
 i

FAST, AREA-EFFICIENT 32-BIT LNS FOR

COMPUTER ARITHMETIC OPERATIONS

Rizalafande Che Ismail

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

AT NEWCASTLE UNIVERSITY, UNITED KINGDOM

SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING

FACULTY OF SCIENCE, AGRICULTURE & ENGINEERING

September 2012

 i

ABSTRACT

The logarithmic number system has been proposed as an alternative to floating-point.

Multiplication, division and square-root operations are accomplished with fixed-

point arithmetic, but addition and subtraction are considerably more challenging.

Recent work has demonstrated that these operations too can be done with similar

speed and accuracy to their floating-point equivalents, but the necessary circuitry is

complex. In particular, it is dominated by the need for large lookup tables for the

storage of a non-linear function.

 This thesis describes the architectures required to implement a newly design

approach for producing fast and area-efficient 32-bit LNS arithmetic unit. The

designs are structured based on two different algorithms. At first, a new co-

transformation procedure is introduced in the singularity region whilst performing

subtractions in which the technique capable to generate less total storage than the co-

transformation method in the previous LNS architecture. Secondly, improvement to

an existing interpolation process is proposed, that also reduce the total tables to an

extent that allows their easy synthesis in logic. Consequently, the total delays in the

system can be significantly reduced.

According to the comparison analysis with previous best LNS design and

floating-point units, it is shown that the new LNS architecture capable to offer

significantly better in speed while sustaining its accuracy within floating-point limit.

In addition, its implementation is more economical than previous best LNS system

and almost equivalent with existing floating-point arithmetic unit.

 ii

ACKNOWLEDGEMENTS

First of all, I would like to express my special gratitude to my great supervisor, Dr.

Nick Coleman, deeply for giving me an opportunity to pursue in this research work.

His excellent advice, priceless support and remarkable guidance as well as spending

a great deal of time and energy for this thesis is gratefully appreciated. What I have

learned from him will benefit me well beyond my graduation in my future research

career.

I am greatly indebted in Dr. Robin Emery and Mr. Raa’ed Aldujaily for the

support during the work especially with related to the Cadence and Synopsys design

tools. I also want to thank to all colleagues at the Microelectronics Systems Design

group in room E4.21, who contributed to the perfect working environment.

Special thanks go to Mr. Mark Wilmott and Mrs. Lisa Wong at the

Rutherford Appleton Laboratory in Harwell campus, Oxford. They have not only

offered invaluable technical advice, but also offered CAD tool support in my thesis

work.

In addition, I want to thank my beloved wife, Farah Fadhlina, and my

gorgeous children, Irdina Rizqin, Iwani Rifqah and Irfan Rasyeeq, very much for

their loving care, understanding and moral support. They gave me the boundless

encouragement and motivation and led me to finish this thesis. I would like to

extend thanks to my wonderful parents for all the love and support given.

Thanks are also due to University Malaysia Perlis and Ministry of Higher

Education Malaysia for granting a study leave, and for financial assistance.

Finally, to all named and unnamed, for their support and understanding

towards the completion of this research, thank you very much.

Life is good!

 iii

LIST OF CONTENTS

ABSTRACT .. i

ACKNOWLEDGEMENTS ... ii

1. Introduction .. 1

1.1. Motivation for the Research ... 1

1.2. An Overview of the LNS .. 2

1.3. Contribution of the Thesis .. 4

1.4. Structure of the Thesis .. 5

2. Background and Previous Work ... 7

2.1. Introduction .. 7

2.2. Computer Arithmetic Unit .. 7

2.3. Number Systems Representation .. 9

2.3.1. Floating Point ... 10

2.3.2. Logarithmic Number System ... 12

2.4. Floating-Point Algorithms .. 12

2.5. Logarithmic Number System Algorithms .. 14

2.5.1. Direct Lookup Table .. 17

2.5.2. Interpolation ... 19

2.5.3. Table Partitioning ... 22

2.5.4. Bipartite Tables .. 24

2.5.5. Co-transformation .. 26

2.5.6. Hybrid Architecture .. 28

2.5.7. Related Variant Number Systems .. 29

2.6. Performance Analysis ... 31

2.7. LNS for Specific Applications ... 32

2.8. Summary .. 36

3. Metrics for Measurement and Design Methodology .. 37

3.1. Introduction .. 37

3.2. Metrics for Measurement ... 37

 iv

3.2.1. Error Analysis ... 38

3.2.2. Functional Evaluation ... 41

3.2.3. Timing Evaluation .. 41

3.2.4. Area Estimation .. 42

3.3. Design Methodologies .. 43

3.3.1. Simulator Design Flow ... 44

3.3.2. Circuit Design Flow ... 46

3.3.3. Synthesis Design Flow ... 48

3.4. Summary .. 50

4. Recent 32-bit Arithmetic Implementations .. 51

4.1. Introduction .. 51

4.2. Leading Published Design: ELM processor ... 51

4.2.1. ELM Interpolation: Error Correction Algorithm 54

4.2.1.1. Taylor Approximation .. 56

4.3. Simulation Results .. 57

4.4. Design Summary .. 57

4.5. Synthesis Results .. 61

4.6. FLP Devices ... 63

4.7. Comparison Analysis: ELM and FLP .. 64

4.8. Summary .. 66

5. Co-transformation Architecture for LNS Subtraction 67

5.1. Introduction .. 67

5.2. First-order Co-transformation Procedure for LNS Subtraction 67

5.3. Optimising Lookup Tables for LNS Subtraction 70

5.3.1. The New Algorithm: Second-order Co-transformation Procedure for

LNS Subtraction ... 71

5.3.2. Function Approximation Scheme ... 76

5.3.3. Simulation Results .. 77

5.3.4. Design Summary .. 77

5.4. Comparison Analysis: First-order and Second-order Co-transformation

with the Taylor Interpolator ... 80

 v

5.5. Summary .. 83

6. Function Approximation Scheme for LNS Addition and Subtraction 84

6.1. Introduction .. 84

6.2. Function Approximation using Interpolation ... 85

6.3. Linear Interpolation .. 86

6.3.1. Linear Taylor Interpolation .. 87

6.3.2. Linear Lagrange Interpolation .. 89

6.3.3. Linear Lagrange Interpolation – Modified Version 92

6.3.4. Comparison of Linear Interpolators ... 96

6.4. Non-linear Interpolation ... 99

6.4.1. High-Order Degree Method ... 100

6.4.2. Error Correction Algorithm .. 101

6.4.2.1. Implementation of Error Correction Algorithm with Lagrange

Interpolation ... 102

6.5. Improvement of Non-linear Lagrange Interpolation 104

6.5.1. Partitioning the Intervals .. 104

6.5.2. Minimising the Lookup Tables .. 107

6.5.3. Design Summary .. 107

6.6. Alternative Method: Minimax Interpolation .. 109

6.7. ELM with the New Interpolator ... 111

6.7.1. Improved Lagrange Interpolation ... 112

6.7.2. Minimax Interpolation .. 114

6.8. Comparison Analysis: First-order and Second-order Co-transformation

with the New Interpolator ... 116

6.9. Summary .. 119

7. Logarithmic Number System Arithmetic Unit ... 120

7.1. Introduction .. 120

7.2. Arithmetic Unit Design .. 120

7.2.1. Multiply/Divide Unit .. 121

7.2.2. Add/Subtract Unit ... 122

7.3. Hardware Implementation of a 32-bit LNS System 123

 vi

7.4. Synthesis Results .. 125

7.5. Design Analysis .. 126

7.6. Summary .. 128

8. Implementation with Long Word-length Number .. 130

8.1. Introduction .. 130

8.2. The LNS System in a 40-bit Format... 131

8.2.1. Third-order Co-transformation Procedure for LNS Subtraction 131

8.2.2. Interpolation ... 136

8.2.3. Design Summary .. 138

8.3. Design Implementation .. 139

8.3.1. Synthesis Results .. 139

8.4. Performance Analysis ... 141

8.5. Summary .. 143

9. Conclusions and Recommendations ... 144

9.1. Conclusions of the Study .. 144

9.2. Future Extensions ... 145

References .. 147

A Appendices .. 153

A1. Authored and Co-authored Publications .. 153

A2. C Programming Language for 32-bit LNS Subtraction 154

A3. VHDL Model for 32-bit LNS Add/Subtract Unit 172

 vii

LIST OF FIGURES

Figure 1-1 : LNS addition and subtraction functions. ... 3

Figure 2-1: Main components of typical computer architectures. 9

Figure 2-2: Basic components of single-precision format. 10

Figure 2-3: LNS format [7]. .. 12

Figure 2-4: Transcendental functions sb(r) and db(r). ... 16

Figure 2-5: LNS adder/subtractor based on direct lookup table................................ 18

Figure 2-6: LNS adder implemented using linear interpolation. 20

Figure 2-7: Coleman’s LNS implementation. ... 24

Figure 2-8: Bipartite table architecture.. 25

Figure 2-9 : Concept of the hybrid number system processor. 29

Figure 2-10 : LNS trends vs time. ... 34

Figure 3-1 : Simulator design for the LNS addition and subtraction. 46

Figure 3-2 : Basic circuit design flow. .. 47

Figure 3-3 : Synopsys synthesis design flow [78]. .. 49

Figure 4-1 : Partitioning concept for addition and subtraction functions. 53

Figure 4-2 : Descriptions of interval, region and segment. 53

Figure 4-3 : Function approximation method for ELM. ... 55

Figure 4-4 : Approximation error for the addition operation of the ELM unit. 59

Figure 4-5 : Approximation error for the subtraction operation of the ELM unit. 59

Figure 4-6 : Worst-case error of the ELM unit.. 60

Figure 4-7 : Total storage requirement for the worst-case error within FLP limit. ... 60

Figure 4-8 : Die plot of ELM. ... 62

Figure 4-9 : Total silicon area between ELM, DIVA and MONARCH. 65

Figure 4-10 : Delay between ELM, DIVA and MONARCH. 65

Figure 5-1 : ELM’s co-transformation architecture. ... 68

Figure 5-2 : Value of r2 for -0.5 < r < -∆1. ... 69

Figure 5-3 : Bit partitioning scheme for first-order co-transformation. 69

Figure 5-4 : Conceptual arrangement of second-order co-transformation. 73

 viii

Figure 5-5: Bit partitioning scheme of second-order co-transformation. 73

Figure 5-6 : Value of r12 for -2∆1 < r < -∆1. ... 75

Figure 5-7 : Value of r2 for -1 < r < -∆1. .. 75

Figure 5-8 : The worst-case relative error of the proposed architecture. 79

Figure 5-9 : Comparison of the total tables between ELM and new algorithm. 81

Figure 5-10: Worst-case error between ELM and the new algorithm. 82

Figure 5-11 : Delay between ELM and the new algorithm. 82

Figure 6-1 : Linear interpolation. .. 86

Figure 6-2 : Illustration of linear Taylor approximation error. 88

Figure 6-3 : Worst-case error of linear Taylor approximation. 88

Figure 6-4 : Illustration of linear Lagrange interpolation. ... 90

Figure 6-5 : Comparison of maximum error in Taylor and Lagrange. 90

Figure 6-6 : Worst-case error of linear Lagrange interpolation. 93

Figure 6-7 : Illustration of modified linear Lagrange interpolation. 94

Figure 6-8 : Illustration of maximum error between Lagrange and modified version.

 ... 94

Figure 6-9 : Flow diagram for selection of rk1 and rk2. .. 95

Figure 6-10 : Worst-case error of modified linear Lagrange interpolation. 97

Figure 6-11 : Worst-case error of linear interpolator. ... 99

Figure 6-12 : Worst-case error of Lagrange interpolation using error correction

algorithm. .. 104

Figure 6-13 : Partitioning the interval based on Lagrange interpolation................. 105

Figure 6-14 : Maximum errors of two adjacent subintervals when executing

subtraction in the region -2 < r < -1. ... 106

Figure 6-15 : Storage requirement for 32-bit LNS addition and subtraction. 116

Figure 6-16 : Delay times for 32-bit LNS addition and subtraction. 117

Figure 7-1 : Conceptual arrangement of the LNS arithmetic unit. 121

Figure 7-2 : Multiply/Divide hardware implementation. .. 122

Figure 7-3 : The hardware implementation of the LNS add/sub unit. 124

Figure 7-4 : Delays in nanoseconds and cycles of four different arithmetic

implementations. ... 127

 ix

Figure 7-5 : Silicon areas (µm2) in 32-bit arithmetic implementations. 128

Figure 8-1 : Conceptual arrangement of the third-order co-transformation concept.

 ... 134

Figure 8-2 : Bit partitioning scheme of the third-order format. 134

Figure 8-3 : Value of r12 for -2∆1 < r < -∆1. ... 135

Figure 8-4 : The hardware implementation of the LNS addition and subtraction in a

40-bit format. ... 140

Figure 8-5 : Delays of a 32-bit and 40-bit LNS designs. .. 142

Figure 8-6 : Silicon areas in 32-bit and 40-bit LNS. ... 142

 x

LIST OF TABLES

Table 2-1: Values represented in the 32-bit FLP format. .. 11

Table 2-2 : Summary of the LNS techniques. ... 33

Table 3-1 : Best case theoretical errors. .. 40

Table 3-2 : Simulation variables for the interpolator. ... 45

Table 3-3 : Operating conditions setting. .. 48

Table 4-1 : Segments and ∆ in the ELM system. .. 52

Table 4-2 : The worst-case error of the ELM unit. ... 58

Table 4-3 : ELM interpolation memory requirements. ... 61

Table 4-4 : Delay times and total device area of ELM. .. 63

Table 4-5 : Delay and area of FLP arithmetic unit at 266 MHz. 64

Table 5-1 : ELM co-transformation memory requirements. 70

Table 5-2 : Second-order co-transformation memory requirements. 76

Table 5-3 : The worst-case error of the optimised architecture. 78

Table 5-4: Total storage for the new algorithm. .. 79

Table 6-1 : Error of linear Taylor approximation. ... 89

Table 6-2 : Error of linear Lagrange approximation. .. 92

Table 6-3 : Error of modified linear Lagrange approximation. 96

Table 6-4 : Linear interpolator storage requirements. ... 98

Table 6-5 : Error of Lagrange interpolation using error correction algorithm. 103

Table 6-6 : Error of non-linear Lagrange interpolator based on the E table sharing

format. ... 108

Table 6-7 : Error of non-linear Lagrange interpolator in the region -32 < r < -16. . 109

Table 6-8 : Total storage using the improved interpolator. 110

Table 6-9 : Error of the minimax interpolation. .. 111

Table 6-10 : Total storage using the minimax arrangement. 112

Table 6-11 : Error of ELM with improved Lagrange interpolator. 113

Table 6-12 : Total storage of ELM with improved Lagrange interpolator.............. 114

Table 6-13 : Error of ELM with minimax interpolator. .. 115

Table 6-14 : Total storage of ELM using the minimax arrangement. 115

 xi

Table 7-1 : Delay times and total device area of 32-bit LNS arithmetic unit. 126

Table 8-1 : Error of Lagrange interpolation. ... 137

Table 8-2 : Error of improved Lagrange interpolation. ... 137

Table 8-3 : Total storage for the LNS 40-bit format. .. 138

Table 8-4 : Delay times and total device area of a 40-bit LNS arithmetic unit. 141

 xii

 xiii

 1

CHAPTER 1

1. Introduction

1.1. Motivation for the Research

The need for high-performance digital signal processing (DSP) in the area of image

processing, computer graphics and robotics is highly demanding. High speed

architecture allows DSPs to execute many operations with the lowest delay [1].

Since performance is a driving factor behind the use of the DSP, advances in

executing arithmetic functions are the key to advances in the performance of DSP

processors. Consequently, techniques to improve the computation of arithmetic

functions have always been an interesting topic of exploration, as expressed in [2].

Most of DSP algorithms need to be computed in real-time and require a wide

dynamic range of numbers. During the early stages of DSP, the fixed-point (FXP)

number system was employed as the maths unit inside the DSP processor. This

system performs well for high-speed applications whenever only limited precision is

required by the application. Nevertheless, this implementation has a major limitation

because of restricted accuracy, which is the result of finite word-length effects.

Floating-point (FLP) DSP has therefore become an alternative used to overcome this

restriction of precision of FXP architectures. Despite having a wide dynamic range,

there are established international standards for FLP system [3]. One of the most

efficient basic operations in existing high-speed FLP unit is the multiplication

process. However, complex operations such as division and square root are often

executed by software routines, and are possibly much slower. Moreover, arithmetic

operations in FLP require a variable length of time due to the need for exponent

alignment. As a result of this, DSP researchers have recently proposed a

microprocessor based on the logarithmic number system (LNS) [4-7][94], which

would guarantee superior performance in many arithmetic functions such as

multiplication, division and square root.

 2

 LNS provides major advantages over FLP in terms of speed and accuracy in

computing multiplication and division operations. This is because of the similarity of

the architectures to perform these functions to FXP addition and subtraction.

However, this inherent advantage was offset by the difficulty of implementing LNS

addition and subtraction. Furthermore, it is also slow. Several authors have proposed

techniques to improve this trade-off, and as a result the LNS is now able to operate

with similar speed and accuracy to its FLP equivalent [6-11], despite its larger area.

Due to these considerable achievements, research into LNS systems has been active

ever since. Thus, it is of interest further to improve the LNS system relative to a FLP

arithmetic unit.

1.2. An Overview of the LNS

Over the past four decades the LNS system has been a topic of continuing interest

within the computer arithmetic area. As mentioned in previous section,

multiplication and division operations become FXP addition and subtraction

respectively. Unlike FLP counterparts, these operations are trivial and fast.

Nevertheless, implementing addition and subtraction operations can be the main

bottleneck, the evaluation of the non-linear functions (1.1) and (1.2). For i = log2 x,

j = log2 y, r = j – i, and assuming j ≤ i:

log2 (2i + 2j) = i + log2 (1 + 2r) (1.1)

log2 (2i – 2j) = i + log2 (1 – 2r) (1.2)

The functions log2 (1 ± 2r), generically referred to as F(r), are illustrated in

Figure 1-1. In the earliest LNS design which is up to about 20-bit, the addition and

subtraction function values can be stored directly in the lookup table. Beyond this,

memory requirements become prohibitive, and instead the function is stored at

intervals with intervening values obtained by interpolation. Typically, in

constructing the LNS system, the objective has always been to keep within an FLP-

 3

equivalent error of 0.5 LSB, but this has not always been achieved. The problem is

compounded by the singularity in the subtraction function, where the rapidly

changing derivative as r approaches zero requires the use of successively smaller

interpolation intervals that need a significant increase in storage, often to the point

of impracticality. As well as that, applying the interpolation alone may also

increase the delay of the LNS system.

Figure 1-1 : LNS addition and subtraction functions.

However, as presented in 2000, an alternative approach was taken in a

different interpolation technique. Dealing with 32-bit words and maintaining FLP-

equivalent accuracy, it offered a much shorter delay path than using conventional

interpolation architecture. In this approach, an interpolation was not used near the

singularity. Instead, a co-transformation was used in the case of any subtraction with

r close to zero (> -0.5), which it converted to an equivalent subtraction with r well

away from zero. This 32-bit LNS system was based on the combination of the

interpolation and the co-transformation procedure, and offered marginally better

performance, in terms of both speed and accuracy, than a leading commercial FLP

unit at that time. Nonetheless, two 2048 words of lookup tables were involved in the

arrangement of the co-transformation architecture. Meanwhile, the interpolator itself

then required 1024 words for one of its lookup tables. In practice, utilising these

large lookup tables in the system could eventually introduce significant

complications in floor planning. Hence, elimination of these components would not

only yield a more compact architecture, but undoubtedly also a faster design.

1

F(r)

Add

Sub

8 -7 -6 -5 -4 -3 -2 -1 0

0

-1

-2

r

 4

Inspired by the above, therefore, the major objectives of this thesis can be

summarised as follows:

• present a new development in the algorithm of the co-transformation

procedure which can offer substantial improvement in area.

• enhance the interpolation architecture by exploring various existing

techniques as to reduce the total storage and the delay of the system.

• demonstrate that the new LNS system will achieve much greater benefits in

cost, speed and accuracy in comparison with FLP arithmetic units.

1.3. Contribution of the Thesis

The following points summarise the main contributions of the thesis.

• A novel approximation method, known as a second-order co-

transformation procedure, is introduced in the crucial singularity region for

performing the LNS subtraction function. Apart from the capability to

sustain the same accuracy as FLP, implementing this new approach in

conjunction with the existing interpolator reduces the total tables to 73% of

the former LNS design. However, the proposed technique suffers from an

increase in delay because it requires the interpolator to be used twice.

• An improvement in the interpolator design by reworking Chester’s

experiments [84] is proposed when computing the LNS addition and direct

(i.e. non- co-transformed) subtraction. When merged with the second-order

co-transformation, it yields a further reduction in total tables to 51% of

previous LNS design. Through this new arrangement, the tables can now

be readily synthesised in logic as a result of being smaller in size, for not

more than 512 words. Consequently, this can contribute to a reduction in

delay to 60% of the original LNS design when computing addition and

 5

direct subtraction. For subtractions with co-transformation, delay only

increases by 12% compared to the previous work.

• An analysis is conducted between the new LNS design and equivalent FLP

arithmetic units built using similar process technology. In terms of delay,

the new LNS can be performed in 63% of the FLP time for executing

addition and direct subtraction. Co-transformed subtractions require 131%

of the FLP time but this is unlikely to be of great significance because it

occurs in only a few percent of the total additive operations. Multiplication

completes with 10% and division 3% of the FLP delays. In terms of total

area, the new LNS can be built with fractionally less silicon, and worst-

case accuracy is better than that of FLP arithmetic.

• At present, little work has been reported applying LNS design to word-

lengths longer than 32-bit. The design and requirements of long format

LNS arithmetic unit are therefore examined briefly in this thesis. The co-

transform is developed further for this purpose.

1.4. Structure of the Thesis

The fundamental basis of computer arithmetic architecture and details of the FLP

and LNS number systems are reviewed in Chapter 2. Previously published LNS

designs are also discussed and analysed in terms of various aspects such as their

design procedures, performance and suitability for DSP applications.

When evaluating and measuring the performance of the LNS system, several

elements need to be considered, either the metrics required for measurement or the

design methodology adopted to verify the design. Therefore, Chapter 3 explains the

metrics involved for performance estimation during the simulation and synthesis

processes. Besides that, the design flows of the simulation and synthesis procedures

are also elaborated in detail.

 6

In Chapter 4, the recent 32-bit arithmetic implementations are reviewed

intensively. This includes exploring the leading published design of the LNS system

before reconstructing the architecture using similar approaches as described in its

original work. In addition, several FLP devices are also examined. These devices are

independently designed and have been published. The performance of these

arithmetic units is reported in this chapter, and later it will then be used for

comparison with the new LNS system.

Chapter 5 presents a new development of the co-transformation architecture

for executing LNS subtraction function, exploiting the previously published co-

transformation concept and significantly elaborating on its architecture. The

simulation and synthesis results of the proposed design are also reported in

evaluating its efficiency in the light of previous work.

The different existing function approximation schemes are described in

Chapter 6. An improved technique for the interpolator module is introduced.

Accuracy and total area analyses are carried out and documented on the basis of

worst-case error and total size of lookup tables respectively. It is shown that the

improved version is able to provide a great reduction in total tables whilst sustaining

accuracy within FLP limits.

The implementation of the suggested LNS arithmetic unit is explained in

Chapter 7. The synthesis process is performed to determine the performance of the

new LNS architecture in terms of speed and total silicon area, before a comparative

study against FLP units and previous LNS design is discussed.

There is a lack of work on long word-length LNS, and a short survey of a

possible long format system is therefore outlined in Chapter 8. This includes a

proposal for another new co-transformation approach applicable to a long word-

length system. Its implementation in logic gates and performance analysis against

the standard 32-bit LNS number system are also described.

Finally, the main results of the thesis are summarised and conclusions are

drawn in Chapter 9. Moreover, several possibilities for future work extending the

present research are also offered.

 7

CHAPTER 2

2. Background and Previous Work

2.1. Introduction

In this chapter, the current body of knowledge relevant to the present research is

extensively reviewed. The fundamental basis of the computer arithmetic unit is

briefly described. An overview is given of FLP and LNS numbers formats, and

computing arithmetic units based on these number systems are elaborated in detail.

Previously published techniques used to execute the LNS addition and subtraction

are discussed and compared in various respects, since these operations are the main

bottlenecks in LNS system.

Speed, accuracy and area are the three crucial variables in the efficiency of

LNS arithmetic unit. Thereby, the performance of existing LNS systems is evaluated

so that the results could be used as a benchmark for the novel architecture introduced

in this thesis. Finally, the LNS systems adopted in numerous DSP applications are

concisely described.

2.2. Computer Arithmetic Unit

Conventionally, most computer architectures include three basic hardware

subsystems, namely the central processing unit (CPU), main-memory system and

input/output (I/O) system [12-14]. A CPU carries out instructions sequentially by

performing two distinct procedures known as the fetch and execute cycles, where at

least one operation is conducted at a time. The main-memory system plays the vital

role of holding the programs that control the computer’s operations. The I/O system

represents the various devices that can exchange information with the outside world.

 8

As presented in Figure 2-1, the computer arithmetic unit is a component of a

CPU system. It is commonly combined with logic functions, hence constituting an

arithmetic logic unit. This arithmetic unit deals with the arithmetic functions needed

to support various computer instructions, and thus it is a very important part of

digital computer organisation. Agrawal and Rao [15] describe the computer

arithmetic unit as always having been considered the heart of a digital computer

system. Among the arithmetic operations that can be computed are addition,

subtraction, multiplication, division, square root, exponentiation, logarithmic

functions, complementation (negation), incrementation or decrementation, equality

and magnitude comparison and shift operations. These numeric functions, and

especially adders and multipliers, are also implemented in diverse ways in the data

paths of digital signal processors which then form dedicated integer units and

multiply-accumulate (MAC) structures. Moreover, adders, incrementers or

decrementers, and comparators are often used for address and flag generation

purposes in controllers.

Because the applications of arithmetic operations are manifold, much effort

has been devoted to designing hardware algorithms and circuits to enhance the speed

of these numeric operations [7, 16-18]. More recently, since the inception of

portable electronic devices which require small and lightweight units, the demand

for not only reduction in power consumption, but also the total area of the systems

has increased dramatically. Therefore, the development of algorithms that can

reduce delays and total area in arithmetic operations is a matter of great concern in

today’s arithmetic architecture [19-21].

The four basic numeric operations (addition, subtraction, multiplication and

division) of the computer arithmetic unit are critically investigated in this thesis.

New algorithms based on LNS which aims specifically at addition and subtraction

functions are introduced which can significantly improve the overall performance of

an arithmetic system.

 9

Figure 2-1: Main components of typical computer architectures.

2.3. Number Systems Representation

Integers and real numbers, also expressed as fractions, are the most common number

system representations used in digital computers [14]. Traditionally, integers have

been represented using FXP number systems that offer limited range and precision.

When dealing with money and inventories in business and commercial activities, the

use of integer numbers is adequate in estimating the results of calculations given the

fact that usually only two places to the right of the decimal point will be occupied.

Furthermore, in control problems which deal with measurements in degrees, minutes

and seconds, the ranges involved can also fit into the FXP system [22]. Conversely,

difficulties arise in scientific applications such as those needed by astronomers,

Main memory system

Input / Output System

Control Unit

Arithmetic and

Logic Unit

Program Counter

Operational
Registers

Central Processing
Unit

Address
Pathway

Data and Instruction
Pathway

 10

engineers and physicists. The formulae used to represent length and mass, for

instance, repeatedly consider differences between very large or very small numbers,

and thus the FXP system fails [23]. In such situations real numbers have to be

adopted to compute the functions.

Over the years, many computer manufacturers have implemented FLP system

to represent real numbers [14, 24, 25]. An FLP system is capable of offering a wide

dynamic range which can accommodate extremely large numbers and high precision

for very small numbers. Nevertheless, over the last four decades, researchers have

explored the use of LNS as an alternative to signify real numbers in computer

systems [4, 6, 7, 26]. Despite the lack of standard formats, the accurate and

inexpensive implementation of multiplication and division operations in LNS which

only use FXP addition and subtraction, makes it more attractive compared to FLP

[27]. In addition to higher speed, LNS has also been the subject of close attention

for numerous applications as a result of its inherently better worst-case relative error

compared to FLP [28].

In this thesis, LNS numbers are the main subject of the research, and the FLP

format is also used for comparison purposes. Therefore, the basic fundamental

features of both formats are described briefly below.

2.3.1. Floating Point

The IEEE 754 [3] is a standard used to represent FLP numbers and has been divided

into single-precision format with 32-bit width, and double-precision format with 64-

bit width. In this thesis, only single-precision format is considered. The three basic

components of FLP numbers are the sign, exponent and mantissa as shown in Figure

2.2.

Sign
(1-bit)

Exponent
(8-bit)

Mantissa
(23-bit)

Figure 2-2: Basic components of single-precision format.

 11

The number denoted by the single-precision format is [29]:

value = (-1)s2e x 1.f (normalized) when E > 0 else (2.1)

 = (-1)s2-126 x 0.f (denormalized) (2.2)

where

 f = fraction bits

 s = sign bit (0 for positive, 1 for negative)

E = exponent fields (contains 127 plus the true exponent for single-

precision)

 e = unbiased exponent (e = E – 127 (bias))

The range of positive FLP numbers which can be split into normalized

numbers (which preserve the full precision of the mantissa), and denormalized

numbers (which occur when the exponent is all zeros, but the fraction is non-zero)

are between ±2-126 to (2-2-23) · 2127 and ±2-149 to (1-2-23) · 2-126 respectively. Table 2-1

summarises the values than can be defined in the FLP system.

Table 2-1: Values represented in the 32-bit FLP format.

s e f Value

0

0
0 +0

Any non-zero Positive Denormal, 0.f · 2-126

1 … 254 Any Positive Normal, 1.f · 2e

255 0 +∞

1

0
0 -0

Any non-zero Negative Denormal, -0.f · 2-126

1 … 254 Any Negative Normal, -1.f · 2e

255 0 -∞

Any 255
00’01 .. 01’11 SNaN

10’00 .. 11’11 QNaN

 12

2.3.2. Logarithmic Number System

In contrast with FLP numbers, LNS includes neither an integer exponent nor

separate linear mantissa. It is much simpler because it uses a single scaled exponent

and can be represented by [30]:

 X = (-1)s x 2m.f (2.3)

where s, m and f indicate sign, integer and fractional bits respectively. Although

there is no commonly accepted standard for the LNS format, the most widely used

format is shown in Figure 2-3.

Sign
(1-bit)

Fixed-Point Logarithmic Value
Integer
(m-bit)

Fractional
(f-bit)

Figure 2-3: LNS format [7].

Typically, base-2 logarithms are used in LNS computations though in principle

any base can be used. When the real numbers represented are signed, LNS has a

maximum and minimum range between 2-128 to ≈ 2+128, ≈ 2.9E – 39 to 3.4E + 38. A

special arrangement of bits is used to indicate the real number zero.

2.4. Floating-Point Algorithms

The basic algorithms for arithmetic operations using FLP numbers are conceptually

simple. Nevertheless, careful attention must be paid during hardware

implementations in order to ensure correctness and to prevent excessive loss of

precision [31].

Addition and subtraction are a lot more complex than the other FLP operations.

In the following description, elementary binary FLP addition is explained, since

 13

subtraction can be converted to addition merely by flipping the sign of the

subtrahend. In theory, addition is defined as:

 2 m)2 m()2 m(e1e2
2

e1
1 ×±=×±+×± (2.4)

where m, m1 and m2 are the mantissas and e, e1 and e2 are the exponents. Assuming

e1 ≥ e2, the exponents of the addends have to be made equal by right-shifting

(divided by a power of two) the mantissa of the smaller number, m2, by as many bits

as its exponent, e2, is increased. Then the shifted mantissa, m2, will be added to the

other mantissa, m1. After addition, the resulting mantissa is normalized back to the

mantissa interval by multiplying it with the corresponding exponent, e1, as presented

in (2.5) [32].

(2.5)

In contrast, binary FLP multiplication is a relatively straightforward procedure

whereby the mantissas, m1 and m2, are first multiplied together [23]. Then, the

exponents, e1and e2, are added. After multiplication has been computed, the product

obviously has twice as many digits as the original operands. Hence, post-

normalization procedure is needed to adjust the mantissa and the exponent of the

result. Generally, the normalization process is executed by left-shifting the mantissa

until it reaches the first bit 1. Simultaneously, for each bit left-shifted, the exponent

must be reduced by 1. Therefore, the binary FLP multiplication is described as:

 2 m

 2
2
m

 m

2
2

m
)2 m()2 m()2 m(

e1

e1
e2-e1

2
1

1e
e2-e1
2e1

1
e2

2
e1

1

×±=

×±±=

×
±

+×±=×±+×±

 14

(2.6)

The operation of FLP division is like that of multiplication, conducted by

dividing the mantissas and subtracting the exponents and therefore presented as:

(2.7)

In the case of division, the mantissas are first left-shifted according to their number

of leading zeros. After being divided and subtracted for both mantissas and

exponents, post-normalization is performed as in multiplication to produce the final

result. Conceptually, division operations always consume a large proportion of area

in any FLP system, therefore making it an inherently slow operation which should

be used sparingly. Due to the fact that FLP division is an infrequent operation even

in intensive FLP applications, many current architectures ignore its implementation

[33, 34].

2.5. Logarithmic Number System Algorithms

Typically, computer arithmetic unit conducts four major operations, namely addition,

subtraction, multiplication and division. In LNS arithmetic, multiplication and

division are trivial operations due to the fact that they have equivalent architectures

to either FXP addition or subtraction as illustrated in (2.8) and (2.9). Moreover,

these operations are more accurate and there is no quantization error, thus returning

an exact result [35], where as FLP often yields a half-bit rounding error [36].

Generally in the LNS system, two real numbers, x and y, are used and can be

represented by the FXP values i = log2 |x| and j = log2 |y|. In addition, an additional

e

e2e1
21

e2
2

e1
1

2 m

 2)m m)2 m()2 m

×±=

××±=×±××± +((

e

e2-e1e2
2

e1
1

2 m

 2 m2) 1m)2 m()2 m

×±=

×÷±=×±÷×± ((

 15

bit is used to show the signs of x and y, Sx and Sy. Thus, multiplication and division

are computed as:

Multiply: L1 = x · y → log2 |L1| = log2 |x · y| = log2 |x| + log2 |y| = i + j (2.8)

 where: SL1 = Sx ⊕ Sy

Divide: L2 = x ÷ y → log2 |L2| = log2 |x ÷ y| = log2 |x| - log2 |y| = i - j (2.9)

 where: SL2 = Sx ⊕ Sy

In contrast, LNS addition and subtraction become fairly complex procedures [26].

To perform these operations, Leonelli’s algorithm [37] is used. The functions sb(r),

for the addition algorithm (also known as Gaussian algorithm [38]), and db(r), in the

subtraction algorithm, are defined as:

 sb(r) = log2 (1 + r) = log2 (1 + 2r), r < 0 (2.10)

db(r) = log2 (1 - r) = log2 (1 - 2r), r < 0 (2.11)

Hence, these functions are plotted as in Figure 2-4.

Assuming that |x| ≥ |y| > 0 and let r = (log2 |y| - log2 |x|) = j – i, therefore

addition and subtraction can be computed using:

Addition: L3 = x + y → log2 |L3| = log2 | x + y |

= log2 | x (1 + (y / x) |

= log2 |x| + log2 |1 + (y / x) |

 = log2 |x| + log2 |1 + (log2 |y| - log2 |x|)|

= i + log2 | 1 + 2j – i |

= i + log2 | 1 + 2r |

= i + sb(r) (2.12)

 16

-4

-2

0

2

4

6

876543210-1-2-3-4-5-6-7-8

f(r)

r

sb(r)

db(r)

`

Figure 2-4: Transcendental functions sb(r) and db(r).

Subtraction: L4 = x - y → log2 |L4| = log2 | x - y |

= log2 | x (1 - (y / x) |

 = log2 |x| + log2 |1 - (y / x) |

 = log2 |x| + log2 |1 - (log2 |y| - log2 |x|)|

 = i + log2 | 1 - 2j – i |

 = i + log2 | 1 - 2r |

= i + db(r) (2.13)

It is clear that addition and subtraction operations are the main obstacle in an LNS

system as a result of involving a lookup table in executing its non-linear function,

sb(r) and db(r). Potentially, with an increase in the word-length of LNS numbers, it

can suffer from the requirement of a large lookup table in computing the function.

 17

Therefore, over three decades, different ways of improving the addition and

subtraction functions have been proposed, and these can be classified into seven

distinct categories as follows.

2.5.1. Direct Lookup Table

The earliest and simplest LNS architecture for addition and subtraction was

introduced in 1975 [39]. This was a direct implementation of equations (2.12) and

(2.13) using lookup tables or so called Read Only Memory (ROM) based hardware

covering all possible values of sb(r) and db(r). The implemented structure based on

this technique is as described in Figure 2-5.

In practice, the implementation of LNS add and subtract functions always has

to limit the variable r to either positive or negative values. It is more usual to opt to

restrict r to negative values because at a certain point (as shown in Figure 2-4), the

functions of sb(r) and db(r) have an output of zero or known as the essential zero.

Consequently, sb(r) and db(r) functions can yield a value that rounds to zero which is

then easy to handle. As a result, the suggested procedure for addition and subtraction

using the direct lookup table approach depends on two real numbers, x and y, as

given below:

If x ≥ y → r = j - i:

Addition : L = i + log2 | 1 + 2r | (2.14)

Subtraction : L = i + log2 | 1 - 2r | (2.15)

If y > x → r = i - j:

Addition : L = j + log2 | 1 + 2r | (2.16)

Subtraction : L = j + log2 | 1 - 2r | (2.17)

 18

Figure 2-5: LNS adder/subtractor based on direct lookup table.

Using the technique considered here, the ROMs for sb(r) and db(r) must each contain

2f words of f bits each, and hence the total storage required can be computed as f·2f+1.

With precision set to only 8-bit, a total of 4096 bits were achieved in [39] to

compute LNS addition and subtraction. In evaluating the speed of the system, these

operations were found to be approximately four times slower than conventional FLP

methods. Although the direct lookup table approach has been successfully tested for

a fast Fourier transform (FFT) application with the numbers rounded to 18-bit (plus

sign bit) [40], it still yields an unreasonable size of ROM when it comes to long

word-length numbers, especially at 32-bit, as a result of the required memory

growing exponentially when the numbers increase linearly. In 1979, a state-of-the-

art microcomputer, the FOCUS [41], was introduced that utilised the LNS system

based on the direct lookup table method. It was reported that average execution

cycles for 16-bit LNS add and subtract operations were 127 µsec and 125 µsec

COMPARATOR

CONTROL
LOGIC

ROM FOR
sb(r), db(r)

ADD

SUB

log2 |x| Sx log2 |y| Sy

Lresult

 19

respectively when the FOCUS system was implemented in an Intel 8085 processor.

In addition, 23,632 bits were needed for storage requirements in this architecture.

2.5.2. Interpolation

The memory space limitations of LNS addition and subtraction using a direct lookup

table approach makes its use questionable. In order to overcome this problem,

another technique, interpolation, is often used.

The direct interpolation technique [42] was first introduced to cater only for

the addition algorithm, sb, which requires a multiply unit in the hardware system.

Using this technique, r is split into two parts, rh and rl, hence r = rh + rl. rh

encompasses the highest bits of the variable, whereas rl represents the lowest bits. In

the general case, the direct interpolation can be written as:

lhhblhbb rrCrsrrsrs ⋅+≈+=)()()()((2.18)

where the slope C(rh) can be chosen from various methods such as Lagrange.

Memory usage can be reduced by increasing the lower bits, rl, but the accuracy of

the approximation decreases too. Likewise, when the size of rl increases, the same

will happen with the size of the required multipliers. In effect, the use of an FXP

multiplier can actually produce much higher costs, in terms of speed and area, which

along with the greater expense due to its size can make the system even slower and

larger. Therefore, direct interpolation in LNS is often limited to either first- or

second-order coefficients.

Another notable interpolation technique was proposed by Taylor in 1983 [43],

which is referred to here as linear interpolation. Taylor approximates sb(r) as:

 lhbhbb rrsrsrs ⋅+=)()()(' (2.19)

 20

As shown in Figure 2-6, with only addition operation shown for clarity, the linear

interpolation method still needs a multiplier to compute the function. On top of that,

two ROMs were introduced. Arnold et al. in 1988 [44] suggested a refined version

of the interpolation procedure where they merge the direct interpolation method with

the linear interpolation scheme. With the modified architecture, only one ROM is

required and a shifter using powers of two is deployed as an alternative to the

multiplier. However, once again, this technique is not feasible for the subtraction

algorithm.

Figure 2-6: LNS adder implemented using linear interpolation.

A suggested interpolation procedure which can offer a wide dynamic range

with an independently choosable signal-to-noise ratio was proposed by Henkel in

1989 [45]. The method was based on the Chebyshev approximation with unequally

spaced partition points. This approach leads to significant memory reductions but

still holds for the addition algorithm only. Note that there is a difference between the

COMPARATOR

ROM FOR
sb(rh)

ADD

log2 |x| log2 |y|

Lresult

PARTITIONING

ROM FOR
s’b(rh)

MULT

MUX

rh rl

 21

addition and subtraction algorithms in the sb(r) and db(r) functions. While sb(r) is

well-behaved, db(r) has a singularity when r approaches zero (the function tends to -

∞, as shown in Figure 2-4). This can cause a large memory to be required to

approximate the db(r) function and it is therefore impractical to rely on the

interpolation scheme to execute this operation. Furthermore, unacceptable error may

also be introduced whenever interpolation is used in this particular region unless

partitioning is applied.

A separate proposal in 1994 by Lewis [46] involved the use of a high-order

coefficient in the interpolator function, also known as quadratic interpolation. In this

technique, a novel scheme using an interleaved memory is introduced which can

reduce the storage requirements when compared with linear interpolation. With

design up to 32-bit and the accuracy of addition within FLP limits, the critical speed

path of the architecture consists of a ROM, two multipliers, three barrel shifters and

three stages of adders. Later in 2000, Coleman et al. [6] extended the idea of linear

interpolation using an error correction algorithm for both addition and subtraction

functions. This interpolation scheme for subtraction was incorporated with the newly

proposed co-transformation method which will be further elaborated in Section 2.5.5

below. Using Coleman’s technique, the speed path comprises of a ROM, a multiplier

and three stages of addition process.

Aiming to minimise memory requirements and system complexity, therefore,

Arnold [47] recommended in 2001 a multiple-of-four partitioning technique in

quadratic interpolation. Nevertheless, even though the proposed address-generation

circuit was simpler than that of Lewis and Coleman, this was unfortunately at the

expense of a slight increase in approximation error. Still in 2001, Arnold [48]

illustrated yet another improved version of Lewis’s method [46], now with the

advantage that only a single multiplication was required for addition and subtraction

algorithms. The implementation of this technique is believed to have either similar

or lower memory use than a previous interpolator [49], with corresponding accuracy

better than linear interpolation. On the other hand, Fu et al. in [8, 28] described that

the implementation of the minimax approximation for the interpolation process

could significantly improve the total tables over Lewis and Coleman methods.

 22

However, its worst-case delay was higher than Coleman due to the speed path

consists of a ROM, two multipliers and three levels of adders.

2.5.3. Table Partitioning

Generally, partitioning is often combined with an interpolation scheme. Instead of

using a single uniform partition (direct lookup table approach) [39], the technique

can be realised by segregating the ROM into various sizes of interval mapping with

the domain function of addition and subtraction algorithms. These intervals are

distributed in smaller regions with similar widths of partition endpoints, hence

providing substantial savings in ROM area.

In 1998, Taylor et al. [4] suggested a 20-bit LNS processor using a table

partitioning method for both addition and subtraction functions. The range of r was

divided into a number of smaller intervals with partition endpoints set at integer

multiple-of-one for all regions less than -1. For regions close to zero, the multiple-

of-half format was employed (i.e -1 < r < -0.5, -0.5 < r < 0), resulting in two smaller

sizes of ROM. In total, 10 ROMs were used to accommodate sb(r) and db(r)

functions with total size of about 83.55 kbits, which is 75% less than in the direct

lookup table implementation. However, the large size of these tables makes the

practical limit for logarithmic arithmetic about 12-16 bits of fractions. Using Taylor

approach, it was estimated that LNS add and subtract operations could be completed

in 92 ns, a similar value to equivalent FLP processors in those days.

Meanwhile, Stouraitis [50] produced an enhanced version of Taylor’s

architecture by compressing the table lookup address space and inserting pipelining

registers in the addition and subtraction data path. Therefore, with suggestion at a

24-bit LNS processor, the time taken for addition and subtraction could be reduced

to 40 ns. Nevertheless, this procedure required a hidden bit to locate the ROM

address, which would have an impact on the total area of the system when extending

its precision.

 23

One of the most noteworthy partition techniques was presented by Lewis in

1990 [9] using a partitioning procedure concurrently with linear interpolation. An

integer multiple-of-two format was adopted at each interval of r less than -1 for

subtraction, and in all cases of region r for addition. For subtraction in the region

-1 < r < 0, the powers of two format was proposed. As tabulated in [9], nearly 2660

kbits were required in total for a 32-bit LNS design, which was impractical for

implementation in a single chip using the 3 µm CMOS technology that was available

at that time. The delay in the proposed method was assumed to be within two ROM

accesses plus two FXP additions, which was slightly slower than the method in [4].

Thus, the implementation of this design might be unattractive for applications

demanding high speed configuration.

In 1994, Lewis again [46] applied the table partitioning concept with an

interleaved memory scheme. In the initial design, about 287 kbits of memory space

were generated when using powers of two partition endpoints at each interval of r

for addition and subtraction functions. Subsequently, an attempt was made by Lewis

to minimise the area by rounding each table segment up to a multiple-of-eight, and

thus only a total of 91 kbits of ROM were needed. Although efficient ROM size can

be achieved through Lewis’s technique, the introduction of two multipliers in this

architecture can potentially increase the cost of the system, either in area or speed.

The other notable approach was suggested by Coleman et al. [6], using a

partitioning scheme for error correcting interpolation with partition endpoints at

powers of two for both addition and subtraction as depicted in Figure 2-7. For

subtraction at the case -0.5 < r < 0, the co-transformation procedure was introduced.

Using this architecture, 321 kbits of storage were required for a 32-bit LNS system.

With application only to the addition algorithm, Arnold [47] presented the table

partitioning method using a multiple-of-four format which then substantially

diminished the total storage to one-third the size of Lewis [46] and one-sixth the

memory of Coleman [6]. Regrettably, the implemented architecture exhibits a minor

reduction in accuracy compared to a FLP system.

 24

Figure 2-7: Coleman’s LNS implementation.

2.5.4. Bipartite Tables

Another method developed as an alternative to conventional lookup tables and linear

interpolation is based on bipartite tables [51-54]. Despite requiring a multiplier, this

technique only uses two lookup tables which are accessed in parallel, together with

an adder for approximating sb(r) and db(r) functions. As claimed in [51], an LNS

system that uses bipartite tables will require significantly less memory than one that

uses conventional lookup tables. Moreover, apart from only involving an addition

operation at the final stage, the technique often has shorter overall delays since the

smaller tables have shorter access times too.

Carry Save Adder

Multiply

i j

ROM2 ROM1 ROM3 ROM4

Multiply

Carry Save Adder

Carry Propagate Adder

Select j
�
 i;

Subtract

i r = j - i

hi hi hi lo lo

 25

 Theoretically, to approximate sb(r) and db(r) functions using bipartite tables,

the input operand r is divided into three parts, which are denoted as r0, r1 and r2, and

have lengths of n0, n1 and n2 respectively. Based on those three partitions, with the

example of LNS addition, the function of sb(r) is approximated as:

),(),()()(201100210 rrarrarrrsrs bb +≈++= (2.20)

The coefficient),(100 rra for the first table will receive n0 + n1 word-lengths,

whereas n0 + n2 will act as inputs to the second table that provides the coefficient

),(201 rra . The outputs from the two tables will therefore be added to estimate the

sb(r) algorithm, as depicted in Figure 2-8.

Figure 2-8: Bipartite table architecture.

Among the initial work implementing bipartite tables was a study by Das

Sarma and Matula in 1995 [51]. A technique was proposed where the input operand

was partitioned into high, middle and low fields of sizes k+1, k, k. For example, in

the case of a 6-bit operand, the partition will be in the order of 3, 2, 2 of high, middle

ROM FOR
a0 (r0 , r1)

ADD

sb(r)

r0 r1 r2

ROM FOR
a1 (r0 , r2)

n1 n2 n0

 26

and low bits respectively. The partitioning concept presented was able to achieve

substantial compression of lookup tables compared to the conventional direct lookup

table approach, by factors over 4 with a 9-bit input operand. Further refinement of

the bipartite table was achieved by Schulte and Stine in 1997 [55], utilizing the

concept of symmetry in the table entries. Compared to a direct lookup table, this

symmetric bipartite table was 5.6 times smaller with a 16-bit operand and 99.1 times

smaller with a 24-bit operand, requiring an estimated total storage of nearly 35 kbits

and 2031 kbits for 16-bit and 24-bit operands respectively. A separate proposal was

illustrated by Dinechin and Tisserand in 2001 [56], where a multipartite table

method was introduced. Instead of using dual tables, the technique employed

multiple smaller tables to compute sb(r) and db(r) functions. The synthesis results

based on a parameterized library [57, 58] of LNS addition and subtraction using this

technique proved that, even though the architecture is capable of achieving higher

speed when compared with FLP, it was actually very bulky in size, and hence was

limited in practice only to precisions up to 13-bit. Therefore, neither bipartite nor

multipartite tables can realistically be considered for long word-length numbers.

Furthermore, the multipartite method has the same issue with db(r) singularity found

in interpolation.

2.5.5. Co-transformation

As discussed earlier, most of the techniques presented so far have the problem of

solving the db(r) function when r is close to zero. They tend to be either higher in

cost, in terms of memory size, or else lower in accuracy. One technique which can

overcome this situation uses the co-transformation procedure. The idea behind this

technique is to convert the argument of db(r) into modified values that are

guaranteed to avoid the singularity of the function.

The first noteworthy co-transformation technique was outlined by Coleman in

1995 [59], applying the concept in the region -0.5 < r < 0 for the db(r) function.

When employing this technique, the need for interpolation in the region -0.5 < r < 0

 27

can be eliminated, thus substantially reducing the size and complexity of the lookup

tables required. Note that for the sb(r) function, an interpolation scheme was applied

through out all regions. In 2000, Coleman et al. [6] presented in details the

implementation of this co-transformation together with interpolation in a 32-bit

system. With significant improvements in accuracy over FLP, a total of 321 kbits

were required in order to execute the LNS addition and subtraction. Recently,

Coleman et al. [7] conducted an experiment to determine the feasibility of

integrating the LNS system into a microprocessor based on the proposal in [6]. A

chip of a 32-bit LNS microprocessor, named the European Logarithmic

Microprocessor (ELM), was manufactured using 0.18 µm CMOS technology. This

was compared with the existing FLP DSP device from Texas Instruments, which has

one of the fastest speeds obtainable in 0.18 µm technology. Besides clearly verifying

that the results were more accurate, the speed of the ELM was also substantially

improved over the FLP device, at 24 ns whilst performing addition and direct

subtraction, and 32 ns for subtraction using co-transformation.

A different but related co-transformation technique to Coleman's was given by

Arnold et al. in 1999 [10]. Unlike Coleman’s method, which transformed a value at

the singularity to a negative argument of db that will fall in the region to the left of

-0.5, Arnold’s method avoids the singularity by transforming to a positive argument

of sb which does not have a singularity. Hence whenever r > 0, Arnold’s technique is

the most appropriate due to the positive value generated for the interpolation after

being transformed. If r < 0, then Coleman’s technique is the most natural to adopt

because the transformed argument provided to the interpolation is negative. For that

reason, Coleman’s method is preferable given that many LNS researchers tended to

apply a negative value of r, since this reduces the ROM size dramatically when

approaching essential zero (as shown in Figure 2-4).

 28

2.5.6. Hybrid Architecture

A combination of two different data formats, including elements from both LNS and

FLP systems, has been exploited a new form of processors known as hybrid number

system processors. These allow the multiply and divide operations to be rapidly

computed using the LNS format, whilst addition and subtraction are processed

efficiently in FLP representation. The first hybrid processor design was presented by

Taylor [60], named the (FU)2, which offered a 12-bit FLP datapath whose overall

performance was found to demonstrate effectively when compared to that of the

conventional FLP system.

With an extension to the 32-bit operands, Lai and Wu [61] proposed a hybrid

system architecture that executed multiplication, division, square root and square in

a fast manner using LNS. In contrast, the FLP number system was applied to resolve

the input, output, addition and subtraction functions. Due to the consuming nature of

the overhead operations whilst converting FLP-to-LNS and LNS-to-FLP, lookup

tables and linear interpolation algorithms were inserted, whereupon the routine of

this processor appeared to compare favourably with a 32-bit FLP DSP device. Since

the main obstacle in this hybrid processor was the overhead of converting between

number systems, Stouraitis [62] proposed a hybrid technique using a combination of

signed-digit (SD) number representation and LNS, called a SD/LNS arithmetic unit.

The addition/subtraction was now accomplished even faster than in the classical

LNS processor, because the SD adder/subtractor was largely free from serial carry

propagation. Figure 2-9 shows the principal concepts of the hybrid number system

processor.

 29

Figure 2-9 : Concept of the hybrid number system processor.

2.5.7. Related Variant Number Systems

Several other techniques have been suggested to minimise the architectural

complexity in computing addition and subtraction operations. In 1990, Arnold et al.

[63] proposed a new number system dubbed the dual redundant logarithmic number

system (DRLNS) which was devised to mitigate the singularity issue in subtraction.

As opposed to conventional LNS arithmetic, the DRLNS denotes a real number x in

positive and negative components, Xp and Xn, similarly to a real number y which

then gives Yp and Yn.

The exact values can then be represented as:

FLP input

FLP
ADD/SUB

FLP to LNS
conversion

LNS
MUL/DIV

LNS
SQR/SQRT

MUX

LNS to FLP
conversion

MUX

FLP Output

 30

x = bX p − bX n

y = bYp − bYn

 (2.26)

where b indicates the base number. The advantage of adopting the DRLNS was that

addition and subtraction shared the same execution process without involving a

subtraction logarithm, db(r). Hence, the function can be expressed as:

Rp = Xp + Yp → log2 |Rp| = log2 | Xp + Yp | = ip + log2 | 1 + 2r1 |

 = ip + sb(r1) (2.27)

Rn = Xn + Yn → log2 |Rn| = log2 | Xn + Yn | = in + log2 | 1 + 2r2 |

 = in + sb(r2) (2.28)

where

 ip = log2 |Xp |

 in = log2 |Xn |

 r1 = log2 |Yp | - log2 |Xp |

 r2 = log2 |Yn | - log2 |Xn |

The subtraction function is completed simply by interchanging the sign of Xp and Yp

with Xn and Yn accordingly followed by the addition logarithm. However, in spite of

being a trivial operation, the DRLNS often loses considerable accuracy as a result of

requiring lookup tables when accomplishing the multiplication function. Moreover,

the division operation is also difficult to carry out using this procedure [63]. Given

these weaknesses, the DRLNS actually did not offer considerable advantages

compared to a contemporary LNS system.

The semi-logarithmic number system (SLNS), introduced by Muller et al. in

[64], is another variant of the new class of number systems. Assuming that a number

x in the FLP and LNS can be represented by:

xFLP = (1− z) ⋅ (−1)sx ⋅ mx ⋅ 2ex

xLNS = (1− z) ⋅ (−1)sx ⋅ 2Lx
 (2.29)

 31

where z corresponds to zero, these two expressions can then be generalised in SLNS

format by introducing new parameters:

 xSLNS = (1− z) ⋅ (−1)sx ⋅ αmx ⋅ 2βex (2.30)

Conceptually, the SLNS constitutes a compromise between FLP and LNS. In the

case of α = β = 1, the FLP format was applied to perform the operations, whereas for

α = mx = 1 and 0 < β ≤ 1, LNS was adopted. The advantages of the SLNS are that

multiplication and division can be easily completed as in the LNS, and a reduction in

lookup tables can be obtained to perform addition and subtraction. According to the

authors, slightly lower accuracy compared to LNS and FLP was deemed to be the

only drawback, but the scheme was still pragmatically good enough for various DSP

applications analogous to those using traditional LNS procedure.

Instead of using binary numbers to represent values in the classical LNS

system, another approach proposed by Arnold in 2005 [65] was called the Residue

Logarithmic Number System (RLNS). Here the values used to approximate the LNS

operations were based on the residue number system. Although multiplication and

division can be faster than any other operations, like that of conventional LNS, the

RLNS still experienced the same issue in addition of huge lookup tables being

required. As well as that, without an evaluation of the performance of the subtraction

operation, its overall efficiency remains uncertain.

2.6. Performance Analysis

Three crucial elements dominate previous works when proposing new algorithms or

architectures for an LNS system. Speed is always a key factor when producing any

high performance LNS system. A high speed system can not only execute many

operations with the lowest possible delay, but can also minimise the component and

system related noise which occurs in DSP systems. Researchers have also strived to

 32

reduce the large areas involved in computing LNS addition and subtraction

operations resulting from the lookup tables required to store the values for

approximating the functions. However, an LNS system with high speed and reduced

area but accuracy outside FLP limits would be worthless. Therefore, the accuracy of

the results is of the utmost importance.

Based on the several different LNS techniques to compute addition and

subtraction operations as discussed in Section 2.5, it can then be summarised as in

Table 2-2. Obviously, it can be seen that by implementing the co-transformation

approach with the interpolation process, less total storage can be achieved especially

when subtractions near singularity region. Moreover, with significant improvements

in accuracy, the worst-case delay in operating add and direct subtract functions was

also found to be better than equivalent FLP units. Therefore, it can be concluded that

this approach may now be the best technique to be used as a benchmark to improve

further the LNS system. A summary of LNS designs over the years is also given in

Figure 2-10.

2.7. LNS for Specific Applications

The ubiquity of the FLP unit in many DSP devices since the 1980s and rapid growth

in the DSP market in every year has prevented much penetration of LNS arithmetic

into various DSP applications. The lack of a standard format like, for example, the

IEEE 754 for FLP [3], could be one of the main reasons that LNS systems have only

appeared in limited classes of industrial applications. Furthermore, few LNS

architectures have been shown to rival the speed and accuracy of existing FLP

systems, which has also impeded their realisation as an alternative to FLP units.

Nevertheless, numerous studies and several implementations of the LNS have

proved that they work effectively for specific hardware designs.

 33

Table 2-2 : Summary of the LNS techniques.

Technique Advantage Disadvantage

Direct Lookup Table -

§ Slower than FLP
§ Not suitable for long

word-length numbers

Interpolation

§ Less total lookup tables
than direct approach

§ Less accurate than FLP
and increase in the
lookup tables when
performing subtractions
near singularity

Table Partitioning

§ Less total lookup tables
than interpolation alone

§ Less accurate than FLP
and increase in the
lookup tables when
performing subtractions
near singularity

Bipartite Tables

§ Faster than FLP § Limited to short word-
length numbers

§ Bulky in size

Co-transformation with
Interpolation

§ Faster than FLP
§ Accuracy better than

FLP
§ Reduce size and

complexity of lookup
tables when
performing subtractions
near singularity

-

Hybrid Architecture

§ Execute add and
subtract operations
faster than conventional
LNS

§ Costly in converting
between number systems

DRLNS

§ Easy to compute
subtraction function
using addition
algorithm

§ Less accurate than FLP
when performing
multiplication and
division

 3
4

V
ou

zi
s

et
 a

l.
[7

3]

(3
2-

bi
t,

Fa
ith

fu
l)

C
ol

em
an

 e
t a

l.
[7

]

(3
2-

bi
t,

B
TF

P)

H
as

el
m

an
 e

t a
l.

[1
3]

(3
2-

bi
t)

D
et

re
y

an
d

D
in

ec
hi

n
[5

8]

(3

2-
bi

t)
A

rn
ol

d
[4

8]

(3

2-
bi

ts
, F

ai
th

fu
l)

S
w

ar
tz

la
nd

er
 a

nd
 A

le
xo

po
ul

os
 [1

2]

(8

-b
it) Ed

ga
r

an
d

Le
e

[6
6]

(1

6-
bi

t,
B

TF
P)

La
ng

 e
t a

l.
[3

8]

(8

-b
it,

 F
ai

th
fu

l)Ta
yl

or
 e

t a
l.

[4
]

(2
0-

bi
t)

S
to

ur
ai

tis
 [6

7]

(2
4-

bi
t)

Le
w

is
 [9

]

(3

2-
bi

t,
Fa

ith
fu

l)

Le
w

is
 [4

7]

(3

2-
bi

t,
B

TF
P)

C
ol

em
an

 [5
9]

(2

8-
bi

t,
Fa

ith
fu

l)

C
ol

em
an

 a
nd

 C
he

st
er

 [5
0]

(3
2-

bi
t,

B
TF

P)

C
ol

em
an

 e
t a

l.
[6

]

(3
2-

bi
t,

B
TF

P)

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

B

T
FP

 –
 a

cc
ur

ac
y

be
tte

r-
th

an
-f

lo
at

in
g-

po
in

t (
0.

5
ul

p
er

ro
r r

eq
ui

re
m

en
t)

Fa
ith

fu
l –

 fa
ith

fu
l r

ou
nd

in
g

sc
he

m
e

(1
 u

lp
 e

rr
or

 re
qu

ir
em

en
t)

Fi

gu
re

 2
-1

0
: L

N
S

tr
en

ds
 v

s
tim

e.

 35

In 1983, Swartzlander et al. [40] suggested a Fast Fourier Transform (FFT)

which would provide lower quantisation error than those of the FLP and FXP

number systems. Another proposal examining LNS in filtering systems by Vainio

and Neuvo in [67] took measurements from a constructed integrated circuit which

showed that the sampling frequency of the LNS filter was comparable to other high

performance DSP processors at that time.

Das et al. [68] identified ways of evaluating the trigonometric operations using

LNS processors, which supports the arguments for the adaptability of the LNS

system in a range of applications. In 2000, the development of the 32-bit LNS

processor [6] demonstrated superior achievements over the equivalent 32-bit FLP

system, where increases in speed and accuracy were gained. The simulations were

then supported with an analytical study of a fabricated chip [7] which yielded similar

outcomes when validated against a high performance FLP device using the same

technology. Cost sensitive applications such as in multimedia always need a less

costly architecture. In line with this, Arnold and Walter [69] produced a more

compact LNS ALU with only a modest increase in error, whose unrestricted faithful

rounding criteria is allowable in certain applications. The work in [70] therefore

confirms the efficiency of this less accurate method when applied to Motion Picture

Expert Group (MPEG) decoding architecture. Besides that, the implementation of

the LNS approach for arithmetic operations in GRAPE-6 microprocessor design has

contributed to a great success in terms of speed [94].

Moreover, LNS has also become convenient for calculating general matrix and

complex arithmetic operations [71]. The robustness of the logarithmic multiply-

accumulate operator can also be seen in digital hearing aid systems [72].

Furthermore, spam email now outnumbers legitimate messages by more than two-

thirds, and so hardware architecture like the naïve Bayes inference engine has been

proposed to monitor email content. Technically, such a system involves complex

arithmetic operations which, in turn, produce computational noise. Therefore, the

LNS number format has been proposed [73] as an attractive solution to simplify

naïve Bayes computations.

 36

Ultimately, the advantages of applying LNS arithmetic units for a wide variety

of DSP applications as explicitly specified in a wealth of literature have been

marked as a new trend in the evolution of the DSP world.

2.8. Summary

Lying at the heart of digital computer systems, a computer arithmetic unit can use

either the FXP or FLP data format. Over the past three decades, LNS has also been

used as a good alternative in computing basic arithmetic functions, especially for a

large range of numbers. However, to date, its implementation is still restricted by the

complexity of performing addition and subtraction resulting from the need for large

lookup tables. Several schemes have been suggested to circumvent the singularity

issue in the non-linear function of LNS subtraction. From this review of the

literature, it can be concluded that the most notable method [6, 49] uses a mixture of

co-transformation and error correcting interpolation, whereby reasonable storage

requirements along with better speed and accuracy compared to FLP units are

attained. As of now, it has been shown that LNS systems may be workable in a

broad range of DSP applications and hence a new revolution in the DSP world is

now underway.

 37

CHAPTER 3

3. Metrics for Measurement and Design

Methodology

3.1. Introduction

In this chapter, the metrics required for measurement whilst performing the

simulation and synthesis processes are discussed. This includes the error analysis

procedure and two types of performance estimation, relating to timing and area.

Despite that, functional evaluation is also crucial, and hence for each circuit are

compared between derived behaviour and desired behaviour as to confirm that the

system works as expected.

In addition, the design flows of the simulation and synthesis processes are also

explained. Typically, once functionally verified through the simulator program, each

of the arithmetic designs is translated into VHDL code before being constrained

synthesised in Faraday 0.18 µm CMOS technology based on a 32-bit system.

3.2. Metrics for Measurement

In making a selection of the most advanced LNS arithmetic unit for a particular

application, several metrics must be considered. This will ensure that the

performance of the chosen LNS system is justified and can be evaluated through a

series of measurement processes. The criteria assessed in this thesis are explained

below.

 38

3.2.1. Error Analysis

Error characteristics are often used to justify the accuracy of the results produced in

any arithmetic system. It is well known that in the LNS unit no errors occur in

multiplication and division. However, addition and subtraction in LNS frequently

suffer to sustain the error within the FLP boundary, in which has a worst-case

relative error of 2-f-1 [28]. In order to measure the accuracy of the LNS system and

compare it with the FLP system, the mathematical expressions defined in [49] are

adopted.

First, let C and F be the exponent and f-bit mantissa of the FLP number system.

An approximation result, Â, produced by a practical implementation is in error of the

correct result, A, so that the absolute error can be represented as e = Â – A, with the

assumption that the input operands are exact values. For a given operation, the

maximum relative error of the system can be expressed as:

 emax rel = max
ˆ A − A

2C ⋅ 2− f

 (3.1)

and similar definitions apply for emin rel and |e|max rel. Since these errors are directly

related only to the absolute magnitude of the exact value, controlled by C, it is thus

more realistic to define the error in terms of the exact value itself. Therefore, the

maximum relative arithmetic error and an average relative arithmetic error can be

written as:

 emax rel arith =
max(ˆ A - A)

2− f ⋅ A
 (3.2)

 eav rel arith =
1

2− f ⋅ n

ˆ A i − Ai

Aii= 1

n

∑ (3.3)

and again equally the same for emin rel arith, |e|max rel arith and |e|av rel arith.

 39

When considering the error requirement in the LNS system, the expression can

be quoted relatively identical with the equation (3.1), given that both logarithms

forming the inputs to an operation are exact. Whilst the exact logarithm can be

regarded as I, the result generated by the real implementation can therefore signified

as Î and hence in error by elog = Î – I. Thus, the maximum relative error in the

logarithm format can be quoted as:

flog rel max 2
I)-Imax(

e
−

=
ˆ

 (3.4)

and correspondingly so for the errors emin rel log, |e|max rel log, eav rel log and |e|av rel log as

before. For a direct comparison between the error yielded in the FLP number and

that in the equivalent LNS system, the error returned in the LNS format can be

exponentiated and thus would provide a similar error to that of the FLP calculation.

 ′ e max rel =
2max(ˆ I -I) - 1

2− f (3.5)

Since this is similar to emax rel arith, thus emin rel arith, |e|max rel arith, eav rel arith and |e|av rel

arith are also the same. With all classes of error clearly defined, the theoretical values

of the errors [49] for each of the 32-bit FLP and LNS numbers are summarised in

Table 3-1. Although the practical LNS results for addition and subtraction may

differ in comparison to the theory, at least conceptually, the LNS has an inherent

better worst-case relative error compared to FLP.

As can be observed in Figure 2-10, many studies have presented LNS

addition and subtraction architecture that can achieve Better-Than-Floating-Point

(BTFP) error behavior [6, 74, 75]. As its name implies, the LNS architecture in

BTFP mode will guarantee the production of smaller worst-case relative error than

FLP. Conversely, Arnold and Walter [69] suggested that, by relaxing the rounding

criteria known as unrestricted faithful rounding, the resulting evaluation is the

nearest or next nearest machine number representation. Eventually, this will reduce

the total area of the LNS system and thus produce a more compact LNS ALU unit.

 40

Table 3-1 : Best case theoretical errors.

Error Type
ADD/SUB MUL/DIV

FLP LNS FLP LNS

emax rel +0.5 +0.5

emin rel -0.5 -0.5

emax rel arith ≈ +0.5 +0.3464 ≈ +0.5 0

emin rel arith ≈ -0.5 -0.3464 ≈ -0.5 0

eav rel arith 0 0 0 0

|e|av rel arith 0.1733 0.1733 0.1733 0

|e|max rel log 0.5 0

|e|av rel log 0.25 0

However, this mode is more likely to be workable for certain DSP applications such

as those in multimedia systems in which a reduced error constraint is acceptable. As

the purpose here is to realise an LNS design that can serve a diverse range of DSP

applications, in this work the BTFP mode is adopted for the evaluation of the

addition and subtraction functions.

In order to do an error analysis for the addition and subtraction functions, it is

not necessary to evaluate all possible combinations of operands j and i. The analysis

has to be performed merely over all negative values of j, where i is restricted to zero

in accordance to Theorem 1 as depicted in [49]:

 “Theorem 1. If the LNS addition and subtraction operations yield

errors within a given emax rel log over all negative values of j for i = 0,

then they yield the same emax rel log over all values of j for all values of

i. An implementation can thus be regarded as fully verified if it can

be verified over this subset.”

Coleman et al.

 41

3.2.2. Functional Evaluation

In functional evaluation, a design can be certified as successfully verified when the

simulation results are mathematically identical with the expected outcome. The

process commonly starts by describing each circuit using either hardware description

language (HDL) or schematic entry. In this thesis, VHDL (very-high-speed

integrated circuit hardware description language) was used to construct the system

as a result of its advantages over schematic based design such as the capability to

implement the behavioural hardware description and the portability of the code due

to a standardised language. Then, in simulating the design, a top-level simulation

environment known as a testbench circuit was created, which consists of 100

random pattern numbers. The test vectors generated cover all the crucial cases that

are expected to arise in the system. Using the ModelSim XE III/Starter 6.4b

simulator, the system was simulated according to the specified test vectors.

The simulation results were then evaluated against the expected results

retrieved from the simulation process based on a design in the C programming

language. If a discrepancy was found, the description in VHDL code was modified

accordingly before repeating the functional evaluation process. Whenever the

expected and observed results matched, the system could be considered to be

functionally correct.

3.2.3. Timing Evaluation

The main purpose of performing timing analysis is to investigate the delay

characteristics, in terms of maximum or minimum delays, that occur in a design. In

general, the maximum or so-called worst-case delay in a circuit results from the cell

and the interconnection delays on the critical path. Conversely, the shortest signal

propagation delay path in a combinational circuit represents the minimum delay in

the system. The techniques adopted to evaluate propagation delay vary from manual

 42

verification, which is mainly used for a custom design, to applying automated timing

analysis using specific CAD (computer-aided design) synthesis tools.

For more rapid and accurate results, an automated approach is selected in this

study. The Synopsys Design Compiler tool based on a constrained synthesis

automatically computes the maximum path delay required for the design whenever a

relevant timing command is written. However, if a reported delay diverges from the

desired goal, it can be improved by redesigning or optimising the circuit using a

different topology. Additionally, several timing directive commands in the synthesis

tool may also be used to reduce the critical path delay in the design. For ease of

comparison, all timing estimations are given in nanosecond (ns) units.

3.2.4. Area Estimation

One of the design criteria currently receiving increased attention is the size of a

circuit. A smaller total area can lead to the best implementation due to incurring

lower costs. An exact estimation of the area is normally calculated after a circuit has

been placed and routed, taking into consideration all the cells, wiring

interconnections, and input and output pads. However, due to recent rapid increases

in circuit complexity and the need to reduce the time-to-market, CAD tools that can

help to produce an early estimation during the design process are now imperative.

Therefore, the area information reported in this thesis was estimated from the total

cell area data generated by the Synopsys Design Compiler tool during a constrained

synthesis process.

Total cell area is typically approximately proportional to the number of the

minimum standard cell size contained in a design, which in this case is the 2 input

NAND gate. In order to convert the value of total cell area into square micron (µm2)

units, the height and the width of the 2 input NAND gate need first to be extracted

from the .lib and .lef files. Then, these values are multiplied by the total cell area

number before the final result can be derived as shown in equation (3.6):

 43

gate NAND of height gate NAND of width area cell total µmin area 2 ××= (3.6)

Below are the height and the width of the 2 input NAND gate based on Faraday 0.18

µm CMOS technology.

• Faraday 0.18 µm CMOS technology

- minimum height of 2 input NAND gate = 5.04 µm

- minimum width of 2 input NAND gate = 0.62 µm

Despite neglecting the circuit connectivity in the area estimation, the result still

yields acceptable accuracy in representing the total area of a design. This argument

is supported by the area evaluation technique which is most commonly used in the

literature [16, 76], based on the unit-gate model. In addition, the area estimation

adopted here has been found to be consistent with the result provided from actual

routing, as it has been proven in [77].

3.3. Design Methodologies

The selection of an appropriate design flow and CAD tool is important in producing

an efficient design. Typically, the choice of tools must complement the design flows.

Therefore, the simulator design for LNS addition and subtraction was first explained

which mainly written in C language. Then, the basic design flow in constructing the

LNS arithmetic unit is briefly described along with the CAD tool implemented in

this thesis. In addition, the procedures used for the synthesis process are also

explained in detail.

 44

3.3.1. Simulator Design Flow

In order to validate the workability of the LNS design illustrated in this thesis, two

general simulator programs were modelled for addition and subtraction operations.

The results produced by these simulators can then be verified against the published

results [6], looking at the error characteristics of both functions. Besides this, the

simulators were constructed to observe the best combinations of lookup tables for

the interpolator by ensuring errors within FLP boundaries. Additionally, the

flexibility of these tools has also made it viable to modify them repeatedly in order

to verify the efficiency and practicability of implementing various types of

interpolation procedures.

The designs of the simulator were written in C language and the compilation

processes were executed in an Intel Core 2 processor using GNU Compiler

Collection (GCC), the standard compiler software that supports C programming in

the Linux operating system. For measuring the approximation error, an accurate

result produced by the double-precision format of the FLP unit embedded in an Intel

Core 2 processor was adopted as a benchmark.

Basically, the developments of the simulator for an addition and subtraction

will most likely be the same, because the interpolator is used to approximate both

functions. However, because of the difficulty in performing accurate interpolation in

the region -0.5 < r < 0 for subtraction, a co-transformation procedure is employed as

explained precisely in Chapter 5. Thus, the essential elements required in building

the simulator are briefly indicated below and translated into the flow diagram in

Figure 3-1:

• Create the support function algorithms, exponent and logarithm, which are two

functions widely used throughout the simulator.

• Define the interpolator model which performs LNS addition and subtraction

for the entire range of r, except for subtraction in the range of r > -0.5.

• Define a co-transformation scheme to compute the LNS subtraction in the

region of -0.5 < r < 0 which is only applicable for the subtraction function.

 45

• Create a table generation module for virtually developing the lookup tables to

represent the memories.

• Compute approximation results of LNS addition and subtraction according to

which region r falls into.

• Compute exact results of FLP addition and subtraction which will be used as a

standard to compare with the approximated results of an LNS system.

• Calculate the error produced in the LNS design in comparison with that of the

FLP unit and report the various error characteristics as detailed in Section 3.2.1.

Whilst the table sizes for the co-transformation architecture were constantly

fixed for the entire process, a number of simulations were performed to determine

the most appropriate lookup table sizes that need to be implemented for the

interpolation procedure. The most suitable sizes will only be decided whenever the

worst-case error falls below an equivalent of 0.5 FLP LSB. The most common

powers of two partitioning concept was applied during the interpolation process,

yielding six segments throughout the system before approaching the nearest point to

an essential zero. Table 3-2 shows the general variables for the interpolator module

which were modified in each simulation.

Table 3-2 : Simulation variables for the interpolator.

Parameter Description

F Stored function value at rn

D Stored function derivative at rn

E Stored maximum approximation error in (rn+1,rn)

P Stored proportion of an error for the region that
yields the largest absolute maximum error

δ Current value of r - rn

r Current operand difference, in guarded format

rn Stored interpolation point

 46

Figure 3-1 : Simulator design for the LNS addition and subtraction.

3.3.2. Circuit Design Flow

The flowchart in Figure 3-2 portrays the basic design flow of the LNS ALU system.

The process is divided into two separate stages, namely functional verification and

the synthesis process. Using ModelSim XE III/Starter 6.4b simulator as a CAD tool,

the VHDL description of the LNS design was first written. The coding was then

simulated in order to determine whether or not the design performs the desired

functions. Whenever the design did not function as required, the VHDL code was

Start

Interpolator
Parameters

Co-transformation
Procedure

Create
Lookup Tables

Determine
r region

if
-0.5 < r < 0

Compute LNS Add and Sub
using Interpolation

End

Compute LNS Sub
using Co-transformation

No

Yes

Compute FLP
Add and Sub

Calculate
Error

Perform Support
Functions

For LNS Sub
Function

if
r < 0

Yes

No

 47

modified accordingly before repeating the simulation process. Once the coding was

functionally verified as correct, it was then transferred to the synthesis process.

While executing the synthesis process, the Synopsys Design Compiler tool

was adopted. In this phase, the design was transformed into equivalent gates before

timing evaluation and area estimation were performed. Whenever performance did

not meet the desired goals, the design could be re-constructed or optimised before

applying the process again. The design cycle was completed when the system met

the defined objectives mentioned in Chapter 1. Further elaboration about the

synthesis flow is given in Section 3.3.3.

Figure 3-2 : Basic circuit design flow.

Start

VHDL coding

End

Functional
simulation

Functionally
correct?

Design
implementation

Synthesis
Process

Met goals?

Yes

No

Yes

No

 48

3.3.3. Synthesis Design Flow

The Synopsys Design Compiler tool was employed to perform the synthesis work in

this thesis, and the steps applied in carrying out the process are depicted in Figure

3-3. The process begins by inserting the design files written in the VHDL language

in the input files setting. Next, the links, targets and symbols for the libraries were

specified accordingly. Conceptually, the relevant information about cells or gates

based on the technology libraries applied was embedded in the link and target

libraries settings. In this study, only one technology library was adopted in

synthesising the circuit, Faraday 0.18 µm CMOS technology.

Then, reading the design written in the VHDL format can be accomplished by

using two commands, namely analyze and elaborate. Using these commands, the

pre-synthesis schematic design could now be viewed.

It is known that in most CMOS technologies, the performance of a system

especially in terms of speed, may vary according to operating conditions such as

temperature, voltage and process factors. Since variations in these factors were of no

concern in this study, predefined sets of operating conditions in the technology

library were used, as described in Table 3-3.

Table 3-3 : Operating conditions setting.

CMOS Technology Temperature Voltage Process

Faraday 0.18 µm 25oC 1.8 V 1.00

Another important procedure in controlling the synthesis of the design is the

design constraint settings. Realistic design constraints will allow the compiler to

achieve the design goals without violating design rules during the process. Here,

constraints were added for timing (clock and delay) with the purpose of attempting

to produce the best possible worst-case delay in the design.

 49

Figure 3-3 : Synopsys synthesis design flow [78].

Once all the requirements were loaded, the design was now ready for the

synthesis and optimisation processes. So as to obtain the greatest optimisation, the

compile option was invoked in the design compiler.

After the synthesis procedure, reports for timing and area were generated in

order to analyse the characteristics of the optimised design. If the results needed to

be improved, the design could be updated where possible before repeating the

synthesis process. Finally, when the synthesis results had reached the specified goals,

the final design was saved as a gate-level netlist in Verilog HDL format.

Start

Develop HDL
files

Specify libraries
• link_library
• target_library
• symbol_library

Read design
• analyze
• elaborate

Define design
environment

• set_operating_conditions
 i.e temperature, voltage,
 process variation

End

Set design
constraints

• create_clock
• set_max_delay

Optimise the
design

• compile

Analyse and
resolve design

problems
• check_design
• report_timing
• report_area

Save the design
database

• write

 50

3.4. Summary

In order to evaluate the efficiency of the LNS arithmetic unit particularly for

addition and subtraction, a metric such as worst-case error of the system is often

examined and compared with the FLP equivalents. Besides that, the functional

evaluation can be used to verify the simulation results against the expected results.

Another important metric to be considered in this thesis was the timing evaluation.

Through performing timing analysis, the worst-case delay of the system can be

investigated. Area estimation was used to examine the total size of the architecture

in silicon.

Apart from that, this chapter summarised three different design flows which

will be applied in building the LNS system. The simulator design flow described the

steps used to validate the workability of the design before being translated into

circuit design. Commonly, C language was used to represent the design. On the

other hand, the circuit design flow briefly explained the process involved in

constructing the LNS arithmetic unit. There were two separate stages required,

namely functional verification and the synthesis process. The details of the synthesis

process were clearly elaborated in the synthesis design flow, where from this

procedure, the performance of a system can be measured.

 51

CHAPTER 4

4. Recent 32-bit Arithmetic Implementations

4.1. Introduction

In this thesis, the LNS system adopted in the ELM processor is chosen as a

benchmark for comparison. This is due to the fact that the system is able to provide

better accuracy and speed than FLP whilst performing addition and subtraction.

Therefore, Chapter 4 reviews the design in detail before reconstructing the

architecture using the same HDL model as used in the ELM itself. Particularly for

the subtraction operation, the design consists of two separate architectures, a co-

transformation and interpolation. However, only the interpolation process is

described herein while the co-transformation procedure will be elaborated in Chapter

5. The summary of the design resulting from the simulation and synthesis processes

are also discussed which are then used for analytical comparison. Apart from that,

the performance of several FLP devices are also examined where the results can also

be used for analytical study.

4.2. Leading Published Design: ELM processor

Many of the previously published LNS systems focus mainly on addition operations,

and many fewer studies report solutions to compute the subtraction function,

especially in the crucial region of r > -1. One system that promises better accuracy

and speed than FLP in addition and subtraction is the LNS architecture presented in

the ELM processor [6, 7]. Here, the co-transformation approach is combined with

the error correcting interpolation scheme to execute the operations. Hence, it is

worthwhile to acknowledge this technique as a leading published design, because its

performance is much more appealing than the other methods. Thereby, the

 52

arithmetic unit adopted in the ELM system is reviewed to provide a benchmark

design for comparison.

In order to calculate the addition and subtraction algorithms within the ELM,

the r value is separated into various ranges of intervals at different widths of ∆. Due

to the fact that the curves of the addition and subtraction tend to reach an essential

zero point with decrease in r, the total storage requirements can be reduced by

progressively increasing the width of ∆ at each segment. For ease of implementation,

the range of r is segmented at each powers of two, which then gives six segments.

Table 4-1 illustrates the segmentation procedure and the corresponding ∆, whilst

Figure 4-1 graphically depicts the partitioning concept. On the other hand, Figure

4-2 explains the definitions of intervals, regions and segmenting schemes, which are

terms used repeatedly in this thesis.

An interval is a region that covers the width of ∆ in which it is used to

interpolate a function. When there is a set of one or more intervals, it can be formed

into a single region. A segment can be understood as a formation of various regions

and it is commonly partitioned in the range of powers of two.

Table 4-1 : Segments and ∆ in the ELM system.

Segment
Addition Subtraction

Region ∆ Region ∆

1 -1 < r < 0 1.0 -1 < r < -0.5 0.5

2 -2 < r < -1 1.0 -2 < r < -1 1.0

3 -4 < r < -2 2.0 -4 < r < -2 2.0

4 -8 < r < -4 4.0 -8 < r < -4 4.0

5 -16 < r < -8 8.0 -16 < r < -8 8.0

6 -32 < r < -16 16.0 -32 < r < -16 16.0

 53

-4

-3

-2

-1

0

1

0-1-2-3-4-5-6-7-8-9-1
0

-1
1

-1
2

-1
3

-1
4

-1
5

-1
6

-1
7

-1
8

-1
9

-2
0

-2
1

-2
2

-2
3

-2
4

-2
5

-2
6

-2
7

-2
8

-2
9

-3
0

-3
1

-3
2

r

f(r)

sb(r)

db(r)

Figure 4-1 : Partitioning concept for addition and subtraction functions.

0

0.2

0.4

0.6

0.8

1

1.2

0-0.5-1-1.5-2-2.5-3-3.5-4

r

f(r)

Figure 4-2 : Descriptions of interval, region and segment.

Segment 1 Segment 2

Segment 3

Region Interval

 54

4.2.1. ELM Interpolation: Error Correction Algorithm

If LNS addition and direct subtraction have to be built so as to use as little memory

as possible and must not be too complex, the most desirable function approximation

technique to be applied is an interpolation scheme. Previous studies have suggested

various types of interpolation techniques, ranging from direct interpolation, linear

interpolation and non-linear interpolation approximation. However, the most notable

scheme uses a high-order coefficient in the interpolator function as presented by

Coleman et al. [6]. Apart from its capacity to dramatically reduce ROM size, using

Coleman’s approach can also yield better accuracy than FLP. Conventionally, a

linear interpolation scheme can be expressed as:

)()()(nn rDrFrf ⋅−= δ (4.1)

where F(rn) represents either the addition or subtraction function in which their

values are stored in an F table, and its derivative, D(rn), at that particular point is

stored in a D table. Assuming that the intervening value of r = rn - δ, then δ is the

difference between a value of r and the nearest more positive point in that specific

region. However, the function approximation using linear interpolation usually

yields error, as described in the inset of Figure 4-3, whereby:

)()()(),(δδδε −−⋅−= nnn rFrDrFn (4.2)

and the maximum error at each interval can be written as:

E(n) ≈ F(rn) − ∆ ⋅ D(rn) − F(rn − ∆) (4.3)

where ∆ refers to the maximum width in that particular interval, which will usually

be doubled at each increasing powers of two whenever r is gradually decreased. In

order to compensate for error ε, a noteworthy solution is to implement the linear

 55

Figure 4-3 : Function approximation method for ELM.

interpolation in conjunction with an error correction algorithm as suggested in [6].

This exploits another table, known as E, to store a local maximum error value in

each interpolation interval, as well as a P table which consists of the proportion of an

error for the region that yields the largest absolute maximum error. Thereby, the

error ε can be resolved as:

ε(n,δ) ≈ E(n) ⋅ P(c,δ) (4.4)

where c is a constant, because only one P table is required in the system. By

incorporating this function into equation (4.1), the error in the final result will then

suppressed, hence a substantial saving in memory space is thereby possible.

Despite introducing two new tables, E and P, the adoption of this scheme has

the advantage that these tables can be referred to concurrently with those from F and

D. Moreover, the multiplication process of the value E·P can be computed at the

same time as the multiplication in the linear interpolation, δ ⋅ D . In the final

-2

-1

0

1

0-1-2-3-4-5-6-7-8
r

f(r)

sb(r)

db(r)

Taylor Polynomial, p(r)

E

ε

∆

δ

 56

accumulation stage, because interpolation already involves an addition, the product

of the error-correcting term can be accumulated by adding another level of a carry-

save adder as portrayed in Figure 2-7. Overall, the correction procedure can

therefore be completed with only a few extra gate delays, thus having the least

impact on the critical speed path of the LNS system.

4.2.1.1. Taylor Approximation

The fundamental principle of function approximation in the ELM is based upon the

linear Taylor approximation. In general, the Taylor approximation method can be

illustrated as a tangent line that passes through a tabulated point, as portrayed in the

inset of Figure 4-3. Conceptually, the basic formula of Taylor’s theorem is written

as:

)r(f
!n

)rr(
......)r(f

!2
)rr(

)r(f
!1

)rr(
)r(f)r(p 0

)n(
n

0
0

2
0

0
0

0

−
++′′

−
+′

−
+= (4.5)

In previous LNS designs, the term f (n)(r0)·(n!)-1 is stored as a computed value

in ROM and n is often limited to 2. This ensures that the computation of the function

approximation can be executed within less hardware complexity, as a result of each

order of n in the Taylor polynomial requiring at least one multiplier and one adder to

perform the function. Therefore, an increase in the order of n will not only involve

additional hardware multipliers and adders, but at the same time will directly impact

onto the cost of the hardware translation in silicon. Hence, the work presented in [6]

restricted the Taylor polynomial to only the first degree, thereby the Taylor series

can be formulated as:

)r(f)rr()r(f)r(p nnn ′⋅−+= (4.6)

 57

As a result of implementing the error correction algorithm in the approximation

architecture, ε(n,δ) is therefore also added into equation (4.6). Through this

arrangement, the published design in [6] is able to achieve a reasonable size of total

storage, with its accuracy better than FLP.

4.3. Simulation Results

The simulation results for the ELM unit, focusing on the addition and subtraction

functions, are summarised in Table 4-2. From the analysis, the worst-case error and

lookup tables arrangement are analogous with the results published in [6]. This

means that the illustrated simulator design as exhibited in Figure 3-1 has been able

to yield results comparable with those in the original specification, which can hence

be acknowledged to be fully verified and tested. The entry marked in bold italics in

the table is the best composition of the total storage requirement, where the F, D and

E tables are set to 256 words with the P table at 1024 words. Meanwhile, the greyed

entries in the table signify the worst-case errors above the FLP limit of 0.5, which

means that these lookup table configurations need not be considered. The error

produced according to various sizes of lookup table formation is represented

graphically in Figures 4-4, 4-5 and 4-6. Figure 4-7 shows the overall storage

requirements for various combinations of the F, D, E and P tables able to sustain the

worst-case error within FLP limit. For the purpose of this simulation, the F, D, E

and P tables have been assumed to comprise of 32-bit words in 6 different segments

based on the powers of two partitioning procedure.

4.4. Design Summary

In order to successfully achieve the BTFP mode, four guard bits are inserted into the

ELM system to maintain precision whilst executing addition and subtraction

operations. Once the computation is finished, the number is rounded back to the

original 32-bits. As reported in [6], the system is partitioned into six segments at

 58

Table 4-2 : The worst-case error of the ELM unit.

Parameters ADD SUB Worst
Case

F,D,E
Sizes P size Guard

Bits e'min rel e'max rel e'min rel e'max rel erel

64 512 4 -2.0231 +0.9188 -1.2017 +3.8857 3.8857

128 512 4 -0.8134 +0.4501 -0.5401 +1.1579 1.1579

256 512 4 -0.4948 +0.4057 -0.4377 +0.5470 0.5470

512 512 4 -0.4589 +0.4042 -0.4366 +0.4286 0.4589

1024 512 4 -0.4287 +0.4081 -0.4355 +0.4265 0.4355

64 1024 4 -1.1933 +0.9188 -1.2017 +2.0972 2.0972

128 1024 4 -0.5937 +0.4501 -0.5401 +0.7206 0.7206

256 1024 4 -0.4526 +0.4066 -0.4377 +0.4551 0.4551

512 1024 4 -0.4457 +0.4032 -0.4375 +0.4286 0.4457

1024 1024 4 -0.4258 +0.4081 -0.4360 +0.4265 0.4360

64 2048 4 -0.7786 +0.9188 -1.2132 +1.1579 1.1579

128 2048 4 -0.5036 +0.4513 -0.5401 +0.5029 0.5401

256 2048 4 -0.4250 +0.4066 -0.4377 +0.4294 0.4377

512 2048 4 -0.4435 +0.4026 -0.4375 +0.4286 0.4435

1024 2048 4 -0.4258 +0.4091 -0.4360 +0.4265 0.4360

powers of two ranging from 0..-1, -1..-2, -2..-4, -4..-8, -8..-16 and -16..-32. However,

for subtraction only, the co-transformation process is deployed over the range -0.5 <

r < 0. At each segment, 256 words are used to store the F, D and E tables, whereas

for the P table, its 1024 words accommodates the error profile for the subtraction

logarithm in the range -8 < r < -4 since this is where the maximum absolute error

occurs. At 32-bits, the total storage needed for the interpolation process is

approximately 227 kbits, as shown in Table 4-3. Although the total bits cited in [6]

is lower because there the number of bits were optimised with decreasing r in each

table, that would actually lead to an impractical hardware implementation.

 59

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

e' min rel (P=512)

e' max rel (P=512)

e' min rel (P=1024)

e' max rel (P=1024)

e' min rel (P=2048)

e' max rel (P=2048)

Figure 4-4 : Approximation error for the addition operation of the ELM unit.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

e' min rel (P=512)

e' max rel (P=512)

e' min rel (P=1024)

e' max rel (P=1024)

e' min rel (P=2048)

e' max rel (P=2048)

Figure 4-5 : Approximation error for the subtraction operation of the ELM unit.

 60

0

0.5

1

1.5

2

2.5

3

3.5

4

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

P=512

P=1024

P=2048

FLP limit

LNS best-case

Figure 4-6 : Worst-case error of the ELM unit.

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

256 512 1024

Intervals per segment

T
ot

al
 s

to
ra

ge
 (

w
or

ds
)

F, D, E, P = 512

F, D, E, P = 1024

F, D, E, P = 2048

Figure 4-7 : Total storage requirement for the worst-case error within FLP limit.

 61

Table 4-3 : ELM interpolation memory requirements.

Table Words Word
Length Segments Total

Bits

F Add 256 28-bit 6 43,008

F Sub 256 28-bit 6 43,008

D Add 256 27-bit 6 41,472

D Sub 256 28-bit 6 43,008

E Add 256 8-bit 6 12,288

E Sub 256 11-bit 6 16,896

P 1024 27-bit 1 27,648

Total 227,328

4.5. Synthesis Results

 The previous ELM processor device based on 32-bit LNS arithmetic

implementation was fabricated using 0.18 µm CMOS technology. The performance

of this processor was compared with the commercial Texas Instruments (TI) FLP

device, the TMS320C6711 DSP chip, itself fabricated in a similar technology.

Examining the published results of the analysis of the ELM run at 125 MHz,

multiplication and division were executed in a single cycle of 8 ns. Conversely, the

150 MHz TI device required 4 cycles, lasting 26.67 ns, to perform the multiplication

operation and approximately 30 cycles for division. The ELM consumed 3 cycles,

24 ns, to compute addition and subtraction operations and 4 cycles whenever this

involved the co-transformation procedure in subtractions. On the TI device, 4 cycles

at 26.67 ns were needed to complete these functions.

Although the silicon area was not reported in the analysis, the author has

confirmed that the overall dimensions of the ELM die area were 3,224 µm × 4,122

µm. Only the blocks labelled as MCALU, FDE, G and P, as illustrated in Figure 4-8,

related to the organisation of the 32-bit LNS arithmetic unit, therefore measuring

with a ruler gives an estimate of 862,550 µm2 for that particular area.

 62

For a realistic comparison, the LNS system incorporated in the ELM was

resynthesised using the Faraday 0.18 µm process. The synthesiser was run twice,

once without any target constraints, and again with a constraint to deliver the highest

possible speed. These trial designs were not taken to a routed layout, but the

synthesiser incorporates reliable modeling of routing and wiring, and is able to

deliver an accurate prediction of the final area and delay, which is presented in Table

4-4. Note that the unconstrained results, 22.77 ns for addition and direct subtraction,

28.60 ns for subtractions making a co-transform, and an area of 842,433 µm2, are

very similar to those actually found on the fabricated device in [7].

The approximate doubling of speed when the target constraint is asserted

probably reflects an improvement in synthesiser technology in the intervening years

and appears to be comparable with current FLP performance which will be described

in the next section. Therefore, this optimised synthesis has been taken as the starting

point for further development.

Figure 4-8 : Die plot of ELM.

 63

Table 4-4 : Delay times and total device area of ELM.

Function

ELM

Unconstrained Constrained

Delay (ns) Area (µm2) Delay (ns) Area (µm2)

Add / Sub 22.77
842,433

11.74
904,943

Sub (Co-
transform) 28.60 13.15

Mul / Div 2.27 8,337 1.16 10,514

4.6. FLP Devices

The development of the new 32-bit LNS arithmetic unit has to be validated against

other 32-bit arithmetic implementations. For that reason, it is helpful to have an up-

to-date FLP design fabricated with similar 0.18 µm technology for comparison.

Several downloadable FLP libraries [58, 79] are available online but the

practicality of using them for comparison purposes is questionable without knowing

to what extent optimisation efforts have been made in their designs. In addition, a

majority of the presented FLP libraries were only targeted on FPGA’s. To avoid a

biased comparison, a FLP arithmetic device fabricated in a similar 0.18 µm

technology is used for comparative analysis in this thesis.

Kwon et al. in [80] compared two FLP ALU architectures which had been

optimised for different design goals. Both designs were synthesised and routed for

0.18 µm fabrication, as with the work reported in this thesis. The implementation of

these two FLP arithmetic units, namely MONARCH and DIVA, followed the

standard of the IEEE-754 format and supported single-precision numbers. Each

system was able to execute add, subtract, multiply and divide operations.

The MONARCH FLP design was intended to achieve higher performance in

the sense of the speed of executing arithmetic operations. In order to realise the

 64

design goal, therefore, every single arithmetic block operated independently with no

data path shared between the addition/subtraction and multiplication/division

modules. Consequently, each arithmetic unit could be optimised individually in

order to obtain low instruction latency. It was reported that addition and

multiplication had a delay of 3 clock cycles and division 9 clock cycles when

clocked at 266 MHz. The estimated layout area was 600,000 µm2.

The second design, DIVA, was optimised for minimal area. Several design

considerations supported this, such as merging the exponent computation block for

each arithmetic unit in one data path and also sharing rounding logic. As a result of

these design strategies, 5 clock cycles were required to perform addition and

multiplication, and 12 clock cycles for division when similarly clocked at 266 MHz.

However, the total layout area was reduced to 481,635 µm2. Table 4-5 summarises

the delay and silicon area results for these FLP architectures.

Table 4-5 : Delay and area of FLP arithmetic unit at 266 MHz.

Function

FLP

MONARCH DIVA

Delay
(cycles)

Delay
(ns)

Area
(µm2)

Delay
(cycles)

Delay
(ns)

Area
(µm2)

Add / Sub 3 11.28

600,000

5 18.80

481,635 Mul 3 11.28 5 18.80

Div 9 33.83 12 45.11

4.7. Comparison Analysis: ELM and FLP

Based on the constrained synthesis of the ELM design, its total silicon area is larger

than FLP devices, DIVA and MONARCH, as illustrated in Figure 4-9. However, in

terms of delay, the ELM computed addition and direct subtraction at almost the

 65

same speed with the faster of the two FLP units, MONARCH, as shown in Figure

4-10.

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

1.E+06

ELM MONARCH DIVA

Arithmetic Design

T
ot

al
 A

re
a

(s
qu

ar
e

m
ic

ro
ns

)
ELM
MONARCH
DIVA

Figure 4-9 : Total silicon area between ELM, DIVA and MONARCH.

0

5

10

15

20

25

30

35

40

45

Add/Sub Mul Div Sub (co-transform)

Functional Unit

D
el

ay
 (

ns
)

DIVA
MONARCH
ELM

Figure 4-10 : Delay between ELM, DIVA and MONARCH.

 66

For subtractions involving the co-transformation, the delay increases to 116% of the

delay in MONARCH. On the other hand, the ELM executed multiplication and

division in 1.16 ns, whereas MONARCH required 11.28 ns and 33.83 ns

respectively. From the analysis described herein, it can be concluded that the result

presented is in agreement with the analysis summarised in [7].

4.8. Summary

The hardware arrangement of the LNS design presented in the ELM processor was

reviewed intensively in this chapter. Conceptually, a Taylor approximation method

together with an error correction algorithm was employed to perform the

interpolation process for executing addition and direct subtraction operations. By

implementing this technique, significant reduction in total lookup tables can be

obtained. According to the simulation and synthesis results based on the

reconstructed ELM architecture, the results reported have been shown to be in

agreement with those found in the original work. This means that the resynthesised

design has been fully verified and the results generated can be used for comparison

purposes.

In order to evaluate the performance of the new LNS system against other

recent 32-bit arithmetic implementations, two FLP devices namely DIVA and

MONARCH have been studied. These FLP units were synthesised in similar CMOS

technology as that adopted in this thesis. Thus, fair and direct comparison can be

obtained when performing the analytical work.

 67

CHAPTER 5

5. Co-transformation Architecture for LNS

Subtraction

5.1. Introduction

The co-transformation technique was first introduced in an ELM processor, and the

resulting speed and accuracy of the complete system were better than in an FLP

arithmetic unit. Therefore, for benchmarking purposes, Chapter 5 reviews this

approach in detail before reconstructing the architecture. Using the concept

implemented in the ELM as the initial idea, a new proposal for the co-transformation

procedure is suggested [77]. The proposed design is then simulated accordingly and

the results are reported. Finally, a comparative analysis is carried out to show the

effectiveness of the proposed algorithm compared with the ELM, concentrating on

total area used (in bits), worst-case delay and levels of error in the system.

5.2. First-order Co-transformation Procedure for LNS Subtraction

The difficulty of approximating the value of the subtraction function at values of r

closer to zero, due to approaching -∞ as depicted in Figure 4-1, will cause larger

table sizes when using direct lookup tables, interpolation or even

bipartite/multipartite tables. Thus, the co-transformation procedure introduced by

Coleman [49] is applied in the region -0.5 < r < 0. The co-transformation scheme as

outlined in Figure 5-1 can be called a first-order co-transformation procedure, which

is constructed by introducing two new variables, k1 and k2, on top of the original

subtraction function as explicitly derived in equation (5.1).

 68

Figure 5-1 : ELM’s co-transformation architecture.

2i – 2j = (2i – 2j+k1) – 2j+k2 (5.1)

where

 2k1 + 2k2 = 1, i.e k2 = log2 (1 - 2k1) (5.2)

With ∆1 fixed at a large value, index r1 is calculated based on the individually

chosen factor k1 which will then lie on the modulo-∆1 boundary beneath r.

Subsequently, F(r1) can be retrieved from the lookup table F1, which stores F(r)

values in the region -0.5 < r < -∆1. For all regions, the value of k2 is tabulated in the

F2 table which includes all possible values of k1 that lie in the range -∆1 < k1 < 0.

Thus,

r1 = (((j – i) DIV ∆1) – 1)× ∆1 = j + k1 – i (5.3)

 k1 = – (((j – i) MOD ∆1) + ∆1) = i – j + r1 (5.4)

An index r2 results from the subtraction of the newly reformed i2 and j2 from their

original values of i and j, and hence will give,

Subtraction

Addition Addition

F1
ROM

F2
ROM

i

j

i2

r2

j2

F(k1)

r1 k1

(((j – i) DIV ∆1) – 1)
× ∆1

-(((j – i) MOD ∆1)
+ ∆1)

F(r1)

 69

 2i – 2j = 2i + F(r1) – 2j + F(k1) (5.5)

 r2 = j – i + F(k1) – F(r1)

 = j – i + log2 [(1 - 2 i – j + r1) ÷ (1 - 2 r1)] (5.6)

The value of r2 can be considered in three regions, depending on the original

operands i and j. For j − i ≤ −0.5, r2 is taken directly as j − i, and will lie in the linear

region of F from which F(r) can be obtained by interpolation. For −0.5 < j − i < −∆1,

r2 is derived as shown in equation (5.6), and as it falls in the region less than -1 as

illustrated in Figure 5-2, F(r) is similarly obtained by interpolation. For the third

region, −∆1 ≤ j − i < 0, the derived value of r2 rises above −1. However, this range

is covered by the F2 table, and F(r) is therefore already available as k2. The

modified values r2 and i2 are passed to the interpolator for completion of the outer

subtraction. In adopting this approach, the bit partitioning scheme of the LNS format

is illustrated in Figure 5-3.

Figure 5-2 : Value of r2 for -0.5 < r < -∆1.

Figure 5-3 : Bit partitioning scheme for first-order co-transformation.

Sign Integer Fraction
1-bit 8-bit 11-bit 11-bit 1-bit

-∆1 -0.5

Interpolation Co-transformation

-1

-3

-5

-7

-9

-11

-13

-15

-17

-19

-21

-23

-∆1 -0.5

r

r2

0

 70

Now the total size of F1 and F2 tables are 2048 words each, details presented

in Table 5-1, which is approximately one-seventh of the size of the tables that would

be involved in the interpolation process for a similar region [59].

Table 5-1 : ELM co-transformation memory requirements.

Table Words Word
Length Segments Total

Bits

F1 2048 31-bit 1 63,488

F2 2048 32-bit 1 65,536

Total 129,024

5.3. Optimising Lookup Tables for LNS Subtraction

One of the key aspects in designing LNS addition and subtraction concerns the total

storage requirements for the entire unit. Having such large lookup table

requirements in previously published LNS systems made them unattractive for

future DSP chip implementation, although they might be appropriate for some

specific DSP applications. Therefore, if designers can reduce the total table

requirements, this will then reduce the total area of the device commensurately.

The most challenging region is the subtraction function above -1, which

approaches singularity and thereby requires a huge space for lookup tables when

applying conventional methods to maintain precision within the FLP limit. The

proposal for the ELM unit [6, 7] has introduced a promising architecture to compute

subtraction over that particular range, but no such design so far has been able to

further improve the technique in order to need less storage while achieving similar

or better performance than this ELM. Given this situation, further exploration into

the possibility of optimising the usage of lookup tables specifically in the region of -

0.5 < r < 0 for subtraction is discussed in this section.

The algorithm proposed in this study, the so called second-order co-

transformation procedure, derives from the basic principle of the first-order concept

 71

as used in an ELM. Despite having two similar sizes of tables, F1 and F2, this

technique now incorporates another table in the system by applying the fractionating

coefficient k1 recursively. Thus, three much smaller tables are created in the range

of -0.5 < r < 0 which will substantially reduce total storage as a result of the

fractional bits being partitioned into three small regions. The segmentation

procedure remains unchanged, as shown in Table 4-1. Additionally, five guard bits

are added as to maintain accuracy within FLP limit and to keep the table sizes

analogous to those of an ELM whilst performing the interpolation process.

5.3.1. The New Algorithm: Second-order Co-transformation Procedure

for LNS Subtraction

Co-transformation as described for the ELM was introduced by replacing the

subtraction 2i – 2j with two successive subtractions as shown in equation (5.1).

However, the fractionating coefficient k1 can be applied recursively. Substituting

2j+k2 = 2j – 2j+k1

into equation (5.1) gives:

2i − 2j = (2i − 2j+k1) − (2j − 2j+k1)

 = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − 2 j+k1+k12) (5.7)

where,

2k11 + 2k12 = 1, i.e. k12 = log2 (1 − 2k11) (5.8)

The four subtractions in equation (5.7), and their respective indices r, will now be

numbered as follows:

 72

2i − 2j = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − 2 j+k1+k12)

 At first, k1 is selected such that the index r1 falls on the nearest modulo-∆1

boundary beneath j − i, and F(r1) is obtained directly from the lookup table F1,

containing F(r) for −1 < r < − ∆1 at modulo-∆1 intervals. However, ∆1 is now fixed

at a larger value than was the case in the first-order arrangement, thereby shortening

the index to the F1 table by the number of additional bits used. Previously, this

would have caused a corresponding increase in size of the index to the F2 table.

Now, however, the coefficient k11 is similarly selected such that r11 falls on the

modulo-∆11 boundary beneath j + k1 – j = k1, and F(r11) is obtained from table F11

which contains F(r) for -∆1 < r < -∆11 at modulo-∆11 intervals. This reduces the

index to the F11 table by the number of bits representing ∆11. The final coefficient,

k12, is obtained from the lookup table F12 indexed by k11, itself represented by the

same number of bits as ∆11. This conceptual arrangement is shown in Figure 5-4,

from which it may be seen that the index r has effectively been split into three

partitions, each of which will optimally be about a third of the length of the original.

For clarity, Figure 5-5 shows the bit partitioning scheme for the second-order co-

transformation format.

Variables r1, k1, r11 and k11 can be represented as:

r1 = (((j – i) DIV ∆1) – 1) × ∆1 = j + k1 – i (5.9)

 k1 = – (((j – i) MOD ∆1) + ∆1) = i – j + r1 (5.10)

 r11 = -(((j – i) MOD ∆1) + ∆1) + ((j – i) MOD ∆11)

 = k1 + k11 (5.11)

 k11 = ((j – i) MOD ∆11) = r11 – k1 (5.12)

1 11

12

2

 73

Subtractions 11 and 1 are performed directly by lookup of their respective function

tables. Subtraction 12 then generates an index:

r12 = k1 + k12 – F(k1 + k11)

 = k1 + F(k11) – F(k1 + k11)

 = k1 + log2 ((1 – 2k11) ÷ (1 – 2k1 + k11)) (5.13)

Figure 5-4 : Conceptual arrangement of second-order co-transformation.

Figure 5-5: Bit partitioning scheme of second-order co-transformation.

Subtraction

Addition Addition

F1
ROM F11

ROM

i
j

i2 r2

i12

F(r11)

r1 r11
((j – i) DIV ∆1) – 1) �

 ∆1)

-(((j – i) MOD ∆1) + ∆1)
+ ((j – i) MOD ∆11)

F(r1)
Addition

F12
ROM

F(k11)

k11

Interpolator

Subtraction

r12

 k1

((j – i) MOD ∆11)

j12

j2

 Interpolator

Result

Sign Integer Fraction

1-bit 8-bit 8-bit 8-bit 7-bit

-∆11 -1 -∆1

Interpolation Co-transformation

 74

The value of r12 varies with the original r as shown in Figure 5-6, where

-2∆1 < r < -∆1, i.e. r lies across the range of one ∆1. In the arrangement used for

this illustration, ∆11 is 6 bits and ∆1 is 13, so that r is partitioned into low, middle

and high-order segments of 6, 7 and 10 bits respectively. This is not the most

optimal partitioning, but was chosen for this illustration in order to keep the graph to

a manageable size. The modified value r12 exhibits a repeating pattern of

subintervals across each ∆11. With the exception, discussed below, of the extreme

left subinterval, r12 < -1. Note, in fact, that for the point in each subinterval where

k11 = 0, r12 = −∞. These points have been omitted from the graph, and in practice

they are ignored because the subsequent calculation of F(r12) is consequently zero.

As regards the leftmost subinterval, it is necessary to consider the behaviour of r12

as r progresses across the range of ∆1. In the first subinterval at the left of Figure 5-6,

k1 < ∆11 and k1 + k11 = ∆11. To the far left of this subinterval, k11 ≈ ∆11, and since

k1 is small, r12 ≈ 0. Throughout this subinterval the middle partition is zero. It is

therefore possible to treat this subinterval as a special case of the first-order

arrangement, in which the second-order variable k11, table F12 and result r12 are

analogous to the first-order k1, F2 and r2. The new value r2 bypasses the first

interpolator and is passed directly to the second interpolation stage. Throughout the

next subinterval, k1 + k11 = 2∆11. To the far left of this subinterval, again, k11 ≈

∆11, but since k1 and k11 are both small, the exponential terms are approximately

linear in behaviour, and r12 is therefore ≈−1. From here on, r12 < −1. Except in the

special case just mentioned, subtraction 12 is then completed in the first interpolator,

which is positioned as shown in Figure 5-4.

The result of subtraction 12 is then itself subtracted from the result of

subtraction 1. Its index r2:

 r2 = j – i + F(k1 + k11) + F(k1 + k12 – F(k1 + k11)) – F(r1) (5.14)

 75

The value of r2 is plotted over the range -1 < r < -∆1 in Figure 5-7. In all cases, r2 <

-1, and the subtraction can therefore be performed with a second iteration of the

interpolator.

Figure 5-6 : Value of r12 for -2∆1 < r < -∆1.

Figure 5-7 : Value of r2 for -1 < r < -∆1.

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

r12

0

-13

-∆1 -2∆1

r

-1

-3

-5

-7

-9

-11

-13

-15

-17

-19

-21

-23

-∆1 -1

r

r2

0

 76

In the similar way that, in the first-order arrangement, the value of r2 falls into

one of three regions, here it is separated into four. Again, this depends on the

original operands i and j. For j − i ≤ −1, r2 is taken directly as j − i, and will lie in the

linear region of F from which F(r) is obtained by interpolation. For −1 < j − i < −∆1,

r2 is derived as shown above, and now has a maximum of approximately −1. Thus it

also lies in the linear region of F, and F(r) is similarly obtained by interpolation. In

the third region, −∆1 ≤ j − i < −∆11, the high-order bits are zero and subtractions in

this region can therefore be processed with a first-order technique using the F11 and

F12 tables. Finally, F(r) for −∆11 ≤ j − i < 0 is taken directly from the F12 table.

The overall co-transformation memory requirement is reduced from 4,096

words, as in the first-order shown in Table 5-1, to 640 as described in Table 5-2, or

from 129,024 bits to 20,608, a reduction to about 16% of its original size.

Table 5-2 : Second-order co-transformation memory requirements.

Table Words Word
Length Segments Total

Bits

F1 128 31-bit 1 3,968

F11 256 32-bit 1 8,192

F12 256 33-bit 1 8,448

Total 20,608

5.3.2. Function Approximation Scheme

For fair and direct comparison, a first order Taylor approximation scheme

incorporating an error correction algorithm is adopted to estimate the F(r) in the

region -32 < r < -0.5 for subtraction, and -32 < r < 0 for addition. This is equivalent

to the approximation scheme in the ELM for those particular regions, as described in

Section 4.2.1. Nevertheless, several alternative methods for the function

 77

approximation procedure will be investigated later in order to achieve further

advantages over Taylor approximation, and these are elaborated in Chapter 6.

Using the same simulator model as constructed in Section 3.3.1, a number of

simulations of error characteristics were performed through varying the sizes of the

F, D, E and P tables. The work aimed to verify which table setting offers the best

configuration to gain acceptable levels of error within the FLP boundary of 0.5.

5.3.3. Simulation Results

Table 5-3 outlines the simulation results for error characteristics of the combination

of the newly proposed co-transformation scheme with interpolation using Taylor

approximation for both addition and subtraction. It can be seen in Table 5-3 that the

best worst-case error of the system still has the F, D and E tables at 256 words and

the P table at 1024 words, as a result of applying an identical Taylor approximation

method as in the ELM. However at this time, the number of guard bits is increased

from 4 to 5. The worst-case relative error for the entire system is shown in Figure

5-8.

5.3.4. Design Summary

For ease of comparison, the LNS addition/subtraction architecture using the second-

order co-transformation procedure applies the same configurations as those

implemented in the ELM. Despite the existence of five guard bits in the device, the

system presented is also divided into six segments at powers of two. Instead of

partitioning into two as in the ELM, the subtraction operation in the range

-0.5 < r < 0 is segmented into three regions ranging from -∆11 < r < 0,

-∆1 < r < -∆11 and -0.5 < r < -∆1. Through this arrangement, a tremendous

reduction in total storage can be gained whereby F1, F11 and F12 tables now only

store 128, 128 and 256 words respectively. A maximum relative error nearly

equivalent to the FLP limit is obtained when F, D and E tables are at 256 words,

 78

Table 5-3 : The worst-case error of the optimised architecture.

Parameters ADD SUB Worst
Case

F,D,E
Sizes P size Guard

Bits e'min rel e'max rel e'min rel e'max rel erel

64 512 5 -2.0248 +0.8757 -1.2671 +3.9264 3.9264

128 512 5 -0.7790 +0.4104 -0.4843 +1.2250 1.2250

256 512 5 -0.4802 +0.3543 -0.3705 +0.5787 0.5787

512 512 5 -0.4004 +0.3536 -0.3713 +0.4189 0.4189

1024 512 5 -0.3893 +0.3534 -0.3707 +0.4070 0.4070

64 1024 5 -1.1933 +0.8757 -1.2396 +2.1069 2.1069

128 1024 5 -0.5696 +0.4108 -0.4583 +0.7817 0.7817

256 1024 5 -0.4277 +0.3543 -0.3705 +0.4719 0.4719

256 1024 4 -0.4699 +0.3674 -0.3914 +0.5298 0.5298

512 1024 5 -0.3904 +0.3536 -0.3726 +0.4065 0.4065

1024 1024 5 -0.3893 +0.3569 -0.3707 +0.4070 0.4070

64 2048 5 -0.7786 +0.8857 -1.3452 +1.2056 1.2056

128 2048 5 -0.4632 +0.4118 -0.4670 +0.5458 0.5458

256 2048 5 -0.4113 +0.3549 -0.3723 +0.4321 0.4321

512 2048 5 -0.3884 +0.3542 -0.3730 +0.4065 0.4065

1024 2048 5 -0.3893 +0.3569 -0.3707 +0.4070 0.4070

with the P table at 1024 words. This is comparable with the ELM due to the

application of a conceptually similar interpolation method for the addition and

subtraction functions. As shown in Table 5-4, about 259 kbits would be required to

compute LNS addition and subtraction using the new algorithm for the co-

transformation process together with the previously published interpolation

procedure.

 79

0

0.5

1

1.5

2

2.5

3

3.5

4

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

P=512

P=1024

P=2048

FLP limit

Figure 5-8 : The worst-case relative error of the proposed architecture.

Table 5-4: Total storage for the new algorithm.

Table Words Wordlength Segments Total
Bits

F Add 256 29-bit 6 44,544

F Sub 256 29-bit 6 44,544

D Add 256 28-bit 6 43,008

D Sub 256 30-bit 6 46,080

E Add 256 9-bit 6 13,824

E Sub 256 14-bit 6 21,504

P 1024 28-bit 1 28,672

F1 128 31-bit 1 3,968

F11 128 32-bit 1 4,096

F12 256 33-bit 1 8,448

Total 258,688

 80

5.4. Comparison Analysis: First-order and Second-order Co-

transformation with the Taylor Interpolator

The analysis was conducted based on the constrained synthesis between the leading

published design, the ELM, and the proposed LNS addition and subtraction

architectures described in this chapter. The intention is to evaluate the efficiency of

the new second-order co-transformation procedure when combined with the Taylor

interpolator in three vital respects.

Firstly, the investigation focuses on the hardware costs in terms of the memory

size required for each device in order to build a 32-bit system. This is due to the fact

that ROM frequently dominates the silicon area of the unit and therefore very often

becomes a major concern when developing an LNS system. Figure 5-9 graphically

compares the total tables required for co-transformation and the interpolation

module in the ELM as well as the new algorithm which comprised of second-order

co-transformation together with the Taylor interpolator.

As can be observed in Figure 5-9, a dramatic reduction in table space to

perform the co-transformation process can be achieved with the second-order co-

transformation procedure. The effect of repeatedly applying the fractionating

coefficient k1 brings the total tables down to approximately one-eighth the size of

those required in the ELM to execute the same function in the region -0.5 < r < 0.

Previously, as reported in the first-order and second-order algorithms, the r value

was transformed into a new value, r2, which lies in the region less than -1 after

completing the co-transformation process. Thereby, it is now possible to extend co-

transformation to cover the range -1 < r < 0, which then leads to 90% savings in

total storage compared to the ELM. However, it is expected that the memory

involved in the interpolation scheme in the new algorithm will be slightly higher

than that in the ELM, as a result of using five guard bits.

Next, Figure 5-10 plots the worst-case error of the ELM and the new

algorithm. It is found that the error characteristics of second-order co-transformation

remain identical to those of the ELM because of the adoption of identical

interpolation techniques. This means that, when utilising the new approach, the

 81

accuracy of the system is sustained. Nevertheless, ways have been sought to further

improve the error behaviour of the system by simulating various types of

interpolation method. These are elaborated upon in the next chapter.

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

1.E+05

1.E+05

1.E+05

2.E+05

2.E+05

2.E+05
T

ot
al

 ta
bl

es
 o

f
co

-
tr

an
sf

or
m

at
io

n

F
,D

,E
 A

dd

F
,D

,E
 S

ub P

T
ot

al
 ta

bl
es

 o
f

co
-

tr
an

sf
or

m
at

io
n

F
,D

,E
 A

dd

F
,D

,E
 S

ub P

Co-transformation in the range -0.5 < r < 0 Co-transformation in the range -1 < r < 0

T
ot

al
 b

its

ELM
The New Algorithm

Figure 5-9 : Comparison of the total tables between ELM and new algorithm.

The third issue concerns the execution delay of the co-transformation process.

Despite having worthwhile improvement in terms of table size, the implementation

of the new algorithm comes at the expense of a vastly increased delay for

subtractions using the co-transformation. This is mainly due to require two passes

through the interpolator, which means that approximately twice the delay of a direct

subtraction as graphically shown in Figure 5-11.

To conclude the analysis, it should be noted that implementing the new

algorithm for the co-transformation procedure may lead to great savings in memory

compared with the ELM. Nevertheless, it has a serious degradation in delay as a

result of using the interpolator twice. Therefore, the adoption of the new co-

 82

transformation will only be feasible in conjunction with a faster interpolator. Hence,

the next chapter examines several interpolation approaches to achieve this objective.

0

0.5

1

1.5

2

2.5

3

3.5

4

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

ELM , P=512

ELM , P=1024

ELM , P=2048
New Alg., P=512

New Alg., P=1024

New Alg., P=2048

Figure 5-10: Worst-case error between ELM and the new algorithm.

0

5

10

15

20

25

Direct subtraction Subtractions w ith co-transform

Constrained synthesis

D
el

ay
 (

ns
)

ELM
The New Algorithm

Figure 5-11 : Delay between ELM and the new algorithm.

 83

5.5. Summary

In this chapter, a second-order co-transformation procedure has been introduced and

the technique applied in the region -0.5 < r < 0 of the subtraction function, where the

singularity issue normally arises. By exploiting a similar conceptual approach to that

used in the ELM, the original value of r in the range -0.5 < r < 0 will be converted

into a new value that is certain to lie in the linear region of the function of r, and

thereby the singularity issue can be avoided. Not only can accuracy be sustained

within FLP limit, but the use of the second-order concept is also capable of reducing

the total storage needed to 73% of the total size in the ELM. However, it has a huge

impact in terms of delay, much slower than ELM, for subtractions using the co-

transformation as a result of using the interpolator twice. Hence, several

interpolation schemes are investigated in Chapter 6 where further reductions in table

size and delay may possibly be achieved.

 84

CHAPTER 6

6. Function Approximation Scheme for LNS

Addition and Subtraction

6.1. Introduction

Apart from improving the co-transformation procedure, as outlined in Chapter 5,

which yielded less total storage than in the ELM design, the enhancement of the

interpolator architecture is also of utmost importance for LNS addition and

subtraction. Reducing the storage space needed in the interpolation process will have

a significant impact on the total area of the LNS system. Therefore, several

interpolation techniques are explored in this chapter in searching for the best design

approach to implement.

Initially, three linear interpolation techniques are designed and compared in

terms of the total storage generated and error characteristics. Subsequent analysis

evaluates which design approach produces the smallest total area of tables whilst

maintaining worst-case error level within FLP limit. A series of developments based

on the selected interpolator architecture is then performed through adopting the non-

linear interpolation process.

According to the work reported herein, the suggested interpolator module is

shown to be able to provide a reduction in total storage in comparison with that

needed in the ELM design. The improved version of the interpolator also

incorporates tables small enough to be synthesised in logic rather than by using real

ROM elements. As a result of this, the total execution delay of the interpolator can

be reduced too.

 85

6.2. Function Approximation using Interpolation

During the early days [39], LNS addition and subtraction were simply computed

using the direct implementation of functions retrieved from the lookup tables which

stored all possible values of sb(r) and db(r). This approach is relatively easy and less

complex, particularly for short word-lengths, based on the formula f·2f+1. However,

the impact on the whole system when considering long word-lengths is hopelessly

cumbersome. Assuming a 23-bit fractional part for 32-bit word-length, the total

storage would be 23 × 223+1 ≈ 3.86 × 108 words, which is clearly impractical.

Therefore, an approximation procedure [6, 43, 47] is employed to overcome the

issue of hardware complexity. It has been noted that approximations are widely

performed in numerical analysis when difficulty is encountered in carrying out an

analytical study involving an original function, due to the nature of the function

itself [81].

Theoretically, in order to perform an approximation of LNS addition and

subtraction, a new function which can be defined as p(r) is introduced which

emulates the behaviour of the original function f(r). Rather than directly keeping the

complete curve, the p(r) is then segmented according to all the required points on

each interval and these points are stored in the table. These stored values are then

used to obtain an approximation of the calculated operation. There are several

obvious ways in which an approximating function can be derived, but the easiest and

most often being utilised in many applications is the use of an interpolation

technique [82].

As illustrated in the literature, methods such as Taylor [6, 43], Lagrange [46]

and Chebyshev [45] are among the interpolation schemes which have been adopted

to approximate addition and subtraction functions. However, some of these

techniques incorporate other optimisation procedures which can substantially reduce

the total storage required. Hence, it is difficult to determine which design is more

efficient and can produce less total storage. The solution is to temporarily disregard

the optimised designs and instead return to the initial principle or conventional

method used in the interpolation procedure. Thus, to select the interpolation

 86

technique most suitable for the co-transformation procedure, a preliminary study

focuses on various types of interpolation method using conventional linear

interpolation concepts. From there, an analysis is performed to determine which

design demonstrates the greatest saving in memory space.

6.3. Linear Interpolation

A very brief introduction of linear interpolation has been included earlier in Section

4.2.1. Additional explanation is now necessary, starting by assuming an original

function f(r) which crosses at two points, for example rn and rn+1, as graphically

shown in Figure 6-1. By applying an approximation concept, there exists a linear

function p(r), a so called unique straight line, which passes through these two

locations, (rn,f(rn)) and (rn+1,f(rn+1)). The function p(r) can then be used to

approximate any value of r that lies between rn and rn+1, and the result will be

utilised to approximate the function f(r). The flow of this process is therefore known

as linear interpolation [83] and its mathematical expression can be formulated as in

equation (4.1).

Figure 6-1 : Linear interpolation.

 rn+1 rn r

f(r)

p(r)

 87

The Taylor approximation method was used to interpolate the function f(r) in

Chapter 4, even though alternative techniques can be applied which are capable of

producing even better error characteristics. This section of the study specifically

aims to verify which linear interpolation techniques give better outcomes in terms of

the total memory requirements compared to Taylor’s approach while keeping the

error behaviour within the acceptable limits of the half-bit ulp criterion as in the FLP.

Hence, several interpolation procedures based on a linear method are investigated,

before applying the non-linear technique to further reduce the total storage needed.

Throughout the analysis, the co-transformation architecture proposed in Section

5.3.1 is incorporated into the simulation for subtraction in the range -1 < r < 0, and

the same simulator model developed in Section 3.3.1 is used.

6.3.1. Linear Taylor Interpolation

Since the Taylor approach is used as a benchmark, the first-order Taylor

approximation was modelled based on the theorem in equation (4.5) to yield the

expression in equation (4.6). The simulation was conducted by varying the sizes of F

and D tables accordingly until the errors reported were relatively similar to the FLP

at 0.5. The errors returned by the simulator are equivalent to the FLP calculation due

to the application of the formula given in equation (3.5). For illustration purposes,

Figure 6-2 depicts the approximation error incurred repeatedly in the interval when

interpolating using the Taylor procedure. The actual error results across the whole

range of r are provided in Table 6-1 and also displayed graphically in Figure 6-3.

 88

Figure 6-2 : Illustration of linear Taylor approximation error.

0.1

1

10

100

1000

64 128 256 512 1024 2048 4096 8192

LUT sizes (F, D)

R
el

at
iv

e
er

ro
r

Addition

Subtraction

Figure 6-3 : Worst-case error of linear Taylor approximation.

r

f(r)

Taylor Approximation, p(r)

 rn+1 rn

Approximation Error

max

 89

Table 6-1 : Error of linear Taylor approximation.

Operation F table D table Guard
Bits e'min rel e'max rel

ADD

64 64 5 -430.6243 +0.3462

128 128 5 -108.5963 +0.3464

256 256 5 -27.4899 +0.3464

512 512 5 -7.1379 +0.3464

1024 1024 5 -2.0414 +0.3464

2048 2048 5 -0.7806 +0.3464

4096 4096 5 -0.4695 +0.3465

8192 8192 5 -0.3922 +0.3465

SUB

64 64 5 -110.3230 +973.4232

128 128 5 -26.3088 +244.6603

256 256 5 -6.1552 +61.3282

512 512 5 -1.6741 +15.5805

1024 1024 5 -0.6551 +4.1404

2048 2048 5 -0.3861 +1.3059

4096 4096 5 -0.3540 +0.5989

8192 8192 5 -0.3540 +0.4369

6.3.2. Linear Lagrange Interpolation

Apart from the linear Taylor approximation, there exists an even simpler type of

interpolation approximation that can potentially reduce the total lookup table size

whilst sustaining the accuracy within FLP limit. Typically, instead of f being focused

at one point as in Taylor, it is actually more efficient to spread it over a number of

points, which is similar to the technique described by Lewis [46] and Chester [84].

Therefore, the first alternative approximation procedure considered herein can be

recognised as a secant line that intersects f(r) at two calculated points as presented in

Figure 6-4, an approach called a linear Lagrange interpolation. From an

 90

implementation of this approximation method, it is evident from the results in Figure

6-5 that its maximum error is significantly less than that in the Taylor procedure.

Figure 6-4 : Illustration of linear Lagrange interpolation.

Figure 6-5 : Comparison of maximum error in Taylor and Lagrange.

Err1 –Lagrange maximum error
Err2 –Taylor maximum error

Err1

Err2

r

f(r)

Lagrange Approximation, p(r)

 rn+1 rn

Approximation Error

max

 91

Assuming that the unique straight line p(r) passes through the function f(r) at

two distinct locations, say (rn,f(rn)) and (rn+1,f(rn+1)), then the linear interpolating

polynomial can be constructed as in [83]:

−
−

+
−

⋅−⋅
=

+

+

+

++

n1n

n1n

n1n

1nnn1n

rr
))r(f)r(f(

r
rr

))r(fr())r(fr(
)r(p (6.1)

The expression can be rearranged in the Lagrange symmetric form giving:

)r(f
rr

rr
)r(f

rr
rr

)r(p 1n
n1n

n
n

1nn

1n
+

++

+

−
−

+

−
−

= (6.2)

In order to apply the same arrangement as presented in the Taylor series as shown in

equation (4.6), it is useful to note that p(r) may also be written as:

)()()()(nnn rfrrrfrp ′⋅−+= (6.3)

with the assumption that

−
−

=′
+

+

n1n

n1n
n rr

)r(f)r(f
)r(f (6.4)

This results in an analogous hardware implementation of the interpolation

architecture as described in the ELM design, although of course with different

contents of the D table. The result for error characteristics simulated with different

lookup table sizes using linear Lagrange interpolation is summarised in Table 6-2,

and the worst-case errors for addition and subtraction are shown in Figure 6-6.

 92

Table 6-2 : Error of linear Lagrange approximation.

Operation F table D table Guard
Bits e'min rel e'max rel

ADD

64 64 5 -0.3677 +107.2289

128 128 5 -0.3677 +27.3178

256 256 5 -0.3677 +7.1147

512 512 5 -0.3677 +2.0361

1024 1024 5 -0.3677 +0.7669

2048 2048 5 -0.3682 +0.4493

4096 4096 5 -0.3682 +0.3717

4096 4096 4 -0.3898 +0.3717

SUB

64 64 5 -242.3960 +23.6166

128 128 5 -61.3476 +5.5050

256 256 5 -15.6575 +1.4741

512 512 5 -4.1757 +0.6045

1024 1024 5 -1.2991 +0.4128

2048 2048 5 -0.5831 +0.3871

4096 4096 5 -0.4056 +0.3871

4096 4096 4 -0.4047 +0.4474

6.3.3. Linear Lagrange Interpolation – Modified Version

Exploiting the Lagrange format, another potentially useful approximating procedure

can improve the maximum error even more. Whenever p(r) is shifted down from the

initial position of the Lagrange line, p(r) eventually crosses f(r) at two new values, in

this case rk1 and rk2 as illustrated in Figure 6-7. With the width of the interval still

intact between rn and rn+1, the curve of f(r) is now divided into three different

sections. By observation alone using Figure 6-8, small improvements in maximum

error can clearly be obtained over the Lagrange scheme.

 93

0.1

1

10

100

1000

64 128 256 512 1024 2048 4096

LUT sizes (F, D)

R
el

at
iv

e
er

ro
r

Addition

Subtraction

Figure 6-6 : Worst-case error of linear Lagrange interpolation.

Borrowing from equation (6.3) and considering the two different points that

intersect f(r) at rk1 and rk2, the formula for this approach is therefore expressed as:

−
−

−+=
1k2k

1k2k
1k1k rr

)r(f)r(f
)rr()r(f)r(p (6.5)

During the simulation process, the evaluation of the optimal values of rk1 and rk2 is

not performed for every single interval in each segment. This is due to the fact that,

whilst executing either addition or subtraction operations, the stored values of the F

and D tables happen to be extremely similar for every interval within a segment [84].

For that reason, there is no need to optimise rk1 and rk2 values at each interval since

this gives no significant benefit in the sense of hardware realisation. Rather, the

optimisation of rk1 and rk2 are intensively computed for each segment using the

powers of two partitioning procedure, i.e. 0..-1, -1..-2, -2 ..-4 -16..-32. In order to

execute this approximation procedure, a simulator was developed which fulfils the

 94

preceding argument concerning optimising rk1 and rk2 for every segment. Figure 6-9

presents the flow diagram of the simulator design.

Figure 6-7 : Illustration of modified linear Lagrange interpolation.

Figure 6-8 : Illustration of maximum error between Lagrange and modified version.

Err1 –Lagrange maximum error
Err2 –Modified Lagrange maximum error

Err1 Err2

Approximation Error

r

f(r)

Modified Lagrange Approximation, p(r)

 rn+1 rk2 rk1 rn

max

 95

Figure 6-9 : Flow diagram for selection of rk1 and rk2.

At first, the values of rk1 and rk2 were chosen so that the p(r) line intersects f(r)

at two locations within the width of rn and rn+1. F and D tables were then generated

according to the arrangement as in equation (6.5). The result of the addition and

subtraction operations was then calculated simultaneously with the approximate

value for FLP. The computed error was reported and compared with the previous

maximum error. The simulator only ends the process whenever the error generated is

Start

Increase/Decrease
rk1, rk2

Generate
F, D Tables

Calculate f(r) and
Approximant

Calculate
Error

if
error ≤ prev. error

Max. Error = Prev. Error
rk1, rk2 = Prev. Setting

End

Update Max. Error
and rk1, rk2 values

No

Yes

 96

greater than the previous value, otherwise rk1 and rk2 were either increased or

decreased accordingly before applying the same procedure mentioned above. The

analysed errors based on the most optimal values of rk1 and rk2 using various table

sizes are tabulated in Table 6-3 and shown graphically in Figure 6-10.

Table 6-3 : Error of modified linear Lagrange approximation.

Operation F table D table Guard
Bits e'min rel e'max rel

ADD

64 64 5 -0.3723 +107.2102

128 128 5 -0.3760 +27.2985

256 256 5 -0.3811 +7.0971

512 512 5 -0.3811 +2.0183

1024 1024 5 -0.3816 +0.7481

2048 2048 5 -0.3820 +0.4314

4096 4096 5 -0.3836 +0.3566

4096 4096 4 -0.4220 +0.3498

SUB

64 64 5 -242.3532 +23.6166

128 128 5 -61.3032 +5.5050

256 256 5 -15.6142 +1.4741

512 512 5 -4.1308 +0.6078

1024 1024 5 -1.2742 +0.4682

2048 2048 5 -0.5577 +0.4005

4096 4096 5 -0.3838 +0.4036

4096 4096 4 -0.3707 +0.4849

6.3.4. Comparison of Linear Interpolators

With the aim of proposing an improved technique for the interpolation process that

can dramatically reduce total memory space compared to Taylor’s approach, two

different types of linear interpolators have been described namely the Lagrange and

 97

0.1

1

10

100

1000

64 128 256 512 1024 2048 4096

LUT sizes (F, D)

R
el

at
iv

e
er

ro
r

Addition

Subtraction

Figure 6-10 : Worst-case error of modified linear Lagrange interpolation.

modified Lagrange interpolation procedures. It should be noted that these linear

interpolators do not actually represent any final solution for the implementation of

32-bit LNS add and subtract functions. Rather, this analysis is more likely to lay the

basis for further exploration, especially when incorporated with a non-linear

interpolation method.

The linear interpolators illustrated are being compared similarly in accordance

with the measurement metrics specified in Chapter 3. The memory space has so far

consumed a huge proportion of the silicon area of the LNS system. The initial

analysis summarised in Table 6-4 focused on the hardware costs in terms of the total

storage required by each interpolator technique. In practice, the lookup tables for

addition and subtraction operations can be physically allocated to the same storage

unit when they are in similar regions. However, for the purpose of this comparative

study, the tables are split according to their functions so as to give more precise

results. It is also assumed that 36-bits are stored in each address in the F and D tables

due to the use of a 5-bit guarded format and since we are not considering the sign bit.

 98

The segmentation scheme deployed is shown in Table 3-2, except for subtraction

that covers only five regions because the co-transformation process is employed in

the region from 0 to -1.

Table 6-4 : Linear interpolator storage requirements.

Interpolator
Technique

Addition
Words/Seg.

Subtraction
Words/Seg. Total

Storage
(kbits) F Table D Table F Table D Table

Taylor 4096 4096 8192 8192 4,718

Lagrange 2048 2048 4096 4096 2,359
Modified
Lagrange 2048 2048 4096 4096 2,359

In the calculation of total storage, the total bits involved in co-transformation

have been neglected since this does not vary with interpolator method. As far as can

be seen from Table 6-4, implementing either the Lagrange or modified Lagrange

method can potentially lead to a 50% saving in total space compared with the Taylor

scheme. When considering real hardware implementation, the Lagrange and

modified Lagrange interpolators can be implemented with similar arrangement as

Taylor, but with less memory space. Thereby, it may potentially reduce the total

execution delay whilst computing addition and subtraction operations. Evidently,

whenever adopting the Lagrange scheme, the design is considerably more

straightforward and less complex than modified Lagrange.

Although reduction in total storage is a priority, the error characteristics of the

LNS system are also a crucial element. Yet, these two variables are interrelated.

Figure 6-11 plots the worst-case errors for the Taylor, Lagrange and modified

Lagrange interpolators. It can be seen that adopting the Lagrange interpolation

procedure yields improved error behaviour compared to Taylor. The modified

Lagrange approach produces error similar to that in Lagrange, but its more

complicated design may make it less attractive.

 99

0.1

1

10

100

1000

64 128 256 512 1024 2048 4096 8192

LUT sizes (F, D)

R
el

at
iv

e
er

ro
r

Taylor

Lagrange

Trisection

Figure 6-11 : Worst-case error of linear interpolator.

To conclude this analysis, the Lagrange approach is therefore selected as the

best candidate for further development using non-linear interpolation, since it can be

easily implemented and produces better error characteristic than the Taylor format.

6.4. Non-linear Interpolation

It is known that although linear interpolation entails relatively fast and simple

computation, the results may be less accurate and to a certain extent the process

requires larger memory space in order to maintain error within FLP limit. Thereby,

to generate more precise results with minimal lookup table size while executing the

LNS addition and subtraction, non-linear interpolation should be implemented. Only

two non-linear interpolation schemes are considered here, a high-order degree

method and the approach suggested in the ELM known as an error correction

algorithm. Non-linear interpolation as proposed in the ELM has been reviewed in

Section 4.2.1. Thus, the high-order method is explained in the next section before

 100

comparing it with the method implemented in the ELM. Subsequently, the best of

these methods is selected for implementation in the 32-bit LNS system incorporated

with the preferred approximation technique as described in Section 6.3.4.

6.4.1. High-Order Degree Method

Linear interpolation can also be categorised as a first-degree polynomial

interpolation, because it merely involves two points in constructing a straight line in

order to approximate a given function f. Therefore, whenever the constructed line

passes through more than two locations, it can be defined as a polynomial

interpolation of degree greater than one, or a so-called high-order degree

interpolation procedure. For a more precise explanation, an example of the

mathematical expression illustrated in [81, 85] is used and the generalisation of the

equation is based on the Lagrange method, following the analysis presented in

Section 6.3.4.

It is first assumed that p(r) approximates f(r) at n + 1 points which can be

signified as at r = r0, r = r1, , r = rn. Whenever n > 1, there will be more than two

interpolating points and thus the conditions of a high-order degree interpolation

process are met. From the mathematical function of the Lagrange format shown in

equation (6.2), the polynomial p can be re-written as:

 () () () () () () ()nn1100 rfrS.....rfrSrfrSrp +++= (6.6)

where

 () ()() ()
()() ()n02010

n21
0 rr....rrrr

rr....rrrr
rS

−−−
−−−

= (6.7)

() ()() ()
()() ()n12101

n20
1 rr....rrrr

rr....rrrr
rS

−−−
−−−

= (6.8)

This leads to the general form of function S:

 101

() ∏
≠=

−

−
=

n

ij,0j ji

j
i rr

rr
rS (6.9)

Similarly for equation (4.6) it can be summarised as:

() () ()∑
=

⋅=
n

0i
ii rfrSrp (6.10)

From this it can be seen that, for each order of the polynomial interpolator, one

multiplier and one adder are needed. As the number of the order is increased, there

will potentially be a huge impact upon the hardware area and delay through

additional multipliers which are connected in series, and possibly lookup tables too.

For these reasons and in order to maximise hardware performance, the non-

linear interpolation technique suggested in the ELM is more appropriate, where the

multiplication process for each polynomial is executed in parallel. Moreover, the

result of the multiplication can be rearranged so that it can be accumulated in a chain

of carry-save addition stages, hence potentially improving the execution delay in the

system.

6.4.2. Error Correction Algorithm

The development of an error correction algorithm, as shown in [6], is built through

the combined effect of linear interpolation together with an algorithm specially

defined to correct approximation error. The details of this method are illustrated in

Section 4.2.1. From initial observations in Table 4-3 and 6-4, it is obvious that far

fewer total bits are involved when applying this technique compared to the linear

interpolation with the same approximation format as in the Taylor procedure. If this

technique is incorporated with Lagrange interpolation, it may be expected that the

size of the lookup tables required can be significantly reduced even further.

 102

6.4.2.1. Implementation of Error Correction Algorithm with Lagrange

Interpolation

Despite being chosen for implementation with the Lagrange interpolation as a result

of the analysis in Section 6.3.4, indeed the error correction algorithm can also be

applied with any other linear interpolator provided that the maximum error within

the interval remains proportionately equivalent throughout all regions. This is to

ensure that the P table can be reused at each interval whilst computing the error

correction process. Based on p(r) as in equation (6.3), incorporating the error

correction algorithm with the linear Lagrange interpolation yields the following

approximating function:

() () () () () ()() () () ()()nnnnnnn rfnrfnrfrrPrfrrrfrp ′−−+−+′−+= ∆∆ (6.11)

where

()
2

rr
n n1n −

= +∆ (6.12)

Through an implementation of the Lagrange format, the contents of the P and

E tables as originally used in the ELM ALU unit consequently need to be replaced.

This is merely due to the difference in the derivation of the maximum error in the

Lagrange approach which occurs at the midpoint of each subinterval. Table 6-5

tabulates the error simulation results for LNS addition and subtraction based upon a

combination of linear Lagrange interpolation together with an error correction

algorithm as shown in equation (6.11). Meanwhile, the worst-case error of the

system is plotted in Figure 6-12.

In practice, the shaded row in Table 6-5 is the most suitable arrangement to be

selected because it uses less total storage compared to the other combinations.

However, the required size for the P table is double that previously implemented in

error correction algorithm

 103

Table 6-5 : Error of Lagrange interpolation using error correction algorithm.

Parameters ADD SUB Worst
Case

F,D,E
Sizes P size Guard

Bits e'min rel e'max rel e'min rel e'max rel erel

64 512 5 -1.1474 +1.1674 -2.1395 +2.1157 2.1395

128 512 5 -0.5382 +0.5604 -0.8017 +0.7996 0.8017

256 512 5 -0.3912 +0.4161 -0.4688 +0.4647 0.4688

512 512 5 -0.3677 +0.3812 -0.3949 +0.4208 0.4208

1024 512 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058

64 1024 5 -0.7381 +0.7548 -1.2730 +1.2462 1.2730

128 1024 5 -0.4404 +0.4673 -0.5901 +0.5942 0.5942

256 1024 5 -0.3680 +0.3932 -0.4185 +0.4298 0.4298

512 1024 5 -0.3677 +0.3792 -0.3835 +0.4121 0.4121

1024 1024 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058

64 2048 5 -0.5393 +0.5537 -0.7833 +0.8566 0.8566

128 2048 5 -0.3920 +0.4136 -0.4764 +0.4682 0.4764

256 2048 5 -0.3677 +0.3824 -0.3940 +0.4208 0.4208

512 2048 5 -0.3677 +0.3792 -0.3791 +0.4121 0.4121

1024 2048 5 -0.3677 +0.3790 -0.3792 +0.4058 0.4058

the ELM. In order to prevent such a bulky size for a single memory in the system,

therefore the other combination is taken into consideration. As illustrated in Figure

6-12, when F, D and E tables at 256 words, and P table at 512 words, its worst-case

error still within FLP limit of 0.5 LSB. Consequently, this table arrangement, as

bolded in Table 6-5, has been closely examined in the next section as to look for

potential improvement in the total storage of the interpolator architecture. It is

expected that the improved version should need small enough lookup tables to be

conveniently synthesised rather than using the explicit ROM elements adopted in the

ELM design.

 104

0

0.5

1

1.5

2

64 128 256 512 1024

LUT sizes (F, D, E)

R
el

at
iv

e
er

ro
r

P=512
P=1024
P=2048
FLP limit
LNS best-case

Figure 6-12 : Worst-case error of Lagrange interpolation using error correction

algorithm.

6.5. Improvement of Non-linear Lagrange Interpolation

Several modifications are introduced in this section in order to further reduce the

total table size needed when performing non-linear Lagrange interpolation. The first

solution emphasises the possibility of reducing total storage through partitioning the

intervals before the maximum error values stored in the E table can be shared

between adjacent subintervals. Meanwhile, another technique is presented which

minimises the size of lookup tables particularly in the region -32 < r < -16.

6.5.1. Partitioning the Intervals

Theoretically, in order to minimise the error characteristics of non-linear Lagrange

interpolation, the p(r) can actually be partitioned into a number of subintervals, for

 105

example two, as portrayed in Figure 6-13. Then each subinterval can be individually

approximated by the interpolation polynomial. This type of approximation is

normally known as a piecewise polynomial, sometimes called a spline-based format.

In practice, to ensure that each subinterval has sufficiently small maximum error, the

subintervals are divided into an equal space for each interval as described in Figure

6-13.

Figure 6-13 : Partitioning the interval based on Lagrange interpolation.

From the simulation of this piecewise polynomial approach based on non-

linear Lagrange interpolation, one interesting fact is discovered. As can be observed

in Figure 6-14, the maximum error stored in the E table for the first subinterval,

max1, appears to be almost equivalent to the maximum error in the second

subinterval, max2, which is kept in the other E table. Although the graph plotted in

Figure 6-14 is only based on the subtraction function in the region -2 < r < -1 with E

tables set at 128 words, yet similar conditions occur across every region for both

addition and subtraction operations. Consequently the E table can be shared between

r

y

Lagrange Approximation

 rn+1 rn+1/2 rn

f(r)

Approximation Error

max1 max2

p(r)

 106

adjacent subintervals, hence reducing the total storage required for the LNS addition

and subtraction unit. In order to verify this suggested arrangement of the E table,

Table 6-6 displays the error simulation results if the E table is shared at every

interval while performing LNS addition and subtraction using non-linear Lagrange

interpolation.

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06

1.4E-06

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Address of E table

M
ax

im
um

 E
rr

or

First Subinterval

Second Subinterval

Figure 6-14 : Maximum errors of two adjacent subintervals when executing

subtraction in the region -2 < r < -1.

From Table 6-6 it is apparent that the preferred combination for the lookup

tables is a 512 words P table with 256 intervals for F and D tables. For the E table

entries, subtractions now require 128 words per region with only 64 words for

additions. A most significant benefit of this table arrangement is that all the tables

are individually small enough to be conveniently synthesised in logic, and therefore

the total execution delays in memory can be dramatically reduced. Nonetheless, the

advantage of a reduction in table size comes at the expense of increasing the number

of guard bits from five to six.

 107

6.5.2. Minimising the Lookup Tables

Another alternative that may help is to minimise the sizes of the tables, especially in

the region that asymptotically approaches the essential zero condition. Referring to

Figure 4-1, it is clear that whenever in the range -32 < r < -16, the addition and

subtraction functions are very close to the zero line. Thus, the table sizes associated

with this region can potentially be decreased due to the fact that certain parts of the

contents of the tables will be packed with either zeroes or several repeated values.

Considering only the region -32 < r < -16, Table 6-7 presents the error simulation

results from various table formats, taking into account the concepts discussed earlier

in Section 6.5.1.

Throughout the simulation of cases in the range r > -16, it is assumed that the

sizes of the F, D and E tables remain the same as in the proposal in Table 6-6 where

F and D are permanently set at 256 words with 128 and 64 intervals of the E tables

for subtraction and addition respectively. The P table is also fixed at 512 words, and

a six guard bits format is adopted. Evidently, the lookup tables involved in the

region -32 < r < -16 can be minimised to only 32 words at each of the F, D and E

tables, as depicted in Table 6-7. Although a minor development, this is important

because it helps to further reduce the total size of the memory space needed.

6.5.3. Design Summary

As outlined in Table 6-8, the total bits required by the LNS system is 183,296 when

the improvements illustrated in Sections 6.5.1 and 6.5.2 are applied. With the

maximum size of the tables involved only containing 512 words, it seems that all the

tables can individually be synthesised in logic instead of employing real ROM

libraries. Elimination of these ROM elements in the LNS system would undoubtedly

yield a faster and more compact result. Even with two extra guard bits in addition to

the four in the ELM in order to sustain accuracy within the FLP limit will not

actually have much impact on the total area of the design.

 108

Table 6-6 : Error of non-linear Lagrange interpolator based on the E table sharing

format.

Operation F,D
sizes

E
size

P
size

Guard
Bits e'min rel e'max rel

Add

64 32 512 6 -4.4126 +1.1674

128 64 512 6 -0.8761 +0.5538

256 64 512 6 -0.4623 +0.4527

256 128 512 6 -0.4237 +0.4019

512 256 512 6 -0.3626 +0.3696

64 32 1024 6 -4.3834 +0.7597

128 64 1024 6 -0.8610 +0.4513

256 128 1024 6 -0.4177 +0.3808

512 256 1024 6 -0.3611 +0.3654

64 32 2048 6 -4.3752 +0.5537

128 64 2048 6 -0.8577 +0.4034

256 128 2048 6 -0.4158 +0.3679

512 256 2048 6 -0.3611 +0.3654

Sub

64 32 512 6 -3.5814 +8.0620

128 64 512 6 -0.8251 +1.3694

256 128 512 6 -0.4604 +0.4987

256 128 512 5 -0.4688 +0.5559

512 256 512 6 -0.3858 +0.3916

64 32 1024 6 -3.0338 +7.9901

128 64 1024 6 -0.6874 +1.3286

256 128 1024 6 -0.4079 +0.4834

512 256 1024 6 -0.3720 +0.3916

64 32 2048 6 -2.6568 +7.9805

128 64 2048 6 -0.6323 +1.3240

256 128 2048 6 -0.3824 +0.4821

512 256 2048 6 -0.3673 +0.3916

 109

Table 6-7 : Error of non-linear Lagrange interpolator in the region -32 < r < -16.

6.6. Alternative Method: Minimax Interpolation

Since the minimax approximation is among the best techniques for minimising the

maximum relative error in each region, Fu et al. in [8, 28] adopted it as a solution to

interpolate F(r), which they then implemented in an FPGA-based design. This is not

directly comparable to the work in this thesis because equations (2.12) and (2.13) are

rearranged to bring r onto the positive axis where the curves have different

properties. Whereas in our work, the co-transform is applied to subtractions in the

range r > −1, Fu has made special arrangements across a region four times this size,

i.e. for r < 4. These subtractions are performed by decomposing F(r) into two

Operation
Region -32 < r < -16

e'min rel e'max rel
F Size D Size E Size

Add

128 128 128 -0.4623 +0.4527

128 128 64 -0.4623 +0.4527

64 64 64 -0.4623 +0.4527

64 64 32 -0.4623 +0.4527

32 32 32 -0.4623 +0.4527

32 32 16 -0.8164 +0.4527

16 16 16 -0.5742 +0.6297

16 16 8 -3.0960 +0.6297

Sub

128 128 128 -0.4604 +0.4987

128 128 64 -0.4604 +0.4987

64 64 64 -0.4604 +0.4987

64 64 32 -0.4604 +0.4987

32 32 32 -0.4604 +0.4987

32 32 16 -0.4604 +0.8225

16 16 16 -0.6198 +0.5915

16 16 8 -0.6198 +3.0880

 110

Table 6-8 : Total storage using the improved interpolator.

 Region Table Organisation Wordlength Total
Bits

Co-
transform -1 < r < 0

F1 128 words 32-bit 4,096

F11 256 words 33-bit 8,448

F12 256 words 34-bit 8,704

Interpolation

-16 < r < -1

F Sub 256 words × 4 30-bit 30,720

D Sub 256 words × 4 29-bit 29,696

E Sub 128 words × 4 11-bit 5,632

-16 < r < 0

F Add 256 words × 5 30-bit 38,400

D Add 256 words × 5 28-bit 35,840

E Add 64 words × 5 8-bit 2,560

-32 < r < -16

F Add 32 words 30-bit 960

F Sub 32 words 30-bit 960

D Add 32 words 28-bit 896

D Sub 32 words 29-bit 928

E Add 32 words 8-bit 256

E Sub 32 words 11-bit 352

-32 < r < 0 P 512 words 29-bit 14,848

Total 183,296

separate functions, both easier to interpolate than F(r) itself. On the other hand, he

was able to exploit the equivalence r ≈ F(r) at large r, where the need for

interpolation was obviated. Over the remaining regions, an adaptive technique

selected the most optimal intervals for the application of a minimax algorithm; for

the addition function only 416 intervals were required to cover the interpolated range.

However, the design incorporates an additional interpolator and tables for evaluation

of the auxiliary functions involved in subtraction. It is particularly suitable for use on

an FPGA where multiplication hardware is abundant, but it is difficult to extrapolate

an estimate of its size or performance in a silicon implementation. Accuracy is

within FP limits throughout.

 111

With the aim to evaluate the effectiveness of the minimax approximation over

the improved Lagrange interpolation as mentioned in Section 6.5, a second-order

minimax-based interpolator has been developed. These interpolators are basically

similar in complexity. The F, D and E tables of the improved Lagrange interpolator

are replaced by tables (calculated by Maple software) of the 0th, 1st and 2nd order

coefficients, and the P table by a multiplier that forms the square of its argument. As

depicted in Table 6-9, the most suitable arrangement for each partition is at 128

intervals, for addition and subtraction operations, while the range shifter for

subtraction is deployed over the range −1 < r < 0.

The total storage based on the minimax arrangement is shown in Table 6-10.

When compared with the improved Lagrange scheme which requires 183,296 bits,

this is now only 145,408 bits. Nevertheless, due to the fact that the multiplier is used

in lieu of the P table, a lesser improvement in terms of speed will be expected when

the design is synthesised. This will be evaluated next in the analysis section.

Table 6-9 : Error of the minimax interpolation.

Parameters ADD SUB Worst
Case

F,D,E
Sizes

Guard
Bits e'min rel e'max rel e'min rel e'max rel erel

64 8 -0.5071 +0.4418 -0.5235 +0.5172 0.5235

128 8 -0.4350 +0.4245 -0.4405 +0.4381 0.4405

256 8 -0.4303 +0.4245 -0.4402 +0.4259 0.4402

6.7. ELM with the New Interpolator

For fair justification, it is now necessary to evaluate the new interpolators together

with the original co-transformation as presented in the ELM design. Therefore, this

section provides an analysis in terms of worst-case error and total tables

 112

Table 6-10 : Total storage using the minimax arrangement.

 Region Table Organisation Wordlength Total
Bits

Co-
transform -1 < r < 0

F1 128 words 34-bit 4,352

F11 256 words 35-bit 8,960

F12 256 words 36-bit 9,216

Interpolation

-16 < r < -1

F Sub 128 words × 4 33-bit 16,896

D Sub 128 words × 4 33-bit 16,896

E Sub 128 words × 4 31-bit 15,872

-16 < r < 0

F Add 128 words × 5 31-bit 19,840

D Add 128 words × 5 30-bit 19,200

E Add 128 words × 5 28-bit 17,920

-32 < r < -16

F Add 128 words 30-bit 3,968

F Sub 128 words 30-bit 4,224

D Add 128 words 28-bit 3,840

D Sub 128 words 29-bit 4,224

Total 145,408

required when the improved Lagrange and minimax interpolators are implemented

in conjunction with the first-order co-transformation.

6.7.1. Improved Lagrange Interpolation

Using a similar interpolation concept as described in Section 6.5 but this time in

combination with the first-order co-transformation, again the F and D tables are also

best implemented in 256 words for addition and subtraction functions. While the P

table requires 512 words, the E table for subtractions need 128 intervals and 64

words for additions. Table 6-11 summarises the error of the combined architecture.

It has to be noted that in the region -32 < r < -16, the F, D and E tables are

 113

permanently set to 32 words throughout the analysis. With this arrangement, the

total storage is 315,776 bits as depicted in Table 6-12.

Table 6-11 : Error of ELM with improved Lagrange interpolator.

Operation F,D
sizes

E
size

P
size

Guard
Bits e'min rel e'max rel

Add

64 32 512 6 -4.4126 +1.1674

128 64 512 6 -0.8761 +0.5538

256 64 512 6 -0.4623 +0.4527

256 128 512 6 -0.4237 +0.4019

512 256 512 6 -0.3626 +0.3696

64 32 1024 6 -4.3834 +0.7597

128 64 1024 6 -0.8610 +0.4513

256 128 1024 6 -0.4177 +0.3808

512 256 1024 6 -0.3611 +0.3654

64 32 2048 6 -4.3752 +0.5537

128 64 2048 6 -0.8577 +0.4034

256 128 2048 6 -0.4158 +0.3679

512 256 2048 6 -0.3611 +0.3654

Sub

64 32 512 6 -2.1395 +8.0491

128 64 512 6 -0.7862 +1.3576

256 128 512 6 -0.4749 +0.4904

512 256 512 6 -0.4064 +0.3775

64 32 1024 6 -1.2926 +7.9861

128 64 1024 6 -0.5901 +1.3173

256 128 1024 6 -0.4195 +0.4721

512 256 1024 6 -0.4027 +0.3742

64 32 2048 6 -0.8003 +7.9660

128 64 2048 6 -0.4753 +1.3128

256 128 2048 6 -0.4027 +0.4678

512 256 2048 6 -0.4027 +0.3739

 114

Table 6-12 : Total storage of ELM with improved Lagrange interpolator.

 Region Table Organisation Wordlength Total
Bits

Co-
transform -0.5 < r < 0

F1 2048 words 34-bit 69,632

F2 2048 words 33-bit 67,584

Interpolation

-16 < r < -0.5

F Sub 256 words × 5 30-bit 38,400

D Sub 256 words × 5 29-bit 37,120

E Sub 128 words × 5 11-bit 7,040

-16 < r < 0

F Add 256 words × 5 30-bit 38,400

D Add 256 words × 5 28-bit 35,840

E Add 64 words × 5 8-bit 2,560

-32 < r < -16

F Add 32 words 30-bit 960

F Sub 32 words 30-bit 960

D Add 32 words 28-bit 896

D Sub 32 words 29-bit 928

E Add 32 words 8-bit 256

E Sub 32 words 11-bit 352

-32 < r < 0 P 512 words 29-bit 14,848

Total 315,776

6.7.2. Minimax Interpolation

When applying the co-transformation scheme as outlined in the ELM design

together with the minimax interpolation, the minimum size of F, D and E tables

required to perform addition and subtraction is at 128 words as shown in Table 6-13.

Consequently, the storage requirement of the LNS system based on this format is

280,704 bits as reported in Table 6-14.

 115

Table 6-13 : Error of ELM with minimax interpolator.

Parameters ADD SUB Worst
Case

F,D,E
Sizes

Guard
Bits e'min rel e'max rel e'min rel e'max rel erel

64 8 -0.5071 +0.4418 -0.5235 +0.5052 0.5235

128 8 -0.4350 +0.4245 -0.4405 +0.4261 0.4405

256 8 -0.4303 +0.4245 -0.4402 +0.4139 0.4402

Table 6-14 : Total storage of ELM using the minimax arrangement.

 Region Table Organisation Wordlength Total
Bits

Co-
transform -0.5 < r < 0

F1 2048 words 35-bit 71,680

F2 2048 words 36-bit 73,728

Interpolation

-16 < r < -0.5

F Sub 128 words × 5 33-bit 21,120

D Sub 128 words × 5 33-bit 21,120

E Sub 128 words × 5 31-bit 19,840

-16 < r < 0

F Add 128 words × 5 31-bit 19,840

D Add 128 words × 5 30-bit 19,200

E Add 128 words × 5 28-bit 17,920

-32 < r < -16

F Add 128 words 30-bit 3,968

F Sub 128 words 30-bit 4,224

D Add 128 words 28-bit 3,840

D Sub 128 words 29-bit 4,224

Total 280,704

 116

6.8. Comparison Analysis: First-order and Second-order Co-

transformation with the New Interpolator

As described in Figure 6-15, implementing the improved Lagrange and minimax

interpolation schemes in conjunction with the first-order co-transformation would

reduce total storage to 89% and 79% respectively, of the former size in the original

ELM. However, applying the improved Lagrange together with the second-order co-

transformation has significantly reduced the total bits to merely 183,296 bits,

representing savings to 51% of the ELM design. Therefore, merging the first-order

co-transformation with either improved Lagrange or minimax interpolator is still not

really significant as those benefiting from the second-order co-transformation.

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

Original Design
(Taylor)

With Improved
Lagrange

With Minimax With Improved
Lagrange

With Minimax

First-order Co-transform Second-order Co-transform

T
ot

al
 B

its

First-order Co-transform
Second-order Co-transform

Figure 6-15 : Storage requirement for 32-bit LNS addition and subtraction.

On the other hand, although halving the size of tables when applying a

minimax interpolation scheme together with the second-order co-transformation, the

reduced storage is not so significant in comparison with using the improved

Lagrange approach as illustrated in Figure 6-15. This is due to the fact that 8 guard

 117

bits are required as to achieve desired accuracy, and therefore the total storage of co-

transform tables have now also increased as to accommodate the additional guard

bits. Furthermore, the E tables, which previously held small values, now hold full-

size coefficients. Thus, when compared with the improved Lagrange, the total

storage based on the minimax arrangement has been reduced from 183,296 bits to

only 145,408 bits.

In terms of speed, the implementation of the improved Lagrange scheme has

shown to be able to provide the shortest delay in executing addition and direct

subtraction as presented in Figure 6-16. Based on the constrained synthesis of this

arrangement, the delay has been reduced to 60% of the delay in the constrained

synthesis of the ELM. The reduction in delay does actually gain from the benefit that

all the tables are now small enough to be conveniently synthesised in logic, which

then may yield improvements in the critical speed path. However, the combination

of the improved Lagrange with the second-order co-transformation has caused a

slight increase in delay when subtractions using the co-transformation due to

applying the interpolator twice. Delay increases in approximately by 12% of the

delay in the ELM.

0

2

4

6

8

10

12

14

16

18

20

22

Original Design
(Taylor)

With Improved
Lagrange

With Minimax With Improved
Lagrange

With Minimax

First-order Co-transform Second-order Co-transform

D
el

ay
 (

ns
)

Add and direct sub
Sub w ith co-transform

Figure 6-16 : Delay times for 32-bit LNS addition and subtraction.

 118

In contrast, the minimax interpolator does not compare so favourably in terms

of speed. It can be seen that its delay is approximately 3 ns more than that of the

improved Lagrange interpolator when computing addition and direct subtraction.

This is due to the inclusion in the critical path of the extra multiplier that forms the

quadratic term. However, this multiplier can also be replaced with the dedicated

squaring circuit as to reduce the delay but studies [86, 87] have shown that it can

only reduce it by up to 25%. As this would amount to less than a nanosecond in this

case it is unlikely to be worth the effort involved in designing it. Using the improved

Lagrange interpolator which incorporates the error correction algorithm, on the other

hand, is using the P table as to replace this extra multiplier. With the P table is

independently designed based on the functions of nine terms and can be accessed in

parallel with other lookup tables, therefore a great reduction in delay can be

achieved. Consequently as can be observed in Figure 6-16, using the minimax

interpolator in conjunction with the second-order co-transformation, it appears to be

the slowest in performing subtractions using the co-transformation.

From the perspective of the area-delay product based on the subtractions using

co-transformation, when the first-order co-transform design combined with the

improved Lagrange or minimax interpolator, the new area-delay product is 57.3% or

68.7% respectively, of its value in the ELM. For combination between minimax

interpolator and the second-order co-transformation, the new area-delay product is

64.4%. However, the lowest area-delay product is obtained when using the improved

Lagrange in conjunction with the second-order co-transformation, whereby only

57.1% of the value in the ELM. Thereby, obviously it can be seen that the most

suitable architecture of the LNS addition and subtraction can be constructed by

merging the second-order co-transformation approach with the improved Lagrange

interpolator.

 119

6.9. Summary

Previously in the ELM design, the Taylor approximation method was applied during

the interpolation process. However, the comparison analysis based on linear

interpolation shows that a remarkable reduction in total storage, approximately 50%,

can be gained when using Lagrange and modified Lagrange approximations.

Furthermore, a very significant improvement in error characteristics has been

achieved when implementing either Lagrange or modified Lagrange concept

compared to the Taylor approach. In fact, applying Lagrange scheme is more

attractive than modified Lagrange due to its simplicity in arrangement.

Improving the Lagrange approach using the non-linear interpolation has

revealed further reduction in the size of the total tables. Through partitioning the

interval into a number of subintervals, the E table can be shared between adjacent

subintervals. Hence, only 128 words and 64 words are needed for the E tables in

subtraction and addition respectively. Moreover the tables involved in the region

-32 < r < -16 can be minimised to 32 words because the curves for addition and

subtraction functions in this particular region almost approach the essential zero

condition. An alternative method using minimax interpolation has also been

examined. Although further reduction in total storage can be achieved, it suffers in

terms of speed.

Ultimately, the results based on the comparative analysis conducted have

indicated that the implementation of the improved interpolator together with the

second-order co-transformation in the LNS addition and subtraction is the best

arrangement.

 120

CHAPTER 7

7. Logarithmic Number System Arithmetic Unit

7.1. Introduction

As concluded in Chapter 6, using the improved Lagrange interpolator in conjunction

with the second-order co-transformation would produce a great improvement on the

original ELM design. Although the improved Lagrange approach offers a modest

reduction in area, it has a significant reduction in delay. The second-order co-

transformation, on the other hand, offers a more substantial reduction in area, but is

dependent upon a reduction in delay which the improved interpolator provides. This

means that both techniques are needed to deliver a worthwhile advance for the new

ALU system. Therefore, Chapter 7 outlines the details of the design and synthesis

processes for the complete ALU system based on the new techniques as well as

analysing the system based on comparisons with the ELM and FLP units.

An analysis of the system shows the effectiveness of the proposed LNS design

compared with the ELM. It is expected that the new LNS arithmetic unit will be able

to operate at the shortest time when performing addition and direct subtraction

operations, as well as requiring a lower total silicon area in comparison with the

ELM. Meanwhile, the design is also evaluated against two FLP arithmetic units built

using a similar process technology, and the results will also demonstrate the

suitability of the new LNS design in future DSP chips.

7.2. Arithmetic Unit Design

The simplest operations in an LNS arithmetic unit design are multiplication and

division. The hardware implementation of these numeric functions is a direct

translation from the algorithms into corresponding functional modules. However, the

 121

more intricate addition and subtraction operations require an additional

understanding of physical requirements during the implementation stage. This

section thus presents the practical hardware solutions for the four basic arithmetic

operations of the LNS system which correspond with their fundamental algorithms.

Figure 7-1 illustrates the conceptual arrangement of the LNS arithmetic unit.

Figure 7-1 : Conceptual arrangement of the LNS arithmetic unit.

7.2.1. Multiply/Divide Unit

As shown in equations (2.8) and (2.9), the multiplication and division functions can

be executed simply using FXP addition and subtraction units respectively. Thus, one

possible hardware implementation for these operations is given in Figure 7-2. By

adding the XOR (exclusive-OR) gate to the full adder circuit, addition and

subtraction can be computed using a single hardware configuration. Consequently,

Magnitude
Comparator

Zero, Sign and
Control Logic

Multiply/Divide

Co-
transformation

MUX

MUX

Interpolation
ADD/SUB

Result Result

from sign
logic

zero

Mux, controls and
sign

i r

i r

j i r

op1

op2
opn

 122

this requires the use of fewer circuits than would be required for separate add and

subtract functions. Conceptually, whenever in the LNS multiplication mode, the

operand = ‘0’, and the outputs of the XOR gate will be the same as the B inputs. In

this situation, the hardware performs addition process of the two numbers. In

contrast, subtraction is accomplished by setting the operand to logic ‘1’ which

therefore can be used to calculate the LNS division operation. In order to determine

the sign bits, another XOR gate is inserted into the architecture and similarly a

further XOR gate is used to set an overflow flag.

Figure 7-2 : Multiply/Divide hardware implementation.

7.2.2. Add/Subtract Unit

The add/subtract unit requires substantially more complicated functions to be

implemented, potentially involving even more complex hardware than in the

multiply/divide unit. Even worse, particularly in the range r > -1, the subtraction

operation often demands a huge table size in order to maintain the accuracy of the

system. However, the second-order co-transformation architecture shown in Section

5.3.1 leads to a significant reduction in the total lookup tables when the subtraction

function is executed near singularity. Furthermore, the improved Lagrange

interpolation method illustrated in Section 6.5 is also capable of reducing the table

+

A[31]

B[31]

Operand

Result[31..0]

Overflow

A[30..0]

B[30..0] B

A

Cin

Cout

Sum

Sign

 123

size needed for both addition and subtraction operations. The block diagram in

Figure 7-3 depicts the hardware implementation of the LNS add/sub unit.

Assuming that LNS subtraction requires a complete co-transformation

procedure, the entire unit in Figure 7-3 can be implemented with a worst-case delay

of three ROM accesses, two FXP multiplications, four FXP additions with 2-inputs,

and three FXP additions with 3-inputs. There are also other delays in supporting the

logic and multiplexors. On the other hand, the critical speed path of LNS addition

merely includes an ROM access, an FXP multiplication, and an FXP full adder with

2-inputs and 3-inputs. This is due to the fact that only the interpolation module is

needed to perform the function.

It can be seen that the speed of the system predominantly relies on three main

components, namely memory, the FXP full adder and the FXP multiplier. In order to

maximise the speed of the LNS addition and subtraction operation, the lookup tables

are now small enough to be individually synthesised, rather than using ROM

libraries as in the ELM design. In addition, the implementation of the high speed

FXP adder and multiplier in the system also contributes to minimising the overall

delay. In this respect, a combination of the carry-lookahead and carry-select adder

(CLA/CSLA) together with Booth-Wallace multiplier are selected.

7.3. Hardware Implementation of a 32-bit LNS System

With reference to Figure 7-3, three components tend to dominate the LNS design in

the sense of timing and floor planning. Adopting dedicated ROM libraries into a

design often introduces major complications in terms of the speed and area of the

system. Thus, elimination of these elements should yield an increase in performance.

Since only three small lookup tables are involved in this LNS design, 128, 256 and

512 words, it would be more realistic to use synthesised ROM during the practical

implementation rather than real ROM libraries. Consequently, the system is capable

of yielding faster and more compact results.

 124

Figure 7-3 : The hardware implementation of the LNS add/sub unit.

+ +

F1 Table F11 Table F12 Table

+ + +

- -

MUX

Select
region r

Form indices

MUX

MUX

F Table D Table E Table P Table

Zero, sign and
control logic

opn

A[31..0]
B[31..0]

Mux, controls
and sign r j i

k1

+ × ×

+

+

j12 i12

r12

i2
j2

r2

r
i

i j zero

sign

Result[31..0]

Co-transformation

Interpolation

Register

 125

The timing required to propagate the carry signal to output during the FXP

addition operation could also contribute to the overall delay of the LNS system.

Therefore, careful selection of the FXP adder architecture is needed in order to

minimise the worst-case delay in the design. In this case, the CLA/CSLA adder [88,

89] has been adopted because it is able to operate effectively in reducing delay when

performing the FXP addition process, and is therefore implemented in the hardware

design of the LNS architecture.

For the FXP multiplication operation, two multiplier units are required in

parallel to compute part of the interpolation process in the LNS system. As explicitly

reported in [90], the combination of the Booth algorithm and the Wallace tree

structure give the best speed and total device area in comparison with the other types

of multipliers. Thereby in the case of the E × P multiplication process involving

12-bit by 29-bit inputs, a radix-4 modified Booth algorithm was employed to

generate partial products before applying the Wallace tree structure to compute the

final result. Whereas for the D × δ process which requires 29-bit by 26-bit

multiplication operation, a higher radix multiplier is needed as to reduce the partial

product rows commensurately. In this case a radix-8 Booth multiplier with Wallace

tree was chosen.

7.4. Synthesis Results

The proposed LNS arithmetic unit based on the architecture described in Figure 7-3

was synthesised using Faraday 0.18 µm CMOS technology, and its area and delay

metrics are tabulated in Table 7-1. When the design is constrained for maximum

speed, the delay in addition and direct subtraction functions is at 7.10 ns.

Nonetheless, for the small proportion of subtractions that require co-transformation

procedure, particularly in the range of r > -1, the worst-case delay is approximately

double the delay of addition and direct subtraction, at 14.79 ns. This is due to the re-

use of the interpolator whenever r is in the region above -1. A delay of the 32-bit

CLA/CSLA design is reported for multiplication and division, at 1.16 ns, since these

 126

operations can only be computed using a FXP adder unit. The total silicon area of

this LNS would be 599,871 µm2.

Table 7-1 : Delay times and total device area of 32-bit LNS arithmetic unit.

Function
32-bit LNS Arithmetic Unit

Delay (ns) Area (µm2)

Add / Sub 7.10
589,357

Sub (Co-transform) 14.79

Mul / Div 1.16 10,514

7.5. Design Analysis

For an analysis comparable with the data presented for the MONARCH and DIVA

FLP implementations, all the results described below for the ELM are based on the

constrained synthesis. From the graph in Figure 7-4, the critical speed path of the

new LNS shorter than that in the original ELM when executing addition or direct

subtraction, a reduction from 11.74 ns to 7.10 ns. The delay has also been reduced

by 4.18 ns and 11.7 ns of the delays in the MONARCH and DIVA respectively.

Given that multiplication can be computed solely using FXP addition, the delay

generated in the new LNS therefore only at 1.16 ns, in which 10% of MONARCH

delay and 6% of DIVA delay. Similarly, division operation completes with better

delay than in the MONARCH and DIVA, a reduction from 33.83 ns and 45.11 ns to

1.16 ns respectively. In the co-transformation involved during subtraction, there is a

marginal increase in the delay in the new LNS from 13.15 ns as initially in the ELM

to 14.79 ns.

 127

0

5

10

15

20

25

30

35

40

45

Add/Sub Mul Div Sub (co-transform)

Functional Unit

D
el

ay
 (

ns
)

DIVA

MONARCH

ELM

New LNS

Figure 7-4 : Delays in nanoseconds and cycles of four different arithmetic

implementations.

Nevertheless, the re-use of the interpolator in the new LNS is unlikely to be of

practical significance in a microprocessor because operations would be fitted into a

multiple of some clock cycles. At, say 266 MHz, addition and direct subtraction in

the new LNS could be calculated in two cycles (7.52 ns), and multiplication and

division in a single cycle (3.76 ns), whereas in subtractions using co-transformation

four cycles (15.04 ns) are required. For the MONARCH and DIVA FLP formats, the

numbers of cycles involved are much higher than the new LNS, at least three cycles

for addition and subtraction, and more than three cycles for multiplication and

division operations.

In terms of silicon area, it can be observed from Figure 7-5 that the area of the

new LNS, including that of the multiplicative operators, has been reduced from

915,457 µm2 to 599,871 µm2, or 65% of the ELM design. In addition, the area of the

new LNS is also slightly smaller than that of the MONARCH and only 24% larger

than the area in the DIVA.

 128

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

7.E+05

8.E+05

9.E+05

1.E+06

New LNS ELM MONARCH DIVA

Arithmetic Design

T
ot

al
 A

re
a

(s
qu

ar
e

m
ic

ro
ns

)

New LNS

ELM

MONARCH

DIVA

Figure 7-5 : Silicon areas (µm2) in 32-bit arithmetic implementations.

Judging by this comparative analysis, the new LNS has been shown to be

capable of executing addition and direct subtraction with less delay than the ELM

and the other two FLP implementations. Much faster speeds have also been achieved

when performing multiplication and division using the new LNS arithmetic in

comparison with the MONARCH and DIVA. However, there is a slight increase in

the delay of co-transformed subtractions when compared with the ELM.

Nevertheless, less silicon area is consumed in the new LNS when compared with the

ELM and MONARCH.

7.6. Summary

This chapter has described the hardware implementation of the new LNS based on a

32-bit system in detail. When synthesising the new LNS arithmetic in 0.18 µm

technology, the critical delay path in computing addition and direct subtraction took

7.10 ns and only 1.16 ns for multiplication and division. In the event that co-

 129

transformation was required for subtraction, the worst-case delay was 14.79 ns. The

total area for the complete LNS architecture was 599,871 µm2.

In a controlled comparison with the previously published ELM design, the

total delay in the new LNS system represented a reduction to 60% when executing

addition and direct subtraction. A slight increase in delay occurred in co-transformed

subtractions, by 12% of the delay in the ELM. In terms of silicon area, the

implementation of the new LNS has been shown to be more cost effective, at 65% of

the total area consumed in the ELM. The new area-delay product is 39% of its

previous value in the ELM.

When compared with the faster of the two FLP units, the MONARCH design,

the proposed LNS addition and subtraction can be performed in 63% of the time

taken in FLP. For multiplication and division, the delays in the new LNS system

were only 10% and 3% respectively of those in the MONARCH. The new LNS unit

has also been built with fractionally less silicon than MONARCH, a reduction from

600,000 µm2 to 599,871 µm2.

 130

CHAPTER 8

8. Implementation with Long Word-length Number

8.1. Introduction

Throughout this thesis so far, the discussion of the LNS system has only been

concerned with a 32-bit architecture. This is a direct consequence of the objective of

the research to investigate a direct alternative to the IEEE single-precision FLP

arithmetic unit, a standard 32-bit number system. However, for applications where

longer precision is required so as to increase the accuracy of the system, the 32-bit

LNS may need to be extended. It is known that if longer word-lengths are applied,

significant increases in the number and size of tables may be required. Nevertheless,

to date, there has been a lack of analysis in long format numbers, except by Chen et

al. [91].

Therefore, this chapter describes a longer word-length LNS design in a 40-bit

format. In order to reduce the sizes of lookup tables, particularly for the co-

transformation procedure, a third-order arrangement is introduced before the final

results are computed using one of the interpolation techniques illustrated in Chapter

6. The LNS design is also synthesised and analysed in terms of area and critical path

delay, and a comparative analysis is performed against the standard 32-bit LNS

design suggested earlier.

In order to select either a long or short format representation, as indicated by

Chester in [84], there is no criterion specified. This allows a designer freely to select

and customise the number system according to the specific application. The format

considered here has a 10-bit integer and 29-bit fraction.

 131

8.2. The LNS System in a 40-bit Format

Inspired by the suggested 32-bit LNS architecture as illustrated in previous chapters,

the building block for 40-bit LNS addition and subtraction again consists of a

combination of the co-transformation procedure and interpolation process. For

multiplication and division, the same adder module, using the CLA/CSLA

architecture, is applied although this time the input bits need to be extended to suit

operand size. Throughout the analysis, six guard bits are inserted in the system so as

to maintain accuracy within the FLP limit.

Theoretically, by directly implementing a second-order co-transformation

procedure in this 40-bit format to compute subtractions in the region -1 < r < 0, the

fractional bits should be optimally partitioned into 9, 10 and 10 bits for the high,

middle and low fields. Two lookup tables of 1024 words and one of 512 words of

lookup tables are required during the co-transformation process. With only 7% of

additive operators being subtractions with r > -1 [77], it seems impractical to

implement such a large proportion of tables, approximately 2560 words, for only a

small number of operations. Hence, third-order co-transformation is proposed to

cater for the issue in the long format number, and the details of this are described in

the next section.

8.2.1. Third-order Co-transformation Procedure for LNS Subtraction

The third-order co-transformation concept applies a similar approach as the second-

order format detailed in Section 5.3.1, applying coefficient k1 recursively.

2i − 2j = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11))

= (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11+k111) − 2j+k1+k11+k112) (8.1)

where,

 132

2k111 + 2k112 = 1, i.e. k112 = log2 (1 − 2k111) (8.2)

The block diagram of the suggested third-order approach is shown in Figure

8-1 together with the conceptual arrangement of bit partitioning in Figure 8-2.

Conceptually analogous to the scheme presented in the second-order format,

initially, index r1 is looked up from F1 table, containing F(r) for −1 < r < −∆1,

where its value is guaranteed to fall on the nearest modulo-∆1 based on the

calculation of coefficient k1. Then, index r11 which falls on the modulo-∆11 is

approximated from the coefficient k11, and the resulting value of F(r11) is stored in

the F11 table which contains F(r) for -∆1 < r < -∆11. With a similar number of bits

as ∆11, the coefficient k111 is selected such that r111 falls on the modulo-∆111, and

the value of its function, F(r111), is obtained from the F111 table which contains

F(r) for –∆11 < r < -∆111. The final coefficient, k112, however, is directly retrieved

from the F112 table indexed by k111, and it also occupies exactly the same number

of bits as represented in ∆111.

 Variables r1, k1, k11, r11, r111 and k111 are:

 r1 = ((j – i) DIV ∆1) – 1) × ∆1 = j + k1 – i (8.3)

 k1 = -(((j – i) MOD ∆1) + ∆1) = i – j + r1 (8.4)

 k11 = ((j – i) MOD ∆11) = r11 – k1 (8.5)

 r11 = -(((j – i) MOD ∆1) + ∆1) + ((j – i) MOD ∆11) = k1 + k11 (8.6)

 r111 = ((j – i) MOD ∆11) + (-((j – i) MOD ∆111)) = k11 + k111 (8.7)

 k111 = -((j – i) MOD ∆111) = k11 – r111 (8.8)

For ease of subsequent explanation, equation (8.1) is numbered as follows:

 133

 2i − 2j = (2i − 2j+k1) − ((2j − 2 j+k1+k11) − (2j+k1 − 2j+k1+k11+k111) − 2j+k1+k11+k112)

Theoretically, subtractions 1, 11 and 111 are completed instantaneously without the

need for lookup tables. In contrast, subtraction 112 is written as:

 r112 = k11 + k112 – F(k11 + k111)

 = k11 + F(k111) – F(k11 + k111)

 = k11 + log2 ((1 – 2k111) ÷ (1 – 2k11 + k111)) (8.9)

This equation is identical to equation (5.12) for the second-order procedure,

although this time with a different set of coefficients and therefore further analysis

of this function is unnecessary. It is expected that the function will have similar

characteristics as those discussed in Section 5.3.1. Subtraction 12 generates an

index:

 r12 = k1 + F(k11 + k111) + F(r112) – F(k1+ k11)

 = k1 + F(k11 + k111) + F(k11 + k112 – F(k11 + k111)) – F(k1+ k11) (8.10)

Figure 8-3 depicts the value of r12 when r is in the region -2∆1 < r < -∆1,

and the same pattern occurs for each ∆1 in every subinterval. In this illustration, the

fractional part has been partitioned into low, middle1, middle2 and high-order fields

of 5, 5, 5 and 14 bits respectively. It should be noted that in the repeated cases of

1

112

2

11 111

12

 134

Figure 8-1 : Conceptual arrangement of the third-order co-transformation concept.

Figure 8-2 : Bit partitioning scheme of the third-order format.

Subtraction

Addition Addition

F1
Table F11

Table

i
j

i12

r12

i112

F(r11)

r1 r11

F(r1)
Addition

F111
Table

F(r111)

r111

Interpolator

Subtraction

r112

 k1

j112

j12

Interpolator

Result

F112
Table

Addition
F(k111)

 k1
 k11

k111

r2
Subtraction

Interpolator

j2

i2

Index r1 Index r11 Index r111 Coeff k111

Sign Integer Fraction
1-bit 10-bit 7-bit 7-bit 8-bit

-∆11 -1 -∆1

Interpolation Co-transformation

7-bit

-∆111

 135

k11 = 0 and k111 = ∆111, r12 has a positive value. At this stage, the computation of

F(r12) is always zero and therefore the points are omitted from the graph. Further

description is now needed of the behaviour of r12 as r varies across the range of ∆1.

First, consider the points at the left of the graph. At this leftmost subinterval,

k1 < ∆11, and k1 + k11 = ∆11. As it moves towards to the left of this subinterval,

k1 ≈ k111, and since k1 is small, r12 ≈ 0. However, in this particular subinterval, the

value of the middle2 field is zero. Hence, the execution of the third-order format can

be performed in the same way as presented for the second-order approach, where

variable k111, r11, table F112 and F11 are analogous to the second-order k11, r11,

table F12 and F11. Then, when in the subinterval of 2∆11, r12 is approximately -1,

since k1 and k11 are now small enough and thus linear in behaviour. At this point,

r12 is completed in the second interpolator before the j2 value is generated.

Figure 8-3 : Value of r12 for -2∆1 < r < -∆1.

In completing the co-transformation process, subtraction 12 is then subtracted

with subtraction 1 before r2 is produced as follows:

0

-2

-4

-6

-8

-10

-∆1 -2∆1

r

r12

 136

r2 = j – i + F(k1 + kl1) + F(k1 + F(k11 + k111) + F(k11 + k112 –

 F(k11 + k111)) – F(k1+ k11)) – F(r1) (8.11)

Once again, equation (8.11) is comparable with equation (5.13) in the second-order.

Therefore, at all points, r2 is definitely lower than -1, and can be accomplished

through the third stage of the interpolator as positioned in Figure 8-1.

 Depending on the operands of i and j, the value of r2 typically falls in four

different regions in the second-order arrangement. On the contrary, as a result of

adding another table in the third-order concept, five regions have to be considered.

In the first region, when j − i ≤ −1, the value of r2 is located in the linear region of F,

so that F(r) can be executed directly using interpolation. Whilst in the region

−1 < j − i < −∆1, r2 is computed based on the description mentioned above, which at

the end always produces a maximum value of < -1. Consequently, F(r) can also be

performed using interpolation. For −∆1 ≤ j − i < −∆11, the high-order field is

occupied with zero bits, and hence F(r) is completed in the same manner as in the

second-order format. In the fourth region, −∆11 ≤ j − i < −∆111, both high-order and

middle1 bits are zero. F(r) is now accomplished using the first-order technique.

Finally, F(r) is derived instantly from the F112 table when in the region

−∆111 ≤ j − i < 0.

8.2.2. Interpolation

In terms of the interpolation procedure, at first two different formats, Lagrange and

improved Lagrange as discussed in Chapter 6, have been adopted in the architecture.

From there, the most suitable approach that can produce an optimal size of lookup

tables is elected. These two interpolation techniques were chosen because both can

produce less total storage than Taylor and can be implemented in hardware more

easily than the modified Lagrange approach. Throughout the analysis, the

implementation of the interpolation process is based on a non-linear scheme

incorporating the error correction algorithm as in the ELM. The simulator design

 137

described in Section 3.3.1 has been applied in order to execute the error simulation

of addition and subtraction functions. The results for worst-case errors in Lagrange

and improved Lagrange formats are summarised in Tables 8-1 and 8-2. The row

with the grey background in each table indicates the most suitable combination for

implementation. By observation alone, the Lagrange approach is able to generate the

most optimal size of lookup table and therefore is chosen to be implemented in the

LNS addition and subtraction architectures.

Table 8-1 : Error of Lagrange interpolation.

Parameters ADD SUB Worst
Case

F,D
Sizes E size P size e'min rel e'max rel e'min rel e'max rel erel

1,024 1,024 512 -0.4956 +0.5049 -0.7566 +0.7896 0.7896

2,048 2,048 512 -0.3830 +0.3928 -0.4696 +0.4764 0.4764

1,024 1,024 1,024 -0.4206 +0.4290 -0.5554 +05696 0.5696

2,048 2,048 1,024 -0.3643 +0.3751 -0.4007 +0.4322 0.4322

1,024 1,024 2,048 -0.3821 +0.3935 -0.4681 +0.4945 0.4945

2,048 2,048 2,048 -0.3573 +0.3656 -0.3769 +0.4329 0.4329

Table 8-2 : Error of improved Lagrange interpolation.

Parameters ADD SUB Worst
Case

F,D
Sizes E size P size e'min rel e'max rel e'min rel e'max rel erel

1,024 512 512 -0.4989 +0.5049 -0.7562 +0.7896 0.7896

2,048 1,024 512 -0.3844 +0.3928 -0.4696 +0.4764 0.4764

1,024 512 1,024 -0.4230 +0.4290 -0.5554 +0.5716 0.5716

2,048 1,024 1,024 -0.3656 +0.3751 -0.4007 +0.4322 0.4322

1,024 512 2,048 -0.3853 +0.3932 -0.4494 +0.5038 0.5038

2,048 1,024 2,048 -0.3582 +0.3656 -0.3747 +0.4319 0.4319

 138

8.2.3. Design Summary

According to the analysis in Section 8.2.2, the combination of third-order co-

transformation with the Lagrange interpolation procedure generates less total storage

area. When implementing the third-order format, the tables involved in the co-

transformation process are now segregated into four partitions. With this

arrangement, the sizes of storage for F1, F11, F111 and F112 are therefore only 256,

128, 128 and 128 words respectively. Since the Lagrange approach is chosen as the

best interpolation concept, the optimal sizes of the F, D and E tables that can

produce the worst-case error approximately equivalent to FLP limit are 1024 words,

with the P table at 2048 words. As summarised in Table 8-3, in total about 982 kbits

would be required to compute LNS addition and subtraction in a 40-bit number

system.

Table 8-3 : Total storage for the LNS 40-bit format.

Table Words Word
length Segments Total

Bits

F Add 1024 35-bit 6 215,040

F Sub 1024 35-bit 5 179,200

D Add 1024 33-bit 6 202,752

D Sub 1024 34-bit 5 174,080

E Add 1024 9-bit 6 55,296

E Sub 1024 12-bit 5 61,440

P 2048 34-bit 1 69,632

F1 256 36-bit 1 9,216

F11 128 38-bit 1 4,864

F111 128 39-bit 1 4,992

F112 128 39-bit 1 4,992

Total 981,504

 139

8.3. Design Implementation

The hardware implementation of the LNS multiplication and division unit in a 40-bit

format is identical with the design for a 32-bit system illustrated in Section 7.2.1,

except for input size. However, due to applying the third-order co-transformation

procedure, the LNS addition and subtraction module has a small modification in

comparison with the 32-bit architecture. Another lookup table has been inserted in

the co-transformation module to accommodate the four segmentations in fractional

bits as suggested in Section 8.2.1. In addition, two more FXP adders are also needed

before the third-order co-transformation process can be completed. Although the

interpolator unit uses the Lagrange format, a similar arrangement in architecture as

that proposed in the 32-bit design can still be implemented. In order to minimise the

worst-case delay in the system, the CLA/CSLA and Booth-Wallace tree algorithm

are adopted to perform FXP addition and multiplication operations respectively. The

practical implementation of the LNS addition and subtraction unit in a 40-bit format

is described in Figure 8-4.

8.3.1. Synthesis Results

The LNS arithmetic unit based on a 40-bit number system was synthesised using the

constrained Faraday 0.18 µm CMOS technology, and the results are reported in

Table 8-4. It shows that the worst-case delay for addition and direct subtraction is

7.71 ns. On the other hand, for subtraction using the co-transformation procedure,

the delay sharply increases to roughly three times slower than that of direct

subtraction due to the requirement to re-use the interpolator three times. In the case

of multiplication and division, the functions can be completed in only 1.27 ns. Based

on this 40-bit LNS design, the total area required is 1,542,976 µm2.

 140

Figure 8-4 : The hardware implementation of the LNS addition and subtraction in a

40-bit format.

+ +

F1 Table F11 Table F111 Table

+ + +

- -

MUX

Select
region r

Form indices

MUX

MUX

F Table D Table E Table P Table

Zero, sign and
control logic

opn

op1
op2

Mux, controls
and sign r j i

k11

+ × ×

+

+

j112 i112

r112

i2

r2

r
i

i j zero

sign

Result

Co-transformation

Interpolation

F112 Table

+
k1

-

k1 j j

r12

i12

Register

 141

Table 8-4 : Delay times and total device area of a 40-bit LNS arithmetic unit.

Function
40-bit LNS Arithmetic Unit

Delay (ns) Area (µm2)

Add / Sub 7.71
1,528,956

Sub (Co-transform) 22.28

Mul / Div 1.27 14,020

8.4. Performance Analysis

In order to evaluate the impact on overall performance of increasing the fractional

bits in the LNS system, the results presented in Table 8-4 are compared with the

synthesis results produced from a 32-bit LNS system as described in Table 7-1. As

graphically displayed in Figure 8-5, the delay of an addition or direct subtraction has

been increased by 9% of a 32-bit LNS design. Similarly, an increase by 9% is

observed for multiplication and division operations. When subtraction requires co-

transformation, the delay in the 40-bit design increases to 22.28 ns from 14.79 ns, i.e

by 50% of the delay in a 32-bit LNS. This is mainly because three stages of

interpolation are involved.

The implementation of the third-order co-transformation concept in a 40-bit

LNS system that utilises three sets of 128 words and one of 256 words appears to

have equivalent total sizes of co-transformation tables as needed for the 32-bit

design. However, the requirements of 1024 words for each F, D and E table as well

as a 2048-word P table during the interpolation process greatly influences the total

area of the 40-bit LNS design. This can be clearly seen in Figure 8-6 where the total

silicon area of a 40-bit number system has increased more than two fold over the

area generated in a 32-bit architecture. It is estimated that the area-delay product of a

40-bit LNS is 0.0119 µm2 sec, whereas it is 0.0042 µm2 sec in a 32-bit LNS.

 142

0

2

4

6

8

10

12

14

16

18

20

22

24

Add/Sub Mul Div Sub (co-transform)

Delay (ns)

U
ni

t

40-bit LNS

32-bit LNS

Figure 8-5 : Delays of a 32-bit and 40-bit LNS designs.

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

1.6E+06

1.8E+06

40-bit LNS 32-bit LNS

Arithmetic Design

T
ot

al
 a

re
a

(s
qu

ar
e

m
ic

ro
ns

)

40-bit LNS

32-bit LNS

Figure 8-6 : Silicon areas in 32-bit and 40-bit LNS.

 143

Even with only a minimal degradation in terms of speed, the total silicon area

of the 40-bit LNS seems to be unwieldy in comparison with the 32-bit LNS. Thus,

future work needs to concentrate on refining the interpolator module as to gradually

reduce the total lookup tables for the long format number system.

8.5. Summary

A long word-length version of the LNS system has been designed and described in

detail in this chapter. This 40-bit LNS format was segmented into 10-bit integer and

29-bit fraction and the third-order co-transformation concept was introduced to

substantially reduce the total co-transformation tables to only 640 words,

approximately equivalent to those presented for the suggested 32-bit system. From

the analytical study, the best interpolation technique to be implemented was the

Lagrange approach which employed 1024 words for the F, D and E tables and a

2048-word P table.

The delay of the 40-bit LNS design was increased to 109% of the 32-bit

arrangement when executing addition and direct subtraction operations, and 150%

during subtractions with co-transformation. For multiplication and division, an

increase to 109% of a 32-bit system was reported. The estimated silicon area of the

40-bit LNS was roughly three times larger than that occupied in the 32-bit

architecture.

 144

CHAPTER 9

9. Conclusions and Recommendations

9.1. Conclusions of the Study

The primary objective of this thesis has been to present a new design approach for a

high speed and reduced area 32-bit LNS arithmetic unit, and to show through design

and simulation that the technique introduced is extremely competitive with

commonly used FLP systems and better than the leading published LNS architecture.

According to the literature review, the main bottleneck in the LNS system

arises from the complexity of executing addition and subtraction, particularly

subtraction near the singularity region, which results in using large lookup tables.

However, the LNS architecture proposed in the ELM design has been shown to be

able to minimise storage requirements whilst computing addition and subtraction.

Furthermore, when comparing delays of the ELM with those of an FLP device,

addition and direct subtraction operations can be performed marginally better, at

90% of the corresponding FLP times. Although co-transformed subtractions were

120%, yet multiplication only required 30% of the FLP delays.

A new development of the co-transformation procedure presented in this thesis

has vastly reduced the total storage requirements to 73% of the previously published

ELM design. However, this in turn has a huge impact in terms of the critical path

delay for subtractions using co-transformation due to the requirement to re-use the

interpolator. It seems likely, therefore, that the new co-transformation will only be

feasible in conjunction with an improved interpolator.

Hence, a smaller modification to the interpolator has been proposed.

Combining the new co-transformation method with this improved interpolator has

now reduced the total storage to 51% of that previous ELM implementation. With

this new arrangement, it enabled a fully synthesised solution. A controlled

comparison with the previous ELM design indicated a reduction to 60% of the delay

 145

and 65% of the silicon area. In addition, comparing it with the faster of the two

independently designed FLP units has shown that LNS addition and direct

subtraction can be performed in 63% of the FLP time. Multiplication completes with

10% and division 3% of the FLP delays. This new LNS design has also been built

with fractionally less silicon, and worst-case accuracy is better than that of FLP

arithmetic.

The present findings conclusively demonstrate that the new LNS system is

now able to offer advantages in speed and accuracy over the FLP method. Moreover,

it can be implemented at an equal cost in silicon. Furthermore, the performance of

the new LNS is also found to be substantially better than the leading published LNS

design.

9.2. Future Extensions

The new development of the LNS arithmetic unit has been fully designed and

synthesised. Based on the results, various follow-on activities could be conducted in

the future.

As presented in Chapter 6, a simple improvement in performing the

interpolation process has been shown. However, although the total bits in the new

LNS design can be reduced to 51% of the previous ELM, two FXP multipliers are

still needed in the interpolator module.

In the current design described in Chapter 7, the FXP multiplication process

has been completed using the traditional method of Booth and Wallace tree

algorithms. Nevertheless, in order to further increase the speed of the LNS system,

especially for addition and direct subtraction operations, many other multiplication

techniques might be applied. For instance, a simple high speed multiplier design has

been suggested in [92] in which the last additional partial product row can be

avoided by utilising a fast method to find two’s complement numbers. Besides that,

combining the Booth recoded approach with the Dadda multiplier concept could

possibly produce even better performance than using the Wallace tree method [93].

 146

Therefore, it would be worth considering various combinations of algorithms and

architectures to reduce delays in the multiplier design.

In this thesis, a brief proposal for long-format LNS as illustrated in Chapter 8

has been described. The new third-order co-transformation procedure has been

proposed which can substantially reduce the total co-transformation tables when

long precision numbers are involved. However, the design still suffers from a vast

increase in delay when computing subtractions using co-transformation due to the

requirement to pass through the interpolator three times. It has been shown that

using the existing interpolation approach as described in Chapter 6 might not reduce

the delay. Therefore, it is hoped that future researcher may suggest a technique

which can improve further the interpolation process, or even better propose a new

method to replace the interpolator module to deliver the faster speed still.

 147

References

[1] Texas Instruments Inc., "High-Speed DSP Systems Design," Reference
Guide, SPRU889-May 2005.

[2] H. L. Garner, "A Survey of Some Recent Contributions to Computer
Arithmetic," IEEE Transactions on Computers, vol. C-25, pp. 1277-1282,
1976.

[3] IEEE Computer Society, "IEEE Standard 754 for Binary Floating-Point
Arithmetic," 1985.

[4] F. J. Taylor, R. Gill, J. Joseph, and J. Radke, "A 20 Bit Logarithmic Number
System Processor," IEEE Transactions on Computers, pp. 190-200, 1988.

[5] L. K. Yu and D. M. Lewis, "A 30-b Integrated Logarithmic Number System
Processor," IEEE Journal of Solid-State Circuits, vol. 26, pp. 1433-1440,
1991.

[6] J. N. Coleman, E. I. Chester, C. I. Softley, and J. Kadlec, "Arithmetic on the
European Logarithmic Microprocessor," IEEE Transactions on Computers,
pp. 702-715, 2000.

[7] J. N. Coleman, C. I. Softley, J. Kadlec, R. Matousek, M. Tichy, Z. Pohl, A.
Hermanek, and N. F. Benschop, "The European Logarithmic
Microprocessor," IEEE Transactions on Computers, pp. 532-546, 2008.

[8] F. Haohuan, O. Mencer, and W. Luk, "FPGA Designs with Optimized
Logarithmic Arithmetic," IEEE Transactions on Computers, vol. 59, pp.
1000-1006, 2010.

[9] D. M. Lewis, "An Architecture for Addition and Subtraction of Long Word
Length Numbers in the Logarithmic Number System," IEEE Transactions on
Computers, pp. 1325-1336, 1990.

[10] Mark G. Arnold, Thomas A. Bailey, John R. Cowles, and M. D. Winkel,
"Arithmetic Co-Transformations in the Real and Complex Logarithmic
Number Systems," IEEE Transactions on Computers, vol. 47, pp. 777-786,
1998.

[11] M. G. Arnold, "Improved Co-Transformation for LNS Subtraction," IEEE
International Symposium on Circuits and Systems, vol. II, pp. 752-755, 2002.

[12] John L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. San Francisco, USA: Morgan Kaufmann, 2007.

[13] B. Wilkinson, Computer Architecture Performance. London, UK: Prentice
Hall, 1996.

[14] Robert J. Baron and L. Higbie, Computer Architecture. New York, USA:
Addison-Wesley Publishing Company, 1994.

[15] Dharma P. Agrawal and T. R. N. Rao, "Introduction: Computer Arithmetic,"
IEEE Transactions on Computers, vol. C-32, pp. 329-330, 1983.

[16] R. Zimmermann, "Binary Adder Architectures for Cell-Based VLSI and their
Synthesis," in PhD Thesis: Swiss Federal Institute of Technology Zurich,
1997.

[17] G. W. Bewick, "Fast Multiplication: Algorithms and Implementation," in
PhD Thesis, Department of Electrical Engineering: Stanford University,
1994.

 148

[18] Nhon T. Quach and M. J. Flynn, "An Improved Algorithm for High-Speed
Floating-Point Addition," Technical Report: CSL-TR-90-442, Stanford
University 1990.

[19] N. Byeong-Gyu, K. Hyejung, and Y. Hoi-Jun, "A Low-Power Unified
Arithmetic Unit for Programmable Handheld 3-D Graphics Systems," IEEE
Custom Integrated Circuits Conference, pp. 535-538, 2006.

[20] I. Kouretas, C. Basetas, and V. Paliouras, "Low-power Logarithmic Number
System Addition/Subtraction and their Impact on Digital Filters," IEEE
International Symposium on Circuits and Systems, pp. 692-695, 2008.

[21] J. R. Sacha, "Arithmetic System for Low Power Signal Processing," in Phd
Thesis, Department of Computer Science and Engineering: The Pennsylvania
State University, 1998.

[22] I. Flores, The Logic of Computer Arithmetic. New York, USA: Prentice Hall
Inc., 1963.

[23] J. B. Gosling, Design of Arithmetic Units for Digital Computers. London:
The Macmillan Press Ltd, 1980.

[24] M. Darley, B. Kronlage, D. Bural, B. Churchill, D. Pulling, P. Wang, R.
Iwamoto, and L. Yang, "The TMS390C602A Floating-Point Coprocessor for
Sparc Systems," IEEE Micro, vol. 10, pp. 36-47, 1990.

[25] M. Atkins, "Performance and the i860 Microprocessor," IEEE Micro, vol. 11,
pp. 24-27, 72-78, 1991.

[26] N. G. Kingsbury and P. J. W. Rayner, "Digital Filtering Using Logarithmic
Arithmetic," Electronics Letters, pp. 56-58, 1971.

[27] Vouzis P.D., Collange S., and M.G Arnold, "Cotransformation Provides
Area and Accuracy Improvement in an HDL Library for LNS Subtraction,"
10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools, pp. 85-93, 2007.

[28] H. Fu, O. Mencer, and W. Luk, "Optimizing Logarithmic Arithmetic in
FPGAs," IEEE International Symposium on Field-Programmable Custom
Computing Machines, pp. 163-172, 2007.

[29] C. Inacio and D. Ombres, "The DSP Decision:Fixed Point or Floating?,"
IEEE Spectrum, vol. 33, pp. 72-74, 1996.

[30] H. Fu, O. Mencer, and W. Luk, "Optimizing Logarithmic Arithmetic on
FPGAs " IEEE Symposium on Field-Programmable Custom Computing
Machines, pp. 163-172, 2007.

[31] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs. New
York: Oxford University Press, 2000.

[32] J. Kontro, K. Kalliojarvi, and Y. Neuvo, "Floating-Point Arithmetic in Signal
Processing," IEEE International Symposium on Circuits and Systems, vol. 4,
pp. 1784-1791 vol.4, 1992.

[33] K. Underwood, "FPGAs vs. CPUs: Trends in Peak Floating-Point
Performance," Proceedings of the 2004 ACM/SIGDA 12th International
Symposium on Field Programmable Gate Arrays, pp. 171-180, 2004.

[34] S. F. Oberman, H. Al-Twaijry, and M. J. Flynn, "The SNAP Project: Design
of Floating Point Arithmetic Units," 13th IEEE Symposium on Computer
Arithmetic, pp. 156-165, 1997.

 149

[35] J. Lang, C. Zukowski, R. Lamaire, and C. H. An, "Integrated-Circuit
Logarithmic Arithmetic Units," IEEE Transactions on Computers, vol. c-34,
pp. 475-483, 1985.

[36] D. Golberg, "What Every Computer Scientist Should Know About Floating
Point Arithmetic," Computing Surveys, 1991.

[37] Z. Leonelli, Supplement Logarithmique, Brossier, circa 1800.
[38] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal, "Redundant

Logarithmic Number Systems," Proceedings of the 9th Symposium on
Computer Arithmetic, pp. 144-151, 1989.

[39] Earl E. Swartzlander and A. G. Alexopoulos, "The Sign/Logarithm Number
System," IEEE Transactions on Computers, pp. 1238-1242, 1975.

[40] E. E. Swartzlander, D. V. Satish Chandra, H. T. Nagle, Jr., and S. A. Starks,
"Sign/Logarithm Arithmetic for FFT Implementation," IEEE Transactions
on Computers, vol. C-32, pp. 526-534, 1983.

[41] A. D. Edgar and S. C. Lee, "FOCUS Microcomputer Number System,"
Communications of the ACM, vol. 22, pp. 166-177, 1979.

[42] M. G. Arnold, "Extending the Precision of the Sign Logarithm Number
System," M.S. Thesis, University of Wyoming, Laramie, 1982.

[43] F. Taylor, "An Extended Precision Logarithmic Number System," IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 31, pp. 232-
234, 1983.

[44] M. G. Arnold, J. Cowles, and T. Bailey, "Improved Accuracy for
Logarithmic Addition in DSP Applications," International Conference on
Acoustics, Speech, and Signal Processing, , pp. 1714-1717 vol.3, 1988.

[45] H. Henkel, "Improved Addition for the Logarithmic Number System," IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 301-
303, 1989.

[46] D. M. Lewis, "Interleaved Memory Function Interpolators with Application
to an Accurate LNS Arithmetic Unit," IEEE Transactions on Computers, vol.
43, pp. 974-982, 1994.

[47] M. G. Arnold, "Design of a Faithful LNS Interpolator," IEEE Euromicro
Symposium on Digital Systems Design, pp. 336-345, 2001.

[48] M. G. Arnold and M. D. Winkel, "A Single-Multiplier Quadratic Interpolator
for LNS Arithmetic," IEEE International Conference on Computer Design,
pp. 178-183, 2001.

[49] J. N. Coleman and E. I. Chester, "A 32-Bit Logarithmic Arithmetic Unit and
Its Performance Compared to Floating-Point," IEEE Symposium on
Computer Arithmetic, pp. 142-151, 1999.

[50] T. Stouraitis and F. J. Taylor, "Analysis of Logarithmic Number System
Processor," IEEE Transactions on Circuits and Systems, vol. 35, pp. 519-527,
1988.

[51] D. Das Sarma and D. W. Matula, "Faithful Bipartite ROM Reciprocal
Tables," Proceedings of the 12th Symposium on Computer Arithmetic, pp.
17-28, 1995.

 150

[52] H. Hassler and N. Takagi, "Function Evaluation by Table Look-Up and
Addition," Proceedings of the 12th Symposium on Computer Arithmetic, pp.
10-16, 1995.

[53] M. J. Schulte and J. E. Stine, "Symmetric Bipartite Tables for Accurate
Function Approximation," IEEE Symposium on Computer Arithmetic, pp.
175-183, 1997.

[54] M. J. Schulte and J. E. Stine, "Approximating Elementary Functions with
Symmetric Bipartite Tables," IEEE Transactions on Computers, , vol. 48, pp.
842-847, 1999.

[55] M.J Schulte and J. E. Stine, "Symmetric Bipartite Tables for Accurate
Function Approximation," Proceedings of the 13th Symposium on Computer
Arithmetic, pp. 175-183, 1997.

[56] F. de Dinechin and A. Tisserand, "Some Improvements on Multipartite Table
Methods," IEEE Symposium on Computer Arithmetic, pp. 128-135, 2001.

[57] J. Detrey and F. de Dinechin, "A VHDL Library of LNS Operators,"
Conference Record of the Thirty-Seventh Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 2227-2231 Vol.2, 2003.

[58] J. Detrey and F. d. Dinechin, "A Tool for Unbiased Comparison between
Logarithmic and Floating-point Arithmetic," The Journal of VLSI Signal
Processing, pp. 161-175, 2007.

[59] J. N. Coleman, "Simplification of Table Structure in Logarithmic
Arithmetic," Electronic Letters, vol. 31, pp. 1905-1906, 1995.

[60] F. Taylor, "A Hybrid Floating-point Logarithmic Number System
Processor," IEEE Transactions on Circuits and Systems, vol. 32, pp. 92-95,
1985.

[61] F. S. Lai and C. F. E. Wu, "A Hybrid Number System Processor with
Geometric and Complex Arithmetic Capabilities," IEEE Transactions on
Computers, vol. 40, pp. 952-962, 1991.

[62] T. Stouraitis, "A Hybrid Floating-point/Logarithmic Number System Digital
Signal Processor," IEEE International Conference on Acoustics, Speech, and
Signal Processing, pp. 1079-1082, 1989.

[63] M. G. Arnold, T. A. Bailey, J. R. Cowles, and J. J. Cupal, "Redundant
Logarithmic Arithmetic," IEEE Transactions on Computers, vol. 39, pp.
1077-1086, 1990.

[64] J. M. Muller, A. Tisserand, and A. Scherbyna, "Semi-logarithmic Number
Systems," IEEE Symposium on Computer Arithmetic, pp. 201-207, 1995.

[65] M. G. Arnold, "The Residue Logarithmic Number System: Theory and
Implementation," IEEE Symposium on Computer Arithmetic (ARITH), pp.
196–205, 2005.

[66] W. Strauss, "Expectations Down for DSP Market Growth," Retrieved from
http://www.fwdconcepts.com, Date Accessed 23rd February 2010.

[67] O. Vainio and Y. Neuvo, "Logarithmic arithmetic in FIR filters," IEEE
Transactions on Circuits and Systems, vol. 33, pp. 826-828, 1986.

[68] D. Das, K. Mukhopadhyaya, and B. P. Sinha, "Implementation of Four
Common Functions on an LNS Co-processor," IEEE Transactions on
Computers, vol. 44, pp. 155-161, 1995.

http://www.fwdconcepts.com/

 151

[69] M. G. Arnold and C. Walter, "Unrestricted Faithful Rounding is Good
Enough for Some LNS Applications," IEEE Symposium on Computer
Arithmetic, pp. 237-246, 2001.

[70] M. G. Arnold, "Reduced power consumption for MPEG decoding with
LNS," IEEE International Conference on Application-Specific Systems,
Architectures and Processors, pp. 65-75, 2002.

[71] E. I. Chester and J. N. Coleman, "Matrix Engine for Signal Processing
Applications using the Logarithmic Number System," IEEE International
Conference on Application-Specific Systems, Architectures and Processors,
pp. 315-324, 2002.

[72] R. E. Morley, Jr., G. L. Engel, T. J. Sullivan, and S. M. Natarajan, "VLSI
Based Design of a Battery-operated Digital Hearing Aid," International
Conference on Acoustics, Speech, and Signal Processing, pp. 2512-2515
vol.5, 1988.

[73] M. N. Marsono, M. W. El-Kharashi, and F. Gebali, "Binary LNS-based
Naive Bayes Inference Engine for Spam Control: Noise Analysis and FPGA
Implementation," IET Computers & Digital Techniques vol. 2, pp. 56-62,
2008.

[74] D. M. Lewis, "An Accurate LNS Arithmetic Unit using Interleaved Memory
Function Interpolator," IEEE Symposium on Computer Arithmetic, pp. 2-9,
1993.

[75] B. R. Lee and N. Burgess, "A Parallel Look-up Logarithmic Number System
Addition/Subtraction Scheme for FPGA," IEEE International Conference on
Field-Programmable Technology (FPT), pp. 76-83, 2003.

[76] A. Tyagi, "A Reduced-Area Scheme for Carry-Select Adders," IEEE
Transactions on Computers, vol. 42, pp. 1163-1170, 1993.

[77] R. Che Ismail and J. N. Coleman, "ROM-less LNS," 20th IEEE Symposium
on Computer Arithmetic (ARITH), pp. 43-51, 2011.

[78] Synopsys Inc., "Design Compiler User Guide," 2002.
[79] Jidan Al-Eryani, "32-bit Floating-Point Unit (FPU100)," Opencores.org

(2006), Retrieved from
http://www.opencores.org/projects.cgi/web/fpu100/overview, Date Accessed
20th May 2008.

[80] T.-J. Kwon, J. Sondeen, and J. Draper, "Design Trade-offs in Floating-point
Unit Implementation for Embedded and Processing-in-memory Systems,"
IEEE International Symposium on Circuits and Systems, pp. 3331-3334,
2005.

[81] G.M Phillips and P. J. Taylor, Theory and Applications of Numerical
Analysis. London, UK: Academic Press Limited, 1996.

[82] E. Meijering, "A Chronology of Interpolation: From Ancient Astronomy to
Modern Signal and Image Processing," Proceedings of the IEEE, vol. 90, pp.
319-342, 2002.

[83] G. M. Phillips, Interpolation and Approximation by Polynomials. New York,
USA: Springer, 2000.

http://www.opencores.org/projects.cgi/web/fpu100/overview

 152

[84] E. Chester, "The LNS and Its Application in a High-Performance Matrix
Processor," in PhD Thesis, School of Electrical, Electronic and Computer
Engineering: Newcastle University, 2002.

[85] Endre Suli and D. Mayers, An Introduction to Numerical Analysis.
Cambridge, UK: Cambridge University Press, 2003.

[86] J. Pihl and E. J. Aas, "A Multiplier and Squarer Generator for High
Performance DSP Applications," IEEE 39th Midwest Symposium on Circuits
and Systems, vol. 1, pp. 109-112 vol.1, 18-21 Aug 1996 1996.

[87] K. J. Cho and J. G. Chung, "Parallel Squarer Design using Pre-calculated
Sums of Partial Products," Electronics Letters, vol. 43, pp. 1414-1416, 2007.

[88] H. Morinaka, H. Makino, Y. Nakase, H. A. S. H. Suzuki, and K. A. M. K.
Mashiko, "A 64 bit Carry Look-Ahead CMOS Adder using Modified Carry
Select," Proceedings of the IEEE Custom Integrated Circuits Conference, pp.
585-588, 1995.

[89] Ohsang Kwon, Earl E. Swartzlander Jr., and K. Nowka, "A Fast Hybrid
Carry-Lookahead/Carry-Select Adder Design," Proceedings of the 11th
Great Lakes symposium on VLSI, pp. 149-152, 2001.

[90] T. K. Callaway and E. E. Swartzlander, Jr., "Power-delay Characteristics of
CMOS Multipliers," 13th IEEE Symposium on Computer Arithmetic, pp. 26-
32, 1997.

[91] C. Chen, C. Rui-Lin, and Y. Chih-Huan, "Pipelined Computation of Very
Large Word-length LNS Addition/Subtraction with Polynomial Hardware
Cost," IEEE Transactions on Computers, vol. 49, pp. 716-726, 2000.

[92] J. Y. Kang and J. L. Gaudiot, "A Simple High-Speed Multiplier Design,"
IEEE Transactions on Computers, vol. 55, pp. 1253-1258, 2006.

[93] W. J. Townsend, E. E. Swartzlander, Jr., and J. A. Abraham, "A Comparison
of Dadda and Wallace Multiplier Delays," Proc. SPIE, Advanced Signal
Processing Algorithms, Architectures, and Implementations XIII, vol. 5205,
pp. 552-560, 2003.

[94] J. Makino, T. Fukushige, M. Koga, K. Namura, "GRAPE-6 : The Massively-
parallel Special-purpose Computer for Astrophysical Particle Simulations,"
PASJ : Publ. Astron. Soc. Japan, pp. 1-25, 2008.

 153

A Appendices

A1. Authored and Co-authored Publications

During the course of this research, the following publications were written. The

work of the co-authors and first authors where appropriate is acknowledged and

appreciated. Internal departmental papers are not included in this list.

Journal Publication

§ J.N Coleman and R.C Ismail, “Fast 32-bit Logarithmic Arithmetic”,
submitted to IEEE Transactions on Computers.

Conference Publication

§ R.C Ismail and J.N Coleman, “ROM-less LNS”, 20th IEEE Symposium on
Computer Arithmetic (ARITH), pp. 43-51, 2011.

 154

A2. C Programming Language for 32-bit LNS Subtraction

The following C code is a simulator for 32-bit LNS subtraction unit using second-

order co-transformation with the improved Lagrange interpolator.

//**//
// 32-BIT LOGARITHMIC SUBTRACTION WITH 6 GUARD BITS //
// (SECOND ORDER METHOD WITH IMPROVED INTERPOLATOR) //
//**//

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <limits.h>
#include <stdint.h>
#include <inttypes.h>

#define maxcomp 9.2E18
#define g 64 //6 guard bits => 2^6 = 64;
#define f1 128 //7-bit of high field
#define f2 256 //8-bit of middle field
#define f3 16384 //8-bit of low field + 6 guard bits @ delta11
#define f2f3 4194304 //delta1
#define one 8388608.0
#define gone 536870912.0
#define step 1
#define p 512
#define f 128
#define fr8 128
#define fr16 16
#define m1 4194304 //(gone DIV f)
#define m2 8388608 //(gone DIV f)*2
#define m4 16777216 //(gone DIV f)*4
#define m8 33554432 //(gone DIV f)*8
#define m16 536870912 //(gone DIV f)*16

double ln2, log2e;

long long int arg1,arg2;
long long int arg;
long long int dividend, divisor;

long long int f1tab[128];
long long int f2tab[256];
long long int f3tab[256];
long long int fr1tab[256];
long long int dr1tab[256];
long long int er1tab[128];
long long int fr2tab[256];
long long int dr2tab[256];
long long int er2tab[128];
long long int fr4tab[256];
long long int dr4tab[256];
long long int er4tab[128];
long long int fr8tab[256];
long long int dr8tab[256];
long long int er8tab[128];

 155

long long int fr16tab[64];
long long int dr16tab[64];
long long int er16tab[64];
long long int ptab[512];

double glog2 (double arg)
{
 return (log2e * log (arg) * (gone));
}

double gexp2 (double arg)
{
 return (exp (log (2) * (arg / (gone))));
}

void f1table (void)
{
 long long int i;
 long long int t;

 for (i = 1; i <= f1; i++)
 {
 t = -(i * f2f3);
 f1tab [i-1] = glog2 (fabs (1 - gexp2 (t)));
 }
 return;
}

void f2table (void)
{
 long long int i;
 long long int t;

 for (i = 1; i <= f2; i++)
 {
 t = -((i) * f3);
 f2tab [f2 - i] = glog2 (fabs (1 - gexp2 (t)));

 }

 return;
}

void f3table (void)
{
 long long int i;

 for (i = 0; i < f3/g; i++)
 {
 f3tab [i] = glog2 (fabs (1 - gexp2 (-i * g)));
 }
 return;
}

void fr1table (void)
{
 long long int i,j;
 long long int t,t2;

 for (i = 0; i < f; i++)
 {
 t = (-i * m1) - (gone);
 fr1tab[i] = glog2(fabs (1 - gexp2(t)));

 156

 }

 for (j = 0; j < f; j++)//g1*16 = 65536
 {
 t2 = (-j * (m1)) - (gone) - (m1/2);
 fr1tab[j+f] = glog2(fabs (1 - gexp2(t2)));
 }

 return;
}

void dr1table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3;

 for (i = 0; i < f; i++)
 {
 t0 = -i * m1 - (gone);
 t1 = t0 - (m1/2);
 dr1tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr1tab[i]) / (-m1/2))*-
 gone;
 }

 for (j = 0; j < f; j++)
 {
 t2 = (-j * (m1)) - (gone) - (m1/2) - 1;
 t3 = t2 - (m1/2);
 dr1tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr1tab[j+f]) / (-
 m1/2))*-gone;
 }

 return;
}

void er1table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3,t4,t5;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m1)) - (gone);
 t1 = t0 - (m1/2);
 t2 = t0 + (-m1/4);
 er1tab[i] = round(-((fr1tab[i] + (((-m1/4) * -dr1tab[i])/gone)) –
 (glog2(fabs (1 - gexp2(t2))))));
 }

 return;
}

void fr2table (void)
{
 long long int i,j;
 long long int t1,t2;

 for (i = 0; i < f; i++)
 {
 t1 = (-i * (m2)) - (gone * 2);
 fr2tab[i] = glog2(fabs (1 - gexp2(t1)));
 }

 157

 for (j = 0; j < f; j++)
 {
 t2 = (-j * (m2)) - (gone * 2) - (m2/2);
 fr2tab[j+f] = glog2(fabs (1 - gexp2(t2)));
 }

 return;
}

void dr2table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m2)) - (gone * 2);
 t1 = t0 - (m2/2);
 dr2tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr2tab[i]) / (-m2/2))*-
 gone;
 }

 for (j = 0; j < f; j++)
 {
 t2 = (-j * (m2)) - (gone * 2) - (m2/2) - 1;
 t3 = t2 - (m2/2);
 dr2tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr2tab[j+f]) / (-
 m2/2))*-gone;
 }

 return;
}

void er2table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3,t4,t5;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m2)) - (gone * 2);
 t1 = t0 - (m2/2);
 t2 = t0 + (-m2/4);
 er2tab[i] = round(-((fr2tab[i] + (((-m2/4) * -dr2tab[i])/gone)) –
 (glog2(fabs (1 - gexp2(t2))))));
 }

 return;
}

void fr4table (void)
{
 long long int i,j;
 long long int t1,t2;

 for (i = 0; i < f; i++)
 {
 t1 = (-i * (m4)) - (gone * 4);
 fr4tab[i] = glog2(fabs (1 - gexp2(t1)));
 }

 for (j = 0; j < f; j++)//g1*16 = 65536
 {

 158

 t2 = (-j * (m4)) - (gone * 4) - (m4/2);
 fr4tab[j+f] = glog2(fabs (1 - gexp2(t2)));
 }

 return;
}

void dr4table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m4)) - (gone * 4);
 t1 = t0 - (m4/2);
 dr4tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr4tab[i]) / (-m4/2))*-
 gone;
 }

 for (j = 0; j < f; j++)//g1*16 = 65536
 {
 t2 = (-j * (m4)) - (gone * 4) - (m4/2) - 1;
 t3 = t2 - (m4/2);
 dr4tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr4tab[j+f]) / (-
 m4/2))*-gone;
 }

 return;
}

void er4table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3,t4,t5;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m4)) - (gone * 4);
 t1 = t0 - (m4/2);
 t2 = t0 + (-m4/4);
 er4tab[i] = round(-((fr4tab[i] + (((-m4/4) * -dr4tab[i])/gone)) –
 (glog2(fabs (1 - gexp2(t2))))));
 }

 return;
}

void fr8table (void)
{
 long long int i,j;
 long long int t1,t2;

 for (i = 0; i < f; i++)
 {
 t1 = (-i * (m8)) - (gone * 8);
 fr8tab[i] = glog2(fabs (1 - gexp2(t1)));
 }

 for (j = 0; j < fr8; j++)
 {
 t2 = (-j * (m8)) - (gone * 8) - (m8/2);
 fr8tab[j+f] = glog2(fabs (1 - gexp2(t2)));

 159

 }

 return;
}

void dr8table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m8)) - (gone * 8);
 t1 = t0 - (m8/2);
 dr8tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr8tab[i]) / (-m8/2))*-
 gone;
 }

 for (j = 0; j < fr8; j++)
 {
 t2 = (-j * (m8)) - (gone * 8) - (m8/2) - 1;
 t3 = t2 - (m8/2);
 dr8tab[j+f] = (((glog2(fabs (1 - gexp2(t3)))) - fr8tab[j+f]) / (-
 m8/2))*-gone;
 }

 return;
}

void er8table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3,t4,t5;

 for (i = 0; i < f; i++)
 {
 t0 = (-i * (m8)) - (gone * 8);
 t1 = t0 - (m8/2);
 t2 = t0 + (-m8/4);
 er8tab[i] = round(-((fr8tab[i] + (((-m8/4) * -dr8tab[i])/gone)) –
 (glog2(fabs (1 - gexp2(t2))))));
 }

 return;
}

void fr16table (void)
{
 long long int i,j;
 long long int t1,t2;

 for (i = 0; i < fr16; i++)
 {
 t1 = (-i * (m16)) - (gone * 16);
 fr16tab[i] = glog2(fabs (1 - gexp2(t1)));

 }

 for (j = 0; j < fr16; j++)
 {
 t2 = (-j * (m16)) - (gone * 16) - (m16/2);
 fr16tab[j+fr16] = glog2(fabs (1 - gexp2(t2)));
 }

 160

 return;
}

void dr16table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3;

 for (i = 0; i < fr16; i++)
 {
 t0 = (-i * (m16)) - (gone * 16);
 t1 = t0 - (m16/2);//t1 = t0 - (m2/2);
 dr16tab[i] = (((glog2(fabs (1 - gexp2(t1)))) - fr16tab[i]) / (-
 m16/2))*-gone;
 }

 for (j = 0; j < fr16; j++)
 {
 t2 = (-j * (m16)) - (gone * 16) - (m16/2) - 1;
 t3 = t2 - (m16/2);//t3 = t2 - (m2/2);
 dr16tab[j+fr16] = (((glog2(fabs (1 - gexp2(t3)))) - fr16tab[j+fr16])
 / (-m16/2))*-gone;

 }

 return;
}

void er16table (void)
{
 long long int i,j;
 long long int t0,t1,t2,t3,t4,t5;

 for (i = 0; i < fr16; i++)
 {
 t0 = (-i * (m16)) - (gone * 16);
 t1 = t0 - (m16/2);
 t2 = t0 + (-m16/4);
 er16tab[i] = (-((fr16tab[i] + (((-m16/4) * -dr16tab[i])/gone)) –
 (glog2(fabs (1 - gexp2(t2))))));

 }

 for (j = 0; j < fr16; j++)
 {
 t3 = (-j * (m16)) - (gone * 16) - (m16/2);
 t4 = t3 - (m16/2);
 t5 = t3 + (-m16/4);
 er16tab[j+fr16] = (-((fr16tab[j+fr16] + (((-m16/4) * -
 dr16tab[j+fr16])/gone)) - (glog2(fabs (1 –
 gexp2(t5))))));
 }

 return;
}

void ptable (void)
{
 long long int i;
 double t,error,error1,error2,temp;

 161

 for (i = 0; i < p; i++)
 {
 t = (-gone * 2.0) - ((m2/2) / p) * i ;//- (m2/2)
 error1 = (fr2tab[0] + ((-m2/2) / p) * i * -dr2tab[0]/gone);
 error2 = glog2(fabs (1 - gexp2 (t)));
 error = error1 - error2;
 temp = (error / er2tab[0]) * gone;
 ptab[i] = temp;
 }

 return;
}

long long int lookupfr1 (long long int arg)
{
 long long int t,r;

 r = arg % m1;

 if (r < (m1/2))
 {
 t = (arg - gone) / (m1);
 }

 else
 {
 t = (arg - gone) / (m1) + f;
 }

 return fr1tab[t];
}

long long int lookupdr1 (long long int arg)
{
 long long int t,r;

 r = arg % m1;

 if (r < (m1/2))
 {
 t = (arg - gone) / (m1);
 }

 else
 {
 t = (arg - gone) / (m1) + f;
 }

 return dr1tab[t];
}

long long int lookuper1 (long long int arg)
{
 long long int t,r;

 r = arg % m1;

 if (r < (m1/2))
 {
 t = (arg - gone) / (m1);
 }

 else

 162

 {
 t = (arg - gone) / (m1) ;
 }

 return er1tab[t];
}

long long int lookupfr2 (long long int arg)
{
 long long int t,r;

 r = arg % m2;

 if (r < (m2/2))
 {
 t = (arg - gone * 2) / (m2);
 }

 else
 {
 t = (arg - gone * 2) / (m2) + f;
 }

 return fr2tab[t];
}

long long int lookupdr2 (long long int arg)
{
 long long int t,r;

 r = arg % m2;

 if (r < (m2/2))
 {
 t = (arg - gone * 2) / (m2);
 }

 else
 {
 t = (arg - gone * 2) / (m2) + f;
 }

 return dr2tab[t];
}

long long int lookuper2 (long long int arg)
{
 long long int t,r;

 r = arg % m2;

 if (r < (m2/2))
 {
 t = (arg - gone * 2) / (m2);
 }

 else
 {
 t = (arg - gone * 2) / (m2) ;
 }

 return er2tab[t];
}

 163

long long int lookupfr4 (long long int arg)
{
 long long int t,r;

 r = arg % m4;

 if (r < (m4/2))
 {
 t = (arg - gone * 4) / (m4);
 }

 else
 {
 t = (arg - gone * 4) / (m4) + f;
 }

 return fr4tab[t];
}

long long int lookupdr4 (long long int arg)
{
 long long int t,r;

 r = arg % m4;

 if (r < (m4/2))
 {
 t = (arg - gone * 4) / (m4);
 }

 else
 {
 t = (arg - gone * 4) / (m4) + f;
 }

 return dr4tab[t];
}

long long int lookuper4 (long long int arg)
{
 long long int t,r;

 r = arg % m4;

 if (r < (m4/2))
 {
 t = (arg - gone * 4) / (m4);
 }

 else
 {
 t = (arg - gone * 4) / (m4) ;
 }

 return er4tab[t];
}

long long int lookupfr8 (long long int arg)
{
 long long int t,r;

 r = arg % m8;

 164

 if (r < (m8/2))
 {
 t = (arg - gone * 8) / (m8);
 }

 else
 {
 t = (arg - gone * 8) / (m8) + f;
 }

 return fr8tab[t];
}

long long int lookupdr8 (long long int arg)
{
 long long int t,r;

 r = arg % m8;

 if (r < (m8/2))
 {
 t = (arg - gone * 8) / (m8);
 }

 else
 {
 t = (arg - gone * 8) / (m8) + f;
 }

 return dr8tab[t];
}

long long int lookuper8 (long long int arg)
{
 long long int t,r;

 r = arg % m8;

 if (r < (m8/2))
 {
 t = (arg - gone * 8) / (m8);
 }

 else
 {
 t = (arg - gone * 8) / (m8) ;
 }

 return er8tab[t];
}

long long int lookupfr16 (long long int arg)
{
 long long int t,r;

 r = arg % m16;

 if (r < (m16/2))
 {
 t = (arg - gone * 16) / (m16);
 }

 165

 else
 {
 t = (arg - gone * 16) / (m16) + fr16;
 }

 return fr16tab[t];
}

long long int lookupdr16 (long long int arg)
{
 long long int t,r;

 r = arg % m16;

 if (r < (m16/2))
 {
 t = (arg - gone * 16) / (m16);
 }

 else
 {
 t = (arg - gone * 16) / (m16) + fr16;
 }

 return dr16tab[t];
}

long long int lookuper16 (long long int arg)
{
 long long int t,r;

 r = arg % m16;

 if (r < (m16/2))
 {
 t = (arg - gone * 16) / (m16);
 }

 else
 {
 t = (arg - gone * 16) / (m16) + fr16;
 }

 return er16tab[t];
}

long long int lookupp (long long int arg)
{
 long long int t;

 t = arg;

 return ptab[t];
}

long long int sub1 (long long int arg1, long long int arg2)
{
 long long int s1,s2,s4,s8,s16;
 long long int t,t1,t2;
 long long int res;
 long long int r,fr,dr,er,pd;
 long long int k;
 double k1;

 166

 r = -arg2;

 k1 = (r*2) / gone;
 k = k1;

 if (k <= 1)// -1 < r < 0
 {
 t = 0;
 fr = 0;
 dr = 0;
 er = 0;
 s1 = 0;
 pd = 0;
 goto mult;
 }

 if (k <= 3)// -2 < r < -1
 {
 t = (r % (m1/2));
 fr = lookupfr1(r);
 dr = lookupdr1(r);
 er = lookuper1(r);
 s1 = ((r % (m1/2)) / ((m1/2) / p));
 pd = lookupp(s1);
 goto mult;
 }

 if (k <= 7)// -4 < r < -2
 {
 t = (r % (m2/2));
 fr = lookupfr2(r);
 dr = lookupdr2(r);
 er = lookuper2(r);
 s2 = ((r % (m2/2)) / ((m2/2) / p));
 pd = lookupp(s2);
 goto mult;
 }

 if (k <= 15)// -8 < r < -4
 {
 t = (r % (m4/2));
 fr = lookupfr4(r);
 dr = lookupdr4(r);
 er = lookuper4(r);
 s4 = ((r % (m4/2)) / ((m4/2) / p));
 pd = lookupp(s4);
 goto mult;
 }

 if (k <= 31)// -16 < r < -8
 {
 t = (r % (m8/2));
 fr = lookupfr8(r);
 dr = lookupdr8(r);
 er = lookuper8(r);
 s8 = ((r % (m8/2)) / ((m8/2) / p));
 pd = lookupp(s8);
 goto mult;
 }

 if (k <= 63) // -32 < r < -16

 167

 {
 t = (r % (m16/2));
 fr = lookupfr16(r);
 dr = lookupdr16(r);
 er = lookuper16(r);
 s16 = ((r % (m16/2)) / ((m16/2) / p));
 pd = lookupp(s16);
 goto mult;
 }

 if (k <= 511)
 {
 fr = 0;
 dr = 0;
 er = 0;
 t = 0;
 pd = 0;
 goto mult;
 }

 mult:

 t1 = ((er) * pd);
 t1 = t1 / gone;
 t2 = t * dr;
 t2 = t2 / gone;
 res = arg1 + fr + t2 - t1;

 return res;
}

/*Generate floating point numbers */
double subx (long long int arg1, long long int arg2)
{

 long long int tmp;
 double fr,result;

 tmp = arg1 - arg2;

 if (tmp == 0)
 {
 result = -maxcomp;
 goto end;
 }
 else
 {
 fr = log2e * log (1 - exp (ln2 * (arg2 - arg1) / (gone))) * (gone);
 result = arg1 + fr;
 }
 end:

 return result;
}

/***/
/* GENERATE LNS SUBTRACTOR USING RANGE SHIFTED METHODS */
/***/
/*Select region of 'r'*/

 168

long long int suby (long long int arg1,long long int arg2)
{
 long long int a1,r;
 long long int j,j2;
 long long int k1,k11;
 long long int i1,i2;
 long long int t,t1,t2,t3,t4;
 long long int r1,r2,r11,r12;
 long long int result;

 a1 = arg1; //i
 r = arg2; //j-i

 /*****************/
 /* REGION r = 0 */
 /*****************/
 if (r == 0)
 {
 result = -maxcomp;
 goto end;
 }

 /***************************/
 /* REGION -delta11 < r < 0 */
 /***************************/
 if (r > -f3)
 //The computation of result based upon accessing F3 table directly
 {
 t = (-(r % f3) / g);
 result = a1 + f3tab[t];
 goto end;
 }

 /*********************************/
 /* REGION -delta1 < r < -delta11 */
 /*********************************/
 t = -f2f3;
 //The computation of result based upon 1st order arch.
 if (r > t)
 {
 t1 = (-(r % f3) / g);

 if (t1 == 0)
 {
 t2 = (f3/g) - (-r / f3);
 t3 = 0;
 }
 else
 {

t2 = (f3/g) - (-r / f3) - 1;
 t3 = (f3/g) - t1;
 }

 i2 = a1 + f2tab[t2];
 r2 = r + f3tab[t3] - f2tab[t2];
 result = sub1(i2,r2);

 goto end;
 }

 else
 {

 169

 a1 = a1;
 r = r;
 }

 /***************************/
 /* REGION -1 < r < -delta1 */
 /***************************/
 t = -gone;
 if (r > t)
 {
 if (((r % f2f3)) < -(f2f3 - f3))
 //when middle+low fields are lesser than FF000h, then executes
 //the operation based upon 1st order arch using only F1 and F3 tables
 {
 r1 = -r / f2f3;
 t1 = (((r % f2f3)/g) + (f2f3)/g);
 i2 = a1 + f1tab[r1];

r2 = r + f3tab[t1] - f1tab[r1];
result = sub1(i2,r2);

 }

 else
 //The computation of result based upon 2nd order arch.
 {
 r1 = -r / f2f3;
 k11 = (-(r % f3) / g);

r11 = (-(r % f2f3) / f3);
k1 = -((r % f2f3) + f2f3);
r12 = k1 + f3tab[k11] - f2tab[r11];

 i1 = (r + a1) + f2tab[r11];
 j2 = sub1(i1,r12);

i2 = a1 + f1tab[r1];
r2 = j2 - i2;
result = sub1(i2,r2);

 }
 goto end;
 }

 /*****************/
 /* REGION r < -1 */
 /*****************/
 else
 {
 result = sub1(a1,r);
 goto end;
 }

 end:

 return result;
}

long long int yrnd (long long int arg)
{
 long long int rem,yrnd;

 rem = (arg % (g));
 if(rem < 0)
 {
 if (-rem <= (g / 2))
 {

yrnd = ((arg - rem) / g);

 170

 }
 else
 {
 yrnd = ((arg - g - rem)/g);
 }
 }
 else
 {
 if (rem <= ((g) / 2))
 {
 yrnd = (arg - rem) / (g);
 }
 else
 {
 yrnd = ((arg+(g)-rem))/(g);
 }
 }

 return yrnd;
}

void compare (void)
{
 long long int j,i,ry,y,n;

double x, rx, errl, errgl, maxherrgl, maxlerrgl, maxlerrl, maxlerr2,
 maxherr2, maxlerr, maxherrl, maxherr, cumerrl, cummoderrl, err,
 cumerr, cummoderr;

 maxherrgl = 0;
 maxlerrgl = 0;
 maxherrl = 0;
 maxlerrl = 0;
 maxherr = 0;
 maxlerr = 0;
 cumerrl = 0;
 cumerr = 0;
 cummoderrl = 0;
 cummoderr = 0;
 n = 0;

//arg1 = 1; /* due to i sets to zero, =>(i*g==0*g) */

 for (j=0; j>=-201326592; j--) //executes from 0 to -24 (essential zero)
 {
 arg2 = (j*g);

 y = suby(arg1,arg2);
 x = subx(arg1,arg2);

 errgl = y - x;

 if (errgl>maxherrgl)
 {
 maxherrgl = errgl;
 }

 if (errgl<maxlerrgl)
 {
 maxlerrgl = errgl;
 }

 ry = yrnd(y);

 171

 rx = x/(step*g);
 errl = ry - rx;

 if (errl<maxlerrl)
 {
 maxlerrl = errl;
 maxlerr = (exp(ln2*(errl/gone))-1)*gone;
 maxlerr2 = (errl/rx)*gone;
 }
 if (errl>maxherrl)
 {
 maxherrl = errl;
 maxherr = (exp(ln2*(errl/gone))-1)*gone;
 maxherr2 = (errl/rx)*gone;
 }

 cumerrl = (cumerrl+errl);
 cummoderrl = (cummoderrl + fabs(errl));
 err = (exp(ln2*(errl/gone))-1)*gone;
 cumerr = (cumerr + err);
 cummoderr = (cummoderr + fabs(err));
 n = n + 1;

 printf("~~~~~~~~~~#######################~~~~~~~~~~~~~~\n");
 printf("SIMULATION OF ADVANCED LOGARITHMIC SUBTRACTION\n");
 printf("maxerr @ i %lli\t j %lli\n",arg1,j);
 printf("x %lf\t rx %lf\n",x,rx);
 printf("y %lli\t\t ry %lli\n",y,ry);
 printf("LSGB hi e %lf\t lo e %lf\n",maxherrgl,maxlerrgl);
 printf("LSB hi e %lf\t lo e %lf\n",maxherrl,maxlerrl);
 printf(" av |e| %lf\t av e %lf\n",(cummoderrl/n),(cumerrl/n));
 printf("REL hi e %lf\t lo e %lf\n",maxherr,maxlerr);
 printf(" av |e| %lf\t av e %lf\n\n",(cummoderr/n),(cumerr/n));
 }

}

main ()
{
 ln2 = log (2);
 log2e = 1 / ln2;
 f1table ();
 f2table ();
 f3table ();
 fr1table ();
 dr1table ();
 er1table ();
 fr2table ();
 dr2table ();
 er2table ();
 fr4table ();
 dr4table ();
 er4table ();
 fr8table ();
 dr8table ();
 er8table ();
 fr16table ();
 dr16table ();
 er16table ();
 ptable ();
 compare ();
 return (0);
}

 172

A3. VHDL Model for 32-bit LNS Add/Subtract Unit

--
-- Title : LNS addsub (entity)
-- Filename : LNS AddSub with 2nd order with improved interpolation
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.NUMERIC_STD.ALL;

entity LNSaddsub is
 port(
 -- Inputs
 s_addsub : in std_logic; --Operation to perform add(0)/sub(1)
 sa : in std_logic; --Value-sign of operand A
 sb : in std_logic; --Value-sign of operand B
 a : in std_logic_vector(30 downto 0);
 b : in std_logic_vector(30 downto 0);

 -- ROM interfaces:
 clk : in std_logic;

 -- Outputs:
 sq : out std_logic;
 q : out std_logic_vector(30 downto 0);
 oflow : out std_logic;
 uflow : out std_logic
);

end LNSaddsub;

architecture rtl of LNSaddsub is
-- Components

component checkops is
 port(
 SA : in std_logic; -- value-sign bit of operand A
 SB : in std_logic; -- value-sign bit of operand B
 A : in std_logic_vector(30 downto 0);
 B : in std_logic_vector(30 downto 0);
 s_addsub : in std_logic; -- add#/sub (operation to perform)
 NEG : out std_logic;
 Azero : out std_logic;
 Bzero : out std_logic
);

end component;

component setvalues is
 port (
 A : in std_logic_vector(30 downto 0);
 B : in std_logic_vector(30 downto 0);
 i : out signed(31 downto 0);
 j : out signed(31 downto 0);
 r : out signed(31 downto 0);
 AltB : out std_logic;
 AeqB : out std_logic
);
end component;

 173

component rs_region is
 port (s_addsub : in STD_LOGIC;
 r : in signed (31 downto 0);
 i : in signed (31 downto 0);
 j : in signed (31 downto 0);
 F1_addr : out STD_LOGIC_VECTOR (6 downto 0);
 F1 : in STD_LOGIC_VECTOR (31 downto 0);
 F2_addr : out STD_LOGIC_VECTOR (7 downto 0);
 F2 : in STD_LOGIC_VECTOR (32 downto 0);
 F3_addr : out STD_LOGIC_VECTOR (7 downto 0);
 F3 : in STD_LOGIC_VECTOR (33 downto 0);
 r1a : out signed (37 downto 0);
 i1 : out signed (37 downto 0);
 i2 : out signed (37 downto 0);
 rs_cu : out std_logic;
 rs_infi : out std_logic;
 ResFromF3 : out signed (37 downto 0);
 val_near_zero : out std_logic;
 val_near_modtwo : out std_logic
);
end component;

component cu_int is
 port(
 clk : in std_logic;
 s_addsub : in std_logic;
 val_near_modtwo : in std_logic;
 rs_cu : in std_logic;
 rs_infi : in std_logic;
 en_busA : out std_logic;
 sel_busA : out std_logic;
 en_busB : out std_logic
);
end component;

component busA is
 port (
 clk : in std_logic;
 s_addsub : std_logic;
 en : in std_logic;
 sel : in std_logic;
 rs_infi : in std_logic;
 r1a : in std_logic_vector (37 downto 0);
 i1 : in signed (37 downto 0);
 i2 : in signed (37 downto 0);
 r2 : in std_logic_vector (37 downto 0);
 r : out std_logic_vector (37 downto 0);
 i : out signed (37 downto 0)
);
end component;

component subR2 is
 port (
 a : in std_logic_vector (37 downto 0);
 b : in std_logic_vector (37 downto 0);
 result : out std_logic_vector (37 downto 0));
end component;

component partLookup2 is
 port(
 r_int : in std_logic_vector(37 downto 0);
 s_addsub : in std_logic; --sum#/diff

 174

 -- ROM interface
 F1a_addr : out std_logic_vector(7 downto 0);
 D1a_addr : out std_logic_vector(7 downto 0);
 E1a_addr : out std_logic_vector(5 downto 0);
 F2a_addr : out std_logic_vector(7 downto 0);
 D2a_addr : out std_logic_vector(7 downto 0);
 E2a_addr : out std_logic_vector(5 downto 0);
 F4a_addr : out std_logic_vector(7 downto 0);
 D4a_addr : out std_logic_vector(7 downto 0);
 E4a_addr : out std_logic_vector(5 downto 0);
 F8a_addr : out std_logic_vector(7 downto 0);
 D8a_addr : out std_logic_vector(7 downto 0);
 E8a_addr : out std_logic_vector(5 downto 0);
 F16a_addr : out std_logic_vector(7 downto 0);
 D16a_addr : out std_logic_vector(7 downto 0);
 E16a_addr : out std_logic_vector(5 downto 0);
 F32a_addr : out std_logic_vector(4 downto 0);
 D32a_addr : out std_logic_vector(4 downto 0);
 E32a_addr : out std_logic_vector(4 downto 0);

 F2_addr : out std_logic_vector(7 downto 0);
 D2_addr : out std_logic_vector(7 downto 0);
 E2_addr : out std_logic_vector(6 downto 0);
 F4_addr : out std_logic_vector(7 downto 0);
 D4_addr : out std_logic_vector(7 downto 0);
 E4_addr : out std_logic_vector(6 downto 0);
 F8_addr : out std_logic_vector(7 downto 0);
 D8_addr : out std_logic_vector(7 downto 0);
 E8_addr : out std_logic_vector(6 downto 0);
 F16_addr : out std_logic_vector(7 downto 0);
 D16_addr : out std_logic_vector(7 downto 0);
 E16_addr : out std_logic_vector(6 downto 0);
 F32_addr : out std_logic_vector(4 downto 0);
 D32_addr : out std_logic_vector(4 downto 0);
 E32_addr : out std_logic_vector(4 downto 0);
 P_addr : out std_logic_vector(8 downto 0);

 delta : out std_logic_vector(27 downto 0)
);

end component;

component addmul_WT2 is
 port(
 i : in std_logic_vector (37 downto 0);
 r2 : in std_logic_vector (37 downto 0);
 s_addsub : std_logic;
 F1a : in std_logic_vector (29 downto 0);
 D1a : in std_logic_vector (28 downto 0);
 E1a : in std_logic_vector (11 downto 0);
 F2a : in std_logic_vector (29 downto 0);
 D2a : in std_logic_vector (28 downto 0);
 E2a : in std_logic_vector (11 downto 0);
 F4a : in std_logic_vector (29 downto 0);
 D4a : in std_logic_vector (28 downto 0);
 E4a : in std_logic_vector (11 downto 0);
 F8a : in std_logic_vector (29 downto 0);
 D8a : in std_logic_vector (28 downto 0);
 E8a : in std_logic_vector (11 downto 0);
 F16a : in std_logic_vector (29 downto 0);
 D16a : in std_logic_vector (28 downto 0);
 E16a : in std_logic_vector (11 downto 0);

 175

 F32a : in std_logic_vector (29 downto 0);
 D32a : in std_logic_vector (28 downto 0);
 E32a : in std_logic_vector (11 downto 0);

 F2 : in std_logic_vector (29 downto 0);
 D2 : in std_logic_vector (28 downto 0);
 E2 : in std_logic_vector (11 downto 0);
 F4 : in std_logic_vector (29 downto 0);
 D4 : in std_logic_vector (28 downto 0);
 E4 : in std_logic_vector (11 downto 0);
 F8 : in std_logic_vector (29 downto 0);
 D8 : in std_logic_vector (28 downto 0);
 E8 : in std_logic_vector (11 downto 0);
 F16 : in std_logic_vector (29 downto 0);
 D16 : in std_logic_vector (28 downto 0);
 E16 : in std_logic_vector (11 downto 0);
 F32 : in std_logic_vector (29 downto 0);
 D32 : in std_logic_vector (28 downto 0);
 E32 : in std_logic_vector (11 downto 0);
 Ptab : in std_logic_vector (29 downto 0);
 delta : in std_logic_vector(27 downto 0);
 result : out std_logic_vector (37 downto 0)
);
end component;

component busB is
 port (
 en : in std_logic;
 s_result : in std_logic_vector (37 downto 0);
 result_out : out std_logic_vector (37 downto 0)
);
end component;

component resultStatus is
 port (s_addsub : in STD_LOGIC;
 s_result : in std_logic_vector (37 downto 0);
 j : in signed (31 downto 0);
 i : in signed (31 downto 0);
 ResFromF3 : in signed (37 downto 0);
 val_near_zero : in std_logic;
 val_near_modtwo : in std_logic;
 Azero : in std_logic;
 Bzero :in std_logic;
 NEG :in std_logic;
 AltB : in std_logic;
 AeqB : in std_logic;
 SQ : out std_logic;
 Q : out STD_LOGIC_VECTOR (30 downto 0);
 Oflow : out std_logic;
 Uflow : out std_logic
);
end component;

component LUT256a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(32 downto 0)
);
end component;

component LUT256b is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);

 176

 data_out : out std_logic_vector(33 downto 0)
);
end component;

component LUT128 is
 port (clk : in std_logic;
 address : in std_logic_vector(6 downto 0);
 data_out : out std_logic_vector(31 downto 0)
);
end component;

component f1a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d1a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e1a is
 port (clk : in std_logic;
 address : in std_logic_vector(5 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f2a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d2a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e2a is
 port (clk : in std_logic;
 address : in std_logic_vector(5 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f4a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d4a is
 port (clk : in std_logic;

 177

 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e4a is
 port (clk : in std_logic;
 address : in std_logic_vector(5 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f8a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d8a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e8a is
 port (clk : in std_logic;
 address : in std_logic_vector(5 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f16a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d16a is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e16a is
 port (clk : in std_logic;
 address : in std_logic_vector(5 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f32a is
 port (clk : in std_logic;
 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d32a is
 port (clk : in std_logic;

 178

 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e32a is
 port (clk : in std_logic;
 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f2 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d2 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e2 is
 port (clk : in std_logic;
 address : in std_logic_vector(6 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f4 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d4 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e4 is
 port (clk : in std_logic;
 address : in std_logic_vector(6 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f8 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d8 is
 port (clk : in std_logic;

 179

 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e8 is
 port (clk : in std_logic;
 address : in std_logic_vector(6 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f16 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d16 is
 port (clk : in std_logic;
 address : in std_logic_vector(7 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e16 is
 port (clk : in std_logic;
 address : in std_logic_vector(6 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component f32 is
 port (clk : in std_logic;
 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

component d32 is
 port (clk : in std_logic;
 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(28 downto 0)
);
end component;

component e32 is
 port (clk : in std_logic;
 address : in std_logic_vector(4 downto 0);
 data_out : out std_logic_vector(11 downto 0)
);
end component;

component ptable is
 port (clk : in std_logic;
 address : in std_logic_vector(8 downto 0);
 data_out : out std_logic_vector(29 downto 0)
);
end component;

--wires checkops
signal NEG,Azero,Bzero : std_logic;

 180

--wires setvalues
signal i,j,r : signed (31 downto 0);
signal AltB,AeqB : std_logic;

--wires rangeshifter -1 < r < 0
signal F1_addr_rs : std_logic_vector (6 downto 0);
signal F1_rs : std_logic_vector (31 downto 0);
signal F2_addr_rs : std_logic_vector (7 downto 0);
signal F2_rs : std_logic_vector (32 downto 0);
signal F3_addr_rs : std_logic_vector (7 downto 0);
signal F3_rs : std_logic_vector (33 downto 0);
signal r1a,i1,i2 : signed (37 downto 0);
signal ResFromF3 : signed (37 downto 0);
signal val_near_zero,val_near_modtwo : std_logic;
signal rs_cu : std_logic;

--wires control unit interpolator
signal en_busA : std_logic;
signal sel_busA : std_logic;
signal en_busB : std_logic;
signal rs_infi : std_logic;

--wires busA
signal i_int : signed (37 downto 0);
signal r_int : std_logic_vector (37 downto 0);
signal r1a_us : std_logic_vector(37 downto 0);

--sub r2
signal r2_new : std_logic_vector(37 downto 0);
signal i2_new_us : std_logic_vector(37 downto 0);

--wires partlookup
signal F1a_addr,F2a_addr,F4a_addr,F8a_addr,F16a_addr : std_logic_vector (7
downto 0);
signal D1a_addr,D2a_addr,D4a_addr,D8a_addr,D16a_addr : std_logic_vector (7
downto 0);
signal E1a_addr,E2a_addr,E4a_addr,E8a_addr,E16a_addr : std_logic_vector (5
downto 0);
signal F32a_addr,D32a_addr,E32a_addr : std_logic_vector (4 downto 0);
signal F2s_addr,F4s_addr,F8s_addr,F16s_addr : std_logic_vector (7 downto 0);
signal D2s_addr,D4s_addr,D8s_addr,D16s_addr : std_logic_vector (7 downto 0);
signal E2s_addr,E4s_addr,E8s_addr,E16s_addr : std_logic_vector (6 downto 0);
signal F32s_addr,D32s_addr,E32s_addr : std_logic_vector (4 downto 0);
signal P_addr : std_logic_vector (8 downto 0);
signal delta : std_logic_vector (27 downto 0);

--wires addmul
signal i_int_us : std_logic_vector (37 downto 0);
signal F1a_LUT,F2a_LUT,F4a_LUT,F8a_LUT,F16a_LUT,F32a_LUT : std_logic_vector
(29 downto 0);
signal D1a_LUT,D2a_LUT,D4a_LUT,D8a_LUT,D16a_LUT,D32a_LUT : std_logic_vector
(28 downto 0);
signal E1a_LUT,E2a_LUT,E4a_LUT,E8a_LUT,E16a_LUT,E32a_LUT : std_logic_vector
(11 downto 0);
signal F2s_LUT,F4s_LUT,F8s_LUT,F16s_LUT,F32s_LUT : std_logic_vector (29
downto 0);
signal D2s_LUT,D4s_LUT,D8s_LUT,D16s_LUT,D32s_LUT : std_logic_vector (28
downto 0);
signal E2s_LUT,E4s_LUT,E8s_LUT,E16s_LUT,E32s_LUT : std_logic_vector (11
downto 0);
signal P : std_logic_vector (29 downto 0);

 181

--wires busB
signal result : std_logic_vector (37 downto 0);
signal result_tmp : std_logic_vector (37 downto 0);

begin

check_ops : checkops port map (sa,sb,a,b,s_addsub,NEG,Azero,Bzero);

set_values : setvalues port map (a,b,i,j,r,AltB,AeqB);

rangeshifter : rs_region port map
(s_addsub,r,i,j,F1_addr_rs,F1_rs,F2_addr_rs,F2_rs,F3_addr_rs,F3_rs,r1a,i1,i
2,rs_cu,rs_infi,ResFromF3,val_near_zero,val_near_modtwo);

control_unit_int : cu_int port map
(clk,s_addsub,val_near_modtwo,rs_cu,rs_infi,en_busA,sel_busA,en_busB);

r1a_us <= std_logic_vector(r1a(37 downto 0));--change bits to unsigned
mux_busA : busA port map
(clk,s_addsub,en_busA,sel_busA,rs_infi,r1a_us,i1,i2,r2_new,r_int,i_int);

LUT_lookup : partlookup2 port map
(r_int,s_addsub,F1a_addr,D1a_addr,E1a_addr,F2a_addr,D2a_addr,E2a_addr,F4a_a
ddr,D4a_addr,E4a_addr,F8a_addr,D8a_addr,E8a_addr,F16a_addr,D16a_addr,E16a_a
ddr,F32a_addr,D32a_addr,E32a_addr,F2s_addr,D2s_addr,E2s_addr,F4s_addr,D4s_a
ddr,E4s_addr,F8s_addr,D8s_addr,E8s_addr,F16s_addr,D16s_addr,E16s_addr,F32s_
addr,D32s_addr,E32s_addr,P_addr,delta);

i_int_us <= std_logic_vector(i_int(37 downto 0));--change bits to unsigned
LUT_addmul : addmul_WT2 port map
(i_int_us,r_int,s_addsub,F1a_LUT,D1a_LUT,E1a_LUT,F2a_LUT,D2a_LUT,E2a_LUT,F4
a_LUT,D4a_LUT,E4a_LUT,F8a_LUT,D8a_LUT,E8a_LUT,F16a_LUT,D16a_LUT,E16a_LUT,F3
2a_LUT,D32a_LUT,E32a_LUT,F2s_LUT,D2s_LUT,E2s_LUT,F4s_LUT,D4s_LUT,E4s_LUT,F8
s_LUT,D8s_LUT,E8s_LUT,F16s_LUT,D16s_LUT,E16s_LUT,F32s_LUT,D32s_LUT,E32s_LUT
,P,delta,result_tmp);

i2_new_us <= std_logic_vector(i2(37 downto 0));
sub_r2 : subR2 port map (i2_new_us,result_tmp,r2_new);

mux_busB : busB port map (en_busB,result_tmp,result);

Final_result : resultStatus port map
(s_addsub,result,j,i,ResFromF3,val_near_zero,val_near_modtwo,Azero,Bzero,NE
G,AltB,AeqB,sq,q,oflow,uflow);

--ROMs

F1table : LUT128 port map (clk,F1_addr_rs,F1_rs);

F2table : LUT256a port map (clk,F2_addr_rs,F2_rs);

F3table : LUT256b port map (clk,F3_addr_rs,F3_rs);

F1int_add : f1a port map (clk,F1a_addr,F1a_LUT);

D1int_add : d1a port map (clk,D1a_addr,D1a_LUT);

E1int_add : e1a port map (clk,E1a_addr,E1a_LUT);

F2int_add : f2a port map (clk,F2a_addr,F2a_LUT);

D2int_add : d2a port map (clk,D2a_addr,D2a_LUT);

 182

E2int_add : e2a port map (clk,E2a_addr,E2a_LUT);

F4int_add : f4a port map (clk,F4a_addr,F4a_LUT);

D4int_add : d4a port map (clk,D4a_addr,D4a_LUT);

E4int_add : e4a port map (clk,E4a_addr,E4a_LUT);

F8int_add : f8a port map (clk,F8a_addr,F8a_LUT);

D8int_add : d8a port map (clk,D8a_addr,D8a_LUT);

E8int_add : e8a port map (clk,E8a_addr,E8a_LUT);

F16int_add : f16a port map (clk,F16a_addr,F16a_LUT);

D16int_add : d16a port map (clk,D16a_addr,D16a_LUT);

E16int_add : e16a port map (clk,E16a_addr,E16a_LUT);

F32int_add : f32a port map (clk,F32a_addr,F32a_LUT);

D32int_add : d32a port map (clk,D32a_addr,D32a_LUT);

E32int_add : e32a port map (clk,E32a_addr,E32a_LUT);

F2int_sub : f2 port map (clk,F2s_addr,F2s_LUT);

D2int_sub : d2 port map (clk,D2s_addr,D2s_LUT);

E2int_sub : e2 port map (clk,E2s_addr,E2s_LUT);

F4int_sub : f4 port map (clk,F4s_addr,F4s_LUT);

D4int_sub : d4 port map (clk,D4s_addr,D4s_LUT);

E4int_sub : e4 port map (clk,E4s_addr,E4s_LUT);

F8int_sub : f8 port map (clk,F8s_addr,F8s_LUT);

D8int_sub : d8 port map (clk,D8s_addr,D8s_LUT);

E8int_sub : e8 port map (clk,E8s_addr,E8s_LUT);

F16int_sub : f16 port map (clk,F16s_addr,F16s_LUT);

D16int_sub : d16 port map (clk,D16s_addr,D16s_LUT);

E16int_sub : e16 port map (clk,E16s_addr,E16s_LUT);

F32int_sub : f32 port map (clk,F32s_addr,F32s_LUT);

D32int_sub : d32 port map (clk,D32s_addr,D32s_LUT);

E32int_sub : e32 port map (clk,E32s_addr,E32s_LUT);

Ptab : ptable port map (clk,P_addr,P);

end rtl;

	ABSTRACT
	ACKNOWLEDGEMENTS
	Introduction
	1.1. Motivation for the Research
	1.2. An Overview of the LNS
	1.3. Contribution of the Thesis
	1.4. Structure of the Thesis

	Background and Previous Work
	2.1. Introduction
	2.2. Computer Arithmetic Unit
	2.3. Number Systems Representation
	2.3.1. Floating Point
	2.3.2. Logarithmic Number System

	2.4. Floating-Point Algorithms
	2.5. Logarithmic Number System Algorithms
	2.5.1. Direct Lookup Table
	2.5.2. Interpolation
	2.5.3. Table Partitioning
	2.5.4. Bipartite Tables
	2.5.5. Co-transformation
	2.5.6. Hybrid Architecture
	2.5.7. Related Variant Number Systems

	2.6. Performance Analysis
	2.7. LNS for Specific Applications
	2.8. Summary

	Metrics for Measurement and Design Methodology
	3.1. Introduction
	3.2. Metrics for Measurement
	3.2.1. Error Analysis
	3.2.2. Functional Evaluation
	3.2.3. Timing Evaluation
	3.2.4. Area Estimation

	3.3. Design Methodologies
	3.3.1. Simulator Design Flow
	3.3.2. Circuit Design Flow
	3.3.3. Synthesis Design Flow

	3.4. Summary

	Recent 32-bit Arithmetic Implementations
	4.1. Introduction
	4.2. Leading Published Design: ELM processor
	4.2.1. ELM Interpolation: Error Correction Algorithm
	4.2.1.1. Taylor Approximation

	4.3. Simulation Results
	4.4. Design Summary
	4.5. Synthesis Results
	4.6. FLP Devices
	4.7. Comparison Analysis: ELM and FLP
	4.8. Summary

	Co-transformation Architecture for LNS Subtraction
	5.1. Introduction
	5.2. First-order Co-transformation Procedure for LNS Subtraction
	5.3. Optimising Lookup Tables for LNS Subtraction
	5.3.1. The New Algorithm: Second-order Co-transformation Procedure for LNS Subtraction
	5.3.2. Function Approximation Scheme
	5.3.3. Simulation Results
	5.3.4. Design Summary

	5.4. Comparison Analysis: First-order and Second-order Co-transformation with the Taylor Interpolator
	5.5. Summary

	6. Function Approximation Scheme for LNS Addition and Subtraction
	6.1. Introduction
	6.2. Function Approximation using Interpolation
	6.3. Linear Interpolation
	6.3.1. Linear Taylor Interpolation
	6.3.2. Linear Lagrange Interpolation
	6.3.3. Linear Lagrange Interpolation – Modified Version
	6.3.4. Comparison of Linear Interpolators

	6.4. Non-linear Interpolation
	6.4.1. High-Order Degree Method
	6.4.2. Error Correction Algorithm
	6.4.2.1. Implementation of Error Correction Algorithm with Lagrange Interpolation

	6.5. Improvement of Non-linear Lagrange Interpolation
	6.5.1. Partitioning the Intervals
	6.5.2. Minimising the Lookup Tables
	6.5.3. Design Summary

	6.6. Alternative Method: Minimax Interpolation
	6.7. ELM with the New Interpolator
	6.7.1. Improved Lagrange Interpolation
	6.7.2. Minimax Interpolation

	6.8. Comparison Analysis: First-order and Second-order Co-transformation with the New Interpolator
	6.9. Summary

	7. Logarithmic Number System Arithmetic Unit
	7.1. Introduction
	7.2. Arithmetic Unit Design
	7.2.1. Multiply/Divide Unit
	7.2.2. Add/Subtract Unit

	7.3. Hardware Implementation of a 32-bit LNS System
	7.4. Synthesis Results
	7.5. Design Analysis
	7.6. Summary

	8. Implementation with Long Word-length Number
	8.1. Introduction
	8.2. The LNS System in a 40-bit Format
	8.2.1. Third-order Co-transformation Procedure for LNS Subtraction
	8.2.2. Interpolation
	8.2.3. Design Summary

	8.3. Design Implementation
	8.3.1. Synthesis Results

	8.4. Performance Analysis
	8.5. Summary

	9. Conclusions and Recommendations
	9.1. Conclusions of the Study
	9.2. Future Extensions

	References
	A Appendices
	Authored and Co-authored Publications
	C Programming Language for 32-bit LNS Subtraction
	VHDL Model for 32-bit LNS Add/Subtract Unit

