. subtilis. Recombinants were selected using a PCR.  

 Strain KS696 is a markerless yvcL mutant strain. To generate it, firstly 

pMutin4YvcLKO was constructed. A 1094 bp fragment, comprising the 3' end of yvcK 

and 5' end of yvcL, was amplified using primers KS94 and yvcL-R1, and was cloned 

into pMutin4 after digestion with HindIII and BamHI. Site-directed mutagenesis on the 

plasmid was performed using primers KS120 and KS121 that introduced an EcoRI site 

and a stop codon in the beginning of yvcL (32 bp from start codon). The resultant 

plasmid, pMut4YKO was transformed into B. subtilis cells, and selected for 

erythromycine resistance and blue colonies on NA+Xgal+erm plates. One of the 

transformants was then grown in the competence medium for ~10 generations without 

any antibiotic pressure, in order to excise the plasmid, and~1000 colonies were plated 

on NA+X-gal. White colonies that were also Ery-sensitive (11 out of 30 white colonies) 

were cultured and the chromosomal DNA inspected for the EcoRI insertion site yvcL 

gene. The yvcL region was sequenced. 

 All three yvcL mutants were also tested for the synthetic phenotype when 

combined with ΔzapA (data not shown). 

 

2.8.3.2 Construction of conditional mutants 

The conditional mutants in crh and yvcL were constructed using plasmids pMutiCrh and 

pMutiYvcL, respectively. For both plasmids, ~400 bp regions upstream of either crh or 

yvcL were amplified using primer pairs KS96, KS97 or KS94, KS95, respectively. The 

fragments and plasmids were cut with HindIII and BamHI and cloned into pMutin4 

plasmid digested with corresponding enzymes. The plasmids were transformed into 

B. subtilis and selected for single cross-over events that led to insertion of the 

IPTG-inducible Pspac promoter upstream of either crh or yvcL (strains KS439 and 
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Fig. 2.1 Outline of yvcL mutants constructed 
(A) Strain KS207 contains a single cross-over insertion of pMutin4YvcL plasmid in the 
coding region of yvcL. This causes disruption of the gene. (B) Strain KS400 was 
constructed using a kanR marker and outside flanking regions homologous to the up- 
and downstream regions of yvcL. These fragments of DNA were ligated and then 
introduced into cells of B. subtilis by double cross-over. (C) The markerless mutant 
KS696 was created using plasmid pMut4YKO that contained a fragment of yvcK and 
yvcL genes, but also an EcoRI site and a stop codon at the beginning of yvcL. B. subtilis 
cells were transformed with this plasmid, single cross-over recombinants were selected 
that formed blue colonies on X-gal plates containing erythromycin. This strain was 
subsequently grown and selected for a second, but this time a double cross-over event. 
This resulted in the escape of the plasmid from the cells, as a result of which the strain 
formed white and erythromycin sensitive colonies. There is no marker or residual DNA 
in this strain except for the stop codon and an EcoRI site that enables a PCR check of 
the strain. 
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KS438, respectively). To allow tight regulation of yvcL expression, an extra copy of 

lacI was introduced by pAPNC213 (Morimoto et al., 2002), which integrates into aprE 

locus, into strains KS439 and KS438, resulting in strains KS1012 and KS891, 

respectively.  

 

2.8.3.3 Construction of GFP-fusions 

To construct a xylose-inducible GFP-YvcL fusion, plasmid pSG1729YvcL was 

generated by ligating the amy-integration vector pSG1729 and a 1020 bp PCR fragment 

(primers yvcL-N5 and yvcL-N3) that were both digested with HindIII and EcoRI. 

Plasmid pSG1729YvcL was transformed into B. subtilis resulting in a strain KS180 

with a xylose-inducible GFP-YvcL fusion at the amyE locus. This amyE::Pxyl-gfp-yvcL 

spc allele was combined with a yvcL mutation (strain KS400) so that gfp-yvcL is the 

only copy of yvcL in the cell (strain KS749).  

 YvcL-GFP fusion was constructed similarly. To generate pSG1154YvcL, a 

976 bp PCR fragment (primers KS98 and yvcL-C5) and pSG1154 were digested with 

KpnI and XhoI and ligated. Plasmid pSG1154YvcL was transformed into B. subtilis 

resulting in strain KS394 and subsequently yvcL gene was deleted resulting in strain 

KS752. 

 To clone yvcL-gfp under its endogenous promoter, plasmid pSG1151YvcL was 

constructed. For this, a 293 bp 5' fragment of yvcL was amplified using KS129 and 

KS130 primers and cloned into pSG1151 plasmid (using Asp718 and HindIII). 

B. subtilis cells were transformed with pSG1151YvcL and Campbell recombinants were 

checked by PCR, resulting in a strain KS907. 

 

2.8.4 Synthetic lethal screen  

To perform a synthetic lethal screen with ΔzapA (Fig. 2.2), we used the methods 

described by Claessen et al. (Claessen et al., 2008). In brief, the zapA-yshB genes were 

amplified using yshA-F and yshB-R primers, and cloned into the instable plasmid 

pLOSS*. The resulting plasmid pLOSS-ZapAB was tested for functionality. It 

recovered growth of a double ΔdivIVA ΔzapA mutant (which is not viable) (Gueiros-

Filho and Losick, 2002) and normal colonies were formed (Fig. 2.3). Importantly, from 

the blue colour of the colonies it is clear that the plasmid is maintained without 

antibiotic pressure. In a background where only zapA is deleted the plasmid is quickly 

lost, resulting in white colonies (Fig. 2.3, strain KS50). The plasmid was transformed 
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Fig. 2.2 A schematic outline of the synthetic lethal screen 
(A) The unstable plasmid pLOSS* used for synthetic lethal screening (Claessen 
et al., 2008). (B) In our experimental setup, deletion of zapA is complemented 
by expression of zapA from pLOSS-ZapAB (i). Then, transposon mutagenesis is 
performed to generate a library of transposon mutants (ii). This library is 
subsequently screened for blue colonies (on X-gal plates) indicating that the 
plasmid in stably maintained (iii). The possible synthetically lethal mutants are 
then streaked to search for those that form uniform blue colonies, or a mixture 
of blue colonies and minute white colonies (iv, see arrow). 
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Fig. 2.3 Functionality of pLOSS-ZapAB 
Strains were streaked on X-gal plates and grown at 37°C. Blue colonies 
contain the plasmid. The synthetic lethality of a deleterious strain lacking both 
divIVA and zapA (KS90) causes pressure to maintain the plasmid. In a divIVA 
mutant some cells retain the plasmid as well, which might be explained by a 
partial amelioration of divIVA mutant by ZapA overexpression from 
pLOSS-ZapAB. 
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into cells with a zapA-yshB deletion (strain KS6), and subsequently a lacA deletion was 

introduced (D. Claessen, unpublished) resulting in a strain KS50. This strain was 

transformed by pMarB, which carries a transposon TnYLB-1 (Le Breton et al., 2006), 

and transposon mutagenesis was perfomed that acquired a library of transposon 

mutants. To screen for synthetically lethal mutants, the library was plated on NA plates 

supplemented with X-gal and 1 mM MgSO4 and incubated for 8 h at 50ºC without 

antibiotic pressure so that plasmid would be lost during segregation. Magnesium was 

added to media since it seemed to enhance blue colony formation, data not published. 

Only in case the transposon inserts into a gene that makes ZapA essential will 

pLOSS-ZapAB be maintained and the colony expresses ß-galactosidase. Blue colonies 

were picked and streaked on fresh NA+X-gal. In this step, we were aiming for clones 

that formed uniformly blue colonies or a mixture of normal-sized blue colonies and tiny 

white colonies (with perturbed cell division resulting from loss of the plasmid). The 

chromosomal DNA of these positive clones was then backcrossed systematically into 

strain KS50 to check whether the transposon caused again the stability of 

pLOSS-ZapAB plasmid. To map the transposon insertions, 5 μl of chromosomal DNA 

was digested with TaqI for 4 hours at 65ºC in a 20 μl total volume. After DNA 

purification, the DNA fragments were circularized by ligation in a (diluted) 100 μl total 

volume, and purified (elution in 50 μl). For the inverse PCR, 20 μl template DNA, and 

primers OIPCR1 and OIPCR2 were used. The chromosomal position of the transposon 

was mapped by sequencing using primer OIPCR3 (Le Breton et al., 2006). 

 

2.8.5 Suppressor screen for ΔyvcLΔzapA double mutant 

To select for transposon mutants that would suppress the lethal phenotype of a 

ΔyvcLΔzapA double deletion, the following steps were carried out (Fig. 2.4) Firstly, the 

instable plasmid pLOSS-YvcL was constructed by cloning yvcL (amplified by KS128 

and KS97) into pLOSS*. Leaky transcription from the Pspac promoter gave sufficient 

levels of YvcL to prevent cell death in the ΔyvcLΔzapA background (strain KS742). 

Nevertheless, we used 0.1 mM IPTG and spectinomycine during construction of the 

strains. This strain also contained a lacA deletion to prevent transposon insertions that 

would activate the native B. subtilis ß-galactosidase.  

 A transposon mutagenesis using pMarB (Le Breton et al., 2006) was performed 

yielding 34,000 clones. The library was then screened on NA plates supplemented with 

X-gal, 0.1 mM IPTG and 1 mM MgSO4 and incubated at 37ºC (the 50ºC incubation 

step was skipped). White colonies were restreaked to check for whiteness, presence of 
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Fig. 2.4 Use of the synthetic lethal screen ‘the other way around’ to search 
for suppressor mutations 
The parental strain containing two mutations that are synthetically lethal (yvcL 
and zapA), retains pLOSS-YvcL without antibiotic selection (A). A library of 
transposon mutants (B) is generated and screened for the loss of pLOSS-YvcL 
marked by appearance of white colony formation on media with X-gal (C). 
Possible clones containing suppressors are checked for the amelioration of a 
ΔyvcL ΔzapA mutant (D). 
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the plasmid (SpcR) and the transposon (KanR EryS). The chromosomal DNA of 82 

positive clones was purified and transformed into the conditional yvcL- zapA- mutant 

strain (KS859). Suppressor mutations that were able to recover growth of KS859 in the 

absence of IPTG were mapped as described for the synthetic lethal screen. 

 

2.9 Microscopic imaging 

 

2.9.1 Phase contrast and fluorescence microscopy 

To prepare cells for light microscopy, the slides were covered with a thin layer of 1.5% 

agarose solution. For fluorescence microscopy, also 1 mM MgSO4 and 0.5% glucose 

were added to the agarose to nourish the cells. 

 Membranes were stained by either Nile Red (Molecular Probe) (1-2 μl of 

12.5 mg/ml solution added to 1 ml of cell culture) or with FM5-95 (4 μl of 200 μg/ml 

solution added to 800 μl agarose). To stain nucleoids, 4 μl of DAPI (1 mg/ml, Sigma) 

was mixed with 800 μl agarose. Zeiss Axiovert 200M microscope combined with Sony 

CoolSnap HQ cooled CCD camera (Roper Scientific) was used to capture images. For 

analyses of the pictures ImageJ software (http://rsb.info.nih.gov/ij/) was used. 

 Spinning disc microscopy was performed using a Nikon Eclipse Ti inverted 

microscope (coupled to a laser source), equipped with a Yokogawa spinning disc 

(CSU22) and a Cool-Snap HQ2 camera (Photometrics). 

 

2.9.1.1 Localization of YvcL 

To examine the localization of GFP-tagged YvcL, the strains KS749 and KS752, 

harbouring a Pxyl-gfp-yvcL or Pxyl-yvcL-gfp allele, respectively, were grown at 30 ºC, 

diluted to an OD600 ~0.05, and induced with 0, 0.01, 0.05, 0.1 and 0.5 % xylose. After 

two hours cells were observed using fluorescence microscopy. Strain KS907 was used 

to examine YvcL-GFP expressed from the yvcL promoter. In this case cells were grown 

in SMM+ medium, diluted to OD600 ~0.05 and grown to OD600 ~0.2, and spinning disc 

microscopy was employed to acquire the images since it allowed shorter excitation 

times. 

 

2.9.1.2 Determination of nucleoid morphology 

Strains were grown in the absence of IPTG for two hours to deplete for FtsZ after which 

epifluorescent images were acquired. The DNA binding protein HBsu, fused to GFP 

(construct from J. W. Veening, unpublished), was used as a fluorescent marker for the 
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nucleoid (Kohler and Marahiel, 1997). To quantify potential differencies in nucleoids, 

the fluorescence signal intensity along the longitudinal axis of cells was measured. In 

three independent experiments, at least 10 graphs were acquired from different cells. To 

assess the spacing of oriC and ter regions, a comparable approach was used but this 

time the position of Spo0J-GFP or RTP-GFP foci was measured in the longitudinal axes 

of the cells.  

 

2.9.2 Transmission electron microscopy 

The samples of exponentially growing cells in LB were fixed in 2 % glutaraldehyde 

solution and further processing was performed by the Electron Microscopy Research 

Service of Newcastle University. These steps included overnight fixation in Sorenson’s 

phosphate buffer (TAAB Laboratory Equipment), pH 7.4, then 1 h fixation in 1% 

osmium tetroxide (Agar Scientific), dehydration in an acetone graded series, and finally, 

impregnation with a graded series of epoxy resin (TAAB Laboratory Equipment) in 

acetone. The cell material was embedded in 100 % resin and incubated at 60° C for 

24 h. The material was sectioned and stained with 2 % uranyl acetate and lead citrate 

(Leica). The imaging was performed using a Philips CM100 Compustage Transmission 

Electron Microscope (FEI) attached to an AMT CCD camera (Deben). 

 

2.10 Microarray analysis 

RNA isolation, cDNA preparation, hybridization and microarray analyses were 

performed as previously described (Gamba et al., 2009). For the RNA samples, 

overnight cultures of strains KS2 (wt) and KS400 (ΔyvcL::kan) were diluted 100 x and 

grown to OD600 ~0.6 in LB medium. Then 5 ml cultures were used for the isolation of 

RNA. The cDNA transcribed from the RNA was poly(T)-tailed and the dye-specific 

capture sequences were ligated only subsequently to minimize the loss of fluorescence 

(N. Saunders, unpublished). 

 

2.11 qPCR 

 

2.11.1 Marker frequency analysis for ori/ter ratio measurement 

To assess the ori/ter ratio in cells, marker frequency analysis was performed. The DNA 

isolation and quantitative PCR (qPCR) were performed as previously described (Murray 

and Errington, 2008). In brief, cells were grown in CH medium to exponential phase 

(OD600 ~0.2) and 0.5 % sodium azide was added to 1 ml of cell suspension. The DNA 
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was isolated using DNeasy Blood and Tissue Kit (QIAGEN). Following primers were 

used: qORI-F, qORI-R, qTER-F, qTER-R. For each PCR reaction, 2 μl of the primer 

pair (3 μM), 10 μl of SYBR Green PCR Master Mix (Applied Biosystems), and 8 μl of 

400 x diluted chromosomal DNA were mixed. The qPCR was performed using Roche 

Light Cycler 480 instrument. Spores DNA where the ori/ter ratio is expected to be 1 

was used to normalize the qPCR reaction. The relative ori/ter ratio was calculated from 

the difference in the CP (the cycle number when the fluorescence crosses an arbitrary 

line; crossing point). 

 

2.11.2 Verification of microarray results 

To verify microarray results quantitative PCR of reverse transcripts was performed. 

Cells were grown in LB to OD600 ~0.6 and the total RNA was purified using FastRNA® 

Pro Kit (BIO 101 Systems). The RNA was then further cleaned and DNase-treated 

using RNeasy Mini Kit and RNase-Free DNase Set (both Qiagen). The quality of RNA 

was checked using Agilent RNA 6000 Nano Kit (Agilent Technologies). The cDNA 

was acquired using a cDNA Reverse Transcription Kit (Applied Biosystems) and 1 μg 

of RNA. qPCR reaction conditions were similar as described above. The data analysis 

was based on the difference in CP (curvature point). Primers used for this include 

ftsZqPCR-F and ftsZqPCR-R, and primers KS270-KS299. The efficiency of ftsz qPCR 

was used as a normalizer.  

 

2.12 Determination of DNA binding sites of YvcL 

 

To determine where on the chromosome YvcL would bind, a Chip-on-chip analysis was 

performed, as described by (Gruber and Errington, 2009). In brief, cells were grown in 

competence medium (SMM+) at 37 ºC and fixed in the exponential growth phase 

(OD600 ~0.1) with formaldehyde. Protoplasts were prepared by lysozyme treatment, and 

DNA was sheered by sonication. Chromatin immunoprecipitation was performed with 

α-YvcL antibody bound to Protein A coated magnetic Dynabeads (Invitrogen). Beads 

were washed, and the DNA was eluted by 1% SDS treatment at 65ºC, and purified by 

phenol-chloroform extraction. Then the immunoprecipitated DNA (IP DNA) was 

purified by phenol-chloroform method.  

 For the qPCR, the total DNA was diluted 1:1000 and the IP DNA 1:25, and the 

reaction conditions were used as described for marker frequency analysis. The primers 
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used are listed in Table 2.3. Second derivative function was used to calculate the CP 

(curvature point). 

 For hybridization, Roche NombleGen (v3.1) protocol was followed. Total DNA 

(input) and IP DNA were purified using Qiagen PCR purification column, and 10 ng of 

DNA was used for random amplification using Sigma WGA2 kit. The Cy3- and Cy5- 

9-mers were used to label 400 ng of amplified DNA. The labelled DNA (4.7 μg of each) 

was hybridized onto Bacillus subtilis Nimblegen-custom-made chip (~383 k probes). 

The probes (~50 bp) covered both strands of the whole genome with the exception of 

repetitive sequences. NimbleGen (v 3.1) protocol was used for data analysis.  
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3.1  Introduction 

 

Assembly of the FtsZ-ring is the first key event in bacterial cell division. In B. subtilis, 

the proteins ZapA, SepF and EzrA interact with FtsZ to promote formation of the Z-ring 

at midcell. One of the first proteins to interact with FtsZ is ZapA. It is a small 11 kDa 

protein and is conserved in most bacterial species. Although ZapA appears to stimulate 

Z-ring formation, the protein is not essential for growth (Gueiros-Filho and Losick, 

2002). In vitro experiments including pull-down, light scattering and pelleting assays 

for polymerization have shown that ZapA directly interacts with FtsZ, and electron 

microscopy corroborated that it is capable of promoting the lateral bundling of FtsZ 

protofilaments (Gueiros-Filho and Losick, 2002; Low et al., 2004; Small et al., 2007). 

In a recent paper, Monahan and co-workers (Monahan et al., 2009) have shown that a 

temperature-sensitive mutant of ftsZ which lacks the capability to form lateral 

associations and filaments is viable when ZapA is overproduced. It is therefore assumed 

that ZapA confers stability to the cell division machinery. Concurrently with ZapA, 

EzrA is another protein co-localizing with the Z-ring (Gamba et al., 2009; Levin et al., 

1999). EzrA is a membrane protein that is localized throughout the membrane but 

appears at the division site together with FtsZ (Levin et al., 1999). It has a positive 

impact on Z-ring formation since disruption of ezrA expression results in a longer cell 

length and filamentation (Chung et al., 2004). However, it is a negative regulator of 

FtsZ assembly. Contrary to ZapA, when EzrA is not produced, cells are able to divide at 

lower FtsZ concentrations and also form mislocalized Z-rings (Levin et al., 1999). 

Moreover, the effect of minCD overproduction can be counteracted by disruption of 

ezrA (Levin et al., 2001). Additionally to its role during Z-ring formation, EzrA 

cooperates with GpsB to shuttle PBP 1, a protein involved in septum biogenesis, in and 

out of the septal position (Claessen et al., 2008). Another important protein for Z-ring 

assembly is SepF. The mechanism of its function is as yet unclear since the data 

indicate that it has a dual role. Early in division, SepF apparently assists FtsA in 

tethering the Z-ring to the membrane because when SepF is overexpressed, it is able to 

take over the function of FtsA (Ishikawa et al., 2006). In vitro, SepF forms large 

polymeric rings, and stacks FtsZ protofilaments into long tubular structures (Gundogdu 

et al., 2011). SepF is also required for normal septum formation since its lack results in 

aberrant septa (Hamoen et al., 2006). None of the mentioned proteins are individually 
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essential, however, strains carrying double deletions of sepF and ezrA or ftsA are not 

viable (Gundogdu et al., 2011; Ishikawa et al., 2006). 

 

The timing of the Z-ring assembly and its midcell localization are essential for efficient 

septation. At least two known systems direct the Z-ring to the midcell position; nucleoid 

occlusion and the min systems. A nucleoid occlusion protein, Noc, was observed to bind 

specific regions at the DNA covering both chromosomal arms, with the exception of the 

region around chromosomal terminus (Wu et al., 2009). In vivo, the fluorescent fusion 

protein Noc-YFP localizes to the nucleoid region omitting the terminus region. It seems 

that the protein is dynamic since the fluorescence signal moves over time (Wu et al., 

2009). The mechanism of how exactly it fulfils its role as an inhibitor of cell division 

remains so far unclear (Wu et al., 2009). Cells lacking noc are more prone to bisect their 

chromosomes under certain stress conditions, e.g. disruption of the min system (Wu and 

Errington, 2004). The min system in E. coli has been shown to oscillate from pole to 

pole, however, the components of B. subtilis min seem to be more static (Hu and 

Lutkenhaus, 1999; Juarez and Margolin, 2010). The min system effector, MinC, 

interacts with FtsZ and inhibits FtsZ assembly (de Boer et al., 1989). MinC is activated 

by MinD (Cordell et al., 2001; Hayashi et al., 2001; Sakai et al., 2001). In B. subtilis the 

determinant of min localization is DivIVA protein that localizes primarily to poles and 

late in the division to the newly formed septa, presumably because it has a preference 

for curved membranes (Hamoen and Errington, 2003; Lenarcic et al., 2009). DivIVA 

binds MinJ, which is recognized by the MinCD complex (Bramkamp et al., 2008; 

Patrick and Kearns, 2008). As a result, MinC localizes predominantly to the cell poles.  

 

Interestingly, ZapA overexpression suppresses the cell division block induced by MinC 

overproduction. This further supports the idea that ZapA is a positive regulator of Z-

ring assembly, however a zapA deletion does not cause any detectable phenotype and it 

is unclear whether this is because other proteins take over the function of ZapA or 

complement it. The aim of this project was to search for such cell division proteins. To 

do this we used the newly developed synthetic lethal screening system for B. subtilis 

(Claessen et al., 2008). This type of a genetic screen has firstly been used in yeast 

(Bender and Pringle, 1991), and also became available for E. coli (Bernhardt and de 

Boer, 2004) and B. subtilis (Claessen et al., 2008). Central to the synthetic lethal screen 

is an unstable plasmid pLOSS*, that is easily lost from the cells. To identify mutations 

that would be synthetically lethal in combination with a zapA mutation, zapA was 
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cloned into the pLOSS plasmid and introduced into a strain carrying a chromosomal 

deletion of zapA. Subsequent transposon mutagenesis resulted in some mutations that 

were synthetically lethal with ΔzapA and as a result, these cells retained the plasmid and 

could be detected by blue/white selection since the plasmid carries a lacZ marker. Using 

this synthetic lethal screen, we identified the gene yvcL. Double deletion of yvcL and 

zapA led to a strong filamentation phenotype of B. subtilis cells. Sequence analysis 

revealed that the protein is conserved amongst Gram-positive bacteria and is 

homologous to whiA of Streptomyces coelicolor. In this bacterium, deletion of whiA 

leads to a sporulation defect, supposedly because of an inability to form Z-rings (Ainsa 

et al., 2000; Flardh et al., 1999). It is assumed that WhiA acts as a transcriptional 

regulator, but the exact function of WhiA is unclear. We set out to investigate the 

function of YvcL in B. subtilis and found that a yvcL deletion is lethal in combination 

with mutations in the cell division genes ezrA, minCD or noc, suggesting that it 

constitutes a novel component of the cell division machinery in B. subtilis. 
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3.2 Results 

 

 

3.2.1  Identification of YvcL in a synthetic lethal screen  

 

In the synthetic lethal screen developed for B. subtilis, the gene of interest is deleted 

from the chromosome and placed on the segregationally instable plasmid pLOSS* (for 

Lethal or Synthetic Sick) (Claessen et al., 2008). Subsequently, a random mutagenesis 

with the TnYLB-1 (pMarB) transposon is performed (Le Breton et al., 2006). When the 

transposon disrupts a gene that is lethal when zapA is not present, the pLOSS-ZapAB 

plasmid has to be maintained in the cell to confer viability. pLOSS* also harbours a 

constitutively expressed lacZ reporter so the presence of the plasmid can easily be 

detected on X-gal plates. 

 

3.2.1.1  Construction of strains for the synthetic lethal screen  

 

ZapA is encoded in an operon with yshB (Gueiros-Filho and Losick, 2002). Only ZapA 

is involved in FtsZ polymerization and nothing is known about the function of YshB. 

Therefore, the complete zapA-yshB operon, including the promoter region, was cloned 

into pLOSS* resulting in pLOSS-ZapAB. For the screen a strain (KS6) was used in 

which the complete zapA-yshB operon was replaced by a tetracycline resistance marker 

(Feucht and Errington, 2005). The strain used for the screen (KS50) also contained a 

deletion in the B. subtilis lacA gene (D. Claessen, unpublished), which prevents 

false-positives that activate the endogenous β-galactosidase (encoded by chromosomal 

lacA) and would thus interfere in the blue-white screen. 

 

3.2.1.2  ΔzapA is synthetically lethal with ΔyvcL 

 

After transposon mutagenesis with transposon TnYLB-1 (Le Breton et al., 2006), about 

60,000 colonies were screened for increased blue colour on X-gal plates. 65 colonies 

were selected and checked by backcrossing isolated chromosomal DNA into the 

parental strain KS50. We found four mutants that formed a mixture of normally-sized 

blue colonies and small white colonies that seemed to have lost the plasmid (Fig. 3.1C, 

arrow). When a ΔzapA mutant was transformed with chromosomal DNA from these 
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four clones, only very small colonies were formed after 48 hours and the cells from 

these colonies were very filamentous and showed increased cell lysis (Fig. 3.1B, F). 

This phenotype suggests a major defect in cell division. However, when a wild type 

background was transformed with the mutant DNAs, normal colonies were obtained 

and cells looked normal (Fig. 3.1A, E). When the transposon insertion sites of these 

four strains were mapped by reversed PCR, all transposons had inserted in the gene 

yvcL. Two clones had inserted at bp positions 171 and the other at bp 459 and 481bp 

(full length yvcL gene n = 948 bp). 

 

 

Fig. 3.1 Double deletion of yvcL and zapA results in a division defect 
(A-C) Backcross of chromosomal DNA from a successful candidate from the 
synthetic lethal screen into (A) wild type cells (KS2), (B) ΔzapA (KS6), and (C) 
parental strain ΔzapA-yshB ΔlacA pLOSS-ZapAB (KS50). The arrow indicates a 
small white colony that has lost the plasmid. Phenotypes of (D) wild type, (E) 
ΔyvcL and (F) ΔyvcL ΔzapA-yshB. Membranes were stained with FM5-95. Scale 
bars 5μm. 
 

 

3.2.2 Excluding polar effects  

 

yvcL is the fourth gene in an operon consisting of six genes (Fig. 3.2A). The operon 

includes genes yvcI, yvcJ, yvcK, yvcL, crh and yvcN. The genes yvcI and yvcN encode 

proteins of an unknown function. YvcJ was shown to be involved in the regulation of 

expression of competence genes (Luciano et al., 2009). YvcK plays a role in 

gluconeogenesis and cell wall maintenance (Foulquier et al., 2011; Gorke et al., 2005) 

and Crh is involved in catabolite regulation (Warner and Lolkema, 2003). To exclude 

the possibility that the transposon insertion caused a polar effect on the genes 

downstream of yvcL, an IPTG-inducible Pspac promoter was placed either up- or 
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downstream of yvcL (strains KS891 and KS1012, respectively) (Fig. 3.2A). These 

alleles were introduced into the ΔzapA mutant strain. For an efficient repression of the 

Pspac promoter, an extra copy of lacI was introduced into the aprE locus using plasmid 

pAPNC213 (Morimoto et al., 2002). As seen in Fig. 3.2B, only the ΔzapA strain with 

Pspac upstream of yvcL grew poorly and showed a filamentous phenotype without IPTG 

(Fig. 3.2E). Thus, the synthetic phenotype is related to yvcL and not an altered 

expression of the downstream located genes crh or yvcN. 

 

3.2.3  Phenotypic characterization of the yvcL mutant 

 

To further confirm that the yvcL gene disruption caused by the transposon insertion was 

responsible for the observed phenotype, we constructed a markerless yvcL mutant 

(KS696) that contained a stop codon at 32 bp of the coding region and also rendered the 

open reading frame out of frame (see Materials and Methods). Cells of this yvcL mutant 

are significantly longer than wild-type cells (p<0.001) (Fig. 3.3A, B). Furthermore, they 

grow slower than wild type cells in LB or in competence (SMM+) and CH medium 

(Fig. 3.3C and data not shown). This phenotype was comparable to transposon mutants 

acquired from the synthetic screen, and other two mutants we constructed (strains 

KS207 and KS400, data not shown). 

 It has been shown that yvcL of Streptomyces coelicolor (called whiA) and 

Streptomyces ansochromogenes (sawC) are essential for sporulation (Ainsa et al., 2000; 

Flardh et al., 1999; Xie et al., 2007). To test whether YvcL plays a role in sporulation in 

B. subtilis, we used four different yvcL mutants to secure consistent results. yvcL 

mutants were grown in DSM medium, a nutrient-limiting sporulation medium 

(Schaeffer et al., 1965), for 24-hours and sporulation efficiency was determined by 

counting percentages of phase-bright spores using light microscopy. As seen in 

Fig. 3.4A, two of the yvcL mutant strains (KS207, KS696) sporulated less efficiently, 

but these changes were statistically insignificant (mutants sporulated with 38-48% 

efficiency, wild type with 67 %). These mutants contain a pMutin4 insertion in yvcL, or 

a 'silent' markerless yvcL mutation, respectively. However, a significant decrease in 

sporulation efficiency was observed in a mutant yvcL::kan (KS400) carrying a deletion 

of the whole yvcL gene by substitution with a kanamycin cassette (16%, p<0.01) and in 

a mutant yvcL::Tn which contains a TnYLB-1 transposon insertion (39%, p<0.05). We 

think these two strains show a significant decrease due to a polar effect of the antibiotic 
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Fig. 3.2 The synthetically lethal phenotype of ΔyvcL and ΔzapA mutations is not 
due to polar effects 
 (A) An outline of the yvcI-N locus and the conditional mutants in either yvcL 
(Pspac-yvcL; KS891) or crh (Pspac-crh; KS1012). The strains were constructed by the 
introduction of an IPTG-dependent Pspac promoter up or downstream of yvcL. The strains 
also encode an additional copy of the lacI at the aprE locus (aprE::pAPNC213). (B) 
Test of polar effects. The deletion of zapA (zapA-yshB::tet) was introduced into strains 
KS891 and KS1012 resulting in strains KS859 and KS1013, respectively. Strains were 
tested for growth on plates with or without IPTG. Only strain KS859 (Pspac-yvcL ΔzapA) 
was sensitive for IPTG levels, suggesting the expression of crh and the downstream 
yvcN is not important for the growth of a zapA mutant. (C-F) Phenotypes of depleted 
strains. Phase contrast and fluorescence microscopic pictures of cells grown with (F) or 
without IPTG (C-E) and stained with membrane dye nile red. All strains except for 
KS859 (E), which is filamentous and lyses, seem to divide efficiently in the absence of 
IPTG. Strain KS859 recovers when grown on plates with IPTG (F). Scale bar 5 μm. 
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Fig. 3.3 yvcL mutation causes slower growth and cell elongation  
(A) Exponentially growing cells of wild type and yvcL mutant (KS696) were 
stained with nile red to visualize the membranes and with DAPI to visualize 
nucleoids. From top to the bottom: phase contrast, membrane, and nucleoid stain. 
Scale bar 5 μm. 
(B) Histogram of wild type (blue) and yvcL (red) mutant cells dimensions. 
(C) Growth curve of wild type and yvcL mutant grown in LB. The lack of YvcL 
causes slower increase in cell mass (OD600). The same result was observed in CH or 
SMM+ medium, data not shown. 
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cassette (kanamycin), as described later for strain KS400 in chapter 4.2 (Microarray). In 

summary, yvcL mutant cells tend to sporulate less well than wild type cells. It may be 

that they are affected in sporulation indirectly. Nevertheless, it is clear that deletion of 

yvcL in B. subtilis does not block sporulation which is in contrast to what has been 

found in Streptomyces. The reason for this may be that B. subtilis forms endospores, 

while Streptomyces produce exospores out of sporulation hyphae. 

 We were also curious when YvcL is expressed in cells. The autoradiograph 

using α-YvcL-Ab in Fig. 3.4B shows that a band corresponding to YvcL is present in 

the overnight culture lysate and also in exponentially growing cells and cells in 

stationary phase. This is in contrast with what has been found for WhiASco, which is 

primarily expressed in the aerial hyphae during sporulation (Ainsa et al., 2000). 

 The aerial hyphae of Streptomyces contain rows of nucleoids (>50) that become 

separated by septal walls during sporulation. The lack of whiASco, the yvcL ortholog, 

perturbs this process. Possibly, YvcL is involved in septum synthesis in B. subtilis. To 

gain more insight into the morphology of the division septa in a ΔyvcL mutant we 

examined the cells by electron microscopy. As shown in Fig. 3.4C, the septa of ΔyvcL 

mutant cells are comparable to the septa in wild type cells, indicating that YvcL does 

not play a role in the actual synthesis of the B. subtilis division septa. 

 

3.2.4  A ΔyvcL ΔzapA double mutant is disturbed in Z-ring formation 
 

The ΔyvcL ΔzapA synthetic effect and the longer cell length of yvcL mutants suggest 

that YvcL is involved in cell division. To examine whether YvcL affects Z-ring 

formation we introduced the yvcL deletion into a strain that contained a gfp-ftsZ fusion 

under the control of an inducible Pxyl-promoter at the amy locus (J. Sievers, 

unpublished). Fluorescence microscopy showed similar pattern of the GFP signal in 

wild-type and yvcL mutant backgrounds (Fig. 3.5), although the latter contained slightly 

less Z-rings per cell.  

 To test whether Z-rings were still formed when both YvcL and ZapA are absent 

we used a ΔzapA mutant strain that could be depleted for YvcL, using the inducible 

promoter Pspac. This strain (KS754) also contained the pMAP65 plasmid that encodes 

lacI to provide a tighter regulation of the Pspac promoter. In the presence of 0.5 

mM IPTG strain KS754 grew like wild type with normally localized FtsZ-GFP rings 

(Fig. 3.6A). When the culture was grown without IPTG, cells became elongated and the
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Fig. 3.4 Phenotype of B. subtilis yvcL mutants 
(A) Sporulation efficiency. Sporulation was induced in DSM medium for 24 
hours. The percentage of phase-bright spores was counted using light microscopy 
in two biological and two technical replicates. More than 800 cells per experiment 
were counted. The results suggest that yvcL mutant does sporulate less well than a 
wild type. In case of strains KS400 (p<0.01) and KS267 (p<0.05) the sporulation 
efficiency differs significantly, which is indicated by asterisks. (B) Detection of 
YvcL in cell lysates using Western blot analysis (α-YvcL-Ab). The OD600 of cell 
cultures used for sample preparation is indicated on top of the autoradiograph. 
ON = overnight culture. YvcL is present throughout the growth cycle. (C) 
Transmission electron microscopy of yvcL mutant cells. Exponential cells of wild 
type and KS400 (yvcL::kan) were prepared for transmission electron microscopy 
as described in Materials and Methods. We have not observed any noticeable 
difference in the morphology of the septum within two independent experiments. 
Scale bars 100 nm. 

OD600         ON      0.2     0.36    0.6      0.9       1.1       

α-YvcL Ab 
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Fig. 3.5 GFP-FtsZ localization in a yvcL mutant 
Exponentially growing cells of (A) KS384 (amyE::Pxyl-gfp-ftsZ) and (B) KS745 
(ΔyvcL amyE::Pxyl-gfp-ftsZ) were induced (0.05% xylose) for two hours. From left to 
the right, GFP, membrane (stained with nile red) and the overlay of both GFP 
(green) and membrane (red) channels. The localization of GFP-FtsZ is not very 
impaired in a yvcL mutant, although there is a ~13% decrease in the occurence of 
Z-rings. Arrowheads point towards incomplete Z-rings or cells lacking Z-rings. 
Scale bars 5 μm.  
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Fig. 3.6 Localization of GFP-FtsZ in ΔzapA-yshB cells depleted of YvcL 
An overnight culture of strain KS754 (ΔzapA yvcL::Pspac-yvcL amyE::Pxyl-gfp-ftsZ 
pMAP65(lacI)) was washed and grown with (A) or without 0.5 mM IPTG (B). From 
top to bottom: phase contrast, DNA stain (DAPI), membrane stain (nile red), and GFP 
fluorescence. Cells depleted of YvcL do not form septa. The weak localization of 
GFP-FtsZ (arrowheads) suggests that FtsZ has difficulties forming functional Z-rings 
(B, arrowheads). In some cells, Z-rings are formed, presumably due to incomplete 
depletion of YvcL (arrows). Scale bar 5 μm. 
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number of Z-rings strongly decreased and they became irregular in appearance 

(Fig. 3.6B). Apparenly, the filamentation of a ΔyvcL ΔzapA double knockout results 

from a defect in Z-ring formation, suggesting that YvcL is involved in an early step in 

the cell division process. 

 

3.2.4.1  FtsZ concentration sensitivity 

 

The intracellular FtsZ concentration is strictly regulated (Weart and Levin, 2003) and 

changes in the FtsZ concentration can inhibit division (Dai and Lutkenhaus, 1992). If 

YvcL is required for the polymerization of FtsZ into a Z-ring, it is likely that a yvcL 

mutant will be sensitive for low FtsZ concentrations. To test this, we introduced an 

IPTG-inducible ftsZ allele into the yvcL mutant (strain KS748). Serial dilutions of 

exponentially growing cultures were spotted on NA plates containing different IPTG 

concentrations. In agreement with previous findings (Gueiros-Filho and Losick, 2002), 

a ΔzapA mutant is very sensitive to reduced FtsZ levels (Fig. 3.7). The ΔyvcL mutant 

was clearly less sensitive than the ΔzapA mutant; however, compared to the wild type 

the size of the colonies was strongly reduced. These data provide further evidence that 

YvcL plays a role in cell division in B. subtilis but yet it is unclear whether this has to 

do with a direct effect on FtsZ activity. 

 

 

Fig. 3.7 A yvcL mutant displays increased sensitivity to low FtsZ 
concentrations. 
Strains KS268 (Pspac-ftsZ), KS162 (ΔzapA Pspac-ftsZ) and KS748 (ΔyvcL Pspac-ftsZ) 
were tested for sensitivity to low FtsZ concentration. The cell cultures were grown 
with 0.2 mM IPTG, and after reaching OD600~0.5, 10 μl volumes of 10-fold serial 
dilutions were spotted on NA plates supplemented with 30 μM or 500 μM IPTG. 
While 30μM IPTG is sufficient for growth of the wild type background strain, the 
ΔzapA background is unable to grow, which is in agreement with published data 
(Gueiros-Filho and Losick, 2002). The growth of yvcL mutant is impaired at low 
FtsZ concentration. Growth of all strains is recovered on plates with 500 μM IPTG.  
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 The ΔzapA background strain forms dense colonies on NA with 500 μM IPTG. 

This was a constant feature of ΔzapA mutant colonies (ΔzapA::tet, strain KS6). We 

noticed that this strain grew faster than wild type (in liquid LB medium) and that is why 

the colonies have such a morphology. 

 

If YvcL influenced polymerization of FtsZ into the Z-ring, it might be that 

overexpression of FtsZ would rescue the filamentation of a ΔyvcL ΔzapA mutant. To 

examine this, an extra copy of ftsZ driven by the Pxyl promoter (Kawai and Ogasawara, 

2006), was introduced into strain KS859 that carries a deletion in zapA and a 

conditional yvcL mutation. The resulting strain KS1077 was grown on NA plates 

supplemented with increasing concentrations of xylose. As shown in Fig. 3.8, increasing 

FtsZ (xylose) concentration stimulates colony formation in the conditional yvcL ΔzapA 

mutant (Fig. 3.8A, right panel), although the colonies are small compared to the single 

yvcL or single zapA mutants. When examined by microscopy, cells looked normal at 

high xylose concentrations (Fig. 3.8B). Since ftsZ overexpression partially recovers the 

ΔyvcL ΔzapA phenotype, this suggests that YvcL is important for Z-ring formation. On 

the other hand, as the growth rate is still decreased, it implies that YvcL is also 

important for other process than Z-ring formation. 

 

3.2.5  YvcL is important also for growth of other cell division mutants 

 

The results so far suggest that YvcL affects an early step in cell division but it is not yet 

clear whether the protein regulates FtsZ assembly. To gain a better idea of the function 

of YvcL in cell division we combined a yvcL deletion with other cell division mutants. 

When the ΔyvcL strain (KS207) was transformed with chromosomal DNA from an 

ezrA, minCD, noc or minJ mutant, the resulting transformants formed tiny colonies 

(data not shown) and in case of minJ, no transformants were acquired. Microscopic 

analysis of cells from these colonies showed very filamentous cells and substantial lysis 

(Fig. 3.9, D-F). This phenotype is similar to the ΔyvcL ΔzapA double mutant. EzrA, 

MinCD and Noc have a negative effect on FtsZ polymerization (de Boer et al., 1989; 

Haeusser et al., 2004; Wu et al., 2009), whereas ZapA stimulates Z-ring formation 

(Gueiros-Filho and Losick, 2002). The data clearly suggest that YvcL influences the 

activity of FtsZ, but it is not a simple negative or positive regulatory role.  
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Fig. 3.8 FtsZ overexpression partially suppresses a ΔyvcL ΔzapA double 
mutant phenotype 
(A) Strains KS891 (Pspac-yvcL), KS859 (ΔzapA Pspac-yvcL), and KS1077 (ΔzapA 
Pspac-yvcL Pxyl-ftsZ) were grown in the presence of IPTG and serial dilutions were 
spotted on NA agar plates with 0, 0.05, 0.125 and 0.25% xylose and with only 
IPTG. Strain KS859 is almost unable to grow without IPTG. However, 
overexpression of FtsZ from Pxyl-ftsZ in an isogenic strain (KS1077) results in 
an improved colony formation (right panel). (B) Phase contrast and membrane 
stain images of cultures grown on 0.25% xylose plates. FtsZ overexpression in 
strain KS1077 leads to amelioration of the ΔyvcL ΔzapA filamentous phenotype. 
Cells were stained with FM5-95. Scale bar 5 μm. 
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Fig. 3.9 Deletion of yvcL in combination with other early cell division 
proteins leads to cell filamentation 
Single cell division mutants (A) ezrA::tet (KS44), (B) minCD::kan (KS338), 
(C) noc::spc (KS345) were combined with a yvcL deletion (KS207). Only a 
few minute colonies grew on the transformation plates and the cells were 
very filamentous. Shown are cells of (D) ΔezrA ΔyvcL, (E) ΔminCD ΔyvcL, 
and (F) Δnoc ΔyvcL double mutants. Scale bars 10 μm. 
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ZapA and EzrA are early cell division proteins and assemble simultaneously with FtsZ 

at midcell (Gamba et al., 2009). GpsB and SepF are required for normal septum 

development (Claessen et al., 2008; Hamoen et al., 2006; Ishikawa et al., 2006) and 

assemble later at the Z-ring. When a gpsB or sepF deletion was introduced into a yvcL 

mutant, no obvious effect on growth and cell size was detected (Fig. 3.10), confirming 

that YvcL functions early in the cell division process.  

 

3.2.5.1 Localization of GFP-FtsZ in ΔyvcL double mutants 

 

Since FtsZ is delocalized in the ΔyvcL ΔzapA double mutant, we were curious whether 

this also occurred in yvcL mutants that lacked ezrA, minCD or noc. To test this we used 

the same IPTG-inducible yvcL strain as previously used (3.2.4), with minor changes 

(instead of pMAP65, lacI copy at the aprE locus was used to regulate the expression of 

yvcL in ezrA and minCD mutant backgrounds). As shown in Fig. 3.11B, Fig. 3.12B and 

D, in all three mutant strains the cells became filamentous as a result of YvcL depletion 

and in all cases the Z-rings eventually disappeared. 
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Fig. 3.10 The double mutants ΔsepF ΔyvcL and ΔgpsB ΔyvcL do 
not display a cell division phenotype 
The wild type strain, sepF, gpsB and yvcL single mutants (A-D) and 
the double mutants ΔsepF ΔyvcL and ΔgpsB ΔyvcL (E, F) are not very 
distinct in their phenotypes. Scale bar 5 μm. 
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Fig. 3.11 Mislocalization of GFP-FtsZ in a Δnoc mutant strain depleted of 
YvcL 
Strain KS755 (Δnoc yvcL::Pspac-yvcL amyE::Pxyl-gfp-ftsZ pMAP65(lacI)) was 
grown in the presence (A) or absence (B) of 1 mM IPTG. Without IPTG cells 
became filamentous as a result of the lack of proper Z-rings (arrowheads). Only 
a few normally looking Z-rings could be observed (arrow). Scale bar 5 μm. 
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Fig. 3.12 Mislocalization of GFP-FtsZ in ΔezrA and ΔminCD mutants depleted 
of YvcL 
Strains KS1098 (A, B) and KS1099 (C, D) were used to assess localization of 
GFP-FtsZ in an ezrA or a minCD mutant in which YvcL was depleted. Overnight 
cultures on LB plates supplemented with 0.5 mM IPTG were inoculated into a fresh 
LB medium with (A, C) or without 0.5 mM IPTG (B, D). The expression of 
GFP-FtsZ was induced by 0.05% xylose, and the cultures were grown at 30 ºC for 
two hours before examination by fluorescence microscopy. Arrowheads point 
toward aberrant GFP-FtsZ structures. Scale bars 10 μm. 
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3.3 Discussion 

 

We have identified a new cell division regulator in B. subtilis; the protein YvcL. yvcL 

and the gene order of its adjacent genes are conserved in Gram-positive bacteria (Ainsa 

et al., 2000) (Fig. 3.13). In B. subtilis, the operon consists of six genes. The first gene, 

yvcI, has been annotated as an uncharacterized nudix hydrolase (BLAST). Nudix 

hydrolases are enzymes that prevent incorporation of oxidized nucleotides into the DNA 

during replication (reviewed in(McLennan, 2006). The second gene yvcJ codes for a 

protein which can hydrolyze nucleotides, and it somehow stimulates the induction of 

competence development (Luciano et al., 2009). The third gene, yvcK, is essential for 

normal cell shape when cells are grown on gluconeogenic substrates (Foulquier et al., 

2011; Gorke et al., 2005). YvcK was shown to localize in a helical pattern in the cell 

and acts as an additional cytoskeletal protein besides MreB (Foulquier et al., 2011). The 

yvcL gene (fourth in the operon) is followed by crh. Crh is a well known metabolic 

regulator. In B. subtilis, the central catabolite control protein is CcpA (reviewed 

in(Lorca et al., 2005) or(Fujita, 2009). CcpA usually binds to DNA at catabolite-

responsive elements (CRE) (Hueck et al., 1994; Miwa et al., 2000), and is activated by 

interaction with phosphorylated HPr or Crh proteins. The phosphorylation is mediated 

by an HPrK kinase. Crh is a homologue of HPr and is important for cells during growth 

on media with alternative carbon sources such as glutamate or succinate (Warner and 

Lolkema, 2003). The protein sequence of YvcN, encoded by the last gene in the operon, 

shares similarities with arylamine N-acetyltransferases that transfer the acetyl group 

from Acetyl Coenzyme A on to arylamine. In Mycobacterium tuberculosis the deletion 

of N-acetyltransferase gene causes perturbed cell wall synthesis (Abuhammad et al., 

2010; Sim et al., 2008). YvcL is presumably not involved in the production of cell wall 

material as it retains a rod-shape and its septa look normal. So far we have no evidence 

that the activity of YvcL is related to that of one of the other proteins encoded by the 

yvcI-N operon. Apart from a slower growth and an increased cell length, ΔyvcL showed 

no serious growth defect in the different media that we have tested (NA, 

LB±5 μM Mg2+, SMM+, DSM, PAB, data not shown). Furthermore, the yvcL mutant 

forms normal septa as judged by electron microscopy and does not display aberrant cell 

shapes that would point towards disturbed cell wall synthesis.  
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Fig. 3.13 The yvcL region 
Conservation of the yvcL region in different organisms. Similar genes are 
shown in the same shades. After Ainsa et al., 2000. 

 

 

YvcL belongs to a conserved family of proteins (Knizewski and Ginalski, 2007) (see 

phylogram in Fig. 3.14 and also Fig. 3.15) that are assumed to function as transcription 

factors since they possess a characteristic helix-turn-helix domain similar for sigma-70 

family of sigma factors (Kaiser et al., 2009). Despite this structural information, not 

much is known about the biological activity of the WhiA protein family. The best 

characterized member of this family of proteins is WhiA from Streptomyces coelicolor 

(WhiASco). The whiA locus has been identified as a sporulation mutation and the name 

was derived from mutants that formed white colonies, as a result of the inability to 

synthetize grey sporulation pigment (Chater, 1972). whiA is only expressed in the aerial 

hyphae (Ainsa et al., 2000; Xie et al., 2007) and the sporulation deficiency of a whiA 

mutant appears to be a consequence of the lack of Z-rings and transverse septa in the 

aerial hyphae that precede spore formation (Flardh et al., 1999; Grantcharova et al., 

2005). Western blot analyses revealed that YvcL is expressed during logarithmic and 

also late stationary phase. Furthermore, sporulation is not blocked in a yvcL mutant, 

which sets YvcL apart from WhiASco. B. subtilis is an endospore former, while 

Streptomyces divide the aerial hyphae into numerous exospores. Actually this is the 

only time for this organism to form cells containing only one chromosome, since their 

vegetative mycelia contain many chromosomes and only a few crosswalls (Chater, 

2001). The mutants in whiASco do not cease longitudinal growth of the aerial hyphae, 

suggesting whiASco is important for the division of these compartments. Furthermore, 

the lack of Z-ring formation in a whiASco mutant strongly resembles the division 

phenotype of ΔyvcL ΔzapA (and other) double mutations, and since both proteins share 
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25% identical and 50% similar amino acid residues we propose to rename yvcL as whiA, 

and we will refer to it as whiA from here on.  

 Our data indicate that WhiA is a novel cell division protein. The sensitivity to 

FtsZ levels of whiA mutant cells and the lack of functional Z-rings in division mutants 

depleted of WhiA suggests that WhiA acts at the level of Z-ring formation. Deletions of 

cell division proteins with promoting or inhibiting activities during Z-ring assembly 

have fatal impacts on whiA mutant cells, and this suggests that WhiA affects FtsZ 

assembly indirectly or that the regulation of Z-ring assembly by WhiA is not 

straight-forward. Nevertheless, WhiA is important for the formation of Z-rings in 

B. subtilis. 
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Fig. 3.14 Phylogram of WhiA-like proteins 
The aminoacid sequences of WhiA proteins from Bacillus subtilis (Bacsu), 
Listeria monocytogenetes (Lismo), Staphylococcus aureus (Staac), 
Clostridium perfringens (Clop1), Streptomyces coelicolor (Strco), 
Mycobacterium tuberculosis (Myctu), Thermotoga maritima (Thema) and 
Mycoplasma pneumoniae (Mycpn) were used to generate a phylogenetic 
tree using PHYLOGENY.FR programme (Dereeper et al., 2008).  
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Fig. 3.15 Multiple sequence alignment of WhiA-like proteins 
The protein sequences were aligned using ClustalW and the alignment was coloured 
using JalView programme (Waterhouse et al., 2009). WhiA-like proteins from the 
following organisms were aligned: BsYvcL, Bacillus subtilis; ClPerf, Clostridium 
perfringens; StrPn, Streptococcus pneumoniae; Scoel, Streptomyces coelicolor; Mtub, 
Mycobacterium tuberculosis. The multiple sequence alignment of the amino acid 
sequences shows conserved residues in boxes that are invariable. The two 
LAGLIDADG motifs are indicated by red lining. Blue triangles point towards 
positions that are occupied in homing endonucleases by acidic residues that are 
required for DNA cleavage. However, in WhiA-proteins they are absent. After(Kaiser 
et al., 2009). 
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Is WhiA a transcriptional regulator? 

 

 



                                                                                                                Chapter 4.  Is WhiA a transcriptional regulator? 

 83

 

4.1 Introduction  

 

It has been suggested that WhiA proteins in Streptomyces spp. act as transcriptional 

regulators (reviewed in(Kaiser et al., 2009). During sporulation in these species there is 

a cascade of different transcriptional factors that regulates this process and WhiASco is 

considered to be one of them (Flardh et al., 1999). An in vitro study suggested that 

WhiASco regulates its own expression (Ainsa et al., 2000). Additionally, the crystal 

structure of WhiA from Thermatoga maritima has revealed that the conserved 

C-terminal domain shows structural similarity to sigma-70 sigma factors (Kaiser et al., 

2009) (Fig. 4.1). Because of this WhiA might be a transcription factor and to test this 

we performed a whole-genome microarray analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Crystal structure of WhiA from Thermotoga maritima (Kaiser et al., 
2009) 
The crystal structure of the full-length WhiATm (2.6 Å resolution) shows that the 
protein consists of a large N-terminal domain with two LAGLIDADG motifs (on 
the left, see also Fig. 3.15) connected to the C-terminal part by a long stretch of 
two α-helices. The C-terminal domain shows similarities to sigma-70 factors. The 
structure accessible under PDB code 3HYI is visualized using the Jmol 
programme.
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4.2 Results 

 

4.2.1 Microarray analysis of the whiA mutant 

 

This experiment was performed with a kind help and supervision of Dr. Nigel Sauders 

and Dr. Richad Capper, Oxford University. 

 

We compared the gene expression profiles of a wild type strain with that of a whiA::kan 

mutant (strain KS400). Each microarray slide consisted of three amplicons of 4000 

different oligonucleotides covering all annotated open reading frames in the B. subtilis 

genome. The assay was performed, with minor changes, as previously described 

by(Whitehead et al., 2007)(see also Materials and Methods). The cells were grown in 

LB medium and harvested when they reached an OD600~0.6. RNA was isolated in 

independent experiments and three slides were prepared. After hybridization the slides 

were analyzed using the BASE programme (www.cbrg.ox.ac.uk). The results are 

summarized in Table 4.1. 

 56 changes in gene expression were detected with a p-value cut-off of 0.001. In 

18 cases gene expression decreased and 38 cases were upregulated. The expression of 

rtp was, with 4.64 fold difference, mostly decreased (p=0.0002). RTP is the replication 

termination protein (Sahoo et al., 1995) that also plays a role in the inhibition of DNA 

replication during the stringent response (Autret et al., 1997). Two other genes that 

showed clear differences in gene expression, crh and yvcN, were likely affected by the 

the upstream kanamycin resistence cassette used to delete the whiA, which reads in the 

same direction. Crh is involved in catabolite repression (Galinier et al., 1997). We have 

been able to link some of the other candidate genes to catabolite repression (e. g. ilvH, 

lacR, gntZ), hence the changes in their expression profiles were probably due to Crh 

overexpression. YvcN is a probable acetyltransferase involved in Acetyl-CoA 

metabolism but otherwise its function remains unknown. Altogether, 13 of the identified 

genes are involved in sugar metabolism, 5 in aminoacid metabolism, 10 genes are part 

of a large ribosomal operon, 2 genes encode secretion proteins, 3 genes encode putative 

transporters, 3 genes encode proteins with predicted DNA binding motives.  
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4.2.2 Verification of microarray results using qPCR 

 

To verify the results of the microarray analysis, a quantitative PCR was employed. This 

time we included a 'clean' whiA mutant (KS696) which contains a stop codon at the 

beginning of its reading frame, so we could correct for the effect of the kanamycin 

marker. The most relevant fifteen genes from the microarray dataset were tested. As 

shown in Table 4.2, the expression of most genes is not significantly changed, and if 

there is a change, it is less than a two-fold. The data is also graphically presented in 

Fig. 4.2. In strain KS696, the mRNA for whiA is present (the functional protein is not 

produced as judged by α-WhiA western blot analysis and the phenotype of this strain). 

Surprisingly, rtp does not show a significant change in the expression pattern (~2-fold 

upregulation), and it does not correlate with a clear downregulation found by 

microarray. In the whiA deletion mutant (KS400), crh showed a 10-fold increase in 

expression, however, in a 'silent' mutant the level of expression remained only slightly 

changed (~90% of the wild type expression level). Although both these changes are 

significant (p<0.01), we conclude that in KS400 the insertion of the kanamycin cassette 

causes overexpression of downstream genes, whilst in KS696 their expression remains 

constant or changed only slightly. The second biggest change found with qPCR was 

identified in pyrK expression, which increased about ~4-fold. However, these data do 

not correspond to the microarray data, and the change is insignificant (p>0.1). Both 

microarray and qPCR results indicate that ilvA, oppA and yvyD are downregulated in 

whiA mutants. These changes are only mild (~2-fold decrease) but in case of oppA and 

ilvA they are significant at least in one of the strains. 
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yvcN 7.58
crh 6.49
manA 4.88
rplQ 4.59
yktD 4.08
rpsK 4.02
truA 3.91
ysfC 3.86
rpsM 3.66
rpmD 3.51
yjdF 3.51
rbsC 3.45
ysfD 3.39
yfmQ 3.29
glpK 3.28
ywsB 2.98
gntP 2.96
rbsB 2.94
adk 2.85
ylxM 2.69
tasA 2.65
gntZ 2.63
ctaO 2.59
rpmJ 2.57
ydzA 2.54
ffh 2.53
rpmI 2.44
yrzI 2.43
rplT 2.37
rpsG 2.25
map 2.21
rpoA 2.18
trmD 2.18
ykvJ 2.16
spoI 2.16
mleA 2.1
ydhR 2.05
yheH 2.05

fold-changegene

 

A Upregulated genes    B Downregulated genes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table 4.1 Microarray analysis of a whiA mutant 
List of the genes that were found to be up-regulated (A) and down-regulated (B) 
in a whiA::kan  mutant (KS400) in a microarray study. Only genes that fulfilled 
the following criteria are listed: the expression changed in all three microarray 
slides, it was at least 2-fold, and with the p<0.001. 
 

gene fold-change

yvcL 30.96
rtp 4.64
ilvA 4.59
pyrK 3.84
pyrA 3.71
oppA 3.06
yvyD 3.04
ywaA 2.88
ybbH 2.82
yhaA 2.70
ytxK 2.64
oppC 2.57
ybbI 2.42
ycsG 2.25
ywfH 2.24
serA 2.12
ypmP 2.08
ybbE 2.08
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A Genes upregulated in the microarray 
 
gene fold change corresponding 

to MA  strain KS400 strain KS696 
crh 10.31 0.9 +/- 
rplQ 1.4 1.47 - 
yktD 1.37 1.36 - 
ysfC 1.4 1.39 - 
truA 0.86 1.02 - 
glpK 0.82 0.94 - 
ylxM 0.35 0.47 - 

 
 
B Genes downregulated in the microarray 
 
gene fold change corresponding 

to MA  strain KS400 strain KS696 
yvcL 63 000 1.03 + 
rtp 0.40 0.45 - 
ilvA 1.49 2.13 + 
pyrK 0.27 0.26 - 
oppA 1.54 2.5 + 
yvyD 1.92 2.38 + 
ywaA 0.99 1.12 - 
ytxK 0.70 0.68 - 

 
 
 

Table 4.2 Verification of microarray results using qPCR 
Three strains for qPCR analysis were used: wild-type, KS400 (whiA::kan) and 
KS696 (clean whiA mutant). KS400 was previously used for microarray 
analysis. Three independent biological replicates were prepared for RNA 
isolation. After RNA purification and reverse transcription, the corresponding 
primer pairs were used for quantitative PCR. The qPCR was performed using 
SybrGreen dye. CP values were calculated and normalized for ftsZ. 
MA=microarray. 
AA Significant change when compared to wild type (p<0.01; t-test). 
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A Genes upregulated in the microarray 

 

B Genes downregulated in the microarray 
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MA

KS400

KS696

 

Fig. 4.2 Graphical representation of the verification of microarray data by 
qPCR.  
The mean fold-change values of three independent biological replicates were 
plotted on the logarithmic y-scale. Scale bars represent standard deviation 
calculated as of three replicates. MA = microarray readout, KS400 and 
KS696 = qPCR results. (A) Upregulated genes in MA, fold change = increase. (B) 
Downregulated genes in MA, fold change = decrease in expression in whiA 
mutants. 
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4.3 Discussion 

 

WhiA is a 316 amino acid long protein with a predicted pI of 9.27. The structure of 

WhiA from Thermotoga maritima (WhiATm) has been solved using X-ray 

crystallography (Kaiser et al., 2009) (Fig. 4.1). As indicated in Fig. 3.15, the protein can 

be divided into two parts: an N-terminal domain that possesses two LAGLIDADG 

motifs typical for homing endonucleases, and a C-terminal domain with a helix-turn-

helix fold. It has been proposed that both these domains bind DNA. The main difference 

between WhiA and homing endonucleases is that WhiA lacks the key residues that are 

essential for DNA cleavage (Knizewski and Ginalski, 2007) (see Fig. 3.15).  

 In Streptomyces, WhiASco was shown to activate its own expression, and at least 

three other genes: ftsZ (Flardh et al., 2000), whiB which encodes another sporulation-

specific factor (Ainsa et al., 2000), and parAB locus whose products are involved in 

chromosome segregation (Jakimowicz et al., 2006; Kim et al., 2000). These data 

suggested that WhiASco regulates the expression of a protein or several proteins that are 

required for the proper assembly of Z-rings in the aerial hyphae. However, our 

microarray analysis of B. subtilis whiA mutant does not show an apparent gene 

regulation effect and we cannot conclude that in B. subtilis WhiA functions as a 

transcriptional regulator. The moderate changes in the expression that we do observe 

(oppA, ilvA and yvyD), are unlikely causes of the synthetic phenotype of a ΔwhiA ΔzapA 

mutant. oppA is part of an operon that codes for an oligopeptide transporter, which is 

involved in the initiation of sporulation and competence (Goodell and Higgins, 1987; 

LeDeaux et al., 1997; Perego et al., 1991; Rudner et al., 1991). In Gram-negative 

bacteria such transporter has also been implicated in the recycling of peptide cell wall 

precursors (Goodell and Higgins, 1987). The expression of oppA is regulated by 

catabolite repression in B. subtilis (Lorca et al., 2005). IlvA is threonine dehydratase 

involved in isoleucine biosynthesis and its expression is under the control of the global 

regulator CodY (Mader et al., 2004; Molle et al., 2003b). In the microarray study some 

other genes involved in the synthesis of branched chain aminoacids showed lower 

expression levels in a whiA mutant as well (ilvBHC, ilvD). Normally these genes are 

induced upon entry into stationary phase when the available aminoacid pool becomes 

limited and de novo synthesis of aminoacids is required (Molle et al., 2003b). Whether 

the slower growth of a whiA mutant is caused by or results into the lower expression in 

these genes, we do not know. YvyD is probably involved in modulation of SigL levels 
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(B. subtilis sigma-54 factor) (Drzewiecki et al., 1998). The expression of yvyD was 

found to be Sigma-B and SigmaH dependent and furthermore, it is also produced upon 

amino acid starvation (Bernhardt et al., 1997; Drzewiecki et al., 1998; Wendrich and 

Marahiel, 1997). Importantly, as we show later in a ChIP on chip analysis, WhiA does 

not bind to the promoter regions of oppA, ilvA or yvyD and together with our microarray 

it seems that in B. subtilis WhiA does not function as a transcription factor. Although a 

whiA mutation does show an altered gene expression, there is no biochemical evidence 

that WhiA binds to the promoter sites of these genes, and we suppose the changes might 

be induced indirectly. Furthermore, WhiASco might have a divergent activity in 

Streptomyces. Our data suggest that it is now important to verify this.  
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WhiA is a DNA binding protein 
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5.1 Introduction 

 

Most of the reported cell division genes act directly at the septum but there are some 

that bind to DNA. These include proteins involved in nucleoid occlusion (noc, slm). 

Based on the regulatory role of WhiA in S. coelicolor, and the crystal structure of the 

WhiA homolog in T. maritima, it is assumed that WhiA binds DNA and functions as a 

transcriptional regulator (Ainsa et al., 2000; Flardh et al., 1999; Kaiser et al., 2009). 

However, using a transcriptome experiment we did not find a clear direct effect of 

WhiA on gene regulation in B. subtilis. To gain more information we examined whether 

WhiA binds to DNA. Here we show that WhiA localizes to DNA in the cell and we 

determine where on the chromosome WhiA binds, and propose a consensus sequence 

for its binding. Based on our findings we speculate that WhiA might be involved in 

chromosome orchestration. 
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5.2 Results 

 

5.2.1 WhiA localizes to nucleoids in vivo 

 

To test whether WhiA binds DNA and localizes to the nucleoid, we constructed 

fluorescently labelled WhiA by fusing the gene to gfp (both C-and N-terminal fusions). 

The constructs were placed under the control of the xylose-inducible Pxyl promoter at the 

amyE locus (strains KS749 and KS752). Both C- and N- terminal fusions appeared to be 

functional since their expression restored normal growth to the otherwise sick 

ΔwhiA ΔzapA mutant strains (data not shown). In fact the GFP fusion protein 

complemented a whiA mutation even without the addition of xylose. Apparently, the 

leakiness of the xylose promoter provides the cell with enough GFP-WhiA, indicating 

that small amounts of WhiA are sufficient for cell division. The localization pattern of a 

C-terminal WhiA-GFP fusion was identical to the N-terminal fusion pattern (data not 

shown). The microscopic observations were performed using exponentially growing 

cells in media with different concentrations of xylose. Fig. 5.1 and Fig. 5.2 show the 

localization of GFP-WhiA (strain KS749). It is apparent that WhiA localizes to the 

nucleoid. However, the distribution of the GFP-signal is dependent on the amount of the 

inducer (xylose) used. When the protein was expressed at low levels, faint but distinct 

foci could be observed (Fig. 5.1A). These foci appeared to be on the nucleoid. When the 

protein was overexpressed, the GFP signal covered the whole nucleoid region 

(Fig. 5.1D, Fig. 5.2). Spreading of the fluorescence signal from distinct spots to a 

compact area covering the nucleoid suggests that WhiA might have a preference for 

some DNA motifs but that it is also able to bind DNA non-specifically. Overexpression 

of GFP-WhiA (Fig. 5.1D) does not lead to an apparent phenotype. 

 

The expression levels of gfp-whiA determine the localization pattern of GFP-WhiA. To 

achieve a more faithful impression of WhiA localization, a transcriptional fusion of 

whiA-gfp was constructed at its native locus (strain KS907). Under these conditions, 

whiA-gfp is expressed from its endogenous promoter. In this case the more sensitive 

spinning disc microscope was employed which allowed shorter exposure times (500 ms 

instead of 20 s). As seen in Fig. 5.3C the GFP signal formed spots in the 

nucleoid-occupied area. This localization pattern is comparable with the punctuate 
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Fig. 5.1 Distinct GFP-WhiA localization 
The cellular localization of GFP-WhiA was visualized using strain KS749 (ΔwhiA 
amyE::Pxyl-gfp-whiA). Cells were grown in SMM+ at 30 ºC, diluted into OD600~0.05, 
followed by the addition xylose. After two hours of induction cells were imaged by 
fluorescence microscopy. Four different xylose concentrations were used: (A) 0, (B) 
0.01, (C) 0.1 and (D) 1%. The fluorescent signal emerges as distinct dots (arrows in 
A, B) and eventually spreads out over the DNA-occupied area, covering the whole 
nucleoid (D). The fluorescence was weak and long exposure times were necessary 
(20 s in A). Scale bar 5 μm. 
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Fig. 5.2 GFP-WhiA localizes to nucleoids 
Cells of strain KS749 were grown in LB, and expression of the GFP-WhiA fusion 
was induced for 2 hours by 1 % xylose. The cells were stained by DAPI to visualize 
nucleoids before subjecting to microscopy. The background is false-coloured in 
blue. Scale bar 5 μm. 
 
 



                                                                                                                      Chapter 5.  WhiA is a DNA-binding protein 

 96

 
 

 

 
 

 
 

Fig. 5.3 High resolution microscopy shows discrete foci of GFP-WhiA over 
the nucleoids 
To improve the quality of images, strains (A) KS749 ΔwhiA amyE::Pxyl-gfp-whiA; 
(B) KS888 amyE::Pxyl-gfp and (C) KS907 whiA::PwhiA-whiA-gfp were inspected 
using a spinning disc microscope. In strain KS907 WhiA-GFP is expressed from 
its endogenous promoter. Spots of GFP signal, most probably positioned on or in 
the vicinity of the nucleoid, can be seen with both fluorescent WhiA fusions (A, 
C). In a control strain KS888 (amyE::Pxyl-gfp) where GFP alone is expressed (B), 
most of the signal is dispersed in the cytoplasm. The randomly localized spots 
are rare and can be seen after contrast enhancement of the pictures. Cells were 
grown in SMM+ medium at 30 ºC and the strain KS749 was supplemented with 
0.05% xylose. Exposure times were 500 ms. Scale bars 10 μm. 
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localization of Pxyl-driven GFP-WhiA fusion at low xylose concentration (Fig. 5.1A). 

Whether there is a constant number of foci per cell is unclear. The control strain that 

expressed GFP only formed very few fluorescent foci (Fig. 5.3B). 

 

To check whether the protein levels of both fluorescent WhiA fusions were comparable 

to wild type WhiA, the expression levels were investigated with Western Blot analysis 

using α-WhiA antibody. As seen in Fig. 5.4, addition of 0.05% xylose gives wild type 

levels of WhiA (lanes 1 and 5, respectively). This corresponds to a localization pattern 

where fluorescently tagged WhiA forms foci over nucleoids (Fig. 5.3A). The results 

also show that the intracellular levels of PwhiA- driven WhiA-GFP fusion (lane 3) is 

lower compared to wild type (lane 1). This discrepancy might be a consequence of an 

insufficient transcription of the gfp-fusion, instability of the mRNA, unprocessive 

translation or degradation of the protein. However, since the intensities of GFP in 

strains KS749 and KS907 are comparable it is likely that the GFP fusion in KS907 

masks an epitope and the efficiency of α-YvcL-Ab binding is lowered. We have not 

tested yet whether this is the case. This fusion protein also migrates more slowly in the 

gel and, even though it is 0.55 kDa smaller than the N-terminal GFP fusion, we are not 

sure what the reason for the change in the mobility is. However, all the gfp-fusions 

complemented the ΔwhiA ΔzapA double mutant (data not shown) suggesting that the 

levels of WhiA are sufficient. 

 
Fig. 5.4 Western Blot analysis of fluorescent WhiA fusions 
Wild type (KS2) (lane 1), whiA-null mutant (KS400) (lane 2), PwhiA-whiA-gfp 
(KS907) (lane 3), ΔwhiA amyE::Pxyl-gfp-whiA (KS749) (lanes 4-6) and a 
control strain KS888 (amyE::Pxyl-gfp) (lanes7-9) were grown in SMM+ 
medium supplied with xylose (0, 0.05 or 0.5%; lanes 4-6 or 7-9), 20 μg of 
total protein extract was applied on the gel and the blot was analysed using 
α-WhiA antibodies. The expression of WhiA reaches wild type levels in 
strain KS749 (0.05% xylose) (lane 5).  



                                                                                                                      Chapter 5.  WhiA is a DNA-binding protein 

 98

 

5.2.2 WhiA is not a nucleoid occlusion protein 

 

Since WhiA localizes to the nucleoid and affects cell division, it was possible that 

WhiA was involved in nucleoid occlusion. The Δnoc ΔwhiA double mutant grows as 

filaments and FtsZ is delocalized, so we could not examine whether the cells lose the 

nucleoid occlusion system. To examine this in detail we looked at the bisection of 

chromosomes by division septa after mitomycin C treatment. In cells that lack Noc and 

YneA, chromosomes are frequently bisected when these cells are treated with 

mitomycin C. This compound induces DNA damage; mainly double strand breaks that 

block replication. This results in the bisection of chromosomes since Noc no longer 

repels FtsZ from the nucleoid occupied area. To observe this it was necessary to mutate 

yneA as well to permit cell division. YneA is induced during the SOS response and it 

would otherwise have blocked cell division (Kawai et al., 2003). If WhiA was involved 

in nucleoid occlusion, we should find a comparable effect to the noc mutant. However, 

it appeared that mitomycin C does not induce increased formation of bisected 

chromosomes in ΔwhiA ΔyneA double mutant cells, suggesting that WhiA is not 

involved in nucleoid occlusion (Table 5.1).  

 Importantly, we also found that the double mutant of whiA and yneA (strain 

KS703) is 47 % longer than wild type strain, suggesting that the increase of cell length 

of whiA mutants is independent of YneA. 

 

strain genotype 
% of bisected 

nucleoids 

cell length of 
uninduced vs. 
induced cells 

(μm) 

KS701 ΔyneA::tet  17 5.4 / 5.1 

KS702 Δnoc::spc ΔyneA::tet 34 4.6 / 4.4 
KS703 whiA* ΔyneA::tet 8.8 6.6 / 7.2 

KS2 wild type - 4.5 / - 
KS696 whiA* - 6.5 / - 

 
Table 5.1 Mitomycin C does not induce increased bisection of 
chromosomes in a whiA mutant 
An exponentially growing culture (OD600~0.1) was divided and one sample 
was treated with mitomycin C (1 μg/ml) for 40 min. Then the cells were 
harvested and stained with DAPI and nile red. On the far right, the mean cell 
dimensions are indicated. 
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5.2.3 Nucleoid morphology and positioning in a whiA mutant 

 

Based on the observation that in S. coelicolor aerial hyphae of a whiASco mutant the 

DNA is dispersed throughout the whole cell, Ainsa et al. suggested that WhiASco might 

be a part of the chromosome partitioning system (Ainsa et al., 2000). In the case of the 

B. subtilis whiA mutant, however, nucleoids appear normal as judged by DAPI staining. 

However, to compare the nucleoids of wild type and a whiA mutant in more detail, we 

visualized them using a HBsu-GFP fusion. HBsu is a histone-like protein that binds 

non-specifically to DNA (reviewed in Dame, 2005) and allows for a better resolution of 

DNA than using DNA-specific DAPI staining (J.W.Veening, personal communication). 

We measured the internucleoid spaces and the length of the nucleoids in wild type and 

whiA mutant backgrounds in which filamentation had been induced artificially by 

depleting FtsZ (strains KS930 and KS931, respectively). The use of filamented cells 

enabled us to minimize the impact of cell division problems and to evaluate large 

number of nucleoids. The results in Table 5.2 and Fig. 5.5 show that in a whiA mutant 

the nucleoids are on average 14% longer than in the wild type cells. Importantly, they 

are considerably more widely separated, on average by 44%. While in wild type cells 

there is, on average, one nucleoid per each 2.2 (+/-0.37) μm, nucleoids are less frequent 

in the whiA mutant, with a nucleoid appearing each 2.86 (+/-0.17) μm, which is a 24 % 

decrease. This could indicate a delay in chromosome segregation. 

 

 
nucleoid length 

(μm) 
internucleoid 
space length 

nucleoid 
length/cell 
length ratio 

no. of nucloids 
per 1 μm 

KS930 

FtsZ
-
 

HBsu-GFP 
1.17 ± 0.13 1.04 ± 0.25 0.53 ± 0.03 0.46 ± 0.07 

KS931 

ΔwhiA FtsZ
- 

HBsu-GFP 
1.33 ± 0.10 1.49 ± 0.23 0.48 ± 0.06 0.35 ± 0.02 

fold change 1.138 1.436 0.9 0.76 

 
Table 5.2 Nucleoid morphology in ftsZ-depleted cells 
The strains used contained a HBsu-gfp fusion for the visualization of DNA, an 
inducible ftsZ allele, and in case of KS931, a disruption of whiA. Cells were 
depleted of FtsZ at 37° C for 140 minutes before subjecting to fluorescence 
microscopy. For strains KS930 and KS931, in total 955 μm and 948 μm of 
filaments were analyzed, respectively. The means were deduced from the 
averages of three independent experiments. The last row of the table indicates 
fold changes relative to wild type levels.  
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Fig. 5.5 Nucleoids are longer in a whiA mutant 
Analysis of HBsu-GFP labelled nucleoids in FtsZ-depleted cells. FtsZ was depleted 
in wild type (A) and whiA mutant (B) backgrounds (strains KS930 and KS931, 
respectively), both of which also carry the amyE::PHU-HBsu-gfp allele. For a relative 
quantification of the results, a line passing through the middle of nucleoids was 
drawn and the signal intensity was plotted against the cell length measurement. The 
resulting graphs (below microscopic figures) represent the intensity of GFP. A peak 
above the mean GFP intensity was considered as being a nucleoid, whilst the area 
below this line was considered to be an internucleoid space. The length of each 
nucleoid was measured. In three independent experiments, at least 10 graphs were 
acquired (altogether ~950 μm per strain). Scalebar 5 μm. (C) Histogram of the 
nucleoid dimensions in wild type (grey bars) and whiA mutant (black bars) FtsZ 
depleted cells.  
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5.2.3.1 Localization pattern of origins and termini of replication in a whiA mutant 

 

The nucleoids in the whiA mutant appear longer, which might be a consequence of an 

increased DNA content and over-initiation of replication. To test this hypothesis we 

visualized oriC regions in the whiA mutant using fluorescently labelled Spo0J as a 

marker of the origin. Spo0J takes part in chromosome partitioning and binds to several 

areas at and around oriC (Lin and Grossman, 1998; Lin et al., 1997). We introduced a 

spo0J-gfp fusion (source HM160) into a wild type and a ΔwhiA strain that could also be 

depleted for FtsZ. To evaluate the localization of Spo0J-GFP in filamentous cells, these 

were depleted of FtsZ and subjected to fluorescence microscopy (Fig. 5.6). After 

measuring the distances between Spo0J-GFP it appeared that this distance increased in a 

whiA mutant which formed 23% less visible foci per 1 μm of cell length. These data 

correlate well with the 24% decrease in the number of nucloids in a whiA mutant, as 

judged by HBsu-GFP localization (Fig. 5.5). This suggests the whiA mutant initiates 

replication at the same rate as wild type. 

 

Additionally, we also determined the number of nucleoid termini that can be marked by 

an RTP-GFP fusion. RTP is a non-essential replication termination protein that binds to 

ter sites near the chromosome terminus (Lemon et al., 2001). There were 24% less 

RTP-GFP- marked terminal regions of DNA in a whiA mutant depleted of FtsZ than in 

wild type, which is consistent with the oriC localization data (23% less oriC per 1μm) 

(Fig. 5.7). 

 

To exclude the possibility (although unlikely) that FtsZ depletion was responsible for 

the increased inter-nucleoid distances in a whiA mutant, we inspected cells that were not 

depleted of FtsZ. We found that in a whiA mutant there were 26% less RTP-GFP foci 

per cell length than in wild type cells (data not shown), which is in agreement with 

previous results using the FtsZ depleted strain. Interestingly, in exponentially growing 

cells without FtsZ depletion, the whiA mutant seemed to contain 13% more Spo0J-GFP 

foci per cell and was on average 28% longer than wild type (Fig. 5.8). This means that 

the whiA mutant contains 12 % less Spo0J-GFP foci per cell length, which is slightly 

more compared to situation where FtsZ is also depleted (Fig. 5.6). The nascent oriC 

regions might be difficult to distinguish microscopically since the region covered by 

Spo0J is relatively large (Lin and Grossman, 1998). That is why we performed marker 
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Fig. 5.6 Increased spacing between Spo0J-GFP foci in a filamentous whiA 
mutant 
 (A) Strains KS991 (Pspo0J-spo0J-gfp Pspac-ftsZ) and KS993 (Pspo0J-spo0J-gfp 
Pspac-ftsZ ΔwhiA) were depleted for FtsZ. Similar to Fig. 5.4, the Spo0J-GFP foci 
were connected with a line and the signal intensities were plotted into a graph. 
Each peak reaching above the median was counted as one oriC region. Two 
independent experiments were performed. Scale bars 5 μm. Graph (B) shows the 
histogram of the frequencies of the distances between Spo0J-GFP foci in both 
strains. 
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Fig. 5.7 RTP-GFP spacing increases in filamentous whiA mutant cells 
(A) Localization of RTP-GFP expressed from its endogenous promoter in 
strains KS1016 (PRTP-rtp-gfp Pspac-ftsZ) and KS1017 (PRTP-rtp-gfp Pspac-ftsZ 
ΔwhiA) after FtsZ depletion. Scale bars 5 μm. (B) Histogram shows the 
distribution of frequencies of the interfocal distances. 
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Strain   Genotype 
Average number 

of Spo0J-GFP foci 
per cell 

Average cell 
length (μm) 

Number of foci 
per 1 μm 

KS420  spo0J-gfp 2.56 ± 0.86 3.44 ± 0.86 0.74 

KS421  spo0J-gfp whiA::erm 2.88 ± 1.04 4.4 ± 1.32 0.65 

 
 

B 
         spo0J-gfp 
 
 
 
 
 
 
 
 

      Number of Spo0J-GFP foci per cell 

 

 
  spo0J-gfp whiA::pMut4 (erm) 
 
 
 
 

 
 
 
 
      Number of Spo0J-GFP foci per cell 

 
Fig. 5.8 Analysis of Spo0J-GFP distribution in a whiA mutant  
Transcription of spo0J-gfp fusion used in this experiment is driven from its 
endogenous promoter. Cells were grown in SMM+ medium at 30º C to OD~0.2 
(exponential growth) when microscopic pictures of membrane stained cells (nile red) 
were taken. Numbers of Spo0J-GFP foci per cell were counted and the cell lengths 
were measured. Cumulative results of two independent experiments are shown, 736 
and 638 cells were examined for KS420 and KS421, respectively. (A) Table shows 
the average number of Spo0J-GFP foci per cell. Although statistically significant 
(p=0.025), the change between strains KS420 (spo0J-gfp) and KS421 (ΔwhiA 
spo0J-gfp) is only 13 %. (B) Histograms of the distributions of Spo0J-GFP foci.  
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frequency analysis, which is a more precise approach. Chromosomal DNA from wild 

type and whiA mutants cells was purified, and primer sets binding to the oriC or ter 

regions were used to perform quantitative PCR. As indicated in Fig. 5.9, whiA mutants 

show a slight decrease in oriC/ter ratio, varying from 5% in the 'clean' whiA mutant 

(KS696) to 19% in the whiA deletion mutant (KS400). However, these changes are not 

statistically significant (p>0.1). On the other hand, a control strain of a spo0J mutant 

(KS382) that had previously been shown to overinitiate replication (Murray and 

Errington, 2008) shows a 57% increase of oriC:ter ratio (p<0.01). The relatively 

unchanged oriC/ter ratio in whiA mutants suggests that replication initiation remains 

unchanged.  

 In summary the whiA mutant contains less nucleoids per cell length, but cells 

initiate replication at the same rate or efficiency as wild type cells. The longer 

internucleoid spacing suggests that WhiA may influence chromosome separation. 

 

5.2.4 The lack of WhiA causes sensitivity to increased DNA replication initiation 

and to DNA damage 

 

In B. subtilis, the partitioning (par) system, required for chromosome replication and 

segregation, is represented by Soj (ParA) and Spo0J (ParB) proteins (Autret et al., 2001; 

Ireton et al., 1994). However, deletion of their encoding genes does not impose radical 

changes in nucleoid positioning (Autret et al., 2001). Taking into account the changes in 

the nucleoid spacing of whiA mutants, we were interested whether the absence of Soj or 

Spo0J would have an additional effect. Indeed, when the whiA deletion was introduced 

into spo0J and soj mutants, only tiny colonies were obtained, the cells were filamentous 

and often lysed (Fig. 5.10A). Spontaneous suppressor mutations appeared frequently, 

similarly to ΔwhiA ΔzapA double mutant. To be able to examine the phenotype more 

closely, a double Δsoj/spo0J mutation was combined with an IPTG inducible 

whiA::Pspac-whiA allele. The resulting strains KS1102 also contained plasmid pMAP65, 

which carried an additional copy of lacI to ensure tight regulation of the Pspac promoter. 

The strain was tested for growth in the presence and absence of the inducer. As shown 

in Fig. 5.10B, Δsoj/spo0J cells depleted for WhiA failed to form colonies on plates and 

were blocked in cell division. The presence of WhiA expression (IPTG presence) 

restored growth of this strain. The control strain, containing an IPTG inducible crh 

gene, shows no difference in the absence or presence of IPTG (strain KS1116). These 
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                      wt             whiA       whiA::kan      spo0J 

                    KS2           KS696        KS400         KS382 

 
B 
 

 Average ori/ter ratio 

wild type 2.39 ± 0.10 

KS696 whiA 2.27 ± 0.27 

KS400 whiA::kan 1.94 ± 0.10 

KS382 spo0J 3.75 ± 0.35 

 
 

Fig. 5.9 Marker frequency analysis of oriC and ter regions 
(A) Chromosomal DNA from wild type, KS696 (markerless whiA mutant), 
KS400 (whiA::kan) and KS382 (spo0J mutant) strains was purified and a 
quantitative PCR was performed using oriC/ter specific primer pairs. Two 
replicates were collected for DNA purification (in case of KS696 four 
replicates). The exact numbers are shown in table (B). 
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data show that the lack of Soj and Spo0J negatively affects the growth of a whiA 

mutant. 

 One of the effects of a soj and spo0J deletion is overinitiation of DNA 

replication (Murray and Errington, 2008). Since these proteins affect replication 

initiation and many other processes, we wondered whether it is the increased replication 

initiation causing lethal effects in a whiA mutant. To test this, we used a yabA deletion 

strain. YabA is a known inhibitor of the initiation of DNA replication, and its deletion 

causes rapid overinitiation (Noirot-Gros et al., 2002). Attempts to construct a double 

mutant of yabA and whiA were not successful; we obtained only a few transformants 

that formed minute colonies after more than 48 h incubation. Therefore we used again 

the inducible whiA::Pspac-whiA construct and combined it with a yabA mutation. 

Fig. 5.10C shows this strain tested for growth on plates with and without IPTG. 

Similarly to Δsoj/spo0J mutant, ΔyabA strain depleted of WhiA (KS1063) fails to grow 

without IPTG. The cells became longer and lysed frequently (Fig. 5.10D). However, the 

control strain KS1064 in which whiA is intact forms normal colonies. These data 

suggest that the lethality of the double mutant strains ΔyabA ΔwhiA and 

Δsoj/Δspo0J ΔwhiA is probably due to replication overinitiation. 

 Using a bacterial two hybrid system, we found that WhiA interacts with Spo0J 

and Soj (Fig. 5.11). WhiA levels were kept low in E. coli cells because of its toxicity for 

E. coli. This might be the reason why the interactions are not strong. This result 

suggests that WhiA may directly cooperate with Spo0J. Furthermore, WhiA did not 

interact with cell division proteins Noc, ZapA, and MinC/D. 

 

During the construction of strains we noticed that whiA mutants transformed less well 

than a wild type. The microarray analysis has not revealed changes in the transcriptional 

profile that would indicate decreased competence. That is why we thought that ΔwhiA 

might be impaired in the incorporation of DNA, which requires a recombination event. 

It has been known that rec mutants that cannot recombine are also sensitive to DNA 

damage since they cannot repair the DNA (Howard-Flanders et al., 1969; Munakata, 

1974). To test whether whiA mutation affects sensitivity to DNA damage, a dose of UV 

radiation was applied on cells and tested for survival. As seen in Fig. 5.12, wild type 

strain shows ~2-3 log decrease in cell survival. However, whiA mutant cells completely 

fail to grow (>5 log decrease) similarly to a recA mutant strain. SOS response induces 
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Fig. 5.10 Deletion of the par system (soj/spo0J) or yabA in a whiA mutant has a 
detrimental effect on cell growth 
(A) Phenotype of strains KS560 (Δspo0J::neo ΔwhiA::pMut erm) and KS562 
(Δsoj::neo ΔwhiA::pMut erm) stained with DAPI (nucleoids) and nile red 
(membranes). Scale bar 10 μm. (B) Strains KS1102 and KS1116 lack soj and 
spo0J, and carry an inducible copy of either whiA::Pspac-whiA (left) or crh::Pspac-crh 
(right), respectively. Tight regulation of the Pspac promoter is secured by the presence 
of the non-integrative pMAP65 plasmid that encodes lacI. Growth of the soj/spo0J 
mutant depends on the presence of WhiA. The control strain (KS1116) grows 
independently of IPTG. (C) Strains KS1063 and KS1064 are isogenic strains to 
KS1102 and KS1116, but instead of soj/spo0J, the yabA gene is deleted. Cells 
lacking YabA and WhiA have difficulties to grow, but the growth is restored when 
0.1 mM IPTG is added. (D) Phenotype of strain KS1063 (ΔyabA whiA::Pspac-whiA 
pMAP65) without (-IPTG) and with (+IPTG) WhiA. Scale bars 5 μm. 
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Fig. 5.11 Bacterial two hybrid system shows WhiA interacts with Spo0J 
and Soj 
WhiA was fused to the N- or C- terminus of either T18 or T25 fragment of 
adenylate cyclase protein. Boxes indicate an interaction of proteins. WhiA 
interacts weakly with Spo0J, Soj, and also self-interacts. 
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Fig. 5.12 The whiA mutant is hypersensitive to UV irradiation 
Wild type strain (KS2), the ΔwhiA::kan mutant (KS400) and a ΔrecA mutant 
were grown to OD600~0.5, diluted, and spotted onto NA plates. On the right, the 
plate was subjected to UV radiation, and it is clear that both the ΔwhiA and 
ΔrecA strains cannot recover from DNA damage.  
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expression of YneA, which is a negative regulator of Z-ring assembly (Kawai et al., 

2003). There is a possibility that production of YneA interferes with the lack of whiA, 

which inhibits division, however, this must be tested further. 

 

5.2.5 Determination of WhiA-binding sites using ChIP-on-chip 

 

To find out which DNA regions the WhiA protein associates with, we performed a 

ChIP-on-chip assay. We found that the α-WhiA antibody is of a good quality, and 

specific enough that DNA can be detected in the immunoprecipitate (IP) fraction by 

qPCR (e. g. primer pair STG410 and STG411 for rplC). The crosslinked DNA (input) 

of the wild type strain was subjected to Chromatin ImmunoPrecipitation (ChIP). Input 

and immunoprecipitated DNA were amplified, labelled and applied onto Nimblegen-

custom-made chip (~54.000 50bp oligonucleotides) which was a kind gift from 

Dr. Richard Daniel. The data was processed as suggested by the manufacturer.  

 The intensity plot in Fig. 5.13A shows enrichment of WhiA binding in several 

regions of the chromosome. Both chromosome arms contain apparent WhiA-binding 

sites. Only positions 2 - 2.8 Mb on the chromosomal map seem to be devoid of binding 

signal. Most of the binding seems to occur around strongly transcribed regions like 

rRNA and tRNA genes (Fig. 5.13C). The strongest binding signals were verified in an 

independent ChIP followed by qPCR and confirmed WhiA binding to the rplC, acoC, 

spoVID, and xynD regions (Fig. 5.13B). The highest peak indicating binding to the scpB 

gene was shown to be a result of contamination, since in an independent control ChIP, 

qPCR for this region showed similar values as that of ter, which is a region not 

occupied by WhiA, using the wild type and ΔwhiA lysates (Fig. 5.13B). Many of the 

WhiA-binding peaks seemed to cover coding regions of genes, suggesting that WhiA 

does not preferentially bind to promoter regions (Fig. 5.13D-F).  

 

To search for WhiA-specific peaks, the ChIP-on-chip profile of WhiA was compared to 

the profile of SMC (Gruber and Errington, 2009), Spo0J (L.J.Wu, unpublished) and Noc 

(Wu et al., 2009) and the peaks specific for WhiA (highlighted in red in Fig. 5.13A and 

C) were subjected to further analysis. Sequences were chosen, each containing a 

potential WhiA binding region. These sequences were analysed using a MEME 

programme (Bailey et al., 2009) to find a possible consensus binding sequence. In the 

12 sequences analysed, MEME identified a 15 bp sequence motif         

AG[CGA][TA][GC]A[AT][AT]CG[GTC][CA][TA]GC (Fig. 5.14).  
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Fig. 5.13 Determination of the WhiA binding sites on the chromosome of B. subtilis  
(A) ChIP on chip analysis of WhiA distribution on the chromosome. Cells of a wild 
type strain (KS2) were grown in SMM+ medium, and after ChIP the fragmented DNA 
was applied on a microarray slide containing genomic-wide probes. The results show 
averaged immunoprecipitated/total DNA (IP/IN) ratios. WhiA binds to highly expressed 
regions (rRNA and tRNA) and also to coding regions. The profile of microarray 
analysis was compared to that of the SMC, Spo0J and Noc (referenced in text), and 
WhiA-specific binding sites are highlighted in red.  
(B) Verification of ChIP on chip data in an independent ChIP experiment. Cells of wild 
type (KS2) and a whiA mutant  (KS696) were subjected to ChIP and qPCR. As seen in 
the graph, rplC (next to rplB), acoC, spoVID and xynD are enriched in the wild type 
sample eluate. However, using the whiA mutant lysate only residual DNA is detected in 
the eluate.  
(C) Abundant distribution of WhiA at the region with high transcriptional activity 
(position 0-250 bp). 
(D-F) Detailed distribution of WhiA binding sites around acoC, spoVID and xynD 
regions. The maxima of the peaks fall into their coding regions (in grey).  
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Fig. 5.14 Analysis of WhiA binding sites on DNA 
(A) The sequences of different WhiA binding sites were collected, whereby 
sites that were also found to be bound by Smc, Noc and Spo0J, were ignored. 
Sequence analysis using the MEME programme (Bailey et al., 2009) showed a 
potential recognition sequence of 15 bp in length (in colour). (B) The sequence 
conservation of a possible binding site of WhiA (E value = 7,6 x 10-30). 
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As seen in Fig. 5.15A, WhiA binds also near the yvcI-N operon, in the region of the 

upstream trxB and yvcE genes. However, the maximum binding omits the promoter of 

yvcI-N operon, which is located just before the yvcI gene. This is in agreement with our 

result showing that WhiA does not regulate its own expression (Fig. 4.2B, strain 

KS696). Interestingly, this region is occupied also by SMC, which is a protein required 

for the maintenance of chromosomes (Gruber and Errington, 2009). We also saw no 

binding of WhiA to the the promoters of ftsAZ and soj-spo0J operons, which correlates 

with the microarray data. (Fig. 5.15B, C). 

 

In summary, WhiA binds about 12 regions on the chromosome of B. subtilis that are not 

occupied by SMC, Spo0J or Noc proteins. However, there are other WhiA-bound 

regions that are recognized by at least one of these proteins. In the case of Spo0J, they 

may bind the same DNA sequences since we found WhiA to interact with Spo0J in a 

bacterial two hybrid system. Nevertheless, amongst WhiA-specific sequences a 15 bp 

binding motif was identified, but further experimental data is needed to investigate what 

is the significance of this sequence. 

 

One of the highest peaks was found near the xynD gene (Fig. 5.13F), which neighbours 

a specific dif site which is important for chromosome dimer resolution to segregate 

chromosomes (Kuempel et al., 1991; Sciochetti et al., 2001). Since the nucleoids of a 

whiA mutant are longer, and WhiA might be involved in recombination, possibly at dif, 

we tested the effect of spoIIIE deletion on a whiA mutant. SpoIIIE can pump trapped 

chromosomes in the septum (Wu and Errington, 1994), resulting from corrupt 

chromosome segregation, which would be a consequence of inadequate chromosome 

recombination. The double mutant of spoIIIE and whiA was easily obtained, showed no 

marks of chromosome bisection or formation of anucleate cells (Fig. 5.16). This result 

suggests that WhiA is dispensable for chromosome resolution, or it may be an 

indication of a functional redundancy. 

 

An interesting question also is, whether WhiA would bind the same chromosomal 

regions if placed in trans. In fact, we constructed mutants in acoC, spoVID and xynD 

genes (that show WhiA binding) and aimed to place the genes into an ectopic locus, 

amyE (which shows no WhiA binding). It would be interesting to see whether WhiA 

still binds these DNA fragments but further investigation is needed. Unpublished 
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Fig. 5.15 Detailed distribution of WhiA near the yvcI-N (A), ftsAZ (B) and 
the soj-spo0J (C) operons  
The promoter regions of the operons are marked by asterisks.The signal in 
graph (A) is concentrated in the region of yvcE and trxB genes. The protein 
does not seem to bind to the ftsAZ (B) or soj-spo0J (C) regions. 
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Fig. 5.16 Deletion of spoIIIE does not alter the whiA mutant phenotype 
Exponentially growing wild type (A), ΔspoIIIE (B), ΔwhiA (C), and ΔspoIIIE 
ΔwhiA (D) cells in LB medium at 37 ºC were stained with nile red (membrane, 
middle panels) and DAPI (DNA, right panels) and subjected to fluorescent 
microscopy. Strains used for this study: KS2, KS381, KS207, KS559. Scale bar 
5 μm. 
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evidence from Dr. Stephan Gruber suggest that trnS (tRNA), which is bound by WhiA, 

attracts WhiA when it is placed on pLOSS* plasmid. These initial results imply that 

WhiA binds to specific regions with no regard to the topological context (either plasmid 

or out-of locus location), suggesting it recognizes specific DNA motifs and binds them. 

It would be interesting to experimentally test the proposed consensus sequence for 

WhiA binding, mainly in vivo (using truncated versions of DNA fragments, placing 

them on e. g. pLOSS plasmid).  

 

5.2.6 WhiA-His6 binds DNA in vitro  

 

To determine whether WhiA binds DNA directly, we purified the protein as 

a WhiA-His6 tagged fusion in E. coli. We found that WhiA-His6 is toxic for E. coli and 

precipitates from solutions easily. In addition, purified protein always carried 

contaminant DNA from E. coli. However, by preparing freshly purified WhiA-His6 it 

was possible to perform an EMSA (electrophoretic mobility shift assay) experiment. 

After elution, the fraction containing the highest WhiA-His6 concentration (~0.2 mg/ml 

on SDS PAGE gel) was used for EMSA using an agarose gel (Fig. 5.17). At this stage 

of our research, we had not yet obtained the ChIP-on-chip data results, and that is why 

the DNA fragments used for EMSA corresponded to the region upstream of whiA (A) 

and the whiA intragenic region (B). As shown in Fig. 5.17A, the mobility of DNA 

fragments correlated with the amount of protein added, suggesting a direct binding of 

the DNA by WhiA-His6. The fusion protein is not fully functional since it does not 

recover growth of the ΔwhiA ΔzapA double mutant strain, and such strain is 

filamentous. Furthermore, the DNA sequences used for EMSA were later not found to 

be enriched by WhiA in a ChIP-on-chip experiment (Fig. 5.15A), suggesting that the 

WhiA-His6 binds DNA unspecifically. However, further experiments are required to 

elucidate this. 
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Fig. 5.16 WhiAHis6 binds DNA in vitro 
(A) The 412-bp DNA fragment upstream of whiA and (B) the 571-bp whiA 
intragenic regions were mixed with an increasing amount of the protein 
(lanes 2-4 and 6-8) (described in Materials and Methods) and used for EMSA 
in 1.5 % agarose gel. BSA was added to DNA as a negative control (lanes 5 
and 9). A DNA shift is not observed at the lowest WhiAHis6 concentration 
(lanes 2,6). With increasing protein concentrations the DNA bands disappear 
and in (A) there is a new low mobility band visible. (C) A fraction of the 
purified WhiAHis6 used for EMSA analysis run on PAGE. 
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5.3 Discussion 

 

 

In the whiA mutant, when forced to grow as filament by FtsZ depletion, the nucleoids 

are widely spaced when compared to wild type (44%). This result strongly implies that 

the lack of WhiA leads to a delay in nucleoid segregation or to a defect in nucleoid 

architecture.  

 The lack of known segregation proteins, Spo0J or SMC, leads to formation of 

anucleate cells resulting from corrupted segregation (Britton and Grossman, 1999; 

Ireton et al., 1994), however whiA mutant does not form anucleate cells. This might be 

due to presence of other redundant/functional counterpart(s) of WhiA. We sought to 

uncover this by deleting spoIIIE, encoding a translocase that pumps trapped 

chromosomes through the divisome machinery and thus rescues unsegregated 

chromosomes from bisection (Britton and Grossman, 1999; Sharpe and Errington, 

1995). However, we did not notice any striking phenotype of a ΔspoIIIE ΔwhiA mutant, 

indicating that the WhiA effect on segregation is not strong enough to be unmasked by 

spoIIIE deletion. SftA is another protein with similar function to SpoIIIE (Biller and 

Burkholder, 2009; Kaimer et al., 2009), but presumably acts earlier than SpoIIIE, yet 

before septum closure (Kaimer et al., 2009). It may be possible that SftA is capable to 

avoid bisection of chromosomes in a ΔspoIIIE ΔwhiA mutant. It would be interesting to 

test the phenotype of a triple ΔsftA ΔspoIIIE ΔwhiA mutant.  

 The other speculation, that WhiA might be involved in chromosome architecture 

is based on the nucleoid dimensions in whiA mutant cells. Furthermore, in the 

sporogenic hyphae of S. coelicolor, the lack of WhiASco causes delocalization of ParB 

and the DNA becomes dispersed (Flardh et al., 1999), suggesting a role for WhiASco in 

chromosome organization. In B. subtilis, however, the mutation of whiA does not induce 

dislocalization of Spo0J and the nucleoids are only mildly affected when compared to 

whiASco mutant. This discrepancy may have to do with the linearity of chromosomes of 

S. coelicolor, or multiplicity of nucleoids (>50 per one aerial hypha). 

 It has been shown that proteins implicated in chromosome architecture are also 

important in, for example, recombination, since it often requires DNA bending 

(Rowland et al., 2005). This would correspond with detected increased sensitivity to 

UV and lower genetic competence of a whiA mutant. However, these results must be 

tested further, particularly whether DNA damage is lethal for whiA mutant 
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independently of YneA, and to show whether lowered competence is imposed by 

defects in recombination. 

 

The evidence implicates the chromosome replication rate as important in cells lacking 

WhiA due to the synthetic lethal effects of ΔwhiA Δspo0J/soj and ΔwhiA ΔyabA double 

mutants. In these strains the DNA segregation is not disrupted since we have not 

observed anucleate cells or frequently bisected chromosomes. WhiA also does not seem 

to alter the replication initiation rate since the occurence of oriC and ter sites is 

concurrently decreased (23-24%) in whiA mutant cells depleted of FtsZ, and marker 

frequency analysis has shown similar ori/ter ratios in wild type and whiA mutant cells. 

This suggests that the block in division in these double mutants is not caused by 

interference and hyperinitiation of replication. Nevertheless, WhiA becomes essential 

upon DNA overinitiation. 

 We also considered that WhiA might influence the progression of replication. In 

vegetatively growing 'healthy' cells the replication machinery becomes stalled 

frequently in every cell cycle and replication must be reactivated (reviewed in(Cox et 

al., 2000; Kreuzer, 2005). Recently, Bernard et al. have shown that the introduction of a 

replication roadblock into the chromosome induces cell and nucleoid elongation and the 

nucleoids fill the cellular volume (Bernard et al., 2010). Similarly, whiA mutant cells 

and their nucleoids are longer. Mutation of priA, which is responsible for replication 

restart, has pleiotropic effects including poor cell viability and sensitivity to UV 

radiation (Polard et al., 2002). WhiA was not found to be a part of the complex of 

proteins around PriA (Costes et al., 2010). Moreover, the ratio of ori/ter in whiA 

mutants is not altered, suggesting the replication is not slowed down rapidly. These data 

suggest that the lack of WhiA probably does not decrease the efficiency of stalled 

replication forks reactivation.  

 

The dif site is near the terminus of replication and is essential for resolution of 

chromosome dimers that arise from recombination between sister chromatids (Kuempel 

et al., 1991). We think WhiA might be involved in this process. Firstly, ChIP-on-chip 

analysis revealed that WhiA binds to the region of xynD region which is close to the dif 

site (1915 bp) and may become even more proximal to the dif as the DNA bends. In 

B. subtilis, the two recombinases essential for chromosome dimer resolution are CodV 

and RipX (Sciochetti et al., 2001; Sciochetti et al., 1999). The absence of these proteins 

or the dif site results in filamentous cells and frequently unsegregated chromosomes 
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(14-25% of cells with partitioning defects) and they also form anucleate cells (0.83-

1.6%) (Sciochetti et al., 2001). We have not observed such a phenotype in whiA 

mutants, suggesting WhiA may fulfil only additional function during this process. 

Secondly, longer nucleoids separated by longer distances in a whiA mutant might be due 

to a delay in chromosome resolution. Thirdly, WhiA may be involved in recombination 

since it does not recover growth after exposure to UV radiation, although we must 

analyze whether YneA induction during SOS response does not exaggerate the division 

phenotype of a whiA mutant. Further investigation is needed to explore implementation 

of WhiA in chromosome dimer resolution. 

 B. subtilis translocase SpoIIIE is dispensable for recombination at dif site 

(Sciochetti et al., 2001). This might be the reason why we did not detect a partitioning 

defect when spoIIIE and whiA genes were deleted.  

 

WhiA contains two DNA-binding domains, and both are required for sufficient DNA 

binding (Fig. 3.15 and Fig. 4.1) (Kaiser et al., 2009; Knizewski and Ginalski, 2007). 

The N-terminal domain contains two LADLIDADG motifs and a unique N-terminal α-

helix that makes contacts with them (Kaiser et al., 2009). The C-terminal domain which 

shares a helix-turn-helix fold is also very conserved (Knizewski and Ginalski, 2007). 

We have constructed several WhiA truncations (fused to GFP) to determine whether 

both domains are required for the function of WhiA in cell division (data not shown). 

However, all were dysfunctional and showed a dispersed GFP signal (truncations of 

WhiA which is 316 amino acid full length: 39-316, 138-316, 184-316, 1-279, 1-255, 1-

202). Western blot analysis indicated that the fusions were degraded. These preliminary 

data suggest that a full length WhiA is required for its function; however, this must be 

tested further. It was indicated that DNA must be bent to allow binding by the 

helix-turn-helix of WhiA (Kaiser et al., 2009). The authors concluded that it is possible 

that WhiA utilizes the N-terminal domain for this purpose, and the inability to construct 

functional truncations of WhiA supports this notion. It would be interesting to 

investigate point mutants in the conserved amino acid residues of WhiA (Fig. 3.15, in 

boxes). 

 

 



 

 122

 

 

 

 

 

Chapter 6 

 

Identification of suppressor mutations of ΔwhiA 
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6.1 Introduction 

 

To gain more insight into the function of WhiA we set out to search for mutations that 

suppress the deleterious ΔwhiA ΔzapA double mutant phenotype. In fact the 

ΔwhiA ΔzapA double mutant forms spontaneous mutants with high frequencies. It is 

unlikely these spontaneous mutants are revertants since we used complete gene 

knock-outs. We tried to use transposon mutagenesis to map these mutations but with no 

success. We therefore employed our synthetic lethal screen but this time selected for 

mutants that would have lost the pLOSS plasmid and would be white on X-gal plates. 

We took the ΔwhiA ΔzapA double mutant which was kept fit by the presence of the 

pLOSS plasmid that contained yvcL (whiA), and thus formed blue colonies on X-gal 

plates. This strain was then subjected to a transposon mutagenesis, with the aim of 

identifying white colonies, in which the pLOSS-YvcL was no longer essential. 
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6.2 Results 

 

We used strain KS742 that contained a markerless whiA deletion, a tetracycline 

resistance cassette that replaced the entire zapA-yshB operon, the pLOSS-YvcL plasmid 

and a deletion of the lacA gene. Following transposon mutagensis, 36, 000 colonies 

were screened on X-gal plates. 82 white colonies were selected and their chromosomal 

DNA was backcrossed into a conditional whiA ΔzapA mutant strain (KS856). Seven 

clones contained a mutation that enabled strain KS856 to grow in the absence of IPTG 

(Fig. 6.1). The transposon insertions were mapped by reversed PCR, as previously 

described, and the genes that contained a transposon insertion are listed in Table 6.1. 

 

gene function cellular process 

braB possible branched aminoacid 
transporter 

amino acid metabolism 

ggaB sugar transferase glycosylation of teichoic acids 
 

gtaB 
(found 2x) 

UTP-glucose-1-phosphate 
uridyltransferas 

glc1-PUDP-glc conversion 

pgcA phosphoglucomutase couples cell division to cell mass 

speD S-adenosyl-methionine  
decarboxylase   

aminoacid transport & 
metabolism 

yusB methionine transporter amino acid metabolism 

 
Table 6.1 Summary of supressor mutations of ΔwhiA ΔzapA found in the 
suppressor screen 
Two different transposon insertions were found in the gtaB gene. References in 
text. 

 

 

6.2.1 Characterization of the ΔwhiA ΔzapA suppressors 

 

To check whether the suppressor mutations restored normal cell division, the strains 

were grown in LB without IPTG and examined by microscopy (Fig. 6.2). The strongest 

restoration of cell division (cell length) was observed with the transposon insertions in 

pgcA and gtaB. These genes have been shown to be involved in the coordination of 

growth rate and cell division (Weart et al., 2007), and they are involved in maintaining 

UDP-Glucose levels, which is a precursor of wall teichoic and lipoteichoic acids
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Fig. 6.1 Suppressors of ΔwhiA ΔzapA 
Suppressor mutations were introduced into strain KS859 (ΔzapA Pspac-whiA 
aprE::lacI) and tested for colony formation on plates with or without IPTG. All 
strains grow well in the presence of IPTG (whiA+ background). The 
introduction of transposon mutations in braB, ggaB, pgcA, speD, and yusB, 
recovered growth of KS859 despite the absence of IPTG (left panel). 
Introduction of a ugtP mutation gave similar results. 
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Fig. 6.2 Phenotypes of suppressed ΔwhiA ΔzapA mutants 
Strains were depleted for WhiA in liquid LB medium. (A) Formation of filamentous 
cells in parental strain KS859 (Pspac-yvcL ΔzapA aprE::lacI) in the absence of IPTG. 
The cells lack septa as judged from a membrane stain (nile red). (B) Introducing 
transposon insertions in braB, gtaB, pgcA or speD (strains KS883, KS875, KS878, 
KS887, respectively) recovered the ability to form septa when grown without IPTG. 
Scale bars 10 μm. 
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 (Lazarevic et al., 2005) (Fig. 1.9 and 6.5). The key regulator in this pathway is UgtP. 

This is a multifunctional protein that is a sugar transferase involved in the synthesis of 

an anchor for the lipoteichoic acids (Jorasch et al., 1998; Lazarevic et al., 2005), it 

catalyzes the last step in the synthesis of glycolipids (Jorasch et al., 1998; Price et al., 

1997) and it also binds directly to FtsZ and inhibits assembly of protofilaments (Weart 

et al., 2007). Mutations in pgcA, gtaB and ugtP result in an increase in division 

frequency and shorter cells (Lazarevic et al., 2005; Weart et al., 2007). Since we found 

transposon insertions in pgcA and gtaB, we wondered whether a deletion of ugtP would 

have a similar effect. An ugtP mutation was introduced into strain KS859 and tested for 

IPTG dependency. As shown in Fig. 6.1, deletion of ugtP suppresses the reduction in 

growth of a ΔwhiA ΔzapA mutant as well. These data suggest that the synthetic lethality 

of a ΔwhiA ΔzapA might originate from a disability to coordinate cell-division timing 

with the cellular metabolic status. At this stage however, we cannot definitely exclude 

that the suppression is imposed by altered cell wall structure. 

 

6.2.2 Shortening of cell length by mutations in braB, ggaB, gtaB, pgcA, and ugtP 

 

As shown above (Fig. 3.3), whiA mutants form longer cells, presumably as a result of 

delayed division. We examined whether the transposon suppressors were able to 

stimulate division and reduce the average cell length of a whiA mutant. As shown in 

Table 6.2, it is clear that ΔwhiA cells are shorter in the presence of disruptions of braB, 

ggaB, gtaB, pgcA or ugtP.  

 

Since most suppressors reduce the length of whiA mutant cells, the question arises as to 

whether the transposon mutations would suppress the other filamentous double mutants 

including ΔezrA ΔwhiA and ΔminJ ΔwhiA. To test this we constructed strains bearing an 

inducible Pspac-whiA, one of the transposon mutations, and a deletion of ezrA or minJ. 

From the combinations tested, only mutations in pgcA and gtaB were able to restore 

normal growth in an ezrA mutant depleted of WhiA (Fig. 6.3). The recovered cells form 

minicells, which we have not observed in suppressed ΔwhiA ΔzapA backgrounds. We 

have not yet tested the ugtP mutation but it is very likely that it would also rescue 

ΔezrA ΔwhiA mutant.  
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Table 6.2 Cell lengths of whiA mutants combined with suppressor 
mutations 
Exponentially growing cells were stained with the fluorescent membrane 
stain (FM5-95) for cell length measurement. SD = standard deviation. 
 

 

Next, we examined whether the strongest suppressors, ΔpgcA and ΔugtP, would be able 

to suppress the lethal ΔyabA ΔwhiA combination as well. Mutations in either pgcA or 

ugtP were introduced into strains KS1063 and KS1064 and the resulting strains were 

tested for IPTG dependency. As shown in Fig. 6.4, neither ΔpgcA (KS1071) nor ΔugtP 

(KS1069) were able to rescue ΔyabA mutant cells depleted of WhiA. We noticed that 

strain KS1071 does not grow well on media with IPTG. It was shown that the loss of 

pgcA leads to an increased frequency of bisected nucleoids, which is a consequence of 

uncoupled Z-ring assembly from chromosome segregation (Weart et al., 2007). Possibly 

the combination of ΔpgcA with the DNA replication overinitiation caused by ΔyabA 

poses a severe pressure on the coordination of chromosome segregation and cell 

division. However, a control strain where the WhiA expression remained intact (strain 

KS1072), grows well. We think the ΔpgcA ΔyabA mutant requires also optimal WhiA 

levels for growth, but this must be tested further. 

strain genotype 
cell length 

(μm) 
±SD 

% relative 
to wt 

KS2 wt 4.92 1.16 100 

KS696 ΔwhiA 7.48 3.50 152 

KS904 ΔbraB ΔwhiA 4.44 1.18 90 

KS1025 ΔggaB ΔwhiA 5.27 1.66 107 

KS902 ΔgtaB ΔwhiA 4.69 1.13 95 

KS903 ΔpgcA ΔwhiA 4.48 1.19 91 

KS905 ΔspeD ΔwhiA 6.80 4.10 138 

KS1015 ΔugtP ΔwhiA 3.99 1.00 81 

KS1026 ΔyusB ΔwhiA 5.81 4.42 118 
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Fig. 6.3 Deletions of pgcA and gtaB rescue the ΔezrA ΔyvcL double mutant 
(A) Parental strain KS873 (ΔezrA Pspac-yvcL lacI), (B) KS925 bearing also transposon 
insertion in gtaB, and finally (C) KS927 carrying a transposon insertion in pgcA. Cells 
were grown in LB with IPTG (left panels), or without IPTG (right panels). Suppressor 
mutations gtaB and pgcA reverse the filamentous phenotype of ΔezrA ΔwhiA double 
mutant (B) and (C). Minicells are indicated by arrows. Scale bars 5 μm. 
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Fig. 6.4 Disruption of pgcA or ugtP does not rescue the ΔwhiA ΔyabA 
double mutant 
Strains containing a yabA deletion and Pspac-whiA or Pcrh-crh were streaked on 
plates with or without IPTG (clockwise: KS1064, KS1070, KS1072, KS1071, 
KS1069, KS1063).  
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6.3 Discussion: Possible mechanisms of suppression 

 

PgcA and GtaB are directly involved in the conversion of Glucose 6-P to UDP-Glucose 

(UDP-Glc), which is the substrate for the synthesis of cell wall polymers such as minor 

and major wall teichoic acids (WTA) (Honeyman and Stewart, 1989; Lazarevic et al., 

2002; Lazarevic et al., 2005; Mauel et al., 1991) and it is a precursor for synthesis of the 

membrane anchor of the lipoteichoic acids (LTA) catalyzed by UgtP (Jorasch et al., 

1998) (Fig. 6.5). The availability of UDP-Glc modulates the cellular localization of 

UgtP. At high UDP-Glc concentration UgtP localizes to the midcell where it inhibits the 

Z-ring formation by a direct interaction with FtsZ (Weart et al., 2007) (see Fig. 1.9). 

The GgaB protein is involved in a process that utilizes UDP-Glc for glycosylation of 

teichoic acids (Freymond et al., 2006) and is thus functionally linked to the 

UgtP-mediated regulation of FtsZ polymerization. It seems that uncoupling cell division 

from the sensing of the internal UDP-Glc concentration by mutations in pgcA, gtaB, 

ugtP or ggaB forces the otherwise filamentous double mutant ΔwhiA ΔzapA cells to 

divide.  

 

BraB is a putative branched chain aminoacid transporter. The transposon insertion in the 

coding region of braB might have affected the expression of the neighbouring 

convergently transcribed gene ezrA. The reading direction of the kanamycin marker of 

the transposon runs in the opposite direction of the ezrA gene so it was possible that the 

ezrA expression had been altered. We found that, unlike the ezrA mutant (Claessen 

et al., 2008), the braB transposon mutant is not sensitive to high salt concentrations, 

suggesting that it is unlikely that the transposon insertion inhibits the expression of ezrA 

(data not shown). Moreover, a reduction in ezrA expression would make a whiA mutant 

sick. Branched chain aminoacids (BCAA) (leucine, isoleucine, valine) are the most 

frequent aminoacids in proteins (Shivers and Sonenshein, 2004; Tojo et al., 2005) and 

are utilized also for the synthesis of membrane lipids (reviewed in (Fujita, 2009). They 

also modulate the activity of a global transcriptional regulator CodY (Shivers and 

Sonenshein, 2004) by a direct interaction (Tojo et al., 2005). However, we found no 

medium dependency of the ΔwhiA ΔzapA double mutant (data not shown), suggesting 

that amino acid availability is an unlikely cause of this synthetic effect. 
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Fig. 6.5 Schematic representation of the metabolic pathway leading to 
regulation of cell division through UDP-Glucose (UDP-Glc) and UgtP 
Glucose 6-P (Glc 6-P) is converted into α-Glc 1-P which is metabolized into 
uridine-5’-diphosphoglucose (UDP-Glc). UDP-Glc is utilized by various 
proteins, one of them is UgtP. UgtP is a negative regulator of FtsZ assembly and 
its cellular localization depends on the concentration of UDP-Glc (see also 
Fig. 1.9). Hence, UDP-Glc serves as a signal to postpone cell division at high 
levels of nutrients. Referenced in text. Adapted after (Lazarevic et al., 2005) and 
(Weart et al., 2007). 
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Another bypassing mutation was a transposon insertion in speD. SpeD is an 

S-adenosinemethionine decarboxylase involved in the production of spermidine 

(Sekowska et al., 2000). Spermine and spermidine are important polyamines for DNA 

synthesis, gene expression and protection of cells from free radicals. The last transposon 

insertion was identified in a yusB gene, encoding for an ABC transporter for methionine 

that becomes essential for cells grown at low methionine concentrations (Hullo et al., 

2004). We have not yet tested these two suppressors in great detail. 

 

The deletion of whiA in B. subtilis is not manifested by a strong phenotype but it is 

synthetically sick when combined with mutations in cell division genes. At least in the 

case of ΔwhiA ΔzapA double mutant, this phenotype can be ameliorated by 

overexpression of FtsZ. The filamentous phenotype can also be suppressed by the 

introduction of pgcA or ugtP mutations which were previously shown to cause recovery 

of a strain with MinC overexpression (Weart et al., 2007). Since we have found that 

transposon mutations in these genes suppress the ΔwhiA ΔzapA mutant, this provides 

more ammunition for a model in which WhiA acts at the level of Z-ring formation.  

 

Our screen for suppressor mutations has not been completed yet and there are more 

possible adepts to be verified. These preliminary candidates include: zwf, adaB, lytD 

and gltT and it might be interesting to inspect them in a detail. 
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7.1 Summary 

 

More than a dozen proteins have been shown to regulate the assembly of the FtsZ-ring, 

which marks the first step in bacterial cell division. In this study, we focused on cell 

division in the Gram-positive model organism, B. subtilis. The aim was to find novel 

cell division protein(s) using a genetic approach developed in our laboratory. Using this 

tool called synthetic lethal screen that is based on the instability of a plasmid, we 

succeeded in discovering a novel cell division protein in B. subtilis: YvcL. Based on the 

strong sequence homology with the S. coelicolor protein WhiASco, we proposed to 

rename YvcL to WhiA. We found that WhiA is important for Z-ring formation, and 

thus acts early in cell division. This was supported by several lines of evidence. Firstly, 

mutations in other cell division mutants (zapA, ezrA, minCD or noc) have detrimental 

effect when combined with a whiA knockout, and this was caused by a strong reduction 

in Z-rings in these double mutants. Secondly, the whiA mutant is hypersensitive when 

FtsZ is expressed at low levels. Thirdly, FtsZ overexpression restores division of the 

ΔwhiA ΔzapA double mutant. And fourthly, deletion of ugtP, encoding a negative 

regulator of Z-ring assembly, ameliorates the ΔwhiA ΔzapA double mutant. The deletion 

of whiASco in S. coelicolor has been associated with sporulation deficiency (Ainsa et al., 

1999; Flardh et al., 1999). In B. subtilis, however, deletion of whiA does not block 

sporulation. Moreover, we found that WhiA is constitutively expressed. WhiASco has 

been postulated to be a transcriptional regulator (Ainsa et al., 2000; Knizewski and 

Ginalski, 2007) so we tested whether this was the case for WhiA. The whole genome 

microarray analysis of a B. subtilis whiA mutant and the conjoined verification results 

do not support a role for WhiA as a transcriptional regulator. Nevertheless, WhiA binds 

DNA, and in vivo fluorescently labelled WhiA forms faint spots occupying the nucleoid 

area. Using ChIP-on-chip analysis several DNA binding sites were revealed. They 

covered both chromosome arms and only positions 2-2.8 Mb on the chromosomal map 

were lacking strong WhiA binding. Many strong peaks on the array corresponded to 

strongly transcribed regions around oriC. WhiA binds near the dif site, which is 

essential for resolution of chromosome dimers. We proposed a possible consensus 

sequence for WhiA binding. We also found that deletion of whiA causes sensitization to 

DNA overreplication since introduction of mutations in soj/spo0J and yabA into whiA 

mutant cells had detrimental effects on cell growth. Moreover, cells lacking WhiA 

display morphological changes in the size and positioning of nucleoids that become 
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longer and are separated by wider spaces. We think that WhiA regulates processes that 

are important for maintenance of chromosomes or chromosome segregation, but how 

this is related to cell division we do not know.  

 

7.2 Possible dual implementation of WhiA  

 

Based on our results, we think that WhiA is a protein with two, apparently distinct 

functions. This is supported by the fact that ΔpgcA and ΔugtP can suppress lethality of 

the ΔwhiA ΔzapA double mutant strain, yet they fail to restore growth of a 

ΔwhiA ΔyabA double mutant. Moreover, overexpression of FtsZ only partially rescues a 

ΔwhiA ΔzapA mutant, and although cell division is restored, growth rate is still affected. 

So what is the function of WhiA in cell division? WhiA acts early during the cell 

division process and promotes the FtsZ ring assembly (see chapter 3.3). As yet it is 

unclear how exactly WhiA cooperates in this process. FtsZ levels remain constant in a 

whiA mutant, therefore we assume that other cell division proteins acting on FtsZ 

polymerization may be affected. WhiA is also involved in chromosome dynamics 

possibly at the level of chromosome segregation, and/or architecture. It might be that 

this role indirectly influences cell division. One example is induction of SOS response 

protein YneA (Kawai et al., 2003), although this is not likely since the phenotype of 

whiA mutant is YneA independent. The other possibility is the DnaA-directed 

expression of FtsL which is an essential component of the divisome (Goranov et al., 

2005). This is supported by the fact that WhiA interacts with Spo0J and Soj proteins 

that modulate the activity of DnaA (Murray and Errington, 2008). This would make 

WhiA one of the few proteins that link chromosome replication with cell division and it 

would be interesting to study this possibility. 

 

7.3 Future prospects 

 

Since the structure of WhiATm (from T. maritima) is available (Kaiser et al., 2009), it 

may now be feasible to find mutants in WhiA that can separate both activities, one in 

cell division and one in chromosome dynamics. This might shed more light into 

pleiotropic effects of WhiA.  

 Since WhiA is a conserved protein, solving its function in B. subtilis might make 

possible further investigation of cell division and development in other Gram-positive 

bacteria such as Streptomyces spp. 
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Appendix 1 Solutions 
 
 
 
4x Binding buffer 40% glycerol 
   80 mM Tris HCl, pH 8.0 
   400 mM KCl 
   20 mM MgCl2 
   2 μM DTT 
   100 μg/ml BSA 
 
Blocking buffer  5% Milk powder in PBS 
   0.1% Tween 
 
Buffer A   50 mM Tris·HCl, pH 8.0 
   100 mM NaCl 
 
Buffer AK  100 mM KCl 
   50 mM Tris·HCl, pH 8.0 
   20 mM imidazole 
   5% glycerol 
 
Buffer BK  1 M KCl 
   50 mM Tris·HCl, pH 8.0 
   20 mM imidazole 
   5% glycerole 
 
CAA (casamino acids) 20% casamino acids 
 
 

Ferric ammonium citrate 2.2 mg/ml Ferric ammonium citrate 
 
PBST   0.1% Tween20 in PBS 
 
PBSTM  0.25% skimmed milk in PBST 
 
pronase solution  10 mg/ml protease type VI (Sigma) in TES 
 
2 x sample buffer 125 mM Tris HCl, pH 6.8 
   20 % glycerol 
   10 % β-mercaptoethanol 
   4 % SDS 
   0.005 % bromphenol blue 
 
10x SDS running buffer for WB 0.25 M Tris 
     1.92M glycine 
     1% SDS 
 
SMM (Spizizen minimal medium)  0.2% (NH4)2SO4 

     1.4% K2HPO4 

     0.6% KH2PO4 
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     0.1% sodium citrate 
     0.02% MgSO4 

     adjust the volume to 1 l with dH2O 
 
Solution D  0.1 M CaCl2 

 
Solution E  40% D-glucose 
 
Solution F  1 M MgSO4 

 
Solution G  25 g Oxoid Casein hydrolysate 
  11.7 g sodium glutamate 
  3.125 g L-alanine 
  3.48 g L-asparagine 
  3.4 g KH2PO4 

  1.34 g NH4Cl2 

  0.27 g Na2SO4 

  0.24 g NH4NO3 

  2.45 g FeCl3·6H2O 
  adjust the volume to 1 l with dH2O 
 
Solution H  50 mM MnSO4 

  fill up to 1 l with dH2O 
 
Solution P 40% methanol 
  12% acetic acid 
 
STOP dye (6x DNA loading dye) 0.04% bromphenol blue  
     50% glycerol 
 
TB buffer  10 mM PIPES (or HEPES) 
   55 mM MnCl2 
   15 mM CaCl2 
   250 mM KCl 
   adjust the pH 6.7 
   add MnCl2 to a final concentration of 55 mM and filter sterilize 
 
50× TAE buffer  2 M Tris pH 8 
   50 mM acetic acid 
   100 mM EDTA 
 
TE buffer   10 mM Tris, pH 8 
   1 mM EDTA 
 
10× TES buffer 0.2 M Tris pH 7.5 
   5 mM EDTA 
   100 mM NaCl 
 

Transfer Buffer  0.5 x SDS running buffer 
   20% methanol 
   dH2O  
 
Tryptophan solution  2 mg/ml tryptophan 
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Appendix 2 Growth media 
 
 
 
CH medium   200 ml solution G 
   2 ml tryptophan solution 
   0.4 ml solution H 
   0.2 ml solution D 
   0.08 ml solution F 
 
Competence medium  10 ml SMM 
SMM+   0.125 ml solution E 
   0.1 ml tryptophan solution 
   0.06 ml solution F 
   0.01 ml CAA 
   0.005 ml ferric ammonium citrate 
 
DSM medium  modified after (Schaeffer et al., 1965) 
   8 g Nutrient Broth powder (Difco) 
   1 ml solution F 
   1 g KCl 
   adjust the volume to 1 l with dH2O, autoclave add the following: 
   10 ml solution D 
   2 ml solution H 
 
LB medium   10 g Tryptone 
   5 g Yeast extract 
   10 g NaCl 
   adjust the volume to 1 l and autoclave autoclave 
 
Nutrient Agar   28 g Oxoid Nutrient Agar 
   adjust the volume to 1 l with dH2O and autoclave 
 
Starvation medium  10 ml SMM 
   0.125 ml solution E 
   0.06 ml solution F 
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