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Abstract 

Obesity presents a major public health burden with prevalence rising in both children and 

adults. This disorder is associated with many adverse health outcomes and improved 

understanding of the mechanisms is required to develop effective preventive and treatment 

strategies. 

It has been hypothesised that environmental exposures such as poor nutrition in utero and 

during the early post natal period can programme an individual to develop obesity in later 

life. These early life exposures can be ‘memorised’ by the cell in the form of epigenetic 

modifications, changes to the biochemical structure and function of DNA. Such 

modifications include DNA methylation, the addition of a methyl group to cytosine 

residues which is involved in the regulation of gene transcription. Epigenetic mechanisms 

therefore represent an attractive mechanism to explain developmental programming 

phenomena.  

The overarching aim of this study was to establish the mediating role of epigenetic 

processes in linking modifiable environmental exposures with subsequent risk of obesity. 

This was addressed through interrogation of animal models, through the development and 

application of bioinformatic approaches and through epidemiological investigation of 

human population studies. 

Tissue level DNA methylation patterns were investigated in hypothalamus using 

immunohistochemical staining. No significant differences were discernible between 

methylation levels in the hypothalami of control rodents when compared to hypothalami 

from rodents that had been exposed in utero to a dietary regimen that induces metabolic 

perturbation and obesity in offspring. 

Bioinformatic approaches were used to develop and apply an in silico workflow to 

interrogate gene expression dataset, in this instance from a rodent model of dietary 

manipulation in utero and early postnatal life. The purpose of this in silico interrogation was 

to identify loci that were strong candidates for epigenetic regulation of gene expression. 

Four genes, Esr1, Fxn, Igf2r and Rbl2 were identified and the levels of promoter 

methylation at these loci were assessed in rodent liver tissue from offspring of exposed and 

unexposed mothers using pyrosequencing. DNA methylation levels in Igf2r were observed 

to be higher in animals exposed to a maternal obesogenic diet.  
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Using epidemiological approaches, the relationship between obesity and related traits and 

DNA methylation was assessed. Firstly, DNA methylation levels in two candidate genes 

(IGF2 and TACSTD2) believed to be associated with obesity were analysed in eight year 

old children. IGF2 methylation was positively correlated with age, however neither locus 

demonstrated any association with body composition. Secondly, LINE-1 methylation, a 

surrogate for global DNA methylation, was assessed in a cohort of individuals aged 50 

years. LINE-1 methylation was found to be associated with blood lipid and glycaemic 

markers including fasting glucose, total cholesterol, total triglycerides and LDL cholesterol 

and HDL:LDL ratio.  

Early life predictors of DNA methylation were also explored in both childhood and adult 

cohorts. The relationship between DNA methylation in LINE-1 elements, IGF2 and 

TACSTD2 and gestational age, birth weight and length of breastfeeding were explored. 

Evidence of an association between gestational age at birth and DNA methylation patterns 

in both children and in adults in later life was observed.  

Collectively these investigations provide some support for the hypothesis that epigenetic 

mechanisms, namely DNA methylation is a mediating mechanism linking environmental 

exposures during pregnancy and early life to the subsequent development of perturbed 

metabolic traits and possibly obesity. Further methodological developments to refine and 

expand the appraisal of DNA methylation patterns together with larger studies are required 

to extend these findings. 
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Chapter 1: Introduction 

1.1 Obesity 

1.1.1 Definition 

Overweight and obesity are defined as abnormal or excessive fat accumulation that may 

impair health (WHO, 2011). Both conditions are commonly classified using Body Mass 

Index (BMI), a simple index of weight-for-height, defined as weight in kilograms divided 

by height in metres squared (kg/m2) (Dietz and Robinson, 1998). A normal BMI is 18.5-

24.5 kg/m2 (Cole et al., 2000), with adult humans classified as being overweight if BMI is 

25kg/m2 or above and clinically obese if BMI is 30kg/m2 or above (Visscher et al., 2010). 

Although BMI is widely used as a measure of adiposity there is some evidence that is may 

not be the best way to assess weight gain. BMI has a number of limitations in that it is only 

a proxy indicator of body fatness and factors such as fitness, ethnic origin and pubertal 

status can alter the relationship between BMI and adiposity. BMI also does not fully adjust 

for height or body shape. As such some studies use other measures such as waist or hip 

circumference, body fat ratio and skin fold thickness, however these measures are more 

difficult and expensive to collect in large numbers and as such BMI has become the 

established routine measure of adiposity. Obesity which is characterised by an increase in 

central fat mass is associated with a number of comorbidities including chronically 

increased blood pressure and the perturbation of circulating levels of both lipids and 

glucose (Ginsberg and MacCallum, 2009).  

1.1.2 Epidemiology  

Worldwide prevalence of overweight and obesity has been rising steadily for the last 40 

years in both children (Figure 1.1) (Swinburn et al., 2011) and adults (Figure 1.2) (Sassi, 

2010). This upsurge is largely attributable to an increasingly Westernised diet with elevated 

availability of high fat, high sugar foods coupled with an increasingly sedentary lifestyle. 

Consequently obesity has become one of the most serious health concerns of our time. 

Globally obesity is now the fifth leading risk of death and at least 2.8 million adults die each 

year as a result of being overweight or obese (WHO, 2011). The obesity epidemic is 

observed not only in adults but also in children in both the developed and developing 

world (Gupta et al., 2012). Indeed overweight and obesity are now linked to more deaths 

worldwide than underweight. 
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Figure 1.1. Worldwide estimates of percentage childhood overweight and obesity. 

Using International Obesity Taskforce cut offs (Swinburn et al., 2011). 

 

 

 

Figure 1.2. Age-standardised obesity rates, age 15-64, selected countries. 

(Sassi, 2010) 
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1.1.3 Prevention and treatment of obesity 

The health burden of obesity has led to attempts to lower its prevalence at a population 

level (Miller et al., 2002). Energy balance plays a fundamental role in the development of 

obesity and, when energy intake exceeds energy expenditure over a sustained period, this 

positive energy balance can result in an obese phenotype. Consequently, recommended 

interventions to decrease the likelihood of developing obesity include diet modification to 

reduce the level of fat and sugar in an attempt to decrease daily energy intake and therefore 

promote weight maintenance or loss rather than weight gain (Ross et al., 2000). Another 

possible intervention to prevent the onset of an obese phenotype is augmented levels of 

mobility and exercise. Participation in more exercise results in increased energy 

expenditure, again encouraging weight loss (Shaw et al., 2006). Individuals with severe 

obesity (BMI >40kg/m2) may find it difficult to sustain the behavioural changes of diet and 

exercise modification required to reduce their body weight. In these circumstances bariatric 

surgery such as gastric banding may be offered (Buchwald et al., 2004), whereby the 

stomach is banded or stapled to reduce its size. Bariatric surgery acts to physically reduce 

the capacity of the digestive tract, limiting either an individual’s capacity for food intake 

(Santry et al., 2005) or their ability to digest and absorb dietary components. 

1.1.4 Associated health problems 

The current prevalence of obesity places a heavy burden on health services because obesity 

increases the risk of development of a number of conditions including type 2 diabetes and 

cancer which are becoming more prevalent in contemporary society (Berenson, 2012, 

Allender and Rayner, 2011). It is estimated that 44% of the diabetes burden, 23% of the 

ischaemic heart disease burden and between 7% and 41% of certain cancer burdens are 

attributable to overweight and obesity (WHO, 2011). 
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1.1.5 The development of obesity 

Environmental factors such as a diet high in fats and sugars and lack of exercise are 

instrumental in the development of overweight and obesity (Utter et al., 1998). Worldwide 

the average amount of food purchased per person per day has risen year on year over the 

last 40 years. There has been a worldwide shift toward a more sedentary lifestyle as people 

do less physically demanding jobs and take less exercise due to greater use of mechanised 

transport (Martinez-Gonzalez et al., 1999). Although environmental factors such as diet 

and exercise play a key role in the development of obesity, genetic factors also exert an 

effect (Farooqi and O'Rahilly, 2007). Single nucleotide polymorphisms (SNPs) in genes 

implicated in the control of appetite and metabolic rate identified in a number of recent 

genome wide association studies (GWAS) can also predispose an individual to obesity (Li 

et al., 2010a).  

Clearly, an individual’s risk of developing obesity and related sequelae can be influenced by 

early life exposures. Evidence from studies in animal models demonstrates that obesity and 

its metabolic sequelae are ‘programmed’ during the prenatal or early postnatal period as a 

result of in utero exposures such as maternal under-nutrition (Martin-Gronert and Ozanne, 

2010). These finding are supported by humans studies which show that the altered 

nutrition in utero results in offspring more likely to develop an obese or metabolic disease 

phenotype in later life (Ravelli et al., 1976, Barker et al., 1993). 

1.1.6 A molecular basis  

Obesity can be succinctly described as pathology of energy homeostasis (Spiegelman and 

Flier, 2001). Individuals who express phenotypic changes characteristic of obesity must 

undergo increased energy intake, decreased energy expenditure or indeed a combination of 

the two over a sustained period of time, leading to long-term positive energy balance. An 

individual’s energy expenditure is determined both by their basal metabolic rate (BMR) and 

their level of physical activity (Lazzer et al., 2009). BMR is defined as the rate at which an 

organism uses energy when at complete rest, which in humans is measured by the heat 

given off per unit time, and expressed as the calories released per kilogram of body weight 

per hour (Black, 2000). Chronically low levels of physical activity result in decreased energy 

expenditure and as a result are likely to be obesogenic. Several biological pathways are likely 

to be involved in this process. These include the perturbation of appetite regulation, 

regulated by altered sensitivity to leptin, aberrant energy utilisation, controlled by perturbed 
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glucose-insulin signalling and the deposition of fat tissue caused by anomalous adipocyte 

metabolism. The multiple mechanisms at play are all likely to contribute to the 

pathogenesis of obesity to some degree (Figure 1.3) (Vickers and Sloboda, 2010). The 

organs of the body implicated in the development of obesity are also shown in Figure 1.3 

and dealt with in detail in the following section of this chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Pathways to obesity and related conditions following early life insult. 

CNS, central nervous system, NAFLD, non-alcoholic fatty liver disease. Adapted from (Vickers 

and Sloboda, 2010).  

1.1.6.1 Liver 

The liver is involved in a whole host of biological processes. It is involved in the 

pathogenic processes associated with obesity including the development of hepatic 

steatosis and therefore non-alcoholic fatty liver disease (NAFLD), a pathology closely 

linked with aberrant gluconeogenesis and fatty acid metabolism (Bosserhoff and 

Hellerbrand, 2011). Steatosis is a key characteristic of NAFLD and occurs when the rate of 

fatty acid uptake by hepatocytes is greater than the rate of fatty acid oxidation and export 

from the liver, leading to increased accumulation of intrahepatic triglyceride (IHTG) 

(Ndumele et al., 2011). Steatosis in liver tissue has been associated with altered glucose, 

fatty acid, and lipoprotein metabolism (Chan et al., 2010). Abnormalities in these key 

metabolic pathways form important factors in the pathogenesis of insulin resistance, 
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dyslipidaemia, and other cardiometabolic risk factors associated with obesity (Chatrath et 

al., 2012). The temporality of these changes in the liver are not well characterised however, 

in as much as it is not clear if NAFLD is the cause of metabolic dysfunction or if metabolic 

dysfunction results in increased IHTG accumulation.  

1.1.6.2 Adipose tissue  

Leptin is a hormone secreted in the most part by white adipose tissue (WAT), with high 

levels of plasma leptin strongly associated with the obese phenotype (Aguilera et al., 2008). 

The leptin signalling cascade can act to reduce the synthesis of free fatty acids, preventing 

their deposition as new WAT (Scherer and Buettner, 2011) and as such can result in 

decreased adipose tissue lay-down (Buettner et al., 2008). Not only does leptin help control 

fat deposition, it also binds leptin receptors in the arcurate nucleus , leading to inhibition of 

neuropeptide Y (NPY) neurons (Wang et al., 1997), acting to increase satiety and therefore 

resulting in reduced dietary energy intake (Leinninger et al., 2009). Leptin’s key role as both 

a regulator of adiposity and appetite mean that a perturbation of the leptin-signalling 

pathway (Considine, 2011) leads to dysregulation of adipogenesis and/or chronically 

increased appetite levels, leading to the development of obesity (Montague et al., 1997).  

A further pathway implicated in the development of obesity is altered adipocyte 

metabolism. The function of adipocytes in the context of WAT as an endocrine organ is 

not yet fully understood, however their role in the storage of triglycerides and fatty acids is 

well characterised (Trayhurn and Beattie, 2001, Wood et al., 2009). Adipose tissue is 

comprised mainly of adipocytes, the population of which is dependent on the body’s fat 

storage needs (Ruge et al., 2009). Under normal conditions adipocytes undergo hyperplasia 

and hypertrophy in response to increased circulating fatty acid concentrations and provide 

greater lipid storage capacity. 

A loss of function in genes controlling adipocyte proliferation gives rise to decreased 

adipocyte hyperplasia. This increase in adipocyte number and size has a number of 

consequences. Firstly, as adipocytes are endocrine cells which secrete leptin, an increased 

cell mass will result in the disruption of the leptin signalling pathway, causing downstream 

consequences in both appetite regulation and control of adiposity. Secondly, increased 

adipocyte size and number will result in a subsequent deposition of fat in non-adipose 

tissues such as skeletal muscle, pancreas and liver (Reitman et al., 1999). The deposition of 

non-adipose tissue fat has been strongly associated with the development of obesity-related 

disorders including type 2 diabetes (Cali and Caprio, 2009). 
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1.1.6.3 Pancreas 

Insulin is a key hormone in the control of circulating blood glucose levels (DeFronzo and 

Ferrannini, 1991). Released by the pancreas in response to raised concentrations of plasma 

glucose (above fasting levels of approximately 5mM), insulin results in a decrease in 

gluconeogenesis in the liver and an increase in glucose uptake in muscle. Forming a 

feedback loop alongside glucagon, insulin allows blood glucose levels to be controlled 

homeostatically (Matthews et al., 1985). An individual’s glucose tolerance is determined by 

both their insulin secretion and insulin sensitivity. Low insulin sensitivity, also termed 

insulin resistance, results in the dysregulation of blood glucose levels and increases the risk 

of developing a pre-diabetic or diabetic phenotype (Haffner et al., 1992). Impaired 

interactions between glucose and the insulin signalling pathway have been strongly 

associated with the obese phenotype (Sinha et al., 2002) and as such it has been heavily 

studied in the context of early life exposures, particularly nutritional insults. One study 

showed that in an older cohort (mean age 69.5 years) insulin resistance, as measured by oral 

glucose tolerance test, was associated with low birth weight, thinness at birth and low 

maternal BMI. This impaired insulin resistance was also shown to be associated with an 

increased risk of overweight and obesity in later life (Eriksson et al., 2002). A possible 

explanation for this adverse effect of increased weight gain is that foetal growth restriction 

may lead to reduced pancreatic cell growth (Blondeau et al., 2002). The result of this may 

be the development of a pancreas unable to respond to the metabolic demand of 

accelerated growth during childhood, predisposing the individual to problems with glucose 

homeostasis. 

1.1.6.4 Skeletal muscle 

The musculature has been implicated in the development of obesity as it has been shown 

that obesity causes muscle fibre changes as well as altered glucose utilisation (Mitrou et al., 

2009). Skeletal muscle is the principal site of fatty acid and glucose metabolism in the body. 

Very flexible, it is able to switch from mainly lipid oxidation during conditions of fast to 

increased levels of glucose uptake, storage and oxidation when stimulated with insulin. 

Muscle fibres which make up the skeletal muscle fall into three main categories, Types I, 

IIa and IIb. Type I fibres are known as ‘slow twitch’ fibres. This subset contains high 

numbers of mitochondria and are therefore oxidative.  

Type IIa fibres are ‘fast twitch’ and are high in both mitochondrial and glycogenolytic 

enzymes, whereas IIb are high only in glycogenolytic enzymes (Janovska et al., 2010). 
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Oxidative muscle fibres such as Type I fibres predominantly use lipids as their substrate, 

whereas Type IIa fibres use glucose, and the IIb a mixture of the two (Coen et al., 2010). 

Muscles containing high levels of Type I fibres are more sensitive to insulin and 

consequently tend to contain higher levels of triglycerides (He et al., 2001). Obesity and 

type 2 diabetes have been associated with a decrease in Type I muscle fibre levels and an 

increase in Type IIb muscle fibre levels (Nyholm et al., 1997). In these circumstances 

skeletal muscle is less able to metabolise its substrates, leading to alterations in circulating 

levels of glucose (Ritov et al., 2010) and lipids (Eckardt et al., 2011).  

1.1.6.5 Brain 

As previously mentioned, leptin resistance and obesity have been closely linked, however 

the causal pathway is controversial (Myers et al., 2010). What is clear, however, is that the 

brain is involved in the regulation of leptin resistance through the action of 

Proopiomelanocortin (POMC) neurones (Vong et al., 2011) as well as being involved in 

more subtle processes such as the development of mental and psychological disorders 

which lead to altered feeding habits (Berridge et al., 2010). There are a number of hormonal 

and neural mechanisms through which the brain is able to sense levels of ingested and 

stored nutrients, reacting to them by controlling behavioural, autonomic, and endocrine 

output. The hypothalamus and caudal brainstem play crucial roles in homeostatic function 

(Blevins and Baskin, 2010), acting to moderate hunger via the leptin pathway as previously 

discussed. The cortex and limbic system perform a more nuanced role, processing 

information on memory, reward and emotion, as well as placing food in a social and 

environmental context (Epel et al., 2011). Alterations in any of these complex hormonal 

and autonomic pathways can result in excess energy intake and increased fat storage 

(Bermudez-Silva et al., 2012). This process is one of a number of pathways that may elicit 

the development of obesity and related sequelae. Subsequently, a more thorough 

understanding of the role the brain plays will help target intervention strategies to reduce 

the prevalence of obesity. 

1.1.7 Altered gene expression and obesity  

One way in which early life exposures may affect the above molecular mechanisms is by 

altering the expression levels of genes within the pathways. Up or down regulation of a key 

gene may result in the pathway function being impaired. Studies using this approach utilise 

microarray technology in order to assess expression levels of putative target genes. One 

example showed differential expression of genes involved in adipogenesis, including  
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Peroxisome proliferator-activated receptor gamma (PPAR-γ) in subcutaneous adipose 

tissue of morbidly obese humans (Rodriguez-Acebes et al., 2010). A wide range of genes, 

some of which are reviewed below, has been shown to exhibit differential expression and 

be associated with the development of obesity. 

1.1.7.1 FTO 

The Fat mass and obesity related gene (FTO) has been unequivocally linked to the 

development of obesity and related conditions: Common single nucleotide polymorphisms 

(SNPs) in the first exon of FTO are associated with measures of obesity including BMI, hip 

circumference, and total body weight in humans (Scuteri et al., 2007), however the 

molecular function of FTO has not been well established. A recent study has found that 

mice showing decreased expression of FTO show a significant reduction in adipose tissue 

and lean body mass. These mice were also shown to exhibit increased energy expenditure 

(Fischer et al., 2009). Similar findings have been reported in humans, where FTO gene 

expression was negatively correlated with measures of obesity including BMI and 

percentage body fat (Kloting et al., 2008). Studies have also shown that FTO exhibits 

demethylase activity and that expression of the FTO risk allele is associated with genome 

wide DNA methylation changes (Almen et al., 2012) Taken together, these findings suggest 

that FTO is involved in energy homeostasis through the control of energy expenditure and 

may be acting via epigenetic mechanisms. 

1.1.7.2 POMC 

POMC, another gene in which both SNPs (Challis et al., 2002) and differential gene 

expression have been associated with the development of obesity, is expressed in the 

hypothalamus (Gee et al., 1983) and is a direct target for leptin (Cheung et al., 1997), as 

discussed earlier. As such it is implicated in the control of appetite (Pritchard et al., 2002). 

Studies have shown that mice not expressing POMC are obese and hyperphagic and are not 

able to react to increased fat content in food, resulting in weight gain (Challis et al., 2004). 

More recent work in rats has shown that POMC mRNA expression increased in response 

to pre-natal under-nutrition and postnatal high-fat nutrition (Ikenasio-Thorpe et al., 2007). 

These studies suggest that differential gene expression at the POMC locus might play a role 

in the pathogenesis of obesity through altered appetite regulation. 
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1.1.7.3 PPAR-γ 

PPAR-γ is a regulator of adipocyte differentiation (Rosen et al., 1999). Intimately involved 

in the control of body fat deposition (Kubota et al., 1999), studies in mice show that 

knocking down PPAR-γ results in the abolition of adipose tissue synthesis in response to a 

high fat diet (Jones et al., 2005). In human studies PPAR-γ mRNA expression in skeletal 

muscle has been shown to be elevated in response to both increased BMI and increased 

fasting insulin levels (Park et al., 1997). This suggests that PPAR-γ may be involved in the 

development of insulin resistance and therefore type 2 diabetes and obesity. 

1.1.7.4 Investigating differential gene expression in obesity 

There are a plethora of differentially expressed genes implicated it the pathogenesis of 

obesity (van Dijk et al., 2009, Catalan et al., 2011). Interrogating these candidates may help 

improve our understanding of the mechanisms underlying this process and assist in the 

development of interventions. The temporality of changes is also key, with early life 

exposures having been shown to be very clearly associated with an individual’s risk of 

developing obesity and related sequelae (Gluckman et al., 2008). The implications of these 

findings are discussed in the following section. 
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1.2 Developmental programming of  health and disease – the 

evidence 

1.2.1 Maternal nutrition 

As previously discussed, obesity has reached epidemic proportions in human populations, 

an increase explained in part by over-nutrition and lack of exercise. Strikingly, this trend is 

borne out in pregnant women with marked increases in the BMI of women worldwide 

entering pregnancy, evidenced in one recent study (Figure 1.4) (Simmons, 2011). This rise 

in maternal pre-pregnancy weight presents an obvious risk to the health of the mother, 

increasing risk of a range of pathologies. These include and increased risk of cardiovascular 

disease and stroke (Poirier et al., 2006). It is also increases the likelihood of an adverse 

outcome during the pregnancy, such as the development of gestational diabetes (Chu et al., 

2007), pre-ecalmpsia (Walsh, 2007), preterm labour and nephropathy. There are however 

other more persistent problems which may be caused by maternal obesity during 

pregnancy. There is increasing evidence from animal studies that excess maternal nutrition 

can programme the foetus to develop cardiovascular disease and other conditions in later 

life (Boney et al., 2005). 

 

Figure 1.4 Prevalence of maternal obesity.  

Four different international study centres are shown comparing percentage of obese women 

attending (BMI >30kg/m
2
) during pregnancy across a range of years (Simmons, 2011). 
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1.2.2 Early theories in developmental programming 

The effect of maternal nutrition on the foetus and its subsequent long-term health has been 

well characterised in both population based studies and animal experimental models. 

Under-nutrition has been associated with low birth weight, catch up growth and the 

subsequent development of the metabolic syndrome as an adult (Fagerberg et al., 2004). An 

early hypothesis proposed that nutritional insult in utero leads to permanent changes in 

insulin signalling and glucose metabolism, increasing the risk of later development of type 2 

diabetes (Hales and Barker, 1992). This concept, known as the ‘Thrifty Phenotype’ 

hypothesis, is supported by studies showing that maternal nutrition restriction increases the 

risk of developing a range of pathologies including obesity (Ravelli et al., 1999). An 

extension of the ‘Thrifty Phenotype’ hypothesis came in the form of the ‘Predictive 

Adaptive Response’ hypothesis (Gluckman and Hanson, 2004a). This proposes that the 

offspring makes adaptions in utero or in in the early postnatal period in response to 

nutritional exposure. In this way, the foetus is ‘predicting’ what its nutritional exposures 

will be during early life. If the foetus is exposed to poor or excess nutrition in utero and this 

exposure is borne out in later life, then the phenotype will be normal. If however the 

exposure changes from high to low nutrition or vice versa then this is termed a mismatch 

and a disease phenotype may be manifest.  

1.2.3 The DOHaD hypothesis 

The Developmental Origins of Health and Disease hypothesis (DOHaD), synthesised 

from the early literature on the foetal origins of later health outcomes, proposes that early 

life exposures predispose an individual to the development of disease in later life 

(Gluckman and Hanson, 2006). A key observation brought about by the application of this 

hypothesis is that insult in utero and during lactation is associated with an increased risk of 

cardiovascular disease in later life (Hales and Barker, 2001). This observation has since 

been extended to include a variety of conditions including cognitive impairment (Van Den 

Bergh, 2011) and kidney disease (Vehaskari, 2010) although discussion here will be limited 

to the development of obesity, this being the focus of this thesis. 

This hypothesis is relevant to the development of obesity, as it has been shown that obesity 

risk can be inferred from birth weight (Cnattingius et al., 2011). What is interesting to note 

is that the relationship is not linear but rather U shaped; the greatest risk for the 

development of obesity lies at the upper and lower ends of the birth weight range (Parsons 
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et al., 1999). Furthermore it has been shown that this birth weight effect can be 

exacerbated if there is significant disparity between an individual’s nutritional environment 

during gestation and in later life –the mismatch effect alluded to above (Hanson and 

Gluckman, 2008). These findings are tempered by a contrasting body of literature which 

suggests that it is the overall cumulative exposure during the lifecourse rather than early life 

exposures which predispose an individual to disease in later  life. 

What is clear, and has become embodied in contemporary research into common complex 

diseases, is that changes in nutritional status during early life have profound and far-

reaching effects on health in later life, including obesity. A more thorough understanding 

of the mechanisms through which this occurs in relation to the development of obesity 

could have significant public health benefits. There is evidence in both human and animal 

studies that early life exposures predispose an individual to obesity and related conditions 

such as type 2 diabetes and this is summarised in the following sections. 

1.2.4 Human Studies 

Studies into the effects of developmental programming in humans are complicated by a 

wide variety of factors including confounding by an individual’s genotype and by 

environmental exposures during the life course. A number of strategies for dealing with 

these issues have been developed, and these are discussed in the following sections. 

1.2.4.1 Studies of in utero exposure 

Studying the effects of maternal nutrition and therefore in utero exposure in humans has 

proved challenging, not least because implementing dietary restriction on pregnant mothers 

is potentially hazardous to the health of both mother and child and therefore unlikely to 

meet stringent ethical standards. Consequently the majority of studies into maternal 

nutrition utilise cohorts in which offspring were in utero during conditions of dietary insult, 

such as famine. One cohort used extensively in these studies, known as the Dutch Hunger 

Winter cohort, comprises some 40,000 children conceived and born in 1944-45 who were 

exposed to famine in utero as a result of wartime food blockade (Stein et al., 1975). This 

cohort has proved useful in the assessment of the effects of early life nutrition on the 

development of disease phenotypes, with the first study to link nutritional deficit in the 

programming of obesity being performed on this group (Ravelli et al., 1976). A later study 

on a different subset of this cohort found that, in individuals aged 50 years, those that were 
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in utero during the five month famine period exhibited lower levels of glucose tolerance 

than individuals born either before or after the famine (Ravelli et al., 1998). 

Large-scale famines of this type are relatively rare and as such findings in one study can 

prove difficult to replicate in other studies. For example, in the Finnish famine cohort, a 

study of nearly 900,000 individuals born around the time of the severe 1866–1868 famine, 

individuals experiencing extreme nutritional deprivation in utero experience a rise in 

mortality in early life but went on to have a lifespan not significantly different from non-

exposed individuals (Kannisto et al., 1997). However, a cohort of individuals subjected to 

the ‘Great Chinese famine’ of 1959-61 has also been used to investigate the effects of 

suboptimal early life nutrition on later health. One study in this cohort showed that 

exposure to famine in utero leads to increased risk of hyperglycaemia (Li et al., 2010b), while 

a more recent study of 7,874 adults born between 1954 and 1964 in this cohort showed 

that exposure to famine in foetal life or infancy was associated with an increased risk of 

metabolic syndrome in adulthood (Li et al., 2011). Studies in famine cohorts have 

demonstrated that early life exposure to under-nutrition results in the development of a 

type 2 diabetes/metabolic disease phenotype. This begs the question of whether it is the 

nutritional insult itself or the mismatch with normal nutrition in later life that causes the 

onset of symptoms. If it is the latter then these studies add further credibility to the 

predictive adaptive response theory outlined above (Gluckman and Hanson, 2004b). 

1.2.4.2 Studies of early postnatal life 

Although in humans the in utero period is seen as key in the programming of disease 

susceptibility in later life, there is increasing evidence that the early postnatal period also 

exerts an effect. The first tentative observations along these lines came from the previously 

mentioned Dutch Hunger Winter cohort, where reduced nutrient intake during the first 

months of life significantly reduced obesity risk at age 19 years (Ravelli et al., 1976). 

However, like in utero exposure in humans, early life nutritional exposures can prove 

difficult to study. Consequently many studies are observational and often assess the effect 

of established exposures such as breast-feeding on the risk of obesity in later life. One such 

study found that in a cohort of some 9357 children aged five and 6, the prevalence of 

obesity in individuals who had never been breast fed was 4.5% compared to 2.8% in 

breastfed children. A dose-response effect was also identified for the duration of breast 

feeding on the prevalence of obesity with a prevalence of 3.8% for two months of breast 

feeding, 2.3% for 3-5 months, 1.7% for 6-12 months, and 0.8% for greater than 12 months 

(Von Kries et al., 1999). The findings of this initial study were backed up by further work 
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by the same group which found in a systematic review that breast feeding exerts a small but 

consistent protective effect against the development of obesity (Arenz et al., 2004).  

Interesting though the findings of these observational studies are, their design means they 

are unable to show causality. A recent study comparing a number of cohorts with differing 

confounding structures showed, for example, that breast feeding has no effect on obesity 

risk (Brion et al., 2011). Randomised control trials (RCTs) however do allow causation to 

be inferred. The PROBIT (Promotion of breastfeeding intervention) trial of randomisation 

to breast feeding, the largest of its kind to date (Tilling et al., 2011), also indicates that 

breastfeeding is not associated with childhood obesity, although these data are yet to be 

published. An example of an RCT trial showing the effect of early postnatal nutrition on 

obesity risk is a recent study which showed that in two separate RCTs, exposure of infants 

to a protein and energy enriched diet increased fat mass later in childhood (Singhal et al., 

2010). This study coupled with the observational data mentioned above support a causal 

link between over-nutrition and faster weight gain in early postnatal life and a greater risk 

of obesity and related sequelae in later life. 

1.2.4.3 Twin studies 

Twin studies are well established as a method of comparing environmental exposures in 

two genetically identical individuals (Naukkarinen et al., 2011). They have provided strong 

evidence to support the role of early life exposures in the developmental programming of 

obesity related conditions. One such study, in twins aged 55-74 years, showed that in both 

monozygotic and dizygotic twins of whom only a single twin had type 2 diabetes, the 

diabetic twin had a lower than average birth weight than their non-affected sibling (Poulsen 

et al., 1997). These findings have been replicated in younger twins (mean age 32.4 years) 

(Bo et al., 2000). The reason twin studies are ideal for this kind of assessment is that, 

accepting monozygotic twins are genetically identical (Machin, 2009), the differences in 

birth weight between twin pairs can be attributed to exposures such as access to nutrients 

in utero or postnatally. Similarly, a study of monozygotic female twins aged 18-34 years 

showed a negative correlation between birth weight and measures of body composition 

including waist/hip ratio and skin fold thickness when twins were compared (Loos et al., 

2001). Again, this suggests that birth weight plays a role in programming of body 

composition in later life. Taken together these studies provide strong evidence for the 

importance of the foetal environment in mediating the relationship between birth weight 

and later development of diabetes. 
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1.2.5 Animal Models 

There is burgeoning evidence from animal models in support of the DOHaD hypothesis 

(McMullen and Mostyn, 2009), due to the fact that they represent an ideal opportunity to 

investigate exposures during the lifecourse, particularly during the critical windows of 

gestation and early life, and later phenotypic manifestations.  

1.2.5.1 Under-nutrition in utero 

Nutritional insult in utero has been heavily studied in animal models, particularly in mice and 

rats. A large number of studies have used dietary restriction as model or under-nutrition in 

utero. An early study in rats showed that offspring of dams fed a 50% nutrient restricted diet 

gained more weight and showed adipocyte hypertrophy than control animals when weaned 

onto a normal diet (Jones et al., 1984). This represents another example of the mismatch 

previously described. A study in mice has shown that offspring of dams fed a relatively 

modest 70% nutrient restricted diet developed pronounced weight gain and adiposity in 

response to a 60% animal fat diet when compared to control animals (Yura et al., 2005). 

This was postulated to be due to premature leptin surge altering energy regulation by the 

hypothalamus. Protein restriction has also been utilised in animal models to assess the role 

of under-nutrition in utero. One study in rats showed that offspring of dams fed a 50% 

protein restricted, isocaloric diet showed increased appetite for energy dense food in early 

life when compared to control animals (Bellinger et al., 2004). Another study in rats 

showed that offspring of dams fed an 8% protein diet exhibited increased insulin resistance 

in later life when compared to pups of dams fed a 20% protein diet (Petry et al., 2001). 

Taken together these findings suggest that under-nutrition in utero programmes the 

development of a metabolic syndrome-like phenotype in animals (Remacle et al., 2011, 

Rinaudo, 2012). 

1.2.5.2 Over-nutrition in utero 

Under-nutrition in utero has been shown to exert an effect in animal models, however with 

the increasing dietary intake of mothers a more pressing contemporary societal problem is 

over-nutrition in utero. As such, a number of animal studies have assessed the effects of 

maternal over-nutrition and obesity on later metabolic health in the offspring. One such 

study in mice found that offspring of dams fed a palatable obesogenic diet (16% fat, 33% 

sugar) exhibited increased adiposity alongside cardiovascular and metabolic dysfunction 

when compared to offspring of dams fed a control diet (3% fat, 7% sugar) (Samuelsson et 
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al., 2008). Similar findings have been reported in rat models of over-nutrition in utero 

(Nivoit et al., 2009). Another similar study in rats showed that offspring of dams fed a ‘junk 

food’ diet high in fat, sugar and salt developed increased adiposity as well as increased 

plasma glucose and raised circulating fats when compared to the offspring of control dams 

(Bayol et al., 2008). 

1.2.5.3 The early postnatal period - suckling 

In terms of developmental origins of obesity risk, as in human studies, studies in animal 

models have suggested that the early postnatal period may represent a critical time window 

(Oosting et al., 2010). Although there are a large number of studies into the effects of early 

life nutrition on later risk of disease (Prior et al., 2011, Symonds, 2010), most of these 

studies do not draw a distinction between the pregnancy and suckling period. This is due to 

the fact that the dam is usually fed the intervention diet up until weaning of the offspring. 

Maternal diet during this period may be important, as this stage of early life has been 

termed a critical window in the programming of later disease. There is also evidence in rats 

that a maternal high fat diet during the suckling period results in increased blood pressure, 

as well as hyperinsulinemia and increased adiposity in normal diet/high fat diet cross 

fostered offspring (Khan et al., 2005). This study therefore also lends support to the 

predictive adaptive responses theory mentioned previously (Gluckman et al., 2005). 

Studies have shown that increased nutrition and growth during the suckling period is 

associated with increased obesity later in life (Aubert et al., 1980, Faust et al., 1980, Ozanne 

et al., 2004), whereas reduced nutrition and growth during this time window permanently 

reduced weight gain (Cripps et al., 2009, Jimenez-Chillaron et al., 2006) and conferred 

resistance to diet-induced obesity (Ozanne et al., 2004). 

1.2.5.4 Molecular mechanisms – epigenetics? 

Given the wealth of evidence from both human and animal studies, developmental 

programming in early life represents a plausible mechanism in the development of obesity. 

The process through which it exerts its effects is less clear although epigenetic mechanisms 

have been suggested as a possible candidate (Waterland, 2005). 
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1.3  Epigenetics as a mechanism underlying developmental 

programming 

1.3.1 Introduction to epigenetics 

Epigenetics, literally meaning 'outside of conventional genetics', is a term used to describe 

the study of heritable changes in gene expression potential that cannot be explained by 

changes in DNA sequence (Berger et al., 2009). Epigenetic processes play a key role in 

development and differentiation and can be influenced and modified by environmental 

exposures (Jirtle and Skinner, 2007). The term epigenetics refers to the modification of 

either the DNA itself or proteins that interface with the DNA. These epigenetic 

modifications are ‘sensed’ by downstream functional proteins, exerting biological effects 

such as differential gene expression (Jaenisch and Bird, 2003). The most common 

epigenetic modifications are histone modification and DNA methylation, the specifics of 

which are described below. 

1.3.2 Histone modification 

1.3.2.1 Chromatin and histones 

In eukaryotic organisms, genomic DNA is packaged by histone and non-histone proteins 

to form chromatin (Wolffe, 1998). Each unit of chromatin, also known as a nucleosome, 

contains 146 base pairs of DNA wrapped around an octamer of four core histones (H2A, 

H2B, H3, and H4) (Campos and Reinberg, 2009). These histones, particularly their N-

terminal tails, are subject to a range of post-translational modifications (Bannister and 

Kouzarides, 2011). These modifications are implicated in the control of gene expression 

and therefore genome function (Spencer and Davie, 1999). There are a number of different 

modifications which occur, including histone phosphorylation, methylation and acetylation 

(Figure 1.4) (Grant, 2001). 

1.3.2.2 Histone acetylation 

Histone acetylation is the best characterised of the histone modifications (Vaissiere et al., 

2008). It refers to the modification of residues that are acetylated by histone 

acetyltransferases (HAT) (Kuo and Allis, 1998). This modification is not a permanent one 

however and can be reversed by histone deacetylases (HDAC) (Richon et al., 2000). 

Consequently these antagonistic enzymes act as activators and repressors of transcription. 
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Promoter specific histone acetylation is viewed as a key mechanism in the control of the 

transcription of individual genes (Deckert and Struhl, 2001). Lower levels of histone 

acetylation have been linked to an additional epigenetic modification, DNA methylation 

(An, 2007), which can lead to more permanent gene silencing.  

Figure 1.5 Covalent histone modifications.  

(a) Types of modifications including acetylation at Lys (K), phosphorylation at Ser (S), 

methylation at Arg and Lys (R and K) and ubiquitylation at Lys (K). (b) Patterns of modifications. 

Pairs of modifications, and the sequence of the alterations, correlate with either active or 

repressed transcription (Grant, 2001). 

1.3.2.3 Histone methylation 

Histones are also subject to methylation targeted to arginine or lysine residues. Histone 

arginine methylation has been implicated in gene activation and is involved in the 

recruitment of methylase enzymes to promoter sequences to act as coactivators (Bauer et 

al., 2002). These enzymes include coactivator-associated arginine methyltransferase 1 

(CARM1) that catalyses the transfer of a methyl group to arginine residues in histone H3 

(Ma et al., 2001) and protein arginine N-methyltransferase 1 (PRMT1) that targets histone 

H4 (Strahl et al., 2001). 

1.3.2.4 Histone phosphorylation 

Phosphorylation of Ser-10 on histone H3 has been implicated as an important epigenetic 

modification in both transcriptional activation and chromosome condensation during 

mitosis (Wei et al., 1999). This is consistent with conformational changes that occur during 

these two processes, as chromatin is ‘closed’ during mitosis and ‘open’ during transcription 
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(Gurley et al., 1978). Studies have shown that histone phosphorylation plays a role in the 

transcriptional induction of key genes in mammalian cells (Cheung et al., 2000). A number 

of kinases have been implicated in modulation of histone phosphorylation, including the 

Rsk/Msk families and Snf1 (Hauge and Frodin, 2006).  

1.3.2.5 Histone ubiquitination 

Ubiquitination has been implicated in a number of key processes within the cell including 

protein degradation (Lecker et al., 2006), DNA repair (Bergink and Jentsch, 2009) and 

control of the cell cycle (Nakayama and Nakayama, 2006). Until recently however the 

implications of ubiquitination in terms of transcription were unknown. Studies have shown 

that ubiquitin ligase UBR2, one of the recognition E3 components of the N-end rule 

proteolytic pathway, localises to meiotic chromatin regions, and mediates transcriptional 

silencing via the ubiquitination of histone H2A (An et al., 2010). 

1.3.3 DNA methylation 

1.3.3.1 5′-methylcytosine 

Methylation of cytosine residues is the most abundant endogenous modification of DNA 

in mammals. It occurs through the enzymatic addition of a methyl group to the carbon-5 

of cytosine (Figure 1.5) (May, 2010). The majority of 5′-methylcytosine (5-mC) in 

mammalian DNA is present in the form of 5′-CpG-3′ dinucleotides. Some non-CpG 

sequences such as 5′-CpNpG-3′, 5′-CpA-3′ and 5′-CpT-3′ may also exhibit methylation, 

however these modifications occur at a much lower frequency (Clark et al., 1994). Recently 

there has also been an upsurge in interest in 5’ hydroxy-methylcytosine, the addition of a 

hydroxy group to 5-mC, which has been implicated in the control of cell differentiation in 

embryonic stem cells (Wu et al., 2011a). 
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Figure 1.6 DNA methylation. 

The 5-carbon cytosine is modified by DNMTs, catalysing the conversion of S-Adenosyl 

methionine (SAM) to S-Adenosyl-L-homocysteine (SAH). This reaction is possibly reversible. 

(May, 2010).  

1.3.3.2 CpG Islands 

CpG dinucleotides are not distributed equally throughout the genome. In 98% of the 

genome, there is approximately one CpG site per 80 bases. However in the remaining 2% 

of the genome known as CpG islands (CGIs), CpG density is about five times the level 

found in the rest of the genome (Deaton and Bird, 2011). CGIs range from about 200 base 

pairs (bp) to several thousands in length and it has been estimated that there are around 

29,000 in the genome (Bernstein et al., 2007). In the majority of cases CGIs are found in 

gene promoter (Ioshikhes and Zhang, 2000) and exon sequences (Branciamore et al., 2010). 

These CGIs tend to be unmethylated whereas most CpG sites outside of CGIs tend to be 

methylated. Some studies suggest that this methylation pattern effectively separates the 

genome into areas that are to be expressed and areas that are to be transcriptionally 

repressed (Deaton and Bird, 2011). 

1.3.3.3 The interplay of epigenetic modifications 

There is a complex interplay between these various modifications, including both DNA 

methylation and histone modifications that plays a key role in the epigenetic regulation of 

gene transcription. Some studies have characterised histone modifications as a more 

transient epigenetic mark than DNA methylation (Barth and Imhof, 2010). Despite this, 
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they have been implicated in developmental programming in animal models (Lillycrop et 

al., 2007), suggesting that although the epigenetic mark may be temporary, they may exert a 

persistent biological effect. However, for the most part, histone modifications have been 

much less intensively studied in humans. This is largely due to the requirement for 

prospectively collected chromatin samples and technically demanding laboratory methods. 

As such DNA methylation is the most commonly studied epigenetic modification in 

population-based studies. It is this epigenetic mark that this study will focus on. 

1.3.4 DNA methylation and development 

DNA methylation patterns are established during the development of an organism 

(Hirasawa et al., 2008). Oocytes generally exhibit lower levels of DNA methylation than 

sperm cells (Lucifero et al., 2002), however post-fertilisation methylation patterns are 

erased by a period of genome-wide demethylation during the eight cell stage of blastocyst 

formation. As embryonic implantation occurs, DNA methylation patterns are re-

established (Santos et al., 2002).  

1.3.4.1 Maintenance of methylation throughout the lifecourse 

In mammals, methylation of cytosine residues is undertaken by three DNA 

methyltransferase enzymes: DNMT1 (Robert et al., 2002), DNMT3A, and DNMT3B 

(Okano et al., 1999). These enzymes are key functionally, as knockout mice show removal 

of any one of the genes encoding them is embryonically or postnatally lethal (Li et al., 

1992). The DNA methylation pattern is set during early embryonic development, 

implicating this period as a critical window in the regulation of methylation and therefore 

gene expression and developmental programming (Dolinoy et al., 2007). The three 

methyltransferases exhibit differential activity, with DNMT1 preferentially acting on 

partially methylated DNA. Consequently DNMT1 is considered a maintenance methylase 

(Robert et al., 2002). In adults DNA methylation levels are highly tissue specific and there 

is evidence for aging related methylation changes of CpG islands in the promoter of genes 

(Issa, 2012). 

Since a number of developmental processes also involve the erasure of DNA methylation, 

some studies have suggested that an enzyme with demethylating activity, DNA 

demethylase protein activation-induced cytidine deaminase (AICDA) can erase DNA 

methylation (Kangaspeska et al., 2008, De Carvalho et al., 2010). Opponents of this theory 
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suggest that DNA replication in the absence of methylation maintenance would equally 

result in passive demethylation (Santos et al., 2002). 

1.3.5 DNA methylation as a candidate mechanism 

Changing DNA methylation patterns in key elements of the gene, such as promoters and 

enhancers, can have a profound effect on gene function. Generally speaking, increased 

levels of methylation result in transcriptional repression (Jones et al., 1998). The best 

characterised examples of transcriptional repression by DNA methylation in non-disease 

state are imprinting (Bell and Felsenfeld, 2000) and X chromosome inactivation 

(Csankovszki et al., 2001). A number of mechanisms have been proposed through which 

DNA methylation may exert an effect on gene transcription (Figure 1.6) (Bird, 2002). The 

first theory suggests that the presence of methylated CpG sites within key recognition 

sequences inhibits transcription factor binding (Kass et al., 1997). A second theory involves 

the protein complexes Methyl-CpG binding proteins 1 and 2 (MeCP1 and 2) (Boyes and 

Bird, 1991). These complexes exhibit specificity in binding to methylated CpG sites and as 

a result can limit access to the regulatory element, inhibiting transcription factor binding. 

This transcriptional inhibition effect is controlled by the capacity of these MeCPs to recruit 

the histone deacetylase enzymes (HDACs) (Bird and Wolffe, 1999). HDACs allow histones 

to interact by deacetylating lysine residues in their N-terminal tails. This results in the 

formation of conformationally ‘closed’ chromatin, which acts as a repressor of 

transcription. A range of other factors have been implicated in the mediation of this 

process including methyl binding domains (MBD) however their regulatory role has yet to 

be fully elucidated (Fraga et al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Transcriptional repression by DNA methylation.  

DNA strand shown with methylated CpGs in red. Below (green) is a transcription factor unable 

to bind to its recognition site due to the presence of methylated CpGs. Above are protein 

complexes that bind methylated CpGs, including methyl-CpG binding protein (MeCP2) and 

Sin3-HDAC, a complex of the corepressor Sin3 and histone deacetylase. Also present is MeCP1, 

comprising of MBD2 plus NuRD corepressor complex. MBD1 (yellow) has yet to be fully 

characterised (Bird, 2002). 
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1.3.6 Evidence for epigenetic mechanisms mediating the influence of 

early life exposures on the risk of obesity 

Changes in epigenetic patterning, and particularly changes in the level of DNA methylation 

can have a profound effect on an individual’s phenotype (Hitchins et al., 2007), although 

this evidence is not widespread outside of imprinting disorders and cancer at the current 

time. As outlined earlier, there is an increasing body of evidence linking dietary and 

environmental exposure in utero to epigenetic changes in offspring: These interventions 

include nutritional insult in utero (Chmurzynska, 2010), depletion of maternal folate levels in 

utero (McKay et al., 2004), as well as maternal environmental exposures such as polycyclic 

aromatic hydrocarbons (PAHs) as found in cigarette smoke (Perera et al., 2009). However, 

regarding these various exposures, there is currently very little published literature directly 

linking changes in exposure with altered epigenetic patterning and in turn to the 

development of an obesity or metabolic disease phenotype. 

Epigenetic modifications provide a very attractive mechanism whereby early life exposures 

are ‘captured’ by the genome and exert effects on gene expression and health in later life. 

Animal models have characterised differential expression of genes in offspring exposed to 

over-nutrition in utero and which subsequently go on to develop an obese phenotype 

(Jimenez-Chillaron et al., 2009). These differential levels of expression may be regulated by 

epigenetic processes; indeed many of the appetite regulatory genes are rich in CGIs or 

subject to histone modifications, suggesting that this may be the case (Widiker et al., 2010, 

Stevens et al., 2009). CGIs in the promoter regions of these key appetite regulatory genes 

may be subject to differential levels of methylation. Increased levels of DNA methylation 

around the transcription start site could conceivably alter levels of gene transcription and 

therefore alter appetite modulation. With obesity as a known pathology of energy 

homeostasis it does not require much extrapolation to make the link between chronically 

increased appetite levels, increased energy intake and the development of increased 

adiposity. It is clear therefore that the levels of DNA methylation within CGIs located in 

genes key to appetite regulation may be able to inform us about an individual’s risk of 

developing obesity in later life. Many other pathways leading to obesity, including impaired 

glucose and lipid metabolism and adipogenesis, could also be plausibly perturbed by 

epigenetic alterations. This hypothesis forms the basis of this thesis. 
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1.4 Studying epigenetic mechanisms in the early life 

programming of  obesity 

1.4.1 Animal studies 

The wealth of literature using animal models to investigate the field of developmental 

programming (Langley-Evans, 2001, Begum et al., 2012, Sinclair et al., 2007), shows us that 

they provide certain advantages over human models (Vickers et al., 2005). One advantage is 

that nutritional interventions and other more stringent insults that are not plausible in 

humans can be relatively easily implemented in animals (Lo et al., 2011). More practically, 

the use of laboratory animals whose environmental exposures are carefully controlled can 

allow an environmental insult to be causally linked to a phenotypic change. The shorter life 

span of rodents in particular also offers an advantage in animal models, in that it is possible 

to implement time course experiments and follow animals throughout their development, 

taking phenotypic and genotypic measurements where required (Symonds, 2010). Animal 

models also allow a large range of tissue types to be assessed for molecular changes as the 

result of an exposure, something which is very difficult to achieve in a human study 

(Dzamko et al., 2010). However an inherent problem with animal studies is the fact that, 

although acting as a useful surrogate, animal models cannot act to replace human 

investigations. There will always be questions about the transferability of any molecular or 

phenotypic change recorded in an animal model to a human equivalent (Garland et al., 

2011). Consequently, although proving useful as a tool to investigate interventions which 

are implausible in a human study, animal models should be used in conjunction with 

human studies in order to allow interesting findings to be validated. 

1.4.2 Bioinformatic approaches 

Bioinformatics is the application of computer science to the information technology to the 

field of biology and medicine. It allows us to assess the genome in order to identify more 

suitable candidate genes for methylation analysis, as well as informing the most relevant 

places within genes to assess for differential DNA methylation. There are a number of 

methodological approaches which can be used to identify potentially differentially 

methylated loci, including a range of data mining techniques. One methodology which can 

benefit from in-depth bioinformatic analysis is the gene expression microarray. When 

differential gene expression is detected as a result of a common complex disease 
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phenotype, such as obesity, it is possible to use bioinformatic analyses to identify genes 

within the differentially expressed subset which are likely to undergo differential DNA 

methylation. Bioinformatic approaches for the prioritisation of epigenetic target genes have 

previously been described in the context of differential gene expression response following 

nutritional exposure in utero in mice (McKay et al., 2008), and have been assessed in relation 

to BMI in children (Turcot et al., 2012). Both of these studies integrated a number of 

different bioinformatic tools, producing a workflow with which to identify target genes for 

downstream analysis. The first step in this kind of workflow is to set a p-value FDR (false 

discovery rate) cut off between the two experimental groups (Chumbley and Friston, 2009). 

This is commonly set at 0.05. Following this step the remaining genes in the workflow can 

be assessed to discern if they are linked to the pathology of interest. This can be performed 

using a range of tools including Genomatix LitInspector which text data mines literature 

for key word of interest (Frisch et al., 2009). It is also possible to map the genes that have 

progressed this far through the workflow to ontology pathways of interest using a pathway 

analysis tool such as DAVID or Ingenuity Pathway Analysis (Berisha et al., 2011). Once a 

subset of genes has been identified which map to the pathology of interest, it is then 

possible to assess how likely the remaining loci are to be differentially methylated. This step 

can use a number of tools including MeInfoText (Fang et al., 2011). The next stage of any 

such analysis would be to select which region of the gene is of interest. Promoter and 

inducer sequences can be mapped using a range of online tools including Genomatix 

(Palou et al., 2011). The sequence of interest, once identified, can then be assessed for the 

presence of CpG islands using a number of tools including CpG Island Explorer 

(Ongenaert and Van Criekinge, 2005). At this stage it is possible to assess the localisation 

of any SNPs within the sequence using tools such as the NCBI sequence viewer. This then 

allows the gene of interest to be fed into a downstream platform for DNA methylation 

analysis. A summary of a range of commonly used bioinformatics tools is presented in 

Table 1.1 (Laird, 2010). Bioinformatic analysis of expression datasets is dealt with in more 

detail in Chapter 3.  
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• Resource • Purpose 

• Batman • MeDIP DNA methylation analysis tool 

• BSMAP • Whole-genome bisulphite sequence mapping 

• CpG Analyser • Windows-based program for bisulphite DNA 

• CpGcluster • CpG island identification 

• CpG Island Explorer • Online program for CpG Island identification 

• CpG PatternFinder • Windows-based program for bisulphite DNA 

• CpG Promoter • Large-scale promoter mapping using CpG islands 

• CpG ratio and GC 

content Plotter 

• Online program for plotting the observed:expected ratio of 

CpG 

• CpGviewer • Bisulphite DNA sequencing viewer 

• CyMATE • Bisulphite-based analysis of plant genomic DNA 

• EMBOSS CpGPlot • Online program for plotting CpG-rich regions 

• Epigenomics 

Roadmap • NIH Epigenomics Roadmap Initiative homepage 

• Epinexus • DNA methylation analysis tools 

• Gentomatix • Software suite including promoter searching 

• Ingenuity • Pathway analysis and nomenclature software 

• MEDME 

• Software package (using R) for modelling MeDIP 

experimental data 

• methBLAST • Similarity search program for bisulphite-modified DNA 

• MethDB • Database for DNA methylation data 

• MeInfoText • Text data mining for methylated genes 

• MethPrimer • Primer design for bisulphite PCR 

• methPrimerDB • PCR primers for DNA methylation analysis 

• MethTools • Bisulphite sequence data analysis tool 

• MethyCancer 

Database • Database of cancer DNA methylation data 

• Methyl Primer 

Express • Primer design for bisulphite PCR 

• Methylumi 

• Bioconductor package for analysing DNA methylation data 

from Illumina platforms 

• Methylyzer • Bisulphite DNA sequence visualization tool 

• mPod 

• Genome-wide DNA methylation viewer integrated with the 

Ensembl genome browser 

• PubMeth • Database of DNA methylation literature 

• QUMA • Quantification tool for methylation analysis 

• TCGA Data Portal • Database of TCGA DNA methylation data 

Table 1.1 Bioinformatic resources 

BSMAP, Bisulphite Sequence Mapping Program; CyMATE, Cytosine Methylation Analysis Tool 

for Everyone; EMBOSS, European Molecular Biology Open Software Suite; MeDIP, methylated 

DNA immunoprecipitation; MEDME, Modelling Experimental Data with MeDIP Enrichment; 

NIH, US National Institutes of Health; QUMA, Quantification Tool For Methylation Analysis; 

TCGA, The Cancer Genome Atlas (Laird, 2010). 
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1.4.3 Human studies - Epidemiological approaches 

1.4.3.1 Introduction 

It is possible to investigate the effect of epigenetic modifications on human disease risk 

through the use of traditional epidemiological study design methods. These types of studies 

are useful because they allow us to study the frequency of differential DNA methylation 

across the population in relation to the development of common complex disease. For 

example recent studies in a cohort of preterm (n = 121) and term born (n = 6,990) babies 

showed that methylation of the TACSTD2 gene was associated with fat mass in slow 

versus rapid growing infants (Groom et al., 2012). Another example of a recent 

epidemiological study linking DNA methylation to an obesity related outcome was 

performed in a cohort of 25 overweight or obese men who were participating in an eight 

week energy restriction intervention. DNA methylation levels in several genes were 

significantly modified as a result of the hypocaloric diet (Milagro et al., 2011). However 

there are a number of issues which need to be considered when designing this type of study 

when considering their application to the investigation of epigenetic programming of 

obesity (Heijmans and Mill, 2012). 

1.4.3.2 Tissue specificity 

DNA methylation patterns are highly tissue specific (Byun et al., 2009). This issue is further 

complicated by the fact that the great majority of tissue types of interest can only be 

collected in living human cohorts with invasive procedures such as biopsies. This issue is 

solved in animal models where the tissue of interest can be retrieved and processed post 

mortem (Zeng et al., 2011). In human studies, however, it is more conventional to select a 

source of DNA that is readily available and non-invasive in the form of either blood or 

saliva (Tierling et al., 2011). In this instance epigenetic patterns can only provide a 

surrogate for the target disease tissue of interest. 

1.4.3.3 Temporality of epigenetic change 

In an individual with a disease phenotype, any changes in DNA methylation observed may 

be the cause of the disease rather than an antecedent. In an ideal study design tissue 

samples for DNA methylation analysis would be taken prior to the onset of disease to rule 

out reverse causation. However in most instances studies tend to focus on diseased 

individuals. Prospective sampling is more likely in long-term studies that take samples of 
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readily available tissues such as blood and saliva at multiple time points as study members 

are followed throughout their lifecourse. 

1.4.3.4 Study design 

A key step in the implementation of an epidemiological study is the choice of study design. 

The choice of study design depends on many factors including the exposure and outcome 

of interest and adjustment for confounding factors. In this section the various study design 

options are considered. 

Cross-sectional study 

In a cross-sectional study, all of the factors that are of interest in the study population are 

measured at the same time. This study design is best suited to instances when the biological 

measurement is discrete and the population is well defined (Kestenbaum, 2009). A study 

design of this type investigating DNA methylation could, for example, measure gene 

specific methylation at a number of loci in a cohort of aged individuals with specific 

phenotypic traits (see Chapter 6). A cross-sectional design also allows DNA methylation 

levels between two subsets of the population to be compared, for example the results could 

be stratified for sex or age (Fenech et al., 1998). This type of study design is useful for 

smaller scale studies where hypothesis generation is the preferred outcome, however to 

infer causality between differences in DNA methylation levels and a disease outcome other 

approaches are required.  

Retrospective case-control study  

In a case-control study, individuals displaying a disease phenotype (cases) are matched to 

individuals free of disease (controls) from the same population (Schlesselman and Stolley, 

1982). A comparison of the two groups with respect to specific exposure information can 

identify the relative risk of disease. Control selection is a key step in this study design as 

bias and confounding can result in inappropriately matched controls (Geneletti et al., 2009). 

A case-control study design into DNA methylation would involve the assessment of gene-

specific or genome-wide methylation in samples taken from groups of cases and controls 

(Moore et al., 2008). Again, like the cross-sectional study, it is not possible to infer causality 

frorm a case-control study regardless of the biological measurement taken. 

Cohort study  

In a cohort study, individuals are recruited to participate initially over a defined period, be it 
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weeks, months or years (Breslow and Day, 1987), however in practise many cohort studies 

are open-ended and will follow participants throughout their life. When the individuals first 

attend clinic, baseline samples are taken to allow any biomarkers of interest to be 

monitored. Study members are then followed up at a number of time points after the initial 

study visit, when additional biological and clinical measurements are collected (Cao et al., 

2009). This allows any change in phenotype or, for example, DNA methylation level to be 

assessed over time. Cohort studies are typically large, with hundreds to thousands of 

participants. If followed over time this type of study referred to as a longitudinal cohort 

study. The strength of this type of study is that clinical and biological measurements have 

been collected in all individuals prior to the development of the disease phenotype. This 

allows any biological differences present in the diseased individuals to be assessed in 

relation to their earlier measurements and thus strengthens causal inference. This study 

design is particularly useful in studies of DNA methylation as the levels prior to the 

development of disease can be assessed, removing the problem of reverse causation found 

with other study types (Brooks et al., 2010). 

Birth cohort 

Birth cohorts enrol individuals in utero or in very early life by recruiting their parents during 

pregnancy or in the early postnatal period (Wadsworth, 2002). These cohorts are 

particularly useful when assessing early life influences on later disease risk, as exposures 

during the ‘critical windows’ of in utero and early postnatal life can be measured (Ponsonby 

et al., 2011). Biological samples are often available in these individuals and in some cohorts 

tissues available from both mother and child in the form of cord blood, placenta and saliva. 

This allows DNA methylation status as a very early age to be discerned (Terry et al., 2008). 

However, many birth and longitudinal cohort studies have collected biological samples at 

one time point only, often in adulthood, despite having extensive measures on the cohort 

from an early age. As individuals, ideally both parent and child, can be followed up over 

time, disease phenotypes and epigenetic changes can be monitored longitudinally over this 

period (Flom et al., 2011). 

Nested case-control study  

Nested case-control studies use a subset of individuals selected from a cohort study. 

Individuals who develop the disease outcome of interest during the cohort study period are 

selected for further analysis, alongside matched disease-free control individuals (Sedgwick, 

2010).  
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Intervention study/Randomised controlled trial 

Intervention studies, including randomised controlled trials, allow the effect of a 

modification in behaviour or environment on an individual’s health to be investigated. 

Such interventions in human studies can include either a lifestyle-based modification, such 

as increased exercise (Rosenstock et al., 2010), or a dietary intervention. Dietary 

intervention studies have been conducted to investigate the influence of specific factors on 

DNA methylation. For example, studies have shown that supplementation with folate can 

exert an effect on DNA methylation levels (Pilsner et al., 2009a).  

 Family-based study 

This type of study recruits multiple family members, often structured around parent and 

offspring triads (Laird and Lange, 2006). This allows the heritability of any biological 

changes in the child to be mapped to those in both parents. The heritability of epigenetic 

changes including DNA methylation has yet to be fully elucidated but the persistence of a 

small proportion of DNA methylation marks across generations is plausible and may 

contribute to the intergenerational transmission of obesity risk (Whitelaw and Whitelaw, 

2008). 

1.4.3.5 Use of appropriate study design 

The choice of study design is dependent upon the question being addressed, for example 

whether prediction, prevention or treatment is the key target of epigenetic investigation. In 

the context of developmental programming longitudinal cohort studies, preferably with 

parent and offspring sampling and data available would be the ideal. The relative merits of 

different study designs are summarised in Table 1.2. 

  



32 

 

 

Study design Possible findings Strengths Limitations 

Cross-sectional Prevalence of DNA methylation in a 

well- defined subgroup 

Easy to implement 

and analyse 

Small numbers 

and no causality 

Retrospective 

case-control 

Comparing DNA methylation 

between individuals with and 

without disease 

Well defined and 

large phenotypic 

change 

No causality 

unless 

prospective 

Cohort DNA methylation as a disease risk 

factor  

Maps trends across 

population 

Can be unwieldy 

– large numbers 

Nested case-

control 

DNA methylation as a biomarker of 

early disease 

Allows early 

disease to be 

mapped and 

tracked 

Smaller numbers 

so less well 

powered 

Intervention Effect of intervention on DNA 

methylation levels 

Clear point of 

biological 

inducement 

Limited 

interventions 

Family-based Transgenerational inheritance of 

DNA methylation  

Data on parental 

phenotype and 

epigenotype 

Analysis of sex 

specific effects 

Birth cohort Influence of in utero and early 

postnatal factors on establishment 

of DNA methylation levels 

Early life measures 

of exposure 

Costly to follow 

up for long 

period 

Table 1.2 Study designs and relative merits 

1.4.4 Epigenetic methods to quantify DNA methylation 

The methods available for the appraisal of variation in DNA methylation are numerous. 

Discussion here is limited to those approaches adopted in this thesis. A broader appraisal 

of the advantages and disadvantages of the more commonly applied methodologies is 

provided in Table 1.3 (Laird, 2010). 
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Table 1.3 Features and sources of bias for DNA methylation analysis techniques 

‘•’ indicates that the method has this feature or potentially has this bias; ‘(•)’ indicates that the 

method has this feature to a limited extent or in some circumstances. BC-seq, bisulphite 

conversion followed by capture and sequencing; BSPP, bisulphite padlock probes; –chip, 

followed by microarray; MeDIP, methylated DNA immunoprecipitation; RRBS, reduced 

representation bisulphite sequencing; –seq, followed by sequencing; WGSBS, whole-genome 

shotgun bisulphite sequencing (Laird, 2010). 

1.4.4.1 Gene specific analyses  

Bisulfite sequencing 

Bisulphite sequencing has for many years been the gold standard for assessing methylation 

status of DNA. In common with many methods, the DNA is treated with sodium 

bisulphite that acts to deaminate un-methylated cytosine residues in the sequence into 

uracil (Grunau et al., 2001). Methylated cytosine residues however remain resistant to this 

modification and persist. The sequence is then amplified and the uracil bases amplified as 

thymine residues. Subsequent sequencing of the DNA samples provides information on 

the methylation status of each CpG site by comparing the relative abundance of cytosine 

and thymine residues (Deng et al., 2009). Bisulphite sequencing has been widely applied, its 

main advantage being that it identifies the methylation status at base pair resolution within 

the target sequence; it can however be a labour intensive and costly process. The principal 

disadvantage of this method is that the methylation levels cannot be quantified (although 

this can be overcome by highly parallel next generation sequencing where high fold 

coverage is obtained) limiting the ability to draw associations with any transcriptional 

consequences (Zilberman et al., 2006). Bisulfite sequencing can be applied in target specific 

manner – that is small fragments of the genome can be analysed rather than profiling the 

genome in its entirety. 

Technology Features Potential sources of bias
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Pyrosequencing 

One such targeted approach is pyrosequencing. This method is based on the PCR 

amplification of bisulphite modified DNA with primers specific to an amplicon of interest 

and adopts a sequence by synthesis approach. One of the primers is biotin labelled, which 

allows the PCR product to bind to streptavidin coated sepharose beads (Colella et al., 

2003). A series of wash steps denatures the amplicon and washes the non-biotinylated 

strand off the beads. The remaining bound strand is then transferred to a specialised 

pyrosequencing reaction plate before reaction buffers, a sequencing primer and DNA 

synthase enzyme are added. One nucleotide at a time is then added to the reaction 

following a predetermined dispensation order (Vasiljevic et al., 2011). If the dispensed base 

is complementary to the DNA strand this nucleotide is incorporated into the sequence by 

DNA synthase, releasing pyrophosphates that are converted via an enzyme cascade into 

light. This light is then quantified by a sensitive camera. The light emitted is proportional to 

the amount of nucleotide incorporated into the sequence and as such the ratio of light 

emitted following the dispensation of Cytosine or Thymine at the CpG site represents the 

level of methylation at the site (Tost and Gut, 2007). The advantages of this protocol are 

that it is quantitative, reproducible, and custom assays are relatively straightforward to 

develop. This method has been applied widely in the work presented in my thesis and 

further details are provided in the relevant Results chapters. 

1.4.4.2  Global analyses 

Repetitive element assays 

This type of assay focuses on repetitive elements of the genome; transposable sections of 

DNA that share the same sequence and have a variety of functions. These repeat elements 

include long interspersed nuclear elements (LINEs) (Fryer et al., 2009), short interspersed 

nuclear elements (SINEs) (Arnaud et al., 2000) and Alu and Sat2 repeats (Gao et al., 

2011b). assays in this category generally utilise PCR primers specific to one of these 

repeating elements following bisulphite modification (Yang et al., 2004). This allows DNA 

methylation within the repetitive element to be assess by one of the sequencing 

methodologies previously discussed (Weisenberger et al., 2005). The methylation measure 

that is derived from this analysis is a surrogate for global methylation levels as it is an 

average of methylation in the repetitive element found throughout the genome (Baccarelli 

et al., 2010a). It must be remembered however that methylation within repetitive elements 

may have functional relevance to the specific element of interest but may not necessarily be 
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related to gene expression. LINE-1 global DNA methylation analysis was conducted as 

part of the work presented in my thesis. 

Immunohistochemical approaches 

Immunohistochemistry can be used to assess DNA methylation at a tissue and even cell 

specific level. Using primary antibodies specific to 5-Methylcytosine or related proteins 

such as the Methyl binding domain molecules (MBDs), it is possible to stain sections of 

tissue for the presence or absence of DNA methylation (Yang et al., 2011). When 

combined with fluorescence-conjugated secondary antibodies it is therefore possible to 

quantify the levels of DNA methylation within tissue sections (Brown et al., 2008). Further 

details of this approach to are provided in Chapter 3. 

1.4.4.3 Genome-wide analyses 

Increasingly, more and more epigenetic studies are performed at a genome-wide scale. 

Platforms available include microarray based approaches and sequence based approaches, 

both of which are undergoing rapid development and refinement. Neither has been applied 

in the thesis work presented here. 

1.4.5 Epigenetic marks as biomarkers of disease susceptibility 

1.4.5.1 Evidence in cancer  

DNA methylation represents a potential early biomarker of disease risk. There is a wealth 

of evidence in cancer to demonstrate profound shifts in DNA methylation patterns in 

tumour tissue (Hinoue et al., 2012, Gu et al., 2010) and these biomarkers may have utility in 

a diagnostic or prognostic context. One recent study in colorectal cancer showed that 

increased levels of methylation in the key regulator genes FBN2 and TCERG1L were 

associated with decreased gene expression. Both of these genes also showed a high level of 

DNA methylation in a range of colon cancer types including adenoma and carcinomas but 

not in normal colon tissue (Yi et al., 2012). A recent case-control study in prostate cancer 

patients has also show a range of DNA methylation markers in urine were able to 

discriminate between diseased and non-diseased individuals. (Payne et al., 2009). There has 

also been evidence in lung cancer that increased DNA methylation levels in the SHOX2 

gene in bronchial fluid can be used as a diagnostic test for lung cancer risk (Dietrich et al., 

2011). There are however, fewer examples of the application of DNA methylation patterns 

in non-tumour tissue as an early biomarker of disease (Hsiung et al., 2007). Peripheral 
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blood cell DNA has also been found to be a sensitive epigenetic biomarker of disease risk 

in ovarian and bladder cancers (Marsit et al., Teschendorff et al., 2009), although these 

results require replication (Relton and Smith, 2012). 

1.4.5.2 Evidence in other chronic diseases 

Aside from these findings in cancer there have also been recent data on DNA methylation 

as a biomarker of a number of other conditions. A recent study has shown that DNA 

methylation levels across a total of 349 CpG sites was associated with the presence and 

severity of chronic obstructive pulmonary disease (COPD) (Qiu et al., 2011). There has 

also been recent evidence suggesting that DNA methylation levels are a potential 

biomarker for emphysema (DeMeo et al., 2011). Taken together these results suggest that 

DNA methylation may represent a useful diagnostic marker in non-neoplastic lung disease. 

There is however increasing evidence in that DNA methylation could play a similar role in 

the prediction of obesity and related sequelae like type 2 diabetes. Two recent studies have 

reported an association of DNA methylation at birth and later childhood adiposity (Relton 

et al., 2012, Godfrey et al., 2011b). 

1.4.5.3 Evidence in obesity-related sequelae 

The role of DNA methylation as a biomarker in obesity related sequelae is not as well 

defined as that in cancer. There is however increasing evidence in a number of conditions 

suggesting that DNA methylation may play a role. In addition to the evidence alluded to 

above linking DNA methylation patterns in early life with later childhood body 

composition (Godfrey et al., 2011b, Relton et al., 2012) There is also an increasing body of 

evidence suggesting that DNA methylation signatures may represent a potential biomarker 

of obesity risk. One such study showed that low energy diet-induced weight loss in obese 

humans altered the DNA methylation status of the ATP10A and CD44 genes. This 

suggests that DNA methylation measurements taken at baseline may prove useful as 

predictive markers of weight loss (Milagro et al., 2011). Another study has shown that, in 

blood leukocytes, DNA methylation levels in the genes UBASH3A and TRIM3 were 

decreased in obese individuals when compared to lean controls (Wang et al., 2010a). 

Additionally, a recent study in a Singapore cohort reported that increased global DNA 

methylation measured by Alu and Sat2 repetitive element assays was positively associated 

with increased prevalence of cardiovascular disease (Kim et al., 2010), whilst another study 

has shown that hypomethylation at loci susceptible to prenatal environmental insults was 

associated with risk of myocardial infarction (Talens et al., 2011). Another recent study 
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showed that insulin resistance measured by HOMA was strongly associated with increased 

global DNA methylation measured by the Alu assay (Zhao et al., 2011). Studies in our 

laboratory have also identified differential methylation patterns in the type 2 susceptibility 

gene KCNQ1 associated with insulin sensitivity (Elliott et al., 2012).  

1.4.5.4 Opportunities in obesity 

In summary, there have been some promising findings relating DNA methylation at both a 

gene specific and genome wide level with respect to the risk of developing obesity and 

related sequelae. However further work is needed to elucidate whether the observed 

influences of early life exposures on later obesity are indeed mediated by epigenetic 

processes. This issue is the focus of my thesis. 
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1.5 Hypotheses, aims and objectives 

1.5.1 Hypotheses 

Obesity is a major public health burden and early life exposures may play a role in the 

development of this condition. DNA methylation is subject to change during critical 

windows such as the perinatal period, and thus aberrant DNA methylation in response to 

early life exposures may predispose an individual to the development of obesity. My thesis 

aimed to address the following hypotheses:  

1. The influence of early life exposures upon later obesity (and related sequelae) are 

mediated in part by epigenetic mechanisms.  

2. Differences in epigenetic signatures (namely DNA methylation) associated with early life 

exposures can be identified in animal studies and human populations. 

3. Epigenetic patterns (namely DNA methylation) are associated with obesity related traits 

in childhood and adulthood. 

1.5.2 Aims and objectives 

The specific objectives of this project were: 

• To identify tissue specific differential DNA methylation in rat hypothalamus in response 

to nutritional insult. 

• To create a bioinformatic workflow allowing differentially methylated target genes to be 

identified from a gene expression array dataset. 

• To quantify differential methylation in target genes identified by the bioinformatic 

workflow in tissues from an animal model of developmental programming. 

• To assess gene specific DNA methylation in relation to markers of metabolic health at 

age eight years in a human cohort study. 

• To assess the effect of global DNA methylation levels at age 50 years on markers of 

metabolic health in a human cohort study. 

• To assess the effect of early life exposures on DNA methylation in later life in human 

cohort studies. 
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Chapter 2: An Immunohistochemical Approach to 
Identify Differential Methylation in the Appetite 
Regulatory Centre of  the Brain 

2.1 Background 

Obesity results from an imbalance between energy intake and energy expenditure which is 

sustained over substantial periods of time (Zhang et al., 2008). The brain and in particular 

the hypothalamus play a key role in the regulation of energy homeostasis (Williams et al., 

2001). The arcuate nucleus (ARC) is the section of the hypothalamus which integrates a 

series of complex and diverse hormonal and nutritional signals (Schwartz et al., 2000) in 

order to mediate food intake and energy expenditure in physical activity (Coppari et al., 

2005, Sainsbury and Zhang, 2010), and therefore energy balance. Hormones such as leptin 

(Cowley et al., 2001), insulin (Niswender et al., 2003), adiponectin (Guillod-Maximin et al., 

2009, Qi et al., 2004), and ghrelin (Hewson and Dickson, 2000) and nutritional signals such 

as circulating glucose (Wang et al., 2004) and fatty acids (Lam et al., 2005) all exert effects 

on the ARC. These signals are then integrated by neuropeptides including weight increase 

inducing peptides such as neuropeptide Y (NPY) (Chen et al., 2004) and agouti-related 

peptide (AgRP) (Wilson et al., 1999), and weight loss inducing peptides such as 

proopiomelanocortin (POMC) (Boston, 2001) and cocaine and amphetamine regulated 

transcript (CART) (Rogge et al., 2008, Wierup et al., 2005). (See Fig. 2.1 and Introduction). 

 
Figure 2.1 Hypothalamic regions in the regulation of appetite. 
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The role of DNA methylation in this brain region specifically is therefore of interest as an 

effect on the expression of any of a large number of key genes may result in the 

perturbation of the mechanisms controlling food and therefore energy intake and also 

energy expenditure through physical activity. A sustained positive energy balance is likely to 

result in the development of an obese phenotype. 

2.2 Aim and objectives 

The aim of this chapter was to assess tissue specific DNA methylation in rat hypothalamus 

in response to nutritional insult. Given the role of hypothalamic nuclei in the control of 

appetite, dysregulation of gene expression in these cells may mediate altered feeding habits 

e.g. increased food intake and/or reduced physical activity and therefore the positive 

energy balance which is a prerequisite for the development of an obese phenotype. Since 

DNA methylation is known to regulate expression of a number of genes, the pattern of 

DNA methylation was explored in hypothalamic tissue in a rat model of developmentally 

programmed appetite dysregulation in search of evidence of gross shifts in DNA 

methylation signatures. Immunohistochemical techniques were optimised and applied to 

the labelling of rodent brain tissue. 

2.3 Methods 

2.3.1 Animal model 

Whole rat brains were kindly provided by Dr. Sue Ozanne at the University of Cambridge. 

The following is a summary of the experimental protocol for this rodent model of 

developmentally programmed appetite dysregulation. Adult female Wistar rats were housed 

individually and were maintained at 22°C on a 12:12-h light-dark cycle. When they reached 

weight of between 235 and 250 g, they were mated. The day on which vaginal plugs were 

observed was taken as day 0 of gestation. Dams were fed ad libitum either a control diet 

(containing 20% protein) or an isocaloric low protein (8% protein) diet (both diets were 

purchased from Arie Blok, Woerden, the Netherlands) during gestation and lactation. 

Crossfostering techniques were used at birth to establish these study groups: 1) controls 

[offspring of control dams, culled to eight (four males and four females) and suckled by 

control dams]; 2) recuperated (offspring of dams fed a low-protein diet during pregnancy, 
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but nursed by control dams, culled to four to maximize the plane of nutrition); and 3) 

postnatal low-protein (PLP) (offspring of control dams nursed by low-protein-fed dams, 

unculled to minimize the plane of nutrition). Plane of nutrition in the context of this study 

refers to the quantity of food intake per animal. Body weights of animals were recorded at 

birth and at days 3, 7, 14, and 21 of age. At day 21 pups were removed from dams and 

starved overnight. 

2.3.2 Brain preparation 

The whole brain was extracted in a single piece from freshly culled male animals and placed 

into a rat brain coronal slicer matrix. Two coronal cuts were made in order to isolate the 

hypothalamus, one at the optic chiasm (9.48mm interaural, 0.48mm Bregma) and one 

immediately prior to the pons (4.48mm interaural, -4.52mm Bregma) (Figure 2.2). These 

slices ensure that the portion of the brain isolated contained hypothalamus throughout as 

coronal sections were taken. The isolated midbrain section was then fixed overnight in 

10% neutral buffered formalin before being processed using Newcastle Hospitals NHS 

Trust Cellular Pathology ‘Routine overnight’ protocol. This protocol was a 14 hour process 

with an initial 30 minute exposure to 10% formalin followed by 95% then four 99% xylene 

steps for one hour under vacuum at 40 degrees Centigrade. A further four hour-long steps 

with xylene were completed before the tissue was processed to VWR Gurr Fibrowax 

36142. Sections were then cut at three microns using a microtome (HM325, Microm, UK) 

and mounted to Superfrost electrostatically coated slides (VWR, Leicestershire, UK), dried 

at 60°C for one hour and then overnight at 37°C. 

Figure 2.2 Ventral surface of rat brain showing gross cuts made to isolate hypothalamus. 

The red line indicates the cut made at the optic chiasm (9.48mm interaural) and the green line 

indicates the cut made prior to the pons (4.48mm interaural). 
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2.3.3  Immunohistochemistry - Primary antibody selection 

Monoclonal [33D3] antibody to 5-Methyl Cytidine (5MC) (Stratech, Suffolk, UK) was 

selected as a marker for DNA methylation within the nucleus. Monoclonal (22C9) antibody 

to Neurone specific enolase (NSE) (Novocastra, Newcastle, UK) and monoclonal (2G10) 

antibody to Neurone specific Beta III Tubulin (B3T) (Abcam, Cambridge, UK) were 

selected as intracellular neuronal markers. 

2.3.4 Immunohistochemistry - Protocol 

The complete immunohistochemistry protocol is summarised in Figure 2.3. Slides were 

dewaxed in Xylene and blocked for 10 minutes with Methanol/peroxide solution. Sections 

were then washed in water before microwave incubation in Antigen Unmasking Solution 

(Vector, Peterborough, UK). Runs were attempted with 5, 10 and 15 minute microwave 

incubations and 10 minutes was selected as the most effective incubation time. Sections 

were then blocked with 10% Normal Horse Serum (Vector) for 10 minutes before 

incubation with one of the primary antibodies. Antibodies were diluted in PBS and runs 

attempted at several concentrations within the range of 1:600 to 1:50 for each antibody. 

Incubation times were varied from two hours to 30 minutes at room temperature for each 

antibody and an incubation time of 60 minutes was selected for each of the primary 

antibodies. 5MC and NSE were both optimised to a dilution of 1:200 in PBS and B3T was 

optimised to a dilution of 1:500 in PBS. Sections were washed in water before being 

incubated with ImmPRESS Universal reagent (Vector) for 30 minutes at room 

temperature. A further wash step was implemented before development for colour using 

the ImmPact DAB system (Vector) for 10 minutes before counterstaining nuclei with 

Haematoxylin for one minute. Sections were then dehydrated and mounted under cover 

slips using DPX mountant. The optimised process is summarised in Figure 2.3. Figures 2.4 

and 2.5 show optimisation of staining protocols for 5mC and NSE with NPA (no primary 

antibody) and gradually increasing concentrations of primary anitbody, from 1:600 to 1:50. 

In the case of both antibodies the optimal concentration was determined to be 1:200. This 

was evidenced in the case of 5mC by the clear positive nuclear signal and lack of 

background in the rest of the slide. 
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Figure 2.3 Flow diagram of optimised immunohistochemistry process. 

Includes incubation times and temperatures where appropriate. 

 

2.3.5 Immunohistochemistry - Selection of control tissues 

A number of controls were incorporated into the IHC runs to ensure that the system was 

working optimally and the antibodies were exhibiting specificity. To ensure optimal antigen 

retrieval, human colorectal adenomatous polyp biopsies were stained for Ki-67 (MIB-1), a 

cell proliferative marker that has been used extensively in our lab. This ensured consistency 

between runs. Since the tissue type for the experimental runs was brain, non-brain was 

used as a control to ensure that both the 5MC and NSE primary antibodies specifically 

stained neurones. Rat small intestine was used for this purpose (Figure 2.5).  
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Figure 2.4 Optimisation of primary antibody dilution – 5MC. 

4 x Magnification light microscope images of rat brain showing the third ventricle (3V) and 

associated hypothalamic nuclei. Primary antibody dilutions for 5MC increase from No Primary 

Antibody (NPA) to 1:50. 1:200 was selected as the optimal dilution of 5MC as it exhibited the 

strongest nuclear signal with the least background. 
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Figure 2.5 Optimisation of primary antibody dilution – NSE. 

4 x Magnification light microscope images of rat small intestine showing villi and Aurebach’s 

plexus. Primary antibody dilutions for NSE increase from No Primary Antibody (NPA) to 1:50. 

1:200 was selected as the optimal dilution of NSE as it exhibited the strongest nuclear signal 

with the least background. 
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2.3.6 Secondary antibody selection 

Fluorescence conjugated secondary antibodies were selected appropriate to the isotype of 

the primary antibody. Rho Red (IgG1) was selected for 5MC, while FITC (IgG2b) was 

selected for NSE and B3T (Invitrogen, Paisley, UK).  

2.3.7 Fluorescent secondary antibodies 

The optimal primary antibody binding conditions were carried over from the chromophore 

optimisation as described above. Following incubation with the primary antibody the slides 

were twice washed with PBS before being incubated with fluorescent secondary 

appropriate to isotype as described above. Slides were incubated in the dark for onr hour at 

room temperature before being washed twice with PBS. Slides were then dried and 

coverslips mounted with Vectorshield mountant (Vector, Peterborough, UK). 

2.3.8 Imaging 

Images of the slides were captured using an Axio Imager A2 (Carl Zeiss, Welwyn Garden 

City, UK). Images were captured at 20x, 40x and 63x and the three magnifications 

compared statistically for sensitivity and coverage. Examples of magnification power in 

brain tissue are shown in Figure 2.6. Fluorescent conjugates were excited at 540nm (Rho 

Red) and 495nm (FITC) and the images stacked to create a composite (Figure 2.7). For the 

purposes of fluorescent quantification the exposure time for the 5MC secondary antibody 

was fixed at 100ms for all images. Exposure time for B3T was determined automatically as 

this did not affect the quantification process. 
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Figure 2.6 5MC Fluorescent microscopy of hypothalamus at 20 x and 63x magnification. 

Fluorescent microscope images of rat brain showing third ventricle (3V) and associated 

hypothamalmic nuclei. A - 20x magnification eight bit non coloured image, B - 20x 

magnification RGB psuedo red coloured image, C - 63x magnification eight bit non coloured 

image, D - 63x magnification RGB psuedo red coloured image. 
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Figure 2.7 Fluorescent double labelling of hypothalamic sections using 5MC (Red) and B3T 

(Green) taken at 20x magnification. 

Fluorescent microscope images showing third ventricle (3V) of the hypothalamus. Nuclei 

stained with false red 5MC antibody, neuronal cells stained with false green B3T marker. 
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2.3.9 Quantification of fluorescence 

Fluorescence was quantified using the ImageJ 1.43 software package (NIH, Maryland, US). 

Full colour images were converted to 8-bit file format and nuclei counted using the Particle 

Analysis/Nucleus Counter plugin. DNA methylation was quantified by measuring 

fluorescence intensity in the nuclei using the IntesityCount utility. Mean methylation was 

calculated across the nuclei in a 500 x 500 pixel region of interest corresponding with the 

paraventricular nucleus. Images were captured on both the left sides of the hypothalamus 

for each section. Each section was imaged in duplicate resulting in four fluorescence 

measurements for each individual animal. 

Images were captured for a total of 18 animals, six from the control group, seven from the 

protein restricted group and five from the recuperated group. Each slide included a no 

primary antibody section (NPA) as a control.  

Images were assessed using ImageJ Nucleus Counter. Nucleus particle size was set between 

100 and 2500. Fluorescence intensity in these nuclei was then quantified using 

IntensityCount (Figure 2.8).  
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Figure 2.8 Hypothalamic section with ImageJ nucleus counter overlay. 

Purple highlighted and numbered sections represent regions of interest (ROIs) as generated by 

Nuclear Counter. Intensity in each one of these numbered sections was individually quantified. 

Data analysis 

Fluorescence intensities across magnification powers were compared using Wilcoxon 

signed-rank test. The correlation between repeats within the same section was assessed 

using Spearman’s correlation. The mean fluorescence intensities for all three exposure 

groups were compared using the Kruskal-Wallis test. 
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2.4 Results 

2.4.1 Selection of optimum magnification for fluorescence 

quantification 

Optimum magnification was determined by serial imaging of identical sections at three 

different magnifications, x20, x40 and x63. Six samples were imaged, two from each 

intervention group in order to compare sensitivity of the three magnifications. Table 2.1 

presents Median and inter-quartile ranges (IQR) for each magnification. There were no 

significant differences between any of the groups compared at any of the three 

magnifications shown by Wilcoxon signed-rank test (Table 2.1). As a result of this analysis 

x20 was selected as the optimum magnification because it enabled a greater number of 

nuclei within the field of view to be imaged with no significant reduction in sensitivity. For 

instance across the six samples represented in Table 2.1, the average number of nuclei 

captured at x20, x40, x63 magnifications were 140, 100 and 55 respectively. 

 

Magnification n Median (IQR) Intensity* Group comparison z
‡
 p-value 

x20 6 1024.80 (797.51, 1239.71) 20 vs. 40 -0.105 0.916 

x40 6 1029.83 (970.59, 1121.47) 40 vs. 63 -0.315 0.752 

x63 6 1114.09 (797.92, 1263.77) 20 vs. 63 -0.524 0.600 

Table 2.1 Comparison of fluorescence intensities across magnification groups. 

*Fluorescence intensities standardized for exposure time (i.e. intensity per second); ‡
Group 

comparison by Wilcoxon signed-rank test; IQR – Interquartile range 
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2.4.2 Quantification and analysis of fluorescence across intervention 

groups 

A total of 18 animals across all three intervention groups were imaged and quantified using 

the optimized protocol described above. Two serial sections from each animal were 

analysed with two fluorescence measurements per section to assess inter-section variability. 

The correlation in fluorescence between repeats was assessed using a Spearman’s 

correlation test. As shown graphically in Figure 2.9, in the control group fluorescence 

measurements between repeats were highly positively correlated and modestly correlated 

across sections. However in both the protein and recuperated groups repeat measurements 

were highly positively correlated whereas inter-section measurements showed strong 

negative correlations, particularly in the protein group. Consequently subsequent 

association analyses were performed using within-section means for each of the two 

sections separately. 

Figure 2.9 Correlation between repeat measurements in all samples within each intervention 

group. 

The upper section depicts the two serial sections with repeat measurement locations 

numbered one to four; with one and two located on section A, and three and four on section 

B. The lower section depicts pairwise correlation in fluorescence intensities between these 

repeats; numbers within coloured boxes are Spearman’s correlation Rho values.  
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Table 2.2 shows median and IQR for the fluorescence intensities across the intervention 

groups. No significant differences between groups were observed in either section A or 

section B when tested by Kruskal-Wallis (Table 2.2).  

  All groups Kruskal-Wallis 

Fluorescence 

site 

Group n Median (IQR) Intensity χ
2
 p-value 

A1 All 18 102.51 (67.26, 120.30)   

 Control 6 101.50 (34.24, 114.78)   

 Protein 7 92.67 (60.02, 133.04)   

 Recuperated 5 112.34 (90.71, 120.30)   

A2 All 18 99.22 (47.52, 122.48)   

 Control 6 96.64 (42.48, 115.27)   

 Protein 7 99.48 (68.62, 136.54)   

 Recuperated 5 118.40 (34.43, 131.08)   

B1 All 18 91.75 (43.55, 100.82)   

 Control 6 92.98 (52.87, 100.82)   

 Protein 7 90.10 (42.60, 110.61)   

 Recuperated 5 91.84 (91.66, 92.20)   

B2 All 18 80.36 (44.32, 102.59)   

 Control 6 97.30 (47.48, 114.67)   

 Protein 7 51.66 (43.84, 96.16)   

 Recuperated 5 71.96 (53.40, 88.76)   

Mean Section A All 18 99.07 (56.53, 123.98)   

 Control 6 99.07 (37.67, 115.03)   

 Protein 7 89.93 (74.82, 134.79) 0.94 0.624 

 Recuperated 5 115.37 (56.53, 125.69)   

Mean Section B All 18 85.98 (47.13, 103.39)   

 Control 6 96.64 (50.18, 104.75)   

 Protein 7 68.82 (43.94, 103.39) 0.91 0.634 

 Recuperated 5 82.08 (72.62, 90.21)   

Table 2.2 Fluorescence intensity compared between the three intervention groups. 

IQR – Interquartile range. Kruskal Wallis Chi squared and p values shown for differences 

between three exposure groups in mean sections only. 

The fluorescence intensities across section repeats were compared by creating scatter plots 

of the repeats within each section against each other (Figure 2.10). Within all six sections 

there was a positive association showing good reproducibility. 
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Figure 2.10 Scatter plots for fluorescence intensities across within section repeats by 

intervention group. 

 The individual exposure groups were also compared by creating scatter plots of the mean 

fluorescence intensities for each repeat against each other. There was a positive association 

between the fluorescence intensities in the control group but negative associations between 

the fluorescence intensities in the protein and recuperated groups (Figure 2.11). 
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Figure 2.11 Scatter plots for fluorescence intensities across section means by intervention 

group. 

 The unusual observation that there was negative association between fluorescence 

intensity in the protein and recuperated groups lead us to re-plot these data as a scatter plot 

to compare the distribution of fluorescence intensities between intervention group, 

stratified by section (Figure 2.12). The scatter plots show that there is a greater level of 

variation in fluorescence intensity in section B compared to section A, apart from the 

recuperated group. This would seem to be the source of the poor association between the 

fluorescence intensities in the case of the recuperated group. 
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Figure 2.12 Distribution of fluorescence intensities across all three intervention groups, 

sections A and B compared. 
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2.5 Discussion 

The techniques and analysis methods for the immunohistochemical (IHC) staining of 

DNA methylation in brain tissue described in this chapter had not been applied previously 

and were developed and optimised as part of this study. Hence, a considerable amount of 

technical and methodological development was required before meaningful data could be 

obtained. 

Brain tissue was obtained from a rodent model. Samples were initially available as 

Paraformaldehyde-perfused, frozen sections and the use of these sections in IHC was 

explored. However as a new tranche of rodents were being culled and their brains removed 

it was decided that in order to best preserve the brain architecture and prevent freezing 

artefacts the best fixation method was formalin fixation of whole brain, followed by 

paraffin embedding. Perfused sections are seen by some as preferable for these kinds of 

experiments as the perfusion process removes red blood cells and can prevent tissue 

damage (Scouten, 2010). However in practise the paraffin embedded sections proved 

suitable for this application following careful optimisation. 

The choice of primary antibodies both to a marker of methylation and a known neuronal 

marker was an important one. In the case of the methylation mark a number of antibodies 

are commonly used for this type of work. The DNA methyltransferase (DNMT) family of 

enzymes (DNMT 1, 2 and 3) work to catalyse the addition of a methyl group to the DNA 

and levels of DNMTs are a surrogate for levels of DNA methylation. The Methyl-CpG 

binding proteins (MBD1-4) are also candidates as they bind directly to the methyl group of 

the DNA and show localisation. The addition of a hydroxymethyl group to the DNA has 

been of particular interest to a number of groups recently (Wossidlo et al., 2011) and as 

such antibodies to 5hMC were considered. The antibody that was eventually selected 

however was one raised to 5-methylcytosine for the reason that this provides a direct 

marker of DNA methylation within the nucleus. This helped to inform the selection of a 

neuronal cellular marker as the localisation of 5MC to the nucleus meant that it would be 

best practise to select a cellular marker localised to the cytosol. There are a number of 

neuronal cellular markers available however the most commonly used are neurone specific 

enolase and Beta Tubulin (Subtype III). Both of these markers are specific to neuronal cells 

and localise to the cytoplasm and so represented ideal antibody choices for our application. 
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A key decision relating to the quantification of DNA methylation levels within 

hypothalamic nuclei was defining the optimal magnification to use. The greater the 

magnification used on the fluorescence microscope the more detail discernable in 

individual nuclei. There exists a trade off however with the number of nuclei present within 

the field of view. As shown in the text as the magnification was increased from 20x to 63x 

the number of nuclei available to quantify drops from 140 to 55. As such a comparison 

between all three magnifications made it possible to discern whether higher magnifications 

allow more accurate quantification of DNA methylation. Table 2.1 demonstrates that there 

was no significant difference between the fluorescence intensities measured across the 

three magnifications. This allowed a larger number of nuclei to be assayed, giving a more 

accurate overall picture of DNA methylation within the hypothalamus without any 

significant loss of sensitivity. 

In order to test the reproducibility of fluorescence measurements made on each section, 

repeats were taken on each section as shown in Figure 2.7. Measurements taken from 

repeats on the same section were shown to be highly correlated in control animals but 

significantly less so in the protein and recuperated groups. The within section fluorescence 

measurements were however highly correlated. Thus intra-section reproducibility was 

much greater that inter-section reproducibility despite sections being mounted on the same 

slide and stained at the same time. The root of these differences between sections may be 

in the relatively small sample size for each group as well as the overall lower levels of 

fluorescence in section B versus section A, noticeable particularly in the recuperated group 

(82.08 fluorescence units (FU) vs. 115.37 FU).  

No differences were observed between fluorescence intensities between the three 

treatment groups analysed. There are a number of possible explanations. Firstly, this 

technique might not possess a high enough sensitivity to detect subtle alterations in DNA 

methylation. Further, IHC using an antibody specific to 5MC is limited to providing a 

global overview of the 5-methyl cytosine content of each nucleus. It cannot discern if there 

are gene specific changes in DNA methylation and indeed if there are they could be in 

differing directions, which would serve to mask each other.  

It is possible that no changes in DNA methylation were detected because there were no 

changes to the levels of DNA methylation in the hypothalamic region of animals in this 

model in response to dietary insult. However this is unlikely given that there is significant 

evidence from other models that hypothalamic gene expression levels are altered 

significantly in response to insult (Bouret et al., 2008, Kirk et al., 2009). There is also a 
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growing body of evidence to suggest that DNA methylation varies significantly in brain 

tissues (Zhang et al., 2010a). 

Given the lack of any association between treatment and 5-MC measured using IHC in 

these experiments, there are a number of additional IHC-based strategies which could be 

explored to further investigate the role of DNA methylation in the programming of 

phenotype. The IHC techniques described here could be optimised with antibodies specific 

to a range of other molecules that associate with 5-methylcytosine. One such example is 

the DNA methyltransferase family (DNMT) (Lin et al., 2007) which is involved in the 

maintenance of DNA methylation throughout the genome. Additionally other epigenetic-

related proteins could serve as targets for IHC including activation-induced cytidine 

deaminase (AID) (Larijani et al., 2005), the methyl binding domain family (MBD) (Fujita et 

al., 2003) and methyl-CpG-binding domain protein 2 (MeCP2) (Fuks et al., 2003). There is 

also burgeoning interest in 5-hydroxymethylcytosine (5-hMC), the addition of both a 

methyl and a hydroxy group to cytosine residues in the genome (Iqbal et al., 2011), and this 

may be of particular interest given that 5-hMC residues have been found in brain tissues 

(Kriaucionis and Heintz, 2009).  

As an alternative to IHC analysis of tissues it would also be plausible to apply more 

molecular based techniques to try and discern any difference in DNA methylation between 

the brain tissues of exposure groups. For example laser capture microdissection could be 

utilised (Gagnon et al., 2010, Eberle et al., 2010) to isolate specific brain regions from pre 

cut sections. DNA extraction could then be performed on the relevant areas and 

downstream analyses such as MeDIP-chip (Methyl-DNA immunoprecipitation followed by 

tiling array), which would allow DNA methylation to be mapped and measured across the 

genome (Palmke et al., 2011). Alternatively conventional dissection techniques could be 

used and DNA and RNA extracted to allow gene specific DNA methylation and gene 

expression experiments to be performed (Gibbs et al., 2010). 

This area could also be further investigated by applying other IHC or molecular techniques 

mentioned above on an array of different brain areas. Although the paraventricular nucleus 

has been well characterised as a centre of appetite control (Kalra et al., 1991) there are a 

wealth of other regions which may be of interest (Berthoud and Morrison, 2008). These 

include the caudal brain stem which has been implicated in the signal transduction as part 

of the leptin signalling pathway (Grill et al., 2002) and the corticolimbic system (Berthoud, 

2004) which governs both emotional and cognitive responses to food and hunger. 

Although the brain plays a key role in the control of appetite and therefore energy balance 
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(Richard et al., 2009) it would be interesting to assess tissue specific DNA methylation in 

other tissue types in which DNA methylation has been implicated in the pathogenesis of 

obesity including liver (Gomez-Acevedo et al., 2011) and white adipose tissue (Pinnick and 

Karpe, 2010). 

It is also important to consider that in relative terms the nutritional insult to which the 

experimental animals were exposed is a mild one. Further work could utilise a more 

extreme nutritional exposure in order to evoke a stronger response, such as a ‘junk food’ 

(Ong and Muhlhausler, 2011) or high fat diet (Vucetic et al., 2010) or alternatively in an 

extreme phenotype model such as the Zucker rat (Williams and Schalinske, 2011) or a 

disease based model such as diabetes (Nieman and Schalinske, 2011). 

In summary, although these data show no significant differences between the three 

exposure groups, the area of hypothalamic programming of obesity is still of interest and 

may benefit from a candidate driven, gene specific approach to the investigation of DNA 

methylation (Wang et al., 2010a). 



61 

 

Chapter 3: Developing In Silico Approaches for 
Target Gene Selection and Quantitative DNA 
Methylation Analysis 

3.1 Background 

In recent years, the quantum leap in development of methodology for investigating the 

genome using both sequencing and microarray approaches has brought with it both huge 

advantages and a number of potential pitfalls (Khatri and Ghici, 2005). It is now possible 

to perform multiplex expression experiments on many thousands of loci in a matter of 

hours. The rate-limiting steps in the production of high quality data from these 

experiments are now in the timely and efficient analysis of array or sequence data, in the 

interpretation of the resulting observations and in generation of subsequent hypotheses. 

The size of a gene expression microarray dataset makes these steps both a significant 

intellectual and a significant bioinformatics challenge. Our goal when assessing a gene 

expression dataset is to assign functional meaning to any changes observed. Traditional 

approaches filter the output dataset based on criteria intended to quantify the size and 

significance of any change in expression at a gene specific level (Smirnov et al., 2009). 

These criteria include fold change, p value and, often, minimum levels of expression. Such 

approaches advocate the selection of a top hits list based on cut offs – be they a fold 

change of greater than 2.0 or a p value of <0.05 (Haroon et al., 2010). Although this 

approach is a reasonable one and leads to the selection of robust functional targets, the 

application of somewhat arbitrary cut off points may exclude a large amount of the dataset 

and so the loss of potentially interesting information. 

Having identified genes that are differentially expressed in the two (or more) conditions 

under investigation, a further commonly used step is text data mining. Text data mining 

(TDM) is the extraction of information of interest from published documents (Krallinger 

et al., 2008). This information usually relates to a specific gene or protein and its association 

with a disease or other biological function. Electronic resources are now the first port of 

call for any researcher looking to discern links between genes and outcomes of interest and 

indeed are key in hypothesis generation. As a result text data mining is becoming a 

increasingly utilised research technique (Zvi et al., 2008). A key question when considering 

TDM approaches is the level of robustness of the text analysis. TDM is used typically to 
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assess disease candidates and protein-protein interactions (Chen et al., 2009b, Köhler et al., 

2008). However there are also several tools available for assessing links between a gene of 

interest and the potential for differential methylation (Krallinger et al., 2010). The 

robustness of TDM approaches is admittedly variable because of the plethora of different 

methods, however what all methods have in common is the possibility of ‘losing’ some 

output due to problems with search string creation or wording issues. For example if we 

were to undertake a text data search for the gene name IGF2R we would also want 

information on IGFIIR and any other forms of the phrase to be included. This is a key 

step in the design of a TDM program. The robustness of TDM in the context of the 

biomedical field is also largely dependent on which databases (MedLine, PubMed etc.) are 

polled. Numerous tools are available to assess these literature resources. MeInfo Text 

(MIT) (Fang et al., 2008) is one such tool. MIT text data mines a number of sources 

including NCBI Entrez for gene information, HPRD and IntAct for protein interactions, 

HPRD and KEGG for pathway types and PubMed for text strings. Although designed for 

use in the study of DNA methylation in cancer, MIT provides a useful tool alongside 

traditional non-automated text data mining techniques for investigation of genes whose 

promoters may be differentially methylated in particular circumstances.  

More recently, novel approaches to analysing large gene list based datasets have been 

developed (Zhong et al., 2010). Whereas previous techniques selected candidates based 

purely on the magnitude of expression, newer methods also incorporate gene function. 

Published functional data on all genes showing significant expression changes in a given 

dataset (for example a gene expression array) is assessed and potential biological pathways 

of interest are generated. This allows the selection of candidates which are not only 

differentially expressed but are also relevant in terms of a specific pathway or disease of 

interest.  

There is an increasing body of evidence that gene expression is regulated by, and correlates 

inversely with, the methylation status of that gene’s promoter (Thompson et al., 2010b, 

Sears et al., 2011). High levels of gene expression do not always correlate with low levels of 

DNA methylation (Bell et al., 2011) (Figure 3.1) which could have implications on the 

present study given that it is an attempt to show that aberrant DNA methylation affects 

gene expression. The majority of genes will however follow the usual convention and show 

low levels of DNA methylation when genes are highly expressed. Gene expression datasets 
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represent a useful starting point in the identification of epigenetically regulated target genes. 

This approach allows a complete gene expression dataset to be analysed functionally using 

curated data rather than relying purely on gene expression levels to inform the genes which 

may be of further interest.  

An advantage to this approach is that it represents a targeted and logical way to prioritise 

candidates from a large gene list. Using experimentally validated functional data on genes 

within the gene list to inform our selection of candidates make it more likely that the genes 

taken forward for further analysis will be those that are of interest in the context of our 

chosen outcome, in this case obesity and related sequelae. Each assay taken forward into 

the laboratory requires optimisation and validation that is costly both in terms of time and 

money. As such a robust approach to target identification allows only those genes that are 

most relevant to progress through to the ‘wet laboratory’ phase. 
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Figure 3.1 DNA methylation is negatively correlated with gene expression. 

(a) Methylation levels are low in the top quartile of highly expressed genes (left), and high in 

the bottom quartile of lowly expressed genes (right), looking across 12,670 autosomal genes. 

(b) Methylation levels with respect to the TSS in sets of genes categorized by gene expression 

levels, from highest (red) to lowest (blue), using the quartiles of gene expression with respect 

to gene expression means, where fitted lines represent running median levels. (Bell et al., 

2011).
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3.2  Aims and objectives 

The aims of this chapter were i) to develop a bioinformatic pipeline for the analysis of 

expression data obtained from microarray analysis and ii) to use this pipeline to identify 

obesity-related genes that were differentially expressed in the offspring of female mice 

(dams) fed an obesogenic diet where the differential expression could be due to altered 

methylation of the gene promoters. The pipeline was used to interrogate a gene expression 

array dataset to produce a short-list of candidates for further investigation of promoter 

methylation using pyroseqeuncing. The final aim of the work was to design pyrosequencer-

based assays for quantifying methylation of specific CpG sites within the promoters of the 

short-listed genes. 

3.3 Methods 

An initial gene list of over 19,000 was interrogated using a step-wise workflow with 

attrition at each stage facilitating the generation of a practical number of top hits to take 

forward into downstream analyses (Figure 3.2). 

3.3.1 Mouse gene expression dataset 

The gene expression dataset utilised for this work was kindly provided by Professor Lucilla 

Poston of King’s College London (Samuelsson et al., 2008). This dataset was derived from 

analysis of RNA from tissues from the female offspring of C57BL/6J mice. The mouse 

dams were randomised onto either a standard mouse chow (7% simple sugars, 3% fat, 50% 

polysaccharide, 15% protein, energy 3.5 kcal/g, n=20), or a highly palatable 

obesogenic diet (10% simple sugars, 20% animal lard 28% polysaccharide, 23% protein, 

energy 4.5 kcal/g, n=30) and fed ad libitum. After six weeks on the appropriate diet, the 

animals were mated and stayed on the obesogenic diet throughout gestation. Tissues were 

collected from the offspring both at birth and at six weeks of age. Total RNA was 

extracted from the liver, heart and white adipose tissue (WAT). Sufficient RNA was 

available from liver and heart only in new born pups due to the lack of a substantial fat pad 

for RNA extraction (Table 3.1) (Samuelsson et al., 2008) A total. Total RNA was 

hybridised to Illumina Sentrix® MouseRef-8 Expression BeadChips with n=8 for each diet 

giving a total of n=32.  Raw expression values for each tissue and time point were sorted 
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by p-value and all those with a between diets p-value greater than 0.05 were excluded from 

the analysis.  

Table 3.1 Tissue availability at both time points. 

No white adipose tissue (WAT) was available at the foetal timepoint due to insufficient fat pad 

size. 

 

 
Figure 3.2 Target gene selection workflow 

Text within the blue boxes shows each processing method. 
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3.3.2 Pathway Analysis 

The complete ‘raw’ gene lists described above were uploaded to Ingenuity Systems Inc.’s 

IPA pathway analysis software (Myslobodsky, 2008). IPA utilises a proprietary dataset 

known as the ‘Knowledge Base’, a manually reviewed and curated database of interactions 

between biological elements. IPA models the molecular interactions between thousands of 

genes, RNAs, proteins, cells, drugs and diseases. This information was abstracted from 

peer-reviewed scientific publications and from commonly used tools such as National 

Centre for Biotechnology Information (NCBI) Reference Sequence (RefSeq), Online 

Mendelian Inheritance in Man (OMIM), Kyoto Encyclopaedia of Genes and Genomes 

(KEGG) and Genome-wide Association Studies (GWAS). The result is a database of 

approximately 200,000 scientific articles as well as information on approximately 10,000 

human, 8,000 mouse and 5000 rat genes. The software incorporates existing knowledge on 

the molecular interactions between all of these elements allowing the ‘Knowledge Base’ to 

be polled for a large variety of biological questions. The database structure is defined by a 

strict ontology scheme which allows the great majority of molecules to be referenced 

against the ‘Knowledge Base’ and placed into a biologically relevant pathway (Calvano et 

al., 2005). 

In practical terms, IPA is a suite of software tools that enable the interrogation of complex 

datasets including gene expression arrays. There were a total of two time points and three 

tissue types from which RNA and therefore expression data was available (Table 3.1). As 

such there were effectively five separate gene lists that were compared to the IPA database. 

These five gene lists were first mapped to IPA’s own gene ontology (GO) list to ensure 

correct functional characterisation of the genes. This allowed the gene lists to be reliably 

compared with the IPA ‘interactome’, a functional database of molecular interactions. 

Once the five gene lists were satisfactorily mapped to the GO structure, relevant queries 

were built to test the biological relevance of any pathway wide changes in the gene 

expression datasets. Obesity was the main pathology of interest, but as it is linked to a 

number of co-morbidities these were also included in the analysis. As such the following 

five pathways were selected: obesity, cardiovascular disease, leptin signalling, insulin 

signalling and type 2 diabetes. DNA methylation was selected to supplement the metabolic 

pathways in light of our group’s interest in epigenetic mechanisms in the early life 

programming of obesity risk.  
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3.3.3 Text data mining for evidence of promoter methylation  

The gene list was analysed using text data mining to ascertain if any of the candidates had 

been identified previously as differentially methylated in any circumstance. This data 

mining was performed using the freely available tool MIT which is described briefly above. 

Output genes from IPA that showed associations with DNA methylation progressed to the 

next stage of the candidate selection process (Figure 3.3).  

 
Figure 3.3 Screen capture from MIT application showing text data mining result. 

The gene queried (IGF2R) is shown mapped to NCBI, Ensembl and methPrimer. The number of 

papers published showing the query gene associated with methylation, hypomethylation and 

hypermethylation. 
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3.3.4 Promoter searching 

Promoter regions are key regulatory elements found 5’ to the coding regions of genes. They 

play a key role in regulation of expression of the corresponding gene and, as mentioned 

above may be subject to control by differential methylation in certain genes. To assess 

whether any of the candidate genes produced from the IPA analysis are subject to 

regulation via differential methylation, the next step was to search for the presence of 

putative methylated regions in their promoters. Annotated and experimentally verified 

promoter sequences for the queried genes were generated by the Genome2Promoter utility 

provided as part of the Genomatix software suite (Genomatix Ltd, London, UK). The 

output from this analysis includes the chromosomal location as well as a description of the 

query gene alongside the promoter sequences. The extracted promoter sequences were 

compiled ready for the next stage of the workflow. 

3.3.5 CpG island searching 

The promoter sequences were then interrogated for the presence of CpG islands. A CpG 

island is defined as a region of the genome with at least 200bp, a GC content of greater 

than 50% and observed/expected CpG ratio of greater than 0.6. The Java program CpG 

island explorer (CpGIE) (Wang, 2004) is a useful analysis tool to check these features and 

was used in the present analysis. This CpGIE tool allows any sequence of interest to be 

checked for the presence of one or more CpG islands. The program has three settings for 

island length, GC content and observed/expected CpG ratio and these were set at 200bp, 

50% and 0.6 respectively. The software then highlights the CpG island graphically and 

provides summary information regarding the start and end sites (Figure 3.4). Promoter 

regions that contained CpG islands progressed to the next stage of the process. 
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Figure 3.4 Screen capture from CpGIE application showing CpG Island search result. 

The black line with red tags shows the sequence polled (IGF2R promoter) and positions of CpG 

sites. The blue line indicates the position of a CpG island within the promoter. The text shows 

the start and end of the CpG island within the polled sequence as well as the GC content and 

the observed/expected ratio.  

3.3.6 In silico bisulphite modification 

Bisulphite modification of DNA is a key step in many laboratory methods for assessing 

DNA methylation because it allows the pattern of methylation to be ‘fixed’ by effectively 

inducing a SNP at unmethylated cytosine residues. As a result the input material for most 

downstream methylation assays is bisulphite modified genomic DNA and it is to this 

modified sequence that primers for any subsequent PCRs are designed. The promoter 

sequences for selected genes were bisulphite modified in silico by highlighting all of the CG 

residues (CpG sites) in the sequence and replacing them with XG. This represents the 

presence of a methyl group on the cytosine residue blocking the bisulphite conversion. 
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Next all remaining C residues in the sequence were converted to T residues as this is what 

will occur when the bisulphite conversion reaction is carried out. Finally the XG 

placeholder was replaced with a C/TG, which represents the two possible alleles that may 

be present depending on the methylation status of the CpG site. Although this is a simple 

process in principle, in practice when working with large numbers of candidate genes and 

multiple promoters it can become labour intensive with the risk of introduction of errors at 

each step. To avoid this difficulty, a VBA macro for Word was written that performs all of 

the above steps at once as well as removing any hard line breaks from the sequence that 

can interfere with the assay design process. 

3.3.7 Pyrosequencing assay design 

The bisulphite modified promoters were analysed using the Qiagen PSQ Assay design 

software. The complete sequence for each gene of interest, including bisulphite-

modification induced SNPs, was imported into the software package. All of the CpG sites 

within the sequence were assessed manually for assay suitability based on nucleotide 

spacing. Potential regions were selected based on a total amplicon length of 100bp or less 

and the presence of at least three CpG sites within the amplicons. Potential amplicons were 

then subjected to the assay design process (Figure 3.5). The assay design software created 

forward, reverse and sequencing primers based on optimum annealing temperatures and 

primer lengths, and minimisation of non specific binding (Figure 3.6).  

Primer sets as generated by the assay design software were then sent for synthesis by 

Metabion AG (Martinsried, Germany). 
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Figure 3.5 Screen capture from QCpG assay design application showing assay design result. 

The red trace shows the GC content of the sequence shown. The sequence being assessed runs 

5’ to 3’ left to right. CpG sites are indicated by blue bars. The forward, reverse and annealing 

primer sequences are show in the main box along with lengths and melting temperatures. The 

possible primer sets are shown at the bottom ranked by suitability score, with 100 being the 

highest possible score and indicating a very robust assay design. 

 

Figure 3.6 Screen capture from QCpG assay design application showing default assay 

settings. 

 The settings shown were utilised for all of the assay design runs and are the optimum 

conditions as chosen by the QCpG software.  
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3.4 Results 

The raw expression dataset was analysed using the workflow shown in Figure 3.2. The 

results of each step of the analysis are detailed below. 

3.4.1 Significance level - p value 

The raw expression dataset comprised of a total of 19100 loci. This gene list was sorted by 

significance level with loci showing a significance level of greater than 0.05 excluded from 

the analysis. This resulted in the loss of 15400 genes at this stage with a total of 3700 genes 

moving to the next stage of the workflow (Figure 3.7). 

 

Figure 3.7 Candidate gene selection workflow showing attrition rate at each stage of the 

process, stratified for tissue type. 

Genes lost at each stage are shown in red, genes progressing to the next stage of the analysis 

are shown in green. 
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3.4.2 Pathway analysis 

The 3700 genes remaining in the analysis were assessed using Ingenuity Pathway Analysis 

as previously described. A total of 99 of these genes were shown to map significantly to the 

‘Knowledge base’ across all six of the query pathways, with an attrition of 3601 genes at 

this stage of the workflow (Figure 3.7). Seventeen genes were mapped to the obesity 

pathway, 31 to cardiovascular disease, 13 to leptin signalling, 19 to insulin signalling and six 

to type 2 diabetes (Figure 3.8). A total of 13 of these 99 genes were mapped to the DNA 

methylation query pathway. The 99 genes that were shown to map to any of the above 

pathways progressed to the next stage in the workflow. These genes are summarised in 

Table 3.2. 

Figure 3.8 Screen capture from IPA application showing the mapping of candidates to obesity 

related pathways. 

Coloured bars show the measure of probability that the polled gene set is related to the query 

pathways. Dark blue indicates foetal heart, medium blue indicates foetal liver, light blue 

indicates neonatal heart, black indicates neonatal liver and grey indicates neonatal white 

adipose tissue.  
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Table 3.2 Candidate genes generated by IPA analysis. 

Queries run along the far left. CVD – Cardiovascular disease, Diab – Type 2 Diabetes, DNA-M – 

DNA Methylation, IGF sig – Insulin signalling, Lep sig – Leptin signalling, Obs – Obesity. The 

tissues and timepoints run along the top of the table, showing fold change and p value for each 

candidate. Expression levels are colour coded with green indicating an upregulation and red 

indicating a downregulation. Some of the candidates are common to more than one pathway 

(for example MAPK1 is found in both the Leptin and Insulin signalling pathways). 



76 

 

3.4.3 Evidence of differential methylation 

The 99 genes remaining in the workflow at this stage were assessed using the text data 

mining tool MIT as previously described. A total of 31 genes showed evidence of 

differential methylation leading to an attrition of 68 genes at this stage of the workflow. 

(Figure 3.7). These 31 genes progressed to the next stage of the workflow. 

3.4.4 Promoter availability 

The 31 genes remaining were then assessed for the presence of an experimentally verified 

promoter region using the Genomatix Gene2Promoter tool. In all but one of the genes 

analysed promoter sequences were located and verified (Table 3.7). This resulted in a total 

of 30 genes moving to the next stage of the workflow. 

3.4.5 CpG island searching 

The promoter regions generated by Gene2Promoter for all 30 of the remaining genes were 

assessed for the presence of CpG islands using the CpGIE tool previously described. 

Sixteen of the genes assessed showed at least one CpG island in their promoter, thus a total 

of 14 genes were dropped from the analysis at this stage (Figure 3.7). The 16 remaining loci 

moved to the next stage of the analysis. 

3.4.6 SNP searching 

The promoter regions of the 16 genes left in the analysis were assessed for the presence of 

single nucleotide polymorphisms (SNPs) that could interfere with primer binding and assay 

design in the next workflow step. One gene was found to have an extremely heterogeneous 

promoter region and so was excluded from the analysis at this stage (Figure 3.7). A total of 

15 genes progressed to the final stage of the workflow.  

3.4.7 Pyrosequencing assay design 

The remaining 15 genes were assessed using Qiagen Pyrosequencing assay design software. 

Of the 15 genes remaining 11 showed a high CpG density within the promoter region that 

precludes their usefulness in pyrosequencing assay design. As such a total of four candidate 

genes were produced by the workflow (Figure 3.7). These genes were Esr1, Fxn, Igf2r, and 
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Rbl2. The promoters for each of the four genes in which assays were designed are shown in 

Figure 3.9 including full annotations. Both the Esr1 and Rbl2 genes were shown to have 

possible single nucleotide polymorphisms (SNPs) at their primer binding sites (Figure 3.9). 

Figure 3.9 Promoter sequences for the four candidate genes including pyrosequencing assay 

designs as produced by the QCpG package. 

The forward, sequencing and reverse primer annealing sites are shown highlighted in purple, 

red and blue respectively as indicated in the key above. CpG sites throughout the promoter are 

shown highlighted in yellow. Known SNP sites are shown in green indicating the major and 

minor alleles. 
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3.5 Discussion 

The work described in this chapter aimed to identify a set of candidate genes from an input 

gene expression dataset that could subsequently be analysed for promoter methylation. 

This was achieved and resulted in the selection of four suitable candidates that were then 

assessed using Pyroseqeuncing as detailed in Chapter 4. The workflow presented in this 

chapter was developed iteratively and represents a novel method for the identification of 

candidate genes from large datasets. It has wide ranging applications as it can be utilised in 

the interrogation not only of gene expression datasets but indeed any gene list based 

dataset where the objective is to assess any possible effect of differential promoter 

methylation. One of the advantages of this workflow is that it is possible to adapt at 

various stages to change the filtering stringency. For example at the most basic level it 

would be possible to employ a more or less stringent p value cut off at the outset to allow 

more or less genes into the pathway analysis stage. Further, if regions of the genome other 

than Promoter regions or indeed CpG islands were of interest it would be possible to 

substitute these search tools for ones more appropriate to the research question. 

As is the case with any such parsing methodology this workflow has inherent strengths and 

limitations which should be considered when evaluating how suitable this approach is for 

the identification of differentially methylated targets. The major advantage of this data 

processing method is that potential candidates are not dropped simply because they show a 

relatively small fold change in expression between the conditions of interest. This is 

because the pathway analysis approach used in this study included the entire list of genes 

that showed significant (p<0.05) differential expression between the two types of maternal 

nutrition i.e. standard chow and obesogenic diet. Utilising a traditional 2-fold cut off the 

total number of genes available for pathway analysis would have been 340 compared to the 

3704 generated without a fold change cut off. The result is that fewer genes are excluded 

from the analysis in the early stages and therefore there is greater potential for the 

discovery of novel candidates that would otherwise have been discounted. Indeed, the 

greater the number of genes considered, the stronger the evidence that a pathway of 

interest is altered by our dietary intervention. If such a pathway consists of a large number 

of genes but only a small number make it through to the pathway analysis stage then the 

statistical ability to discern the effect of the intervention on the pathway is limited. 

A further strength of this approach lies in the software used to perform the pathway 

analysis, or more specifically the ‘knowledge base’ which forms the backbone of the 
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software (Gusev et al., 2007). This manually curated database of gene and protein 

interactions draws its information from a large variety of sources including published 

scientific literature as well as KEGG (Kyoto encyclopaedia of genes and genomes) and a 

number of GO (gene ontology) databases. The broad spectrum of sources polled by this 

database and the regularity with which it is updated (weekly) ensures that pathway analysis 

queries are complete and include the most recently published findings relating to possible 

candidate genes. This could however also be seen as a limitation - pathway analysis 

protocols are limited by nature as they use prior knowledge to infer the likely molecular 

basis behind any changes observed. There is a possibility that novel findings are less likely 

as pathway programs poll prior published knowledge and if a novel gene or protein has not 

previously been shown to exert an effect in a context of interest it will not appear in the 

database.  

Other limitations of this methodology include the attrition rate as the workflow progressed 

– at each stage of the analysis genes were lost so that at the final stage a relatively small 

number of candidates remained. Although this demonstrates the suitability of this protocol 

for the distillation of a large gene list into a set of targeted candidates it also illustrates the 

fact that a sufficient number of genes are required at the outset if targets are to be 

identified. That is to say that input gene lists in the order of 1000s of genes are required, 

encompassing most gene expression array datasets. This limits the usefulness of this 

workflow to large datasets. Indeed when this work flow was attempted on a smaller scale 

with an initial input of some 50 potential candidates selected with a fold change cut off of 

2.0, the level of significance attainable in the IPA models were so low that it was not 

possible to discern which pathways were the most significant. Again this illustrates that an 

input gene list in the order or 1000s of genes is required for interrogation for this 

methodology to be useful. A major limitation of this methodology is in the number of 

genes that exhibit differential expression in response to the dietary intervention based on 

the P-value cut off of 0.05, but as previously mentioned this cut off could be revised if it 

proved unsuitable for an alternative application.  

A final aspect of this method that is subject to some limitations is the Pyrosequencing assay 

design phase. During this process the promoter sequence for each potential candidate, 

having been identified as a CpG island and in silico bisulphite modified, is assessed for 

suitability for a Pyrosequencing PCR assay. Pyrosequencing PCRs (pPCRs) share common 

traits with more conventional PCR reactions in that the forward and reverse primers need 

to have similar annealing temperatures for the assay to be viable (Shen et al., 2007a). These 
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primers must be located within the sequence to be analysed at loci that do not span CpG 

sites, as overlapping a CpG site that has been bisulphite modified will likely result in poor 

interaction between the primer and the sequence (Colella et al., 2003). In the case of pPCRs 

this is further complicated by the presence of the sequencing primer that must also be 

located at loci that are not subject to CpG methylation. This combination of factors means 

that the likely success of assay designs are biased to CpG density within the promoter and 

therefore extremely CpG dense promoters may only yield one viable assay design, rather 

than multiple options. This problem is exacerbated with shorter promoters where the 

number of potential primer annealing loci is further reduced. The implications of this are 

that a limited number of CpG sites can be assessed within promoters. This problem could 

potentially be overcome through the use of alternative sequencing technologies such as 

bisulphite patch PCR (Varley and Mitra, 2010) and bisulphite sequencing (Sato et al., 2011), 

which allow greater coverage of CpG sites within a given promoter. 

The approach used in this chapter is based on the premise that gene promoters are the 

likely site of functionally relevant differential methylation. There is however an increasing 

body of evidence suggesting that conserved gene sequences several kilobases up or 

downstream of promoter CpG islands, termed CpG island shores, harbour differential 

DNA methylation (Bell et al., 2011, Irizarry et al., 2009). There is also some evidence that 

these DNA methylation changes within CGI shores has functional consequences on gene 

expression levels (Cosgrove et al., 2011). As knowledge of the methylation variable regions 

of the genome increases it can inform the proposed workflow by shifting the focus from 

solely being on promoter regions to those flanking the promoter site and more distally. 

Although IPA represents a powerful tool in the identification differentially methylated 

candidates from a gene expression array dataset there are numerous other packages which 

can be used to achieve a similar goal. One such package is DAVID (Database for 

Annotation, Visualization, and Integrated Discovery) (Da Wei Huang and Lempicki, 2008), 

a free web-based tool which was designed to explore interactions between molecules and to 

allow direct mapping of gene names to gene ontology data. Although a powerful tool in 

itself, DAVID is not a true pathway analysis package and also does not poll the same 

number of data sources as IPA. Other tools which can be used to investigate large gene 

expression datasets include Metacore (Ekins et al., 2006), PathVisio (van Iersel et al., 2008) 

and GenMapp (Salomonis et al., 2007). Other investigators have used custom pathway 

design packages such as WikiPathways to write their own pathways of interest before 

polling the more conventional databases (McKay et al., 2008). 
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In summary, the workflow presented in this chapter represents a novel methodology for 

the identification of differentially methylated target genes from an expression dataset. 

These genes were then taken forward for further analysis, in this case DNA methylation 

analysis by pyrosequencing as presented in Chapter 4. 
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Chapter 4: Is Differential DNA Methylation 
Programmed by Exposure to an Obesogenic Diet In 
Utero? 

4.1 Background 

The development of a candidate gene analysis pipeline as detailed in Chapter 3 resulted in 

the identification of four target genes to be analysed for gene specific DNA methylation. 

These genes were selected based upon their differential gene expression in liver tissue in 

the mouse model of diet induced obesity previously described (Samuelsson et al., 2008). 

The current chapter describes the quantification of DNA methylation at specific CpG sites 

in the four selected target genes; Esr1, Fxn, Igf2r and Rbl2.  

Existing literature pertaining to the four target genes supports a potential role of epigenetic 

mechanisms in the regulation of their expression and in turn in the pathogenesis of obesity.  

The first of the four candidate genes, Esr1, encodes for oestrogen receptor alpha (ERα), 

one of the two ER isoforms. ERα is a DNA-binding transcription factor that regulates 

gene expression, the principal ligand of which is 17β-oestradiol (oestrogen) (Gao et al., 

2008). At low levels of circulating oestrogen ERα is predominantly confined to the cytosol, 

however as oestrogen is a steroidal hormone it is able to pass through cell membranes and 

bind to a receptor (Bjornstrom and Sjoberg, 2005). Oestrogen binding results in the 

migration of the receptor to the nucleus, receptor dimerization and binding of the receptor 

dimer to hormone response sequences of the DNA. The complex between DNA and ER 

then recruits the other transcription machinery and as a result proteins are expressed (Hall 

et al., 2001). 

In addition to the identification of this locus in an animal model of over-nutrition, there is 

also a body of evidence from human studies that underscores the relevance of this gene to 

studies of the developmental programming of obesity. ER is most commonly associated 

with breast cancer, where in approximately 70% of cases it is found to be overexpressed 

(Ali and Coombes, 2000). This overexpression may result in the development of tumours 

by stimulating over proliferation of mammary cells resulting in accumulated DNA damage 

and disruption of the normal apoptotic processes. SNPs in ESR1 have also been strongly 

implicated in the development of breast cancer (Stacey et al., 2007). More recently however 
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SNPs in ESR1 have also been associated with the development of obesity (Chen et al., 

2009a). 

In the context of epigenetic changes ESR1 is a key locus as it exhibits differential DNA 

methylation in disease cases compared to unaffected controls. Indeed DNA methylation 

changes in ESR1 have been linked to a number of cancers including breast, 

(Widschwendter et al., 2004), prostate (Li et al., 2004) and colorectal cancer (Issa et al., 

1994) as well as being linked with inflammation in ulcerative colitis (Tominaga et al., 2005). 

As such a decrease in expression levels of ESR1 may program an obese phenotype due to 

aberrant oestrogen signalling. As such this combination of both a known link to obesity 

and differential DNA methylation makes ESR1 a strong candidate for assessment. 

The second candidate is Fxn (Frataxin), the human homologue of which (FXN) codes for 

a ∼17 kDa protein the deficiency of which causes Friedreich Ataxia (FRDA), a 

neurodegenerative disorder that causes various systemic problems such as ataxia, loss of 

proprioception and cardiomyopathy. There are a number of common polymorphisms in 

FXN which give rise to this condition. Frataxin has been shown to have a variety of 

regulatory functions within the cell, such as iron homeostasis (Ramirez et al., 2010), 

regulation of respiration and control of antioxidant defences (Moreno-Cermeno et al., 

2010). It has also been characterized as an iron chaperone (Cook, 2010). Defects in the 

FXN control mechanism result in metabolic disturbances caused by the build-up of iron in 

the mitochondria and increased oxidative stress (Patel and Isaya, 2001, Marobbio et al., 

2011). Reduced expression of Fxn has also been recently associated with diet induced 

obesity in mice (Pomplun et al., 2007). Recent human studies have also shown that FXN 

exhibits differential DNA methylation in intron one which results in reduced gene 

expression and the development of FRDA (Castaldo et al., 2008), and as such Fxn 

represents a potentially interesting target in investigating the effects of DNA methylation 

on the pathogenesis of obesity. 

The third candidate gene identified is Rbl2, a member of the retinoblastoma (RB) family of 

tumour suppressor genes. It binds members of the DNA binding E2F transcription factor 

family, regulating preadipocyte proliferation and differentiation. Adipocyte number is a 

major determinant of fat mass in human adults and polymorphisms in RrlBL2 have been 

linked with aberrant control of adipocyte differentiation (Benetti et al., 2008).  

DNA methylation has previously been described within the promoter of Rbl2 (Al-Mahdawi 

et al., 2008), however these methylation changes have only been linked to Friedreich's 
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ataxia (Baghi, 2009). Rbl2 is a member of the retinoblastoma (RB) family of tumour 

suppressors that binds members of the E2F transcription factor family, regulating gene 

transcription. It plays a key role in the regulation of pre-adipocyte proliferation and 

differentiation (Dimas et al., 2009). The ability of adipocytes to proliferate is key in the 

maintenance of fat mass in adults (Spalding et al., 2008). Thus increased expression levels 

of Rbl2 may result in a decrease in adipocyte proliferation during development. Challenging 

these adipose cells with food high in fat and glucose may lead to cellular hypertrophy 

(Kubota et al., 1999), resulting in insulin resistance and increased fatty acid levels. This 

increase in circulating fatty acids might then exert effects both on the liver, resulting in 

non-alcoholic fatty liver disease and on peripheral tissues including the pancreas, causing 

type 2 diabetes (Kelley et al., 2003) (Boden, 2011). Although other epigenetic modifications 

have been described in the promoter of Rbl2 (Wang et al., 2008) there is no current 

evidence that differential DNA methylation of Rbl2 affects gene expression. The link 

between Rbl2 and type 2 diabetes, a known sequela of obesity, makes Rbl2 a potentially 

interesting target for downstream methylation analysis. 

The fourth and final candidate gene selected from the expression array dataset is Igf2r, a 

maternally imprinted gene that codes for the Insulin like growth factor 2 receptor. This 

receptor forms part of the insulin-like growth factor system along with insulin-like growth 

factors 1 and 2 (Igf1 and Igf2), the type 1 cell-surface receptor (Igf1r), the insulin receptor 

(Ir) and the circulating IGF-binding proteins (IGFBPs) (Jones and Clemmons, 1995). The 

actions of the IGFs are controlled by Igf1r and the insulin receptor and are involved in the 

moderation of cell growth and differentiation. Igf2 is subject to further control by Igf2r, 

which as a cell surface receptor is able to traffic Igf2 across the membrane, internalising it 

and making it available for degradation. Igf2r can therefore be classified as an inhibitor of 

cellular growth, with loss of function of Igf2r having been shown to promote foetal 

overgrowth (Lau et al., 1994) in mice. As an inhibitor of cellular growth IGF2R is a tumour 

suppressor gene and mutations in IGF2R have been associated with several human cancers 

including head and neck (Jamieson et al., 2003), lung (Kong et al., 2000) and breast (Oates 

et al., 1998). Changes in DNA methylation levels in the differentially methylated region 2 

(DMR2) of Igf2r have been associated with decreased gene expression and result in foetal 

overgrowth in sheep (Young et al., 2001). As such decreased gene expression levels at the 

Igf2r locus may program an obese phenotype by disrupting the insulin signalling pathway. 

Igf2r therefore represents a potentially promising candidate for the assessment of DNA 

methylation in relation to the development of obesity. 
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4.2 Aims and objectives 

The aim of this investigation was to test the hypothesis that maternal overnutrition during 

pregnancy alters DNA methylation in specific target genes in the offspring. Evidence of 

altered DNA methylation would then prompt further analysis to assess whether these 

changes mediate the development of an adverse cardiometabolic phenotype. To achieve 

this, methylation was quantified in DNA extracted from the livers of juvenile rodents. 

DNA methylation was quantified in several CpG sites in four genes prioritised through in 

silico appraisal of gene expression data. DNA methylation was analysed in relation to in utero 

exposure to a maternal obesogenic diet.  

4.3 Methods 

4.3.1 The Mouse Model 

The animal model utilised for this study is detailed in Chapter 3 (Samuelsson et al., 2008) 

Female C57BL/6J mice were randomised onto either a standard mouse chow (7% simple 

sugars, 3% fat, 50% polysaccharide, 15% protein, energy 3.5 kcal/g, n=20), or a highly 

palatable obesogenic diet (10% simple sugars, 20% animal lard 28% polysaccharide, 23% 

protein, energy 4.5 kcal/g, n=30) from weaning. After six weeks on the diet, animals were 

mated and stayed on the obesogenic diet throughout gestation. Tissues were harvested 

from offspring of these animals at multiple time points postnatally. For the present study 

DNA was extracted from liver tissue of 8-week-old male offspring using the DNeasy blood 

& tissue kit (Qiagen, Crawley, UK). Offspring from six control animals and six high fat fed 

animals were assessed. 

4.3.2 Bisulphite Modification 

1µg DNA sample in 20ul of water was bisulphite modified using the EZ DNA Methylation 

Gold Kit (Zymo, UK) to convert unmethylated cytosine to uracil. 130µl of CT conversion 

reagent was added to the sample and run on a SENSOQUESTTM labcycler using the 

following conditions: 98°C for 10 minutes, 64°C for 2.5 hours and held at 4°C. The 

samples were loaded into columns and were spun with 600µl of M-Binding Buffer. Samples 

were then washed with 100µl of M-Wash Buffer, desulphonated with 200µl of 

Desulphonation Buffer, washed twice with 200µl of M-Wash Buffer and eluted in 10µl of 

M-Elution Buffer. 
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4.3.3 Pyrosequencing PCR 

1µg of genomic DNA was bisulphite modified using the EZ Methylation GoldTM Kit 

(Zymo, Cambridge, UK) according to the manufacturers’ protocol. 1µl of bisulphite 

modified DNA was then amplified in a PCR reaction containing 12.5µl Hotstar TAQ 

Mastermix (Qiagen, UK), 2.5µl of 25mM MgCl2 (Qiagen, UK), 3.0µl dH2O, 0.5µl of 

100pmol/µl forward primer and 0.5µl of 100pmol/µl reverse primer (one of which is 

biotin labelled). The Mastermix excluding MgCl2 was made as follows: 12.5µl Hotstar TAQ 

Mastermix (Qiagen, UK), 5.0µl dH2O, 0.5µl forward primer and 0.5µl reverse primer (one 

of which is biotin labelled). In each Mastermix, 2.5ng DNA was added to each well. 

Primers are detailed in Table 4.1. 

Assay Forward Primer Reverse Primer Sequencing Primer 

Esr1 AGTAGGTTTGTTTAAGAGTAGA TTCCCTTAAATCTAATACA TTTTTTTTTTAGGTGGTTTA 

Fxn TTGTATAGGGTTGTAGTG CACATACTACTCCAACTC GGGTTGTAGTGTTGGAT 

Igf2r GGTTGAAGAAGAGAGAGTTA AACAACCCCAAAATTACT TGAGGT TTGGTTTTG 

Rbl2 TGGTTTTATTATTGAGAGAT TTACCTCCAAATACCATA AGTAGTAGGATAGGTTGTTG 

Table 4.1 Forward, reverse and sequencing primers for each assay. 

All forward and reverse primers were diluted to a standard concentration of 100pmol/µl. The 

second and third columns show the primer sequences for the initial pyro PCR. The final column 

shows the sequencing primer added to the PCR mix for sequencing. 

The PCR reactions were then run on a LabCycler (Sensoquest, UK) under the following 

reaction conditions: 

95°C for 15 minutes 

50 cycles: 95°C for 15 seconds 

60°C for 30 seconds 

72°C for 15 seconds 

72°C for five minutes 

4°C ∞ 
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The pyrosequencing PCR samples were then cleaned up to single stranded DNA using the 

Vacuum Prep Workstation (VPW) (Biotage, UK). 10µl of PCR product was added to each 

well of a PCR plate. To this was added 2µl of Streptavidin Sepharose beads and 38µl of 

binding buffer. Volumes were then made up to 80µl with dH2O. The plate was mixed 

vigorously for five minutes. Following mixing each well of a pyrosequencing plate (Qiagen, 

UK) was filled with 0.5µl of sequencing primer at 10µM. (Table 4.2) and 11.5µl of 

annealing buffer. The vacuum block tool was used to remove the PCR product and bead 

mix (the biotin labelled primer was bound to the bead) from the PCR plate, before a rinse 

with ethanol, denaturing buffer and a wash step and deposited in the pyrosequencing plate. 

The pyrosequencing plate was then incubated at 80°C for two minutes. The samples were 

then run in duplicate on a Pyromark MD Pyrosequencer (Biotage, UK). Any duplicate pairs 

not within 5% of one another were repeated. The dispensation order for each assay is 

displayed in Table 4.2. An example of the program output from the Pyrosequencer is 

shown in Figure 4.1. 

Assay Analysis sequence Dispensation sequence 

Esr1 C/TGC/TGTTGTTGAGTTTTTTGC/TGTGC/T

GC/TGGGGAGTTAGTTTGTAATTC/TGTC/T

GGTTGTTATTTATTATGATTATGAT 

GTCTGTCGTGTGAGTTAGTCGTAGTCTG

TCGGAGTAGTGTGATCAGTCGTG 

Fxn TTGC/TGC/TGTAGGAGTTTAGTC/TGC/TG

GC/TGTTC/TGGGGGGGGGGGGGGG 

GTAGTCTGTCGTAGAGTATGTCAGTCTG

TCAGTC 

Igf2r GGC/TGTTATTTTTC/TGTC/TGC/TGC/TGTG

AGTAATTTTGGGGTTGTTAGGT 

AGTCGTGATTCTGTCAGTCTGTCGTG 

Rbl2 AC/TGGGTC/TGGC/TGTTTC/TGC/TGGTTT

GAATGGTTGC/TGGGTTC/TGGGTTTTGAG 

GATCTGTCAGTCTGTTCAGTCGTGATGT

AGTCTGTCGTT 

Table 4.2 Dispensation orders for each assay. 

The first column shows the sequence to be analysed by the pyrosequencer with C/T indicating 

the CpG sites within the assay. The second column shows the actual sequence of nucleotides 

dispensed, calculated algorithmically for optimum efficiency in each assay. 
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Figure 4.1 Pyrosequencer output for Igf2r assay. 

The dispensation order as described in Table 4.2 is shown on the X-axis. Fluorescence is shown 

on the Y-axis. The red trace show the light emitted as each consecutive nucleotide is 

incorporated into the DNA strand. The grey highlighted areas show the CpG sites within the 

assay with the percentage methylation at each site in the light blue boxes. Site one is 53% 

methylated, Site two is 52% methylated, Site three is 54% methylated, Site four is 43% 

methylated and Site five is 52% methylated. 
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4.3.4 Validation 

Pyrosequencing PCR reactions that were designed de novo required validation across a range 

of known DNA methylation concentrations to ensure that there was no bias in the 

amplification of methylated or unmethylated fractions of the PCR product. To achieve this 

100% methylated and 0% methylated controls were produced. The 100% control was 

produced through use of the enzyme SssI Methylase to in vitro methylate mouse liver DNA 

samples. 4.4µl of DNA (for a DNA concentration of 2.5ng/µl), was combined with 2µl 

1xBuffer 2, 6µl SssI Methylase, 6.6µl dH2O and 1µl of 32mM SAM (diluted 1:8). Samples 

were then incubated at 30°C and SAM added every three hours for at least 16 hours. 

Respective samples were then pooled to make a stock. The 0% control was produced using 

whole genome amplification (WGA). Mouse DNA at a concentration of 50ng/µl was 

fragmented; a DNA library prepared, purified and amplified using the GenomePlex® 

Complete Whole Genome Amplification Kit (Sigma, Gillingham, UK). The DNA output 

was then purified using the DNA Clean and Concentrator-5 (Zymo, UK). Respective 

samples were then pooled to make a stock. These in vitro methylation (IVM) and whole 

genome amplification (WGA) controls were then mixed to produce a range of reference 

methylation percentages. To ensure that there was no preferential amplification of 

methylated or unmethylated DNA, reference mixes were produced both pre-PCR and 

post-PCR. These reference mixes are shown in Table 4.3. The pre and post PCR mixes 

were analysed by pyrosequencing in duplicate. 

  Pre-PCR reference mix Post PCR reference mix 

Methylation 

(%) 

Volume IVM 

DNA (µl) 

Volume WGA 

DNA (µl) 

Volume IVM 

DNA (µl) 

Volume WGA 

DNA (µl) 

95 34.90 of 100% 1.90 87.40 of 100% 4.60 

90 26.80 of 95% 1.50 67.00 of 95% 3.75 

75 18.30 of 90% 3.70 45.75 of 90% 9.25 

50 12.00 of 75% 6.00 30.00 of 75% 15.00 

25 8.00 of 50% 8.00 20.00 of 50% 20.00 

10 6.00 of 25% 9.00 15.00 of 25% 22.50 

5 5 00 of 10% 5.00 12.50 of 10% 12.50 

Table 4.3 Control DNA mixtures for pre and post PCR reference samples. 

The bold values show the percentage methylation required. IVM – In vitro methylated DNA 

WGA – Whole genome amplified DNA. The volumes show the amounts of each mix required to 

produce the reference serial dilution. 
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4.3.5 Statistical Analysis 

Quantification of DNA methylation by pyrosequencing generated an estimate of 

methylation at each specific CpG site expressed as a percentage measure for each DNA 

sample. All samples were run in duplicate and mean percentage methylation values were 

calculated. From this point onwards the mean of the duplicates will be referred to as the 

methylation level and mean methylation will represent the mean methylation across all 

CpG sites in any one amplicon. Given the expected non-normality of the methylation data 

(Figure 4.2) non-parametric analyses, specifically two-sample Wilcoxon rank-sum tests, 

were performed to compare mean percentages between experimental groups. Analyses 

were performed for each individual CpG site as well as the mean methylation level for each 

gene. Correlation between CpG sites in each gene was assessed using the Spearman’s rank 

correlation test. 

4.4 Results 

4.4.1 Distribution of DNA methylation data 

The use of non-parametric tests may have reduced the power to detect true associations if 

the distribution of methylation across these genes was in fact parametric. In the current 

dataset normality of the distributions was assessed by both visual inspection (Figure 4.2) 

and formally by the Shapiro-Wilk W test. However, the limited sample size makes 

interpretation of this latter test difficult. For instance, from inspection of the histograms, 

the methylation distributions appear skewed in three out of the four loci. However formal 

test of normality indicate no significant deviation from normality in any of the methylation 

measures. Evidence from data generated by myself and others in our group suggest that 

methylation data is generally not normally distributed (see subsequent chapters) and hence 

the decision was made to analysis the data using non-parametric tests (Figure 4.2). 
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Figure 4.2 Distribution of mean methylation in each gene stratified by experimental group. 

 The distribution of methylation data in each gene was assessed using the Shapiro-Wilk W test, 

all of the genes tested deviated significantly from a normal distribution other than Igf2r. 

Shapiro-Wilk p-values are quoted above each histogram. n = 12 for each separate histogram. 

4.4.2 Validation of pyrosequencing assays 

Validation was performed on all four of the target loci shown in Figure 4.2. The validation 

results for these assays are shown in Table 4.4. The validation was successful as the 

duplicates for each mixture were within 1.34 standard deviations, which is equivalent to 5% 

reproducibility. The validation results for both pre and post mix PCR were plotted as 

scatter graphs and a trend line and R2 value were calculated (Figure 4.3). Both R² values 

were very close to one indicating that the assay is not exhibiting bias in amplification 

dependent on the methylation status of the template DNA. This provided confirmation 

that the assay provided accurate quantification of methylation in the case of all four assays 

so they were taken forward and performed on all 12 experimental samples. 
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Expected 

Methylation 

(%) 

Observed Mean 

Methylation (%) 

in Igf2r assay 

Observed Mean 

Methylation (%) 

in Esr1 assay 

Observed Mean 

Methylation (%) 

in Fxn assay 

Observed Mean 

Methylation (%) 

in Rbl2 assay 

Pre-

PCR 

Post-

PCR 

Pre-

PCR 

Post-

PCR 

Pre-

PCR 

Post-

PCR 

Pre-

PCR 

Post-

PCR 

0 6.03 6.03 5.49 5.49 4.62 4.62 5.23 5.23 

5 8.61 8.33 7.62 6.12 4.23 5.14 4.42 5.03 

10 12.37 11.97 12.30 10.92 7.46 10.34 13.54 11.02 

25 25.64 24.06 24.34 25.21 22.07 24.59 29.87 25.28 

50 57.92 53.90 53.42 51.46 43.67 49.89 46.23 51.21 

75 71.29 72.79 72.25 76.02 69.89 73.97 71.47 75.47 

90 86.55 87.05 91.23 90.03 86.76 90.76 83.3 89.52 

95 93.97 94.22 92.34 94.78 91.91 95.02 91.12 94.52 

100 96.02 96.02 97.34 97.34 98.89 98.89 95.59 95.59 

Table 4.4 Validation results for all four assays. 

The expected methylation levels given the proportion of methylated to unmethylated DNA 

added are shown on the far left. The observed mean methylation values in both the pre and 

post-PCR reactions are shown in the subsequent columns. 

 
Figure 4.3 Validation curves for all four assays showing R

2
. 

The figures from Table 4.4 (above) are shown graphically here. The blue lines represent the 

pre-PCR mixes for each assay, the red lines the post-PCR mixes. The R
2
 values as shown on the 

graphs indicate the degree of concordance between expected and observed methylation. The 

closer the R
2
 value is to 1.0, the more closely they are correlated. 
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4.4.3 A comparison of gene specific methylation in experimental groups 

A total of 25 CpG sites spanning the four candidate genes were successfully assessed by 

pyrosequencing. 

Correlation between these CpG sites was assessed using Spearman’s rank correlation. All 

five CpG sites assessed in Igf2r demonstrated strong positive pairwise correlations (Figure 

4.4). In contrast, although some CpG sites spanning the Esr1, Fxn and Rbl2 genes showed 

strong pairwise correlations, there was no consistent pattern demonstrated across all CpG 

sites measured within these genes (Figure 4.4). Interestingly, however, as shown in Figure 

4.4 the correlation structure of the CpG sites spanning these three latter genes differed 

somewhat between control and exposed groups. 

Esr1 showed a median (IQR) level of methylation across all six sites of 5.30% (4.80, 5.55) 

in control animals and 4.74% (4.49, 5.45) in exposed animals (Table 4.5). Fxn showed a 

median (IQR) level of methylation across all six sites of 4.79% (4.64, 4.99) (Table 4.5). Rbl2 

showed a median (IQR) level of methylation across all six sites of 5.38% (5.33, 5.54). Igf2r 

showed a median (IQR) methylation level of 44.04% (42.19, 44.92) (Table 4.5). 

Table 4.5 presents median and IQR for methylation percentages measured at the individual 

CpG sites as well as the mean level across each amplicon. Overall, the median (IQR) 

methylation percentage across Esr1, Fxn, Igf2r and Rbl2 was 5.08% (4.69, 5.33), 4.69% (4.40, 

4.85), 45.47% (44.04, 48.54) and 5.42% (5.26, 5.65), respectively. With the exception of 

those mapping to Igf2r, no individual CpG site nor mean measure demonstrated significant 

differences in methylation levels between experimental groups (Table 4.5). For Igf2r, 

animals exposed to an obesogenic environment showed consistently higher methylation 

levels at each CpG site as well as the overall mean value (Table 4.5 and Figure 4.5). These 

differences were shown to be statistically significant (Wilcoxon test for mean methylation: z 

= -2.88, p =0.004). 
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Figure 4.4 Correlation between methylation at each CpG site stratified by exposure group. 

 Spearman’s rank correlation coefficient values (rho) shown. 1.00 is highly positively correlated 

-1.00 is highly negatively correlated, colour ranked accordingly. 
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 All animals Control Exposed Group 

comparison 

Gene 

(Site) 

n Median (IQR) 

Methylation (%) 

n Median (IQR) 

Methylation (%) 

n Median (IQR) 

Methylation (%) 

Wilcoxon rank-

sum z p-value 

Esr1         

Site 1 12 4.67 (3.36, 5.69) 6 5.40 (3.50, 5.55) 6 3.86 (3.23, 5.83) 0.16 0.873 

Site 2 12 4.67 (3.50, 5.66) 6 4.67 (3.71, 5.74) 6 4.42 (3.44, 5.57) 0.64 0.522 

Site 3 12 4.46 (3.40, 6.62) 6 5.80 (3.55, 7.15) 6 3.95 (3.26, 5.17) 0.96 0.337 

Site 4 12 4.53 (3.94, 5.53) 6 5.07 (3.82, 6.37) 6 4.53 (4.15, 4.80) 0.48 0.631 

Site 5 12 5.03 (4.22, 6.16) 6 5.58 (4.57, 6.07) 6 4.26 (3.66, 6.26) 0.80 0.423 

Site 6 12 5.49 (4.52, 5.97) 6 5.41 (4.84, 5.78) 6 5.64 (4.20, 6.91) -0.45 0.631 

Site 7 12 6.13 (4.98, 6.80) 6 5.68 (3.71, 6.18) 6 6.80 (5.19, 6.97) -1.60 0.423 

Mean 12 5.08 (4.69, 5.33) 6 5.30 (4.80, 5.33) 6 4.74 (4.49, 5.45) 0.64 0.522 

Fxn         

Site 1 12 7.07 (6.54, 7.51) 6 7.43 (6.81, 7.56) 6 6.63 (6.14, 7.35) 1.60 0.109 

Site 2 12 6.76 (6.01, 7.22) 6 7.16 (6.10, 7.33) 6 6.72 (5.60, 6.76) 1.44 0.150 

Site 3 12 3.39 (2.83, 4.37) 6 3.97 (3.07, 4.52) 6 2.96 (2.67, 3.91) 1.28 0.200 

Site 4 12 3.36 (2.57, 4.11) 6 2.89 (2.54, 3.55) 6 3.98 (2.81, 4.23) -1.28 0.200 

Site 5 12 3.62 (2.82, 4.41) 6 3.62 (2.71, 4.49) 6 3.62 (3.37, 4.06) 0.00 1.000 

Site 6 12 4.26 (2.90, 4.49) 6 4.41 (2.89, 4.50) 6 3.57 (2.91, 4.44) 0.48 0.631 

Mean 12 4.69 (4.40, 4.85) 6 4.79 (4.64, 4.99) 6 4.47 (4.36, 4.81) 1.28 0.200 

Rbl2         

Site 1 12 5.00 (4.11, 6.31) 6 5.32 (4.35, 6.32) 6 4.97 (3.93, 5.66) 0.64 0.521 

Site 2 12 4.93 (3.90, 6.86) 6 4.40 (3.40, 5.19) 6 6.04 (4.67, 6.94) -1.44 0.150 

Site 3 12 3.39 (3.23, 4.29) 6 3.72 (3.22, 4.72) 6 3.39 (3.28, 3.84) 0.32 0.749 

Site 4 12 5.96 (4.95, 7.96) 6 6.41 (5.13, 7.64) 6 5.63 (3.47, 8.28) 0.48 0.631 

Site 5 12 4.98 (4.48, 6.56) 6 4.81 (4.73, 6.39) 6 5.83 (4.24, 6.56) -0.32 0.748 

Site 6 12 5.95 (5.84, 6.22) 6 5.91 (5.83, 5.98) 6 6.03 (5.85, 6.31) -0.56 0.575 

Site 7 12 6.18 (5.78, 6.78) 6 6.14 (5.83, 6.70) 6 6.40 (5.74, 6.85) -0.32 0.749 

Mean 12 5.42 (5.26, 5.65) 6 5.38 (5.33, 5.54) 6 5.43 (5.20, 5.76) -0.32 0.749 

Igf2r         

Site 1 12 48.46 (47.19, 51.34) 6 47.19 (45.02, 48.09) 6 51.34 (49.11, 53.04) -2.88 0.003 

Site 2 12 48.26 (45.98, 50.83) 6 45.98 (44.43, 47.46) 6 50.83 (49.32, 52.79) -2.72 0.006 

Site 3 12 46.69 (45.04, 50.31) 6 45.04 (43.93, 45.94) 6 50.31 (48.05, 52.20) -2.72 0.006 

Site 4 12 38.55 (36.03, 39.89) 6 36.03 (34.66, 37.01) 6 39.89 (39.04, 41.51) -2.72 0.006 

Site 5 12 46.47 (45.03, 50.33) 6 45.03 (42.84, 45.82) 6 50.33 (48.24, 52.72) -2.88 0.003 

Mean 12 45.47 (44.04, 48.54) 6 44.04 (42.19, 44.92) 6 48.54 (46.72, 50.80) -2.88 0.003 

Table 4.5 DNA methylation across all assays and all sites stratified by experimental group. 

Median and IQR (Interquartile range) of percentage methylation shown for all of the samples 

combined and stratified by experimental group. Comparison between the exposure groups 

performed by Wilcoxon rank-sum test. 
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Figure 4.5 Mean methylation in DNA from livers of offspring from dams fed control and 

obesogenic diets before and during pregnancy. 

Box and whisker plots shown for all four assays stratified by experimental group. Differences 

between experimental groups were assessed using Wilcoxon rank-sum test. 
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4.5 Discussion 

Four candidate genes selected by in silico analysis of gene expression data (described in 

Chapter 3) were assessed for gene specific DNA methylation levels and levels compared 

between control and experimental groups. Three of the four candidate genes analysed 

showed generally low levels of DNA methylation with Esr1, Fxn and Rbl2 showing median 

methylation levels of approximately 5% (range 2.54% to 7.56%). There was also no 

significant difference between DNA methylation at levels at these loci (as appraised by 

pyrosequencing) in control versus exposed animals. This does not preclude the role of 

DNA methylation in transcriptional regulation in these genes, rather it shows that in the 

case of the CpG sites assessed, DNA methylation is at a relatively low level and therefore 

one might infer that this is unlikely to be exerting an effect on gene expression. There may 

be higher levels of DNA methylation at other CpG sites within the promoters of these 

genes, or indeed other regulatory regions, which down regulate gene transcription and this 

could be assessed using alternative technologies which allow more extensive fine mapping 

of methylation patterns across the locus such as Sequenom’s MassArray technology (Gloss 

et al., 2011). 

Esr1 showed relatively low levels of methylation in its promoter region. It is interesting to 

note this given that in breast cancer models Esr1 has been shown to be hypermethylated, 

albeit in tumour tissue (Ramos et al., 2010) and the analysis conducted in this study was 

undertaken in peripheral blood DNA. This suggests that Esr1 has a role in the 

pathogenesis of cancer, a logical conclusion given that Esr1 is a tumour suppressor gene 

(Suga et al., 2008). However Esr1 has also been implicated in the pathogenesis of obesity 

due to the key role it plays in the oestrogen signalling pathway. Oestrogen signalling is 

involved in the control of food intake and silencing of Esr1 in the hypothalamus (Musatov 

et al., 2007) and has been shown to lead to the development of the metabolic syndrome. 

The oestrogen signalling pathway, in which Esr1 plays a pivotal role, has also been shown 

to exert an effect in liver tissue, as oestrogens influence glucose metabolism through the 

activation of Esr1 (Riant et al., 2009). Hence, low levels of methylation of the Esr1 

promoter might be expected to lead to increased expression of Esr1. Further exploration of 

methylation across this 400kb locus is required to definitively assess the link between Esr1 

methylation and obesity.  

The role of Frataxin (Fxn) is partially understood and it is known to be implicated in the 

binding and chaperoning of iron groups in the mitochondria, a role that is essential for 
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metabolism and the prevention of oxidative stress (Bulteau et al., 2004). Frataxin deficiency 

in the pancreas has however been shown to induce diabetes (Ristow et al., 2003) and 

reduced expression of Frataxin has also been shown to exacerbate obesity in a rodent 

model subjected to an obesogenic diet. (Kuhlow et al., 2010, Pomplun et al., 2007). Thus, 

decreased levels of DNA methylation in the Fxn promoter could plausibly be expected to 

have a functional influence via increased levels of Fxn expression. However in these data 

methylation levels observed in the Fxn amplicon analysed were too low to discern a 

meaningful relationship between DNA methylation at this locus, maternal nutrition and 

obesity. 

In contrast to those genes discussed above, Igf2r showed median methylation levels of 

approximately 50% and also showed significant differences in DNA methylation between 

the two exposure groups (Table 4.5, Figure 4.5). This suggests that an increased level of 

DNA methylation is exerting an effect on phenotype via modulation of gene expression 

levels. The level of methylation observed in Igf2r is in line with current knowledge that the 

Igf2r locus is maternally imprinted (Sandovici et al., 2003, Latos et al., 2009). There is 

however potential for sex-specific effects of variable methylation at the Igf2r locus. Given 

that these data included only male animals it would be interesting to see if the same 

relationship is observed in female offspring. The key function of Igf2r is as an anti-

proliferative agent, and it achieves this through clearing Igf2 from the circulation (Braulke, 

1999). Igf2r knockout mice tend to be much larger than wild type mice (Lau et al., 1994). 

Increased DNA methylation in the differentially methylated regions of Igf2r might lead to a 

decrease in expression of Igf2r, resulting in a decrease in circulating Igf2 and therefore 

increased growth and the development of an obese phenotype.  

The correlation structure of site-specific DNA methylation differed between control and 

exposed groups (Figure 4.6). This may be indicative of site-specific differences in DNA 

methylation between the groups. Alternatively, this may be a feature of random variation in 

DNA methylation between individuals that is unrelated to exposure status. Larger sample 

sizes would be helpful in gaining a better understanding of DNA methylation correlation 

structure. Understanding the short- and long-distance relationship between methylation at 

specific CpG sites is crucial to understanding the functional importance of this form of 

epigenetic variation (Bell et al., 2011). Where possible one should always consider the local 

methylation patterns rather than isolated CpG sites, this is reflected in the use of mean 

methylation levels across assays rather than locus specific results. 
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These data provide an interesting starting point in the investigation of the developmental 

programming of obesity. Demonstrating a causal link between gene specific differential 

DNA methylation and gene expression is a plausible target for future research. A rodent 

model with multiple time points and tissue types would be ideal, in which animals could 

have DNA and RNA extracted at birth and at various time points to assess the temporality 

of any changes in DNA methylation and if they map to gene expression changes and 

indeed phenotype. (Plagemann et al., 2009)  

The data presented show that gene specific methylation measurements the Igf2r promoter 

differed between exposure groups in 8-week-old rodents. In attempting to identify the 

mechanisms underpinning the developmental programming of obesity (Remacle et al., 

2011) it is clear that the temporality of any change in DNA methylation signatures is an 

important consideration. The current findings do not allow conclusions to be drawn 

regarding whether the observed changes in Igf2r methylation were present at birth or 

whether they arose secondary to other physiological changes consequent upon the maternal 

obesogenic environment. A key question is whether DNA methylation at this locus is 

affected by early life exposures such as the nutritional insult to which these animals were 

exposed (Sebert et al., 2011) and if so whether these methylation changes persist through 

early life and into adulthood. To investigate this DNA methylation analysis of the tissue of 

interest would have to be undertaken at multiple time points including in the foetus, 

neonate and later in life. This would allow the stability of epigenetic marks to be considered 

in light of the emergence of programmed phenotypic changes. 

Given these findings it would be interesting to replicate this experiment in a human cohort 

study. As is often the case with translational studies however there is an issue of tissue 

comparability that should be considered. As both the gene expression and DNA 

methylation analysis in these rodents was performed on liver tissue, these data only can 

only inform tissue specific conclusions (Thompson et al., 2010a). In order for this 

experiment to be replicated in humans liver tissue would be required for DNA/RNA 

extraction. This could take the form of a liver biopsy but this invasive procedure may 

preclude the collection of liver samples, especially multiple samples collected over a period 

of time. An alternative would be to repeat this experiment in rodents using DNA extracted 

from peripheral blood to establish if methylation levels are similarly altered or at least 

reflective of the target tissue in a sub-set of loci. This would then allow peripheral blood 

samples to be used in humans to enable a translational study. 
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There are a number of points which need to be considered in relation to this dataset, 

including for example the fact that only male offspring were assessed in both the initial 

gene expression and the following DNA methylation analyses. The reasoning behind this is 

sound, with commonly observed sex discordance in programmed effects in animal models 

(McKay et al., 2011b, Khan et al., 2003, Samuelsson et al., 2008). However it would be 

interesting to perform a similar experiment in both male and female animals to observe sex 

specific differences in gene specific DNA methylation, particularly given the role of 

oestrogen in the mechanism of action of Esr1 and the imprinted nature of the Igf2r locus. 

Although the links between DNA methylation and gene expression have been well 

characterised (Deaton and Bird, 2011), DNA methylation is only one of many forms of 

regulation of gene expression, so lack of findings in this regard do not detract from the 

potential importance of differential gene expression or other epigenetic mechanisms which 

may be involved in regulating this. 

Also, despite an attempt to target the in silico analysis to highlight differentially expressed 

genes which were also implicated as differentially methylated targets, a number of the genes 

selected showed overall low levels of methylation. Although this does not preclude these 

genes showing developmental programming effects, as more bioinformatic resources 

become available differentially methylated targets should become easier to locate. Currently 

there is no centralised repository of DNA methylation data that makes searching for 

information on the methylation status of a gene a labour intensive process. However with 

future advances in text data mining and information integration this methodology should 

become more commonplace. 

In summary all four genes interrogated for promoter methylation using pyrosequencing 

showed some level of methylation. However only the Igf2r promoter, the locus in an 

imprinted gene, showed differences between the two experimental groups. This suggests 

that maternal overnutrition during pregnancy may affect DNA methylation in the offspring 

in a gene specific manner. This gene would benefit from more thorough investigation using 

higher resolution sequencing in a larger number of samples to determine if DNA 

methylation in Igf2r is robustly implicated in the programming of obesity. 



 

101 

 

Chapter 5: Is Differential DNA Methylation 
Associated with Adiposity in Childhood? 

5.1 Background 

Changes in epigenetic patterning and particularly changes in the levels of DNA methylation 

can have a profound effect on an individual’s phenotype (Feinberg, 2007) because of the 

impact of these changes on gene expression. However, there is still limited empirical data, 

outside the cancer field, to support this widely held postulate. To gain a deeper 

understanding of the aetiology of pathologies such as developmentally programmed obesity 

one must first appreciate the mechanisms involved, including epigenetics. Numerous 

studies have identified, or suggested, factors which may alter patterns of DNA methylation 

in experimental models (Burdge et al., 2005, Waterland et al., 2007, McKay et al., 2011a, 

Mathers et al., 2010) These interventions include nutritional insults in utero, such as the 

depletion of maternal folate supply (McKay et al., 2011b), as well as maternal 

environmental exposures such as polycyclic aromatic hydrocarbons (PAHs) found in 

cigarette smoke (Herbstman et al., 2009). However, there is currently very little published 

literature which directly links changes in exposure to these environmental factors with 

altered epigenetic patterning and, in turn, with perturbed adiposity. 

In considering developmental programming of disease the term ‘critical window’ is 

commonly used to describe periods in the developmental process during which key 

exposures can influence an individual’s phenotypic outcome (Symonds et al., 2006). 

Gestation represents such a critical window because in very early life many physiological 

systems become ‘hard-wired’ and there is some evidence that appetite levels may be 

programmed during this life-stage (Bouret, 2009). This programming may arise through 

epigenetic marks being ‘captured’ and perpetuated, eliciting their effect on gene expression 

at a later stage in the life course (Mathers and McKay, 2009). Alternatively epigenetic 

markings established in early life may have a more proximal effect on gene expression, with 

the resultant altered gene expression inducing cumulative physiological effects during the 

life course. Life course approaches have been applied widely in epidemiology and represent 

a domain of the epidemiology field in their own right (Ben-Shlomo and Kuh, 2002, Kuh et 

al., 2003, Liu et al., 2010b). These approaches now routinely involve making measurements 

in a cross section of the population to assess the presence of an epigenetically induced 

change in physiological measurement of biomarker (Bjornsson et al., 2008). These 

measurements may be circulating concentrations of lipids or hormones or alternatively may 
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involve the assessment of samples of DNA or RNA. Of particular interest to us are 

measurements of epigenetic modifications, namely aberrant DNA methylation (Wang et al., 

2010a). The question that can then be addressed is ‘do early life events mark the epigenome 

with later consequences for childhood or adult health?’ (Waterland, 2009). This can be 

achieved by analysing epigenetic patterns at a single time-point and relating these to later 

outcomes. Exposures preceding the time at which DNA was sampled can then be assessed 

to see if they influence epigenetic patterns. Such approaches rely on the assumption that 

the sample in question has been captured within a ‘critical window’ (Symonds et al., 2006). 

As epigenetic patterns change over time (as do many life course exposures such as 

infection and nutrition) a single sample snapshot may not provide the full picture 

(Christensen et al., 2009). However, it may provide some insight into the relationship 

between early life exposures, epigenetic patterns and adiposity (Lillycrop and Burdge, 

2010). Much more work is required to establish not only the critical windows of exposure 

(current evidence pointing to in utero and early postnatal life) but also the critical windows 

of epigenetic plasticity (Vickers, 2011). 

Epigenetic modifications provide a mechanism whereby evidence of the experience of early 

life exposures are ‘captured’ by the genome and exert effects on gene expression and health 

in later life. The use of animal studies including an early life nutritional insult is one way of 

assessing if obesity risk can be ‘programmed’ (Weaver et al., 2004). One such model 

exposes rodents to overnutrition in utero which results in an obese phenotype in later life 

(Samuelsson et al., 2008). In early life, these animals show altered levels of expression in 

genes implicated in the pathogenesis of obesity. It is plausible that these differential levels 

of expression may be regulated by epigenetic processes, namely DNA methylation 

(Movassagh et al., 2010). Many genes involved in relevant pathways such as appetite 

regulation and fat deposition are CpG dense and these so called CpG islands (CGIs) can 

harbour differential levels of methylation (Shen et al., 2007b). If a CGI is located in the 

promoter region of key regulatory gene then differential methylation may have functional 

consequences (Palou et al., 2011). Altered levels of DNA methylation in regulatory regions 

such as the transcription start site (TSS) could alter the tertiary structure of the complex 

making it more difficult for transcription factors and other transcription machinery to bind 

(Kass et al., 1997). Alterations in the binding of transcription machinery affect gene 

expression (Sengupta et al., 2003, Palacios et al., 2010). 

Insulin-like growth factor 2 (IGF2) is part of the IGF gene family that encode a group of 

proteins expressed predominantly in liver but also at lower levels in other tissues. IGF2 
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plays a role in mammalian growth by influencing foetal cell division and differentiation and 

possibly metabolic regulation (Constancia et al., 2002). IGF2 is an imprinted gene, that is a 

gene in which only one of the two parental alleles of a locus is expressed (Wang et al., 

2010b). This mechanism is controlled by DNA methylation patterns in the IGF2-H19 

region and targeted disruption of the IGF2 gene in mice (Kalscheuer et al., 1993) shows 

that the paternally expressed IGF2 gene is essential for normal embryonic growth. Aberrant 

expression of the IGF2 protein has been linked with a number of conditions including 

Beckwith–Wiedemann syndrome (Eggenschwiler et al., 1997), a syndrome characterised by 

neonatal overgrowth and the risk of developing Wilms’ kidney tumours. Loss of IGF2 

imprinting has also been observed in a number of cancers (Uribe-Lewis et al., 2011) 

(Woodson et al., 2004, Feinberg, 1999, Chen et al., 2000). 

Recent gene-association studies have also linked polymorphisms in the IGF2 gene to body 

weight (Gomes et al., 2005). The IGF2 gene is located close to the insulin gene on 

chromosome 11p in humans and this region of the genome has been strongly implicated in 

the regulation of childhood and adult body weight and fat mass (Gaunt et al., 2001, 

Rodriguez et al., 2004, Ukkola et al., 2001, Zhang et al., 2010b). 

In addition to evidence that IGF2 methylation is associated with various phenotypic traits, 

there is also emerging evidence to suggest that early life exposures can influence 

methylation at this locus (McKay et al., 2011b, Gong et al., 2010, Zhang et al., 2010b). Of 

particular interest is the fact that malnutrition in early life may precipitate changes in IGF2 

methylation measured in later life. Recent work on the Dutch Hunger Winter cohort 

showed that individuals undernourished in the periconceptional period exhibit lower IGF2 

methylation levels in blood cells at age 60 years, when compared with their unexposed 

same-sex siblings (Heijmans et al., 2008). These findings make IGF2 an ideal candidate for 

further analysis of the role of aberrant DNA methylation in the developmental 

programming of obesity. 

The TACSTD2 gene encodes for the Tumour-Associated Calcium Signal Transducer 2, a 

protein that transduces intracellular calcium signals and acts as a cell surface receptor 

(Tsujikawa and Tano, 2007). Mutations of this gene are most strongly associated with 

gelatinous drop-like corneal dystrophy (GDLD), an autosomal recessive disorder 

characterized by severe corneal amyloidosis (Zhang and Yao, 2010). However recent 

studies in our group showed that catch up growth is associated with both TACSTD2 DNA 

methylation and gene expression at age 12 years. Catch-up growth occurs in young children 

after a period of growth deficit when the insult causing the deficit is removed. It consists of 
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a period of abnormally high growth followed by a progressive slowing of growth rate until 

the normality has been reached (Williams, 1981). There is evidence that catch-up growth is 

associated with the development of obesity in both human studies (Ong et al., 2000) and 

mice (Ozanne and Hales, 2004). Interestingly, the studies in our group also showed that 

differential DNA methylation in the TACSTD2 locus was also associated with childhood 

phenotypic traits including weight, waist, HDL and total cholesterol and fat mass (Groom 

et al., 2012).  

 Thus, two candidate genes that have been implicated in childhood obesity were 

interrogated to assess whether DNA methylation in these genes was associated with 

adiposity in childhood. 

5.2 Aims and objectives 

The aims of this chapter were to assess it the gene loci IGF2 and TACSTD2 exhibited 

differential DNA methylation within their promoter regions. It also set out to test if any 

such differential DNA methylation was associated with phenotypic markers of metabolic 

health including weight, bioimpedance and BMI at age eight years.  

5.3 Methods 

5.3.1 The Gateshead Millennium Study 

The Gateshead Millennium Study (GMS) (Parkinson et al., 2011) recruited 1029 mothers 

living in Gateshead, North East England who gave birth to children between June 1999 

and May 2000. These women were invited to take part in two main studies: a Feeding and 

Growth Study and an Iron Deficiency Study. Initially parents completed a series of 

questionnaires relating to feeding behaviour, development and illnesses. Each child also 

attended a health check at 13 months. Extensive data on early growth were collected. Two 

further questionnaires were then undertaken, one at 30 months and another at five to six 

years. A further 619 of the children and their parents were revisited between October 2006 

and December 2007 to obtain anthropometric and physical activity measurements, to 

complete a further questionnaire and to collect saliva samples for DNA extraction. A sub-

set of these samples and information were utilised for the study described here. The sub-set 

did not differ from the complete cohort in any of the parameters analysed with the 

exception of age in the IGF2 sub-group who were on average 0.17 years younger than the 

cohort as a whole (Table 5.1). 
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5.3.2 DNA extraction 

Saliva samples were collected from both mothers and children using the Oragene DNA kit 

(DNA Genotek, Ontario, Canada). Samples were incubated at 50°C overnight before being 

separated into two 1ml aliquots for biobanking and three 500ul aliquots for DNA 

extraction. 20l of Oragene DNA Purifier was added to each DNA aliquot before a 10-

minute incubation on ice. Samples were then spun at 13,000rpm for five minutes, the 

supernatant transferred to a new 1.5ml tube before addition of 500l of room temperature 

100% ethanol. Samples were mixed gently by inversion and incubated at room temperature 

for 10 minutes. Samples were then centrifuged at 13,000 rpm for two minutes. The 

supernatant was discarded and the pellet washed with 250l 70% ethanol. The pellet was 

then air dried before resuspension in 100l Tris EDTA buffer. Following an overnight 

incubation at room temperature the samples were quantified on a NanoDrop 1000 

Spectrophotometer (Thermo, UK). 

5.3.3 Exposure and phenotypic data 

Early life exposures that might plausibly influence DNA methylation patterns at age eight 

years were included in the current study. Gestational age (weeks), sex and birth weight (g) 

were recorded from delivery records. Birth weight z-score was derived by subtracting mean 

birth weight for the cohort from measured birthweight for the individual and dividing this 

result by the standard deviation of the cohort (Parkinson et al., 2011). Thrive index (TI) as 

a measure of conditional weight gain was derived from algorithms derived by earlier work 

on this study cohort conducted by Wright et al (Wright et al., 1998, Wright et al., 1994). 

The thrive index methodology uses the weight of the infant during the early weeks of its 

life as a baseline with which to compare subsequent weights which have been adjusted for 

regression to the mean. This requires the transformation of weight measures into standard 

deviation scores using a computer algorithm and allows the weight gain of infants who are 

not following usual growth trajectories to be more effectively monitored. Maternal age, 

height, weight and BMI and paternal age, height, weight and BMI were collected at the 

2006/2007 follow-up clinic visit. Height was measured to 0.1 cm using a Leicester portable 

height measure with the head in the Frankfort plane. Weight was measured to 0.1 kg and 

bioimpedance was also measured using TBF-300MA scales (Tanita Corp., Japan). BMI was 

calculated from the measured height and weight for each individual.  
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5.3.4 Pyrosequencing of IGF2 and TACSTD2 loci 

1µg of genomic DNA was bisulphite modified using the EZ Methylation GoldTM Kit 

(Zymo, Cambridge, UK) according to the manufacturers’ protocol. 1µl of bisulphite 

modified DNA was then amplified in a PCR reaction containing 12.5µl Hotstar TAQ 

Mastermix (Qiagen, UK), 2.5µl of 25mM MgCl2 (Qiagen, UK), 3.0µl dH2O, 0.5µl of 

100pmol/µl forward primer and 0.5µl of 100pmol/µl reverse primer (one of which is 

biotin labelled). The Mastermix excluding MgCl2 was made as follows: 12.5µl Hotstar TAQ 

Mastermix (Qiagen, UK), 5.0µl dH2O, 0.5µl forward primer and 0.5µl reverse primer (one 

of which is biotin labelled). In each Mastermix, 2.5ng DNA was added to each well. 

Primers are detailed in Table 5.1 and their localisation in the context of the genes shown in 

Figure 5.1 

Assay Forward Primer Reverse Primer Sequencing Primer 

IGF2 AGTAAGAAATTGGATAGG AAACCCCAACAAAAACCACT TTTTTTAGGAAGTATAGTTA 

TACSTD2 CTAGGTACTGTACTGTCA ACTCACTAGTACGACAATA TCTAACCAGGTAATTGTCCAC 

Table 5.1 Forward, reverse and sequencing primers for both assays. 

Forward and reverse primers were diluted to a standard concentration of 100pmol/µl 

 
Figure 5.1 Positions of CpG sites within IGF2 and TACSTD2 amplicons. 

Promoter is indicated in green, CpG island in red. The TACSTD2 amplicon contains seven CpG 

sites indicated in red, the IGF2 amplicon contains three CpG sites.  
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The PCR reactions were then run on a LabCycler under the following reaction conditions: 

95°C for 15 minutes 

50 cycles: 95°C for 15 seconds 

60°C for 30 seconds 

72°C for 15 seconds 

72°C for five minutes 

4°C ∞ 

The pyrosequencing PCR samples were then cleaned up to single stranded DNA using the 

Vacuum Prep Workstation (VPW) (Biotage, UK). 10µl of PCR product was added to each 

well of a PCR plate. To this was added 2µl of Streptavidin Sepharose beads and 38µl of 

binding buffer. Volumes were then made up to 80µl with dH2O. The plate was mixed 

vigorously for five minutes. Following mixing each well of a pyrosequencing plate (Qiagen, 

UK) was filled with 0.5µl of sequencing primer at 10µM and 11.5µl of annealing buffer. 

The vacuum block tool was used to remove the PCR product and bead mix (biotin labelled 

primer bound to bead) from the PCR plate, before a rinse with ethanol, denaturing buffer 

and a wash step and deposited in the pyrosequencing plate. The pyrosequencing plate was 

then incubated at 80°C for two minutes. The samples were then run in duplicate on a 

Pyromark MD Pyrosequencer (Biotage, UK). Any duplicate pairs not within 5% of one 

another were repeated. An example of the program output from the Pyrosequencer is 

shown in Figure 5.2. 

5.3.5 Statistical analyses 

Pyrosequencing generated an estimate of methylation at each CpG site expressed as a 

percentage for each DNA sample. Samples were run in duplicate and mean percentage 

methylation values calculated. From this point the mean of the duplicates will be referred 

to as the methylation level and mean methylation will represent the mean methylation 

across all CpG sites in any one amplicon. Analyses were performed for each individual 

CpG site as well as the mean methylation level for each gene. Correlation between CpG 

sites in each gene was assessed using the Spearman’s rank test. Data was tested for 

normality using the Shapiro-Wilk normal data test. The representative nature of the 
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subgroups was tested using the Wilcoxon rank-sum test. The association between DNA 

methylation and phenotypic traits were assessed by multiple regression adjusting for age 

and sex. Further analysis was performed by Spearman’s correlation stratifying for sex. 

 

 

 
Figure 5.2 IGF2 Pyrogram. 

Note the sequence being analysed on the X-axis. The grey bars indicate the CpG sites within 

the gene, the red peaks the light emission as each consecutive nucleotide is incorporated into 

the DNA strand. In this sample Site one is 45% methylated, Site teo is 54% methylated and Site 

three is 49% methylated. 

5.4 Results 

In a cross-sectional study DNA samples collected from children in the Gateshead 

Millennium Study (GMS) were analysed to assess whether DNA methylation at age eight 

was associated with indices of body composition at the same age. 

5.4.1 Cohort details and sample selection 

Individuals were chosen at random from the GMS based on the availability of DNA 

samples. Gene specific DNA methylation analyses for IGF2 and TACSTD2 were 

performed separately at different points in time so the overlap between samples analysed in 

both was not complete. The overlap between samples assessed with respect to DNA 

methylation across the two loci is summarised in Table 5.2. A total of 132 children (68 

male, 64 female) were analysed with respect to IGF2 methylation while a total of 90 

children (45 male, 45 female) were analysed with respect to TACSTD2 methylation. To 

ensure that these sub-sets were representative of the whole cohort the outcome variables 
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were assessed using the Mann-Whitney U test or T test depending on normality of the data 

(Table 5.2). The majority of outcome variables in either the IGF2 or TACSTD2 sub-group 

did not differ significantly from the whole cohort with the exception of age in the IGF2 

sub-group who were on average 0.17 years younger than the cohort as a whole (Mann-

Whitney U z = 3.42, p=6.00E-4). The TACSTD2 sub-group was on average 2.33cm taller 

than the whole cohort (T test z=-3.90, p=0.0001). Thus the two sub-groups differed 

between one another with respect to age and height (Table 5.3). 

With the exceptions of bioimpedance in the IGF2 sub-group (Shapiro-Wilk t = -2.40, 

p=0.018) and bioimpedance in the TACSTD2 sub-group (Shapiro-Wilk t = -2.00, 

p=0.048), there were no significant differences between the two subgroups for any of the 

measured phenotypic characteristics (Table 5.3). 
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Table 5.2 Comparison between sub-groups in overall cohort. 

‡ Median, lower and upper percenPles are presented and comparisons tested by Wilcoxon 

rank-sum, unless otherwise stated. † Mean and standard deviations are presented and 

comparisons tested by T-test. * 132 children from the GMS were utilized for analyses in IGF2 

methylation, hence comparisons were made between the remaining participants. ** 90 

children from the GMS were utilized for analyses in TACSTD2 methylation, hence comparisons 

were made between the remaining participants. ** 29 children were common to both gene-

specific analysis sub-groups, hence comparisons were made between the remaining. 

 Sub-group A Sub-group B Comparison‡ 

Phenotypes at age 

eight years‡ 

n Median (IQR) n Median (IQR) Stat  

(z or t) 

p-value 

IGF2 Sub-group vs. Remaining GMS Cohort*     

Age (years) 132 7.33 

(7.00, 7.58) 

477 7.50 

(7.17, 7.83) 

3.42 6.00E-04 

Height (cm)† 132 124.80 

(120.40, 128.68) 

467 125.25 

(121.60, 129.15) 

1.10† 0.272 

Weight (kg) 131 25.30 

(22.45, 28.70) 

466 25.58 

(22.75, 29.1) 

0.41 0.684 

Bioimpedance (Ω) 132 624.25 

(587.75, 668.75) 

462 632.00 

(592.00, 676.00) 

1.11 0.266 

BMI 131 16.48 

(15.52, 17.49) 

466 16.29 

(15.20, 17.92) 

-0.36 0.719 

TACSTD2 Sub-group vs. Remaining GMS Cohort**     

Age (years) 90 7.58 

(7.25, 7.83) 

519 7.42 

(7.08, 7.75) 

-1.43 0.152 

Height (cm) † 90 127.13 

(123.50, 131.00) 

509 124.80 

(121.00, 128.50) 

-3.90† 0.0001 

Weight (kg) 90 25.68 

(21.50, 34.50) 

507 25.50 

(23.00, 28.40) 

-1.43 0.153 

Bioimpedance (Ω) 89 650.50 

(581.50, 713.50) 

505 628.50  

592.00, 668.00) 

-1.76 0.078 

BMI 90 14.96 

(14.31, 20.81) 

507 16.31 

(15.51, 17.5) 

0.19 0.849 

TACSTD2 Sub-group vs. IGF2 Sub-group***     

Age (years) 61 7.67 

(7.25, 7.92) 

103 7.25 

(7.00, 7.67) 

-3.43 0.0006 

Height (cm) † 61 127.90 

(124.30, 131.00) 

103 124.60 

(119.40, 128.25) 

-4.00† 0.0001 

Weight (kg) 61 28.80 

(21.80, 34.60) 

102 25.40 

(23.40, 28.35) 

-1.71 0.088 

Bioimpedance (Ω) 60 647.25 

(579.25, 712.25) 

103 623.50 

(588.00, 657.00) 

-1.77 0.078 

BMI 61 18.34 

(14.31, 21.26) 

102 16.49 

(15.73, 17.30) 

-0.01 0.993 
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Table 5.3 Phenotypic variables measured in children at age eight years. 

Data shown for all of the individuals studied and stratified by sex. ‡ Shapiro-Wilk data normal 

test, †T test, *Mann-Whitney U test. 

 Boys only Girls only Normalcy 

test‡ 

Sex 

comparison 

Phenotypes at 

age eight years 

n Median 

(IQR) 

n Median 

(IQR) 

p-value Statistic 

(z or t) 

p-

values 

IGF2 

sub-group 

       

Age (years) 68 7.38 

(7.04, 7.58) 

64 7.33 

(7.00, 7.67) 

0.454 0.14†  0.893†  

Height (cm) 68 126.15 

(119.15, 130.25) 

64 124.58  

120.83, 127.35) 

0.367 1.07†  0.288†  

Weight (kg) 67 25.30 

(22.45, 29.4) 

64 25.85 

(22.58, 28.58) 

0.001 -0.01* 0.995* 

Bioimpedance (Ω) 68 617.25 

(577, 647.75) 

64 634.50 

(597.75, 692.25) 

0.056 -2.40†  0.018†  

BMI 67 16.27 

(15.52, 17.15) 

64 16.74 

(15.4, 17.74) 

0.001 -0.95* 0.348* 

TACSTD2 

sub-group 

       

Age (years) 45 7.42 

(7.17, 7.75) 

45 7.58 (7.33, 7.83) 0.861 -1.35† 0.181† 

Height (cm) 45 127.90 

(122.90, 130.95) 

45 126.15 

(123.70, 131.00) 

0.806 0.31† 0.754† 

Weight (kg) 45 26.00 

(21.50, 36.25) 

45 25.00 

(21.45, 34.00) 

1.00E-5 0.38* 0.702* 

Bioimpedance (Ω) 45 622.50 

(556.00, 696.00) 

44 679.25 

(592.00, 741.25) 

0.412 -2.00† 0.048† 

BMI 45 14.97 

(14.54, 20.51) 

45 14.90 

(14.08, 20.81) 

1.00E-6 0.58* 0.564* 
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5.4.2 IGF2 methylation  

Methylation at three CpG sites in IGF2 was assessed using Pyrosequencing in children 

from the GMS cohort as described above. Correlation between CpG sites in IGF2 was 

assessed using Spearman’s rank correlation. IGF2 showed strong positive correlation 

between CpG sites with rho values of greater than 0.60 (Figure 5.3). This indicated that 

mean methylation across all three sites could be used in downstream analysis without 

significant loss of sensitivity as mean methylation across all three sites was a representative 

measure of the separate methylation values. IGF2 showed a median level of methylation 

across all three sites of 42.72 (38.72, 47.31) (Table 5.4).  

 
Figure 5.3 Chromosomal position of IGF2 gene and correlation between CpG sites. 

Degree of correlation is shown by colour coding, positive correlation is shown in green.  
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Table 5.4 IGF2 methylation stratified by sex. 

Median methylation between males and females was compared by Mann-Whitney U test. IGF2 

methylation is shown separately for each of the three CpG sites and stratified for sex. IQR - 

Interquartile range. 

 

No significant differences in IGF2 DNA methylation were found between the sexes when 

analysed using the Mann-Whitney U test (z=-0.75, p=0.46) (Figure 5.4). 

  
Figure 5.4 Comparison of mean IGF2 methylation between sexes. 

Mean % methylation shown across the IGF2 gene, box whisker plots shown for each sex. p = 

0.46. 

 

 

 Boys only Girls only Sex comparison 

IGF2 

CpG 

Site n 

Median % 

Methylation (IQR) n 

Median % 

Methylation (IQR) 

Statistic 

(z) 

p-

value 

Site 1 68 38.55 

(32.77, 43.86) 

64 38.21 

(33.92, 46.4) 

-0.72 0.472 

Site 2 68 43.66 

(39.1, 48.32) 

64 43.82 

(40.865, 49.11) 

-0.54 0.591 

Site 3 68 44.74 

(40.39, 49.71) 

64 45.57 

(40.94, 50.21) 

-0.87 0.385 

Mean 68 42.01 

(38.98, 46.19) 

64 43.33 

(38.49, 47.73) 

-0.75 0.455 
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The relationship between IGF2 methylation and age was assessed using Spearman’s 

correlation (Table 5.5). IGF2 DNA methylation was found to be positively associated with 

age both at in site one (rho=0.43, p=2.08E-7) and in the mean measure across all three 

CpG sites (rho=0.37, p=2.00E-5) (Figure 5.5). 

   Spearman’s 

Correlation 

IGF2 CpG Site n rho p-value 

Site 1 132 0.43 2.08E-07 

Site 2 132 0.27 0.002 

Site 3 132 0.26 0.003 

Mean 132 0.37 2.00E-05 

Table 5.5. Correlation between IGF2 methylation and age in children. 

Mean age (SD) = 7.35 (0.41) years. 

 
Figure 5.5 Correlation between IGF2 methylation and age in children. 

Mean methylation across the entire IGF2 gene shown against age of child in years with line of 

best fit in red. 
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5.4.3 TACSTD2 methylation  

Methylation at seven CpG sites in TACSTD2 was assessed using Pyrosequencing in 

children as described above. Correlation between CpG sites in TACSTD2 was assessed 

using Spearman’s rank correlation. TACSTD2 showed very strong positive correlation 

between CpG sites with rho values of greater than 0.90 (Figure 5.6). This again indicated 

that mean methylation across all three sites could be used in downstream analysis without 

significant loss of sensitivity as mean methylation across all three sites was a representative 

measure of the separate methylation values. TACSTD2 showed a median level of 

methylation across all three sites of 41.10 (29.48, 49.15) (Table 5.6).  

 

Figure 5.6 Correlation of CpG sites within TACSTD2 gene. 

Degree of correlation assessed by Spearman’s rank and shown by colour coding, positive 

correlation is shown in green.  

TACSTD
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The relationship between TACSTD2 DNA methylation and sex was assessed by Mann-

Whitney U test (Table 5.6), no significant differences were observed between methylation 

levels between sexes (Figure 5.7).  

 

 

Table 5.6 TACSTD2 methylation stratified by sex. 

Median percentage methylation was compared between males and females using Mann-

Whitney U test. Normalcy was assessed using Shapiro-Wilk normal data test. IQR – 

Interquartile Range. 

 
Figure 5.7 Distribution of mean TACSTD2 methylation stratified by sex. 

Mean % methylation shown across the TACSTD2 gene, box whisker plots shown for each sex. p 

= 0.73.  

 Boys only Girls only Normalcy 

test 

Sex comparison 

TACSTD2 

CpG site n 

Median % 

Methylation (IQR) n 

Median % 

Methylation (IQR) p-value Stat (z) p-value 

Site 1 45 26.01 

(20.25, 34.86) 

45 26.90 

(19.21, 33.84) 

0.010 0.57 0.572 

Site 2 45 42.24 

(34.02, 51.91) 

45 45.28 

(30.44, 51.38) 

0.002 0.53 0.597 

Site 3 45 25.44 

(17.17, 32.19) 

45 26.75 

(16.86, 30.44) 

0.002 0.42 0.678 

Site 4 45 56.54 

(47.01, 66.51) 

45 56.61 

(41.64, 66.75) 

0.001 0.35 0.729 

Site 5 45 47.75 

(38.70, 58.41) 

45 50.00 

(35.77, 58.49) 

4.00E-04 0.23 0.818 

Site 6 45 45.60 

(34.16, 52.48) 

45 45.69 

(30.56, 54.08) 

0.002 -0.04 0.968 

Site 7 45 34.95 

(27.11, 45.18) 

45 37.81 

(26.91, 44.81) 

0.002 -0.07 0.949 

Mean 45 39.83 

(31.93, 47.38) 

45 42.31 

(29.43, 49.15) 

0.001 0.35 0.726 
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The relationship between TACSTD2 DNA methylation and age was also assessed using 

Spearman’s correlation (Table 5.7). No significant associations were found between 

TACSTD2 DNA methylation and age in any CpG site or indeed in the overall mean 

measure. (Figure 5.8). 

 

 

 

 

 

 

Table 5.7 Correlation between TACSTD2 DNA methylation and age in children. 

Mean age (SD) = 7.35 (0.41) years.  

 
Figure 5.8 Correlation between TACSTD2 DNA methylation and age in children. 

Mean methylation across the entire TACSTD2 gene shown against age of child in years with 

line of best fit in red. 

  Spearman’s Correlation 

TACSTD2 CpG 

site 

n rho p-value 

Site 1 90 -0.07 0.498 

Site 2 90 -0.07 0.522 

Site 3 90 -0.05 0.611 

Site 4 90 -0.05 0.654 

Site 5 90 -0.05 0.649 

Site 6 90 -0.05 0.605 

Site 7 90 -0.03 0.750 

Mean 90 -0.05 0.616 
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5.4.4 Regression analysis 

5.4.4.1 IGF2 

The relationship between IGF2 DNA methylation and the phenotypic traits bioimpedance 

and BMI was assessed using a Spearman’s correlation stratifying for sex. No significant 

association between IGF2 DNA methylation and either of the phenotypic traits was 

observed, with a p-value of 0.224 in the case of bioimpedance and 0.552 in the case of BMI 

when the both sexes combined were assessed. (Table 5.8). 

 

 

 

 

 

Table 5.8 Spearman’s correlation of mean IGF2 methylation against phenotypic traits. 

(Univariate) 

The association between IGF2 DNA methylation and the phenotypic traits bioimpedance 

and BMI were also analysed by multiple regression adjusting for age and sex. No significant 

associations were found with either bioimpedance (p=0.643) or BMI (p=0.456) (Table 5.9). 

Phenotypic measure Coeffecient [95% CI] p-value 

Bioimpedance -0.39 [-2.06, 1.28] 0.643 

BMI 0.02 [-0.03, 0.08] 0.456 

Table 5.9 Multiple regression of mean IGF2 DNA methylation against phenotypic traits.  

Adjusted for age and sex 

 

Phenotypic 

measure 

Group n rho p-value 

Bioimpedance All 132 -0.11 0.224 

 Boys 68 -0.19 0.127 

 Girls 64 -0.07 0.608 

BMI All 131 0.05 0.552 

 Boys 67 0.04 0.775 

 Girls 64 0.07 0.563 
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5.4.4.2 TACSTD2 

The relationship between TACSTD2 DNA methylation and the phenotypic traits 

bioimpedance and BMI was assessed using a Spearman’s correlation stratifying for sex. No 

significant association between TACSTD2 DNA methylation and either of the phenotypic 

traits was observed, with a p-value of 0.896 in the case of bioimpedance and 0.584 in the 

case of BMI when the both sexes combined were assessed. (Table 5.10). 

 

 

 

 

 

Table 5.10 Spearman’s correlation of mean TACSTD2 methylation against phenotypic traits. 

(univariate) 

The association between TACSTD2 DNA methylation and the phenotypic traits 

bioimpedance and BMI were also analysed by multiple regression adjusting for age and sex. 

No significant associations were found with either bioimpedance (p=0.834) or BMI 

(p=0.952) (Table 5.11). 

 

 

 

 

Table 5.11 Multiple regression of mean IGF2 DNA methylation against phenotypic traits.  

Adjusted for age and sex 

Phenotypic 

measure 

Group n rho p 

Bioimpedance All 89 -0.01 0.896 

 Boys 45 -0.09 0.555 

 Girls 44 0.10 0.525 

BMI All 90 -0.06 0.584 

 Boys 45 0.08 0.602 

 Girls 45 -0.19 0.220 

Phenotypic measure Coefficient [95% CI] p-value 

Bioimpedance -0.15 [-1.58, 1.28] 0.834 

BMI 2.00E-3 [-0.06, 0.07] 0.952 
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5.5 Discussion 

In this chapter gene specific DNA methylation was assessed in the promoter regions of the 

genes IGF2 and TACSTD2. Mean IGF2 DNA methylation was positively associated with 

age when assessed by Spearman’s correlation (rho=0.37, p=2.00E-5) (Figure 5.5). The 

strongest link between differential IGF2 DNA methylation and age has been made in 

colon cancer where a switch from monoallelic to biallelic imprinting was associated with 

increasing age (Issa et al., 1996). Previous studies have also reported age-related changes in 

DNA methylation at the IGF2 locus, albeit at different CpG sites within the IGF2 DMR. 

One such study of individuals aged 58 years (SD=0.35), reported a 3.6% decrease in IGF2 

methylation per decade and a mean IGF2 methylation of 51% (SD=4.50) (Heijmans et al., 

2008). When compared to the IGF2 methylation level of 42.72% measured in children aged 

7.4 years, this suggests that IGF2 DNA methylation may indeed increase with age. There 

have been some recent human studies into IGF2 methylation in which age was used as a 

covariate in the analysis (Steegers-Theunissen et al., 2009) however this particular study 

found no association between age and IGF2 methylation. Another paper assessed IGF2 

DMR methylation in human twins and found that the influence of environmental and 

stochastic factors was the same at age 16.7 years (SD, 2.0) when compared to 44.8 years 

(SD, 6.8), suggesting a limited role for age-related degeneration of methylation patterns at 

the IGF2 locus (Heijmans et al., 2007). The lifecourse trajectory of IGF2 DNA methylation 

is difficult to predict because it is an imprinted gene and as such has an extra layer of 

complication to the maintenance of DNA methylation levels (Cui et al., 2003). However 

given current theory DNA methylation at this locus could be expected to increase in 

variability with age as the maintenance of methylation marks by the DNMTs gradually 

decreases (Liu et al., 2011). IGF2 promoter DNA methylation may be subject to variability 

in earlier life however due to environmental and stochastic factors and these could be the 

source of the association with age in this chapter.  

This chapter found no association between mean TACSTD2 DNA methylation and any of 

the covariates assessed including age, bioimpedance and BMI. This is interesting given the 

recent finding in our group that in preterm children increased levels of TACSTD2 

methylation were associated with lower fat mass at age 12 years (Groom et al., 2010). There 

is very little literature on the relationship between TACSTD2 DNA methylation and aging, 

however aberrant TACSTD2 methylation has been previously implicated in a number of 

cancers including glioma (Kim et al., 2006) and prostate cancer (Ibragimova et al., 2010). A 
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recent study also found that TACSTD2 was one of the top gene hits in the American 

population with regards to NAFLD development, which is interesting given the well 

known association between NAFLD and obesity (Angulo, 2007). 

There is a broader literature linking age to genome-wide changes in DNA methylation. This 

includes a study of chronological age from one to 102 years that highlighted a shift towards 

increased DNA methylation at multiple loci across the genome with increasing 

chronological age (Hernandez et al., 2011). This study is particularly interesting as it was 

performed on brain tissue. This is relevant as brain is a post-mitotic tissue and as such 

changes in DNA methylation might be expected to accumulate over time. This is in 

contrast to other tissues types from which DNA is regularly extracted such as blood and 

buccal swabs, where cells are relatively rapidly turned over and as such may not have the 

same opportunity to accumulate such widespread DNA methylation changes with age 

(Sugawara et al., 2011). Recent studies have also shown both increased promoter DNA 

methylation and decreased mRNA expression of the type 2 diabetes modulating gene 

COX7 in the skeletal muscle of elderly twins (Ronn et al., 2008). Indeed, the role of 

epigenetic changes in older age is well established (Calvanese et al., 2009). 

It is clear both from the results of this chapter and previous literature that DNA 

methylation is subject to variance with aging in a gene specific manner. The factors which 

influence these changes during the lifecourse are well characterised and include aberrant 

maintenance of DNA methylation marks by DNMTs as previously discussed (Richardson, 

2003). However, these underlying age-related changes in DNA methylation are less well 

known. In the case of gene specific promoter methylation changes, it is possible that 

methylation changes simply track changes in gene expression at individual ages. 

Alternatively, DNA methylation may be initially independent of gene expression changes 

and may contribute or be accelerated by gene expression changes, leading to 

hypomethylation. An alternative hypothesis suggests that methylation is initially attracted to 

DNA by short stretches of DNA specifically targeted to DNA methylation. These include 

B1 elements in mouse and Alu elements in human DNA. Once established, DNA 

methylation could spread in cis with cell replication, resulting in progressive 

hypermethylation (Fraga and Esteller, 2007).  

The findings of this chapter could be build on by replicating this methodology in 

longitudinal studies where DNA samples could be taken at multiple time points to allow 

the temporality of any changes in DNA methylation levels to be assessed (Wong et al., 

2010). Including a number of different tissue types such as liver, adipose tissue and muscle 



 

122 

 

(Chen et al., 2010) would further strengthen this analysis especially given the previously 

mentioned observation that post mitotic tissues such as brain are likely to harbour more 

persistent changes in DNA methylation (Ma et al., 2011). 

The data in this chapter provide no evidence to suggest that differential methylation at the 

neither IGF2 nor TACSTD locus is implicated in the programming of disease risk in 

children. Although epigenetic plasticity in early life is known to exert an influence on later 

health (Hochberg et al., 2011) it is likely that epigenetic effects are gene specific. Although 

we report no association between DNA methylation and health outcomes the assays were 

locus specific and this does not preclude other loci from being of potential interest in the 

future. As such further analysis could include a larger number of loci so assess if DNA 

methylation alters with age in a gene-specific manner (Maegawa et al., 2010). 
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Chapter 6: The Relationship Between 
Cardiometabolic Health and DNA Methylation at Age 
50 

6.1 Background 

DNA Methylation is the covalent modification of cytosine residues in the DNA sequence 

through the addition of a methyl group. This converts cytosine to an alternative nucleotide 

base, 5-methyl cytosine (5meC) (Rakyan et al., 2001). In the human genome, this covalent 

modification takes place on cytosine residues that are located 5’ adjacent to guanine 

residues. These sequences of nucleotides are known as CpG sites and they tend to cluster 

together, forming motifs known as CpG Islands (CGIs). These CGIs make up a maximum 

of 2% of the genome, and are for the most part un-methylated. Some CGIs however are 

more highly methylated and these tend to be related to imprinted genes or to the presence 

of transposons (Waterland and Jirtle, 2003). More recently, another methylation mark on 

DNA, 5-hydroxymethyl-2’deoxycytidine (5hmC) has been described (Kriaucionis and 

Heintz, 2009). This is a residue formed when a hydroxy group is added to 5-

methylcytosine, catalysed by Methylcytosine dioxygenase (TET1) (Tahiliani et al., 2009). 

Research into the implications of 5hmC is in its infancy, however it has recently been 

characterised in mouse, bovine and rabbit zygotes and may play a role in DNA methylation 

reprogramming (Wossidlo et al., 2011). 

CGIs are understood to be important in terms of gene regulation due to their abundance in 

regions harbouring transcription start sites. Predominantly, a higher level of DNA 

methylation (that is a greater proportion of cytosine residues that are methylated) in gene 

regulatory domains such as promoter sequences leads to transcriptional repression. DNA 

methylation on a genome-wide level can be assessed by utilising repeat interspersed regions 

such as Alu or LINE-1. Comprising approximately 17% of the human genome, LINE-1, or 

Long Interspersed Nuclear Element 1 is the most abundant family of non-LTR 

retrotransposons found in the genome (Belancio et al., 2010). LINE-1 is considered a 

potential mutagen as its transposition can induce DNA strand breaks and genomic 

instability (Belgnaoui et al., 2006). Whilst repetitive elements such as LINE-1 are heavily 

methylated in normal tissues, they are hypomethylated in cancers (Ogino et al., 2008). A 

recent study has reported that LINE-1 methylation levels, when considered together with 

exposure to dietary folate and alcohol consumption, predict colon cancer risk 

(Schernhammer et al., 2010). Although most closely related to cancer outcomes LINE-1 
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methylation has more recently been linked with a diverse range of disease outcomes. In the 

Boston-based Normative Aging Study for example, individuals suffering from prevalent 

ischemic heart disease (IHD) and stroke exhibited decreased levels of LINE-1 methylation. 

Individuals in this cohort with decreased levels of LINE-1 methylation were also shown to 

be at higher risk for incident IHD, stroke and total mortality (Baccarelli et al., 2010b). 

Global DNA methylation has also been linked to Alzheimer’s Disease (AD) in a recent 

study which showed individuals exhibiting decreased performance in mental tasks had 

lower LINE-1 DNA methylation (Bollati et al., 2011). Other pathologies recently 

associated with LINE-1 DNA methylation include Systemic lupus erythematosus (Lupus), 

(Nakkuntod et al., 2011), Pre-eclampsia (Gao et al., 2011a) and coronary heart disease 

(Chowdhury et al., 2011). 

Studies both in experimental animals and in human cohorts have shown that 

environmental insults can influence DNA methylation (Mathers et al., 2010). These include 

exposure to perfluorooctane sulfonate (PFOS), an environmental pollutant (Wan et al., 

2010), prenatal tobacco smoke exposure, polycyclic aromatic hydrocarbons (PAHs) found 

in cigarette smoke condensate (Liu et al., 2010a), biomarkers of lead levels in both adults 

(Wright et al., 2010) and cord blood (Pilsner et al., 2009b), traffic particulates (Baccarelli et 

al., 2009) and plasma homocysteine (Fryer et al., 2011). 

Aside from more extreme environmental insults a number of recent studies in the North 

Texas Healthy Heart Study have shown that milder lifecourse exposures may influence 

levels of LINE-1 global DNA methylation. A ‘healthy’ dietary pattern showed a dose 

dependent association with DNA hypomethylation (Zhang et al., 2011b) whereas 

individuals with higher levels of physical activity exhibited increased levels of LINE-1 

methylation (Zhang et al., 2011a). 

Given the increasing evidence in current literature linking global DNA methylation with 

disease phenotypes or phenotypic traits that could be indicative of early stage disease other 

than cancer, the present study addresses the hypothesis that genome-wide DNA 

methylation, measured at age 50 when disease related phenotypic traits are discernable, is 

associated with traits indicative of early stage metabolic disease. 
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6.2 Aims and objectives 

The aim of this section of study was to assess if LINE-1 global DNA methylation was 

associated with markers of metabolic health in adults aged 50 years. To this end single base 

resolution sequencing of LINE-1 repeat elements was undertaken as these elements act as 

a surrogate for global DNA methylation levels. These global methylation measurements 

were then regressed against cardiometabolic traits in the individuals to assess any possible 

associations. 

6.3 Methods 

6.3.1 Study participants 

The Newcastle Thousand Families birth cohort consists of 1142 individuals born in May 

and June 1947 to mothers resident within the city of Newcastle upon Tyne in northern 

England (Pearce et al., 2009). Two thirds of these children were followed up until the age 

of 15 years, with detailed information collected prospectively on their health, growth and 

socio-economic circumstances. Participants in this investigation were cohort members who 

either contacted the study team in response to media publicity or were traced through the 

National Health Service Central Register during the 1990’s. Between October 1996 and 

December 1998 self-completion questionnaires on health and lifestyle were sent out and 

members invited to attend for clinical examination. Of the surviving 89% traced, 574 

returned lengthy questionnaires detailing their family history and lifestyle and 412 attended 

clinical examinations which involved giving blood to be used in DNA analysis (Pearce et 

al., 2009).  

6.3.2 Clinical assessments of outcomes and adult height and weight at 

age 49-51 years 

Assessments were performed in the morning following an overnight fast. Height and 

weight were measured and body mass index (BMI) was calculated. Waist and hip 

circumferences were measured according to the protocol of the World Health Organisation 

Monitoring Trends and Determinants in Cardiovascular Disease (MONICA) project 

(WHO, 1990). Percent body fat was estimated from impedance measured using a Holtain 

body composition analyser (Holtain Ltd, Crymych, Wales, UK). All lipid analyses were 

performed on a DAX analyser (Bayer, Basingstoke). Total cholesterol was measured using 
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a cholesterol oxidase/peroxidise method with calibrants traceable to the Centres for 

Disease Control definitive method. Serum HDL cholesterol was measured using a 

cholesterol oxidase method after precipitation of apolipoprotein B containing lipoproteins 

with phosphotungstic acid and magnesium chloride (inter-assay coefficient of variation 

2.2%). LDL cholesterol levels were derived by the Friedewald method (Friedewald et al., 

1972) and the HDL:LDL ratio was calculated. Triglyceride concentrations, excluding 

glycerol, were estimated by a lipase-glycerol kinase method. Serum insulin levels at 0, 30 

and 120 minutes were determined by ELISA (Dako Ltd, Ely, UK) (interassay coefficients 

of variation 3.1% and 3.3% respectively) (Pearce et al., 2006). Plasma glucose 

concentrations at 0, 30 and 120 minutes (after a 75g oral glucose load) were measured on a 

Yellow Springs Analyser (YSI Stat Plus 2300; Yellow Springs Instruments, Farnborough, 

UK).  

6.3.3 Measurement of global DNA methylation 

DNA was extracted from peripheral blood samples using a Nucleon BACC2 kit (Tepnel 

Life Sciences, UK). 1µg of DNA sample was bisulphite modified using the Zymo EZ 

DNA Methylation Gold kit (Cambridge Bioscience, Cambridge) using the manufacturers’ 

standard protocol. 1µg of bisulphite modified DNA was PCR amplified using 2 x 

HotstarTAQ Mastermix (Qiagen), 2mM MgCl2 (Qiagen) and 0.2µM of each primer 

(LINE-1 Forward Primer - 5’ – TTT TGA GTT AGG TGT GGG ATA TA – 3’ and 

LINE-1 Reverse Primer – BIO-5’ – AAA ATC AAA AAA TTC CCT TTC – 3’). PCR 

conditions were as follows: 95˚C for 15 minutes, 50 cycles of 95˚C for 15 seconds, 60˚C 

for 30 seconds and 72˚C for 15 seconds and finally 72˚C for five minutes. 5µL of 

amplicons were utilised for downstream single strand preparation and hybridisation of 

0.5µM sequencing primer (5’-GGG TGG GAG TGA T-3’), using a vacuum prep tool and 

workstation according to manufacturer’s instructions (Qiagen). Samples were then run on a 

PyroMark MD Pyrosequencer (Qiagen, UK) using an assay designed and optimised for 

LINE-1. The dispensation sequence for LINE-1 was: 

GTCGATTAGTAGTCTGTCGCTC. 
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6.3.4 Statistical analysis 

LINE-1 Pyrosequencing generated a percentage measure of methylation at each of three 

CpG sites. Samples were run in duplicate (post-bisulphite modification) and a mean 

percentage methylation value calculated for duplicates for each of the three CpG sites. 

Correlation between all three CpG sites was high (p<0.001); therefore a composite mean of 

all three sites was calculated and tested for association with outcome variables. DNA 

methylation showed a skewed distribution (tested using a Shapiro Wilk test) so values were 

log transformed before further analysis. Linear regression was used to describe the 

relationship between anthropometric measures and blood biomarkers (the dependent 

variables) and the independent variable, log-transformed global DNA methylation at age 50 

years. Regression coefficients (b) and corresponding 95% confidence intervals are reported 

showing the unit change in log methylation per unit increase in each dependent variable 

after adjustment for sex. Overall R2 values for the models including both log-transformed 

methylation are given as percentages. Direct R2 values for methylation were estimated by 

subtracting the R2 value for the models only including sex from the corresponding models 

including both log-transformed methylation and sex. This gives an estimate of the direct 

association between outcome and methylation after adjusting for any potential mediation 

through sex. 
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6.4 Results 

6.4.1 Cohort details and sample selection 

A total of 228 individuals (85 males and 143 females) from the Newcastle Thousand 

Families Study (NTFS) were analysed with respect to LINE-1 methylation. The individuals 

were selected from the full NTFS cohort of 1029 individuals initially recruited to the study 

on two criteria. Firstly those individuals who attended clinical follow-up at age 49-51 years 

and secondly, on the availability of DNA of sufficient quantity and quality to undertake 

DNA methylation analysis. Descriptive data for all variables used in the current analysis are 

given in Table 6.1. Significant differences in all but total cholesterol levels were seen 

between males and females. 

 

 Males Females Normalc

y test 

Sex comparison 

Phenotypic 

variable 

n Median 

(IQR) 

n Median 

(IQR) 

p-value z p-value 

BMI 

(kg/m
2
) 

85 26.85 

(24.38, 29.44) 

143 25.00 

(22.46, 27.91) 

1.71E-8 2.64 0.008 

Waist/hip ratio 85 0.96 

(0.92, 0.99) 

143 0.79 

(0.75, 0.83) 

1.25E-6 11.8 2.48E-32 

Body fat 

(%) 

85 38.30 

(31.80, 42.00) 

141 42.10 

(35.20, 47.20) 

0.047 -3.88 1.06E-04 

Fasting glucose 

(mmol/l) 

85 5.43 

(5.09, 5.74) 

143 5.03 

(4.78, 5.33) 

3.67E-25 5.77 8.15E-09 

Total 

cholesterol 

(mmol/l) 

85 5.33 

(4.49, 6.08) 

143 4.90 

(4.28, 5.76) 

7.10E-4 1.6 0.109 

Total 

triglycerides 

(mmol/l) 

85 1.16 

(0.83, 1.79) 

143 0.87 

(0.63, 1.31) 

1.84E-20 3.62 3.00E-04 

HDL cholesterol 

(mmol/l) 

85 1.00 

(0.83, 1.19) 

143 1.13 

(0.85, 1.39) 

9.63E-10 2.97 0.003 

LDL cholesterol 

(mmol/l) 

85 4.00 

(3.2, 4.71) 

143 3.65 

(2.90, 4.50) 

0.079 2.09 0.037 

HDL:LDL ratio 85 0.24 

(0.19, 0.32) 

143 0.29 

(0.22, 0.45) 

4.37E-21 -2.96 0.003 

Table 6.1 Phenotypic variables measured at age 50 stratified for sex. 

IQR – Interquartile range; sex comparison by Mann-Whitney U test. 
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6.4.2 Quantification of LINE-1 DNA methylation 

LINE-1 DNA methylation was successfully quantified in all 229 samples. The assay 

provides quantitative assessment of three CpG sites that result from arbitrary priming of 

LINE-1 repetitive elements across the genome. Upon visual and formal statistical 

inspection, the distribution of methylation measures was deviated from a normal 

distribution (Shapiro Wilk p-value of 4.29E-10) (Figure 6.1). The median level of 

methylation across all individuals was 52.74 (IQR: 51.51, 54.89) (Table 6.2). There was no 

significant difference in levels of LINE-1 methylation between males and females (Figure 

6.2). 

  
Figure 6.1 Histogram of the distribution of mean LINE-1 DNA methylation throughout the 

samples. 
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 Males Females Normalcy test Sex 

comparison 

LINE-1 

CpG 

site 

n Median 

(IQR) 

n Median 

(IQR) 

z p-value z p-

value 

Site 1 85 72.19 

(70.42, 74.28) 

144 72.08 

(70.64, 74.47) 

4.06 2.45E-05 -0.36 0.721 

Site 2 85 36.80 

(34.79, 38.41) 

144 36.26 

(35.03, 37.99) 

6.16 3.57E-10 1.09 0.277 

Site 3 85 50.61 

(48.89, 52.91) 

144 50.08 

(48.56, 52.14) 

5.87 2.24E-09 1.17 0.241 

Mean 85 52.92 

(51.55, 55.18) 

144 52.53 

(51.42, 54.80) 

6.13 4.29E-10 0.65 0.515 

Table 6.2 LINE-1 DNA methylation across all three CpG sites stratified by sex. 

IQR – Interquartile range; sex comparison by Mann-Whitney U test. Percentage methylation is 

shown for all three CpG sites within the LINE-1 amplicon on the mean calculated over all three 

sites. 

  
Figure 6.2 Relationship between LINE-1 DNA methylation and sex. 

Distribution of LINE-1 methylation between sexes shown by box whisker plot. Sex comparison 

by Mann-Whitey U test. 

 

 

  



 

131 

 

DNA methylation between the three CpG sites in the LINE-1 locus showed a variance of 

between 36.26% and 72.19%. All three CpG sites were highly positively correlated, with a 

Spearman’s rho value of greater than 0.60 for all sites (Figure 6.3). This indicated that Mean 

methylation calculated across all three CpG sites could be used for the association analysis 

as a surrogate for all three CpG sites. 

  

Figure 6.3 Correlation of DNA methylation between CpG sites in LINE-1. 

Correlation between all three CpG sites in LINE-1 shown with colour coding. The higher the 

correlation, the closer to 1.0. 
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6.4.3 Association analyses between LINE-1 methylation and metabolic 

health phenotypes 

Multiple regression analyses, with adjustment for sex, were performed between LINE-1 

methylation and metabolic health phenotypes. Results are given in Table 6.3. Increased 

LINE-1 methylation was associated with increased fasting glucose (p=0.02), total 

cholesterol (p=0.005), total triglycerides (p=0.003) and LDL cholesterol (p=0.001), and 

with decreasing HDL cholesterol (p=0.003) and the HDL:LDL ratio (p=0.003). As can be 

seen from the R2 values in Table 6.3, when sex was adjusted for LINE-1 methylation 

accounted for 5-10% of the variability in outcome measures. 

 

Variable Coefficient [95% CI] p-value R
2
 (%) 

BMI (kg/m
2
) 0.04 [-0.18, 0.26] 0.721 0.94 

Waist/hip ratio 2.00E-3 [2.00E-4, 5.00E-3] 0.072 65.42 

Body fat (%) 0.07 [-0.37, 0.51] 0.756 5.61 

Fasting glucose (mmol/l) 0.05 [0.007, 0.09] 0.024 9.97 

Total cholesterol 

(mmol/l) 

0.09 [0.03, 0.15] 0.005 5.05 

Total triglycerides 

(mmol/l) 

0.07 [0.02, 0.11] 0.003 9.68 

HDL cholesterol (mmol/l) -0.03 [-0.04, 8.00E-3] 0.004 8.91 

LDL cholesterol (mmol/l) 0.10 [0.04, 0.16] 0.001 7.07 

HDL:LDL ratio -0.02 [-0.03, 6.00E-3] 0.003 6.96 

Table 6.3 Regression analysis of phenotypic variables against LINE-1 DNA methylation. 

 Adjusted for sex. 

Similar patterns of association were also observed for all but fasting glucose following non-

parametric univariate correlation analyses within the complete cohort (Table 6.4). In 

addition, correlations between LINE-1 methylation and serum measures were also 

apparent upon sex stratification although not all observations reached statistical 

significance across these smaller subgroups (Table 6.4).  
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 All Male Female 

Variable n rho p-

value 

n rho p-

value 

n rho p-

value 

BMI (kg/m
2
) 228 0.01 0.768 85 0.08 0.476 143 -0.04 0.642 

Waist/hip ratio 228 0.11 0.101 85 0.07 0.541 143 0.16 0.051 

Body fat (%) 226 0.04 0.534 85 0.02 0.863 141 0.08 0.374 

Fasting glucose (mmol/l) 228 -0.004 0.95 85 0.09 0.411 143 -0.06 0.466 

Total cholesterol 

(mmol/l) 

228 0.13 0.058 85 0.19 0.089 143 0.08 0.343 

Total triglycerides 

(mmol/l) 

228 0.14 0.032 85 0.17 0.118 143 0.13 0.132 

HDL cholesterol 

(mmol/l) 

228 -0.18 0.006 85 -0.18 0.100 143 -0.19 0.026 

LDL cholesterol (mmol/l) 228 0.16 0.015 85 0.18 0.091 143 0.14 0.091 

HDL:LDL ratio 228 -0.21 0.002 85 -0.24 0.025 143 -0.19 0.023 

Table 6.4 Non- parametric correlation of phenotypic variables against LINE-1 DNA 

methylation. 

Stratified for sex. 
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6.5 Discussion 

The data presented in this chapter show that increased LINE-1 DNA methylation is 

associated with a number of blood based biomarkers of metabolic health and provides 

some of the first evidence of an association between LINE-1 methylation and phenotypic 

traits other than cancer. There is widely documented evidence that LINE-1 methylation is 

modulated by environmental exposures TVR (Wan et al., 2010, Breton et al., 2009, Liu et 

al., 2010a, Wright et al., 2010, Pilsner et al., 2009b, Baccarelli et al., 2009, Fryer et al., 2011) 

and the current study suggests that DNA methylation may provide a mechanistic link 

between these environmental exposures and the development of disease related traits. 

There is considerable interest in the role of epigenetic mechanisms in common complex 

disease (Feinberg, 2008), particularly those with a prominent environmental component. It 

is likely that epigenetic factors contribute to the inter-individual differences in response to 

environmental exposures (Mathers, 2008) and to the pathogenesis of such diseases (Turan 

et al., 2010). 

The results show a number of associations between LINE-1 methylation and blood-based 

biomarkers, all of which are risk factors for cardiovascular disease and/or type 2 diabetes. 

High levels of fasting glucose are associated with the development of both cardiovascular 

disease and diabetes (Turan et al., 2010). A positive association was observed between 

LINE-1 methylation and total cholesterol and triglycerides. Elevated concentrations of 

these blood lipid markers are strongly associated with increased risk of cardiovascular 

disease (Sarwar et al., 2010). Further, the present results show that LINE-1 DNA 

methylation was associated with both increased LDL-cholesterol and decreased HDL-

cholesterol concentrations. These changes in opposing directions are those expected in 

individuals at increased cardiovascular disease risk (Barter et al., 2007, Mertens and 

Holvoet, 2001). Taken together, these adverse changes in both blood glucose and blood 

lipid status may be indicative of early stage cardiovascular disease. As these data were 

collected in individuals at age 50 with no evidence of overt cardiovascular disease it was not 

possible to explore a potential association between LINE-1 methylation and subsequent 

disease phenotype. Indeed, this could be perceived as a strength of this study as it removes 

the potential confounding effect of disease status on DNA methylation patterns. The 

cohort is being followed up longitudinally which will provide the opportunity to ascertain 

the predictive utility of LINE-1 methylation at age 50 for later disease risk.  
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These correlative findings are some of the first observations to link DNA methylation 

levels with disease-related traits. They suggest that DNA methylation – and epigenetic 

mechanisms more widely - might be important in determining risk of common complex 

diseases such as type 2 diabetes and cardiovascular disease. However, it will be crucial to 

understand whether DNA methylation is causal in altering blood-based biomarkers such as 

fasting glucose and lipid levels or whether the reverse is the case. There is limited evidence 

to suggest that altering glucose concentrations changes DNA methylation patterns (Sharma 

et al., 2008), but to our knowledge no direct evidence to link lipid concentrations to 

perturbed DNA methylation, or vice versa. A recent study of genome-wide methylation in 

cord blood DNA highlighted numerous methylation-variable loci whose biological roles 

were related to lipid metabolism, suggesting a causal influence of altered methylation on 

lipid levels (Fryer et al., 2011). A previous study of patients with coronary artery disease 

and controls showed that global DNA methylation was associated with coronary artery 

disease risk, and that this association was accentuated by increased plasma homocysteine 

concentration. (Li et al., 2010c). One method that could provide further insight into the 

direction of causality is the adoption of a Mendelian randomization approach, as proposed 

recently by Relton and Davey Smith (Relton and Smith, 2010). This approach, termed 

‘genetical epigenomics’, involves the use of genetic variants as proxies for specific 

exposures, such that an association between genotype and DNA methylation would be 

indicative of a causal relationship (as lipid levels could not plausibly influence genotype and 

thus the possibility of reverse causation is removed). Numerous genetic variants have 

recently been reported to influence blood lipid profiles (Inouye et al., 2010) and these could 

collectively be used as a proxy for lipid levels, to test the association between lipid levels 

and DNA methylation. Additional approaches to explore the causal relationship could 

include in vitro studies where glucose and lipid concentrations are manipulated and DNA 

methylation levels measured or the analysis of serial samples collected longitudinally from 

the same individuals where temporal changes in both methylation patterns and metabolic 

biomarkers can be delineated. 

The observations reported relate to global DNA methylation measured using the LINE-1 

assay, which measures cytosine methylation in non-coding sequence randomly primed 

across the genome. The functional consequences of DNA methylation at these sites with 

regard to those specific disease traits considered remains unknown and thus LINE-1 can 

merely act as a representative biomarker of overall methylation status (global DNA 

methylation). Interrogation of gene-specific methylation in genes and pathways directly 

implicated in lipid metabolism and glucose homeostasis may provide greater insight. Of 
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relevance is a recent study reporting correlation between LINE-1 methylation and 

methylation of gene-specific CpG sites as measured using the Illumina 27K human 

methylation array, indicating that LINE-1 may also be representative of genome-wide 

methylation of gene regulatory regions (Fryer et al., 2011). 

In summary, the evidence presented supports the hypothesis that global DNA methylation 

at age 50 years is associated with biomarkers of metabolic health. These cross-sectional 

associations do not allow conclusions to be drawn with respect to the direction of 

causation. However the link between methylation and biomarkers of metabolic health 

remains highly plausible and may have important implications for prediction, early 

diagnosis and prevention of common complex diseases such as cardiovascular disease and 

type 2 diabetes (Relton and Smith, 2010). 

A manuscript based on the contents of this chapter has been published in the International 

Journal of Epidemiology (Global LINE-1 DNA methylation is associated with blood 

glycaemic and lipid profiles - Mark S. Pearce, James C. McConnell, Laura M. Barrett, 

Louise Parker, John C Mathers, Caroline L. Relton) and is included in Appendix 1. The 

manuscript was drafted, reviewed and revised with contributions from the above authors. 
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Chapter 7: Early Life Influences and their Effect on 
DNA Methylation Patterns in Later Life 

7.1 Background 

In addition to the large body of evidence linking low birth weight to subsequent adverse 

health outcomes, there is increasing data to support a link between premature birth and 

intrauterine growth restriction to the development of a metabolic disease-like phenotype in 

later life (Stettler and Iotova, 2010, Catalano et al., 2009, Kaijser et al., 2009). One 

epidemiological study has indicated that individuals born prematurely had a greater risk of 

developing type 2 diabetes and the associated seqeulae of obesity (Hofman et al., 2004). In 

animal models it has also been shown that intrauterine growth restriction and associated 

catch-up growth led to an increased risk of obesity in later life (Shahkhalili et al., 2010). 

Another recent study in humans demonstrated that low birth weight is associated with 

obesity risk at age six years (Taveras et al., 2009). Adults with low birth weight have also 

been shown to perform less exercise than their normally weighted peers, suggesting a role 

for early life programming of energy expenditure leading to a greater susceptibility to 

obesity (Kajantie et al., 2010). These and other similar observations have led to the 

investigation of potential mechanisms that may link early life exposures with later 

phenotypic traits including obesity. As alluded to throughout this thesis, one such 

candidate mechanism is via epigenetic alterations which might be induced in early life and 

persist across the lifecourse. 

There is an increasing body of literature to support the hypothesis that early life exposures, 

including nutritional factors, influence DNA methylation patterns in later life (Murgatroyd 

et al., 2009, Gluckman et al., 2008). This evidence does however often rely on small sample 

sizes and the analysis of only limited DNA methylation measures. A definitive study has yet 

to be completed nonetheless there is considerable enthusiasm in this area of medical 

research and a strong motivation to contribute to current understanding about the potential 

role of epigenetic variation in mediating the effects of early life exposure on later disease 

risk.  

Examples exist that have linked in utero and early life exposure to altered methylation 

patterns either at birth, during childhood or in some instances later in adulthood. Early life 

exposure to tobacco smoke has been demonstrated to induce differential methylation in 

both a gene specific and global manner. Prenatal lead exposure has also been shown to 
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have an inverse relationship with cord blood global DNA methylation (Pilsner et al., 

2009b). Maternal exposure to cocaine in rats has been shown to alter global DNA 

methylation in neonatal offspring (Novikova et al., 2008). Similarly, in humans, exposure to 

famine during the prenatal period has been shown to exert a gene specific effect on DNA 

methylation levels (Heijmans et al., 2008), causing hypomethylation at some loci and 

hypermethylation at others (Tobi et al., 2009). This work is of particular interest due to 

what would appear to be the persistent nature of epigenetic changes across the lifecourse in 

the face of an in utero exposure. If in utero exposure to famine can induce such persistent 

effects, is it possible that other early life experiences might do the same?  

The assessment of the impact of early life influences on DNA methylation in humans 

raises the question of exposure measurement. In a retrospective cohort study, or even in a 

prospectively collected longitudinal cohort study we may not have access to the optimal, 

detailed exposure measures in study participants in early life. Lifecourse studies are often 

reliant upon historical data that sometimes lacks the precision with which measures might 

be taken in current research settings. However there are a number of commonly measured 

variables as well as derived variables that can be utilised in an investigation of this type to 

act as surrogate measures of early life exposures. 

One such measurement is birth weight, which has been used extensively as a surrogate 

measure of in utero growth and as a predictor of health outcomes in adulthood. Indeed low 

birth weight has been associated with a large number of adult morbidities not confined to 

obesity (Yu et al., 2011) including type 2 diabetes (Whincup et al., 2008) and cardiovascular 

disease (Conen et al., 2010). Birth weight although not an early life ‘exposure’ per se acts as 

surrogate for other early life influences such as maternal nutrition and in utero growth 

(Yajnik and Deshmukh, 2008) or placental insufficiency (Henriksen and Clausen, 2002) and 

so represents a useful measure of early life influences. 

Babies born early usually have a low birth weight. As such birth weight is commonly 

adjusted for gestational age. Evidence suggests that babies born small for gestational age 

are predisposed to type 2 diabetes, increased adiposity and other metabolic syndrome type 

phenotypes in later life. (Ibanez et al., 2006). 

TI, a measure of conditional weight gain, was derived by work conducted by Wright et al 

(Wright et al., 1998, Wright et al., 1994). TI uses the weight of the infant during the early 

weeks of its life as a baseline with which to compare subsequent weights that have been 

adjusted for regression to the mean. This requires the transformation of weight measures 
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into standard deviation scores using a computer algorithm and allows the weight gain of 

infants who are not following usual growth trajectories to be more effectively monitored. It 

has been shown to be a useful measure of nutritional growth delay and so is implicated in 

the development of a metabolic syndrome like phenotype in later life (Gardner et al., 2009). 

Breastfeeding is also a useful measure of early life nutritional exposure, and is one of 

particular interest in the context of the developmental programming of obesity given the 

postulated protective effect of breastfeeding (Mayer-Davis et al., 2006). There is however 

little evidence in current literature (largely because of lack of attention not due to null 

findings) linking duration of breastfeeding with DNA methylation in later life. 

Gene specific DNA methylation changes at key loci involved in the insulin signalling 

pathway may play a role in the programming of birth weight, indeed recent studies have 

shown differential methylation at the IGF2 locus in children born small for gestational age 

(Tobi et al., 2011). Another recent study has shown that new born babies with low or high 

birth weight had significantly lower LINE-1 global methylation levels compared to normal 

weight infants after adjusting for gestational age, sex, maternal age at delivery, and maternal 

smoking (Michels et al., 2011). As such assessing whether these gene specific and global 

methylation changes persist in later life will help to evaluate if early life influences exert an 

effect on epigenetic programming.  

7.2 Aim and objectives 

The aim of this chapter was to test the hypothesis that early life influences affect DNA 

methylation levels and that these epigenetic changes persist in later life. Measures of early 

growth and nutrition including gestational age, birth weight and length of breastfeeding 

were assessed alongside measures of global (LINE-1) and gene specific (IGF2, TACSTD2) 

DNA methylation in adults aged 49-51 years. 

7.3 Methods 

7.3.1 Study participants 

Two previously described cohorts were utilised in this portion of the study, the Gateshead 

Millennium Study (GMS) cohort which is more fully described in Chapter 5 and the 

Newcastle Thousand Families Study (NTFS) which is described in Chapter 6. A total of 

132 individuals from the GMS cohort were assessed for IGF2 DNA methylation and 90 
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individuals were assessed for TACSTD2 DNA methylation. DNA from a total of 229 

individuals from the NTFS cohort was analysed for LINE-1 methylation. 

7.3.2 Assessment of early life influences and exposures 

Early life influences that might plausibly influence DNA methylation patterns in later life 

were included in the current study. In the GMS, gestational age (days) and birth weight (g) 

were recorded from delivery records. Birth weight z-score was derived by subtracting mean 

birth weight for the cohort from measured birth weight for the individual and dividing this 

result by the standard deviation of the cohort (Parkinson et al., 2011). Thrive index (TI) as 

a measure of conditional weight gain was derived from algorithms derived by earlier work 

on this study cohort conducted by Wright (Wright et al., 1998) Information on 

breastfeeding duration (greater than four months, greater than six weeks, less than six 

weeks or never) was collected by questionnaire at age eight years. In the NTFS, gestational 

age (days), birth weight (kg) and duration breastfed (weeks) were abstracted from early life 

medical records. 

7.3.3 Measurement of DNA methylation by pyrosequencing 

In the case of the GMS DNA was extracted from saliva using the Oragene Kit (DNA 

Genotek, UK) whereas in the NTFS DNA was extracted from whole blood using the 

Qiagen Tissue MiniPrep kit (Qiagen, Crawley, UK). DNA yield ranged from 5-50µg. DNA 

quality was assessed by NanoDrop spectrophotometer with a 260/230 ratio being 

indicative of purity. All samples showed a ratio of between 1.6 and 2.0, with these values 

falling between the minimum values indicating sufficient DNA purity for downstream 

processing. In both sample series 1µg of genomic DNA was bisulphite modified using the 

EZ Methylation GoldTM Kit (Zymo, Cambridge, UK) according to the manufacturers’ 

protocol. 1µl of bisulphite modified DNA was then amplified in a PCR reaction containing 

12.5µl Hotstar TAQ Mastermix (Qiagen, UK), 2.5µl of 25mM MgCl2 (Qiagen, UK), 3.0µl 

dH2O, 0.5µl of 100pmol/µl forward primer and 0.5µl of 100pmol/µl reverse primer (one 

of which is biotin labelled). The Mastermix excluding MgCl2 was made as follows: 12.5µl 

Hotstar TAQ Mastermix (Qiagen, UK), 5.0µl dH2O, 0.5µl forward primer and 0.5µl reverse 

primer (one of which is biotin labelled). In each Mastermix, 2.5ng DNA was added to each 

well. Primers are detailed in Table 7.1. 
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Assay Forward Primer Reverse Primer Sequencing Primer 

LINE-1 

 

 

TTTTGAGTTAGGT 

GTGGGATA TA 

AAAATCAAAAAAT 

TCCCTTTC 

GGGTGGGAGTGAT 

IGF2 

 

 

AGTAAGAAATTGG 

ATAGG 

 

AAACCCCAACAAA 

AACCACT 

TTTTTTAGGAAGTA 

TAGTTA 

TACSTD2 

 

 

CTAGGTACTGTAC 

TGTCA 

 

ACTCACTAGTACG 

ACAATA 

TCTAACCAGGTAA 

TTGTCCAC 

Table 7.1 Forward, reverse and sequencing primers for both assays. 

Forward and reverse primers were diluted to a standard concentration of 100pmol/µl. 

 

The PCR reactions were then run on a LabCycler under the following reaction conditions: 

95°C for 15 minutes 

50 cycles: 95°C for 15 seconds 

60°C for 30 seconds 

72°C for 15 seconds 

72°C for five minutes 

4°C ∞ 

The pyrosequencing PCR samples were then cleaned up to single stranded DNA using the 

Vacuum Prep Workstation (VPW) (Biotage, UK) as previously described. The 

pyrosequencing plate was then incubated at 80°C for two minutes and the samples run in 

duplicate on a Pyromark MD Pyrosequencer (Biotage, UK). 
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7.3.4 Statistical analysis 

Early life influence measurements were dichotomised by sex and the sexes compared by T 

test, Mann Whitney U test or Chi squared test as appropriate. The measures were assessed 

for normality using the Shapiro-Wilk test. In the GMS cohort the samples selected were 

assessed to ascertain if they were representative of the cohort as a whole. Samples not 

included were compared to samples included by T test or Mann Whitney U test as 

appropriate. Further, samples that were selected for either or both of the gene specific 

assays (IGF2 and TACSTD2) were compared to the overall cohort profile to ensure that 

their phenotypic traits were representative of the whole using T test or Mann Whitney U 

test as appropriate. 

Pyrosequencing generated a percentage measure of methylation at each of the CpG sites 

within the two gene loci investigated. Similarly a percentage measure of global methylation 

is generated from the LINE-1 assay that arbitrarily primes repeat regions throughout the 

genome. All samples were run in duplicate (post-bisulphite modification) and a mean 

percentage methylation value calculated for duplicates for each of the CpG sites within 

amplicon. Normality of the DNA methylation data in each of the amplicons was assessed 

using the Shapiro Wilk test, and sex-dichotomised values were compared using T test or 

Mann Whitney U test as appropriate.  

Linear regression was used to describe the relationship between DNA methylation (the 

dependent variables) and the independent variable, the early life exposure measurements. 

Regression coefficients (b) and corresponding 95% confidence intervals are reported 

showing the percentage change in DNA methylation per unit change in each early life 

exposure measurement after adjustment for age and sex. Overall R2 values for the models 

are given as percentages. 

Given the non-normal distributions of methylation and early life measurements, further 

analysis was performed by Spearman’s rank correlation (a non-parametric test) stratifying 

for sex with breast-feeding analysed by Kruskal–Wallis one-way analysis of variance. 
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7.4 Results 

7.4.1 Representative phenotypic data 

Lifecourse exposure variables for individuals utilized were compared to those of individuals 

from the full GMS cohort to determine whether this subgroup was representative of the 

whole (Table 7.2). No significant differences were found. 

The lifecourse exposure variables in the two gene specific subsets selected from the GMS 

cohort were also assessed to discern if there were any significant differences between them 

(Table 7.3). After comparison using T test or Mann-Whitney U test no significant 

differences between the two subsets were detected. 

 

 

Samples not 

included 

Samples 

included 

Normalc

y test‡ Comparison 

Variable n Median 

(IQR) 

n Median 

(IQR) 

p-value stat p-

value 

IGF2 
       

Gestational age 

(days) 

477 40.00  

(38.00, 41.00) 

132 40.00  

(39.00, 41.00) 

1.03E-6 -1.61* 0.108* 

Birth weight 

(kg) 

477 3.34  

(3.01, 3.69) 

132 3.40  

(3.06, 3.71) 

3.00E-5 -0.87* 0.384* 

Birth weight 

z-score 

477 -0.16  

(-0.88, 0.49) 

132 -0.10  

(-0.76, 0.46) 

0.025 -0.53* 0.594* 

Thrive index 

12 months 

450 0.15  

(-0.49, 0.85) 

124 0.14  

(-0.39, 0.98) 

0.983 -0.15† 0.878† 

TACSTD2 
       

Gestational age 

(days) 

519 40.00  

(38.00, 41.00) 

90 40.00  

(39.00, 41.00) 

1.04E-6 -1.49* 0.135* 

Birth weight 

(kg) 

519 3.35  

(3.00, 3.69) 

90 3.37  

(3.12, 3.72) 

3.00E-5 -1.29* 0.196* 

Birth weight 

z-score 

519 -0.16  

(-0.90, 0.46) 

90 -0.105  

(-0.76, 0.55) 

0.025 -1.00* 0.318* 

Thrive index 

12 months 

490 0.15  

(-0.47, 0.85) 

84 0.11  

(-0.60, 0.89) 

0.983 0.90† 0.367† 

Table 7.2 Comparison between early life exposures in whole GMS dataset and utilized 

dataset for both IGF2 and TACSTD2. 

‡ Shapiro-Wilk data normal test, †T test, *Mann Whitney U test 
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 Both genes IGF2 only TACSTD2 only Comparison 

Variable n Median 

(IQR) 

n Median  

(IQR) 

n Median  

(IQR) 

Stat 

(z or t) 

p-

value 

Gestational 

age (days) 

29 40.00 

(39.00, 41.00) 

103 40.00 

(39.00, 41.00) 

61 40.00  

(39.00, 40.00) 

0.10* 0.922* 

Birth weight 

(kg) 

29 3.37  

(3.00, 3.67) 

103 3.42  

(3.06, 3.74) 

61 3.37  

(3.12, 3.77) 

-0.56* 0.577* 

Birth weight 

z-score 

29 -0.12 

 (-0.76, 0.43) 

103 -0.08  

(-0.76, 0.50) 

61 -0.09  

(-0.74, 0.64) 

-0.51* 0.613* 

Thrive index 

12 months 

28 0.09 

 (-0.675, 1.05) 

96 0.14  

(-0.34, 0.95) 

56 0.11  

(-0.36, 0.83) 

0.68† 0.497† 

Table 7.3 Comparison between early life exposures in IGF2 and TACSTD2 datasets. 

†T test, *Mann Whitney U test. 

7.4.2 Early life characteristics in sample cohorts 

A total of 132 individuals from the GMS cohort were assessed for IGF2 DNA methylation 

while 90 individuals were assessed for TACSTD2 DNA methylation. A total of 229 

individuals from the NTFS cohort were measured for LINE-1 methylation. The baseline 

and early-life factors used in the analyses described are presented in Table 7.3. These 

variables were assessed for normality using the Shapiro-Wilk normal data test and a 

comparison of data between sexes was performed using a T test, Mann-Whitney U or Chi-

squared test, as appropriate (Table 7.4).  

The distribution of lifecourse exposure variables is shown in Table 7.3. Many of the 

variables showed non-normal distribution. Differences between male and female groups 

were observed for birth weight with a mean birthweight of 3.51kg (3.19, 3.75) in males and 

3.29kg (2.98, 3.57) in females although this only attained statistical significance in the GMS 

IGF2 subset (t=2.11, p=0.03). 
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Males only Females only 

Normal 

test‡ Sex comparison 

Baseline 

variables at birth 

n Median 

(IQR) 

n Median 

(IQR) 

p-value Stat p-

value 

GMS IGF2 subset        

Gestational age 

(days) 

68 40.00 

(39.00, 41.00) 

64 40.00 

(39.00, 41.00) 

0.001 0.01* 0.988* 

Birth weight 

(kg) 

68 3.51 

(3.19, 3.75) 

64 3.29 

(2.98, 3.57) 

0.003 2.11* 0.034* 

Birth weight 

z-score 

68 -0.06 

(-0.62, 0.46) 

64 -0.21 

(-0.96, 0.46) 

0.057 0.26†  0.795†  

Thrive index 12 

months 

64 0.14 

(-0.35, 0.95) 

60 -0.07 

(-0.43, 1.00) 

0.108 0.30†  0.763†  

Breastfeed (n) 

>4m/>6w/<6w/n 

64 13/11/18/22 61 8/3/21/29 - 6.89
χ
 0.076

χ
 

GMS TACSTD2 

subset 

       

Gestational age 

(days) 

45 40.00 

(39.00, 41.00) 

45 40.00 

(39.00, 41.00) 

1.03E-4 0.31* 0.755* 

Birth weight 

(kg) 

45 3.51 

(3.19, 3.78) 

45 3.34 

(2.88, 3.66) 

0.044 1.66* 0.096* 

Birth weight 

z-score 

45 -0.07 

(-0.74, 0.50) 

45 -0.14 

(-0.95, 0.55) 

0.072 0.36† 0.721† 

Thrive index 

12 months 

42 0.105 

(-0.68, 0.89) 

42 0.11 

(-0.45, 0.89) 

0.552 -0.56† 0.578† 

Breastfeed (n) 

>4m/>6w/<6w/n 

44 11/6/11/16 45 5/5/10/25 - 4.35
χ
 0.226

χ
 

NTFS LINE-1 

subset 

       

Gestational age 

(days) 

83 40.00 

(40.00, 40.00) 

143 40.00 

(40.00, 40.00) 

1.02E-8 2.01* 0.044* 

Birth weight 

(kg) 

85 3.29 

(3.03, 3.74) 

144 3.36 

(2.99, 3.74) 

0.150 -0.38† 0.700† 

Duration 

breastfed 

(weeks) 

85 69.00 

(28.00, 252.00) 

139 60.00 

(21.00, 165.00) 

2.64E-6 1.17* 0.243* 

Table 7.4 Lifecourse exposure variables measured in children at birth – IGF2 and TACSTD2 

GMS subsets and NTFS LINE-1 subset. 

Data shown for all of the individuals studied and straPfied by sex. ‡ Shapiro-Wilk data normal 

test, †T test, *Mann Whitney U test, 
χ 

Chi-squared. 
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7.4.3 Gene specific and genome wide DNA methylation 

Gene specific methylation measures were utilized to investigate the relationship between 

early-life factors and DNA methylation at ages 8, and global LINE-1 DNA methylation 

assessed at age 49-51 years. Details of methods used to quantify DNA methylation are 

provided in Chapters 5 and 6. As previously discussed, it has been well documented that 

CpG sites within 1000bp of each other demonstrate strong correlation in methylation 

levels (Down et al., 2008). This was found to be the case in both IGF2 and TACSTD2 

(Figure 7.4) in which three and seven sites respectively were highly positively correlated. As 

a result in the following analysis mean DNA methylation level was used to represent as all 

the measured CpG sites in each candidate gene. 

DNA methylation was assessed in both gene specific assays by Pyrosequencing and these 

data are presented in Table 7.4. In the GMS cohort, IGF2 showed an overall mean 

methylation of 42.72% (95% CI=38.72, 47.31), while TACSTD2 showed an overall mean 

methylation of 41.10% (95% CI=29.48, 49.15) (Table 7.5). 

LINE-1 global DNA methylation was also assessed in the NTFS cohort, with a mean 

overall methylation value of 52.74% (95% CI= 51.51, 54.89) observed (Table 7.5). 

Sex differences were assessed by Mann-Whitney U test and no significant differences in 

DNA methylation were detectable between males and females in any CpG site in any of 

the amplicons assessed (Table 7.5). 

 

Boys only Girls only 

Normalcy 

test‡ Sex comparison 

Gene and 

CpG Site n 

Median 

Methylation 

(IQR) (%) n 

Median 

Methylation 

(IQR) (%) p-value 

Statistic 

(z or t) 

p- 

value 

IGF2 

    

 

  

Mean 

6

8 

42.01  

(38.98, 46.19) 64 

43.33  

(38.49, 47.73) 4.20E-4 -0.75* 0.455* 

TACSTD2 

    

 

  

Mean 

4

5 

39.83  

(31.93, 47.38) 45 

42.31  

(29.43, 49.15) 0.001 0.35* 0.726* 

LINE-1 

    

 

  

Mean 

8

5 

52.92  

(51.55, 55.18) 

14

4 

52.53  

(51.42, 54.80) 4.29E-10 0.65* 0.515* 

Table 7.5 Mean IGF2, TACSTD2 and LINE-1 DNA methylation in GMS children stratified by 

sex. 

Data shown for all of the individuals studied and straPfied by sex. ‡ Shapiro-Wilk data normal 

test, †T test, *Mann Whitney U test 
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7.4.4 Association analysis of DNA methylation against early life 

phenotypic variables 

Association analyses were performed to assess the relationship between gene specific or 

global LINE-1 DNA methylation and early life exposures. Given the potential 

confounding effects of age and sex, multiple regression analyses were performed in order 

to adjust for these factors (Table 7.6). Significant associations were found between 

gestational age and DNA methylation in both TACSTD2 in the GMS cohort (Coefficient= 

-1.77, p=0.04) and LINE-1 in the NTFS cohort (Coefficient= -2.05, p=0.04). For both 

associations, a shorter gestational age was related to an increase in methylation percentage. 

As indicated by the R2 value, sex and gestational age accounted for ~5% and 2% of the 

variation in TACSTD2 and LINE-1 methylation, respectively. 

Gene and phenotypic trait Coefficient [95% CI] t p-value R
2 

(%) 

IGF2 
    

Gestational age (days) -0.13 [-0.88, 0.61] -0.35 0.729 0.01 

Birth weight (kg) 0.57 [-1.76, 2.90] 0.49 0.627 0.01 

Birth weight z-score 0.73 [-0.45, 1.90] 1.22 0.225 0.02 

Thrive index 12 months 0.30 [-1.08, 1.67] 0.43 0.671 0.01 

Breast feed > 4 months Reference 
   

Breast feed > 6 weeks 1.63 [-3.37, 6.63] 0.64 0.520 
 

Breast feed < 6 weeks 0.37 [-3.56, 4.29] 0.18 0.854 0.01 

Breast feed never 1.37 [-2.41, 5.14] 0.72 0.475 
 

TACSTD2 
    

Gestational age (days) -1.77 [-3.44, -0.11] -2.12 0.037 5.36 

Birth weight (kg) -2.53 [-7.12, 2.07] -1.09 0.277 1.81 

Birth weight z-score -1.08 [-3.42, 1.25] -0.92 0.358 1.43 

Thrive index 12 months 0.45 [-2.36, 3.26] 0.32 0.750 0.82 

Breast feed > 4 months Reference 
   

Breast feed > 6 weeks 7.99 [-2.55, 18.54] 1.51 0.135 
 

Breast feed < 6 weeks 1.90 [-7.05, 10.86] 0.42 0.674 0.04 

Breast feed never 4.59 [-3.51, 12.69] 1.13 0.263 
 

LINE-1 
    

Gestational age (days) -3.00E-3 [-6.00E-3, -1.00E-4] -2.05 0.042 2.14 

Birth weight (kg) 0.07 [-0.29, 0.44] 0.40 0.689 0.42 

Duration breastfed (weeks) 0.36 [-0.32, 1.04] 1.04 0.298 0.77 

Table 7.6 Regression of early life phenotypic traits against global and gene specific DNA 

methylation. 

Data shown adjusted for age and sex. 
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Given the non-normal distributions of methylation and phenotypic traits, further analysis 

was performed by Spearman’s rank correlation stratifying for sex. Using this analysis a 

similar pattern of association was observed between TACSTD2 DNA methylation and 

gestational age (all individuals Spearman’s rho=-0.21, p-0.048), although this did not reach 

statistical significance in the smaller sex-stratified subgroups (Table 7.7). No other 

significant associations were observed between the early life exposures and IGF2, 

TACSTD2 or LINE-1 DNA methylation (Table 7.6). 

 

All Male Female 

Gene and 

phenotypic trait 

n rho p-

value 

n rho p-

value 

n rho p-

value 

IGF2          

Gestational age 

(days) 

132 0.02 0.782 68 -0.02 0.882 64 0.06 0.653 

Birth weight 

(kg) 

132 0.05 0.550 68 -0.02 0.865 64 0.11 0.378 

Birth weight 

z-score 

132 0.11 0.224 68 0.07 0.554 64 0.12 0.330 

Thrive index 

12 months 

124 -0.01 0.924 64 0.03 0.796 60 -0.02 0.908 

Breast Feed‡ 125 1.70 0.637 64 6.73 0.081 61 2.01 0.570 

TACSTD2          

Gestational age 

(days) 

90 -0.21 0.048 45 -0.21 0.161 45 -0.21 0.169 

Birth weight 

(kg) 

90 -0.09 0.406 45 -6.00E-3 0.965 45 -0.15 0.341 

Birth weight 

z-score 

90 -0.11 0.317 45 -0.07 0.671 45 -0.12 0.426 

Thrive index 

12 months 

84 -0.04 0.739 42 0.15 0.342 42 -0.21 0.184 

Breast Feed‡ 89 3.85 0.278 44 1.81 0.614 45 3.67 0.300 

LINE-1          

Gestational age 

(days) 

226 0.03 0.667 83 0.01 0.921 143 0.03 0.740 

Birth weight 

(kg) 

229 -0.009 0.891 85 0.06 0.585 144 -0.05 0.550 

Duration 

breastfed 

(weeks) 

224 -0.10 0.138 85 -0.06 0.585 139 -0.14 0.110 

Table 7.7 Spearman’s rank correlation of early life phenotypic traits, gene specific and global 

DNA methylation. 

Data shown straPfied for sex. ‡
 
Kruskal–Wallis one-way analysis of variance 
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7.5 Discussion 

These data demonstrate a correlation between gestational age at birth and gene specific 

(TACSTD2) DNA methylation in childhood and global (LINE-1) DNA methylation in 

later life. Since undertaking these analyses, additional data from our laboratory on an 

independent cohort has also demonstrated a link between gestational age and DNA 

methylation patterns measured at birth. Furthermore, Novakovic and colleagues recently 

reported widespread changes in promoter methylation profiles in human placenta in 

response to increasing gestational age (Novakovic et al., 2011). The observation that 

gestational age is associated with marked changes in epigenetic patterns aligns with existing 

knowledge in the field of developmental biology relating to the dynamic reprogramming of 

the epigenome during this period (Reik, 2007). What the lifecourse approach in the current 

study might suggest is that this dynamic in utero programming is somehow ‘fixed’ when the 

extrauterine environment is encountered and persists across the lifecourse. This postulate is 

somewhat speculative but provides an interesting paradigm for future work. 

Global LINE-1 DNA methylation measured at birth is believed to be affected by several 

different exposures during pregnancy such as folate supplementation (Fryer et al., 2011) 

but also including tobacco smoke, polycyclic aromatic hydrocarbons (PAHs) (Herbstman 

et al., 2009) and perfluoroalkyl compounds (PFCs) (Guerrero-Preston et al., 2010). 

However, few studies to date have linked these or other exposures to methylation patterns 

later in the lifecourse, with the exception of the studies on the Dutch Hunger Winter 

cohort cited earlier (Heijmans et al., 2008, Tobi et al., 2009). In those studies linking early 

life exposure to later methylation levels, these have not yet uncovered a link to phenotypic 

traits that hints at the relationship not having a causal basis.  

The data presented in this chapter could reflect the fact that differential DNA methylation 

is established, at least in part, in utero (Godfrey et al., 2011a), is fixed to some extent upon 

birth and persists through childhood and adulthood. Even if this is proven to be the case 

we are not yet able to conclude whether these persistent epigenetic changes are actually 

mechanistically related to disease risk.  

However these observations are just postulates, further work will be required in order to 

replicate this observed association and delineate the causes of this differential methylation. 

This could be accomplished by performing gene specific and genome wide analyses on a 

variety of tissue types at a number of time points in large, well-powered studies. 
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Chapter 8: Discussion 

8.1 Summary of  aims and outcomes 

A total of six aims were defined in this project. Key observations related to each of these 

aims are summarised and discussed below. 

8.1.1 To identify tissue specific differential DNA methylation in rat 

hypothalamus in response to nutritional insult 

The brain is a key area in the control of appetite and thus adiposity (Berthoud and 

Morrison, 2008). The arcuate nucleus of the hypothalamus integrates a variety of hormonal 

and autonomic signals to regulate feeding behaviour in mammals (Qi et al., 2010). A 

number of key appetite regulatory genes are expressed in arcuate nucleus neurones 

including POMC (Delahaye et al., 2008), NPY (Arai et al., 2010), AgRP (Briggs et al., 2010), 

and CART (Yoo et al., 2011) and changing expression levels of these genes may exert an 

effect on appetite regulation. DNA methylation levels are highly tissue specific and it has 

been postulated that methylation of gene promoters can play a role in the repression of 

gene transcription (Gibbs et al., 2010). Therefore DNA methylation was assessed in 

hypothalamic sections taken from a rat model of developmentally induced obesity. A 

primary antibody specific to 5-methylcytosine was selected alongside one specific to Beta 

III tubulin, a neurone specific cell cytoskeleton marker. These primary antibodies were 

labelled with fluorescent secondary antibodies to allow DNA methylation levels to be 

quantified. No significant differences in levels of 5-methylcytosine were found between the 

control group and either of the protein deplete or cross over (recuperated) groups. These 

findings suggest either that this methodology does not have enough sensitivity to detect 

differences in DNA methylation levels at a gross tissue level, or that no changes were 

present in response to the nutritional intervention. This finding would be considered 

contrary to recent studies that have shown that DNA methylation levels are altered in 

response to in utero dietary manipulation, albeit in gut as opposed to brain tissue, (McKay et 

al., 2011a) and that they can differ significantly in brain tissue in response to nutritional or 

hormonal interventions (Plagemann et al., 2009, Palou et al., 2011). This method results in 

the measurement of a cell specific methylation level with an average produced across an 

area of tissue. It is therefore effectively a global assessment of DNA methylation levels. 

This was a result of both the level of magnification available and the sensitivity of the 

fluorescent microscope. It may be that some level of mosaicism may operate whereby the 



 

151 

 

differences between DNA methylation levels vary between adjacent neurones in the same 

tissue and as such an assay assessing the whole area would mask any such changes. An 

assay that could assess DNA methylation in a neurone-by-neurone basis, perhaps utilising 

laser-capture micro-dissection, would allow this possibility to be explored. 

8.1.2 To create a bioinformatic workflow allowing differentially 

methylated target genes to be identified from a gene expression array 

dataset 

Target gene identification is a key step in any study into the epigenetic control of 

phenotype. Technology development has resulted in the generation of large datasets from 

expression studies that may provide a useful means of identifying candidate genes that may 

be regulated by DNA methylation levels. This study used a gene expression dataset that 

compared the offspring of mice fed either standard mouse chow or a highly palatable 

obesogenic diet. Differentially expressed genes were assessed using a number of 

bioinformatic tools in order to identify candidates that could potentially be regulated by 

DNA methylation. The gene list was mapped to biological pathways using the Ingenuity 

Pathway Analysis package. Those genes implicated in obesity related pathways remained in 

the analysis and were assessed for previous evidence of differential methylation using the 

MeInfoText tool. Candidates were then assessed for the presence of CpG islands within 

their promoters before pyrosequencing assay design was undertaken. Following these 

various bioinformatic workflow steps a total of four candidate genes were prioritised. 

These genes were Esr1, Fxn, Igf2r, and Rbl2. These four candidate genes were then assessed 

for DNA methylation levels using the pyrosequencing platform in the study reported in 

chapter 4. The attrition rate from this workflow was high and could impact on its 

application on smaller expression array datasets. However, changing the stringency level of 

a number of steps in the workflow including the gene having been previously implicated in 

differential methylation may result in a greater number of final candidates. The biological 

pathways polled in the pathway analysis step could also be changed to suit a differing study 

hypothesis. Another stage that could be modified is designing assays based around 

promoter sequences given recent data suggesting that inducers and exon one may be 

similarly implicated in the control of transcription. Finally, although CpG island DNA 

methylation has been investigated extensively, there is increasing interest in CpG island 

shores as sites of transcriptionally relevant DNA methylation (Dudziec et al., 2011, 

Cosgrove et al., 2011). 
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8.1.3 To quantify differential DNA methylation in target genes 

identified by the bioinformatic workflow 

The identification of candidate differentially methylated genes from large expression array 

datasets can be a challenge, and the previous section sought to address this by applying a 

bioinformatic workflow. Candidates were identified that mapped to pathways implicated in 

the pathogenesis of obesity and related sequelae such as type 2 diabetes. This section of the 

study aimed to assess the methylation levels of the promoters of these identified target 

genes to discern if differential methylation was associated with the observed differential 

gene expression observed in the rodent model. Three of the four candidate genes analysed 

showed generally low levels of DNA methylation with Esr1, Fxn and Rbl2 showing median 

methylation levels of approximately 5%. There was no significant difference between DNA 

methylation levels at these loci in control animals when compared to those exposed to a 

protein deplete diet. This finding does not rule out the possibility that promoter 

methylation acts as a transcriptional regulator for these genes, however it does show that 

there is a relatively low level of DNA methylation at the specific CpG sites assessed. In 

contrast, Igf2r however showed a median methylation level of approximately 50% as well as 

exhibiting significant differences between the offspring of control and nutritionally insulted 

animals. The level of methylation detected in the Igf2r promoter agrees with existing 

findings that Igf2r is maternally imprinted and therefore is hemimethylated (Stoger et al., 

1993). The finding that Igf2r DNA methylation differed between experimental groups was 

interesting given the role of Igf2r in the control of cell growth and proliferation (Brown et 

al., 2009). Mice lacking Igf2r show foetal overgrowth compared with wild type mice (Wylie 

et al., 2003) and it is possible that differential methylation in the Igf2r promoter may 

regulate Igf2r expression. If this were the case increased DNA methylation could lead to 

repression of gene expression and the development of an obese phenotype. Further work 

is needed to link changes in Igf2r DNA methylation causally to the development of obesity, 

as it is possible that the change in methylation levels is mediated by the development of an 

obese phenotype (reverse causation). To assess this DNA methylation measurements could 

be taken prior to the development of an obese phenotype in a prospective model. The 

investigation of Igf2r methylation in this methodology was limited in scope by the amplicon 

length attainable using the pyrosequencing assay. Further studies could utilise techniques 

with increased read lengths such as the Sequenom platform to identify if the change in 

methylation observed in the section of the promoter assayed in this study maps to other 

transcriptionally relevant areas of the genome such as enhancer and first exon sequences.  
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8.1.4 To assess gene specific DNA methylation in relation to markers of 

phenotypic health at age eight years 

There is a large body of evidence suggesting that DNA methylation can affect gene 

expression. However there is limited evidence outside of neoplasias linking DNA 

methylation to a phenotypic change. This section set out to assess if methylation of 

candidate genes that had previously been implicated in the pathogenesis of childhood 

obesity were related to markers of metabolic health in children. The promoter regions of 

the genes IGF2 and TACSTD2 were assessed for methylation using pyrosequencing of 

bisulfite modified DNA. Methylation levels were regressed against phenotypic traits 

including weight, height, bioimpedance and BMI. In the case of TACSTD2 no significant 

associations were found between DNA methylation and phenotypic traits at age eight 

years. This is contrary to recent literature suggesting that TACSTD2 methylation is 

associated with the risk of fat mass in children aged 11 (Groom et al., 2012), although this 

paper did acknowledge that this association was likely to be confounded and non-causal. 

The findings presented here might indicate that TACSTD2 does not play a causal role in 

the development of obesity. However, IGF2 methylation was significantly associated with 

the age in the individuals studied. This concurs with previous studies that have reported age 

related changes in DNA methylation at the IGF2 locus (Maegawa et al., 2010, Heijmans et 

al., 2008), even if in the case of this study the age range studied is relatively small. The level 

of plasticity and overall trajectory of this methylation level as the lifecourse progresses is 

however difficult to predict. Current theories suggest that the variability of methylation at 

this locus could be expected to increase with age due to aberrant maintenance of 

methylation by DNMTs gradually decreasing in efficiency (Xiao et al., 2008). The 

association between IGF2 promoter methylation and age in this study may be attributable 

to environmental and stochastic factors. The lack of association with potential markers of 

metabolic disease in IGF2 however is contrary to recent reports linking IGF2 methylation 

with the development of obesity. Further studies in this area might consider a greater range 

of markers of metabolic disease in addition to those used in this study, as well as a wider 

range of phenotype and age in order to reveal a relationship between DNA methylation 

and obesity. Given the role of IGF2 in insulin signalling it would be interesting to assess 

whether there is a link between IGF2 DNA methylation and markers of glucose tolerance 

such fasting insulin and glucose concentrations and HOMA-IR. 
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8.1.5 To assess the effect of global DNA methylation at age 50 years on 

markers of metabolic health 

There is increasing evidence linking levels of global DNA methylation with phenotypic 

traits that could be indicative of early stage disease (Rabinovich et al., 2010). A number of 

assays can be used to assess global DNA methylation, one of which is a PCR-based assay 

specific to Long interspersed nuclear element 1 (LINE-1). LINE-1 is a repetitive, or 

transposable, element present throughout the genome that has been implicated in the 

control of cell division (Singer et al., 2010). This section of the study aimed to assess 

whether global DNA methylation measured at age 50 years is associated with traits 

indicative of early stage metabolic disease. To this end single base resolution sequencing of 

LINE-1 methylation was undertaken. These measurements were then assessed with respect 

to cardiometabolic traits. Following multiple regression analyses, with adjustment for sex, 

increased levels of LINE-1 DNA methylation were associated with increased fasting 

glucose, total cholesterol, total triglycerides and LDL cholesterol, and with decreasing HDL 

cholesterol and HDL:LDL ratio. These metabolic markers may be indicative of both a 

change in the glucose/insulin signalling pathway and early stage dyslipidaemia. Therefore 

when taken together, these changes are suggestive of a pre-metabolic disease phenotype. 

This finding is interesting given evidence suggesting that global DNA methylation is 

associated with both lipid profiles (Cash et al., 2011) and cardiovascular disease risk (Kim 

et al., 2010). However, it is important to remember that LINE-1 methylation is only a 

surrogate for global DNA methylation. It would be interesting to assess other repetitive 

elements such at the Alu repeat and the Short interspersed nuclear elements (SINEs) to see 

if this observation could be replicated. Given the metabolic traits with which LINE-1 

DNA methylation appears to be associated, gene specific assays focussing on the glucose 

and lipid homeostasis pathways might show that changes in the promoter regions of 

functional genes have an effect on metabolic disease risk. It would also be worth 

investigating whether any of the individuals in this study shown to be exhibiting early stage 

metabolic disease phenotypes progress to develop type 2 diabetes and related sequelae. 

Indeed, the Newcastle Thousand Families Study cohort is being followed up currently at 

age 60 years with both clinical and biological measurements and the prognostic value of 

theLINE-1 measures taken at age 50 can be evaluated. Further, it would allow the temporal 

changes in global DNA methylation to be tracked to metabolic change, demonstrating a 

potential causal link between differential DNA methylation and the development of 

metabolic disease.  
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8.1.6 To assess the effect of early life exposures on DNA methylation 

levels in later life 

Studies have shown that early life exposures can exert an effect on DNA methylation 

levels. Nutritional (McKay et al., 2011b) and environmental exposure such as PAHs 

(Herbstman et al., 2012) and PFOS (Guerrero-Preston et al., 2010) during the critical 

windows in utero and early postnatal life have been linked with differential DNA 

methylation. Less is known however about the persistence of these epigenetic changes 

throughout the life course. This section of the study set out to test the hypothesis that early 

life influences can affect DNA methylation levels and that these epigenetic changes persist 

in later life. Early growth and nutrition were assessed in both the Thousand Families Study 

and Gateshead Millennium Study cohort through measures such as gestational age, birth 

weight and duration of breastfeeding. These measures were then regressed against a 

number of DNA methylation measurements including global methylation, as measured by 

the LINE-1 assay, and the gene-specific assays IGF2 and TACSTD2. These measures were 

of particular interest given recent literature showing differential methylation at the IGF2 

locus in children born small for gestational age (Tobi et al., 2011) and significantly lower 

LINE-1 global methylation levels in new born babies with low or high birth weight when 

compared with normal weight infants (Michels et al., 2011). Gene specific TACSTD2 

DNA methylation levels were significantly associated with gestational age in the GMS 

cohort, whereas LINE-1 global DNA methylation was shown to be significantly associated 

with gestational age in the NTFS cohort. In both cases, a shorter gestational age was 

associated with increased DNA methylation. These results are particularly interesting given 

recent reports suggesting that promoter DNA methylation profiles alter in human placenta 

in response to increasing gestational age (Novakovic et al., 2011). Taken together the 

findings of this section of the study suggest that differential DNA methylation may be 

established in utero and persist through childhood and adulthood. Further work will be 

required to elucidate whether these persistent epigenetic changes are linked causally to 

increased risk of developing obesity and related comorbidities.  
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8.2 Key questions for future work 

The role of epigenetic mechanisms in the developmental programming of obesity and 

related co-morbidities has been explored in this thesis. The discipline of epigenetics and its 

application to understanding the aetiology of common complex diseases such as obesity is 

a nascent area of investigation. A number of important questions remain to be addressed as 

this field of research evolves. The work conducted in my thesis serves to highlight several 

of these questions which are summarised below. 

8.2.1 When are the ‘critical windows’ in development in terms of 

epigenetic vulnerability? 

The role of early life exposures in the developmental programming of many conditions 

including obesity and related metabolic diseases is well characterised. The work presented 

in my thesis postulates that DNA methylation is a key step in the mediation of this process 

and posits that in utero and early postnatal influences may be of greater importance than 

exposures encountered at other points in the life course. However, these may not 

necessarily be the only, or even the most important, determinants of epigenetic patterns. 

There is evidence that the pubertal period may be an example of a ‘critical window’ in 

development and that changes established at this point may persist throughout the 

lifecourse (Jasik and Lustig, 2008). Pearce et al (2012) also present evidence, based on 

observations made in the Newcastle Thousand Families Study that influences in adulthood 

are probably more important determinants of later disease risk that those experienced in 

early life (Pearce et al., 2012). Whether these ‘critical windows’ are the same as those for 

epigenetic programming remains to be determined. Assessing the role of epigenetic 

variation at multiple points throughout the life course and not focusing exclusively on the 

early life period may help to elucidate more fully the role of DNA methylation in the 

developmental programming of obesity. Although there is some evidence in animal models 

that in utero exposure to agents such as the methyl donor genistein can program patterns of 

DNA methylation in later life (Dolinoy et al., 2006), the stability of these patterns 

throughout the life course remains less well characterised. Further work in this area should 

address whether DNA methylation changes programmed during the critical window of in 

utero and early post natal life persist throughout adulthood and exert an effect on gene 

expression levels and therefore the phenotype. 
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8.2.2 Which tissue type should we be assessing? 

DNA methylation and gene expression patterns are tissue specific, indeed epigenetic 

processes are the mechanism driving tissue differentiation (Doi et al., 2009). The issue 

therefore arises that if a particular disease or disorder is known to act through perturbation 

of a specific cell or tissue type, how informative is it to study epigenetic patterns in a 

surrogate non-target tissue? 

The health outcome of interest in this study was obesity and its related comorbidities 

including type 2 diabetes and cardiovascular disease. This should inform the target tissues 

of interest, and in the case of the analyses performed on animal models, it did. Heart, liver, 

white adipose tissue and brain were selected for various analyses of gene expression and 

DNA methylation and this makes sense given the tissue-specific phenotypic traits of 

cardiovascular disease, NAFLD, perturbed adiposity and altered appetite regulation 

respectively. This issue becomes more complex however when we consider the human 

studies. For both practical and ethical reasons, human DNA samples are generally taken as 

non-invasively as possible. Saliva, buccal swabs, blood samples or, where there is an 

underlying pathology, biopsy are the usual sources of DNA. It is very difficult to obtain 

samples of other human tissues for obvious ethical reasons. As such there is an issue of 

comparability between studies in animals (or humans) using specific tissue types and in 

those using blood or saliva (McKay et al., 2011c). Recent studies have indicated that 

peripheral blood may be a suitable surrogate tissue in the context of obesity (Relton et al., 

2012), where those genes identified as being differentially methylated showed some overlap 

with genes identified in other published studies of gene expression in adipose tissue 

(Pietiläinen et al., 2006). DNA from peripheral blood and saliva have been utilised in the 

work presented in this thesis, with limitations recognised regarding the inferences that can 

be made. As the field advances more work needs to be done to ascertain if DNA extracted 

from saliva and blood is a good epigenetic surrogate for a specific obesity-relevant target 

tissue such as adipose, muscle, liver and brain.  

8.2.3 Is cell heterogeneity an issue? 

Even tissues that are relatively homogenous contain a range of different cell types, for 

instance buccal swabs contain both buccal epithelial cells and white blood cells. When a 

sample has been extracted from a complex multicellular tissue such as brain or liver the 

variety of cell types involved increases markedly. This is key because each cell type may 

have a subtly different epigenetic signature and gene expression profile depending on its 
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function. Performing methylation analysis on a DNA sample extracted from a multicellular 

tissue sample will result in an average DNA methylation profile for that tissue. While this 

measure may be of interest it is possible that high and low levels of methylation in distinct 

cell types combined with changes in the proportions of these which are present will result 

in masking of any differences in DNA methylation present due to the factor of interest. 

Recent studies have addressed this question by assessing DNA methylation levels across a 

range of blood cell types including granulocytes and mononucleocytes (Wu et al., 2011b). 

Approaches such as accounting for differential blood cell count and ensuring consistency 

in the location and composition of any biopsy sample will help in controlling for this 

inherent source of variation. 

8.2.4 How should we go about selecting candidate genes? 

Candidate gene selection has been a key component of the study designs presented in my 

thesis. High throughput systems have often been used to produce gene lists from which the 

candidates are selected, and picking candidates from such lists can be challenging. The 

process relies upon existing, sometimes imperfect, information, precluding the 

prioritisation of potentially novel loci. It is also vulnerable to subjectivity and bias. In this 

thesis I have presented a bioinformatic workflow that attempts to incorporate the steps 

required to identify candidate genes relevant to the pathogenesis of obesity. However, 

despite utilising state-of-the-art bioinformatics tools, this process is not without limitations. 

As high throughput analysis continues to scale up and generate an increasing archive of 

multi-dimensional data, so the size of the gene lists of potential target genes will grow. 

Future work on DNA methylation will require more extensive bioinformatic analysis of 

both gene expression array datasets and high throughput methylation datasets to identify 

pathways and genes of interest. 

8.2.5 Where should we be looking in the gene? 

The work presented in my thesis has focussed on promoter regions of candidate genes 

when assessing DNA methylation levels, due to their well-characterised role in the 

regulation of gene transcription. This is an approach that has been utilised widely in the 

study of functionally relevant DNA methylation. However it is important to note that there 

are a number of alternative regions of the gene that play a role in transcriptional regulation. 

These regions may also be candidates for differential DNA methylation. Regions such as 

silencers, insulators and enhancers are known to play a role in transcriptional regulation 

(Lupien et al., 2008). There is increasing evidence to suggest that differential DNA 
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methylation is involved in this process. For example one study has shown that decreased 

enhancer DNA methylation is associated with increased gene expression (Xu et al., 2007). 

The promoter is still a key area of interest but future studies into the role of DNA 

methylation in the control of transcription will undoubtedly extend beyond promoter 

regions to investigate some of these alternative genomic regions. 

8.2.6 How relevant are CpG islands? 

For many years CpG islands have been the focus of studies into DNA methylation levels 

due to the high density of DNA methylation marks. However in recent years the study of 

areas of the gene some two kb distant from CpG islands, dubbed ‘CpG island shores’, has 

shown that these areas are more likely to display variation in DNA methylation than CpG 

islands themselves. Moreover, there is evidence that CpG islands falling within promoter 

sequences are not the only ones of functional relevance. CpG islands located either 

between genes or within a transcribed section of DNA have been shown to exhibit a high 

degree of tissue-specific methylation (Illingworth et al. 2008; Rauch et al. 2009; Maunakea 

et al. 2010). Known as ‘Orphan’ CGIs, these account for some 50% of the CpG islands in 

both human and mouse genomes (Illingworth et al. 2010). Though Orphan CGIs do not 

contain recognised promoter sequences they have been shown to recruit RNA polymerase 

II resulting in transcribed, possibly non-coding RNA (Illingworth et al., 2010). Therefore 

an interesting future direction of study could be to assess the levels of DNA methylation in 

both CpG island shores and Orphan CGIs in order to discern any possible role in 

transcriptional regulation and ultimately functional consequences for disease risk. 

8.2.7 Does differential methylation cause differential expression? 

For an epigenetic epidemiological study to be able to determine that DNA methylation is 

causally linked to a change it has to be demonstrated that it is present concomitantly with a 

change in gene expression levels. This was the philosophy behind Chapters 3 and 4 of my 

thesis, where the promoter methylation levels of differentially expressed genes were 

assessed. However the ideal experimental design would involve overlaying gene expression 

data with DNA methylation data from the same sample source (McKay et al., 2008). This 

would allow changes in DNA methylation level to be causally linked to changes in gene 

expression. More elaborate functional studies could be applied as an adjunct to 

epidemiological approaches to define causal relationships. These might include reporter 

gene assays or cell culture experiments utilising demethylating agents to establish the 

relationship between DNA methylation and gene expression (Hitchins et al., 2011).  
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8.2.8 How important are other epigenetic modifications? 

DNA methylation is only one of a range of epigenetic modifications that have been shown 

to exert an effect on gene expression levels and possibly phenotype. Histone modifications 

and ncRNAs have also been shown to be involved in transcriptional regulation. There has 

also been a recent upsurge of interest in the field of RNA epigenetics that is post-

transcriptional modification of the RNA (He, 2010). These modifications include RNA 

methylation and it has been suggested that they may have functions beyond structural 

maintenance of the RNA. Understanding the role of these other epigenetic modifications 

alongside DNA methylation would help us to more fully unravel the role of developmental 

programming in the pathogenesis of obesity. 

8.3  Conclusions 

In summary, the work presented in my thesis aimed to further understand the role of DNA 

methylation as a mechanism in the developmental programming of obesity by utilising both 

animal models and human cohorts. These two approaches were used in a complementary 

way, with data generated in animal models used to inform candidate gene studies in 

humans. The work incorporated a range of techniques including, bioinformatics, 

immunohistochemistry, quantitative DNA methylation analysis and statistical analysis 

methods pertinent to these approaches. 

Although the work presented in this thesis was not able to confirm diet-induced 

differences in DNA methylation in the arcurate nuclei of rodents, the hypothalamic axis 

undoubtedly plays a key role in the moderation of appetite and therefore adiposity and 

further exploration of epigenetic signatures in this region are warranted. The absence of an 

association between the groups analysed here may be due to the sensitivity of the technique 

to detect differences and cannot be interpreted as the absence of any epigenetic 

phenomena. 

 A novel bioinformatic workflow to identify differentially methylated genes from a gene 

expression array dataset was presented and four candidates selected. The Igf2r gene 

identified in rodents using a bioinformatic workflow was shown to exhibit differential 

DNA methylation in liver tissue of offspring exposed in utero to a maternal obesogenic diet. 

In humans, increased IGF2 promoter DNA methylation was found to be positively 

associated with age in a cohort of children. In a cohort of individuals aged 50 years, 
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increased global LINE-1 DNA methylation was found to be associated with markers of 

cardiometabolic risk in later life, revealing the possibility that this may be a useful. 

biomarker of future disease risk. Increased levels of DNA methylation in the TACSTD2 

and IGF2 promoters were also found to be associated with gestational age in cohorts aged 

eight and 50 respectively. This study has shown that differential DNA methylation is 

associated with potential biomarkers of metabolic disease in humans. Additional research in 

this area should help further elucidate the role of DNA methylation in the developmental 

programming of obesity.  
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Global DNA methylation is associated with bloody lipid profiles at age 50. 

2009 European Nutrigenomics Organisation week, Montecatini Terme, Italy 

Lifecourse influences on DNA methylation. 

2009 International Congress of Nutrition, Bangkok, Thailand 

Epigenetic Epidemiology: Evidence for the Role of Epigenetic Variation in Complex 

Disease. 
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Appendix 2: Original research articles published 
using methods or results from this thesis 

International Journal of Epidemiology Volume 41, Issue 1 Pp. 210-217. 

Global LINE-1 DNA methylation is associated with blood glycaemic 

and lipid profiles 

Mark S Pearce1, James C McConnell2, Catherine Potter2, Laura M Barrett2, Louise Parker 3,4, 
John C Mathers5, and Caroline L Relton2 
1Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK, 2Institute of 
Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, 3Department of 
Medicine, 4Department of Paediatrics, Dalhousie University, Halifax, Canada,  5Human Nutrition 
Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK 

Accepted January 30, 2012. 

Abstract 

Background Patterns of DNA methylation change with age and these changes are 
believed to be associated with the development of common complex diseases. The 
hypothesis that Long Interspersed Nucleotide Element 1 (LINE-1) DNA methylation (an 
index of global DNA methylation) is associated with biomarkers of metabolic health was 
investigated in this study. 

Methods Global LINE-1 DNA methylation was quantified by pyrosequencing in blood-
derived DNA samples from 228 individuals, aged 49–51 years, from the Newcastle 
Thousand Families Study (NTFS). Associations between log-transformed LINE-1 DNA 
methylation levels and anthropometric and blood biochemical measurements, including 
triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein 
(HDL) cholesterol, fasting glucose and insulin secretion and resistance were examined. 

Results Linear regression, after adjustment for sex, demonstrated positive associations 
between log-transformed LINE-1 DNA methylation and fasting glucose {coefficient 2.80 
[95% confidence interval (CI) 0.39–5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], 
triglycerides [3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI 2.12–8.64)] 
concentrations. A negative association was observed between log-transformed LINE-1 
methylation and both HDL cholesterol concentration [−1.43 (95% CI −2.38 to −0.48)] and 
HDL:LDL ratio [−1.06 (95% CI −1.76 to −0.36)]. These coefficients reflect the millimoles 
per litre change in biochemical measurements per unit increase in log-transformed LINE-1 
methylation. 

Conclusions These novel associations between global LINE-1 DNA methylation and 
blood glycaemic and lipid profiles highlight a potential role for epigenetic biomarkers as 
predictors of metabolic disease and may be relevant to future diagnosis, prevention and 
treatment of this group of disorders. Further work is required to establish the role of 
confounding and reverse causation in the observed associations. 
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Bioinformatic selection of putative epigenetically regulated loci 

associated with obesity using gene expression data 

Valérie Turcot1, Alexandra Groom1, James C. McConnell1, Mark S. Pearce2, Catherine 
Potter1, Nicholas D. Embleton3, Daniel C. Swan4, Caroline L. Relton1 
1Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK, 2Institute of 
Health and Society, Newcastle University, Newcastle upon Tyne, UK, 3Neonatal Service, Royal 
Victoria Infirmary, Newcastle upon Tyne, UK, 4Bioinformatics Unit, Institute for Cell and 
Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK 

Accepted February 1, 2012. 

Abstract 

There is considerable interest in defining the relationship between epigenetic variation and 
the risk of common complex diseases. Strategies which assist in the prioritisation of target 
loci that have the potential to be epigenetically regulated might provide a useful approach 
in identifying concrete examples of epigenotype–phenotype associations. Focusing on the 
postulated role of epigenetic factors in the aetiopathogenesis of obesity this report outlines 
an approach utilising gene expression data and a suite of bioinformatic tools to prioritise a 
list of target candidate genes for more detailed experimental scrutiny. Gene expression 
microarrays were performed using peripheral blood RNA from children aged 11–13 years 
selected from the Newcastle Preterm Birth Growth Study which were grouped by body 
mass index (BMI). Genes showing ≥ 2.0 fold differential expression between low and high 
BMI groups were selected for in silico analysis. Several bioinformatic tools were used for 
each following step; 1) a literature search was carried out to identify whether the 
differentially expressed genes were associated with adiposity phenotypes. Of those obesity-
candidate genes, putative epigenetically regulated promoters were identified by 2) defining 
the promoter regions, 3) then by selecting promoters with a CpG island (CGI), 4) and then 
by identifying any transcription factor binding modules covering CpG sites within the CGI. 
This bioinformatic processing culminated in the identification of a short list of target 
obesity-candidate genes putatively regulated by DNA methylation which can be taken 
forward for experimental analysis. The proposed workflow provides a flexible, versatile and 
low cost methodology for target gene prioritisation that is applicable to multiple species 
and disease contexts. 

 
Highlights 

► We proposed in silico tools to target obesity candidate loci putatively regulated 
epigenetically. ► Microarrays revealed differentially expressed genes between variable 
adiposity index. ► Further selection of target loci was achieved using a gene-adiposity 
literature search. ► Promoters of target loci were analysed for potential methylation 
regulation 
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Background Patterns of DNA methylation change with age and these changes
are believed to be associated with the development of common
complex diseases. The hypothesis that Long Interspersed
Nucleotide Element 1 (LINE-1) DNA methylation (an index of
global DNA methylation) is associated with biomarkers of metabolic
health was investigated in this study.

Methods Global LINE-1 DNA methylation was quantified by pyrosequencing
in blood-derived DNA samples from 228 individuals, aged 49–51
years, from the Newcastle Thousand Families Study (NTFS).
Associations between log-transformed LINE-1 DNA methylation
levels and anthropometric and blood biochemical measurements,
including triglycerides, total cholesterol, low-density lipoprotein
(LDL) and high-density lipoprotein (HDL) cholesterol, fasting glu-
cose and insulin secretion and resistance were examined.

Results Linear regression, after adjustment for sex, demonstrated positive
associations between log-transformed LINE-1 DNA methylation and
fasting glucose {coefficient 2.80 [95% confidence interval (CI) 0.39–
5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], triglycerides
[3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI
2.12–8.64)] concentrations. A negative association was observed be-
tween log-transformed LINE-1 methylation and both HDL choles-
terol concentration [�1.43 (95% CI �2.38 to �0.48)] and HDL:LDL
ratio [�1.06 (95% CI �1.76 to �0.36)]. These coefficients reflect the
millimoles per litre change in biochemical measurements per unit
increase in log-transformed LINE-1 methylation.

Conclusions These novel associations between global LINE-1 DNA methylation
and blood glycaemic and lipid profiles highlight a potential role for
epigenetic biomarkers as predictors of metabolic disease and may be
relevant to future diagnosis, prevention and treatment of this group
of disorders. Further work is required to establish the role of
confounding and reverse causation in the observed associations.

Keywords Global DNA methylation, LINE-1, cohort study, glucose, HDL/LDL
cholesterol, insulin, triglyceride
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Introduction
DNA methylation is the covalent modification of
cytosine residues in the DNA sequence through the
addition of a methyl group that converts cytosine to
5-methyl cytosine (5meC).1 In the human genome,
this covalent modification largely takes place on cyto-
sine residues that are located 50 adjacent to guanine
residues. These sequences of nucleotides are known as
CpG sites, and in some regions of the genome they
cluster together forming motifs known as CpG islands
(CGIs). These CGIs make up a maximum of 2% of the
genome, and are for the most part unmethylated.
Some CGIs, however, are more highly methylated
and these tend to be proximal to imprinted genes
or transposons.2 At a global level, DNA methylation
can be assessed by utilizing repeat interspersed
regions such as Alu or Long Interspersed Nucleotide
Element 1 (LINE-1). Comprising �17% of the human
genome, LINE-1 is the most abundant family of non-
long terminal repeat retrotransposons found in the
genome.3 Such elements have served as a useful
proxy for global DNA methylation as they are com-
monly heavily methylated in normal tissue (although
hypomethylated in tumour tissue), and are spread
ubiquitously throughout the genome.4 The level of
correlation of LINE-1 with gene-specific methylation
is not well documented, although LINE-1 methylation
does correlate with global methylation measured
using a variety of different methods including Alu,
Sat2 and LUMA.5 Global hypomethylation is a
common event in ageing cells. This has been shown
in relation to some interspersed repeat regions such as
Alu, but the evidence is less clear with regard to
LINE-1.4 Indeed, a recent study of age-dependent
changes in DNA methylation of interspersed repeat
regions showed a weak positive correlation between
age and LINE-1 methylation.6

Limited evidence exists to link LINE-1 methylation
with disease, and this has almost exclusively been
observed in the cancer field. For example, LINE-1
methylation levels modulate the effects of exposure
to dietary folate and alcohol on colon cancer risk,7

and have prognostic value when analysed in colon
tumour tissue.8,9 In a recent study of LINE-1 methy-
lation and cardiovascular health in the Boston-based
Normative Aging Study, people with prevalent ischae-
mic heart disease (IHD) and stroke had lower LINE-1
methylation and, in longitudinal analyses, those with
lower LINE-1 methylation were at higher risk for in-
cident IHD, stroke and total mortality.10 Thus, there is
little empirical evidence to date linking LINE-1
methylation with common complex diseases other
than cancer and limited evidence for an association
with neural tube defects.11 However, studies both in
experimental animals and in human cohorts have
shown that environmental insults can influence
DNA methylation (reviewed by Mathers et al.12).
LINE-1 methylation is also susceptible to a wide
range of environmental exposures including

perfluorooctane sulfonate,13 prenatal tobacco smoke
exposure,14 polycyclic aromatic hydrocarbons,15

biomarkers of lead levels in both adults16 and
cord blood,17 traffic particulates18 and plasma
homocysteine.19

The present study addresses the hypothesis that
global LINE-1 DNA methylation, measured at age
49–51 years, is associated with traits indicative of
early-stage metabolic disease.

Methods
Study participants
The Newcastle Thousand Families Study (NTFS) pro-
spective birth cohort consists of all 1142 individuals
born in May and June 1947 to mothers resident
within the city of Newcastle upon Tyne in northern
England.20 Two-thirds of these children were followed
up regularly until age 15 years, with detailed infor-
mation collected prospectively on their health, growth
and socio-economic circumstances. Follow-up was
re-established during the 1990s with participants
being traced via media publicity or through the UK
National Health Service Central Register. Between
October 1996 and December 1998, 412 participants
(�50 years of age) attended clinical examinations
which included blood collection for DNA analysis
and completed questionnaires detailing their family
history and lifestyle.20 DNA from 228 individuals
was analysed in the current study, based upon sam-
ples of sufficient quality and quantity for LINE-1 DNA
methylation analysis. Excluding sex, these 228 indi-
viduals were representative of the initial 1142 partici-
pants as well as the 412 follow-up participants (data
not shown).

Clinical assessments of outcomes and adult
height and weight at age 49–51 years
Assessments were performed in the morning follow-
ing an overnight fast. All lipid analyses were per-
formed on a DAX analyser (Bayer, Basingstoke).
Total cholesterol was measured using a cholesterol
oxidase/peroxidise method with calibrants traceable
to the Centres for Disease Control definitive method.
Serum high-density lipoprotein (HDL) cholesterol was
measured using a cholesterol oxidase method after
precipitation of apolipoprotein B containing lipopro-
teins with phosphotungstic acid and magnesium
chloride (interassay coefficient of variation 2.2%).
Low-density lipoprotein (LDL) cholesterol levels were
derived by the Friedewald method21 and the HDL:LDL
ratio was calculated. Triglyceride concentrations,
excluding glycerol, were estimated by a lipase-glycerol
kinase method. Plasma glucose concentrations at 0,
30 and 120 min (after a 75-g oral glucose load) were
measured on a Yellow Springs Analyser (YSI Stat Plus
2300; Yellow Springs Instruments, Farnborough,
UK)22 and serum insulin at the same time-points
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was determined by ELISA (Dako Ltd, Ely, UK)
(interassay coefficients of variation 3.1 and 3.3%, re-
spectively).23 Insulin resistance was estimated using
the homeostasis model assessment of insulin resist-
ance (HOMA-IR) of Matthews et al.24 Insulin secre-
tion was estimated as the ratio of the 30-min
increment in insulin concentration to the 30-min in-
crement in glucose concentration following oral glu-
cose loading, relative to the baseline concentrations.25

Height and weight were measured and body mass
index (BMI) was calculated. Waist and hip circumfer-
ences were measured according to the protocol of the
World Health Organization Monitoring Trends and
Determinants in Cardiovascular Disease (MONICA)
project.26 Percent body fat was estimated from imped-
ance measured using a Holtain body composition ana-
lyser (Holtain Ltd, Crymych, Wales, UK).

Measurement of global LINE-1 DNA
methylation
DNA was extracted from peripheral blood samples
using a Nucleon BACC2 kit (Tepnel Life Sciences,
UK). One microgram of DNA sample was bisulphite
modified using the Zymo EZ DNA Methylation Gold
kit (Cambridge Bioscience, Cambridge) using the
manufacturer’s standard protocol. One microgram of
bisulphite modified DNA was PCR amplified using
2�HotstarTAQ Mastermix (Qiagen, UK), 2 mM
MgCl2 (Qiagen, UK) and 0.2 mM of each primer
(LINE-1 forward primer—50-TTT TGA GTT AGG
TGT GGG ATA TA-30 and LINE-1 reverse primer—
BIO-50-AAA ATC AAA AAA TTC CCT TTC-30).27 PCR
conditions were as follows: 958C for 15 min, 50 cycles
of 958C for 15 s, 608C for 30 s and 728C for 15 s and
finally 728C for 5 min. Five microlitres of amplicons
were utilized for downstream single-strand prepar-
ation and hybridization of 0.5 mM sequencing primer
(50-GGG TGG GAG TGA T-30), using a vacuum prep
tool and workstation according to manufacturer’s in-
structions (Qiagen, UK). LINE-1 methylation was
quantified using a PyroMark MD Pyrosequencer
(Qiagen, UK) in which the analysis sequence for
LINE-1 was: TC/TGATTTTTTAGGTGC/TGTTC/TGTTA.
Zero and 100% methylated controls were generated
by carrying out a nested PCR reaction on genomic
DNA to generate an unmethylated control, followed
by in vitro methylation (SssI treatment) of an aliquot
of the PCR product to generate a methylated control.
These controls were used to rule out any amplification
bias of primers for methylated DNA and to assess
assay reproducibility. LINE-1 primer sets were found
to be unbiased and were reproducible. 0 and 100%
methylated controls were routinely run alongside
samples as internal controls. Samples were analysed
in duplicate with appropriate quality control measures
in place (bisulphite conversion and PCR controls and
random repeats). The mean (standard deviation) dif-
ference between duplicate samples was 3.0 (3.4%).
This assay arbitrarily amplifies LINE-1 sequences

from multiple genomic locations, providing a repre-
sentative measure of methylation that is not site-spe-
cific i.e. a global assessment.

Statistical analysis
Pyrosequencing generated estimates of LINE-1 DNA
methylation at each of three CpG sites which were
expressed as a percentage, i.e. the proportion of
methylated residues in the total DNA sample assayed.
Correlation between methylation at all three CpG sites
was high (P < 0.001), therefore a mean of all three
sites was calculated and tested for association with
the anthropometric, glycaemic and lipid-related out-
come variables. Mean methylation levels were com-
parable with those previously published using a
similar (but not identical) assay design.28 DNA
methylation showed a skewed distribution (tested
using a ShapiroWilk test) so values were log-trans-
formed before further analysis. Linear regression
was used to examine relationships between anthropo-
metric measures, glycaemic and lipid-related blood
biomarkers (the dependent variables) and the inde-
pendent variable, log-transformed global LINE-1
DNA methylation at age 50 years. Regression coeffi-
cients and corresponding 95% confidence intervals
(CIs) are reported showing the level of change in out-
come measures per unit increase in log-transformed
LINE-1 DNA methylation, after adjustment for sex.
Overall R2 values for the models including both
log-transformed LINE-1 DNA methylation and sex
are given as percentages. Direct R2 values for methy-
lation were estimated by subtracting the R2 value for
the models including sex only from the corresponding
models including both log-transformed LINE-1 DNA
methylation and sex. This gives an estimate of the
direct association between outcome and methylation
after adjustment for any potential mediation through
sex. Finally, the potential influence of covariates
known to be associated with global DNA methylation
(namely, age, alcohol consumption and smoking
status) upon the observed associations was assessed
within the linear regression models.

Ethical approval for the study was obtained from
the appropriate local research ethics committees and
all participants provided their written consent.

Results
LINE-1 DNA methylation measurements were avail-
able for 228 study members of the 412 who attended
the clinical assessment, with no significant difference
in the distribution of mean methylation values be-
tween males (n¼ 85, 37%) and females (n¼ 143,
63%) (Mann–Whitney z¼ 0.60, P¼ 0.55). Descriptive
data for all variables used in this study are given in
Table 1. Increased LINE-1 DNA methylation was asso-
ciated with increasing fasting glucose [regression
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coefficient (95% CI)¼ 2.80 (0.39–5.22) P¼ 0.02], total
cholesterol¼ 4.76 (1.43–8.10), P¼ 0.005, total trigly-
cerides¼ 3.83 (1.30–6.37), P¼ 0.003 and LDL choles-
terol¼ 5.38 (2.12–8.64), P¼ 0.001 and with decreasing
HDL cholesterol¼�1.43 (�2.38 to �0.48), P¼ 0.003
and HDL:LDL ratio¼�1.06 (�1.76 to �0.36),
P¼ 0.003 (Table 2). For these analyses, LINE-1 DNA
methylation (predictor variable) was log-transformed.
Hence, these coefficients reflect the millimoles per litre
change in outcome measure per unit increase in
log-transformed methylation. Alternatively, following

a 10% increase in LINE-1 DNA methylation, fasting glu-
cose, total cholesterol, total triglycerides and LDL chol-
esterol increase by 0.28, 0.48, 0.38 and 0.54 mmol/l,
respectively; and HDL cholesterol and HDL:LDL ratio
decrease by 0.14 mmol/l and 0.11 units, respectively.
The combined contributions of sex and LINE-1 DNA
methylation explained between 4.98 and 9.65% of
the variation in outcome measures. LINE-1 DNA
methylation alone accounted for 2.12–4.37% of this
variability (Table 2). Additional variables thought to
influence global methylation (namely, age, alcohol
consumption and smoking status) were not associated
with LINE-1 DNA methylation in this study cohort and
hence did not alter any of the associations observed
(data not shown).

Discussion
The data presented demonstrate that increased
LINE-1 DNA methylation is associated with a
number of blood-based biomarkers of metabolic
health and provide evidence of an association be-
tween LINE-1 DNA methylation and phenotypic
traits other than cancer. There is substantial evidence
that LINE-1 DNA methylation is modulated by a wide
range of environmental exposures,12–19 and several of
these environmental exposures are associated with
risk of complex diseases. It is therefore attractive to
postulate that LINE-1 DNA methylation may provide
a mechanistic link between such environmental ex-
posures and the development of disease-related
traits, although the current data suggest no such
link with alcohol consumption and smoking status.
However, it is also possible that LINE-1 DNA methy-
lation patterns are confounded and are not causally

Table 2 Results of linear regression analyses of relationships between log-transformed methylation and the listed de-
pendent variables, all adjusted for sex

Outcome variable Coefficient (95% CI) P-value R2 (%) Direct R2 (%)

BMI (kg/m2) 2.30 (�9.99 to 14.59) 0.71 0.90 0.06

Waist/hip ratio 0.14 (�0.01 to 0.30) 0.07 65.42 0.51

Body fat (%) 5.14 (�19.01 to 29.30) 0.68 5.65 0.08

Fasting glucose (mmol/l) 2.80 (0.39 to 5.22) 0.02 9.05 2.12

Total cholesterol (mmol/l) 4.76 (1.43 to 8.10) 0.005 4.98 3.34

Total triglycerides (mmol/l) 3.83 (1.30 to 6.37) 0.003 9.65 3.57

HDL cholesterol (mmol/l) �1.43 (�2.38 to �0.48) 0.003 8.96 3.54

LDL cholesterol (mmol/l) 5.38 (2.12 to 8.64) 0.001 7.02 4.37

HDL:LDL ratio �1.06 (�1.76 to �0.36) 0.003 7.00 3.67

Insulin secretion 90.24 (�8.04 to 188.53) 0.07 1.57 1.54

HOMA-IR 2.34 (�2.68 to 7.36) 0.36 5.83 0.37

Coefficients and corresponding 95% CIs indicate the change in outcome measure per unit increase in log-transformed LINE-1
methylation, after adjustment for sex. R2 reflects the variance (%) in outcome measures accounted for by both sex and
log-transformed LINE-1 methylation (i.e. the combined effect of both covariates). Direct R2 reflects the variance (%) in outcome
measures accounted for by log-transformed LINE-1 methylation alone (i.e. the direct effect of methylation).

Table 1 Descriptive statistics for variables included in this
investigation

Variable n Median (IQR)

Outcome

BMI (kg/m2) 228 25.70 (22.94–28.93)

Waist/hip ratio 228 0.84 (0.77–0.93)

Body fat (%) 226 40.35 (34.00–45.00)

Fasting glucose (mmol/l) 227 5.18 (4.90–5.50)

Total cholesterol (mmol/l) 228 5.14 (4.33–5.85)

Total triglycerides (mmol/l) 228 0.97 (0.70–1.52)

HDL cholesterol (mmol/l) 228 1.06 (0.85–1.30)

LDL cholesterol (mmol/l) 228 3.80 (2.91–4.58)

HDL:LDL ratio 228 0.28 (0.21–0.41)

Insulin secretion 213 14.7 (9.19–23.04)

HOMA-IR 219 1.68 (1.01–2.28)

Predictor

Mean methylation (%) 228 52.76 (51.51–54.92)

IQR, interquartile range.
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(or mechanistically) related to disease-related traits.
Either way, there is considerable interest in the role
of epigenetic mechanisms in common complex dis-
ease29 given their potential to act as both informative
diagnostic and prognostic biomarkers. It is postulated
that, in those diseases with a prominent environmen-
tal component, it is possible that epigenetic factors
contribute to the inter-individual differences in re-
sponses to environmental exposures30 and to the
pathogenesis of such diseases.31

We observed associations between LINE-1 DNA
methylation and fasting concentrations of glucose, tri-
glycerides and total, LDL and HDL cholesterol and
also HDL:LDL ratio, all of which are blood-based bio-
markers of increased risk of cardiovascular disease
(CVD) and/or type 2 diabetes. High concentrations
of fasting glucose are associated with the develop-
ment of both CVD and diabetes.32 We observed a
positive association between LINE-1 DNA methylation
and total cholesterol and triglycerides concentrations.
Elevated concentrations of these blood lipid markers
have been shown previously to be strongly associated
with an increased risk of CVD.33 Furthermore, our
results show LINE-1 DNA methylation is associated
with both increased LDL cholesterol and decreased
HDL cholesterol concentrations. These opposing direc-
tional changes are those expected in individuals
at increased risk of CVD. Given the high levels of
collinearity of many of these measures, we chose
however not to take a multivariable approach to the
analysis.

As this study was conducted in individuals at age 50
years with no evidence of overt CVD, it was not pos-
sible to explore a potential association between
LINE-1 DNA methylation and subsequent disease
phenotype. However, this is a potential strength of
this study as it removes the possible confounding
effect of disease status on LINE-1 DNA methylation
patterns. The NTFS birth cohort is being followed up
longitudinally, which will provide the opportunity to
ascertain the predictive utility of LINE-1 DNA methy-
lation at age 50 years in respect of later disease risk.
Nonetheless, given that both LINE-1 DNA methyla-
tion and blood biochemical measures were assessed
at the same time-point, it is not possible to determine
the direction of effect between these factors, if indeed,
a direct causal (or mechanistic) link exists.
Furthermore, given the small effect sizes observed,
the contribution of one factor upon the other remains
modest.

These findings are among the first observations to
link LINE-1 DNA methylation levels with
disease-related traits other than cancer. In the
Boston-based Normative Aging Study, persons with
prevalent IHD and stroke had, in contrast to our find-
ings, lower LINE-1 DNA methylation and, in longitu-
dinal analyses, those with lower LINE-1 DNA
methylation were at higher risk for incident IHD,
stroke and total mortality.10 In a further study of

the Boston-based cohort, an association was seen be-
tween LINE-1 hypomethylation and vascular cell ad-
hesion molecule-1 for disease-free individuals, but not
for those with prevalent IHD or stroke.34 However,
this all-male cohort is considerably older than the
NTFS, with a mean age of 74 years at DNA sampling,
which may offer some explanation as to the discord-
ance in observations between the cohorts. The widely
observed hypomethylation of LINE-1 DNA associated
with cancer and the observations reported in the
Normative Ageing Study could suggest that LINE-1
DNA methylation would be inversely associated with
blood-based biomarkers of metabolic health, whereas
our observations demonstrate the opposite associ-
ation. Given the limited empirical data in this area
and the lack of clear association between advancing
age and decreased LINE-1 DNA methylation,4,6 the
current findings warrant further attention. There is
some evidence that gene-specific DNA methylation
is positively correlated with older age. Ronn et al.35

showed that elderly, compared with young,
non-diabetic twins had both higher DNA methylation
and lower gene expression of COX7A1 (a gene asso-
ciated with peripheral insulin sensitivity, measured in
10 individuals using bisulphite sequencing).
Hernandez et al.36 also recently reported extensive evi-
dence of genome-wide gene-specific hypermethylation
with advancing age. The relationship between these
gene-specific observations and global LINE-1 DNA
methylation remains to be clarified.

Our observations suggest that LINE-1 DNA methy-
lation and hence potentially other forms of epigenetic
modification, might be useful in predicting risk of
common complex diseases such as type 2 diabetes
and CVD. The issues of confounding and reverse caus-
ation are fundamental to pursuing this further. DNA
methylation is in essence a phenotype and is therefore
vulnerable to multiple confounding influences includ-
ing age, sex, smoking and socio-economic position to
name only a few. Although our statistical appraisal of
potential confounders did not highlight any obvious
culprits, the issue cannot be dismissed. Indeed, it may
transpire that DNA methylation provides nothing
more than an indirect measure of confounding influ-
ences. In addition, it will be crucial to understand the
causal relationship between LINE-1 DNA methylation
and the blood-based biomarkers associated with this
epigenetic signature, whether LINE-1 DNA methyla-
tion is causal in altering blood-based biomarkers such
as fasting glucose and lipid concentrations or whether
the reverse applies. There is limited evidence to sug-
gest that altering glucose levels changes DNA methy-
lation patterns,37 but to our knowledge there is no
direct evidence to link lipid levels to perturbed DNA
methylation, or vice versa. A recent study of
genome-wide methylation in cord-blood DNA high-
lighted numerous methylation-variable loci whose
biological roles were related to lipid metabolism, sug-
gesting a causal influence of altered methylation on
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lipid levels.19 A previous study of patients with cor-
onary artery disease and controls showed that global
DNA methylation was associated with coronary artery
disease risk, and that this association was accentuated
by increased plasma homocysteine concentration.38

Further insight into the direction of causality may
be obtained by adoption of a Mendelian randomiza-
tion approach, as proposed recently by Relton and
Davey Smith.39 This approach involves the use of gen-
etic variants as proxies for specific exposures, such
that an association between genotype and DNA
methylation would be indicative of a causal relation-
ship (as lipid levels could not plausibly influence
genotype and thus the possibility of reverse causation
is removed). Numerous genetic variants have recently
been reported to influence blood lipid profiles40 and
these could be used collectively as a proxy for lipid
concentrations to investigate the association between
lipid levels and DNA methylation.

In this study we estimated global DNA methylation
using the LINE-1 assay, which measures cytosine
methylation in common non-coding sequences that
occur widely across the genome. The functional con-
sequences of altered DNA methylation at these CpG
sites within LINE-1 for the development of CVD and
diabetes-related risk markers is not known and
indeed may not be easily decipherable through the
analysis of non-target tissues such as peripheral
blood. A limitation of this, and many similar studies,
is the reliance upon epigenetic profiling of peripheral
blood DNA, with the assumption that it will be in-
formative about target tissues.41 Interrogation of
methylation status of promoters in genes implicated
directly in pathways of lipid metabolism and glucose
homeostasis may provide greater insight. Methylation
has been reported to change with both actual age
(serial sampling)42–44 and chronological age (cross
sectional sampling).36 As the study members were
all born within a 2-month period in 1947 and as-
sessed within an 18-month period at age 49–51
years, this minimizes the likelihood of confounding
effects of chronological age.

In summary, we have presented evidence which
supports the hypothesis that global LINE-1 DNA methy-
lation at age 50 years is associated with biomarkers of
metabolic health. Although these cross-sectional asso-
ciations do not allow conclusions to be drawn with
respect to the direction of causation, and the potential
for confounding cannot be dismissed, the findings may
have important implications for prediction, early diag-
nosis, prevention and treatment of common complex
diseases such as CVD and type 2 diabetes.
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KEY MESSAGES

� Patterns of both global and gene-specific DNA methylation change with age and these changes are
believed to be associated with the development of common complex diseases.

� Associations were seen between global LINE-1 DNA methylation and a number of blood glucose and
lipid markers (positive for fasting glucose, total cholesterol and triglycerides; negative for HDL chol-
esterol and the HDL:LDL ratio).

� Confounding and reverse causation represent major problems in epigenetic association studies and
require careful consideration in studies of this type.

� These novel associations between global LINE-1 DNA methylation and blood glucose and lipid pro-
files highlight a potential role for epigenetic biomarkers as predictors of metabolic disease and may be
relevant to future diagnosis, prevention and treatment of this group of disorders.
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There is considerable interest in defining the relationship between epigenetic variation and the risk of com-
mon complex diseases. Strategies which assist in the prioritisation of target loci that have the potential to be
epigenetically regulated might provide a useful approach in identifying concrete examples of epigenotype–
phenotype associations. Focusing on the postulated role of epigenetic factors in the aetiopathogenesis of obe-
sity this report outlines an approach utilising gene expression data and a suite of bioinformatic tools to prior-
itise a list of target candidate genes for more detailed experimental scrutiny. Gene expression microarrays
were performed using peripheral blood RNA from children aged 11–13 years selected from the Newcastle
Preterm Birth Growth Study which were grouped by body mass index (BMI). Genes showing ≥2.0 fold dif-
ferential expression between low and high BMI groups were selected for in silico analysis. Several bioinfor-
matic tools were used for each following step; 1) a literature search was carried out to identify whether
the differentially expressed genes were associated with adiposity phenotypes. Of those obesity-candidate
genes, putative epigenetically regulated promoters were identified by 2) defining the promoter regions, 3)
then by selecting promoters with a CpG island (CGI), 4) and then by identifying any transcription factor bind-
ing modules covering CpG sites within the CGI. This bioinformatic processing culminated in the identification
of a short list of target obesity-candidate genes putatively regulated by DNA methylation which can be taken
forward for experimental analysis. The proposed workflow provides a flexible, versatile and low cost meth-
odology for target gene prioritisation that is applicable to multiple species and disease contexts.

© 2012 Published by Elsevier B.V.

1. Introduction

Overweight and obesity are graded conditions of excess body fat,
which are clinically defined based on their associated risk for comor-
bidities and mortality in the adult population (NIH Report, 1998;
WHO, 2006). The total direct cost of overweight and obesity to the

National Health Service (NHS) in the UK was estimated at
£5.15 billion in 2006–2007, corresponding to 16.2% of NHS total
costs in the same period which was primarily due to hypertensive
disease, osteoarthritis, diabetes mellitus and ischemic heart disease
(Scarborough et al., 2011). In children and adolescents, the evaluation
of age and sex specific body mass index (BMI) has been shown to be
the most useful method for assessing weight status and identifying
those at a higher risk of future adverse health outcomes (Cole et al.,
2000; Janssen et al., 2005; Kuczmarski et al., 2000; WHO, 2006).
The prevalence of overweight and obesity in children and adolescents
is increasing in England (Stamatakis et al., 2010a, 2010b), which ren-
ders them to be at a higher risk of becoming overweight adults (Singh
et al., 2008). This situation may increase the burden of overweight
and obesity in future years and thus prompts the need for prevention
and therapeutic interventions. To achieve this goal a better knowl-
edge of the contributing factors is essential.

A number of epidemiological studies and animal models have
shown that maternal health and nutritional status during gestation
and lactation have long-term effects on systems regulating energy
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balance in the developing offspring (reviewed by Sullivan and Grove,
2010). The molecular mediators of early metabolic programming of
obesity in offspring are poorly understood, but may partly implicate
long term disruption of glucose, insulin, leptin and inflammatory cy-
tokine homeostasis, as well as epigenetic mechanisms (Sullivan and
Grove, 2010). Potential interactions between the environment and
epigenetics, particularly in periods of high developmental plasticity
in early life, may mediate the expression of genes associated with in-
creased BMI and adiposity which could partly explain the inter-
individual differences in obesity risk (Campion et al., 2009; Herrera
et al., 2011). The logical causal pathway would be that exposure (i.e.
environmental factors) influences epigenetic patterns which in turn
changes the expression of genes implicated in the etiology of obesity
(Relton and Davey, 2010). However, any association linking epigenet-
ic variation to obesity may be vulnerable to confounding and reverse
causation (where the obese state might alter the epigenome and not
vice versa) (Relton and Davey, 2010; Schadt et al., 2005). This situa-
tion supports the necessity to pursue investigations to better under-
stand the relationship between exposure, epigenetic patterns and
complex diseases, such as obesity, in order to evaluate the utility of
treating the disease via epigenetic-based interventions or using epi-
genetic patterns as a diagnostic tool (Relton and Davey, 2010).

DNA methylation is the most widely studied epigenetic modifica-
tion in humans which occurs mainly through the addition of a methyl
group (CH3) to a cytosine positioned next to a guanine nucleotide
(CpG site). CpG sites tend to cluster together in regions called CpG
islands (CGIs). Approximately 60% of human gene promoters are asso-
ciated with CGIs that are usually unmethylated in normal cells (i.e.
non-tumourigenic cells). Methylated DNA can inhibit gene expression
by variousmechanisms, such as promoting the recruitment ofmethyl-
CpG-binding domain (MBD) proteins which has a downstream effect
on the ability of transcription factors to access their target sites
(Portela and Esteller, 2010). Interestingly, some genes previously as-
sociated with obesity (Rankinen et al., 2006) have been shown to be
epigenetically regulated, such as peroxisome proliferator-activated
receptor gamma (PPARG), glucocorticoid receptor (NR3C1), leptin
(LEP), lipoprotein lipase (LPL) and caveolin-1 (CAV1) (reviewed by
Campion et al., 2009). Some of these candidate genes have a promoter
CGI suggesting that their expression may be regulated by DNA meth-
ylation and could potentially explain inter-individual differences in
obesity risk (Campion et al., 2009). To date, there is limited evidence
linking epigenetic variability in specific genes with common complex
disease phenotypes including obesity. This situationmay be explained
by the fact that adequately powered studies relating epigenetic pro-
files and disease-related traits are few in number (Relton and Davey,
2010). Although recently, tangible evidence supports the association
between DNA methylation pattern and adiposity phenotypes in
humans (Godfrey et al., 2011; Stepanow et al., 2011), which under-
lines the necessity to conduct studies that will help to discover rele-
vant genes that may be epigenetically regulated by DNA methylation
and are associated with overweight and obesity.

A number of potential methodological approaches exist whereby
loci can be identified for prioritisation for epigenetic investigation, in-
cluding a variety of data mining and bioinformatics approaches.
Where epigenetic variation contributes to inter-individual variation
in gene expression and thus to variation in common complex disease
risk, gene expression microarrays provide a useful tool to identify
genes differentially expressed between variable adiposity pheno-
types. But further strategies are needed to specifically target
obesity-candidate genes that may be epigenetically controlled by
DNA methylation. Bioinformatic approaches for the prioritisation of
epigenetic target genes have previously been described in the context
of differential gene expression response following nutritional expo-
sure in utero (McKay et al., 2008). Inspired by this approach, this
paper proposes a refined multistep in silico analysis using bioinfor-
matic tools to identify a list of prioritised genes for further

experimental analyses that have the potential to be specifically asso-
ciated with obesity development and for which their expression may
be regulated by DNA methylation in their promoter CGI using data
from gene expression microarrays in children grouped by BMI.

2. Materials and methods

2.1. Study populations

The gene expression analysis was conducted on children aged
11–13 years selected from the Preterm Birth Growth Study, recruited
by the Special Care Baby Unit, Royal Victoria Infirmary, Newcastle
upon Tyne, UK (Cooke et al., 1999; Cooke et al., 2001), who participat-
ed in a follow-up clinical examination of cardiometabolic traits during
2007–2008. They were all healthy preterm infants with no evidence
of systemic disease, required no medication, and were growing nor-
mally at the time of hospital discharge. Anthropometric and body
composition data using a dual energy X-ray absorptiometry were
taken at 11–13 years of age. Gene expression data were available for
24 children in this cohort who were divided into tertiles according
to BMI. The children in the upper and lower tertiles (n=7 per
group) were compared for the purposes of this experiment. Summary
details of the two groups are provided in Table 1. There was no signif-
icant difference in height or age between the two groups. As
expected, they were significantly discordant in body weight, BMI
and fat mass (P≤0.0006). Based on the proposed age and sex specific
BMI cut off points for overweight and obese children from the Inter-
national Obesity Task Force (IOTF) (Cole et al., 2000), all the children
in the low BMI group had a “healthy” BMI. Alternatively, those in the
high BMI group were considered as overweight (n=5) or obese
(n=1) except for one children with a limit “healthy” BMI. This
study was approved by the Ethics Committee of the Newcastle and
North Tyneside Health Authority, and informed consent was obtained
from the parent(s) or legal guardian.

2.2. Preparation of nucleic acid

A volume of 2.5 ml of peripheral blood was drawn into a PAX-
gene™ Blood RNA tube (PreAnalytiX QIAGEN GmbH, Affymetrix
Inc., Santa Clara, California), incubated at room temperature for 2 h
and then stored at −70 °C until extraction. Total RNA was extracted
using the PAXgene™ Blood RNA System Kit following the manufac-
turer's instructions. RNA Integrity Number was assessed using RNA
Nano 6000 chips run on an Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Inc., Palo Alto, California, USA) and concentration deter-
mined using a NanoDrop™ ND-1000 spectrophotometer (NanoDrop
Technologies, Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.3. Gene expression analysis

RNA samples were sent to ServiceXS (Leiden, The Netherlands)
for globin reduction, labelling, hybridization to Human NuGO-

Table 1
Comparison of low and high BMI groups selected from the Preterm Birth Growth Study
for gene expression analysis.

Variable Low BMI (n=7) High BMI (n=7) P-value

Female (n) 3 3 –

Height (cm) 150.1 (10.0) 150.7 (11.7) 0.911
Weight (kg) 35.4 (5.9) 59.1 (12.1) 0.0006
Body mass index (kg/m2) 15.6 (0.7) 25.8 (2.6) b0.0001
Age (months) 144.7 (10.8) 151.7 (11.8) 0.268
Age term adjusted (months) 134.5 (13.1) 142.3 (12.4) 0.276
Fat mass (kg) 9.5 (3.7) 24.0 (4.7) b0.0001
Lean mass (kg) 25.0 (3.7) 32.7 (6.8) 0.022

Mean (standard deviation) values are presented in this table with t-test or Mann–
Whitney U test statistics for between group comparisons.
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Hs1a520180 GeneChip arrays and scanning of the arrays. Globin re-
duction was performed using GeneChip® Globin-Reduction kit (Pre-
AnalytiX QIAGEN GmbH, Affymetrix Inc., Santa Clara, California)
according to the manufacturer's instructions (Mat. no. 1029528)
using Peptide Nucleic Acid oligonucleotides complementary to
human globin mRNA transcripts (GR PNA-L G2001 Panagene Inc.,
Korea) and Globin-Reduction RNA controls (No. 900586, PreAnalytiX
QIAGEN GmbH, Affymetrix Inc., Santa Clara, California). Since total
RNA was purified from whole blood, it contains high amounts of glo-
bin transcripts (in contrast to fractionated blood samples). Globin re-
duction was thus necessary to reduce the amount of cDNA generated
from globin mRNA during reverse transcription, enabling sensitive
and unbiased gene expression analysis. Human NuGO-Hs1a520180
GeneChip CEL files were normalized in BioConductor (Gentleman et
al., 2004) (http://www.bioconductor.org) using the GeneChip Robust
Multi-array Average (GCRMA) procedure as implemented in the
gcrma package. Genes with differential expression between BMI
groups were identified with the RankProd package (False Discovery
Rate (FDR) value b0.05 with 100 permutations of the class labels)
(Hong et al., 2006) (http://www.bioconductor.org.). Annotations
were attached to probe sets from the nugohs1a520180.db library
(http://www.bioconductor.org/help/bioc-views/2.6/data/annotation/
html/nugohs1a520180.db.html). Raw and normalized data from the
experiment was deposited in GEO (http://www.ncbi.nlm.nih.gov/
geo/) with accession number GSE22013. For the in silico analysis
genes which were differentially expressed ≥2.0 fold in low vs. high
BMI and high vs. low BMI were prioritised for further analyses. We
used this cut off point to firstly prioritise the genes that were more
greatly differentially expressed, which would result in a fewer
number of obesity-candidate genes putatively regulated by DNA
methylation as a first exploratory investigation.

2.4. Literature search

To identify genes differentially expressed ≥2.0 fold that may be
physiologically relevant in the development of obesity we utilised
the Genomatix tool LitInspector (Frisch et al., 2009) (Genomatix
Inc., Munich, German; http://www.genomatix.de). This program is a
literature search tool providing gene and signal transduction pathway
mining within the National Center for Biotechnology Information
(NCBI)'s PubMed database. The main advantage of this program com-
pared to a PubMed search is that it speeds up the literature research
by increasing the readability of abstracts using an automatic gene rec-
ognition and color coding of associated diseases and submitted key-
words, and also provides a shorter list of relevant abstracts due to
its high gene recognition performance. Its gene recognition is based
on the comprehensive gene synonym lists provided by the NCBI's
Entrez Gene, thus the submission of a single synonym will consider
all synonyms of this gene, and the program has a high recognition
quality explained by its ability to resolve homonyms and ambiguous
synonyms, as well as rejecting “non-gene” abbreviations. This pro-
gram has been fully described previously (Frisch et al., 2009). In this
report the gene symbol for each targeted differentially expressed
locus was used as the gene name identifier and each keyword related
to adiposity phenotypes (body mass index, obesity, fat mass, adipose
tissue) was added as free text. The keyword methylation was also
used to verify whether DNA methylation variability had previously
been observed in these genes. Genes, or their encoded protein,
which had previously been associated with an adiposity phenotype
in the literature were retained for promoter region analysis. As dem-
onstrated by several users, the LitInspector software had a greater
gene recognition performance compared to other text mining tools
which can identify co-occurring gene names and custom keywords
within the PubMed database (e.g. PolySearch (Cheng et al., 2008)
and iHOP (Hoffmann and Valencia, 2005)) (Frisch et al., 2009). Pub-
Matrix (Becker et al., 2003) would have provided an alternative tool

but, to the best of our knowledge, its gene recognition performance
has not been previously evaluated.

2.5. Promoter region analysis

From the list of differentially expressed genes potentially associat-
ed with obesity we selected only those with a promoter region with
the potential to be regulated by DNA methylation. To do so, we firstly
identified the promoter region of the candidate genes using the Gen-
omatix tool Gene2Promoter which gives the promoter sequences of
all alternative transcripts for a given locus. Putative promoter se-
quences of validated transcripts with a Reference Sequence (RefSeq)
recorded in the NCBI (http://www.ncbi.nlm.nih.gov/RefSeq/) public
database were downloaded in FASTA format for each obesity candi-
date gene. These promoter sequences were then submitted to CpG Is-
land Explorer software (http://bioinfo.hku.hk/cpgieintro.html) to
determine which transcripts have a putative promoter containing a
CGI. The NCBI Map Viewer database was also used (Human Build
37.2; http://www.ncbi.nlm.nih.gov/projects/mapview/) to delimit
CGIs that may extend beyond the putative promoter sequences sub-
mitted to CpG Island Explorer. The Takai and Jones algorithm (Takai
and Jones, 2002) was used for the detection of a promoter CGI
which corresponded to 200 bp minimum length, a G+C content
≥50%, a ratio of observed CpG/expected CpG sites ≥0.60, and where
islands ≤100 base pairs (bp) apart were merged. Since methylation

Raw array data (24K probes) – Pre-processing
(gcrma package; BioConductor)  

≥2.0fold change in expression (FDR P<0.05)
in low and high BMI groups

(RankProd package; BioConductor)

30 genes 30 genes

Literature search - Adiposity association
(LitInspector; Genomatix)

1 gene 3 genes

High > Low Low > High 

56 genes

TFBMs scanning
(ModelInspector; Genomatix)

CGI identification of validated transcripts
(CpG Island Explorer, NCBI Map Viewer) 

Promoter identification
(Gene2Promoter; Genomatix)

Genes with a promoter CGI and
TFBMs covering CpG sites  

Four potential obesity candidate genes with a
promoter region putatively under DNA

methylation regulation  

4 genes

Fig. 1. Overview of themultistep in silico analysis performed for the selection of the obe-
sity candidate genes putatively regulated by DNA methylation. Unsuitable and suitable
genes for the next step of analysis are depicted with dotted and plain lines respectively.
BMI: body mass index, CGI: CpG island, FDR: false-discovery rate, TFBM: transcription
factor binding module, NCBI: National Center for Biotechnology Information.
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of CpG sites within the promoter may affect the ability of transcrip-
tion factors to access their target site and influence the gene expres-
sion regulation (Portela and Esteller, 2010) we submitted the
sequences of the putative promoters containing CGI to the Genomatix
tool ModelInspector (Klingenhoff et al., 1999). This program searches
for transcription factors binding modules (TFBM) that contain at least

two transcription factor binding sites (TFBS) in a functionally defined
distance range in the submitted sequences (for more details about
TFBM definition, refer to Klingenhoff et al., 1999). The Vertebrate
Module Library version 5.3 was selected for the analysis and only
the TFBMs identified in the Homo sapiens organism were considered
in the final results. The putative promoters containing CGIs with at

Table 2
Genes ≥2.0 fold differentially expressed in peripheral blood of children aged 11–13 years from the Preterm Birth Growth Study grouped in low and high BMI.

Gene symbol Gene name Affymetrix probe set Fold change FDR P-value

Genes ≥2.0 fold more expressed in low BMI children; n=30 genes
APOBEC3B Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B 206632_s_at 3.71 b1×10−5

RRM2 Ribonucleotide reductase M2 201890_at 3.15 2×10−3

N.A. Hs.19156 1555989_at 2.75 1.1×10−3

TYMS Thymidylate synthetase 202589_at 2.72 2×10−3

CD38 Cluster of differentiation 38 205692_s_at 2.69 b1×10−5

IGHA1 Immunoglobulin heavy constant alpha 1 217022_s_at 2.67 b1×10−5

IGKV6-21 Immunoglobulin Kappa light chain V gene segment NuGO_eht0328018_s_at 2.62 1×10−3

KIR3DL2 Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2 207314_x_at 2.35 8×10−4

SERPING1 Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1, (angioedema, hereditary) 200986_at 2.33 2×10−3

IFI44L Interferon-induced protein 44-like 204439_at 2.30 b1×10−5

KIR3DL2 Killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2 207313_x_at 2.28 b1×10−5

CCNA2 Cyclin A2 213226_at 2.28 b1×10−5

MGC29506 Hypothetical protein MGC29506 223565_at 2.27 b1×10−5

S100B S100 calcium binding protein B 209686_at 2.27 b1×10−5

CCNB2 Cyclin B2 202705_at 2.24 b1×10−5

FAM72D Family with sequence similarity 72, member D 225834_at 2.23 b1×10−5

IGLV1-51 Immunoglobulin lambda variable 1-51 217179_x_at 2.18 4×10−4

UHRF1 Ubiquitin-like, containing PHD and RING finger domains, 1 225655_at 2.15 6×10−3

TRBV4-2 T-cell receptor beta V gene segment NuGO_eht0332013_s_at 2.14 b1×10−5

OAS1 2′,5′-oligoadenylate synthetase 1, 40/46 kDa 202869_at 2.13 4×10−4

IGKC Immunoglobulin kappa constant NuGO_eht0355658_x_at 2.11 b1×10−5

DTL Denticleless homolog (Drosophila) 218585_s_at 2.08 3×10−3

IGLV1-44 Immunoglobulin lambda variable 1-44 234764_x_at 2.06 b1×10−5

PLGLB2 Plasminogen-like B2 205871_at 2.05 6×10−3

DUSP5 Dual specificity phosphatase 5 209457_at 2.05 b1×10−5

CPA3 Carboxypeptidase A3 (mast cell) 205624_at 2.04 b1×10−5

IGKV1D-16 Immunoglobulin kappa light chain V gene segment NuGO_eht0241620_x_at 2.03 b1×10−5

BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) 209642_at 2.02 b1×10−5

ERAP2 Endoplasmic reticulum aminopeptidase 2 227462_at 2.01 b1×10−5

BCAT1 Branched chain aminotransferase 1, cytosolic 225285_at 2.01 5×10−4

Genes ≥2.0 fold more expressed in high BMI children; n=30 genes
HLA-DQA1 Major histocompatibility complex, class II, DQ alpha 1 213831_at 5.61 b1×10−5

KRT1 Keratin 1 (epidermolytic hyperkeratosis) 205900_at 4.35 b1×10−5

CDC42 Cell division cycle 42 (GTP binding protein, 25 kDa) 208727_s_at 3.86 b1×10−5

SLPI Secretory leukocyte peptidase inhibitor 203021_at 3.50 b 1 x10-5

HLA-DRB1,3,4 HLA-DRB1 HGNC major histocompatibility complex, class II, DR beta 1 238900_at 3.40 2×10−3

MYOM2 Myomesin (M-protein) 2165 kDa 205826_at 2.84 b1×10−5

TUBB2A Tubulin, beta 2A 204141_at 2.80 1×10−3

CHST13 Carbohydrate (chondroitin 4) sulfotransferase 13 239647_at 2.67 b1×10−5

LTF Lactotransferrin 202018_s_at 2.62 b1×10−5

S100P S100 calcium binding protein P 204351_at 2.58 b1×10−5

COL9A3 Collagen, type IX, alpha 3 NuGO_eht0343916_s_at 2.57 1×10−3

TMOD1 Tropomodulin 1 203661_s_at 2.53 1×10−3

ANXA3 Annexin A3 209369_at 2.50 b1×10−5

RFX2 Regulatory factor X, 2 (influences HLA class II expression) 226872_at 2.46 b1×10−5

S100A12 S100 calcium binding protein A12 205863_at 2.44 b1×10−5

TACSTD2 Tumour-associated calcium signal transducer 2 precursor 202286_s_at 2.40 2×10−3

SLC4A1 Solute carrier family 4, anion exchanger, member 1
(erythrocyte membrane protein band 3, Diego blood group)

205592_at 2.36 1×10−3

SNCA Synuclein, alpha (non A4 component of amyloid precursor) 236081_at 2.29 2×10−3

FECH Ferrochelatase (protoporphyria) 203115_at 2.26 1×10−3

SELENBP1 Selenium binding protein 1 214433_s_at 2.25 2×10−3

AMFR Autocrine motility factor receptor 202203_s_at 2.21 1×10−3

TMTC1 Transmembrane and tetratricopeptide repeat containing 1 226931_at 2.19 2×10−3

PGLYRP1 Peptidoglycan recognition protein 1 NuGO_eht0008938_at 2.18 2×10−3

NFXL1 Nuclear transcription factor, X-box binding-like 1 227220_at 2.15 1×10−3

ALPL Alkaline phosphatase, liver/bone/kidney 215783_s_at 2.12 1×10−3

PI3 Probable ATP-dependent DNA helicase HFM1 (EC 3.6.1.)
(SEC63 domain- containing protein 1)

41469_at 2.11 9×10−4

DEFA4 Defensin, alpha 4, corticostatin 207269_at 2.09 2×10−3

DEFA1 Defensin, alpha 1 205033_s_at 2.04 1×10−3

N.A. Hs.606581 233217_at 2.02 9×10−4

CMTM2 CKLF-like MARVEL transmembrane domain containing 2 229967_at 2.01 1×10−3

BMI: body mass index; FDR: false discovery rate; N.A.: not available.
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least one TFBM covering one or multiple CpG sites were considered as
putatively regulated by DNA methylation.

Globally, this multi-step in silico analysis (Sections 2.4 and 2.5)
would select a proportion of differentially expressed obesity candi-
date genes likely to be under epigenetic regulation for further DNA
methylation quantification and adiposity-association analyses. As
also discussed later in this report, the proposed approach will not
identify all putatively epigenetically regulated genes but merely pro-
vides a valuable and efficient mode of prioritisation which utilises
several in silico resources.

2.6. Statistical analysis

Clinical characteristics between children in the low and high BMI
groups were compared using a Student's t-test for normally distribut-
ed variables or Mann–Whitney U for variables with a skewed
distribution.

3. Results

The overview of the gene expression and in silico analysis work-
flow is depicted in Fig. 1. Each step describes which program was
used and how many candidate genes were selected for downstream
analyses. The results obtained for each step are described below.

3.1. Gene expression analysis

After data normalization and pre-processing 60 transcripts (corre-
sponding to 60 genes) were differentially expressed ≥2.0 fold be-
tween low and high BMI groups (Table 2). Children with lower BMI
had increased expression of 30 genes in comparison to children
with higher BMI. Conversely, in children with higher BMI, the number
of genes overexpressed compared to low BMI children was also 30.

3.2. Literature search

From the 60 differentially expressed genes (≥2.0 fold), a literature
search was performed to identify those that were potentially obesity-
related genes. Table 3 shows the genes for which an association with
at least one adiposity phenotype (body mass index, obesity, fat mass
and adipose tissue) has been documented in the literature as well as
any previous associations with DNA methylation.

Among the transcripts that showed greater expression in RNA
extracted from the peripheral blood of low BMI children, only one
gene, cluster of differentiation 38 (CD38; 2.69 fold), had previously
been associated with adiposity phenotypes. This gene codes for a
transmembrane enzyme implicated in signal transduction and

calcium signalling (Chini, 2009). It is a key enzyme in the control of
intra- and extracellular nicotinamide–adenine dinucleotide levels
(Aksoy et al., 2006a, 2006b; Chini, 2009). This protein was shown to
be associated with obesity development in cd38-deficient mice on a
high-fat diet and its role may be related to the energy expenditure
regulation (Barbosa et al., 2007).

Among the transcripts with greater expression in peripheral blood
of high BMI children, three corresponding genes were previously as-
sociated with adiposity phenotypes; these are cell division cycle 42
(CDC42; 3.86 fold): lactotransferrin (LTF; 2.62 fold): tumour-associat-
ed calcium signal transducer 2 (TACSTD2; 2.40 fold). The CDC42 gene
encodes a guanosine triphosphate (GTP)-binding protein member of
the Rho GTPases family. It is mainly implicated in cytoskeleton orga-
nisation, polarity, migration, cell division and morphogenesis. CDC42
can mediate insulin signalling in the 3T3-L1 adipocyte cell line (Usui
et al., 2003). Higher Cdc42 expression levels in visceral adipose tissue
were seen in animals on a high-fat diet, which may imply a possible
role for CDC42 in fat accumulation (Hishikawa et al., 2005). Obesity
is frequently associated with increased leptin levels and Jaffe et al.
demonstrated a direct and dose- and time-dependant activation of
the CDC42 gene by leptin in aggressive human colon cancer cell
lines (Jaffe and Schwartz, 2008).

LTF encodes a non-heme iron-binding protein and is part of the
transferrin protein family. It is a major component of iron homeosta-
sis regulation and the mammalian innate immune system. Ltf was
shown to be expressed 1.6 fold greater in fat depots of obese versus
lean BSB mice (model for complex obesity; backcross mice: (C57BL/
6J×Mus spretus)×C57BL/6J) (Farahani et al., 2004). In vitro experi-
ments revealed that the LTF protein may be implicated in adipogen-
esis, cell differentiation and adipose tissue integrity (Moreno-
Navarrete et al., 2009). Yagi et al. noted a reduction of adipogenic dif-
ferentiation and lipid droplets in a lactotransferrin-treated mouse
preadipocyte cell line with a concomitant increase in cell number
(Yagi et al., 2008). Addition of lactotransferrin improved cell viability
in the media of visceral adipose explants from severely obese subjects
(Fernandez-Real et al., 2010). Several studies also reported that LTF
expression correlated with the methylation levels of CpG sites local-
ized within and surrounding its promoter region (Grant et al., 1999;
Shaheduzzaman et al., 2007; Teng et al., 2004).

The TACSTD2 gene encodes a cell surface glycoprotein for which
the main function remains largely unknown (Ibragimova et al.,
2010). The cross linking of TACSTD2 with antibodies causes a tran-
sient increase in intracellular calcium levels and it may thus have a
role in signal transduction (Fornaro et al., 1995). Previous experi-
ments in our lab have shown a novel association between DNA meth-
ylation levels within the TACSTD2 promoter CGI and fat mass content
in children (Groom et al., 2012). Another study has also shown an

Table 3
List and main functions of the differentially expressed genes associated with adiposity phenotypes using the bioinformatic tool LitInspector.

Gene symbol Gene name Main functiona DNA methylation and adiposity phenotype associations

Gene ≥2.0 fold more expressed in low BMI children
CD38 Cluster of differentiation 38 Signal transduction Obesity (Barbosa et al., 2007)

Calcium signaling DNA methylation (Ferrero et al., 1999)

Genes ≥2.0 fold more expressed in high BMI children
CDC42 Cell division cycle 42 (GTP binding protein, 25 kDa) Signal transduction Adipose tissue (Hishikawa et al., 2005; Usui et al., 2003)

GTPase activity Obesity (via leptin) (Jaffe and Schwartz, 2008)
LTF Lactotransferrin Iron ion homeostasis immune system Obesity (Farahani et al., 2004)

Adipose tissue (Fernandez-Real et al., 2010;
Moreno-Navarrete et al., 2009; Yagi et al., 2008)
DNA methylation (Grant et al., 1999;
Shaheduzzaman et al., 2007; Teng et al., 2004)

TACSTD2 Tumour-associated calcium signal transducer 2 Signal transduction Fat mass (Groom et al., 2012)
Calcium signaling DNA methylation (Groom et al., 2012;

Ibragimova et al., 2010; Jeronimo and Esteller, 2010)

BMI: body mass index.
a Relative to EntrezGene (http://www.ncbi.nlm.nih.gov/gene) and Gene Ontology (http://amigo.geneontology.org) databases.
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association between the TACSTD2 promoter CGI methylation levels
and its expression in primary prostate tumour tissues in humans
(Ibragimova et al., 2010; Jeronimo and Esteller, 2010).

3.3. Promoter region analysis

Analysis of the promoter region was conducted for each of the 4
obesity-candidate genes using a number of bioinformatic tools
(Fig. 1) to identify those putatively regulated by DNA methylation.
An overview of the results is described below and depicted in Fig. 2.
The CD38 gene located at the 4p15 locus codes for one validated

transcript (RefSeq ID: NM_001775.2) that spans 1494 bp and con-
tains 8 exons. It encodes a functional protein of 300 amino acids
(aa). The Gene2Promoter software identified a putative promoter of
759 bp (Fig. 2A) covering 640 bp before and 119 bp after the transla-
tion start site (TLSS; relative to the A of the ATG-translation initiation
codon). There was a CGI covering the last 199 bp of the putative pro-
moter and 727 bp beyond this promoter. Submission of the promoter
sequence to ModelInspector identified 8 TFBMs 4 of which had CpG
sites within their binding sequence (see more details in Supplemen-
tary Table S1). The CDC42 gene is located at the 1p36.1 locus and
codes for three validated transcripts (RefSeq IDs: NM_001039802.1,

CD38 gene 
(transcript GXT_2812998; RefSeq NM_001775.2)

TLSS

Promoter (GXP_197585; 759 bp)

STAT_ETSF_03

NFKB_SP1F_04 *
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CEBP_CREB_01

AP1F_ETSF_01 *
RXRF_SP1F_RXRF_01 *

5’UTR

-640 +119-107 +233
-80

+846

CGI (926 bp; 76 CpG sites) 

CREB_CREB_01 *

CDC42 gene 
(transcripts GXT_2807740 and GXT_2807869; RefSeq NM_001791.3 and NM_044472.2)

TLSS

Promoter (GXP_2240880; 694 bp)

NR2F_GATA_01 *
NF1F_EBOX_01 *

ETSF_SP1F_03 *

SP1F_MYOD_01 *
SREB_SREB_01 *

CP2F_SP1F_01 *

EGRF_SP1F_01 *

5’UTR

-26,352

-25,658-25,852

-25,736

-26,425 -24,846

CGI (1579 bp; 145 CpG sites) 

IRFF_ETSF_02 *

5’UTR
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ETSF_SP1F_03 *
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ETSF_AP1F_05 *
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Fig. 2. Promoter region analysis of the obesity candidate gene validated transcripts. Only validated transcripts with a Reference Sequence number (NM) were selected for the pro-
moter region analysis, and they were all identified by a GXT number within the Genomatix software. The putative promoter for each transcript was localized using the Gene2Pro-
moter tool and identified with a GXP number. Promoter CGIs were identified using the CpG Island Explorer software and their complete localization was obtained using the NCBI
Map Viewer public database. Binding sites of putative promoter TFBMs were identified using the ModelInspector tool. Below the promoter region, TFBMs covering one or multiple
CpG sites are displayed with a black line and an * while those not covering a CpG site are displayed with a gray line. Delimitation of the 5′UTR, exons, putative promoters, CGIs and
TFBMs were reported relatively to the first adenine (+1) from the ATG translation start site. (A) The validated transcript NM_001775.2 for the CD38 gene had a putative promoter
of 759 bp covered partly by a CGI of 926 bp, and contained 8 potential TFBMs where 4 of them were covering at least one CpG site. (B) The validated transcripts NM_001791.3 and
NM_044472.2 for the CDC42 gene had the same putative promoter of 694 bp entirely covered by a CGI of 1579 bp, and contained 12 potential TFBMs that were all covering at least
one CpG site. (C) The validated transcript NM_002343.2 for the LTF gene had a putative promoter of 643 bp covered partly by a CGI of 561 bp, and contained 5 potentials TFBMs
where 4 of them were covering at least one CpG site. (D) The validated transcript NM_002353.2 of the TACSTD2 gene had a putative promoter of 601 bp covered partly by a CGI
of 1762 bp, and contained 7 TFBMs where 3 of them where covering at least one CpG sites. bp: base pair, CD38: cluster of differentiation 38, CDC42: cell division cycle 42, CGI:
CpG island, LTF: lactotransferrin, RefSeq: Reference Sequence, TACSTD2: tumour-associated calcium signal transducer 2, TFBM: transcription factor binding module, TLSS: transla-
tion start site, UTR: untranslated region.
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NM_044472.2 and NM_001791.3) that span 2308 bp (7 exons),
1530 bp (6 exons) and 2182 bp (6 exons) respectively. They all
encode a functional protein of 191 aa, but the NM_001791.3 tran-
script differs in the 3′ region. Gene2Promoter identified a putative
promoter for NM_001039802.1 transcript but no promoter CGI was
present. However, a putative promoter of 694 bp covering the first
5′ untranslated region (UTR) exon (~26 kbp from the TLSS) was
identified for NM_001791.3 and NM_044472.2 transcripts which is
covered by a CGI of 1579 bp (Fig. 2B). ModelInspector identified 12
TFBMs in the promoter sequence and all of them had putative
TFBSs that covered CpG sites. The LTF gene is located at the
3p21.31 locus and codes for one validated transcript (RefSeq
ID: NM_002343.2) that spans 2390 bp and contains 17 exons. It
encodes a functional protein of 710 aa. Gene2Promoter identified a
putative promoter of 643 bp covering 543 bp before and 100 bp
after the TLSS (Fig. 2C). A promoter CGI of 561 bp was observed
where it covered the last 306 bp of the putative promoter and
255 bp beyond this promoter. ModelInspector identified 5 TFBMs in
the promoter sequence and 4 of them had putative TFBSs that
covered CpG sites. Finally, the TACSTD2 gene is located at the
1p32 locus and codes for one validated transcript (RefSeq ID:
NM_002353.2) that spans 2080 bp and contains 1 exon. This
transcript encodes a functional protein of 323 aa. Gene2Promoter
identified a putative promoter of 601 bp which ends 237 bp before
the TLSS (Fig. 2D). A promoter CGI of 1762 bp was identified which
covered the last 332 bp of the putative promoter and 1430 bp beyond
this promoter. ModelInspector identified 7 TFBMs in the promoter
sequence and 3 of them had putative TFBSs that covered CpG sites.

4. Discussion

This report proposes an approach for the prioritisation of a list of
obesity candidate genes for which their expression may be putatively

regulated by DNA methylation in promoter CGIs using gene expres-
sion data and a suite of bioinformatic tools. With strict selection cri-
teria the gene expression profiling of peripheral blood RNA revealed
60 genes ≥2.0 fold differentially expressed between low vs. high
BMI children and culminated in a short list of 4 target genes (CD38,
CDC42, LTF and TACSTD2) putatively epigenetically regulated which
can be taken forward for detailed investigation. Relying on available
resources and the focus of the study the proposed workflow may be
adapted in several ways to identify a greater number of genes to prior-
itise for further analysis.

This approach has several strengths, one being its flexibility. A
greater number of prioritised genes can be obtained by customising
the selection criteria, such as decreasing the fold change threshold
for the selection of differentially expressed genes and/or removing
the literature search step to allow the inclusion of novel genes poten-
tially influencing obesity risk. Other advantages of this workflow rely
on its ability to be applied to differential gene expression data (open-
ly accessible in many instances) in any disease context; it begins with
the previously observed differential expression, which is an asset;
and it is also an inexpensive method of prioritisation precluding cost-
ly assay development and optimisation. This approach can even be
applied across species, for example to interrogate data from animal
models and produce a list of target genes to investigate in humans.

Although gene expression microarrays provide valuable informa-
tion for deciphering the aetiopathogenesis of complex diseases we
have to be aware that the differentially expressed genes are totally
contingent on the quality of the expression data used initially and
thus appropriate quality control and pre-processing are necessary in
order to be confident that gene expression profiling data are mean-
ingful. Even though these control steps have been done in this study
other limitations can be put forth. Firstly, it is difficult to distinguish
whether the differential expression observed in the study cohort are
a cause or a response to different adiposity status. This is of course a
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Fig. 2 (continued).

105V. Turcot et al. / Gene 499 (2012) 99–107



common feature of gene expression studies (Relton and Davey, 2010;
Schadt et al., 2005) rather than being an issue of the in silico method-
ology itself. In this report the inclusion of the literature search may
give an idea on the type of association (causal vs. consequence) link-
ing the adiposity phenotypes with the candidate gene differential ex-
pression levels. Subsequent detailed analysis may not be able to
delineate further the issue of reverse causation, but various strategies
can be adopted to interrogate this once target loci have been identi-
fied. Nevertheless, if these prioritised loci prove to exhibit DNAmeth-
ylation changes in association with an overweight/obese phenotype,
analysis of epigenetic patterns in those genes may also reveal a way
to identify higher-risk individuals (Relton and Davey, 2010), which
is also valuable. A second limitation is that we prioritised the most
likely targets by restricting the genes with ≥2.0 fold differential ex-
pression and selecting those associated with adiposity phenotypes
which will undoubtedly overlook a large proportion of relevant loci
and many potentially novel loci. The restrictive selection criteria
used in this report were set on the basis of a first exploratory analysis,
which can be then iterative; i.e. following epigenetic pattern associa-
tion analyses with the first prioritised genes and adiposity pheno-
types, other differentially expressed targets may be selected for
further investigations. Thus, novel loci with the greatest fold differen-
tial expression or obesity-candidate genes with lower differential ex-
pression may be targeted in subsequent prioritisation processes. A
third limit of this methodology regards the targeting of CpG islands
localized in promoters only, which overlook other putative functional
regions regulated by methylation, such as intragenic CpG islands
(Deaton et al., 2011) or those localized within 2 Kb of islands
(Irizarry et al., 2009). Since little is known about the functionality of
these regions on gene expression regulation to date, we prioritised
regions within promoter CGIs that may be bound by TFBMs, which
has a logical relationship in gene expression regulation. With respect
to these limitations, we are aware that the proposed approach will
not identify all putatively epigenetically regulated regions associated
with adiposity, although it does provide an efficient mode of prioriti-
sation utilising several in silico resources.

The subjects selected for the expression profiling in this study
were children aged 11–13, born prematurely and followed-up for
clinical examination of cardiometabolic traits (Cooke et al., 1999,
2001). Whether the prematurity context may reveal a distinct list of
differentially expressed genes between low vs. high BMI groups as
compared to term children is possible. A recent report by Novakovic
et al. (2011) has highlighted widespread changes in promoter meth-
ylation profiles in human placental tissue in response to increasing
gestational age, suggesting that preterm infants may plausibly exhibit
different epigenetic signatures to those born at term. Whether these
differences have any bearing on subsequent phenotype can only be
speculated at this stage. Apart from this particularity further epige-
netic analyses in the promoter CGIs of prioritised genes may still re-
veal interesting associations with measures of adiposity in both
children born preterm and at term. This issue may be supported by
the fact that the prioritised genes were selected based on previously
known associations with adiposity phenotypes. Another concern
regards the use of whole blood for the identification of differentially
expressed genes between children with low vs. high BMI. The expres-
sion profiling of this compartment cannot necessarily represent what
would be seen in other tissues (tissue-specific expression) and it may
also reflect a variability in blood cell population between BMI groups,
as it has been seen for peripheral T cell subsets in obesity (Han et al.,
2011; Svec et al., 2007). However, this cannot rule out the possibility
that epigenetic mechanisms may be associated with differential ex-
pression levels observed between BMI groups in blood, that it may
also reveal potential blood-based biomarkers of obesity risk, and
that it may target some biological pathways implicated in obesity de-
velopment. It is also possible to apply post hoc approaches, using data
from publically available sources, to interrogate whether those genes

observed to be differentially expressed show distinctly different ex-
pression signatures in B and T cells.

In conclusion, we identified 4 obesity-candidate genes putatively
regulated by DNA methylation using gene expression microarray
and in silico analysis. Further analyses exploring epigenetic patterns
and adiposity associations across these genes are now warranted.
Given the current status of the field and the motivation to find con-
crete examples of epigenetic variation associated with specific pheno-
typic traits and disease outcomes, the proposed method provides a
viable, cost effective solution to facilitate advances in this field.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.gene.2012.02.001.
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