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               ABSTRACT 

         

This study addresses the issue of vision based mobile robot navigation in a partially 

cluttered indoor environment using a mapless navigation strategy. The work focuses on 

two key problems, namely vision based obstacle avoidance and vision based reactive 

navigation strategy.  

 

The estimation of optical flow plays a key role in vision based obstacle avoidance 

problems, however the current view is that this technique is too sensitive to noise and 

distortion under real conditions. Accordingly, practical applications in real time robotics 

remain scarce. This dissertation presents a novel methodology for vision based obstacle 

avoidance, using a hybrid architecture. This integrates an appearance-based obstacle 

detection method into an optical flow architecture based upon a behavioural control 

strategy that includes a new arbitration module. This enhances the overall performance 

of conventional optical flow based navigation systems, enabling a robot to successfully 

move around without experiencing collisions.  

 

Behaviour based approaches have become the dominant methodologies for designing 

control strategies for robot navigation. Two different behaviour based navigation 

architectures have been proposed for the second problem, using monocular vision as the 

primary sensor and equipped with a 2-D range finder. Both utilize an accelerated 

version of the Scale Invariant Feature Transform (SIFT) algorithm. The first 

architecture employs a qualitative-based control algorithm to steer the robot towards a 

goal whilst avoiding obstacles, whereas the second employs an intelligent control 

framework. This allows the components of soft computing to be integrated into the 

proposed SIFT-based navigation architecture, conserving the same set of behaviours 

and system structure of the previously defined architecture. The intelligent framework 

incorporates a novel distance estimation technique using the scale parameters obtained 

from the SIFT algorithm. The technique employs scale parameters and a corresponding 

zooming factor as inputs to train a neural network which results in the determination of 

physical distance. Furthermore a fuzzy controller is designed and integrated into this 

framework so as to estimate linear velocity, and a neural network based solution is 

adopted to estimate the steering direction of the robot. As a result, this intelligent 
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approach allows the robot to successfully complete its task in a smooth and robust 

manner without experiencing collision.  

 

MS Robotics Studio software was used to simulate the systems, and a modified Pioneer 

3-DX mobile robot was used for real-time implementation. Several realistic scenarios 

were developed and comprehensive experiments conducted to evaluate the performance 

of the proposed navigation systems.  

 

KEY WORDS: Mobile robot navigation using vision, Mapless navigation, Mobile 

robot architecture, Distance estimation, Vision for obstacle avoidance, Scale Invariant 

Feature Transforms, Intelligent framework.  
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   CHAPTER 1 

                 INTRODUCTION 
 

The popularity of autonomous mobile robots has been rapidly increasing due to 

emerging areas of application. New markets for these types of robotics systems include 

room cleaning, tourist guidance, and entertainment applications. However existing 

applications of autonomous systems have one problem in common, which is navigation. 

Mobile robot navigation entails solutions to different problems, including planning, 

localisation, and obstacle avoidance. If the working environment is not already known 

or may vary over time, such as in households or offices, the navigation problem 

becomes far more difficult.  

 

To overcome such problems, the system needs to use sensory data to extract 

representations of the environment and/or estimate the position of goals. Data is 

interpreted by the robot’s control system so as to fulfil the navigation task using an 

appropriate strategy. However, the development of a satisfactory control algorithm to 

allow autonomous mobile robots to navigate safely in these environments is still an 

open research problem. Vision is capable of supplying the robot with detailed 

information from its environment. It is essential for the design of mobile robots to 

progress in the directions of increased robustness and reduced costs. Mapless strategies 

and methodologies developed so far resemble human behaviour more than other 

approaches, and have become applicable to any indoor environment consisting of 

corridors and doorways which can be accessed by a mobile robot platform. 

 

1.1 Overview 

 

The focus of this thesis is the study of vision based mobile robot navigation in an indoor 

environment using a mapless strategy. It addresses different aspects, including visual 

feature tracking for navigation and navigation based on artificial intelligence 
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techniques, obstacle avoidance, localisation and control architecture. Three different 

navigation systems are proposed based on a mapless strategy. In the first system a 

hybrid vision based obstacle avoidance architecture is proposed which combines 

conventional optical flow and appearance-based methods, based upon a behavioural 

strategy. The proposed architecture navigates the robot using monocular vision in a 

partially cluttered indoor environment where the robot may encounter unknown 

obstacles that prevent it from moving forward safely, and thus it requires the capability 

to detect objects and avoid collisions.  

 

In the second system, a vision based behavioural architecture is proposed to overcome 

the mapless navigation problem. The architecture comprises several modules, which 

facilitate the robot’s navigation and ensure that it maintains a safe distance from 

obstacles while finding goals from its current position. The highest level of the 

architecture is based on extracting and tracking scale invariant features. The third 

system is also based on a behavioural architecture, but unlike the second system, it 

draws its inspiration from various disciplines in providing an intelligent solution. This 

allows the mobile robot to successfully avoid obstacles whilst maintaining its progress 

to its final goal. 

 

1.2 Aims and Objectives  

 

The overall goal of this research is to design and develop systems which can be used for 

mapless navigation problems in indoor environments. The research focuses on two 

important aspects of vision based mapless navigation. The first aim addresses vision 

based obstacle avoidance using monocular vision, and the second concerns the design of 

a robust and safe navigation system for mobile robots using vision as a preliminary 

sensor which incorporates goal-based navigation, and collision avoidance.  

 

In order to satisfy the above goal and associated aims, the following objectives have 

been identified. 
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 To undertake an in-depth critical review of available reactive vision based 

obstacle avoidance and navigation algorithms, including classification based on 

localization techniques, mobile robot control architectures and the relevant soft 

computing techniques. 

 To design a hybrid vision based obstacle avoidance system, integrating a 

conventional appearance-based obstacle detection method into an optical flow 

based navigation architecture. 

 To develop a behaviour based navigation control algorithm using scale invariant 

features so as to navigate a mobile robot via a feature tracking approach. 

 To apply soft computing techniques to provide on improved navigation system.   

 To assess the performance of the developed navigation systems using both 

simulation and physical experiments. 

 

1.3 Hypotheses  

 

Two hypotheses are tested in this research. The first is that “it is possible to develop a 

vision based obstacle method, using a single monocular vision camera as the only 

sensor to allow a mobile robot to navigate safely”. The second hypothesis is that “it is 

possible to develop vision based mapless navigation using a behaviour based framework 

to allow a robot to safely complete its tasks in a robust and smooth manner”. 

 

1.4 Contributions 

 

A robust and novel vision based obstacle avoidance algorithm has been developed and 

implemented to enable safer indoor navigation. This combines a conventional 

appearance-based obstacle detection method and an optical flow based navigation 

system into a hybrid architecture.  

 

A feature based navigation technique using the accelerated version of the SIFT 

algorithm has been developed and implemented to navigate a mobile robot towards its 

goal. This technique is integrated into a reactive behavioural architecture which 
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coordinates individual behaviours to allow the robot to complete its tasks in a partially 

cluttered environment, and artificial intelligence techniques have been incorporated into 

the developed navigation framework in order to improve the navigation performance. A 

feed-forward neural network was developed to compute the steering parameter 

according to the estimated error in the image space. In addition, a fuzzy inference 

system has been proposed and integrated into the proposed intelligent navigation 

framework to adjust the second control parameter, linear velocity. A third contribution 

of this thesis is a novel distance estimation method using monocular vision systems 

which employ scale parameters from the SIFT algorithm to train a feed-forward neural 

network. The output of the network generates the physical distance in meters. 

 

Finally, a rigorous series of experiments have been conducted to demonstrate the 

functionality of the proposed navigation systems using realistic scenarios to evaluate the 

robot’s performance. 

 

1.5 Overview of the Thesis  

 

Chapter 1 provides an overview of the work and sets out the aim and objectives of the 

study.  Chapter 2 is a review of the relevant literature, and of the background work that 

forms the foundations of this thesis. The development of a novel vision based obstacle 

avoidance architecture which integrates a high performance appearance based obstacle 

detection method with conventional optical flow based navigation architecture is 

addressed in Chapter 3.  

 

Chapter 4 addresses the SIFT (Scale Invariant Feature Transformation) algorithm and 

its adaption to a monocular vision based navigation strategy together with a set of 

developed robot behaviours. The fundamentals of fuzzy logic theory and artificial 

neural networks, including a brief description of their main components are outlined in 

Chapter 5. This chapter primarily focuses on applying soft computing techniques to 

enhance the performance of SIFT based behavioural architectures. A description of the 

physical robot and software designs for the systems are presented in Chapter 6, whereas 
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Chapter 7 focuses on the implementation and evaluation of the proposed navigation 

systems. An analysis of the test results is also presented. Finally, the achievements of 

the study are summarised in Chapter 8 in which recommendations for further work are 

presented. 
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    CHAPTER 2 

                                LITERATURE REVIEW  
 

The previous chapter has described the motivations behind the present work and given 

an introduction to the dissertation. This chapter addresses the existing state of 

knowledge related to vision based mobile robots, including their background and 

history, current trends, control architectures, navigation and mapless navigation, and the 

software involved. This literature review not only discusses studies relevant to vision 

based mobile robot systems but also critically evaluates the methodologies which have 

been developed that directly affect such systems. 

 

2.1 History and Categories of Mobile Robots  

 

A robot is defined as a programmable, self controlled device consisting of electronic, 

electrical and mechanical units. More generally, it is a machine which is able to function 

in place of a living agent. Mobile robots have a long history. Shakey, the world’s first 

mobile robot, was developed in the late 1960s at SRI’s Artificial Intelligence Centre 

(Stanford Research Institute) [Nilsson, 1984]. Not surprisingly, it has had a substantial 

legacy and influence on present day artificial intelligence and robotics. Shakey was 

equipped with sensors and driven by a problem solving program called ‘STRIPS’, and 

used algorithms for perception, world modelling, and actuation. Low-level action 

routines took care of simple moving, turning and route planning tasks. The high-level 

program could make and execute plans to achieve goals.  

Another example of an early robot is CART, illustrated in Figure 2.1, which was 

developed at Stanford University in 1977 by Hans Moravec as part of his doctoral thesis 

[Hellström, 2011]. However CART was very slow, not because it was slow-moving by 

design, but because it was ‘slow-thinking’. The main reason for this was the difficulty 

of processing vision data using slow computer processors. Another example is Rover, 
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developed at Carnegie Mellon University (CMU), in the early 1980s. Rover was also 

designed and constructed by Hans Moravec  [Moravec, 1983]  and used both a camera 

and ultrasonic sensors. Although more advanced in structure than CART, its thinking 

and acting were still very slow.  The following sections detail more recent trends and 

categories of mobile robots.  

 

2.1.1 Trends in mobile robots  

 

In the last decade the main developments in the area of robotics have come through 

technological breakthroughs in the areas of computing telecommunications, software, 

and electronic devices. These technologies have facilitated improvements in intelligent 

sensors, actuators, and planning and decision making units which have significantly 

increased the capabilities of mobile robots. The latest trend in robotic intelligence is 

toward imitating life, for instance in evolutionary robots and emotional control robots. 

Another area of technological challenge for the next decade is the development of 

microrobots and nanorobots for medical applications. On top of this, a paramount 

challenge will be to find an appropriate balance between human assisted systems and 

fully autonomous systems, and to integrate technological capabilities with social 

expectations and requirements.   

 

 

                   

                Figure 2.1: Stanford cart robot from 1977, 

[Hellström, 2011] 
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2.1.2 Categories of mobile robots  

 

Mobile robots are able to move from place to place under their own power. Mobility 

gives robots much greater flexibility to perform new, complex and exciting tasks. 

Mobile robots can be classified into one of three types depending on the environment in 

which they are designed to operate. The first category is robots that work in water, 

including surface and sub-sea robots, and an example of automated underwater vehicles 

(AUVs) is illustrated in Figure 2.2 (a).  The second category is airborne robots, which 

employ engines and thrusters to move around. Unmanned aerial vehicles (UAV) can be 

remotely controlled or fly autonomously based on dynamic autorotation systems, and 

are currently used in a number of military tasks and in small but growing numbers of 

civil applications. These include fire fighting when a human observer would be at risk 

or the police observation of civil disturbances and crime scenes. Figure 2.2 (b) displays 

an autonomous UAV. The third and most common one type of mobile robot is those 

that move on a solid surface, as shown in Figure 2.2 (c). The wheel has been by far the 

most popular locomotion mechanism in mobile robotics, and it is able to complete very 

good efficiency with relatively simple mechanical implementation.  

 

                                         

(a)                                         (b) 

  

             (c) 

Figure 2.2: Classification of mobile robots, (a) MQ-9 Reaper [Wikipedia, 2011], (b)  

underwater robot [Rutherford, 2009], (c) wheeled mobile robot [Active Media, 2010] 
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A number of potential markets are slowly emerging for mobile robotic systems. 

Entertainment applications and household or office assistants are the primary targets in 

this area of development. These types of robots are designed to move around within an 

often highly unstructured and unpredictable environment. Existing and future 

applications for these types of autonomous systems have two key problems in common: 

control architecture and navigation  [Althaus, 2003]. These issues are detailed in 

following sections  

 

2.2 Mobile Robot Control Architecture 

 

Mobile robot control architecture involves the process of taking in information about 

the environment through the robot’s sensors, processing it as necessary in order to make 

decisions about how to act, and the execution of action in the environment. Traditional 

(deliberative) control architectures are derived from traditional artificial intelligence 

(AI) paradigms, in which a central planner fuses all sensors readings, builds a world 

model, plans the next action, and finally steers the robot. Figure 2.3 depicts such 

architecture. 

 

 

Sense Plan ActSensory Inputs

Environment

Actuators

 

 

 Figure 2.3:  Traditional sense–plan-act architecture 
 

 

Early robots such as Shakey [Nilsson, 1984] adopted this type of architecture, which in 

essence attempted to overcome environmental uncertainty by creating a world model. 

The deliberation refers to thinking hard, and is defined as thoughtfulness in decision and 

action [Nattharith, 2010]. The control system is generally organised using a functional 
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decomposition of the decision making process, consisting of several modules for 

sensory processing, modelling and planning, value judgement, and execution [Brooks, 

1986]. Such functional decomposition allows complex operations to be performed, but 

implies strong sequential independencies between the decision-making modules.  This 

architecture is able to work successfully in a structured environment. For instance, if 

there is sufficient time to generate a plan and the world model is accurate, this approach 

allows the robot to produce the best action for a given situation. However, such 

architectures tend to fail in an unstructured environment or even in a loosely structured 

environment due to their inability to adapt to the environment. In addition such 

approaches are limited in their usefulness due to a lack of real time reactivity, and may 

entirely fail if any single part fails. Therefore a purely deliberate architecture is no 

longer used for the majority of physical mobile robots working in the complex and 

dynamically changing real world environments [Peng, 2004; Nattharith, 2010]. 

 

2.2.1 Reactive/Behaviour based architecture  

 

In the late 1980s the concept of behaviour-based robotics was introduced in the MIT AI 

lab [Brooks, 1986]. According to this paradigm, basic behaviours, which involve motor 

reactions to sensory stimuli, are the building blocks of more complex behaviours. This 

concept abandons the idea of a central planner that has comprehensive knowledge of the 

system [Peng, 2004]. This approach was inspired by the biological notion of stimulus-

response, so that it does not rely on the types of complex reasoning processes utilised in 

a deliberate architecture.  

 

The information is processed in parallel rather than sequentially. Basically, sensory data 

is distributed to individual reactive modules. Each of these performs a specific task such 

as avoiding obstacles or identifying goals. The best known system for behaviour based 

control is the subsumption architecture, introduced by Rodney Brooks in 1985,  

[Brooks, 1986], which is detailed in the following section. 
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2.2.1.1 Subsumption architecture  

 

Brook believed that a robot must be fundamentally reactive [Brooks, 1986]. In a 

subsumption architecture, the behaviour based approach entails the horizontal 

decomposition of planning into a collection of concurrent layers; each connected to its 

own sensory inputs. A set of behaviours defines the control system. Behaviours are 

implemented as real time processes that take inputs from sensors or other behaviours 

and send output commands to effectors or other behaviours. The controller is essentially 

a distributed network of concurrently executing behaviours. An example of the given 

architecture is illustrated in Figure 2.4. A subsumption architecture consists of a set of 

complete robot control systems. Each of these is able to achieve a particular level of 

competence. The conventional subsumption architecture design proposed by Brooks 

[1986] defines eight layers of competence which are labelled from 0 to 7. 

 

monitor 

change

build maps

explore

Sensory Inputs Actuators

wander

avoid objects

Identify 

objects

plan changes 

to the world

reason about 

behaviours 

of objects

 

  

    Figure 2.4:  Subsumption based robot control architecture [Brooks, 1986] 
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However only layers 0 to 2 have been implemented on a robot [Toal et al., 1995] . Layer 

0 provides the capability of avoiding obstacles, while Layer 1 allows the robot to 

wander around aimlessly. Layer 2 endows the robot with the ability to explore the world 

by using its sensors and head towards observed locations. Layers 3 to 7 entails more 

complex behaviour, such as the ability to map the environment, formulate plans about 

it, and reason about the state of the world. The team guided by Brooks conducted some 

initial investigations into how such behaviours can be implemented in a robot, but it is 

still not clear how successful these would be in the long term [Toal et al., 1995]. 

 

Several robots have been designed based on subsumption architecture. For instance: 

Allen - the first subsumption based robot [Brooks, 1986],  Tom and Jerry – two small 

toy cars equipped with infrared proximity sensors [Brooks, 1990]; and  Toto – focussed 

on map construction for a subsumption based robot [Mataric, 1992].  A more recent 

implementation of this architecture was designed to run  a mobile robot in rough terrain, 

using an intelligent visual landmark-recognition and fuzzy based obstacle avoidance [Li 

and Yang, 2003]. Alternatively, a behavioural based architecture to find and trace a 

chemical plume using subsumption architecture has been implemented for AUVs [Wei 

et al., 2006]. On the other hand, since this architecture can execute only one task at a 

time, the robot will sooner or later experience a situation where the correct action 

should be established using a combination of behaviours. For example, when a robot 

avoids an obstacle while moving towards its goal, the subsumption architectures would 

invoke the avoiding behaviour as a priority ahead of the goto behaviour. The robot may 

avoid the obstacle successfully, but the robot may avoid it in a manner that directs it 

away from its goal. That is because it is not able to consider multiple behaviours which 

may significantly reduce performance [Hoffmann, 2003]. 

 

2.2.1.2 Motor schema   

 

Another important example of reactive based architectures is the motor schema 

proposed by Arkin [1987], as illustrated in Figure 2.5. Motor schemas are proposed as a 

basic unit of behaviour specification for the navigation of a mobile robot. They generate 

response vectors based on the outputs of the perceptual schemas. The schema has a 
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fusion mechanism used to combine the response vectors generated in a manner similar 

to the Potential Field Method [Khatib, 1985]. According to this method, a goal is 

represented by an attractive force while obstacles are represented by repulsive forces. 

The summation of these force vectors is treated as the coordinated action for the robot 

to take to complete a particular task. However, the architecture has certain drawbacks. 

The most common is the local minima problem in which attractive and repulsive forces 

cancel each other out. Thus the overall sum is null and the robot cannot move from its 

current location. Various alternative solutions have been proposed to overcome this 

problem [Nattharith, 2010]. However, another problem with this architecture is that the 

action executed is, in essence, one that no behaviour has generated. For instance, 

consider a robot with an obstacle ahead. Assuming that two different behaviours 

generate outputs for avoiding that obstacle, one trying to avoid it to the right and the 

other one trying to avoid it to the left, then the sum of the vector would direct the robot  

straight ahead at the obstacle [Peng, 2004]. 

 

 

 

         Figure 2.5:  Motor schema based robot control architecture  [Arkin, 1987] 
 

 

2.2.2 Hybrid architecture  

 

While it has been widely demonstrated that behaviour based architectures effectively 

produce robust performance in dynamic and complex environments, they are not always 

the best choice for some tasks. Sometimes the task to be performed needs the robot to 

undertake some degree of deliberation and maintain a model of the environment. 
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However, behaviour based architectures avoid this deliberation and modelling. 

Additionally, as mentioned previously, purely deliberative architectures are also not the 

best choice for tasks in complex environments. Thus, a compromise between these two 

completely opposite views must be reached. Hybrid architectures are composed of two 

parts, the first for deliberation and the other is the reaction part. The deliberation part 

allows the modelling of the world and creating plans, while the reactive part on the 

other hand is responsible for executing plans and quickly reacting to any unpredicted 

situation that may arise. Hybrid architectures are essentially structured in three layers. 

Because of the ability to combine the advantages of both deliberate and behaviour based 

systems, this approach has become important in designing mobile robot systems, and is 

considered to offer an appropriate solution for further development. For instance, 

Nattharith [2010] implemented a hybrid based architecture which is based upon the 

motor schema described above.   

 

2.3 Mobile Robot Navigation  

 

Navigation is one of the key and most challenging issues for mobile robots, it involves 

practically every aspects of mobile robots, including sensing, acting, planning and 

hardware architecture etc. It is essentially the process of determining and maintaining a 

course or trajectory to a reach a goal. Many robotic navigation algorithms found in the 

literature explicitly try to answer the questions ‘Where is the robot in the coordinate 

system?’ and ‘Where is the goal in the same coordinate system?’ The localization 

problem is the one of the most fundamental problems for a mobile robot with 

autonomous capabilities. While navigating, the robot has to solve the so-called data 

association problem which determines which landmarks it is currently sensing given its 

current sensor data and the landmark descriptions provided.  

 

After this the robot employs the egocentric bearing and/or range of the landmarks 

identified to determine its position. On the other hand, conventional (deliberate) mobile 

robot architectures are rather purposeful, such as in planning to reach a particular 

location. They are in essence required to answer some or all of questions, shown below:  
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Where am I going?   This is directly related to a human or mission planner.   

What is the best way there?  The key issue here is to determine the optimal path to 

reach a goal which has been assigned by the planner.  

Where I have been?  The key issue now is map making, in which robot creates maps or 

updates their common maps when navigating in an unknown environment.  

Where am I?  This is also called the localization problem. In order to conduct path 

planning and map making a robot must know its position in the environment.  

 

Since the focus of this thesis is the study of vision based mobile robot navigation in 

indoor environments, the following section reviews and classifies the developments in 

the area of vision for mobile robot navigation. 

 

2.4 Vision Based Mobile Robot Navigation 

 

Vision based indoor mobile robot navigation has been studied for decades, and is one of 

the most powerful and popular sensing method used for autonomous navigation. 

Compared with other on-board sensing techniques, vision based approaches to 

navigation continue to demand attention from the mobile robot research community, 

due to their ability to provide detailed information about the environment which may 

not be available using combinations of other types of sensors. The great strides achieved 

in the area of vision based navigation systems are significant, however there is still a 

long ways to go. Two important survey papers have been published which reviews 

various aspects of the progress made so far in vision for mobile robot navigation 

[DeSouza and Kak, 2002; Bonin-Font et al., 2008]. This section discusses their 

classification of vision based navigation systems and attempts to reveal the appropriate 

state of the art for indoor environments. 

 

Mobile robot navigation in a structured or unstructured environment requires the 

integration of various functionalities, ranging from the navigation control to mission 
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management while encompassing the modelling of the perceived environment and the 

planning of trajectories and strategies of motion. Among these functionalities, 

localisation, which is the robot’s capacity to constantly estimate its own position, is very 

significant. Indeed,  knowledge of robot position is essential to the correction of 

trajectories and the execution of planned tasks [Chaari et al., 2008]. Thereby, DeSouza  

and Kak [2002] classified vision based approaches into three groups depending on the 

localization methods used, namely: Map-Based, Map-Building-Based, Mapless 

approaches [DeSouza and Kak, 2002]. Bonin-Font et al. [2008] followed the same 

procedure and employed the same classification criteria to subdivide existing methods 

[Bonin-Font et al., 2008].  A corresponding schema, summarizing state of the art of 

vision based navigation, is illustrated in Figure 2.6 [DeSouza and Kak, 2002; Bonin-

Font et al., 2008]. 

. 

 

Figure 2.6:  Vision based indoor mobile robot navigation techniques  

          

To understand these concepts, a simple analogy was described [Guerrero et al, 2005], 

and a similar analogy including a daily life scenario is described next. In the scenario it 

is assumed that a visiting researcher is in Newcastle city centre and needs to return to 

the Daysh Building (Newcastle University,Claremont Road) where his office is located. 

There are various methods he can follow to reach the office. First, he could have 

memorized the number of steps walked from the university and he could return trying to 

count the same number of steps. This would be dead-reckoning navigation. He could 

also buy a map of the environment in order to reach the goal, as in map-based 
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navigation. However, this solution entails that somebody has previously named the 

streets and have drawn the map.  

 

Alternatively, he could also draw his own map using map-building navigation while 

exploring the city, but this would cost a lot of time and effort. Finally, he could look 

around trying to find the Claremont Tower and then try to approach it keeping the top of 

the tower in his field of view (map-less navigation). The goal is to reach the tower, 

since he knows that Daysh Building is next to it. Autonomous navigation architectures 

utilize some of these solutions to track a trajectory towards the required goal. Dead-

reckoning navigation is the cheapest method, and essentially includes an odometry 

system. However, this solution may include many mechanical problems that produce an 

increasing error which is unacceptable in long term navigation. So, an additional 

perception system is mandatory. Vision is perhaps the most broadly researched 

perception system.   

 

2.4.1 Map-based navigation 

 

Many techniques employ metric or topological maps to navigate. Navigation techniques 

need certain knowledge of the environment, and maps may contain different degrees of 

detail, varying from a complete CAD model of the environment to a simple graph of 

interconnections between the elements in the environment. One of the key classification 

criteria in this approach depends on the type of map. For instance, metric based maps 

generally favour techniques which produce an optimum  according to some measure of 

‘best’, while qualitative methods such as topological maps  seem content to produce a 

route with identifiable landmarks or gateways  [Bonin-Font et al., 2008]. 

 

The main idea behind map-based navigation is essentially to provide the robot with a 

sequence of landmarks expected to be found during navigation, and the task of the 

vision system is then to search for and recognize the landmarks observed in an image. 

When the landmarks are recognized, the robot can employ the map to estimate its own 

position (self-localization) by matching the observation (image) against the expectation 
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(landmark) description in the database.  The steps of vision-based localization can be 

divided into four steps [Bonin-Font et al., 2008]. 

 

Acquire sensory information:  Acquiring images. 

Detect landmarks: Extracting edges, smoothing, filtering, and segmenting regions. 

Matching: Identifying landmarks by searching in the database for possible matches 

according to certain criteria. 

Calculate position: Whenever a set of matches is obtained, the system needs to 

calculate its position as a function of the observed landmarks and their positions in the 

database. 

 

With Absolute Localization methods, the initial position of the robot is unknown, thus, 

the navigation system must construct a match between the observations and the 

expectations, derived purely from the entire database  This self localization problem has 

been solved either using deterministic triangulation [DeSouza and Kak, 2002], or Monte 

Carlo type localization A detailed implementation of the Monte Carlo localization 

method  to localize a mobile robot without knowledge of its starting location was 

proposed [Dellaert et al., 1999]. Incremental Localization assumes that, at the beginning 

of the navigation, the position of the robot is known approximately. In such cases, the 

localization algorithm basically keeps track of uncertainties in the robot’s position as it 

executes motion commands and, when the uncertainties exceed a limit uses its sensors 

for a new fix on its position. The FINALE system is a good example of being able to 

achieve incremental localization using a geometrical representation of space and a 

statistical model of uncertainty in the location of the robot [Kosaka and Kak, 1992]. 

 

The final method is Landmark Tracking in which landmark tracking algorithms 

determine the position of the robot, detect landmarks on the camera image and track 

them in the successive scenes. Landmarks can be artificial or natural. In both cases the 

robot needs to recognize the landmarks in order to be able to track them. Artificial 

landmark were first introduced by Kabuka and Arenas [Bonin-Font et al., 2008]. An 

example of a natural landmark tracking-based navigation system is proposed by 

Hashima et al. [1997]. The technique selects landmarks, uses correlation techniques to 
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track them, computes their 3D position using stereo vision information, and selects new 

landmarks so as to keep on moving towards the goal point. 

 

2.4.2 Map-building-based navigation  

 

Sometimes modelling an environment could be difficult particularly if one also has to 

provide metrical information. An alternative navigation strategy, the map-building-

based approach, has been used in both autonomous and semi-autonomous systems that 

entails searching the environment and building a representation of it.  One of the earliest 

attempts at a map-building technique was carried out by the Stanford CART Robot 

equipped with a camera (see Figure 2.1). Subsequently, an Interest operator algorithm 

was improved to detect 3D coordinates of the images [Thorpe, 1984]. The system 

basically demonstrated the 3D coordinates of the objects, which were stored on a grid 

having 2m cells. The map was updated at each iteration; and obstacles were also shown 

in the map. But the most important problem with the whole system was performance, 

which took five hours to go 20 metres. Visual navigation studies, employing map-

building-based strategies, from the late 1990s to the present have focused on two 

methodologies, namely: Simultaneous Localization and Mapping (SLAM) or 

Concurrent Mapping and Localization (CML). These principally propose solutions to 

automatically overcome the problem of the exploration and mapping of any unknown 

environment, which essentially entails three simultaneous tasks comprising navigation, 

mapping and localization. Vision based SLAM/CML algorithms mainly employ stereo 

vision as primary sensor. 

 

Se et al. [2001] implemented a vision-based mobile robot localization and mapping 

system in which the robot was equipped with a stereo system to build a 3D map so as to 

localize simultaneously in 3D [Se et al., 2001]. The map was represented as a Scale 

Invariant Feature Transform (SIFT) feature database. It was constantly updated frame 

by frame and was adaptive to dynamic environments. An alternative and efficient 

solution to the SLAM problem based on a pair of stereo cameras has also recently been 

proposed which employs 3D landmarks to localize the robot, as well as constructing an 

occupancy grid for safe navigation [Sim and Little, 2009]. 
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Other map-building based navigation techniques are those that impose a human-guided 

training stage. In such solutions, a human operator guides the robot through an unknown 

environment. During this process, the robot records images with a stereo camera and 

constructs the 3D map incrementally. After the map is built, the robot tracks extracted 

features and computes the optimum path [Kidono et al., 2002].  

 

2.4.3 Mapless navigation  

 

This section discusses a representative selection of mainly reactive visual based 

navigation techniques in which navigation is performed without any prior description of 

the environment. Mapless navigation is scarcely new compared with the previously 

defined solutions, but new projects using vision systems have been developed in several 

directions in the last few years.  In the systems surveyed in this section, no maps are 

ever created. The robots can navigate by observing and extracting relevant information 

about the landmarks in the environment. These elements can be objects such as desks, 

boxes, doorways, and so on.  The mapless visual navigation techniques discussed here 

are classified in accordance with the main vision technique or types of clues used during 

the navigation which are optical flow, appearance based,  and object recognition 

navigation techniques based on feature tracking (see Figure 2.6) [DeSouza and Kak, 

2002]. 

 

2.4.3.1 Optical flow techniques for navigation  

 

Optical flow is defined as the motion of all the surface elements from the visual world. 

When a person moves through the world, the objects and surfaces within the visual 

environment flow around this person. The human visual system can determine that 

person current direction of travel from the movement of these surfaces. Optical flow can 

be defined as the apparent motion of features in a sequence of images, as shown in 

Figure 2.7.  It is believed that when the insect is in relative motion with respect to the 

environment. Accuracy and the range of operation can be altered by changing the 

relative speed. For instance, features such as “time-to-contact” (depending on speed) are 
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more relevant than distance when it is necessary to avoid an obstacle [DeSouza and 

Kak, 2002].  

 

Santos-Victor et al. [1993] developed an optical flow based navigation system imitating 

the visual behavior of bees, called robee, and was equipped with a stereo vision system, 

mimicking the centring reflex behaviour used by a bee to navigate safely. The robot 

localizes itself using the difference between the velocity of the image seen with the left 

eye and the velocity seen in the right eye. If the difference is close to the zero, the robot 

keeps moving forward. However, if the velocities are different, the robot moves toward 

the side whose image changes with a lower velocity. Several successful navigation 

systems have recently been inspired from by this centring reflex, and implemented to 

navigate a mobile robot through an unknown indoor environment. For instance, a 

mobile robot platform utilizing a binocular vision system to estimate optical flow in 

some way emulates corridor following behaviour to navigate [Bernardino and Santos-

Victor, 1998]. Duchon et al. [1994] implemented a monocular vision based navigation 

system based on optical flow algorithms and action modes (behaviours). Simulation and 

real experiments revealed that the system was capable of navigating in a maze whilst 

successfully avoiding obstacles [Duchon et al., 1994]. 

  

Furthermore, optical flow based control algorithms based on behaviours have recently 

been implemented to evaluate their performance in real time applications [Souhila and 

Karim, 2007; Guzel and Bicker, 2010]. Further explanations and definitions of optical 

flow based reactive navigation algorithms are discussed and detailed in Chapter 3.  
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(a)                                                (b)                                                (c)  

 

    

 

           (d)        

Figure 2.7: Optical Flow calculation and motion estimation, (a) source image, (b) destination 

image, (c) motion estimation, (d) estimated flow vectors   

 

2.4.3.2 Appearance-based methods  

 

Appearance-based methods fundamentally rely on the idea of memorizing the working 

environment. The main idea is to store images or templates of the environment and 

associate these images with commands that will steer the robot to its final destination. 

These methods mainly consist of two procedures. The first one is the training phase in 

which images or prominent features of the environment are stored as model templates. 



                                                              Chapter 2 Literature Review 

 

23 

 

The models are labeled with certain localization information and/or with an associated 

control steering command. Secondly, in the navigation stage, the robot has to recognize 

the environment and self-localize in it by matching the current on-line image with the 

stored templates. The main problems with the method are to find an appropriate 

algorithm for the representation of the environment, and to define the on-line matching 

criteria [DeSouza and Kak, 2002; Bonin-Font et al., 2008]. These methods can be 

classified into two groups as follows: 

 

Model-based approaches: Pre-defined object models are utilized for feature 

recognition and self-localization in cluttered environments. 

 

View-based approaches: The self-localization is performed using simple image 

matching algorithms. 

 

Gaussier et al. [1997] developed an appearance-based approach using neural networks 

to map perception into action. The robot, in essence, merges visual information and 

their azimuths to build up a representation of its location which is used to estimate the 

best movement to reach the goal [Gaussier et al., 1997].  

 

The view-sequenced route representation technique was proposed by Matsumoto et al 

[1996]. This technique primarily focuses on route construction using a sequence of 

images and a template matching algorithm to guide robot navigation. Captured images 

are used to form a sequence of images. Each image in the sequence is associated with 

the motions required to move to a corresponding destination. This approach basically 

introduces the concept of  visual memory [Matsumoto et al., 1996] , as illustrated in 

Figure 2.8. 

 



                                                              Chapter 2 Literature Review 

 

24 

 

 

Figure 2.8: The view-sequenced route representation [Matsumoto et al., 1996] 

 

Multi-dimensional histograms provided by the statistical analysis of images are an 

alternative method to guide mobile robots in appearance based strategies. Statistical 

data, including that related to colour, edge density and texture, are utilized to build a 

multi-dimensional histogram database. The recognition of the environment during the 

navigation stage is achieved by matching the multi-dimensional histogram of the current 

image with the multi-dimensional histogram of the stored templates. This technique 

consumes less computational resources than when using correlation algorithms [Chao et 

al., 2003]. 

 

Recent groundbreaking research has proposed an entirely qualitative method in which 

feature points are automatically detected and tracked throughout the image sequence. In 

the teaching phase the (KLT) feature tracker computes the displacement and minimizes 

the sum of the squared differences between consecutive image frames. The feature 

coordinates in the replay phase are compared with those computed previously in the 

teaching phase in order to estimate the steering commands for the robot. Experimental 

results revealed that the capability of autonomous navigation in both indoor and outdoor 

environments was successful with the proposed method  [Zhichao and Birchfield, 

2006].   
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An important concept in visual based mobile robot navigation is the idea of visual 

homing, inspired by insect behaviour. Insects are able to return to important places in 

their environment by storing an image of the surroundings while at the goal, and later 

computing a home direction from a match between this snapshot image and the 

currently perceived image. For instance, an agent employing a visual homing algorithm 

captures an image IS (snapshot) at the home location S = (xS, yS). It then attempts to 

return to this location from a nearby position C = (xC, yC). It compares the current 

image IC with the snapshot and infers the direction and/or distance to the location of the 

goal from the disparity between these images. It is considered that these aspects of 

insect behaviour can be a basis for the development of robust navigation algorithms for 

mobile robots. Visual homing is an appearance based navigation strategy whose homing 

algorithms are based on image based holistic methods using disparities between whole 

images to compute homing vectors.  

 

Image warping is a popular method which is considered to be one of the most reliable 

visual homing methods for indoor use in this category. It involves calculating the set of 

all changes in pose (position and orientation) between the IS and IC. Warping methods 

distort the IC as if the agent would move according to certain movement parameters. 

The space of possible movement parameters is then searched for the parameter 

combination leading to the warped image that is as similar as possible to the stored  IS . 

In order to achieve this, each warped IC is compared with IS using a pixel-by-pixel 

correlation measure. The current home vectors are determined based on the strongest 

similarity between those images [Szenher, 2008]. Arena et al. [2007] have proposed a 

new and simple visual homing algorithm employing the root mean square (RMS) 

difference and exclusive or (XOR) functions to compare IS  and  IC, where the home 

position is a recharging station. They demonstrated that it is possible to implement 

homing algorithms which allow a robot, fitted with a panoramic camera return to a 

reference position from any starting point in an area. A detailed review of corresponding 

image-based (holistic) visual homing methods has been conducted by Szenher [2008].  
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2.4.3.3 Object recognition  

 

For the appearance-based approaches previously mentioned, the robot is only able to 

access few sequences of images that help it to reach its final destination, or uses 

predefined images of target goals that it can use to track and pursue. An alternative 

method has been proposed which essentially employs a symbolic navigation approach 

instead of memorizing the environment [Kim and Nevatia, 1998; Kim and Nevatia, 

1999]. In this case, the robot utilizes symbolic commands such as “go to the desk in 

front of you” or “go to the main exit”. For instance, a command such as “go to the desk 

in front” informs the robot that the landmark is the desk and the path points straight 

ahead. The robot builds a map called an “s-map” which is a 2D grid that stores the 

projections of the observed landmarks as they are recognized. Once the target landmark 

such as the desk is recognized and its location is projected into the s-map, the robot 

plots a path using a GPS-like path planner and dead reckoning to approach the target 

[DeSouza and Kak, 2002]. 

 

2.4.3.4  Navigation techniques based on feature tracking 

 

Techniques for tracking moving elements such as corners, lines, object outlines or 

specific regions in a video sequence have become robust enough to be useful for 

navigation. Feature-based approaches determine the trajectory and motion of the robot 

by tracking and finding relative changes in the position of extracted features. This 

category can also include feature-based visual homing strategies.  

 

Feature-based methods fundamentally segment snapshot and current images into 

landmarks and background. They then attempt to pair each landmark in the snapshot 

image with a landmark in the current image, which is called the correspondence 

problem. To operate successfully, feature-based navigation algorithms must extract the 

same features from IS and IC (the feature-extraction problem). Each feature extracted 

from IS must then be paired with a feature from IC (the correspondence problem). The 

feature extraction and correspondence problems are difficult to solve in cluttered 
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environments in real-time, since the appearance of  landmark changes with viewpoint 

[Szenher, 2008].  

 

One of the earliest studies regarding feature tracking systems was conducted by Harrell 

et al. [1989]. They introduced a fruit tracking system employing the size and position of 

a valid fruit’s regions in colour images, to control the motion of a fruit-picking robot. 

Trahanias et al. [1997] implemented a robotic system able to extract landmarks 

automatically in indoor environments, using a selective search for landmark patterns 

which relies both on the workspace and the distinctiveness of the objects in the 

environment. For recognition purposes, a viewing transformation has been developed 

that transforms a stored pattern according to the current (new) position of the observer. 

This facilitates accurate recognition, and has been demonstrated by experimental results 

in an indoor environment [Trahanias et al., 1997]. A KLT tracker based homing schema 

was rooted in the extraction of very low-level sensory information, namely the bearing 

angles of corners. This was implemented on a robotic platform to evaluate the results  

[Argyros et al., 2001]. 

 

On the other hand, in most cases, feature tracking-based navigation algorithms do not 

provide an obstacle avoidance module, which must therefore be implemented by other 

means depending on the problem. For instance, Hao and Yang [2003] proposed a 

behavioural based navigation architecture for mobile robots, that utilized a robust visual 

landmark-recognition system based on genetic algorithms to guide the robot, which 

used a  fuzzy based obstacle avoidance system and ultrasonic range finder [Hao and 

Yang, 2003].  

 

It can be assumed that any two images of the same planar surface in space are related by 

a homographies. This concept has many practical applications, including mobile robot 

navigation. In a recent study, Guerrero et al [2005] introduced a method based on 

homographies computed between current images and images taken in a previous 

teaching phase with a monocular vision system. The vertical lines (features) were used 

to estimate the homographies, which are automatically extracted and matched. From 
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that, a complete  homography motion, with rotation and translation up to a scale factor 

can be computed [Guerrero et al., 2005].  

 

The scale invariant feature transform (SIFT) method is a milestone among techniques to 

detect the features of images or relevant points, and nowadays has become a method 

commonly used in landmark detection applications [Lowe, 2004]. The SIFT algorithm, 

introduced in this Chapter and detailed in Chapter 4, extracts features that are invariant 

to image scaling, rotation, and illumination. During the robot navigation process, 

invariant features which have been detected are then observed from different points of 

view, angles, and distances and under different illumination conditions, and thus 

become highly appropriate landmarks to be tracked for navigation. Pons et al. [2007] 

employed the SIFT algorithm for feature-based homing, and are utilized to recover the 

misalignment of orientation between the current and goal positions. Finally, a home 

vector between these two positions is calculated using the SIFT matches as a 

correspondence field [Pons et al., 2007].  

  

Visual servoing is another important concept which can be included in this category, 

and is defined as the capability to employ visual information to control the pose of the 

robot’s end-effectors relative to a target object or a set of target features. The task can 

also be defined for mobile robots, where it becomes the control of the vehicle’s pose 

with respect to specific landmarks. Thus, Szenher [2008] defined the feature based 

visual homing algorithms as a type of image-based visual servoing  There are two main 

approaches for visual servoing systems namely: PBVS (position based Visual Servoing) 

and IBVS (image based visual servoing) [Hutchinson et al., 1996]. PBVS algorithms 

solve the trajectory problem in workspace; however, in IBVS, the control commands 

are deduced directly from image features. Figure 2.9 provides the architectures of both 

approaches.  

 

Kim and Oh [2007] have proposed an intelligent mobile robot navigation architecture 

comprising both of these servoing methods to guide a mobile robot. The IBVS module 

estimates the motion planning directly from the image space so as to keep the target 

object always in the field of view. As well as this, the PBVS module is employed to 
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conduct an image-to-workspace transform to plan an optimal pose trajectory directly in 

the Cartesian space. The proposed fuzzy control architecture is considered to integrate 

these two types of visual servoing through a warning signal indicating that the target 

may escape the field of view. In addition, a neural network module is integrated into the 

architecture for the prediction of the target position for a robust timely tracking of the 

object  [Kim and Oh, 2007]. 
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         Figure 2.9:  PBVS and IBVS architectures, (a) PBVS, (b) IBVS, inspired by  

                             [Hutchinson et al., 1996] 

 

 

2.5 Obstacle Avoidance Systems based on Qualitative Information 

 

Obstacle avoidance techniques classified essentially entail extraction of qualitative 

image characteristics and their interpretation [Bonin-Font et al., 2008]. They are 

basically defined as sensor-based obstacle avoidance systems which process every item 

of online sensor data to estimate free and occupied space. These methods are considered 
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useful in avoiding having to compute accurate numerical data such as distance and 

position coordinates.  

 

Lorigo et al. [1997] proposed a low resolution vision-based obstacle avoidance 

architecture consisting of three dependent vision modules for obstacle detection. These 

modules were associated with edges, RGB (red, green, blue) colours and HSV (hue, 

saturation, value) information. The data from these modules was analyzed by a fourth 

module so as to simultaneously generate motion commands [Lorigo et al., 1997]. 

 

 

   Figure 2.10:  Flowchart of proposed algorithm [Saitoh et al., 2009] 

 

Ulrich and Nourbakhsh [2000] proposed a similar vision based obstacle avoidance 

strategy based on monocular vision. The strategy essentially involves assigning each 

pixel as either obstacle or ground according to its colour appearance [Ulrich and 

Nourbakhsh, 2000]. Saitoh et al. [2009] integrated this obstacle avoidance technique 

into a centre followed based mobile robot navigation architecture. The system does not 
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need prior knowledge of the environment and employs a low cost monocular vision 

camera as the only sensor needed to navigate the robot safely. The robot has a basic 

navigation strategy so that it moves towards the centre of the corridor until it encounters 

an unexpected obstacle. When any obstacle is detected, the robot attempts to avoid it or 

stops depending on the size of the obstacle. If the robot manages to pass the obstacle 

successfully, it then localizes itself toward the centre. The system is also able to detect 

boundaries using the Hough transform [Saitoh et al., 2009]. The flowchart of the given 

obstacle avoidance system is illustrated in Figure 2.10. 

 

ROBOCUP competition has become quite popular and has attracted the attention of 

many researchers in recent years. The detection of an opponent robot and the ball are 

two challenging tasks which must be solved efficiently. Fasola and Veloso [2006]  

proposed using image colour segmentation techniques for object detection, and gray-

scale image processing to  detect the opponent robots [Fasola and Veloso, 2006]. 

 

The qualitative based obstacle avoidance systems, which are also called appearance- 

based obstacle avoidance technique  [Ulrich and Nourbakhsh, 2000; Guzel and Bicker, 

2011] are described in more detail in the following chapter.  

 

2.6 Scale Invariant Feature Transform (SIFT) 

 

A local feature is basically defined as an image pattern which differs from its immediate 

neighbourhood. It is usually associated with a change in an image property or several 

properties simultaneously. The image properties most commonly considered are 

intensity, colour, and texture. A prominent survey of the local feature detectors 

classifies and evaluates them comprehensively [Tuytelaars and Mikolajczyk 2008], 

defining feature detection as methods that aim at computing abstractions of image 

information and making local decisions at every image point whether there is an image 

feature of a given type at that point or not. The scale invariant feature transform (SIFT), 

proposed by Lowe [2004] is a milestone in local feature detection. It allows the robust 

identification of objects among clutter and under partial occlusion. SIFT features are 

demonstrably invariant to translation, scaling and rotation in images, and are also highly 

http://en.wikipedia.org/wiki/Image_feature
http://en.wikipedia.org/wiki/Image_feature
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distinguishable from one another and relatively invariant to changes in illumination. 

These properties render them suitable for the purposes of mobile robot navigation. In 

recent years, studies regarding the performance analysis of local feature detectors have 

been carried out. One such evaluation concluded that SIFT-based descriptors are the 

most robust and distinctive, and are therefore best suited for feature matching 

[Mikolajczyk and Schmid, 2005]. However, the most recent feature descriptor, called 

SURF was not evaluated in this study. It is faster than the conventional SIFT algorithm 

and has been claimed by its originators to be more robust [Bay et al., 2006]. Both SIFT 

and SURF algorithms are open source and can be employed freely for non-commercial 

projects freely, however, SURF is not as flexible as SIFT in terms of platform 

dependency. Besides this it requires specific hardware configurations to run the 

applications. 

 

2.7 Sensor Theory and Vision Based Sensors  

 

Sensor technology has advanced considerably in the last decade, and many low cost 

sensor systems are available that can easily be deployed on robots. Sensors can be 

basically classified into two groups based on their interaction with the environment, as 

either passive (P) or active (A). Passive sensors employ energy that is naturally presents 

in the environment to obtain information. Computer vision is considered a typical 

example of a passive sensor. Active sensors, on the other hand, involve the emission of 

energy by the sensor into its environment, some of which is then reflected back in some 

manner to the robot. The laser range finder is one of the most common active sensor 

modalities used on mobile robots.    

 

2.7.1 Active ranging sensors   

 

The laser range finder is an active sensor which is able to measure distance, and is an 

important device for obstacle avoidance. It measures distance using time of flight (TOF) 

parameters. The laser range finder emits a coherent beam with approximately 0.5 degree 

spread, and it is difficult for it to be influenced by the environment. However, it is a 

http://en.wikipedia.org/wiki/SURF
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high cost sensor and detects object in a plane, which implies that if the object is just 

above or below the height at which the laser is positioned, it will not be detected. 

 

An alternative and low cost active sensor is the ultrasonic sensor. This emits a high 

frequency chirp which reflects off a nearby surface and is returned in a measureable 

time, which is then used to estimate distance. These sensors essentially emit a beam that 

receives echoes from a region of approximately 30 degrees wide from its source. They 

are mainly used for obstacle detection at short range; however they are vulnerable to 

noise due do the environmental conditions. Infrared sensors are another example of 

distance measurement which can be used for obstacle avoidance; however their major 

limitation is their relatively low accuracy. 

 

2.7.2 Vision based sensors   

 

Vision provides the most comprehensive information to mobile robots. However, due to 

its complexity and sensitivity to factors such as lighting it is sometimes difficult to use 

effectively.  There are various architectures for vision based sensors. One of these is 

stereo vision which is mainly used to extract range data. This is a promising sensing 

method that uses two or more cameras placed in different positions, capturing images 

which are then analysed to detect the objects. However, this architecture has several 

important drawbacks. Firstly processing costs can become excessive for relevant 

architectures, in terms of both software and hardware. A more fundamental problem is 

to estimate how the robot knows that it is looking at the same point in both images. This 

is called  the correspondence problem [Murphy, 2000]. Omni-directional vision is 

another popular sensing technique widely used by researchers. An omni-directional 

camera has a 360-degree field of view in the horizontal plane, or with a visual field that 

covers approximately the entire sphere. However, it is a specialist camera and should be 

mounted on top of the robot in order to take all round view. This causes limitations in 

terms of appearance, and the detection of obstacle region or walls is difficult [Saitoh et 

al., 2009]. Another important disadvantage of omni-directional cameras is loss of 

resolution in comparison with standard images. PTZ (Pan-Tilt-Zoom) vision refers to 

http://en.wikipedia.org/wiki/Field_of_view
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mechanically operated cameras, which are considered one of the most useful sensors 

[Jae Kyu et al., 2011]. The user typically has the ability to control the pan to the left and 

right, tilt up and down and the zoom of the camera with a joy stick or some other 

devices. The main advantage is they allow the operator to track objects or respond to a 

threat and follow it much more closely. They can zoom in and capture key information 

that can be used to help in loss prevention. However the limitation is that it is only able 

to record where the camera is pointed and focused, and if the camera is pointed away 

from where an incident happens it could potentially miss the event entirely.  

 

2.8 Mobile Robot Software  

 

Robot software is the coded commands that instruct a robot what tasks to perform and is 

used to control its actions. Robot programming is a challenging task, and thus several 

software systems have been proposed to facilitate programming as well as being 

deployed on widely distributed robotics platforms. Several software packages used in 

mobile robots have been developed and a comparison of those packages was carried out 

by Nattharith [2010]. 

 

The most popular of this types of software is Player/Stage which has been utilised by 

many research groups around the world. Player has become the preferred simulator in 

the mobile robot community because it does not place any constraints on how client 

programs should be written. Furthermore it can be used to interface with 2D and 3D 

robot simulators such as Stage and Gazebo. In addition, it provides several tools to 

display sensor output graphically. The following section details the structure of Player. 

Microsoft Robotics Developer Studio (MRDS), which provides a powerful simulation 

environment, is then introduced. 

 

2.8.1 Player architecture  

 

Player is a free and very popular software program which is able to control several 

robotics platforms. Its client/server model allows robot control programs to be written in 
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any programming language that can run on any computer with a network connection to 

the robot. Player supports multiple concurrent client connections to devices, creating 

new possibilities for distributed and collaborative sensing and control. Gerkey et al. 

[2001] states that: "Player is a network server interface to a collection of sensors and 

actuators, typically constituting a robot. “.  

                  

 

                   Figure 2.11 Overall system architecture of Player [Gerkey et al., 2001b] 

Player is designed as a distributed system and relies on the TCP protocol to handle 

communications between the client and server layers. The overall system architecture is 

illustrated in Figure 2.11. It is a language independent platform, as previously 

mentioned; however, the client programs developed using C++ can take advantage of 

the object-oriented Player C++ client library. This library employs classes as proxies for 

local services. For example, an instance of PlayerClient for a single sever proxy is 

employed to provide a connection with a Player server. Devices are registered by 

creating instances of the appropriate proxies and initialising them through the 

established Player Client object. Additionally there are numerous device proxies, such 
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as the LaserProxy class which acquires scan data for the laser. The Position2DProxy 

class, on the other hand, is used to obtain data on current position in 2D world with X-Y 

coordinates and orientation.  More details of the attributes of, and methods used by 

various classes, are presented in [Gerkey et al., 2004]. 

 

2.8.2 Microsoft Robotics Studio (MSRS) 

 

Microsoft Robotics Developer Studio (MRS) is a robotic programming development 

environment which was publicly released in December 2006 with the explicit goal of 

providing an industry software standard for robot control. It provides solutions for 

concurrency, distribution, abstraction, simulation, and programmer interaction 

simulators [Jackson, 2007]. 

 

The Visual Simulation Environment (VSE) is designed to be used in a variety of 

advanced scenarios with high demands for visualization and scaling. Furthermore, a 

beginner with little programming experience can use simulation, and interesting 

applications can be developed in a game-like environment.  

 

2.9 Software for Computer Vision 

 

Computer vision refers to processing data from any modality which produces an image. 

The term ‘image’ means a way of representing data in a picture-like format where there 

is a direct physical correspondence to the scene being imaged. An image implies a 

multiple reading placed in a two dimensional array in a grid. Every element in the array, 

called pixels, maps onto a small region of space. The modality of the camera estimates 

what the image measures, for instance, if a visible light camera is used, the data is 

subsequently stored at each pixel is the value of the light, such as in colour. 

Alternatively, if a thermal camera is employed, then the values store data on the heat at 

the region.  
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Computer vision on reactive robots (robot vision) is most often achieved using a video 

camera which is an either IP or CCTV camera. Robot vision is a rapidly developing 

technology that can increase the productivity and efficiency of all robotic systems. 

Recently, various different software architectures and frameworks have been developed 

to acquire and process image data successfully, thus helping researchers to implement 

both new and conventional algorithms more rapidly and efficiently. There are two 

popular open source computer vision libraries; namely, OpenCv and Clmg. These 

libraries are widely used by researchers who need to analyse and process image data for 

real time applications.  

 

OpenCV is a library of image processing algorithms developed by Intel for use by 

researchers and professionals alike. The main programming languages which can be 

used with OpenCV are C and C++. This library supports many image processing and 

computer vision algorithms, such as those for basic image processing like filtering or 

edge detection, structural analysis using the Hough transform, template matching, linear 

algebra routines, and others. Despite its strengths, the implementation of the library may 

be complex depending on the hardware configuration and third party software required, 

and serious effort is required to understand some of the basic principles before going on 

to bigger and better things. The source code and more detailed information have been 

published in OpenCV [2011]. 

 

CIMG (Template image processing toolkit) is an open source image processing and 

computer vision designed by Tschumperlé et al. [1999]. It can be used across many 

platforms, including Windows, OS X, and UNIX. It is also highly portable and is stored 

in a single .h header file, which is about 1MB in size. The library itself contains several 

useful algorithms. The header file CImg.h contains all the classes and functions that 

comprise the library itself. The main advantages of this library are its portable structure 

which allows it to successfully work in different hardware and software configurations 

[Tschumperlé et al., 1999].  
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2.10 Soft Computing 

 

Soft Computing is a collection of techniques including many fields that fall under 

various categories in Artificial Intelligence. These techniques resemble biological 

processes more closely than traditional techniques, which are largely based on formal 

logical systems. It has three main branches including fuzzy logic, neural networks, and 

genetic algorithms. Navigation is a key issue for mobile robots as previously mentioned; 

traditional robot control methods rely upon strong mathematical modeling, analysis, and 

synthesis. However, soft computing techniques provide alternative and simpler 

solutions to this problem. Two major branches of soft computing used in this research 

are introduced in the following sections. 

 

2.10.1 Fuzzy logic   

 

Fuzzy logic is essentially a system for dealing with uncertainty, and was developed by 

Zadeh in the 1960s to characterize types of knowledge that cannot be represented by 

conventional boolean algebra [Zadeh, 1965]. There are now many variations on the 

concept of a fuzzy logic that allows objects to take partial membership in vague 

categories which it achieves through the use of a structure called a fuzzy set. Fuzzy set 

theory is responsible for representing the elements using grades of possibility called the 

membership function. These allow the description of the behaviour of systems that are 

otherwise complex to deal in with mathematical terms. The fuzzy controller is 

composed of the following four elements: fuzzification, rule-base, fuzzy inference and 

defuzzification, as shown in Figure 2.12 [Passino and Yurkovich, 1998]. Fuzzy control 

has been used in a wide variety of applications in engineering, science, business, 

medicine, psychology, and other fields. Autonomous mobile robots can also employ 

fuzzy logic for complex control architectures. For instance, Daniel et al. [1999] 

introduced the design of a fuzzy logic based navigation system for a mobile robot in 

which the system includes two behaviours: obstacle avoidance and goal seeking. The 

inputs to the fuzzy controller are the desired direction of motion and sensory data, while 

the outputs from each behaviour rule are integrated using a command fusion 
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mechanism, resulting in the smooth motion of the robot [Daniel et al., 1999]. Several 

techniques for mobile robot using fuzzy logic have been developed, including those 

proposed by [Hung-Ching and Chih-Ying, 2005], [Kiwon and Nian, 2007] , [Harb et al., 

2009]. 

 

Hung-Ching and Chih-Ying [2005] introduced a fuzzy logic system on a mobile robot 

where the steering angle and speed are determined, by two separate fuzzy logic 

controllers. Additionally, Kiwon and Nian [2007] described similar fuzzy control 

architecture to guide a mobile robot in which the design of mobile robot navigation 

architecture was based on the combination of two fuzzy logic controllers acting on 81 

different rules. The system was equipped with eight range finder sensors and a GPS 

sensor, and the outputs of the fuzzy system controlled the speed of two servo motors 

[Kiwon and Nian, 2007]. Harb et al. [2009] described a navigation architecture 

employing a fuzzy controller and a neural network to adjust the speed of mobile robots. 

Additional research in mobile robots utilizing fuzzy based control architectures is 

described in Ross [2004]. The components of a fuzzy logic controller will be detailed in 

the following section. Further discussion of fuzzy logic, including its operation and the 

use of fuzzy control in the area of speed control, is provided in Chapter 5. 

 

 

                                    Figure 2.12 Fuzzy controller [Passino and Yurkovich, 1998] 

Fuzzy logic lends itself to implementation in systems ranging from simple, small, 

embedded micro-controllers to large, networked, multi-channel PC or workstation-
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based data acquisition and control systems. It also relatively easy to implement and 

provides faster and more consistent results than conventional control methods. In this 

study, a FL based control system based on the Mamdani method is designed to fuse 

given algorithms. The basic configuration of a fuzzy-logic system is composed of four 

parts (see Figure 2.12): Fuzzification, Fuzzy rule-base, Inference Mechanism and 

Deffuzification [Driankov, 1987].  

 

2.10.1.1 Fuzzification   

 

Fuzzification comprises a scale of the transformation of input data from a current 

process into a normalised domain. This requires the identification of two parts where 

the first defines the fuzzy variables that correspond to the system input variables. The 

second part defines the fuzzy sets of the input variables and their representative 

membership functions, including the range of the data.  

 

   

Figure  2.13:  Membership function shapes, (a) triangular, (b) trapezoidal, (c) gaussian, [Ross 

and Hoboken, 2004] 

 

Membership functions may cross each other’s boundaries, and may be triangular, 

trapezoidal or bell shaped, as illustrated in Figure 2.13. The choice of the fuzzy sets is 

based on expert opinion using natural language terms that describe the fuzzy values. In 

this study triangular and trapezoid models are utilized to design the membership 

functions of the input and output values. 

The triangular function has three parameters which can be defined as follows: 
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The degree of membership of the Gaussian function (Figure 2.13) depends on two 

parameters, c and σ, which represent the centre and width of the graph respectively and 

are illustrated as follows: 
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The trapezoidal function incorporates four parameters which can be represented as: 
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Fuzzy logic uses intersection, union, and complement operations to represent the 

standard common operators of AND, OR, and NOT, respectively. The most common 

method used to calculate intersection and union operations are the Minimum and 

Maximum functions. For the fuzzy sets M and N, which are subsets of the universe X, 

the following definitions are proposed to represent the AND, OR, and NOT operators 

respectively [Ross and Hoboken, 2004]  (see Figure 2.14). 
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    Figure  2.14:  Fuzzy Operators, (a) and, (b) or, (c) not 
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While variables in mathematics usually take numerical values, in fuzzy logic 

applications, non-numeric linguistic variables are often used to facilitate the expression 

of rules and facts. A linguistic variable is a variable whose values are words or phrases 

in a natural or artificial language rather than being numerical [Zadeh, 1965; Zadeh, 

1968].  According to Godjevac [1997], a linguistic variable is defined by: 

 

 Its name: "x". 

 Its term set: "TS(x)", which is the set of linguistic values or labels of "x". 

 The base variable "u", which supports the linguistic values of "x". In others words, 

the membership functions for the linguistic values of "x" are defined in the domain 

of "u". 

 The universe of discourse "U" associated with the base variable "u". 

 

Here, "x" should not be confused with "u": "x" is the name of a linguistic variable (such 

as distance, angle, etc) whereas "u" is the name of the base variable giving physical 

sense to "x" (i.e. meters, degrees, etc). In physical applications, "x" may adopt linguistic 

values (i.e. small, very large, etc) whereas "u" may adopt numerical values (i.e. 100m, -

30°, etc) [Godjevac, 1997]. In a fuzzy controller, inputs and outputs are defined as 

linguistic variables. For instance, suppose that a controller is designed to guide a vehicle 
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towards a reference point in a plane. The inputs of the controller are the distance 

between the reference point and the vehicle, and the speed of the vehicle. The output of 

the controller is the power supplied to the vehicle’s motor. The term set of the linguistic 

variables distance and speed for instance, can be defined, as follows: 

 

               Table 2.1:  Linguistic variables and their corresponding linguistic terms  

 

 

 

 

 

Since distance is a length, the base variable "u" associated with the linguistic variable 

distance may adopt values expressed in terms of length units. Assuming the length 

measurement ranges from 0 to 1000 cm, the universe of discourse is U=[0,1000]. A 

linguistic value belonging to distance makes physical sense through the definition of its 

membership function that confines its domain in terms of the variable "u". This 

restriction is the "meaning" of such a linguistic value. The number of sets and the choice 

of their membership functions depend on the type of the problem that is required to be 

solved. 

 

There is no standard design method that can be followed to obtain either the most 

effective membership function types for their numbers. By increasing the number of 

membership functions, the behaviour of a fuzzy system may be enhanced. However this 

increases the number of rules and consequently increases computational time required.  

 

2.10.1.2 Fuzzy rule-base  

 

A fuzzy proposition is a statement expressed in a natural or artificial language. In 

contrast to classical logic propositions, a fuzzy proposition may adopt a truth-value 

from the interval [0,1]. For the former example from vehicle guidance, shown in Table 

2.1, the following sentences are fuzzy propositions: 

 

   Linguistic Variable Linguistic Terms Abbreviations of Terms  

Distance Small, Medium , Big           S,M,B 

Speed Low,  Medium, High           L,M,H 

Power(Braking) Hard, Medium, Light            H,M,L 
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Distance is very Big ,  Speed is Low. 

 

where the meanings of these propositions are determined by the corresponding 

membership functions. Fuzzy controllers normally deal with several input variables 

defined in different universe of discourses. Therefore, the compound fuzzy propositions 

that are formed using linguistic connectives such as and, or, not, etc, are more 

frequently encountered such as: 

 

Distance is very Small and Speed is Low; Distance is Big or Speed is High. 

 

The generation of the fuzzy rule is the second step in a fuzzy system and depends on the 

knowledge of experienced human operators, the fuzzy model of the plant concerned and 

the analysis of the system. The rule base is composed of two parts namely, the if-part 

and according to Godjevac [1997], a linguistics If-Then rule. This can be demonstrated 

as follows: 

 

antecedent part (premise), expressed by: if <fuzzy proposition>, 

consequent part, expressed by: then <fuzzy proposition>, 

 

where the fuzzy propositions at the antecedent and consequent parts may be simple or 

compound. In a fuzzy controller, the antecedent part is related to the inputs of the 

controller whereas the consequent part is related to the outputs. Let us reconsider the 

former example from vehicle guidance [Godjevac, 1997]. Suppose then that in the 

corresponding controller there is a fuzzy rule defined as:  If Distance is very Small and 

Speed is High then Braking Power is Hard. 

 

2.10.1.3 Fuzzy inference 

 

Fuzzy inference provides the conclusion from the rule-base and forms the intermediate 

stage between the fuzzification and defuzzification of the fuzzy system. There are two 

methods used to find the rules conclusion; namely Max-Min inference and Max-Product 

inference. Max-Min inference uses the Minimum operator to combine the antecedent of 
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the If-Then rules, which produces modified fuzzy sets for the outputs. These modified 

sets are then combined using the Maximum operator. For a set of r rules, the aggregated 

output using the Max-Min inference will be given as follows [Ross and Hoboken, 

2004]: 

 

  ( )            (    ( )    ( ))     k     3 … r                                           (2.7) 

  

 

Figure  2.15:  Example for the max-min  inference method [Ross and Hoboken, 2004] 

                   

Max-Product inference employs the standard Product operator to combine the 

antecedent of the If-Then rules. Then the Maximum operator is used to combine these 

modified sets. For a set of r rules, the aggregated output using the Max-Product 

inference will be given as follows [Ross and Hoboken, 2004]: 

 

  ( )        (    ( )    ( ))     k     3 … r                                               (2.8) 

             

Figure 2.15 demonstrates the Max-Min inference processes for two input variables i and 

j. Each of them is represented by two triangular fuzzy sets using two rules. 

 



                                                              Chapter 2 Literature Review 

 

46 

 

2.10.1.4 Defuzzification 

 

Defuzzification is the process of mapping from a space of inferred fuzzy control action 

to a space of non-fuzzy control actions where the calculated crisp value is that which 

best represents the inferred control action. A number of defuzzification strategies exist, 

and it is a simple matter to invent more. The most popular defuzzification methods are 

the Centre-of-Area, Centre-of-Largest-Area, Centre-of-Sums, and Mean-of-Maximum. 

These methods are based on two basic mechanisms: centroid and maximum. The 

centroid methods are based on finding a balance point, while the Maximum methods 

search for the highest peak of weight (area) of each fuzzy set. Ross and Hoboken [2004] 

detailed these methods as follows: 

 

Centre-of-Area (COA): COA essentially calculates the centroid of the total area 

representing the fuzzy output set as given by: 

 

     
∫ ( )        

∫  ( )  
                            (2.9) 

         

where  ∫ ( )    is the area of the output fuzzy set . 

 

Centre-of-Largest-Area (CLA): CLA evaluates each implication result and then 

computes the centroid of the largest area to represent the output fuzzy, as given by: 

 

     
∫  ( )        

∫   ( )  
                                                                                   (2.10) 

     

where  ∫   ( )     presents the largest surface in the output fuzzy set.  

 

Centre-of-Sum (COS): This process calculates the algebraic sum of individual output 

fuzzy sets instead of their union, as illustrated in the following equation: 
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Mean-of-Maximum (MOM): MOM is often referred to as the Middle-of-Maximum. It 

is used when the maximum membership function is not unique, and is expressed as 

follows:        
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where     is the mean of all the maximums of the fuzzy output with the highest degree 

of truth, and M  is the integer number of such peaks [Ross and Hoboken, 2004]. The 

selection of the defuzzification method to be used here  is based on criteria which can be 

summarised as follows [Driankov et al., 1993; Ross and Hoboken, 2004]: 

 

 Continuity, such that a small change in the input does not lead to a big change in 

output  

 

 Computational complexity, where the computational time needed is an 

important criterion for the practical choice of fuzzy inference method.  

 

 Plausibility, where the method is considered to be plausible if the support for the 

output fuzzy set has the highest degree of membership.  

 

 Weight counting (disambiguity), in that weight information is not lost due to an 

inability to decide. (For instance, if there are two large areas, then CLA will not 

be able to decide). 
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2.10.2 Neural Network   

 

A neural network, inspired by aspects of the structure of biological neural networks, is a 

powerful data modelling tool that is able to capture and represent complex input/output 

relationships. The field of research into neural network was established before the 

advent of computers. Neural networks have a remarkable ability to derive meaning from 

complicated or imprecise data, and can be used to extract patterns and detect trends that 

are too complex to be noticed by either humans or other computer techniques.  

 

They have been applied in many fields, including aerospace, financial, defence, 

electronics, and robotics and computer vision. For instance, a vision-guided mobile 

robot navigation system, called NEURO-NAV, based on a neural network was 

described by [Meng and Kak, 1993]. In NEURO-NAV where primitive navigational 

tasks such as hallway following, and landmark detection are implemented using neural 

networks. In a more recent study, Janglova [2004] introduced the intelligent control of 

an autonomous robot which was claimed to move safely in a partially structured 

environment. The method essentially constructs a collision-free path for the robot based 

on two separate neural network architectures, where the first determines free-space 

using an ultrasound ranger finder, while the second determines possible navigation steps 

towards the goal [Janglova, 2004b]. Chi and Lee [2011] defined a neural network based 

obstacle control system that able to guide the mobile robots traverse through a maze 

with arbitrary obstacles [Chi and Lee, 2011]. Additional research in neural network 

based obstacle avoidance techniques can be found in [Lynch et al., 1999; Trieu et al., 

2008; Fazl-Ersi and Tsotsos, 2009]. 

  

Camera calibration is a key step in 3D computer vision, which involves extracting 

metric information from 2D images and usually entails the solution of complex non-

linear equations. However, artificial neural networks demonstrate outstanding non-

linear mapping performance which can avoid these processes and makes it unnecessary 

to know parameters of the cameras, such as focus and distortions as well as the 

geometry of the system. An example of the implementation of intelligent camera 

calibration for a monocular vision camera  is defined by [Li Guo and Li Guang, 2011] . 
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Their algorithm employed the Harris corner extraction algorithm to obtain input and 

output data for a multi layer neural network architecture. Other relevant examples of 

neural network based camera calibration can be found in [Lynch et al., 1999; Cai et al., 

2010; Xiong et al., 2010]. The background knowledge of artificial neural networks 

associated with this dissertation will be detailed in the following section. Further 

discussion of neural networks, including their operation and the use of control in the 

area of calibration, obstacle avoidance and distance estimation, is provided in Chapter 5. 

 

2.10.2.1 Background to Artificial Neural Network 

 

The human nervous system consists of small cellular units, called neurons. When 

connected in tandem, these form a nerve fibre. A biological neural net is a distributed 

collection of these nerve fibres. A neuron receives electrical signals from its 

neighbouring neurons, processes those signals and generates signals for other 

neighbouring neurons attached to it. The operation of a biological neuron, which 

decides the nature of the output signal as a function of its input signals, is not yet clearly 

understood. However, most biologists are of the opinion that, after receiving signals, a 

neuron estimates the weighted average of the input signals and limits the resulting 

amplitude of the processed signal using a non-linear inhibiting function [Fu, 1994]. 

Further details about biological neurons can be found in Anderson [1972].  

 

                          

 

      Figure 2.16:  Artificial neuron model [Chrislb, 2005] 
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Artificial neurons are similar to their biological counterparts. They have input 

connections which are summed together to determine the strength of their output, which 

is the result of the sum being fed into an activation function, as illustrated in Figure 

2.16. Though many activation functions exist, the most common is sigmoid activation 

function, which outputs a number between 0 (for low input values) and 1 (for high input 

values). The result of this function is then passed as the input to other neurons through 

more connections, each of which are weighted. These weights determine the behaviour 

of the network. The most common activation functions are given as follows [Hagan et 

al., 1996]:   

 

Linear: This function is also called ‘purelin’ activation function providing linear 

relationships between the input and output, which is defined as follows: 

  

 ( )                                    (2.13) 

      

Sigmoid: This function can range between 0 and 1, and an example is the log-sigmoid 

function which is defined as follows. 

 

 ( ) =  
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Symmetric Sigmoid Function: This function can range from -1 to 1, and the 

hyperbolic tangent sigmoid is defined as follows: 

 

 ( ) =  
      

                                                                                  (2.15) 

      

Step function:  This is a special type of function whose graph is a series of line 

segments. This kind of step activation function is useful for binary classification 
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schemes. In other words, if the aim is to classify an input pattern into one of two groups, 

a step activation function as given below can be used as a binary classifier. 

 

 ( )  {
     

        
     

                      (2.16)

         

      

2.10.2.2 Topologies of artificial neural networks 

 

Depending on the nature of the problems involved, artificial neural networks can be 

organized in different structural arrangements (topologies). Common topologies can be 

classified into two groups namely; feed-forward and recurrent neural networks. Feed-

forward networks mainly comprise single layer perceptron and multiple layer 

perceptron topologies. The most popular recurrent topologies are simple recurrent and 

Hopfield networks. These topologies are defined below [Konar, 2000]. 

 

Single Layer Perceptron: The earliest kind of neural network is a single-layer 

perceptron network, which consists of a single layer of output nodes where the inputs 

are fed directly to the outputs via a series of weights. In this way it can be considered 

the simplest kind of feed-forward network. The sum of the products of the weights and 

the inputs is calculated in each node and, for instance, if the value is above some 

threshold (typically 0) the neuron fires and takes the value 1; otherwise it takes the 

value -1.  

Perceptrons can be trained by a simple learning algorithm that is usually called the 

delta-rule. It calculates the errors between calculated output and sample output data, and 

uses this to create an adjustment to the weights, thus implementing a form of gradient 

descent. Single-unit perceptrons are only capable of learning linearly separable patterns 

[Fu, 1994]. 

Multi Layer Perceptron: This class of networks consists of multiple layers of 

computational units, usually interconnected in a feed-forward way. This means that 

http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/
http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/
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each neuron in one layer has directed connections to the neurons of the subsequent 

layer. In many applications the units of these networks apply a sigmoid function as an 

activation function. The universal approximation theorem for neural networks states that 

every continuous function that maps intervals of real numbers to some output interval of 

real numbers can be approximated arbitrarily closely by a multi-layer perceptron with 

just one hidden layer. This result holds only for restricted classes of activation 

functions, such as sigmoidal functions. Multi-layer networks use a variety of learning 

techniques, the most popular being back-propagation. Here the output values are 

compared with the correct answer to compute the value of some predefined error-

function. By various techniques the error is then fed back through the network. Using 

this information, the algorithm adjusts the weights of each connection in order to reduce 

the value of the error-function by some small amount. After repeating this process for a 

sufficiently large number of training cycles, the network will usually converge to some 

state where the error of the calculations is small. In this case one can say that the 

network has learned a certain target function [Hagan et al., 1996]. To adjust weights 

properly one applies a general method for nonlinear optimization task that is called 

gradient descent. For this the derivation of the error-function with respect to the 

network weights is calculated and the weights are then changed such that the error 

decreases (thus going downhill on the surface of the error function). For this reason 

back-propagation can only be applied on networks with differentiable activation 

functions.  

Simple Recurrent Network: A simple recurrent network (SRN) is a variation of the 

multi-layer topology. Contrary to the feed-forward networks, the dynamical properties 

of the network are important.  In some cases, the activation values of the units undergo 

a relaxation process such that the neural network will evolve to a stable state in which 

these activations do not change. In other applications, the change of the activation 

values of the output neurons is significant, such that the dynamical behaviour 

constitutes the output of the neural network [Hagan et al., 1996].  

 

Hopfield neural networks: The Hopfield net is a recurrent neural network in which all 

connections are symmetric. This network has the property that its dynamics are 

http://www.knowledgerush.com/kr/encyclopedia/Sigmoid_function/
http://www.knowledgerush.com/kr/encyclopedia/Backpropagation/
http://www.knowledgerush.com/kr/encyclopedia/Optimization/
http://www.knowledgerush.com/kr/encyclopedia/Gradient_descent/
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guaranteed to converge. If the connections are trained using Hebbian learning then the 

Hopfield network can perform robust content-addressable memory, and it is robust to 

connection alteration. 

2.10.2.3 Learning using neural networks 

 

Artificial neural nets have been successfully used for recognizing objects from their 

feature patterns. For the classification of patterns, neural networks should be trained 

prior to the phase of recognition process. The process of training a neural net can be 

broadly classified into three typical categories, namely supervised, unsupervised and 

reinforcement. 

 

 

  Figure 2.17:  The supervised learning process 

 

Supervised Learning: The supervised learning process shown in Figure 2.17 requires a 

supervisor that submits both the input and the target patterns for the objects to be 

recognized. For instance, to classify objects into "ball", "skull", and "orange", the 

features of these objects must be submitted, such as average curvature, the ratio of the 

largest solid diameter to its transverse diameter, and so on, as the input feature patterns. 

Conversely, to identify one of the three objects, one may use a 3-bit binary pattern 

where each bit corresponds to one object. Given such input and output patterns for a 

number of objects, the task of supervised learning calls for the adjustment of network 

parameters such as weights and non-linearities, which can consistently satisfy the input-

output requirements for the entire object class, which is spherical objects in this 
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example). The most common supervised learning algorithms is the back-propagation 

training algorithm [Konar, 2000].  

 

Unsupervised Learning: If the target pattern is unknown, many recognition problems 

require the process of unsupervised learning which attempts to generate a unique set of 

weights for one particular class of patterns. For instance, consider a neural net of 

recurrent topology having n nodes. Assume that the feature vector for spherical objects 

is represented by a set of n descriptors, each assigned to one node of the structure. The 

objective of unsupervised learning process is to adjust the weights autonomously, until 

an equilibrium condition is reached when the weights do not change further [Konar, 

2000].  

 

The process of unsupervised learning, therefore, maps a class of objects to a class of 

weights. Generally, the weight adaptation process is described by a recursive functional 

relationship. Depending on the topology of neural nets and their applications, these 

recursive relations are constructed intuitively. The Hopfield network is a typical 

example of unsupervised learning [Hagan et al., 1996]. 

 

Reinforcement Learning:  This learning process may be considered as an intermediate 

form of the above two types of learning. In this process, the learning machine needs to 

undertake some action on the environment and receives a feedback response from the 

environment. The learning system grades its action good (rewarding) or bad 

(punishable) based on the environmental response and adjusts its parameters 

accordingly. Generally, parameter adjustment is continued until an equilibrium state 

occurs, following which there will be no more changes in its parameters.  

 

2.10.2.4 Back-propagation algorithm  

 

Back-propagation is one of the most popular techniques used for training neural 

networks, and an example of a three-layer back-propagation network is illustrated in 

Figure 2.18. This technique is primarily useful for feed-forward networks which have 

http://www.knowledgerush.com/kr/encyclopedia/Neural_network/
http://www.knowledgerush.com/kr/encyclopedia/Neural_network/
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no feedback, or put more simply that have no connections which loop. Since it is a 

supervised training algorithm, both the input and the target patterns must be given. For a 

given input pattern, the output vector is estimated through a forward pass on the 

network. After the forward pass is completed, the error vector at the output layer is 

estimated by taking the difference between the target pattern and the generated output 

vector. A function of errors of the output layered nodes is then propagated back through 

the network to each layer for the adjustment of weights in that layer. The weight 

adaptation policy used in back-propagation algorithms is derived from the principle of 

steepest descent approach [Fu, 1994; Hagan et al., 1996].  

  

 

                Figure  2.18:  An example of three-layer back-propagation network 

The steepest descent method is used for finding the minimum. It consists of computing 

the gradient of the function, then taking a small step in the direction of a negative 

gradient, which hopefully corresponds to a decreased function. The gradient of a 

multivariate function is the vector of partial derivatives, one for each variable. The 
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gradient is a vector in the space of all variables that the function depends on. It points in 

the direction of steepest increase [Hagan et al., 1996].  

 

Consequently, this is essentially a two pass algorithm where the forward pass computes 

the outputs of all nodes, working from the inputs to the output node where the error is 

recorded, and the weights are held fixed during the forward pass. However, in the 

backwards pass, the weight correction starts from the final layer (output node) back 

towards the inputs.  

 

2.11 Summary    

 

Mobile robots have had a long history since the Shakey, the first mobile robot, was 

established. In this chapter relevant information regarding research, particularly in 

vision based mobile robotics field has been presented. Mobile Robot architectures, the 

foundations of their control and navigation systems enabling the robot to safely navigate 

to its goal position were introduced. The review mainly has focused on three major 

trends in visual based mobile robot navigation: map-based navigation, map-building-

based navigation and mapless navigation. Focusing on the topic of mapless navigation, 

the most important techniques were summarized including visual homing and visual 

servoing concepts. These algorithms fall naturally into four categories: optical flow, 

appearance-based, object recognition and navigation techniques based on feature 

tracking. All of these have been defined and associated with relevant studies. 

Additionally, obstacle avoidance techniques using qualitative information have been 

defined. Feature-based algorithms require reliable solutions to the problems of 

consistent feature extraction and correspondence to ensure successful operation. 

Therefore, the current state of one of the strongest local feature detectors has been 

introduced. Sensors assist the mobile robot to acquire information about the external 

surroundings, while fuzzy logic and neural network facilitate robust and smooth motion 

for mobile robot. Finally, it was explained how the knowledge described has been 

integrated into software architectures to achieve specific tasks.   
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   CHAPTER 3 

               VISION BASED OBSTACLE AVOIDANCE  
 

This chapter focuses on a new vision based obstacle avoidance technique combining 

optical flow and appearance-based methods. The first section provides a brief 

description of existing vision based obstacle avoidance techniques. The next section 

details the proposed optical flow and appearance-based algorithms, followed by the 

design of these algorithms for obstacle avoidance. The final section of the chapter 

presents results for the proposed architecture of experiments conducted using Microsoft 

Robotics Studio. The results confirm that the proposed method can provide an 

alternative and robust solution for mobile robots using a single monocular camera as the 

only sensor used avoiding obstacles.   

 

3.1 Vision Based Obstacle Avoidance Techniques 

 

One of the key research problems in mobile robot navigation concerns methods for 

obstacle avoidance. In order to cope with this problem, most autonomous navigation 

systems rely on range data for obstacle detection. Ultrasonic sensors, laser rangefinders 

and stereo vision techniques are widely used for estimating range. However, all of these 

have drawbacks. Ultrasonic sensors suffer from poor angular resolution, and laser range 

finders and stereo vision systems are relatively expensive. Moreover the computational 

complexity of stereo vision systems is another key challenge [Ulrich and Nourbakhsh, 

2000]. In addition to their other shortcomings, range sensors are not capable of 

differentiating between different types of ground surfaces such as pavements and 

adjacent flat grassy areas. Overall the computational complexity of the avoidance 

algorithms and the cost of sensors are the most critical factors for real time applications. 

The use of monocular vision based systems can avoid these problems and are able to 

provide appropriate solutions to the obstacle avoidance problem. There are two general 

types of vision based obstacle avoidance techniques; those that compute apparent 

motion, and those that rely on the appearance of individual pixels for monocular vision 
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based obstacle avoidance systems. The first group is called optical flow based 

techniques, in which the main idea is to control the robot using optical flow data, from 

which the heading direction of the observer and time-to-contact values are obtained 

[Guzel and Bicker, 2010]. One way of using these values is by acting to achieve a 

certain type of flow. For instance, to maintain ambient orientation, the type of optic 

flow required is to detect no flow at all. If some flow is detected, then the robot should 

change the forces produced by its effectors so as to minimize this flow, based on the 

Law of Control [Contreras, 2007] .    

 

A second group of techniques is called the appearance-based methods, which in essence 

rely on qualitative information. They utilize basic image processing techniques which 

consist of detecting pixels different in appearance from those of the ground and then 

classifying them as obstacles. The algorithms used perform in real-time, provide a high-

resolution obstacle image, and  can operate in a variety of environments [DeSouza and 

Kak, 2002]. The main advantages of these two types of conventional methods are their 

ease of implementation and ready availability for real time applications.  

 

3.2 Optical Flow for Obstacle Avoidance    

 

Optical flow, as illustrated in Figure 3.1, is an approximation of the motion field, 

summarizing the temporal changes in an image sequence. Optical flow estimation is one 

of the central problems in computer vision.  There are several methods which can be 

employed to determine optical flow, namely: block-based, differential, phase correlation 

and variational methods [Barron et al., 1994; Atcheson et al., 2009]. There has been 

wide interest in the use of optical flow for vision-based mobile robot navigation. The 

visual control of motion in flying insects has been shown to provide important clues for 

navigational tasks such as centred flight in corridors and the estimation of distance 

travelled, encouraging new biologically-inspired approaches to mobile robot navigation 

using optical flow. Behaviour such as corridor centring, docking and visual odometry 

have all been demonstrated in practice using visual motion for the closed loop control of 

a mobile robot [Szenher, 2008]. In recent years, there has been growing amount of 

literature on optical flow based mobile robot navigation. Bernardino and Santos-Victor 
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[1998] used biologically inspired behaviours based on stereo vision for obstacle 

detection. A trinocular vision system for mobile robot navigation has been also 

proposed [Argyros and Bergholm, 1999]. These methods, in some ways, emulate 

corridor following behaviour; nevertheless their main disadvantage is the need to 

employ more than one camera. Alternatively, a number of studies relying on monocular 

vision have proposed the employment of optical flow techniques for mobile robot 

navigation [Szabo et al., 1996; DeSouza and Kak, 2002; Souhila and Karim, 2007; 

Guzel and Bicker, 2010]. 

   

      

                          a) Destination              b) Source                c) Animation 

 

Figure 3.1: Illustration of flow vectors and motion animation, (a) destination image, (b) 

source image, (c) movement animation  
 

Differential methods are widely used for these navigation tasks, and are mainly based 

on partial derivatives of the image signal and/or the flow field sought and higher-order 
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partial derivatives. McCarthy and Barnes [2004] conducted a comprehensive study 

analyzing the performance of differential methods in mobile robot navigation. The 

results demonstrated similar levels of performance in the most popular differential 

methods [McCarthy and Barnes, 2004]. Accordingly, in the present study a multi 

resolution version of  the conventional Horn-Schunk algorithm [Horn and Schunck, 

1981], which is one of the most popular optical flow estimation methods, is used to 

estimate flow vectors in steering the robots.  

 

3.2.1 Horn-Schunk method for obstacle avoidance 

 

The Horn–Schunck algorithm yields a high density of flow vectors. On the negative 

side, this process is more sensitive to noise than local methods. 

 

The main idea behind the technique assumes that, for a given scene point, the 

corresponding image point intensity I remain constant over time, which is referred to as 

the  conservation of image intensity  [Atcheson et al., 2009]. Therefore, if two 

consecutive images have been obtained subsequent time intervals, the basic idea is to 

detect motion using image differencing. If any scene point projects onto an image point 

(   ) at time t and onto an image point (         ) at time (    ), the following 

equation is inferred based on the assumption of the conservation of image intensity.   

 

 (     )   (              )                                           (3.1)      

       

Expanding the right-hand side of  Eq. 3.1 using a Taylor series about (     ), and 

ignoring the higher order terms then by rearrangement gives the following expression: 

 

 (     )    (     )     
  

  
   

  

  
   

   

   
                                                      (3.2) 

where   illustrates the second and higher order terms in   ,     and    . Further 

rearrangement gives the following equation: 
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                                                              (3.3)         

 

A simpler expression is obtained by dividing by    throughout where movement along 

the horizontal (
  

  
), and vertical (

  

  
) directions are u and v respectively. Conducting 

these rearrangements and denoting partial derivatives of  I as  Ix,  Iy and  It gives the 

differential flow equation shown in following expressions:  

  

                                                                  (3.4)  

                                      

where, Ix, Iy and It  are the partial derivatives of image brightness with respect to x, y and 

t, respectively. Having one equation with two unknowns   ,    for each pixel presents 

an aperture problem of the optical flow algorithms. To find the optical flow, another set 

of equations is needed using some additional constraint. All optical flow methods 

introduce additional conditions for estimating the actual flow [Horn and Schunck, 

1981].  Depending on the approach, a regularizing term associated with smoothness is 

added to the general flow equation. Horn and Schunk [1981] stated that neighbouring 

pixels have the same velocity as moving objects, so the brightness pattern of an image 

changes regularly. This constraint is demonstrated by minimizing the squares of 

gradient magnitudes. The smoothness of an optical flow area can also be estimated by 

calculating the Laplacian of optical flow vectors speed in both horizontal and vertical 

directions denoted by u and w respectively, illustrated in following expressions: 

 

 
 
    

   

    
   

             
 
    

   

    
     

                                                                                  (3.5)                       

 

where  Ei=             and   Es =  
 
      

 
    . The aim here is to minimize the total 

error given by the following expressions (3.6), which includes   as the regularization 

parameter controlling the association between the detail and smoothness. High values of 

  lead to the smoothness constraint being dominant and result in a smoother flow. 
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(   )        ∬(  
      

 )                                                                        (3.6) 

 

3.2.1.1   Estimating the partial derivatives 

 

One of the most significant challenges now is to calculate with precision Ix, Iy, the first-

order differentials. While there are many formulae for approximate differentiation, those 

concerning the neighbouring points in quadrants in successive images give approximate 

estimates of the gradient based on the two frames as follows [Nixon and Aguado, 2008]:  

 

     ( ( )       ( )       ( )         ( )       ) 

     ( ( )     ( )     ( )       ( )     ) 

   
        

 
 

     ( ( )       ( )       ( )         ( )       ) 

     ( ( )     ( )     ( )       ( )     ) 

   
        

 
                                                                                              (3.7)

      

Additionally, the time differential, It  is given by the difference between two pixels 

along the two faces of the cube, as  

 

     ( ( )     ( )       ( )       ( )       ) 

     ( ( )     ( )       ( )       ( )       ) 

   
        

 
                                                                                                                                (3.8) 

where I(0) and I(1) refer to two successive images for both Equations 3.7 and 3.8. 

         

In addition, the Laplacian is estimated by subtracting the value at a point from a 

weighted average of the values at neighbouring points [Gonzalez and Woods, 2002]. 
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Thus an approximation to Laplacians of u and v can be considered as follows [Nixon 

and Aguado, 2008]: 

 

 
 
    = (    

   
 -       )      and    

 
    = (   

   
 -       )              (3.9) 

                          

Nixon and Aguado [2008] define       and        as follows: 
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                                                       (3.10) 

   

3.2.1.2   Minimization 

 

As previously mentioned, the main aim is to minimize the sum of the errors in the 

equation for the rate of change of image brightness and the estimate of the departure 

from smoothness in the velocity flow. In order to obtain appropriate values for optical 

flow velocity (u,v), total error (  
) is differentiated so as to be minimized, which is 

given in the following expressions [Horn and Schunck, 1981]:  

 

     
 
     

                                          (3.11)                                

 

Horn and Schunk [1981] accomplished the minimization of the function by 

differentiating   the total error function as shown in Equation 3.12. Further details can be 

found in [Horn and Schunck, 1981; Weinstock, 2008]. 
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Setting these two derivatives equal to zero leads to two equations using u and v 

 

(     
 )         = (         ) 

(     
 )         = (         )            

       

(3.12) 

 

This is linear in u and v and may be solved for each pixel in the image. A direct solution 

of these equations, such as using Gaus-Jordan elimination [Bogacki, 2005], would be 

very costly. Instead, an iterative Gauss Seidel approach is used to reduce the cost and 

obtain the flow vectors, [Horn and Schunck, 1981]. Since the solution depends on the 

neighbouring values in the flow field, it must be repeated once the neighbouring pixels 

have been updated. The following iterative scheme is derived: 

 

 

  un+1 = 
 

- (
   (   

 
    

 
   )

     
    

 )   ;  vn+1 = 
 

- (
   (   ̅     ̅    )

     
    

 )                  

                                                               (3.13)   

                        

where the superscript (n+1) denotes the next iteration which is to be calculated and (n) 

refers the preceding estimated result [Horn and Schunck, 1981; Nixon and Aguado, 

2008].     
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3.2.1.3   Multi-scale optical flow estimation 

 

The multi-scale coarse-to-fine approach is incorporated in most modern algorithms for 

optical flow estimation, in order to support large motion and for improved accuracy. 

This approach relies on estimating the flow in an image pyramid which is constructed 

by repeatedly down-sampling the image by a factor of two. The optical flow can then be 

found for the smallest image in the pyramid, and this is then used to unwrap the next 

smallest image. Interpolation is used for the fractional pixel locations. This process is 

then iterated until the original image resolution is reached [Lucas and Kanade, 1981]. 

The advantage of the pyramid structure with regard to optical flow is that it can 

efficiently capture large motions in a large contiguous area of an image. An example 

illustrating the algorithm is presented in Figure 3.2. Szelinski [2010] presented the 

detailed working schema of the coarse to fine algorithm, illustrated in Figure 3.3. 

 

The following pseudo code can be considered to define the algorithm: 

1. Create a Gaussian pyramid for both frames. 

2. Repeat until reaching the finest level. 

3. Apply corresponding flow algorithm at the current level of the pyramid. 

4. Propagate flow by using bilinear interpolation to the next level, where it is used as 

an initial estimate. 

5. Go back to step 2. 

 

         

  Figure 3.2: Multi scale coarse to fine approach  
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Figure 3.3: Detailed working schema of the multi scale coarse to fine algorithm [Szelisnski, 

2010] 

 

The pseudo code of the Horn-Schunk [1981] optical flow algorithm has given by Nixon 

and Aguado [2008], is as follows: 

 

Horn-Schunk Algorithm:  

Require img1 and img2 are gray scale images, and each has R rows and N columns 

Ensure: ux, vy stores flow vectors  

Procedure Compute Flow  

Initial assignment for the parameters  

Load images (img1,img2) 

Until the end of the iterations   

   For x from 1 to rows  

   For y from 1 to columns  

Calculate derivatives Ix, Iy, It 

Calculate averages Au, Av 

Update Estimates using derivatives and averages, to obtain temporal flow,( tx,ty)  
        end_for  

    end_for 

   For x from 1 to rows 

      For y from 1 to columns 

           Update(ux,uy) based on tx,ty 

     end_for 

end_for 

end_until  

EndProcedure 

 

The CImg library facilitates image analysis in any format and provides useful functions 

for image processing, and it is integrated into the developed software. A multi scale 
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version of this optical flow algorithm is provided by the CImg library which was 

integrated into the corresponding navigation problem with major modifications. 

 

3.2.2   Applying optical flow for obstacle avoidance 

 

The aim of this section is to adapt the previously discussed multi-scale optical flow 

technique in behavioural based robot architecture for obstacle avoidance and mobile 

robot navigation in a partially cluttered environment. The proposed system relies on a 

single monocular vision camera and tries to understand its environment by analyzing 

the data taken from image sequences. A block diagram of the proposed navigation 

algorithm is shown in Figure 3.4. 

 

   

Image sequence Optical flow
FOE && TTC 

calculation

Behavior Module
Player 

architecture
Robot’s action

 

Figure 3.4: Flowchart of the optical flow based navigation algorithm  

 

Flow vectors are utilized to navigate autonomous systems based on the Balance 

Strategy, shown in the following equation (Eq. 3.14), and the depth information which 

is extracted from the image sequence using Focus of Expansion (FOE) and Time To 

Contact values (TTC). The balance strategy is essentially a control law that can be used 

by mobile robots to avoid obstacles, to trail moving targets, or to escape from 

approaching enemies. The fundamental idea behind the balance strategy is that of the 

motion parallax so that, when the agent is translating, closer objects give rise to faster 

motion across the retina than further away objects. It also takes advantage of perspective 

in that closer objects also take up more of the field of view, biasing the average towards 

their associated flow [Temizer, 2001]. The agent turns away from the side of greater 
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flow, which indicates a possible approach to a stationary object. In order to achieve this 

purpose, the agent can adjust the direction and the magnitude of its rotation by looking 

at the difference between the magnitude of right and left sides optical flows, this control 

law can be expressed as follows [Duchon et al., 1998; Temizer, 2001]:  

 

 (     )  (
∑|  |  ∑|  |

∑|  |  ∑|  |
)                                                                           (3.14)                

where    and    present the magnitude of right and left flows respectively. 

 

3.2.2.1   FOE and TTC calculation 

 

When one moves through a world of static objects the visual scene is projected on the 

retina and appears to flow past. In fact, for the translational motion of the camera, image 

motion everywhere is directed away from a singular point corresponding to the 

projection of the translation vector. This is called the focus of expansion (FOE), which 

is the point from which all optical flow vectors emerge, and both components of the 

optical flow vector are null at such a point (u= 0 and v= 0) [Kröse et al., 2000]. 

Essentially, in order to find the FOE, the calculated optical flow field is searched for a 

specific point in which the directions of the vectors in the field cross each other. The 

estimation of time-to-contact (TTC) is another useful tool for autonomous mobile robot 

navigation, where accurate estimates of TTC for approaching objects are crucial. TTC 

uses visual information to judge distance and speed of action with respect to time 

[Duchon et al., 1998]. The source of this visual information comes from the movement 

of the agent towards an object or of the object/surface towards the agent. These 

movements provide the visual systems with important information about the constantly 

changing environment, allowing appropriate actions to be produced. For instance, when 

the agent moves at a constant speed, the TTC value with a point of interest, in terms of 

the numbers of remaining frames that will be grabbed by the vision systems before 

contact occurs, can be basically estimated from the ratio of the distance of that point in 

the image plane from the focus of expansion to the rate of change in this distance 

(divergence from the FOE) [Temizer, 2001; Souhila and Karim, 2007]. The TTC 

calculation is also widely used in the field of robotics.  Knowledge of the robot velocity 
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or its initial distance from the object is not required; however, the approach only works 

properly in the case of a static environment, and it also implies that the robot is moving 

with a constant velocity. For the present research, in order to derive more reliable and 

sensitive results from proposed algorithm, the image is segmented into vertical regions. 

The optical flow-based image segmentation is also called the segmentation of 

movement, which consists in grouping the image pixels that perform the same 

movement [De Oliveira Caldeira et al., 2007]. The number of regions is manually 

estimated depending on the problem and image resolution, three were used in this 

research. Thus, an image with n×m resolution is divided into three equal columns such 

that each column region has  
 

 
×m optical flow vectors. Having the coordinates of the 

FOE and the optical flow field, the TTC corresponding to the ith region of the image (  ) 

is calculated by Eq. 3.15. 
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                                                            (3.15)

                                                     

where x and y are the centre points of the considered region;      and      presents 

the x and y coordinates of the FOE point in the image, and   and   are the optical flow 

components of the ith region. Additionally, total flow magnitudes are assigned to the 

corresponding regions as follows: 
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where    refers to the total magnitude of flow vectors in the ith region. Consequently, 

each region is considered with corresponding TTC values and flow magnitudes 

extracted by the current image sequence.  
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The values of these regions are used to activate the behaviour module in which three 

independent task-achieving behaviours are performed.  

                                              

3.2.2.2   Behavioural module and implementation algorithm  

 

In mobile robotics, earlier work focussed on the “sense-model-plan-act” strategy, 

requiring intensive computation to infer the location and identity of objects, updating a 

central world model, and planning a course of action to achieve some defined goal state 

[Duchon et al., 1998]. In contrast, recent studies found that it is more beneficial to 

decompose the navigation task into the multiple independent task-achieving modules, 

called behaviours [Brooks, 1986]. Behavioural architectures were previously discussed 

in Chapter 2.  

 

In order to provide reliable navigation, the behavioural architecture, employed in this 

study is composed of three layers (behaviours), namely: steering, change direction and 

stop. The architecture is inspired by the conventional subsumption architecture where 

each layer implements a particular goal of the agent, and higher layers are increasingly 

abstract [Brooks, 1986]. The stop behaviour has the highest priority whereas the 

steering behaviour has the lowest priority. 

 

State machines are a good way of implementing and presenting robotic architectures 

consisting of several behaviours, as illustrated in Figure 3.5. According to the proposed 

architecture, the robot is designed to wander around any cluttered indoor environment 

whilst not colliding with any obstacle. It reacts to the presence of an obstacle in the 

environment by adjusting its turning rate. The robot starts its initial movement with 

forward motion behaviour at a constant speed (vc) and initial (0°) heading angle. It 

navigates in the forward direction using steering behaviour (see Eq. 3.17) until it 

encounters an obstacle. When an obstacle is detected by the vision system, either 

steering or change direction behaviour is enabled depending on the size of the obstacle. 

For instance, change direction behaviour is initiated when any single object such as a 

wall or table spans the entire field of view. In this case the system perceives that the 
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average of flow clusters is similar and, the standard deviation and average of TTC 

values are below a certain threshold value.  

 

 

Start Evaluation

Spans the 

entire field 

of view

Change 

Direction

Steering 

Stop

 

Figure 3.5: Flowchart of the optical flow based navigation algorithm  

 

To avoid the obstacle, the robot first ceases forward motion and makes a constant turn 

(cturn) which depends on the environment, followed by activation of the steering 

behaviour. Conversely, if the standard deviation of the TTC values are high, and the rate 

of side flows are not small, the robot performs a turn with respect to the control law, 

with the range varying from  n°, which gives a new heading angle as determined by the 

following expressions [Guzel and Bicker, 2010]: 

 

 

      (
∑|  |  ∑|  |

∑|  |  ∑|  |
  )                                                                                            (3.17)     
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where  ∑|  | and ∑|  | are the sums of the magnitudes of optical flow in the visual 

hemi-fields on both sides of the robot’s body. Besides this, if there is no obstacle in its 

environment the robot is steered by this control law.  

 

Stop behaviour is activated which essentially ceases the robot’s motion, in the case of 

the mission being accomplished, which is evaluated as the robot navigates the 

environment over a certain time span whilst avoiding obstacles, or if the robot collides 

with any obstacle in the environment during the navigation task. Furthermore the robot 

can be stopped manually by the operator. Accordingly, this behaviour is enabled in case 

of success or failure in finishing the process.  

 

3.2.3   Evaluation of flow vectors for mobile robot navigation  

 

Two different scenarios are discussed in this section regarding the functionality of 

optical flow vectors in order to conduct vision based navigation. The first example, 

illustrated in Figures 3.6 and 3.7, shows the behaviour of the algorithm whenever an 

obstacle is detected along the path of the autonomous vehicle.  

 

The second example presents a situation in which any single object spans the entire 

field of view, shown in Figure 3.8.  

                          

                     

  Figure 3.6: Scenario 1 (side obstacle), (a) source image, (b) destination image  
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   Figure 3.7: Scenario 1 (side obstacle); (standard deviation of TTC = 20.9), flow rate 

   (left / right = 0.43), (Average of TTC parameters (left=63,center=11, right=17)) 

 

The first scenario displays the characteristics of the flow vectors in the event of any 

obstacle appearing in the robot’s path as it manoeuvres, as illustrated in Figure 3.7. The 

magnitudes of the flow vectors on the right side are somewhat higher than the left side, 

and represents the possibility of colliding with an obstacle appearing on the right side of 

the robot. In addition, TTC values of right and centre clusters are low, which reveals the 

possibility of the presence of an obstacle at close range.  However despite the low 

mean value of TTC parameters due to left cluster, standard deviation of TTC parameters 

is still high for change direction behaviour.  

 

The results of the second scenario, shown in Figure 3.8 (c), present a situation when a 

single object spans the entire field of view. As the corresponding results shows, while 

the rate of side flow is close to 1, the TTC parameters are correspondingly rather low, 

presenting the high probability of colliding with a very large obstacle which cannot be 

overcome by standard turning manoeuvres. Therefore the change direction behaviour is 

enabled so as to avoid the obstacle.  
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(a)                                                                               (b)         

 

(c) 

Figure 3.8: Objects spans over the entire field of view, (a) source image, (b) destination image, 

(c)  flow vectors;   (standard deviation of TTC = 5.6), flow  rate (left / right = 1.12), (Average of 

TTC parameters (left=26,center=32, right=37)) 
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3.3   Appearance Based Methods for Obstacle Avoidances  

 

Appearance-based methods which identify locations on the basis of sensory similarities 

are a promising potential solution to mobile robot navigation. One of the main idea 

behind the strategy is to head the robot towards an obstacle-free position using 

similarities between the template and the active images [F. Vassallo et al., 2000]. This is 

called template matching, and is discussed in the next section. The similarity between 

the image patterns can be obtained by using feature detectors, involving corner based 

detectors, region based detectors and distribution based descriptors [Alper et al., 2006]. 

However, most of these techniques consume a lot of processing time which is not 

appropriate for real time systems. In order to handle the performance problem, 

algorithms are designed based on the appearance of individual pixels. The classification 

of obstacles is carried out by using differences between pixels in the template and active 

image patterns and any pixel that differs in appearance from the ground is classified as 

an obstacle. The method requires three assumptions that are reasonable for a variety of 

indoor and outdoor environments, which are:  

 

  Obstacles must be different in appearance from the ground. 

  The ground must be flat. 

  There must be no overhanging obstacles. 

 

The first assumption distinguishes obstacles from the ground, while the second and third 

assumptions are required to estimate the distances between detected obstacles and the 

robot. There are several models for representing colour. The main model is the RGB 

(Red, Green, Blue) schema which is used in most image file formats; however colour 

information in this model is very noisy at low intensity. The RGB format is frequently 

converted to HSV (hue, saturation, and value) or HIS (hue, intensity, saturation). Hue is 

what humans perceive as colour, Saturation is determined by a combination of light 

intensity and the extent to which it is distributed across the spectrum of different 

wavelengths and value is related to brightness. In HIS, I is an intensity value with a 

range from 0 to 1 where 0 represents black and white 1. These colour spaces are 
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assumed to be less sensitive to noise and lighting conditions. The flow chart for the 

appearance-based obstacle detection systems is illustrated in Figure 3.9.  

Current 

Image

Convolved 

with a low 

pass filter

From RGB 

to HSI, HSV 

or HSL

Reference 

image is 

extracted

Compared 

using 

threshold 

values

Converted 

to binary 

image
 

      Figure 3.9:  Flow chart of the appearance-based obstacle detection algorithm 

The input image is first convolved with a smoothing filter in order to reduce noise 

effects, and then the smoothed image is converted to HIS, HSV or any relevant colour 

space with respect to the developed algorithm [Ulrich and Nourbakhsh, 2000; Fazl-Ersi 

and Tsotsos, 2009]. A reference area is obtained from this image which might be any 

defined geometric shape such as trapezoids, triangles or squares [Saitoh et al., 2009]. 

Finally, a comparison between the reference image and the current image is made by 

using some predefined threshold values. One comprehensive technique which has been 

proposed [Ulrich and Nourbakhsh, 2000]  employs image histograms to compare the 
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reference area and the current image. For example, assume that the bin value, Hist(H(x, 

y)), of the generated histogram and the threshold value, TH  are compared, where H(x, y) 

is the H value at pixel (x, y). If Hist(H(x, y)) > TH, then the pixel P(x, y) is classified 

into the safe region; otherwise it is classified as in the obstacle region. In order to 

simply the problem, the results are represented in a binary image in which the safe path 

is represented as white but  obstacles are represented with black, as illustrated in Figure 

3.10.  

 

 

 Figure 3.10:   Appearance-based obstacle detection method 
  
 

 

Figure 3.11:  Effects of lighting conditions and unexpected stains on the floor 

 

However, identifying regions purely on the basis of sensory similarity is too simplistic; 

different places may look very similar, even with a rich sensing methodology, due to 

lighting conditions, shadows from illumination, and so on.  Furthermore, for dynamic 
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environments there might be unexpected stains on the ground which may be determined 

to be an obstacle and may lead the robot to an unsafe path.  An example of how a stain 

on the floor can affect the output of the segmentation is illustrated in Figure 3.11. 

 

3.3.1   Template matching 

 

Template matching is a simple and popular technique in computer vision and image 

processing, where small parts of an image which match a template image are identified. 

It can be used in mobile robot navigation or as a way to detect edges or objects in 

images. A basic method of template matching uses a convolution mask which can be 

easily performed with grey images. The convolution output will the highest at places 

where the image structure matches the mask structure, such that large image values get 

multiplied by large mask values. This method is normally implemented by first picking 

out a part of the search image to use as a template. For instance, the input and output 

images are called I(x, y) and O(x, y) respectively, where (x, y) represent the coordinates 

of each pixel in the images and the template is called T(xt, yt), where (xt, yt) represent 

the coordinates of each pixel in the template. The technique simply moves the centre of 

the template T(xt, yt) over each (x, y) point in the search image and calculates the sum 

of products between the coefficients in I(x, y) and T(xt, yt) over the whole area spanned 

by the template. As all possible positions of the template with respect to the input image 

are considered, the position with the highest score is the best position, and this is 

represented in the output image. Several techniques can be used to handle the translation 

problem; including the SSD (sum of squared differences), NCC (normalized cross 

correlation) and SAD (sum of absolute differences) [Wen-Chia and Chin-Hsing, 2009].   

NCC basically measures the similarity of two variables and is defined as follows: 

 

    
∑ (    ̇)    

   (    )̇

√∑ (    )̇    
    ∑ (    )̇    

   

                                                   (3.18) 

where N is the template image size, and  ̇ and  ̇ represent average gray levels in the 

template and source image respectively.  

http://en.wikipedia.org/wiki/Sum_of_absolute_differences
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The goal is to find the corresponding (correlated) pixel within a certain range disparity 

that minimizes the associated error and maximizes the similarity. This matching process 

involves computation of the similarity measure for each disparity value, followed by an 

aggregation and optimization step [Zitovai and Flusser, 2003]. An example related to 

the correlation based technique is illustrated in Figure 3.12.  

 

     Fig. 3.12:  Correlation-based template matching  

 

Root of SSD is an alternative and robust template matching method widely used in 

image registration algorithms, and can be defines as follows: 

 

RSSD=√∑ (     )    
                                                                                                           (3.19)   

                

where N is the template image size; x and y represent the corresponding pixel values in 

the template and the active image respectively. 

 

3.3.2   Implementation of obstacle avoidance technique using 

appearance based approach  

 

One of the aims of this study is to design and implement a purely reactive obstacle 

avoidance system based on qualitative information, which must be compatible with 

optical flow based navigation systems so as to construct the proposed hybrid obstacle 

avoidance architecture. Ulrich’s method [Ulrich and Nourbakhsh, 2000] is a simple but 

reasonably efficient appearance-based obstacle region detection method, which has been 

recently modified to navigate a wheelchair based mobile robot [Saitoh et al., 2009]. 
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However, this method is not purely reactive and its histogram based comparison is more 

vulnerable to lighting conditions than correlation based techniques. Therefore, in the 

research, Ulrich’s method is modified somewhat in order to be able to run it with an 

optical flow based control architecture. 

 

According to the algorithm given in Figure 3.9, the acquired image is first smoothed by 

a Gaussian filter to eliminate noise in the image [Ulrich and Nourbakhsh, 2000; Saitoh 

et al., 2009]. Then a copy of the original image is transformed from RGB space to HSV 

space. In order to provide the consistency between this method and the optical flow 

based method, the implementation has been carried out based on the principle of 

balance strategy used in optical flow based architecture, where the image is divided into 

n clusters. However, only the lower half of the image is considered in order to reduce 

processing time, and the upper part of the image is discarded. For instance, 4, 8 or 16 

clusters can be obtained from a 640x480 resolution image which each cluster consists of 

160x240, 80x240 or 40x240 pixels respectively. The same classification method can be 

applied to lower or higher resolution images. In this study for both 320x240 and 

176x144 resolutions, n is set to 8 based on trial and error method. 

 

 The next step is to provide a reference area which is always required to be free of 

obstacle. Therefore, to minimize the risk of violating this constraint, the reference area 

cannot be deep. Accordingly, a reference area which is the same size as one of the 

vertical regions is provided. This reference image illustrates a free path and during each 

processing cycle of the main algorithm, it is compared with clusters extracted from the 

active image using the template matching technique based on the H, S value ranges 

respectively. Hue and saturation bands are less sensitive to changes in  illumination than 

the value band [Ulrich and Nourbakhsh, 2000]. From results of the comparison between 

the reference image and the active images, corresponding clusters are allocated as either 

free or occupied. By way of illustration, the algorithm is applied to an appropriate 

scenario, shown in Fig 3.13. The results of clustering and template matching are 

illustrated in Figure 3.14, where (f) represents a free path and (o) a blocked (occupied) 

path. The correlation results with respect to the each cluster are illustrated in Figure 

3.15. By way of comparison, SSD is applied for the Hue component and NCC is applied 
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to the Saturation component. The latter involves higher computational complexity 

compared to SSD since it requires numerous multiplication, division and square root 

operations. 

        

    

             Figure 3.13:  An example image for the proposed appearance-based method 

 

      

              (f)         (f)        (f)          (f)         (f)         (o)         (o)        (o)        (o)         (f)          (f)         (f)        (o)        (o)          (o)       (o)   

   Figure 3:14:  Allocation of image segments   given example scenario 

 

Finally, in order to construct the segmentation of the current image, correlation results 

are compared with previously defined threshold values. However, due to the structure of 
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appearance-based algorithms, lighting conditions and noise are very important. Thus, 

for each test environment, appropriate threshold values must be recalculated.  

            Figure 3.15:  Correlation results for each cluster  

 

Using the results obtained from this example, appropriate threshold values for this 

environment can be assigned as 0.8 for S and 10 for H components. To provide more 

reliable results, both components must be considered in the map construction operation.  

 

The results indicate that both correlation based similarity measuring techniques produce 

comparable outcomes. Overall system performance enhancement is one of the primary 

motivations in real time applications. Therefore, for the real experiments, RSSD is 

applied for both components which is somewhat faster than using NCC. 

 

3.4  Integration of Appearance Based Method with Optical Flow 

Architecture  

 

Optical flow based methods suffer from two major problems. The first and most 

important of these is illumination, which is markedly  affected by variations in lighting 

and shadows [Contreras, 2007]. Another major issue is sensitivity to noise and 

distortion. Various integrated methods for solving these problems have been proposed; 
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nevertheless it is still a key challenge in employing optical flow methodologies for 

mobile robot navigation. Appearance-based methods have significant processing and 

performance advantages which make them a good alternative for vision based obstacle 

avoidance. Nevertheless, these techniques still suffer from illumination problems and 

are highly sensitive to floor imperfections, as well as to the physical structure of the 

terrain.   

 

To overcome these drawbacks, an alternative method has been proposed which 

essentially relies on a fusion of both techniques, as illustrated in Figure 3.16. The main 

strategy behind this proposal is to integrate the results obtained from an appearance-

based method  into the proposed optical flow based architecture. In order to achieve this 

integration, flow equations are updated with respect to an estimated binary image. 

However, the binary image illustrated with Boolean logic (F/O) needs to be converted 

into logical expressions in order to be reasoned over. The method used in this study 

obtains the extreme values (the highest and lowest average magnitude values) from flow 

clusters. These are subsequently replaced with Boolean values for the binary image in 

which the highest value is replaced with ‘O’ members and the lowest value is replaced 

with ‘F’ members. The following algorithm illustrates how the estimated Boolean 

values from the appearance-based method are converted into flow values. 

 

Conversion Algorithm :  

Calculate maximum flow  Fmax  and minimum flow Fmin   from the current image 

 Until the conversion is completed 

     If the current segment is free 

Replace F    with    Fmin 

 else 

Replace O  with  Fmax   

end_until 

 

The conversion procedure for each segment can be formalized as follows: 

   {
                      
                          

        (3.20) 

where si  represents the ith segment extracted from the corresponding binary image and ci 

is its updated equivalent. 
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Eq. 3.21 is used to calculate the new heading angle, including the corresponding 

member of the map. The new heading angle and the updated version of the control 

equation (     ) can be expressed as follows: 

 

 

       (
∑|   |  ∑|   |

∑|   |  ∑|   |
  )                                                                           (3.21) 

                                                                                                

     

where ∑|   | and ∑|   | are the sums of the magnitudes of optical flow and 

converted map regions with respect to the extreme flow values in the visual hemi-fields 

on both sides of the robot’s body. These can be detailed as follows: 

 

      ∑    ( )      ( )  
 
      

      ∑    ( )      ( )    
       

                       (3.22) 

where    and    represent the average magnitudes of flow vectors in the left and right 

clusters respectively, whereas     and     represent the converted segments from the 

binary image (n is the number of clusters and is set to 4). 

 

The flowchart of the overall control architecture is illustrated in Figure 3.16, the Image 

Sequence is used by the Optical Flow Module to calculate flow vectors and 

corresponding parameters such as Focus of Expansion (FOE) and Time to Contact 

(TTC). Simultaneously, the last obtained image is correlated with a template in order to 

estimate the free (F) and occupied (O) parts of the current image based on the 

appearance-based obstacle detection method. The Conversion Module converts the 

output of the appearance-based obstacle detection output into flow based values. The 

Control Law is generated based on the inputs provided by both the optical flow and 

conversion modules (see Eq. 3.22). Finally, the Behaviour Module selects the 

appropriate behavior based on its arbitration mechanism to steer the robot towards a free 

space. 
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Figure 3.16:   Flowchart of the proposed hybrid architecture     

         

Figures 3.17-3.20 presents the output of both detection algorithms for different frames 

captured from a navigation scenario. The control parameters of each frame are included 

in Table 3.1, and the higher resolutions of flow vectors are included in Appendix A. 

 

               
             (a)              (b)  

Figure 3.17: Frame 1, (a) flow vectors, (b) binary output from appearance-based     

method 
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        (a)            (b)  

Figure 3.18: Frame 32, (a) flow vectors, (b) binary output from appearance-based 

method 

 

                              

                                 

        (a)            (b)  

Figure 3.19: Frame 53, (a) flow vectors, (b) binary output from appearance-based 

method 

             

                  

         (a)                 (b)  

Figure 3.20: Frame 97, (a) flow vectors, (b) binary output from appearance-based 

method 
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 Table 3.1:  Estimated steering angles for experiments 

Left (+) / Right (-) Optical Flow   Hybrid Architecture 

Frames               w(deg/sec)                       w(deg/sec)          

   1 0.63 0.82 

   32  2.9 5.4 

   53 6 7.3 

   97 -0.93 -0.77 

 

The hybrid technique has the ability to negotiate and avoid walls and doors by 

benefiting from the results of the optical flow based navigation technique using the 

frontal optic flow to estimate the so-called time-to-contact before a frontal collision is 

likely to occur. Furthermore it possesses the ability to avoid lateral obstacles in both a 

safer and smoother manner than with the conventional optical flow technique.  

 

Figure 3.18 presents such a scenario where the robot, using the optical flow based 

method, is not able to avoid the obstacle, because the system does not generate an 

appropriate steering angle. The major difficulty with the optical flow method in mobile 

robot navigation is that, despite the assumption of constant illumination; lighting 

conditions may significantly change due to environmental factors which optical flow 

techniques are known to have difficulty in handling which may thus cause 

miscalculations. However the hybrid system integrates the results of the appearance-

based method into the control law which enforces the overall control strategy. For this 

scenario, the hybrid system generates a sharper avoiding manoeuvre which allows the 

robot to pass the obstacle without colliding with it. Figure 3.19 presents another 

scenario in which the hybrid method generates a safer avoidance manoeuvre when 

compared with the conventional optical flow method. This is because the hybrid 

architecture involves merging the optical flow method with the appearance-based 

method and this results in a better response to the lateral obstacle. Figures 3.17 and 3.20 

present the scenarios where the environments are partly open and safe. The results 

reveal that the control parameters generated by both methods for corresponding 

scenarios are similar (see Table 3.1).  
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(a)                                                       (b) 

              Figure 3.21: Pattern similarity, (a) orjinal image, (b) binary Image 

 

Despite their success with lateral obstacles, conventional appearance-based obstacle 

detection methods tend to fail to detect objects such as walls and doors that span the 

entire field of view. This is because the appearance-based methods perform a 

classification of obstacles using differences between pixels in the template and the 

active image patterns, where any pixel that differs in appearance from the ground is 

classified as an obstacle. Additionally, region segmentation has some other drawbacks, 

one of which is that the thresholding technique requires a significant contrast between 

the background and foreground in order to be successful. This technique essentially 

works well for the environments which consist of one dominant colour. Accordingly, if 

the colour of the doors or walls is similar to the floor pattern, the algorithm may easily 

fail to complete the navigation task. Figure 3.21 illustrates an example where the 

appearance-based method is not able to distinguish between the door and the floor in a 

precise manner due to the similarity in colours of their patterns.  

 

 

Figure 3.22: First large obstacle, (a) original image, (b) binary Image 
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 Figure 3.23: Second large obstacle, (a) original image, (b) binary Image 

 

Two additional examples are illustrated in Figures 3.22 and 3.23, where the path of the 

robot is obscured by large obstacles. The results shown in Figure 3.22 indicate that both 

techniques can detect the obstacles. However, due to the lighting conditions, the second 

technique fails in the segmentation of some parts of the image where reflections are 

present on the white floor, as shown in Figure 3.22 (b). On the other hand, the first 

technique estimates the obstacles by succesfully using the magnitudes of flow vectors. 

Figure 3.23 demonstrates another scenario in which the obstacle is rather close to the 

goal. Here, the second method is more useful than the conventional optical flow based 

technique, despite the extracted stains as shown in Figure 3.23 (b). This is because the 

appearance-based methods are based on pixel differences which can provide image 

segmentation independent of distance to the goal.  

 

As has been discussed above, the first method focuses on the practical use of optical 

flow and visual motion information in performing obstacle avoidance task in real indoor 

environments. However, when the obstacle becomes very close to the robot, the 

gradients usually cannot be calculated accurately which may result in the incomplete 

calculation or allocation of flow vectors. To evaluate the performance of the proposed 

navigation method, a series of simulation experiments are discussed in the following 

section. 
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3.5   Modelling and Simulation using Microsoft Robotics Studio  

 

In order to estimate the capability of the proposed work for expressing useful tasks, the 

system has been evaluated using a simulator based on the Microsoft Robotics Studio 

(MRS) environment. The MRS provides a 3D programming and modelling simulator 

called Visual Simulation Environment (VSE), illustrated in Figure 3.24. This simulation 

environment is used to assess the performance of the proposed methodologies, as 

discussed in subsequent chapters. 

 

The VSE includes a comprehensive graphical simulator which is also supported by a 

powerful physics simulator. Physics simulation is performed using a physics engine 

developed outside of Microsoft [Jackson, 2007]. Entities in the simulated world specify 

a physical description complete with friction coefficients, mass, and centre of gravity. 

Simulated contact takes into account force, torque, momentum, and resistance when 

updating the positions of each frame. VSE services are authored using any .NET 

compatible language. Both the graphics and physics simulation can be performed 

through software on Windows XP and higher. Additionally, graphics cards supporting 

DirectX 9 will accelerate rendering. The physics engine also allows hardware 

acceleration through the optional integration of the physics processing unit. Further 

details can be found in Microsoft [Jackson, 2007].  

 

A series of simulations has been conducted to verify that the robot is able to navigate in 

its working environment and achieve its goal without collisions. A simulated Corobot 

mobile robot, which is able to moves on 4 wheels was used in these experiments, as 

shown in Figure 3.25. The technical details of the Corobot mobile robot are provided in 

Appendix B.  For the experiments, the robot is equipped with an internet camera having 

320x240 resolution and a 2D laser range finder which a 180-degree field of view, and 

360 units of angular resolutions (2 units/degree). However, the internal camera 

employed by the robot in these simulations is a single monocular camera without a 

panning feature, and the robot has to rotate to the given position instead of panning the 

camera when the search behaviour is activated (see chapters 4 and 5). Fortunately, the 

simulation based experiments provide a more flexible yet still ideal platform to test the 
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algorithms. An interval of ±90° is employed in conducting simulation experiments 

reported in the following chapters.  

 

 

        Figure 3.24:   Simulation screenshot from the VSE 

 

 

     

     Figure 3.25:   Four wheel simulated Corobot mobile robot   
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            Figure 3.26:   Simulation environment for experiments        

 

In this section, simulations are conducted to assess the performance of the proposed 

vision based obstacle avoidance technique. Three different scenarios have been 

developed to achieve this purpose, each of which is conceived as having an increased 

level of complexity. The robot must navigate in the simulated environment whilst 

avoiding obstacles until the mission is accomplished or terminated. The scenarios are 

defined as follows: 

 

Scenario 1: This is the preliminary scenario in which the mobile robot is required to 

navigate from its start point (-5, 1) in an organized and uncluttered environment. The 

only obstacle is a wall surrounding the working environment, as shown in Figure 3.27.  

 

Scenario 2: The mobile robot is required to navigate from start point (-5,1) while two 

unexpected obstacles are placed along its path, as shown in Figure 3.28.  

 

Scenario 3: This is a complex scenario in which the mobile robot navigates from start 

point (-5,1) in a partly cluttered environment whilst several unexpected obstacles are 

placed along its path, as shown in Figure 3.29.  
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  Figure 3.27:   Scenario 1, the robot moves from the start position       
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  Figure 3.28:   Scenario 2, the robot moves from the start position      

  

 Figure 3.29:   Scenario 3, the robot moves from the start position       



                                                      Chapter 3 Vision based Obstacle Avoidance 

 

94 

 

                Table 3.2:  Parameters for experiments 

 
                           Parameters                        Descriptions 
 

Start Position (x,y) 

 

Initial heading angle 

 

Constant speed 

 

Constant turn value 

 

Maximum  range for turning 

 

 

Docking Area (-5,1) 

 

θ = 0
ο
 

 

vc= 0.3 m/s 

 

cturn = 90
ο 

 

n
 
=

 
± 20° 

 

To carry out the simulation, several parameters are set, namely the robot’s start position 

and its initial heading angle, constant turning value (cturn) used in the change direction 

behaviour, constant forward speed of the robot (vc) and maximum turning angle range 

(n), used to generate the new heading for each processing cycle. The simulated robot 

has a differential drive configuration controlled by a combination of linear and angular 

velocity. As previously mentioned, the linear velocity is constant (vc) and angular 

velocity is obtained from the expressions for the heading angle (w) as given by Eq. 3.21. 

Table 3.2 presents the initial values of the parameters used to conduct the simulation 

based experiments. The simulated robot was stopped manually in each scenario, and the 

estimated trajectory is displayed on a 2D graph showing the characteristics of the 

algorithm. In addition, the corresponding value of w (deg/sec) for each processing cycle 

is displayed on a separate graph. As Table 3.1 shows, maximum turning angle is small 

in order to give a smoother trajectory, and this limits positional errors which may be 

caused by extreme manoeuvres that may lead the robot to depart from its original 

trajectory. The simulated obstacles used in Scenarios 2 and 3 are boxes having 

dimensions of 1000 mm x 750 mm.  
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        (a)               

  

                                 (b)            

     Figure 3.30:  Scenario 1, (a) robot’s trajectory, (b) control parameters (between 267
th
 and  

  268
th
 cycles for change direction)   

 

Figure 3.30 (a) presents the navigation results from the first scenario. This is the 

preliminary scenario for the robot that evaluates the characteristics of the algorithm and 

the performance of the behavioural based architecture. The robot begins its task by 

directly moving forward until it encounters the wall. During this forward movement, a 

series of small manoeuvres which do not affect the robot’s direction is generated by the 

proposed control strategy until the robot encounters the wall. Once the wall is 

perceived, spanning the entire field of view, the robot turns 90
ο
 to the left (cturn, see 

Table 3.1) in order to avoid it. Subsequently, the robot keeps moving forward without 

losing directional stability until it stops. Figure 3.30 (b) gives the corresponding control 

parameters for this scenario.  

 

Additionally, Scenario 1 was carried out using the conventional optical flow based 

control architecture to provide a comparison. The estimated trajectory and the 
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corresponding control parameters for this method are illustrated in Figures 3.31 (a) and 

3.31 (b) respectively. 

                  

                  (a)               

 

                    (b)            

Figure 3.31:  Scenario 1 with conventional method, (a) robot’s trajectory 

                    , (b) control parameters (between 300
th
 and 301

th
 cycles for change direction)   

 

The corridor following based comparison is a popular performance evaluation technique 

and is widely used to analyze of vision based control architectures in which the robot is 

required to move along a path without changing its heading direction  and position error 

is calculated based on the deviation between the start and final positions [Mikolajczyk 

and Schmid, 2005].  

 

Position errors are given in Table 3.3, which in essence reveal that the hybrid 

architecture is able to conduct a corridor centring task somewhat better than the optical 

flow based architecture and in doing so yields a smaller error. Figure 3.32 presents the 

navigation results from the second scenario in which two obstacles are positioned close 

to the robot in the test environment. This test is intended to reveal how the robot 

interacts with obstacles and what obstacle avoidance strategy is used.   



                                                      Chapter 3 Vision based Obstacle Avoidance 

 

97 

 

  

 Table 3.3:  Centring error results for scenario 1 
 

        Methods    Total Position Error (m) 

         Optical Flow     2.54 (m) 

         Hybrid     0.63 (m)  

 

                       
                         (a) 

     

          (b) 

                      Figure 3.32:  Scenario 2, (a) robot’s trajectory, (b) control parameters     

 

Conventional optical flow based navigation algorithms tend to fail when the distance 

between the robot and the obstacle is too close at the start. Accordingly, there could be 

two possible trajectories using optical flow based architectures. Either the robot may 

collide with an obstacle or diverge from the desired trajectory. An example of such a 

case is illustrated in Figure 3.33, in which the robot collides with the second obstacle 

and is therefore unable to complete the task. In contrast, the proposed hybrid 

architecture overcomes this problem. This is because the integration of appearance-

based results to the conventional control architecture evidently enhances the overall 

performance of the system. As can be seen from the corresponding Figure 3.32 (a), once 
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the robot starts moving, the first obstacle is immediately detected and it is successfully 

avoided by smooth consecutive manoeuvres. After this the robot continues moving until 

the second obstacle is perceived and it then performs another turning manoeuvre to 

avoid the second obstacle. This ensures a safe path and the robot keeps moving until it 

stops.  The control parameters of this scenario are illustrated in Figure 3.32 (b).  

 

                   
         (a)   

            

(b) 

   Figure 3.33:  Scenario 2 with conventional method (results in failure), (a) robot’s trajectory,  

(b) control parameters 

 

 

Figure 3.34 displays the test results for the third and most complex scenario, the 

purpose of which is to estimate the performance of the proposed technique in a partly 

cluttered environment. For this experiment, five obstacles are located along the robot’s 

path.  As the robot start moving, it discovers a collision free path along to the left and 

keeps moving towards the right side in a smooth manner. On the other hand the robot, 

under conventional optical flow based control architecture is unable to complete the 

task, as illustrated in Figure 3.35. The test results of the simulations show that the 

proposed algorithm is able to safely navigate the robot within its working environment. 

The first experiment carried out in an unobstructed simulation environment established 

the basic characteristics of the proposed architecture, and demonstrated that the robot is 
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able to navigate along a collision free path with minimal positional error. The second 

scenario was designed to evaluate the performance of the system in the presence of 

external obstacles in close proximity to the robot. This scenario provides a good 

illustration of improvement in performance from the conventional optical flow 

algorithm and the proposed algorithm. The third scenario is designed to establish how 

the robot navigates and can successfully overcome obstacles in a partly cluttered 

environment.  

                     

     

           (a) 

              

                (b) 

        Figure 3.34:  Scenario 3 ‘complex scenario’, (a) robot’s trajectory, (b) control parameters 
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                      (a) 

       

                              (b) 

       Figure 3.35  Scenario 3 ‘complex scenario’ with conventional method (results in failure), 

(a) robot’s trajectory, (b) control parameter 
 

 

3.6   Summary 

 

This chapter has presented the development of a novel vision based obstacle avoidance 

architecture which integrates a high performance appearance-based obstacle avoidance 

method with conventional optical flow based navigation architecture. Several 

preliminary simulation based experiments have also been described which compare the 

different methodologies. Although the experiments demonstrate the potential 

performance improvement of the proposed system, the simulation is very much ideal, 
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whereas in a real physical scenario there would be lighting and illumination issues, as 

well as the physical dynamics of the robot. Consequently the simulation experiments 

may be somewhat misleading or incomplete without testing the robot in realistic 

conditions. 
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       CHAPTER 4 

     

    VISION BASED MOBILE ROBOT NAVIGATION  

 USING SIFT  

 

This chapter focuses on a vision based mobile robot architecture using principles of 

image based visual servoing. The first section discusses the basis of the Scale Invariant 

Feature Transform, including a brief  introduction to local features and a detailed 

explanation of the Scale-Invariant Feature transform (SIFT) algorithm. The next section 

details the feature based navigation technique using the SIFT algorithm to overcome the 

navigation problem of mobile robots, followed by the integration of the proposed 

technique using a subsumption architecture. The proposed architecture comprises 

several modules, facilitating the mobile robot’s navigation and ensuring that it 

maintains a safe distance from any obstacles while finding the goal from its current 

position to its destination. The final section of the chapter describes the experimental 

results for the proposed architecture. All experiments were conducted using the 

Microsoft Robotics Studio. The simulation results reveal that this system can safely and 

effectively navigates the mobile robot in partly cluttered environments.  

 

4.1 Local Features 

 

A local feature is basically an image pattern which differs from that of its immediate 

neighbourhood. It is usually associated with a change of a single image property or 

several properties concurrently, although it is not necessarily defined precisely by this 

change. The image properties commonly considered are intensity, colour, and texture. 

Figure 4.1 shows some examples of local features in a contour images (left) as well as 

in a gray-value image (right)  [Tinne and Krystian, 2008]. Local features can be 

illustrated mainly by edges, corners (interest points) and contours. Edges characterize 

boundaries in an image and an edge can be of almost arbitrary shape, and may include 
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junctions. To apply an edge detecting algorithm to an image significantly reduces the 

amount of data and filters out useless information, while preserving the important 

structural properties of an image. A comparison of two well known edge detectors, 

Canny [Canny, 1986] and Sobel [Green, 2002] is illustrated in Figure 4.2.  The terms 

corners and interest points are used somewhat interchangeably and refer to point-like 

features in an image, which have a local two dimensional structure; an example with 

respect to interest point detection is illustrated in Figure 4.1(a). The name corner has 

been used since early algorithms were first performed but this term is used by tradition, 

for instance a small bright spot on a dark background may be detected as a corner 

(interest point). Contours provide a corresponding description of image structures in 

terms of regions, as illustrated in Figure 4.1(b).  Besides this, contours descriptors able 

to obtain a preferred point (a local maximum) in the intensity landscape which means 

that many contours detectors may also be regarded as interest point operators, and can 

detect areas in an image which are too smooth to be detected by a corner detector 

[Maire, 2009]. 

 

           

(a)                                                                                    (b)  

 

Fig. 4.1: Illustration of local features in gray-value and coloured images (a) Interest points with 

corner detection [Tuytelaars and Mikolajczyk 2008], (b) Contour   detection [Maire, 2009] 

               

 

Tuytelaars and Mikolajczyk [2008] divided local feature detectors into three main 

groups. This is not the only way of categorizing the detectors but it does emphasize 

different properties required by the usage scenarios. The first group concerns a specific 

type of local feature, such as image corners from a captured image, whereby the 
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matching of these local feature points are obtained principally by cross-correlating the 

image patches around them. For instance, detected edges in an aerial image often 

correspond to roads, whereas contour detection can be employed to identify impurities 

in inspection tasks. The second group comprises local feature detectors that can provide 

a limited set of well localized and individually identifiable points. Local features may 

not be relevant until their location can be determined accurately and in a stable manner 

over time. 

 

               

(a)                                 (b)                                               (c)  
Figure 4.2: A comparison of two edge detectors, (a) original image, (b) canny applied image , 

(c) Sobel operator applied image 

 

Examples include tracking applications, pose estimation and image alignment. The KLT 

tracker is a typical example for this group [Tomasi and Kanade, 1991]. The final group 

comprises detectors which are able to employ a set of local features as a robust image 

representation that allows objects or scenes to recognized without the need for 

segmentation. In this case, the goal is not to match them on an individual basis, but 

rather to analyse their statistical characteristics.  

 

For instance, Schiele and Crowlet [1996] employed multi-dimensional receptive field 

histograms for object recognition. This is a probabilistic object recognition technique, 

and does not require correspondence matching of images [Schiele and Crowley, 1996]. 

Texture analysis, image retrieval, and video mining are other application domains in 

this category. In addition, feature detectors may be classified based on the types of 

image features used for detection.Table 4.1 illustrates the classification of feature 

detection algorithms, mentioned in this chapter.  
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Table 4.1: Classification of some feature detectors  

 
Feature Detectors Edges Corners Blob 

Canny X   

Sobel X   

Tomasi and Kanade  X  

Laplacian of Gaussians  X X 

Difference of Gaussians  X X 

 

Feature detection is one of the most challenging aspects of machine vision and refers to 

methods used to compute abstractions of image information in order to make local 

decisions at every image point, whether there is an image feature of a given type at that 

point or not. Once features have been detected, a local image patch around the feature 

can be extracted, which may involve quite considerable image processing effort. The 

result is known as a feature descriptor or feature vector.  An important development in 

feature detection and description has been to introduce to the literature the use of the 

Scale-Invariant Feature Transform (SIFT) [Lowe, 1999; Lowe, 2004]. 

 

4.2  Scale-Invariant Feature Transform  

 

The SIFT is an intensity based feature description algorithm  that depends on intensity 

patterns to find points or regions which satisfy some criteria of uniqueness and stability 

[Hongli et al., 2007]. Applications of the algortihm include object detection, robot 

navigation, 3D modelling, video/image tracking and gesture recognition, and it first 

proposed by Lowe [1999, 2004].  Any object in an image is able to provide several 

features which are points of interests on it that can be extracted to provide a feature 

description of the object. This description extracted from a training image can then be 

employed to identify the object when attempting to locate it in a test image containing 

many other objects. It is important in performing reliable recognition that the set of 

features extracted from the training image is robust with respect to changes in image 

scale, noise, illumination and local geometric distortion. Lowe's [1999] patented method 

can robustly identify objects even among clutter and under partial occlusion because the 

most notable improvements provided by SIFT are its invariance to image scaling and 
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rotation and partial invariance to changes in illumination and 3D camera viewpoint. 

Features are well localized in both the spatial and frequency domains which reduce 

probability of disruption by occlusion, clutter, or noise. In addition, the features are 

extremely distinctive. This allows a single feature to be accurately matched with high 

probability against a large database of features, which is the basis of many applications 

in computer vision and image processing [Lowe, 2004].  

 

The evaluations carried out so far suggest that SIFT-based descriptors which are region-

based are the most strong and distinctive [Mikolajczyk and Schmid, 2005], and are 

therefore particularly suitable for feature matching and object detection. However, the 

main drawback of the algorithm is its computational complexity which usually 

discourages its real-time utilization. There are four major stages of computation used to 

generate the set of image features: Scale-space extreme detection, Keypoint localization, 

Orientation assignment and Key point descriptor. The overview of the algorithm 

involving these major steps is illustrated in Figure 4.3. 

 

 

                         

                       Figure 4.3:  Overview of the SIFT algorithm 
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4.2.1   Scale-space extreme detection   

 

This stage involves the potential interest points (keypoints), which are invariant to scale 

and orientation in the SIFT framework. According to Lowe [1999], the first stage of 

interest point (keypoint) detection is to identify locations and scales that can be assigned 

under differing views of the same object.  

 

To obtain locations that are invariant to scale change of the image can be achieved by 

searching for stable features across all scales, employing a continuous function of scale 

known as scale space [Lowe, 1999;2004]. Witkin [1983] proposed a  definition as a 

special type of multi-scale representation, which includes a continuous scale parameter 

and maintains the same spatial sampling at all scales [Witkin, 1983].  A variety of 

reasonable assumptions indicates that the Gaussian function is the only possible scale-

space kernel [Lindeberg, 1994]. The scale space of any image is defined as a function, 

L(x,y,σ), which is obtained from the convolution of a variable-scale Gaussian, G(x,y,σ),  

with an input image I(x,y). This is illustrated in the following expressions, where * is 

the convolution operation in x and y. 

 

  

   (     )    (     )   (   )               (4.1) 

 

   (     )   
 

      (      )    

                     (4.2) 

         

Mathematically, “blurring” refers to the convolution of the Gaussian operator and the 

image. Scale-space is described by octaves in that each octave comprises progressively 

blurred images, and for each octave image it is resized to half of the original image, 

which can be regarded as a sub-sampling operation. An example of the construction of a 

scale-space is illustrated in Figure 4.4. 

The next step is to employ an appropriate method to generate another set of images in 

order to detect interest points based on those blurred images. The normalized Laplacian 
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of Gaussian (LoG),     G  which produces the most stable image features compared to 

a range of other possible image functions, such as the gradient, Hessian, or Harris 

corner function. The technique is fundamentally based on calculating the second order 

derivatives, which locates edges and corners on the image. However the second order 

derivative is computationally intensive. An efficient method to overcome this problem 

was proposed by Lowe [1999, 2004] who revealed that the Difference-of-Gaussian 

(DoG) function provides a close approximation to scale-normalized LoG . To compute 

DoG(x,y,σ), the difference of two successive Gaussian-blurred  images, separated by a 

multiplicative constant factor k, is convolved with the input image, as given by the 

following equations:    

    (     )  ( (      )   (     ))   (   )                                                        (4.3)

  

This can also be simplified in the following expression:  

 

   (     )   (      )   (     ))                                                           (4.4) 

 

where   (      )    (      )   (   )  and   (      )    (      )   (   ). 

 

The final step is to obtain local extreme points from DoG images. In order to achieve 

this, for each octave of scale space, the initial image is repeatedly convolved with 

Gaussians to produce the set of scale space images, as illustrated in the left part of 

Figure 4.5.   

 

Adjacent Gaussian images are subtracted to produce the difference-of-Gaussian images, 

illustrated on the right hand side of the Figure 4.5. After each octave, the Gaussian 

image is down-sampled by a factor of 2, and the process is repeated. Lowe [1999, 2004] 

suggests that 4 octaves and 5 blur levels are ideal for the algorithm. Extreme points are 

identified as local maxima or minima of the DoG image across scales. Each pixel in the 

DoG images is compared to its 8 neighbours at the same scale, plus the 9 corresponding 

neighbours at neighbouring scales. If the pixel is a local maximum or minimum, it is 

selected as a candidate keypoint, as illustrated in Figure 4.6. 
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    Figure 4.4:  Scale spaces in SIFT (first octave is simplified, just including first  

and last blur levels) 
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Figure 4.5:  Calculation of DOG images [Lowe, 2004] 

 
 

 

       Figure 4.6. Keypoint identification 

 

4.2.2   Keypoint localization and edge elimination 

 

Once extreme points are detected by comparing a pixel with its neighbours, the next 

step is to perform a detailed fit to the nearby data for location, scale, and ratio of 
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principal curvatures. This allows points to be rejected that have low intensity or are 

poorly localized along an edge. Lowe [1999] located keypoints at the location scale of 

the central sample point. However the local maxima and minima almost never lies 

exactly on a pixel. It lies somewhere between the pixel. But it cannot simply accessed 

data “between” pixels; so the subpixel locations must be located mathematically. 

 

In, Lowe [2004] this method was enhanced to strip away any unstable keypoint by 

employing a Taylor expansion of the scale-space function to reject those points that are 

not distinctive enough or are unsatisfactorily located near the edge. In order to achieve 

this, Lowe [2004] adapted a technique proposed by Brown and Lowe [2002] for fitting a 

3D quadratic function to local sample points to determine the interpolated location of 

the maximum. The interpolation is carried out using the Taylor expansion of the 

DoG(     ) scale-space function, with the candidate keypoint as the origin [Lowe, 

2004]. The next step is to eliminate keypoints which either do not have enough contrast 

or which lie on an edge. In order to reject low contrast images, a simple thresholding 

technique is employed; if the magnitude of the intensity at the current pixel in the DoG 

which is being checked for minima/maxima is less than a threshold value, it is rejected. 

Finally, the keypoints that are poorly located on edges are excluded which increases the 

efficiency and also the robustness of the algorithm. The main principle behind the edge 

elimination process is to calculate a principal of curvatures, measuring the maximum 

and minimum bending of a regular surface at each point. These gradients are 

perpendicular to each other.  A keypoint may be classified using these gradients and can 

be defined as follows:  

 For flat regions both gradients will be small. 

 Edge responses have one big gradient, are perpendicular to an edge, and one 

small gradient. 

 Corners are the most consistent points and both of the gradients are big.  

Lowe [2004] utilized a Hessian Matrix to obtain corner points in order to check whether 

or not a point is a corner with high accuracy. Mathematically, the curvature is retrieved 

http://en.wikipedia.org/wiki/Taylor_expansion
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from the eigenvalues of the second-order Hessian Matrix H shown in the following 

expression: 

 

  [
      

      
]                                                                      (4.5) 

                          

                                                          

where the derivatives are estimated by taking differences of neighbouring sample 

points,  The ratio of principal curvature is directly related to the ratio of the trace and 

determinant of a matrix. The trace of an n-by-n square matrix H is defined to be the 

sum of the elements on the main diagonal from the upper left to the lower right of H, 

and the determinant. If the result is above a certain threshold the keypoint is rejected 

[Harris and Stephens, 1998]. Let a be the eigenvalue with the largest magnitude and b is 

the smaller one, then: 

 

Tr(H) =         = a+b 

 

Det(H) =         (   )  = a×b  

 

If r is the ratio between the largest and smallest one,  then a = r×b gives the following 

expressions: 

 

  ( ) 

   ( )
  

(     ) 

   
 

(   ) 

 
                                   (4.6) 

      

      

  

The quantity  
(   ) 

 
  is at a minimum when the two eigenvalues are equal, therefore:  

 

  
  ( ) 

   ( )
 

(   ) 

 
                           (4.7)

  

 

                                

http://en.wikipedia.org/wiki/Square_matrix
http://en.wikipedia.org/wiki/Main_diagonal
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4.2.3   Orientation assignment  

 

Legitimate key points have been obtained so far, which have been tested for stability.  

The next step is to assign a consistent orientation to each keypoint, providing rotation 

invariance. The purpose is to collect gradient directions and magnitudes around each 

keypoint to discover the most prominent orientation(s) in that region which will then be 

assigned to the keypoint. There is a right proportion between the size of the ‘orientation 

collection region’ around the keypoint and the scale of this keypoint. Gradient 

magnitude and orientation are calculated respectively for each scale invariant image 

sample, L(x,y),  as shown in the following expressions: 

 

 (   )  √( (     )   (     ))  ( (     )   (     ))                (4.8)        

           

         

 (   )       (( (     )   (     )) ( (     )   (     )))            (4.9)              

          

According to Lowe [2004], an orientation histogram is formed from the gradient 

orientations of sample points within a region around the keypoint. The orientation 

histogram has 36 bins covering the 360 degree range of orientations. For instance, 

assuming that the gradient direction at a certain point in the orientation collection region 

is 15.675 degrees, and then it will go into the 10-19 degree bin. The amount that is 

added to the bin is proportional to the magnitude of gradient at that point. Each sample 

added to the histogram is weighted by its gradient magnitude and by a Gaussian-

weighted circular window with a   that is 1.5 times that of the scale of the keypoint. 

Once this operation is performed for all pixels around the keypoint, the histogram will 

have a peak at some point. Peaks in the orientation histogram correspond to dominant 

directions of local gradients, and any local peaks which are above 80% of the highest 

peak are converted into a new keypoint which has the same location and scale as the 

original, but different orientation. As a result, for locations with multiple peaks of 

similar magnitude, there will be multiple keypoints created at the same location and 

scale but different orientations. 
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4.2.4   Keypoint descriptor  

 

The previous steps, calculating key point locations at particular scales and assigning 

orientations to them, are also called upon to assign 2D image location, scale, and 

orientation parameters to keypoints. This ensures invariance to image location, scale 

and rotation. The next step is to generate a descriptor vector for each keypoint that is 

distinctive and partially invariant to the remaining variables including illumination and 

3D viewpoint. First a set of orientation histograms are created on 4x4 pixel 

neighbourhoods with 8 bins each. These histograms are computed from magnitude and 

orientation values of samples in a 16 x 16 region around the keypoint such that each 

histogram contains samples from a 4 x 4 sub-region of the original neighbourhood 

region. The magnitudes are further weighted by a Gaussian function with σ equal to one 

half the width of the descriptor window. The descriptor then becomes a vector of all of 

the values of these histograms, which leads to a SIFT feature vector with 8x4x4 = 128 

elements. Figure 4.7  displays an example a 2x2 descriptor array computed from an 8x8 

set of samples whereas, as previously mentioned, the real experiments conducted with 

the algorithm  employing 4x4 descriptors are computed from a 16x16 sample array.  

To cope with the problem of illumination the vector is normalized to unit length. A 

change in image contrast in which each pixel value is multiplied by a constant will 

multiply gradients by the same constant, so this contrast change will be cancelled out by 

vector normalization. A brightness change in which a constant is added to each image 

pixel will not affect the gradient values, as they are computed from pixel differences. 

Therefore, the descriptor is invariant to affine changes in illumination [Lowe, 2004]. 

Figure 4.8 displays two different examples of the key-point selection procedure and the 

4x4 SIFT descriptor frames of these points. An example is illustrated in Figure 4.9 (a) 

using Lowe’s [2004] conventional key point selection and visualizing software 

application to extract keypoints from a low-resolution natural image, where each 

extracted keypoint is associated with a vector, and each vector demonstrates the 

location, scale, and orientation of the relevant keypoint.  
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Figure 4.7:   An example of a 2x2 descriptor array for the SIFT algorithm  

  

 

(a)             (b) 

Figure 4.8:  Some of the detected SIFT descriptors for, (a) the first image, (b) the second image   

                             

4.2.5   SIFT matching 

 

Lowe [2004] proposed the nearest neighbour algorithm, where a candidate is located by 

computing and ranking in ascending order the angle between the descriptors using a 

vector dot product. False matches can be initially rejected using the likelihood ratio test 

if the ratio between the potentially best matched descriptor to its next best is above a 

previously defined threshold, which can be represented by Equation (4.10).  
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Match {
                   

     

     
    

                      
               (4.10) 

           

where va11  is the best matched descriptor, va12 is the next best matched and tr is the 

threshold value.  

 

An example utilizing the SIFT matching algorithm is illustrated in Figure 4.9 (b). In the 

conventional method,  Lowe [2004] rejected all matches in which the distance ratio is 

greater than 0.8, which eliminates 90% of false matches while discarding less than 5% 

of the correct matches [Lowe, 2004] . 

 

In addition, to verify matches between two different range images captured of different 

scales or angles, a Hough transform [Duda and Hart, 1972] can be employed to identify 

clusters of features that have a reliable interpretation of an object by a voting procedure. 

This is applied to compute the similarities between the two sets of descriptors based on 

the features exhibiting the same relevant parameters involving translation, orientation 

and scale. If any of the clusters has three or more entry points, it is possible to apply a 

robust fitting procedure in which a linear least squares solution is performed for the 

parameters of the affine transformation relating the model to the image. Outliers are 

discarded, due to the agreement between each image feature and the model, giving the 

parameter solution. Each match is required to agree within half the error range that was 

used for the parameters in the Hough clusters. After discarding the outliners, the linear 

least squares solution is performed with the remaining points and the process iterated. If 

fewer than 3 points remain after discarding outliers, then the match is rejected. This 

helps to maximize the performance of object recognition for small or highly occluded 

objects. Further details can be found in Lowe [2004]. 

http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Linear_least_squares
http://en.wikipedia.org/wiki/Outlier
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            (a) 
 

 

(b) 

Figure 4.9:  SIFT, (a) Keypoints are extracted from a low resolution  

                   Image, (b) an example for SIFT Matching algorithm  
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4.3 Evaluation of the SIFT Algorithm  

 

Lowe [2004] derived a 2D method for image feature generation based on the Scale 

Invariant Feature Transform which transforms an image into a large collection of local 

feature vectors, each of which is invariant to image translation, scaling and rotation. 

This method is reasonably efficient and reliable for feature extraction and object 

detection tasks. The evaluations performed suggests that SIFT-based descriptors, which 

are region-based, are the most robust and distinctive and are therefore best suited for 

feature matching [Tao et al., 2010] 

Mikolajczyk and Schmid [2005] evaluated interest point descriptors by comparing 

descriptors computed on regions extracted with recently proposed scale and affine-

invariant detection methods. The tests were designed for the matching and recognition 

of the same object or scene. According to the test result, Gradient Location and 

Histogram (GLOH) algorithm, an extension of the SIFT descriptor designed to increase 

its robustness and distinctiveness, closely followed by conventional SIFT algorithm, 

demonstrated the robustness and the distinctive character of the region-based SIFT 

descriptor. While the ranking of the descriptors is similar for different matching 

strategies, the conventional SIFT algorithm gives relatively better results if the nearest 

neighbour distance ratio is used for thresholding. Another comparison provided by Juan 

and Gwun [2009], included the Speeded Up Robust Features (SURF) algorithm. The 

results show that despite the computational advantages of the SURF algorithm it is not 

stable to rotation and illumination changes. Nevertheless, the conventional SIFT 

algorithm presents its stability in most situations although it is slower than SURF.  

The conventional SIFT algorithm is computationally intensive, due to the serial timing 

of Gauss blur when constructing scale space, and multiple loops when generating 

descriptors. Furthermore, convolution and complex arithmetic operations dealing with 

floating-point data, such as exp, floor, sin, cos, are known to be time-consuming. For 

that reason, it is hard for conventional SIFT to attain appropriate real-time performance 

on any mobile robot platform.  The performance of the algorithm can be enhanced with 

multiprocessing programming techniques or libraries. One of those is OpenMP  library  
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which is a free application programming interface (API) that supports multi-platform 

shared memory multiprocessing programming in C, C++, and Fortran on many 

architectures and platforms. It consists of a set of compiler directives, library routines, 

and environment variables that influence run-time behaviour. The enhancement 

methods based on this library and the performance evaluation test results of the Fast 

SIFT algorithm are discussed in Chapter 6. 

 

4.4 Navigation via SIFT based on Monocular Vision 

 

Vision is potentially the most powerful sensing capability in providing reliable and safe 

navigation.  For indoor navigation, researchers rely on artificial landmarks such as 

coloured or geometrical objects to achieve safe navigation. Many approaches which 

employ artificial landmarks are easy to both design and implement; however, the main 

disadvantage of these approaches is their dependence on specific tasks. Feature based 

mobile robot navigation provides a good alternative to these methods which makes no 

explicit attempt to localise itself and thus requires no landmark map. The main problem 

in this approach is to solve the feature extraction and correspondence problem 

consistently. Accordingly, distinctive features are extracted from both the reference 

image and the snapshot (current image). Each identified feature in the snapshot is then 

usually paired with one feature in the reference image (the correspondence problem), 

and the robot is finally steered towards the goal, depending on the control algorithm. 

However, such techniques rely on omnidirectional vision which captures images at low 

resolution. Alternatively, stereo vision-based techniques acquire robust in-depth 

information, and are very common. However these techniques suffer from several 

disadvantages, involving the computational cost of the stereo vision systems, and 

synchronization problems between the cameras and their calibration (see Chapter 2).  

 

In this section a new alternative method inspired by the image visual servoing control 

architecture relying on SIFT based feature tracking algorithms is introduced. The main 

idea is to generate control variables involving linear velocity (m/sec) and angular 

velocity (deg/sec), based on matching results between the current image and the goal 

image. The proposed control algorithm is entirely qualitative which does not employ the 

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Environment_variable
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traditional concepts of jacobians, homographies, or fundamental matrices. Preliminary 

test results verify that the proposed algorithm estimates the turning rate and linear 

velocity of the mobile vehicle with reasonable accuracy and affordable computational 

time. A flow chart of the proposed algorithm is illustrated in Figure 4.10.  

 

 

 

Figure 4.10:   Flowchart of the SIFT-based control system              

 

The first part of the algorithm enhances the input image against any possible 

illumination or noise. This is called pre-processing. The input image is convolved with a 

filter based on the first derivative of a Gaussian to obtain a blurred version of the image, 

which removes unexpected noises and smoothes images. Subsequently, histogram 
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equalization is applied to the filtered image to adjust its contrast. The second function  

of the algorithm extracts key features from enhanced images using a SIFT algorithm. As 

mentioned previously, SIFT is one of the most powerful and popular feature detection 

algorithms, but due to its computational cost it is not suitable for real-time applications. 

In order to cope with this problem, a cross-platform library that computes fast and 

accurate SIFT image features, which is optimized with OpenMP is used instead of the 

conventional SIFT implementation.  

 

The performance of this enhanced algorithm is quite impressive. To validate 

performance with different image resolutions, several experiments were performed. 

After extracting features from both current and active images, an improved version of 

Lowe’s [2004] matching algorithm is utilized to match the features. The performance of 

the conventional matching algorithm has been improved by OpenMP which is discussed 

in Chapter 6.  

 

The proposed control strategy resembles the conventional balance strategy [Duchon et 

al., 1998; Temizer, 2001] (see Chapter 3).  The next step is to evaluate matched points 

and assign each matched point on the current image to a corresponding position. There 

are four clusters having the same size namely: Left(cl), More-Left(cml), Right(cr) and 

More-Right(cmr) respectively. Clusters are obtained by dividing the image vertically and 

each of these clusters is considered with the total number of matched features, which is 

used to generate control variables. The distribution (d) of the matched values is a key 

factor in order to estimate the next possible turning rate, which can be illustrated by the 

following expressions:  

 

  

{
 

  
   

  
                                    

   
  

  
                                    

 

           (4.11) 
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where  Ml and Mr are the total count of the matches on the left hand and right hand parts 

of the image. To obtain a more robust and sensitive control equation, distribution (d) 

might be redefined, including all matching clusters which is then able to approximate 

turning rate with higher accuracy, as shown in the following expressions: 
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(4.12)     

where            ,           and           

In order to estimate the next possible turning rate (w), d is multiplied by a model 

parameter value which varies between 1 and 2 and can be defined as follows:  

       , where                                                        (4.13) 

When the robot approaches its goal with the capability of keeping it in the field of view, 

matching strength usually tends to increase. Therefore, the matching strength can be 

adapted to arrange the linear velocity. In order to achieve this, a simple but efficient 

velocity model is proposed, illustrated in the following expressions: 

 

   {
             

         
  

 

In order to constrain the linear velocity, the velocity       is compared with       , as 

shown in following expression: 

        (      )                                                             (4.14)                                                
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where   vi = minimum linear velocity.  

  kv =  constant used to convert matching value to linear  velocity .  
 

  mt =  number of total matched points.   

 

 vth =  linear velocity threshold parameter. 

 

vmax =  maximum accepted linear velocity . 

 

 

The proposed algorithm is designed for mobile vehicles in which the only interaction 

with the motors is carried out by using the robot's forward speed (m/sec) and its angular 

velocity (turning rate) (deg/sec). At the end of each processing cycle, these two control 

variables completely define the output behaviours. The algorithm principally proposes a 

reliable solution to the Image based visual servoing (IBVS) problem which uses visual 

information to control the vehicle’s pose with respect to a specific goal. Visual homing 

is also a type of visual servoing [Szenher, 2008]. Thus the terms are used 

interchangeably. The main idea behind Visual Homing strategies is to infer the direction 

and/or distance to the goal location from the disparity between the current and goal 

images. The control variables of the proposed algorithm can be easily adapted to a 

visual homing strategy with, minor modifications. As discussed previously in Chapter 2, 

homing vectors are estimated for each processing cycle until the discrepancy between 

the current and reference images falls below a certain threshold value. Each homing 

vector comprises a rotation angle to decrease the orientation difference between two 

images.  

 

As no metric landmark information is used, the homing vector   ⃗⃗  is often inaccurate 

The agent therefore moves by some distance (either fixed or calculated based on current 

sensor information) in the direction of homing vector,  ⃗⃗ . In order to make an 

approximation to homing vectors, Equation 4.13 can be used to obtain rotation angle 

instead of angular velocity by changing interval of the model parameters, shown in the 

following expressions: 

 

        , where                       (4.15)                
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In addition, instead of estimating linear velocity, Equation 4.14 can also be adapted with 

a minor modification to be used to estimate forward translation (forward displacement) 

or the magnitude of each homing vector, as illustrated in the following expressions:  

 

   {
               

           
 

In order to constrain the forward translation,     is compared with   
   

, as shown in 

following expression: 

         (        )                                        (4.16)                                                                  

where    fti = minimum forward displacement .  

  kft =  constant used to convert matching value to forward translation 

 

  mt =  number of total matched points.   

  

 ftth =  linear velocity threshold parameter. 

 

ftmax = maximum accepted forward displacement. 

 

Unlike conventional visual homing techniques, the proposed method is designed for 

monocular vision based navigation systems. Despite the fact that a wide angle of view 

permits a mobile robot to interact with a curved path even around sharp corners, hairpin 

turns or other complicated curves, the main disadvantages of the omnidirectional vision 

systems are geometric distortion and poor resolution. Monocular vision is able to cope 

with these problems, although its drawback is that the target objects may be outside the 

field of view of the camera. In order to overcome this problem and to provide reliable 

navigation, the SIFT based algorithm is performed with a monocular camera equipped 

with pan and zoom functions, which are discussed in the following section. Figure 4.11 

illustrates three different frames; each of these captured from different locations to the 

goal, and was matched with a reference image. The steering angle (w) and linear 

velocity based on the Equations 4.12 and 4.14 were calculated for each frame using 

parameters shown in Table 4.2. According to the results, it can be shown that when the 
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similarity between the goal and the current image increases, control parameters are 

updated successfully.  

 

 

(a) w= -6.24(deg/sec);  v=0.2080(m/sec)  

     
  (b)  w = -10.8 (deg/sec); v=0.312 (m/s)      
 

   
       (c)  w = -8.8 (deg/sec) ; v= 0.36 (m/s) (vmax)   

                         Figure 4.11:  Different snapshots are matched via a reference image from  

a to c (left side is for the current and the right is for the reference images) 
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4.5 Design of a Reactive Architecture using Subsumption Architecture 

 

There are several approaches to designing a behavioural-based architecture, which have  

been discussed in Chapter 2. In this study, the architecture has been designed based on 

the subsumption architecture in which each layer or behaviour implements a particular 

goal of the robot and higher layers are increasingly abstract [Brooks, 1986].  

 

 

 

             Figure 4.12:   Behavioural design of the proposed architecture    

 

Each layer’s goal subsumes that of the underlying layer, and their interaction with each 

other is illustrated by using finite state machines (FSM). Finite state machines define 

several states (behaviours) that represent a current situation for the robot. Certain events 

in the outside world can change the state. For instance, the robot could have an 

approach state whereby it is moving about the environment trying to get closer to the 

goal. When the laser range finder detects nearby obstacle, the state may change from 

approach to obstacle avoidance, and the avoidance algorithm will move the robot away 

Goal Seeking

Approach

Wander

Obstacle Avoidance

Completed

Sensors Actuators
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from the obstacle. When the obstacle has been avoided, the robot state will change back 

to approach.  The architecture, designed for this study comprises five behaviours, 

namely: goal seeking approach, wander, obstacle avoidance and completed, as 

illustrated in Figure 4.12. The state diagram of the behaviours is shown in Figure 4.13. 

 

Obstacle ObstacleIF Match > ThC

Start

Approach

Search

Wander

Completed

Panning Zooming

Obstacle 

Avoidance

IF Match > ThA

Else

Not Found

Not Found

IF Match > ThA

Search again 

IF Match < ThS
Found

ZoomPan

Not Found

Avoided

IF Match > ThC

Else

 

             Figure 4.13:  The state diagram for behaviours 
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4.5.1   Goal seeking 

 

Reactive-based architectures are widely used in autonomous navigation. Goal seeking is 

one of the key behaviours of these architectures and is used to find and acquire the 

target object in complex environments. The goal seeking behaviour is designed for  

monocular vision systems equipped with pan and zoom functions. The main drawback 

of monocular vision systems, as mentioned previously, is their limited field of view 

which is not appropriate for goal-based navigation in dynamic and partially cluttered 

environments. To enhance the field of view of the monocular vision system, the pan 

function of the camera is adapted to the navigation algorithm. The main objective of this 

behaviour is to seek the goal in order to compute control parameters of the robot on a 

real-time basis. The state diagram for this behaviour is shown in Figure 4.13, and it 

checks for the existence of any clue about the goal, based on the SIFT algorithm. The 

strength of the matching results obtained from output of the algorithm, is utilized to 

determine the next possible state or behaviour. If the computed matching value is higher 

than a predefined threshold value, ThA or ThC, the robot enters the approach or 

completed state. Otherwise, the panning stage of the current behaviour is activated, 

which entails panning the camera left and right at a predefined (small angle in both 

cases, to enhance the field of view of the robot’s vision. The most reliable way to obtain 

high accuracy at this stage is to pan until reaching the limitations of the physical sensor.  

However, the larger angle the camera turns through the more processing time it 

consumes. For real-time applications, processing time and the physical limits of the 

camera are important limitations. Therefore, a high quality camera is essential to 

improve the performance of the proposed system, as discussed in Chapter 6.  In the real 

experiments for this study, an interval of ±90° is employed in order to obtain a good 

search performance with affordable processing time based on the capacity of the vision 

sensor.  

 

To increase the accuracy of the navigation, a zooming stage which involves changing 

the focal length of the lens to bring the subject closer or further away in the frame, is 

activated, depending on the strength of matching value. Consequently, if the 

consistency between the panning and zooming stages is obtained relating to the goal, 
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and the matching value is more than a predefined threshold value, the approach 

behaviour is activated. Otherwise, if the target cannot be acquired, the wander 

behaviour is activated to displace the robot’s position randomly.   

 

4.5.2   Approach 

 

This is the main behaviour of the proposed control architecture which directs the robot 

to its goal. This behaviour is only activated when the existence of the target is detected 

to a high accuracy. In order to navigate in a smooth way the turning rate (w) and linear 

velocity (v) are adjusted respectively. The state diagram for this behaviour is shown in 

Figure 4.13, and if the strength of the matching results is more than an appropriate 

threshold value, ThC, the behaviour completed is activated.  

 

On the other hand, if the difference between the previous and current matching results is 

less than a predefined threshold value, ThS, the first panning stage, is activated to seek 

the goal. If this fails, then progressive zooming stages are activated, and if these stages 

succeed in tracking the goal, the robot keeps navigating in this manner until the 

completed behaviour is activated; otherwise the wander behaviour is activated to 

relocate the robot randomly. This is discussed in more detail in the following section. 

 

4.5.3   Wander  

 

Wandering is a form of random steering, and is the main state of the robot while it 

navigates within the environment. However it is not a preferable behaviour in this 

research which in essence navigates the robot aimlessly until it encounters the goal. For 

instance, at time t1, the robot may be in the process of turning to the right, and at time t2 

it will still be turning in almost the same direction. The steering vector takes a random 

walk from one direction to another. To produce the steering vector for the next instance, 

a random displacement is added to the previous value [Reynolds, 1999]. An example of 

wander behaviour is included in Appendix C. 
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4.5.4   Obstacle avoidance 

 

This behaviour utilizes information from the laser range finder. The perceptual schema 

for the output of this behaviour generates an avoiding manoeuvre for the robot. After 

each scan, the laser range finder returns a corresponding point for each unit of angular 

resolution which represents the distance between the robot and any obstacle that the 

laser detects. This behaviour is activated whenever the laser range finder returns a value 

within a distance of influence. The angle between the robot’s heading angle and i-th unit 

of angular resolution depends on the laser’s configuration. For instance, if the range 

finder has a 180° field of view and 360 units of angular resolution, as shown in Figure 

4.14, the angle of the 270
th

 unit of angular resolution is equal to 45° with respect to the 

robot’s heading. In this navigation architecture, a simple and efficient algorithm is 

employed to deal with the obstacle avoidance problem using a laser range finder. 

According to the algorithm, the output of the laser is first simplified by classifying 

angular resolution units into n clusters (Oc) where, for instance the range finder has a 

180° field of view and 360 units of angular resolution; thus each cluster is responsible 

for   
   

 
  units of angular resolution and a  

   

  
  degree field of view. Subsequently, the 

average range value of each cluster is calculated, and then the average values of each 

cluster with a distance of influence is summed up based on the corresponding field of 

view value in order to estimate the next possible turning rate for the avoiding 

manoeuvre. It can be expressed mathematically as follows: 

  

     ∑   
 
   ( )       ( )                 (4.17) 

 

where    n = number of clusters. 

  lg = laser- smoothness parameter that adjusts turning rate , set  lg =1. 
 
 Oc(i) = ith obstacle cluster.   

 

 do =  distance of influence. 
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The obstacle avoidance behaviour is invoked and is activated whenever the robot 

encounters any obstacles, as illustrated in Figure 4.15. The only exception that may 

occur is when the completed behaviour is enabled (see Section 4.5.5).  

 

 

Note:  For the laser ranger finder having a 180° degree field of view and 360 unit resolution , the angle 

between  the robot’s heading and  the i-th unit of angular resolution, Ɵ = (
 

 
  )      

Figure 4.14:   Configuration of the laser range finder  

 

One of the key points related to avoidance behaviour is to localize the position of the 

robot based on the previous bearing angle after an avoiding manoeuvre, decreasing the 

consumed time to reach the goal. The localization technique basically attempts to locate 

the robot with respect to its odometry readings, and to incorporate odometry data into 

the system. The function is defined as follows:  

 

Error =△odometry (△y   △θ)             (4.18) 

                        

 where   △y   =  Position difference along y-axis . 

            △θ    =  Bearing angle difference. 
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After an avoiding movement, the robot steers in the proper direction to decrease the 

error provided by the △odometry function.  However, the odometry readings may become 

increasingly unreliable over time as errors accumulate and compound. To improve these 

readings, a simple bearing only measurement technique relying on monocular vision is 

employed with odometry readings in which the reference image and the current image 

are compared to enhance the localization accuracy of the robot [Deans, 2005].  
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Figure 4.15: State diagram for obstacle avoidance behaviour 

 

The vision based localization algorithm used in this study relies on the SIFT algorithm, 

where robust localization is performed by fusing odometry data and SIFT matching 

results. Hence the matching strength between the reference image and the current 

captured image is compared to the threshold value of the previously performed 

behaviour during the localization manoeuvre. For instance, if the matching strength 

obtained by the images is equal to or over this threshold value during the localization 

manoeuvre, the current state is immediately interrupted and the new heading angle is 

generated by using Equation 4.13.  

 

On the other hand, if the goal is not detected during the localization manoeuvre, which 

may be caused by the presence of an obstacle in the robot’s environment, it keeps 

heading in the same direction for a short time instead of activating search behaviour, 
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which increases the sustainability of the system’s performance. An example of obstacle 

avoidance and localization are demonstrated in Figure 4.16.  

                                                         

                          

Start

Obstacle

Goal

Goal is detected

  

        Figure 4.16: An example for obstacle avoidance behaviour 

 

A constant value is assigned to the linear velocity (ov) during the avoidance and 

localization procedures to provide the stability. Beside this, angular velocity (ow) is also 

maintained constant during the localization procedure until such time as the robot 

encounters the goal (see Figure 4.16).             

      

4.5.5   Completed   

 

This behaviour is illustrated using a FSM, as shown in Figure 4.17. The objective is to 

complete the proposed task, which is activated by either goal seeking or approach 

behaviours based on the strength of the matching value. When the behaviour is 

activated, the robot continues navigating until its goal is found, in a smooth and timely 

manner by adapting its algorithm. One of the key issues with this behaviour arises when 

the robot approaches its destination.  As the distance between the target and the robot’s 

actual position decreases, obstacle avoidance behaviour may be invoked which steers 

the robot towards another location. As previously mentioned, the system is designed 

based on subsumption architecture in which each layer’s goal subsumes that of the 
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underlying layers. Hence, in the case of completed behaviour activation; obstacle 

avoidance behaviour must be suspended, in order for the robot to reach its goal. The 

system completes its task when the matching strength exceeds a predefined threshold 

value. Therefore, the stopping criteria of the system robot can be defined as follows: 

 

   { 
           
            

                                                             (4.19)                        

 

where     Fs     = final stage, a boolean value    

     m      = matching strength 

    Mc      = threshold value for matching strength  

 

 

                

else

Start

Approach

IF match > Mc

Finished

IF match < ThC amd match > ThA

 

      Figure 4.17: State Diagram for completed behaviour  

    

4.6  Prediction of the heading angle  

 

Visual servoing requires the target object to be in the field of view of the camera at all 

times. At the same time, it is also required that controllability of the robot’s pose can be 
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achieved. However, in real experiments visual based sensing systems can face various 

problems, such as those resulting from lighting conditions in the environment or 

vibration caused by the robot’s motion. These problems influence the accuracy of the 

image acquired and the performance of the corresponding feature extraction algorithm. 

Thus a target prediction system algorithm is employed to overcome these given 

problems. The system basically maintains the best heading angle direction towards the 

goal taking into consideration matching strength. According to the algorithm, the best 

matching results generate the most reliable heading direction. Thus, as the target is lost 

or the features of the corresponding image are not analysed precisely, the robot makes a 

manoeuvre in the direction of the previously recorded best position in order to keep the 

target in the field of view.  The position prediction algorithm is as follows: 

 

Prediction Algorithm:  

Make initial record for the heading direction θbest  using best match strength (msb) 

 Until the goal is found 

     If the goal is in the field of view 

If the current match strength (msc) > (msb) 

Replace θbest    with    θcurrent 

 else 

Replace θcurrent  with  (θcurrent - θbest ) 

end_until 

 
 

4.7  Modelling and Simulation using Microsoft Robotics Studio

 

To estimate the capability of the proposed work for expressing useful tasks, the system 

has been evaluated again in the Microsoft Robotics Studio simulation environment. A 

number of simulations have been conducted to verify that the Corobot mobile robot is 

able to navigate in its working environment and achieve its goal without collisions. The 

simulated mobile robot is equipped with a set of behaviours, namely: goal seeking, 

approach, wander, obstacle avoidance, completed. The main control algorithm employs 

SIFT features to navigate the robot towards a specific target. This resembles an image-

based visual servoing technique and aims to provide a simple but efficient solution for 
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vision based mapless navigation problem. The main goal object used in the experiments 

is shown in Figure 4.18. 

 

                    

                      (a) 

      

                 (b) 

Figure 4.18: Goal image with 320x240 pixels resolution,  

           (a) image,(b) SIFT features extracted  
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    Table 4.2:  Initialization of the robot control algorithm  

                     Parameters                        Descriptions 
  Start position (x,y) 

  

  Goal position (x,y) 

  

  Initial heading angle (θ) 

  

  Distance of influence of object 

  

  Maximum velocity 

  

  Minimum velocity 

  

  Maximum matching value  (stop  criteria) 

  

   Minimum matching value (start criteria) 

  

   Velocity constant 

 

  Steering constants  

  

 Avoidance behaviour parameters  

 Starting position of the robot in the simulated area  

  

 Position of the goal in the simulated area 

  

 Starting heading angle of robot, θ=0
ο
 

  

 do = 0.65  m  

  

 vmax= 0.36 m/s    

  

 vmin= 0.08 m/s 

  

 45    for reaching goal 

  

 5     for starting navigation      

  

 kv =0.008    adjust  velocity    

  

sw = 0.7, sw1 = 0.4, sw2 = 0.6 adjust steering 

 

ow =  12 deg/s ;  ov = 0.1 m/s 

 

 

To conduct the experiments, the following parameters are defined: the robot’s starting 

position, initial heading and goal position, a set of control equations parameters (sw ,sw1. 

sw2 ,kv), maximum and minimum matching values and distance of influence of the 

object, (do), and finally avoidance behaviour control parameters (ow ,ov). Table 4.2 

presents either a definition or the initial values of aforementioned parameters used in 

performing the experiments. The parameters for the control algorithm are obtained by a 

trial and error method, and can be easily modified based on the dynamics or limitations 

of any specific robot.   

 

Three different test scenarios have been devised to evaluate the performance of the 

system in the experiments, each of which is conceived with an increased level of 

complexity, namely: 

 

Scenario 1 (S1): The mobile robot is required to navigate from the ‘Start Position’ to 

the ‘Goal Position’, where the robot is not able to detect the goal at the starting position 

and a large wall and an external obstacle are located in its path,  as shown in Figure 

4.19.  
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Scenario 2 (S2): The mobile robot navigates from the ‘Start Position’ to the ‘Goal 

Position’ (19,-1.0) in a partially cluttered enviorement and has to avoid three 

unexpected obstacles located in its path, as shown in Figure 4.21. 

 

Scenario 3 (S3) The mobile robot is required to navigate to three different goals 

successively in a partially cluttered enviorement and to avoid three unexpected  

obstacles located in its path, as shown in Figure 4.23.  

 

Table 4.3 displays the starting and goal positions in each scenario.  The evaluation of 

each scenario is presented graphically including estimated trajectory, control variables 

‘w’ and ‘v’ and matching strength during navigation.  

 

                        Table 4.3:  Definition of scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario         Start (x,y)                                                                  Goal (x,y) 

S1         (6.5,7.5)          (17.0,11.5) 

S2        (8.0,-1.5)           (19.0,-1.0)  

S3         (7.0,-5.0) (12.0,-5;19.0,8,0;16.0,-16.0) 
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Scenario 1 (S1) 

 

         

Robot heads to +X direction

Wall
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X
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          Figure 4.19: Scenario 1, the robot moves towards the goal  

                             from its start position 

 

 

      

                           (a)          

 `            

 (b) 

 Figure 4.20: Scenario 1, (a) estimated trajectory, (b) control parameters         
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The scenario shown in Figure 4.19, demonstrates the robot’s ability to negotiate towards 

the goal which is located out of the field of view of the robot. In addition, the robot 

must avoid a large wall and an external obstacle which is positioned so as to obstruct its 

path. The obstacle is a rectangle with dimensions of 500 mm x 700 mm.  

 

Figure 4.20 (a) presents the estimated trajectory of the robot using the proposed 

architecture for SC1. The robot initially starts searching for the goal along its initial 

heading direction. Once the goal is detected, the robot turns 45
ο
 towards the goal 

position and heads towards it. The robot keeps moving until it senses the wall. After 

this, it manages to avoid the wall safely and carries on approaching the goal until it 

encounters the obstacle. Once this obstacle has been avoided, the robot again detects the 

goal and achieves its mission. The corresponding control parameters are illustrated in 

Figure 4.20 (b), showing the characteristics of the navigation procedure in which the 

relationships between velocity and matching strength as well as the change in angular 

velocity due to the obstacles are evident.  

 

Scenario 2 (S2) 
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Figure 4.21: Scenario 2, the robot moves towards the goal from its start  

                    position 
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The scenario demonstrates the robot’s ability to avoid three rectangular obstacles 

positioned so as to obstruct its path, as shown in Figure 4.21. The estimated trajectory 

and the corresponding control parameters for this scenario are illustrated in Figures 4.22 

(a) and 4.22 (b) respectively. The robot begins navigation by moving forward until it 

senses the first obstacle. The robot avoids the obstacle successfully and then localizes 

itself towards the goal again and continues moving until perceiving the third obstacle. In 

negotiating this obstacle, the robot avoids it and proceeds to complete the task 

successfully.  The robot does not encounter the second obstacle.  

 

      

           (a) 

               

                 (b) 

          Figure 4.22: Scenario 2, (a) estimated trajectory, (b) control parameters    
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 Scenario 3 (S3) 

 

This scenario is designed to evaluate the performance of the proposed algorithms in the 

case of a global navigation problem in which there are three successive goals. Each of 

these are obscured by an external obstacle so as to increase the challenge inherent in the 

scenario, as shown in Figure 4.23. The estimated trajectory and corresponding control 

parameters for each goal are illustrated in Figure 4.24. The robot moves towards the 

first goal until it perceives the first obstacle, whereupon the robot avoids it and 

continues moving towards its goal. It then reaches the goal and completes its first task. 

After this the robot starts searching for the second goal which is detected after rotating 

the camera clockwise. The robot then rotates to its right (30
ο
)

 
to engage with the goal, 

and starts moving toward ‘Goal B’ while successfully avoiding the second obstacle. 

Having reached ‘Goal B’, the system again enables the search behaviour for the third 

goal, and then rotates clockwise to its right (70
ο
) to engage the goal. Once so engaged it 

heads towards the goal until it perceives the third obstacle in its path which the robot 

avoids from the obstacle and reaches its final goal.    

 

              

             Figure 4.23: Scenario 3, the robot moves towards the multiple goals  

                                   respectively namely, Goal (A), Goal (B), and Goal (C) 

 

 The results of these simulations demonstrate that the proposed system is able to safely 

navigate the mobile robot to different locations whilst avoiding obstacles within its 

Robot heads to +X direction
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working environment. The robot was able to find the locations of the goal, and as well 

as this it did not collide with any walls or obstacles.  

 

             

                                    (a) 

 

            (b)  

        Figure 4.24: Scenario 3, (a) estimated trajectory, (b) control parameters  

 

An additional test scenario has also been designed to simulate a trap-situation that the 

robot may experience when navigating in partially cluttered environments. According to 

the following scenario, the robot is required to reach a goal which is obscured by a large 
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obstacle. The robot in essence must pass along a narrow path towards the goal, as 

illustrated in Figure 4.25. The estimated trajectory and control parameters are illustrated 

in Figure 4.26. The robot perceives the wall on its left side whilst heading towards the 

goal, and then avoids the wall successfully. After this it moves towards the wall until it 

detects the big obstacle obstructing its path. In negotiating this obstacle, the robot 

becomes confused and is unable to avoid the obstacle. This scenario demonstrates the 

limitations of the proposed control architecture under the subsumption architecture in 

conditions that the robot may realistically experience. The problem here is that each 

layer works independently without consideration the strategic plan.  

             

Robot heads to +X direction

Obstacle

X
-A

x
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Y-Axis

Goal 

 

                    Figure 4.25: Scenario 4, the robot moves towards the  

                                        goal from its start position 

 

The robot is sometimes trapped in a ‘dead-lock’ situation, repeating the same reaction 

many times, or else does not perform rationally based on the shortfalls in the obstacle 

avoidance and navigation strategies. To overcome this problem in a complex scenario 
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under a full reactive architecture, the qualitative methods can be altered or amended 

using artificial intelligence approaches, as will be discussed in the following chapter.                         

   

                             (a)  

                                                                 

                                      (b) 

             Figure 4.26: Scenario 4, (a) estimated trajectory, (b) control parameters 

 

4.8 Summary 

 

An integral part of the objective of this study is to integrate reliable and powerful object 

detection and feature extraction algorithms into vision based mobile robot navigation 

systems, whilst relying on a mapless strategy. To achieve this objective, an enhanced 
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version of the SIFT algorithm, which is able to perform with high accuracy and 

reasonable processing time, is adapted to a vision based behavioural mobile robot 

system in order to control the robot. The control variables of the robot are generated 

based on the position and strength of the matched features. Although, as demonstrated 

by the test scenarios 1-3, the simulated robot was able to successfully navigate using the 

Microsoft Robotics Studio simulator, however these experiments do not guarantee that a 

real robot will perform in the precisely same manner when test are conducted in real 

conditions, because the simulated robot and the sensors are modelled as ideal. In 

particular, in real-world lightning and illumination conditions may dramatically 

decrease the performance of the system. However, the simulation results postulate that 

the proposed architecture can achieve an acceptable level of performance under real 

conditions. For the final scenario, the robot was unable to complete its task. This 

demonstrates the limitations of the proposed system. 

 

The following chapter introduces a novel intelligent navigation strategy which also 

employs SIFT matching results as the primary input for navigation issue, and is 

designed based on behaviour based architecture, in an attempt to improve its robustness.  
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                        CHAPTER 5 

     INTELLIGENT NAVIGATION USING SIFT 

 

This chapter describes a novel architecture that employs fuzzy logic and artificial neural 

networks for vision based mapless mobile robot navigation. Unlike the previously 

defined architecture, this architecture performs an intelligent solution using the notions 

of ‘feature tracking’ and ‘visual servoing’ to take advantage of scale-invariant features.  

  

The K-Means classification algorithm is applied to matched features to eliminate 

mismatches as regards scale parameters. This enhancement is a key step which directly 

increases the overall reliability of the system.  In order to predict a robust steering 

direction toward the goal with respect to the extracted scale-invariant features, an 

artificial neural network (ANN) technique based on multi-layer perception (MLP) is 

employed which uses a back propagation learning algorithm. In addition, a technique to 

adjust the distance of influence parameter using MPL architecture is described, 

providing safer avoidance manoeuvres. Another important contribution discussed in this 

chapter is to estimate distance using the scale parameters of scale-invariant features.  In 

addition a fuzzy controller is utilized to estimate the global velocity of the robot.  

 

The first section provides a brief description of the intelligent framework proposed in 

this study. The next section details the layers of the proposed intelligent framework 

which enhances the performance of the control architecture, and results are presented 

concerning how the simulated mobile robot navigates in its environment. 
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5.1 Design of an Intelligent Framework for Vision Based Mobile Robot 

Navigation  

 

The details of the proposed intelligent navigation framework are presented in this 

chapter. This section provides a brief description of the framework and highlights the 

modules used within it. A flowchart of the proposed architecture is illustrated in Figure 

5.1, a central concept of which is to incorporate appropriate soft computing techniques 

into the vision based navigation problem to allow the robot to move in a more robust 

and smooth manner. The framework consists of a number of modules which pass data 

from one to another. The system is equipped with a single pan-tilt-zoom monocular 

camera which acquires data in image format and a laser range finder which calculates 

distance in a specific scanning area. 

  

The first module matches the current and template images by employing the SIFT 

algorithm, and the best candidate match for each keypoint is found by identifying its 

nearest neighbour in the database of keypoints from training images. The nearest 

neighbour is defined as the keypoint with a minimum Euclidean distance for the 

invariant descriptor vector, as described in Section 4.2.5. However, many features of an 

image will not have correct match, because some of them arise from background clutter 

and others may not have been detected in the training images [Lowe, 2004]. Therefore, 

different methods should be applied to discard features that do not have good matches 

to the database. The popular K-means clustering algorithm is based on the partition of 

data. In this study, the matched features are enhanced by implementing a pre-processing 

step, utilizing the K-means clustering algorithm to eliminate mismatches obtained from 

the SIFT matching module. This module first classifies the matched features into 

clusters of scale parameters, and then eliminates any mismatches by employing a 

conventional thresholding technique.  

 

An intelligent method of mobile robot steering control whilst navigating along an 

unknown path, keeping the goal in the field of view, is developed by combining two 

different methods. The first of these employs a neural network to estimate the 
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corresponding turning rate with respect to the location of the matched features, and the 

second employs a simple linear regression technique to address the problem of 

calibrating a camera mounted on a robot  (detailed in section 5.2). Furthermore, a novel 

module responsible for estimating the distance from a single monocular camera 

employs a feed-forward neural network to obtain the distance data. The network has two 

input nodes for the average of scale parameters and an active zooming factor, and has 

one output corresponding to the value of physical distance to the goal. This module is 

mainly used to complete the navigation task when the robot approaches the goal within 

the tolerance distance, and is also used as an input by the Fuzzy Inference system to 

estimate the linear velocity. The proposed method is based on the computation of a 

fuzzy perception of the environment, dealing with the precision of the sensorial system. 

The Inference system uses three inputs of distance to the goal, distance to the obstacle 

and matching strength, and offers linear velocity as output. The final module is used to 

calculate the distance of influence parameter, do, employed by the obstacle avoidance 

behaviour which adapts the algorithm according to a range of conditions. The inputs 

estimated from the sensors are then all passed to a Behavioural Module which processes 

information in parallel. Brook’s subsumption allows the software designer to determine 

which lower-level, self-managed behaviours should be subsumed by other higher-level 

layers of the architecture [Brooks, 1986]. The Behavioural Module comprises five 

behaviours, and its design was inspired and adapted from the previously defined 

architecture (see Section 4.5). The only exception was the ‘Completed’ behaviour that 

employs the proposed distance estimation method for a stopping criteria instead of 

matching strength. The output manoeuvre of the robot is determined by this module, 

after which the Player Architecture block is enabled to provide communication between 

the high level commands and low level control.   

 

Consequently, the intelligent framework provides several new solutions to the vision 

based mapless navigation problem. First of all, it enhances the output steering parameter 

by adopting a feed-forward neural network instead of requiring calculation in a tedious 

calibration process, with no specialized knowledge of 3D geometry and computer vision 

being needed. A novel method is proposed to estimate the linear distance using a 

monocular vision camera, based on scale parameters of extracted interest points. This 
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method is a new solution to the problem of distance estimation for a monocular vision 

camera. Furthermore a new fuzzy control system is proposed to estimate and adjust 

linear velocity depending on the parameters of matching strength, distance to the goal 

and distance to the obstacle. The adaptive obstacle avoidance behaviour is designed to 

allow the robot to negotiate narrow paths and navigate in a safer manner.   
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Figure 5.1: Overall system architecture  
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5.2  Robust Estimation of Heading Direction of a Mobile Robot using 

ANN and Linear Regression 

 

This section introduces an intelligent estimation of control variables, using the SIFT 

algorithm for navigation, to overcome the problem of mapless navigation in partially 

cluttered environments. The vision based navigation algorithm for the proposed 

architecture is based on two techniques of feature tracking and visual servoing.  

 

In the navigation of a mobile robot, it is essential to accurately determine its location 

and orientation in order to follow the desired path. Obtaining a precise estimation of the 

association between the extracted features and the next possible turning manoeuvre is a 

key challenge especially for monocular vision based system. The conventional route is 

to calibrate the camera which however, requires solution of several complex 

mathematical equations [Eric et al., 2007] and very precise camera parameters. 

Furthermore it is not easy to estimate the value of distance with monocular vision, 

which is a key requirement for the camera projection matrix. Alternatively, appropriate 

control laws can be generated using a statistical assessment of the correspondences 

between matched points. An original control law technique involving this approach was 

discussed in the previous chapter. Alternatively, the methods may use a teach-replay 

approach in which the robot is manually led along a desired path in the teaching phase, 

then the robot autonomously follows that path in the replay phase [Zhichao and 

Birchfield, 2006]. However, due to lack of an explicit model of the geometric world, its 

geometric accuracy is limited. In the proposed method, an original algorithm is used 

which consists of a multilayered neural network to train parameters of matched points. 

This generates a turning rate control variable without using complex and tedious 

calibration techniques. 

 

5.2.1 Conventional method for camera calibration   

 

Accurate camera calibration is a key requirement to achieve accurate visual 

measurements. The relationships between the actual position points and the matched 
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image points are complex. Accordingly, the camera parameters have to be calculated by 

a precise imaging model. However, the more precise the imaging model required, the 

more complicated the calibration becomes. How the camera is calibrated essentially 

determines the relationship between what appears on the image plane and where it is 

located in the 3D world. In order to explain the conventional calibration techniques, a 

pin-hole model is assumed for the camera mounted onto the robot, so that its optical 

axis is aligned to the robot's forward direction and also parallel to the ground plane 

[Zhang, 2000]. Conventional camera calibration involve  a procedure for determining 

the internal camera geometric and optical characteristics (intrinsic parameters) and the 

3D position and orientation of the camera frame relative to a certain world coordinate 

system (extrinsic parameters). Further details can be found in Appendix E.  

 

5.2.2 The proposed algorithm to estimate heading direction  

 

Many studies using vision for robot navigation try to build accurate models of the scene, 

using accurately calibrated systems [Lynch et al., 1999; Cai et al., 2010; Xiong et al., 

2010]. However the camera calibration process is complex, sensitive to the calibration 

errors and may need an explicit model of the environment.  

 

An alternative method has been employed to estimate the heading direction based on 

neural network. A multi-layered feed-forward neural network has the ability to form 

complete mapping from a set of input patterns to a set of output patterns. In this study, 

an original artificial neural network (ANN) design is developed which consists of a 

multi-layered feed-forward network to overcome the heading direction problem. This 

eliminates the tedious calibration process and does not require specialized knowledge of 

3D geometry and computer vision. A pin-hole model is assumed for the camera which 

is mounted onto the robot so that its optical axis is aligned to the robot's forward 

direction and also parallel to the ground plane. A multi-layered feed-forward network is 

then designed based on scale-invariant features [Lowe, 1999; Lowe, 2004] to provide 

the association between the 2D image coordinates and the 3D reference (world) 

coordinates.  
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Figure 5.2:  Estimation of heading direction using ANN and Linear Regression  

 

The final transformation process between the image workspace and the robot workspace 

is calculated in two steps. The first step is to conduct the transformation between the 

camera’s coordinate system and robot’s coordinate system, which is essentially 

provided by a simple linear regression technique due to the location of the camera. This 

essentially performs the transformation between the heading direction of the camera 

(pan angle) and the robot.  

 

The second step aims to establish the relationship between the image coordinates and 

the world coordinates which essentially generates appropriate pan and tilt angles 

regarding the centre of mass of the landmark. Deriving accurate results from the 

calibration processes and estimation of the precise control variable requires the 

consistent assessment and enhancement of extracted features, which basically involves 

removing mismatches, to increase the accuracy of the matching process. The assessment 
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step with the extracted features on the other hand requires observing an appropriate 

location from the feature cluster. The overall system architecture has been displayed in 

Figure 5.1. A flow chart of the heading direction estimation, including ANN design, 

linear regression analysis and SIFT features, is illustrated in Figure 5.2. The outputs of 

this system are utilized as inputs by the control module to generate corresponding 

control parameters.  

 

5.2.2.1 Assessment of scale-invariant features   

 

The first step is to eliminate mismatched features from the matched feature cluster, as 

shown in Figure 5.3. In order to fulfil this aim, matched points are classified with 

respect to their scale parameters. The classification of matched features with regard to 

scale and orientation parameters was first proposed by Lowe [2004], who employed the 

Hough transform to classify objects in a scene. Nevertheless, the problem is different in 

the present approach since there is only one object to detect, which illustrates the goal. 

Accordingly, a simple but efficient classification technique is utilized with respect to 

scale parameters to overcome the elimination problem. The basic idea is to classify 

clusters using the K-Means classification algorithm, which is a simple algorithm that 

has been adapted to many problem domains regarding scale parameters, and then to 

remove the inconsistent features from these clusters. 

 

For instance, It is assumed that there are n sample feature vectors x1, x2, ..., xn all from 

the matched class and it is known that they fall into k compact clusters, k < n. Let mi be 

the mean of the vectors in cluster i.  A minimum-distance classifier can be used to 

separate them. That is, it can be indicated that x is in the ith cluster, if || x - mi || is the 

minimum of all the k distances. This statement suggests the following algorithm for 

finding the k means: 

 

K-Means Algorithm:  

Make initial guesses for the means m1, m2, ..., mk 

Until there are no changes in any mean 

Use the estimated means to classify the samples into clusters  

For i from 1 to k  
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Replace mi with the mean of all of the samples for cluster i  

end_for  

end_until  

 

 

   
         Figure 5.3:  Matching example, including different clusters (1th cluster (black),  

                      2th cluster (green), 3th cluster (red)) 

 

An example, illustrating how to apply the K-Means algorithm to classify the scale 

parameters for the SIFT algorithm is demonstrated in Figure 5.3. Figure 5.4 shows the 

allocation of clusters. The corresponding figures represent the assignment of each 

feature to the matching sub-clusters based on scale parameters, and each cluster is 

illustrated using a different colour. The next step is to determine and remove clusters, 

including any mismatches. In order to estimate these clusters, a simple thresholding 

technique is used such that if the mean value of any cluster is higher than a predefined 

threshold value, all members of the corresponding clusters are removed from the 

matching database.  

 

In addition, clusters having one member are also eliminated. The example, given in 

Figure 5.3 utilizes ‘7’ as the threshold value. Thus the cluster illustrated in black is 

removed from the database, eliminating two mismatched features. However, in some 

situations the selection of an inappropriate threshold value can have adverse effects on 

the performance of the matching process and eliminating true matches. Despite the 

possibility of eliminating true matches, this simple conventional classification technique 
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removes most of the mismatched features, and consequently enhances the overall 

accuracy of the system.  

 

         
    Figure 5.4:  Three clusters (black, green, red) are obtained having ‘10.46’, ‘4.97’ and ‘1.51’    

              mean values respectively 

        

     

5.2.2.2 The estimation of heading direction using ANN 

 

The purpose of this section is to simplify the otherwise tedious and complex calibration 

steps using an artificial neural network. Scale-invariant features obtained by the SIFT 

algorithm are used to automatically detect calibration points. Then a back projection 

neural algorithm is used to map the relationships between the image coordinates and the 

world coordinates in terms of pan and tilt angles. The conventional methods to estimate 

the intrinsic and extrinsic parameters almost all involve uncertainty. Almost all lenses 

used for image acquisition have some degree of distortion as well as varying focal 

lengths. The uncertainty about extrinsic parameters is mainly due to the roughness of 

the floor, geometrical error in fixing the camera on the robot, and the erroneous setup of 

the landmark. Image deformation in the real environment degrades the accuracy of the 

analytic estimation algorithm because it depends heavily on the exact location of image 

data. Therefore, the pinhole model and idealizations may render the solution inadequate;  

acceptable estimation accuracy cannot be guaranteed in real situation [Koh et al., 1994]. 
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To rectify this problem, several different algorithms have been developed to establish a 

mathematical and geometrical relationship between the physical 3-D co-ordinates and 

its corresponding digitized 2-D co-ordinates using ANN [Junghee and Choongwon, 

1999; Zou et al., 2005]. The basic idea with these techniques is to detect distinctive 

features using different image extraction techniques to train a multilayer feed-forward 

neural network, which is able to approximate any arbitrary continuous function with any 

desired degree of accuracy. The most extensively used techniques basically extract 

several feature points, for instance on a checkerboard grid from different angles and 

distances. The shooting angle, which in simple terms means where the agent stands in 

order to take the photograph, is determined by the angle between the camera’s optical 

axis and the template plane normal. After this an appropriate network design is 

constructed, utilizing image points (u,v), and shooting angle (θ) as inputs, and world 

coordinates (X,Y,Z) as outputs, as illustrated in Figure 5.5.  

 

                      

           Figure 5.5:   The general structure of the neural network for camera calibration  

 

 

The conventional mode of using an ANN to calibrate any simple monocular vision 

camera usually relies on a map, including several additional assumptions to facilitate 

calibration [Koh et al., 1994; DeSouza and Kak, 2002; Zou et al., 2005]. For instance, 

an accepted assumption is to tilt the camera downwards which in essence keeps the 

distance of the corresponding landmark constant, as illustrated in Figure 5.6.  
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Figure 5.6: The robot coordinate system and a camera axis [Zou et al., 2005] 

 

Nevertheless, the requirements for the proposed system are different from the 

conventional situations in that the methodology is inspired by a mapless navigation 

strategy where the exact positions of the landmarks are unknown [DeSouza and Kak, 

2002]. In addition, the ANN design is developed for a pan-tilt camera instead of single 

monocular vision camera. Koh et al. [1994] also propose a method using ANN to 

calibrate a camera which rotates with two degrees of freedom (pan and tilt), and extracts 

feature points from the image for landmark tracking. The method, however, entails an 

artificial landmark and various geometrical assumptions [Koh et al., 1994]. A different 

method is accordingly proposed to overcome the mapping problem between the 

physical (3-D) and corresponding digitized two-dimensional (2-D) co-ordinates.  

 

A multi-layered feed-forward neural network is utilized having two input nodes from 

the image coordinates (u,v). It has two output nodes corresponding to the pan and tilt 

angles (Pθ,Tθ). The mapping function of the neural network, N(.) can be represented by: 

 

                                                                  ( )                                                  (5.1) 

 

where M = [Pθ,Tθ]
T 

, S = [u,v]
T 

 

 

Consequently, the technique requires collecting sample output pan and tilt movements 

in degrees to obtain any given coordinates in the image plane. An example of the 

proposed network design is illustrated in Figure 5.7. The exact 3-D position of the 
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camera can be estimated from the output of the network, with minor modifications. This 

however, is not functional in this application, but alternatively can be used with any 

map based navigation algorithm. 

 

 

Figure 5.7:   The general structure of the proposed neural network design for camera    

calibration, including one hidden layer with n neurons 

 

The training is performed off-line by using a Levenberg-Marquardt back-propagation 

algorithm on an error function that is the sum of error squared over the entire training 

sample [Matlab, 2001]. Details of the algorithm can be found in Appendix D. The 

sigmoid and linear functions are employed as activation functions for hidden and output 

neurons respectively. The performance analysis of the proposed ANN design for the 

Axis-213 camera and the simulated camera are presented in Chapter 6, and two different 

networks are designed that are as simple as possible to reduce computational time. 

Table 5.1 demonstrates the basic specifications for the resolutions employed. Training 

data are presented to the network during training, and the network is adjusted according 

to its error. Validation values are used to measure network generalization, and to halt 

training when generalization no longer improves. Testing data do not have any effect at 

the training stage which provides an independent measure of network performance 

during and after training. The validation performance of the proposed ANNs for each 

resolution is given in Chapter 6. 
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              Table 5.1: Specifications of the proposed network topologies  

Camera Type     Resolution       Data         Topology                 Train           Validation       Test  

Axis-213             176x144      155            2-6-2              125               15              15 

Simulated         320x240        85             2-4-1 69                  8                 8 

 

 

5.2.2.3 Linear regression technique for calibration  

 

Regression is a simple statistical tool used to model the dependence of a variable on one 

or more explanatory variables. This functional relationship may then be formally stated 

as an equation, with associated statistical values that describe how well it fits the data, 

and is used for the transformation between the robot and camera. A simple linear 

regression equation can be expressed as follows: 

 

                                                                                                                (5.2) 

 

To conduct a regression analysis, coefficients must be solved, as shown below. 

 

 

                                                       
∑ (    ̅) (    ̅) 

   

∑ (    ̅)  
   

 

                                                                          ̅     ̅              (5.3)         

where, 

 ̅                     

 ̅                     

It is assumed that the camera is mounted on the robot with its optical axis is aligned to 

the robot's forward direction and also parallel to the ground plane, as illustrated in 

Figure 5.6. 
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The camera's pan axis should ideally sit at the rotation axis of the robot to provide 

accurate navigation; therefore the linear regression technique is used to provide 

calibration between the two axes. According to the proposed linear regression model, 

the independent variable ‘x’ represents the estimated pan movement obtained by the 

camera in order to reach a specific coordinate in the world. Therefore there must be a 

model that estimates the dependent variable ‘y’, the robot’s rotation along the Z axis 

with respect to its pan movement. To estimate the model, scale-invariant features of the 

environment are extracted and stored in a database throughout the panning movement. 

The range of pan movement, used in the real experiments is 180° (around the horizontal 

axis). One of the key issues is to collect an appropriate number of samples from the 

panning space. Subsequently, the same procedure is applied to the robot, and the robot 

rotated along its Z axis in order to estimate the best matching with corresponding 

panning position. Finally, linear regression is applied to all of its recorded positions to 

generate the association between the camera and the robot. The objective is to find a 

line going through all of the points. The results of the linear regression between the 

camera and the robot for different experimental sets, as used in the real experiments, are 

detailed in Chapter 6. 

 

5.3  Scale Parameters for Distance Estimation Based on ANN 

 

One of the most challenging problems for monocular vision based systems is to 

determine the distance to the goal. In stereo or trinocular vision spatial information can 

be derived from the comparison of different images, whereas in monocular vision the 

analysis can be performed only by studying the fundamental characteristics of an image. 

This analysis relies on statistical investigations, such as the Time to Contact (TTC) 

calculation, based on gray level distribution, which was discussed in Chapter 3, or the 

distribution of RGB channels [Jarvis, 1983; Cantoni et al., 2001].  

 

Optical flow based techniques can alternatively be utilized to calculate depth 

information from the shapes of the objects positioned in the working space, however the 

performance of this approach can be poor due to inherent assumptions about knowledge 

of shapes [Gokturk et al., 2004]. An alternative method is to utilize a defocusing 
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technique which in essence measures blurred information to determine depth. Buzzi and 

Guichard [2004] proposed a method employing some of the basic approaches to 

calculating blur in order to quantify it in an image, and once the ‘blurriness’ of an object 

is estimated, depth information can then be easily calculated. However, these types of 

applications are not appropriate for real time applications [Aslantas and Pham, 2007]. 

Determining whether or not an object is inside the focal distance can be problematic as 

they have the same measure of blur, although this can be solved by adopting a system 

with two cameras of different focal lengths [Buzzi and Guichard, 2004]. 

 

Another method uses supervised learning to estimate 1D monocular depth information 

in unstructured outdoor environments, however, this requires complex processing and 

training steps [Jeff et al., 2005]. In addition, the SIFT algorithm produces a scale 

parameter for each key point extracted. For each matched pair of key points in the 

training and recognition images, the quotient of the keys’ scale parameter gives an 

estimate of their relative apparent size and hence their distance [Sjöö et al., 2009]. This 

proposal represents a distance estimation technique based on scale parameters, 

performing a good approximation of distance, but the technique requires the width of 

the object in the training image to be obtained in pixels. In addition, mismatched key 

point pairs can produce incorrect scale parameters.  

 

An original and efficient distance estimation technique inspired by these methods has 

been proposed, which overcomes their drawbacks and also works for any monocular 

camera equipped with zoom functionality. The technique is based on a multi-layered 

feed-forward neural network design which has two input nodes: the average of scale 

parameters (Sm,Zf) and an active zooming factor. It has one output corresponding to the 

value of physical distance (d) to the goal in metres. The mapping function of the 

network can be expressed as follows: 

 

   ( )                        (5.4) 

 

where D = [d]
T 

, S = [Sm, ZF]
T 
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The architecture of the proposed algorithm is illustrated in Figure 5.8. The technique 

involves a pre-processing step which utilizes a K-means based classification algorithm 

to remove mismatches. The pre-processing step initially eliminates mismatches, 

followed by estimating the centre of mass value (Sm) from the enhanced scale parameter 

space. Training is carried out off-line using the error back-propagation algorithm, and 

the sigmoid and linear functions are employed as activation functions for hidden and 

output layers respectively. The general structure of the proposed network design is 

illustrated in Figure 5.9, and Table 5.2 demonstrates the basic specifications for the 

networks designed.  

    

  

Figure 5.9:  General structure of the proposed neural network design for distance estimation, 

including one hidden layer with n neurons 

    

Table 5.2: Specifications of the proposed network topologies for distance estimation  

Camera Type     Resolution       Data         Topology                   Train             Validation        Test  

 Axis-213             176x144      128            2-5-1                 104               12               12 

Simulated          320x240       128           2-4-1    104               12                12 

  

The maximum estimated distance is 8 metres and the system operates at two different 

zoom levels.  Data samples are collected every 10 cm up to 600 cm and 800 cm for 

these zoom levels respectively. The minimum distance to the goal is set to 60 cm, which 

is the distance tolerance parameter (dt), as discussed in Section 5.7. The AXIS-213 

camera has a 26x optical zoom and the rate of magnification of images can easily be 
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changed with VAPIX, using (5.5) to convert the VAPIX command to the optical zoom 

value.  

 

               
(    –  ) (     )

(      )
 +1                                          (5.5) 

 where MOZ = maximum optical zoom value and VZV = VAPIX zoom value.  

.    

 

                       Figure 5.8:  The architecture of the proposed distance estimation algorithm 

 

The network is trained using the Levenberg-Marquardt back-propagation algorithm, 

which is an iterative technique that locates the minimum of a function expressed as the 

sum of squares of nonlinear functions. It has become a standard technique for nonlinear 

least-squares problems and can be thought of as a combination of steepest descent and 

the Gauss-Newton method (see Appendix D). One of the main advantages of neural 
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networks are their ability to generalize, this means that a trained net can classify data 

from the same class as the learning data that it has never seen before. In real world 

problems, only a small proportion of possible patterns is available to generate a neural 

network. Therefore, to achieve the best generalization, the data set should be split into 

three parts, namely training, validation and test sets. The learning should be terminated 

in the minimum of the validation set error which shows the best generalization. If 

learning is not halted, overtraining can occur and the performance of the overall system 

decreases.    

          

                                Figure 5.10: Training results for distance estimation 

 

Figure 5.11:  Training states of the algorithm with an error of 0.00191597 
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The corresponding zoom factors employed for the algorithms are 11x (4000) and 16x 

(6000) where the VAPIX equivalents of these values are shown in round brackets. The 

training analysis of the proposed network is illustrated in Figure 5.10, from which the 

results indicate that the network approaches the best validation point at the 37th epoch 

(iteration) with an error of 0.00191597. The training stages of the algorithm, including 

gradient, adaptive value ‘mu’ and the validation checks during epochs, as illustrated in 

Figure 5.11. The network is trained with this configuration several times, resulting in a 

standard deviation (σ) of 0.00017. The trained network with the given configuration is 

able to reliably estimate the distance from a single monocular camera using SIFT 

features.   

 

An example from the training data set for distance estimation is illustrated in Figure 

5.12, and the corresponding input and output parameters, including zoom level, scale 

average and the physical distance can be found in Table 5.3. The training results of the 

simulated camera for calibration and distance estimation are included in Appendix M.  

 

Table 5.3: An example data set for distance estimation  

           Scale parameters  with 11x zoom level                         

        Frame             Scale average Physical distance (m)  

         (a)          7.98           6.0 

         (b)          7.61           5.60 

         (c)          4.47                                                                     4.0  

         (d)          3.58           3.2  

         (e)          1.33                                                     0.6 
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       (a)             (b) 

                                    

                       (c)                         (d)    

         

                      (e)  

Figure 5.12:  Training set for distance estimation via scale parameters,                                   

frames (a) to (e)         
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Figure 5.13:  Distance estimation in a real navigation scenario  

 

 

Table 5.4: Distance estimation results from a real experiment 

    Distance estimation  with 16x zoom level                         

        Goal                RMSE (m) 
          G1          0.3409 

          G2          0.3822 

          G3          0.7156                                                           

 

A final example is illustrated in Figure 5.13 to demonstrate the performance of the 

proposed distance estimation technique in a real navigation problem. Three different 

goals are located in the robot’s path (see Section 6.3.2). The details of this scenario are 

described in Section 7.3.1.2. Table 5.4 presents the root mean square error (RMSE) 

between the estimated distance and the actual values obtained for each goal. A lower 

value of RMSE indicates a better fit of the model. The results demonstrate that goals G1 

and G2 produce lower values, as expected, which were used in the training stage of the 

network. On the other hand, goal G3 results in a reasonable RMSE value, despite not 
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being used in the training stage. Accordingly, the trained network can work successfully 

with different goals, providing flexibility and reliability to the proposed method. 

 

To conclude, the proposed distance estimation technique is a robust way of estimating 

distance from a single monocular camera. This technique is adapted to the Fuzzy 

Inference system, designed to estimate linear velocity (see Section 5.5), and it is also 

used in the Behavioural Module of the architecture as detailed in Section 5.6. 

 

5.4   ANN based Approach for Obstacle Avoidance  

 

According to the philosophy of the subsumption architecture, as long as no obstacles are 

detected, the robot will successfully head towards the goal. If an obstacle is detected, 

however, the obstacle avoidance behaviour is activated which steers the robot away 

from the obstacle. To overcome the obstacle avoidance problem, simple but efficient 

obstacle avoidance methods have been employed in the previous chapter (see section 

4.5.4). In many situations, this technique works perfectly well, Nevertheless, some 

drawbacks of this technique have been observed during the evaluation of the proposed 

architecture. 
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Figure 5.14:  The right and left forces cancel each other out and the avoidance algorithm fails 
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For instance, when the left and right forces which compel the robot to make manoeuvres 

to the right and left respectively cancel each other out, the robot will probably hit the 

obstacle, as illustrated in Figure 5.14. This problem resembles the local minima problem 

in the potential field method, developed as an online collision avoidance approach, 

which is applicable when the robot does not have a prior model of the obstacle but 

senses it during motion. It is clear that its reliance on local information can trap it in a 

local minimum as the repulsive and attractive forces cancel each other out [Nattharith 

and Bicker, 2009]. 

 

Another example is illustrated in Figure 5.15, where the robot is jammed between the 

obstacle and the wall, and cannot escape through the gap. This is because the proposed 

algorithm compares each cluster with a distance of influence, and each of these is 

summed based on the corresponding value of the field of view value, which 

consequently results in an avoidance manoeuvre. However the algorithm considers only 

one parameter based on a constant value of distance of influence, do , which leads to the 

method being inadequate for steering the robot along narrow gaps smoothly, as seen in 

Figure 5.15. To increase the performance of the avoidance manoeuvre, a solution based 

on artificial neural network is proposed which varying the do parameter with respect to 

different situations. It results in performing smoother avoidance manoeuvres and 

overcomes the drawbacks mentioned above. To handle these problems, an artificial 

neural network architecture is designed whose input layer includes the range data cluster 

obtained from the laser sensor Oc (see Section 4.5.4); The mapping function of the 

network can be defined as follows: 

 

   ( ) 

(5.6) 

where D = [do]
T 

, S = [Oc(2), Oc(3), Oc(4),…., Oc(n)]
T 
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                     Figure 5.15:  The robot is stuck and collides with the obstacle   

 

The proposed neural network utilizes usable accessible space data as an input and 

providing values of do. To simplify the problem, only three different values are assigned 

to the output of the network The first of these values is the initial distance of influence 

parameter used for most of the cases. The second is used for trap situations and narrow 

gabs as illustrated in Figure 5.15, and the final one is for the situation where the left and 

right forces cancel out each other (see Figure 5.1).   

 

         

Figure 5.16:   The general structure of the proposed neural network design for obstacle 

avoidance behaviour, Oc(i) represent the range cluster (for simplicity i =3 for this case), 

including one hidden layer with n neurons  
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The first and the second values are employed to update the do . However the third 

parameter is utilized to indicate a possible collision with wall or door. Accordingly, 

when the network yields this output, the obstacle avoidance behaviour is invoked to 

make a random manoeuvre to either the left or right. Data collection is a key challenge 

where any human expert may fail or need to spend too much time to overcome data 

acquisition problems [Janglova, 2004a]. The proposed architecture is constructed on the 

basis of the previously used simple obstacle avoidance technique (see Section 4.5.4), 

which performs reasonably well in many situations, and the robot is required to follow a 

number of predetermined paths to gather data for training. These paths are selected by 

the designer to simulate the previously mentioned tasks. The movements of the robot 

are measured and formed as training patterns for each obstacle avoidance sub-task. The 

robot was made to follow a number of paths classified as general obstacle avoidance 

situations in order to collect data. The data set was divided into three sets of training, 

validation and test patterns based on the independent data collected from the different 

paths.  

 

The performance evaluation results from these experiments are discussed in Chapter 6. 

The network is trained with the collected data, and the proposed neural network 

employed in this study is a feed-forward neural network with a back propagation 

training algorithm, like the previously mentioned architectures (see Sections 5.3.2 and 

5.4). The general design of the proposed network is illustrated in Figure 5.16, in which 

the number of laser range finder cluster is set to 3 instead of 9 so as to simplify the 

image. Each cluster is responsible for a 20
ο
 field of view. Table 5.5 demonstrates the 

basic specifications for the network, which was used in both real experiments and 

simulation tests. 

 

Figure 5.17 presents the results of the proposed artificial obstacle avoidance behaviour 

when left and right forces cancel each other out.  The characteristics of the range data 

obtained from the range finder with respect to the wall are illustrated in Figure 5.18 (a). 

The output of the networks triggers random steering direction, which helps to prevent 

collision. The distribution of data from the sensor after random steering is illustrated in 

Figure 5.18(b). The re-localization of the robot after the avoidance manoeuvre is 
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performed with respect to odometry readings and the position of the landmark as 

discussed previously in Chapter 4. In essence, the robot conducts its localization with 

regard to the centre following principle and landmark based localization (see 4.5.4). 

Figure 5.19 presents the output trajectory of the artificial avoidance technique, which 

generates a safe and smooth avoidance manoeuvre in such a complex situation. This 

scenario was initially conducted using the reactive method, but it did not navigate the 

robot safely along the path, as illustrated in Figure 5.15.  Due to the narrow path, the 

robot becomes trapped between the wall and the obstacle, and fails to escape from the 

trap situation. On the other hand, in the intelligent solution, this path was accepted as a 

training path from which the corresponding range data was gathered to determine the 

characteristics of the problem. Accordingly, in the training phase, the human expert 

manually navigates the robot towards the trap and performs the avoidance manoeuvre. 

When the robot encounters such a trap, the distance of influence, do  parameter is 

immediately reduced by the system, and the robot avoids the trap. 

 

The more the network is trained, the better the results which are obtained. The 

intelligent method is able to successfully and smoothly accomplish obstacle avoidance 

problems, as shown in Figures 5.14 and 5.15.  
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Figure 5.17:  The intelligent avoidance manoeuvre succeeds to escape from the trap 
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(a)                                                                     (b) 

Figure 5.18:  Output of range finder,  (a) range data for network input  , (b) range data just after 

random steernig to left  for the network output 

 

 

 

 

                Table 5.5:  Specifications of the proposed network topologies for avoidance  

Range Finder     Resolution       Data        Topology     Train           Validation     Test  

URG-04LX         180               650          9-7-1                   520               65                    65 

 

                               

  

Figure 5.19: The intelligent avoidance algorithm performs a safe and smooth avoiding 

manoeuvre in a complex scenario 
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5.5   Estimation of Global Linear Velocity using Fuzzy Logic 

 

The use of fuzzy logic in the design of navigation behaviours and the generation of 

control parameters for a mobile robot has recently gained a lot of attention from 

researchers, as these approaches attempt to mimic how humans make decisions [Li and 

Yang, 2003] .  

 

The problem of estimating the heading angle for goal-based navigation and obstacle 

avoidance has been discussed in the previous sections. However, the other important 

control parameter is linear velocity (v). Keeping this constant is a well-known method 

[Brett et al., 2003]. When obstacles are nearby and/or closely aligned with the heading 

direction, additional speed control helps to avoid collisions or otherwise the robot would 

have to make sharper turns. In addition, reliable variation in linear velocity during 

navigation directly affects the overall performance of the system. Accordingly, in order 

to estimate the instant velocity regarding distance to the goal and obstacles in the 

environment, a fuzzy based control system is proposed. The fuzzy inference system for 

this behaviour takes three inputs, i.e.    (  
 ,   

    
  ), and offers linear velocity (vt) as 

output. The first input,   
 , is the estimated distance between the goal and the robot, 

while   
   is the distance from the robot to the closest obstacle. The input    

   is the 

number of matched feature points between the goal and the current image. Based on the 

common experience of a skilled human operator, it can be shown that a lower value of 

  
  should result in a higher value of vt, as the robot nears its goal. On the other hand, a 

higher value of   
  assumes a higher value of vt , since the robot is a safe distance from 

the obstacle. A higher value of    
   implies the higher value higher value of  vt because 

the robot is close to its goal. The i-th fuzzy rule for linear velocity is defined as: 

 

If [(  
       

 ) and(  
       

 ) and (  
       

 )]  then  [vt  is    
 ] 

      

(5.7) 
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where, 

and denotes the Min operators, and    
  ,   

  ,   
   and   

  are fuzzy sets defined over the 

ranges of (s1,s2 s3) and vt respectively.  

 

5.5.1 Design of membership functions for the linear velocity controller 

 

This section describes the design of the membership functions for the fuzzification and 

defuzzification processes. Although different researchers have chosen different 

membership functions depending on the problems encountered in various applications, 

the trapezoidal and triangular shapes have been employed in this study to simplify the 

computation. It is important to realize that there are no established methods to adjust the 

shapes of membership functions. This process requires careful experimentation. In order 

to achieve this, the ranges of different sensory inputs to the fuzzy sets used were 

arranged so as to cover all relevant situations and to provide the system with greater 

flexibility in making the best decision. The trial and error method was used with 

different combinations of inputs and corresponding outputs are evaluated.  

 

Three membership functions are defined for the velocity control problem, which are 

detailed in the following paragraphs. The first membership function for the given 

problem, shown in 5.20, is distance to goal (dg) which illustrates the distance from the 

robot in its current position. Three geometric membership functions represent the 

robot’s position to the goal, which are near, midway and far. The distance to the goal is 

estimated using the scale parameters, as previously mentioned in Section 5.3.  Any 

value within a distance between 2 and 5m is considered to be midway. The near and far 

membership functions can overlap midway. Thus, the robot can be both midway and 

near or both midway and far from its goal. The overlap allows the use of multiple rules. 
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 Figure 5.20: The distance to the goal membership functions (dg) 

 

 

The distance to the obstacle (dobs) membership function illustrated in Figure 5.21 

represents the closest distance from the robot to the obstacles where three membership 

functions stand for near, midway or far between the robot, and the nearest obstacle. All 

ranges within the distance of influence of the object (do), that is 1.2 m, are taken into 

account where a distance within 0.6 m is considered to be near. 

 

The matching strength membership function illustrated in Figure 5.22 corresponds to 

the similarity between the current and the reference (goal) images using three 

membership functions stand for small, moderate or, big. A value of similarity under 10 

is considered to be small. Any value of matching similarity between 5 and 25 is 

considered to be moderate. The small and big membership functions overlap midway. 

 

    

Figure 5.21: The distance to the obstacle membership functions (dobs) 
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 Figure 5.22: Matching strength membership functions (mstr) 

 

The output membership functions are used to calculate the linear velocity of the robot, 

which is defined from 0.08 m/s to 0.4 m/s depending on the dynamics of the robot, as 

illustrated in Figure 5.23. The membership functions are defined as slow, normal, fast 

and fastest. The next step is to define the appropriate fuzzy rules based on the details of 

the fuzzy inference system (FIS), a set of fuzzy rules are experimentally developed and 

adjusted until the outputs are judged to be satisfactory for different situations. Table 5.6 

displays the fuzzy rules for the velocity problem. 

 

 

 

    Figure 5.23: Linear velocity membership functions (vl) 
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          Table 5.6:  List of the linear velocity algorithm rules 

Rule No 

 

 IF (dg) 

  

 

 

  

 AND (dobs)   AND (mstr) THEN (vl) is 

1 

 

Near Near Small Slow 

2 Near Near Moderate Slow 

3 Near Near Big Normal 

4 Near Midway Small Normal 

5 Near Midway Moderate Fast 

6 Near Midway Big Fastest 

7 Near Far Small Normal 

8 Near Far Moderate Fastest 

9 Near Far Big Fast 

10 Midway Near Small Slow 

11 Midway Near Moderate Slow 

12 Midway Near Big Slow 

13 Midway Midway Small Normal 

14 Midway Midway Moderate Normal 

15 Midway Midway Big Normal 

16 Midway Far Small Normal 

17 Midway Far Moderate Normal 

18 Midway Far Big Fast 

19 Far Near Small Slow 

20 Far Near Moderate Slow 

21 Far Near Big Slow 

22 Far Midway Small Slow 

23 Far Midway Moderate Slow 

24 Far Midway Big Normal 

25 Far Far Small Slow 

26 Far Far Moderate Slow 

27 Far Far Big Normal 

 

 

5.5.2 Defining the defuzzification method 

 

In the given FIS system, the COS method was chosen to calculate the crisp value which 

takes into account the influence of every fuzzy rule. Figure 5.24 displays an example 

where three different rules are activated and result in three different fuzzy sets labelled 

A, B and C for the output variable, where B and C overlap. Two fuzzy rules have voted 

for a moderate output, but when applying the COA, MOM and CLA methods this 

information is lost and unjustified importance is given to a low output. However, COS 
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is able to overcome this problem. For the given example, the system would expect the 

moderate output to be the correct decision since two fuzzy rules out of three have voted 

for it. The COS defuzzification method offers the best results in this case, and for this 

reason was selected for use in this study. A more detailed comparison of defuzzification 

methods can be found in [Nattharith, 2010]. 

                           

 

          Figure 5.24: Result of different defuzzification methods 

 

 

5.6   Design of Behaviours Based on Subsumption Architecture 

 

The behavioural architecture consists of five behaviours comprising goal seeking, 

approach, wander, obstacle avoidance and completed. The FSM technique is used to 

visualize the behaviours and their association with other behaviours. The behavioural 

system is designed to be flexible, as defined in Chapter 4. However, the behaviour 

(completed) is modified and discussed in the following paragraphs. The completed 

behaviour, as previously defined in Section 4.5.5, is based on the matching strength 

parameter in which the system completes its navigation when this parameter exceeds a 

predefined threshold value. Nevertheless, this solution depends entirely on the number 

of correct matched points. This may sometimes be misleading or inadequate so that the 

robot stops in an inappropriate position. The use of a laser is an alternative method, 
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because it is a strong sensor in terms of estimating distance, but it must be placed close 

to the floor so as to detect obstacles. Therefore, if an object is not at that low height, the 

estimates may be wrong. Consequently, the approach works only for objects that are 

placed on the floor or are located close to walls (such as, a bookshelf). An example is 

illustrated in Figure 5.25 [Sjöö et al., 2009].  

 

To address this issue, the matching strength parameter in this work is replaced with a 

distance parameter based on the scale parameters of SIFT features (see Section 5.4). 

The stopping criteria for this behaviour can be expressed mathematically as follows: 

 

   {  
          

                    
                                                            (5.8)                           

 

 

where     Fs = final stage, a boolean value    

    drg = distance between the robot and the goal 

   dt  = distance tolerance  

 

The overall system architecture used in the real experiments is illustrated in Figure 5.26 

in which control parameters are employed by the behavioural module to steer the robot 

via Player Architecture.  

  

The algorithm is designed for vehicles in which the only interaction with the motors is 

carried out using the robot's linear and angular velocities. Thus, the output of the system 

generates the robot’s angular velocity, w (deg/sec), and linear velocity, v (m/sec). This 

proposed architecture produces a solution for the image based visual servoing (IBVS) 

problem in which the control law is based on the error between current and desired 

features on the image plane, and does not involve the estimation of the 3D pose of the 

target. On the other hand visual homing strategies, which are a type of visual servoing 

[Szenher, 2008], estimate direction and/or distance to the goal location in terms of the 

difference between the current and goal images. The control variables of the proposed 

algorithm can easily be adapted to a visual homing strategy with minor modifications. 
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Heading direction θ is also obtained from the output. Thus, the only modification 

needed is to obtain an appropriate distance for each homing vector which is basically 

performed by converting global linear velocity v (metres/sec), into distance, d (metres). 

For instance, if the estimated linear velocity is 0.25 m/sec, the robot moves 0.25 m in 

the direction of the homing vector  ⃗⃗  ⃗.   

 

 

Figure 5.25: Instead of  the distance to the  object on the table, the distance to the shelf is 

measured [Sjöö et al., 2009] 

 

   

5.7   Modelling and Simulation using Microsoft Robotics Studio 

 

In order to estimate the capability of the intelligent navigation system, a series of 

experiments was conducted to navigate the simulated mobile robot in partially cluttered 

environments so that it can attain its goal without collisions. In the experiments, a 

simulated Pioneer mobile robot was used. The details of the robot’s configuration were 

described in Section 4.6. A Matlab simulation was adapted to test the designed neural 

network architectures as well as to correct the output generated by the C++ coding for 

the architectures.  Additionally, the Matlab Fuzzy Logic Toolbox was used to design the 

fuzzy logic controller. Once the membership functions have been identified in the 
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toolbox, the control is simply programmed as a set of linguistic rules relating inputs to 

outputs. 

 

      Table 5.7:  Initialization of the robot control algorithm 

                      Parameters                        Descriptions 
Start Position (x,y) 

 

Goal Position (x,y) 

 

Initial heading angle (θ) 

 

Distance of influence of object 

 

Maximum Velocity 

 

Minimum Velocity 

 

Minimum matching value (Start Criteria) 

 

Distance Tolerance 

 

Start position of the robot on the simulated area 

 

Position of the goal on the simulated area 

 

Starting heading angle of robot, θ=0
ο
 

 
do = 0.5  m 

 

vmax= 0.37 m/s 

 

vmin= 0.11 m/s 

 

5    for starting the navigation 

 

dt= 0.6  m for reaching the goal 

 

In order conduct the experiments and evaluate the proposed intelligent navigation 

system, the test scenarios used in Chapter 4 have been utilised, defining the initial 

parameters of the robot’s starting and initial heading and goal positions, maximum and 

minimum matching values, distance of influence of the object, (do), and distance 

tolerance, (dt).  

 

Table 5.7 presents the definitions and initial values of the parameters used to perform 

the experiments. The experimental results for each scenario are presented in Figures 

5.26-5.29 and these reveal that the proposed architecture enhanced by artificial 

intelligence safely navigates the robot mobile robot to different locations in its working 

environment. Figures 5.26 (b) – 5.29 (b) display the control parameters generated by the 

system for different test scenarios.    
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     (a) 

   

      (b) 

Figure 5.26: Scenario 1, (a) estimated trajectory, (b) control parameters 

 

Figure 5.26 (a) illustrates the estimated trajectory of the robot employing the intelligent 

navigation architecture for SC1. The robot starts its navigation by searching for the 

goal; once it is detected the robot then rotates to its left to engage with it. After which it 

moves towards the goal until it perceives the wall, whereupon the robot avoids it and 

continues moving towards its goal. The system accelerates slowly whilst simultaneously 

decreasing the heading angle until the robot senses the obstacle. It then avoids the 

obstacle safely, and progressively increases the value of v in approaching its goal. This 

leads the robot to reach its goal successfully 
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           (a) 

 

           (b) 

Figure 5.27: Scenario 2, (a) estimated trajectory, (b) control parameters 

 

Figure 5.27 (a) presents the estimated trajectory of the robot for SC2. The robot is 

required to navigate from its starting point to its goal with obstacles positioned so as to 

obstruct its path. The robot travels towards its goal until it senses the first obstacle, and 

maintains v at a lower level as the obstacle in front of the robot is approached after 

which it is able to perform a safe manoeuvre to avoid it. In negotiating the obstacle, the 

value of w is increased progressively as the robot perceives it on its right. The robot 
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avoids the obstacle successfully and then localizes itself again. In moving toward the 

goal, the robot senses the second obstacle on its right, which appears within the range of 

do, which invokes the obstacle avoidance behaviour of the robot again. Once the second 

obstacle is avoided safely and the robot again approaches the goal, v is increased whilst 

w decreases. This finally leads the robot successfully to the goal. Unlike in the previous 

method (see section 4.6), the proposed architecture follows the left-hand path which 

takes it further away from the third obstacle. 

 

Figure 5.28 (a) displays the navigation results for the final scenario which is designed to 

evaluate the performance of the architecture with a global navigation problem. The 

robot begins moving towards its primary goal until it senses the first obstacle. The 

system then decreases its velocity (v) so as to facilitate a safe manoeuvre. After 

avoiding the first obstacle smoothly, the robot approaches its goal with no obstacle in its 

field of view. This progressively increases the v parameter and directs the robot to 

safely reach its goal. Once the first goal is accomplished, the robot starts searching for 

the second goal. It then rotates clockwise to its right (90
ο
) to engage with the goal. After 

this the robot begins moving towards the ‘Goal B’ with an increasing value of  v and 

small w. The second obstacle is passed smoothly and the robot attains its second goal. In 

order to negotiate with the final ‘Goal C’, the robot rotates clockwise to its right (75
ο
). 

Once so engaged it heads towards the goal until it senses the third obstacle in its path, 

which the robot avoids successfully and reaches its final goal.  

 

The robot navigates safely and the system increases v progressively as the robot 

approaches the goal and the heading angle w remains stable until it perceives the 

obstacle which, on the other hand, is avoided with a smooth manoeuvre. The robot 

clearly achieves better navigation results when compared to the test results without 

using intelligent methods, as shown in Section 4.6. The robot navigated at a closer 

distance to the goals while its trajectories were smoother without any sharp turns. 

Furthermore, unlike in the previous method, the robot using the intelligent approach is 

also able to escape from trap situation, as illustrated in Figure 5.29. 
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                              (a) 

                                                                         
(b)                                                               (c)    

 

               (d)   

Figure 5.28: Scenario 3, (a) estimated trajectory, (b) control parameters for Goal A, 

(c) control   parameters for Goal B, (d) control parameters for Goal C 

              

The robot begins moving towards the goal until it perceives the wall (on its left) which 

it avoids successfully and heads towards the goal again. After this it moves towards the 

wall with increasing v and stable w. Once it detects the large obstacle obscuring its path, 
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and unlike in the previous method (see Section 4.6) the system decreases v and 

performs a sharp avoiding manoeuvre, providing rapid adjustment to w. It then re-

localizes towards the goal whilst negotiating the narrow gap between the wall and the 

obstacle, which is avoided in a stable manner, as illustrated in Figure 5.29 (a). Finally, 

the robot approaches its goal and no longer perceives obstacles within a small distance, 

which leads it to reach its goal successfully.  

 

 

           (a)  

                       

                        (b)  

Figure 5.29: Scenario 4, (a) estimated trajectory, (b) control parameters 
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5.8 Summary 

 

In this chapter, artificial intelligence methods have been integrated with the SIFT based 

architecture and have demonstrated safe and successful navigation. To achieve this, 

artificial neural networks are employed to increase the accuracy of turning rates and to 

estimate distance. As well as this, they are employed to adjust the distance of influence 

parameter in order to increase overall performance. The proposed architecture also 

employs a fuzzy logic controller to adjust the linear velocity, which helps more robust 

path control of the robot. Additionally a simple linear regression technique for camera 

calibration is integrated to the system, and the K-means algorithm is used to eliminate 

any mismatches provided by the SIFT algorithm. The test results reveal that the 

proposed architecture is able to direct the robot to successfully complete its tasks. The 

following chapter describes the configuration of physical mobile robots used to conduct 

the experiments under real conditions. 
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   CHAPTER 6 

      ROBOT CONFIGURATION AND SOFTWARE DESIGN 
 

In previous chapters, the proposed navigation architectures have been tested in the 

Microsoft Robotics Developer Studio programming environment. Several scenarios 

have been considered in order to evaluate the characteristics and performance of the 

proposed systems. The aim of this thesis, to conduct novel research into robot 

navigation using monocular vision, has demanded an experimental system with the 

capability to support the modes of operation proposed. Therefore, in the remainder of 

the thesis, all of the navigation algorithms were applied in physical robot and tested 

under more realistic conditions. The overall hardware and software issues with the robot 

have to be addressed in real experimental test which are described in this chapter. 

 

6.1 IWARD Project 

 

The mobile robot used in this thesis has been developed as part of the Intelligent Robot 

Swarm for Attendance, Recognition, and Cleaning and Delivery (IWARD) project 

[Nattharith, 2010]. The aim of IWARD project is to create a robot team that is capable 

of fulfilling ward-related operational functionalities in hospitals. The robots operate 

autonomously in performing their activities but are also able to interact with health care 

staff through touch screens or by voice. IWARD focuses on the need of hospitals and 

health care centres to overcome the problem of staff shortages. There are ten partners 

involved in the IWARD project. The main contribution of Newcastle University to the 

IWARD project was to design and develop the mobile robot hardware platforms that 

form the IWARD robot team, which comprises two types: model 3-DX Pioneer robots 

and one bespoke robot called Nubot, designed and constructed at Newcastle. Further 

details of the project can be found in [Nattharith, 2010]. Figure 6.1 displays the IWARD 

mobile robot team. The real experiments were conducted by IWARD Pioneer 1. The 

configuration and specifications of the robot will be detailed in the following sections. 
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Nubot 

Pioneer 1

Pioneer 2

          Figure 6.1:  IWARD robotic team 

 

6.2  IWARD Pioneer Robot (Pioneer 1) 

 

The Pioneer 3-DX robot is a member of the Pioneer robot family manufactured by 

ActivMedia Robotics [ActivMedia, 2010]. It has a sturdy aluminum body, a balanced 

drive system with a two-wheel differential drive with casters, two reversible DC motors, 

a motor-power control board, an 8 element ultrasonic sensor array, high resolution 

motion encoders, and battery power, all managed by an onboard SH2 based 

microcontroller. The robot’s maximum unloaded speed is 1.6 m/s and it has a maximum 

payload capacity of 23 kg including batteries. Additionally, an optional onboard PC 

(motherboard) is installed for wider and more robust autonomous navigation, and which 

provides for interactions the microcontroller locally to conduct high level operations. 

The onboard PC is required for processing data from the laser range finder, ultrasonic 
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range finder, camera and any additional interface. Figure 6.2 shows the standard version 

of the Pioneer 3-DX. Further technical details of the robot are given in Appendix F. 

 

 

    

                         Figure 6.2:  Standard Pioneer 3-DX 

 

The Pioneer 3-DX robot has an onboard motherboard installed. The robot’s control 

architecture has two levels using the onboard motherboard for communication software 

and the SH2-based microcontroller for low-level motor control [Nattharith, 2010]. The 

robot microcontroller is configured as the server in a client-server paradigm, and 

handles the low-level control such as speed and the acquisition of sensory data. The 

client software running on the onboard PC provides high level control; the onboard PC 

receives sensory data from the microcontroller and transmits the motor commands in 

return. The connection between the onboard PC and the microcontroller is provided by 

RS-232 standard serial communication. The Pioneer robot is fitted with Versalogic 

Cobra EBX-12 motherboards. This motherboard is a standard EBX form-factor board 

with four serial ports, 10/100Base-T Ethernet, monitor, keyboard and mouse ports, two 

USB ports and support for an IDE hard disk drive [Nattharith, 2010]. It has a Pentium 

M 1.8 GHz Processor and supports up to 2 GB of system RAM. Additional 

functionality includes sound video frame grabbing and wireless Ethernet. The main task 
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of the robot microcontroller is to maintain the independent speed and direction control 

of the robot motors and to keep track of its absolute positions, whilst maintaining 

communication with the onboard EBX-12 PC. The SH2 microcontroller is provided 

with I/O ports for attachment and close integration of the onboard PC and sensors, and 

supports other accessories. The robot microcontroller is also connected to the motor-

power control board, which interfaces with PWM and motor directional command. This 

also supplies signal paths for standard and accessory onboard electronics.  

 

 

       

               Figure 6.3: Design concept of the Pioneer 1 robot          

 

The top of the Pioneer 1 robot is equipped with a superstructure to accommodate the 

plug and play module boxes. Flex Link XDBM 3x22 aluminium was used to construct 

the frame which can accommodate up to two module boxes mounted on the rear of the 

robot, as shown in Figure 6.3. This superstructure is also designed to support the Human 

Robot Interface (HRI) panel. The height of the HRI panel is 1000 mm above ground 

level to allow ease of access. Figure 6.1 displays the current Pioneer robot 

configurations in which the rear caster wheel was repositioned to provide improved 

Space for HRI

Space for HRI

Plug and Play Module Boxes
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stability.  For this project a platform is designed and attached to the front part of the 

robot to accommodate the AXIS-213 IP camera, and the design of the platform is 

provided in Appendix G. The robot and AXIS 213 camera are illustrated in Figure 6.5. 

 

6.2.1 Robot sensors and peripheral device design  

 

To achieve the navigation tasks, the robot is equipped with several sensors and 

adaptable components. An overview of the sensors used and peripheral devices included 

in the robot system are introduced in the following section. 

 

 

                        Figure 6.4:  Hokuyo URG-04LX                             

 

 

Laser range finder: The Hokuyo scanning laser range finder, illustrated in Figure 6.4, 

is installed on the Pioneer robot.  The scanning area is 240 degrees field of view with an 

angular resolution of 0.36 degrees. It has a detection range from 60 mm to 4 m with a 

scanning refresh rate of up to 10 Hz.  The specifications of the laser range finder are 

given in Appendix H. It is connected to the robot’s onboard PC through a USB 

(Universal Serial Bus) port. In order to maximise its field of view, the laser is mounted 

at a height of 310 mm on the front of the robot.  

 

Bumper:   The bumper mounted on the front of the Pioneer robot was developed by 

Cardiff University [IST, 2006]. It essentially provides an emergency stop facility for the 
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robot if other sensors fail to prevent collision. The robot is halted immediately 

whenever any of the micro switches on the bumper are activated.  

 

Ultrasonic Sensors: There is an onboard ultrasonic sensor array on the standard 

Pioneer 3D-X robots, however for the IWARD robots a new sensor array was 

developed using 16 Devantech SRF05 ultrasonic sensors and 8 Sharp GP2D120 IR 

sensors. The 180° forward facing field of view of the Pioneer robot was covered by 12 

ultrasonic sensors and 8 infrared sensors whilst the rear detection was managed by 4 

ultrasonic sensors. The SRF05 sensors, having a range of 30 mm– 4m and are employed 

for medium range detection, whereas the Sharp GP2D120 IR sensors, having a range of 

100-800 mm, are used for the short range detection. Further details about the prototype 

design of  this sensor can be found in  [Nattharith, 2010].               

 

Emergency-Stop: There is an Emergency-Stop (E-Stop button) on the robot which 

overrides deceleration and stops the robot immediately. This button is directly 

connected to the motor power control board. 

 

Human Robot Interface: The HRI was designed to allow hospital personnel to 

communicate with the robot. The HRI components include a VGA touch-screen (model 

LinTX Plus 8.4 inch), and a pan-tilt camera, illustrated in Figure 6.6. Appendix I 

provides the specifications of the VGA touch-screen. A Digi-Lan pan/tilt network 

camera is mounted on the HRI panel, and is connected to the motherboard directly 

using an Ethernet connector. The pan-tilt camera is not used in this study. This is 

because its specifications are inadequate for navigation purposes.  
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Digi-Lan pan/tilt 

camera 

            

                 Figure 6.5: The pioneer robot with additional sensors and peripheral devices  

 

Wireless Communication Interface:  A remote host computer is required to monitor 

and control the client software running on the robot onboard PC motherboard The robot 

onboard PC and the remote computer are connected via a local wireless network, based 

on the IEEE 802.11g standard, operating in the 5 GHz frequency band with a maximum 

bit rate of 54 Mbit/s. The robot has a fixed IP address which is  192.168.2.102. A built-

in wireless network interface provides the wireless connection for the remote host 
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computer, whilst the onboard PC supplies the wireless connection via a 

PC104+PCMCIA adapter card. A wireless Ethernet card is inserted in the PCMCIA 

card slot and connected to an antenna which is located behind the HRI panel of the 

robot (see Figure 6.5).  

 

6.2.1.1 AXIS-213 pan/tilt/zoom camera  

 

The AXIS 213 PTZ Network Camera is a fully featured PTZ network camera for 

surveillance and remote monitoring, as shown in Figure 6.6.  Images from the camera 

are made available on the network as real-time, full frame rate Motion JPEG streams 

and/or MPEG-4 video streams. The AXIS 213 also has an infrared (IR) lamp and a 

removable IR filter for day and night operation. 

 

Video can be viewed in 5 resolutions up to 768x576. Up to 20 viewers can access the 

AXIS 213 PTZ simultaneously. As the AXIS 213 PTZ is designed for use in security 

systems, it is equipped with features such as IP address filtering and multilevel 

passwords. The AXIS 213 PTZ has a built-in Web server, providing full access to all 

features through the use of a standard Web browser. The camera enables advanced 

remote monitoring with pan, tilt and zoom through operator control from any PC 

connected to the local area network or the Internet. It provides wide coverage with its 

ability to pan 340 degrees, tilt 100 degrees and 26x optical zoom in on specific details. 

The technical specifications of the camera are shown in Appendix J.  

 

                                            

               Figure 6.6: AXIS-213 pan/tilt/zoom camera  
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6.3 Software Design  

 

The robot onboard PC has a Player (Version 2.0.5) distributed architecture, which is 

based on a client-server structure running under the Linux Operating System and 

provides control over the physical sensors and actuators in the mobile robot. The player 

server connects to the robot microcontroller, sensors and actuators. It is necessary that 

the robot microcontroller must be interfaced with correspondingly. The Pioneer robot 

utilizes a protocol called the P20S based protocol which is provided by Player [Gerkey 

et al., 2001a], to establish such an interface. This allows the control of the Pioneer robot 

with Player. Player supports various robot sensors and components, including sonar, 

laser cameras and bumpers which developers are allowed to access and implement 

directly on the Player Server. For the Pioneer robot, both client and server run on the 

robot onboard PC. The client program provides communication with the Server via a 

standard Transmission Control Protocol (TCP) socket. All operations of the robot PC 

are monitored and controlled by a remote computer throughout a wireless network. 

Details of the Player architecture are given in Chapter 2. 

 

The AXIS 213 is a Network camera which, as previously mentioned, has a built-in Web 

server that does not need a direct connection to a PC or any other hardware or software 

to capture and transfer images. It provides a programming interface called VAPIX, an 

open Application Programming Interface (API) which makes the Axis network video 

solutions cost efficient, flexible, scalable, future-proof and easy to integrate with other 

systems.  

 

All Axis network cameras and video servers have an HTTP-based application 

programming interface. VAPIX provides functionality for requesting images, 

controlling network camera functions such as pan, tilt, zoom, and setting/retrieving 

internal parameter values. The purpose of the API is to make it easier for developers to 

build applications that support Axis video products. For example the 

http://myserver/axis-cgi/jpg/image.cgi command requests a default image in JPG 

format and the http://myserver/axis-cgi/com/ptz.cgi?rpan=10 command is a request to 

pan the camera to the right by 10 degrees. All commands and parameters can be 

http://myserver/axis-cgi/jpg/image.cgi
http://myserver/axis-cgi/com/ptz.cgi?rpan=10&camera=1
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accessed in the current VAPIX manual [AXIS, 2011]. The Player architecture does not 

provide any interface for AXIS-213 cameras. Therefore, C++ based client software 

called AXIS Camera Control Software (ACCS) has been implemented so as to utilize 

the camera for the necessary applications. ACCS essentially provides a connection to 

the server, and conveys requests to the web-server via VAPIX commands. It is a 

flexible program able to work with different members of the TCP protocol, such as 

HTTP and FTP. The software provides a parser procedure which basically reads and 

parses the URL to obtain the appropriate data. For instance, when a request to capture 

the current image is made, the parser data is saved in JPG format, and can be easily 

converted into the PGM format required for SIFT applications. The cross flowchart of 

the corresponding software is illustrated in Figure 6.7.  
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Figure 6.7: Cross flowchart of ACCS software   

 

ACCS is classified into four levels, with each level responsible for different procedures, 

namely: Interface, Main Module, String Parser Module and HTTP Module, Server. The 

software is described according to each level as follows. 
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First Level: This comprises the input procedure called Interface, and essentially 

provides the communication between the ACCS and the corresponding software which 

employs it so as to control the camera. The Interface procedure collects the input in 

String format and passes the corresponding data to the second level. 

 

 

Process X Process Y

Port N

TCP

IP

Port M

TCP

IP

Connections

Sockets

IP adresses

host A host B

reliable

TCP Connection

unreliable

IP Connection

 

                                       Figure 6.8: TCI-IP connection     

 

Second Level:  This is the main module which utilizes the input obtained from the 

preceding level and converts the input request into VAPIX format. Afterwards it runs 

the corresponding procedure of the succeeding level. 

 

Third Level:  This level performs the parsing procedure which receives the input string 

in VAPIX format and parses it to obtain the IP address, Host Port and Data values. 

 

Fourth Level:  This is main level that carries out the TCP-IP connection with the server 

located in the Camera. TCP provides a connection oriented, reliable, byte stream 

service. The term connection-oriented means that the two applications using TCP must 

establish a TCP connection with each other before they can exchange data. This is a full 

duplex protocol, meaning that each TCP connection supports a pair of byte streams, one 

flowing in each direction. TCP includes a flow-control mechanism for each of these 

byte streams that allows the receiver to limit how much data the sender can transmit.  
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The basic structure of a TCP-IP connection is illustrated in Figure 6.8. The two 

processes communicate using TCP sockets where each side of a TCP connection has a 

socket which can be identified by the pair (IP address, Port number). Two processes 

communicating over TCP form a logical connection that is uniquely identifiable by the 

two sockets involved, using the combination (local_IP_address, local_port, 

remote_IP_address, and remote port). Once reliable communication is successfully 

established, the request is transferred to the camera (host B), and the camera performs 

the required task. 

 

6.3.1 Software tools and libraries used in this project  

 

This section provides a brief description of the two open source software libraries that 

have been used in this project in order to facilitate the software design in this project. 

The CIMG library is a reliable and rapid way of resolving image processing and 

computer vision issues. The second tool is Open Multi-Processing (OpenMP), which is 

an application programming interface (API) that supports multi-platform shared 

memory multiprocessing programs. These libraries are detailed in the following 

sections. 

 

CIMG library: The CIMG Library is an image processing and computer vision library 

which is designed for those able to utilize C/C++ programming languages. An example 

application with its CIMG library is shown in Figure 6.9. The library provides useful 

classes and functions to load/save, display and process various types of images. It 

consists of a single header file “CImg.h” providing a set of C++ template classes that 

can be used for specific sources, to load/save, process and display images or list of 

images. The header file “CImg.h” contains all the classes and functions that compose 

the library itself. The library is very portable, and it is compatible with different 

operating systems such as Unix/Linux, Windows, and MacOS X. The specifications of 

this library are listed as follows: 

 

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Shared_memory
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 No pre-compilation of the library is needed, since the compilation of the 

functions is done at the same time as the compilation of the user’ own C++ code.  

 No complex dependencies have to be handled; it just includes the “CImg.h” file. 

 The compilation is accomplished on the fly, which means that only 

functionalities used by the user program are compiled and appear in the 

executable program. This leads to very compact code, without any unused 

components.  

 Class members and functions are inline, leading to better performance during the 

execution of the program [Tschumperlé et al., 1999]. 

 

An inline function requests the compiler has been requested to perform inline 

expansion. In other words, the program requests the compiler to insert the complete 

body of the function in every place that the function is called, rather than generating 

code to call the function only in the one place it is defined [Tschumperlé et al., 1999].  

 

            

Figure 6.9:  An example application with CIMG library  

All library classes and functions are defined in the namespace “cimg_library”, which 

namespace encapsulates the library’s functionalities and avoids any class name 

collisions that can happen with other header files.  The CIMG library is utilized during 

this project to save and load images and to enhance the images with low-pass filters. It 

also provides appropriate functions to access and update coloured images which are 

used in the qualitative, appearance-based techniques see (Chapters 2 and Chapter 3).  

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Inline_expansion
http://en.wikipedia.org/wiki/Inline_expansion
http://kiharalab.org/genPortrait/src/CImg-1.2.5/documentation/reference/namespacecimg__library.html
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 Figure 6.10:  Image registration algorithm, with multi-scale   capability             

 

The library also includes a function that provides multi-scale versions of the image 

registration algorithm. An example of a code provided by the library which also 

demonstrates a multi-scale optical flow algorithm modified and employed as a template 

for the Horn-Schunk multi scale algorithm (described in Chapter 3). An example of a 

screenshot of the corresponding multi scale algorithm with the Horn-Schunk method is 

illustrated in Figure 6.10, in which the flow vectors demonstrate the motion difference 

between two successive images. 
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    Figure 6.11:  Architecture of the OpenMP API [OpenMP, 2010]. 

 

OpenMP (Open Multi-Processing): OpenMP is an Application Program Interface 

(API), jointly developed by a group of major computer hardware and software vendors 

to provide a portable, scalable model for developers of shared memory parallel 

applications [OpenMP, 2011]. The API supports C/C++ and FORTRAN on a wide 

variety of architectures, and is compatible with most major operating systems including 

Unix/Linux and Windows NT. The architecture of OpenMP is illustrated in Figure 6.11, 

and its functions are included in a header file labelled "omp.h". OpenMP comprises 

three primary API components which are Compiler Directives, Runtime Library 

Routines and Environment Variables. The main goal of the API project is defined as 

follows: 

 

 To provide a standard among a variety of shared memory architectures/platforms  

 To establish a simple and limited set of directives for programming shared 

memory machines. Parallelism can be implemented by using 3 or 4 simple 

directives.  

 To provide capability to incrementally parallelize a serial program, unlike 

message passing libraries which typically require an all or nothing approach  

http://en.wikipedia.org/wiki/Header_file
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 To support for Fortran (77, 90, and 95), C, and C++  [OpenMP, 2011]. 

 

 

OpenMP is based upon the existence of multiple threads in the shared memory 

programming paradigm. A shared memory process consists of multiple threads and uses  

the fork-join model of parallel execution, as illustrated in Figure 6.12. 

    

           

              Figure 6.12:  Fork join model of OpenMP [OpenMP, 2011] 

 

 

 

Figure 6.13  Loop synchronization of OpenMP [Barney, 2012]. 
 

All OpenMP programs begin as a single process, called the master thread. The master 

thread executes sequentially until the first parallel region construct is encountered. The 
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master thread subsequently creates a team of parallel threads, called fork. The 

statements in the program that are enclosed by the parallel region construct are then 

executed in parallel among the various team threads. As soon as the team threads 

complete the statements in the parallel region construct, they synchronize and terminate, 

leaving only the master thread (Join) OpenMP, called join [Tschumperlé et al., 1999]. A 

typical example of a parallel execution of a ‘for loop’ is illustrated in Figure 6.13. Loop 

optimization is a key problem for most programs in any programming language in terms 

of processing time. The example in figure 6.13 employs environment variables starting 

with pragma omp in order to provide the parallelization of the given code which 

basically updates three code statements sequentially.   

 

For this project, OpenMP is utilized to enhance the performance of the conventional 

SIFT algorithm of Lowe [2004] which is not appropriate for real time applications. 

Therefore, OpenMP directives are employed with Lowe’s algorithm.  An open source 

implementation of the conventional SIFT algorithm, called the Fast Sift Library 

[Sourceforge, 2011], has been adopted to this project. The Library is mainly focused on 

extracting SIFT features from any PGM format images. The core elements of OpenMP 

are the constructs for thread creation, workload distribution (work sharing), data-

environment management, thread synchronization, user-level runtime routines and 

environment variables. In C/C++, OpenMP uses “#pragmas” as previously mentioned.  

 

One of the most useful directives is omp parallel, which explicitly instructs the 

compiler to parallelize the chosen block of code. In addition, the omp for directive 

instructs the compiler to distribute loop iterations within the team of threads that 

encounters this work-sharing construct. For instance, the SubtractImage procedure used 

in the library essentially performs the image differencing of two successive images and 

assigns the result to another image (imgdst = img0 - img1). The implementation 

requires three for loop operations (two of which are nested) so as to derive all 

corresponding pixels. The Fast Sift implementation employs the directive code starting 

with #pragma, as shown: 

 

 

http://en.wikipedia.org/wiki/C_preprocessor#Compiler-specific_preprocessor_features
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void SubtractImage(Image imgdst, Image img0, Image img1) 

{ 

int rows = imgdst->rows, cols = imgdst->cols, stride = imgdst->stride; 

float* _pixels0 = img0->pixels, *_pixels1 = img1->pixels, *_pdst = imgdst-

>pixels; 

#pragma omp parallel for schedule(dynamic) 

for(int j = 0; j < rows; ++j ) { 

float* pixels0 = _pixels0+j*stride; 

float* pixels1 = _pixels1+j*stride; 

float* pdst = _pdst + j*stride; 

 

for(int k = 0; k < (cols&~7); k += 8) 

{ 

_MM_STORE_ALIGNED(pdst+k,_mm_sub_ps(_MM_LOAD_ALIGNED(pi

xels0+k), _MM_LOAD_ALIGNED(pixels1+k))); 

_MM_STORE_ALIGNED(pdst+k+4,_mm_sub_ps(_MM_LOAD_ALIGNED

(pixels0+k+4), _MM_LOAD_ALIGNED(pixels1+k+4))); 

} 

 

for(int k = (cols&~7); k < cols; ++k) 

pdst[k] = pixels0[k]-pixels1[k]; 

} 

A parallel region has at least one barrier at its end, and may have additional barriers 

within it. At each barrier, the other members of the team must wait for the last thread to 

arrive. To minimize this wait time, shared work should be distributed so that all threads 

arrive at the barrier at about the same time. If some of that shared work is contained in 

for constructs, the schedule clause can be used for this purpose.  The dynamic schedule 

is appropriate for the case of a for construct, with the iterations requiring varying, or 

even unpredictable, amounts of work. The dynamic schedule is characterized by the 

property that no thread waits at the barrier for longer than it takes another thread to 

execute its final iteration. This requires that iterations be assigned one at a time to 

threads as they become available, with synchronization for each assignment. Further 

explanation and examples of implementations can be obtained from the Project’s web 

page [Sourceforge, 2011].  

The Fast Sift Library has been utilized to increase the computational performance of the 

SIFT extraction algorithm; however this algorithm does not support the matching 

procedure which compares the reference and current image. Accordingly, corresponding 

OpenMP directives have been implemented for the matching function as follows:  
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void FindMatches(Keypoint keys1, Image im2, Keypoint keys2) 

{ 

    Keypoint k, match; 

    Image result; 

    int count = 0; 

 

     /* Match the keys in list keys1 to their best matches in keys2. 

    */ 

    #pragma omp parallel for  

    for (k= keys1; k != NULL; k = k->next) { 

      match = CheckForMatch(k, keys2);   

    

      if(match != NULL) 

         count ++; 

     end 

       

    fprintf(stderr,"Found %d matches.\n", count); 

} 

 

The FindMatches function is the main procedure employing extracted key points of 

reference and current images as inputs. The main for loop utilizes the CheckForMatch 

function to evaluate the similarity between each key point pair, and is parallelized using 

an OpenMP pragma.  

 

CheckForMatch performs the matching between two images and is the key procedure 

employed by Find Matches. It finds the two closest matches and compares them with 

respect to specific threshold values. If the condition is satisfied, the corresponding key 

point is assigned as a valid match point. This function employs a for loop as expected, 

which is initially parallelized using an OpenMP pragma. The enhanced version of the 

function is illustrated as follows: 

 

Keypoint CheckForMatch(Keypoint key, Keypoint klist) 

{ 

int dsq, distsq1 = 100000000, distsq2 = 100000000; 

Keypoint k, minkey = NULL; 

 

/* Find the two closest matches, and put their squared 

distances in 

distsq1 and distsq2. 

*/ 

#pragma omp parallel for 

for (k = klist; k != NULL; k = k->next) { 

dsq = DistSquared(key, k); 

if (dsq < distsq1) { 
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distsq2 = distsq1; 

distsq1 = dsq; 

minkey = k; 

} else if (dsq < distsq2) { 

distsq2 = dsq; 

} 

} 

/* Check whether closest distance is less than threshold*/ 

if (10 * 10 * distsq1 < 6* 6 * distsq2) 

return minkey; 

else return NULL; 

} 

 

The main improvement in performance with the use of the OpenMP library is achieved 

with systems having more than one processor. The library allows them to allot the work 

into each processor efficiently. The results shows that the default setting of the Fast 

SIFT library produces the same output as the conventional SIFT software. On a quad-

core Core2Duo machine with OpenMP, the fast SIFT library runs approximately 6 

times faster than Lowe's [2004] SIFT software for 640x480 pixel images. In this project, 

the onboard robot computer has a single processor where performance enhancement in 

terms of computational time is somewhat lower than a multi processors system as 

expected. Nevertheless, it is still able to reduce the overall computational time of the 

system by implementing the SIFT into a real time system.  

 

6.3.2 Performance analysis of Fast SIFT library   

 

To analyse the performance enhancement provided by the OpenMP API, both 

conventional SIFT and Fast SIFT implementations are tested with four different objects 

at different resolutions. The objects are illustrated in Figure 6.14, the first three of which 

will be used in the real experiments (Goal A, Goal B, Goal C). The main reason behind 

the selection of these objects is their distinctive patterns which makes them appropriate 

for the SIFT algorithm in partially cluttered environments.  

 

The Goals are composed of images obtained from different book covers which are 

appropriate for SIFT based experiments. Each of these books is positioned in front of a 

blue cardboard paper surface so as to isolate the corresponding object from the 
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background. Goal A shown in Figure 6.14 (a), was used in all of the real experiments 

(see Chapter 7). The SIFT based analysis of the other goals regarding different 

resolutions are included in Appendix K. 

 

 

      
 

(a)        (b)   

 

      
 

                     (c)                                                                              (d) 

 

  Figure 6.14:  Goals used in performance Evaluation for SIFT algorithms in JPG Format, (a) 

Goal A, (b) Goal B, (c) Goal C, (d) Goal D 
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6.4 Calibration analysis of the sensors for the INUS technique  

 

Chapter 5 introduced intelligent based methods for the estimation of heading direction, 

and obstacle avoidance relying on a range finder. This section discusses and analyses 

the results from the algorithms with real sensors attached to the Pioneer 3-DX robot. 

The Matlab toolbox was utilized to train all networks. A two-layer feed-forward neural 

network with sigmoid hidden neurons and linear output neuron was designed and 

adapted for each problem. The networks were all trained using the Levenberg-

Marquardt back-propagation algorithm. The neural networks are able to acquire 

knowledge from their surroundings by the adaptation of its internal parameters. The 

networks can learn from examples given to them, and generalize knowledge from them. 

Having the best generalization, the data set should be split into three parts which are 

training, validation and test sets. The learning procedure should be stopped in the 

minimum of the validation set error where the net generalizes best. If learning is not 

stopped, overtraining occurs which means that the network has learned not only the 

basic mapping associated with input and output data, but also the errors specific to the 

training set. If overtraining occurs, the network only memorizes the training set and 

loses its ability to generalize to new data. 

                 

         

Best Validation Performance is 1.1243e-006

Best Validation is at epoch 7
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       Figure 6.15:  Training results for AXIS-213 camera calibration  
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                                       (a) 

        

                        (b) 

Figure 6.16: Regression analysis to relate the AXIS-213 camera and the Pioneer 3D-x robot, 

(a)  range from 0° to 90°, (b)  range from  0° to -90° 

 

The first step in the camera calibration is to employ scale-invariant features in order to 

automatically detect calibration points. A back propagation neural algorithm is utilized 

to map the image and the world coordinates in terms of pan and tilt angles. Different 

topologies have been implemented so as to provide an appropriate solution to the 

problem. The network shown in Table 6.1 is designed for 176x144 resolution. 
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              Table 6.1:  Basic specifications of the network for heading angle estimation  

Camera Type     Resolution       Data         Topology                 Train           Validation       Test  

Axis-213             176x144      155            2-6-2              125               15              15 

 

 

Figure 6.15 demonstrates the training result for the proposed neural network (see Table 

6.1). The results reveal that the network approaches the best validation point at the 7th 

epoch (iteration) with 1.1243x10
-6 

error. The outcome of these networks produces 

appropriate pan and tilt values with regard to specific coordinates in the image space. 

 

The next step is to calibrate the camera with respect to the robot. The Axis-213 camera 

is mounted onto the robot with its optical axis aligned to the robot's forward direction 

and also parallel to the ground plane, as is illustrated in Figure 6.10. A simple linear 

regression model is used to relate the camera and the robot. The range of pan movement 

used in the real experiments is 180° around the horizontal axis. After conducting the 

analysis two regression models are obtained for ranges from 0 to 90° and 0 to -90° as 

shown in Figure 6.16.  

 

Accordingly, the combination of these two linear modelling techniques leads the robot 

towards the specific coordinate on the image in which the specific pan angle obtained 

from the neural network is employed as the main input to steer the robot. The output of 

the network also generates the tilt angle for the camera to reach the exact position (see 

Chapter 5.2.2.2). Nevertheless the robot is unable to move towards the tilt direction due 

to its physical structure. Therefore, the camera needs to be tilted toward the goal in each 

processing cycle. However, the real experiments have indicated that the turning speed of 

tilt movement for the AXIS-213 cameras is not suitable for real time applications. 

Therefore the robot only utilizes the yaw angle along the Z axis to approach the goal. A 

goal tracking example related to this calibration is included in Appendix L 

 

The final network architecture is designed for obstacle avoidance relying on range 

finders (see Chapter 5.5).  The specifications of the network architecture are illustrated 
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in Table 6.2. The data is basically collected from different obstacle avoidance scenarios 

(see Chapter 5.4) in which the range finding data and the corresponding avoidance 

manoeuvres have been matched as inputs to the network. Figure 6.17 shows that the 

best validation point at the 11th epoch (iteration) with 2.4014x10
-5

 error.  The trained 

network is proposed to estimate the distance of influence (do) value for the obstacle 

avoidance behaviour.   

 

            

Best Validation Performance is 2.4014e-005

Best Validation is at epoch 11
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                          Figure 6.17:  The training results for obstacle avoidance  

 

            

             Table 6.2:  Basic specifications of the network for obstacle avoidance  

 

 

 

 

6.5 Summary   

 

The robot configuration and actual design have been discussed in this chapter. 

Additionally, details of the software architecture as well as the open source libraries 

Range Finder     Resolution       Data        Topology     Train           Validation     Test  

URG-04LX         180               650          9-7-1                   520               65             65 



                                                           Chapter 6 Robot Configuration and Software Design 

 

215 

 

employed have been provided. The main advantage of open source implementations is 

that they provide the freedom to access the source code allowing for the modification 

and improvement of the system which facilitated the software design in this project. 

Finally, the analysis and evaluation of AI algorithms implemented with the 

corresponding physical robot and sensors have been discussed. The following chapter 

introduces the experiments conducted under real conditions. 
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          CHAPTER 7 
  

   IMPLEMENTATION AND EVALUTION OF PROPOSED     

      NAVIGATION SYSTEMS 

 

The navigation systems introduced in the earlier chapters have been tested extensively 

in real-world experiments. The experimental setups are defined in order to show the 

applicability of the methods developed for navigation using mapless strategies. The 

experiments are mainly classified into two groups. The first evaluates the performance 

of the hybrid vision based obstacle avoidance system, introduced in Chapter 3, the aim 

of which is to allow the mobile robot to navigate without collisions, in partially 

cluttered environments. The second group of experiments evaluates the performance of 

the SIFT based navigation systems discussed in Chapters 4 and 5. The Pioneer mobile 

robot introduced in Chapter 6 has been evaluated, using several scenarios that including 

random positions and different sizes and types of obstacles. The results of the first 

experimental group confirm that the proposed method provides an alternative and robust 

solution to avoid obstacles for mobile robots using a single low-cost camera as the only 

sensor used. The second group of experiments are aimed at demonstrating that the 

proposed navigation systems are both efficient and robust in permitting the robots to 

safely navigate from their starting positions to their goals.  

 

7.1 Experimental Procedures 

 

The navigation systems were uploaded onto the Pioneer mobile robot. All experiments 

were conducted in and around an area of the Robotics and Automation Laboratory 

(RAL) at Newcastle University, which has the physical dimensions of 15.60m x 

17.55m, as illustrated in Figure 7.1. Hard board panels were used to simulate walls 

during the experiments. Figure 7.2 displays a schematic diagram of the test 

environment.  
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Figure 7.3 shows the corridor area located in front of the laboratory with the physical 

dimensions of 15.40m x 9.60m. A schematic diagram of the corridor is illustrated in 

Figure 7.4. In addition, Room G-45 located in the RAL has the physical dimensions of 

10m x 5.20m, as illustrated in Figure 7.5. A schematic diagram of the room is illustrated 

in Figure 7.6 

 

7.1.1 Performance evaluation 

 

The following parameters derived from previous studies [Huq et al., 2008; Szenher, 

2008] were used to evaluate the robustness and consistency of robot navigation 

performance. 

 

Total navigation time (ts): This parameter indicates the total duration of travel in 

seconds.  A lower value of  ts  is expected  for  fast navigation. 

  

Total travel distance (dt): This parameter presents the distance travelled by the robot 

from its starting position to its goal.  A lower value of  dt   is expected  to optimize the 

travel distance. 

  

Average rate of change of angular velocity (△Ω): This parameter establishes the 

average change of angular velocity (in deg/s
2
) as the robot navigates from point to point. 

A lower value of travel △Ω indicates a reliable angular velocity of the robot, which is 

given as follows: 

  

△Ω =  
 

   
∑

| ( )   (   )|

  (   )

 
                                                            (7.1) 

 

where   Ω(i)  =   the angular velocity at the i-th decision cycle. 

    (   ) = the length of the s-th decision cycle. 
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Position Error of the robot: This parameter establishes the distance between the home 

position where the reference image is captured and the location where the robot has 

stopped. A lower value of error indicates successful navigation, which is given as 

follows: 

 

Error =  √(      )   (      )                                                                                  (7.2) 

 

where (xr, yr) =  coordinates of the home position. 

          (xc, yc) =  coordinates of the robot’s final position. 

 

         

Total number of collisions: (C) : This parameter should be zero in safe navigation. 

 

Average velocity (va): The average velocity of an agent moving through a displacement 

(  ) during a time interval    can be expressed as follows: 

 

   
  

  
                                                                                                                     (7.3) 
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   Figure 7.1:  Robotics and Automation Research Labrotary, Newcastle   

               University (including hard-board panels) 
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Figure 7.2:  Schematic of navigation environment (including hard-board panels)   
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           Figure 7.3: Corridor area outside the Labrotary 
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                 Figure 7.4: Schematic of the corridor environment 
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                                                       Figure 7.5: Room G-45     
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                   Figure 7.6: Schematic of  Room G-45 in the RAL 
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7.2 Experimental Design and Results of the Hybrid Vision Based 

Obstacle Avoidance System 

 

This section presents the design of the experiments used to evaluate the proposed hybrid 

vision based obstacle avoidance system. The experiments were conducted in the test 

environments shown in Figures 7.1 and 7.3. In order to verify the performance of the 

proposed system, the results for each scenario are compared with those of the 

conventional optical flow method. The main aim of these experiments is to navigate the 

robot in these environments with regard to the designed scenarios without hitting any 

obstacles until a certain amount of time has passed. The robot navigates in these 

experiments at a linear speed of 0.15 m/sec and the required time limit is 200 seconds to 

fulfil each scenario. Therefore, once the robot achieves to wander along the 

environment without colliding until the end of the time limit, it is accepted to complete 

the task successfully.  All overhead lights in the laboratory and corridor environment 

are turned on during the capture of both snapshot and current images, in an attempt to 

maintain constant illumination over the entire experimental area. Images were captured 

at a resolution of 176x144 jpg format and then converted to pgm format. 

 

Table 7.1:  Initial parameters for experiments 

                           Parameters                        Descriptions 
   Initial heading angle  

    

   Linear velocity(constant) 

    

   Constant turn value  

    

   Maximum  range for turning  

 

  Minimum  Time Limit  

   

θ = 0
ο
 

 

vc= 0.15 m/s 

 

cturn = 90
ο 

 

n
 
=

 
± 20° 

 

Tl = 200  sec (must move at least 200 sec) 

 

Four different scenarios are discussed in this section, and an example presenting the 

limitations of the proposed architecture is demonstrated. Two vision based obstacle 

avoidance techniques were employed, namely the Hybrid (FS) and Optical Flow Based 

(OFB) as discussed in Chapter 3. In order to provide a precise comparison of the test 

results, each technique is integrated with the proposed control architecture and the 
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behavioural strategy discussed in Chapter 3. Table 7.1 displays the initial parameters 

used in the navigation algorithms used for conducting the experiments.  

 

7.2.1 Definition of scenarios 

 

Four different scenarios were set up to evaluate the performance of the proposed 

system. They are arranged in increased level of difficulty.  Experiments were conducted 

in two different test environments as previously discussed.  

 

Scenario 1 (S1) – requires the robot to navigate in the first open environment (with no 

external obstacles).  

 

Scenario 2 (S2) – requires the robot to navigate in the first environment whilst having 

to negotiate two obstacles. 

 

Scenario 3 (S3) – requires the robot to navigate in the second open environment (with 

no external obstacles). 

 

Scenario 4 (S4) – requires the robot to navigate in the second environment whilst 

having to negotiate three obstacles. 

 

7.2.2 Navigation test results 

 

Each individual test was repeated five times and the average for each performance 

parameter was determined. The results for each series of tests were found to be very 

consistent, principally because the starting position, robot position and feature size, and 

position of the obstacles which are identical for different runs under the same scenario. 

The data used in each of the following trajectory plots, however, is taken from the last 

run in each of the corresponding scenarios.  

 

A performance evaluation table presenting the average rate of chance of angular 

velocity (△Ω), total number of collisions (C) and total navigation time (ts) is generated 
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for each scenario. For the corresponding (△Ω) and (ts) parameters in each scenario, 

constant rate of turn values are excluded in order to simplify the results of evaluation 

parameters.  

 

Scenario 1 (S1) 

 

Figure 7.7 displays the scenario in which the robot is required to navigate in this open 

environment without colliding. 
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                  Figure 7.7:   Scenario 1 for vision based obstacle avoidance problem 
                       

The trajectory of the first scenario with the FS technique is given in Fig 7.8 (a). The 

robot navigates with a smooth trajectory until it reaches the end of the corridor (door). 

When it encounters the door, Change Direction behaviour is activated, performing a 

90° left turn in order to avoid the door. It then moves towards the left wall, which is 

also avoided with a 90° left-turn manoeuvre. After this the robot moves towards the 

start position whilst being pushed away from the left wall and this result in the curved 

trajectory of the robot. As usual due to the noise within the vision system, the robot 

could not follow a straight line, but it always remains inside an acceptable margin 

around the centre of the corridor. Furthermore, the OFB Technique, as illustrated in Fig. 
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7.8 (b), is applied to steer the robot whilst avoiding collision, which essentially 

completes the task with a similar trajectory to the FS method. However it follows a 

wider path and produces a trajectory with higher values of (△Ω). Table 7.2 summarises 

the performance results of each algorithm, showing the FS method performs navigation 

without any collision, and it also generates a lower value of △Ω which represents the 

smoothest trajectory of the methods employed.  
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                Figure 7.8: Estimated trajectories for scenario 1 (a) FS method, (b) OFB method  

 

 

         Table 7.2:  Performance measures for scenario 1 

 

 

Scenario 2 (S2) 

 

Figure 7.9 illustrates the second scenario in which the robot is required to navigate in 

the same environment while two unexpected obstacles are placed in its path. The results 

of the corresponding scenario employing the FS technique are shown in Figure 7.10 (a) 

Methods △Ω (deg/s2)            Time (sec)   Collision 

Hybrid   4.61         200     No 

Optical Flow  6.73          200    No 
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where the robot navigates along the corridor smoothly until it perceives the door. When 

it encounters the door, Change Direction behaviour is activated, performing a 90° left 

turn in order to avoid the door. Afterwards it moves forward until it perceives the wall, 

which is avoided successfully by another 90° left-turn manoeuvre. After this it 

continues moving toward the start position until it perceives the first obstacle. The robot 

avoids the obstacle using a sharp manoeuvre. Subsequently the robot continues moving 

with a smooth trajectory whilst avoiding the right wall. Figure 7.10 (b) presents the 

estimated trajectory generated using the OFB algorithm in which the robot successfully 

achieves to avoid the first obstacle. It then continues to move safely until it perceives 

the second obstacle. However, the robot then makes a sharp manoeuvre to the left which 

causes it to collide with the wall. Performance measures for this scenario are illustrated 

in Table 7.3, revealing that the FS method is again considered to be the most suitable of 

the two methods.  

 

 

     Table 7.3:  Performance measures for scenario 2 
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             Figure 7.9 Scenario 2 for vision based obstacle avoidance problem 
 

Methods △Ω (deg/s2)            Time (sec)   Collision 

Hybrid  4.67        200    No 

Optical Flow  7.54         144    (3 times) 
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                     Figure 7.10: Estimated trajectories for scenario 2  ,(a) FS , (b)  OFB 

    

Scenario 3 (S3) 
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                         Figure 7.11:  Scenario 3 for vision based obstacle avoidance problem 

 

Figure 7.11 presents the third scenario which was conducted in the laboratory 

environment where the robot was required to navigate in this open environment. The 
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results of the corresponding scenario employing the FS technique are shown in Figure 

7.12 (a). The robot navigates through the environment successfully without collision. It 

negotiates both the door and the wall avoiding them using a 90° left turn manoeuvre. It 

then proceeds to move forward along a left curved trajectory eventually getting back to 

its start point. The results demonstrate that the FS technique performs smooth and 

robust behaviour for this navigation task.  
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                   Figure 7.12:  Estimated trajectories for scenario 3, (a) FS , (b) OFB  
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The OFB technique performs the navigation without colliding with any obstacle in a 

smooth manner, as shown in Figure 7.12 (b), so that it negotiates the door and walls 

respectively. The results demonstrate that performance in these experiments is 

surprisingly reliable for this scenario.  Table 7.4 presents the performance measures for 

each method with this scenario, The FS technique performs the task for each repetition 

successfully. OFS fails once but its overall performance is better than expected. 

Nevertheless it generates a higher value of △Ω compared to the FS method. 

. 

     Table 7.4:  Performance measures for scenario 3 
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(a)                                                                       (b) 

        Figure 7.13:  Estimated trajectories for scenario 4, (a) scenario 4, (b) FS 

 

Figure 7.13 (a) illustrates the fourth scenario in which the robot is required to navigate 

in the laboratory environment with three unexpected obstacles are placed along its path. 

Figure 7.13 (b) presents the navigation results of the FS method for this scenario. The 

robot begins its navigation and then it detects the first obstacle. The robot avoids the 

Methods △Ω (deg/s2)            Time (sec)   Collision 

Hybrid  4.19        200    No 

Optical Flow  5.23         182     (1 times) 
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first and second obstacles successfully. Subsequently it avoids the second obstacle. 

After this the robot negotiates walls and the third obstacle, all of which are successfully 

avoided by following a rectangular path.  

 

The navigation results for the OFB technique for this scenario are given in Fig 7.14, 

where the robot avoids the first obstacle but collides with the second. After this the 

robot passes the second room and is stopped. Performance measurements of the given 

scenario are illustrated in Table 7.5 
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              Figure 7.14: Estimated trajectories for scenario 4 using OFB  

 
    

   Table 7.5:  Performance measures for scenario 4    

 

 

7.2.3 Comparison and evaluation of methods  

 

In these test scenarios, the positions of all obstacles in the test environment are 

unknown to the robot. Four scenarios were selected for discussion in this section. The 

Methods △Ω (deg/s2)            Time (sec)   Collision 

Hybrid 6.88        191   (1 times) 

Optical Flow 7.79        107    (3 times) 
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results reveal that the OFB technique addresses the use of optical flow to supervise the 

navigation of mobile robots. It basically utilizes control laws in aiming to detect the 

presence of obstacles close to the robot based on information about changes in image 

brightness. The technique performs better than expected in steering the robot 

effectively, especially in the open environments as illustrated in Figures 7.8 (b) and 7.12 

(b). The major difficulty with employing optical flow in mobile robot navigation is 

when key information is not obtained concerning whether or not motion vectors or 

changes of illumination change the intensity value of pixels. In addition, despite the 

assumption of having constant illumination, lighting conditions may significantly 

change due to environmental factors which optical flow techniques are known to have 

difficulty in handling. These may cause the miscalculation of flow vectors and can 

result in collision, as illustrated in Figures 7.10 (b) and 7.14. The OFB is capable of 

negotiating walls and doors successfully which provides flexibility in this method in 

partially cluttered indoor environments. However, the OFB technique is not able to 

avoid external obstacles deliberately located along the path of the robot, as much as the 

FS technique is able to perform. 

 

It is proposed that the FS technique can improve on the performance of the OFB 

method, by fusing the results of two techniques in terms of the optical flow based 

control law. Figures 7.10 (a) and 7.13 (b) reveal the capacity of this technique in 

partially cluttered environments, including those with external obstacles. The aim of the 

technique is to integrate the results of the appearance-based detection technique and 

optical flow based navigation architecture. The technique has the ability to negotiate 

and avoid walls and doors, by benefiting from the results of the optical flow based 

navigation technique employing the frontal optic flow to estimate the so-called time-to-

contact before a frontal collision is likely to occur (see Chapter 3). It is also able to 

avoid lateral obstacles more smoothly than with the conventional optical flow 

technique. The outcome of balance strategy tends to maintain equal distances to 

obstacles on both sides of the robot, exploiting the results of the appearance-based 

detection technique. The test results reveal that the overall performance of the system is 

better than that of the conventional technique, but it is still vulnerable to lighting 

conditions, illumination problems and floor imperfections.  
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The characteristics problems of these conventional methods may still affect the 

performance of the proposed method.  Figure 7.13 (b) illustrates the characteristics of 

the proposed algorithm in cases of frontal obstacles spanning the entire field of view. As 

the robot reminds blind (does not make any decision) and the TTC value indicates the 

high possibility of collision, the behavioural module is triggered, according to which the 

Change Direction behaviour has a higher priority level than the Steering behaviour. 

Thus a 90
ο
 turning manoeuvre is performed to avoid obstacles. The FS method does not 

extract the features of the images but only measures the differences between them, 

which makes the technique appropriate for real time applications, however this maybe a 

disadvantage in more complex situations.  
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        (a)                                                                (b)                                                                                                           

Figure 7.15:  Experimental results for scenario 5(trap-situation), (a) scenario 5, (b) FS method 

 

An example illustrating the limitations of the technique is shown in Fig 7.15 (a), in 

which the robot is required to negotiate three obstacles that are close to each other. Fig 

7.15 (b) displays the navigation results of the robot where the robot is not able to avoid 

both the obstacles and collision with the right wall. This case represents a typical trap-

situation for this method, where the robot is not able to avoid all obstacles in such 

complex situations. Table 7.6 highlights the percentage improvement in performance of 

the FS over the OFB for the Pioneer robot. Tables 7.2-7.5 consistently demonstrate 
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improved performance. Accordingly, the FS navigation method offers better overall 

performance in terms of safety and consistent motion when compared to the OFB 

method. The control outputs of each scenario can be found in Appendix N.  

 

            Table 7.6:  Performance improvement of the FS over the OFB   

Scenario No   more consistent   safer navigation longer navigation 

 S1      %31          % 0   %0 

 S2      %39        %150 %28 

 S3      %20        %25 %9 

 S4      %26        %100 %78 

 

         

 

7.3 Experimental Design and Results of SIFT based Navigation 

Systems   

 

This section presents and discusses the test results of the SIFT based and Intelligent 

SIFT based navigation strategies discussed in Chapters 4 and 5 respectively.  

       

     Table 7.7:  Initialization of the robot control algorithm for  NUS  

                     Parameters                        Descriptions 
   Start Position (x,y) 

    

   Goal Position (x,y) 

    

   Initial heading angle (θ) 

    

   Distance of influence of object 

    

   Maximum Velocity 

    

   Minimum Velocity 

 

    Maximum matching value (Stop Criteria) 

 

    Minimum matching value (Start Criteria) 

 

   Velocity constant 

 

  Steering constants  

 

   Avoidance behaviour parameters 

 Start position of the robot on the simulated area  

 

 Position of the goal on the simulated area 

 

 Starting heading angle of robot, θ=0
ο
 

 
 do = 0.65  m  

 

 vmax= 0.24 m/s    

 

 vmin= 0.064 m/s 

 

 30,   for reaching goal 

   

 3,     for starting the navigation      

 

 kv =0.008    adjust  velocity     

 

sw = 1.2, sw1 = 0.6, sw2 = 0.8 adjust steering 

 

ow =  12 deg/s ;  ov = 0.1 m/s 
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The experiments were conducted in the test environments shown in Figures 7.3 and 7.5. 

The proposed SIFT based methods, navigation using the SIFT (NUS) and Intelligent 

Navigation using SIFT (INUS) were initially tested using the Pioneer robot. The results 

show that, when employing the proposed INUS method, the robot successfully avoided 

collisions and was able to reach all of the desired goals. On the other hand, the NUS 

performed fairly well despite its full reactive architecture and simple control strategy. 

Nevertheless it failed to successfully complete some of the complex scenarios, as 

discussed in the following sections. Since navigation results are very hard to quantify 

[Gat, 1995], the performance measures described in Section 7.1.1 were employed to 

evaluate navigation performance. A corresponding table of performance measures 

comparing the performance of the two methods is illustrated for each scenario; although 

these do not include the time spent searching for the goal. The experiments revealed that 

the robot under INUS gets closer to the goal than when using NUS. Accordingly, an 

updated version of the travelled distance parameter (dt) including this difference is 

reported next to the (dt) parameter in square brackets for each performance table and 

employed for performance evaluation.  

 

     Table 7.8:  Initialization of the robot control algorithm for  INUS 

                       Parameters                        Descriptions 
  Start Position (x,y) 

    

  Goal Position (x,y) 

    

  Initial heading angle (θ) 

   

  Distance of influence of object 

    

  Maximum Velocity 

    

  Minimum Velocity 

 

  Minimum matching value (Start Criteria) 

 

 Distance Tolerance 

  

  Start position of the robot on the simulated area  

 

 Position of the goal on the simulated area 

 

 Starting heading angle of robot, θ=0
ο
 

 
 do = 0.5  m  

 

 vmax= 3.7 m/s    

 

 vmin= 0.11 m/s 

 

3,    for starting the navigation      

 

dt=0.6 m for reaching goal 

 

The trajectories of the robot were plotted using data collected during the experiments. 

Values of linear velocity (m/sec), angular velocity (deg/sec) and matching strength 

generated by the output in each experiment are displayed for both methods. Tables 7.7 
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and 7.8 present the initial parameters used in the NUS and INUS algorithms. Parameters 

were estimated by a trial and error method. During the experiments, the sampling period 

of the length of a decision cycle was set at tc = 220 ms for NUS and 300 ms for INUS. 

This is because the INUS method needs more time to generate control variables, mainly 

due to the complexity of the algorithm. For each decision cycle, the robot is controlled 

by an updated translational velocity command (v) and angular velocity command (w).  

 

Images were captured at a resolution of 176x144 or 352x288 pixels, and stored in the 

pgm format with respect to the characteristics of the SIFT algorithm. The resolution of 

352x288 pixels was utilized only for search behaviour, generating more interest points 

with the SIFT algorithm which allows the position of the goal to be obtained. 

Nevertheless the SIFT algorithm consumes a lot of processing time at this resolution, 

which is not appropriate for visual servoing and real time applications with the given 

robot configuration. Therefore, once the goal was detected, the image resolution of the 

captured goal was reduced from 352x288 to 176x144 pixels whilst navigating the robot. 

When the resolution of an image is down-sampled to a smaller resolution, the number of 

extracted features is significantly reduced. This, in essence diminishes the performance 

of both velocity controllers. On the other hand, Lowe [2004] claimed that three features 

are enough for robust matching across different scenes. Therefore, in these experiments, 

in order to compensate for the decline in numbers of matched features, a matching 

constant with a value of 5 was added to the total matching strength parameter. This 

updated parameter was only employed by the velocity controllers, and was not taken 

consideration when calculating the steering parameters of both methods. 

 

The reference images (goal images) used in these experiments were described in 

Chapter 6.  For each scenario, the robot starts its navigation by searching for the 

position of the goal where the panning features of the corresponding behaviour may be 

invoked with regard to its position. To increase the overall performance of the system in 

the real experiments, some minor modifications were implemented in terms of the 

parameter selection for search behaviour. Consequently, the searching interval for the 

panning function was set to 15°. In addition, in order to reduce the total processing time 
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of searching, two levels of zoom 4000(11x) and 6000(16x) were utilized for each 

panning level, to increase the overall performance of the system.  

 

The main obstacles used in this experiment were rectangular boxes of dimensions of 

550x500 mm. Different sizes of obstacles were used in one of the more complex 

scenarios designed to demonstrate and compare the capabilities of the algorithms, as 

discussed in section 7.3.2. 

 

7.3.1 Experimental Implementation 

 

These experiments are classified into two groups. The first group of experiments are 

preliminary navigation tests which ensure that the proposed navigation algorithms are 

able to perform fundamental tasks in a partially cluttered test environment. The second 

group of more complex experiments aim to evaluate the overall performance of these 

algorithms when different numbers of obstacles are placed along the robot’s path, to see 

if it can detect and avoid these objects and make its way to the desired location. In 

addition, the robot is required to reach different goals sequentially, which allows the 

performance evaluation of the proposed local navigation methods in cases of global 

navigation problem.  

 

7.3.1.1 Preliminary test results  

 

The preliminary navigation tests were conducted in Room G-45, as shown in Figure 7.5. 

These experiments aimed to reveal the performance of fundemantal behaviours for each 

SIFT technique, as well as measuring which of them can yield better navigation 

performance in static environments. All overhead lights in the test environments were 

turned on during the capture of both snapshot and current images, resulting in constant 

illumination over the entire experimental area. Four different scenarios were created in 

order to evaluate the basic skills of the algorithms.  

 

Preliminary Scenario 1 (PS1) – requires the robot to navigate towards its goal in an 

open environment with no external obstacles.  
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Preliminary Scenario 2 (PS2) – requires the robot to navigate towards its goal in an 

open environment with an initial heading angle (θ) of 90° with no external obstacles. 

 

Preliminary Scenario 3 (PS3) – requires the robot to navigate towards its goal whilst 

an external obstacle is located on its path.  

 

Preliminary Scenario 4 (PS4) – requires the robot to navigate towards its goal which is 

located at the end of the room.  

 

PS1 is the shortest and easiest task while the PS2 involves searching for the goal and 

PS3 involves negotiating an obstacle. PS4 represents a more challenging situation, 

where the goal is located at the end of the room so that the robot needs to negotiate a 

narrow gap along its path. Table 7.10 displays the starting and goal position for each 

scenario. 

 

                                      Table 7.10:  Definition of preliminary scenarios 

 

 

 

 

 

 

Preliminary scenario 1 

 

Figure 7.16 (a) displays the first scenario, in which the robot is required to follow a 

straight line from the start to the goal position. Figures 7.16 (b) and 7.16 (c) display the 

trajectories of the robot employing the NUS and INUS algorithms respectively. The 

control parameters for each method are also presented in Figures 7.16 (d) and 7.16 (e). 

Table 7.11 displays the performance measures for both navigation methods in 

successfully reaching the goal. These parameter values were calculated using data 

averaged from repeated experiments.  

Scenario Start (x,y)        Goal (x,y)    

PS1 (0.0,0.0)         (5.0,0.0) 

PS2 (0.0,0.0)          (5.0,0.0)  

PS3  (0.0,0.0)         (5.5,0.0)  

PS4  (0.0,0.0)         (8.0,1.0)  
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Figure 7.16:  Experimental results for PS1, (a) the scenario, (b) estimated trajectory 

with NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e) 

control parameters for INUS 

   

       Table 7.10:  Performance measures for PS1 

 

 

Preliminary scenario 2 

 

Figure 7.17 (a) displays results for the second scenario in which the robot’s initial 

heading angle is set to 90
ο
 to the right, and it is required to follow a straight line from 

    Methods        △Ω (deg/s2)      ts(s)             dt(m)      Error(m)     va(m/s)        Collision     Search(deg)     

       NUS   3.99               23.2         4.01  [4.61]  1.143            0.173                No                 0 

      INUS  2.46               17.9           4.49  0.547            0.251                No                0  
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the start to the goal position as in the previous scenario. Figures 7.17 (b) and 7.17 (c) 

present the trajectories for the robot employing the NUS and INUS methods 

respectively. Figures 7.17 (c) and 7.17 (d) display the control parameters for each 

method. The robot initially starts searching for the goal with varying pan positions. 

Once it is detected, the robot turns 90
ο
 towards the goal position and heads towards it. 

Table 7.11 displays the performance measures of the robot which was able to complete 

the missions safely.  
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Figure 7.17:  Experimental results for PS2, (a)  the scenario, (b) estimated trajectory 

with NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e) 

control parameters for INUS          

 

The results for the PS1 and PS2 scenarios basically show the performance of the 

proposed algorithms for navigation along a straight line. The velocity in both algorithms 

gradually increases in the open environment when approaching the goal according to the 
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characteristics of the corresponding control algorithms. The NUS method produces 

higher values of △Ω , Error and ts, and a lower value of va than when employing the 

INUS method. 

           

       Table 7.11:  Performance measures for PS2 

 

 

Preliminary scenario 3 

 

This scenario requires the robot to navigate towards the goal whilst having to negotiate 

an external obstacle placed along its path, as shown in Figure 7.18 (a). The trajectories 

for both methods are displayed in Figures 7.18 (b) and 7.18 (c). This scenario 

demonstrates the robot’s ability to avoid an external obstacle.  Figure 7.18 (b) illustrates 

the trajectory of the robot under the NUS in avoiding the obstacle. When the obstacle is 

detected the obstacle avoidance behaviour is activated and the robot starts its avoiding 

behaviour whilst also negotiating the left wall which incidentally generates a repulsive 

force. Once the obstacles have been successfully avoided the robot detects the goal and 

attains its mission. Under INUS, the robot navigation is conducted in a smoother 

manner due to the global velocity control technique which adjusts the speed of the robot 

once the obstacles are detected. Here, the enhanced avoidance behaviour improves the 

robot’s capability of passing through the gap smoothly and safely.  

 

The control parameters of NUS are illustrated in Figure 7.18 (d), where the robot’s 

velocity increases gradually with respect to matching strength until the obstacle is 

detected, and afterwards the robot avoids the obstacle with constant speed. Once the 

goal is perceived again the goal is approached with increasing speed. The main 

challenge facing this control technique is to prevent collisions which may be caused by 

failure to adjust speed while negotiating obstacles. The algorithm is supposed to 

increase speed proportionally according to the matching of similarity. Accordingly, the 

sensitivity of the control parameters is quite significant.  To overcome these problems, 

    Methods        △Ω (deg/s2)      ts(s)             dt(m)      Error(m)     va(m/s)        Collision     Search(deg)     

       NUS   4.27               23.0         4.03  [4.63]  1.107           0.175                No                90 

      INUS  3.31               18.3         4.57  0.51            0.249                No                90 
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the parameters do and kv  must be designed carefully. The do is set to a constant value of 

distance in order to provide enough space for avoidance manoeuvres, and in addition kv 

should be set to a reasonable value (see Table 7.7).  
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Figure 7.18:  Experimental results for PS3, (a)  the scenario, (b) estimated trajectory 

with  NUS , (c) estimated trajectory with INUS, (d) control parameters for NUS, (e) 

control  parameters for INUS          

 

 

These changes, on the other hand, decrease overall performance in terms of velocity and 

smooth motion. The initial control parameters employed in the INUS technique are 

given in Figure 7.18 (e), where the speed is adjusted reasonably. This is primarily due to 

the proposed fuzzy inference system and avoidance algorithm. In addition, the turning 

manoeuvres are more consistent and smoother than when using the NUS based on the 

calibration technique discussed. Table 7.12 summarises the performance results for this 
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test which shows that the robot performance is better with INUS than when using the 

NUS, resulting in more consistent motion and shorter navigation. 

           Table 7.12:  Performance measures for PS3 

 

Preliminary scenario 4 

 

Figure 7.19 (a) shows the final scenario described in this section, which requires various 

skills in completing the task. The robot initially searches for the goal located at the end 

of the room, and it is required to pass through a narrow gap to reach the goal. The 

trajectory generated by the NUS method and its corresponding control parameters are 

illustrated in Figures 7.19 (b) and (d) respectively. The results show that the robot 

manages to detect the position of the goal after its first search attempt. After this the 

robot heads towards the goal until it encounters the table. While the robot is able to 

avoid this obstacle safely, the narrow gap generates repulsive forces from both sides 

which temporarily decrease the robot’s velocity. After which, the repulsive forces 

cancel each other out and the robot again engages with the goal to attain its mission. In 

the INUS case, as shown in Figure 7.19 (c), the robot begins its task by searching for 

the goal. After the goal is detected, the robot navigates until it negotiates the passage 

where it senses the table on its right. After smoothly avoiding this obstacle, the robot 

passes through the narrow gap and moves towards the goal. Figure 7.19 (e) displays the 

control parameters of the INUS method, which generates a more consistent angular 

velocity (w), resulting in a smoother path. The velocity graph reflects the basis of the 

proposed fuzzy inference system where the velocity (v) of the robot remains stable until 

it gets closer to the goal, after which it accelerates gradually until the obstacle is sensed. 

Once the obstacle is avoided the system progressively increases the velocity (v) as the 

goal is approached. In the final stage, the velocity remains stable as the robot is directed 

to achieve its goal. The matching strength, on the other hand, decreases dramatically in 

the final part of the navigation scenario. This is because of the reduced field of view 

        Methods          △Ω (deg/s2)     ts(s)          dt(m)       Error(m)        va(m/s)      Collision    Search (deg)     

            NUS     7.95             36.3          5.2 [5.63]        1.12            0.142           No                0 

           INUS    4.91             25.01         5.04      0.69            0.209           No                 0 
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with respect to zooming, and excessive speed may prevent the robot from capturing 

complete images during the final cycles.   
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 Figure 7.19:  Experimental results for PS3, (a)  The scenario, (b) Estimated Trajectory 

with  NUS , (c) Estimated Trajectory with INUS, (d) Control Parameters for INUS, (e) 

Control Parameters for INUS          

                 

 

      Table 7.13:  Performance measures for PS4  

 

 

It can be observed  that the decrease in matching strength during this final stage does 

not influence overall performance due to the design of the fuzzy inference system, as 

discussed in Chapter 5. Table 7.13 presents the performance results utilising both 

        Methods          △Ω (deg/s2)     ts(s)          dt(m)       Error(m)        va(m/s)      Collision    Search (deg)     

            NUS     7.17             57.4       7.7 [8.22]        1.23            0.134            No                15 

           INUS    5.32             45.5           7.79     0.61              0.171           No                 15 
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methods, showing that the INUS navigation method has superior performance compared 

to NUS and confirming that the INUS offers smoother, and more consistent motion 

throughout the navigation. The experimental results obtained from the preliminary 

scenarios have demonstrated that, when employing the INUS method, the robot’s 

performance was enhanced in achieving the desired goals. The following section 

introduces more complex scenarios.      

 

7.3.1.2 Complex test results  

 

This section describes the more complex scenarios examined, where different obstacles 

are placed along the robot’s path so as to influence its ability to reach its goal. The 

robot’s ability to negotiate successive goals is also evaluated where the robot needs to 

detect each goal. Six different scenarios were designed to simulate situations that the 

robot may experience when navigating in an indoor environment. The successive 

scenarios involve increased levels of complexity.  

 

Complex Scenario 1 (CS1) – requires the robot to navigate towards its goal whilst an 

external obstacle is located in its path, where the initial heading angle (θ) = 180, as 

shown in Figure 7.20 (a). 

 

Complex Scenario 2 (CS2) –the robot has to negotiate two external obstacles located in 

its path, as illustrated in Figure 7.20 (b).  

 

Complex Scenario 3 (CS3) – requires the robot to navigate towards its goal with three 

obstacle are located in its path, as shown in Figure 7.20 (c). 

 

Complex Scenario 4 (CS4) – requires the robot to negotiate and pass through a narrow 

gap towards its goal, as depicted in Figure 7.20 (d).  

 

Complex Scenario 5 (CS5) – represents a task that demonstrates the robot’s ability to 

avoid obstacles of two different sizes, as shown in Figure 7.20 (e).  
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Complex Scenario 6 (CS6) – represents a task that demonstrates the robot’s ability to 

navigate towards successive images, as shown in Figure 7.20 (f).  

 

Table 7.14 displays the starting and goal positions in each scenario, with each starting 

set to (0.0,0.0)   

 

                   Table 7.14:  Definition of complex scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenario Start (x,y)                                                                  Goal (x,y) 

CS1 (0.0,0.0)          (8.0,0.0) 

CS2 (0.0,0.0)           (8.0,0.0)  

CS3  (0.0,0.0)          (8.0,0.0)  

CS4  (0.0,0.0)          (5.0,-1.0)  

CS5  (0.0,0.0)          (6.0,-1.0) 

CS6  (0.0,0.0) (7.0,1.0;7.0,0,0;7.0,0.0)  



              Chapter 7 Implementation and Evaluation of Proposed Navigation Systems 

 

246 

 

                                

Goal

Start

Y-Axis

X
-A

x
is

1. Obstacle

            

Goal

Start

Y-Axis

X
-A

x
is

1. Obstacle

2. Obstacle

                           

 (a)                                              (b)                                                

                                    

                                   
Y-Axis

X
-A

x
is

Goal

Start

1. Obstacle

2. Obstacle

3. Obstacle

                 

Goal

Start Y-Axis

X
-A

x
is

Obstacle

 

                               (c)                                                    (d) 

                                   

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

Goal

                 

Y-Axis

X
-A

x
is

Start

1. Obstacle

2. Obstacle

3. Obstacle

(G1)

(G2)

(G3)

    

                                                         (e)                                                       (f)                                                  

Figure 7.20: Complex scenarious 1 – 6 , (a) CS1 - heads in reverse direction with one 

obstacle, (b) CS2- two obstacles, (c) CS3 - three obstacles, (d) CS4 – in narrow passage, 

(e) CS5 - different obstacles (f) CS6 - multible goals with three obstacles           
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Complex scenario 1 

 

The scenario demonstrates the robot’s ability to negotiate with the goal, which is 

located out of the field of view of the robot. In addition, it needs to avoid an external 

obstacle which is positioned so as to obstruct the robot’s path. 

Y-Axis

X
-A

xi
s

Goal

Start

Goal

Y-Axis

X
-A

xi
s

    (a)      (b)

Start

Obstacle
Obstacle

 

 

                    (c) 

   

     (d) 

Figure 7.21: Experimental results for CS1, (a) estimated trajectory with NUS , (b) 

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters 

for INUS          
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Figure 7.21 (a) illustrates the trajectory of the robot using the NUS to avoid the 

obstacle. The robot initially starts searching for the goal along its initial heading 

direction, which ends in failure. Thus, according to the characteristics of its search 

behaviour, the robot performs a 180° turn to change its search direction (see Chapter 4). 

Subsequently it detects the goal, and starts approaching it until it senses the obstacle.  

The robot under NUS is able to avoid the obstacle safely. However repulsive forces 

from both the obstacle and the wall compel the robot to perform extra manoeuvres to 

prevent collision, as shown in Figure 7.21 (c). After passing through the gap, the robot 

continues approaching the goal to complete its task, as shown in Figure 7.21 (a).   

 

      Table 7.15:  Performance measures for CS1  

 

 

Under INUS,  the robot performs the same searching procedure to detect the goal, as 

shown in Figure 7.21 (b). Nevertheless, its avoidance of the obstacle is smoother. As the 

obstacle is approached on the right side of the robot, the system is able to adjust its 

speed in a progressive way and handle the repulsive forces coming from both the wall 

and the obstacle by using the trained obstacle avoidance technique (see Chapter 5). 

Once the wall and obstacle disappear  from the field of view of the sensors, the system 

increases the velocity (v) sharply whilst simultaneously decreasing the turning rate (w) 

as the robot approaches its goal with no obstacles in its field of view, as shown in 

Figure 7.21 (d). This allows the robot to complete its task. Table 7.15 displays the 

performance measurements of both algorithms in reaching the goal. The results are 

quite similar to those of PS4, where the robot’s performance with INUS is seen to be 

more consistent and smoother than when using NUS.  

 

 

 

 

        Methods          △Ω (deg/s2)     ts(s)          dt(m)       Error(m)        va(m/s)      Collision    Search (deg)     

            NUS     8.01             63.6       8.1 [8.91]        1.39            0.128            No                15 

           INUS    6.29             51.2           8.42     0.59              0.166           No                 15 



              Chapter 7 Implementation and Evaluation of Proposed Navigation Systems 

 

249 

 

Complex scenario 2 

 

This scenario requires the robot to avoid two obstacles, as shown in Figure 7.20 (b).  

The robot is able to successfully reach its goal without collisions using both methods, as 

shown in Figure 7.22 (a) and Figure 7.22 (b) respectively.  
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Figure 7.22: Experimental results for CS2, (a) estimated trajectory with NUS , (b)  

estimated trajectory with INUS, (d) control parameters for NUS, (e) control 

parameters for INUS          
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The INUS control generates smoother motion than NUS which uses a simple method of 

controlling velocity that employs matching strength as the only input, as previously 

mentioned. Thus the system progressively increases the speed of the robot until it gets 

closer the obstacle. Therefore, despite the assignment of an appropriate do value, the 

system may need to perform sharp manoeuvres to prevent collision.  For instance, in 

this case, the robot increases its speed progressively with respect to matching strength 

until it gets close to the first obstacle, which results in a wider trajectory. In addition, the 

results for the corresponding avoiding manoeuvre increases the possibility of a frontal 

collision with the second obstacle. In negotiating the second obstacle, the obstacle 

avoidance behaviour is invoked, leading to the performance of an avoiding manoeuvre. 

Subsequently, the robot continues to approach its goal with no obstacle in its field of 

view, and reaches the goal. The corresponding control parameters are shown in Figure 

7.22 (c). Again the INUS, illustrated in Figure 7.22 (b), allows the robot to maintain 

smoother and faster navigation. This is because this method is able to make more 

sensitive adjustments leading to a more robust heading direction based on its calibrated 

camera system. Under the INUS, when the robot initially perceives the first obstacle, 

the system progressively adjusts its speed as part of the collision avoidance manoeuvre, 

and the trained avoidance technique generates appropriate values of angular velocity (w) 

to compel the robot to move at a safe distance from the obstacle.   

 

After the first obstacle and the wall disappear from the robot’s view, its velocity 

increases progressively as illustrated in Figure 7.22 (d) until it perceives the second 

obstacle on its left, which is passed safely and smoothly. The robot then proceeds to 

complete its task successfully. Table 7.16 presents the results of the performance 

measurement tests regarding this scenario which reveal that the robot performs better 

using the INUS.  

 

   Table 7.16:  Performance measures for CS2 

        Methods          △Ω (deg/s
2
)     ts(s)          dt(m)       Error(m)        va(m/s)      Collision    Search (deg)     

            NUS     9.24              70.7        8.6 [9.2]        1.34            0.124            No                0 

           INUS    6.83              57.2           8.9     0.73              0.160           No                 0 
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Complex scenario 3 

 

This scenario represents a more cluttered environment involving three external 

obstacles. The robot is required to navigate from its start point to its goal with obstacles 

positioned so as to obstruct its path. 
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Figure 7.23: Experimental results for CS3, (a) estimated trajectory with NUS , (b) estimated 

trajectory with INUS, (d) control parameters for NUS, (e) control parameters for INUS          

 

The robot running under the NUS fails twice in this complex experiment by colliding 

with obstacles. The NUS trajectory shown in Figure 7.23 (a) displays a successful result 

where the goal is attained without colliding. The first obstacle is passed successfully 

although false matches are processed during navigation, as shown in Figure 7.23 (c) 
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where extreme points can easily be observed. The system then moves towards the goal 

until it perceives the second obstacle on its right side that appears within the range of do, 

which it avoids successfully. The final goal for the robot using the NUS algorithm is 

having to avoid the third obstacle located on its left side. However, the goal is 

obstructed by the obstacle which results in the robot moving close to it and pushed 

towards the wall by strong repulsive forces. In negotiating the wall, the robot rotates 

sharply clockwise towards the open space, which results in an unclear trajectory. 

Besides this, the robot loses sight of the goal and stops. The search behaviour is then 

reactivated, the goal is detected and the scenario is completed successfully. Two 

repeated failures of the NUS method occurred in this part of the experiment where the 

robot was unable to overcome the trap situation. The control parameters of the method 

are illustrated in Figure 7.23 (c) which displays the corresponding results along the 

estimated trajectory. Velocity, v, is rather low during navigation, and the change in w is 

quite high, resulting in inconsistent and non-smooth robot motion. However, when 

employing the INUS method, the robot is able to attain its goal successfully as shown in 

Figure 7.23 (b). It begins moving towards the goal, during which time the system does 

not increase the v as the robot moves towards the first obstacle. As the robot perceives 

the first obstacle, it is avoided safely with a smooth manoeuvre. As soon as the obstacle 

disappears from the robot’s view, values of v increase sharply, which also shows that 

both the robot reaches the obstacle-free space and the distance between the goal and the 

robot reduces. When the robot perceives the second obstacle the system decreases v in 

order to engage with it, and the INUS generates a similar avoiding manoeuvre to that of 

the NUS method. However under the NUS the robot presents a wider path as compared 

to when employing the INUS.  The final part of the task is to negotiate with the third 

obstacle which compels the robot operating the NUS method to select the wrong path. 

With INUS, however, the robot continues moving toward the goal until it senses the 

third obstacle. In negotiating the third obstacle, the robot makes a sharp manoeuvre 

towards the trap which, however, is compensated for successively and the robot 

achieves its escape from the trapped position. It then engages its goal again and 

completes its mission.  Figure 7.23 (d) reveals the corresponding control parameters 

when the robot is able to navigate the goal whilst avoiding external obstacles in a 

similar manner to the previous experiments. The only exception appears with the trap 
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position, where the robot oscillates for a while, resulting in a higher change in w and 

decrease in average velocity (v). Overall, the robot under INUS succeeds in avoiding all 

obstacles with smoother and more consistent manoeuvres than when using the NUS. 

Furthermore, NUS leads to unsuccessful navigation on two occasions and requires 

further searching to complete the task. Table 7.17 summarises the performance 

measures for this complex scenario (time spent on the searching procedure is excluded). 

As with previous results, the robot’s performance is better with INUS than when using 

the NUS. 

            

     Table 7.17:  Performance measures for CS3  

 

 

Complex scenario 4 

 

This scenario requires the robot to pass along a narrow path towards the goal. When 

employing NUS method it is not able to complete the task and collides with the 

obstacle, as illustrated in Figure 7.24 (a), and corresponding control parameters are 

shown in Figure 7.24 (c). Under NUS it perceives the obstacle on its right side whilst 

heading towards the goal, and then performs consecutive left and right manoeuvres due 

to the repulsive forces generated by the obstacle and the wall respectively. However, it 

then becomes jammed and collides with the obstacle.   

 

When running under INUS the robot is able to attain its goal successfully, as shown in 

Figure 7.24 (b). The robot initially rotates clockwise to engage with the goal. Once the 

goal is perceived, the system progressively increases speed until the robot approaches 

the pass. It then reduces speed and, despite the narrow gap and repulsive forces 

generated by the obstacle and the wall, it is able to escape from the trap without 

collision. After this it continues moving toward its goal to complete the task. Unlike 

with the NUS method, in this case the robot using the INUS method benefits from the 

     Methods        △Ω (deg/s2)         ts(s)              dt(m)       Error(m)       va(m/s)     Collision  Serach(deg)  

     NUS 14.4                  91.4           10.4 [10.9]      1.37            0.114         2 times        30 

     INUS 9.74                 66.7              9.76     0.84             0.149          No              0  
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intelligent speed control and the trained avoidance technique, and is able to pass the gap 

to safely reach its goal. 
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Figure 7.24: Experimental results for CS4, (a) estimated trajectory with NUS , (b) 

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters 

for INUS             

 Table 7.18:  Performance measures for CS4 (Failure for NUS)  

 

 

 

The enhanced obstacle avoidance technique essentially provides smoother angular 

velocity (w) values for narrow paths and the robot is able to negotiate the wall, 

facilitating safer and smoother avoidance manoeuvres. Figure 7.24 (d) presents the 

control parameters with INUS which are consistent with the estimated trajectory. Table 

        Methods        △Ω (deg/s2)    ts(s)         dt(m)     Error(m)        v(m/s)        Collision  Search(deg)  

           INUS       5.42           32.0         5.7   0.88              0.174            No           15 
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7.18 summarises the performance measures for this trap scenario, and indicates that 

NUS is unsuccessful and consequently the performance measures associated with this 

case are indeterminate. However, under the INUS, successful navigation is achieved by 

the robot. 

 

Complex scenario 5 

 

This scenario demonstrates the robot’s ability to avoid obstacles of two different sizes 

positioned so as to obstruct the robot’s path. One of these is a rectangular box of 420 

mm x 330 mm, and other is a rectangular box having dimensions of 400 mm x 900 mm. 

In order to increase the challenge inherent in the scenario, the second obstacle is 

positioned across the path. Figure 7.25 (a) illustrates the trajectory of the robot under 

the NUS trying to avoid the obstacles. The robot initially starts searching in order to 

detect the position of the goal, then turns its direction of travel to where it senses the 

larger obstacle. In negotiating the obstacle, the value of w is increased progressively as 

the robot perceives the obstacle on its right side. After passing the first obstacle, the 

robot is compelled to pass along the narrow path between the first obstacle and the wall, 

forcing it to produce a non-smooth trajectory. When the sensors perceive the second 

obstacle, which is positioned irregularly, the robot performs another avoiding 

manoeuvre to prevent collision and complete the task. The control parameters of the 

corresponding method are illustrated in Figure 7.25 (c) in which it can be observed that 

the robot essentially utilizes obstacle avoidance behaviour during the navigation due to 

the repulsive forces generated by the obstacles and the wall, and which results in a 

wider trajectory when using the NUS.  

 

Figure 7.25 (b) displays the trajectory of the robot under the INUS method. After 

detecting the goal’s position, the robot rotates towards it. It then moves towards the goal 

smoothly until it perceives the first obstacle, whereupon it successfully avoids it and 

keeps moving towards path between the first obstacle and the wall.  
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Figure 7.25: Experimental results for CS4, (a) estimated trajectory with NUS , (b) 

estimated trajectory with INUS, (d) control parameters for NUS, (e) control parameters 

for INUS          
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 With  INUS  the robot is able to pass along the narrow passage smoothly, and thus the 

obstacle avoidance behaviour of this method leads to an oscillation-free navigation until 

the second obstacle is detected.  The robot subsequently avoids the second obstacle 

safely and keeps moving towards the goal. The control parameters of this algorithm are 

shown in Figure 7.25 (d). In addition, Table 7.19 illustrates the performance assessment 

of both methods where the overall performance of the NUS method decreases 

dramatically, especially in terms of  va  and ts. On the other hand, the INUS method 

performs with a level of performance somewhat similar to those of previous 

experiments.  

 

 

       Table 7.19:  Performance measures for CS5 

 

 

Complex scenario 6 

 

NUS and INUS were designed primarily to overcome local navigation problems using a 

vision based approach. Scenario 6, however, is designed to evaluate the performance of 

these methods with a global navigation problem, in which waypoints are placed at 

locations so that each goal is successively negotiated, as shown in Figure 7.26. The 

scenario is illustrated in Figure 7.20 (f). It has three goals placed along the corridor for 

the robot to navigate around. When the robot reaches its first goal, it starts to search for 

the second goal, which is then followed by achieving the third goal. The robot must 

attain all goals in the correct order so as to complete the task successfully. The robot, 

however, fails on two occasions when using NUS, colliding with the second obstacle 

which then obstructs the third goal. Figure 7.27 (a) illustrates the trajectory of the robot 

under the NUS which is eventually able to negotiate the goals successfully. 

 

        Methods        △Ω (deg/s2)         ts(s)              dt(m)       Error(m)       va(m/s)     Collision  Serach(deg)  

            NUS 13.27                 61.7          6.9 [7.4]      1.286           0.109         1  times        -45 

           INUS 8.49                  40.5               6.56     0.77             0.162          No               -45  
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                              Figure 7.26:  Each goal leads its successor  

 

                        

Y-Axis

X
-A

x
is

Start
1. Obstacle

2. Obstacle

3. Obstacle

(G1)

(G3)

Start
(G1)

1. Obstacle

2. Obstacle

3. Obstacle

(G3)

(G2)

Y-Axis

X
-A

x
is

(G2)

 (a)  (b)

 

Figure 7.27: Experimental results for CS5, (a) estimated trajectory with NUS , (b)  

estimated rajectory with INUS, (d) control parameters for NUS, (e) control 

parameters for INUS          

 

The robot starts its navigation by searching for the first goal which is detected after 

panning the camera clockwise. The robot then rotates to its right to engage with the 

goal. The robot moves towards the goal until it perceives the first obstacle, whereupon 

the robot avoids it and continues moving towards its goal. It then reaches the goal and 

completes its first task, whereupon the robot starts searching for the second goal, 

subsequently turning counter-clockwise. While it attempts to move in the direction of 

this goal, it is influenced by the repulsive forces generated by the first obstacle, the first 

obstacle appears within the range of do, invoking the obstacle avoidance behaviour of 

the robot which pushes the robot away from its starting position. The robot then 

localizes itself towards the goal again and continues moving until perceiving the second 

obstacle. In negotiating this obstacle, the robot avoids it and orients itself towards the 

direction of the goal. The robot then proceeds to complete its second task successfully. 
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The final goal is eventually detected and the robot moves towards it until the third 

obstacle is perceived on its right. Having detected the obstacle in its path, the robot 

performs a sharp avoidance manoeuvre to avoid collision. After the robot successfully 

avoids the obstacle, it resumes its path and continues moving to achieve its goal. The 

corresponding control parameters for each goal are illustrated in Figure 7.28. The only 

criteria for stopping in the NUS method is matching strength. Any mismatching can 

stop the robot before the goal position is reached which is one of the main 

disadvantages of the method. The last part of this test is an excellent example of this 

situation in that the robot is halted away from the goal regarding the matching based 

stopping criteria. 

 

Figure 7.27 (b) displays the trajectory of the robot when negotiating the scenario using 

INUS. The results of the corresponding control parameters are shown in Figure 7.29. 

After detecting the first goal the robot turns clockwise to engage it. It then moves 

towards its goal. The robot successfully passes between the obstacle and the wall 

towards its goal. Unlike with the NUS method, the robot with the INUS method does 

not negotiate the obstacle, resulting in a smaller Error parameter than when using the 

NUS method. Consequently, a smaller Error result for the reaching the first goal 

prevents any influence of the first obstacle during the search attempt for the second 

goal. 

 

The robot starts searching for the second goal and then rotates counter-clockwise to its 

left to engage it. Once engaged, it heads towards the goal until it perceives the second 

obstacle on its right where INUS maintains a safe distance from second obstacle and 

providing a robust and smooth trajectory towards the corresponding goal. The robot 

then proceeds to complete its task successfully; the control parameters of the 

corresponding goal are illustrated in Figure 7.29 (b). For the final goal, the trajectory 

results are similar to those for the NUS method except that the robot’s trajectory is more 

erratic. Having detected the final goal on its initial heading direction, the robot starts 

moving towards the goal. Since the estimated distance between the goal and the robot is 

reduced, the value of v is increased. The robot keeps moving until it perceives the third 

obstacle which obstructs the goal. As the robot senses the obstacle in its path, v is 
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decreased by the system in order to provide a safe obstacle avoidance manoeuvre. After 

the obstacle disappears from the robot’s field of view, the robot localizes itself towards 

the goal and then proceeds to complete its task successfully, as shown in Figure 7.29 

(c).  

 

The results show that the robot performs better when using the INUS. The performance 

measurements displayed in Table 7.20 indicates that using the NUS method yields 

somewhat higher values of dt, ts △Ω and Error and lower values of va than when 

employing the INUS, resulting in a longer travel distance and navigation, inconsistent 

motion, higher position error and slower speed.  

 

              

(a)                                                       (b)              

                                

                                             (c) 

Figure 7.28: Control  parameters for NUS of CS5, (a) Control parameters for Goal A 

          , (b) Control parameters for  Goal B, (c) Control parameters for Goal C               
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Figure 7.29: Control  parameters for INUS of CS5, (a) Control parameters for Goal A 

          , (b) Control parameters for  Goal B, (c) Control parameters for Goal C  

 

     Table 7.20:  Performance measures for Complex 6  

 

 

7.3.2 Performance Analysis 

 

The quantitative results of the experiments are presented in Tables 7.10 - 7.13 for the 

preliminary scenarios and Tables 7.15 - 7.20 for the complex scenarios, and the 

evaluation data obtained from the repeated experiments are summarised. The following 

discussion briefly analyses the performance of each method:  

 

        Methods        △Ω (deg/s2)     ts(s)              dt(m)        Error         va(m/s)      Collision        Search(deg)  

        NUS  10. 47             161.0      21.73 [23.57]  (1.513)       0.137       2 times         (-15.90,0) 

       INUS 6.33                124.5          21.7 (0.56)         0.175        1 times          (-15,90,0) 
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Navigation Using SIFT (NUS) - the preliminary navigation test results reveal that for 

the PS1-PS4 scenarios, the robot employing the NUS method was able to complete its 

mission without colliding with obstacles. For the CS1 and CS2 scenarios the robot was 

also able to complete the tasks successfully, but the performance was somewhat poorer 

for the more complex scenarios as compared with INUS in terms of the dt, ts, △Ω, Error, 

speed and Collision parameters. For the CS4 scenario, under NUS the robot failed to 

negotiate the narrow gap. Since velocity control in NUS is adjusted according to 

matching strength, this allowed the robot to move closer to the obstacle with an unstable 

velocity, and which in turn led to an increased possibility of collision in the complex 

scenarios such as CS3, CS4, CS5 and CS6. Having a less accurate control algorithm 

provides an inconsistent angular velocity with high values of △Ω and a higher travel 

distance dt.   

 

Navigation is deemed less successful, if the robot navigates with a high Error value. 

The criterion for bringing the robot to a stop involves comparing the current matching 

strength with a previously determined threshold value (see Table 7.7). Despite the 

preliminary experiments to obtain an appropriate threshold value for the stopping 

criteria, the variable lighting conditions in the environment and the distortion produced 

in the images due to the motion of the robot may produce inconsistent matching results, 

thus increasing the value of the Error parameter. For instance, in scenario CS6 (c), the 

robot completed its mission with a high Error due to stopping early based on matching 

strength.  For all scenarios, the NUS method generated higher values of the Error 

parameter than when using INUS. This is because the INUS method utilizes a more 

reliable stopping procedure, which estimates the distance to the goal using matched key 

features. As previously mentioned, the robot was unable to navigate out of the trap in 

CS4, although it was successful when using INUS.  

 

CS3 presents a challenging task for this NUS method and the robot failed to complete 

the on two occasions. Furthermore searching behaviour in the successful attempt was 

enabled once more by the system having lost sight of the target after avoiding the third 

obstacle which obstructed the path of the robot during its navigation. The overall 

performance of this scenario in terms of the values of ts, dt, △Ω and Error parameters 
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are higher than when using the INUS method. Once again, this produced a greater 

navigation time and travel distance, and an inconsistent and less smooth trajectory 

compared to the INUS. CS5 also presented a challenging scenario which involves two 

different sizes of obstacle obstructing the path. Despite the robot failing once, it was 

able to complete the task on four occasions. However, the results indicate that the robot 

produced small values of va and high Error, resulting in the increased navigation time 

and decreased precision respectively.  

 

Intelligent Navigation Using SIFT (INUS) - the navigation tests demonstrated that 

INUS performed better in all test scenarios than NUS for all parameters, for the reasons 

previously discussed. Table 7.21 highlights the percentage improvement in performance 

of the INUS over the NUS for the Pioneer robot. 

 

             Table 7.21:  Performance improvement of the INUS over the NUS   

      

 

 

 

 

 

 

 

 

 

 

 

             % improvement in CS4 could not be determined since the robot using the NUS  failed  

                 to reach its goal  

  

The INUS navigation method consistently offers better overall performance compared 

to NUS in terms of safety and success, lower travel distance and time, consistent motion 

commands, and a smooth trajectory. The robot with the INUS method was able to pass 

through the narrow gaps, as illustrated in CS4. This is a scenario in which the NUS 

method completely failed. Furthermore, the INUS navigation method consistently 

performed somewhat better than when using NUS in CS3, CS5 and CS6 in terms of 

Scneario No shorter  time      shorterl distance        consistent motion  safer navigation faster speed 

PS1 %22                                %3                                 %38                  %0 %45 

PS2 %20                                %2                                 %23                  %0 %42 

PS3 %31                                %10                              %37                   %0 %47 

PS4 %24                                % 5                                %26                  %0 %27 

CS1 %20                                %6                                 %21                  %0 %29 

CS2 %19                                %5                                 %30                  %0 %28 

CS3 %28                                %12                               %33                 %40 %30 

CS4   

CS5 %34                                %12                              %33                  %20 %47 

CS6 %37                                %28                              %39                  %20 %32 
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safer navigation. In order to evaluate the limits of the robot using INUS, one additional 

test including a global navigation problem was designed and performed. The robot was 

required to complete a task moving from the corridor area outside of the laboratory to 

the main entrance of the building.  
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             Figure 7.29: Estimated trajectory with INUS for CS7  

 

The robot was required to avoid deliberately positioned obstacles and to detect the 

corresponding goals in order to reach the final destination. The main aim of this 
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experiment was to complete the task without colliding with any walls or obstacles. The 

experiment was repeated six times to evaluate the sustainability of the system. The 

results revealed that the robot under INUS was able to complete the task four times, and 

more details of the scenarios are included in Appendix P. Failures occured at the first 

and second doors. Despite the challenge of conducting such an axperiment, the robot 

achieved four times to complete the required task without experiencing any collision. 

However, the results suggest that the proposed system needs a more powerful 

localization technique for such a complex problem, which  should be incorporated into a 

map based strategy to allow the robot to complete tasks in large and complex 

environments such as hospitals. 

 

Overall, the navigation results for the robot using  INUS are very promising, since they 

confirm that the proposed navigation system functions as intended. The results also 

demonstrate that the INUS method is able to overcome problems likely to be associated 

with vision based mapless navigation on a real mobile robot platform functioning in a 

real world scenario, without encountering serious problems such as collisions. The robot 

can complete its missions in a robust, speedy and smooth manner. On the other hand, 

the NUS navigation system can indeed be implemented on different mobile platforms, 

and is able to negotiate new environments much more easily than is the case when 

implementing the INUS navigation system. This is because of the simplicity and 

flexible characteristics of the NUS method. 

 

7.4 Summary  

 

This chapter is divided into two parts. The first part presented the navigation test results 

using a mobile robot platform employing conventional vision based obstacle avoidance 

and the proposed hybrid vision based obstacle avoidance system. A comprehensive 

series of experiments was conducted, and the results demonstrate that the proposed 

Hybrid System produced better obstacle avoidance performance compared to the 

conventional Optical Flow method. 
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The second part of the chapter revealed the performance of the proposed SIFT based 

navigation algorithms implemented on a mobile robot platform. The preliminary 

experiments focused on the basic achievements of each algorithm in different scenarios. 

The navigation results for complex scenarios focused on more advanced situations that 

a real robot might encounter in indoor environments. The results from all scenarios 

demonstrate that the Intelligent Navigation using SIFT produced better navigation 

performance compared to the Navigation using SIFT algorithm. The INUS has been 

shown to provide smoother trajectories and more successful navigation on different 

situations. The tests also confirm that using the proposed navigation algorithms the  

robot can easily navigate in different indoor environments with minor modifications to 

complete their tasks successfully. 
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              CHAPTER 8 

             CONCLUSIONS AND FUTURE WORK 
 

This chapter presents a summary of the research, including the achievements of the 

study along with a discussion of future work that could be undertaken to enhance the 

performance of vision based mobile robot navigation using mapless strategies. 

 

8.1 Conclusions  

 

The first hypothesis of this research asserts that “it is possible to develop a vision based 

obstacle method, using a single monocular vision camera as the only sensor to allow a 

mobile robot to navigate safely”. To test this hypothesis, a novel navigation system is 

proposed, and an attempt is made to realise this system using the Player architecture so 

as to give the capability of it being integrated into a mobile robot platform. This has 

been confirmed as follows. 

 

The computational complexity of the vision algorithms and the cost of the sensors are 

the most critical aspects for real time applications. Monocular vision is a good cost 

effective solution and is able to support vision based navigation and obstacle avoidance. 

The study set out to develop reactive obstacle avoidance using a single monocular 

vision camera as the only sensor. The system integrates a high performance appearance-

based obstacle detection method into an optical flow based navigation system. The main 

motivation behind this approach was the observation of limitations in conventional 

methods in terms of accuracy and efficiency. For instance, optical flow methods suffer 

from  illumination problems and are sensitive to noise and distortion [Contreras, 2007]. 

On the other hand, appearance-based methods are highly sensitive to floor 

imperfections, as well as to the physical structure of the terrain. To overcome these 

problems, a hybrid architecture was adopted in the proposed control system, which 

combines optical flow and an appearance-based method. The first step of the proposed 
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architecture was to design an optical flow based system. Accordingly, a multi-scale 

version of Horn and Schunk’s [1981] optical flow estimation algorithm was employed 

to calculate flow vectors. The conventional balance strategy [Duchon et al., 1998; 

Temizer, 2001] was utilised as the control law to adjust the steering direction of the 

robot. The method was integrated into a behavioural architecture inspired by the 

subsumption architecture [Brooks, 1986]. Subsumption architecture selects the 

behaviour  according to a defined priority. This was employed to provide a possible 

solution to the high-level coordination of different behaviours. The next step of the 

proposed hybrid architecture focussed on the design of an appropriate appearance-based 

obstacle detection system in HSV colour space. According to the algorithm, the image 

is divided into clusters and each of the clusters is compared with a template image 

illustrating a free path. From the results of the comparison, corresponding clusters are 

allocated as either free or occupied in constructing a binary map.  

 

The hybrid architecture was designed and implemented to run both methods 

simultaneously, and is able to combine the results of each method using an arbitration 

mechanism. The proposed strategy successfully fused two different vision based 

obstacle avoidance methods using this arbitration mechanism in order to permit a safer 

obstacle avoidance system. The Microsoft Robotics Studio (MRS) environment 

provided an ideal simulation tool and was found to be particularly useful during the 

early stages of this work. Accordingly, to establish the adequacy of the design of the 

obstacle avoidance system, a series of experiments were conducted in this simulation 

tool. The results demonstrate the characteristics of the proposed architecture and the 

results prove that its performance is somewhat better than the conventional optical flow 

based architecture. The results provided encouragement to conduct real world 

experiments in order to evaluate the capability of the system. Accordingly it has been 

rigorously evaluated and tested on the Pioneer 3D-X mobile robot in real conditions. 

Experimental comparison with the conventional Optical Flow Based method (OFB) 

demonstrated that the robot employing the Hybrid (FT) technique performed better than 

the conventional technique, as expected. It was also found that the FT technique is able 

to negotiate and avoid walls and doors, benefiting from the results of the OFB technique 

utilizing frontal optic flow to estimate the so-called time-to-contact before a frontal 
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collision is likely to occur. In addition, the FT avoids lateral obstacles in a more smooth 

and robust manner than when using the conventional OFB technique. Despite this 

important contribution to solving the vision based obstacle avoidance problem, the 

method is still vulnerable to lighting conditions and floor imperfections. 

 

The second part of this research focused on goal based navigation architectures using 

the monocular vision as the primary sensor. The second hypothesis of is that “it is 

possible to develop vision based mapless navigation using a behaviour based framework 

to allow a robot to safely complete its tasks in a robust and smooth manner”. The 

mapless navigation technique and methodologies developed resemble human behaviour 

more than other approaches. Humans are able to position themselves in an absolute 

way, and reach a goal position with notable accuracy by repeating “a look at the target 

and move” type of strategy [DeSouza and Kak, 2002]. Visual tracking is a way of 

mimicking this human behaviour when considering real-time applications in mobile 

robot navigation problem. After extracting robust interest points, which are related to 

necessary movement commands, using a mode of operation called visual servoing.  

 

The SIFT algorithm was introduced by Lowe [2004], being one of the strongest feature 

extraction algorithms. SIFT features are demonstrably invariant to translation, scaling 

and rotation in images. They are also highly distinguishable from one another and 

somewhat invariant to illumination changes. These properties make them suitable for 

the purposes of visual based navigation, where a particular image feature changes in 

appearance due to changes in image position between current and snapshot locations. 

The conventional SIFT algorithm is not suitable for real time applications due to its 

high dimensionality and computational complexity. One of the significant contributions 

of this study was made by integrating the conventional SIFT algorithm into a monocular  

vision based navigation system. Accordingly, an accelerated version of the algorithm 

was adapted for the proposed navigation system which exhibits a higher degree of 

parallelism, resulting in a performance gain of around 50%. The improved feature 

extraction technique was employed by a novel and simple control strategy in which the 

technique requires a single forward-looking camera with no calibration. The algorithm 

is entirely qualitative and does not require a map or any fundamental matrix to calculate 
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the control variables. To increase the functionality of the technique, it was integrated 

into a behaviour based mobile robot navigation system which is capable of extracting 

and interpreting data and realising a task in an indoor environment without human 

intervention. However, it is difficult to formulate reactive behaviour quantitatively. In 

this case, a subsumption architecture was applied to the system which selects behaviour 

according to a defined hierarchy of priorities via arbitration [Brooks, 1986]. Several 

behaviours were defined for the navigation system. One of these is obstacle avoidance 

behaviour, which employs a 2D laser range finder device to detect obstacles and 

provides a simple but efficient avoidance manoeuvre. The search behaviour, allows the 

robot to search for a goal in the environment by enabling the pan and zoom features of 

the camera.  A series of successful experiments was designed and tested in the 

Microsoft Robotics Studio (MRS) environment so as to assess the performance of the 

proposed system. 

  

In addition to this SIFT based navigation architecture, another major contribution was in 

the design and implementation of an intelligent SIFT based navigation system. This 

utilizes the same behavioural architecture but was amended by soft computing 

techniques. To build an intelligent control system able to control reactive behaviors in 

unknown environment is challenging for real-time applications. Accordingly, in the 

proposed navigation architecture several components of the soft computing field, 

including neural networks, cluster analysis and fuzzy logic, were applied to enhance the 

overall performance of the system. The first enhancement was achieved by eliminating 

mismatched features according to scale parameters. To remove those features, a K-

means clustering algorithm was employed, resulting in relatively good outcomes in 

terms of the accuracy and efficiency of matched points. Feature extraction is often 

followed by a correspondence search which is employed to estimate the next possible 

heading direction in this work. However establishing and maintaining the 

correspondence is not easy. Artificial neural networks can be used to represent complex 

nonlinear functions by training a connected network. To estimate the heading direction, 

a multi-layered feed-forward network was trained. Furthermore a robust distance 

estimation technique was proposed for any single monocular vision camera which has a 

zoom capability. It has been previously proven that there is a strong relationship 
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between the quotients of the keys’ scale parameter and its distance [Sjöö et al., 2009].  

According to this approach a multi-layered feed-forward neural network was designed, 

which has the scale parameter and zoom factor as input and then yields the approximate 

physical distance to the goal. Another key enhancement was carried out by employing a 

neural network technique to compensate for the previously defined weaknesses of the 

obstacle avoidance behaviour. To do this, a number of predetermined paths were 

designed, and the network trained under the guidance of a human user.  The 

enhancement in avoidance behaviour was validated during the experiments. Estimation 

of the linear velocity is also a challenging task, especially in vision based navigation 

systems, but it is essential for both smoother and safer navigation. Fuzzy logic is an 

important technique for handling control problems that are difficult to analyse with 

qualitative techniques, and fuzzy rule based systems appear to be one of the best models 

to represent expert knowledge and in handling uncertainty. In this work, the control of 

velocity depending on the robot’s position and current environmental conditions was 

achieved using a fuzzy inference system where the fuzzy rules were used to 

dynamically generate velocity. The results of the simulations revealed that the 

intelligent strategy allows the robot to successfully complete its goal without 

experiencing any collision. 

 

Navigation using SIFT (NUS) and Intelligent Navigation using SIFT (INUS) methods 

were rigorously evaluated and tested on the Pioneer 3D-X mobile robot under real 

conditions. The experimental results for the robot using INUS were very promising, and 

demonstrated that the robot can complete its missions in a robust and smooth manner. 

Under NUS the robot succeeded in completing the preliminary tasks and several of the 

complex scenarios, although performance was somewhat poorer for more complex 

scenarios as compared with INUS. The experimental comparison demonstrated that the 

robot employing the INUS performed better in terms of safe and successful navigation, 

shorter travel distance and navigation time, smoother trajectory and consistent motion.  
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8.2 Summary of Achievements  

 

The work described in this dissertation includes the following seven achievements, 

namely:  

 

 The development of an optical flow based navigation architecture, employing a 

multi scale optical flow estimation technique and the design of a hybrid vision 

based obstacle avoidance system integrating an appearance-based obstacle 

detection system into this navigation architecture.  

 

 Developing a control algorithm which uses only the distribution of matched 

features obtained from the Scale Invariant Feature Transform (SIFT) algorithm 

to steer the robot to all desired goals. As well as this, a set of suitable behaviours 

were developed where the data from different sensors are accepted as inputs, and 

some flexibility is provided to enable the robot to undertake its tasks. 

 

 The design of an intelligent navigation framework which employs soft 

computing techniques to control the robot in a more robust and safer manner. 

The framework has a reactive architecture where each layer implements a 

particular goal and higher layers are increasingly abstract. 

 

 A novel distance estimation technique was developed and integrated into this 

proposed intelligent framework to acquire depth information under monocular 

vision using the scale parameters of each pair of matched key points. The 

steering parameters of the control scheme are estimated by employing an 

artificial neural network. 

 

 The development of a fuzzy inference system to represent the linear velocity of 

the system. Fuzzy rules were built depending on movement analysis related to 

conditions in the environment through which the robot navigates. 
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 Implementing, configuring and testing the proposed navigation systems in the 

simulation environment provided by Microsoft Robotic Studio software to 

ensure its reliability in terms of safe and reliable navigation. 

 

 Evaluating the navigation systems developed by conducting rigorous 

experiments on the mobile robot platform. Test results for the hybrid obstacle 

avoidance system reveal that the combination of the two conventional obstacle 

avoidance methods has performed better than the conventional optical flow 

method. For the SIFT based architectures, the INUS method is able to fulfil the 

given tasks by leading the robot from its current position, avoiding obstacles, 

navigating through the environment, and successfully reaching its desired goals 

in a robust and smooth manner.  

 

8.3 Recommendations for Future Work  

 

The hybrid vision based obstacle avoidance system developed here is more flexible and 

reliable than the conventional obstacle avoidance architectures, as shown in this thesis. 

The proposed hybrid system principally combines the results of two detection methods 

and adapts the result into a conventional control mechanism which is called ‘balance 

strategy’ [Duchon et al., 1998; Temizer, 2001]. An extension to the control architecture 

of the system would be to integrate the balance strategy and possibly some other control 

laws into the controller in a hierarchical structure which also includes a rational 

arbitration module that will evaluate the output of different control laws so as to make 

the overall decision. Furthermore different optical flow and appearance-based obstacle 

detection algorithms can be applied to the proposed architecture. In spite of the many 

advantages of the Horn-Schunk optical flow estimation method, which utilizes partial 

derivatives of the image and/or the flow field sought and higher-order partial 

derivatives, it is still sensitive to noise. Therefore, in order to eliminate noise, hybrid 

methods can be replaced by the current method combining the Horn-Schunk method or 

other general variational methods with appropriate local optical flow methods. The 

Lucas-Kanade method may be a good alternative for local methods, and includes image 
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patches and an affine model for the flow field [Lucas and Kanade,1981; Ohnishi and 

Imiya, 2007]. 

 

Despite the increase in overall performance, the proposed vision based obstacle 

detection technique is still unable to compete with range-finder based obstacle 

avoidance techniques. This is due to the complexity of vision based systems and their 

sensitivity to lighting and environmental conditions. Thus, the integration of this hybrid 

system with other sensors will be able to compensate for their respective shortcomings 

and provide a significant contribution to solving obstacle avoidance problems. Having a 

mobile robot navigation system using vision as the only sensor both for preventing 

collision and tracking targets is the ultimate goal and is still an ongoing process, 

especially for applications in cluttered environments. The proposed hybrid collision 

avoidance system is flexible enough to be integrated into different navigation 

architectures. Consequently the proposed hybrid system can be incorporated into a goal-

oriented navigation strategy so as to overcome complex navigation problems; however, 

obstacle avoidance is a key issue, and difficult to combine with vision based navigation 

systems. For instance, detecting obstacles relies on the robot’s attention being directed 

along its path, while the best localisation information is obtained from distinctive 

invariant features extracted from the target. These contradictory requirements must be 

resolved. One solution to this problem may be to employ a two-camera system, one of 

which detects obstacles while the second tracks the goal.   

 

The proposed SIFT based navigation systems are reliable and able to successfully 

overcome local navigation problems. The INUS method, in particular, is capable of 

manoeuvring effectively in its environment while avoiding collisions. Unlike most 

research in vision based navigation, the proposed navigation algorithms have been 

demonstrated to operate successfully in both realistic simulations and ‘live’ robotic 

trials. However, as the system is executed for a global navigation problem which 

requires the sequential achievement of multiple goals, a lot of processing time is 

consumed by the search procedure. This is because the robot does not have any prior 

knowledge about the goals and needs to search for each of them in order to localize 

itself. Adding a learning capability to the searching procedure of the navigation system 
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is an essential requirement for a fully autonomous robot, enabling it to overcome global 

navigation problems in a more consistent and speedy manner. In order to address this 

problem, a learning paradigm is recommended according to which the correspondence 

between each goal and its successive positions should be taught by the system so as to 

eliminate or minimize searching. For example, once the robot reaches its first goal it 

will already be dynamically localized towards the next goal without having to enable 

the searching module. Some examples of learning paradigms applied to different aspects 

of navigation systems are learning with fuzzy control, reinforcement learning, 

supervised learning , and the genetic algorithms [Cang et al., 2003; Manikas et al., 

2007; Nattharith, 2010; Daoyi et al., 2012]. 

 

The main focus of this study has been on designing mapless navigation strategy, 

however, the developed systems can be incorporated into other navigation strategies in 

order to provide a fully integrated autonomous system. For instance, the integration of 

the proposed SIFT-based navigation methods into a map based hybrid navigation 

architecture, combining deliberative and reactive control based upon an appropriate 

arbitration technique, may be sufficiently flexible to allow the robot to carry out tasks in 

large and complex indoor environments such as hospitals. As the IWARD robots 

combine several sensors providing highly accurate data, they may be ready for such 

further development using combined strategies. 

 

8.4 Publications  

 

The author has published several papers on his work, as follows: 

 Guzel, M.S. and Bicker, R., "Optical flow based system design for mobile 

robots", Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference, 

pp.545-550, 28-30, June 2010.     

 Guzel, M.S. and Bicker, R., “Vision based obstacle avoidance techniques”, 

Recent Advances in Mobile Robotics,”Dr. Andon Topalov (Ed.), ISBN: 978-

953-307-909-7, pp. 83-108, 2011.   
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 Guzel, M.S. and Bicker, R., “A behaviour-based architecture for Mapless 

Navigation Using Vision” ,  International Journal of Advanced Robotic Systems, 

vol  9, pp. 1-13, 2012.  
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APPENDIX A: Optical flow vectors with high resolution  
 

 

Figure A1:   Frame 1 Flow vectors with higher resolution 

 

  

Figure A2:   Frame 32 Flow vectors  higher resolution 
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Figure A3:   Frame 53 Flow vectors higher resolution 

 

Figure A4:   Frame 97 Flow vectors higher resolution 
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 APPENDIX B: Specification of Corobot mobile robot 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Dimensions 
12"L x 13"W x 10"H 

 

Weight 
18 lbs. 

 

Payload 
10 lbs. 

 

Maximum Speed 
3 feet/second 

 

Battery 
13AH NiMh Rechargeable 

 

Battery Life 
2-4 hours 

 

Camera 
1080p 

 

Encoders 
Yes, 138mm/tick 

 

Inputs 
8 Digital, 6 Analog 

 

Outputs 
8 Digital 

 

Operating System 
Ubuntu Linux 

 

Wheel 
4 Wheel Drive 

 

Supported Software 
Robotic Operating System (Linux) 

 

Motherboard 

Dual-Core Itel Atom CPU @ 1.6Ghz 

4Gb DDR3 RAM 

Nvidia ION, Supports Nvidia CUDA Technology 

USB 2.0 

SATA 3.0 

 

Communications 802.11n Wireless, Bluetooth 

Hard Drive 
160Gb 7200 RPM Hard Drive 

 

Range Finder 
 Indoor Laser Range Finder (Range 5m) 
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APPENDIX C: Wander behaviour  

 

An example of wander behaviour is illustrated in Figure C.1. The robot wanders aimlessly 

around its working environment until it encounters the goal  

 

 

Start

Goal

 

     Figure C.1:  Wander behavior   
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APPENDIX D: Back-propagation algorithm 

 

The simplest implementation of backpropagation learning updates the network weights and 

biases in the direction in which the performance function decreases most rapidly, the negative 

of the gradient. This is called gradient descent algorithm and one iteration of this algorithm 

can be written as: 

                               

                                                                       (D.1)           

            

where       is a vector of current weights and biases,      is the current gradient and    is the 

learning rate. There are two different ways in which this gradient descent algorithm can be 

implemented: incremental mode and batch mode. In incremental mode, the gradient is 

computed and the weights are updated after each input is applied to the network. In batch 

mode, all the inputs are applied to the network before the weights are updated. However, 

gradient descent algorithms are slow for practical problems  

 

Levenberg-Marquardt algorithm is an alternative and fast way of training, which was 

designed to approach second-order training speed without having to compute the Hessian 

matrix. When the performance function has the form of a sum of squares. Iteration of this 

algorithm can be defined as follows: 

 

 

                           (D.2)     

                                                              

where the Hessian matrix can be approximated as  H=   , and the gradient can be computed 

as g =   , J is the Jacobian matrix including first derivatives of network error regarding 

weights and biases, and e is a vector of network errors. If the scalar   is zero, this is just 

Newton’s method, using the approximate Hessian matrix. When μ is large, this becomes 

gradient descent.  
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APPENDIX E: Camera calibration with conventional method 
 

 

For conventional calibration techniques, It is assumed that a three dimensional coordinate 

system whose origin is at the centre of projection and whose Z axis is along the optical axis, 

as shown in Figure 5A.1 This coordinate system is called the standard coordinate system of 

the camera. A point ‘M’ on an object with coordinates (X,Y,Z) will be imaged at some point 

m = (x, y) in the image plane. These coordinates relate to a coordinate system whose origin is 

at the intersection of the optical axis and the image plane, and whose x and y axes are parallel 

to the X and Y axes. The relationship between the two coordinate systems C(x,y) and C(X,Y,Z) 

is given by following equations: 

 

    [
  
  
 
]  [

     
     

    

]  [
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                                               (E.1) 

 

where s is a scale parameter,  fx  and fy  represents the focal length parameters of the camera 

along the x and y axes respectively. The next step is to provide a transformation from the 

three dimensional world coordinates to image pixel coordinates using a matrix 3x4 matrix as 

shown below: 
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]  [
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                                            (E.2) 

 

where w and h represent the pixel width and height values  respectively, and  uc and vc  

represent the centre point of the image, In short hand notation, `this can be illustrated as 

follows: 
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                                                     ̅     ̅        

             (E.3)  

                                       

where  ̅ represents the homogeneous vector of image pixel coordinates, P is the perspective 

projection matrix, and  ̅ is the homogeneous vector of world coordinates. Thus, a camera 

can be considered as a system that performs a linear projective transformation from the 

projective space P
3
 into the projective plane P

2
. 

Consequently, there are five camera parameters; namely, focal length f, pixel width (w), the 

pixel height (h), the parameter uc which is the u pixel coordinate at the optical centre, and the 

parameter vc which is the v pixel coordinate at the optical centre. However, only four 

separable parameters can be solved, since there is an arbitrary scale factor involved in f and in 

the pixel size. Therefore, the ratios      and     are calculated. The parameters    ,    , uc  

and vc do not depend on the position and orientation of the camera in space, and are thus 

called the intrinsic parameters. 

The next step is to transform from camera coordinates to world coordinates. The three 

dimensional world coordinates of a point will generally not be specified in a frame whose 

origin is at the centre of projection and whose Z axis lies along the optical axis. Some other, 

more convenient, frame will more likely be specified, and then a change of coordinates from 

this other frame to the standard coordinate system must be included. Thus, the following 

equation is obtained: 

 ̅       ̅ 

   (E.4) 

where K is a 4x4 transformation matrix as defined as follows: 

       [
  
  

  
]                         (E.5)           
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R represents a 3x3 rotation matrix and sets the camera orientation with respect to the given 

world frame, and the final column is a homogeneous vector t capturing the camera 

displacement from the world frame origin. The matrix K has six degrees of freedom, three for 

the orientation, and three for the translation of the camera. These parameters are known as the 

extrinsic camera parameters. According to these values, Eq. E.6, comprising both intrinsic 

and explicit parameters is defined as the camera calibration matrix, and can be expanded as 

follows: 

 

C =[

                  
                  

    

] 

    (E.6) 

where the vectors , r1, r2  and r3  are the row vectors of the matrix R, and t = (tx, ty, tz).  

 

 

 

Figure E.1:  The coordinate systems involved in camera calibration 
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APPENDIX F: Specification of Pioneer 3-DX  
 

         Specification of the mobile robot base of Pioneer 3-DX 

 Length  44.5 cm  (44) 

 Width  40 cm (38) 

 Height (body) 24.5 cm (22) 

 Body clearance 6.5  cm (6) 

Weight (with min. battery 

capacity 

9  kg 

Payload of base platform with 

included battery  

23 kg 

Body Construction  1.6 mm painted aluminium  

POWER 

Charge 252 watt-hr 

Run time, base platform   18-24 hours 

Recharge time, 12 hrs 

MOBILITY          

Drive 2-wheel drive, plus rear balancing caster 

Wheel diam. 19 cm 

Wheel width  5 cm 

Steering Differential 

Wheel diam. 19 cm 

Wheel width  5 cm 

Translate max speed (unloaded) 1.6 m/sec 

SENSING && MANIPULATION (not requiring onboard computing)         

Front sonar ring 8 included; 1 each side; 6 forward @ 15
ο
 intervals  

Rear sonar ring 8 optinoal; 1 each side; 6 rear @ 15
ο
 intervals 

Wheel width  15 cm – 5 m 

Std. Position encoders 500 tick encoders 

Surveillance option Yes 

IR Sensors  No 

Compass option Yes 

Gripper option Yes 

ONBOARD COMPUTING          

Optional onboard computer Embedded size 

Max. no. card & ports  3 PC104+;2 USB; serial 

Speaker  Piezo std., opt, high decibel 

Laser option Yes 

Gyro option Yes 

Vision Yes 

Speech Yes 

StereoCam Rangefinder option Yes 

ELECTRONICS          

Processor Hitachi H8S 

Sonar inputs  16 max 

Custom I/O connections  8-bit external I/O bus w/ up to 16 devices + PC104 I/O 
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boards 

Communication ports RS-232 serial ports on microcontroller, 4 RS-232 and 1 

Ethernet on optional embedded computter 

Wireless Communications 

options 

Radio modern pair without embedded computer; 

Ethernet station adapter & access point with 

Flash Memory 1 Mb 

CONTROLS, PORTS AND INDICATORS (side or top panel)          

LCD display -na- 

Reset pushbutton  Warm reboot 

Charging  12 VDC charge port & Docking 

Joy drive port Off & opt. onboard 

Motors pushbuttons  Single enable/disable 

Flash Memory 1 Mb 

Serial comm. Ports 9-pin RS232 with Rcv and Xmt LED indicators 
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APPENDIX G: Platform for the AXIS-213 camera  
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APPENDIX H: Specification of URG-04LX laser range finder 
 

            Specification of the URG-04LX 
Voltage 5.0 V 

Current  0.5 A 

Detection range 0.02 m to approximately 5.6 m 

Scan angle 240
ο 

Scan time 100 ms/scan (10.0 Hz) 

Angular Resolution 0.36
ο
 

Interface  USB 2.0, RS232 

Weight Approx, 160 gm 

Material Polycarbonate 

External dimension 50 mm (W) x 50 mm (D) x 70 mm (H) 

Turn angular velocity 360 deg/sec 

Turn acceleration pi/2 rad/s
2 

Life 5 years (it changes depending on operating condition) 
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APPENDIX I:  Specification of LinITX 8.4" Touch-Screen 

 

            Specification of the URG-04LX 

Resolution 800 (V) x 3 x 600 (H) 

Display Size 8-inch LCD 

Active Area (mm) 126.0 (H) x 121.5 (V) 

Brightness 350cd/m2 (centre)
 

Colour Configuration RGB  

Back Light LED 

Power Source DC12-24 V 

Power Consumption 600 mA(max) 

Operation Temperature   -30
ο
C to +85

 ο
C 

Dimensions 229.6 mm x 162.79 mm x 33.9 mm 

Viewing Angle L/R: 70 T: 50 : 70 

Storage Temparuture  -40
ο
C to +95

 ο
C

 

 

 

 

                 Figure I.1  LinITX Plus 8.4 inch VGA touch-screen 
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APPENDIX J:  Specification of AXIS 213 camera 

           Specification of the AXIS 213 pan/tilt/zoom camera 

Image sensor  1⁄4” Interlaced CCD 

Lens  3.5 – 91 mm, Angle of view, horizontal: 1.7° – 47° 

Pan/Tilt/Zoom 20 preset positions 

Pan: •170°, 1 – 90°/sec 

Tilt: -10 – 90°, 1 – 70°/sec 

Zoom: 26x optical, 12x digital 

Sequence mode, control queue 

Supports Windows compatible  

 

VIDEO 

Video Compression MPEG-4 Part 2 (ISO/IEC 14496-2) 

Motion JPEG 

Resolutions  160x90 to 704x576 

Frame Rate 

 

Motion JPEG 

Up to 30/25 fps at 4 CIF 

Image Settings Compression, backlight compensation, manual IR-cut 

filter 

Day/Night, white balance, rotation, color/BW, 

brightness, noise 

reduction, exposure control 

Aspect ratio correction 

Text and image overlay 

De-interlace (4CIF Resolution) 

GENERAL 

Processors and 

Memory 

ETRAX 100LX, ARTPEC-2, 32 MB RAM, 4 MB 

Flash 

Power 11.5 – 14 V DC, max. 13 W 

Dimensions (HxWxD) 130 x 104 x 130 mm (5.1” x 4.1” x 5.1”) 
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APPENDIX K:  Evaluations of goals via SIFT algorithm  
 

(a)

(b)

(c)
 

 
Figure K.1:  SIFT features extracted for Goal A in different resolutions, (a) 704x576 [4704],  

  (b) 352x288 [1015], (c) 176x144 [269] 
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               (a) 

   
            (b)  

 

       
 

             (c) 

Figure K.2:  SIFT features extracted for Goal B in different resolutions, (a) 704x576 [5173], 

(b) 352x288 [1117], (c) 176x144 [297] 
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                                 (a) 

                               
    

                                         (b) 
  

                
 

         (c) 

Figure K.3:  SIFT features extracted for Goal C in different resolutions, (a) 704x576 [3522], 

(b) 352x288 [769], (c) 176x144 [213] 
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                               (a) 

        
 

                                                (b) 

 

            
  

       (c) 

 

Figure K.4:  SIFT features extracted for Goal D in different resolutions, (a) 704x576 [6358], 

(b) 352x288 [1396], (c) 176x144 [375] 
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Computational performance analysis of these algorithms with respect to the given objects are 

illustrated in Figure K.5, indicating that the results of the algorithm utilizing the Fast SIFT 

library extract key features faster than when using conventional SIFT algorithm.  

 

The average overall improvement in terms of percentage reduction in total computational 

time with given resolutions obtained from the data set shown in Figure K.1, is given as 

follows: 53% (176x144), 48% (352 x 288) and 51% (704 x 576). The results reveal that the 

OpenMP based SIFT algorithm with the given system configuration provides a computational 

performance approximately twice as fast as when the using conventional method. Despite the 

significant performance enhancement obtained via multiprocessor systems according to the 

characteristics of the OpenMP API [OpenMP, 2011], the improvement in computational 

speed with a single processor is adequate to apply the algorithm in real time navigation 

algorithms.  

 

                                             

                                   (a)                                         (b)                                         

               

                      (c)                                                          (d)           

Figure K.5:  Comparison of  SIFT and FAST SIFT algorithm performance using different goals of 

different resolutions “(1) 176x144, (2) 352x288, (3) 704x576”, (a) Goal A, (b)  

 Goal B, (c) Goal C, (d) Goal D 
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APPENDIX L:  Goal tracking example via calibrated camera 
 

Figure L.1 illustrates a feature tracking example with the proposed calibration system using 

SIFT features where the goal is always in the field of view, and the similarity between the 

goal and the current image increases gradually. Each frame includes generated steering angle 

(w) from the matching. 
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Figure L.1:   Tracking example via calibrated camera from a to j, including 

generated steering output  
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APPENDIX M: The training results for the simulated camera 
 

This appendix includes the results of the training performance for the simulated camera. The 

specifications of the network used for simulated camera and its training performance are 

illustrated in Table L.1 and Figure L.1 respectively. The best validation point is at the 55th 

epoch (iteration) with an error of 1.1083ex10
-6

. The output of the network is only the pan 

angle based on the specifications of the camera.  

 

               Table M.1:  Basic specifications of the network for heading angle estimation 

(simulated camera)  

 

 

                          ` 

Best Validation Performance is 1.1083e-006 

Best Validation is at epoch 55
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                  Figure M.1:   Training results for the simulated camera   

            

              Table M.2:  Basic specifications of the network for distance estimation  

              (simulated camera) 

 

 

 

 

Camera Type     Resolution       Data         Topology                 Train           Validation       Test  

Simulated         320x240        85             2-4-1  69                  8                 8 

Camera Type     Resolution       Data         Topology                   Train             Validation        Test  

 Simulated        320x240      128            2-4-1                  104              12               12 
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The specifications of the network for distance estimation used for simulated camera is shown 

in Table M.2, as well as the results of training algorithm are shown in Figure M.2. The results 

reveal that the best validation point is at the 29th epoch (iteration) with an error of 0.00073247 

 

Best Validation Performance is 0.00073247

Best Validation is at epoch 29
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                    Figure M.2:   The training results for distance estimation  
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APPENDIX N: Control outputs of output scenarios  
 

During the experiments, the sampling period of the duration of a decision cycle was set at tc = 

150 ms, and each cycle used in these control figures, shown below, averages the consecutive 

three frames in order to make the data more clear. The constant turns are excluded from the 

results. . For each decision cycle, the robot is controlled by an updated angular velocity 

command (w).  

 

 

                         (a)                                      (b)  

               Figure N.1: Control parameters for SC1, (a) FS , (b) OFB            

   

            
                         (a)              (b)  

                        Figure N.2: Control parameters for SC1, (a) FS , (b) OFB           
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 (a)                                                          (b) 

             Figure N.3: Control parameters for SC3, (a) FS , (b) OFB 

 

                  

                            (a)                                                    (b)                               

Figure N.4: Control parameters for SC4, (a) FS , (b) OFB 
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APPENDIX P:  Definition of SC7 
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Figure P.1: Definition of  CS7 

 

The corridor environment has dimensions of 43.76m x 16.20m, as illustrated in Figure P.1. In 

this scenario, ten sub goals are defined to navigate the robot along the corridor. In order to 
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maintain the consistency, the goals, defined in Chapter 6, were utilized. Besides this, to 

increase the challenge inherent to the scenario, five obstacles are positioned across the path. 

Three different types of external obstacle were positioned in the environment so as to 

increases the challenge of the experiment. The main obstacle is a rectangular box having 

dimensions of 550 mm x 500 mm, one of which is has a 187 mm diameter irregular shape 

box, and other is a rectangular box having dimensions of 1100 mm x 500 mm which consists 

of two main obstacles.  

 

 

 

 

 

 

 

 

 

 
 


