
i

Mobile Robot Navigation using a Vision

based Approach

by

Mehmet Serdar Güzel

2012

The thesis is submitted in fulfilment of the requirements for the Degree of

Doctor of Philosophy

School of Mechanical and Systems Engineering

Newcastle University

United Kingdom

ii

This is dedicated to my grandmother and son.

iii

 ABSTRACT

This study addresses the issue of vision based mobile robot navigation in a partially

cluttered indoor environment using a mapless navigation strategy. The work focuses on

two key problems, namely vision based obstacle avoidance and vision based reactive

navigation strategy.

The estimation of optical flow plays a key role in vision based obstacle avoidance

problems, however the current view is that this technique is too sensitive to noise and

distortion under real conditions. Accordingly, practical applications in real time robotics

remain scarce. This dissertation presents a novel methodology for vision based obstacle

avoidance, using a hybrid architecture. This integrates an appearance-based obstacle

detection method into an optical flow architecture based upon a behavioural control

strategy that includes a new arbitration module. This enhances the overall performance

of conventional optical flow based navigation systems, enabling a robot to successfully

move around without experiencing collisions.

Behaviour based approaches have become the dominant methodologies for designing

control strategies for robot navigation. Two different behaviour based navigation

architectures have been proposed for the second problem, using monocular vision as the

primary sensor and equipped with a 2-D range finder. Both utilize an accelerated

version of the Scale Invariant Feature Transform (SIFT) algorithm. The first

architecture employs a qualitative-based control algorithm to steer the robot towards a

goal whilst avoiding obstacles, whereas the second employs an intelligent control

framework. This allows the components of soft computing to be integrated into the

proposed SIFT-based navigation architecture, conserving the same set of behaviours

and system structure of the previously defined architecture. The intelligent framework

incorporates a novel distance estimation technique using the scale parameters obtained

from the SIFT algorithm. The technique employs scale parameters and a corresponding

zooming factor as inputs to train a neural network which results in the determination of

physical distance. Furthermore a fuzzy controller is designed and integrated into this

framework so as to estimate linear velocity, and a neural network based solution is

adopted to estimate the steering direction of the robot. As a result, this intelligent

iv

approach allows the robot to successfully complete its task in a smooth and robust

manner without experiencing collision.

MS Robotics Studio software was used to simulate the systems, and a modified Pioneer

3-DX mobile robot was used for real-time implementation. Several realistic scenarios

were developed and comprehensive experiments conducted to evaluate the performance

of the proposed navigation systems.

KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile

robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant

Feature Transforms, Intelligent framework.

v

 ACKNOWLEDGEMENTS

It is a pleasure to thank many people who have made this thesis possible. First of all, I'd

like to thank to my Ph.D. supervisor Dr Robert Bicker for all of his ideas,

encouragement, and excellent writing tips. He has always been eager to help me through

the toughest challenges during my research. I also would like to thank my second

supervisor Dr John Hedley for his support.

I sincerely thank my colleagues who have offered encouragement along this long way,

especially all members of the robotics lab, and my old mate Yaskil for programming

tips.

I would like to express my deep gratitude to my parents for their endless support,

encouragement and financial assistance.

Finally, heartfelt thanks are due to my wife Eda for all she has done over the past

number of years. Her love, kindness and support make life as pleasurable as it is.

vi

 LIST OF CONTENTS

ABSTRACT __ iii

ACKNOWLEDGEMENTS__ v

LIST OF CONTENTS __ vii

CHAPTER 1 INTRODUCTION __ 1

1.1 Overview __ 1

1.2 Aims and Objectives ___ 2

1.3 Hypothesis ___ 3

1.4 Contributions ___ 3

1.5 Overview of the Thesis ___ 4

CHAPTER 2 LITERATURE REVIEW __ 6

2.1 History and Categories of Mobile Robots_____________________________________ 6

2.1.1 Trends in mobile robots __ 7

2.1.2 Categories of mobile robots __ 8

2.2 Mobile Robot Control Architecture ___ 9

2.2.1 Reactive/Behaviour based architecture __ 10

2.2.1.1 Subsumption architecture ___ 11

2.2.1.2 Motor schema ___ 12

2.2.2 Hybrid architecture __ 13

2.3 Mobile Robot Navigation __ 14

2.4 Vision Based Mobile Robot Navigation _____________________________________ 15

2.4.1 Map-based navigation __ 17

2.4.2 Map-building-based navigation ___ 19

2.4.3 Mapless navigation __ 20

2.4.3.1 Optical flow techniques for navigation _______________________________________ 20

2.4.3.2 Appearance-based methods ___ 22

2.4.3.3 Object recognition ___ 26

2.4.3.4 Navigation techniques based on feature tracking ______________________________ 26

2.5 Obstacle Avoidance Systems based on Qualitative Information _________________ 29

2.6 Scale Invariant Feature Transform (SIFT) ____________________________________ 31

2.7 Sensor Theory and Vision Based Sensors ____________________________________ 32

2.7.1 Active ranging sensors __ 32

2.7.2 Vision based sensors ___ 33

vii

2.8 Mobile Robot Software __ 34

2.8.1 Player architecture ___ 34

2.8.2 Microsoft Robotics Studio (MSRS) ___ 36

2.9 Software for Computer Vision __ 36

2.10 Soft Computing ___ 38

2.10.1 Fuzzy logic ___ 38

2.10.1.1 Fuzzification ___ 40

2.10.1.2 Fuzzy rule-base ___ 43

2.10.1.3 Fuzzy inference ___ 44

2.10.1.4 Defuzzification ___ 46

2.10.2 Neural Network __ 48

2.10.2.1 Background to Artificial Neural Network _____________________________________ 49

2.10.2.2 Topologies of artificial neural networks _____________________________________ 51

2.10.2.3 Learning using neural networks __ 53

2.10.2.4 Back-propagation algorithm ___ 54

2.11 Summary __ 56

CHAPTER 3 VISION BASED OBSTACLE AVOIDANCE ___________________________ 57

3.1 Vision Based Obstacle Avoidance Techniques ________________________________ 57

3.2 Optical Flow for Obstacle Avoidance _______________________________________ 58

3.2.1 Horn-Schunk method for obstacle avoidance ______________________________________ 60

3.2.1.1 Estimating the partial derivatives___ 62

3.2.1.2 Minimization ___ 63

3.2.1.3 Multi-scale optical flow estimation ___ 65

3.2.2 Applying optical flow for obstacle avoidance _____________________________________ 67

3.2.2.1 FOE and TTC calculation __ 68

3.2.2.2 Behavioural module and implementation algorithm ___________________________ 70

3.2.3 Evaluation of flow vectors for mobile robot navigation _____________________________ 72

3.3 Appearance Based Methods for Obstacle Avoidances ________________________ 75

3.3.1 Template matching__ 78

3.3.2 Implementation of obstacle avoidance technique using appearance based approach ____ 79

3.4 Integration of Appearance Based Method with Optical Flow Architecture _________ 82

3.5 Modelling and Simulation using Microsoft Robotics Studio ____________________ 90

3.6 Summary ___ 100

CHAPTER 4 VISION BASED MOBILE ROBOT NAVIGATION USING SIFT ___________ 102

4.1 Local Features __ 102

4.2 Scale-Invariant Feature Transform _______________________________________ 105

4.2.1 Scale-space extreme detection ___ 107

4.2.2 Keypoint localization and edge elimination _____________________________________ 110

4.2.3 Orientation assignment ___ 113

4.2.4 Keypoint descriptor __ 114

4.2.5 SIFT matching ___ 115

4.3 Evaluation of the SIFT Algorithm ___ 118

viii

4.4 Navigation via SIFT based on Monocular Vision _____________________________ 119

4.5 Design of a Reactive Architecture using Subsumption Architecture ______________ 126

4.5.1 Goal seeking __ 128

4.5.2 Approach___ 129

4.5.3 Wander __ 129

4.5.4 Obstacle avoidance __ 130

4.5.5 Completed ___ 133

4.6 Prediction of the heading angle __ 134

4.7 Modelling and Simulation using Microsoft Robotics Studio ____________________ 135

4.8 Summary __ 145

CHAPTER 5 INTELLIGENT NAVIGATION USING SIFT _________________________ 147

5.1 Design of an Intelligent Framework for Vision Based Mobile Robot Navigation ____ 148

5.2 Robust Estimation of Heading Direction of a Mobile Robot using ANN and Linear

Regression __ 151

5.2.1 Conventional method for camera calibration _____________________________________ 151

5.2.2 The proposed algorithm to estimate heading direction _____________________________ 152

5.2.2.1 Assessment of scale-invariant features ______________________________________ 154

5.2.2.2 The estimation of heading direction using ANN _______________________________ 156

5.2.2.3 Linear regression technique for calibration ___________________________________ 160

5.3 Scale Parameters for Distance Estimation Based on ANN _____________________ 161

5.4 ANN based Approach for Obstacle Avoidance ______________________________ 169

5.5 Estimation of Global Linear Velocity using Fuzzy Logic _______________________ 175

5.5.1 Design of membership functions for the linear velocity controller ____________________ 176

5.5.2 Defining the defuzzification method __ 179

5.6 Design of behaviours based on Subsumption Architecture ____________________ 180

5.7 Modelling and Simulation using Microsoft Robotics Studio ___________________ 182

5.8 Summary __ 189

CHAPTER 6 ROBOT CONFIGURATION AND SOFTWARE DESIGN ________________ 190

6.1 IWARD Project __ 190

6.2 IWARD Pioneer Robot (Pioneer 1) __ 191

6.2.1 Robot sensors and peripheral device design______________________________________ 194

6.2.1.1 AXIS-213 pan/tilt/zoom camera __ 197

6.3 Software Design __ 198

6.3.1 Software tools and libraries used in this project___________________________________ 201

6.3.2 Performance analysis of Fast SIFT library __ 209

6.4 Calibration analysis of the sensors for the INUS technique ____________________ 211

6.5 Summary __ 214

CHAPTER 7 IMPLEMENTATION AND EVALUTION OF PROPOSED NAVIGATION

ix

 SYSTEMS ___ 216

7.1 Experimental Procedures ___ 216

7.1.1 Performance evaluation __ 217

7.2 Experimental Design and Results of the Hybrid Vision Based Obstacle Avoidance

System ___ 222

7.2.1 Definition of scenarios ___ 223

7.2.2 Navigation test results ___ 223

7.2.3 Comparison and evaluation of methods ___ 230

7.3 Experimental Design and Results of SIFT based Navigation Systems _____________ 233

7.3.1 Experimental Implementation ___ 236

7.3.1.1 Preliminary test results ___ 236

7.3.1.2 Complex test results ___ 244

7.3.2 Performance Analysis __ 261

7.4 Summary __ 265

CHAPTER 8 CONCLUSIONS AND FUTURE WORK ____________________________ 267

8.1 Conclusions __ 267

8.2 Summary of Achievements __ 272

8.3 Recommendations for Future Work _______________________________________ 273

8.4 Publications __ 275

REFERENCES __ 277

APPENDIX A: Optical flow vectors with high resolution ______________________ 290

APPENDIX B: Specification of Corobot mobile robot _________________________ 292

APPENDIX C: Wander behaviour __ 293

APPENDIX D: Back-propagation algorithm ________________________________ 294

APPENDIX E: Camera calibration with conventional method__________________ 295

APPENDIX F: Specification of Pioneer 3-DX ________________________________ 298

APPENDIX G: Platform for the AXIS-213 camera ___________________________ 300

APPENDIX H: Specification of URG-04LX laser range finder ___________________ 301

APPENDIX I: Specification of LinITX 8.4" Touch-Screen ______________________ 302

APPENDIX J: Specification of AXIS 213 camera ____________________________ 303

APPENDIX K: Evaluations of goals via SIFT algorithm _______________________ 304

APPENDIX L: Goal tracking example via calibrated camera __________________ 309

APPENDIX M: The training results for the simulated camera _________________ 311

APPENDIX N: Control outputs of output scenarios __________________________ 313

x

APPENDIX P: Definition of SC7 ___ 315

Chapter 1 Introduction

1

 CHAPTER 1

 INTRODUCTION

The popularity of autonomous mobile robots has been rapidly increasing due to

emerging areas of application. New markets for these types of robotics systems include

room cleaning, tourist guidance, and entertainment applications. However existing

applications of autonomous systems have one problem in common, which is navigation.

Mobile robot navigation entails solutions to different problems, including planning,

localisation, and obstacle avoidance. If the working environment is not already known

or may vary over time, such as in households or offices, the navigation problem

becomes far more difficult.

To overcome such problems, the system needs to use sensory data to extract

representations of the environment and/or estimate the position of goals. Data is

interpreted by the robot’s control system so as to fulfil the navigation task using an

appropriate strategy. However, the development of a satisfactory control algorithm to

allow autonomous mobile robots to navigate safely in these environments is still an

open research problem. Vision is capable of supplying the robot with detailed

information from its environment. It is essential for the design of mobile robots to

progress in the directions of increased robustness and reduced costs. Mapless strategies

and methodologies developed so far resemble human behaviour more than other

approaches, and have become applicable to any indoor environment consisting of

corridors and doorways which can be accessed by a mobile robot platform.

1.1 Overview

The focus of this thesis is the study of vision based mobile robot navigation in an indoor

environment using a mapless strategy. It addresses different aspects, including visual

feature tracking for navigation and navigation based on artificial intelligence

Chapter 1 Introduction

2

techniques, obstacle avoidance, localisation and control architecture. Three different

navigation systems are proposed based on a mapless strategy. In the first system a

hybrid vision based obstacle avoidance architecture is proposed which combines

conventional optical flow and appearance-based methods, based upon a behavioural

strategy. The proposed architecture navigates the robot using monocular vision in a

partially cluttered indoor environment where the robot may encounter unknown

obstacles that prevent it from moving forward safely, and thus it requires the capability

to detect objects and avoid collisions.

In the second system, a vision based behavioural architecture is proposed to overcome

the mapless navigation problem. The architecture comprises several modules, which

facilitate the robot’s navigation and ensure that it maintains a safe distance from

obstacles while finding goals from its current position. The highest level of the

architecture is based on extracting and tracking scale invariant features. The third

system is also based on a behavioural architecture, but unlike the second system, it

draws its inspiration from various disciplines in providing an intelligent solution. This

allows the mobile robot to successfully avoid obstacles whilst maintaining its progress

to its final goal.

1.2 Aims and Objectives

The overall goal of this research is to design and develop systems which can be used for

mapless navigation problems in indoor environments. The research focuses on two

important aspects of vision based mapless navigation. The first aim addresses vision

based obstacle avoidance using monocular vision, and the second concerns the design of

a robust and safe navigation system for mobile robots using vision as a preliminary

sensor which incorporates goal-based navigation, and collision avoidance.

In order to satisfy the above goal and associated aims, the following objectives have

been identified.

Chapter 1 Introduction

3

 To undertake an in-depth critical review of available reactive vision based

obstacle avoidance and navigation algorithms, including classification based on

localization techniques, mobile robot control architectures and the relevant soft

computing techniques.

 To design a hybrid vision based obstacle avoidance system, integrating a

conventional appearance-based obstacle detection method into an optical flow

based navigation architecture.

 To develop a behaviour based navigation control algorithm using scale invariant

features so as to navigate a mobile robot via a feature tracking approach.

 To apply soft computing techniques to provide on improved navigation system.

 To assess the performance of the developed navigation systems using both

simulation and physical experiments.

1.3 Hypotheses

Two hypotheses are tested in this research. The first is that “it is possible to develop a

vision based obstacle method, using a single monocular vision camera as the only

sensor to allow a mobile robot to navigate safely”. The second hypothesis is that “it is

possible to develop vision based mapless navigation using a behaviour based framework

to allow a robot to safely complete its tasks in a robust and smooth manner”.

1.4 Contributions

A robust and novel vision based obstacle avoidance algorithm has been developed and

implemented to enable safer indoor navigation. This combines a conventional

appearance-based obstacle detection method and an optical flow based navigation

system into a hybrid architecture.

A feature based navigation technique using the accelerated version of the SIFT

algorithm has been developed and implemented to navigate a mobile robot towards its

goal. This technique is integrated into a reactive behavioural architecture which

Chapter 1 Introduction

4

coordinates individual behaviours to allow the robot to complete its tasks in a partially

cluttered environment, and artificial intelligence techniques have been incorporated into

the developed navigation framework in order to improve the navigation performance. A

feed-forward neural network was developed to compute the steering parameter

according to the estimated error in the image space. In addition, a fuzzy inference

system has been proposed and integrated into the proposed intelligent navigation

framework to adjust the second control parameter, linear velocity. A third contribution

of this thesis is a novel distance estimation method using monocular vision systems

which employ scale parameters from the SIFT algorithm to train a feed-forward neural

network. The output of the network generates the physical distance in meters.

Finally, a rigorous series of experiments have been conducted to demonstrate the

functionality of the proposed navigation systems using realistic scenarios to evaluate the

robot’s performance.

1.5 Overview of the Thesis

Chapter 1 provides an overview of the work and sets out the aim and objectives of the

study. Chapter 2 is a review of the relevant literature, and of the background work that

forms the foundations of this thesis. The development of a novel vision based obstacle

avoidance architecture which integrates a high performance appearance based obstacle

detection method with conventional optical flow based navigation architecture is

addressed in Chapter 3.

Chapter 4 addresses the SIFT (Scale Invariant Feature Transformation) algorithm and

its adaption to a monocular vision based navigation strategy together with a set of

developed robot behaviours. The fundamentals of fuzzy logic theory and artificial

neural networks, including a brief description of their main components are outlined in

Chapter 5. This chapter primarily focuses on applying soft computing techniques to

enhance the performance of SIFT based behavioural architectures. A description of the

physical robot and software designs for the systems are presented in Chapter 6, whereas

Chapter 1 Introduction

5

Chapter 7 focuses on the implementation and evaluation of the proposed navigation

systems. An analysis of the test results is also presented. Finally, the achievements of

the study are summarised in Chapter 8 in which recommendations for further work are

presented.

 Chapter 2 Literature Review

6

 CHAPTER 2

 LITERATURE REVIEW

The previous chapter has described the motivations behind the present work and given

an introduction to the dissertation. This chapter addresses the existing state of

knowledge related to vision based mobile robots, including their background and

history, current trends, control architectures, navigation and mapless navigation, and the

software involved. This literature review not only discusses studies relevant to vision

based mobile robot systems but also critically evaluates the methodologies which have

been developed that directly affect such systems.

2.1 History and Categories of Mobile Robots

A robot is defined as a programmable, self controlled device consisting of electronic,

electrical and mechanical units. More generally, it is a machine which is able to function

in place of a living agent. Mobile robots have a long history. Shakey, the world’s first

mobile robot, was developed in the late 1960s at SRI’s Artificial Intelligence Centre

(Stanford Research Institute) [Nilsson, 1984]. Not surprisingly, it has had a substantial

legacy and influence on present day artificial intelligence and robotics. Shakey was

equipped with sensors and driven by a problem solving program called ‘STRIPS’, and

used algorithms for perception, world modelling, and actuation. Low-level action

routines took care of simple moving, turning and route planning tasks. The high-level

program could make and execute plans to achieve goals.

Another example of an early robot is CART, illustrated in Figure 2.1, which was

developed at Stanford University in 1977 by Hans Moravec as part of his doctoral thesis

[Hellström, 2011]. However CART was very slow, not because it was slow-moving by

design, but because it was ‘slow-thinking’. The main reason for this was the difficulty

of processing vision data using slow computer processors. Another example is Rover,

 Chapter 2 Literature Review

7

developed at Carnegie Mellon University (CMU), in the early 1980s. Rover was also

designed and constructed by Hans Moravec [Moravec, 1983] and used both a camera

and ultrasonic sensors. Although more advanced in structure than CART, its thinking

and acting were still very slow. The following sections detail more recent trends and

categories of mobile robots.

2.1.1 Trends in mobile robots

In the last decade the main developments in the area of robotics have come through

technological breakthroughs in the areas of computing telecommunications, software,

and electronic devices. These technologies have facilitated improvements in intelligent

sensors, actuators, and planning and decision making units which have significantly

increased the capabilities of mobile robots. The latest trend in robotic intelligence is

toward imitating life, for instance in evolutionary robots and emotional control robots.

Another area of technological challenge for the next decade is the development of

microrobots and nanorobots for medical applications. On top of this, a paramount

challenge will be to find an appropriate balance between human assisted systems and

fully autonomous systems, and to integrate technological capabilities with social

expectations and requirements.

 Figure 2.1: Stanford cart robot from 1977,

[Hellström, 2011]

 Chapter 2 Literature Review

8

2.1.2 Categories of mobile robots

Mobile robots are able to move from place to place under their own power. Mobility

gives robots much greater flexibility to perform new, complex and exciting tasks.

Mobile robots can be classified into one of three types depending on the environment in

which they are designed to operate. The first category is robots that work in water,

including surface and sub-sea robots, and an example of automated underwater vehicles

(AUVs) is illustrated in Figure 2.2 (a). The second category is airborne robots, which

employ engines and thrusters to move around. Unmanned aerial vehicles (UAV) can be

remotely controlled or fly autonomously based on dynamic autorotation systems, and

are currently used in a number of military tasks and in small but growing numbers of

civil applications. These include fire fighting when a human observer would be at risk

or the police observation of civil disturbances and crime scenes. Figure 2.2 (b) displays

an autonomous UAV. The third and most common one type of mobile robot is those

that move on a solid surface, as shown in Figure 2.2 (c). The wheel has been by far the

most popular locomotion mechanism in mobile robotics, and it is able to complete very

good efficiency with relatively simple mechanical implementation.

(a) (b)

 (c)

Figure 2.2: Classification of mobile robots, (a) MQ-9 Reaper [Wikipedia, 2011], (b)

underwater robot [Rutherford, 2009], (c) wheeled mobile robot [Active Media, 2010]

 Chapter 2 Literature Review

9

A number of potential markets are slowly emerging for mobile robotic systems.

Entertainment applications and household or office assistants are the primary targets in

this area of development. These types of robots are designed to move around within an

often highly unstructured and unpredictable environment. Existing and future

applications for these types of autonomous systems have two key problems in common:

control architecture and navigation [Althaus, 2003]. These issues are detailed in

following sections

2.2 Mobile Robot Control Architecture

Mobile robot control architecture involves the process of taking in information about

the environment through the robot’s sensors, processing it as necessary in order to make

decisions about how to act, and the execution of action in the environment. Traditional

(deliberative) control architectures are derived from traditional artificial intelligence

(AI) paradigms, in which a central planner fuses all sensors readings, builds a world

model, plans the next action, and finally steers the robot. Figure 2.3 depicts such

architecture.

Sense Plan ActSensory Inputs

Environment

Actuators

 Figure 2.3: Traditional sense–plan-act architecture

Early robots such as Shakey [Nilsson, 1984] adopted this type of architecture, which in

essence attempted to overcome environmental uncertainty by creating a world model.

The deliberation refers to thinking hard, and is defined as thoughtfulness in decision and

action [Nattharith, 2010]. The control system is generally organised using a functional

 Chapter 2 Literature Review

10

decomposition of the decision making process, consisting of several modules for

sensory processing, modelling and planning, value judgement, and execution [Brooks,

1986]. Such functional decomposition allows complex operations to be performed, but

implies strong sequential independencies between the decision-making modules. This

architecture is able to work successfully in a structured environment. For instance, if

there is sufficient time to generate a plan and the world model is accurate, this approach

allows the robot to produce the best action for a given situation. However, such

architectures tend to fail in an unstructured environment or even in a loosely structured

environment due to their inability to adapt to the environment. In addition such

approaches are limited in their usefulness due to a lack of real time reactivity, and may

entirely fail if any single part fails. Therefore a purely deliberate architecture is no

longer used for the majority of physical mobile robots working in the complex and

dynamically changing real world environments [Peng, 2004; Nattharith, 2010].

2.2.1 Reactive/Behaviour based architecture

In the late 1980s the concept of behaviour-based robotics was introduced in the MIT AI

lab [Brooks, 1986]. According to this paradigm, basic behaviours, which involve motor

reactions to sensory stimuli, are the building blocks of more complex behaviours. This

concept abandons the idea of a central planner that has comprehensive knowledge of the

system [Peng, 2004]. This approach was inspired by the biological notion of stimulus-

response, so that it does not rely on the types of complex reasoning processes utilised in

a deliberate architecture.

The information is processed in parallel rather than sequentially. Basically, sensory data

is distributed to individual reactive modules. Each of these performs a specific task such

as avoiding obstacles or identifying goals. The best known system for behaviour based

control is the subsumption architecture, introduced by Rodney Brooks in 1985,

[Brooks, 1986], which is detailed in the following section.

 Chapter 2 Literature Review

11

2.2.1.1 Subsumption architecture

Brook believed that a robot must be fundamentally reactive [Brooks, 1986]. In a

subsumption architecture, the behaviour based approach entails the horizontal

decomposition of planning into a collection of concurrent layers; each connected to its

own sensory inputs. A set of behaviours defines the control system. Behaviours are

implemented as real time processes that take inputs from sensors or other behaviours

and send output commands to effectors or other behaviours. The controller is essentially

a distributed network of concurrently executing behaviours. An example of the given

architecture is illustrated in Figure 2.4. A subsumption architecture consists of a set of

complete robot control systems. Each of these is able to achieve a particular level of

competence. The conventional subsumption architecture design proposed by Brooks

[1986] defines eight layers of competence which are labelled from 0 to 7.

monitor

change

build maps

explore

Sensory Inputs Actuators

wander

avoid objects

Identify

objects

plan changes

to the world

reason about

behaviours

of objects

 Figure 2.4: Subsumption based robot control architecture [Brooks, 1986]

 Chapter 2 Literature Review

12

However only layers 0 to 2 have been implemented on a robot [Toal et al., 1995] . Layer

0 provides the capability of avoiding obstacles, while Layer 1 allows the robot to

wander around aimlessly. Layer 2 endows the robot with the ability to explore the world

by using its sensors and head towards observed locations. Layers 3 to 7 entails more

complex behaviour, such as the ability to map the environment, formulate plans about

it, and reason about the state of the world. The team guided by Brooks conducted some

initial investigations into how such behaviours can be implemented in a robot, but it is

still not clear how successful these would be in the long term [Toal et al., 1995].

Several robots have been designed based on subsumption architecture. For instance:

Allen - the first subsumption based robot [Brooks, 1986], Tom and Jerry – two small

toy cars equipped with infrared proximity sensors [Brooks, 1990]; and Toto – focussed

on map construction for a subsumption based robot [Mataric, 1992]. A more recent

implementation of this architecture was designed to run a mobile robot in rough terrain,

using an intelligent visual landmark-recognition and fuzzy based obstacle avoidance [Li

and Yang, 2003]. Alternatively, a behavioural based architecture to find and trace a

chemical plume using subsumption architecture has been implemented for AUVs [Wei

et al., 2006]. On the other hand, since this architecture can execute only one task at a

time, the robot will sooner or later experience a situation where the correct action

should be established using a combination of behaviours. For example, when a robot

avoids an obstacle while moving towards its goal, the subsumption architectures would

invoke the avoiding behaviour as a priority ahead of the goto behaviour. The robot may

avoid the obstacle successfully, but the robot may avoid it in a manner that directs it

away from its goal. That is because it is not able to consider multiple behaviours which

may significantly reduce performance [Hoffmann, 2003].

2.2.1.2 Motor schema

Another important example of reactive based architectures is the motor schema

proposed by Arkin [1987], as illustrated in Figure 2.5. Motor schemas are proposed as a

basic unit of behaviour specification for the navigation of a mobile robot. They generate

response vectors based on the outputs of the perceptual schemas. The schema has a

 Chapter 2 Literature Review

13

fusion mechanism used to combine the response vectors generated in a manner similar

to the Potential Field Method [Khatib, 1985]. According to this method, a goal is

represented by an attractive force while obstacles are represented by repulsive forces.

The summation of these force vectors is treated as the coordinated action for the robot

to take to complete a particular task. However, the architecture has certain drawbacks.

The most common is the local minima problem in which attractive and repulsive forces

cancel each other out. Thus the overall sum is null and the robot cannot move from its

current location. Various alternative solutions have been proposed to overcome this

problem [Nattharith, 2010]. However, another problem with this architecture is that the

action executed is, in essence, one that no behaviour has generated. For instance,

consider a robot with an obstacle ahead. Assuming that two different behaviours

generate outputs for avoiding that obstacle, one trying to avoid it to the right and the

other one trying to avoid it to the left, then the sum of the vector would direct the robot

straight ahead at the obstacle [Peng, 2004].

 Figure 2.5: Motor schema based robot control architecture [Arkin, 1987]

2.2.2 Hybrid architecture

While it has been widely demonstrated that behaviour based architectures effectively

produce robust performance in dynamic and complex environments, they are not always

the best choice for some tasks. Sometimes the task to be performed needs the robot to

undertake some degree of deliberation and maintain a model of the environment.

 Chapter 2 Literature Review

14

However, behaviour based architectures avoid this deliberation and modelling.

Additionally, as mentioned previously, purely deliberative architectures are also not the

best choice for tasks in complex environments. Thus, a compromise between these two

completely opposite views must be reached. Hybrid architectures are composed of two

parts, the first for deliberation and the other is the reaction part. The deliberation part

allows the modelling of the world and creating plans, while the reactive part on the

other hand is responsible for executing plans and quickly reacting to any unpredicted

situation that may arise. Hybrid architectures are essentially structured in three layers.

Because of the ability to combine the advantages of both deliberate and behaviour based

systems, this approach has become important in designing mobile robot systems, and is

considered to offer an appropriate solution for further development. For instance,

Nattharith [2010] implemented a hybrid based architecture which is based upon the

motor schema described above.

2.3 Mobile Robot Navigation

Navigation is one of the key and most challenging issues for mobile robots, it involves

practically every aspects of mobile robots, including sensing, acting, planning and

hardware architecture etc. It is essentially the process of determining and maintaining a

course or trajectory to a reach a goal. Many robotic navigation algorithms found in the

literature explicitly try to answer the questions ‘Where is the robot in the coordinate

system?’ and ‘Where is the goal in the same coordinate system?’ The localization

problem is the one of the most fundamental problems for a mobile robot with

autonomous capabilities. While navigating, the robot has to solve the so-called data

association problem which determines which landmarks it is currently sensing given its

current sensor data and the landmark descriptions provided.

After this the robot employs the egocentric bearing and/or range of the landmarks

identified to determine its position. On the other hand, conventional (deliberate) mobile

robot architectures are rather purposeful, such as in planning to reach a particular

location. They are in essence required to answer some or all of questions, shown below:

 Chapter 2 Literature Review

15

Where am I going? This is directly related to a human or mission planner.

What is the best way there? The key issue here is to determine the optimal path to

reach a goal which has been assigned by the planner.

Where I have been? The key issue now is map making, in which robot creates maps or

updates their common maps when navigating in an unknown environment.

Where am I? This is also called the localization problem. In order to conduct path

planning and map making a robot must know its position in the environment.

Since the focus of this thesis is the study of vision based mobile robot navigation in

indoor environments, the following section reviews and classifies the developments in

the area of vision for mobile robot navigation.

2.4 Vision Based Mobile Robot Navigation

Vision based indoor mobile robot navigation has been studied for decades, and is one of

the most powerful and popular sensing method used for autonomous navigation.

Compared with other on-board sensing techniques, vision based approaches to

navigation continue to demand attention from the mobile robot research community,

due to their ability to provide detailed information about the environment which may

not be available using combinations of other types of sensors. The great strides achieved

in the area of vision based navigation systems are significant, however there is still a

long ways to go. Two important survey papers have been published which reviews

various aspects of the progress made so far in vision for mobile robot navigation

[DeSouza and Kak, 2002; Bonin-Font et al., 2008]. This section discusses their

classification of vision based navigation systems and attempts to reveal the appropriate

state of the art for indoor environments.

Mobile robot navigation in a structured or unstructured environment requires the

integration of various functionalities, ranging from the navigation control to mission

 Chapter 2 Literature Review

16

management while encompassing the modelling of the perceived environment and the

planning of trajectories and strategies of motion. Among these functionalities,

localisation, which is the robot’s capacity to constantly estimate its own position, is very

significant. Indeed, knowledge of robot position is essential to the correction of

trajectories and the execution of planned tasks [Chaari et al., 2008]. Thereby, DeSouza

and Kak [2002] classified vision based approaches into three groups depending on the

localization methods used, namely: Map-Based, Map-Building-Based, Mapless

approaches [DeSouza and Kak, 2002]. Bonin-Font et al. [2008] followed the same

procedure and employed the same classification criteria to subdivide existing methods

[Bonin-Font et al., 2008]. A corresponding schema, summarizing state of the art of

vision based navigation, is illustrated in Figure 2.6 [DeSouza and Kak, 2002; Bonin-

Font et al., 2008].

.

Figure 2.6: Vision based indoor mobile robot navigation techniques

To understand these concepts, a simple analogy was described [Guerrero et al, 2005],

and a similar analogy including a daily life scenario is described next. In the scenario it

is assumed that a visiting researcher is in Newcastle city centre and needs to return to

the Daysh Building (Newcastle University,Claremont Road) where his office is located.

There are various methods he can follow to reach the office. First, he could have

memorized the number of steps walked from the university and he could return trying to

count the same number of steps. This would be dead-reckoning navigation. He could

also buy a map of the environment in order to reach the goal, as in map-based

 Chapter 2 Literature Review

17

navigation. However, this solution entails that somebody has previously named the

streets and have drawn the map.

Alternatively, he could also draw his own map using map-building navigation while

exploring the city, but this would cost a lot of time and effort. Finally, he could look

around trying to find the Claremont Tower and then try to approach it keeping the top of

the tower in his field of view (map-less navigation). The goal is to reach the tower,

since he knows that Daysh Building is next to it. Autonomous navigation architectures

utilize some of these solutions to track a trajectory towards the required goal. Dead-

reckoning navigation is the cheapest method, and essentially includes an odometry

system. However, this solution may include many mechanical problems that produce an

increasing error which is unacceptable in long term navigation. So, an additional

perception system is mandatory. Vision is perhaps the most broadly researched

perception system.

2.4.1 Map-based navigation

Many techniques employ metric or topological maps to navigate. Navigation techniques

need certain knowledge of the environment, and maps may contain different degrees of

detail, varying from a complete CAD model of the environment to a simple graph of

interconnections between the elements in the environment. One of the key classification

criteria in this approach depends on the type of map. For instance, metric based maps

generally favour techniques which produce an optimum according to some measure of

‘best’, while qualitative methods such as topological maps seem content to produce a

route with identifiable landmarks or gateways [Bonin-Font et al., 2008].

The main idea behind map-based navigation is essentially to provide the robot with a

sequence of landmarks expected to be found during navigation, and the task of the

vision system is then to search for and recognize the landmarks observed in an image.

When the landmarks are recognized, the robot can employ the map to estimate its own

position (self-localization) by matching the observation (image) against the expectation

 Chapter 2 Literature Review

18

(landmark) description in the database. The steps of vision-based localization can be

divided into four steps [Bonin-Font et al., 2008].

Acquire sensory information: Acquiring images.

Detect landmarks: Extracting edges, smoothing, filtering, and segmenting regions.

Matching: Identifying landmarks by searching in the database for possible matches

according to certain criteria.

Calculate position: Whenever a set of matches is obtained, the system needs to

calculate its position as a function of the observed landmarks and their positions in the

database.

With Absolute Localization methods, the initial position of the robot is unknown, thus,

the navigation system must construct a match between the observations and the

expectations, derived purely from the entire database This self localization problem has

been solved either using deterministic triangulation [DeSouza and Kak, 2002], or Monte

Carlo type localization A detailed implementation of the Monte Carlo localization

method to localize a mobile robot without knowledge of its starting location was

proposed [Dellaert et al., 1999]. Incremental Localization assumes that, at the beginning

of the navigation, the position of the robot is known approximately. In such cases, the

localization algorithm basically keeps track of uncertainties in the robot’s position as it

executes motion commands and, when the uncertainties exceed a limit uses its sensors

for a new fix on its position. The FINALE system is a good example of being able to

achieve incremental localization using a geometrical representation of space and a

statistical model of uncertainty in the location of the robot [Kosaka and Kak, 1992].

The final method is Landmark Tracking in which landmark tracking algorithms

determine the position of the robot, detect landmarks on the camera image and track

them in the successive scenes. Landmarks can be artificial or natural. In both cases the

robot needs to recognize the landmarks in order to be able to track them. Artificial

landmark were first introduced by Kabuka and Arenas [Bonin-Font et al., 2008]. An

example of a natural landmark tracking-based navigation system is proposed by

Hashima et al. [1997]. The technique selects landmarks, uses correlation techniques to

 Chapter 2 Literature Review

19

track them, computes their 3D position using stereo vision information, and selects new

landmarks so as to keep on moving towards the goal point.

2.4.2 Map-building-based navigation

Sometimes modelling an environment could be difficult particularly if one also has to

provide metrical information. An alternative navigation strategy, the map-building-

based approach, has been used in both autonomous and semi-autonomous systems that

entails searching the environment and building a representation of it. One of the earliest

attempts at a map-building technique was carried out by the Stanford CART Robot

equipped with a camera (see Figure 2.1). Subsequently, an Interest operator algorithm

was improved to detect 3D coordinates of the images [Thorpe, 1984]. The system

basically demonstrated the 3D coordinates of the objects, which were stored on a grid

having 2m cells. The map was updated at each iteration; and obstacles were also shown

in the map. But the most important problem with the whole system was performance,

which took five hours to go 20 metres. Visual navigation studies, employing map-

building-based strategies, from the late 1990s to the present have focused on two

methodologies, namely: Simultaneous Localization and Mapping (SLAM) or

Concurrent Mapping and Localization (CML). These principally propose solutions to

automatically overcome the problem of the exploration and mapping of any unknown

environment, which essentially entails three simultaneous tasks comprising navigation,

mapping and localization. Vision based SLAM/CML algorithms mainly employ stereo

vision as primary sensor.

Se et al. [2001] implemented a vision-based mobile robot localization and mapping

system in which the robot was equipped with a stereo system to build a 3D map so as to

localize simultaneously in 3D [Se et al., 2001]. The map was represented as a Scale

Invariant Feature Transform (SIFT) feature database. It was constantly updated frame

by frame and was adaptive to dynamic environments. An alternative and efficient

solution to the SLAM problem based on a pair of stereo cameras has also recently been

proposed which employs 3D landmarks to localize the robot, as well as constructing an

occupancy grid for safe navigation [Sim and Little, 2009].

 Chapter 2 Literature Review

20

Other map-building based navigation techniques are those that impose a human-guided

training stage. In such solutions, a human operator guides the robot through an unknown

environment. During this process, the robot records images with a stereo camera and

constructs the 3D map incrementally. After the map is built, the robot tracks extracted

features and computes the optimum path [Kidono et al., 2002].

2.4.3 Mapless navigation

This section discusses a representative selection of mainly reactive visual based

navigation techniques in which navigation is performed without any prior description of

the environment. Mapless navigation is scarcely new compared with the previously

defined solutions, but new projects using vision systems have been developed in several

directions in the last few years. In the systems surveyed in this section, no maps are

ever created. The robots can navigate by observing and extracting relevant information

about the landmarks in the environment. These elements can be objects such as desks,

boxes, doorways, and so on. The mapless visual navigation techniques discussed here

are classified in accordance with the main vision technique or types of clues used during

the navigation which are optical flow, appearance based, and object recognition

navigation techniques based on feature tracking (see Figure 2.6) [DeSouza and Kak,

2002].

2.4.3.1 Optical flow techniques for navigation

Optical flow is defined as the motion of all the surface elements from the visual world.

When a person moves through the world, the objects and surfaces within the visual

environment flow around this person. The human visual system can determine that

person current direction of travel from the movement of these surfaces. Optical flow can

be defined as the apparent motion of features in a sequence of images, as shown in

Figure 2.7. It is believed that when the insect is in relative motion with respect to the

environment. Accuracy and the range of operation can be altered by changing the

relative speed. For instance, features such as “time-to-contact” (depending on speed) are

 Chapter 2 Literature Review

21

more relevant than distance when it is necessary to avoid an obstacle [DeSouza and

Kak, 2002].

Santos-Victor et al. [1993] developed an optical flow based navigation system imitating

the visual behavior of bees, called robee, and was equipped with a stereo vision system,

mimicking the centring reflex behaviour used by a bee to navigate safely. The robot

localizes itself using the difference between the velocity of the image seen with the left

eye and the velocity seen in the right eye. If the difference is close to the zero, the robot

keeps moving forward. However, if the velocities are different, the robot moves toward

the side whose image changes with a lower velocity. Several successful navigation

systems have recently been inspired from by this centring reflex, and implemented to

navigate a mobile robot through an unknown indoor environment. For instance, a

mobile robot platform utilizing a binocular vision system to estimate optical flow in

some way emulates corridor following behaviour to navigate [Bernardino and Santos-

Victor, 1998]. Duchon et al. [1994] implemented a monocular vision based navigation

system based on optical flow algorithms and action modes (behaviours). Simulation and

real experiments revealed that the system was capable of navigating in a maze whilst

successfully avoiding obstacles [Duchon et al., 1994].

Furthermore, optical flow based control algorithms based on behaviours have recently

been implemented to evaluate their performance in real time applications [Souhila and

Karim, 2007; Guzel and Bicker, 2010]. Further explanations and definitions of optical

flow based reactive navigation algorithms are discussed and detailed in Chapter 3.

 Chapter 2 Literature Review

22

(a) (b) (c)

 (d)

Figure 2.7: Optical Flow calculation and motion estimation, (a) source image, (b) destination

image, (c) motion estimation, (d) estimated flow vectors

2.4.3.2 Appearance-based methods

Appearance-based methods fundamentally rely on the idea of memorizing the working

environment. The main idea is to store images or templates of the environment and

associate these images with commands that will steer the robot to its final destination.

These methods mainly consist of two procedures. The first one is the training phase in

which images or prominent features of the environment are stored as model templates.

 Chapter 2 Literature Review

23

The models are labeled with certain localization information and/or with an associated

control steering command. Secondly, in the navigation stage, the robot has to recognize

the environment and self-localize in it by matching the current on-line image with the

stored templates. The main problems with the method are to find an appropriate

algorithm for the representation of the environment, and to define the on-line matching

criteria [DeSouza and Kak, 2002; Bonin-Font et al., 2008]. These methods can be

classified into two groups as follows:

Model-based approaches: Pre-defined object models are utilized for feature

recognition and self-localization in cluttered environments.

View-based approaches: The self-localization is performed using simple image

matching algorithms.

Gaussier et al. [1997] developed an appearance-based approach using neural networks

to map perception into action. The robot, in essence, merges visual information and

their azimuths to build up a representation of its location which is used to estimate the

best movement to reach the goal [Gaussier et al., 1997].

The view-sequenced route representation technique was proposed by Matsumoto et al

[1996]. This technique primarily focuses on route construction using a sequence of

images and a template matching algorithm to guide robot navigation. Captured images

are used to form a sequence of images. Each image in the sequence is associated with

the motions required to move to a corresponding destination. This approach basically

introduces the concept of visual memory [Matsumoto et al., 1996] , as illustrated in

Figure 2.8.

 Chapter 2 Literature Review

24

Figure 2.8: The view-sequenced route representation [Matsumoto et al., 1996]

Multi-dimensional histograms provided by the statistical analysis of images are an

alternative method to guide mobile robots in appearance based strategies. Statistical

data, including that related to colour, edge density and texture, are utilized to build a

multi-dimensional histogram database. The recognition of the environment during the

navigation stage is achieved by matching the multi-dimensional histogram of the current

image with the multi-dimensional histogram of the stored templates. This technique

consumes less computational resources than when using correlation algorithms [Chao et

al., 2003].

Recent groundbreaking research has proposed an entirely qualitative method in which

feature points are automatically detected and tracked throughout the image sequence. In

the teaching phase the (KLT) feature tracker computes the displacement and minimizes

the sum of the squared differences between consecutive image frames. The feature

coordinates in the replay phase are compared with those computed previously in the

teaching phase in order to estimate the steering commands for the robot. Experimental

results revealed that the capability of autonomous navigation in both indoor and outdoor

environments was successful with the proposed method [Zhichao and Birchfield,

2006].

 Chapter 2 Literature Review

25

An important concept in visual based mobile robot navigation is the idea of visual

homing, inspired by insect behaviour. Insects are able to return to important places in

their environment by storing an image of the surroundings while at the goal, and later

computing a home direction from a match between this snapshot image and the

currently perceived image. For instance, an agent employing a visual homing algorithm

captures an image IS (snapshot) at the home location S = (xS, yS). It then attempts to

return to this location from a nearby position C = (xC, yC). It compares the current

image IC with the snapshot and infers the direction and/or distance to the location of the

goal from the disparity between these images. It is considered that these aspects of

insect behaviour can be a basis for the development of robust navigation algorithms for

mobile robots. Visual homing is an appearance based navigation strategy whose homing

algorithms are based on image based holistic methods using disparities between whole

images to compute homing vectors.

Image warping is a popular method which is considered to be one of the most reliable

visual homing methods for indoor use in this category. It involves calculating the set of

all changes in pose (position and orientation) between the IS and IC. Warping methods

distort the IC as if the agent would move according to certain movement parameters.

The space of possible movement parameters is then searched for the parameter

combination leading to the warped image that is as similar as possible to the stored IS .

In order to achieve this, each warped IC is compared with IS using a pixel-by-pixel

correlation measure. The current home vectors are determined based on the strongest

similarity between those images [Szenher, 2008]. Arena et al. [2007] have proposed a

new and simple visual homing algorithm employing the root mean square (RMS)

difference and exclusive or (XOR) functions to compare IS and IC, where the home

position is a recharging station. They demonstrated that it is possible to implement

homing algorithms which allow a robot, fitted with a panoramic camera return to a

reference position from any starting point in an area. A detailed review of corresponding

image-based (holistic) visual homing methods has been conducted by Szenher [2008].

 Chapter 2 Literature Review

26

2.4.3.3 Object recognition

For the appearance-based approaches previously mentioned, the robot is only able to

access few sequences of images that help it to reach its final destination, or uses

predefined images of target goals that it can use to track and pursue. An alternative

method has been proposed which essentially employs a symbolic navigation approach

instead of memorizing the environment [Kim and Nevatia, 1998; Kim and Nevatia,

1999]. In this case, the robot utilizes symbolic commands such as “go to the desk in

front of you” or “go to the main exit”. For instance, a command such as “go to the desk

in front” informs the robot that the landmark is the desk and the path points straight

ahead. The robot builds a map called an “s-map” which is a 2D grid that stores the

projections of the observed landmarks as they are recognized. Once the target landmark

such as the desk is recognized and its location is projected into the s-map, the robot

plots a path using a GPS-like path planner and dead reckoning to approach the target

[DeSouza and Kak, 2002].

2.4.3.4 Navigation techniques based on feature tracking

Techniques for tracking moving elements such as corners, lines, object outlines or

specific regions in a video sequence have become robust enough to be useful for

navigation. Feature-based approaches determine the trajectory and motion of the robot

by tracking and finding relative changes in the position of extracted features. This

category can also include feature-based visual homing strategies.

Feature-based methods fundamentally segment snapshot and current images into

landmarks and background. They then attempt to pair each landmark in the snapshot

image with a landmark in the current image, which is called the correspondence

problem. To operate successfully, feature-based navigation algorithms must extract the

same features from IS and IC (the feature-extraction problem). Each feature extracted

from IS must then be paired with a feature from IC (the correspondence problem). The

feature extraction and correspondence problems are difficult to solve in cluttered

 Chapter 2 Literature Review

27

environments in real-time, since the appearance of landmark changes with viewpoint

[Szenher, 2008].

One of the earliest studies regarding feature tracking systems was conducted by Harrell

et al. [1989]. They introduced a fruit tracking system employing the size and position of

a valid fruit’s regions in colour images, to control the motion of a fruit-picking robot.

Trahanias et al. [1997] implemented a robotic system able to extract landmarks

automatically in indoor environments, using a selective search for landmark patterns

which relies both on the workspace and the distinctiveness of the objects in the

environment. For recognition purposes, a viewing transformation has been developed

that transforms a stored pattern according to the current (new) position of the observer.

This facilitates accurate recognition, and has been demonstrated by experimental results

in an indoor environment [Trahanias et al., 1997]. A KLT tracker based homing schema

was rooted in the extraction of very low-level sensory information, namely the bearing

angles of corners. This was implemented on a robotic platform to evaluate the results

[Argyros et al., 2001].

On the other hand, in most cases, feature tracking-based navigation algorithms do not

provide an obstacle avoidance module, which must therefore be implemented by other

means depending on the problem. For instance, Hao and Yang [2003] proposed a

behavioural based navigation architecture for mobile robots, that utilized a robust visual

landmark-recognition system based on genetic algorithms to guide the robot, which

used a fuzzy based obstacle avoidance system and ultrasonic range finder [Hao and

Yang, 2003].

It can be assumed that any two images of the same planar surface in space are related by

a homographies. This concept has many practical applications, including mobile robot

navigation. In a recent study, Guerrero et al [2005] introduced a method based on

homographies computed between current images and images taken in a previous

teaching phase with a monocular vision system. The vertical lines (features) were used

to estimate the homographies, which are automatically extracted and matched. From

 Chapter 2 Literature Review

28

that, a complete homography motion, with rotation and translation up to a scale factor

can be computed [Guerrero et al., 2005].

The scale invariant feature transform (SIFT) method is a milestone among techniques to

detect the features of images or relevant points, and nowadays has become a method

commonly used in landmark detection applications [Lowe, 2004]. The SIFT algorithm,

introduced in this Chapter and detailed in Chapter 4, extracts features that are invariant

to image scaling, rotation, and illumination. During the robot navigation process,

invariant features which have been detected are then observed from different points of

view, angles, and distances and under different illumination conditions, and thus

become highly appropriate landmarks to be tracked for navigation. Pons et al. [2007]

employed the SIFT algorithm for feature-based homing, and are utilized to recover the

misalignment of orientation between the current and goal positions. Finally, a home

vector between these two positions is calculated using the SIFT matches as a

correspondence field [Pons et al., 2007].

Visual servoing is another important concept which can be included in this category,

and is defined as the capability to employ visual information to control the pose of the

robot’s end-effectors relative to a target object or a set of target features. The task can

also be defined for mobile robots, where it becomes the control of the vehicle’s pose

with respect to specific landmarks. Thus, Szenher [2008] defined the feature based

visual homing algorithms as a type of image-based visual servoing There are two main

approaches for visual servoing systems namely: PBVS (position based Visual Servoing)

and IBVS (image based visual servoing) [Hutchinson et al., 1996]. PBVS algorithms

solve the trajectory problem in workspace; however, in IBVS, the control commands

are deduced directly from image features. Figure 2.9 provides the architectures of both

approaches.

Kim and Oh [2007] have proposed an intelligent mobile robot navigation architecture

comprising both of these servoing methods to guide a mobile robot. The IBVS module

estimates the motion planning directly from the image space so as to keep the target

object always in the field of view. As well as this, the PBVS module is employed to

 Chapter 2 Literature Review

29

conduct an image-to-workspace transform to plan an optimal pose trajectory directly in

the Cartesian space. The proposed fuzzy control architecture is considered to integrate

these two types of visual servoing through a warning signal indicating that the target

may escape the field of view. In addition, a neural network module is integrated into the

architecture for the prediction of the target position for a robust timely tracking of the

object [Kim and Oh, 2007].

Feature Extraction

Control Law
Actuator

Controllers

cxd
+

Pose Estimation

f

Inverse

Kinematics

-cx

 (a)

Feature Extraction

Control Law
Actuator

Controllers

-
fd

f
+

 (b)

 Figure 2.9: PBVS and IBVS architectures, (a) PBVS, (b) IBVS, inspired by

 [Hutchinson et al., 1996]

2.5 Obstacle Avoidance Systems based on Qualitative Information

Obstacle avoidance techniques classified essentially entail extraction of qualitative

image characteristics and their interpretation [Bonin-Font et al., 2008]. They are

basically defined as sensor-based obstacle avoidance systems which process every item

of online sensor data to estimate free and occupied space. These methods are considered

 Chapter 2 Literature Review

30

useful in avoiding having to compute accurate numerical data such as distance and

position coordinates.

Lorigo et al. [1997] proposed a low resolution vision-based obstacle avoidance

architecture consisting of three dependent vision modules for obstacle detection. These

modules were associated with edges, RGB (red, green, blue) colours and HSV (hue,

saturation, value) information. The data from these modules was analyzed by a fourth

module so as to simultaneously generate motion commands [Lorigo et al., 1997].

 Figure 2.10: Flowchart of proposed algorithm [Saitoh et al., 2009]

Ulrich and Nourbakhsh [2000] proposed a similar vision based obstacle avoidance

strategy based on monocular vision. The strategy essentially involves assigning each

pixel as either obstacle or ground according to its colour appearance [Ulrich and

Nourbakhsh, 2000]. Saitoh et al. [2009] integrated this obstacle avoidance technique

into a centre followed based mobile robot navigation architecture. The system does not

 Chapter 2 Literature Review

31

need prior knowledge of the environment and employs a low cost monocular vision

camera as the only sensor needed to navigate the robot safely. The robot has a basic

navigation strategy so that it moves towards the centre of the corridor until it encounters

an unexpected obstacle. When any obstacle is detected, the robot attempts to avoid it or

stops depending on the size of the obstacle. If the robot manages to pass the obstacle

successfully, it then localizes itself toward the centre. The system is also able to detect

boundaries using the Hough transform [Saitoh et al., 2009]. The flowchart of the given

obstacle avoidance system is illustrated in Figure 2.10.

ROBOCUP competition has become quite popular and has attracted the attention of

many researchers in recent years. The detection of an opponent robot and the ball are

two challenging tasks which must be solved efficiently. Fasola and Veloso [2006]

proposed using image colour segmentation techniques for object detection, and gray-

scale image processing to detect the opponent robots [Fasola and Veloso, 2006].

The qualitative based obstacle avoidance systems, which are also called appearance-

based obstacle avoidance technique [Ulrich and Nourbakhsh, 2000; Guzel and Bicker,

2011] are described in more detail in the following chapter.

2.6 Scale Invariant Feature Transform (SIFT)

A local feature is basically defined as an image pattern which differs from its immediate

neighbourhood. It is usually associated with a change in an image property or several

properties simultaneously. The image properties most commonly considered are

intensity, colour, and texture. A prominent survey of the local feature detectors

classifies and evaluates them comprehensively [Tuytelaars and Mikolajczyk 2008],

defining feature detection as methods that aim at computing abstractions of image

information and making local decisions at every image point whether there is an image

feature of a given type at that point or not. The scale invariant feature transform (SIFT),

proposed by Lowe [2004] is a milestone in local feature detection. It allows the robust

identification of objects among clutter and under partial occlusion. SIFT features are

demonstrably invariant to translation, scaling and rotation in images, and are also highly

http://en.wikipedia.org/wiki/Image_feature
http://en.wikipedia.org/wiki/Image_feature

 Chapter 2 Literature Review

32

distinguishable from one another and relatively invariant to changes in illumination.

These properties render them suitable for the purposes of mobile robot navigation. In

recent years, studies regarding the performance analysis of local feature detectors have

been carried out. One such evaluation concluded that SIFT-based descriptors are the

most robust and distinctive, and are therefore best suited for feature matching

[Mikolajczyk and Schmid, 2005]. However, the most recent feature descriptor, called

SURF was not evaluated in this study. It is faster than the conventional SIFT algorithm

and has been claimed by its originators to be more robust [Bay et al., 2006]. Both SIFT

and SURF algorithms are open source and can be employed freely for non-commercial

projects freely, however, SURF is not as flexible as SIFT in terms of platform

dependency. Besides this it requires specific hardware configurations to run the

applications.

2.7 Sensor Theory and Vision Based Sensors

Sensor technology has advanced considerably in the last decade, and many low cost

sensor systems are available that can easily be deployed on robots. Sensors can be

basically classified into two groups based on their interaction with the environment, as

either passive (P) or active (A). Passive sensors employ energy that is naturally presents

in the environment to obtain information. Computer vision is considered a typical

example of a passive sensor. Active sensors, on the other hand, involve the emission of

energy by the sensor into its environment, some of which is then reflected back in some

manner to the robot. The laser range finder is one of the most common active sensor

modalities used on mobile robots.

2.7.1 Active ranging sensors

The laser range finder is an active sensor which is able to measure distance, and is an

important device for obstacle avoidance. It measures distance using time of flight (TOF)

parameters. The laser range finder emits a coherent beam with approximately 0.5 degree

spread, and it is difficult for it to be influenced by the environment. However, it is a

http://en.wikipedia.org/wiki/SURF

 Chapter 2 Literature Review

33

high cost sensor and detects object in a plane, which implies that if the object is just

above or below the height at which the laser is positioned, it will not be detected.

An alternative and low cost active sensor is the ultrasonic sensor. This emits a high

frequency chirp which reflects off a nearby surface and is returned in a measureable

time, which is then used to estimate distance. These sensors essentially emit a beam that

receives echoes from a region of approximately 30 degrees wide from its source. They

are mainly used for obstacle detection at short range; however they are vulnerable to

noise due do the environmental conditions. Infrared sensors are another example of

distance measurement which can be used for obstacle avoidance; however their major

limitation is their relatively low accuracy.

2.7.2 Vision based sensors

Vision provides the most comprehensive information to mobile robots. However, due to

its complexity and sensitivity to factors such as lighting it is sometimes difficult to use

effectively. There are various architectures for vision based sensors. One of these is

stereo vision which is mainly used to extract range data. This is a promising sensing

method that uses two or more cameras placed in different positions, capturing images

which are then analysed to detect the objects. However, this architecture has several

important drawbacks. Firstly processing costs can become excessive for relevant

architectures, in terms of both software and hardware. A more fundamental problem is

to estimate how the robot knows that it is looking at the same point in both images. This

is called the correspondence problem [Murphy, 2000]. Omni-directional vision is

another popular sensing technique widely used by researchers. An omni-directional

camera has a 360-degree field of view in the horizontal plane, or with a visual field that

covers approximately the entire sphere. However, it is a specialist camera and should be

mounted on top of the robot in order to take all round view. This causes limitations in

terms of appearance, and the detection of obstacle region or walls is difficult [Saitoh et

al., 2009]. Another important disadvantage of omni-directional cameras is loss of

resolution in comparison with standard images. PTZ (Pan-Tilt-Zoom) vision refers to

http://en.wikipedia.org/wiki/Field_of_view

 Chapter 2 Literature Review

34

mechanically operated cameras, which are considered one of the most useful sensors

[Jae Kyu et al., 2011]. The user typically has the ability to control the pan to the left and

right, tilt up and down and the zoom of the camera with a joy stick or some other

devices. The main advantage is they allow the operator to track objects or respond to a

threat and follow it much more closely. They can zoom in and capture key information

that can be used to help in loss prevention. However the limitation is that it is only able

to record where the camera is pointed and focused, and if the camera is pointed away

from where an incident happens it could potentially miss the event entirely.

2.8 Mobile Robot Software

Robot software is the coded commands that instruct a robot what tasks to perform and is

used to control its actions. Robot programming is a challenging task, and thus several

software systems have been proposed to facilitate programming as well as being

deployed on widely distributed robotics platforms. Several software packages used in

mobile robots have been developed and a comparison of those packages was carried out

by Nattharith [2010].

The most popular of this types of software is Player/Stage which has been utilised by

many research groups around the world. Player has become the preferred simulator in

the mobile robot community because it does not place any constraints on how client

programs should be written. Furthermore it can be used to interface with 2D and 3D

robot simulators such as Stage and Gazebo. In addition, it provides several tools to

display sensor output graphically. The following section details the structure of Player.

Microsoft Robotics Developer Studio (MRDS), which provides a powerful simulation

environment, is then introduced.

2.8.1 Player architecture

Player is a free and very popular software program which is able to control several

robotics platforms. Its client/server model allows robot control programs to be written in

 Chapter 2 Literature Review

35

any programming language that can run on any computer with a network connection to

the robot. Player supports multiple concurrent client connections to devices, creating

new possibilities for distributed and collaborative sensing and control. Gerkey et al.

[2001] states that: "Player is a network server interface to a collection of sensors and

actuators, typically constituting a robot. “.

 Figure 2.11 Overall system architecture of Player [Gerkey et al., 2001b]

Player is designed as a distributed system and relies on the TCP protocol to handle

communications between the client and server layers. The overall system architecture is

illustrated in Figure 2.11. It is a language independent platform, as previously

mentioned; however, the client programs developed using C++ can take advantage of

the object-oriented Player C++ client library. This library employs classes as proxies for

local services. For example, an instance of PlayerClient for a single sever proxy is

employed to provide a connection with a Player server. Devices are registered by

creating instances of the appropriate proxies and initialising them through the

established Player Client object. Additionally there are numerous device proxies, such

 Chapter 2 Literature Review

36

as the LaserProxy class which acquires scan data for the laser. The Position2DProxy

class, on the other hand, is used to obtain data on current position in 2D world with X-Y

coordinates and orientation. More details of the attributes of, and methods used by

various classes, are presented in [Gerkey et al., 2004].

2.8.2 Microsoft Robotics Studio (MSRS)

Microsoft Robotics Developer Studio (MRS) is a robotic programming development

environment which was publicly released in December 2006 with the explicit goal of

providing an industry software standard for robot control. It provides solutions for

concurrency, distribution, abstraction, simulation, and programmer interaction

simulators [Jackson, 2007].

The Visual Simulation Environment (VSE) is designed to be used in a variety of

advanced scenarios with high demands for visualization and scaling. Furthermore, a

beginner with little programming experience can use simulation, and interesting

applications can be developed in a game-like environment.

2.9 Software for Computer Vision

Computer vision refers to processing data from any modality which produces an image.

The term ‘image’ means a way of representing data in a picture-like format where there

is a direct physical correspondence to the scene being imaged. An image implies a

multiple reading placed in a two dimensional array in a grid. Every element in the array,

called pixels, maps onto a small region of space. The modality of the camera estimates

what the image measures, for instance, if a visible light camera is used, the data is

subsequently stored at each pixel is the value of the light, such as in colour.

Alternatively, if a thermal camera is employed, then the values store data on the heat at

the region.

 Chapter 2 Literature Review

37

Computer vision on reactive robots (robot vision) is most often achieved using a video

camera which is an either IP or CCTV camera. Robot vision is a rapidly developing

technology that can increase the productivity and efficiency of all robotic systems.

Recently, various different software architectures and frameworks have been developed

to acquire and process image data successfully, thus helping researchers to implement

both new and conventional algorithms more rapidly and efficiently. There are two

popular open source computer vision libraries; namely, OpenCv and Clmg. These

libraries are widely used by researchers who need to analyse and process image data for

real time applications.

OpenCV is a library of image processing algorithms developed by Intel for use by

researchers and professionals alike. The main programming languages which can be

used with OpenCV are C and C++. This library supports many image processing and

computer vision algorithms, such as those for basic image processing like filtering or

edge detection, structural analysis using the Hough transform, template matching, linear

algebra routines, and others. Despite its strengths, the implementation of the library may

be complex depending on the hardware configuration and third party software required,

and serious effort is required to understand some of the basic principles before going on

to bigger and better things. The source code and more detailed information have been

published in OpenCV [2011].

CIMG (Template image processing toolkit) is an open source image processing and

computer vision designed by Tschumperlé et al. [1999]. It can be used across many

platforms, including Windows, OS X, and UNIX. It is also highly portable and is stored

in a single .h header file, which is about 1MB in size. The library itself contains several

useful algorithms. The header file CImg.h contains all the classes and functions that

comprise the library itself. The main advantages of this library are its portable structure

which allows it to successfully work in different hardware and software configurations

[Tschumperlé et al., 1999].

 Chapter 2 Literature Review

38

2.10 Soft Computing

Soft Computing is a collection of techniques including many fields that fall under

various categories in Artificial Intelligence. These techniques resemble biological

processes more closely than traditional techniques, which are largely based on formal

logical systems. It has three main branches including fuzzy logic, neural networks, and

genetic algorithms. Navigation is a key issue for mobile robots as previously mentioned;

traditional robot control methods rely upon strong mathematical modeling, analysis, and

synthesis. However, soft computing techniques provide alternative and simpler

solutions to this problem. Two major branches of soft computing used in this research

are introduced in the following sections.

2.10.1 Fuzzy logic

Fuzzy logic is essentially a system for dealing with uncertainty, and was developed by

Zadeh in the 1960s to characterize types of knowledge that cannot be represented by

conventional boolean algebra [Zadeh, 1965]. There are now many variations on the

concept of a fuzzy logic that allows objects to take partial membership in vague

categories which it achieves through the use of a structure called a fuzzy set. Fuzzy set

theory is responsible for representing the elements using grades of possibility called the

membership function. These allow the description of the behaviour of systems that are

otherwise complex to deal in with mathematical terms. The fuzzy controller is

composed of the following four elements: fuzzification, rule-base, fuzzy inference and

defuzzification, as shown in Figure 2.12 [Passino and Yurkovich, 1998]. Fuzzy control

has been used in a wide variety of applications in engineering, science, business,

medicine, psychology, and other fields. Autonomous mobile robots can also employ

fuzzy logic for complex control architectures. For instance, Daniel et al. [1999]

introduced the design of a fuzzy logic based navigation system for a mobile robot in

which the system includes two behaviours: obstacle avoidance and goal seeking. The

inputs to the fuzzy controller are the desired direction of motion and sensory data, while

the outputs from each behaviour rule are integrated using a command fusion

 Chapter 2 Literature Review

39

mechanism, resulting in the smooth motion of the robot [Daniel et al., 1999]. Several

techniques for mobile robot using fuzzy logic have been developed, including those

proposed by [Hung-Ching and Chih-Ying, 2005], [Kiwon and Nian, 2007] , [Harb et al.,

2009].

Hung-Ching and Chih-Ying [2005] introduced a fuzzy logic system on a mobile robot

where the steering angle and speed are determined, by two separate fuzzy logic

controllers. Additionally, Kiwon and Nian [2007] described similar fuzzy control

architecture to guide a mobile robot in which the design of mobile robot navigation

architecture was based on the combination of two fuzzy logic controllers acting on 81

different rules. The system was equipped with eight range finder sensors and a GPS

sensor, and the outputs of the fuzzy system controlled the speed of two servo motors

[Kiwon and Nian, 2007]. Harb et al. [2009] described a navigation architecture

employing a fuzzy controller and a neural network to adjust the speed of mobile robots.

Additional research in mobile robots utilizing fuzzy based control architectures is

described in Ross [2004]. The components of a fuzzy logic controller will be detailed in

the following section. Further discussion of fuzzy logic, including its operation and the

use of fuzzy control in the area of speed control, is provided in Chapter 5.

 Figure 2.12 Fuzzy controller [Passino and Yurkovich, 1998]

Fuzzy logic lends itself to implementation in systems ranging from simple, small,

embedded micro-controllers to large, networked, multi-channel PC or workstation-

 Chapter 2 Literature Review

40

based data acquisition and control systems. It also relatively easy to implement and

provides faster and more consistent results than conventional control methods. In this

study, a FL based control system based on the Mamdani method is designed to fuse

given algorithms. The basic configuration of a fuzzy-logic system is composed of four

parts (see Figure 2.12): Fuzzification, Fuzzy rule-base, Inference Mechanism and

Deffuzification [Driankov, 1987].

2.10.1.1 Fuzzification

Fuzzification comprises a scale of the transformation of input data from a current

process into a normalised domain. This requires the identification of two parts where

the first defines the fuzzy variables that correspond to the system input variables. The

second part defines the fuzzy sets of the input variables and their representative

membership functions, including the range of the data.

Figure 2.13: Membership function shapes, (a) triangular, (b) trapezoidal, (c) gaussian, [Ross

and Hoboken, 2004]

Membership functions may cross each other’s boundaries, and may be triangular,

trapezoidal or bell shaped, as illustrated in Figure 2.13. The choice of the fuzzy sets is

based on expert opinion using natural language terms that describe the fuzzy values. In

this study triangular and trapezoid models are utilized to design the membership

functions of the input and output values.

The triangular function has three parameters which can be defined as follows:

 Chapter 2 Literature Review

41

 ()

{

 (2.1)

The degree of membership of the Gaussian function (Figure 2.13) depends on two

parameters, c and σ, which represent the centre and width of the graph respectively and

are illustrated as follows:

 () [
 ()

]

(2.2)

The trapezoidal function incorporates four parameters which can be represented as:

 ()

{

(2.3)

Fuzzy logic uses intersection, union, and complement operations to represent the

standard common operators of AND, OR, and NOT, respectively. The most common

method used to calculate intersection and union operations are the Minimum and

Maximum functions. For the fuzzy sets M and N, which are subsets of the universe X,

the following definitions are proposed to represent the AND, OR, and NOT operators

respectively [Ross and Hoboken, 2004] (see Figure 2.14).

 Chapter 2 Literature Review

42

 Figure 2.14: Fuzzy Operators, (a) and, (b) or, (c) not

 () (() ()) (2.4)

 () (() ()) (2.5)

 () 1 - () (2.6)

While variables in mathematics usually take numerical values, in fuzzy logic

applications, non-numeric linguistic variables are often used to facilitate the expression

of rules and facts. A linguistic variable is a variable whose values are words or phrases

in a natural or artificial language rather than being numerical [Zadeh, 1965; Zadeh,

1968]. According to Godjevac [1997], a linguistic variable is defined by:

 Its name: "x".

 Its term set: "TS(x)", which is the set of linguistic values or labels of "x".

 The base variable "u", which supports the linguistic values of "x". In others words,

the membership functions for the linguistic values of "x" are defined in the domain

of "u".

 The universe of discourse "U" associated with the base variable "u".

Here, "x" should not be confused with "u": "x" is the name of a linguistic variable (such

as distance, angle, etc) whereas "u" is the name of the base variable giving physical

sense to "x" (i.e. meters, degrees, etc). In physical applications, "x" may adopt linguistic

values (i.e. small, very large, etc) whereas "u" may adopt numerical values (i.e. 100m, -

30°, etc) [Godjevac, 1997]. In a fuzzy controller, inputs and outputs are defined as

linguistic variables. For instance, suppose that a controller is designed to guide a vehicle

 Chapter 2 Literature Review

43

towards a reference point in a plane. The inputs of the controller are the distance

between the reference point and the vehicle, and the speed of the vehicle. The output of

the controller is the power supplied to the vehicle’s motor. The term set of the linguistic

variables distance and speed for instance, can be defined, as follows:

 Table 2.1: Linguistic variables and their corresponding linguistic terms

Since distance is a length, the base variable "u" associated with the linguistic variable

distance may adopt values expressed in terms of length units. Assuming the length

measurement ranges from 0 to 1000 cm, the universe of discourse is U=[0,1000]. A

linguistic value belonging to distance makes physical sense through the definition of its

membership function that confines its domain in terms of the variable "u". This

restriction is the "meaning" of such a linguistic value. The number of sets and the choice

of their membership functions depend on the type of the problem that is required to be

solved.

There is no standard design method that can be followed to obtain either the most

effective membership function types for their numbers. By increasing the number of

membership functions, the behaviour of a fuzzy system may be enhanced. However this

increases the number of rules and consequently increases computational time required.

2.10.1.2 Fuzzy rule-base

A fuzzy proposition is a statement expressed in a natural or artificial language. In

contrast to classical logic propositions, a fuzzy proposition may adopt a truth-value

from the interval [0,1]. For the former example from vehicle guidance, shown in Table

2.1, the following sentences are fuzzy propositions:

 Linguistic Variable Linguistic Terms Abbreviations of Terms

Distance Small, Medium , Big S,M,B

Speed Low, Medium, High L,M,H

Power(Braking) Hard, Medium, Light H,M,L

 Chapter 2 Literature Review

44

Distance is very Big , Speed is Low.

where the meanings of these propositions are determined by the corresponding

membership functions. Fuzzy controllers normally deal with several input variables

defined in different universe of discourses. Therefore, the compound fuzzy propositions

that are formed using linguistic connectives such as and, or, not, etc, are more

frequently encountered such as:

Distance is very Small and Speed is Low; Distance is Big or Speed is High.

The generation of the fuzzy rule is the second step in a fuzzy system and depends on the

knowledge of experienced human operators, the fuzzy model of the plant concerned and

the analysis of the system. The rule base is composed of two parts namely, the if-part

and according to Godjevac [1997], a linguistics If-Then rule. This can be demonstrated

as follows:

antecedent part (premise), expressed by: if <fuzzy proposition>,

consequent part, expressed by: then <fuzzy proposition>,

where the fuzzy propositions at the antecedent and consequent parts may be simple or

compound. In a fuzzy controller, the antecedent part is related to the inputs of the

controller whereas the consequent part is related to the outputs. Let us reconsider the

former example from vehicle guidance [Godjevac, 1997]. Suppose then that in the

corresponding controller there is a fuzzy rule defined as: If Distance is very Small and

Speed is High then Braking Power is Hard.

2.10.1.3 Fuzzy inference

Fuzzy inference provides the conclusion from the rule-base and forms the intermediate

stage between the fuzzification and defuzzification of the fuzzy system. There are two

methods used to find the rules conclusion; namely Max-Min inference and Max-Product

inference. Max-Min inference uses the Minimum operator to combine the antecedent of

 Chapter 2 Literature Review

45

the If-Then rules, which produces modified fuzzy sets for the outputs. These modified

sets are then combined using the Maximum operator. For a set of r rules, the aggregated

output using the Max-Min inference will be given as follows [Ross and Hoboken,

2004]:

 () (() ()) k 3 … r (2.7)

Figure 2.15: Example for the max-min inference method [Ross and Hoboken, 2004]

Max-Product inference employs the standard Product operator to combine the

antecedent of the If-Then rules. Then the Maximum operator is used to combine these

modified sets. For a set of r rules, the aggregated output using the Max-Product

inference will be given as follows [Ross and Hoboken, 2004]:

 () (() ()) k 3 … r (2.8)

Figure 2.15 demonstrates the Max-Min inference processes for two input variables i and

j. Each of them is represented by two triangular fuzzy sets using two rules.

 Chapter 2 Literature Review

46

2.10.1.4 Defuzzification

Defuzzification is the process of mapping from a space of inferred fuzzy control action

to a space of non-fuzzy control actions where the calculated crisp value is that which

best represents the inferred control action. A number of defuzzification strategies exist,

and it is a simple matter to invent more. The most popular defuzzification methods are

the Centre-of-Area, Centre-of-Largest-Area, Centre-of-Sums, and Mean-of-Maximum.

These methods are based on two basic mechanisms: centroid and maximum. The

centroid methods are based on finding a balance point, while the Maximum methods

search for the highest peak of weight (area) of each fuzzy set. Ross and Hoboken [2004]

detailed these methods as follows:

Centre-of-Area (COA): COA essentially calculates the centroid of the total area

representing the fuzzy output set as given by:

∫ ()

∫ ()
 (2.9)

where ∫ () is the area of the output fuzzy set .

Centre-of-Largest-Area (CLA): CLA evaluates each implication result and then

computes the centroid of the largest area to represent the output fuzzy, as given by:

∫ ()

∫ ()
 (2.10)

where ∫ () presents the largest surface in the output fuzzy set.

Centre-of-Sum (COS): This process calculates the algebraic sum of individual output

fuzzy sets instead of their union, as illustrated in the following equation:

 Chapter 2 Literature Review

47

∫ ∑ (

())

∫∑ (

())

 (2.11)

Mean-of-Maximum (MOM): MOM is often referred to as the Middle-of-Maximum. It

is used when the maximum membership function is not unique, and is expressed as

follows:

 ∑ (

)

 (2.12)

where is the mean of all the maximums of the fuzzy output with the highest degree

of truth, and M is the integer number of such peaks [Ross and Hoboken, 2004]. The

selection of the defuzzification method to be used here is based on criteria which can be

summarised as follows [Driankov et al., 1993; Ross and Hoboken, 2004]:

 Continuity, such that a small change in the input does not lead to a big change in

output

 Computational complexity, where the computational time needed is an

important criterion for the practical choice of fuzzy inference method.

 Plausibility, where the method is considered to be plausible if the support for the

output fuzzy set has the highest degree of membership.

 Weight counting (disambiguity), in that weight information is not lost due to an

inability to decide. (For instance, if there are two large areas, then CLA will not

be able to decide).

 Chapter 2 Literature Review

48

2.10.2 Neural Network

A neural network, inspired by aspects of the structure of biological neural networks, is a

powerful data modelling tool that is able to capture and represent complex input/output

relationships. The field of research into neural network was established before the

advent of computers. Neural networks have a remarkable ability to derive meaning from

complicated or imprecise data, and can be used to extract patterns and detect trends that

are too complex to be noticed by either humans or other computer techniques.

They have been applied in many fields, including aerospace, financial, defence,

electronics, and robotics and computer vision. For instance, a vision-guided mobile

robot navigation system, called NEURO-NAV, based on a neural network was

described by [Meng and Kak, 1993]. In NEURO-NAV where primitive navigational

tasks such as hallway following, and landmark detection are implemented using neural

networks. In a more recent study, Janglova [2004] introduced the intelligent control of

an autonomous robot which was claimed to move safely in a partially structured

environment. The method essentially constructs a collision-free path for the robot based

on two separate neural network architectures, where the first determines free-space

using an ultrasound ranger finder, while the second determines possible navigation steps

towards the goal [Janglova, 2004b]. Chi and Lee [2011] defined a neural network based

obstacle control system that able to guide the mobile robots traverse through a maze

with arbitrary obstacles [Chi and Lee, 2011]. Additional research in neural network

based obstacle avoidance techniques can be found in [Lynch et al., 1999; Trieu et al.,

2008; Fazl-Ersi and Tsotsos, 2009].

Camera calibration is a key step in 3D computer vision, which involves extracting

metric information from 2D images and usually entails the solution of complex non-

linear equations. However, artificial neural networks demonstrate outstanding non-

linear mapping performance which can avoid these processes and makes it unnecessary

to know parameters of the cameras, such as focus and distortions as well as the

geometry of the system. An example of the implementation of intelligent camera

calibration for a monocular vision camera is defined by [Li Guo and Li Guang, 2011] .

 Chapter 2 Literature Review

49

Their algorithm employed the Harris corner extraction algorithm to obtain input and

output data for a multi layer neural network architecture. Other relevant examples of

neural network based camera calibration can be found in [Lynch et al., 1999; Cai et al.,

2010; Xiong et al., 2010]. The background knowledge of artificial neural networks

associated with this dissertation will be detailed in the following section. Further

discussion of neural networks, including their operation and the use of control in the

area of calibration, obstacle avoidance and distance estimation, is provided in Chapter 5.

2.10.2.1 Background to Artificial Neural Network

The human nervous system consists of small cellular units, called neurons. When

connected in tandem, these form a nerve fibre. A biological neural net is a distributed

collection of these nerve fibres. A neuron receives electrical signals from its

neighbouring neurons, processes those signals and generates signals for other

neighbouring neurons attached to it. The operation of a biological neuron, which

decides the nature of the output signal as a function of its input signals, is not yet clearly

understood. However, most biologists are of the opinion that, after receiving signals, a

neuron estimates the weighted average of the input signals and limits the resulting

amplitude of the processed signal using a non-linear inhibiting function [Fu, 1994].

Further details about biological neurons can be found in Anderson [1972].

 Figure 2.16: Artificial neuron model [Chrislb, 2005]

 Chapter 2 Literature Review

50

Artificial neurons are similar to their biological counterparts. They have input

connections which are summed together to determine the strength of their output, which

is the result of the sum being fed into an activation function, as illustrated in Figure

2.16. Though many activation functions exist, the most common is sigmoid activation

function, which outputs a number between 0 (for low input values) and 1 (for high input

values). The result of this function is then passed as the input to other neurons through

more connections, each of which are weighted. These weights determine the behaviour

of the network. The most common activation functions are given as follows [Hagan et

al., 1996]:

Linear: This function is also called ‘purelin’ activation function providing linear

relationships between the input and output, which is defined as follows:

 () (2.13)

Sigmoid: This function can range between 0 and 1, and an example is the log-sigmoid

function which is defined as follows.

 () =

 (2.14)

Symmetric Sigmoid Function: This function can range from -1 to 1, and the

hyperbolic tangent sigmoid is defined as follows:

 () =

 (2.15)

Step function: This is a special type of function whose graph is a series of line

segments. This kind of step activation function is useful for binary classification

 Chapter 2 Literature Review

51

schemes. In other words, if the aim is to classify an input pattern into one of two groups,

a step activation function as given below can be used as a binary classifier.

 () {

 (2.16)

2.10.2.2 Topologies of artificial neural networks

Depending on the nature of the problems involved, artificial neural networks can be

organized in different structural arrangements (topologies). Common topologies can be

classified into two groups namely; feed-forward and recurrent neural networks. Feed-

forward networks mainly comprise single layer perceptron and multiple layer

perceptron topologies. The most popular recurrent topologies are simple recurrent and

Hopfield networks. These topologies are defined below [Konar, 2000].

Single Layer Perceptron: The earliest kind of neural network is a single-layer

perceptron network, which consists of a single layer of output nodes where the inputs

are fed directly to the outputs via a series of weights. In this way it can be considered

the simplest kind of feed-forward network. The sum of the products of the weights and

the inputs is calculated in each node and, for instance, if the value is above some

threshold (typically 0) the neuron fires and takes the value 1; otherwise it takes the

value -1.

Perceptrons can be trained by a simple learning algorithm that is usually called the

delta-rule. It calculates the errors between calculated output and sample output data, and

uses this to create an adjustment to the weights, thus implementing a form of gradient

descent. Single-unit perceptrons are only capable of learning linearly separable patterns

[Fu, 1994].

Multi Layer Perceptron: This class of networks consists of multiple layers of

computational units, usually interconnected in a feed-forward way. This means that

http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/
http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/

 Chapter 2 Literature Review

52

each neuron in one layer has directed connections to the neurons of the subsequent

layer. In many applications the units of these networks apply a sigmoid function as an

activation function. The universal approximation theorem for neural networks states that

every continuous function that maps intervals of real numbers to some output interval of

real numbers can be approximated arbitrarily closely by a multi-layer perceptron with

just one hidden layer. This result holds only for restricted classes of activation

functions, such as sigmoidal functions. Multi-layer networks use a variety of learning

techniques, the most popular being back-propagation. Here the output values are

compared with the correct answer to compute the value of some predefined error-

function. By various techniques the error is then fed back through the network. Using

this information, the algorithm adjusts the weights of each connection in order to reduce

the value of the error-function by some small amount. After repeating this process for a

sufficiently large number of training cycles, the network will usually converge to some

state where the error of the calculations is small. In this case one can say that the

network has learned a certain target function [Hagan et al., 1996]. To adjust weights

properly one applies a general method for nonlinear optimization task that is called

gradient descent. For this the derivation of the error-function with respect to the

network weights is calculated and the weights are then changed such that the error

decreases (thus going downhill on the surface of the error function). For this reason

back-propagation can only be applied on networks with differentiable activation

functions.

Simple Recurrent Network: A simple recurrent network (SRN) is a variation of the

multi-layer topology. Contrary to the feed-forward networks, the dynamical properties

of the network are important. In some cases, the activation values of the units undergo

a relaxation process such that the neural network will evolve to a stable state in which

these activations do not change. In other applications, the change of the activation

values of the output neurons is significant, such that the dynamical behaviour

constitutes the output of the neural network [Hagan et al., 1996].

Hopfield neural networks: The Hopfield net is a recurrent neural network in which all

connections are symmetric. This network has the property that its dynamics are

http://www.knowledgerush.com/kr/encyclopedia/Sigmoid_function/
http://www.knowledgerush.com/kr/encyclopedia/Backpropagation/
http://www.knowledgerush.com/kr/encyclopedia/Optimization/
http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/

 Chapter 2 Literature Review

53

guaranteed to converge. If the connections are trained using Hebbian learning then the

Hopfield network can perform robust content-addressable memory, and it is robust to

connection alteration.

2.10.2.3 Learning using neural networks

Artificial neural nets have been successfully used for recognizing objects from their

feature patterns. For the classification of patterns, neural networks should be trained

prior to the phase of recognition process. The process of training a neural net can be

broadly classified into three typical categories, namely supervised, unsupervised and

reinforcement.

 Figure 2.17: The supervised learning process

Supervised Learning: The supervised learning process shown in Figure 2.17 requires a

supervisor that submits both the input and the target patterns for the objects to be

recognized. For instance, to classify objects into "ball", "skull", and "orange", the

features of these objects must be submitted, such as average curvature, the ratio of the

largest solid diameter to its transverse diameter, and so on, as the input feature patterns.

Conversely, to identify one of the three objects, one may use a 3-bit binary pattern

where each bit corresponds to one object. Given such input and output patterns for a

number of objects, the task of supervised learning calls for the adjustment of network

parameters such as weights and non-linearities, which can consistently satisfy the input-

output requirements for the entire object class, which is spherical objects in this

 Chapter 2 Literature Review

54

example). The most common supervised learning algorithms is the back-propagation

training algorithm [Konar, 2000].

Unsupervised Learning: If the target pattern is unknown, many recognition problems

require the process of unsupervised learning which attempts to generate a unique set of

weights for one particular class of patterns. For instance, consider a neural net of

recurrent topology having n nodes. Assume that the feature vector for spherical objects

is represented by a set of n descriptors, each assigned to one node of the structure. The

objective of unsupervised learning process is to adjust the weights autonomously, until

an equilibrium condition is reached when the weights do not change further [Konar,

2000].

The process of unsupervised learning, therefore, maps a class of objects to a class of

weights. Generally, the weight adaptation process is described by a recursive functional

relationship. Depending on the topology of neural nets and their applications, these

recursive relations are constructed intuitively. The Hopfield network is a typical

example of unsupervised learning [Hagan et al., 1996].

Reinforcement Learning: This learning process may be considered as an intermediate

form of the above two types of learning. In this process, the learning machine needs to

undertake some action on the environment and receives a feedback response from the

environment. The learning system grades its action good (rewarding) or bad

(punishable) based on the environmental response and adjusts its parameters

accordingly. Generally, parameter adjustment is continued until an equilibrium state

occurs, following which there will be no more changes in its parameters.

2.10.2.4 Back-propagation algorithm

Back-propagation is one of the most popular techniques used for training neural

networks, and an example of a three-layer back-propagation network is illustrated in

Figure 2.18. This technique is primarily useful for feed-forward networks which have

http://www.knowledgerush.com/kr/encyclopedia/Neural_network/
http://www.knowledgerush.com/kr/encyclopedia/Neural_network/

 Chapter 2 Literature Review

55

no feedback, or put more simply that have no connections which loop. Since it is a

supervised training algorithm, both the input and the target patterns must be given. For a

given input pattern, the output vector is estimated through a forward pass on the

network. After the forward pass is completed, the error vector at the output layer is

estimated by taking the difference between the target pattern and the generated output

vector. A function of errors of the output layered nodes is then propagated back through

the network to each layer for the adjustment of weights in that layer. The weight

adaptation policy used in back-propagation algorithms is derived from the principle of

steepest descent approach [Fu, 1994; Hagan et al., 1996].

 Figure 2.18: An example of three-layer back-propagation network

The steepest descent method is used for finding the minimum. It consists of computing

the gradient of the function, then taking a small step in the direction of a negative

gradient, which hopefully corresponds to a decreased function. The gradient of a

multivariate function is the vector of partial derivatives, one for each variable. The

 Chapter 2 Literature Review

56

gradient is a vector in the space of all variables that the function depends on. It points in

the direction of steepest increase [Hagan et al., 1996].

Consequently, this is essentially a two pass algorithm where the forward pass computes

the outputs of all nodes, working from the inputs to the output node where the error is

recorded, and the weights are held fixed during the forward pass. However, in the

backwards pass, the weight correction starts from the final layer (output node) back

towards the inputs.

2.11 Summary

Mobile robots have had a long history since the Shakey, the first mobile robot, was

established. In this chapter relevant information regarding research, particularly in

vision based mobile robotics field has been presented. Mobile Robot architectures, the

foundations of their control and navigation systems enabling the robot to safely navigate

to its goal position were introduced. The review mainly has focused on three major

trends in visual based mobile robot navigation: map-based navigation, map-building-

based navigation and mapless navigation. Focusing on the topic of mapless navigation,

the most important techniques were summarized including visual homing and visual

servoing concepts. These algorithms fall naturally into four categories: optical flow,

appearance-based, object recognition and navigation techniques based on feature

tracking. All of these have been defined and associated with relevant studies.

Additionally, obstacle avoidance techniques using qualitative information have been

defined. Feature-based algorithms require reliable solutions to the problems of

consistent feature extraction and correspondence to ensure successful operation.

Therefore, the current state of one of the strongest local feature detectors has been

introduced. Sensors assist the mobile robot to acquire information about the external

surroundings, while fuzzy logic and neural network facilitate robust and smooth motion

for mobile robot. Finally, it was explained how the knowledge described has been

integrated into software architectures to achieve specific tasks.

 Chapter 3 Vision based Obstacle Avoidance

57

 CHAPTER 3

 VISION BASED OBSTACLE AVOIDANCE

This chapter focuses on a new vision based obstacle avoidance technique combining

optical flow and appearance-based methods. The first section provides a brief

description of existing vision based obstacle avoidance techniques. The next section

details the proposed optical flow and appearance-based algorithms, followed by the

design of these algorithms for obstacle avoidance. The final section of the chapter

presents results for the proposed architecture of experiments conducted using Microsoft

Robotics Studio. The results confirm that the proposed method can provide an

alternative and robust solution for mobile robots using a single monocular camera as the

only sensor used avoiding obstacles.

3.1 Vision Based Obstacle Avoidance Techniques

One of the key research problems in mobile robot navigation concerns methods for

obstacle avoidance. In order to cope with this problem, most autonomous navigation

systems rely on range data for obstacle detection. Ultrasonic sensors, laser rangefinders

and stereo vision techniques are widely used for estimating range. However, all of these

have drawbacks. Ultrasonic sensors suffer from poor angular resolution, and laser range

finders and stereo vision systems are relatively expensive. Moreover the computational

complexity of stereo vision systems is another key challenge [Ulrich and Nourbakhsh,

2000]. In addition to their other shortcomings, range sensors are not capable of

differentiating between different types of ground surfaces such as pavements and

adjacent flat grassy areas. Overall the computational complexity of the avoidance

algorithms and the cost of sensors are the most critical factors for real time applications.

The use of monocular vision based systems can avoid these problems and are able to

provide appropriate solutions to the obstacle avoidance problem. There are two general

types of vision based obstacle avoidance techniques; those that compute apparent

motion, and those that rely on the appearance of individual pixels for monocular vision

 Chapter 3 Vision based Obstacle Avoidance

58

based obstacle avoidance systems. The first group is called optical flow based

techniques, in which the main idea is to control the robot using optical flow data, from

which the heading direction of the observer and time-to-contact values are obtained

[Guzel and Bicker, 2010]. One way of using these values is by acting to achieve a

certain type of flow. For instance, to maintain ambient orientation, the type of optic

flow required is to detect no flow at all. If some flow is detected, then the robot should

change the forces produced by its effectors so as to minimize this flow, based on the

Law of Control [Contreras, 2007] .

A second group of techniques is called the appearance-based methods, which in essence

rely on qualitative information. They utilize basic image processing techniques which

consist of detecting pixels different in appearance from those of the ground and then

classifying them as obstacles. The algorithms used perform in real-time, provide a high-

resolution obstacle image, and can operate in a variety of environments [DeSouza and

Kak, 2002]. The main advantages of these two types of conventional methods are their

ease of implementation and ready availability for real time applications.

3.2 Optical Flow for Obstacle Avoidance

Optical flow, as illustrated in Figure 3.1, is an approximation of the motion field,

summarizing the temporal changes in an image sequence. Optical flow estimation is one

of the central problems in computer vision. There are several methods which can be

employed to determine optical flow, namely: block-based, differential, phase correlation

and variational methods [Barron et al., 1994; Atcheson et al., 2009]. There has been

wide interest in the use of optical flow for vision-based mobile robot navigation. The

visual control of motion in flying insects has been shown to provide important clues for

navigational tasks such as centred flight in corridors and the estimation of distance

travelled, encouraging new biologically-inspired approaches to mobile robot navigation

using optical flow. Behaviour such as corridor centring, docking and visual odometry

have all been demonstrated in practice using visual motion for the closed loop control of

a mobile robot [Szenher, 2008]. In recent years, there has been growing amount of

literature on optical flow based mobile robot navigation. Bernardino and Santos-Victor

 Chapter 3 Vision based Obstacle Avoidance

59

[1998] used biologically inspired behaviours based on stereo vision for obstacle

detection. A trinocular vision system for mobile robot navigation has been also

proposed [Argyros and Bergholm, 1999]. These methods, in some ways, emulate

corridor following behaviour; nevertheless their main disadvantage is the need to

employ more than one camera. Alternatively, a number of studies relying on monocular

vision have proposed the employment of optical flow techniques for mobile robot

navigation [Szabo et al., 1996; DeSouza and Kak, 2002; Souhila and Karim, 2007;

Guzel and Bicker, 2010].

 a) Destination b) Source c) Animation

Figure 3.1: Illustration of flow vectors and motion animation, (a) destination image, (b)

source image, (c) movement animation

Differential methods are widely used for these navigation tasks, and are mainly based

on partial derivatives of the image signal and/or the flow field sought and higher-order

 Chapter 3 Vision based Obstacle Avoidance

60

partial derivatives. McCarthy and Barnes [2004] conducted a comprehensive study

analyzing the performance of differential methods in mobile robot navigation. The

results demonstrated similar levels of performance in the most popular differential

methods [McCarthy and Barnes, 2004]. Accordingly, in the present study a multi

resolution version of the conventional Horn-Schunk algorithm [Horn and Schunck,

1981], which is one of the most popular optical flow estimation methods, is used to

estimate flow vectors in steering the robots.

3.2.1 Horn-Schunk method for obstacle avoidance

The Horn–Schunck algorithm yields a high density of flow vectors. On the negative

side, this process is more sensitive to noise than local methods.

The main idea behind the technique assumes that, for a given scene point, the

corresponding image point intensity I remain constant over time, which is referred to as

the conservation of image intensity [Atcheson et al., 2009]. Therefore, if two

consecutive images have been obtained subsequent time intervals, the basic idea is to

detect motion using image differencing. If any scene point projects onto an image point

() at time t and onto an image point () at time (), the following

equation is inferred based on the assumption of the conservation of image intensity.

 () () (3.1)

Expanding the right-hand side of Eq. 3.1 using a Taylor series about (), and

ignoring the higher order terms then by rearrangement gives the following expression:

 () ()

 (3.2)

where illustrates the second and higher order terms in , and . Further

rearrangement gives the following equation:

 Chapter 3 Vision based Obstacle Avoidance

61

 (3.3)

A simpler expression is obtained by dividing by throughout where movement along

the horizontal (

), and vertical (

) directions are u and v respectively. Conducting

these rearrangements and denoting partial derivatives of I as Ix, Iy and It gives the

differential flow equation shown in following expressions:

 (3.4)

where, Ix, Iy and It are the partial derivatives of image brightness with respect to x, y and

t, respectively. Having one equation with two unknowns , for each pixel presents

an aperture problem of the optical flow algorithms. To find the optical flow, another set

of equations is needed using some additional constraint. All optical flow methods

introduce additional conditions for estimating the actual flow [Horn and Schunck,

1981]. Depending on the approach, a regularizing term associated with smoothness is

added to the general flow equation. Horn and Schunk [1981] stated that neighbouring

pixels have the same velocity as moving objects, so the brightness pattern of an image

changes regularly. This constraint is demonstrated by minimizing the squares of

gradient magnitudes. The smoothness of an optical flow area can also be estimated by

calculating the Laplacian of optical flow vectors speed in both horizontal and vertical

directions denoted by u and w respectively, illustrated in following expressions:

 (3.5)

where Ei= and Es =

 . The aim here is to minimize the total

error given by the following expressions (3.6), which includes as the regularization

parameter controlling the association between the detail and smoothness. High values of

 lead to the smoothness constraint being dominant and result in a smoother flow.

 Chapter 3 Vision based Obstacle Avoidance

62

() ∬(

) (3.6)

3.2.1.1 Estimating the partial derivatives

One of the most significant challenges now is to calculate with precision Ix, Iy, the first-

order differentials. While there are many formulae for approximate differentiation, those

concerning the neighbouring points in quadrants in successive images give approximate

estimates of the gradient based on the two frames as follows [Nixon and Aguado, 2008]:

 (() () () ())

 (() () () ())

 (() () () ())

 (() () () ())

 (3.7)

Additionally, the time differential, It is given by the difference between two pixels

along the two faces of the cube, as

 (() () () ())

 (() () () ())

 (3.8)

where I(0) and I(1) refer to two successive images for both Equations 3.7 and 3.8.

In addition, the Laplacian is estimated by subtracting the value at a point from a

weighted average of the values at neighbouring points [Gonzalez and Woods, 2002].

 Chapter 3 Vision based Obstacle Avoidance

63

Thus an approximation to Laplacians of u and v can be considered as follows [Nixon

and Aguado, 2008]:

 = (

 -) and

 = (

 -) (3.9)

Nixon and Aguado [2008] define and as follows:

()

()

()

()

 (3.10)

3.2.1.2 Minimization

As previously mentioned, the main aim is to minimize the sum of the errors in the

equation for the rate of change of image brightness and the estimate of the departure

from smoothness in the velocity flow. In order to obtain appropriate values for optical

flow velocity (u,v), total error (
) is differentiated so as to be minimized, which is

given in the following expressions [Horn and Schunck, 1981]:

 (3.11)

Horn and Schunk [1981] accomplished the minimization of the function by

differentiating the total error function as shown in Equation 3.12. Further details can be

found in [Horn and Schunck, 1981; Weinstock, 2008].

 Chapter 3 Vision based Obstacle Avoidance

64

 () ()

 () ()

Setting these two derivatives equal to zero leads to two equations using u and v

(
) = ()

(
) = ()

(3.12)

This is linear in u and v and may be solved for each pixel in the image. A direct solution

of these equations, such as using Gaus-Jordan elimination [Bogacki, 2005], would be

very costly. Instead, an iterative Gauss Seidel approach is used to reduce the cost and

obtain the flow vectors, [Horn and Schunck, 1981]. Since the solution depends on the

neighbouring values in the flow field, it must be repeated once the neighbouring pixels

have been updated. The following iterative scheme is derived:

 un+1 =

- (
 (

)

) ; vn+1 =

- (
 (̅ ̅)

)

 (3.13)

where the superscript (n+1) denotes the next iteration which is to be calculated and (n)

refers the preceding estimated result [Horn and Schunck, 1981; Nixon and Aguado,

2008].

 Chapter 3 Vision based Obstacle Avoidance

65

3.2.1.3 Multi-scale optical flow estimation

The multi-scale coarse-to-fine approach is incorporated in most modern algorithms for

optical flow estimation, in order to support large motion and for improved accuracy.

This approach relies on estimating the flow in an image pyramid which is constructed

by repeatedly down-sampling the image by a factor of two. The optical flow can then be

found for the smallest image in the pyramid, and this is then used to unwrap the next

smallest image. Interpolation is used for the fractional pixel locations. This process is

then iterated until the original image resolution is reached [Lucas and Kanade, 1981].

The advantage of the pyramid structure with regard to optical flow is that it can

efficiently capture large motions in a large contiguous area of an image. An example

illustrating the algorithm is presented in Figure 3.2. Szelinski [2010] presented the

detailed working schema of the coarse to fine algorithm, illustrated in Figure 3.3.

The following pseudo code can be considered to define the algorithm:

1. Create a Gaussian pyramid for both frames.

2. Repeat until reaching the finest level.

3. Apply corresponding flow algorithm at the current level of the pyramid.

4. Propagate flow by using bilinear interpolation to the next level, where it is used as

an initial estimate.

5. Go back to step 2.

 Figure 3.2: Multi scale coarse to fine approach

 Chapter 3 Vision based Obstacle Avoidance

66

Figure 3.3: Detailed working schema of the multi scale coarse to fine algorithm [Szelisnski,

2010]

The pseudo code of the Horn-Schunk [1981] optical flow algorithm has given by Nixon

and Aguado [2008], is as follows:

Horn-Schunk Algorithm:

Require img1 and img2 are gray scale images, and each has R rows and N columns

Ensure: ux, vy stores flow vectors

Procedure Compute Flow

Initial assignment for the parameters

Load images (img1,img2)

Until the end of the iterations

 For x from 1 to rows

 For y from 1 to columns

Calculate derivatives Ix, Iy, It

Calculate averages Au, Av

Update Estimates using derivatives and averages, to obtain temporal flow,(tx,ty)
 end_for

 end_for

 For x from 1 to rows

 For y from 1 to columns

 Update(ux,uy) based on tx,ty

 end_for

end_for

end_until

EndProcedure

The CImg library facilitates image analysis in any format and provides useful functions

for image processing, and it is integrated into the developed software. A multi scale

 Chapter 3 Vision based Obstacle Avoidance

67

version of this optical flow algorithm is provided by the CImg library which was

integrated into the corresponding navigation problem with major modifications.

3.2.2 Applying optical flow for obstacle avoidance

The aim of this section is to adapt the previously discussed multi-scale optical flow

technique in behavioural based robot architecture for obstacle avoidance and mobile

robot navigation in a partially cluttered environment. The proposed system relies on a

single monocular vision camera and tries to understand its environment by analyzing

the data taken from image sequences. A block diagram of the proposed navigation

algorithm is shown in Figure 3.4.

Image sequence Optical flow
FOE && TTC

calculation

Behavior Module
Player

architecture
Robot’s action

Figure 3.4: Flowchart of the optical flow based navigation algorithm

Flow vectors are utilized to navigate autonomous systems based on the Balance

Strategy, shown in the following equation (Eq. 3.14), and the depth information which

is extracted from the image sequence using Focus of Expansion (FOE) and Time To

Contact values (TTC). The balance strategy is essentially a control law that can be used

by mobile robots to avoid obstacles, to trail moving targets, or to escape from

approaching enemies. The fundamental idea behind the balance strategy is that of the

motion parallax so that, when the agent is translating, closer objects give rise to faster

motion across the retina than further away objects. It also takes advantage of perspective

in that closer objects also take up more of the field of view, biasing the average towards

their associated flow [Temizer, 2001]. The agent turns away from the side of greater

 Chapter 3 Vision based Obstacle Avoidance

68

flow, which indicates a possible approach to a stationary object. In order to achieve this

purpose, the agent can adjust the direction and the magnitude of its rotation by looking

at the difference between the magnitude of right and left sides optical flows, this control

law can be expressed as follows [Duchon et al., 1998; Temizer, 2001]:

 () (
∑| | ∑| |

∑| | ∑| |
) (3.14)

where and present the magnitude of right and left flows respectively.

3.2.2.1 FOE and TTC calculation

When one moves through a world of static objects the visual scene is projected on the

retina and appears to flow past. In fact, for the translational motion of the camera, image

motion everywhere is directed away from a singular point corresponding to the

projection of the translation vector. This is called the focus of expansion (FOE), which

is the point from which all optical flow vectors emerge, and both components of the

optical flow vector are null at such a point (u= 0 and v= 0) [Kröse et al., 2000].

Essentially, in order to find the FOE, the calculated optical flow field is searched for a

specific point in which the directions of the vectors in the field cross each other. The

estimation of time-to-contact (TTC) is another useful tool for autonomous mobile robot

navigation, where accurate estimates of TTC for approaching objects are crucial. TTC

uses visual information to judge distance and speed of action with respect to time

[Duchon et al., 1998]. The source of this visual information comes from the movement

of the agent towards an object or of the object/surface towards the agent. These

movements provide the visual systems with important information about the constantly

changing environment, allowing appropriate actions to be produced. For instance, when

the agent moves at a constant speed, the TTC value with a point of interest, in terms of

the numbers of remaining frames that will be grabbed by the vision systems before

contact occurs, can be basically estimated from the ratio of the distance of that point in

the image plane from the focus of expansion to the rate of change in this distance

(divergence from the FOE) [Temizer, 2001; Souhila and Karim, 2007]. The TTC

calculation is also widely used in the field of robotics. Knowledge of the robot velocity

 Chapter 3 Vision based Obstacle Avoidance

69

or its initial distance from the object is not required; however, the approach only works

properly in the case of a static environment, and it also implies that the robot is moving

with a constant velocity. For the present research, in order to derive more reliable and

sensitive results from proposed algorithm, the image is segmented into vertical regions.

The optical flow-based image segmentation is also called the segmentation of

movement, which consists in grouping the image pixels that perform the same

movement [De Oliveira Caldeira et al., 2007]. The number of regions is manually

estimated depending on the problem and image resolution, three were used in this

research. Thus, an image with n×m resolution is divided into three equal columns such

that each column region has

×m optical flow vectors. Having the coordinates of the

FOE and the optical flow field, the TTC corresponding to the ith region of the image ()

is calculated by Eq. 3.15.

 √
() ()

√

 (3.15)

where x and y are the centre points of the considered region; and presents

the x and y coordinates of the FOE point in the image, and and are the optical flow

components of the ith region. Additionally, total flow magnitudes are assigned to the

corresponding regions as follows:

 (∑

)

 (∑

)

 (∑

) (3.16)

where refers to the total magnitude of flow vectors in the ith region. Consequently,

each region is considered with corresponding TTC values and flow magnitudes

extracted by the current image sequence.

 Chapter 3 Vision based Obstacle Avoidance

70

The values of these regions are used to activate the behaviour module in which three

independent task-achieving behaviours are performed.

3.2.2.2 Behavioural module and implementation algorithm

In mobile robotics, earlier work focussed on the “sense-model-plan-act” strategy,

requiring intensive computation to infer the location and identity of objects, updating a

central world model, and planning a course of action to achieve some defined goal state

[Duchon et al., 1998]. In contrast, recent studies found that it is more beneficial to

decompose the navigation task into the multiple independent task-achieving modules,

called behaviours [Brooks, 1986]. Behavioural architectures were previously discussed

in Chapter 2.

In order to provide reliable navigation, the behavioural architecture, employed in this

study is composed of three layers (behaviours), namely: steering, change direction and

stop. The architecture is inspired by the conventional subsumption architecture where

each layer implements a particular goal of the agent, and higher layers are increasingly

abstract [Brooks, 1986]. The stop behaviour has the highest priority whereas the

steering behaviour has the lowest priority.

State machines are a good way of implementing and presenting robotic architectures

consisting of several behaviours, as illustrated in Figure 3.5. According to the proposed

architecture, the robot is designed to wander around any cluttered indoor environment

whilst not colliding with any obstacle. It reacts to the presence of an obstacle in the

environment by adjusting its turning rate. The robot starts its initial movement with

forward motion behaviour at a constant speed (vc) and initial (0°) heading angle. It

navigates in the forward direction using steering behaviour (see Eq. 3.17) until it

encounters an obstacle. When an obstacle is detected by the vision system, either

steering or change direction behaviour is enabled depending on the size of the obstacle.

For instance, change direction behaviour is initiated when any single object such as a

wall or table spans the entire field of view. In this case the system perceives that the

 Chapter 3 Vision based Obstacle Avoidance

71

average of flow clusters is similar and, the standard deviation and average of TTC

values are below a certain threshold value.

Start Evaluation

Spans the

entire field

of view

Change

Direction

Steering

Stop

Figure 3.5: Flowchart of the optical flow based navigation algorithm

To avoid the obstacle, the robot first ceases forward motion and makes a constant turn

(cturn) which depends on the environment, followed by activation of the steering

behaviour. Conversely, if the standard deviation of the TTC values are high, and the rate

of side flows are not small, the robot performs a turn with respect to the control law,

with the range varying from n°, which gives a new heading angle as determined by the

following expressions [Guzel and Bicker, 2010]:

 (
∑| | ∑| |

∑| | ∑| |
) (3.17)

 Chapter 3 Vision based Obstacle Avoidance

72

where ∑| | and ∑| | are the sums of the magnitudes of optical flow in the visual

hemi-fields on both sides of the robot’s body. Besides this, if there is no obstacle in its

environment the robot is steered by this control law.

Stop behaviour is activated which essentially ceases the robot’s motion, in the case of

the mission being accomplished, which is evaluated as the robot navigates the

environment over a certain time span whilst avoiding obstacles, or if the robot collides

with any obstacle in the environment during the navigation task. Furthermore the robot

can be stopped manually by the operator. Accordingly, this behaviour is enabled in case

of success or failure in finishing the process.

3.2.3 Evaluation of flow vectors for mobile robot navigation

Two different scenarios are discussed in this section regarding the functionality of

optical flow vectors in order to conduct vision based navigation. The first example,

illustrated in Figures 3.6 and 3.7, shows the behaviour of the algorithm whenever an

obstacle is detected along the path of the autonomous vehicle.

The second example presents a situation in which any single object spans the entire

field of view, shown in Figure 3.8.

 Figure 3.6: Scenario 1 (side obstacle), (a) source image, (b) destination image

 Chapter 3 Vision based Obstacle Avoidance

73

 Figure 3.7: Scenario 1 (side obstacle); (standard deviation of TTC = 20.9), flow rate

 (left / right = 0.43), (Average of TTC parameters (left=63,center=11, right=17))

The first scenario displays the characteristics of the flow vectors in the event of any

obstacle appearing in the robot’s path as it manoeuvres, as illustrated in Figure 3.7. The

magnitudes of the flow vectors on the right side are somewhat higher than the left side,

and represents the possibility of colliding with an obstacle appearing on the right side of

the robot. In addition, TTC values of right and centre clusters are low, which reveals the

possibility of the presence of an obstacle at close range. However despite the low

mean value of TTC parameters due to left cluster, standard deviation of TTC parameters

is still high for change direction behaviour.

The results of the second scenario, shown in Figure 3.8 (c), present a situation when a

single object spans the entire field of view. As the corresponding results shows, while

the rate of side flow is close to 1, the TTC parameters are correspondingly rather low,

presenting the high probability of colliding with a very large obstacle which cannot be

overcome by standard turning manoeuvres. Therefore the change direction behaviour is

enabled so as to avoid the obstacle.

 Chapter 3 Vision based Obstacle Avoidance

74

(a) (b)

(c)

Figure 3.8: Objects spans over the entire field of view, (a) source image, (b) destination image,

(c) flow vectors; (standard deviation of TTC = 5.6), flow rate (left / right = 1.12), (Average of

TTC parameters (left=26,center=32, right=37))

 Chapter 3 Vision based Obstacle Avoidance

75

3.3 Appearance Based Methods for Obstacle Avoidances

Appearance-based methods which identify locations on the basis of sensory similarities

are a promising potential solution to mobile robot navigation. One of the main idea

behind the strategy is to head the robot towards an obstacle-free position using

similarities between the template and the active images [F. Vassallo et al., 2000]. This is

called template matching, and is discussed in the next section. The similarity between

the image patterns can be obtained by using feature detectors, involving corner based

detectors, region based detectors and distribution based descriptors [Alper et al., 2006].

However, most of these techniques consume a lot of processing time which is not

appropriate for real time systems. In order to handle the performance problem,

algorithms are designed based on the appearance of individual pixels. The classification

of obstacles is carried out by using differences between pixels in the template and active

image patterns and any pixel that differs in appearance from the ground is classified as

an obstacle. The method requires three assumptions that are reasonable for a variety of

indoor and outdoor environments, which are:

 Obstacles must be different in appearance from the ground.

 The ground must be flat.

 There must be no overhanging obstacles.

The first assumption distinguishes obstacles from the ground, while the second and third

assumptions are required to estimate the distances between detected obstacles and the

robot. There are several models for representing colour. The main model is the RGB

(Red, Green, Blue) schema which is used in most image file formats; however colour

information in this model is very noisy at low intensity. The RGB format is frequently

converted to HSV (hue, saturation, and value) or HIS (hue, intensity, saturation). Hue is

what humans perceive as colour, Saturation is determined by a combination of light

intensity and the extent to which it is distributed across the spectrum of different

wavelengths and value is related to brightness. In HIS, I is an intensity value with a

range from 0 to 1 where 0 represents black and white 1. These colour spaces are

 Chapter 3 Vision based Obstacle Avoidance

76

assumed to be less sensitive to noise and lighting conditions. The flow chart for the

appearance-based obstacle detection systems is illustrated in Figure 3.9.

Current

Image

Convolved

with a low

pass filter

From RGB

to HSI, HSV

or HSL

Reference

image is

extracted

Compared

using

threshold

values

Converted

to binary

image

 Figure 3.9: Flow chart of the appearance-based obstacle detection algorithm

The input image is first convolved with a smoothing filter in order to reduce noise

effects, and then the smoothed image is converted to HIS, HSV or any relevant colour

space with respect to the developed algorithm [Ulrich and Nourbakhsh, 2000; Fazl-Ersi

and Tsotsos, 2009]. A reference area is obtained from this image which might be any

defined geometric shape such as trapezoids, triangles or squares [Saitoh et al., 2009].

Finally, a comparison between the reference image and the current image is made by

using some predefined threshold values. One comprehensive technique which has been

proposed [Ulrich and Nourbakhsh, 2000] employs image histograms to compare the

 Chapter 3 Vision based Obstacle Avoidance

77

reference area and the current image. For example, assume that the bin value, Hist(H(x,

y)), of the generated histogram and the threshold value, TH are compared, where H(x, y)

is the H value at pixel (x, y). If Hist(H(x, y)) > TH, then the pixel P(x, y) is classified

into the safe region; otherwise it is classified as in the obstacle region. In order to

simply the problem, the results are represented in a binary image in which the safe path

is represented as white but obstacles are represented with black, as illustrated in Figure

3.10.

 Figure 3.10: Appearance-based obstacle detection method

Figure 3.11: Effects of lighting conditions and unexpected stains on the floor

However, identifying regions purely on the basis of sensory similarity is too simplistic;

different places may look very similar, even with a rich sensing methodology, due to

lighting conditions, shadows from illumination, and so on. Furthermore, for dynamic

 Chapter 3 Vision based Obstacle Avoidance

78

environments there might be unexpected stains on the ground which may be determined

to be an obstacle and may lead the robot to an unsafe path. An example of how a stain

on the floor can affect the output of the segmentation is illustrated in Figure 3.11.

3.3.1 Template matching

Template matching is a simple and popular technique in computer vision and image

processing, where small parts of an image which match a template image are identified.

It can be used in mobile robot navigation or as a way to detect edges or objects in

images. A basic method of template matching uses a convolution mask which can be

easily performed with grey images. The convolution output will the highest at places

where the image structure matches the mask structure, such that large image values get

multiplied by large mask values. This method is normally implemented by first picking

out a part of the search image to use as a template. For instance, the input and output

images are called I(x, y) and O(x, y) respectively, where (x, y) represent the coordinates

of each pixel in the images and the template is called T(xt, yt), where (xt, yt) represent

the coordinates of each pixel in the template. The technique simply moves the centre of

the template T(xt, yt) over each (x, y) point in the search image and calculates the sum

of products between the coefficients in I(x, y) and T(xt, yt) over the whole area spanned

by the template. As all possible positions of the template with respect to the input image

are considered, the position with the highest score is the best position, and this is

represented in the output image. Several techniques can be used to handle the translation

problem; including the SSD (sum of squared differences), NCC (normalized cross

correlation) and SAD (sum of absolute differences) [Wen-Chia and Chin-Hsing, 2009].

NCC basically measures the similarity of two variables and is defined as follows:

∑ (̇)

 ()̇

√∑ ()̇
 ∑ ()̇

 (3.18)

where N is the template image size, and ̇ and ̇ represent average gray levels in the

template and source image respectively.

http://en.wikipedia.org/wiki/Sum_of_absolute_differences

 Chapter 3 Vision based Obstacle Avoidance

79

The goal is to find the corresponding (correlated) pixel within a certain range disparity

that minimizes the associated error and maximizes the similarity. This matching process

involves computation of the similarity measure for each disparity value, followed by an

aggregation and optimization step [Zitovai and Flusser, 2003]. An example related to

the correlation based technique is illustrated in Figure 3.12.

 Fig. 3.12: Correlation-based template matching

Root of SSD is an alternative and robust template matching method widely used in

image registration algorithms, and can be defines as follows:

RSSD=√∑ ()
 (3.19)

where N is the template image size; x and y represent the corresponding pixel values in

the template and the active image respectively.

3.3.2 Implementation of obstacle avoidance technique using

appearance based approach

One of the aims of this study is to design and implement a purely reactive obstacle

avoidance system based on qualitative information, which must be compatible with

optical flow based navigation systems so as to construct the proposed hybrid obstacle

avoidance architecture. Ulrich’s method [Ulrich and Nourbakhsh, 2000] is a simple but

reasonably efficient appearance-based obstacle region detection method, which has been

recently modified to navigate a wheelchair based mobile robot [Saitoh et al., 2009].

 Chapter 3 Vision based Obstacle Avoidance

80

However, this method is not purely reactive and its histogram based comparison is more

vulnerable to lighting conditions than correlation based techniques. Therefore, in the

research, Ulrich’s method is modified somewhat in order to be able to run it with an

optical flow based control architecture.

According to the algorithm given in Figure 3.9, the acquired image is first smoothed by

a Gaussian filter to eliminate noise in the image [Ulrich and Nourbakhsh, 2000; Saitoh

et al., 2009]. Then a copy of the original image is transformed from RGB space to HSV

space. In order to provide the consistency between this method and the optical flow

based method, the implementation has been carried out based on the principle of

balance strategy used in optical flow based architecture, where the image is divided into

n clusters. However, only the lower half of the image is considered in order to reduce

processing time, and the upper part of the image is discarded. For instance, 4, 8 or 16

clusters can be obtained from a 640x480 resolution image which each cluster consists of

160x240, 80x240 or 40x240 pixels respectively. The same classification method can be

applied to lower or higher resolution images. In this study for both 320x240 and

176x144 resolutions, n is set to 8 based on trial and error method.

 The next step is to provide a reference area which is always required to be free of

obstacle. Therefore, to minimize the risk of violating this constraint, the reference area

cannot be deep. Accordingly, a reference area which is the same size as one of the

vertical regions is provided. This reference image illustrates a free path and during each

processing cycle of the main algorithm, it is compared with clusters extracted from the

active image using the template matching technique based on the H, S value ranges

respectively. Hue and saturation bands are less sensitive to changes in illumination than

the value band [Ulrich and Nourbakhsh, 2000]. From results of the comparison between

the reference image and the active images, corresponding clusters are allocated as either

free or occupied. By way of illustration, the algorithm is applied to an appropriate

scenario, shown in Fig 3.13. The results of clustering and template matching are

illustrated in Figure 3.14, where (f) represents a free path and (o) a blocked (occupied)

path. The correlation results with respect to the each cluster are illustrated in Figure

3.15. By way of comparison, SSD is applied for the Hue component and NCC is applied

 Chapter 3 Vision based Obstacle Avoidance

81

to the Saturation component. The latter involves higher computational complexity

compared to SSD since it requires numerous multiplication, division and square root

operations.

 Figure 3.13: An example image for the proposed appearance-based method

 (f) (f) (f) (f) (f) (o) (o) (o) (o) (f) (f) (f) (o) (o) (o) (o)

 Figure 3:14: Allocation of image segments given example scenario

Finally, in order to construct the segmentation of the current image, correlation results

are compared with previously defined threshold values. However, due to the structure of

 Chapter 3 Vision based Obstacle Avoidance

82

appearance-based algorithms, lighting conditions and noise are very important. Thus,

for each test environment, appropriate threshold values must be recalculated.

 Figure 3.15: Correlation results for each cluster

Using the results obtained from this example, appropriate threshold values for this

environment can be assigned as 0.8 for S and 10 for H components. To provide more

reliable results, both components must be considered in the map construction operation.

The results indicate that both correlation based similarity measuring techniques produce

comparable outcomes. Overall system performance enhancement is one of the primary

motivations in real time applications. Therefore, for the real experiments, RSSD is

applied for both components which is somewhat faster than using NCC.

3.4 Integration of Appearance Based Method with Optical Flow

Architecture

Optical flow based methods suffer from two major problems. The first and most

important of these is illumination, which is markedly affected by variations in lighting

and shadows [Contreras, 2007]. Another major issue is sensitivity to noise and

distortion. Various integrated methods for solving these problems have been proposed;

 Chapter 3 Vision based Obstacle Avoidance

83

nevertheless it is still a key challenge in employing optical flow methodologies for

mobile robot navigation. Appearance-based methods have significant processing and

performance advantages which make them a good alternative for vision based obstacle

avoidance. Nevertheless, these techniques still suffer from illumination problems and

are highly sensitive to floor imperfections, as well as to the physical structure of the

terrain.

To overcome these drawbacks, an alternative method has been proposed which

essentially relies on a fusion of both techniques, as illustrated in Figure 3.16. The main

strategy behind this proposal is to integrate the results obtained from an appearance-

based method into the proposed optical flow based architecture. In order to achieve this

integration, flow equations are updated with respect to an estimated binary image.

However, the binary image illustrated with Boolean logic (F/O) needs to be converted

into logical expressions in order to be reasoned over. The method used in this study

obtains the extreme values (the highest and lowest average magnitude values) from flow

clusters. These are subsequently replaced with Boolean values for the binary image in

which the highest value is replaced with ‘O’ members and the lowest value is replaced

with ‘F’ members. The following algorithm illustrates how the estimated Boolean

values from the appearance-based method are converted into flow values.

Conversion Algorithm :

Calculate maximum flow Fmax and minimum flow Fmin from the current image

 Until the conversion is completed

 If the current segment is free

Replace F with Fmin

 else

Replace O with Fmax

end_until

The conversion procedure for each segment can be formalized as follows:

 {

 (3.20)

where si represents the ith segment extracted from the corresponding binary image and ci

is its updated equivalent.

 Chapter 3 Vision based Obstacle Avoidance

84

Eq. 3.21 is used to calculate the new heading angle, including the corresponding

member of the map. The new heading angle and the updated version of the control

equation () can be expressed as follows:

 (
∑| | ∑| |

∑| | ∑| |
) (3.21)

where ∑| | and ∑| | are the sums of the magnitudes of optical flow and

converted map regions with respect to the extreme flow values in the visual hemi-fields

on both sides of the robot’s body. These can be detailed as follows:

 ∑ () ()

 ∑ () ()

 (3.22)

where and represent the average magnitudes of flow vectors in the left and right

clusters respectively, whereas and represent the converted segments from the

binary image (n is the number of clusters and is set to 4).

The flowchart of the overall control architecture is illustrated in Figure 3.16, the Image

Sequence is used by the Optical Flow Module to calculate flow vectors and

corresponding parameters such as Focus of Expansion (FOE) and Time to Contact

(TTC). Simultaneously, the last obtained image is correlated with a template in order to

estimate the free (F) and occupied (O) parts of the current image based on the

appearance-based obstacle detection method. The Conversion Module converts the

output of the appearance-based obstacle detection output into flow based values. The

Control Law is generated based on the inputs provided by both the optical flow and

conversion modules (see Eq. 3.22). Finally, the Behaviour Module selects the

appropriate behavior based on its arbitration mechanism to steer the robot towards a free

space.

 Chapter 3 Vision based Obstacle Avoidance

85

Image Sequence Optical Flow

FOE && TTC

calculation

Behavior Module
Player

Architecture
Robot’s action

Correlation

based on SSD

function

Template

Conversion

Module

Control Law

Figure 3.16: Flowchart of the proposed hybrid architecture

Figures 3.17-3.20 presents the output of both detection algorithms for different frames

captured from a navigation scenario. The control parameters of each frame are included

in Table 3.1, and the higher resolutions of flow vectors are included in Appendix A.

 (a) (b)

Figure 3.17: Frame 1, (a) flow vectors, (b) binary output from appearance-based

method

 Chapter 3 Vision based Obstacle Avoidance

86

 (a) (b)

Figure 3.18: Frame 32, (a) flow vectors, (b) binary output from appearance-based

method

 (a) (b)

Figure 3.19: Frame 53, (a) flow vectors, (b) binary output from appearance-based

method

 (a) (b)

Figure 3.20: Frame 97, (a) flow vectors, (b) binary output from appearance-based

method

 Chapter 3 Vision based Obstacle Avoidance

87

 Table 3.1: Estimated steering angles for experiments

Left (+) / Right (-) Optical Flow Hybrid Architecture

Frames w(deg/sec) w(deg/sec)

 1 0.63 0.82

 32 2.9 5.4

 53 6 7.3

 97 -0.93 -0.77

The hybrid technique has the ability to negotiate and avoid walls and doors by

benefiting from the results of the optical flow based navigation technique using the

frontal optic flow to estimate the so-called time-to-contact before a frontal collision is

likely to occur. Furthermore it possesses the ability to avoid lateral obstacles in both a

safer and smoother manner than with the conventional optical flow technique.

Figure 3.18 presents such a scenario where the robot, using the optical flow based

method, is not able to avoid the obstacle, because the system does not generate an

appropriate steering angle. The major difficulty with the optical flow method in mobile

robot navigation is that, despite the assumption of constant illumination; lighting

conditions may significantly change due to environmental factors which optical flow

techniques are known to have difficulty in handling which may thus cause

miscalculations. However the hybrid system integrates the results of the appearance-

based method into the control law which enforces the overall control strategy. For this

scenario, the hybrid system generates a sharper avoiding manoeuvre which allows the

robot to pass the obstacle without colliding with it. Figure 3.19 presents another

scenario in which the hybrid method generates a safer avoidance manoeuvre when

compared with the conventional optical flow method. This is because the hybrid

architecture involves merging the optical flow method with the appearance-based

method and this results in a better response to the lateral obstacle. Figures 3.17 and 3.20

present the scenarios where the environments are partly open and safe. The results

reveal that the control parameters generated by both methods for corresponding

scenarios are similar (see Table 3.1).

 Chapter 3 Vision based Obstacle Avoidance

88

(a) (b)

 Figure 3.21: Pattern similarity, (a) orjinal image, (b) binary Image

Despite their success with lateral obstacles, conventional appearance-based obstacle

detection methods tend to fail to detect objects such as walls and doors that span the

entire field of view. This is because the appearance-based methods perform a

classification of obstacles using differences between pixels in the template and the

active image patterns, where any pixel that differs in appearance from the ground is

classified as an obstacle. Additionally, region segmentation has some other drawbacks,

one of which is that the thresholding technique requires a significant contrast between

the background and foreground in order to be successful. This technique essentially

works well for the environments which consist of one dominant colour. Accordingly, if

the colour of the doors or walls is similar to the floor pattern, the algorithm may easily

fail to complete the navigation task. Figure 3.21 illustrates an example where the

appearance-based method is not able to distinguish between the door and the floor in a

precise manner due to the similarity in colours of their patterns.

Figure 3.22: First large obstacle, (a) original image, (b) binary Image

 Chapter 3 Vision based Obstacle Avoidance

89

 Figure 3.23: Second large obstacle, (a) original image, (b) binary Image

Two additional examples are illustrated in Figures 3.22 and 3.23, where the path of the

robot is obscured by large obstacles. The results shown in Figure 3.22 indicate that both

techniques can detect the obstacles. However, due to the lighting conditions, the second

technique fails in the segmentation of some parts of the image where reflections are

present on the white floor, as shown in Figure 3.22 (b). On the other hand, the first

technique estimates the obstacles by succesfully using the magnitudes of flow vectors.

Figure 3.23 demonstrates another scenario in which the obstacle is rather close to the

goal. Here, the second method is more useful than the conventional optical flow based

technique, despite the extracted stains as shown in Figure 3.23 (b). This is because the

appearance-based methods are based on pixel differences which can provide image

segmentation independent of distance to the goal.

As has been discussed above, the first method focuses on the practical use of optical

flow and visual motion information in performing obstacle avoidance task in real indoor

environments. However, when the obstacle becomes very close to the robot, the

gradients usually cannot be calculated accurately which may result in the incomplete

calculation or allocation of flow vectors. To evaluate the performance of the proposed

navigation method, a series of simulation experiments are discussed in the following

section.

 Chapter 3 Vision based Obstacle Avoidance

90

3.5 Modelling and Simulation using Microsoft Robotics Studio

In order to estimate the capability of the proposed work for expressing useful tasks, the

system has been evaluated using a simulator based on the Microsoft Robotics Studio

(MRS) environment. The MRS provides a 3D programming and modelling simulator

called Visual Simulation Environment (VSE), illustrated in Figure 3.24. This simulation

environment is used to assess the performance of the proposed methodologies, as

discussed in subsequent chapters.

The VSE includes a comprehensive graphical simulator which is also supported by a

powerful physics simulator. Physics simulation is performed using a physics engine

developed outside of Microsoft [Jackson, 2007]. Entities in the simulated world specify

a physical description complete with friction coefficients, mass, and centre of gravity.

Simulated contact takes into account force, torque, momentum, and resistance when

updating the positions of each frame. VSE services are authored using any .NET

compatible language. Both the graphics and physics simulation can be performed

through software on Windows XP and higher. Additionally, graphics cards supporting

DirectX 9 will accelerate rendering. The physics engine also allows hardware

acceleration through the optional integration of the physics processing unit. Further

details can be found in Microsoft [Jackson, 2007].

A series of simulations has been conducted to verify that the robot is able to navigate in

its working environment and achieve its goal without collisions. A simulated Corobot

mobile robot, which is able to moves on 4 wheels was used in these experiments, as

shown in Figure 3.25. The technical details of the Corobot mobile robot are provided in

Appendix B. For the experiments, the robot is equipped with an internet camera having

320x240 resolution and a 2D laser range finder which a 180-degree field of view, and

360 units of angular resolutions (2 units/degree). However, the internal camera

employed by the robot in these simulations is a single monocular camera without a

panning feature, and the robot has to rotate to the given position instead of panning the

camera when the search behaviour is activated (see chapters 4 and 5). Fortunately, the

simulation based experiments provide a more flexible yet still ideal platform to test the

 Chapter 3 Vision based Obstacle Avoidance

91

algorithms. An interval of ±90° is employed in conducting simulation experiments

reported in the following chapters.

 Figure 3.24: Simulation screenshot from the VSE

 Figure 3.25: Four wheel simulated Corobot mobile robot

 Chapter 3 Vision based Obstacle Avoidance

92

X
-A

x
is

Y-Axis

Robot heads to the +X

direction

 Figure 3.26: Simulation environment for experiments

In this section, simulations are conducted to assess the performance of the proposed

vision based obstacle avoidance technique. Three different scenarios have been

developed to achieve this purpose, each of which is conceived as having an increased

level of complexity. The robot must navigate in the simulated environment whilst

avoiding obstacles until the mission is accomplished or terminated. The scenarios are

defined as follows:

Scenario 1: This is the preliminary scenario in which the mobile robot is required to

navigate from its start point (-5, 1) in an organized and uncluttered environment. The

only obstacle is a wall surrounding the working environment, as shown in Figure 3.27.

Scenario 2: The mobile robot is required to navigate from start point (-5,1) while two

unexpected obstacles are placed along its path, as shown in Figure 3.28.

Scenario 3: This is a complex scenario in which the mobile robot navigates from start

point (-5,1) in a partly cluttered environment whilst several unexpected obstacles are

placed along its path, as shown in Figure 3.29.

 Chapter 3 Vision based Obstacle Avoidance

93

X
-A

x
is

Y-Axis

Robot Start

Position

 Figure 3.27: Scenario 1, the robot moves from the start position

X
-A

x
is

Y-Axis

Robot Start

Position

1. Obstacle

2. Obstacle

 Figure 3.28: Scenario 2, the robot moves from the start position

 Figure 3.29: Scenario 3, the robot moves from the start position

 Chapter 3 Vision based Obstacle Avoidance

94

 Table 3.2: Parameters for experiments

 Parameters Descriptions

Start Position (x,y)

Initial heading angle

Constant speed

Constant turn value

Maximum range for turning

Docking Area (-5,1)

θ = 0
ο

vc= 0.3 m/s

cturn = 90
ο

n

=

± 20°

To carry out the simulation, several parameters are set, namely the robot’s start position

and its initial heading angle, constant turning value (cturn) used in the change direction

behaviour, constant forward speed of the robot (vc) and maximum turning angle range

(n), used to generate the new heading for each processing cycle. The simulated robot

has a differential drive configuration controlled by a combination of linear and angular

velocity. As previously mentioned, the linear velocity is constant (vc) and angular

velocity is obtained from the expressions for the heading angle (w) as given by Eq. 3.21.

Table 3.2 presents the initial values of the parameters used to conduct the simulation

based experiments. The simulated robot was stopped manually in each scenario, and the

estimated trajectory is displayed on a 2D graph showing the characteristics of the

algorithm. In addition, the corresponding value of w (deg/sec) for each processing cycle

is displayed on a separate graph. As Table 3.1 shows, maximum turning angle is small

in order to give a smoother trajectory, and this limits positional errors which may be

caused by extreme manoeuvres that may lead the robot to depart from its original

trajectory. The simulated obstacles used in Scenarios 2 and 3 are boxes having

dimensions of 1000 mm x 750 mm.

 Chapter 3 Vision based Obstacle Avoidance

95

 (a)

 (b)

 Figure 3.30: Scenario 1, (a) robot’s trajectory, (b) control parameters (between 267
th
 and

 268
th
 cycles for change direction)

Figure 3.30 (a) presents the navigation results from the first scenario. This is the

preliminary scenario for the robot that evaluates the characteristics of the algorithm and

the performance of the behavioural based architecture. The robot begins its task by

directly moving forward until it encounters the wall. During this forward movement, a

series of small manoeuvres which do not affect the robot’s direction is generated by the

proposed control strategy until the robot encounters the wall. Once the wall is

perceived, spanning the entire field of view, the robot turns 90
ο
 to the left (cturn, see

Table 3.1) in order to avoid it. Subsequently, the robot keeps moving forward without

losing directional stability until it stops. Figure 3.30 (b) gives the corresponding control

parameters for this scenario.

Additionally, Scenario 1 was carried out using the conventional optical flow based

control architecture to provide a comparison. The estimated trajectory and the

 Chapter 3 Vision based Obstacle Avoidance

96

corresponding control parameters for this method are illustrated in Figures 3.31 (a) and

3.31 (b) respectively.

 (a)

 (b)

Figure 3.31: Scenario 1 with conventional method, (a) robot’s trajectory

 , (b) control parameters (between 300
th
 and 301

th
 cycles for change direction)

The corridor following based comparison is a popular performance evaluation technique

and is widely used to analyze of vision based control architectures in which the robot is

required to move along a path without changing its heading direction and position error

is calculated based on the deviation between the start and final positions [Mikolajczyk

and Schmid, 2005].

Position errors are given in Table 3.3, which in essence reveal that the hybrid

architecture is able to conduct a corridor centring task somewhat better than the optical

flow based architecture and in doing so yields a smaller error. Figure 3.32 presents the

navigation results from the second scenario in which two obstacles are positioned close

to the robot in the test environment. This test is intended to reveal how the robot

interacts with obstacles and what obstacle avoidance strategy is used.

 Chapter 3 Vision based Obstacle Avoidance

97

 Table 3.3: Centring error results for scenario 1

 Methods Total Position Error (m)

 Optical Flow 2.54 (m)

 Hybrid 0.63 (m)

 (a)

 (b)

 Figure 3.32: Scenario 2, (a) robot’s trajectory, (b) control parameters

Conventional optical flow based navigation algorithms tend to fail when the distance

between the robot and the obstacle is too close at the start. Accordingly, there could be

two possible trajectories using optical flow based architectures. Either the robot may

collide with an obstacle or diverge from the desired trajectory. An example of such a

case is illustrated in Figure 3.33, in which the robot collides with the second obstacle

and is therefore unable to complete the task. In contrast, the proposed hybrid

architecture overcomes this problem. This is because the integration of appearance-

based results to the conventional control architecture evidently enhances the overall

performance of the system. As can be seen from the corresponding Figure 3.32 (a), once

 Chapter 3 Vision based Obstacle Avoidance

98

the robot starts moving, the first obstacle is immediately detected and it is successfully

avoided by smooth consecutive manoeuvres. After this the robot continues moving until

the second obstacle is perceived and it then performs another turning manoeuvre to

avoid the second obstacle. This ensures a safe path and the robot keeps moving until it

stops. The control parameters of this scenario are illustrated in Figure 3.32 (b).

 (a)

(b)

 Figure 3.33: Scenario 2 with conventional method (results in failure), (a) robot’s trajectory,

(b) control parameters

Figure 3.34 displays the test results for the third and most complex scenario, the

purpose of which is to estimate the performance of the proposed technique in a partly

cluttered environment. For this experiment, five obstacles are located along the robot’s

path. As the robot start moving, it discovers a collision free path along to the left and

keeps moving towards the right side in a smooth manner. On the other hand the robot,

under conventional optical flow based control architecture is unable to complete the

task, as illustrated in Figure 3.35. The test results of the simulations show that the

proposed algorithm is able to safely navigate the robot within its working environment.

The first experiment carried out in an unobstructed simulation environment established

the basic characteristics of the proposed architecture, and demonstrated that the robot is

 Chapter 3 Vision based Obstacle Avoidance

99

able to navigate along a collision free path with minimal positional error. The second

scenario was designed to evaluate the performance of the system in the presence of

external obstacles in close proximity to the robot. This scenario provides a good

illustration of improvement in performance from the conventional optical flow

algorithm and the proposed algorithm. The third scenario is designed to establish how

the robot navigates and can successfully overcome obstacles in a partly cluttered

environment.

 (a)

 (b)

 Figure 3.34: Scenario 3 ‘complex scenario’, (a) robot’s trajectory, (b) control parameters

 Chapter 3 Vision based Obstacle Avoidance

100

 (a)

 (b)

 Figure 3.35 Scenario 3 ‘complex scenario’ with conventional method (results in failure),

(a) robot’s trajectory, (b) control parameter

3.6 Summary

This chapter has presented the development of a novel vision based obstacle avoidance

architecture which integrates a high performance appearance-based obstacle avoidance

method with conventional optical flow based navigation architecture. Several

preliminary simulation based experiments have also been described which compare the

different methodologies. Although the experiments demonstrate the potential

performance improvement of the proposed system, the simulation is very much ideal,

 Chapter 3 Vision based Obstacle Avoidance

101

whereas in a real physical scenario there would be lighting and illumination issues, as

well as the physical dynamics of the robot. Consequently the simulation experiments

may be somewhat misleading or incomplete without testing the robot in realistic

conditions.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

102

 CHAPTER 4

 VISION BASED MOBILE ROBOT NAVIGATION

 USING SIFT

This chapter focuses on a vision based mobile robot architecture using principles of

image based visual servoing. The first section discusses the basis of the Scale Invariant

Feature Transform, including a brief introduction to local features and a detailed

explanation of the Scale-Invariant Feature transform (SIFT) algorithm. The next section

details the feature based navigation technique using the SIFT algorithm to overcome the

navigation problem of mobile robots, followed by the integration of the proposed

technique using a subsumption architecture. The proposed architecture comprises

several modules, facilitating the mobile robot’s navigation and ensuring that it

maintains a safe distance from any obstacles while finding the goal from its current

position to its destination. The final section of the chapter describes the experimental

results for the proposed architecture. All experiments were conducted using the

Microsoft Robotics Studio. The simulation results reveal that this system can safely and

effectively navigates the mobile robot in partly cluttered environments.

4.1 Local Features

A local feature is basically an image pattern which differs from that of its immediate

neighbourhood. It is usually associated with a change of a single image property or

several properties concurrently, although it is not necessarily defined precisely by this

change. The image properties commonly considered are intensity, colour, and texture.

Figure 4.1 shows some examples of local features in a contour images (left) as well as

in a gray-value image (right) [Tinne and Krystian, 2008]. Local features can be

illustrated mainly by edges, corners (interest points) and contours. Edges characterize

boundaries in an image and an edge can be of almost arbitrary shape, and may include

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

103

junctions. To apply an edge detecting algorithm to an image significantly reduces the

amount of data and filters out useless information, while preserving the important

structural properties of an image. A comparison of two well known edge detectors,

Canny [Canny, 1986] and Sobel [Green, 2002] is illustrated in Figure 4.2. The terms

corners and interest points are used somewhat interchangeably and refer to point-like

features in an image, which have a local two dimensional structure; an example with

respect to interest point detection is illustrated in Figure 4.1(a). The name corner has

been used since early algorithms were first performed but this term is used by tradition,

for instance a small bright spot on a dark background may be detected as a corner

(interest point). Contours provide a corresponding description of image structures in

terms of regions, as illustrated in Figure 4.1(b). Besides this, contours descriptors able

to obtain a preferred point (a local maximum) in the intensity landscape which means

that many contours detectors may also be regarded as interest point operators, and can

detect areas in an image which are too smooth to be detected by a corner detector

[Maire, 2009].

(a) (b)

Fig. 4.1: Illustration of local features in gray-value and coloured images (a) Interest points with

corner detection [Tuytelaars and Mikolajczyk 2008], (b) Contour detection [Maire, 2009]

Tuytelaars and Mikolajczyk [2008] divided local feature detectors into three main

groups. This is not the only way of categorizing the detectors but it does emphasize

different properties required by the usage scenarios. The first group concerns a specific

type of local feature, such as image corners from a captured image, whereby the

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

104

matching of these local feature points are obtained principally by cross-correlating the

image patches around them. For instance, detected edges in an aerial image often

correspond to roads, whereas contour detection can be employed to identify impurities

in inspection tasks. The second group comprises local feature detectors that can provide

a limited set of well localized and individually identifiable points. Local features may

not be relevant until their location can be determined accurately and in a stable manner

over time.

(a) (b) (c)
Figure 4.2: A comparison of two edge detectors, (a) original image, (b) canny applied image ,

(c) Sobel operator applied image

Examples include tracking applications, pose estimation and image alignment. The KLT

tracker is a typical example for this group [Tomasi and Kanade, 1991]. The final group

comprises detectors which are able to employ a set of local features as a robust image

representation that allows objects or scenes to recognized without the need for

segmentation. In this case, the goal is not to match them on an individual basis, but

rather to analyse their statistical characteristics.

For instance, Schiele and Crowlet [1996] employed multi-dimensional receptive field

histograms for object recognition. This is a probabilistic object recognition technique,

and does not require correspondence matching of images [Schiele and Crowley, 1996].

Texture analysis, image retrieval, and video mining are other application domains in

this category. In addition, feature detectors may be classified based on the types of

image features used for detection.Table 4.1 illustrates the classification of feature

detection algorithms, mentioned in this chapter.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

105

Table 4.1: Classification of some feature detectors

Feature Detectors Edges Corners Blob

Canny X

Sobel X

Tomasi and Kanade X

Laplacian of Gaussians X X

Difference of Gaussians X X

Feature detection is one of the most challenging aspects of machine vision and refers to

methods used to compute abstractions of image information in order to make local

decisions at every image point, whether there is an image feature of a given type at that

point or not. Once features have been detected, a local image patch around the feature

can be extracted, which may involve quite considerable image processing effort. The

result is known as a feature descriptor or feature vector. An important development in

feature detection and description has been to introduce to the literature the use of the

Scale-Invariant Feature Transform (SIFT) [Lowe, 1999; Lowe, 2004].

4.2 Scale-Invariant Feature Transform

The SIFT is an intensity based feature description algorithm that depends on intensity

patterns to find points or regions which satisfy some criteria of uniqueness and stability

[Hongli et al., 2007]. Applications of the algortihm include object detection, robot

navigation, 3D modelling, video/image tracking and gesture recognition, and it first

proposed by Lowe [1999, 2004]. Any object in an image is able to provide several

features which are points of interests on it that can be extracted to provide a feature

description of the object. This description extracted from a training image can then be

employed to identify the object when attempting to locate it in a test image containing

many other objects. It is important in performing reliable recognition that the set of

features extracted from the training image is robust with respect to changes in image

scale, noise, illumination and local geometric distortion. Lowe's [1999] patented method

can robustly identify objects even among clutter and under partial occlusion because the

most notable improvements provided by SIFT are its invariance to image scaling and

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

106

rotation and partial invariance to changes in illumination and 3D camera viewpoint.

Features are well localized in both the spatial and frequency domains which reduce

probability of disruption by occlusion, clutter, or noise. In addition, the features are

extremely distinctive. This allows a single feature to be accurately matched with high

probability against a large database of features, which is the basis of many applications

in computer vision and image processing [Lowe, 2004].

The evaluations carried out so far suggest that SIFT-based descriptors which are region-

based are the most strong and distinctive [Mikolajczyk and Schmid, 2005], and are

therefore particularly suitable for feature matching and object detection. However, the

main drawback of the algorithm is its computational complexity which usually

discourages its real-time utilization. There are four major stages of computation used to

generate the set of image features: Scale-space extreme detection, Keypoint localization,

Orientation assignment and Key point descriptor. The overview of the algorithm

involving these major steps is illustrated in Figure 4.3.

 Figure 4.3: Overview of the SIFT algorithm

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

107

4.2.1 Scale-space extreme detection

This stage involves the potential interest points (keypoints), which are invariant to scale

and orientation in the SIFT framework. According to Lowe [1999], the first stage of

interest point (keypoint) detection is to identify locations and scales that can be assigned

under differing views of the same object.

To obtain locations that are invariant to scale change of the image can be achieved by

searching for stable features across all scales, employing a continuous function of scale

known as scale space [Lowe, 1999;2004]. Witkin [1983] proposed a definition as a

special type of multi-scale representation, which includes a continuous scale parameter

and maintains the same spatial sampling at all scales [Witkin, 1983]. A variety of

reasonable assumptions indicates that the Gaussian function is the only possible scale-

space kernel [Lindeberg, 1994]. The scale space of any image is defined as a function,

L(x,y,σ), which is obtained from the convolution of a variable-scale Gaussian, G(x,y,σ),

with an input image I(x,y). This is illustrated in the following expressions, where * is

the convolution operation in x and y.

 () () () (4.1)

 ()

 ()

 (4.2)

Mathematically, “blurring” refers to the convolution of the Gaussian operator and the

image. Scale-space is described by octaves in that each octave comprises progressively

blurred images, and for each octave image it is resized to half of the original image,

which can be regarded as a sub-sampling operation. An example of the construction of a

scale-space is illustrated in Figure 4.4.

The next step is to employ an appropriate method to generate another set of images in

order to detect interest points based on those blurred images. The normalized Laplacian

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

108

of Gaussian (LoG), G which produces the most stable image features compared to

a range of other possible image functions, such as the gradient, Hessian, or Harris

corner function. The technique is fundamentally based on calculating the second order

derivatives, which locates edges and corners on the image. However the second order

derivative is computationally intensive. An efficient method to overcome this problem

was proposed by Lowe [1999, 2004] who revealed that the Difference-of-Gaussian

(DoG) function provides a close approximation to scale-normalized LoG . To compute

DoG(x,y,σ), the difference of two successive Gaussian-blurred images, separated by a

multiplicative constant factor k, is convolved with the input image, as given by the

following equations:

 () (() ()) () (4.3)

This can also be simplified in the following expression:

 () () ()) (4.4)

where () () () and () () ().

The final step is to obtain local extreme points from DoG images. In order to achieve

this, for each octave of scale space, the initial image is repeatedly convolved with

Gaussians to produce the set of scale space images, as illustrated in the left part of

Figure 4.5.

Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images,

illustrated on the right hand side of the Figure 4.5. After each octave, the Gaussian

image is down-sampled by a factor of 2, and the process is repeated. Lowe [1999, 2004]

suggests that 4 octaves and 5 blur levels are ideal for the algorithm. Extreme points are

identified as local maxima or minima of the DoG image across scales. Each pixel in the

DoG images is compared to its 8 neighbours at the same scale, plus the 9 corresponding

neighbours at neighbouring scales. If the pixel is a local maximum or minimum, it is

selected as a candidate keypoint, as illustrated in Figure 4.6.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

109

First octave

Second octave

Third octave

Forth octave

Resized

Resized

Resized

BlurringSubsampling

 Figure 4.4: Scale spaces in SIFT (first octave is simplified, just including first

and last blur levels)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

110

Figure 4.5: Calculation of DOG images [Lowe, 2004]

 Figure 4.6. Keypoint identification

4.2.2 Keypoint localization and edge elimination

Once extreme points are detected by comparing a pixel with its neighbours, the next

step is to perform a detailed fit to the nearby data for location, scale, and ratio of

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

111

principal curvatures. This allows points to be rejected that have low intensity or are

poorly localized along an edge. Lowe [1999] located keypoints at the location scale of

the central sample point. However the local maxima and minima almost never lies

exactly on a pixel. It lies somewhere between the pixel. But it cannot simply accessed

data “between” pixels; so the subpixel locations must be located mathematically.

In, Lowe [2004] this method was enhanced to strip away any unstable keypoint by

employing a Taylor expansion of the scale-space function to reject those points that are

not distinctive enough or are unsatisfactorily located near the edge. In order to achieve

this, Lowe [2004] adapted a technique proposed by Brown and Lowe [2002] for fitting a

3D quadratic function to local sample points to determine the interpolated location of

the maximum. The interpolation is carried out using the Taylor expansion of the

DoG() scale-space function, with the candidate keypoint as the origin [Lowe,

2004]. The next step is to eliminate keypoints which either do not have enough contrast

or which lie on an edge. In order to reject low contrast images, a simple thresholding

technique is employed; if the magnitude of the intensity at the current pixel in the DoG

which is being checked for minima/maxima is less than a threshold value, it is rejected.

Finally, the keypoints that are poorly located on edges are excluded which increases the

efficiency and also the robustness of the algorithm. The main principle behind the edge

elimination process is to calculate a principal of curvatures, measuring the maximum

and minimum bending of a regular surface at each point. These gradients are

perpendicular to each other. A keypoint may be classified using these gradients and can

be defined as follows:

 For flat regions both gradients will be small.

 Edge responses have one big gradient, are perpendicular to an edge, and one

small gradient.

 Corners are the most consistent points and both of the gradients are big.

Lowe [2004] utilized a Hessian Matrix to obtain corner points in order to check whether

or not a point is a corner with high accuracy. Mathematically, the curvature is retrieved

http://en.wikipedia.org/wiki/Taylor_expansion

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

112

from the eigenvalues of the second-order Hessian Matrix H shown in the following

expression:

 [

] (4.5)

where the derivatives are estimated by taking differences of neighbouring sample

points, The ratio of principal curvature is directly related to the ratio of the trace and

determinant of a matrix. The trace of an n-by-n square matrix H is defined to be the

sum of the elements on the main diagonal from the upper left to the lower right of H,

and the determinant. If the result is above a certain threshold the keypoint is rejected

[Harris and Stephens, 1998]. Let a be the eigenvalue with the largest magnitude and b is

the smaller one, then:

Tr(H) = = a+b

Det(H) = () = a×b

If r is the ratio between the largest and smallest one, then a = r×b gives the following

expressions:

 ()

 ()

()

()

 (4.6)

The quantity
()

 is at a minimum when the two eigenvalues are equal, therefore:

 ()

 ()

()

 (4.7)

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Main_diagonal

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

113

4.2.3 Orientation assignment

Legitimate key points have been obtained so far, which have been tested for stability.

The next step is to assign a consistent orientation to each keypoint, providing rotation

invariance. The purpose is to collect gradient directions and magnitudes around each

keypoint to discover the most prominent orientation(s) in that region which will then be

assigned to the keypoint. There is a right proportion between the size of the ‘orientation

collection region’ around the keypoint and the scale of this keypoint. Gradient

magnitude and orientation are calculated respectively for each scale invariant image

sample, L(x,y), as shown in the following expressions:

 () √(() ()) (() ()) (4.8)

 () ((() ()) (() ())) (4.9)

According to Lowe [2004], an orientation histogram is formed from the gradient

orientations of sample points within a region around the keypoint. The orientation

histogram has 36 bins covering the 360 degree range of orientations. For instance,

assuming that the gradient direction at a certain point in the orientation collection region

is 15.675 degrees, and then it will go into the 10-19 degree bin. The amount that is

added to the bin is proportional to the magnitude of gradient at that point. Each sample

added to the histogram is weighted by its gradient magnitude and by a Gaussian-

weighted circular window with a that is 1.5 times that of the scale of the keypoint.

Once this operation is performed for all pixels around the keypoint, the histogram will

have a peak at some point. Peaks in the orientation histogram correspond to dominant

directions of local gradients, and any local peaks which are above 80% of the highest

peak are converted into a new keypoint which has the same location and scale as the

original, but different orientation. As a result, for locations with multiple peaks of

similar magnitude, there will be multiple keypoints created at the same location and

scale but different orientations.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

114

4.2.4 Keypoint descriptor

The previous steps, calculating key point locations at particular scales and assigning

orientations to them, are also called upon to assign 2D image location, scale, and

orientation parameters to keypoints. This ensures invariance to image location, scale

and rotation. The next step is to generate a descriptor vector for each keypoint that is

distinctive and partially invariant to the remaining variables including illumination and

3D viewpoint. First a set of orientation histograms are created on 4x4 pixel

neighbourhoods with 8 bins each. These histograms are computed from magnitude and

orientation values of samples in a 16 x 16 region around the keypoint such that each

histogram contains samples from a 4 x 4 sub-region of the original neighbourhood

region. The magnitudes are further weighted by a Gaussian function with σ equal to one

half the width of the descriptor window. The descriptor then becomes a vector of all of

the values of these histograms, which leads to a SIFT feature vector with 8x4x4 = 128

elements. Figure 4.7 displays an example a 2x2 descriptor array computed from an 8x8

set of samples whereas, as previously mentioned, the real experiments conducted with

the algorithm employing 4x4 descriptors are computed from a 16x16 sample array.

To cope with the problem of illumination the vector is normalized to unit length. A

change in image contrast in which each pixel value is multiplied by a constant will

multiply gradients by the same constant, so this contrast change will be cancelled out by

vector normalization. A brightness change in which a constant is added to each image

pixel will not affect the gradient values, as they are computed from pixel differences.

Therefore, the descriptor is invariant to affine changes in illumination [Lowe, 2004].

Figure 4.8 displays two different examples of the key-point selection procedure and the

4x4 SIFT descriptor frames of these points. An example is illustrated in Figure 4.9 (a)

using Lowe’s [2004] conventional key point selection and visualizing software

application to extract keypoints from a low-resolution natural image, where each

extracted keypoint is associated with a vector, and each vector demonstrates the

location, scale, and orientation of the relevant keypoint.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

115

Figure 4.7: An example of a 2x2 descriptor array for the SIFT algorithm

(a) (b)

Figure 4.8: Some of the detected SIFT descriptors for, (a) the first image, (b) the second image

4.2.5 SIFT matching

Lowe [2004] proposed the nearest neighbour algorithm, where a candidate is located by

computing and ranking in ascending order the angle between the descriptors using a

vector dot product. False matches can be initially rejected using the likelihood ratio test

if the ratio between the potentially best matched descriptor to its next best is above a

previously defined threshold, which can be represented by Equation (4.10).

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

116

Match {

 (4.10)

where va11 is the best matched descriptor, va12 is the next best matched and tr is the

threshold value.

An example utilizing the SIFT matching algorithm is illustrated in Figure 4.9 (b). In the

conventional method, Lowe [2004] rejected all matches in which the distance ratio is

greater than 0.8, which eliminates 90% of false matches while discarding less than 5%

of the correct matches [Lowe, 2004] .

In addition, to verify matches between two different range images captured of different

scales or angles, a Hough transform [Duda and Hart, 1972] can be employed to identify

clusters of features that have a reliable interpretation of an object by a voting procedure.

This is applied to compute the similarities between the two sets of descriptors based on

the features exhibiting the same relevant parameters involving translation, orientation

and scale. If any of the clusters has three or more entry points, it is possible to apply a

robust fitting procedure in which a linear least squares solution is performed for the

parameters of the affine transformation relating the model to the image. Outliers are

discarded, due to the agreement between each image feature and the model, giving the

parameter solution. Each match is required to agree within half the error range that was

used for the parameters in the Hough clusters. After discarding the outliners, the linear

least squares solution is performed with the remaining points and the process iterated. If

fewer than 3 points remain after discarding outliers, then the match is rejected. This

helps to maximize the performance of object recognition for small or highly occluded

objects. Further details can be found in Lowe [2004].

http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Outlier

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

117

 (a)

(b)

Figure 4.9: SIFT, (a) Keypoints are extracted from a low resolution

 Image, (b) an example for SIFT Matching algorithm

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

118

4.3 Evaluation of the SIFT Algorithm

Lowe [2004] derived a 2D method for image feature generation based on the Scale

Invariant Feature Transform which transforms an image into a large collection of local

feature vectors, each of which is invariant to image translation, scaling and rotation.

This method is reasonably efficient and reliable for feature extraction and object

detection tasks. The evaluations performed suggests that SIFT-based descriptors, which

are region-based, are the most robust and distinctive and are therefore best suited for

feature matching [Tao et al., 2010]

Mikolajczyk and Schmid [2005] evaluated interest point descriptors by comparing

descriptors computed on regions extracted with recently proposed scale and affine-

invariant detection methods. The tests were designed for the matching and recognition

of the same object or scene. According to the test result, Gradient Location and

Histogram (GLOH) algorithm, an extension of the SIFT descriptor designed to increase

its robustness and distinctiveness, closely followed by conventional SIFT algorithm,

demonstrated the robustness and the distinctive character of the region-based SIFT

descriptor. While the ranking of the descriptors is similar for different matching

strategies, the conventional SIFT algorithm gives relatively better results if the nearest

neighbour distance ratio is used for thresholding. Another comparison provided by Juan

and Gwun [2009], included the Speeded Up Robust Features (SURF) algorithm. The

results show that despite the computational advantages of the SURF algorithm it is not

stable to rotation and illumination changes. Nevertheless, the conventional SIFT

algorithm presents its stability in most situations although it is slower than SURF.

The conventional SIFT algorithm is computationally intensive, due to the serial timing

of Gauss blur when constructing scale space, and multiple loops when generating

descriptors. Furthermore, convolution and complex arithmetic operations dealing with

floating-point data, such as exp, floor, sin, cos, are known to be time-consuming. For

that reason, it is hard for conventional SIFT to attain appropriate real-time performance

on any mobile robot platform. The performance of the algorithm can be enhanced with

multiprocessing programming techniques or libraries. One of those is OpenMP library

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

119

which is a free application programming interface (API) that supports multi-platform

shared memory multiprocessing programming in C, C++, and Fortran on many

architectures and platforms. It consists of a set of compiler directives, library routines,

and environment variables that influence run-time behaviour. The enhancement

methods based on this library and the performance evaluation test results of the Fast

SIFT algorithm are discussed in Chapter 6.

4.4 Navigation via SIFT based on Monocular Vision

Vision is potentially the most powerful sensing capability in providing reliable and safe

navigation. For indoor navigation, researchers rely on artificial landmarks such as

coloured or geometrical objects to achieve safe navigation. Many approaches which

employ artificial landmarks are easy to both design and implement; however, the main

disadvantage of these approaches is their dependence on specific tasks. Feature based

mobile robot navigation provides a good alternative to these methods which makes no

explicit attempt to localise itself and thus requires no landmark map. The main problem

in this approach is to solve the feature extraction and correspondence problem

consistently. Accordingly, distinctive features are extracted from both the reference

image and the snapshot (current image). Each identified feature in the snapshot is then

usually paired with one feature in the reference image (the correspondence problem),

and the robot is finally steered towards the goal, depending on the control algorithm.

However, such techniques rely on omnidirectional vision which captures images at low

resolution. Alternatively, stereo vision-based techniques acquire robust in-depth

information, and are very common. However these techniques suffer from several

disadvantages, involving the computational cost of the stereo vision systems, and

synchronization problems between the cameras and their calibration (see Chapter 2).

In this section a new alternative method inspired by the image visual servoing control

architecture relying on SIFT based feature tracking algorithms is introduced. The main

idea is to generate control variables involving linear velocity (m/sec) and angular

velocity (deg/sec), based on matching results between the current image and the goal

image. The proposed control algorithm is entirely qualitative which does not employ the

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Environment_variable

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

120

traditional concepts of jacobians, homographies, or fundamental matrices. Preliminary

test results verify that the proposed algorithm estimates the turning rate and linear

velocity of the mobile vehicle with reasonable accuracy and affordable computational

time. A flow chart of the proposed algorithm is illustrated in Figure 4.10.

Figure 4.10: Flowchart of the SIFT-based control system

The first part of the algorithm enhances the input image against any possible

illumination or noise. This is called pre-processing. The input image is convolved with a

filter based on the first derivative of a Gaussian to obtain a blurred version of the image,

which removes unexpected noises and smoothes images. Subsequently, histogram

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

121

equalization is applied to the filtered image to adjust its contrast. The second function

of the algorithm extracts key features from enhanced images using a SIFT algorithm. As

mentioned previously, SIFT is one of the most powerful and popular feature detection

algorithms, but due to its computational cost it is not suitable for real-time applications.

In order to cope with this problem, a cross-platform library that computes fast and

accurate SIFT image features, which is optimized with OpenMP is used instead of the

conventional SIFT implementation.

The performance of this enhanced algorithm is quite impressive. To validate

performance with different image resolutions, several experiments were performed.

After extracting features from both current and active images, an improved version of

Lowe’s [2004] matching algorithm is utilized to match the features. The performance of

the conventional matching algorithm has been improved by OpenMP which is discussed

in Chapter 6.

The proposed control strategy resembles the conventional balance strategy [Duchon et

al., 1998; Temizer, 2001] (see Chapter 3). The next step is to evaluate matched points

and assign each matched point on the current image to a corresponding position. There

are four clusters having the same size namely: Left(cl), More-Left(cml), Right(cr) and

More-Right(cmr) respectively. Clusters are obtained by dividing the image vertically and

each of these clusters is considered with the total number of matched features, which is

used to generate control variables. The distribution (d) of the matched values is a key

factor in order to estimate the next possible turning rate, which can be illustrated by the

following expressions:

{

 (4.11)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

122

where Ml and Mr are the total count of the matches on the left hand and right hand parts

of the image. To obtain a more robust and sensitive control equation, distribution (d)

might be redefined, including all matching clusters which is then able to approximate

turning rate with higher accuracy, as shown in the following expressions:

{

 (

) () ()

 () ()

(4.12)

where , and

In order to estimate the next possible turning rate (w), d is multiplied by a model

parameter value which varies between 1 and 2 and can be defined as follows:

 , where (4.13)

When the robot approaches its goal with the capability of keeping it in the field of view,

matching strength usually tends to increase. Therefore, the matching strength can be

adapted to arrange the linear velocity. In order to achieve this, a simple but efficient

velocity model is proposed, illustrated in the following expressions:

 {

In order to constrain the linear velocity, the velocity is compared with , as

shown in following expression:

 () (4.14)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

123

where vi = minimum linear velocity.

 kv = constant used to convert matching value to linear velocity .

 mt = number of total matched points.

 vth = linear velocity threshold parameter.

vmax = maximum accepted linear velocity .

The proposed algorithm is designed for mobile vehicles in which the only interaction

with the motors is carried out by using the robot's forward speed (m/sec) and its angular

velocity (turning rate) (deg/sec). At the end of each processing cycle, these two control

variables completely define the output behaviours. The algorithm principally proposes a

reliable solution to the Image based visual servoing (IBVS) problem which uses visual

information to control the vehicle’s pose with respect to a specific goal. Visual homing

is also a type of visual servoing [Szenher, 2008]. Thus the terms are used

interchangeably. The main idea behind Visual Homing strategies is to infer the direction

and/or distance to the goal location from the disparity between the current and goal

images. The control variables of the proposed algorithm can be easily adapted to a

visual homing strategy with, minor modifications. As discussed previously in Chapter 2,

homing vectors are estimated for each processing cycle until the discrepancy between

the current and reference images falls below a certain threshold value. Each homing

vector comprises a rotation angle to decrease the orientation difference between two

images.

As no metric landmark information is used, the homing vector ⃗⃗ is often inaccurate

The agent therefore moves by some distance (either fixed or calculated based on current

sensor information) in the direction of homing vector, ⃗⃗ . In order to make an

approximation to homing vectors, Equation 4.13 can be used to obtain rotation angle

instead of angular velocity by changing interval of the model parameters, shown in the

following expressions:

 , where (4.15)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

124

In addition, instead of estimating linear velocity, Equation 4.14 can also be adapted with

a minor modification to be used to estimate forward translation (forward displacement)

or the magnitude of each homing vector, as illustrated in the following expressions:

 {

In order to constrain the forward translation, is compared with

, as shown in

following expression:

 () (4.16)

where fti = minimum forward displacement .

 kft = constant used to convert matching value to forward translation

 mt = number of total matched points.

 ftth = linear velocity threshold parameter.

ftmax = maximum accepted forward displacement.

Unlike conventional visual homing techniques, the proposed method is designed for

monocular vision based navigation systems. Despite the fact that a wide angle of view

permits a mobile robot to interact with a curved path even around sharp corners, hairpin

turns or other complicated curves, the main disadvantages of the omnidirectional vision

systems are geometric distortion and poor resolution. Monocular vision is able to cope

with these problems, although its drawback is that the target objects may be outside the

field of view of the camera. In order to overcome this problem and to provide reliable

navigation, the SIFT based algorithm is performed with a monocular camera equipped

with pan and zoom functions, which are discussed in the following section. Figure 4.11

illustrates three different frames; each of these captured from different locations to the

goal, and was matched with a reference image. The steering angle (w) and linear

velocity based on the Equations 4.12 and 4.14 were calculated for each frame using

parameters shown in Table 4.2. According to the results, it can be shown that when the

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

125

similarity between the goal and the current image increases, control parameters are

updated successfully.

(a) w= -6.24(deg/sec); v=0.2080(m/sec)

 (b) w = -10.8 (deg/sec); v=0.312 (m/s)

 (c) w = -8.8 (deg/sec) ; v= 0.36 (m/s) (vmax)

 Figure 4.11: Different snapshots are matched via a reference image from

a to c (left side is for the current and the right is for the reference images)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

126

4.5 Design of a Reactive Architecture using Subsumption Architecture

There are several approaches to designing a behavioural-based architecture, which have

been discussed in Chapter 2. In this study, the architecture has been designed based on

the subsumption architecture in which each layer or behaviour implements a particular

goal of the robot and higher layers are increasingly abstract [Brooks, 1986].

 Figure 4.12: Behavioural design of the proposed architecture

Each layer’s goal subsumes that of the underlying layer, and their interaction with each

other is illustrated by using finite state machines (FSM). Finite state machines define

several states (behaviours) that represent a current situation for the robot. Certain events

in the outside world can change the state. For instance, the robot could have an

approach state whereby it is moving about the environment trying to get closer to the

goal. When the laser range finder detects nearby obstacle, the state may change from

approach to obstacle avoidance, and the avoidance algorithm will move the robot away

Goal Seeking

Approach

Wander

Obstacle Avoidance

Completed

Sensors Actuators

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

127

from the obstacle. When the obstacle has been avoided, the robot state will change back

to approach. The architecture, designed for this study comprises five behaviours,

namely: goal seeking approach, wander, obstacle avoidance and completed, as

illustrated in Figure 4.12. The state diagram of the behaviours is shown in Figure 4.13.

Obstacle ObstacleIF Match > ThC

Start

Approach

Search

Wander

Completed

Panning Zooming

Obstacle

Avoidance

IF Match > ThA

Else

Not Found

Not Found

IF Match > ThA

Search again

IF Match < ThS
Found

ZoomPan

Not Found

Avoided

IF Match > ThC

Else

 Figure 4.13: The state diagram for behaviours

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

128

4.5.1 Goal seeking

Reactive-based architectures are widely used in autonomous navigation. Goal seeking is

one of the key behaviours of these architectures and is used to find and acquire the

target object in complex environments. The goal seeking behaviour is designed for

monocular vision systems equipped with pan and zoom functions. The main drawback

of monocular vision systems, as mentioned previously, is their limited field of view

which is not appropriate for goal-based navigation in dynamic and partially cluttered

environments. To enhance the field of view of the monocular vision system, the pan

function of the camera is adapted to the navigation algorithm. The main objective of this

behaviour is to seek the goal in order to compute control parameters of the robot on a

real-time basis. The state diagram for this behaviour is shown in Figure 4.13, and it

checks for the existence of any clue about the goal, based on the SIFT algorithm. The

strength of the matching results obtained from output of the algorithm, is utilized to

determine the next possible state or behaviour. If the computed matching value is higher

than a predefined threshold value, ThA or ThC, the robot enters the approach or

completed state. Otherwise, the panning stage of the current behaviour is activated,

which entails panning the camera left and right at a predefined (small angle in both

cases, to enhance the field of view of the robot’s vision. The most reliable way to obtain

high accuracy at this stage is to pan until reaching the limitations of the physical sensor.

However, the larger angle the camera turns through the more processing time it

consumes. For real-time applications, processing time and the physical limits of the

camera are important limitations. Therefore, a high quality camera is essential to

improve the performance of the proposed system, as discussed in Chapter 6. In the real

experiments for this study, an interval of ±90° is employed in order to obtain a good

search performance with affordable processing time based on the capacity of the vision

sensor.

To increase the accuracy of the navigation, a zooming stage which involves changing

the focal length of the lens to bring the subject closer or further away in the frame, is

activated, depending on the strength of matching value. Consequently, if the

consistency between the panning and zooming stages is obtained relating to the goal,

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

129

and the matching value is more than a predefined threshold value, the approach

behaviour is activated. Otherwise, if the target cannot be acquired, the wander

behaviour is activated to displace the robot’s position randomly.

4.5.2 Approach

This is the main behaviour of the proposed control architecture which directs the robot

to its goal. This behaviour is only activated when the existence of the target is detected

to a high accuracy. In order to navigate in a smooth way the turning rate (w) and linear

velocity (v) are adjusted respectively. The state diagram for this behaviour is shown in

Figure 4.13, and if the strength of the matching results is more than an appropriate

threshold value, ThC, the behaviour completed is activated.

On the other hand, if the difference between the previous and current matching results is

less than a predefined threshold value, ThS, the first panning stage, is activated to seek

the goal. If this fails, then progressive zooming stages are activated, and if these stages

succeed in tracking the goal, the robot keeps navigating in this manner until the

completed behaviour is activated; otherwise the wander behaviour is activated to

relocate the robot randomly. This is discussed in more detail in the following section.

4.5.3 Wander

Wandering is a form of random steering, and is the main state of the robot while it

navigates within the environment. However it is not a preferable behaviour in this

research which in essence navigates the robot aimlessly until it encounters the goal. For

instance, at time t1, the robot may be in the process of turning to the right, and at time t2

it will still be turning in almost the same direction. The steering vector takes a random

walk from one direction to another. To produce the steering vector for the next instance,

a random displacement is added to the previous value [Reynolds, 1999]. An example of

wander behaviour is included in Appendix C.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

130

4.5.4 Obstacle avoidance

This behaviour utilizes information from the laser range finder. The perceptual schema

for the output of this behaviour generates an avoiding manoeuvre for the robot. After

each scan, the laser range finder returns a corresponding point for each unit of angular

resolution which represents the distance between the robot and any obstacle that the

laser detects. This behaviour is activated whenever the laser range finder returns a value

within a distance of influence. The angle between the robot’s heading angle and i-th unit

of angular resolution depends on the laser’s configuration. For instance, if the range

finder has a 180° field of view and 360 units of angular resolution, as shown in Figure

4.14, the angle of the 270
th

 unit of angular resolution is equal to 45° with respect to the

robot’s heading. In this navigation architecture, a simple and efficient algorithm is

employed to deal with the obstacle avoidance problem using a laser range finder.

According to the algorithm, the output of the laser is first simplified by classifying

angular resolution units into n clusters (Oc) where, for instance the range finder has a

180° field of view and 360 units of angular resolution; thus each cluster is responsible

for

 units of angular resolution and a

 degree field of view. Subsequently, the

average range value of each cluster is calculated, and then the average values of each

cluster with a distance of influence is summed up based on the corresponding field of

view value in order to estimate the next possible turning rate for the avoiding

manoeuvre. It can be expressed mathematically as follows:

 ∑

 () () (4.17)

where n = number of clusters.

 lg = laser- smoothness parameter that adjusts turning rate , set lg =1.

 Oc(i) = ith obstacle cluster.

 do = distance of influence.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

131

The obstacle avoidance behaviour is invoked and is activated whenever the robot

encounters any obstacles, as illustrated in Figure 4.15. The only exception that may

occur is when the completed behaviour is enabled (see Section 4.5.5).

Note: For the laser ranger finder having a 180° degree field of view and 360 unit resolution , the angle

between the robot’s heading and the i-th unit of angular resolution, Ɵ = (

)

Figure 4.14: Configuration of the laser range finder

One of the key points related to avoidance behaviour is to localize the position of the

robot based on the previous bearing angle after an avoiding manoeuvre, decreasing the

consumed time to reach the goal. The localization technique basically attempts to locate

the robot with respect to its odometry readings, and to incorporate odometry data into

the system. The function is defined as follows:

Error =△odometry (△y △θ) (4.18)

 where △y = Position difference along y-axis .

 △θ = Bearing angle difference.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

132

After an avoiding movement, the robot steers in the proper direction to decrease the

error provided by the △odometry function. However, the odometry readings may become

increasingly unreliable over time as errors accumulate and compound. To improve these

readings, a simple bearing only measurement technique relying on monocular vision is

employed with odometry readings in which the reference image and the current image

are compared to enhance the localization accuracy of the robot [Deans, 2005].

Localize to

center

Update w
 and set v

Start

Localize

IF obstacle is

detected

Behaviour
IF obstacle is

detected

s
e
t w

 a
n
d
 v

Figure 4.15: State diagram for obstacle avoidance behaviour

The vision based localization algorithm used in this study relies on the SIFT algorithm,

where robust localization is performed by fusing odometry data and SIFT matching

results. Hence the matching strength between the reference image and the current

captured image is compared to the threshold value of the previously performed

behaviour during the localization manoeuvre. For instance, if the matching strength

obtained by the images is equal to or over this threshold value during the localization

manoeuvre, the current state is immediately interrupted and the new heading angle is

generated by using Equation 4.13.

On the other hand, if the goal is not detected during the localization manoeuvre, which

may be caused by the presence of an obstacle in the robot’s environment, it keeps

heading in the same direction for a short time instead of activating search behaviour,

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

133

which increases the sustainability of the system’s performance. An example of obstacle

avoidance and localization are demonstrated in Figure 4.16.

Start

Obstacle

Goal

Goal is detected

 Figure 4.16: An example for obstacle avoidance behaviour

A constant value is assigned to the linear velocity (ov) during the avoidance and

localization procedures to provide the stability. Beside this, angular velocity (ow) is also

maintained constant during the localization procedure until such time as the robot

encounters the goal (see Figure 4.16).

4.5.5 Completed

This behaviour is illustrated using a FSM, as shown in Figure 4.17. The objective is to

complete the proposed task, which is activated by either goal seeking or approach

behaviours based on the strength of the matching value. When the behaviour is

activated, the robot continues navigating until its goal is found, in a smooth and timely

manner by adapting its algorithm. One of the key issues with this behaviour arises when

the robot approaches its destination. As the distance between the target and the robot’s

actual position decreases, obstacle avoidance behaviour may be invoked which steers

the robot towards another location. As previously mentioned, the system is designed

based on subsumption architecture in which each layer’s goal subsumes that of the

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

134

underlying layers. Hence, in the case of completed behaviour activation; obstacle

avoidance behaviour must be suspended, in order for the robot to reach its goal. The

system completes its task when the matching strength exceeds a predefined threshold

value. Therefore, the stopping criteria of the system robot can be defined as follows:

 {

 (4.19)

where Fs = final stage, a boolean value

 m = matching strength

 Mc = threshold value for matching strength

else

Start

Approach

IF match > Mc

Finished

IF match < ThC amd match > ThA

 Figure 4.17: State Diagram for completed behaviour

4.6 Prediction of the heading angle

Visual servoing requires the target object to be in the field of view of the camera at all

times. At the same time, it is also required that controllability of the robot’s pose can be

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

135

achieved. However, in real experiments visual based sensing systems can face various

problems, such as those resulting from lighting conditions in the environment or

vibration caused by the robot’s motion. These problems influence the accuracy of the

image acquired and the performance of the corresponding feature extraction algorithm.

Thus a target prediction system algorithm is employed to overcome these given

problems. The system basically maintains the best heading angle direction towards the

goal taking into consideration matching strength. According to the algorithm, the best

matching results generate the most reliable heading direction. Thus, as the target is lost

or the features of the corresponding image are not analysed precisely, the robot makes a

manoeuvre in the direction of the previously recorded best position in order to keep the

target in the field of view. The position prediction algorithm is as follows:

Prediction Algorithm:

Make initial record for the heading direction θbest using best match strength (msb)

 Until the goal is found

 If the goal is in the field of view

If the current match strength (msc) > (msb)

Replace θbest with θcurrent

 else

Replace θcurrent with (θcurrent - θbest)

end_until

4.7 Modelling and Simulation using Microsoft Robotics Studio

To estimate the capability of the proposed work for expressing useful tasks, the system

has been evaluated again in the Microsoft Robotics Studio simulation environment. A

number of simulations have been conducted to verify that the Corobot mobile robot is

able to navigate in its working environment and achieve its goal without collisions. The

simulated mobile robot is equipped with a set of behaviours, namely: goal seeking,

approach, wander, obstacle avoidance, completed. The main control algorithm employs

SIFT features to navigate the robot towards a specific target. This resembles an image-

based visual servoing technique and aims to provide a simple but efficient solution for

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

136

vision based mapless navigation problem. The main goal object used in the experiments

is shown in Figure 4.18.

 (a)

 (b)

Figure 4.18: Goal image with 320x240 pixels resolution,

 (a) image,(b) SIFT features extracted

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

137

 Table 4.2: Initialization of the robot control algorithm

 Parameters Descriptions
 Start position (x,y)

 Goal position (x,y)

 Initial heading angle (θ)

 Distance of influence of object

 Maximum velocity

 Minimum velocity

 Maximum matching value (stop criteria)

 Minimum matching value (start criteria)

 Velocity constant

 Steering constants

 Avoidance behaviour parameters

 Starting position of the robot in the simulated area

 Position of the goal in the simulated area

 Starting heading angle of robot, θ=0
ο

 do = 0.65 m

 vmax= 0.36 m/s

 vmin= 0.08 m/s

 45 for reaching goal

 5 for starting navigation

 kv =0.008 adjust velocity

sw = 0.7, sw1 = 0.4, sw2 = 0.6 adjust steering

ow = 12 deg/s ; ov = 0.1 m/s

To conduct the experiments, the following parameters are defined: the robot’s starting

position, initial heading and goal position, a set of control equations parameters (sw ,sw1.

sw2 ,kv), maximum and minimum matching values and distance of influence of the

object, (do), and finally avoidance behaviour control parameters (ow ,ov). Table 4.2

presents either a definition or the initial values of aforementioned parameters used in

performing the experiments. The parameters for the control algorithm are obtained by a

trial and error method, and can be easily modified based on the dynamics or limitations

of any specific robot.

Three different test scenarios have been devised to evaluate the performance of the

system in the experiments, each of which is conceived with an increased level of

complexity, namely:

Scenario 1 (S1): The mobile robot is required to navigate from the ‘Start Position’ to

the ‘Goal Position’, where the robot is not able to detect the goal at the starting position

and a large wall and an external obstacle are located in its path, as shown in Figure

4.19.

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

138

Scenario 2 (S2): The mobile robot navigates from the ‘Start Position’ to the ‘Goal

Position’ (19,-1.0) in a partially cluttered enviorement and has to avoid three

unexpected obstacles located in its path, as shown in Figure 4.21.

Scenario 3 (S3) The mobile robot is required to navigate to three different goals

successively in a partially cluttered enviorement and to avoid three unexpected

obstacles located in its path, as shown in Figure 4.23.

Table 4.3 displays the starting and goal positions in each scenario. The evaluation of

each scenario is presented graphically including estimated trajectory, control variables

‘w’ and ‘v’ and matching strength during navigation.

 Table 4.3: Definition of scenarios

Scenario Start (x,y) Goal (x,y)

S1 (6.5,7.5) (17.0,11.5)

S2 (8.0,-1.5) (19.0,-1.0)

S3 (7.0,-5.0) (12.0,-5;19.0,8,0;16.0,-16.0)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

139

Scenario 1 (S1)

Robot heads to +X direction

Wall

Obstacle

Goal

X
-A

x
is

Y-Axis

 Figure 4.19: Scenario 1, the robot moves towards the goal

 from its start position

 (a)

 `

 (b)

 Figure 4.20: Scenario 1, (a) estimated trajectory, (b) control parameters

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

140

The scenario shown in Figure 4.19, demonstrates the robot’s ability to negotiate towards

the goal which is located out of the field of view of the robot. In addition, the robot

must avoid a large wall and an external obstacle which is positioned so as to obstruct its

path. The obstacle is a rectangle with dimensions of 500 mm x 700 mm.

Figure 4.20 (a) presents the estimated trajectory of the robot using the proposed

architecture for SC1. The robot initially starts searching for the goal along its initial

heading direction. Once the goal is detected, the robot turns 45
ο
 towards the goal

position and heads towards it. The robot keeps moving until it senses the wall. After

this, it manages to avoid the wall safely and carries on approaching the goal until it

encounters the obstacle. Once this obstacle has been avoided, the robot again detects the

goal and achieves its mission. The corresponding control parameters are illustrated in

Figure 4.20 (b), showing the characteristics of the navigation procedure in which the

relationships between velocity and matching strength as well as the change in angular

velocity due to the obstacles are evident.

Scenario 2 (S2)

Robot heads to +X direction

Goal

3. Obstacle

1. Obstacle

X
-A

x
is

Y-Axis

2. Obstacle

Figure 4.21: Scenario 2, the robot moves towards the goal from its start

 position

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

141

The scenario demonstrates the robot’s ability to avoid three rectangular obstacles

positioned so as to obstruct its path, as shown in Figure 4.21. The estimated trajectory

and the corresponding control parameters for this scenario are illustrated in Figures 4.22

(a) and 4.22 (b) respectively. The robot begins navigation by moving forward until it

senses the first obstacle. The robot avoids the obstacle successfully and then localizes

itself towards the goal again and continues moving until perceiving the third obstacle. In

negotiating this obstacle, the robot avoids it and proceeds to complete the task

successfully. The robot does not encounter the second obstacle.

 (a)

 (b)

 Figure 4.22: Scenario 2, (a) estimated trajectory, (b) control parameters

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

142

 Scenario 3 (S3)

This scenario is designed to evaluate the performance of the proposed algorithms in the

case of a global navigation problem in which there are three successive goals. Each of

these are obscured by an external obstacle so as to increase the challenge inherent in the

scenario, as shown in Figure 4.23. The estimated trajectory and corresponding control

parameters for each goal are illustrated in Figure 4.24. The robot moves towards the

first goal until it perceives the first obstacle, whereupon the robot avoids it and

continues moving towards its goal. It then reaches the goal and completes its first task.

After this the robot starts searching for the second goal which is detected after rotating

the camera clockwise. The robot then rotates to its right (30
ο
)

to engage with the goal,

and starts moving toward ‘Goal B’ while successfully avoiding the second obstacle.

Having reached ‘Goal B’, the system again enables the search behaviour for the third

goal, and then rotates clockwise to its right (70
ο
) to engage the goal. Once so engaged it

heads towards the goal until it perceives the third obstacle in its path which the robot

avoids from the obstacle and reaches its final goal.

 Figure 4.23: Scenario 3, the robot moves towards the multiple goals

 respectively namely, Goal (A), Goal (B), and Goal (C)

 The results of these simulations demonstrate that the proposed system is able to safely

navigate the mobile robot to different locations whilst avoiding obstacles within its

Robot heads to +X direction

Goal (A)

3. Obstacle

1. Obstacle

X
-A

x
is

Y-Axis

2. Obstacle

Goal (B)

Goal (C)

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

143

working environment. The robot was able to find the locations of the goal, and as well

as this it did not collide with any walls or obstacles.

 (a)

 (b)

 Figure 4.24: Scenario 3, (a) estimated trajectory, (b) control parameters

An additional test scenario has also been designed to simulate a trap-situation that the

robot may experience when navigating in partially cluttered environments. According to

the following scenario, the robot is required to reach a goal which is obscured by a large

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

144

obstacle. The robot in essence must pass along a narrow path towards the goal, as

illustrated in Figure 4.25. The estimated trajectory and control parameters are illustrated

in Figure 4.26. The robot perceives the wall on its left side whilst heading towards the

goal, and then avoids the wall successfully. After this it moves towards the wall until it

detects the big obstacle obstructing its path. In negotiating this obstacle, the robot

becomes confused and is unable to avoid the obstacle. This scenario demonstrates the

limitations of the proposed control architecture under the subsumption architecture in

conditions that the robot may realistically experience. The problem here is that each

layer works independently without consideration the strategic plan.

Robot heads to +X direction

Obstacle

X
-A

x
is

Y-Axis

Goal

 Figure 4.25: Scenario 4, the robot moves towards the

 goal from its start position

The robot is sometimes trapped in a ‘dead-lock’ situation, repeating the same reaction

many times, or else does not perform rationally based on the shortfalls in the obstacle

avoidance and navigation strategies. To overcome this problem in a complex scenario

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

145

under a full reactive architecture, the qualitative methods can be altered or amended

using artificial intelligence approaches, as will be discussed in the following chapter.

 (a)

 (b)

 Figure 4.26: Scenario 4, (a) estimated trajectory, (b) control parameters

4.8 Summary

An integral part of the objective of this study is to integrate reliable and powerful object

detection and feature extraction algorithms into vision based mobile robot navigation

systems, whilst relying on a mapless strategy. To achieve this objective, an enhanced

 Chapter 4 Vision based Mobile Robot Navigation using SIFT

146

version of the SIFT algorithm, which is able to perform with high accuracy and

reasonable processing time, is adapted to a vision based behavioural mobile robot

system in order to control the robot. The control variables of the robot are generated

based on the position and strength of the matched features. Although, as demonstrated

by the test scenarios 1-3, the simulated robot was able to successfully navigate using the

Microsoft Robotics Studio simulator, however these experiments do not guarantee that a

real robot will perform in the precisely same manner when test are conducted in real

conditions, because the simulated robot and the sensors are modelled as ideal. In

particular, in real-world lightning and illumination conditions may dramatically

decrease the performance of the system. However, the simulation results postulate that

the proposed architecture can achieve an acceptable level of performance under real

conditions. For the final scenario, the robot was unable to complete its task. This

demonstrates the limitations of the proposed system.

The following chapter introduces a novel intelligent navigation strategy which also

employs SIFT matching results as the primary input for navigation issue, and is

designed based on behaviour based architecture, in an attempt to improve its robustness.

 Chapter 5 Intelligent Navigation using SIFT

147

 CHAPTER 5

 INTELLIGENT NAVIGATION USING SIFT

This chapter describes a novel architecture that employs fuzzy logic and artificial neural

networks for vision based mapless mobile robot navigation. Unlike the previously

defined architecture, this architecture performs an intelligent solution using the notions

of ‘feature tracking’ and ‘visual servoing’ to take advantage of scale-invariant features.

The K-Means classification algorithm is applied to matched features to eliminate

mismatches as regards scale parameters. This enhancement is a key step which directly

increases the overall reliability of the system. In order to predict a robust steering

direction toward the goal with respect to the extracted scale-invariant features, an

artificial neural network (ANN) technique based on multi-layer perception (MLP) is

employed which uses a back propagation learning algorithm. In addition, a technique to

adjust the distance of influence parameter using MPL architecture is described,

providing safer avoidance manoeuvres. Another important contribution discussed in this

chapter is to estimate distance using the scale parameters of scale-invariant features. In

addition a fuzzy controller is utilized to estimate the global velocity of the robot.

The first section provides a brief description of the intelligent framework proposed in

this study. The next section details the layers of the proposed intelligent framework

which enhances the performance of the control architecture, and results are presented

concerning how the simulated mobile robot navigates in its environment.

 Chapter 5 Intelligent Navigation using SIFT

148

5.1 Design of an Intelligent Framework for Vision Based Mobile Robot

Navigation

The details of the proposed intelligent navigation framework are presented in this

chapter. This section provides a brief description of the framework and highlights the

modules used within it. A flowchart of the proposed architecture is illustrated in Figure

5.1, a central concept of which is to incorporate appropriate soft computing techniques

into the vision based navigation problem to allow the robot to move in a more robust

and smooth manner. The framework consists of a number of modules which pass data

from one to another. The system is equipped with a single pan-tilt-zoom monocular

camera which acquires data in image format and a laser range finder which calculates

distance in a specific scanning area.

The first module matches the current and template images by employing the SIFT

algorithm, and the best candidate match for each keypoint is found by identifying its

nearest neighbour in the database of keypoints from training images. The nearest

neighbour is defined as the keypoint with a minimum Euclidean distance for the

invariant descriptor vector, as described in Section 4.2.5. However, many features of an

image will not have correct match, because some of them arise from background clutter

and others may not have been detected in the training images [Lowe, 2004]. Therefore,

different methods should be applied to discard features that do not have good matches

to the database. The popular K-means clustering algorithm is based on the partition of

data. In this study, the matched features are enhanced by implementing a pre-processing

step, utilizing the K-means clustering algorithm to eliminate mismatches obtained from

the SIFT matching module. This module first classifies the matched features into

clusters of scale parameters, and then eliminates any mismatches by employing a

conventional thresholding technique.

An intelligent method of mobile robot steering control whilst navigating along an

unknown path, keeping the goal in the field of view, is developed by combining two

different methods. The first of these employs a neural network to estimate the

 Chapter 5 Intelligent Navigation using SIFT

149

corresponding turning rate with respect to the location of the matched features, and the

second employs a simple linear regression technique to address the problem of

calibrating a camera mounted on a robot (detailed in section 5.2). Furthermore, a novel

module responsible for estimating the distance from a single monocular camera

employs a feed-forward neural network to obtain the distance data. The network has two

input nodes for the average of scale parameters and an active zooming factor, and has

one output corresponding to the value of physical distance to the goal. This module is

mainly used to complete the navigation task when the robot approaches the goal within

the tolerance distance, and is also used as an input by the Fuzzy Inference system to

estimate the linear velocity. The proposed method is based on the computation of a

fuzzy perception of the environment, dealing with the precision of the sensorial system.

The Inference system uses three inputs of distance to the goal, distance to the obstacle

and matching strength, and offers linear velocity as output. The final module is used to

calculate the distance of influence parameter, do, employed by the obstacle avoidance

behaviour which adapts the algorithm according to a range of conditions. The inputs

estimated from the sensors are then all passed to a Behavioural Module which processes

information in parallel. Brook’s subsumption allows the software designer to determine

which lower-level, self-managed behaviours should be subsumed by other higher-level

layers of the architecture [Brooks, 1986]. The Behavioural Module comprises five

behaviours, and its design was inspired and adapted from the previously defined

architecture (see Section 4.5). The only exception was the ‘Completed’ behaviour that

employs the proposed distance estimation method for a stopping criteria instead of

matching strength. The output manoeuvre of the robot is determined by this module,

after which the Player Architecture block is enabled to provide communication between

the high level commands and low level control.

Consequently, the intelligent framework provides several new solutions to the vision

based mapless navigation problem. First of all, it enhances the output steering parameter

by adopting a feed-forward neural network instead of requiring calculation in a tedious

calibration process, with no specialized knowledge of 3D geometry and computer vision

being needed. A novel method is proposed to estimate the linear distance using a

monocular vision camera, based on scale parameters of extracted interest points. This

 Chapter 5 Intelligent Navigation using SIFT

150

method is a new solution to the problem of distance estimation for a monocular vision

camera. Furthermore a new fuzzy control system is proposed to estimate and adjust

linear velocity depending on the parameters of matching strength, distance to the goal

and distance to the obstacle. The adaptive obstacle avoidance behaviour is designed to

allow the robot to negotiate narrow paths and navigate in a safer manner.

Data

Acquisition

(Vision)

SIFT

Matching

Data

Acquisition

(Range Finder)

Enhancement

of the

Matched

Features

Distance

Estimation

with ANN

Heading

Direction with

ANN and

Linear

Regression

Fuzzy Inference

System for

Global Velocity

Behavioural Module

Goal-Seeking

Approach

Wander

Obstacle Avoidance

Completed

 w(rad/s)

 v(m/s)

Template

Player

Architecture

do

Estimation

with ANN

Figure 5.1: Overall system architecture

 Chapter 5 Intelligent Navigation using SIFT

151

5.2 Robust Estimation of Heading Direction of a Mobile Robot using

ANN and Linear Regression

This section introduces an intelligent estimation of control variables, using the SIFT

algorithm for navigation, to overcome the problem of mapless navigation in partially

cluttered environments. The vision based navigation algorithm for the proposed

architecture is based on two techniques of feature tracking and visual servoing.

In the navigation of a mobile robot, it is essential to accurately determine its location

and orientation in order to follow the desired path. Obtaining a precise estimation of the

association between the extracted features and the next possible turning manoeuvre is a

key challenge especially for monocular vision based system. The conventional route is

to calibrate the camera which however, requires solution of several complex

mathematical equations [Eric et al., 2007] and very precise camera parameters.

Furthermore it is not easy to estimate the value of distance with monocular vision,

which is a key requirement for the camera projection matrix. Alternatively, appropriate

control laws can be generated using a statistical assessment of the correspondences

between matched points. An original control law technique involving this approach was

discussed in the previous chapter. Alternatively, the methods may use a teach-replay

approach in which the robot is manually led along a desired path in the teaching phase,

then the robot autonomously follows that path in the replay phase [Zhichao and

Birchfield, 2006]. However, due to lack of an explicit model of the geometric world, its

geometric accuracy is limited. In the proposed method, an original algorithm is used

which consists of a multilayered neural network to train parameters of matched points.

This generates a turning rate control variable without using complex and tedious

calibration techniques.

5.2.1 Conventional method for camera calibration

Accurate camera calibration is a key requirement to achieve accurate visual

measurements. The relationships between the actual position points and the matched

 Chapter 5 Intelligent Navigation using SIFT

152

image points are complex. Accordingly, the camera parameters have to be calculated by

a precise imaging model. However, the more precise the imaging model required, the

more complicated the calibration becomes. How the camera is calibrated essentially

determines the relationship between what appears on the image plane and where it is

located in the 3D world. In order to explain the conventional calibration techniques, a

pin-hole model is assumed for the camera mounted onto the robot, so that its optical

axis is aligned to the robot's forward direction and also parallel to the ground plane

[Zhang, 2000]. Conventional camera calibration involve a procedure for determining

the internal camera geometric and optical characteristics (intrinsic parameters) and the

3D position and orientation of the camera frame relative to a certain world coordinate

system (extrinsic parameters). Further details can be found in Appendix E.

5.2.2 The proposed algorithm to estimate heading direction

Many studies using vision for robot navigation try to build accurate models of the scene,

using accurately calibrated systems [Lynch et al., 1999; Cai et al., 2010; Xiong et al.,

2010]. However the camera calibration process is complex, sensitive to the calibration

errors and may need an explicit model of the environment.

An alternative method has been employed to estimate the heading direction based on

neural network. A multi-layered feed-forward neural network has the ability to form

complete mapping from a set of input patterns to a set of output patterns. In this study,

an original artificial neural network (ANN) design is developed which consists of a

multi-layered feed-forward network to overcome the heading direction problem. This

eliminates the tedious calibration process and does not require specialized knowledge of

3D geometry and computer vision. A pin-hole model is assumed for the camera which

is mounted onto the robot so that its optical axis is aligned to the robot's forward

direction and also parallel to the ground plane. A multi-layered feed-forward network is

then designed based on scale-invariant features [Lowe, 1999; Lowe, 2004] to provide

the association between the 2D image coordinates and the 3D reference (world)

coordinates.

 Chapter 5 Intelligent Navigation using SIFT

153

Figure 5.2: Estimation of heading direction using ANN and Linear Regression

The final transformation process between the image workspace and the robot workspace

is calculated in two steps. The first step is to conduct the transformation between the

camera’s coordinate system and robot’s coordinate system, which is essentially

provided by a simple linear regression technique due to the location of the camera. This

essentially performs the transformation between the heading direction of the camera

(pan angle) and the robot.

The second step aims to establish the relationship between the image coordinates and

the world coordinates which essentially generates appropriate pan and tilt angles

regarding the centre of mass of the landmark. Deriving accurate results from the

calibration processes and estimation of the precise control variable requires the

consistent assessment and enhancement of extracted features, which basically involves

removing mismatches, to increase the accuracy of the matching process. The assessment

 Chapter 5 Intelligent Navigation using SIFT

154

step with the extracted features on the other hand requires observing an appropriate

location from the feature cluster. The overall system architecture has been displayed in

Figure 5.1. A flow chart of the heading direction estimation, including ANN design,

linear regression analysis and SIFT features, is illustrated in Figure 5.2. The outputs of

this system are utilized as inputs by the control module to generate corresponding

control parameters.

5.2.2.1 Assessment of scale-invariant features

The first step is to eliminate mismatched features from the matched feature cluster, as

shown in Figure 5.3. In order to fulfil this aim, matched points are classified with

respect to their scale parameters. The classification of matched features with regard to

scale and orientation parameters was first proposed by Lowe [2004], who employed the

Hough transform to classify objects in a scene. Nevertheless, the problem is different in

the present approach since there is only one object to detect, which illustrates the goal.

Accordingly, a simple but efficient classification technique is utilized with respect to

scale parameters to overcome the elimination problem. The basic idea is to classify

clusters using the K-Means classification algorithm, which is a simple algorithm that

has been adapted to many problem domains regarding scale parameters, and then to

remove the inconsistent features from these clusters.

For instance, It is assumed that there are n sample feature vectors x1, x2, ..., xn all from

the matched class and it is known that they fall into k compact clusters, k < n. Let mi be

the mean of the vectors in cluster i. A minimum-distance classifier can be used to

separate them. That is, it can be indicated that x is in the ith cluster, if || x - mi || is the

minimum of all the k distances. This statement suggests the following algorithm for

finding the k means:

K-Means Algorithm:

Make initial guesses for the means m1, m2, ..., mk

Until there are no changes in any mean

Use the estimated means to classify the samples into clusters

For i from 1 to k

 Chapter 5 Intelligent Navigation using SIFT

155

Replace mi with the mean of all of the samples for cluster i

end_for

end_until

 Figure 5.3: Matching example, including different clusters (1th cluster (black),

 2th cluster (green), 3th cluster (red))

An example, illustrating how to apply the K-Means algorithm to classify the scale

parameters for the SIFT algorithm is demonstrated in Figure 5.3. Figure 5.4 shows the

allocation of clusters. The corresponding figures represent the assignment of each

feature to the matching sub-clusters based on scale parameters, and each cluster is

illustrated using a different colour. The next step is to determine and remove clusters,

including any mismatches. In order to estimate these clusters, a simple thresholding

technique is used such that if the mean value of any cluster is higher than a predefined

threshold value, all members of the corresponding clusters are removed from the

matching database.

In addition, clusters having one member are also eliminated. The example, given in

Figure 5.3 utilizes ‘7’ as the threshold value. Thus the cluster illustrated in black is

removed from the database, eliminating two mismatched features. However, in some

situations the selection of an inappropriate threshold value can have adverse effects on

the performance of the matching process and eliminating true matches. Despite the

possibility of eliminating true matches, this simple conventional classification technique

 Chapter 5 Intelligent Navigation using SIFT

156

removes most of the mismatched features, and consequently enhances the overall

accuracy of the system.

 Figure 5.4: Three clusters (black, green, red) are obtained having ‘10.46’, ‘4.97’ and ‘1.51’

 mean values respectively

5.2.2.2 The estimation of heading direction using ANN

The purpose of this section is to simplify the otherwise tedious and complex calibration

steps using an artificial neural network. Scale-invariant features obtained by the SIFT

algorithm are used to automatically detect calibration points. Then a back projection

neural algorithm is used to map the relationships between the image coordinates and the

world coordinates in terms of pan and tilt angles. The conventional methods to estimate

the intrinsic and extrinsic parameters almost all involve uncertainty. Almost all lenses

used for image acquisition have some degree of distortion as well as varying focal

lengths. The uncertainty about extrinsic parameters is mainly due to the roughness of

the floor, geometrical error in fixing the camera on the robot, and the erroneous setup of

the landmark. Image deformation in the real environment degrades the accuracy of the

analytic estimation algorithm because it depends heavily on the exact location of image

data. Therefore, the pinhole model and idealizations may render the solution inadequate;

acceptable estimation accuracy cannot be guaranteed in real situation [Koh et al., 1994].

Cluster of Matched Features

S
c
a

le
 P

a
ra

m
e

te
rs

1th Cluster

2th Cluster

3th Cluster

K-Means Algorithm for Parameter Classification

 Chapter 5 Intelligent Navigation using SIFT

157

To rectify this problem, several different algorithms have been developed to establish a

mathematical and geometrical relationship between the physical 3-D co-ordinates and

its corresponding digitized 2-D co-ordinates using ANN [Junghee and Choongwon,

1999; Zou et al., 2005]. The basic idea with these techniques is to detect distinctive

features using different image extraction techniques to train a multilayer feed-forward

neural network, which is able to approximate any arbitrary continuous function with any

desired degree of accuracy. The most extensively used techniques basically extract

several feature points, for instance on a checkerboard grid from different angles and

distances. The shooting angle, which in simple terms means where the agent stands in

order to take the photograph, is determined by the angle between the camera’s optical

axis and the template plane normal. After this an appropriate network design is

constructed, utilizing image points (u,v), and shooting angle (θ) as inputs, and world

coordinates (X,Y,Z) as outputs, as illustrated in Figure 5.5.

 Figure 5.5: The general structure of the neural network for camera calibration

The conventional mode of using an ANN to calibrate any simple monocular vision

camera usually relies on a map, including several additional assumptions to facilitate

calibration [Koh et al., 1994; DeSouza and Kak, 2002; Zou et al., 2005]. For instance,

an accepted assumption is to tilt the camera downwards which in essence keeps the

distance of the corresponding landmark constant, as illustrated in Figure 5.6.

 Chapter 5 Intelligent Navigation using SIFT

158

Figure 5.6: The robot coordinate system and a camera axis [Zou et al., 2005]

Nevertheless, the requirements for the proposed system are different from the

conventional situations in that the methodology is inspired by a mapless navigation

strategy where the exact positions of the landmarks are unknown [DeSouza and Kak,

2002]. In addition, the ANN design is developed for a pan-tilt camera instead of single

monocular vision camera. Koh et al. [1994] also propose a method using ANN to

calibrate a camera which rotates with two degrees of freedom (pan and tilt), and extracts

feature points from the image for landmark tracking. The method, however, entails an

artificial landmark and various geometrical assumptions [Koh et al., 1994]. A different

method is accordingly proposed to overcome the mapping problem between the

physical (3-D) and corresponding digitized two-dimensional (2-D) co-ordinates.

A multi-layered feed-forward neural network is utilized having two input nodes from

the image coordinates (u,v). It has two output nodes corresponding to the pan and tilt

angles (Pθ,Tθ). The mapping function of the neural network, N(.) can be represented by:

 () (5.1)

where M = [Pθ,Tθ]
T

, S = [u,v]
T

Consequently, the technique requires collecting sample output pan and tilt movements

in degrees to obtain any given coordinates in the image plane. An example of the

proposed network design is illustrated in Figure 5.7. The exact 3-D position of the

 Chapter 5 Intelligent Navigation using SIFT

159

camera can be estimated from the output of the network, with minor modifications. This

however, is not functional in this application, but alternatively can be used with any

map based navigation algorithm.

Figure 5.7: The general structure of the proposed neural network design for camera

calibration, including one hidden layer with n neurons

The training is performed off-line by using a Levenberg-Marquardt back-propagation

algorithm on an error function that is the sum of error squared over the entire training

sample [Matlab, 2001]. Details of the algorithm can be found in Appendix D. The

sigmoid and linear functions are employed as activation functions for hidden and output

neurons respectively. The performance analysis of the proposed ANN design for the

Axis-213 camera and the simulated camera are presented in Chapter 6, and two different

networks are designed that are as simple as possible to reduce computational time.

Table 5.1 demonstrates the basic specifications for the resolutions employed. Training

data are presented to the network during training, and the network is adjusted according

to its error. Validation values are used to measure network generalization, and to halt

training when generalization no longer improves. Testing data do not have any effect at

the training stage which provides an independent measure of network performance

during and after training. The validation performance of the proposed ANNs for each

resolution is given in Chapter 6.

 Chapter 5 Intelligent Navigation using SIFT

160

 Table 5.1: Specifications of the proposed network topologies

Camera Type Resolution Data Topology Train Validation Test

Axis-213 176x144 155 2-6-2 125 15 15

Simulated 320x240 85 2-4-1 69 8 8

5.2.2.3 Linear regression technique for calibration

Regression is a simple statistical tool used to model the dependence of a variable on one

or more explanatory variables. This functional relationship may then be formally stated

as an equation, with associated statistical values that describe how well it fits the data,

and is used for the transformation between the robot and camera. A simple linear

regression equation can be expressed as follows:

 (5.2)

To conduct a regression analysis, coefficients must be solved, as shown below.

∑ (̅) (̅)

∑ (̅)

 ̅ ̅ (5.3)

where,

 ̅

 ̅

It is assumed that the camera is mounted on the robot with its optical axis is aligned to

the robot's forward direction and also parallel to the ground plane, as illustrated in

Figure 5.6.

 Chapter 5 Intelligent Navigation using SIFT

161

The camera's pan axis should ideally sit at the rotation axis of the robot to provide

accurate navigation; therefore the linear regression technique is used to provide

calibration between the two axes. According to the proposed linear regression model,

the independent variable ‘x’ represents the estimated pan movement obtained by the

camera in order to reach a specific coordinate in the world. Therefore there must be a

model that estimates the dependent variable ‘y’, the robot’s rotation along the Z axis

with respect to its pan movement. To estimate the model, scale-invariant features of the

environment are extracted and stored in a database throughout the panning movement.

The range of pan movement, used in the real experiments is 180° (around the horizontal

axis). One of the key issues is to collect an appropriate number of samples from the

panning space. Subsequently, the same procedure is applied to the robot, and the robot

rotated along its Z axis in order to estimate the best matching with corresponding

panning position. Finally, linear regression is applied to all of its recorded positions to

generate the association between the camera and the robot. The objective is to find a

line going through all of the points. The results of the linear regression between the

camera and the robot for different experimental sets, as used in the real experiments, are

detailed in Chapter 6.

5.3 Scale Parameters for Distance Estimation Based on ANN

One of the most challenging problems for monocular vision based systems is to

determine the distance to the goal. In stereo or trinocular vision spatial information can

be derived from the comparison of different images, whereas in monocular vision the

analysis can be performed only by studying the fundamental characteristics of an image.

This analysis relies on statistical investigations, such as the Time to Contact (TTC)

calculation, based on gray level distribution, which was discussed in Chapter 3, or the

distribution of RGB channels [Jarvis, 1983; Cantoni et al., 2001].

Optical flow based techniques can alternatively be utilized to calculate depth

information from the shapes of the objects positioned in the working space, however the

performance of this approach can be poor due to inherent assumptions about knowledge

of shapes [Gokturk et al., 2004]. An alternative method is to utilize a defocusing

 Chapter 5 Intelligent Navigation using SIFT

162

technique which in essence measures blurred information to determine depth. Buzzi and

Guichard [2004] proposed a method employing some of the basic approaches to

calculating blur in order to quantify it in an image, and once the ‘blurriness’ of an object

is estimated, depth information can then be easily calculated. However, these types of

applications are not appropriate for real time applications [Aslantas and Pham, 2007].

Determining whether or not an object is inside the focal distance can be problematic as

they have the same measure of blur, although this can be solved by adopting a system

with two cameras of different focal lengths [Buzzi and Guichard, 2004].

Another method uses supervised learning to estimate 1D monocular depth information

in unstructured outdoor environments, however, this requires complex processing and

training steps [Jeff et al., 2005]. In addition, the SIFT algorithm produces a scale

parameter for each key point extracted. For each matched pair of key points in the

training and recognition images, the quotient of the keys’ scale parameter gives an

estimate of their relative apparent size and hence their distance [Sjöö et al., 2009]. This

proposal represents a distance estimation technique based on scale parameters,

performing a good approximation of distance, but the technique requires the width of

the object in the training image to be obtained in pixels. In addition, mismatched key

point pairs can produce incorrect scale parameters.

An original and efficient distance estimation technique inspired by these methods has

been proposed, which overcomes their drawbacks and also works for any monocular

camera equipped with zoom functionality. The technique is based on a multi-layered

feed-forward neural network design which has two input nodes: the average of scale

parameters (Sm,Zf) and an active zooming factor. It has one output corresponding to the

value of physical distance (d) to the goal in metres. The mapping function of the

network can be expressed as follows:

 () (5.4)

where D = [d]
T

, S = [Sm, ZF]
T

 Chapter 5 Intelligent Navigation using SIFT

163

The architecture of the proposed algorithm is illustrated in Figure 5.8. The technique

involves a pre-processing step which utilizes a K-means based classification algorithm

to remove mismatches. The pre-processing step initially eliminates mismatches,

followed by estimating the centre of mass value (Sm) from the enhanced scale parameter

space. Training is carried out off-line using the error back-propagation algorithm, and

the sigmoid and linear functions are employed as activation functions for hidden and

output layers respectively. The general structure of the proposed network design is

illustrated in Figure 5.9, and Table 5.2 demonstrates the basic specifications for the

networks designed.

Figure 5.9: General structure of the proposed neural network design for distance estimation,

including one hidden layer with n neurons

Table 5.2: Specifications of the proposed network topologies for distance estimation

Camera Type Resolution Data Topology Train Validation Test

 Axis-213 176x144 128 2-5-1 104 12 12

Simulated 320x240 128 2-4-1 104 12 12

The maximum estimated distance is 8 metres and the system operates at two different

zoom levels. Data samples are collected every 10 cm up to 600 cm and 800 cm for

these zoom levels respectively. The minimum distance to the goal is set to 60 cm, which

is the distance tolerance parameter (dt), as discussed in Section 5.7. The AXIS-213

camera has a 26x optical zoom and the rate of magnification of images can easily be

 Chapter 5 Intelligent Navigation using SIFT

164

changed with VAPIX, using (5.5) to convert the VAPIX command to the optical zoom

value.

(–) ()

()
 +1 (5.5)

 where MOZ = maximum optical zoom value and VZV = VAPIX zoom value.

.

 Figure 5.8: The architecture of the proposed distance estimation algorithm

The network is trained using the Levenberg-Marquardt back-propagation algorithm,

which is an iterative technique that locates the minimum of a function expressed as the

sum of squares of nonlinear functions. It has become a standard technique for nonlinear

least-squares problems and can be thought of as a combination of steepest descent and

the Gauss-Newton method (see Appendix D). One of the main advantages of neural

 Chapter 5 Intelligent Navigation using SIFT

165

networks are their ability to generalize, this means that a trained net can classify data

from the same class as the learning data that it has never seen before. In real world

problems, only a small proportion of possible patterns is available to generate a neural

network. Therefore, to achieve the best generalization, the data set should be split into

three parts, namely training, validation and test sets. The learning should be terminated

in the minimum of the validation set error which shows the best generalization. If

learning is not halted, overtraining can occur and the performance of the overall system

decreases.

 Figure 5.10: Training results for distance estimation

Figure 5.11: Training states of the algorithm with an error of 0.00191597

 Chapter 5 Intelligent Navigation using SIFT

166

The corresponding zoom factors employed for the algorithms are 11x (4000) and 16x

(6000) where the VAPIX equivalents of these values are shown in round brackets. The

training analysis of the proposed network is illustrated in Figure 5.10, from which the

results indicate that the network approaches the best validation point at the 37th epoch

(iteration) with an error of 0.00191597. The training stages of the algorithm, including

gradient, adaptive value ‘mu’ and the validation checks during epochs, as illustrated in

Figure 5.11. The network is trained with this configuration several times, resulting in a

standard deviation (σ) of 0.00017. The trained network with the given configuration is

able to reliably estimate the distance from a single monocular camera using SIFT

features.

An example from the training data set for distance estimation is illustrated in Figure

5.12, and the corresponding input and output parameters, including zoom level, scale

average and the physical distance can be found in Table 5.3. The training results of the

simulated camera for calibration and distance estimation are included in Appendix M.

Table 5.3: An example data set for distance estimation

 Scale parameters with 11x zoom level

 Frame Scale average Physical distance (m)

 (a) 7.98 6.0

 (b) 7.61 5.60

 (c) 4.47 4.0

 (d) 3.58 3.2

 (e) 1.33 0.6

 Chapter 5 Intelligent Navigation using SIFT

167

 (a) (b)

 (c) (d)

 (e)

Figure 5.12: Training set for distance estimation via scale parameters,

frames (a) to (e)

 Chapter 5 Intelligent Navigation using SIFT

168

Figure 5.13: Distance estimation in a real navigation scenario

Table 5.4: Distance estimation results from a real experiment

 Distance estimation with 16x zoom level

 Goal RMSE (m)
 G1 0.3409

 G2 0.3822

 G3 0.7156

A final example is illustrated in Figure 5.13 to demonstrate the performance of the

proposed distance estimation technique in a real navigation problem. Three different

goals are located in the robot’s path (see Section 6.3.2). The details of this scenario are

described in Section 7.3.1.2. Table 5.4 presents the root mean square error (RMSE)

between the estimated distance and the actual values obtained for each goal. A lower

value of RMSE indicates a better fit of the model. The results demonstrate that goals G1

and G2 produce lower values, as expected, which were used in the training stage of the

network. On the other hand, goal G3 results in a reasonable RMSE value, despite not

 Chapter 5 Intelligent Navigation using SIFT

169

being used in the training stage. Accordingly, the trained network can work successfully

with different goals, providing flexibility and reliability to the proposed method.

To conclude, the proposed distance estimation technique is a robust way of estimating

distance from a single monocular camera. This technique is adapted to the Fuzzy

Inference system, designed to estimate linear velocity (see Section 5.5), and it is also

used in the Behavioural Module of the architecture as detailed in Section 5.6.

5.4 ANN based Approach for Obstacle Avoidance

According to the philosophy of the subsumption architecture, as long as no obstacles are

detected, the robot will successfully head towards the goal. If an obstacle is detected,

however, the obstacle avoidance behaviour is activated which steers the robot away

from the obstacle. To overcome the obstacle avoidance problem, simple but efficient

obstacle avoidance methods have been employed in the previous chapter (see section

4.5.4). In many situations, this technique works perfectly well, Nevertheless, some

drawbacks of this technique have been observed during the evaluation of the proposed

architecture.

Wall

Start

L
e

ft F
o

rc
e

s
R

ig
h

t F
o

rc
e

s

Figure 5.14: The right and left forces cancel each other out and the avoidance algorithm fails

 Chapter 5 Intelligent Navigation using SIFT

170

For instance, when the left and right forces which compel the robot to make manoeuvres

to the right and left respectively cancel each other out, the robot will probably hit the

obstacle, as illustrated in Figure 5.14. This problem resembles the local minima problem

in the potential field method, developed as an online collision avoidance approach,

which is applicable when the robot does not have a prior model of the obstacle but

senses it during motion. It is clear that its reliance on local information can trap it in a

local minimum as the repulsive and attractive forces cancel each other out [Nattharith

and Bicker, 2009].

Another example is illustrated in Figure 5.15, where the robot is jammed between the

obstacle and the wall, and cannot escape through the gap. This is because the proposed

algorithm compares each cluster with a distance of influence, and each of these is

summed based on the corresponding value of the field of view value, which

consequently results in an avoidance manoeuvre. However the algorithm considers only

one parameter based on a constant value of distance of influence, do , which leads to the

method being inadequate for steering the robot along narrow gaps smoothly, as seen in

Figure 5.15. To increase the performance of the avoidance manoeuvre, a solution based

on artificial neural network is proposed which varying the do parameter with respect to

different situations. It results in performing smoother avoidance manoeuvres and

overcomes the drawbacks mentioned above. To handle these problems, an artificial

neural network architecture is designed whose input layer includes the range data cluster

obtained from the laser sensor Oc (see Section 4.5.4); The mapping function of the

network can be defined as follows:

 ()

(5.6)

where D = [do]
T

, S = [Oc(2), Oc(3), Oc(4),…., Oc(n)]
T

 Chapter 5 Intelligent Navigation using SIFT

171

 Figure 5.15: The robot is stuck and collides with the obstacle

The proposed neural network utilizes usable accessible space data as an input and

providing values of do. To simplify the problem, only three different values are assigned

to the output of the network The first of these values is the initial distance of influence

parameter used for most of the cases. The second is used for trap situations and narrow

gabs as illustrated in Figure 5.15, and the final one is for the situation where the left and

right forces cancel out each other (see Figure 5.1).

Figure 5.16: The general structure of the proposed neural network design for obstacle

avoidance behaviour, Oc(i) represent the range cluster (for simplicity i =3 for this case),

including one hidden layer with n neurons

1

2

n-

1

n

d

o

Oc(1)

n

Oc(2)

Oc(3)

 Chapter 5 Intelligent Navigation using SIFT

172

The first and the second values are employed to update the do . However the third

parameter is utilized to indicate a possible collision with wall or door. Accordingly,

when the network yields this output, the obstacle avoidance behaviour is invoked to

make a random manoeuvre to either the left or right. Data collection is a key challenge

where any human expert may fail or need to spend too much time to overcome data

acquisition problems [Janglova, 2004a]. The proposed architecture is constructed on the

basis of the previously used simple obstacle avoidance technique (see Section 4.5.4),

which performs reasonably well in many situations, and the robot is required to follow a

number of predetermined paths to gather data for training. These paths are selected by

the designer to simulate the previously mentioned tasks. The movements of the robot

are measured and formed as training patterns for each obstacle avoidance sub-task. The

robot was made to follow a number of paths classified as general obstacle avoidance

situations in order to collect data. The data set was divided into three sets of training,

validation and test patterns based on the independent data collected from the different

paths.

The performance evaluation results from these experiments are discussed in Chapter 6.

The network is trained with the collected data, and the proposed neural network

employed in this study is a feed-forward neural network with a back propagation

training algorithm, like the previously mentioned architectures (see Sections 5.3.2 and

5.4). The general design of the proposed network is illustrated in Figure 5.16, in which

the number of laser range finder cluster is set to 3 instead of 9 so as to simplify the

image. Each cluster is responsible for a 20
ο
 field of view. Table 5.5 demonstrates the

basic specifications for the network, which was used in both real experiments and

simulation tests.

Figure 5.17 presents the results of the proposed artificial obstacle avoidance behaviour

when left and right forces cancel each other out. The characteristics of the range data

obtained from the range finder with respect to the wall are illustrated in Figure 5.18 (a).

The output of the networks triggers random steering direction, which helps to prevent

collision. The distribution of data from the sensor after random steering is illustrated in

Figure 5.18(b). The re-localization of the robot after the avoidance manoeuvre is

 Chapter 5 Intelligent Navigation using SIFT

173

performed with respect to odometry readings and the position of the landmark as

discussed previously in Chapter 4. In essence, the robot conducts its localization with

regard to the centre following principle and landmark based localization (see 4.5.4).

Figure 5.19 presents the output trajectory of the artificial avoidance technique, which

generates a safe and smooth avoidance manoeuvre in such a complex situation. This

scenario was initially conducted using the reactive method, but it did not navigate the

robot safely along the path, as illustrated in Figure 5.15. Due to the narrow path, the

robot becomes trapped between the wall and the obstacle, and fails to escape from the

trap situation. On the other hand, in the intelligent solution, this path was accepted as a

training path from which the corresponding range data was gathered to determine the

characteristics of the problem. Accordingly, in the training phase, the human expert

manually navigates the robot towards the trap and performs the avoidance manoeuvre.

When the robot encounters such a trap, the distance of influence, do parameter is

immediately reduced by the system, and the robot avoids the trap.

The more the network is trained, the better the results which are obtained. The

intelligent method is able to successfully and smoothly accomplish obstacle avoidance

problems, as shown in Figures 5.14 and 5.15.

Wall

Start

L
e

ft F
o

rc
e

s
R

ig
h

t F
o

rc
e

s

Figure 5.17: The intelligent avoidance manoeuvre succeeds to escape from the trap

 Chapter 5 Intelligent Navigation using SIFT

174

(a) (b)

Figure 5.18: Output of range finder, (a) range data for network input , (b) range data just after

random steernig to left for the network output

 Table 5.5: Specifications of the proposed network topologies for avoidance

Range Finder Resolution Data Topology Train Validation Test

URG-04LX 180 650 9-7-1 520 65 65

Figure 5.19: The intelligent avoidance algorithm performs a safe and smooth avoiding

manoeuvre in a complex scenario

 Chapter 5 Intelligent Navigation using SIFT

175

5.5 Estimation of Global Linear Velocity using Fuzzy Logic

The use of fuzzy logic in the design of navigation behaviours and the generation of

control parameters for a mobile robot has recently gained a lot of attention from

researchers, as these approaches attempt to mimic how humans make decisions [Li and

Yang, 2003] .

The problem of estimating the heading angle for goal-based navigation and obstacle

avoidance has been discussed in the previous sections. However, the other important

control parameter is linear velocity (v). Keeping this constant is a well-known method

[Brett et al., 2003]. When obstacles are nearby and/or closely aligned with the heading

direction, additional speed control helps to avoid collisions or otherwise the robot would

have to make sharper turns. In addition, reliable variation in linear velocity during

navigation directly affects the overall performance of the system. Accordingly, in order

to estimate the instant velocity regarding distance to the goal and obstacles in the

environment, a fuzzy based control system is proposed. The fuzzy inference system for

this behaviour takes three inputs, i.e. (
 ,

), and offers linear velocity (vt) as

output. The first input,
 , is the estimated distance between the goal and the robot,

while
 is the distance from the robot to the closest obstacle. The input

 is the

number of matched feature points between the goal and the current image. Based on the

common experience of a skilled human operator, it can be shown that a lower value of

 should result in a higher value of vt, as the robot nears its goal. On the other hand, a

higher value of
 assumes a higher value of vt , since the robot is a safe distance from

the obstacle. A higher value of
 implies the higher value higher value of vt because

the robot is close to its goal. The i-th fuzzy rule for linear velocity is defined as:

If [(

) and(

) and (

)] then [vt is
]

(5.7)

 Chapter 5 Intelligent Navigation using SIFT

176

where,

and denotes the Min operators, and
 ,

 ,
 and

 are fuzzy sets defined over the

ranges of (s1,s2 s3) and vt respectively.

5.5.1 Design of membership functions for the linear velocity controller

This section describes the design of the membership functions for the fuzzification and

defuzzification processes. Although different researchers have chosen different

membership functions depending on the problems encountered in various applications,

the trapezoidal and triangular shapes have been employed in this study to simplify the

computation. It is important to realize that there are no established methods to adjust the

shapes of membership functions. This process requires careful experimentation. In order

to achieve this, the ranges of different sensory inputs to the fuzzy sets used were

arranged so as to cover all relevant situations and to provide the system with greater

flexibility in making the best decision. The trial and error method was used with

different combinations of inputs and corresponding outputs are evaluated.

Three membership functions are defined for the velocity control problem, which are

detailed in the following paragraphs. The first membership function for the given

problem, shown in 5.20, is distance to goal (dg) which illustrates the distance from the

robot in its current position. Three geometric membership functions represent the

robot’s position to the goal, which are near, midway and far. The distance to the goal is

estimated using the scale parameters, as previously mentioned in Section 5.3. Any

value within a distance between 2 and 5m is considered to be midway. The near and far

membership functions can overlap midway. Thus, the robot can be both midway and

near or both midway and far from its goal. The overlap allows the use of multiple rules.

 Chapter 5 Intelligent Navigation using SIFT

177

 Figure 5.20: The distance to the goal membership functions (dg)

The distance to the obstacle (dobs) membership function illustrated in Figure 5.21

represents the closest distance from the robot to the obstacles where three membership

functions stand for near, midway or far between the robot, and the nearest obstacle. All

ranges within the distance of influence of the object (do), that is 1.2 m, are taken into

account where a distance within 0.6 m is considered to be near.

The matching strength membership function illustrated in Figure 5.22 corresponds to

the similarity between the current and the reference (goal) images using three

membership functions stand for small, moderate or, big. A value of similarity under 10

is considered to be small. Any value of matching similarity between 5 and 25 is

considered to be moderate. The small and big membership functions overlap midway.

Figure 5.21: The distance to the obstacle membership functions (dobs)

 Chapter 5 Intelligent Navigation using SIFT

178

 Figure 5.22: Matching strength membership functions (mstr)

The output membership functions are used to calculate the linear velocity of the robot,

which is defined from 0.08 m/s to 0.4 m/s depending on the dynamics of the robot, as

illustrated in Figure 5.23. The membership functions are defined as slow, normal, fast

and fastest. The next step is to define the appropriate fuzzy rules based on the details of

the fuzzy inference system (FIS), a set of fuzzy rules are experimentally developed and

adjusted until the outputs are judged to be satisfactory for different situations. Table 5.6

displays the fuzzy rules for the velocity problem.

 Figure 5.23: Linear velocity membership functions (vl)

 Chapter 5 Intelligent Navigation using SIFT

179

 Table 5.6: List of the linear velocity algorithm rules

Rule No

 IF (dg)

 AND (dobs) AND (mstr) THEN (vl) is

1

Near Near Small Slow

2 Near Near Moderate Slow

3 Near Near Big Normal

4 Near Midway Small Normal

5 Near Midway Moderate Fast

6 Near Midway Big Fastest

7 Near Far Small Normal

8 Near Far Moderate Fastest

9 Near Far Big Fast

10 Midway Near Small Slow

11 Midway Near Moderate Slow

12 Midway Near Big Slow

13 Midway Midway Small Normal

14 Midway Midway Moderate Normal

15 Midway Midway Big Normal

16 Midway Far Small Normal

17 Midway Far Moderate Normal

18 Midway Far Big Fast

19 Far Near Small Slow

20 Far Near Moderate Slow

21 Far Near Big Slow

22 Far Midway Small Slow

23 Far Midway Moderate Slow

24 Far Midway Big Normal

25 Far Far Small Slow

26 Far Far Moderate Slow

27 Far Far Big Normal

5.5.2 Defining the defuzzification method

In the given FIS system, the COS method was chosen to calculate the crisp value which

takes into account the influence of every fuzzy rule. Figure 5.24 displays an example

where three different rules are activated and result in three different fuzzy sets labelled

A, B and C for the output variable, where B and C overlap. Two fuzzy rules have voted

for a moderate output, but when applying the COA, MOM and CLA methods this

information is lost and unjustified importance is given to a low output. However, COS

 Chapter 5 Intelligent Navigation using SIFT

180

is able to overcome this problem. For the given example, the system would expect the

moderate output to be the correct decision since two fuzzy rules out of three have voted

for it. The COS defuzzification method offers the best results in this case, and for this

reason was selected for use in this study. A more detailed comparison of defuzzification

methods can be found in [Nattharith, 2010].

 Figure 5.24: Result of different defuzzification methods

5.6 Design of Behaviours Based on Subsumption Architecture

The behavioural architecture consists of five behaviours comprising goal seeking,

approach, wander, obstacle avoidance and completed. The FSM technique is used to

visualize the behaviours and their association with other behaviours. The behavioural

system is designed to be flexible, as defined in Chapter 4. However, the behaviour

(completed) is modified and discussed in the following paragraphs. The completed

behaviour, as previously defined in Section 4.5.5, is based on the matching strength

parameter in which the system completes its navigation when this parameter exceeds a

predefined threshold value. Nevertheless, this solution depends entirely on the number

of correct matched points. This may sometimes be misleading or inadequate so that the

robot stops in an inappropriate position. The use of a laser is an alternative method,

MOM
CLA

COA

COS

1

0 output

µ

 Chapter 5 Intelligent Navigation using SIFT

181

because it is a strong sensor in terms of estimating distance, but it must be placed close

to the floor so as to detect obstacles. Therefore, if an object is not at that low height, the

estimates may be wrong. Consequently, the approach works only for objects that are

placed on the floor or are located close to walls (such as, a bookshelf). An example is

illustrated in Figure 5.25 [Sjöö et al., 2009].

To address this issue, the matching strength parameter in this work is replaced with a

distance parameter based on the scale parameters of SIFT features (see Section 5.4).

The stopping criteria for this behaviour can be expressed mathematically as follows:

 {

 (5.8)

where Fs = final stage, a boolean value

 drg = distance between the robot and the goal

 dt = distance tolerance

The overall system architecture used in the real experiments is illustrated in Figure 5.26

in which control parameters are employed by the behavioural module to steer the robot

via Player Architecture.

The algorithm is designed for vehicles in which the only interaction with the motors is

carried out using the robot's linear and angular velocities. Thus, the output of the system

generates the robot’s angular velocity, w (deg/sec), and linear velocity, v (m/sec). This

proposed architecture produces a solution for the image based visual servoing (IBVS)

problem in which the control law is based on the error between current and desired

features on the image plane, and does not involve the estimation of the 3D pose of the

target. On the other hand visual homing strategies, which are a type of visual servoing

[Szenher, 2008], estimate direction and/or distance to the goal location in terms of the

difference between the current and goal images. The control variables of the proposed

algorithm can easily be adapted to a visual homing strategy with minor modifications.

 Chapter 5 Intelligent Navigation using SIFT

182

Heading direction θ is also obtained from the output. Thus, the only modification

needed is to obtain an appropriate distance for each homing vector which is basically

performed by converting global linear velocity v (metres/sec), into distance, d (metres).

For instance, if the estimated linear velocity is 0.25 m/sec, the robot moves 0.25 m in

the direction of the homing vector ⃗⃗ ⃗.

Figure 5.25: Instead of the distance to the object on the table, the distance to the shelf is

measured [Sjöö et al., 2009]

5.7 Modelling and Simulation using Microsoft Robotics Studio

In order to estimate the capability of the intelligent navigation system, a series of

experiments was conducted to navigate the simulated mobile robot in partially cluttered

environments so that it can attain its goal without collisions. In the experiments, a

simulated Pioneer mobile robot was used. The details of the robot’s configuration were

described in Section 4.6. A Matlab simulation was adapted to test the designed neural

network architectures as well as to correct the output generated by the C++ coding for

the architectures. Additionally, the Matlab Fuzzy Logic Toolbox was used to design the

fuzzy logic controller. Once the membership functions have been identified in the

 Chapter 5 Intelligent Navigation using SIFT

183

toolbox, the control is simply programmed as a set of linguistic rules relating inputs to

outputs.

 Table 5.7: Initialization of the robot control algorithm

 Parameters Descriptions
Start Position (x,y)

Goal Position (x,y)

Initial heading angle (θ)

Distance of influence of object

Maximum Velocity

Minimum Velocity

Minimum matching value (Start Criteria)

Distance Tolerance

Start position of the robot on the simulated area

Position of the goal on the simulated area

Starting heading angle of robot, θ=0
ο

do = 0.5 m

vmax= 0.37 m/s

vmin= 0.11 m/s

5 for starting the navigation

dt= 0.6 m for reaching the goal

In order conduct the experiments and evaluate the proposed intelligent navigation

system, the test scenarios used in Chapter 4 have been utilised, defining the initial

parameters of the robot’s starting and initial heading and goal positions, maximum and

minimum matching values, distance of influence of the object, (do), and distance

tolerance, (dt).

Table 5.7 presents the definitions and initial values of the parameters used to perform

the experiments. The experimental results for each scenario are presented in Figures

5.26-5.29 and these reveal that the proposed architecture enhanced by artificial

intelligence safely navigates the robot mobile robot to different locations in its working

environment. Figures 5.26 (b) – 5.29 (b) display the control parameters generated by the

system for different test scenarios.

 Chapter 5 Intelligent Navigation using SIFT

184

 (a)

 (b)

Figure 5.26: Scenario 1, (a) estimated trajectory, (b) control parameters

Figure 5.26 (a) illustrates the estimated trajectory of the robot employing the intelligent

navigation architecture for SC1. The robot starts its navigation by searching for the

goal; once it is detected the robot then rotates to its left to engage with it. After which it

moves towards the goal until it perceives the wall, whereupon the robot avoids it and

continues moving towards its goal. The system accelerates slowly whilst simultaneously

decreasing the heading angle until the robot senses the obstacle. It then avoids the

obstacle safely, and progressively increases the value of v in approaching its goal. This

leads the robot to reach its goal successfully

 Chapter 5 Intelligent Navigation using SIFT

185

 (a)

 (b)

Figure 5.27: Scenario 2, (a) estimated trajectory, (b) control parameters

Figure 5.27 (a) presents the estimated trajectory of the robot for SC2. The robot is

required to navigate from its starting point to its goal with obstacles positioned so as to

obstruct its path. The robot travels towards its goal until it senses the first obstacle, and

maintains v at a lower level as the obstacle in front of the robot is approached after

which it is able to perform a safe manoeuvre to avoid it. In negotiating the obstacle, the

value of w is increased progressively as the robot perceives it on its right. The robot

 Chapter 5 Intelligent Navigation using SIFT

186

avoids the obstacle successfully and then localizes itself again. In moving toward the

goal, the robot senses the second obstacle on its right, which appears within the range of

do, which invokes the obstacle avoidance behaviour of the robot again. Once the second

obstacle is avoided safely and the robot again approaches the goal, v is increased whilst

w decreases. This finally leads the robot successfully to the goal. Unlike in the previous

method (see section 4.6), the proposed architecture follows the left-hand path which

takes it further away from the third obstacle.

Figure 5.28 (a) displays the navigation results for the final scenario which is designed to

evaluate the performance of the architecture with a global navigation problem. The

robot begins moving towards its primary goal until it senses the first obstacle. The

system then decreases its velocity (v) so as to facilitate a safe manoeuvre. After

avoiding the first obstacle smoothly, the robot approaches its goal with no obstacle in its

field of view. This progressively increases the v parameter and directs the robot to

safely reach its goal. Once the first goal is accomplished, the robot starts searching for

the second goal. It then rotates clockwise to its right (90
ο
) to engage with the goal. After

this the robot begins moving towards the ‘Goal B’ with an increasing value of v and

small w. The second obstacle is passed smoothly and the robot attains its second goal. In

order to negotiate with the final ‘Goal C’, the robot rotates clockwise to its right (75
ο
).

Once so engaged it heads towards the goal until it senses the third obstacle in its path,

which the robot avoids successfully and reaches its final goal.

The robot navigates safely and the system increases v progressively as the robot

approaches the goal and the heading angle w remains stable until it perceives the

obstacle which, on the other hand, is avoided with a smooth manoeuvre. The robot

clearly achieves better navigation results when compared to the test results without

using intelligent methods, as shown in Section 4.6. The robot navigated at a closer

distance to the goals while its trajectories were smoother without any sharp turns.

Furthermore, unlike in the previous method, the robot using the intelligent approach is

also able to escape from trap situation, as illustrated in Figure 5.29.

 Chapter 5 Intelligent Navigation using SIFT

187

 (a)

(b) (c)

 (d)

Figure 5.28: Scenario 3, (a) estimated trajectory, (b) control parameters for Goal A,

(c) control parameters for Goal B, (d) control parameters for Goal C

The robot begins moving towards the goal until it perceives the wall (on its left) which

it avoids successfully and heads towards the goal again. After this it moves towards the

wall with increasing v and stable w. Once it detects the large obstacle obscuring its path,

 Chapter 5 Intelligent Navigation using SIFT

188

and unlike in the previous method (see Section 4.6) the system decreases v and

performs a sharp avoiding manoeuvre, providing rapid adjustment to w. It then re-

localizes towards the goal whilst negotiating the narrow gap between the wall and the

obstacle, which is avoided in a stable manner, as illustrated in Figure 5.29 (a). Finally,

the robot approaches its goal and no longer perceives obstacles within a small distance,

which leads it to reach its goal successfully.

 (a)

 (b)

Figure 5.29: Scenario 4, (a) estimated trajectory, (b) control parameters

 Chapter 5 Intelligent Navigation using SIFT

189

5.8 Summary

In this chapter, artificial intelligence methods have been integrated with the SIFT based

architecture and have demonstrated safe and successful navigation. To achieve this,

artificial neural networks are employed to increase the accuracy of turning rates and to

estimate distance. As well as this, they are employed to adjust the distance of influence

parameter in order to increase overall performance. The proposed architecture also

employs a fuzzy logic controller to adjust the linear velocity, which helps more robust

path control of the robot. Additionally a simple linear regression technique for camera

calibration is integrated to the system, and the K-means algorithm is used to eliminate

any mismatches provided by the SIFT algorithm. The test results reveal that the

proposed architecture is able to direct the robot to successfully complete its tasks. The

following chapter describes the configuration of physical mobile robots used to conduct

the experiments under real conditions.

 Chapter 6 Robot Configuration and Software Design

190

 CHAPTER 6

 ROBOT CONFIGURATION AND SOFTWARE DESIGN

In previous chapters, the proposed navigation architectures have been tested in the

Microsoft Robotics Developer Studio programming environment. Several scenarios

have been considered in order to evaluate the characteristics and performance of the

proposed systems. The aim of this thesis, to conduct novel research into robot

navigation using monocular vision, has demanded an experimental system with the

capability to support the modes of operation proposed. Therefore, in the remainder of

the thesis, all of the navigation algorithms were applied in physical robot and tested

under more realistic conditions. The overall hardware and software issues with the robot

have to be addressed in real experimental test which are described in this chapter.

6.1 IWARD Project

The mobile robot used in this thesis has been developed as part of the Intelligent Robot

Swarm for Attendance, Recognition, and Cleaning and Delivery (IWARD) project

[Nattharith, 2010]. The aim of IWARD project is to create a robot team that is capable

of fulfilling ward-related operational functionalities in hospitals. The robots operate

autonomously in performing their activities but are also able to interact with health care

staff through touch screens or by voice. IWARD focuses on the need of hospitals and

health care centres to overcome the problem of staff shortages. There are ten partners

involved in the IWARD project. The main contribution of Newcastle University to the

IWARD project was to design and develop the mobile robot hardware platforms that

form the IWARD robot team, which comprises two types: model 3-DX Pioneer robots

and one bespoke robot called Nubot, designed and constructed at Newcastle. Further

details of the project can be found in [Nattharith, 2010]. Figure 6.1 displays the IWARD

mobile robot team. The real experiments were conducted by IWARD Pioneer 1. The

configuration and specifications of the robot will be detailed in the following sections.

 Chapter 6 Robot Configuration and Software Design

191

Nubot

Pioneer 1

Pioneer 2

 Figure 6.1: IWARD robotic team

6.2 IWARD Pioneer Robot (Pioneer 1)

The Pioneer 3-DX robot is a member of the Pioneer robot family manufactured by

ActivMedia Robotics [ActivMedia, 2010]. It has a sturdy aluminum body, a balanced

drive system with a two-wheel differential drive with casters, two reversible DC motors,

a motor-power control board, an 8 element ultrasonic sensor array, high resolution

motion encoders, and battery power, all managed by an onboard SH2 based

microcontroller. The robot’s maximum unloaded speed is 1.6 m/s and it has a maximum

payload capacity of 23 kg including batteries. Additionally, an optional onboard PC

(motherboard) is installed for wider and more robust autonomous navigation, and which

provides for interactions the microcontroller locally to conduct high level operations.

The onboard PC is required for processing data from the laser range finder, ultrasonic

 Chapter 6 Robot Configuration and Software Design

192

range finder, camera and any additional interface. Figure 6.2 shows the standard version

of the Pioneer 3-DX. Further technical details of the robot are given in Appendix F.

 Figure 6.2: Standard Pioneer 3-DX

The Pioneer 3-DX robot has an onboard motherboard installed. The robot’s control

architecture has two levels using the onboard motherboard for communication software

and the SH2-based microcontroller for low-level motor control [Nattharith, 2010]. The

robot microcontroller is configured as the server in a client-server paradigm, and

handles the low-level control such as speed and the acquisition of sensory data. The

client software running on the onboard PC provides high level control; the onboard PC

receives sensory data from the microcontroller and transmits the motor commands in

return. The connection between the onboard PC and the microcontroller is provided by

RS-232 standard serial communication. The Pioneer robot is fitted with Versalogic

Cobra EBX-12 motherboards. This motherboard is a standard EBX form-factor board

with four serial ports, 10/100Base-T Ethernet, monitor, keyboard and mouse ports, two

USB ports and support for an IDE hard disk drive [Nattharith, 2010]. It has a Pentium

M 1.8 GHz Processor and supports up to 2 GB of system RAM. Additional

functionality includes sound video frame grabbing and wireless Ethernet. The main task

 Chapter 6 Robot Configuration and Software Design

193

of the robot microcontroller is to maintain the independent speed and direction control

of the robot motors and to keep track of its absolute positions, whilst maintaining

communication with the onboard EBX-12 PC. The SH2 microcontroller is provided

with I/O ports for attachment and close integration of the onboard PC and sensors, and

supports other accessories. The robot microcontroller is also connected to the motor-

power control board, which interfaces with PWM and motor directional command. This

also supplies signal paths for standard and accessory onboard electronics.

 Figure 6.3: Design concept of the Pioneer 1 robot

The top of the Pioneer 1 robot is equipped with a superstructure to accommodate the

plug and play module boxes. Flex Link XDBM 3x22 aluminium was used to construct

the frame which can accommodate up to two module boxes mounted on the rear of the

robot, as shown in Figure 6.3. This superstructure is also designed to support the Human

Robot Interface (HRI) panel. The height of the HRI panel is 1000 mm above ground

level to allow ease of access. Figure 6.1 displays the current Pioneer robot

configurations in which the rear caster wheel was repositioned to provide improved

Space for HRI

Space for HRI

Plug and Play Module Boxes

 Chapter 6 Robot Configuration and Software Design

194

stability. For this project a platform is designed and attached to the front part of the

robot to accommodate the AXIS-213 IP camera, and the design of the platform is

provided in Appendix G. The robot and AXIS 213 camera are illustrated in Figure 6.5.

6.2.1 Robot sensors and peripheral device design

To achieve the navigation tasks, the robot is equipped with several sensors and

adaptable components. An overview of the sensors used and peripheral devices included

in the robot system are introduced in the following section.

 Figure 6.4: Hokuyo URG-04LX

Laser range finder: The Hokuyo scanning laser range finder, illustrated in Figure 6.4,

is installed on the Pioneer robot. The scanning area is 240 degrees field of view with an

angular resolution of 0.36 degrees. It has a detection range from 60 mm to 4 m with a

scanning refresh rate of up to 10 Hz. The specifications of the laser range finder are

given in Appendix H. It is connected to the robot’s onboard PC through a USB

(Universal Serial Bus) port. In order to maximise its field of view, the laser is mounted

at a height of 310 mm on the front of the robot.

Bumper: The bumper mounted on the front of the Pioneer robot was developed by

Cardiff University [IST, 2006]. It essentially provides an emergency stop facility for the

 Chapter 6 Robot Configuration and Software Design

195

robot if other sensors fail to prevent collision. The robot is halted immediately

whenever any of the micro switches on the bumper are activated.

Ultrasonic Sensors: There is an onboard ultrasonic sensor array on the standard

Pioneer 3D-X robots, however for the IWARD robots a new sensor array was

developed using 16 Devantech SRF05 ultrasonic sensors and 8 Sharp GP2D120 IR

sensors. The 180° forward facing field of view of the Pioneer robot was covered by 12

ultrasonic sensors and 8 infrared sensors whilst the rear detection was managed by 4

ultrasonic sensors. The SRF05 sensors, having a range of 30 mm– 4m and are employed

for medium range detection, whereas the Sharp GP2D120 IR sensors, having a range of

100-800 mm, are used for the short range detection. Further details about the prototype

design of this sensor can be found in [Nattharith, 2010].

Emergency-Stop: There is an Emergency-Stop (E-Stop button) on the robot which

overrides deceleration and stops the robot immediately. This button is directly

connected to the motor power control board.

Human Robot Interface: The HRI was designed to allow hospital personnel to

communicate with the robot. The HRI components include a VGA touch-screen (model

LinTX Plus 8.4 inch), and a pan-tilt camera, illustrated in Figure 6.6. Appendix I

provides the specifications of the VGA touch-screen. A Digi-Lan pan/tilt network

camera is mounted on the HRI panel, and is connected to the motherboard directly

using an Ethernet connector. The pan-tilt camera is not used in this study. This is

because its specifications are inadequate for navigation purposes.

 Chapter 6 Robot Configuration and Software Design

196

Antenna

 Laser

Touch panel

AXIS 213

camera

Bumper

E-Stop button

In house sensor

array

Onboard sensor

array

Digi-Lan pan/tilt

camera

 Figure 6.5: The pioneer robot with additional sensors and peripheral devices

Wireless Communication Interface: A remote host computer is required to monitor

and control the client software running on the robot onboard PC motherboard The robot

onboard PC and the remote computer are connected via a local wireless network, based

on the IEEE 802.11g standard, operating in the 5 GHz frequency band with a maximum

bit rate of 54 Mbit/s. The robot has a fixed IP address which is 192.168.2.102. A built-

in wireless network interface provides the wireless connection for the remote host

 Chapter 6 Robot Configuration and Software Design

197

computer, whilst the onboard PC supplies the wireless connection via a

PC104+PCMCIA adapter card. A wireless Ethernet card is inserted in the PCMCIA

card slot and connected to an antenna which is located behind the HRI panel of the

robot (see Figure 6.5).

6.2.1.1 AXIS-213 pan/tilt/zoom camera

The AXIS 213 PTZ Network Camera is a fully featured PTZ network camera for

surveillance and remote monitoring, as shown in Figure 6.6. Images from the camera

are made available on the network as real-time, full frame rate Motion JPEG streams

and/or MPEG-4 video streams. The AXIS 213 also has an infrared (IR) lamp and a

removable IR filter for day and night operation.

Video can be viewed in 5 resolutions up to 768x576. Up to 20 viewers can access the

AXIS 213 PTZ simultaneously. As the AXIS 213 PTZ is designed for use in security

systems, it is equipped with features such as IP address filtering and multilevel

passwords. The AXIS 213 PTZ has a built-in Web server, providing full access to all

features through the use of a standard Web browser. The camera enables advanced

remote monitoring with pan, tilt and zoom through operator control from any PC

connected to the local area network or the Internet. It provides wide coverage with its

ability to pan 340 degrees, tilt 100 degrees and 26x optical zoom in on specific details.

The technical specifications of the camera are shown in Appendix J.

 Figure 6.6: AXIS-213 pan/tilt/zoom camera

 Chapter 6 Robot Configuration and Software Design

198

6.3 Software Design

The robot onboard PC has a Player (Version 2.0.5) distributed architecture, which is

based on a client-server structure running under the Linux Operating System and

provides control over the physical sensors and actuators in the mobile robot. The player

server connects to the robot microcontroller, sensors and actuators. It is necessary that

the robot microcontroller must be interfaced with correspondingly. The Pioneer robot

utilizes a protocol called the P20S based protocol which is provided by Player [Gerkey

et al., 2001a], to establish such an interface. This allows the control of the Pioneer robot

with Player. Player supports various robot sensors and components, including sonar,

laser cameras and bumpers which developers are allowed to access and implement

directly on the Player Server. For the Pioneer robot, both client and server run on the

robot onboard PC. The client program provides communication with the Server via a

standard Transmission Control Protocol (TCP) socket. All operations of the robot PC

are monitored and controlled by a remote computer throughout a wireless network.

Details of the Player architecture are given in Chapter 2.

The AXIS 213 is a Network camera which, as previously mentioned, has a built-in Web

server that does not need a direct connection to a PC or any other hardware or software

to capture and transfer images. It provides a programming interface called VAPIX, an

open Application Programming Interface (API) which makes the Axis network video

solutions cost efficient, flexible, scalable, future-proof and easy to integrate with other

systems.

All Axis network cameras and video servers have an HTTP-based application

programming interface. VAPIX provides functionality for requesting images,

controlling network camera functions such as pan, tilt, zoom, and setting/retrieving

internal parameter values. The purpose of the API is to make it easier for developers to

build applications that support Axis video products. For example the

http://myserver/axis-cgi/jpg/image.cgi command requests a default image in JPG

format and the http://myserver/axis-cgi/com/ptz.cgi?rpan=10 command is a request to

pan the camera to the right by 10 degrees. All commands and parameters can be

http://myserver/axis-cgi/jpg/image.cgi
http://myserver/axis-cgi/com/ptz.cgi?rpan=10&camera=1

 Chapter 6 Robot Configuration and Software Design

199

accessed in the current VAPIX manual [AXIS, 2011]. The Player architecture does not

provide any interface for AXIS-213 cameras. Therefore, C++ based client software

called AXIS Camera Control Software (ACCS) has been implemented so as to utilize

the camera for the necessary applications. ACCS essentially provides a connection to

the server, and conveys requests to the web-server via VAPIX commands. It is a

flexible program able to work with different members of the TCP protocol, such as

HTTP and FTP. The software provides a parser procedure which basically reads and

parses the URL to obtain the appropriate data. For instance, when a request to capture

the current image is made, the parser data is saved in JPG format, and can be easily

converted into the PGM format required for SIFT applications. The cross flowchart of

the corresponding software is illustrated in Figure 6.7.

AXIS Camera Control Software (ACCS)

F
ir

s
t

L
e

v
e

l

Request (PTZ values or Take Image Stream)

F
o

r
th

 L
e

v
e

l
T

h
ir

d
 L

e
v

e
l

S
e

c
o

n
d

 L
e

v
e

l

Interface

Main Module

String Parser

Module

HTTP Module Server

 Converts the request to Vapix

format and call the parser

Call (String Parser Procedure)

Provides the communication

between the main code and the

ACCS

Parse the input string and

obtains the IP,Host,Port

and Data values

Send tokens (IP,Host etc...)

Connection If the connection fails the procedure

is stopped, otherwise it gets the

request from HTTP module and

perfroms the request
Succesfull

Send Request

Provide connection with the

server using tokens and if the

connection is provided send

request in terms of VAPIX

format

Convert to

Vapix format

Request is converted to the

Vapix standarts

Figure 6.7: Cross flowchart of ACCS software

ACCS is classified into four levels, with each level responsible for different procedures,

namely: Interface, Main Module, String Parser Module and HTTP Module, Server. The

software is described according to each level as follows.

 Chapter 6 Robot Configuration and Software Design

200

First Level: This comprises the input procedure called Interface, and essentially

provides the communication between the ACCS and the corresponding software which

employs it so as to control the camera. The Interface procedure collects the input in

String format and passes the corresponding data to the second level.

Process X Process Y

Port N

TCP

IP

Port M

TCP

IP

Connections

Sockets

IP adresses

host A host B

reliable

TCP Connection

unreliable

IP Connection

 Figure 6.8: TCI-IP connection

Second Level: This is the main module which utilizes the input obtained from the

preceding level and converts the input request into VAPIX format. Afterwards it runs

the corresponding procedure of the succeeding level.

Third Level: This level performs the parsing procedure which receives the input string

in VAPIX format and parses it to obtain the IP address, Host Port and Data values.

Fourth Level: This is main level that carries out the TCP-IP connection with the server

located in the Camera. TCP provides a connection oriented, reliable, byte stream

service. The term connection-oriented means that the two applications using TCP must

establish a TCP connection with each other before they can exchange data. This is a full

duplex protocol, meaning that each TCP connection supports a pair of byte streams, one

flowing in each direction. TCP includes a flow-control mechanism for each of these

byte streams that allows the receiver to limit how much data the sender can transmit.

 Chapter 6 Robot Configuration and Software Design

201

The basic structure of a TCP-IP connection is illustrated in Figure 6.8. The two

processes communicate using TCP sockets where each side of a TCP connection has a

socket which can be identified by the pair (IP address, Port number). Two processes

communicating over TCP form a logical connection that is uniquely identifiable by the

two sockets involved, using the combination (local_IP_address, local_port,

remote_IP_address, and remote port). Once reliable communication is successfully

established, the request is transferred to the camera (host B), and the camera performs

the required task.

6.3.1 Software tools and libraries used in this project

This section provides a brief description of the two open source software libraries that

have been used in this project in order to facilitate the software design in this project.

The CIMG library is a reliable and rapid way of resolving image processing and

computer vision issues. The second tool is Open Multi-Processing (OpenMP), which is

an application programming interface (API) that supports multi-platform shared

memory multiprocessing programs. These libraries are detailed in the following

sections.

CIMG library: The CIMG Library is an image processing and computer vision library

which is designed for those able to utilize C/C++ programming languages. An example

application with its CIMG library is shown in Figure 6.9. The library provides useful

classes and functions to load/save, display and process various types of images. It

consists of a single header file “CImg.h” providing a set of C++ template classes that

can be used for specific sources, to load/save, process and display images or list of

images. The header file “CImg.h” contains all the classes and functions that compose

the library itself. The library is very portable, and it is compatible with different

operating systems such as Unix/Linux, Windows, and MacOS X. The specifications of

this library are listed as follows:

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory

 Chapter 6 Robot Configuration and Software Design

202

 No pre-compilation of the library is needed, since the compilation of the

functions is done at the same time as the compilation of the user’ own C++ code.

 No complex dependencies have to be handled; it just includes the “CImg.h” file.

 The compilation is accomplished on the fly, which means that only

functionalities used by the user program are compiled and appear in the

executable program. This leads to very compact code, without any unused

components.

 Class members and functions are inline, leading to better performance during the

execution of the program [Tschumperlé et al., 1999].

An inline function requests the compiler has been requested to perform inline

expansion. In other words, the program requests the compiler to insert the complete

body of the function in every place that the function is called, rather than generating

code to call the function only in the one place it is defined [Tschumperlé et al., 1999].

Figure 6.9: An example application with CIMG library

All library classes and functions are defined in the namespace “cimg_library”, which

namespace encapsulates the library’s functionalities and avoids any class name

collisions that can happen with other header files. The CIMG library is utilized during

this project to save and load images and to enhance the images with low-pass filters. It

also provides appropriate functions to access and update coloured images which are

used in the qualitative, appearance-based techniques see (Chapters 2 and Chapter 3).

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Inline_expansion
http://en.wikipedia.org/wiki/Inline_expansion
http://kiharalab.org/genPortrait/src/CImg-1.2.5/documentation/reference/namespacecimg__library.html

 Chapter 6 Robot Configuration and Software Design

203

 Figure 6.10: Image registration algorithm, with multi-scale capability

The library also includes a function that provides multi-scale versions of the image

registration algorithm. An example of a code provided by the library which also

demonstrates a multi-scale optical flow algorithm modified and employed as a template

for the Horn-Schunk multi scale algorithm (described in Chapter 3). An example of a

screenshot of the corresponding multi scale algorithm with the Horn-Schunk method is

illustrated in Figure 6.10, in which the flow vectors demonstrate the motion difference

between two successive images.

 Chapter 6 Robot Configuration and Software Design

204

 Figure 6.11: Architecture of the OpenMP API [OpenMP, 2010].

OpenMP (Open Multi-Processing): OpenMP is an Application Program Interface

(API), jointly developed by a group of major computer hardware and software vendors

to provide a portable, scalable model for developers of shared memory parallel

applications [OpenMP, 2011]. The API supports C/C++ and FORTRAN on a wide

variety of architectures, and is compatible with most major operating systems including

Unix/Linux and Windows NT. The architecture of OpenMP is illustrated in Figure 6.11,

and its functions are included in a header file labelled "omp.h". OpenMP comprises

three primary API components which are Compiler Directives, Runtime Library

Routines and Environment Variables. The main goal of the API project is defined as

follows:

 To provide a standard among a variety of shared memory architectures/platforms

 To establish a simple and limited set of directives for programming shared

memory machines. Parallelism can be implemented by using 3 or 4 simple

directives.

 To provide capability to incrementally parallelize a serial program, unlike

message passing libraries which typically require an all or nothing approach

http://en.wikipedia.org/wiki/Header_file

 Chapter 6 Robot Configuration and Software Design

205

 To support for Fortran (77, 90, and 95), C, and C++ [OpenMP, 2011].

OpenMP is based upon the existence of multiple threads in the shared memory

programming paradigm. A shared memory process consists of multiple threads and uses

the fork-join model of parallel execution, as illustrated in Figure 6.12.

 Figure 6.12: Fork join model of OpenMP [OpenMP, 2011]

Figure 6.13 Loop synchronization of OpenMP [Barney, 2012].

All OpenMP programs begin as a single process, called the master thread. The master

thread executes sequentially until the first parallel region construct is encountered. The

 Chapter 6 Robot Configuration and Software Design

206

master thread subsequently creates a team of parallel threads, called fork. The

statements in the program that are enclosed by the parallel region construct are then

executed in parallel among the various team threads. As soon as the team threads

complete the statements in the parallel region construct, they synchronize and terminate,

leaving only the master thread (Join) OpenMP, called join [Tschumperlé et al., 1999]. A

typical example of a parallel execution of a ‘for loop’ is illustrated in Figure 6.13. Loop

optimization is a key problem for most programs in any programming language in terms

of processing time. The example in figure 6.13 employs environment variables starting

with pragma omp in order to provide the parallelization of the given code which

basically updates three code statements sequentially.

For this project, OpenMP is utilized to enhance the performance of the conventional

SIFT algorithm of Lowe [2004] which is not appropriate for real time applications.

Therefore, OpenMP directives are employed with Lowe’s algorithm. An open source

implementation of the conventional SIFT algorithm, called the Fast Sift Library

[Sourceforge, 2011], has been adopted to this project. The Library is mainly focused on

extracting SIFT features from any PGM format images. The core elements of OpenMP

are the constructs for thread creation, workload distribution (work sharing), data-

environment management, thread synchronization, user-level runtime routines and

environment variables. In C/C++, OpenMP uses “#pragmas” as previously mentioned.

One of the most useful directives is omp parallel, which explicitly instructs the

compiler to parallelize the chosen block of code. In addition, the omp for directive

instructs the compiler to distribute loop iterations within the team of threads that

encounters this work-sharing construct. For instance, the SubtractImage procedure used

in the library essentially performs the image differencing of two successive images and

assigns the result to another image (imgdst = img0 - img1). The implementation

requires three for loop operations (two of which are nested) so as to derive all

corresponding pixels. The Fast Sift implementation employs the directive code starting

with #pragma, as shown:

http://en.wikipedia.org/wiki/C_preprocessor#Compiler-specific_preprocessor_features

 Chapter 6 Robot Configuration and Software Design

207

void SubtractImage(Image imgdst, Image img0, Image img1)

{

int rows = imgdst->rows, cols = imgdst->cols, stride = imgdst->stride;

float* _pixels0 = img0->pixels, *_pixels1 = img1->pixels, *_pdst = imgdst-

>pixels;

#pragma omp parallel for schedule(dynamic)

for(int j = 0; j < rows; ++j) {

float* pixels0 = _pixels0+j*stride;

float* pixels1 = _pixels1+j*stride;

float* pdst = _pdst + j*stride;

for(int k = 0; k < (cols&~7); k += 8)

{

_MM_STORE_ALIGNED(pdst+k,_mm_sub_ps(_MM_LOAD_ALIGNED(pi

xels0+k), _MM_LOAD_ALIGNED(pixels1+k)));

_MM_STORE_ALIGNED(pdst+k+4,_mm_sub_ps(_MM_LOAD_ALIGNED

(pixels0+k+4), _MM_LOAD_ALIGNED(pixels1+k+4)));

}

for(int k = (cols&~7); k < cols; ++k)

pdst[k] = pixels0[k]-pixels1[k];

}

A parallel region has at least one barrier at its end, and may have additional barriers

within it. At each barrier, the other members of the team must wait for the last thread to

arrive. To minimize this wait time, shared work should be distributed so that all threads

arrive at the barrier at about the same time. If some of that shared work is contained in

for constructs, the schedule clause can be used for this purpose. The dynamic schedule

is appropriate for the case of a for construct, with the iterations requiring varying, or

even unpredictable, amounts of work. The dynamic schedule is characterized by the

property that no thread waits at the barrier for longer than it takes another thread to

execute its final iteration. This requires that iterations be assigned one at a time to

threads as they become available, with synchronization for each assignment. Further

explanation and examples of implementations can be obtained from the Project’s web

page [Sourceforge, 2011].

The Fast Sift Library has been utilized to increase the computational performance of the

SIFT extraction algorithm; however this algorithm does not support the matching

procedure which compares the reference and current image. Accordingly, corresponding

OpenMP directives have been implemented for the matching function as follows:

 Chapter 6 Robot Configuration and Software Design

208

void FindMatches(Keypoint keys1, Image im2, Keypoint keys2)

{

 Keypoint k, match;

 Image result;

 int count = 0;

 /* Match the keys in list keys1 to their best matches in keys2.

 */

 #pragma omp parallel for

 for (k= keys1; k != NULL; k = k->next) {

 match = CheckForMatch(k, keys2);

 if(match != NULL)

 count ++;

 end

 fprintf(stderr,"Found %d matches.\n", count);

}

The FindMatches function is the main procedure employing extracted key points of

reference and current images as inputs. The main for loop utilizes the CheckForMatch

function to evaluate the similarity between each key point pair, and is parallelized using

an OpenMP pragma.

CheckForMatch performs the matching between two images and is the key procedure

employed by Find Matches. It finds the two closest matches and compares them with

respect to specific threshold values. If the condition is satisfied, the corresponding key

point is assigned as a valid match point. This function employs a for loop as expected,

which is initially parallelized using an OpenMP pragma. The enhanced version of the

function is illustrated as follows:

Keypoint CheckForMatch(Keypoint key, Keypoint klist)

{

int dsq, distsq1 = 100000000, distsq2 = 100000000;

Keypoint k, minkey = NULL;

/* Find the two closest matches, and put their squared

distances in

distsq1 and distsq2.

*/

#pragma omp parallel for

for (k = klist; k != NULL; k = k->next) {

dsq = DistSquared(key, k);

if (dsq < distsq1) {

 Chapter 6 Robot Configuration and Software Design

209

distsq2 = distsq1;

distsq1 = dsq;

minkey = k;

} else if (dsq < distsq2) {

distsq2 = dsq;

}

}

/* Check whether closest distance is less than threshold*/

if (10 * 10 * distsq1 < 6* 6 * distsq2)

return minkey;

else return NULL;

}

The main improvement in performance with the use of the OpenMP library is achieved

with systems having more than one processor. The library allows them to allot the work

into each processor efficiently. The results shows that the default setting of the Fast

SIFT library produces the same output as the conventional SIFT software. On a quad-

core Core2Duo machine with OpenMP, the fast SIFT library runs approximately 6

times faster than Lowe's [2004] SIFT software for 640x480 pixel images. In this project,

the onboard robot computer has a single processor where performance enhancement in

terms of computational time is somewhat lower than a multi processors system as

expected. Nevertheless, it is still able to reduce the overall computational time of the

system by implementing the SIFT into a real time system.

6.3.2 Performance analysis of Fast SIFT library

To analyse the performance enhancement provided by the OpenMP API, both

conventional SIFT and Fast SIFT implementations are tested with four different objects

at different resolutions. The objects are illustrated in Figure 6.14, the first three of which

will be used in the real experiments (Goal A, Goal B, Goal C). The main reason behind

the selection of these objects is their distinctive patterns which makes them appropriate

for the SIFT algorithm in partially cluttered environments.

The Goals are composed of images obtained from different book covers which are

appropriate for SIFT based experiments. Each of these books is positioned in front of a

blue cardboard paper surface so as to isolate the corresponding object from the

 Chapter 6 Robot Configuration and Software Design

210

background. Goal A shown in Figure 6.14 (a), was used in all of the real experiments

(see Chapter 7). The SIFT based analysis of the other goals regarding different

resolutions are included in Appendix K.

(a) (b)

 (c) (d)

 Figure 6.14: Goals used in performance Evaluation for SIFT algorithms in JPG Format, (a)

Goal A, (b) Goal B, (c) Goal C, (d) Goal D

 Chapter 6 Robot Configuration and Software Design

211

6.4 Calibration analysis of the sensors for the INUS technique

Chapter 5 introduced intelligent based methods for the estimation of heading direction,

and obstacle avoidance relying on a range finder. This section discusses and analyses

the results from the algorithms with real sensors attached to the Pioneer 3-DX robot.

The Matlab toolbox was utilized to train all networks. A two-layer feed-forward neural

network with sigmoid hidden neurons and linear output neuron was designed and

adapted for each problem. The networks were all trained using the Levenberg-

Marquardt back-propagation algorithm. The neural networks are able to acquire

knowledge from their surroundings by the adaptation of its internal parameters. The

networks can learn from examples given to them, and generalize knowledge from them.

Having the best generalization, the data set should be split into three parts which are

training, validation and test sets. The learning procedure should be stopped in the

minimum of the validation set error where the net generalizes best. If learning is not

stopped, overtraining occurs which means that the network has learned not only the

basic mapping associated with input and output data, but also the errors specific to the

training set. If overtraining occurs, the network only memorizes the training set and

loses its ability to generalize to new data.

Best Validation Performance is 1.1243e-006

Best Validation is at epoch 7

M
S

E
 P

e
rf

o
rm

a
n

c
e

 Figure 6.15: Training results for AXIS-213 camera calibration

 Chapter 6 Robot Configuration and Software Design

212

 (a)

 (b)

Figure 6.16: Regression analysis to relate the AXIS-213 camera and the Pioneer 3D-x robot,

(a) range from 0° to 90°, (b) range from 0° to -90°

The first step in the camera calibration is to employ scale-invariant features in order to

automatically detect calibration points. A back propagation neural algorithm is utilized

to map the image and the world coordinates in terms of pan and tilt angles. Different

topologies have been implemented so as to provide an appropriate solution to the

problem. The network shown in Table 6.1 is designed for 176x144 resolution.

 Chapter 6 Robot Configuration and Software Design

213

 Table 6.1: Basic specifications of the network for heading angle estimation

Camera Type Resolution Data Topology Train Validation Test

Axis-213 176x144 155 2-6-2 125 15 15

Figure 6.15 demonstrates the training result for the proposed neural network (see Table

6.1). The results reveal that the network approaches the best validation point at the 7th

epoch (iteration) with 1.1243x10
-6

error. The outcome of these networks produces

appropriate pan and tilt values with regard to specific coordinates in the image space.

The next step is to calibrate the camera with respect to the robot. The Axis-213 camera

is mounted onto the robot with its optical axis aligned to the robot's forward direction

and also parallel to the ground plane, as is illustrated in Figure 6.10. A simple linear

regression model is used to relate the camera and the robot. The range of pan movement

used in the real experiments is 180° around the horizontal axis. After conducting the

analysis two regression models are obtained for ranges from 0 to 90° and 0 to -90° as

shown in Figure 6.16.

Accordingly, the combination of these two linear modelling techniques leads the robot

towards the specific coordinate on the image in which the specific pan angle obtained

from the neural network is employed as the main input to steer the robot. The output of

the network also generates the tilt angle for the camera to reach the exact position (see

Chapter 5.2.2.2). Nevertheless the robot is unable to move towards the tilt direction due

to its physical structure. Therefore, the camera needs to be tilted toward the goal in each

processing cycle. However, the real experiments have indicated that the turning speed of

tilt movement for the AXIS-213 cameras is not suitable for real time applications.

Therefore the robot only utilizes the yaw angle along the Z axis to approach the goal. A

goal tracking example related to this calibration is included in Appendix L

The final network architecture is designed for obstacle avoidance relying on range

finders (see Chapter 5.5). The specifications of the network architecture are illustrated

 Chapter 6 Robot Configuration and Software Design

214

in Table 6.2. The data is basically collected from different obstacle avoidance scenarios

(see Chapter 5.4) in which the range finding data and the corresponding avoidance

manoeuvres have been matched as inputs to the network. Figure 6.17 shows that the

best validation point at the 11th epoch (iteration) with 2.4014x10
-5

 error. The trained

network is proposed to estimate the distance of influence (do) value for the obstacle

avoidance behaviour.

Best Validation Performance is 2.4014e-005

Best Validation is at epoch 11

M
S

E
 P

e
rf

o
rm

a
n

c
e

 Figure 6.17: The training results for obstacle avoidance

 Table 6.2: Basic specifications of the network for obstacle avoidance

6.5 Summary

The robot configuration and actual design have been discussed in this chapter.

Additionally, details of the software architecture as well as the open source libraries

Range Finder Resolution Data Topology Train Validation Test

URG-04LX 180 650 9-7-1 520 65 65

 Chapter 6 Robot Configuration and Software Design

215

employed have been provided. The main advantage of open source implementations is

that they provide the freedom to access the source code allowing for the modification

and improvement of the system which facilitated the software design in this project.

Finally, the analysis and evaluation of AI algorithms implemented with the

corresponding physical robot and sensors have been discussed. The following chapter

introduces the experiments conducted under real conditions.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

216

 CHAPTER 7

 IMPLEMENTATION AND EVALUTION OF PROPOSED

 NAVIGATION SYSTEMS

The navigation systems introduced in the earlier chapters have been tested extensively

in real-world experiments. The experimental setups are defined in order to show the

applicability of the methods developed for navigation using mapless strategies. The

experiments are mainly classified into two groups. The first evaluates the performance

of the hybrid vision based obstacle avoidance system, introduced in Chapter 3, the aim

of which is to allow the mobile robot to navigate without collisions, in partially

cluttered environments. The second group of experiments evaluates the performance of

the SIFT based navigation systems discussed in Chapters 4 and 5. The Pioneer mobile

robot introduced in Chapter 6 has been evaluated, using several scenarios that including

random positions and different sizes and types of obstacles. The results of the first

experimental group confirm that the proposed method provides an alternative and robust

solution to avoid obstacles for mobile robots using a single low-cost camera as the only

sensor used. The second group of experiments are aimed at demonstrating that the

proposed navigation systems are both efficient and robust in permitting the robots to

safely navigate from their starting positions to their goals.

7.1 Experimental Procedures

The navigation systems were uploaded onto the Pioneer mobile robot. All experiments

were conducted in and around an area of the Robotics and Automation Laboratory

(RAL) at Newcastle University, which has the physical dimensions of 15.60m x

17.55m, as illustrated in Figure 7.1. Hard board panels were used to simulate walls

during the experiments. Figure 7.2 displays a schematic diagram of the test

environment.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

217

Figure 7.3 shows the corridor area located in front of the laboratory with the physical

dimensions of 15.40m x 9.60m. A schematic diagram of the corridor is illustrated in

Figure 7.4. In addition, Room G-45 located in the RAL has the physical dimensions of

10m x 5.20m, as illustrated in Figure 7.5. A schematic diagram of the room is illustrated

in Figure 7.6

7.1.1 Performance evaluation

The following parameters derived from previous studies [Huq et al., 2008; Szenher,

2008] were used to evaluate the robustness and consistency of robot navigation

performance.

Total navigation time (ts): This parameter indicates the total duration of travel in

seconds. A lower value of ts is expected for fast navigation.

Total travel distance (dt): This parameter presents the distance travelled by the robot

from its starting position to its goal. A lower value of dt is expected to optimize the

travel distance.

Average rate of change of angular velocity (△Ω): This parameter establishes the

average change of angular velocity (in deg/s
2
) as the robot navigates from point to point.

A lower value of travel △Ω indicates a reliable angular velocity of the robot, which is

given as follows:

△Ω =

∑

| () ()|

 ()

 (7.1)

where Ω(i) = the angular velocity at the i-th decision cycle.

 () = the length of the s-th decision cycle.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

218

Position Error of the robot: This parameter establishes the distance between the home

position where the reference image is captured and the location where the robot has

stopped. A lower value of error indicates successful navigation, which is given as

follows:

Error = √() () (7.2)

where (xr, yr) = coordinates of the home position.

 (xc, yc) = coordinates of the robot’s final position.

Total number of collisions: (C) : This parameter should be zero in safe navigation.

Average velocity (va): The average velocity of an agent moving through a displacement

() during a time interval can be expressed as follows:

 (7.3)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

219

X

-A
x
is

Y-Axis

 Figure 7.1: Robotics and Automation Research Labrotary, Newcastle

 University (including hard-board panels)

Y-Axis

X
-A

x
is

Figure 7.2: Schematic of navigation environment (including hard-board panels)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

220

X
-A

xis

Y-Axis

To Room 1

 Figure 7.3: Corridor area outside the Labrotary

To Room 1

Y-Axis

X
-A

x
is

 Figure 7.4: Schematic of the corridor environment

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

221

X
-A

x
is Y-Axis

 Figure 7.5: Room G-45

X
-A

x
is

Y-Axis

 Figure 7.6: Schematic of Room G-45 in the RAL

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

222

7.2 Experimental Design and Results of the Hybrid Vision Based

Obstacle Avoidance System

This section presents the design of the experiments used to evaluate the proposed hybrid

vision based obstacle avoidance system. The experiments were conducted in the test

environments shown in Figures 7.1 and 7.3. In order to verify the performance of the

proposed system, the results for each scenario are compared with those of the

conventional optical flow method. The main aim of these experiments is to navigate the

robot in these environments with regard to the designed scenarios without hitting any

obstacles until a certain amount of time has passed. The robot navigates in these

experiments at a linear speed of 0.15 m/sec and the required time limit is 200 seconds to

fulfil each scenario. Therefore, once the robot achieves to wander along the

environment without colliding until the end of the time limit, it is accepted to complete

the task successfully. All overhead lights in the laboratory and corridor environment

are turned on during the capture of both snapshot and current images, in an attempt to

maintain constant illumination over the entire experimental area. Images were captured

at a resolution of 176x144 jpg format and then converted to pgm format.

Table 7.1: Initial parameters for experiments

 Parameters Descriptions
 Initial heading angle

 Linear velocity(constant)

 Constant turn value

 Maximum range for turning

 Minimum Time Limit

θ = 0
ο

vc= 0.15 m/s

cturn = 90
ο

n

=

± 20°

Tl = 200 sec (must move at least 200 sec)

Four different scenarios are discussed in this section, and an example presenting the

limitations of the proposed architecture is demonstrated. Two vision based obstacle

avoidance techniques were employed, namely the Hybrid (FS) and Optical Flow Based

(OFB) as discussed in Chapter 3. In order to provide a precise comparison of the test

results, each technique is integrated with the proposed control architecture and the

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

223

behavioural strategy discussed in Chapter 3. Table 7.1 displays the initial parameters

used in the navigation algorithms used for conducting the experiments.

7.2.1 Definition of scenarios

Four different scenarios were set up to evaluate the performance of the proposed

system. They are arranged in increased level of difficulty. Experiments were conducted

in two different test environments as previously discussed.

Scenario 1 (S1) – requires the robot to navigate in the first open environment (with no

external obstacles).

Scenario 2 (S2) – requires the robot to navigate in the first environment whilst having

to negotiate two obstacles.

Scenario 3 (S3) – requires the robot to navigate in the second open environment (with

no external obstacles).

Scenario 4 (S4) – requires the robot to navigate in the second environment whilst

having to negotiate three obstacles.

7.2.2 Navigation test results

Each individual test was repeated five times and the average for each performance

parameter was determined. The results for each series of tests were found to be very

consistent, principally because the starting position, robot position and feature size, and

position of the obstacles which are identical for different runs under the same scenario.

The data used in each of the following trajectory plots, however, is taken from the last

run in each of the corresponding scenarios.

A performance evaluation table presenting the average rate of chance of angular

velocity (△Ω), total number of collisions (C) and total navigation time (ts) is generated

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

224

for each scenario. For the corresponding (△Ω) and (ts) parameters in each scenario,

constant rate of turn values are excluded in order to simplify the results of evaluation

parameters.

Scenario 1 (S1)

Figure 7.7 displays the scenario in which the robot is required to navigate in this open

environment without colliding.

Y-Axis

X
-A

x
is

Start

 Figure 7.7: Scenario 1 for vision based obstacle avoidance problem

The trajectory of the first scenario with the FS technique is given in Fig 7.8 (a). The

robot navigates with a smooth trajectory until it reaches the end of the corridor (door).

When it encounters the door, Change Direction behaviour is activated, performing a

90° left turn in order to avoid the door. It then moves towards the left wall, which is

also avoided with a 90° left-turn manoeuvre. After this the robot moves towards the

start position whilst being pushed away from the left wall and this result in the curved

trajectory of the robot. As usual due to the noise within the vision system, the robot

could not follow a straight line, but it always remains inside an acceptable margin

around the centre of the corridor. Furthermore, the OFB Technique, as illustrated in Fig.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

225

7.8 (b), is applied to steer the robot whilst avoiding collision, which essentially

completes the task with a similar trajectory to the FS method. However it follows a

wider path and produces a trajectory with higher values of (△Ω). Table 7.2 summarises

the performance results of each algorithm, showing the FS method performs navigation

without any collision, and it also generates a lower value of △Ω which represents the

smoothest trajectory of the methods employed.

Y-Axis

X
-A

xi
s

Start
Stop

Change Direction

Y-Axis

X
-A

xi
s

Start

Stop

Change Direction

 (a) (b)

 Figure 7.8: Estimated trajectories for scenario 1 (a) FS method, (b) OFB method

 Table 7.2: Performance measures for scenario 1

Scenario 2 (S2)

Figure 7.9 illustrates the second scenario in which the robot is required to navigate in

the same environment while two unexpected obstacles are placed in its path. The results

of the corresponding scenario employing the FS technique are shown in Figure 7.10 (a)

Methods △Ω (deg/s2) Time (sec) Collision

Hybrid 4.61 200 No

Optical Flow 6.73 200 No

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

226

where the robot navigates along the corridor smoothly until it perceives the door. When

it encounters the door, Change Direction behaviour is activated, performing a 90° left

turn in order to avoid the door. Afterwards it moves forward until it perceives the wall,

which is avoided successfully by another 90° left-turn manoeuvre. After this it

continues moving toward the start position until it perceives the first obstacle. The robot

avoids the obstacle using a sharp manoeuvre. Subsequently the robot continues moving

with a smooth trajectory whilst avoiding the right wall. Figure 7.10 (b) presents the

estimated trajectory generated using the OFB algorithm in which the robot successfully

achieves to avoid the first obstacle. It then continues to move safely until it perceives

the second obstacle. However, the robot then makes a sharp manoeuvre to the left which

causes it to collide with the wall. Performance measures for this scenario are illustrated

in Table 7.3, revealing that the FS method is again considered to be the most suitable of

the two methods.

 Table 7.3: Performance measures for scenario 2

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

 Figure 7.9 Scenario 2 for vision based obstacle avoidance problem

Methods △Ω (deg/s2) Time (sec) Collision

Hybrid 4.67 200 No

Optical Flow 7.54 144 (3 times)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

227

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

Stop

Change Direction

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

Failed

(a) (b)

 Figure 7.10: Estimated trajectories for scenario 2 ,(a) FS , (b) OFB

Scenario 3 (S3)

Y
-A

x
is

X-Axis

Start

 Figure 7.11: Scenario 3 for vision based obstacle avoidance problem

Figure 7.11 presents the third scenario which was conducted in the laboratory

environment where the robot was required to navigate in this open environment. The

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

228

results of the corresponding scenario employing the FS technique are shown in Figure

7.12 (a). The robot navigates through the environment successfully without collision. It

negotiates both the door and the wall avoiding them using a 90° left turn manoeuvre. It

then proceeds to move forward along a left curved trajectory eventually getting back to

its start point. The results demonstrate that the FS technique performs smooth and

robust behaviour for this navigation task.

Y
-A

x
is

X-Axis

Start

Stop

D
o

o
r

Wall

 (a)

Y
-A

xi
s

X-Axis

Start

Stop

Wall

D
o

o
r

(b)

 Figure 7.12: Estimated trajectories for scenario 3, (a) FS , (b) OFB

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

229

The OFB technique performs the navigation without colliding with any obstacle in a

smooth manner, as shown in Figure 7.12 (b), so that it negotiates the door and walls

respectively. The results demonstrate that performance in these experiments is

surprisingly reliable for this scenario. Table 7.4 presents the performance measures for

each method with this scenario, The FS technique performs the task for each repetition

successfully. OFS fails once but its overall performance is better than expected.

Nevertheless it generates a higher value of △Ω compared to the FS method.

.

 Table 7.4: Performance measures for scenario 3

Scenario 4 (S4)

Y
-A

x
is

X-Axis

Start

Start

2. Obstacle

1. Obstacle

3. Obstacle

Y
-A

x
is

X-Axis

Start

Start

Stop

2. Obstacle

1. Obstacle

3. Obstacle

Wall

Wall

(a) (b)

 Figure 7.13: Estimated trajectories for scenario 4, (a) scenario 4, (b) FS

Figure 7.13 (a) illustrates the fourth scenario in which the robot is required to navigate

in the laboratory environment with three unexpected obstacles are placed along its path.

Figure 7.13 (b) presents the navigation results of the FS method for this scenario. The

robot begins its navigation and then it detects the first obstacle. The robot avoids the

Methods △Ω (deg/s2) Time (sec) Collision

Hybrid 4.19 200 No

Optical Flow 5.23 182 (1 times)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

230

first and second obstacles successfully. Subsequently it avoids the second obstacle.

After this the robot negotiates walls and the third obstacle, all of which are successfully

avoided by following a rectangular path.

The navigation results for the OFB technique for this scenario are given in Fig 7.14,

where the robot avoids the first obstacle but collides with the second. After this the

robot passes the second room and is stopped. Performance measurements of the given

scenario are illustrated in Table 7.5

Y
-A

x
is

X-Axis

Ceased

Start

2. Obstacle

1. Obstacle

3. Obstacle
2. Obstacle

Failed

 Figure 7.14: Estimated trajectories for scenario 4 using OFB

 Table 7.5: Performance measures for scenario 4

7.2.3 Comparison and evaluation of methods

In these test scenarios, the positions of all obstacles in the test environment are

unknown to the robot. Four scenarios were selected for discussion in this section. The

Methods △Ω (deg/s2) Time (sec) Collision

Hybrid 6.88 191 (1 times)

Optical Flow 7.79 107 (3 times)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

231

results reveal that the OFB technique addresses the use of optical flow to supervise the

navigation of mobile robots. It basically utilizes control laws in aiming to detect the

presence of obstacles close to the robot based on information about changes in image

brightness. The technique performs better than expected in steering the robot

effectively, especially in the open environments as illustrated in Figures 7.8 (b) and 7.12

(b). The major difficulty with employing optical flow in mobile robot navigation is

when key information is not obtained concerning whether or not motion vectors or

changes of illumination change the intensity value of pixels. In addition, despite the

assumption of having constant illumination, lighting conditions may significantly

change due to environmental factors which optical flow techniques are known to have

difficulty in handling. These may cause the miscalculation of flow vectors and can

result in collision, as illustrated in Figures 7.10 (b) and 7.14. The OFB is capable of

negotiating walls and doors successfully which provides flexibility in this method in

partially cluttered indoor environments. However, the OFB technique is not able to

avoid external obstacles deliberately located along the path of the robot, as much as the

FS technique is able to perform.

It is proposed that the FS technique can improve on the performance of the OFB

method, by fusing the results of two techniques in terms of the optical flow based

control law. Figures 7.10 (a) and 7.13 (b) reveal the capacity of this technique in

partially cluttered environments, including those with external obstacles. The aim of the

technique is to integrate the results of the appearance-based detection technique and

optical flow based navigation architecture. The technique has the ability to negotiate

and avoid walls and doors, by benefiting from the results of the optical flow based

navigation technique employing the frontal optic flow to estimate the so-called time-to-

contact before a frontal collision is likely to occur (see Chapter 3). It is also able to

avoid lateral obstacles more smoothly than with the conventional optical flow

technique. The outcome of balance strategy tends to maintain equal distances to

obstacles on both sides of the robot, exploiting the results of the appearance-based

detection technique. The test results reveal that the overall performance of the system is

better than that of the conventional technique, but it is still vulnerable to lighting

conditions, illumination problems and floor imperfections.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

232

The characteristics problems of these conventional methods may still affect the

performance of the proposed method. Figure 7.13 (b) illustrates the characteristics of

the proposed algorithm in cases of frontal obstacles spanning the entire field of view. As

the robot reminds blind (does not make any decision) and the TTC value indicates the

high possibility of collision, the behavioural module is triggered, according to which the

Change Direction behaviour has a higher priority level than the Steering behaviour.

Thus a 90
ο
 turning manoeuvre is performed to avoid obstacles. The FS method does not

extract the features of the images but only measures the differences between them,

which makes the technique appropriate for real time applications, however this maybe a

disadvantage in more complex situations.

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

3. Obstacle

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

3. Obstacle

Failed

 (a) (b)

Figure 7.15: Experimental results for scenario 5(trap-situation), (a) scenario 5, (b) FS method

An example illustrating the limitations of the technique is shown in Fig 7.15 (a), in

which the robot is required to negotiate three obstacles that are close to each other. Fig

7.15 (b) displays the navigation results of the robot where the robot is not able to avoid

both the obstacles and collision with the right wall. This case represents a typical trap-

situation for this method, where the robot is not able to avoid all obstacles in such

complex situations. Table 7.6 highlights the percentage improvement in performance of

the FS over the OFB for the Pioneer robot. Tables 7.2-7.5 consistently demonstrate

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

233

improved performance. Accordingly, the FS navigation method offers better overall

performance in terms of safety and consistent motion when compared to the OFB

method. The control outputs of each scenario can be found in Appendix N.

 Table 7.6: Performance improvement of the FS over the OFB

Scenario No more consistent safer navigation longer navigation

 S1 %31 % 0 %0

 S2 %39 %150 %28

 S3 %20 %25 %9

 S4 %26 %100 %78

7.3 Experimental Design and Results of SIFT based Navigation

Systems

This section presents and discusses the test results of the SIFT based and Intelligent

SIFT based navigation strategies discussed in Chapters 4 and 5 respectively.

 Table 7.7: Initialization of the robot control algorithm for NUS

 Parameters Descriptions
 Start Position (x,y)

 Goal Position (x,y)

 Initial heading angle (θ)

 Distance of influence of object

 Maximum Velocity

 Minimum Velocity

 Maximum matching value (Stop Criteria)

 Minimum matching value (Start Criteria)

 Velocity constant

 Steering constants

 Avoidance behaviour parameters

 Start position of the robot on the simulated area

 Position of the goal on the simulated area

 Starting heading angle of robot, θ=0
ο

 do = 0.65 m

 vmax= 0.24 m/s

 vmin= 0.064 m/s

 30, for reaching goal

 3, for starting the navigation

 kv =0.008 adjust velocity

sw = 1.2, sw1 = 0.6, sw2 = 0.8 adjust steering

ow = 12 deg/s ; ov = 0.1 m/s

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

234

The experiments were conducted in the test environments shown in Figures 7.3 and 7.5.

The proposed SIFT based methods, navigation using the SIFT (NUS) and Intelligent

Navigation using SIFT (INUS) were initially tested using the Pioneer robot. The results

show that, when employing the proposed INUS method, the robot successfully avoided

collisions and was able to reach all of the desired goals. On the other hand, the NUS

performed fairly well despite its full reactive architecture and simple control strategy.

Nevertheless it failed to successfully complete some of the complex scenarios, as

discussed in the following sections. Since navigation results are very hard to quantify

[Gat, 1995], the performance measures described in Section 7.1.1 were employed to

evaluate navigation performance. A corresponding table of performance measures

comparing the performance of the two methods is illustrated for each scenario; although

these do not include the time spent searching for the goal. The experiments revealed that

the robot under INUS gets closer to the goal than when using NUS. Accordingly, an

updated version of the travelled distance parameter (dt) including this difference is

reported next to the (dt) parameter in square brackets for each performance table and

employed for performance evaluation.

 Table 7.8: Initialization of the robot control algorithm for INUS

 Parameters Descriptions
 Start Position (x,y)

 Goal Position (x,y)

 Initial heading angle (θ)

 Distance of influence of object

 Maximum Velocity

 Minimum Velocity

 Minimum matching value (Start Criteria)

 Distance Tolerance

 Start position of the robot on the simulated area

 Position of the goal on the simulated area

 Starting heading angle of robot, θ=0
ο

 do = 0.5 m

 vmax= 3.7 m/s

 vmin= 0.11 m/s

3, for starting the navigation

dt=0.6 m for reaching goal

The trajectories of the robot were plotted using data collected during the experiments.

Values of linear velocity (m/sec), angular velocity (deg/sec) and matching strength

generated by the output in each experiment are displayed for both methods. Tables 7.7

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

235

and 7.8 present the initial parameters used in the NUS and INUS algorithms. Parameters

were estimated by a trial and error method. During the experiments, the sampling period

of the length of a decision cycle was set at tc = 220 ms for NUS and 300 ms for INUS.

This is because the INUS method needs more time to generate control variables, mainly

due to the complexity of the algorithm. For each decision cycle, the robot is controlled

by an updated translational velocity command (v) and angular velocity command (w).

Images were captured at a resolution of 176x144 or 352x288 pixels, and stored in the

pgm format with respect to the characteristics of the SIFT algorithm. The resolution of

352x288 pixels was utilized only for search behaviour, generating more interest points

with the SIFT algorithm which allows the position of the goal to be obtained.

Nevertheless the SIFT algorithm consumes a lot of processing time at this resolution,

which is not appropriate for visual servoing and real time applications with the given

robot configuration. Therefore, once the goal was detected, the image resolution of the

captured goal was reduced from 352x288 to 176x144 pixels whilst navigating the robot.

When the resolution of an image is down-sampled to a smaller resolution, the number of

extracted features is significantly reduced. This, in essence diminishes the performance

of both velocity controllers. On the other hand, Lowe [2004] claimed that three features

are enough for robust matching across different scenes. Therefore, in these experiments,

in order to compensate for the decline in numbers of matched features, a matching

constant with a value of 5 was added to the total matching strength parameter. This

updated parameter was only employed by the velocity controllers, and was not taken

consideration when calculating the steering parameters of both methods.

The reference images (goal images) used in these experiments were described in

Chapter 6. For each scenario, the robot starts its navigation by searching for the

position of the goal where the panning features of the corresponding behaviour may be

invoked with regard to its position. To increase the overall performance of the system in

the real experiments, some minor modifications were implemented in terms of the

parameter selection for search behaviour. Consequently, the searching interval for the

panning function was set to 15°. In addition, in order to reduce the total processing time

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

236

of searching, two levels of zoom 4000(11x) and 6000(16x) were utilized for each

panning level, to increase the overall performance of the system.

The main obstacles used in this experiment were rectangular boxes of dimensions of

550x500 mm. Different sizes of obstacles were used in one of the more complex

scenarios designed to demonstrate and compare the capabilities of the algorithms, as

discussed in section 7.3.2.

7.3.1 Experimental Implementation

These experiments are classified into two groups. The first group of experiments are

preliminary navigation tests which ensure that the proposed navigation algorithms are

able to perform fundamental tasks in a partially cluttered test environment. The second

group of more complex experiments aim to evaluate the overall performance of these

algorithms when different numbers of obstacles are placed along the robot’s path, to see

if it can detect and avoid these objects and make its way to the desired location. In

addition, the robot is required to reach different goals sequentially, which allows the

performance evaluation of the proposed local navigation methods in cases of global

navigation problem.

7.3.1.1 Preliminary test results

The preliminary navigation tests were conducted in Room G-45, as shown in Figure 7.5.

These experiments aimed to reveal the performance of fundemantal behaviours for each

SIFT technique, as well as measuring which of them can yield better navigation

performance in static environments. All overhead lights in the test environments were

turned on during the capture of both snapshot and current images, resulting in constant

illumination over the entire experimental area. Four different scenarios were created in

order to evaluate the basic skills of the algorithms.

Preliminary Scenario 1 (PS1) – requires the robot to navigate towards its goal in an

open environment with no external obstacles.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

237

Preliminary Scenario 2 (PS2) – requires the robot to navigate towards its goal in an

open environment with an initial heading angle (θ) of 90° with no external obstacles.

Preliminary Scenario 3 (PS3) – requires the robot to navigate towards its goal whilst

an external obstacle is located on its path.

Preliminary Scenario 4 (PS4) – requires the robot to navigate towards its goal which is

located at the end of the room.

PS1 is the shortest and easiest task while the PS2 involves searching for the goal and

PS3 involves negotiating an obstacle. PS4 represents a more challenging situation,

where the goal is located at the end of the room so that the robot needs to negotiate a

narrow gap along its path. Table 7.10 displays the starting and goal position for each

scenario.

 Table 7.10: Definition of preliminary scenarios

Preliminary scenario 1

Figure 7.16 (a) displays the first scenario, in which the robot is required to follow a

straight line from the start to the goal position. Figures 7.16 (b) and 7.16 (c) display the

trajectories of the robot employing the NUS and INUS algorithms respectively. The

control parameters for each method are also presented in Figures 7.16 (d) and 7.16 (e).

Table 7.11 displays the performance measures for both navigation methods in

successfully reaching the goal. These parameter values were calculated using data

averaged from repeated experiments.

Scenario Start (x,y) Goal (x,y)

PS1 (0.0,0.0) (5.0,0.0)

PS2 (0.0,0.0) (5.0,0.0)

PS3 (0.0,0.0) (5.5,0.0)

PS4 (0.0,0.0) (8.0,1.0)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

238

Y-Axis

X
-A

x
is

Start

Goal
GoalGoal

Start
Start

(a) (b) (c)

 (d) (e)

Figure 7.16: Experimental results for PS1, (a) the scenario, (b) estimated trajectory

with NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e)

control parameters for INUS

 Table 7.10: Performance measures for PS1

Preliminary scenario 2

Figure 7.17 (a) displays results for the second scenario in which the robot’s initial

heading angle is set to 90
ο
 to the right, and it is required to follow a straight line from

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Search(deg)

 NUS 3.99 23.2 4.01 [4.61] 1.143 0.173 No 0

 INUS 2.46 17.9 4.49 0.547 0.251 No 0

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

239

the start to the goal position as in the previous scenario. Figures 7.17 (b) and 7.17 (c)

present the trajectories for the robot employing the NUS and INUS methods

respectively. Figures 7.17 (c) and 7.17 (d) display the control parameters for each

method. The robot initially starts searching for the goal with varying pan positions.

Once it is detected, the robot turns 90
ο
 towards the goal position and heads towards it.

Table 7.11 displays the performance measures of the robot which was able to complete

the missions safely.

Y-Axis

X
-A

x
is

Start

Goal GoalGoal

Start Start

(a) (b) (c)

 (d) (e)

Figure 7.17: Experimental results for PS2, (a) the scenario, (b) estimated trajectory

with NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e)

control parameters for INUS

The results for the PS1 and PS2 scenarios basically show the performance of the

proposed algorithms for navigation along a straight line. The velocity in both algorithms

gradually increases in the open environment when approaching the goal according to the

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

240

characteristics of the corresponding control algorithms. The NUS method produces

higher values of △Ω , Error and ts, and a lower value of va than when employing the

INUS method.

 Table 7.11: Performance measures for PS2

Preliminary scenario 3

This scenario requires the robot to navigate towards the goal whilst having to negotiate

an external obstacle placed along its path, as shown in Figure 7.18 (a). The trajectories

for both methods are displayed in Figures 7.18 (b) and 7.18 (c). This scenario

demonstrates the robot’s ability to avoid an external obstacle. Figure 7.18 (b) illustrates

the trajectory of the robot under the NUS in avoiding the obstacle. When the obstacle is

detected the obstacle avoidance behaviour is activated and the robot starts its avoiding

behaviour whilst also negotiating the left wall which incidentally generates a repulsive

force. Once the obstacles have been successfully avoided the robot detects the goal and

attains its mission. Under INUS, the robot navigation is conducted in a smoother

manner due to the global velocity control technique which adjusts the speed of the robot

once the obstacles are detected. Here, the enhanced avoidance behaviour improves the

robot’s capability of passing through the gap smoothly and safely.

The control parameters of NUS are illustrated in Figure 7.18 (d), where the robot’s

velocity increases gradually with respect to matching strength until the obstacle is

detected, and afterwards the robot avoids the obstacle with constant speed. Once the

goal is perceived again the goal is approached with increasing speed. The main

challenge facing this control technique is to prevent collisions which may be caused by

failure to adjust speed while negotiating obstacles. The algorithm is supposed to

increase speed proportionally according to the matching of similarity. Accordingly, the

sensitivity of the control parameters is quite significant. To overcome these problems,

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Search(deg)

 NUS 4.27 23.0 4.03 [4.63] 1.107 0.175 No 90

 INUS 3.31 18.3 4.57 0.51 0.249 No 90

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

241

the parameters do and kv must be designed carefully. The do is set to a constant value of

distance in order to provide enough space for avoidance manoeuvres, and in addition kv

should be set to a reasonable value (see Table 7.7).

Y-Axis

X
-A

x
is

Start

Goal GoalGoal

Start Start

Obstacle Obstacle Obstacle

(a) (b) (c)

 (d) (e)

Figure 7.18: Experimental results for PS3, (a) the scenario, (b) estimated trajectory

with NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e)

control parameters for INUS

These changes, on the other hand, decrease overall performance in terms of velocity and

smooth motion. The initial control parameters employed in the INUS technique are

given in Figure 7.18 (e), where the speed is adjusted reasonably. This is primarily due to

the proposed fuzzy inference system and avoidance algorithm. In addition, the turning

manoeuvres are more consistent and smoother than when using the NUS based on the

calibration technique discussed. Table 7.12 summarises the performance results for this

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

242

test which shows that the robot performance is better with INUS than when using the

NUS, resulting in more consistent motion and shorter navigation.

 Table 7.12: Performance measures for PS3

Preliminary scenario 4

Figure 7.19 (a) shows the final scenario described in this section, which requires various

skills in completing the task. The robot initially searches for the goal located at the end

of the room, and it is required to pass through a narrow gap to reach the goal. The

trajectory generated by the NUS method and its corresponding control parameters are

illustrated in Figures 7.19 (b) and (d) respectively. The results show that the robot

manages to detect the position of the goal after its first search attempt. After this the

robot heads towards the goal until it encounters the table. While the robot is able to

avoid this obstacle safely, the narrow gap generates repulsive forces from both sides

which temporarily decrease the robot’s velocity. After which, the repulsive forces

cancel each other out and the robot again engages with the goal to attain its mission. In

the INUS case, as shown in Figure 7.19 (c), the robot begins its task by searching for

the goal. After the goal is detected, the robot navigates until it negotiates the passage

where it senses the table on its right. After smoothly avoiding this obstacle, the robot

passes through the narrow gap and moves towards the goal. Figure 7.19 (e) displays the

control parameters of the INUS method, which generates a more consistent angular

velocity (w), resulting in a smoother path. The velocity graph reflects the basis of the

proposed fuzzy inference system where the velocity (v) of the robot remains stable until

it gets closer to the goal, after which it accelerates gradually until the obstacle is sensed.

Once the obstacle is avoided the system progressively increases the velocity (v) as the

goal is approached. In the final stage, the velocity remains stable as the robot is directed

to achieve its goal. The matching strength, on the other hand, decreases dramatically in

the final part of the navigation scenario. This is because of the reduced field of view

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Search (deg)

 NUS 7.95 36.3 5.2 [5.63] 1.12 0.142 No 0

 INUS 4.91 25.01 5.04 0.69 0.209 No 0

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

243

with respect to zooming, and excessive speed may prevent the robot from capturing

complete images during the final cycles.

Y-Axis

X
-A

x
is

Start

Goal GoalGoal

Start Start

(a) (b) (c)

 (d) (e)

 Figure 7.19: Experimental results for PS3, (a) The scenario, (b) Estimated Trajectory

with NUS , (c) Estimated Trajectory with INUS, (d) Control Parameters for INUS, (e)

Control Parameters for INUS

 Table 7.13: Performance measures for PS4

It can be observed that the decrease in matching strength during this final stage does

not influence overall performance due to the design of the fuzzy inference system, as

discussed in Chapter 5. Table 7.13 presents the performance results utilising both

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Search (deg)

 NUS 7.17 57.4 7.7 [8.22] 1.23 0.134 No 15

 INUS 5.32 45.5 7.79 0.61 0.171 No 15

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

244

methods, showing that the INUS navigation method has superior performance compared

to NUS and confirming that the INUS offers smoother, and more consistent motion

throughout the navigation. The experimental results obtained from the preliminary

scenarios have demonstrated that, when employing the INUS method, the robot’s

performance was enhanced in achieving the desired goals. The following section

introduces more complex scenarios.

7.3.1.2 Complex test results

This section describes the more complex scenarios examined, where different obstacles

are placed along the robot’s path so as to influence its ability to reach its goal. The

robot’s ability to negotiate successive goals is also evaluated where the robot needs to

detect each goal. Six different scenarios were designed to simulate situations that the

robot may experience when navigating in an indoor environment. The successive

scenarios involve increased levels of complexity.

Complex Scenario 1 (CS1) – requires the robot to navigate towards its goal whilst an

external obstacle is located in its path, where the initial heading angle (θ) = 180, as

shown in Figure 7.20 (a).

Complex Scenario 2 (CS2) –the robot has to negotiate two external obstacles located in

its path, as illustrated in Figure 7.20 (b).

Complex Scenario 3 (CS3) – requires the robot to navigate towards its goal with three

obstacle are located in its path, as shown in Figure 7.20 (c).

Complex Scenario 4 (CS4) – requires the robot to negotiate and pass through a narrow

gap towards its goal, as depicted in Figure 7.20 (d).

Complex Scenario 5 (CS5) – represents a task that demonstrates the robot’s ability to

avoid obstacles of two different sizes, as shown in Figure 7.20 (e).

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

245

Complex Scenario 6 (CS6) – represents a task that demonstrates the robot’s ability to

navigate towards successive images, as shown in Figure 7.20 (f).

Table 7.14 displays the starting and goal positions in each scenario, with each starting

set to (0.0,0.0)

 Table 7.14: Definition of complex scenarios

Scenario Start (x,y) Goal (x,y)

CS1 (0.0,0.0) (8.0,0.0)

CS2 (0.0,0.0) (8.0,0.0)

CS3 (0.0,0.0) (8.0,0.0)

CS4 (0.0,0.0) (5.0,-1.0)

CS5 (0.0,0.0) (6.0,-1.0)

CS6 (0.0,0.0) (7.0,1.0;7.0,0,0;7.0,0.0)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

246

Goal

Start

Y-Axis

X
-A

x
is

1. Obstacle

Goal

Start

Y-Axis

X
-A

x
is

1. Obstacle

2. Obstacle

 (a) (b)

Y-Axis

X
-A

x
is

Goal

Start

1. Obstacle

2. Obstacle

3. Obstacle

Goal

Start Y-Axis

X
-A

x
is

Obstacle

 (c) (d)

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

Goal

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

3. Obstacle

(G1)

(G2)

(G3)

 (e) (f)

Figure 7.20: Complex scenarious 1 – 6 , (a) CS1 - heads in reverse direction with one

obstacle, (b) CS2- two obstacles, (c) CS3 - three obstacles, (d) CS4 – in narrow passage,

(e) CS5 - different obstacles (f) CS6 - multible goals with three obstacles

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

247

Complex scenario 1

The scenario demonstrates the robot’s ability to negotiate with the goal, which is

located out of the field of view of the robot. In addition, it needs to avoid an external

obstacle which is positioned so as to obstruct the robot’s path.

Y-Axis

X
-A

xi
s

Goal

Start

Goal

Y-Axis

X
-A

xi
s

 (a) (b)

Start

Obstacle
Obstacle

 (c)

 (d)

Figure 7.21: Experimental results for CS1, (a) estimated trajectory with NUS , (b)

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters

for INUS

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

248

Figure 7.21 (a) illustrates the trajectory of the robot using the NUS to avoid the

obstacle. The robot initially starts searching for the goal along its initial heading

direction, which ends in failure. Thus, according to the characteristics of its search

behaviour, the robot performs a 180° turn to change its search direction (see Chapter 4).

Subsequently it detects the goal, and starts approaching it until it senses the obstacle.

The robot under NUS is able to avoid the obstacle safely. However repulsive forces

from both the obstacle and the wall compel the robot to perform extra manoeuvres to

prevent collision, as shown in Figure 7.21 (c). After passing through the gap, the robot

continues approaching the goal to complete its task, as shown in Figure 7.21 (a).

 Table 7.15: Performance measures for CS1

Under INUS, the robot performs the same searching procedure to detect the goal, as

shown in Figure 7.21 (b). Nevertheless, its avoidance of the obstacle is smoother. As the

obstacle is approached on the right side of the robot, the system is able to adjust its

speed in a progressive way and handle the repulsive forces coming from both the wall

and the obstacle by using the trained obstacle avoidance technique (see Chapter 5).

Once the wall and obstacle disappear from the field of view of the sensors, the system

increases the velocity (v) sharply whilst simultaneously decreasing the turning rate (w)

as the robot approaches its goal with no obstacles in its field of view, as shown in

Figure 7.21 (d). This allows the robot to complete its task. Table 7.15 displays the

performance measurements of both algorithms in reaching the goal. The results are

quite similar to those of PS4, where the robot’s performance with INUS is seen to be

more consistent and smoother than when using NUS.

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Search (deg)

 NUS 8.01 63.6 8.1 [8.91] 1.39 0.128 No 15

 INUS 6.29 51.2 8.42 0.59 0.166 No 15

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

249

Complex scenario 2

This scenario requires the robot to avoid two obstacles, as shown in Figure 7.20 (b).

The robot is able to successfully reach its goal without collisions using both methods, as

shown in Figure 7.22 (a) and Figure 7.22 (b) respectively.

Goal

Start

Y-Axis

X
-A

x
is

Y-Axis

X
-A

x
is

Start

Goal

(a) (b)

 (c)

 (d)

Figure 7.22: Experimental results for CS2, (a) estimated trajectory with NUS , (b)

estimated trajectory with INUS, (d) control parameters for NUS, (e) control

parameters for INUS

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

250

The INUS control generates smoother motion than NUS which uses a simple method of

controlling velocity that employs matching strength as the only input, as previously

mentioned. Thus the system progressively increases the speed of the robot until it gets

closer the obstacle. Therefore, despite the assignment of an appropriate do value, the

system may need to perform sharp manoeuvres to prevent collision. For instance, in

this case, the robot increases its speed progressively with respect to matching strength

until it gets close to the first obstacle, which results in a wider trajectory. In addition, the

results for the corresponding avoiding manoeuvre increases the possibility of a frontal

collision with the second obstacle. In negotiating the second obstacle, the obstacle

avoidance behaviour is invoked, leading to the performance of an avoiding manoeuvre.

Subsequently, the robot continues to approach its goal with no obstacle in its field of

view, and reaches the goal. The corresponding control parameters are shown in Figure

7.22 (c). Again the INUS, illustrated in Figure 7.22 (b), allows the robot to maintain

smoother and faster navigation. This is because this method is able to make more

sensitive adjustments leading to a more robust heading direction based on its calibrated

camera system. Under the INUS, when the robot initially perceives the first obstacle,

the system progressively adjusts its speed as part of the collision avoidance manoeuvre,

and the trained avoidance technique generates appropriate values of angular velocity (w)

to compel the robot to move at a safe distance from the obstacle.

After the first obstacle and the wall disappear from the robot’s view, its velocity

increases progressively as illustrated in Figure 7.22 (d) until it perceives the second

obstacle on its left, which is passed safely and smoothly. The robot then proceeds to

complete its task successfully. Table 7.16 presents the results of the performance

measurement tests regarding this scenario which reveal that the robot performs better

using the INUS.

 Table 7.16: Performance measures for CS2

 Methods △Ω (deg/s
2
) ts(s) dt(m) Error(m) va(m/s) Collision Search (deg)

 NUS 9.24 70.7 8.6 [9.2] 1.34 0.124 No 0

 INUS 6.83 57.2 8.9 0.73 0.160 No 0

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

251

Complex scenario 3

This scenario represents a more cluttered environment involving three external

obstacles. The robot is required to navigate from its start point to its goal with obstacles

positioned so as to obstruct its path.

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

3. Obstacle

Goal

2. Obstacle

1. Obstacle

Start

Y-Axis

X
-A

x
is

3. Obstacle

(a) (b)

Stopped

Trapped

Goal

 (c) (d)

Figure 7.23: Experimental results for CS3, (a) estimated trajectory with NUS , (b) estimated

trajectory with INUS, (d) control parameters for NUS, (e) control parameters for INUS

The robot running under the NUS fails twice in this complex experiment by colliding

with obstacles. The NUS trajectory shown in Figure 7.23 (a) displays a successful result

where the goal is attained without colliding. The first obstacle is passed successfully

although false matches are processed during navigation, as shown in Figure 7.23 (c)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

252

where extreme points can easily be observed. The system then moves towards the goal

until it perceives the second obstacle on its right side that appears within the range of do,

which it avoids successfully. The final goal for the robot using the NUS algorithm is

having to avoid the third obstacle located on its left side. However, the goal is

obstructed by the obstacle which results in the robot moving close to it and pushed

towards the wall by strong repulsive forces. In negotiating the wall, the robot rotates

sharply clockwise towards the open space, which results in an unclear trajectory.

Besides this, the robot loses sight of the goal and stops. The search behaviour is then

reactivated, the goal is detected and the scenario is completed successfully. Two

repeated failures of the NUS method occurred in this part of the experiment where the

robot was unable to overcome the trap situation. The control parameters of the method

are illustrated in Figure 7.23 (c) which displays the corresponding results along the

estimated trajectory. Velocity, v, is rather low during navigation, and the change in w is

quite high, resulting in inconsistent and non-smooth robot motion. However, when

employing the INUS method, the robot is able to attain its goal successfully as shown in

Figure 7.23 (b). It begins moving towards the goal, during which time the system does

not increase the v as the robot moves towards the first obstacle. As the robot perceives

the first obstacle, it is avoided safely with a smooth manoeuvre. As soon as the obstacle

disappears from the robot’s view, values of v increase sharply, which also shows that

both the robot reaches the obstacle-free space and the distance between the goal and the

robot reduces. When the robot perceives the second obstacle the system decreases v in

order to engage with it, and the INUS generates a similar avoiding manoeuvre to that of

the NUS method. However under the NUS the robot presents a wider path as compared

to when employing the INUS. The final part of the task is to negotiate with the third

obstacle which compels the robot operating the NUS method to select the wrong path.

With INUS, however, the robot continues moving toward the goal until it senses the

third obstacle. In negotiating the third obstacle, the robot makes a sharp manoeuvre

towards the trap which, however, is compensated for successively and the robot

achieves its escape from the trapped position. It then engages its goal again and

completes its mission. Figure 7.23 (d) reveals the corresponding control parameters

when the robot is able to navigate the goal whilst avoiding external obstacles in a

similar manner to the previous experiments. The only exception appears with the trap

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

253

position, where the robot oscillates for a while, resulting in a higher change in w and

decrease in average velocity (v). Overall, the robot under INUS succeeds in avoiding all

obstacles with smoother and more consistent manoeuvres than when using the NUS.

Furthermore, NUS leads to unsuccessful navigation on two occasions and requires

further searching to complete the task. Table 7.17 summarises the performance

measures for this complex scenario (time spent on the searching procedure is excluded).

As with previous results, the robot’s performance is better with INUS than when using

the NUS.

 Table 7.17: Performance measures for CS3

Complex scenario 4

This scenario requires the robot to pass along a narrow path towards the goal. When

employing NUS method it is not able to complete the task and collides with the

obstacle, as illustrated in Figure 7.24 (a), and corresponding control parameters are

shown in Figure 7.24 (c). Under NUS it perceives the obstacle on its right side whilst

heading towards the goal, and then performs consecutive left and right manoeuvres due

to the repulsive forces generated by the obstacle and the wall respectively. However, it

then becomes jammed and collides with the obstacle.

When running under INUS the robot is able to attain its goal successfully, as shown in

Figure 7.24 (b). The robot initially rotates clockwise to engage with the goal. Once the

goal is perceived, the system progressively increases speed until the robot approaches

the pass. It then reduces speed and, despite the narrow gap and repulsive forces

generated by the obstacle and the wall, it is able to escape from the trap without

collision. After this it continues moving toward its goal to complete the task. Unlike

with the NUS method, in this case the robot using the INUS method benefits from the

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Serach(deg)

 NUS 14.4 91.4 10.4 [10.9] 1.37 0.114 2 times 30

 INUS 9.74 66.7 9.76 0.84 0.149 No 0

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

254

intelligent speed control and the trained avoidance technique, and is able to pass the gap

to safely reach its goal.

Goal

Start

Y-Axis

X
-A

x
is

Obstacle

Y-Axis

X
-A

x
is

Goal

Start

(a) (b)

Failed

Obstacle

 (c) (d)

Figure 7.24: Experimental results for CS4, (a) estimated trajectory with NUS , (b)

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters

for INUS

 Table 7.18: Performance measures for CS4 (Failure for NUS)

The enhanced obstacle avoidance technique essentially provides smoother angular

velocity (w) values for narrow paths and the robot is able to negotiate the wall,

facilitating safer and smoother avoidance manoeuvres. Figure 7.24 (d) presents the

control parameters with INUS which are consistent with the estimated trajectory. Table

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) v(m/s) Collision Search(deg)

 INUS 5.42 32.0 5.7 0.88 0.174 No 15

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

255

7.18 summarises the performance measures for this trap scenario, and indicates that

NUS is unsuccessful and consequently the performance measures associated with this

case are indeterminate. However, under the INUS, successful navigation is achieved by

the robot.

Complex scenario 5

This scenario demonstrates the robot’s ability to avoid obstacles of two different sizes

positioned so as to obstruct the robot’s path. One of these is a rectangular box of 420

mm x 330 mm, and other is a rectangular box having dimensions of 400 mm x 900 mm.

In order to increase the challenge inherent in the scenario, the second obstacle is

positioned across the path. Figure 7.25 (a) illustrates the trajectory of the robot under

the NUS trying to avoid the obstacles. The robot initially starts searching in order to

detect the position of the goal, then turns its direction of travel to where it senses the

larger obstacle. In negotiating the obstacle, the value of w is increased progressively as

the robot perceives the obstacle on its right side. After passing the first obstacle, the

robot is compelled to pass along the narrow path between the first obstacle and the wall,

forcing it to produce a non-smooth trajectory. When the sensors perceive the second

obstacle, which is positioned irregularly, the robot performs another avoiding

manoeuvre to prevent collision and complete the task. The control parameters of the

corresponding method are illustrated in Figure 7.25 (c) in which it can be observed that

the robot essentially utilizes obstacle avoidance behaviour during the navigation due to

the repulsive forces generated by the obstacles and the wall, and which results in a

wider trajectory when using the NUS.

Figure 7.25 (b) displays the trajectory of the robot under the INUS method. After

detecting the goal’s position, the robot rotates towards it. It then moves towards the goal

smoothly until it perceives the first obstacle, whereupon it successfully avoids it and

keeps moving towards path between the first obstacle and the wall.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

256

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

Goal
Goal

1. Obstacle

2. Obstacle

Start

X
-A

x
is

Y-Axis

 (a) (b)

 `

 (c)

 (d)

Figure 7.25: Experimental results for CS4, (a) estimated trajectory with NUS , (b)

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters

for INUS

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

257

 With INUS the robot is able to pass along the narrow passage smoothly, and thus the

obstacle avoidance behaviour of this method leads to an oscillation-free navigation until

the second obstacle is detected. The robot subsequently avoids the second obstacle

safely and keeps moving towards the goal. The control parameters of this algorithm are

shown in Figure 7.25 (d). In addition, Table 7.19 illustrates the performance assessment

of both methods where the overall performance of the NUS method decreases

dramatically, especially in terms of va and ts. On the other hand, the INUS method

performs with a level of performance somewhat similar to those of previous

experiments.

 Table 7.19: Performance measures for CS5

Complex scenario 6

NUS and INUS were designed primarily to overcome local navigation problems using a

vision based approach. Scenario 6, however, is designed to evaluate the performance of

these methods with a global navigation problem, in which waypoints are placed at

locations so that each goal is successively negotiated, as shown in Figure 7.26. The

scenario is illustrated in Figure 7.20 (f). It has three goals placed along the corridor for

the robot to navigate around. When the robot reaches its first goal, it starts to search for

the second goal, which is then followed by achieving the third goal. The robot must

attain all goals in the correct order so as to complete the task successfully. The robot,

however, fails on two occasions when using NUS, colliding with the second obstacle

which then obstructs the third goal. Figure 7.27 (a) illustrates the trajectory of the robot

under the NUS which is eventually able to negotiate the goals successfully.

 Methods △Ω (deg/s2) ts(s) dt(m) Error(m) va(m/s) Collision Serach(deg)

 NUS 13.27 61.7 6.9 [7.4] 1.286 0.109 1 times -45

 INUS 8.49 40.5 6.56 0.77 0.162 No -45

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

258

Goal B Goal CGoal A

 Figure 7.26: Each goal leads its successor

Y-Axis

X
-A

x
is

Start
1. Obstacle

2. Obstacle

3. Obstacle

(G1)

(G3)

Start
(G1)

1. Obstacle

2. Obstacle

3. Obstacle

(G3)

(G2)

Y-Axis

X
-A

x
is

(G2)

 (a) (b)

Figure 7.27: Experimental results for CS5, (a) estimated trajectory with NUS , (b)

estimated rajectory with INUS, (d) control parameters for NUS, (e) control

parameters for INUS

The robot starts its navigation by searching for the first goal which is detected after

panning the camera clockwise. The robot then rotates to its right to engage with the

goal. The robot moves towards the goal until it perceives the first obstacle, whereupon

the robot avoids it and continues moving towards its goal. It then reaches the goal and

completes its first task, whereupon the robot starts searching for the second goal,

subsequently turning counter-clockwise. While it attempts to move in the direction of

this goal, it is influenced by the repulsive forces generated by the first obstacle, the first

obstacle appears within the range of do, invoking the obstacle avoidance behaviour of

the robot which pushes the robot away from its starting position. The robot then

localizes itself towards the goal again and continues moving until perceiving the second

obstacle. In negotiating this obstacle, the robot avoids it and orients itself towards the

direction of the goal. The robot then proceeds to complete its second task successfully.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

259

The final goal is eventually detected and the robot moves towards it until the third

obstacle is perceived on its right. Having detected the obstacle in its path, the robot

performs a sharp avoidance manoeuvre to avoid collision. After the robot successfully

avoids the obstacle, it resumes its path and continues moving to achieve its goal. The

corresponding control parameters for each goal are illustrated in Figure 7.28. The only

criteria for stopping in the NUS method is matching strength. Any mismatching can

stop the robot before the goal position is reached which is one of the main

disadvantages of the method. The last part of this test is an excellent example of this

situation in that the robot is halted away from the goal regarding the matching based

stopping criteria.

Figure 7.27 (b) displays the trajectory of the robot when negotiating the scenario using

INUS. The results of the corresponding control parameters are shown in Figure 7.29.

After detecting the first goal the robot turns clockwise to engage it. It then moves

towards its goal. The robot successfully passes between the obstacle and the wall

towards its goal. Unlike with the NUS method, the robot with the INUS method does

not negotiate the obstacle, resulting in a smaller Error parameter than when using the

NUS method. Consequently, a smaller Error result for the reaching the first goal

prevents any influence of the first obstacle during the search attempt for the second

goal.

The robot starts searching for the second goal and then rotates counter-clockwise to its

left to engage it. Once engaged, it heads towards the goal until it perceives the second

obstacle on its right where INUS maintains a safe distance from second obstacle and

providing a robust and smooth trajectory towards the corresponding goal. The robot

then proceeds to complete its task successfully; the control parameters of the

corresponding goal are illustrated in Figure 7.29 (b). For the final goal, the trajectory

results are similar to those for the NUS method except that the robot’s trajectory is more

erratic. Having detected the final goal on its initial heading direction, the robot starts

moving towards the goal. Since the estimated distance between the goal and the robot is

reduced, the value of v is increased. The robot keeps moving until it perceives the third

obstacle which obstructs the goal. As the robot senses the obstacle in its path, v is

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

260

decreased by the system in order to provide a safe obstacle avoidance manoeuvre. After

the obstacle disappears from the robot’s field of view, the robot localizes itself towards

the goal and then proceeds to complete its task successfully, as shown in Figure 7.29

(c).

The results show that the robot performs better when using the INUS. The performance

measurements displayed in Table 7.20 indicates that using the NUS method yields

somewhat higher values of dt, ts △Ω and Error and lower values of va than when

employing the INUS, resulting in a longer travel distance and navigation, inconsistent

motion, higher position error and slower speed.

(a) (b)

 (c)

Figure 7.28: Control parameters for NUS of CS5, (a) Control parameters for Goal A

 , (b) Control parameters for Goal B, (c) Control parameters for Goal C

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

261

(a) (b)

 (c)

Figure 7.29: Control parameters for INUS of CS5, (a) Control parameters for Goal A

 , (b) Control parameters for Goal B, (c) Control parameters for Goal C

 Table 7.20: Performance measures for Complex 6

7.3.2 Performance Analysis

The quantitative results of the experiments are presented in Tables 7.10 - 7.13 for the

preliminary scenarios and Tables 7.15 - 7.20 for the complex scenarios, and the

evaluation data obtained from the repeated experiments are summarised. The following

discussion briefly analyses the performance of each method:

 Methods △Ω (deg/s2) ts(s) dt(m) Error va(m/s) Collision Search(deg)

 NUS 10. 47 161.0 21.73 [23.57] (1.513) 0.137 2 times (-15.90,0)

 INUS 6.33 124.5 21.7 (0.56) 0.175 1 times (-15,90,0)

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

262

Navigation Using SIFT (NUS) - the preliminary navigation test results reveal that for

the PS1-PS4 scenarios, the robot employing the NUS method was able to complete its

mission without colliding with obstacles. For the CS1 and CS2 scenarios the robot was

also able to complete the tasks successfully, but the performance was somewhat poorer

for the more complex scenarios as compared with INUS in terms of the dt, ts, △Ω, Error,

speed and Collision parameters. For the CS4 scenario, under NUS the robot failed to

negotiate the narrow gap. Since velocity control in NUS is adjusted according to

matching strength, this allowed the robot to move closer to the obstacle with an unstable

velocity, and which in turn led to an increased possibility of collision in the complex

scenarios such as CS3, CS4, CS5 and CS6. Having a less accurate control algorithm

provides an inconsistent angular velocity with high values of △Ω and a higher travel

distance dt.

Navigation is deemed less successful, if the robot navigates with a high Error value.

The criterion for bringing the robot to a stop involves comparing the current matching

strength with a previously determined threshold value (see Table 7.7). Despite the

preliminary experiments to obtain an appropriate threshold value for the stopping

criteria, the variable lighting conditions in the environment and the distortion produced

in the images due to the motion of the robot may produce inconsistent matching results,

thus increasing the value of the Error parameter. For instance, in scenario CS6 (c), the

robot completed its mission with a high Error due to stopping early based on matching

strength. For all scenarios, the NUS method generated higher values of the Error

parameter than when using INUS. This is because the INUS method utilizes a more

reliable stopping procedure, which estimates the distance to the goal using matched key

features. As previously mentioned, the robot was unable to navigate out of the trap in

CS4, although it was successful when using INUS.

CS3 presents a challenging task for this NUS method and the robot failed to complete

the on two occasions. Furthermore searching behaviour in the successful attempt was

enabled once more by the system having lost sight of the target after avoiding the third

obstacle which obstructed the path of the robot during its navigation. The overall

performance of this scenario in terms of the values of ts, dt, △Ω and Error parameters

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

263

are higher than when using the INUS method. Once again, this produced a greater

navigation time and travel distance, and an inconsistent and less smooth trajectory

compared to the INUS. CS5 also presented a challenging scenario which involves two

different sizes of obstacle obstructing the path. Despite the robot failing once, it was

able to complete the task on four occasions. However, the results indicate that the robot

produced small values of va and high Error, resulting in the increased navigation time

and decreased precision respectively.

Intelligent Navigation Using SIFT (INUS) - the navigation tests demonstrated that

INUS performed better in all test scenarios than NUS for all parameters, for the reasons

previously discussed. Table 7.21 highlights the percentage improvement in performance

of the INUS over the NUS for the Pioneer robot.

 Table 7.21: Performance improvement of the INUS over the NUS

 % improvement in CS4 could not be determined since the robot using the NUS failed

 to reach its goal

The INUS navigation method consistently offers better overall performance compared

to NUS in terms of safety and success, lower travel distance and time, consistent motion

commands, and a smooth trajectory. The robot with the INUS method was able to pass

through the narrow gaps, as illustrated in CS4. This is a scenario in which the NUS

method completely failed. Furthermore, the INUS navigation method consistently

performed somewhat better than when using NUS in CS3, CS5 and CS6 in terms of

Scneario No shorter time shorterl distance consistent motion safer navigation faster speed

PS1 %22 %3 %38 %0 %45

PS2 %20 %2 %23 %0 %42

PS3 %31 %10 %37 %0 %47

PS4 %24 % 5 %26 %0 %27

CS1 %20 %6 %21 %0 %29

CS2 %19 %5 %30 %0 %28

CS3 %28 %12 %33 %40 %30

CS4

CS5 %34 %12 %33 %20 %47

CS6 %37 %28 %39 %20 %32

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

264

safer navigation. In order to evaluate the limits of the robot using INUS, one additional

test including a global navigation problem was designed and performed. The robot was

required to complete a task moving from the corridor area outside of the laboratory to

the main entrance of the building.

Y-Axis

X
-A

x
is

1. Obstacle

(G1)
2. Obstacle

3. Obstacle

5. Obstacle

(G2)

(G3 (G4)

(G5

(G6)

(G7)

(G8)

(G9)

(G10)

4. Obstacle

1. Door

2. Door

 Figure 7.29: Estimated trajectory with INUS for CS7

The robot was required to avoid deliberately positioned obstacles and to detect the

corresponding goals in order to reach the final destination. The main aim of this

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

265

experiment was to complete the task without colliding with any walls or obstacles. The

experiment was repeated six times to evaluate the sustainability of the system. The

results revealed that the robot under INUS was able to complete the task four times, and

more details of the scenarios are included in Appendix P. Failures occured at the first

and second doors. Despite the challenge of conducting such an axperiment, the robot

achieved four times to complete the required task without experiencing any collision.

However, the results suggest that the proposed system needs a more powerful

localization technique for such a complex problem, which should be incorporated into a

map based strategy to allow the robot to complete tasks in large and complex

environments such as hospitals.

Overall, the navigation results for the robot using INUS are very promising, since they

confirm that the proposed navigation system functions as intended. The results also

demonstrate that the INUS method is able to overcome problems likely to be associated

with vision based mapless navigation on a real mobile robot platform functioning in a

real world scenario, without encountering serious problems such as collisions. The robot

can complete its missions in a robust, speedy and smooth manner. On the other hand,

the NUS navigation system can indeed be implemented on different mobile platforms,

and is able to negotiate new environments much more easily than is the case when

implementing the INUS navigation system. This is because of the simplicity and

flexible characteristics of the NUS method.

7.4 Summary

This chapter is divided into two parts. The first part presented the navigation test results

using a mobile robot platform employing conventional vision based obstacle avoidance

and the proposed hybrid vision based obstacle avoidance system. A comprehensive

series of experiments was conducted, and the results demonstrate that the proposed

Hybrid System produced better obstacle avoidance performance compared to the

conventional Optical Flow method.

 Chapter 7 Implementation and Evaluation of Proposed Navigation Systems

266

The second part of the chapter revealed the performance of the proposed SIFT based

navigation algorithms implemented on a mobile robot platform. The preliminary

experiments focused on the basic achievements of each algorithm in different scenarios.

The navigation results for complex scenarios focused on more advanced situations that

a real robot might encounter in indoor environments. The results from all scenarios

demonstrate that the Intelligent Navigation using SIFT produced better navigation

performance compared to the Navigation using SIFT algorithm. The INUS has been

shown to provide smoother trajectories and more successful navigation on different

situations. The tests also confirm that using the proposed navigation algorithms the

robot can easily navigate in different indoor environments with minor modifications to

complete their tasks successfully.

 Chapter 8 Conclusions and Future Work

267

 CHAPTER 8

 CONCLUSIONS AND FUTURE WORK

This chapter presents a summary of the research, including the achievements of the

study along with a discussion of future work that could be undertaken to enhance the

performance of vision based mobile robot navigation using mapless strategies.

8.1 Conclusions

The first hypothesis of this research asserts that “it is possible to develop a vision based

obstacle method, using a single monocular vision camera as the only sensor to allow a

mobile robot to navigate safely”. To test this hypothesis, a novel navigation system is

proposed, and an attempt is made to realise this system using the Player architecture so

as to give the capability of it being integrated into a mobile robot platform. This has

been confirmed as follows.

The computational complexity of the vision algorithms and the cost of the sensors are

the most critical aspects for real time applications. Monocular vision is a good cost

effective solution and is able to support vision based navigation and obstacle avoidance.

The study set out to develop reactive obstacle avoidance using a single monocular

vision camera as the only sensor. The system integrates a high performance appearance-

based obstacle detection method into an optical flow based navigation system. The main

motivation behind this approach was the observation of limitations in conventional

methods in terms of accuracy and efficiency. For instance, optical flow methods suffer

from illumination problems and are sensitive to noise and distortion [Contreras, 2007].

On the other hand, appearance-based methods are highly sensitive to floor

imperfections, as well as to the physical structure of the terrain. To overcome these

problems, a hybrid architecture was adopted in the proposed control system, which

combines optical flow and an appearance-based method. The first step of the proposed

 Chapter 8 Conclusions and Future Work

268

architecture was to design an optical flow based system. Accordingly, a multi-scale

version of Horn and Schunk’s [1981] optical flow estimation algorithm was employed

to calculate flow vectors. The conventional balance strategy [Duchon et al., 1998;

Temizer, 2001] was utilised as the control law to adjust the steering direction of the

robot. The method was integrated into a behavioural architecture inspired by the

subsumption architecture [Brooks, 1986]. Subsumption architecture selects the

behaviour according to a defined priority. This was employed to provide a possible

solution to the high-level coordination of different behaviours. The next step of the

proposed hybrid architecture focussed on the design of an appropriate appearance-based

obstacle detection system in HSV colour space. According to the algorithm, the image

is divided into clusters and each of the clusters is compared with a template image

illustrating a free path. From the results of the comparison, corresponding clusters are

allocated as either free or occupied in constructing a binary map.

The hybrid architecture was designed and implemented to run both methods

simultaneously, and is able to combine the results of each method using an arbitration

mechanism. The proposed strategy successfully fused two different vision based

obstacle avoidance methods using this arbitration mechanism in order to permit a safer

obstacle avoidance system. The Microsoft Robotics Studio (MRS) environment

provided an ideal simulation tool and was found to be particularly useful during the

early stages of this work. Accordingly, to establish the adequacy of the design of the

obstacle avoidance system, a series of experiments were conducted in this simulation

tool. The results demonstrate the characteristics of the proposed architecture and the

results prove that its performance is somewhat better than the conventional optical flow

based architecture. The results provided encouragement to conduct real world

experiments in order to evaluate the capability of the system. Accordingly it has been

rigorously evaluated and tested on the Pioneer 3D-X mobile robot in real conditions.

Experimental comparison with the conventional Optical Flow Based method (OFB)

demonstrated that the robot employing the Hybrid (FT) technique performed better than

the conventional technique, as expected. It was also found that the FT technique is able

to negotiate and avoid walls and doors, benefiting from the results of the OFB technique

utilizing frontal optic flow to estimate the so-called time-to-contact before a frontal

 Chapter 8 Conclusions and Future Work

269

collision is likely to occur. In addition, the FT avoids lateral obstacles in a more smooth

and robust manner than when using the conventional OFB technique. Despite this

important contribution to solving the vision based obstacle avoidance problem, the

method is still vulnerable to lighting conditions and floor imperfections.

The second part of this research focused on goal based navigation architectures using

the monocular vision as the primary sensor. The second hypothesis of is that “it is

possible to develop vision based mapless navigation using a behaviour based framework

to allow a robot to safely complete its tasks in a robust and smooth manner”. The

mapless navigation technique and methodologies developed resemble human behaviour

more than other approaches. Humans are able to position themselves in an absolute

way, and reach a goal position with notable accuracy by repeating “a look at the target

and move” type of strategy [DeSouza and Kak, 2002]. Visual tracking is a way of

mimicking this human behaviour when considering real-time applications in mobile

robot navigation problem. After extracting robust interest points, which are related to

necessary movement commands, using a mode of operation called visual servoing.

The SIFT algorithm was introduced by Lowe [2004], being one of the strongest feature

extraction algorithms. SIFT features are demonstrably invariant to translation, scaling

and rotation in images. They are also highly distinguishable from one another and

somewhat invariant to illumination changes. These properties make them suitable for

the purposes of visual based navigation, where a particular image feature changes in

appearance due to changes in image position between current and snapshot locations.

The conventional SIFT algorithm is not suitable for real time applications due to its

high dimensionality and computational complexity. One of the significant contributions

of this study was made by integrating the conventional SIFT algorithm into a monocular

vision based navigation system. Accordingly, an accelerated version of the algorithm

was adapted for the proposed navigation system which exhibits a higher degree of

parallelism, resulting in a performance gain of around 50%. The improved feature

extraction technique was employed by a novel and simple control strategy in which the

technique requires a single forward-looking camera with no calibration. The algorithm

is entirely qualitative and does not require a map or any fundamental matrix to calculate

 Chapter 8 Conclusions and Future Work

270

the control variables. To increase the functionality of the technique, it was integrated

into a behaviour based mobile robot navigation system which is capable of extracting

and interpreting data and realising a task in an indoor environment without human

intervention. However, it is difficult to formulate reactive behaviour quantitatively. In

this case, a subsumption architecture was applied to the system which selects behaviour

according to a defined hierarchy of priorities via arbitration [Brooks, 1986]. Several

behaviours were defined for the navigation system. One of these is obstacle avoidance

behaviour, which employs a 2D laser range finder device to detect obstacles and

provides a simple but efficient avoidance manoeuvre. The search behaviour, allows the

robot to search for a goal in the environment by enabling the pan and zoom features of

the camera. A series of successful experiments was designed and tested in the

Microsoft Robotics Studio (MRS) environment so as to assess the performance of the

proposed system.

In addition to this SIFT based navigation architecture, another major contribution was in

the design and implementation of an intelligent SIFT based navigation system. This

utilizes the same behavioural architecture but was amended by soft computing

techniques. To build an intelligent control system able to control reactive behaviors in

unknown environment is challenging for real-time applications. Accordingly, in the

proposed navigation architecture several components of the soft computing field,

including neural networks, cluster analysis and fuzzy logic, were applied to enhance the

overall performance of the system. The first enhancement was achieved by eliminating

mismatched features according to scale parameters. To remove those features, a K-

means clustering algorithm was employed, resulting in relatively good outcomes in

terms of the accuracy and efficiency of matched points. Feature extraction is often

followed by a correspondence search which is employed to estimate the next possible

heading direction in this work. However establishing and maintaining the

correspondence is not easy. Artificial neural networks can be used to represent complex

nonlinear functions by training a connected network. To estimate the heading direction,

a multi-layered feed-forward network was trained. Furthermore a robust distance

estimation technique was proposed for any single monocular vision camera which has a

zoom capability. It has been previously proven that there is a strong relationship

 Chapter 8 Conclusions and Future Work

271

between the quotients of the keys’ scale parameter and its distance [Sjöö et al., 2009].

According to this approach a multi-layered feed-forward neural network was designed,

which has the scale parameter and zoom factor as input and then yields the approximate

physical distance to the goal. Another key enhancement was carried out by employing a

neural network technique to compensate for the previously defined weaknesses of the

obstacle avoidance behaviour. To do this, a number of predetermined paths were

designed, and the network trained under the guidance of a human user. The

enhancement in avoidance behaviour was validated during the experiments. Estimation

of the linear velocity is also a challenging task, especially in vision based navigation

systems, but it is essential for both smoother and safer navigation. Fuzzy logic is an

important technique for handling control problems that are difficult to analyse with

qualitative techniques, and fuzzy rule based systems appear to be one of the best models

to represent expert knowledge and in handling uncertainty. In this work, the control of

velocity depending on the robot’s position and current environmental conditions was

achieved using a fuzzy inference system where the fuzzy rules were used to

dynamically generate velocity. The results of the simulations revealed that the

intelligent strategy allows the robot to successfully complete its goal without

experiencing any collision.

Navigation using SIFT (NUS) and Intelligent Navigation using SIFT (INUS) methods

were rigorously evaluated and tested on the Pioneer 3D-X mobile robot under real

conditions. The experimental results for the robot using INUS were very promising, and

demonstrated that the robot can complete its missions in a robust and smooth manner.

Under NUS the robot succeeded in completing the preliminary tasks and several of the

complex scenarios, although performance was somewhat poorer for more complex

scenarios as compared with INUS. The experimental comparison demonstrated that the

robot employing the INUS performed better in terms of safe and successful navigation,

shorter travel distance and navigation time, smoother trajectory and consistent motion.

 Chapter 8 Conclusions and Future Work

272

8.2 Summary of Achievements

The work described in this dissertation includes the following seven achievements,

namely:

 The development of an optical flow based navigation architecture, employing a

multi scale optical flow estimation technique and the design of a hybrid vision

based obstacle avoidance system integrating an appearance-based obstacle

detection system into this navigation architecture.

 Developing a control algorithm which uses only the distribution of matched

features obtained from the Scale Invariant Feature Transform (SIFT) algorithm

to steer the robot to all desired goals. As well as this, a set of suitable behaviours

were developed where the data from different sensors are accepted as inputs, and

some flexibility is provided to enable the robot to undertake its tasks.

 The design of an intelligent navigation framework which employs soft

computing techniques to control the robot in a more robust and safer manner.

The framework has a reactive architecture where each layer implements a

particular goal and higher layers are increasingly abstract.

 A novel distance estimation technique was developed and integrated into this

proposed intelligent framework to acquire depth information under monocular

vision using the scale parameters of each pair of matched key points. The

steering parameters of the control scheme are estimated by employing an

artificial neural network.

 The development of a fuzzy inference system to represent the linear velocity of

the system. Fuzzy rules were built depending on movement analysis related to

conditions in the environment through which the robot navigates.

 Chapter 8 Conclusions and Future Work

273

 Implementing, configuring and testing the proposed navigation systems in the

simulation environment provided by Microsoft Robotic Studio software to

ensure its reliability in terms of safe and reliable navigation.

 Evaluating the navigation systems developed by conducting rigorous

experiments on the mobile robot platform. Test results for the hybrid obstacle

avoidance system reveal that the combination of the two conventional obstacle

avoidance methods has performed better than the conventional optical flow

method. For the SIFT based architectures, the INUS method is able to fulfil the

given tasks by leading the robot from its current position, avoiding obstacles,

navigating through the environment, and successfully reaching its desired goals

in a robust and smooth manner.

8.3 Recommendations for Future Work

The hybrid vision based obstacle avoidance system developed here is more flexible and

reliable than the conventional obstacle avoidance architectures, as shown in this thesis.

The proposed hybrid system principally combines the results of two detection methods

and adapts the result into a conventional control mechanism which is called ‘balance

strategy’ [Duchon et al., 1998; Temizer, 2001]. An extension to the control architecture

of the system would be to integrate the balance strategy and possibly some other control

laws into the controller in a hierarchical structure which also includes a rational

arbitration module that will evaluate the output of different control laws so as to make

the overall decision. Furthermore different optical flow and appearance-based obstacle

detection algorithms can be applied to the proposed architecture. In spite of the many

advantages of the Horn-Schunk optical flow estimation method, which utilizes partial

derivatives of the image and/or the flow field sought and higher-order partial

derivatives, it is still sensitive to noise. Therefore, in order to eliminate noise, hybrid

methods can be replaced by the current method combining the Horn-Schunk method or

other general variational methods with appropriate local optical flow methods. The

Lucas-Kanade method may be a good alternative for local methods, and includes image

 Chapter 8 Conclusions and Future Work

274

patches and an affine model for the flow field [Lucas and Kanade,1981; Ohnishi and

Imiya, 2007].

Despite the increase in overall performance, the proposed vision based obstacle

detection technique is still unable to compete with range-finder based obstacle

avoidance techniques. This is due to the complexity of vision based systems and their

sensitivity to lighting and environmental conditions. Thus, the integration of this hybrid

system with other sensors will be able to compensate for their respective shortcomings

and provide a significant contribution to solving obstacle avoidance problems. Having a

mobile robot navigation system using vision as the only sensor both for preventing

collision and tracking targets is the ultimate goal and is still an ongoing process,

especially for applications in cluttered environments. The proposed hybrid collision

avoidance system is flexible enough to be integrated into different navigation

architectures. Consequently the proposed hybrid system can be incorporated into a goal-

oriented navigation strategy so as to overcome complex navigation problems; however,

obstacle avoidance is a key issue, and difficult to combine with vision based navigation

systems. For instance, detecting obstacles relies on the robot’s attention being directed

along its path, while the best localisation information is obtained from distinctive

invariant features extracted from the target. These contradictory requirements must be

resolved. One solution to this problem may be to employ a two-camera system, one of

which detects obstacles while the second tracks the goal.

The proposed SIFT based navigation systems are reliable and able to successfully

overcome local navigation problems. The INUS method, in particular, is capable of

manoeuvring effectively in its environment while avoiding collisions. Unlike most

research in vision based navigation, the proposed navigation algorithms have been

demonstrated to operate successfully in both realistic simulations and ‘live’ robotic

trials. However, as the system is executed for a global navigation problem which

requires the sequential achievement of multiple goals, a lot of processing time is

consumed by the search procedure. This is because the robot does not have any prior

knowledge about the goals and needs to search for each of them in order to localize

itself. Adding a learning capability to the searching procedure of the navigation system

 Chapter 8 Conclusions and Future Work

275

is an essential requirement for a fully autonomous robot, enabling it to overcome global

navigation problems in a more consistent and speedy manner. In order to address this

problem, a learning paradigm is recommended according to which the correspondence

between each goal and its successive positions should be taught by the system so as to

eliminate or minimize searching. For example, once the robot reaches its first goal it

will already be dynamically localized towards the next goal without having to enable

the searching module. Some examples of learning paradigms applied to different aspects

of navigation systems are learning with fuzzy control, reinforcement learning,

supervised learning , and the genetic algorithms [Cang et al., 2003; Manikas et al.,

2007; Nattharith, 2010; Daoyi et al., 2012].

The main focus of this study has been on designing mapless navigation strategy,

however, the developed systems can be incorporated into other navigation strategies in

order to provide a fully integrated autonomous system. For instance, the integration of

the proposed SIFT-based navigation methods into a map based hybrid navigation

architecture, combining deliberative and reactive control based upon an appropriate

arbitration technique, may be sufficiently flexible to allow the robot to carry out tasks in

large and complex indoor environments such as hospitals. As the IWARD robots

combine several sensors providing highly accurate data, they may be ready for such

further development using combined strategies.

8.4 Publications

The author has published several papers on his work, as follows:

 Guzel, M.S. and Bicker, R., "Optical flow based system design for mobile

robots", Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference,

pp.545-550, 28-30, June 2010.

 Guzel, M.S. and Bicker, R., “Vision based obstacle avoidance techniques”,

Recent Advances in Mobile Robotics,”Dr. Andon Topalov (Ed.), ISBN: 978-

953-307-909-7, pp. 83-108, 2011.

 Chapter 8 Conclusions and Future Work

276

 Guzel, M.S. and Bicker, R., “A behaviour-based architecture for Mapless

Navigation Using Vision” , International Journal of Advanced Robotic Systems,

vol 9, pp. 1-13, 2012.

 References

277

REFERENCES

ActivMedia (2010) Pioneer 3 Operations Manual, MobileRobots Inc. Available at:

http://www.ist.tugraz.at/_attach/Publish/Kmr06/pioneer-robot.pdf.

Alper, Y., Omar, J. and Mubarak, S. (2006) 'Object tracking: A survey', ACM Comput.

Surv., 38, (4), pp. 13.

Althaus, P. (2003) Indoor Navigation for Mobile Robots: Control and Representations.

PhD thesis.

Argyros, A. A., Bekris, K. E. and Orphanoudakis, S. C. (2001) 'Robot homing based on

corner tracking in a sequence of panoramic images', Computer Vision and

Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on. 2001. pp. 3-10.

Argyros, A. A. and Bergholm, F. (1999) 'Combining Central and Peripheral Vision for

Reactive Robot Navigation', In Proceedings of Computer Vision Pattern

Recognition Conference (CVPR’99). Fort Collins. pp. 8-17.

Arkin, R. (1987) 'Motor schema based navigation for a mobile robot: An approach to

programming by behavior', Robotics and Automation. Proceedings. 1987 IEEE

International Conference on. Mar 1987. pp. 264-271.

Aslantas, V. and Pham, D. T. (2007) 'Depth from automatic defocusing', Optics

Express, 15, (3), pp. 1011-1023.

Atcheson, B., Heidrich, W. and Ihrke, I. (2009) 'An evaluation of optical flow

algorithms for background oriented schlieren imaging', Experiments in Fluids,

46, (3), pp. 467-476.

AXIS (2011) VAPIX version 3. Available at: www.axis.com.

Barney, B. (2012) OpenMP. Available at: https://computing.llnl.gov/tutorials/openMP.

Barron, J. L., Fleet, D. J. and Beauchemin, S. S. (1994) 'Performance of optical flow

techniques', International Journal of Computer Vision, 12, (1), pp. 43-77.

http://www.ist.tugraz.at/_attach/Publish/Kmr06/pioneer-robot.pdf
http://www.axis.com/

 References

278

Bay, H., Tuytelaars, T. and Van Gool, L. (2006) 'SURF: Speeded Up Robust Features

Computer Vision – ECCV 2006', in Leonardis, A., Bischof, H. and Pinz,

A.(eds). Vol. 3951 Springer Berlin / Heidelberg, pp. 404-417.

Bernardino, A. and Santos-Victor, J. (1998) 'Visual behaviours for binocular tracking',

Robotics and Autonomous Systems, 25, (3–4), pp. 137-146.

Bogacki, P. (2005) 'HINGES - An illustration of Gauss-Jordan reduction', Journal of

Online Mathematics and its Applications.

Bonin-Font, F., Ortiz, A. and Oliver, G. (2008) 'Visual Navigation for Mobile Robots:

A Survey', Journal of Intelligent and Robotic Systems, pp. 263-296.

Brett, R. F., William, H. W., Selim, T. and Leslie Pack, K. (2003) 'A Dynamical Model

of Visually-Guided Steering, Obstacle Avoidance, and Route Selection', Int. J.

Comput. Vision, 54, (1-3), pp. 13-34.

Brooks, R. A. (1986) 'Robust Layered Control System for a mobile robot', IEEE journal

of robotics and automation, RA-2, (1), pp. 14-23.

Brooks, R. A. (1990) 'Elephants Don't Play Chess', Robotics and Autonomus Systems 6,

pp. 3-15.

Cai, H., Li, K., Liu, M. and Song, P. (2010) ‘Fast camera calibration of stereo vision

system using BP neural networks', 5th International Symposium on Advanced

Optical Manufacturing and Testing Technologies. Dalian, pp. 7-16.

Canny, J. (1986) 'A Computational Approach to Edge Detection', Pattern Analysis and

Machine Intelligence, IEEE Transactions on, PAMI-8, (6), pp. 679-698.

Cantoni, V., Lombardi, L., Porta, M. and Vallone, U. (2001) 'Qualitative Estimation of

Depth in Monocular Vision', In Proceedings of the 4th International Workshop

on Visual Form. Springer-Verlag, pp. 1-10.

Chaari, A., Lelandais, S., Montagne, C. and Ahmed, M. B. (2008) 'Global interior robot

localisation by a colour content image retrieval system', Eurasip Journal on

Advances in Signal Processing, 2008.

 References

279

Chao, Z., Yucheng, W. and Tieniu, T. (2003) 'Mobile robot self-localization based on

global visual appearance features', Robotics and Automation, 2003. Proceedings.

ICRA '03. IEEE International Conference on. Sept. 2003. pp. 1271-1276. .

Chi, K. H. and Lee, M. F. R. (2011) 'Obstacle avoidance in mobile robot using neural

network', International Conference on Consumer Electronics, Communications

and Networks, CECNet 2011 XianNing, pp. 5082-5085.

Chrislb. (2005) ArtificialNeuronModel WikiBooks.

Contreras, E. B. (2007) 'A biologically inspired solution for an evolved simulated

agent', Proceedings of GECCO 2007: Genetic and Evolutionary Computation

Conference. London, pp. 206-213.

Daniel, L. M., Toal, D. and Flanagan, C. (1999) A Fuzzy Logic Based Navigation

System for a Mobile Robot. .

De Oliveira Caldeira, E. M., Schneebeli, H. J. A. and Sarcinelli-Filho, M. (2007) 'An

optical flow-based sensing system for reactive mobile robot navigation',

Controle y Automacao, 18, (3), pp. 265-277.

Deans, M. C. (2005) Bearings-Only Localization and Mapping. PhD thesis. Mellon

University.

Dellaert, F., Fox, D., Burgard, W. and Thrun, S. (1999) 'Monte Carlo localization for

mobile robots', Robotics and Automation, 1999. Proceedings. 1999 IEEE

International Conference on. 1999. pp. 1322-1328 vol.2.

DeSouza, G. N. and Kak, A. C. (2002) 'Vision for mobile robot navigation: A survey',

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, (2), pp.

237-267.

Driankov, D. (1987) 'Inference with a single fuzzy conditional proposition', Fuzzy Sets

and Systems, 24, (1), pp. 51-63.

Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993) An introduction to fuzzy

control. Springer-Verlag New York, Inc.

Duchon, P. A., Warren, H. W. and Kaelbling, P. L. (1994) 'Ecological Robotics ',

Adaptive Behavior, pp. 1-30.

 References

280

Duchon, P. A., Warren, H. W. and Kaelbling, P. L. (1998) 'Ecological Robotics',

Adaptive Behavior 6:3/4, (Special Issue on Biologically Inspired Models of

Spatial Navigation), pp. 473-507.

Duda, R. O. and Hart, P. E. (1972) 'Use of the Hough transformation to detect lines and

curves in pictures', Communications of the ACM, , 15, (1), pp. 11-15.

Eric, R., Maxime, L., Michel, D. and Jean-Marc, L. (2007) 'Monocular Vision for

Mobile Robot Localization and Autonomous Navigation', Int. J. Comput. Vision,

74, (3), pp. 237-260.

F. Vassallo, R., Schneebeli, H. J. and Santos-Victor, J. (2000) 'Visual servoing and

appearance for navigation', Robotics and Autonomous Systems, 31, (1), pp. 87-

97.

Fasola, J. and Veloso, M. (2006) 'Real-time object detection using segmented and

grayscale images', Robotics and Automation, 2006. ICRA 2006. Proceedings

2006 IEEE International Conference on. 15-19 May 2006. pp. 4088-4093.

Fazl-Ersi, E. and Tsotsos, J. K. (2009) 'Region classification for robust floor detection

in indoor environments', in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). Vol. 5627 LNCS Halifax, NS: pp 717-726.

Fu, L. M. (1994) Neural Networks in Computer Intelligence. New York, NY, USA:

McGraw-Hill, Inc.

Gat, E. (1995) 'Towards principled experimental study of autonomous mobile robots',

Autonomous Robots, 2, pp. 179-189.

Gaussier, P., Joulain, C., Zrehen, S., Banquet, J. P. and Revel, A. (1997) Intelligent

Robots and Systems, 1997. IROS '97., Proceedings of the 1997 IEEE/RSJ

International Conference on. 7-11 Sep 1997.

Gerkey, B. P., Vaughan, R. T., Stoy, K., Howard, A., Sukhatme, G. S. and Mataric, M.

J. (2001a) 'Most valuable player: a robot device server for distributed control',

Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ

International Conference on. 2001. pp. 1226-1231.

 References

281

Gerkey, B. P., Vaughan, R. T., Stoy, K., Howard, A., Sukhatme, G. S. and Mataric, M.

J. (2001b) 'Most valuable player: a robot device server for distributed control',

Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ

International Conference on. 2001. pp. 1226-1231 vol.3.

Player C++ Client Library Version 1.5 Reference Manuel. [Online]. Available at:

htt://playerstage.sourceforge.net (Accessed: May 2010).

Godjevac, J. (1997) Neuro-Fuzzy Controllers Design and Application. Lausanne:

Polytechniques et Universitaires Romandes.

Gonzalez, R. C. and Woods, E. R. (2002) Digital Image Processing. Prentice Hall.

Green, B. (2002) Advanced Edge Detection Tutorial. Available at:

http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/index

.html

Guerrero, . ., Martinez-Cantin, R. and Sag s, C. (2005) isual map-less navigation

based on homographies', Journal of Robotic Systems, 22, (10), pp. 569-581.

Guzel, M. S. and Bicker, R. (2010) 'Optical flow based system design for mobile

robots', 2010 IEEE Conference on Robotics, Automation and Mechatronics,

RAM 2010. Singapore, pp. 545-550.

Guzel, M. S. and Bicker, R. (2011) 'Vision Based Obstacle Avoidance Techniques', in

Topalov, A. V.(ed), Recent Advances in Mobile Robotics. Intech, pp. 1-26.

Hagan, T. M., Demuth, B. H. and Beale, M. (1996) Neural Network Design. PWS

Publishing Company.

Hao, L. and Yang, S. X. (2003) 'A behavior-based mobile robot with a visual landmark-

recognition system', Mechatronics, IEEE/ASME Transactions on, 8, (3), pp.

390-400.

Harb, M., Abielmona, R. and Petriu, E. (2009) 'Speed control of a mobile robot using

neural networks and fuzzy logic', Neural Networks, 2009. IJCNN 2009.

International Joint Conference on. 14-19 June 2009. pp. 1115-1121.

Hellström, T. (2011) 'Biological Foundations of Robot Behavior', Department of

Computing Science Umeå University., pp. 4-6.

http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/index.html
http://dasl.mem.drexel.edu/alumni/bGreen/www.pages.drexel.edu/_weg22/index.html

 References

282

Hoffmann, F. (2003) 'An Overview on Soft Computing in Behavior Based Robotics

Fuzzy Sets and Systems ', in Bilgiç, T., De Baets, B. and Kaynak, O.(eds) IFSA

2003. Vol. 2715 Springer Berlin / Heidelberg, pp. 544-551.

Hongli, D., Wei, Z., Mortensen, E., Dietterich, T. and Shapiro, L. (2007) Computer

Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on. 17-22

June 2007.

Horn, B. K. P. and Schunck, B. G. (1981) 'Determining optical flow', Artificial

Intelligence, 17, (1-3), pp. 185-203.

Huq, R., Mann, G. K. I. and Gosine, R. G. (2008) 'Mobile robot navigation using motor

schema and fuzzy context dependent behavior modulation', Applied Soft

Computing, 8, (1), pp. 422-436.

Hutchinson, S., Hager, G. D. and Corke, P. I. (1996) 'A tutorial on visual servo control',

Robotics and Automation, IEEE Transactions on, 12, (5), pp. 651-670.

Jackson, J. (2007) 'Microsoft robotics studio: A technical introduction', Robotics &

Automation Magazine, IEEE, 14, (4), pp. 82-87.

Jae Kyu, S., Ho Gi, J., Gen, L., Seung-In, N. and Jaihie, K. (2011) 'Background

Compensation for Pan-Tilt-Zoom Cameras Using 1-D Feature Matching and

Outlier Rejection', Circuits and Systems for Video Technology, IEEE

Transactions on, 21, (3), pp. 371-377.

Janglova, D. (2004a) 'Neural Networks in Mobile Robot Motion', International Journal

of Advanced Robotic Systems, 1, (1), pp. 15-22.

Janglova, D. (2004b) 'Neural Networks in Mobile Robot Motion', Inernational Journal

of Advanced Robotic Systems, 1, (1), pp. 15-22.

Jarvis, R. A. (1983) 'A Perspective on Range Finding Techniques for Computer Vision',

Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-5, (2),

pp. 122-139.

Jeff, M., Ashutosh, S. and Andrew, Y. N. (2005) 'High speed obstacle avoidance using

monocular vision and reinforcement learning', Proceedings of the 22nd

international conference on Machine learning. Bonn, Germany, ACM, pp. 593-

600.

 References

283

Junghee, J. and Choongwon, K. (1999) 'Robust camera calibration using neural

network', TENCON 99. Proceedings of the IEEE Region 10 Conference. 1999.

pp. 694-697 vol.1.

Khatib, O. (1985) 'Real-time obstacle avoidance for manipulators and mobile robots',

Robotics and Automation. Proceedings. 1985 IEEE International Conference

on. Mar 1985. pp. 500-505.

Kidono, K., Miura, J. and Shirai, Y. (2002) 'Autonomous Visual Navigation of a Mobile

Robot Using a Human-Guided Experience.', Robotics and Autonomous Systems,

40, (2), pp. 124-132.

Kim, D. and Nevatia, R. (1998) 'Recognition and localization of generic objects for

indoor navigation using functionality', Image and Vision Computing, 16, (11),

pp. 729-743.

Kim, D. and Nevatia, R. (1999) 'Symbolic Navigation with a Generic Map',

Autonomous Robots, 6, (1), pp. 69-88.

Kim, S. and Oh, S. (2007) 'Hybrid Position and Image Based Visual Servoing for

mobile robots', Journal of Intelligent and Fuzzy Systems, 18, (1), pp. 73-82.

Kiwon, P. and Nian, Z. (2007) 'Behavior-Based Autonomous Robot Navigation on

Challenging Terrain: A Dual Fuzzy Logic Approach', Foundations of

Computational Intelligence, 2007. FOCI 2007. IEEE Symposium on. 1-5 April

2007. pp. 239-244.

Koh, C. K., Kim, S. J. and Cho, S. H. (1994) 'A position estimation system for mobile

robots using a monocular image of a 3-D landmark', Robotica, 12, pp. 431-444.

Konar, A. (2000) Artificial Intelligence and Soft Computing. CRC Press.

Kosaka, A. and Kak, A. (1992) Intelligent Robots and Systems, 1992., Proceedings of

the 1992 lEEE/RSJ International Conference on. 7-10 Jul 1992.

Kröse, B. J. A., Dev, A. and Groen, F. C. A. (2000) 'Heading direction of a mobile robot

from the optical flow', Image and Vision Computing, 18, (5), pp. 415-424.

Li Guo, J. and Li Guang, R. (2011) 'Camera calibration for monocular vision system

based on Harris corner extraction and neural network', Consumer Electronics,

 References

284

Communications and Networks (CECNet), 2011 International Conference on.

16-18 April 2011. pp. 1-4.

Li, H. and Yang, S. X. (2003) 'A behavior-based mobile robot with a visual landmark-

recognition system', Mechatronics, IEEE/ASME Transactions on, 8, (3), pp.

390-400.

Lindeberg, T. (1994) 'Scale-space theory: A basic tool for analysing structures at

different scales', Journal of Applied Statistics 21, (2), pp. 225-270.

Lorigo, L. M., Brooks, R. A. and Grimsou, W. E. L. (1997) 'Visually-guided obstacle

avoidance in unstructured environments', Intelligent Robots and Systems, 1997.

IROS '97., Proceedings of the 1997 IEEE/RSJ International Conference on. 7-11

Sep 1997. pp. 373-379 vol.1.

Lowe, D. G. (1999) 'Object recognition from local scale-invariant features',

Proceedings of the IEEE International Conference on Computer Vision.

Kerkyra, Greece, IEEE, pp. 1150-1157.

Lowe, D. G. (2004) 'Distinctive image features from scale-invariant keypoints',

International Journal of Computer Vision, 60, (2), pp. 91-110.

Lucas, B. D. and Kanade, T. (1981) 'An iterative image registration technique with an

application to stereo vision', IJCAI81, pp. 674–679.

Lynch, M. B., Dagli, C. H. and Vallenki, M. (1999) 'Use of feedforward neural

networks for machine vision calibration', International Journal of Production

Economics, 60, pp. 479-489.

Maire, M., R. (2009) Contour Detection and Image Segmentation. Electrical

Engineering and Computer Sciences University of California at Berkeley

(UCB/EECS-2009-129).

Mataric, M. J. (1992) 'Integration of representation into goal-driven behavior-based

robots', Robotics and Automation, IEEE Transactions on, 8, (3), pp. 304-312.

Matsumoto, Y., Inaba, M. and Inoue, H. (1996) 'Visual navigation using view-

sequenced route representation', Robotics and Automation, 1996. Proceedings.,

1996 IEEE International Conference on. 22-28 Apr 1996. pp. 83-88 vol.1.

 References

285

McCarthy, C. and Barnes, N. (2004) 'Performance of optical flow techniques for indoor

navigation with a mobile robot', Robotics and Automation, 2004. Proceedings.

ICRA '04. 2004 IEEE International Conference on. 26 April-1 May 2004. pp.

5093-5098 Vol.5.

Meng, M. and Kak, A. C. (1993) 'NEURO-NAV: a neural network based architecture

for vision-guided mobile robot navigation using non-metrical models of the

environment', Robotics and Automation, 1993. Proceedings., 1993 IEEE

International Conference on. 2-6 May 1993. pp. 750-757 vol.2.

Mikolajczyk, K. and Schmid, C. (2005) 'A performance evaluation of local descriptors',

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27, (10), pp.

1615-1630.

Moravec, H. P. (1983) 'The Stanford Cart and The CMU Rover', Proceedings of the

IEEE. pp. 872-884.

Murphy, R. M. (2000) Introduction to AI Robotics. Cambridge, Massachusetts London,

England: MIT Press.

Nattharith, P. (2010) Mobile Robot Navigation using a Behavioural Control Strategy.

PhD thesis. Newcastle University.

Nattharith, P. and Bicker, R. (2009) 'Mobile robot navigation using a behavioural

strategy', Proceedings of the 11th IASTED International Conference on Control

and Applications, CA 2009. pp. 143-148.

Nilsson, N. J. (1984) Shakey the Robot. Artifical Intelligence Center, Computer Science

and Techonlogy Division, Standford Research Institute.

Nixon, M. and Aguado, S. A. (2008) Feature Extraction & Image Processing for

Computer Vision.

OpenMP (2011) The OpenMP® API specification for parallel programming Available

at: http://openmp.org/wp/.

Passino, M. K. and Yurkovich, S. (1998) Fuzzy Control. [Online]. Available at:

(Accessed: http://www.e-booksdirectory.com/details.php?ebook=2284).

Peng, J. (2004) Extraction of Salient Features from Sensory-Motor Sequences for

Mobile Robot Navigation. PhD thesis. Vanderbilt University.

http://openmp.org/wp/
http://www.e-booksdirectory.com/details.php?ebook=2284)

 References

286

Pons, J. S., W, H., bner, Dahmen, H. and Mallot, H. A. (2007) 'Vision-based robot

homing in dynamic environments', Proceedings of the 13th IASTED

International Conference on Robotics and Applications. Germany, ACTA Press,

pp. 293-298.

Reynolds, C. (1999) 'Steering Behaviors For Autonomous Characters', Game

Developers. San Jose Ca., pp. 1-8.

Ross, T. J. and Hoboken, N. J. (2004) Fuzzy Logic with engineering applications

Hoboken, NJ:Wiley.

Rutherford, M. (2009) Navy seeks 'kamikazae' robots to clear mines. Available at:

http://news.cnet.com/8301-1369_3.9752976-42.html.

Saitoh, T., Tada, N. and Konishi, R. (2009) 'Indoor mobile robot navigation by central

following based on monocular vision', IEEJ Transactions on Electronics,

Information and Systems, 129, (8), pp. 1576-1584.

Schiele, B. and Crowley, J. L. (1996) 'Probabilistic object recognition using

multidimensional receptive field histograms', Pattern Recognition, 1996.,

Proceedings of the 13th International Conference on. 25-29 Aug 1996. pp. 50-

54. .

Se, S., Lowe, D. and Little, J. (2001) Robotics and Automation, 2001. Proceedings 2001

ICRA. IEEE International Conference on. 2001.

Sim, R. and Little, J. J. (2009) 'Autonomous vision-based robotic exploration and

mapping using hybrid maps and particle filters', Image and Vision Computing,

27, (1-2), pp. 167-177.

Sjöö, K., Lopez, G. D., Paul, C., Jensfelt, P. and Kragic, D. (2009) 'Object search and

localization for an indoor mobile robot', Journal of Computing and Information

Technology, 17, (1), pp. 1-12.

Souhila, K. and Karim, A. (2007) 'Optical flow based robot obstacle avoidance',

International Journal of Advanced Robotic Systems, 4, (1), pp. 13-16.

Sourceforge (2011) Fast SIFT Image Features Library. Available at:

http://sourceforge.net/projects/libsift/develop.

http://news.cnet.com/8301-1369_3.9752976-42.html
http://sourceforge.net/projects/libsift/develop

 References

287

Szabo, S., Coombs, D., Herman, M., Camus, T. and Liu, H. (1996) 'A Real-time

Computer Vision Platform for Mobile Robot Applications', Real-Time Imaging,

2, (5), pp. 315-327.

Szelisnski, R. (2010) Computer Vision: Algorithms and Applications.3nd ed: Springer.

Szenher, D. M. (2008) Visual Homing in Dynamic Indoor Enviorenments. PhD thesis.

University of Edinburgh.

Tao, Y., Xia, Y., Xu, T. and Cai, X. (2010) 'Research Progress of the Scale Invariant

Feature Transform (SIFT) Descriptors', Journal of Convergence Information

Technology, 5, (1), pp. 116-121.

Temizer, S. (2001) Optical Flow Based Local Navigation. Master thesis. Massachusetts

Institute of Technology.

Thorpe, C. E. (1984) An Analysis of Interest Operators for FIDO. Departmant of

Computer Science and The Robotics Institute, Carnegie-Mellon University.

Tinne, T. and Krystian, M. (2008) 'Local invariant feature detectors: a survey', Found.

Trends. Comput. Graph. Vis., 3, (3), pp. 177-280.

Toal, D., Daniel, F. C. and Strunz, B. (1995) Subsumption Control of a Mobile Robot.

Tomasi, C. and Kanade, T. (1991) 'Detection and Tracking of Point Features ',

International Journal of Computer Vision, 1, pp. 1-30.

Trahanias, P. E., Velissaris, S. and Garavelos, T. (1997) Intelligent Robots and Systems,

1997. IROS '97., Proceedings of the 1997 IEEE/RSJ International Conference

on. 7-11 Sep 1997.

Trieu, H. T., Nguyen, H. T. and Willey, K. (2008) 'Advanced obstacle avoidance for a

laser based wheelchair using optimised Bayesian neural networks', Conference

proceedings : ... Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology

Society. Conference, 2008, pp. 3463-3466.

Tschumperlé, D., A., A., Assemlal, H., Barra, V. and Blei, R. (1999) CIMG Library

Available at: http://cimg.sourceforge.net/.

http://cimg.sourceforge.net/

 References

288

Tuytelaars, T. and Mikolajczyk , K. (2008) 'Local invariant feature detectors: a survey',

Foundations and Trends in Computer Graphics and Vision 3, (3), pp. 177--280.

Ulrich, I. and Nourbakhsh, I. (2000) Proceedings of the AAAI National Conference on

Artificial Intelligence.

Wei, L., Farrell, J. A., Shuo, P. and Arrieta, R. M. (2006) 'Moth-inspired chemical

plume tracing on an autonomous underwater vehicle', Robotics, IEEE

Transactions on, 22, (2), pp. 292-307.

Weinstock, R. (2008) Calculus of Variations with Applications to Physics and

Engineering. Dover.

Wen-Chia, L. and Chin-Hsing, C. (2009) Intelligent Information Hiding and

Multimedia Signal Processing, 2009. IIH-MSP '09. Fifth International

Conference on. 12-14 Sept. 2009.

Wikipedia (2011) General Atomics MQ-9 Reaper. Available at:

http://en.wikipedia.org/wiki/MQ-9Reaper.

Witkin, A. P. (1983) 'Scale-space filtering ', 8th Int. Joint Conf. Art. Intell. Karlsruhe,

Germany. , pp. 1019-1022.

Xiong, J. L., Xia, J., Xu, X. and Tian, Z. (2010) in. Vol. 29-32 Changsha: pp 2692-

2697.

Zadeh, L. A. (1965) 'Fuzzy sets', Information and Control, 8, (3), pp. 338-353.

Zadeh, L. A. (1968) 'Fuzzy algorithms', Information and Control, 12, (2), pp. 94-102.

Zhang, Z. (2000) 'A flexible new technique for camera calibration', Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 22, (11), pp. 1330-1334.

Zhichao, C. and Birchfield, S. T. (2006) 'Qualitative vision-based mobile robot

navigation', Robotics and Automation, 2006. ICRA 2006. Proceedings 2006

IEEE International Conference on. 15-19 May 2006. pp. 2686-2692.

Zitovai, B. and Flusser, J. (2003) 'Image registration methods: A survey', Image and

Vision Computing, 21, (11), pp. 977-1000.

http://en.wikipedia.org/wiki/MQ-9Reaper

 References

289

Zou, A., Hou, Z., Zhang, L., Tan, M., Wang, J., Liao, X.-F. and Yi, Z. (2005) 'A Neural

Network-Based Camera Calibration Method for Mobile Robot Localization

Problems ', in. Vol. 3498 Springer Berlin / Heidelberg, pp. 987-987.

290

APPENDIX A: Optical flow vectors with high resolution

Figure A1: Frame 1 Flow vectors with higher resolution

Figure A2: Frame 32 Flow vectors higher resolution

291

Figure A3: Frame 53 Flow vectors higher resolution

Figure A4: Frame 97 Flow vectors higher resolution

292

 APPENDIX B: Specification of Corobot mobile robot

 Dimensions
12"L x 13"W x 10"H

Weight
18 lbs.

Payload
10 lbs.

Maximum Speed
3 feet/second

Battery
13AH NiMh Rechargeable

Battery Life
2-4 hours

Camera
1080p

Encoders
Yes, 138mm/tick

Inputs
8 Digital, 6 Analog

Outputs
8 Digital

Operating System
Ubuntu Linux

Wheel
4 Wheel Drive

Supported Software
Robotic Operating System (Linux)

Motherboard

Dual-Core Itel Atom CPU @ 1.6Ghz

4Gb DDR3 RAM

Nvidia ION, Supports Nvidia CUDA Technology

USB 2.0

SATA 3.0

Communications 802.11n Wireless, Bluetooth

Hard Drive
160Gb 7200 RPM Hard Drive

Range Finder
 Indoor Laser Range Finder (Range 5m)

293

APPENDIX C: Wander behaviour

An example of wander behaviour is illustrated in Figure C.1. The robot wanders aimlessly

around its working environment until it encounters the goal

Start

Goal

 Figure C.1: Wander behavior

294

APPENDIX D: Back-propagation algorithm

The simplest implementation of backpropagation learning updates the network weights and

biases in the direction in which the performance function decreases most rapidly, the negative

of the gradient. This is called gradient descent algorithm and one iteration of this algorithm

can be written as:

 (D.1)

where is a vector of current weights and biases, is the current gradient and is the

learning rate. There are two different ways in which this gradient descent algorithm can be

implemented: incremental mode and batch mode. In incremental mode, the gradient is

computed and the weights are updated after each input is applied to the network. In batch

mode, all the inputs are applied to the network before the weights are updated. However,

gradient descent algorithms are slow for practical problems

Levenberg-Marquardt algorithm is an alternative and fast way of training, which was

designed to approach second-order training speed without having to compute the Hessian

matrix. When the performance function has the form of a sum of squares. Iteration of this

algorithm can be defined as follows:

 (D.2)

where the Hessian matrix can be approximated as H= , and the gradient can be computed

as g = , J is the Jacobian matrix including first derivatives of network error regarding

weights and biases, and e is a vector of network errors. If the scalar is zero, this is just

Newton’s method, using the approximate Hessian matrix. When μ is large, this becomes

gradient descent.

295

APPENDIX E: Camera calibration with conventional method

For conventional calibration techniques, It is assumed that a three dimensional coordinate

system whose origin is at the centre of projection and whose Z axis is along the optical axis,

as shown in Figure 5A.1 This coordinate system is called the standard coordinate system of

the camera. A point ‘M’ on an object with coordinates (X,Y,Z) will be imaged at some point

m = (x, y) in the image plane. These coordinates relate to a coordinate system whose origin is

at the intersection of the optical axis and the image plane, and whose x and y axes are parallel

to the X and Y axes. The relationship between the two coordinate systems C(x,y) and C(X,Y,Z)

is given by following equations:

 [

] [

] [

]

 (E.1)

where s is a scale parameter, fx and fy represents the focal length parameters of the camera

along the x and y axes respectively. The next step is to provide a transformation from the

three dimensional world coordinates to image pixel coordinates using a matrix 3x4 matrix as

shown below:

 [

] [

] [

]

 (E.2)

where w and h represent the pixel width and height values respectively, and uc and vc

represent the centre point of the image, In short hand notation, `this can be illustrated as

follows:

296

 ̅ ̅

 (E.3)

where ̅ represents the homogeneous vector of image pixel coordinates, P is the perspective

projection matrix, and ̅ is the homogeneous vector of world coordinates. Thus, a camera

can be considered as a system that performs a linear projective transformation from the

projective space P
3
 into the projective plane P

2
.

Consequently, there are five camera parameters; namely, focal length f, pixel width (w), the

pixel height (h), the parameter uc which is the u pixel coordinate at the optical centre, and the

parameter vc which is the v pixel coordinate at the optical centre. However, only four

separable parameters can be solved, since there is an arbitrary scale factor involved in f and in

the pixel size. Therefore, the ratios and are calculated. The parameters , , uc

and vc do not depend on the position and orientation of the camera in space, and are thus

called the intrinsic parameters.

The next step is to transform from camera coordinates to world coordinates. The three

dimensional world coordinates of a point will generally not be specified in a frame whose

origin is at the centre of projection and whose Z axis lies along the optical axis. Some other,

more convenient, frame will more likely be specified, and then a change of coordinates from

this other frame to the standard coordinate system must be included. Thus, the following

equation is obtained:

 ̅ ̅

 (E.4)

where K is a 4x4 transformation matrix as defined as follows:

 [

] (E.5)

297

R represents a 3x3 rotation matrix and sets the camera orientation with respect to the given

world frame, and the final column is a homogeneous vector t capturing the camera

displacement from the world frame origin. The matrix K has six degrees of freedom, three for

the orientation, and three for the translation of the camera. These parameters are known as the

extrinsic camera parameters. According to these values, Eq. E.6, comprising both intrinsic

and explicit parameters is defined as the camera calibration matrix, and can be expanded as

follows:

C =[

]

 (E.6)

where the vectors , r1, r2 and r3 are the row vectors of the matrix R, and t = (tx, ty, tz).

Figure E.1: The coordinate systems involved in camera calibration

298

APPENDIX F: Specification of Pioneer 3-DX

 Specification of the mobile robot base of Pioneer 3-DX

 Length 44.5 cm (44)

 Width 40 cm (38)

 Height (body) 24.5 cm (22)

 Body clearance 6.5 cm (6)

Weight (with min. battery

capacity

9 kg

Payload of base platform with

included battery

23 kg

Body Construction 1.6 mm painted aluminium

POWER

Charge 252 watt-hr

Run time, base platform 18-24 hours

Recharge time, 12 hrs

MOBILITY

Drive 2-wheel drive, plus rear balancing caster

Wheel diam. 19 cm

Wheel width 5 cm

Steering Differential

Wheel diam. 19 cm

Wheel width 5 cm

Translate max speed (unloaded) 1.6 m/sec

SENSING && MANIPULATION (not requiring onboard computing)

Front sonar ring 8 included; 1 each side; 6 forward @ 15
ο
 intervals

Rear sonar ring 8 optinoal; 1 each side; 6 rear @ 15
ο
 intervals

Wheel width 15 cm – 5 m

Std. Position encoders 500 tick encoders

Surveillance option Yes

IR Sensors No

Compass option Yes

Gripper option Yes

ONBOARD COMPUTING

Optional onboard computer Embedded size

Max. no. card & ports 3 PC104+;2 USB; serial

Speaker Piezo std., opt, high decibel

Laser option Yes

Gyro option Yes

Vision Yes

Speech Yes

StereoCam Rangefinder option Yes

ELECTRONICS

Processor Hitachi H8S

Sonar inputs 16 max

Custom I/O connections 8-bit external I/O bus w/ up to 16 devices + PC104 I/O

299

boards

Communication ports RS-232 serial ports on microcontroller, 4 RS-232 and 1

Ethernet on optional embedded computter

Wireless Communications

options

Radio modern pair without embedded computer;

Ethernet station adapter & access point with

Flash Memory 1 Mb

CONTROLS, PORTS AND INDICATORS (side or top panel)

LCD display -na-

Reset pushbutton Warm reboot

Charging 12 VDC charge port & Docking

Joy drive port Off & opt. onboard

Motors pushbuttons Single enable/disable

Flash Memory 1 Mb

Serial comm. Ports 9-pin RS232 with Rcv and Xmt LED indicators

300

APPENDIX G: Platform for the AXIS-213 camera

301

APPENDIX H: Specification of URG-04LX laser range finder

 Specification of the URG-04LX
Voltage 5.0 V

Current 0.5 A

Detection range 0.02 m to approximately 5.6 m

Scan angle 240
ο

Scan time 100 ms/scan (10.0 Hz)

Angular Resolution 0.36
ο

Interface USB 2.0, RS232

Weight Approx, 160 gm

Material Polycarbonate

External dimension 50 mm (W) x 50 mm (D) x 70 mm (H)

Turn angular velocity 360 deg/sec

Turn acceleration pi/2 rad/s
2

Life 5 years (it changes depending on operating condition)

302

APPENDIX I: Specification of LinITX 8.4" Touch-Screen

 Specification of the URG-04LX

Resolution 800 (V) x 3 x 600 (H)

Display Size 8-inch LCD

Active Area (mm) 126.0 (H) x 121.5 (V)

Brightness 350cd/m2 (centre)

Colour Configuration RGB

Back Light LED

Power Source DC12-24 V

Power Consumption 600 mA(max)

Operation Temperature -30
ο
C to +85

 ο
C

Dimensions 229.6 mm x 162.79 mm x 33.9 mm

Viewing Angle L/R: 70 T: 50 : 70

Storage Temparuture -40
ο
C to +95

 ο
C

 Figure I.1 LinITX Plus 8.4 inch VGA touch-screen

303

APPENDIX J: Specification of AXIS 213 camera

 Specification of the AXIS 213 pan/tilt/zoom camera

Image sensor 1⁄4” Interlaced CCD

Lens 3.5 – 91 mm, Angle of view, horizontal: 1.7° – 47°

Pan/Tilt/Zoom 20 preset positions

Pan: •170°, 1 – 90°/sec

Tilt: -10 – 90°, 1 – 70°/sec

Zoom: 26x optical, 12x digital

Sequence mode, control queue

Supports Windows compatible

VIDEO

Video Compression MPEG-4 Part 2 (ISO/IEC 14496-2)

Motion JPEG

Resolutions 160x90 to 704x576

Frame Rate

Motion JPEG

Up to 30/25 fps at 4 CIF

Image Settings Compression, backlight compensation, manual IR-cut

filter

Day/Night, white balance, rotation, color/BW,

brightness, noise

reduction, exposure control

Aspect ratio correction

Text and image overlay

De-interlace (4CIF Resolution)

GENERAL

Processors and

Memory

ETRAX 100LX, ARTPEC-2, 32 MB RAM, 4 MB

Flash

Power 11.5 – 14 V DC, max. 13 W

Dimensions (HxWxD) 130 x 104 x 130 mm (5.1” x 4.1” x 5.1”)

304

APPENDIX K: Evaluations of goals via SIFT algorithm

(a)

(b)

(c)

Figure K.1: SIFT features extracted for Goal A in different resolutions, (a) 704x576 [4704],

 (b) 352x288 [1015], (c) 176x144 [269]

305

 (a)

 (b)

 (c)

Figure K.2: SIFT features extracted for Goal B in different resolutions, (a) 704x576 [5173],

(b) 352x288 [1117], (c) 176x144 [297]

306

 (a)

 (b)

 (c)

Figure K.3: SIFT features extracted for Goal C in different resolutions, (a) 704x576 [3522],

(b) 352x288 [769], (c) 176x144 [213]

307

 (a)

 (b)

 (c)

Figure K.4: SIFT features extracted for Goal D in different resolutions, (a) 704x576 [6358],

(b) 352x288 [1396], (c) 176x144 [375]

308

Computational performance analysis of these algorithms with respect to the given objects are

illustrated in Figure K.5, indicating that the results of the algorithm utilizing the Fast SIFT

library extract key features faster than when using conventional SIFT algorithm.

The average overall improvement in terms of percentage reduction in total computational

time with given resolutions obtained from the data set shown in Figure K.1, is given as

follows: 53% (176x144), 48% (352 x 288) and 51% (704 x 576). The results reveal that the

OpenMP based SIFT algorithm with the given system configuration provides a computational

performance approximately twice as fast as when the using conventional method. Despite the

significant performance enhancement obtained via multiprocessor systems according to the

characteristics of the OpenMP API [OpenMP, 2011], the improvement in computational

speed with a single processor is adequate to apply the algorithm in real time navigation

algorithms.

 (a) (b)

 (c) (d)

Figure K.5: Comparison of SIFT and FAST SIFT algorithm performance using different goals of

different resolutions “(1) 176x144, (2) 352x288, (3) 704x576”, (a) Goal A, (b)

 Goal B, (c) Goal C, (d) Goal D

309

APPENDIX L: Goal tracking example via calibrated camera

Figure L.1 illustrates a feature tracking example with the proposed calibration system using

SIFT features where the goal is always in the field of view, and the similarity between the

goal and the current image increases gradually. Each frame includes generated steering angle

(w) from the matching.

(a) -6
ο
 (b) 0

ο

 (c) 2
ο
 (d) 1

 ο

 (e) -4
ο

 (f) 3
ο

310

 (g) 7
ο
 (h) 2

ο

 (i) -9
ο
 (j) completed

Figure L.1: Tracking example via calibrated camera from a to j, including

generated steering output

311

APPENDIX M: The training results for the simulated camera

This appendix includes the results of the training performance for the simulated camera. The

specifications of the network used for simulated camera and its training performance are

illustrated in Table L.1 and Figure L.1 respectively. The best validation point is at the 55th

epoch (iteration) with an error of 1.1083ex10
-6

. The output of the network is only the pan

angle based on the specifications of the camera.

 Table M.1: Basic specifications of the network for heading angle estimation

(simulated camera)

 `

Best Validation Performance is 1.1083e-006

Best Validation is at epoch 55

M
S

E
 P

e
rf

o
rm

a
n

c
e

 Figure M.1: Training results for the simulated camera

 Table M.2: Basic specifications of the network for distance estimation

 (simulated camera)

Camera Type Resolution Data Topology Train Validation Test

Simulated 320x240 85 2-4-1 69 8 8

Camera Type Resolution Data Topology Train Validation Test

 Simulated 320x240 128 2-4-1 104 12 12

312

The specifications of the network for distance estimation used for simulated camera is shown

in Table M.2, as well as the results of training algorithm are shown in Figure M.2. The results

reveal that the best validation point is at the 29th epoch (iteration) with an error of 0.00073247

Best Validation Performance is 0.00073247

Best Validation is at epoch 29

M
S

E
 P

e
rf

o
rm

a
n

c
e

 Figure M.2: The training results for distance estimation

313

APPENDIX N: Control outputs of output scenarios

During the experiments, the sampling period of the duration of a decision cycle was set at tc =

150 ms, and each cycle used in these control figures, shown below, averages the consecutive

three frames in order to make the data more clear. The constant turns are excluded from the

results. . For each decision cycle, the robot is controlled by an updated angular velocity

command (w).

 (a) (b)

 Figure N.1: Control parameters for SC1, (a) FS , (b) OFB

 (a) (b)

 Figure N.2: Control parameters for SC1, (a) FS , (b) OFB

314

 (a) (b)

 Figure N.3: Control parameters for SC3, (a) FS , (b) OFB

 (a) (b)

Figure N.4: Control parameters for SC4, (a) FS , (b) OFB

315

APPENDIX P: Definition of SC7

Y-Axis

X
-A

x
is

1. Obstacle

(G1)
2. Obstacle

3. Obstacle

5. Obstacle

(G2)

(G3 (G4)

(G5

(G6)

(G7)

(G8)

(G9)

(G10)

4. Obstacle

1. Door

2. Door

(G1)

(G2)

(G3)

(G4)

(G5)

(G6)

(G7)

(G8)

(G9)

(G10)

(Goal A)

(Goal B)

(Goal C)

(Goal A)

(Goal B)

(Goal C)

(Goal A)

(Goal B)

(Goal C)

(Goal A)

Figure P.1: Definition of CS7

The corridor environment has dimensions of 43.76m x 16.20m, as illustrated in Figure P.1. In

this scenario, ten sub goals are defined to navigate the robot along the corridor. In order to

316

maintain the consistency, the goals, defined in Chapter 6, were utilized. Besides this, to

increase the challenge inherent to the scenario, five obstacles are positioned across the path.

Three different types of external obstacle were positioned in the environment so as to

increases the challenge of the experiment. The main obstacle is a rectangular box having

dimensions of 550 mm x 500 mm, one of which is has a 187 mm diameter irregular shape

box, and other is a rectangular box having dimensions of 1100 mm x 500 mm which consists

of two main obstacles.

