
i

Consumer Side Resource Accounting in Cloud Computing

ii

Declaration of Authorship

I declare that work contained in this thesis has not been submitted for any other award

and that it is all my own work; any collaborative work has been explicitly

acknowledged.

Name: Ahmed M Mihoob

Signed: ---

Date : ---

iii

Acknowledgements

It is a pleasure to thank the people who have provided guidance and support during my

time at the School of Computing Science at University of Newcastle. In particular, I

would like to express my sincere gratitude to my PhD. supervisors Prof. Santosh

Shirvastava and Dr. Carlos Molina, who have supported and encouraged me with some

advises, solid knowledge, constrictive ideas, good company and lots of patience

throughout my thesis work.

Many thanks, to the Cultural Affairs Department, Libyan Embassy, London, for their

help and financial support. I would also thank everybody at the School of Computing

Science who have contributed, directly or indirectly, to the success of this work.

I wish to acknowledge my greatest debt family, in particular my mother, father and my

brother Muftha. They never stopped encouraging me to finish this thesis and they

suffered most because of my academic interests.

Finally, heartfelt thanks go to my wife and my children who have stood behind me and

given me huge support during the thesis work.

iv

Abstract:

Cloud computing services made available to consumers range from providing basic

computational resources such as storage and compute power to sophisticated enterprise

application services. A common business model is to charge consumers on a pay-per-

use basis where they periodically pay for the resources they have consumed. The

provider is responsible for measuring and collecting the resource usage data. This

approach is termed provider-side accounting. A serious limitation of this approach is

that consumers have no choice but to take whatever usage data that is made available by

the provider as trustworthy.

This thesis investigates whether it is possible to perform consumer-side resource

accounting where a consumer independently collects, for a given cloud service, all the

data required for calculating billing charges. If this were possible, then consumers will

be able to perform reasonableness checks on the resource usage data available from

service providers as well as raise alarms when apparent discrepancies are suspected in

consumption figures. Two fundamental resources of cloud computing, namely, storage

and computing are evaluated. The evaluation exercise reveals that the resource

accounting models of popular cloud service providers, such as Amazon, are not entirely

suited to consumer-side resource accounting, in that discrepancies between the data

collected by the provider and the consumer can occur. The thesis precisely identifies the

causes that could lead to such discrepancies and points out how the discrepancies can be

resolved.

The results from the thesis can be used by service providers to improve their resource

accounting models. In particular, the thesis shows how an accounting model can be

made strongly consumer–centric so that all the data that the model requires for

calculating billing charges can be collected independently by the consumer. Strongly

consumer–centric accounting models have the desirable property of openness and

transparency, since service users are in a position to verify the charges billed to them.

v

List of Publications

Conference Papers

[1] Ahmed Mihoob, Carlos Molina-Jiménez: A Peer to Peer Protocol for Online

Dispute Resolution over Storage Consumption, YR-SOC 2009, Pizza, EPTCS 2, 2009,

pp, 3-14

[2] A. Mihoob, C. Molina-Jimenez, and S. Shrivastava, “A case for consumer–centric

resource accounting models,” in Proc. IEEE 3rd Int’l Conf. on Cloud

Computing(Cloud’10), 2010, pp. 506–512.

[3] A. Mihoob, C. Molina-Jimenez, and S. Shrivastava, “Consumer side resource

accounting in the cloud”, in Proc. 11th IFIP WG 6.11 Conf. on e-Business, e-Services,

and e-Society (I3E 2011), 2011, pp. 58–72.

Technical reports

[1] Mihoob A, Molina-Jiminez C, Shrivastava S. A Case for Consumer–centric

Resource Accounting Models. Newcastle upon Tyne: University of Newcastle upon

Tyne, 2010. School of Computing Science, Technical Report Series 1222.

[2] Mihoob A, Molina-Jimenez C, Shrivastava S. Consumer Side Resource Accounting

in the Cloud. Newcastle upon Tyne: School of Computing Science, University of

Newcastle upon Tyne, 2011. School of Computing Science, Technical Report Series

1259.

[3] Mihoob A, Molina-Jiminez C, Shrivastava S. A Case for Consumer-centric

Resource Accounting Models. Newcastle upon Tyne: University of Newcastle upon

Tyne, 2012. School of Computing Science, Technical Report Series 1318.

[3] Mihoob A. A Peer to Peer Protocol for Online Dispute Resolution over Storage

Consumption. Newcastle upon Tyne: University of Newcastle upon Tyne, 2012. School

of Computing Science, Technical Report Series TR1325.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Molina=Jim=eacute=nez:Carlos.html
http://www.informatik.uni-trier.de/~ley/db/series/eptcs/eptcs2.html#abs-0906-4302
javascript:ViewPublication(169018);
javascript:ViewPublication(169018);
javascript:ViewPublication(176284);
javascript:ViewPublication(176284);

vi

Contents

CONSUMER SIDE RESOURCE ACCOUNTING IN CLOUD COMPUTINGDECLARATION OF AUTHORSHIP I

ACKNOWLEDGEMENTS ... III

ABSTRACT: ... IV

LIST OF PUBLICATIONS ... V

CONFERENCE PAPERS .. V

TECHNICAL REPORTS ... V

CONTENTS ... VI

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.2 THE PROBLEM STATEMENT AND POSSIBLE SOLUTION .. 2

1.3 MOTIVATION ... 3

1.4 OBJECTIVES ... 4

1.5 THESIS CONTRIBUTIONS ... 5

1.6 THESIS OUTLINE ... 5

CHAPTER 2 ... 7

RELATED WORK ... 7

2.1 INTRODUCTION .. 7

2.2 BACKGROUND .. 8

2.2.1 Characteristics of Cloud Computing ... 9

2.2.2 Cloud Computing Service Models .. 10

2.2.2.1 Software As A Service (SaaS) ... 10

2.2.2.2 Platform As A Service (PaaS) .. 11

2.2.2.3 Infrastructure as a Service ... 11

2.2.3 Architecture of Cloud Service Models .. 12

2.3 CHARGING MODELS IN CLOUD COMPUTING .. 13

2.3.1 Flat rate charging model... 13

2.3.2 Pay-Per-Use charging model .. 13

2.3.2.1 Capacity-on-demand.. 13

2.3.2.2 Consume-on-demand .. 14

2.3.3 Auction charging model.. 14

2.4 RESOURCE ACCOUNTING IN CLOUD COMPUTING ... 14

2.4.1 Resource Accounting System background ... 15

2.4.2 Examples of IT resource accounting ... 18

2.5. TRUST IN RESOURCE ACCOUNTING SERVICE .. 21

vii

2.5.1 Trusted Metering Service ... 22

2.5.2 Trusted Third Party (TTP) .. 24

2.5.3 Bilateral Resource Accounting Service ... 25

2.5.4 The research gap .. 26

2.6 Resource accounting service – issues and challenges 27

2.6.1 Metering Service – background, issues and challenges 27

2.6.1.2 Metering service approaches of monitoring SLAs 28

2.6.2 Accounting Service - background, issues and challenges 30

2.7 SUMMARY ... 33

CHAPTER 3 ... 34

CALCULATING RESOURCE CONSUMPTION .. 34

3.1 INTRODUCTION .. 34

3.2 EXPERIMENTS .. 35

3.2.1 The Scenario ... 36

3.2.2 Assumptions ... 36

3.2.3 Experimental Setup .. 37

3.2.4 Methodology .. 37

3.3 FIRST CASE STUDY: AMAZON S3 .. 38

3.3.1 Charging schema for storage .. 39

3.3.2 Charging schema for bandwidth .. 40

3.3.3 Charging schema for operations .. 41

3.3.4 Error handling ... 41

3.3.5 S3 billing records .. 41

3.3.6 Usage report ... 42

3.3.6.1 Tracking Usage in the Amazon Web Service (AWS) Portal 42

3.3.7 Amazon S3 experiments and results .. 43

3.3.7.1 Amazon S3 usage report .. 43

3.3.7.2 Storage consumption (SC) ... 46

i. Data and metadata ... 47

ii. Checkpoints .. 48

iii. Operations consumption .. 50

3.3.7.4 Bandwidth consumption .. 51

i. Restful Bandwidth consumption ... 52

ii. SOAP Bandwidth consumption .. 52

3.3.8 Amazon S3 Accounting Model Description .. 54

3.3.8.1 General Characteristics of the S3 Accounting Model 54

3.3.8.2 Storage Accounting .. 54

3.3.8.3 Upload Bandwidth Accounting .. 55

viii

3.3.8.4 Download Bandwidth Accounting ... 56

3.3.8.5 Operation Accounting .. 56

i. Requests Tier1 ... 57

ii. Requests Tier2 .. 57

3.3.9 Shortcomings in the Amazon S3 Accounting Model 57

3.3.10 Summary of Amazon S3 case study .. 58

3.3.10.1 General... 58

3.3.10.2 Storage ... 59

3.3.10.3 Operations ... 60

3.3.10.4 Bandwidth .. 60

3.4 SECOND CASE STUDY: NIRVANIX STORAGE DELIVERY NETWORK SERVICES 60

3.4.1 Nirvanix SDN Experiments and Results .. 62

3.4.1.1 Usage Report ... 62

3.4.1.2 Storage ... 63

i. Data and metadata .. 64

ii. Checkpoints .. 65

3.4.2 Operations .. 67

3.4.3 Bandwidth .. 67

3.4.4 Nirvanix SDN Accounting Model Description ... 67

3.4.4.1 General Characteristics .. 67

3.4.4.2 Storage Accounting .. 68

3.4.4.3 Bandwidth Accounting ... 69

3.4.5 Shortcomings in the Nirvanix SDN Accounting Model 69

3.4.6 Summary of Nirvanix NDS case study .. 70

3.4.6.1 General ... 70

3.4.6.2 Storage ... 70

3.4.6.3 Operations ... 71

3.4.6.4 Bandwidth .. 71

3.5 THIRD CASE STUDY: AMAZON EC2 ... 71

3.5.1 EC2 Accounting Model ... 73

3.5.1.1 EC2 Accounting Model Description ... 74

3.5.2 EC2 Experiments and Results ... 77

3.5.2.1 EC2 Usage Report Experiment ... 77

i. EC2 Accounting Model Experiment ... 78

3.5.3 Shortcomings in the Amazon EC2 accounting model 81

3.5.4 Summary of Amazon EC2 case study ... 82

3.6 COMPARING CHARGES ... 82

3.6.1 Resource Calculator (RC) .. 83

3.6.1.1 Estimate resource consumption and cost ... 83

ix

3.6.1.2 Which is the cheapest cloud provider? ... 84

i. Storage Consumption and Cost ... 85

ii. Bandwidth and Operation Consumption and Cost 86

iii. Summary of Compared Resource Consumption and Cost 86

3.7 SUMMARY ... 87

CHAPTER 4 ... 88

CONSUMER SIDE RESOURCE ACCOUNTING ... 88

4.1 INTRODUCTION .. 88

4.2 POTENTIAL SOURCES OF CONFLICT ... 88

4.2.1 Network latency ... 88

4.2.2 Different checkpoints ... 90

4.2.3 Impact of operation latency ... 93

4.2.4 Ambiguous description of accounting models ... 94

4.2.5 The use of different measurement processes .. 97

4.2.6 Other reasons ... 97

4.3 CONSUMER-CENTRIC MODELS .. 100

4.3.1 Abstract resource ... 101

4.3.2 Another Look at Nirvanix, Amazon S3 and EC2 .. 102

4.3.3 Elastic Block Storage ... 103

4.4 SUMMARY ... 105

CHAPTER 5 ... 106

CONCLUSION AND FUTURE WORK .. 106

5.1 SUMMARY OF ACHIEVEMENTS ... 106

5.2 FUTURE WORK... 109

5.2.1 Consumer-side accounting for PaaS and SaaS ... 109

5.2.2 Verifying Billing Charges ... 109

5.2.3 Cost estimation of service delivery .. 112

BIBLIOGRAPHY: .. 113

x

List of Figures

Figure 2. 1 Cloud Service Model Structure [23] .. 12

Figure 2. 2 The accounting system infrastructure [41] .. 15

Figure 2. 3 Simple Accounting System Architecture [47] .. 16

Figure 2. 4 Reference model of resource accounting system [44] ... 17

Figure 2. 5 Metering and accounting for composition e-Service (MACS) 19

Figure 2. 6 Accounting and billing architecture in RESERVOIR. ... 20

Figure 2. 7 Secure Metering phases. .. 23

Figure 2. 8 Resource Accounting Service .. 26

Figure 2. 9 Service Provider Instrumentation approach ... 29

Figure 2. 10 Service Consumer Instrumentation approach .. 29

Figure 2. 11 Periodic polling with probe consumer approach .. 29

Figure 2. 12 Network packet collections with request-response reconstruction approach 30

Figure 3. 1 Experiment’s architecture – consumer/provider .. 36

Figure 3. 2 Impact of data and metadata in storage consumption .. 47

Figure 3. 3 uploading and checkpoint ... 49

Figure 3. 4 Amazon S3’s checkpoint .. 50

Figure 3. 5 bandwidth and operation consumption of a failed operation 51

Figure 3. 6 bandwidth consumption ... 52

Figure 3. 7 impact of data and metadata in storage consumption ... 65

Figure 3. 8 Nirvanix SDN’s checkpoint .. 66

Figure 3. 9 Session of an Amazon instance represented as Finite State Machine. 75

Figure 3. 10 Accurate FSM session representation of an Amazon instance 81

Figure 3. 11 Amazon S3 and Nirvanix storage costs ... 85

Figure 4. 1 impact of network latency in consumer’s and provider’s measurements. 89

xi

Figure 4. 2 Amazon S3’s checkpoint .. 91

Figure 4. 3 The impact of checkpoints on storage accountability .. 91

Figure 4. 4 Network and operation latencies .. 93

Figure 4. 5 Session of an Amazon instance represented as FSM. ... 95

Figure 4. 6 Impact of accumulated resource and consumption intervals. 98

Figure 4. 7 Accounting model of an abstract resource .. 101

Figure 4. 8 EBS accounting model ... 104

Figure 5. 1 Resource deployment ... 110

xii

List of Tables

Table 3. 1 Amazon S3’s Usage Report .. 44

Table 3. 2 Upload Bandwidth Consumption for Put Requests .. 45

Table 3. 3 Download Bandwidth Consumption for Put Requests ... 45

Table 3. 4 Amazon S3’s checkpoint ... 49

Table 3. 5 Amazon S3 Usage Report for Operations ... 50

Table 3. 6 SOAP Requests Metering Data ... 53

Table 3. 7 Amazon S3 Usage Report ... 53

Table 3. 8 Nirvanix SDN’s Daily Usage Report. .. 63

Table 3. 9 Nirvanix SDN’s Usage Report and Consumer’s metering data 66

Table 3. 10 Bandwidth consumption .. 67

Table 3. 11 EC2 pricing schema ... 73

Table 3. 12 Amazon EC2’s Usage Report .. 78

Table 3. 13 Client metering and accounting data with EC2 accounting data 80

Table 3. 14 Customer’s estimated workload .. 83

Table 3. 15 Storage consumption and cost ... 84

Table 3. 16 Bandwidth and operation consumption and cost .. 84

Table 3. 17 Amazon S3 and Nirvanix storage consumption and cost ... 85

Table 3. 18 Consumption and cost of upload bandwidth and operation 86

1

Chapter 1

Introduction

Cloud computing service providers enable their customers to consume computing,

storage and network resources and a variety of software services remotely via internet.

Such resources are exposed as services through one or more service interfaces by the

service provider. The consumers of these resources (individual users or organizations)

consume these resources by invoking operations or methods at the services interfaces.

Nowadays, there are many service providers offering different types services, and the

number of the service providers and the type of services offered is large and continues

to increase.

As a new business model, cloud computing technology has been the focus of growing

research attention. Some researchers have paid attention to the development of

middleware and platforms of cloud computing such as Amazon (EC2), Google (App

Engine) and Microsoft (Windows Azure), whereas many others are focusing on the

study of virtualization, cloud storage, cloud security, load balancing, quality of service

monitoring, and so forth. However, issues related to the charging, accounting and

billing of resources consumption have received less attention.

According to the charging model used, the service providers can apply either a fixed

charge or Pay-Per-Use charge. The bill is fixed irrespective of the amount of resources

consumed in the first charge model, whereas the bill depends on the amount of

resources consumed in the second model. Pay-per-use services can be further

categorised into capacity-on-demand service and consume-on-demand service [1, 2, 3].

Regarding the first, where a capacity-on-demand service consumer pays a fixed charge

in advance for a fixed maximum non-exceedable capacity that is made available for

their use. Such systems include Google E-mail systems and pay-as-you-go mobile

phones. Consume-on-demand service can be additionally classified further into ‘on-

demand’ and ‘utility services’. In the first case, the consumer pays (normally in

2

advance) for a fixed amount of resource (for example, 60 minutes of international

phone calls) and the service is terminated when the consumer exhausts the resources.

With the latter, the consumer consumes as much as he needs, when he needs it; the

charge (or the bill) is calculated according to actual resource consumption and later

presented to the consumer at the end of an agreed-upon accounting period. Amazon

Simple Storage Service (Amazon’s S3) [4] is a well-known example of a service

provider that sells storage space to remote users and uses the consume-on-demand

charging model to charge their customers.

Accounting of computing resources is the whole process that is required to calculate the

charge of each consumed resource to produce the customer's bill for a well-defined

period of time. This process includes collecting metering data, computing the resource

consumption, and producing the final customer bill. It can also be used for other

purposes such as auditing, monitoring and so forth [5]. Central to the Pay-Per-Use

model is the issue of accountability, where the following questions are pertinent:

1. Who is responsible for gathering data about the consumed resources?

2. Who makes the decision about how much resource has been consumed?

3. Who calculates the charge?

Currently, provider-side accounting is the only common accounting approach that is

used by cloud computing providers. In this mechanism, the consumption of the resource

is unilaterally measured by the service provider, where the resource accounting service

is deployed by the provider’s infrastructure.

1.2 The problem statement and possible solution

In Pay-Per-Use cloud services, as mentioned above, provider-side accounting is the

approach taken by all of the service providers. A serious limitation of this approach is

that it does not offer the consumer a sufficient means of performing reasonable checks

to verify that the provider is not accidentally or maliciously overcharging. We strongly

believe that consumers should have a mechanism or a framework that helps them to

build their own independent accounting service to be used to compute and verify their

resource consumption, and to check whether or not they have been overcharged. In

3

addition, it may be used for other purposes such as IT project budget planning, and so

forth.

Furthermore, none of the current and previous studies have paid attention to how a

consumer might independently compute and verify the resource consumption. This is

currently an open issue that is the focus of this research. In this study, we are planning

to explore and discuss ideas, and address the issues related to developing consumer-side

accounting of resource consumption in cloud computing. Clearly, our research is

mainly focused on addressing the issues related to a consumer resource accounting

service that can used to compute resource consumption. This service aims to allow

consumers to verify bills from cloud providers who apply a Pay-Per-Use charging

model. The selection of the Pay-Per-Use approach was based upon the fact that this

model is widely used by many cloud computing providers, it is a more generic approach

and, more importantly, it covers most of the issues related to resource consumption. To

ground our approach in current practice, we will often use storage services as an

example and, in particular, use Amazon S3 and Nirvanix Network Storage Delivery for

our case studies for storage services and Amazon EC2 as an example of a computation

service.

1.3 Motivation

Consumer-side accounting can be used by consumers in many purposes such as:

i. To compute and verify resource consumption and check whether or not the

provider acts honestly and in good faith.

ii. Making their applications billing aware.

iii. To estimate the consumption and the cost of the resources used by an

application.

iv. For IT budget planning of any project.

v. To create brokering services to automate the selection of services in line with

user's needs and so forth.

vi. To implement a more sophisticated accounting mechanism such as bilateral

accounting services, where both the consumer and the provider independently

4

measure resource consumption, verify the equity of the accounting process and

try to resolve potential conflicts emerging from their independently produced

results [2, 3].

1.4 Objectives

As we stated earlier, our main aim is to find a way that allows the consumers to verify

their resource consumption. To achieve our target, we have determined the following

objectives:

i. Understand the details of accounting models which are currently offered by

different service providers from their documents and any other available

documents and publication.

ii. Address how different cloud service providers compute the resource

consumption for resources such as storage, bandwidth, CPU, etc.

iii. Study and understand the service providers’ accounting models, in terms of

what the main components of the accounting models are, how the resources are

defined, how the provider computes resource consumption, what parameters are

used to compute the consumption for each resource, and when the calculation is

made for each resource etc.

iv. To study and understand issues related to collection of metering data at

consumer side, such as which technique can be used to collect the data, which

data needs to be collected and what are the challenges behind it.

v. To study whether all parameters required to computing resource consumption

can be collected locally and independently at the consumer side.

vi. Describe or propose a system that allows a consumer to independently compute

his resource consumption.

vii. Investigate the sources that may lead to possible discrepancy between resource

consumption data collected by the consumer and the provider.

5

1.5 Thesis Contributions

This thesis makes the following contributions:

1. The thesis proposes the notion of a consumer–centric resource accounting

model. An accounting model is said to be weakly consumer-centric if all the

data that the model requires for calculating billing charges can be queried

programmatically from the provider. An accounting model is said to be

strongly consumer-centric if all the data that the model requires for calculating

billing charges can be collected independently by the consumer “or a Trusted

Third Party (TTP)”; in effect, this means that a consumer (or a TTP) should be

in a position to run their own measurement service.

2. The thesis identifies the causes that might lead to discrepancy between the

consumer side and the provider side measurements of resource consumption.

3. Using the concept developed in 1 and 2 above, the thesis evaluates the

accounting models for storage and compute services from well-known

providers and suggests how the models can be improved.

1.6 Thesis Outline

The thesis structure is as follows:

Chapter Two: identifies the wider body of literature to which this thesis contributes. It

explores the related research made in the field of resource accounting in internet,

network, grid and cloud computing.

Chapter Three presents all the experiments that have been conducted to understand the

accounting models of several providers. A description of each experiment, together

with the results and shortcomings of the model is included.

Chapter Four discusses the issues and challenges of consumer-side accounting in

cloud computing and presents a detailed discussion and investigation about the sources

that might cause a discrepancy between the consumer and provider measurements. The

chapter also presents a systemic way of describing accounting models.

6

Chapter Five: concludes the thesis by summarizing its achievements. In addition, the

chapter provides an overview of future work and possible extensions.

7

Chapter 2

Related Work

2.1 Introduction

In this chapter we discuss how the scientific community has tackled the problems of

resource accounting and how the consumption of resources offered by cloud computing

service providers is monitored. Furthermore, we present a discussion about the

architecture of the resource accounting service and how it works, we address the

technical aspects that are related to how and when the required data is collected, what

data needs to be collected, how and when resource consumption is computed and how

the consumer’s bill is calculated for the computing resources sold by cloud service

providers. Moreover, we will identify the research gap, propose a possible solution and

address the challenge in order to make the proposed solution visible.

This chapter is divided into six sections. The first section presents an overview of cloud

computing: cloud definition, cloud characteristics, cloud models and the architecture of

cloud models. The second section presents an overview of charging models which are

used in utility computing and includes examples of cloud computing and types of

charging model that are used. The third section presents an overview of the accounting

mechanism that is used by cloud providers to compute the consumer’s charge (bill) and

gives details of the architecture and standard of resource accounting service processes.

It also presents some current and previous work related to Internet resource accounting

and identifies the gap which needs to be covered. The fourth section discusses

trustworthiness in resource accounting, the research gap and brief survey at metering

and accounting level. The fifth section presents the issues and challenges of the

proposed approach (consumer-side accounting) that needs to be investigated and

addresses the parameters that are essential to exploring the visibility of our approach.

Finally we present a summary of this chapter.

8

2.2 Background

The concept of cloud computing was proposed in 1960 by John McCarthy. He

presumed that “computation may someday be organized as a public utility”, but it has

taken more than four decades of computer and network technology development to

make the concept a practical reality [7, 8, 9, 10, 11].

Cloud Computing is a new paradigm that came from the field of distributed computing

and virtualization research groups as it is based on principles, techniques and

technologies developed in these areas [12, 13]. Computer scientists still have different

definitions of Cloud Computing [14, 15, 16]. For instance, it is defined in [17] as a style

of computing in which dynamically scalable and often virtualized resources are

provided as a service. Users need not have knowledge of, expertise in, or control over

the technology infrastructure in the "cloud" that supports them. Also, Cloud Computing

employs a model for enabling available, convenient and on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. Furthermore, the authors in [16]

define Cloud Computing as “A large-scale distributed computing paradigm that is

driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and services are delivered on

demand to external customers over the Internet”. However, we believe the definition

proposed in [22] to be most accurate, where cloud computing is defined as a model for

enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort or service

provider interaction. The cloud computing paradigm has a number of characteristics

and three service models.

9

2.2.1 Characteristics of Cloud Computing

Some important characteristics of cloud computing are:

 On-demand self-service: the consumer ability to provision capabilities such as

CPU time, network storage as required automatically online without any human

interaction with the service provider. [22, 23, 24, 25].

 Global network access: computing abilities can be accessed through standard

mechanisms in heterogeneous environments by different client’s platforms (thin

or thick) such as mobile, multi-device, etc [22, 23, 24, 25].

 Elasticity: Capabilities can be quickly and flexibly provisioned and in some

cases automatically, to quickly scale out and rapidly released to quickly scale in.

To the consumer, the capabilities available for provisioning repeatedly appear to

be unlimited and can be purchased in any quantity at any time [22, 23, 24, 25].

 Resource pooling: The provider’s virtual and physical computing resources can

be pooled and assigned dynamically to consumers according to their demand

[22, 23].

 High scalability and availability: Cloud environments enable servicing of

business requirements for larger audiences, through high scalability. Availability

of services is high and more reliable as the chances of failure in cloud

computing infrastructure are minimal [24, 25].

 Multi-sharing: Cloud working in a distributed and shared approach, multiple

applications and users can work more efficiently and reduce the cost by sharing

a common infrastructure [24, 25].

 Agility: The cloud is a distributed environment that shares resources among

users and applications while improving efficiency and agility (responsiveness)

[24, 25].

 Services in pay-per-use mode: cloud customers only pay for the IT resources

they consume [24, 25], and the Service Level Agreements (SLAs) between the

provider and the consumer must be defined when offering services in pay per

use mode.

 Application Programming Interfaces (APIs): cloud computing may be offered

(APIs) to their customers to allow them to use the services [24, 25].

10

2.2.2 Cloud Computing Service Models

The service models define the level of abstraction at which a cloud customer interfaces

a Cloud Computing environment. Cloud has three service models; Software as a

Service (SaaS) model, the Platform as a Service (PaaS) model, and the Infrastructure as

a Service (IaaS) model [22, 23, 26].

Cloud Software as a Service (SaaS): customers rent software hosted by the provider.

Cloud Platform as a Service (PaaS): customers rent infrastructure and programming

tools hosted by the provider to create their own applications, and Cloud Infrastructure

as a Service (IaaS): customers rent CPU, storage, networking and other fundamental

computing resources for all purposes [22, 23]. These services are made available and

sold on-demand basis “pay-as-you-go”, for instance by minute, hour or month (e.g.

GB/Month, instance/hour) [4, 27, 28, 29]. They are also flexible, where a user will be

charged based on their consumption [20, 21]. The services provided by the cloud

providers range from basic computational resources such as storage, bandwidth and

computer power (IaaS), to sophisticated enterprise application services (SaaS). These

services are agreed upon between consumer and provider and stipulated in the Service

Level Agreement (SLA) contract which defines the details of the service availability

and charging schema that is used [30]. Furthermore, the services offer easy and quick

deployment and management of, and interactions with, service providers [31, 32, 33].

Where all the resources on the cloud are transplanted to the users, the users can

dynamically rent virtual or physical resources without the need to know where those

resources are located. In addition, the services are fully managed by the provider. These

services are known as Utility Computing. Amazon Web service, Google AppEngine

and Microsoft Azure are good examples of public Utility Computing [20, 21].

2.2.2.1 Software As A Service (SaaS)

Cloud Software as a Service (SaaS): is a service that is used to host and manage a

particular customer’s software in the provider’s data centre. Where the customers are

able to rent the infrastructure of could provider to run their services. In SaaS, the cloud

provider manages and controls the underlying cloud infrastructure including the

11

network, servers, operating systems, storage, and even individual application

capabilities, with the possible exception of limited user-specific application

configuration settings [16, 7, 21, 22, 23, 34, 35, 36]. The cloud provider makes the

application available to multiple users over the Internet through API. Usually, SaaS

users just need a browser in order to access and use a SaaS Cloud. Some SaaS providers

might use another PaaS or IaaS cloud provider. Oracle CRM On-Demand,

Salesforce.com and Google Apps are some of the well-known SaaS examples [16, 7,

21, 23, 34, 35, 36].

2.2.2.2 Platform As A Service (PaaS)

Platform as a Service (PaaS) is a service for web application development and a

deployment platform delivered to developers over the Internet in an easy, simple and

quick manner [16, 7, 21, 22, 23, 34, 35, 36]. The PaaS models reduce the cost and

complexity of buying and managing the underlying infrastructure, provide the facilities

that are required to support the complete life cycle of building software and delivering

web applications, and services are fully available from the Internet. It includes

infrastructure software, and typically includes a database, middleware and development

tools. It has a lustered grid computing architecture and is virtualized and is often the

basis for this infrastructure software. AppEngine by Google, Force.com from

SalesForce, Microsoft's Azure and Amazons Elastic Beanstalk are examples of PaaS

[16, 7, 21, 23, 34, 35, 36]. The consumer neither manages nor controls the underlying

cloud infrastructure of network, servers, operating systems, or storage; however, they

do have control over the deployed applications, and possibly the application hosting

environment configurations [22].

2.2.2.3 Infrastructure as a Service

Infrastructure as a Service (IaaS) is a service that provides the fundamental computing

hardware such as server, storage and network, and associated software (operating

systems virtualization technology, file system), where the consumer is able to deploy

and run arbitrary software, which can include operating systems and applications [7, 16,

21, 22, 23, 34, 35, 36]. It is an improvement on traditional hosting that does not require

12

any long term commitment and allows users to provision resources on demand. IaaS

service provider requires very little management where users must deploy and manage

the software services themselves, as they would in their own data centre. Amazon Web

Services Elastic Compute Cloud (EC2) and Secure Storage Service (S3) are examples

of IaaS offerings [7, 16, 21, 34, 35, 36]. As in SaaS and PaaS models, the IaaS’s

consumers are not able to manage or control the underlying cloud infrastructure,

however, they do have control over operating systems, storage, deployed applications,

and possibly limited control of select networking components (e.g., host firewalls) [22].

2.2.3 Architecture of Cloud Service Models

To capture and summarize the service models’ architecture of the cloud computing

paradigm, we can observe that the service models described above can be thought of as

structured in four hierarchical levels of abstraction. Different academic researchers and

groups present these hierarchical levels in different ways e.g., [22], however here we

adhere to the hierarchical levels as depicted in Figure 2.1 presented by [23].

Figure 2. 1 Cloud Service Model Structure [23]

Hardware Level (Level 0) presents the fundamental foundation of the cloud computing

paradigm and consists of the data centres containing the Cloud physical resources [23].

IaaS Level (Level 1) is responsible for instantiating and maintaining a pool of storage

and computing resources using virtualization technologies such as VMware, Xen and

KVM [23, 92, 93]. PaaS Level (level 2) consists of application platforms deployed

within the resources available at Level 1 [23]. Finally, SaaS Level (Level 3) maintains

actual Cloud applications.

13

2.3 Charging Models in Cloud Computing

There are increasingly numerous cloud service providers and types of services with

different charging models for customers. Any cloud service provider can apply a flat

rate, Pay-Per-Use or other charging models such as the auction charge model.

2.3.1 Flat rate charging model

The flat-rate charging mode is one type of charging mechanism, where the consumers

pay a fixed amount of money for each well-defined period (e.g. month) to consume

unlimited resources.

There is a monthly flat-rate standard plan as well as an annual flat-rate plan. In other

words, in the flat-rate charging model the bill is fixed, irrespective of the amount of

resources consumed [1, 2, 3, 91]. This type of service is offered by many Internet

service providers such as Virgin Media, who charge their customers £20/month for

unlimited downloads.

2.3.2 Pay-Per-Use charging model

In pay per use, the bill depends on the amount of resources consumed. The pay-per-use

services can be further categorised into capacity-on-demand service and consume-on-

demand basis [1, 2, 3]. Amazon Web Services [57] is the first provider that has made

computational and storage resources commercially available on a pay per use basis on a

production level. IBM has a cloud computing initiative underway called Blue Cloud

[59]. There are other storage providers that offer their services on a pay per use basis

such as Nirvanix [29] which optimizes storage for media files.

2.3.2.1 Capacity-on-demand

In capacity-on-demand, the consumer pays a fixed charge in advance for a fixed,

maximum, non-exceedable capacity made available for their use, and the service is

terminated when the consumer exhausts the resources. Such systems include Google E-

mail systems and pay-as-you-go mobile phones.

14

2.3.2.2 Consume-on-demand

In the consume-on-demand service, the consumer consumes as much as he needs, when

he needs it; the charge (or the bill) is calculated according to actual resource

consumption and later presented to the consumer at the end of an agreed-upon

accounting period. Amazon Simple Storage Service (Amazon’s S3) [4] is a well-known

example of a service provider that sells storage space to remote users and uses the

consume-on-demand charging model to charge their customers.

2.3.3 Auction charging model

In the auction charging model the service provider offers the service to customers using

a bidding system. For instance, EC2 offers Spot Instances that enable the customers to

bid for unused Amazon EC2 capacity. Instances are charged the Spot price, which is set

by Amazon EC2 and fluctuates periodically depending on the supply of and demand for

Spot Instance capacity. To use Spot Instances, the customer places a Spot Instance

request, specifying the instance type, the availability zone desired, the number of Spot

Instances they want to run, and the maximum price the customer is willing to pay per

instance/ hour. To determine how that maximum price compares to past Spot prices, the

Spot price history is available via the Amazon EC2 API and the AWS Management

Console. If the customer’s maximum price bid exceeds the current Spot price, the

customer request is fulfilled and the instances will run until either the customer himself

chooses to terminate them or the Spot price increases above the consumer maximum

price [58].

2.4 Resource Accounting in cloud computing

Accounting of computing resources is defined as the whole process that is required for

calculating the charges of each consumed resource to produce a customer's bill for a

well-defined period of time. This process includes collecting metering data, computing

the resource consumption and producing the final customer bill. It also can be used for

other purposes such as auditing, monitoring and so forth [5]. The service which is

responsible for the accounting is called resource accounting service (RAS).

15

Substantial work has been done in internet resource accounting which we believe can

be applied to cloud computing. Consequently, it is necessary to understand the main

components of the RAS, how each component works and what the relationships

between these components are. We have included a survey in this thesis which is part of

the current and previous work in the field of network and internet resource accounting.

The survey describes the architecture of the introduction and accounting terminology,

Resource Accounting System, Internet resource accounting and a summary of current

and previous related work which has been developed in the area of network and internet

resource accounting.

2.4.1 Resource Accounting System background

In the last 20 years several standards have been suggested by Internet Engineering Task

Force (IETF) concerning Internet Accounting. In 1991 the Network Working Group

(NWG) released the first RFC report on Internet Accounting [40] which introduced

basic information about Internet accounting architecture and defined a simple Internet

accounting model which consists of three basic components: meter, collector and

application.

Figure 2. 2 The accounting system infrastructure [41]

[41] added a new component called the Manager on the basis of the accounting model

proposed in [40] and this further illustrates the relationship between these components.

The description of the accounting system infrastructure is shown in Figure 2.2.The

Meter Layer measures the network traffic and aggregates measurement results. The

Mediation Layer collects measurement data from the Meter Layer, and processes

(aggregate, de-duplicate, validate, correlate etc.) collected data and stores them. The

Application Layer consists of applications for different purposes such as billing, audit,

http://www.google.co.uk/url?sa=t&rct=j&q=IETF&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.ietf.org%2F&ei=4conT_j9AZOKhQejkazBBQ&usg=AFQjCNHcsAbHfMxzoJE7VFwEIwU9DTfZGg
http://www.google.co.uk/url?sa=t&rct=j&q=IETF&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.ietf.org%2F&ei=4conT_j9AZOKhQejkazBBQ&usg=AFQjCNHcsAbHfMxzoJE7VFwEIwU9DTfZGg

16

and trend analysis etc., using data from the mediation layer. The Manager configures

and applies rules to control the activities of the three components and the whole system.

In [42] the measurement of traffic flow architecture was suggested; this document was

defined using the so-called Meter Management Information base (MIB). The MIB

allows the gathering of information about data usage from the network which is

important for accounting, performance, configuration, as well as security purposes. In

June 2000 the Network Working Group issued another RFC that focused on the

development of Remote Authentication Dial In User Service (RADIUS) which brought

accounting back on the agenda of the IETF [43]. The RADIUS protocol defined how

authentication, authorization and configuration information should be exchanged

between Network Access Servers (NASs) and authentication servers. The RADIUS

protocol was widely used with the interest of improving it by adding more features from

different research groups.

A new Working Group (WG) within the Operations and Management Area of the

Internet Engineering Task Force (IETF) was formed. The name of this new WG is

Authentication, Authorization, and Accounting (AAA) [46]. This work group [47] has

achieved the simple accounting architecture shown in Figure 2.3.

Figure 2. 3 Simple Accounting System Architecture [47]

In [44, 45] a new WG document was issued that proposes a reference model describing

the interactions between the metering, accounting and charging processes, “the main

components of the resource accounting system”, and their configuration via polices.

17

Figure 2.4 shows the proposed reference model. On the right side of the figure below

there are five layers showing the different building blocks.

Figure 2. 4 Reference model of resource accounting system [44]

The blocks are layered according to the processing of the data from the bottom level

metering via accounting, up to the final billing process. Data aggregation can be done

at any layer not only at the collection layer. The building blocks on the different layers

are configured through the policies shown on the left side. Higher layer policies can be

translated into lower layer policies. The configuration parameters are extracted from the

policy and passed to the corresponding building block.

Here is a brief description of each layer of the building blocks:

- Metering: Meters are required for gathering data about resource consumption in the

network (e.g. bytes transferred).

- Collection: The data gathered by the meter(s) has to be collected for further

processing. Collection of meter data can be initiated by the meter itself and collected

data can be aggregated before being passed to the accounting layer. Metering policies

define how collection and aggregation is done.

- Accounting: Accounting describes the collection of data about resource consumption.

This includes the control of data gathering (via metering), transport and storage of

accounting data. For subsequent charging, the metered data must be associated with a

user that is the initiator of a flow and a customer (service subscriber) that is responsible

for payment. For initiation of an accounting process, a user or foreign provider must be

authenticated and authorized. These three functions can be performed by the AAA

server. The accounting process is configured through accounting policies.

18

- Charging: Charging derives non-money costs for accounting data sets based on

service and customer specific tariff parameters. Different cost metrics may be applied to

the same accounting records even in parallel. Charging policies (models) define the

tariffs and parameters which are applied.

- Billing: Billing translates costs calculated by the charging model into money and

generates a final customer’s bill. Billing policies define the type and how the customer

will be charged (e.g. invoice, credit card), and the time for billing (e.g. weekly,

monthly, etc.).

Related to standard terminology and definition used in the area of resource accounting

and as pointed out in [47], different network and Internet communities use term

accounting to refer to different aspects of the accounting process. For instance, some

authors use the term to refer to the process of metering, collecting, interpreting and

reporting, costing and charging-related information of the usage of a service or

resource, while others use it to refer to only one of the sub-processes. Also, in [56] the

authors present taxonomy of billing models and a discussion about the metering

parameters (e.g. volume consumed, star and end time of a session) that each model

requires. Therefore, in this thesis we use the term metering service to refer exclusively

to the process that collects row metering data, the accounting service to refer

exclusively to the process that applies the accounting model on the metering data to

compute the resource consumption (accounting data) and the billing service to refer to

the process that applies the pricing model on the accounting data to provide the

customer’s bill.

2.4.2 Examples of IT resource accounting

Architecture similar to what has been proposed in [41] was used in [48, 54]. The paper

[54] presents an account of the basis of pay per use, it identifies users though a unique

ID for each user rather than the IP address. The implementation of a user based traffic

accounting prototype system with Agent mechanism is introduced. The implementation

is based on the IP accounting infrastructure which consists of 3 layers; meter layer,

mediation layer and application layer. When a Meter measures the network traffic, it

19

generates the accounting records which consist of several accounting attributes. Usually

the accounting attributes can be divided into two categories: identification attribute and

usage attribute.

The RAS becomes an essential component of the service infrastructure in a distributed

system such as grid and cloud computing to compute the variable cost services. Even in

non-commercial settings or for flat-rate services, metering and accounting are needed

for enforcing policies such as usage quotas, or to analyse usage patterns, for example.

The authors in [48] have paid attention to metering and accounting services for

composite e-Service. e-Service may be seen as a component technology for building

distributed applications, or as a mechanism for distributed systems integration. Web

services [49] are the most common example of e-Services, but other kinds of e-Services

are also gaining importance. For example, grid services [49, 50] and cloud services [4,

51] are an emerging mechanism for sharing distributed, heterogeneous resources across

organizations.

Figure 2. 5 Metering and accounting for composition e-Service (MACS)

Figure 2.5 shows the framework of Metering and Accounting for Composition e-

Service (MACS) architecture proposed in [48] for a composite e-Service. The

composition e-Service consists of 5 e-Services (S1– S5).

The architecture of MACS consists of metering, accounting and billing services. In this

approach, the authors used several metering services and a single accounting and billing

service. A metering service was deployed in each service which is represented by the

20

red circle in the figure above. The metering service is responsible for collecting

metering data using an instrument called a meter and producing metering records per-

partial request usage, as it reports usage relating to that service alone. Each metering

service sends the metering record into the Accounting Service. The meter can be a local

monitor data and/or application-level metrics used in building this metering record

usage.

The accounting Service consists of Classifier, Correlator and Accounting. Also it has an

interface which allows the metering services to send the metering records through it and

it has a database which is used to store the metering records. The Classifier receives the

incoming metering records and classifies them based on service and user basis, and

stores them in the database. The Correlator retrieves the related partial metering records

for each user from the database and associates them together to create complete

metering records. The Correlator passes these complete metering records to the

accounting unit which aggregates them into the account of the appropriate <customer

provider>. This result is defined as the accounting records. At each billing cycle the

accounting service supplies these accounting records to the Billing Service. The Billing

Service applies the pricing model of the service provider on the accounting records to

produce the customer’s bill. Moreover, other architectures have been proposed for

accounting and billing such as [53]. In [53] the authors have proposed architecture for

accounting and billing in cloud infrastructure (RESERVOIR).

Figure 2. 6 Accounting and billing architecture in RESERVOIR.

21

An overview of the system architecture is shown in Figure 2.6. The proposed

architecture composes of three main layers; Accounting, Billing and Business Layers.

The Accounting layer is responsible for the procedure of collecting and managing the

row metering data which will be used by the Billing layer. The Billing layer is

responsible for evaluating the Deployment Description (DD) by analysing the DD from

a business perspective to apply business oriented deployment restrictions, verify the

amount of available credits, generate a unique identifier for this particular service which

will be used in the Accounting, Billing, and Compensation (ABC) identifier and

complete the payment procedure. The Business layer arranges the relationship between

the technical issues of the system (RESERVOIR) and the consumers in terms of

pricing, invoicing, service management and so forth.

Figure 2.6 shows the main components of the proposed architecture, with the arrows

that represent the relationship and interactions between components of the system. The

components with a dash border are gateway components between the accounting

system and other parts of the RESERVOIR architecture. The Accounting Database

(ADB) and the Business Information Database (BIDB) represent any database

technology which is not a specific component of the architecture.

2.5. Trust in Resource Accounting Service

Regardless to the charging model used by the service provider, there are several trust

related issues of accounting that need attention:

 Who is responsible for gathering data about the resources consumed?

 Who makes the decision about how much resource has been consumed?

 Who calculates the charge?

 How is the charge calculated?

 Can the accounting result be verified and trusted by both parties?

The service provider is responsible for doing the accounting processes as in [48, 54],

this is called provider-side accounting. Currently, the provider-side accounting (PSA)

mechanism is the only common accounting approach that is widely used by cloud

computing providers such as Amazon S3, Nirvanix NSD and gooleApp. In the PSA

22

mechanism the resource consumption is unilaterally measured by the service provider

where the resource accounting service is deployed on the provider infrastructures. A

serious limitation of PSA is that it does not offer the consumer sufficient means of

performing reasonableness checks to verify that the provider is not accidentally or

maliciously overcharging. This mechanism is acceptable when the consumer has good

reason to trust the provider and the consumer believes that the provider will not

accidentally or maliciously overcharge him. For instance, with capacity-on-demand it is

important to check whether the consumer reaches the maximum non-exceedable

capacity of resource consumption or not when the service terminates. Also, in on-

demand basis charging model, the consumer wants to check whether he paid for what

has consumed or has been overcharged.

To conclude the above discussion, most cloud providers currently use provider-side

accounting where the provider unilaterally measures the consumer’s resource

consumption and presents the latter with a bill. This accounting mechanism does not

offer the consumer sufficient means of performing reasonableness checks to verify that

the provider is not accidentally or maliciously overcharging. Therefore, consumers

require an accounting mechanism that can produce trusted accounting results.

Trusted resource accounting result can be produced by one of the three approaches: 1)

Trusted Metering Services 2) A Trusted Third Party (TTP) produces the records of

resource consumption using its own certified infrastructure, or 3) Bilateral Resource

Accounting Services where the interested parties use their individual unilaterally trusted

resource consumption as the basis for agreement on valid, mutually trusted resource

consumption [2].

2.5.1 Trusted Metering Service

The Metering Service MS can be regarded as the backbone of the resource accounting

service, because accounting service and billing services duties are based on the

metering data provided by the MS. Therefore; if we can build a trusted metering service

then it becomes possible for the RAS to produce a trusted result. Both a certification

authority that certifies the correctness of its functionality, as well as tamper-resistant

23

protection mechanisms that prevent its undetectable modification, can help to build a

trusted service.

For instance, the authors of [90] have developed a Meter Inspection Authority (MIA)

which is used to cover the security requirements to help the providers and the customers

to trust each other. The MIA is a third party used to establish trust between two entities.

The main duty of the MIA is to provide undeniable metering data by any of the

involved parties (the consumer and the provider), by installing a piece of trusted code

(the Client, Third Party provider or Provider) on devices that have been certified by a

MIA. All involved parties in the system ensure that the code provided by the MIA is

operated fairly and all trust the code and its output. The scenario is shown in the Figure

below.

Figure 2. 7 Secure Metering phases.

Firstly, the Providers buy the meter system from the Meter Manufacturer (MM). Then,

the meter is installed at the customer/third-party provider’s domain (Figure 2.7). The

Meter Manufacturer (MM) dispatches message 1 containing the meter system to the

Provider (P), the message is signed by MM (SIGMM) using a one-way hash function.

Then, the provider P encrypts the message with P’s public key (KUP) to match the

requirement of privacy. The timestamp t1 informs the provider of the time when the

message was created.

24

Secondly, the P sends a message containing the (meter system and SLA/Tariff

translator) to MIA. The message is signed by the P signature (SIGP) to guarantee the

message authenticity. The message is encrypted using MIA’s public key (KUMIA).

Then, it generates a certificate called MIC (Meter Inspection Certificate) with

assurances. The certificate MIC1 contains calibration and safety certification for the

meter system. MIC2 does the same for the SLA/Tariff translator but adds extra

assurance. MIA also creates a type of meter seal when signing the code (meter system,

SLA/Tariff translator) with its signature (SIGMIA). The seal guarantees that the code

(sealed code) will not be modified. By analogy, the electricity meters are also sealed to

prevent anyone tampering with them.

Finally, P sends the sealed code to customers/third-party providers (C/TPP). They can

check the certificates (MIC1,MIC2) and trust the code as conforming to a meter and

SLA/Tariff translator specifications. This message sent from P is signed with P’s

signature for authentication and encrypted with C/TPP public key (KUC/TTP). The

authors have applied type-safe language to ensure safe execution and secure the code

from attack at run time. Furthermore, for distributed metering measurement, they

suggested that authorization schemes such as using asymmetric cryptography are

necessary to sign the code in order to maintain the integrity (to ensure that the code is

not modified or read by the any other party). Furthermore, as previous and current

research has shown, several techniques such as hardware (Trusted Computing model)

[82, 83], and software [84, 85] can be used to build tamper-resistant systems which can

be run in un-trusted platforms. Developing trusted metering services is beyond the remit

of the current research.

2.5.2 Trusted Third Party (TTP)

A trusted accounting service can be owned and run by a TTP, whose results are trusted

by both the consumer and the provider.

The development of a TTP accounting service is required in order to understand the

essential requirement of building the resource accounting service in aspects such as the

development of metering and accounting services. Firstly, at metering service level we

25

need to understand how data will be collected, when data is to be collected, what data

should be collected, how the metering data is aggregated and refined, and where and

how it should be collected. More importantly, we need to know if the TTP metering

service is able to collect all the required data to compute resource consumption and

where the metering service of TTP accounting service is located. Secondly, at the

accounting level, there are other concerns such as how and when resource consumption

is computed, what parameters are required to compute the consumption of each

resource, how the accounting is formatted and what and when accounting data is

required by the billing service and so forth. Unfortunately, none of the previous and

current studies have addressed this topic.

To the best of our knowledge, to date, TTP for resource accounting has not been

developed. However different approaches have been developed in TTP to monitor

different parameters (e.g. response time, throughput) by authors such as [61, 86]. Also

in [70] the authors develop the notion of a third party service management authority that

can monitor interactions between customers and cloud provider in term of monitoring

the quality of service without paying attention to monitoring the resource consumption.

All the above papers overlook the need to provide consumers with a means of

performing consumer-side accounting. Therefore, we believe that involving TTP in

accounting is essential to ensure the trust between both parties.

2.5.3 Bilateral Resource Accounting Service

Another approach to building a mutually-trusted resource consumption service is to use

bilateral accounting, where the resource consumption is computed and decided by the

consumer and provider with the help of a pair of independent components, both of

which have the same functionality [2, 3]. The first component is deployed within the

consumer infrastructure and the second is hosted on the provider’s premises. The job of

the pairs is to produce together a trusted output. This is a fair, realistic and trustworthy

approach. However, in a general scenario for real service providers, the implementation

of the accounting component at the consumer side accounting will meet the same

challenges that are discussed in developing TTP accounting mechanism.

26

2.5.4 The research gap

From all the above discussion we find that provider-side accounting is the only

approach taken by all of the service providers to compute resource consumption. A

serious limitation of this approach is that it does not offer the consumer a sufficient

means of performing reasonableness checks to verify that the provider is not

accidentally or maliciously overcharging. Providing an accounting mechanism that can

produce trusted accounting results or at least can be used to compute and verify the

consumer’s resource consumption is essential. However, to the best to our knowledge

such as system has not been developed our studied yet and is currently an open issue.

Metering Service

Metering Data

Accounting Service

Accounting Data

Billing Data

Accounting

Model

Charging

ModelBilling Service

Metering Service

Metering Data

Accounting Service

Accounting Data

Billing Data

Accounting

Model

Charging

ModelBilling Service

Figure 2. 8 Resource Accounting Service

As shown in figure 2.8, a resource accounting service is composed of three

components: a Metering Service (MS) responsible for collecting raw metering data

about resource consumption; an Accounting Service (AS) that retrieves the metering

data and applies an accounting model to produce accounting data, and a Billing Service

(BS) that, on the basis of the accounting data provided by the AS and charging model

(e.g., prices, discounts to golden customers, fines for late payments, etc.), produces the

actual bill, say monthly, for the consumer [2, 3, 7]. In the next section, we will present a

brief survey about how scientific community has tackled the technical issues and the

techniques used at metering and accounting levels.

27

2.6 Resource accounting service – issues and challenges

Developing a resource accounting service requires to understanding and investigating

the issues at metering and accounting levels. For instance, at the metering level, we

need to find the answer to the following questions: Which technique used to collect the

metering data? What metering date should be collected and when? In what format

should the metering data be stored?, and finally we need to check whether all the

required data to compute resource consumption can be collected by the MS or not.

Furthermore, at the Accounting level, in order to develop the accounting service we

need to understand the provider’s accounting model in terms of how resource

consumption is computed, if there is any relationship between the details of the

requests/responses and the resource consumption, when the resource consumption is

computed, what the accounting data looks like for each resource, and so on.

2.6.1 Metering Service – background, issues and challenges

The MS represents the local instrumentation that performs to collection of metering

data about resource consumption. MS produces metering data collected at specific time

intervals or upon the occurrence of specific events. For example, related to storage

service, a request to store 600MB of data has been made or a 2MB directory has been

deleted. Let’s assume that the Metering collector (MeCo) is the component of the MS

that is responsible for doing this job. The MeCo is to be understood as the machinery

(pieces of software possibly in combination with some hardware components) [61] used

to collect and store the metering data that result from the consumer’s activities. In

resource accounting, the gathering and collecting of metering data raises several issues:

(i) Which technique should be used by the metering collector?

(i) What type of metering collector is used?

(ii) What information can be deduced from the collected metrics?

(iii) Can all the data require for accounting purposes are collected by the any

other parties such as service consumer or other TTP?

(iv) Where is the metering collector deployed? (At the service consumer, service

provider, or a network in between the two?)

28

For the provider (i.e., storage provider), the problem of building a MS is relatively

straightforward. The provider has control over the physical storage used to satisfy client

requests and can directly measure the impact on backend storage requests of creating,

deleting, appending or truncating data and so forth. For example, if a Unix-like file

system is used to store data, system commands such as du can be used to measure

storage consumption. On the other hand, building the TTP or consumer’s metering

service is more difficult because the consumers do not have direct access to the

provider’s infrastructure.

Unfortunately, and to the best of our knowledge, currently there is no existing MS

approach which describes the technique(s) used to collect the metering data for

accounting purposes. On the other hand, different approaches have used different

techniques to collect metering data to monitor different parameters of the Service Level

Agreements (SLAs) such as response time and throughput. These techniques were

mainly used for monitoring the Quality of Service (QoS) offered by the SLA of the

service providers. Below we provide an overview of some of the existing metering

approaches and the techniques which have been used to monitor the QoS of SLAs.

Also, we will include a brief discussion about which approach and technique is suitable

for building the consumer-side metering service.

2.6.1.2 Metering service approaches of monitoring SLAs

Without paying attention to implementation details, we can divide the existing

approaches and techniques for collecting metering data into four general categories.

1. Provider-side instrument: where the MeCo is deployed within the provider

infrastructure. In this approach the measurements about the provider performance

are taken directly from the provider’s resources [61,62, 63, 64, 65, 66].

29

Service

Provider

MeCo

Service

Provider

MeCo Internet

Service Consumer 1

Service Consumer 2

Internet

Service

Provider

MeCo

Service

Provider

MeCo Internet

Service Consumer 1

Service Consumer 2

Internet

Figure 2. 9 Service Provider Instrumentation approach

2. Consumer-side instrument: The metering data is collected by the MeCo which

is deployed at the consumer-side [61,62,63,64,65,66]. In this scenario, MeCo can

be realised as a piece of software installed in the service consumer’s browser.

Internet

Service

Provider

Service Consumer 1

Service Consumer 2

MeCo

MeCo

Internet

Internet

Service

Provider

Service Consumer 1

Service Consumer 2

MeCo

MeCo

Internet

Figure 2. 10 Service Consumer Instrumentation approach

3. Periodic polling with probe clients: In this case a Trusted Third Party (TTP) is

involved in collecting the metrics. Figure 2.11 shows Probe1 and Probe2, two TTPs

working as synthetic clients strategically located and equipped with a MeCo; from

the point of view of their functionality they are two synthetic clients strategically

located and equipped with a MeCo. They are there to periodically probe the

provider to measure its response [61,63,66, 67]. Keynote [67] is a good example of

this approach.

Service Consumer 2

MeCo

MeCo

Prob1

Prob2

Service Consumer 1

Service

Provider
Internet

Internet

Service Consumer 2

MeCo

MeCo

Prob1

Prob2

Service Consumer 1

Service

Provider
Internet

Internet

Figure 2. 11 Periodic polling with probe consumer approach

30

4. Network packet collection with request-response reconstruction: In this

approach the MeCos are installed between the provider and the consumer to collect

data about all traffic between them to collect all the packets (either by interception

or by sniffing) coming into and out of the provider. Later the collected data is

reconstructed and analysed upon request–response upon particular data (i.e. TCP

header) [61, 66].

Internet

Service

Provider

Service Consumer 1

Service Consumer 2

Internet

MeCo (Network Packet collector)

Request-response

reconstruction

And Analysis

Internet

Service

Provider

Service Consumer 1

Service Consumer 2

Internet

MeCo (Network Packet collector)

Request-response

reconstruction

And Analysis

Figure 2. 12 Network packet collections with request-response reconstruction approach

2.6.2 Accounting Service - background, issues and challenges

The AS uses the raw data collected by the MS to produce accounting data (resource

usage records) and stores it in a meaningful manner. This involves computations that

are specific to the service being provided by the specific model known as the

accounting model. For computational resources, usage records may detail accumulated

processing time over some period such as 5 minutes CPU. For instance, in storage

provision, usage records may detail the amount of data uploaded, downloaded and

deleted over a period (for example, 5GB uploaded, 10GB downloaded and 1GB deleted

in a given period). The exact form of a usage record will depend on the model for

service provision. The role of the AS is to perform computations according to this

model (accounting model) that use raw data taken from the logs of consumer activity to

generate usage records that are a suitable basis for the billing service to calculate

charges.

In order for the any party and service provider to produce similar accounts results, it is

necessary that both of them use the same accounting model. The service provider offers

31

their services together with a well-defined, abstract model of their service system. On

the other hand, developing AS by other parties, e.g. TTP should produce accounting

data from the metering data collected by the MS (middleware interceptor). In general it

is not possible to translate such logging into an accurate record of actual storage

consumption at the provider side. For example, writing a request of 9KB may result in

the consumption of more than 9KB of storage space, depending on parameters such as

file system block size, the file system’s metadata and perhaps the user’s metadata. The

AS computes accounts data (resource usage records) for each resource. The accounting

process can be arbitrarily complex as it can take into consideration advance payments,

delayed payments, discounts and so on. However, it might not be possible to translate

such logging into an accurate record of actual resource consumption on the provider

side. For example, writing a request of 9KB may result in the consumption of more than

9KB of storage space, depending on parameters such as file system block size.

To the best of our knowledge there is no existing approach which takes into

consideration the building of accounting services, and addresses the issues and

challenges related to such a service. However, there are many studies that support our

approach to understanding the accounting model of the service provider. For instance,

in [71] the author argues that cloud providers should make their services accountable

for both the provider and the customer. Also, the authors of [60] suggest that costs can

be reduced by building cost–aware applications that exploit data usage patterns; for

example, by favouring data derivation from raw data against storage of processed data.

More importantly, and according to observers in [73, 74] there are hidden costs that the

user might incur while consuming a particular resource, so we need to know the

provider’s accounting model that is applied for each resource. It is also important to

mention that some computing charges are not based on usage of only [73] one resource.

For example, Amazon EC2charges for instance-hours, as do other providers, which

represent anything between one second and 60 minutes of instance running time;

arguably, this granularity might be too high and inconvenient when one tries to make

users (say employees within a company) accountable for the actual hours of VM time

(as opposed to instance hours) that they consume from a public cloud [75]. Also it is

important to stress that a 60 min run does not necessarily mean 60 min of actual

32

processor time; the authors of [76] have observed that Amazon EC2 small instances

typically receive only a 40% to 50% share of the processor. Another example is

Amazon S3 charges for the number of operations executed against its S3 interface and

independently of the internal computation cost that the request generates [77].

Architecture for accounting and billing for resources consumed in a federated Grid

infrastructure is suggested in [53]. The paper provides a valuable insight into the

requirements (resource re-deployment, agreement awareness, payment procedure,

standardised records and others) that accounting and billing services should meet. The

general principles of an architecture for accounting and billing in cloud services that are

composed out of two or more federated infrastructures (for example, a storage and

computation provider) are discussed in [53]. The architecture assumes the existence of

well-defined accounting models that are used for accounting resources consumed by

end users and for accounting resources that the cloud provider consumes from the

composing infrastructures. However, we need to understand the accounting model of a

real cloud provider and investigate the related issues to build consumer-side accounting.

All the above arguments support the practical and commercial relevance of our study

and how important the accounting model is in resource accounting. Furthermore, given

an abstract accounting model, the any of the involved parties in the service can decide

independently how to implement their AS. Understanding the accounting model, how

and when accounting data needs to be calculated, and several other issues, needs to be

worked out before thinking of implementing accounting service. Unfortunately, none of

the previous studies examine how the service provider computes the consumption of

each resource, what parameters are required to compute the resource consumption of

each resource, when the resource consumption is computed, whether all the required

parameters to compute resources consumption can be collected from consumer’s

requests/responses, when the collected parameters are required by the accounting model

and so forth. Therefore, to fill all the aforementioned gaps, part of our research will

focus on understanding the accounting of different service providers to help us build the

consumer side accounting service.

33

2.7 Summary

In this chapter we present a number of academic and industrial studies that have

discussed issues related to IT resources in terms of accountability. A conclusion from

this is providing an accounting mechanism that can produce trusted accounting results

or at least can be used to compute and verify resource consumption is essential. Where,

issues related to metering, accounting and billing in resource consumption have not

been covered by research. Also, concerns to how a consumers or other in behave of

them can independently compute their resource consumption and consequently can

verify their charge. Many aspects of accounting service have not been explored such as,

what is the relationship between each request/response and the resource consumed, how

can the resource consumption be computed by the consumer based on request/response

details, what data are required to compute the resource usages, how can the data be

collected and what data should be collected, does the cloud provider offer well

documented, complete and clear information that helps the consumer to implement their

own resource accounting service, what source of parameters might cause a discrepancy

between the consumer and the provider measurements. These and many other issues

related to consumer-side-accounting need to be covered. Therefore, this thesis is about

to cover the issues mentioned above.

34

Chapter 3

Calculating Resource Consumption

3.1 Introduction

A pay-per-use Cloud service should be made available to consumers with an

unambiguous resource accounting model, by providing a precise description of all

factors taken into account in calculating resource consumption charges. In this chapter

we aim to investigate and explore the feasibility of implementing a consumer-side

resource accounting service. In order to develop this service, we need to investigate and

understand the answer to the following questions:

1. Is it possible for all the data required for calculating the resource consumption for

each resource to be collected independently by the consumer-side metering service?

2. Is the description of the provider’s accounting model unambiguous, and can it be

used by the consumer-side accounting service to compute resource consumption and

produce a similar result to the provider’s? This requires the acquisition of the

following information:

(i) Understanding how resource consumption is computed for each

resource;

(ii) Knowing when resource consumption is computed;

(iii) Knowing if the Cloud provider uses the same accounting model for

different APIs (e.g. REST, SOAP).

3. What potential sources of conflict can arise between consumer and provider

measurements and why?

In order to investigate and understand how we can develop a consumer-side resource

accounting service, we have selected two key components of IaaS, namely storage and

computing power, as our target resources and we have run several experiments, as

described in the first section. The second section describes the experiments and results

of the first case study on Amazon storage service (S3). It also includes a description of

35

the Amazon accounting model, the shortcomings of Amazon S3’s accounting model

and a summary of the results. The third section describes the experiments and their

results of the second case study on Nirvanix SDN storage service. It also includes a

description of the Nirvanix SDN accounting model, its shortcomings and a summary of

the results. The fourth section describes the experiments and results of the third case

study on Amazon Elastic Cloud Computing (EC2), the shortcomings of the Amazon

EC2 accounting model and a summary of results. The fifth section describes an

accounting model used to estimate resource consumption and the last section provides a

summary of this chapter.

3.2 Experiments

Our initial investigation revealed that the most providers calculate storage consumption

charges by collecting data concerning:

 Storage: the space consumed in the bytes at the service provider.

 Bandwidth: the network traffic that is generated by operations that the customer

executes against the service interface. The bandwidth is classified into upload

and download bandwidth.

o Upload bandwidth represents the total number of bytes transferred per

request (Data-Transferred-In).

o Download bandwidth represents the total number of bytes transferred per

response (Data-Transferred-Out).

 Operation: the number of operations that the customer executes against the

service interface during a well-defined period of time.

Amazon S3 was selected based on the fact that Amazon Web Service is one of the

leading cloud computing providers who offer storage service on pay per use basis.

Furthermore, Nirvanix SDN (another leading provider) was selected as the second case

for the purpose of comparative evaluation.

In addition to storage service, we have selected Amazon Elastic Cloud Computing

(EC2) from Amazon Web Service to investigate and understand how the charges for

Virtual Machines are computed.

36

3.2.1 The Scenario

An abstract view of the scenario in our study is shown in Figure 3.1, where the Service

Provider is represented by a cloud service provider, for example the Amazon Simple

Storage Service S3 or the Nirvanix Delivery Network. In addition, the consumer is

represented by a single individual consumer of the service. As shown in Figure 3.1, the

consumer can access the remote service only through a service interface. The service

provider may offer one or more interfaces, for instance, Amazon S3 has SOAP and

RESTful interfaces.

Application
Provider

Interface
Request/Response

Consumer Provider

Internet

Compare

Result

AcData

Computation Accounting

Model

ASc

AData

ASp

InterceptorMData

MSc

RASc

Application
Provider

Interface
Request/Response

Consumer Provider

Internet

Compare

Result

AcData

Computation Accounting

Model

ASc

AData

ASp

InterceptorMData

MSc

RASc

Figure 3. 1 Experiment’s architecture – consumer/provider

The consumer deploys their own resource accounting service (RASC) within the

consumer’s infrastructure. The RASC consists of two components: a metering service

(MSC) and an accounting service (ASC). The MSC is responsible for collecting raw

metering data about resource consumption via the interceptor. The interceptor intercepts

all requests/responses and collects the metering data. Different metering data can be

collected for different resources for request/response details. Consumer-side metering

service stores these details in Metering Data Storage (MDS).

3.2.2 Assumptions

In the experiment we work under the following assumptions:

1. The consumer is represented by a single application, which is a simple SOAP or

RESTful client who uploads, downloads and deletes data from a service provider.

37

2. The client’s application allows the execution of all operations that are offered by the

provider’s interface: for instance, CreateBucket to create a new bucket (or folder) in

Amazon S3.

3. The client can download the provider’s Usage Report “accounting data” at any time.

3.2.3 Experimental Setup

We have developed two Amazon S3 client applications using, respectively, a Plain Old

Java Object (POJO) and an Eclipse environment. The first application was developed to

interact with the SOAP interface, while the second was developed to interact with the

RESTful interface. We have used a single PC (HP with AMD Athlon [tm] 64 processor

3500, 2.19 GHz and 2GB RAM) connected to the internet through the University of

Newcastle server. The data collected by the metering service is stored in an EXCEL

file. The consumer’s metering service was represented by two components: a metering

information collector and metering data storage. The collector is a middleware SOAP or

RESTful handler which intercepts all requests/responses and sends them to metering

data storage to be stored in a meaningful way.

3.2.4 Methodology

1. The customer runs their application to upload, delete and download objects from

their Cloud provider account.

2. MSC collects metering data about each request/response.

3. The provider’s Usage Report ‘accounting data’ is downloaded.

4. From the provider’s Usage Report ‘accounting data’ and the consumer’s metering

data, we will try to extract the provider’s accounting model for each resource, by

trying to derive the relation between the metering data collected by the MSC and the

accounting data produced by the provider’s Usage Report.

5. We will try to describe the extraction relation in a general formula if possible.

6. The extracted formula will be applied to different data collected by the MSC, to

check whether or not it produces the same accounting data as was produced by the

provider’s Usage Report.

http://www.google.co.uk/url?sa=t&rct=j&q=pojo+&source=web&cd=5&ved=0CFgQFjAE&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPlain_Old_Java_Object&ei=39xET-7tIJTX8QOQ_fnXBA&usg=AFQjCNFuTkcMySFYcLEexbCnwFUPp34PZg
http://www.google.co.uk/url?sa=t&rct=j&q=pojo+&source=web&cd=5&ved=0CFgQFjAE&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPlain_Old_Java_Object&ei=39xET-7tIJTX8QOQ_fnXBA&usg=AFQjCNFuTkcMySFYcLEexbCnwFUPp34PZg

38

3.3 First case study: Amazon S3

Amazon advertises its S3 service as a storage service available to internet users on a

pay-per-use basis [4]. Informally, this is promoted as a highly reliable, fast, inexpensive

data storage service, accessible to subscribers through a Web service interface.

Currently, S3 provides SOAP and RESTful interfaces [37]. An S3 space is organised as

a collection of ‘buckets’, entities which are similar to folders, except that they do not

support nesting. A bucket can contain zero or more objects of up to 5 GB; an object is

simply a file uploaded by the customer from their local disk into their S3 space. Both

buckets and objects are identified by names (‘keys’ in Amazon terminology) chosen by

the customer.

To gain access to the service, customers need to open an account with S3, provide a

credit card number and agree to pay a bill at the end of each calendar month. Upon

successful registration, Amazon provides the customer with an account name, access

key and secret key. The account name identifies an S3 storage space that is reachable to

the customer from anywhere at any time and to anybody with whom they share their

access and secret keys. An S3 customer is charged for a) storage space: storage space

consumed by the objects that they store in S3; b) bandwidth: network traffic generated

by the operations that the customer executes against the S3 interface; and c)

operations: number of operations that the customer executes against the S3 interface.

Information about pricing and the charging schema used to calculate the customers’ bill

is spread across three documents available from the Amazon Web Services pages: a)

‘The Amazon Simple Storage Service (Amazon S3)’ page contains the prices; b) the

‘Simple Storage Service FAQs’ contain pricing and examples of bill calculation; c) the

‘Calculating Your Bill’ page (that pops up as a help window from within the Usage

Reports associated to each S3 account) provides complementary information.

Prices vary slightly in accordance with the geographical region (US standard, US-West

and European Union) where the customer’s data is physically located, but the charging

schema is the same for all regions. In Amazon’s pricing list, there is no reference to the

time zone used by Amazon to determine when days are considered to start and end and

billing cycles. However, from the Authenticating SOAP Requests Section of the

39

Amazon Developer Guide [37], it is clear that S3 servers are synchronised to

Coordinated Universal Time (UTC) which is also known as Zulu Time (Z time) and is

in practice equivalent to Greenwich Mean Time (GMT). The key parameter in the

calculation of the storage bill is the number of byte hours accounted to the customer.

Byte Hours (ByteHrs) is the number of bytes that a customer stores in his/her account

for a given number of hours. Thus if in a given month (say March) a customer stores 10

bytes for a single hour, their storage consumption for March would be 10 × 1 = 10

ByteHrs; similarly, if the customer stores 10 bytes for a whole day, their storage

consumption for March would be 10 × 24 = 240 ByteHrs; likewise, if the customer

stores 10 bytes for the 31 days (744 hrs) of March, the storage consumption for March

would be 10 × 744 = 7440 BytesHrs.

From now on, we will assume that charging is for European customers accessing the S3

service from the ‘outside internet’, that is, not from within Amazon web services − for

example, an application running on Amazon’s Elastic Compute Cloud (EC2) and

accessed data stored in S3. Current prices (in US dollars) read as follows:

 Storage cost - the first 50 TB cost 15 cents per GB per month.

 Bandwidth cost - Amazon distinguishes between DataTransfer-In and Data

Transfer-Out (as explained in Section 2.1). There was no charge for

DataTransfer-In up to Jun 30th 2010; thereafter the charge changed to 10 cents

per GB. The first 10 TB of DataTransfer-Out cost 15 cents per GB.

 Operations cost - A block of 1,000 operations composed of PUT, COPY,

POST or LIST costs one cent, whereas a block of 10,000 GET and all other

operations, excluding DELETE, costs one cent. Delete operations are free.

It is worth clarifying that with Amazon, prices decrease slightly as consumption

increases, for example, the second 50 TB of storage costs 11 cents per GB per month.

3.3.1 Charging schema for storage

In the FAQs page, Amazon explains that the GB of storage billed in a month is the

average storage used throughout the month. This includes all object data and metadata

stored in buckets that you created under your account. We measure your usage in

TimedStorage-ByteHrs, which are added up at the end of the month to generate your

40

monthly charges. Next is provided an example that illustrates how to calculate your bill

if you keep 2,684,354,560 bytes (or 2.5 GB) of data in your bucket for the entire month

of March. According to Amazon the total number of bytes consumed for each day of

March is 2,684,354,560; thus the total number of ByteHrs is calculated as

2,684,354,560×31×24 = 1,997,159,792,640 which is equivalent to 2.5 GB/Months. At a

price of 15 cents per gigabyte per month, the total charge amounts to 2.5×15 = 37.5

cents.

Amazon explains that at least twice a day, we check to see how much storage is used by

your Amazon S3 buckets. The result is multiplied by the amount of time passed since the

last checkpoint. Their records of storage consumption in ByteHrs can be retrieved from

the Usage Reports associated with each account.

3.3.2 Charging schema for bandwidth

The Calculating Your Bill document explains that DataTransfer-In is the network data

transferred from the customer to S3. They state that Every time a request is received to

get an object, the amount of network traffic involved in transmitting the object data,

metadata, or keys is recorded here. DataTransfer-Out is the network data transferred

from S3 to the customer. Amazon state that Every time a request is received to get an

object, the amount of network traffic involved in transmitting the object data, metadata,

or keys is recorded here. By ‘here’ they mean that in the Usage Reports associated to

each account, the amount of DataTransfer-In and DataTransfer-Out generated by a

customer is represented, respectively, by the DataTransfer-In-Bytes and DataTransfer-

Out-Bytes parameters.

As an example, Amazon explains that if You upload one 500 MB file each day during

the month of March and You download one 500 MB file each day during the month of

March your bill for March (imagine 2011) will be calculated as follows. The

DataTransfer-In would be 500MB × (1/1,024) × 31 = 15.14GB. At a price of 10 cents

per gigabyte, the total charge would be 15.14 × 10 = 151.4 cents. In a second example

they show that if You download one 500 MB file each day during the month of March

41

the total amount of DataTransfer-Out would be 15.14 GB which, charged at 15 cents

per GB, would amount to 227 cents.

3.3.3 Charging schema for operations

To illustrate their charging schema, they provide an example in the Amazon Simple

Storage Service FAQs in which You transfer 1,000 files into Amazon S3 and transfer

2,000 files out of Amazon S3 each day during the month of March, and delete 5,000

files on March 31st. In this scenario, the total number of PUT requests is calculated as

1,000 × 31 = 31,000; whereas the total number of GET requests is calculated as 2,000 ×

31 = 62,000. The total number of DELETE requests is simply 5,000, though this is

irrelevant as DELETE requests are free. At the price of one cent per 1,000 PUT

requests and one cent per 10,000 GET requests, the total charge for the operations is

calculated as 31,000 × (1/1,000) + 62,000 × (1/10,000) = 37.2 cents.

3.3.4 Error handling

As explained in the Handling Errors Section of [37], some operations might fail to

complete successfully; the details of the error response depend on the interface (SOAP

or RESTful), but in general it contains information that helps to identify the party

responsible for the failure – the customer or the S3 infrastructure. For example,

NoSuckBucket errors are caused by the customer when they try to upload a file into a

nonexistent bucket; whereas an InternalError code indicates that S3 is experiencing

internal problems. Amazon advises developers to account for potential problems, for

example, by considering request resends in their applications.

3.3.5 S3 billing records

Among the on-line records that Amazon retains for each S3 account is a repository of

two documents related to customers’ bills, namely: Account Activity and Usage

Reports. The Account Activity document is a month’s billing statement that contains

the total charge for the corresponding month and a summary of the operations that the

42

customer executed against S3 and their corresponding charges. The previous and

current month’s statements are available.

3.3.6 Usage report

There are multiple ways for an Amazon S3 customer to view their resource usage, for

example, as explained in [4], by viewing a summary of all usage associated with their

bill through the AWS portal, or by generating detailed access logs for specified buckets.

3.3.6.1 Tracking Usage in the Amazon Web Service (AWS) Portal

An Amazon S3 customer can view their Usage Report by logging into their AWS

account and selecting Usage Report. The Usage Report provides a summary of usage

data for a specific time period. It also provides statistics on usage for all customer

buckets. The data in the Usage Report is the same data that is used by Amazon S3 to

calculate the customer’s web service bill. The available data in a Usage Report is

organized according to usage type and operation. The usage type is the category of

usage data that the customer wants to report. The data under each usage type is further

categorized by the operation or type of storage that is associated with each data point in

the report. Amazon S3 reports the following usage types:

o TimedStorage-ByteHrs: this contains records of the amount of storage the

consumer has used over time. TimedStorage-ByteHrs represents how much

storage has been used by all the objects in all customers’ buckets, multiplied by

the number of hours since the last checkpoint. At least twice a day, S3 checks

how much storage is being used by all objects in all customer buckets. The data

is provided in units of byte-hours.

o AverageStorage-Bytes: this usage type contains another, more intuitive view of

the customer’s storage usage. AverageStorage-Bytes represent the average total

storage used by all the objects in all buckets per day. The data is provided in

units of bytes. This data is directly calculated from the data stored with the

TimedStorage-ByteHrs usage type. Data for this usage type is only available in

43

daily granularity. This data is provided for information purposes only and does

not impact the customer bill.

o Network-Bytes: this contains records of network data transfer associated with

the customer account. Every time a request is received to PUT an object, GET

an object, or list a bucket, the amount of network traffic involved in transmitting

the object data, metadata, or keys, is recorded here. The customer can, if they so

wish, view the network usage associated with one of these operations

individually by specifying the operation of choice before generating the Usage

Report.

o Request: this usage type contains information about the number of requests

received for various common Amazon S3 operations. This data is provided for

information purposes only and does not impact the customer bill. The customer

can choose to view the number of requests to PUT an object, GET an object,

delete an object, or list a bucket related to their account.

3.3.7 Amazon S3 experiments and results

In an attempt to audit our own S3 bill, we have run several experiments to understand

how S3 computes the resource consumption for storage, bandwidth and operation. In

other words, we have tried to understand S3 accounting model by conducting those

experiments to see if we could extract a formula that can be used by the consumer to

compute their own resource consumption based on its own metering data, and produces

accounting data that matches with the measurement provided by S3.

3.3.7.1 Amazon S3 usage report

In an attempt to audit our own S3 bill, we studied Amazon’s Usage Report, aiming to

gain a complete understanding of how Amazon S3 represents the accounting data and

what the meaning of each item of data presented in the Amazon Usage Report.

 The aim: to understand how Amazon S3’s accounting data is represented and the

meaning of each item in the accounting data.

 Client Actions:

44

o Client has already created a number of Buckets and uploaded a number

of objects into each Bucket.

o Client Executes a number of operation requests (e.g. ListMyBucket).

o Client downloads Amazon S3’s Usage Report, which shows Amazon

S3’s accounting data.

 Observation

As shown in Table 3.1, the Amazon S3 Usage Report is divided into seven main

fields. These fields are Service, Operation, UsageType, Resource, StartTime,

EndTime and Usage Value, where the Service represents the name of the service

(Amazon S3); Operation represents the name of the operation invoked (e.g.

GetObject); UsageType represents the type of resource that has been consumed by

the operation (e.g. storage or bandwidth); and Resource represents the name of

the Bucket that is or will be used to store objects; while StartTime and EndTime

represent the start and end of the consumption interval. Other important details

that can be understood from Amazon S3’s Usage Report can be summarised as

follows:

Table 3. 1 Amazon S3’s Usage Report

o Amazon S3 has divided resource consumption into consumption intervals (CI),

where the length of each CI can be equivalent to an hour, a day or a week. We

have selected the daily interval basis. Furthermore, we have found the

following:

45

 Each CI has a start and end point (SP and EP respectively).

 The EP of CIi represents the SP of CIi+1.

 Resource types are divided into storage and bandwidth consumption and

operation (computer power).

 The consumption of each resource type is computed for each Bucket

separately.

o Storage consumption is represented by “StandardStorage”

 StandardStorage is divided into two sub usage types: TimedStorage-

ByteHrs and StorageObjectCount. The first represents the total amount

of bytes consumed per bucket over the CI. The TimedStorage-ByteHrs

data is provided in bytes-hours. The latter represents the number of

objects in the Bucket that consumed the “TimedStorage-ByteHrs” over

the CI.

o Bandwidth consumption is represented by two sub usage types

 DataTransfer-In-Bytes represents the total amount of bytes transferred

into (uploaded into) the Bucket entity in the S3 account for each request

type over each CI.

Table 3. 2 Upload Bandwidth Consumption for Put Requests

Table 3.2 shows that the total number of Bytes uploaded by all PUT

requests into nclMetering Bucket during the period between

15/11/09:00:00:00 and 16/11/09:00:00:00 = 1108618 Bytes.

 DataTransfer-Out-Bytes represent the total amount of bytes transferred

from (downloaded from) a Bucket entity in the S3 account by each

request type over each CI.

Table 3. 3 Download Bandwidth Consumption for Put Requests

46

Table 3.3 shows that the total number of Bytes downloaded by all GET

requests from nclMetering Bucket during the period between

18/11/09:00:00:00 and 19/11/09:00:00:00 = 17236 Bytes.

 Bandwidth subtypes are computed separately for each type of operation

per bucket. The data is provided in units of bytes.

o Operation (Computer power) represented by three sub usage types

 Request-Tier1: represent the total number of (PUT, ListBucket,

ListAllMyBucket and CreateBucket) requests during the CI. For

example, PUT Request-Tier1=12, means during the CI the customer

executed 12 PUT requests.

 Request-Tier2: represents the total number of GET requests during the

CI.

 NoCharge: represents the total number of delete requests over the CI.

o Amazon’s S3 Usage Report uses 24 hours as the time occupied by each object.

3.3.7.2 Storage consumption (SC)

In an attempt to allow the S3 customer to verify his storage consumption the

customer needs to understand 1) how their byte consumption is measured, that is,

how the data and metadata that is uploaded is mapped into consumed bytes in S3; 2)

how Amazon determines the number of hours that a given piece of data has been

stored in S3; and 3) when the resource consumption is computed. To clarify all

these issues we have conducted the following experiments:

 Client Actions:

o Create a number of Buckets and upload a number of objects into each

Bucket, under the following assumptions:

 Use different lengths of Bucket name, ranging between 3-20

characters.

o Execute a number of PUT requests with different parameters; these

parameters are:

 Use different lengths of object name between 10-20 characters.

 The uploaded user metadata is between 0 up to 2KB.

47

 The size of object is between 0 to 5GB bytes.

 Each object is uploaded into empty Bucket.

o From the customer request/response details, the consumer collects the

following metering data: {Request Id, URI, Operation type, Bucket name,

Object name, Request Time Stamp (RTS), Byte transferred by response

“send in” (BTReq), Access Key (AK), Signature (Singn), Response Time

Stamp (TMRes) and Bytes Transferred per Response (BTRes)}.

o Downloads S3’s Usage Report.

 Observation

From the metering data collected from request/response details by the consumer’s

metering service and S3 Usage Report, we obtained the following outlined points:

i. Data and metadata

Amazon S3 does not explain how to calculate the actual storage space taken up by

data and metadata. To clarify this issue, we uploaded a number of objects of

different name lengths, data and user metadata into an equal number of empty

buckets.

Figure 3. 2 Impact of data and metadata in storage consumption

Figure 3.2 shows the parameters and results from one of our upload operations,

where an object named Object.zip is uploaded into a bucket named MYBUCKET,

which was originally empty. Notice that in this example, the object and bucket

names are, respectively, ten and eight characters long, which is equivalent to ten and

eight bytes, respectively. The object data and metadata shown in Figure 10

correspond to information we extracted locally from the PUT request. By contrast,

48

the storage consumption of 295,216 bytes corresponds to what we found in the

usage reports. The actual usage reports show storage consumption per day in

BytesHrs; and the value shown is the result of its conversion into bytes.

Notice that this storage consumption equals the sum of the object data, the length of

the object name and the length of the bucket name multiplied by the length of the

consumption interval (day = 24 hours): (8 + 10 + 295,198) * 24 = 295,216 * 24

Bytes-Hrs. Three conclusions can be drawn from this observation: first, the

mapping between bytes uploaded by PUT requests and bytes stored in S3

corresponds one-to-one; secondly, object and bucket names represent what Amazon

calls storage overheads and incur storage consumption; third, user metadata does

not impact storage consumption. In addition to the experiments discussed above, we

created a number of empty buckets and verified from the usage reports that they do

not consume storage space. All related experiments are presented in the Appendix

on Storage Consumption.

ii. Checkpoints

Amazon S3 states that they check the amount of storage consumed by a customer at

least twice daily. However, Amazon S3 does not stipulate exactly when the

checkpoints take place. To clarify the situation, we conducted a number of

experiments that consisted in uploading and deleting files in S3 and studying the

Usage Reports of our account to detect when the impact of the PUT and DELETE

operations were accounted by Amazon.

 Client Actions:

o Create a number of new Buckets.

o Execute a number of PUT requests under the following assumptions:

 Upload an object each minute into a Bucket.

 Each object has the same size, name length and a different name.

 Determine the length of loading period (LP), where each LP

should have a start and end point. For example, as shown in

Figure 11, LP1 represents the first LP, it starts at the SP of CIi,

and ends after the EP of CIi+1.

49

SP EP

CII

EP

CII+1

LP1
LP2

LP3

SP EP

CII

EP

CII+1

LP1
LP2

LP3

Figure 3. 3 uploading and checkpoint

 As shown in Figure 3.3, different loads are applied, where the

start and end point of each LP may start or end before or after the

SP and EP of the entity’s CI respectively.

 For some experiments, a random point was selected at which to

randomly delete a number of objects.

o Download the S3 Usage Report.

 Observation

Our findings are summarised in Table 3.4. From the request time stamp of the last

object counted for storage for the entity’s consumption interval, it seems that,

currently, Amazon does actually check customers’ storage consumption only once a

day. From our observations, it emerged that the time of the checkpoint is decided

randomly by Amazon S3 within the 00:00:00Z and 23:59:59Z time interval, which

actually represented the start and end point of each CI.

26/11/09

00:00:00

25/11/09

00:00:00

30926/11/09

02:16:41

30978026/11/09

11:09:00

25/11/09

21:59:00

nclMetering25

26/11/09

00:00:00

25/11/09

00:00:00

1425/11/09

02:17:38

1418025/11/09

05:22:00

25/11/09

02:00:00

nclMetering22

20/11/09

00:00:00

19/11/09

00:00:00

21019/11/09

03:27:23

21021019/11/09

03:28:00

18/11/09

23:01:00

nclMetering16

End pointStart

point

No. of counted

object

Request

Time Stamp

Object

No.

No. of uploaded

object

Upload

end point

Upload

start point

Bucket name

Amazon S3’s Usages ReportsConsumer’s Metering Data

26/11/09

00:00:00

25/11/09

00:00:00

30926/11/09

02:16:41

30978026/11/09

11:09:00

25/11/09

21:59:00

nclMetering25

26/11/09

00:00:00

25/11/09

00:00:00

1425/11/09

02:17:38

1418025/11/09

05:22:00

25/11/09

02:00:00

nclMetering22

20/11/09

00:00:00

19/11/09

00:00:00

21019/11/09

03:27:23

21021019/11/09

03:28:00

18/11/09

23:01:00

nclMetering16

End pointStart

point

No. of counted

object

Request

Time Stamp

Object

No.

No. of uploaded

object

Upload

end point

Upload

start point

Bucket name

Amazon S3’s Usages ReportsConsumer’s Metering Data

Table 3. 4 Amazon S3’s checkpoint

As shown in Figure 3.4, Amazon uses the results produced by a checkpoint for a

given day, to generate the account for 24 hrs of that day for the customer, regardless

of the operations that the customer might perform during the time left between the

checkpoint and the 23:59:59Z hours of the day.

For example, the storage consumption for the 30th will be taken as 2 × 24 = 48

GBHrs; where 2 represents the 2GB that the customer uploaded on the 30th and 24

represents the 24 hrs of the day.

50

Figure 3. 4 Amazon S3’s checkpoint

Finally, we have observed that uploading and deleting objects between two

checkpoints does not affect storage consumption; however it affects other resource

consumption. More details can be found in Appendix 3 (Amazon S3’s Check

Points).

iii. Operations consumption

In order to understand how and when Amazon S3 computes the Operation

consumption for each request, we have conducted a number of experiments that

consisted in executing a different number of operations several times for each

consumption interval, for example, uploading 10 objects into a Bucket and studying

Amazon S3’s Usage Reports to know how operations were accounted by Amazon.

In all the experiments we have done (using RESTful or SOAP interfaces), we found

that the number of each request is counted and presented in the Amazon S3 Usage

Report as Request-Tier1 or Request-Tier2, depending on the type of request. For

example, PutObject is executed 7 times in order to upload 7 objects into

MYBUCKET-04, the Amazon Usage Report, as we can see in Table 3.5, represents

7 as the value of Request-Tier1 which is exactly equal to the total number of

executed PutObject requests. By running this experiment for a range of possible

request types; the same results were obtained.

Table 3. 5 Amazon S3 Usage Report for Operations

51

To clarify whether failed operations are counted or not we executed a number of

operations including ones that were both valid and invalid (for example, the creation

of buckets with invalid names and with names that already existed). Next, we

examined the usage reports and, as expected, we found that Amazon counted both

successful and failed operations. Figure 3.5 shows an example of the operations that

we executed and the bandwidth and operation consumption that they caused, in

accordance with the usage reports.

Figure 3. 5 bandwidth and operation consumption of a failed operation

Thus, the failed operation to create a bucket consumed 574 bytes of DataTransfer-In

and 514 bytes of DataTransfer-Out. These figures correspond to the size of the

SOAP request and response, respectively. As shown in Figure 3.5, we also found

out that the failed operation incurred operation consumption and was counted by the

RequestTier2 parameter in the Usage Reports. For more details see Appendix 6

(Error Handling).

Similar to bandwidth consumption, Amazon S3 has a fixed checkpoint for

Operation consumption, which is equal to the end point of each consumption

interval. More details are found in Appendix 3 (Amazon S3’s Check Points).

3.3.7.4 Bandwidth consumption

As stated earlier, bandwidth consumption represented by DataTransfer-In and

DataTransfer-Out includes, respectively, request and response overheads. The

difficulty here is that from the Amazon accounting model, it is not clear how

message size is calculated in DataTransfer-In and DataTransfer-Out. To clarify the

point, we have run several experiments using RESTful and SOAP interfaces.

52

i. Restful Bandwidth consumption

We uploaded a number of files and compared information extracted from the PUT

operations against bandwidth consumption as counted in the Usage Report. Two

examples of the experiments that we conducted are shown in Figure 3.6, where PUT

operations are used to upload an object into a bucket.

Figure 3. 6 bandwidth consumption

The data and metadata shown in the Figure represent the data and metadata

extracted locally from the PUT requests.

As shown by the Bandwidth consump. Parameters extracted from the usage reports,

only the object data consumes DataTransfer-In bandwidth; neither the metadata nor

the object nor the bucket names seem to count as overheads. However, this

observation applies to RESTful requests. All related experiments details and results

are presented in Appendix: 4 (RESTful Bandwidth Consumption).

ii. SOAP Bandwidth consumption

We have executed a number of operations and collected metering data from the

requests details; we have also compared information extracted from each operation

request against bandwidth consumption as counted in the Usage Report. These

examples of the experiments that we conducted are shown in Table 3.6: we

executed PUT operations to upload an object into a bucket, used a CreateBucket

operation to create a new bucket and GetObject to download an object. The data

shown in Table 3.6 represents the metering data extracted locally from each request.

53

752Bytes2010-04-07T

15:36:18.451Z

547

Bytes

00CDeleteObjectMYBUCKET-104

1955

Bytes

2010-04-07T

14:20:16.241Z

608

Bytes

00CGetObjectMYBUCKET-104

822

Bytes

2010-04-07T

14:03:10.456Z

518

Bytes

---CreateBucketMYBUCKET-999

821

Bytes

2010-04-06T

15:11:54.034Z

1584

Bytes

0 Bytes1000

Bytes

CPutObjectInlineMYBUCKET-104

Response

Size

Request

Timestamp

Request

Size

Metadat

a Size

Object

Size

Object

Name

OperationBucket Name

752Bytes2010-04-07T

15:36:18.451Z

547

Bytes

00CDeleteObjectMYBUCKET-104

1955

Bytes

2010-04-07T

14:20:16.241Z

608

Bytes

00CGetObjectMYBUCKET-104

822

Bytes

2010-04-07T

14:03:10.456Z

518

Bytes

---CreateBucketMYBUCKET-999

821

Bytes

2010-04-06T

15:11:54.034Z

1584

Bytes

0 Bytes1000

Bytes

CPutObjectInlineMYBUCKET-104

Response

Size

Request

Timestamp

Request

Size

Metadat

a Size

Object

Size

Object

Name

OperationBucket Name

Table 3. 6 SOAP Requests Metering Data

Tables 3.6 and 3.7 show that for SOAP messages the total size of the message is

always used for calculating bandwidth consumption. More importantly, each SOAP

operation consumes DataTransfer-In and DataTransfer-Out, by contrast with a

RESTful operation, which consumes just one resource (DataTransfer-In or

DataTransfer-Out), based on the operation. For instance, the PUT operation just

consumes DataTransfer-In.

Table 3. 7 Amazon S3 Usage Report

Furthermore, opposite to the storage consumption outcome, Amazon S3 has a fixed

checkpoint for Bandwidth consumption; it is equal to the end point of each

consumption interval. All related experimental details and results are presented in

Appendix 5 (SOAP Bandwidth Consumption).

54

3.3.8 Amazon S3 Accounting Model Description

The accounting model is defined as a method used to compute resource consumption; it

could be one or more mathematical formulae. Moreover, the accounting model includes

details about when the resource consumption is computed, a description of each

resource consumption record, how the resource consumption is computed for each

resource and so on. Based on the results of the experiments described above, Amazon

S3’s accounting model can be described as follows:

3.3.8.1 General Characteristics of the S3 Accounting Model

1. Resource consumption is divided into Consumption Intervals (CI).

2. Each CI has a start and end point (SP and EP respectively).

3. The length of each CI is divided on hour, day and week bases; we have selected

the daily basis (24 hours).

4. The SP and EP of each CI are represented by the DD/MM/YYYY 00:00:00 of

today and the DD/MM/YYYY 00:00:00 of the next day, respectively.

5. The EP of CIi is represented by the SP of CIi+1.

6. Checkpoint (CP) is the moment of time when the resource consumption is

computed.

7. Different resources may have different CP for the same CI.

 EP of each CI was selected as Amazon S3’s fixed CP for Bandwidth and

Operation.

 Amazon S3 does not have a fixed CP for storage consumption where, CP >=

SP or CP<=EP.

8. Amazon S3 allowed their customers to download their resource consumption

report.

3.3.8.2 Storage Accounting

Amazon S3 applies the following accounting model to compute storage

consumption:

1. Compute SC for each upload request related to a bucket by:

55

2. 24*)dataobjectMetaObjectsize(ObjectSC (1)

Where Objectsize = number of bytes transferred per request, and

KeyBucket oflength thekey object oflength thedataObjectMeta
 (2)

3. Compute the deleted SC per delete request by:

24*)dataobjectMetaObjectsize(DelObjectSC (3)

4. Compute the SC for each Day

M

1k

SC

N

1j

SCSCSC kj1ii
DelObjectObjectDayDay (4)

Where N and M representing the number of upload and delete requests per day

respectively

5. At the end of the month the total SC is computed by the following formula:

N

1i

SCSC i
DayMonth (5)

Where N represents the number of days per month

6. Finally, convert the total SC/Month into GB/month by the following formula:

= output of (4) x (1 GB / 1,073,741,824 bytes) x (1 month / 744 hours in May) (6)

3.3.8.3 Upload Bandwidth Accounting

Amazon S3 applies the following model to compute upload bandwidth

consumption:

1. Compute Upload Bandwidth Consumption (UBC) for each request (Req) by:

OHreqUBC ReqBTReq (1)

Where BTReq = No of Bytes transferred per request and ReqOH = request

overhead, the value of ReqOH for RESTful request =0, where in SOAP the value

of ReqOH is depending on the type of request.

2. Compute the UBC for each day:

N

1i

UBCUBC i
qReDay (2)

Where N represents the number of upload requests per day

3. At the end of the month the total UBC is computed by the following formula:

56

N

1i

UBCUBC i
DayMonth (3)

Where N represents the number of days per month

4. Finally, convert the total Upload Bandwidth Consumption into GB/month by

the following formula:

= output of (3) x (1 GB / 1,073,741,824 bytes) (4)

3.3.8.4 Download Bandwidth Accounting

Amazon S3 applies the following model to compute download bandwidth

consumption:

1. Compute Download Bandwidth Consumption (DBC) for each response (Res)

by:

OHsDBC sBTs ReRe Re (1)

Where BTRes = No of Bytes transferred per response and ResOH = response

overhead, the value of ResOH for RESTful response = 0, where in SOAP the

value of ResOH depends on the type of response.

2. Compute the DBC for a day by:

N

1i

DBCDBC i
sReDay (2)

Where N represents the number of responses per day

3. At the end of the month the total DBC is computed by the following formula:

N

1i

DBCDBC i
DayMonth (3)

Where N represents the days of responses per month

4. Finally, convert the total Upload Bandwidth Consumption into GB/month by the

following formula:

= output of (3) x (1 GB / 1,073,741,824 bytes) (4)

3.3.8.5 Operation Accounting

The numbers of requests that are issued during a day represent the operation

consumption (computer power).

57

i. Requests Tier1

1. Tier1 requests: computed all requests issued during a day by:

R

1l

l

S

1k

k

M

1j

j

N

1i

i1Tire LISTPOSTCOPYPUTDay (1)

Where N, M, S and R represent the number of requests per day

2. At the end of the month compute Tier1 consumption by:

N

1i

1Tier1Tier i
DayMonth (2)

Where N represents the number of days per month

ii. Requests Tier2

1. Tier2 requests: computed all requests issued during a day by:

M

1j

j

N

1i

i2Tier qReOGETDay (1)

Where N and M represent the number of requests per day

2. At the end of the month compute Tier2 consumption by:

N

1i

2Tier2Tier i
DayMonth (2)

Where N represents the number of days per month

3.3.9 Shortcomings in the Amazon S3 Accounting Model

The Amazon S3 customer is charged for storage, bandwidth and operations performed.

In the previous subsections we examined whether the data that the service provider

accounting model requires for calculating billing charges can be collected

independently by the consumer (or a TTP) with sufficient accuracy. Our investigations

show that this would be possible, if Amazon S3 provided a full and clear description of

their accounting model. However, from our experiments we have identified the

following shortcomings as described below.

In particular, for storage consumption, the accounting model needs explicitly to state

how the data and metadata that is uploaded is mapped into consumed bytes by the

58

Service Provider. For example, in S3 our experiments showed that user metadata does

not impact storage consumption. Furthermore, we saw that errors are possible if the

checkpoint times of Amazon S3 and of the customer calculating storage consumption

are not sufficiently close. Ideally, Amazon’s checkpoint times should be made known to

customers to prevent any such errors.

In relation to bandwidth, as explained in Section 3.5, DataTransfer-In and

DataTransfer-Out include, respectively, request and response overheads. The difficulty

here is that from the Amazon S3 accounting model, it is not clear how message size is

calculated in DataTransfer-In and DataTransfer-Out. The accounting model needs

clearly to state how the DataTransfer-In and DataTransfer-Out are computed, as well as

how they compute the request and response overheads, and present any details that

affect the bandwidth computation of users using different interfaces.

One likely source of difficulty regarding the charges for operations is how to determine

the liable party for failed operations. Currently, this decision is taken unilaterally by

Amazon. In this regard, we anticipate two potential sources of conflict: DNS and

propagation delays. As explained by Amazon, some requests might fail and produce a

Temporary Redirect (HTTP code 307 error) due to temporary routing errors which are

caused by the use of alternative DNS names and request redirection techniques [38

ADG]. Amazon’s advice is to design applications that can handle redirect errors, for

example, by resending a request after receiving a 307 code (see [37], Request Routing

section). Strictly speaking these errors are not caused by the customer as the 307 code

suggests. It should be stated clearly by the Amazon S3 accounting model which party

bears the cost of the re–tried operations.

3.3.10 Summary of Amazon S3 case study

3.3.10.1 General

The important result obtained is that an Amazon S3 customer can independently collect

all the metering data that is required for calculating charges for the consumption of all

Amazon S3’s resources. Furthermore, experiments indicated that the description of the

Amazon S3 accounting model is ambiguous and needs to be clarified by Amazon. In

59

particular, concerning storage, the S3 accounting model needs explicitly to state how

the data and metadata that is uploaded is mapped into consumed bytes in the Service

Provider. For example, S3 experiments showed that bytes transfer per request and

object name and bucket name only impact storage consumption. We also pointed out

that an operation executed by a request in RESTful consumes fewer resources than the

same operation executed by a request in SOAP; for instance, a CreateBucket operation

executed by SOAP request consumes operation, DataTransfer-In and DataTransfer-Out,

whereas the same operation executed by RESTful request consumes operation only (see

Appendix: Experiment 5.1 CreateBucket request and resource consumption). Moreover,

the experiment results show that Amazon S3 has selected the end point of each

consumption interval as a fixed checkpoint to calculate the resource consumption of

operation and bandwidth. On the other hand, Amazon S3 has arbitrarily selected a point

between the start and end point of each consumption interval to calculate storage

consumption; which may lead to possible conflict between consumer and provider

results. Finally, our results show that it is possible for an Amazon S3 consumer to

independently implement their own RAS that can be used to compute and verify their

resource consumption.

3.3.10.2 Storage

Six conclusions can be drawn from the experiments:

1. The mapping between bytes uploaded by PUT requests and bytes stored in S3

corresponds one-to-one.

2. Object and bucket names represent what Amazon calls storage overhead and incur

storage consumption.

3. User metadata does not impact storage consumption.

4. An empty bucket does not consume any storage consumption.

5. From our observations, it emerged that the time of the checkpoint is decided

randomly by Amazon S3 within the 00:00:00Z and 23:59:59Z time interval which

actually represented the start and end point respectively of each CI.

6. We have observed that uploading and deleting objects between two checkpoints

does not affect storage consumption; however it affects other resource

consumption.

60

3.3.10.3 Operations

Three conclusions can be drawn from our experiments: first, straightforwardly, we

found that the total number of each type of request is counted and presented in the

Amazon S3 Usage Report as Request-Tier1 or Request-Tier2. Second, by contrast with

storage we found that Amazon S3 has a fixed checkpoint for operation consumption; it

is equal to the end point of each consumption interval. Finally, we also pointed out that

a failed operation results in operation consumption as well as bandwidth consumption.

3.3.10.4 Bandwidth

First, for a RESTful request we have found that only the object data consumes

bandwidth consumption; neither the metadata nor the object nor the bucket names seem

to count as overheads. However, with a SOAP request we have found that the whole

message (request or response) size is represented in bandwidth consumption. Secondly,

a failed operation consumes bandwidth resource consumption, and as a result of this

SOAP messages result in more bandwidth consumption than RESTful messages. Third,

each SOAP operation takes up more resource consumption than an equivalent operation

in RESTful, because every SOAP message consumes all resources, as opposed to a

RESTful operation, which consumes only some resources . For instance, CreateBucket

executed in RESTful only consumes operation resource, where in SOAP, it uses

bandwidth consumption (DataTransfer-In and DataTransfer-Out) as well as operation

resource. Finally, similar to the operation consumption outcome, it was found that

Amazon S3 has a fixed checkpoint for Bandwidth consumption, which is equal to the

end point of each consumption interval.

3.4 Second case study: Nirvanix Storage Delivery Network

Services

Nirvanix advertises its Storage Delivery Network (SDN) service as a storage service

available to Internet users on a pay-per-use basis [29]. Nirvanix SDN is a fully-

managed, highly secure, cloud storage service developed for enterprises. Nirvanix SDN

is promoted as a highly reliable, fast, data storage service accessible to subscribers

61

through a Web service interface. Currently, Nirvanix SDN provides both SOAP and

RESTful interfaces [39]. A Nirvanix SDN space is organised as a collection of folders

that support nesting. A folder can contain zero or more subfolders and files of up to 250

GB. Both folder and file are identified by names chosen by the customer.

To gain access to the service, customers need to open an account with Nirvanix SDN,

provide a credit card number and agree to pay a bill at the end of each calendar month.

Upon successful registration, the Nirvanix SDN user sets his user name and password,

whereupon Nirvanix SDN provides the customer with an application key. A Nirvanix

SDN customer is charged for a) storage space: storage space consumed by the files that

they store in SDN; b) bandwidth: network traffic generated by the operations that the

customer executes against the SDN interface; c) media service: which includes

audio/video transcoding, image resizing and thumbnail generation; d) experience

package: which includes unlimited media transcoding, unlimited search and virtual

URL and e) search.

Information about pricing and the charging schema used to calculate the customer’s bill

is not documented. There is only one page – entitled ‘The Nirvanix SDN - How To

Buy/ Self Service Pricing’ that describes the pricing system. However, a usage report

associated with each Nirvanix NDS account provides complementary information.

Nirvanix NDS only publishes the price to the public of up to 2 TB for storage and

bandwidth, and their storage price is more expensive than the Amazon S3 storage price.

There is no reference to the time zone used by Nirvanix SDN to determine the start and

end points of days and billing cycles. However, from the Authenticating SOAP

Requests Section of the ‘Nirvanix SDN Developer Guide’ [39] it is clear that Nirvanix

SDN servers are synchronised to Coordinated Universal Time (UTC) which is in

practice equivalent to Greenwich Mean Time (GMT). There is no further

documentation published by Nirvanix SDN about their accounting and billing system.

Previous experience gained from the experiments with Amazon S3 will now be applied

to investigating and understanding the Nirvanix SDN accounting model.

Nirvanix SDN current prices (in US dollars) read as follows:

62

 Storage cost ($0.25 for 1 GB/month for single node, $0.45 for 1GB/month in 2

nodes and $0.71 for 1 GB/month in 3 nodes) for first 2 TB.

 Bandwidth cost

o Upload cost ($0.10 for 1 GB/month for single node, $0.20 for

1GB/month in 2 nodes and $0.30 for 1 GB/month in 3 nodes) for first 2

TB.

o Download cost ($0.15 for 1 GB/month) for first 2 TB.

 Search cost is $0.20 per 1,000 calls.

 Media Service cost is $1 GB processed (based on source file).

 Experience package cost is +$0.20 GB/month stored.

 Operations cost is free.

 Minimum fee is $1/month.

It is worth clarifying that with Nirvanix SDN, prices increase slightly as the number of

nodes is increased, for example, 1GB/month costs $0.25 in one node whereas it costs

$0.45 in 2 nodes.

Frankly speaking, the documentation for Nirvanix is very weak in comparison with

Amazon S3.

3.4.1 Nirvanix SDN Experiments and Results

The same experiments that were described in Section (5) for Amazon S3, have been

conducted to understand the accounting model used by Nirvanix SDN for storage and

bandwidth consumption. The results obtained from these experiments were as follows:

Nirvanix SDN uses accounting model concepts that are almost the same as those used

by Amazon S3, with a few small differences. Below we will discuss these differences

for each resource.

3.4.1.1 Usage Report

Nirvanix SDN allows their users to download their Usage Report. The two options

allowed when downloading the Usage Report are: Master Accounts Usage and Daily

Usage; from these, we have selected the Daily Usage report. The Daily Usage Report is

divided into four main fields, consisting of: Date, Average Daily Storage, Total Upload

63

Bandwidth and Total Download Bandwidth. Date represents the ID of the consumption

interval (CI); Average Daily Storage represents the storage consumption over CI; Total

Upload Bandwidth represents the total number of bytes uploaded during a CI; and

Total Download Bandwidth represents the total number of bytes downloaded during a

CI. Other important details that can be understood from the Nirvanix SDN Daily Usage

Report are:

 Consumption interval

As shown in Table 3.8, the resource consumption in the Nirvanix SDN Daily

Usage Report is divided into consumption intervals (CI), where each CI is

represented by one day. This means that each day has a start point (00:00:00)

and an end point (24:00:00), and the end point of CIi represents the start point of

CIi+1.

Table 3. 8 Nirvanix SDN’s Daily Usage Report.

 Resources

There are three main resources (storage, upload and download bandwidth)

computed for each CI. Storage and bandwidth data is represented in Bytes.

3.4.1.2 Storage

As Nirvanix use GB/Month to calculate their bill, the customer needs to understand: 1)

how their GB consumption is measured, that is, how the data and metadata that is

uploaded is mapped into consumed bytes in Nirvanix SDN; and 2) at what points

Nirnanix SDN computes the resource consumption; this issue is directly related to the

notion of a checkpoint. To clarify all these issues we have conducted the following

experiments.

 Client Actions:

64

o Create a number of folders and upload a number of files into each folder,

under the following assumption:

 Use different lengths of folder name between 3-20 characters.

o Execute a number of PUT requests with different parameters; these

parameters are:

 Use different lengths of file name between 10-20 characters.

 The uploaded user metadata is ranges from 0 up to 2KB.

 The size of a file is between 0 to 5GB.

 Each file is uploaded into an empty folder.

o From the customer request/response the consumer collects the following

metering data: {Request Id (ID), URI, Operation type (OT), Folder name

(FN), Object name, Request Time Stamp (RTS), Byte transferred by

response “send in” (BTReq), Access Key (AK), Signature (Singn), Response

Time Stamp (TMRes) and Bytes Transferred per Response (BTRes)}.

o Downloads Nirvanix SDN’s Usage Report.

From the metering data collected from request / response details by the consumer’s

metering service and the Nirvanix SDN Usage Report we obtained the following

results.

i. Data and metadata

Figure 3.7 shows the parameters and results from one of our upload operations, where a

file named PersonalData.doc is uploaded into a folder named MyFolder, which was

originally empty. Notice that in this example, the file name is 16 characters and the

folder name is eight characters long, which is equivalent to 16 and eight bytes,

respectively.

The file data and metadata shown in the figure correspond to information we extracted

locally from the PUT request. By contrast, the storage consumption of 26,753,890 bytes

corresponds to what we found recorded in the Usage Reports.

65

PUT PersonalData.doc Into MyFolder

16 Char 8 Char

26753890

Bytes of Data

866 Bytes of

metadata

Storage consumption from Nirvanix SDN’s Usages Reports: 26753890 Bytes

PUT PersonalData.doc Into MyFolder

16 Char 8 Char

26753890

Bytes of Data

866 Bytes of

metadata

Storage consumption from Nirvanix SDN’s Usages Reports: 26753890 Bytes

Figure 3. 7 impact of data and metadata in storage consumption

The actual Usage Reports show storage consumption per day in Bytes. Notice that this

storage consumption exactly equals the file data. Two conclusions can be drawn from

this observation: first, the mapping between bytes uploaded by PUT requests and bytes

stored in Nirvanix SDN corresponds one-to-one; secondly, user and system metadata do

not impact storage consumption. In addition to the experiments discussed above, we

created a number of empty folders and verified from the Usage Reports that they do not

consume storage space.

ii. Checkpoints

Nirvanix SDN does not proffer any details about when their checkpoints take place. To

clarify the situation, we have conducted a number of experiments that consisted in

uploading and deleting files in Nirvanix SDN and studying the Usage Reports of our

account to detect when the impact of the UPLOAD and DELETE operations were

accounted by Nirvanix SDN.

 Client Actions:

o Create a number of new folders.

o Execute a number of PUT requests under the following assumption:

 Delete all existing folders.

 Create new folder.

 During the hours of daytime (from 8 AM to 8 PM) upload a

number of files into an empty folder where all files have the same

size.

 At some point, which should be selected randomly between

(00:00:00 GMT and 23:59:59 GMT), the client deletes all files

from the folder.

66

o Downloads Nirvanix SDN Usage Report.

 Observation

As shown in Table 3.9, we found that, currently, Nirvanix usually computes storage

consumption at the start point for each consumption interval, which can be exactly

represented by 00:00:00 GMT. That means Nirvanix SDN selected the start point of

each consumption interval as a fixed checkpoint. However, the end point of each

consumption interval was selected by Nirvanix SDN as its fixed checkpoint to compute

the bandwidth resource consumption.

0 bytes2000000 bytes07/07/2010n/a0007/07/2010MyFolder04

2000000 bytes0 bytes06/07/201007:07:2010T00:00:592000000 Bytes2006/07/2010MyFolder03

00 bytes05/07/2010n/a0005/07/2010MyFolder02

2000000 bytes0 bytes04/07/201004:07:2010T23:59:592000000 Bytes2004/07/2010MyFolder01

Bandwidth

consumption

Storage

consumption

Date Delete timeTotal data

uploaded

No of upload

files

Upload

Date

Folder name

Nirvanix SDN Usages ReportConsumer’s Metering Data

0 bytes2000000 bytes07/07/2010n/a0007/07/2010MyFolder04

2000000 bytes0 bytes06/07/201007:07:2010T00:00:592000000 Bytes2006/07/2010MyFolder03

00 bytes05/07/2010n/a0005/07/2010MyFolder02

2000000 bytes0 bytes04/07/201004:07:2010T23:59:592000000 Bytes2004/07/2010MyFolder01

Bandwidth

consumption

Storage

consumption

Date Delete timeTotal data

uploaded

No of upload

files

Upload

Date

Folder name

Nirvanix SDN Usages ReportConsumer’s Metering Data

Table 3. 9 Nirvanix SDN’s Usage Report and Consumer’s metering data

In Figure 3.8, CP stands for checkpoint, CI stands for consumption interval, while SP

and EP stand for start and end points of the CI respectively; thus CP3: 2GB indicates

that CP3 was conducted on the 3
rd

 day of the month at 00:00:00 GMT, as specified by

the arrow and reported that at that time the customer had 2 GB stored in Nirvanix. SC

stands for Storage Consumption.

3 4 5 6 March
SP EP EP EP

CP3: 2 GB

SC for 3rd

= 2 GB

CP4: 8 GB

SC for 4th

= 8 GB

CP5: 10 GB

SC for 5th

= 10 GB

3 4 5 6 March
SP EP EP EP

CP3: 2 GB

SC for 3rd

= 2 GB

CP4: 8 GB

SC for 4th

= 8 GB

CP5: 10 GB

SC for 5th

= 10 GB

Figure 3. 8 Nirvanix SDN’s checkpoint

Similar to Amazon S3, uploading and deleting the same object between two

checkpoints does not affect storage consumption; however it does affect bandwidth

consumption.

67

3.4.2 Operations

Nirvanix SDN does not charge for operations where operation represents the number of

requests issued against the service interface by the consumer in specific consumption

interval.

3.4.3 Bandwidth

As we stated earlier there is no documentation provided on the Nirvanix SDN

accounting model. Nirvanix SDN charges their customer for Upload and Download

bandwidth. To clarify how Nirvanix SDN computes each charge, we uploaded a

number of files and compared information extracted from the PUT operations against

bandwidth consumption, as counted in the Usage Report. Two examples of the

experiments that we conducted are shown in Table 3.10, where we used PUT operations

to upload a file into a folder. The data and metadata shown in the Table represent the

data and metadata extracted locally from the PUT requests.

100000 bytes10/07/20100100000 BytesPersonal.doc10/07/2010MyFolder02

100000 bytes09/07/20102000 Bytes100000 BytesPersonal.doc09/07/2010MyFolder01

Bandwidth consumptionDateMetadata sizeFile SizeFile nameUpload DateFolder name

Nirvanix SDN Usages ReportConsumer’s Metering Data

100000 bytes10/07/20100100000 BytesPersonal.doc10/07/2010MyFolder02

100000 bytes09/07/20102000 Bytes100000 BytesPersonal.doc09/07/2010MyFolder01

Bandwidth consumptionDateMetadata sizeFile SizeFile nameUpload DateFolder name

Nirvanix SDN Usages ReportConsumer’s Metering Data

Table 3. 10 Bandwidth consumption

As shown by the Bandwidth consumption parameters extracted from the Usage Reports,

only the file data consumes upload bandwidth; neither the metadata nor the file or

folder names seem to count as overheads. This observation refers to RESTful requests.

3.4.4 Nirvanix SDN Accounting Model Description

Based on the experiment results described above, Nirvanix SDN’s accounting model

can be described as follows.

3.4.4.1 General Characteristics

1. Resource consumption is divided into Consumption Intervals (CI).

2. Each CI has a start and end point (SP and EP respectively).

68

3. The length of each CI is divided into hour, day and week bases, we have

selected the daily bases (24 hours).

4. The SP and EP of each CI are represented by the DD/MM/YYYY 00:00:00 of

today and DD/MM/YYYY 00:00:00 of the next day respectively.

5. The EP of CIi is represented by the SP of CIi+1.

6. Checkpoint (CP) is the point in time when the resource consumption is

computed.

7. Different resources may have different CP for the same CI.

 The EP of each CI is selected as Nirvanix SDN fixed CP for Bandwidth and

Operation.

 SP of each CI is selected as Nirvanix SDN fixed CP for storage

consumption.

8. Nirvanix SDN allowed their customers to download resource the consumption

report.

3.4.4.2 Storage Accounting

Nirvanix SDN applies the following accounting model to compute storage

consumption (SC):

1. Compute SC for each upload request related to a bucket by:

ObjectsizeObjectSC (1)

Where Objectsize = the number of bytes transferred per upload request

2. Compute the deleted SC per delete request by:

ObjectsizeDelObject SC (2)

Where Objectsize = the number of bytes transferred per upload request

3. Compute the SC for each day

M

1k

SC

N

1j

SCSCSC kj1ii
DelObjectObjectDayDay (3)

 Where N and M representing the number of upload and delete requests per day

respectively

4. At the end of the month the total SC is computed by the following formula:

69

n

i

SCSC i
DayMonth

1

 (4)

Where N represents the number of days per month

5. Finally, convert the total SC/Month into GB/month by the following formula:

= output of (4) x (1 GB / 1,073,741,824 bytes) (5)

3.4.4.3 Bandwidth Accounting

For the RESTful API, Nirvanix SDN applies exactly the same upload and download

accounting models used by Amazon S3.

3.4.5 Shortcomings in the Nirvanix SDN Accounting Model

The Nirvanix SDN customer is charged for storage and bandwidth. In the previous

subsections we examined whether the data that the service provider accounting model

requires for calculating billing charges can be collected independently by the consumer

(or a TTP) with sufficient accuracy. Our investigations show that this is possible

because all data required for computing storage and bandwidth can be collected

independently by the consumer, however, Nirvanix SDN should provide full

documentation that described its accounting model.

Importantly, our experiments show that Nirvanix SDN’s accounting model suffered

from the following shortcomings:

1. In practical, accounting model documentation, our experiments show that

Nirvanix does not published any document about their accounting model.

Generally Nirvanix SDN is not well documented.

2. Concerning storage consumption, the accounting model needs explicitly to state

how the uploaded data is mapped into consumed bytes in Service Provider. For

example, Nirvanix SDN experiments showed that neither user metadata nor file

metadata do not impact storage consumption.

70

3. Related to bandwidth consumption, Nirvanix SDN’s accounting model needs

explicitly to clarify how bandwidth consumption is computed for all APIs, and

whether failed operations are consumed bandwidth consumption or not.

4. Furthermore, Nirvanix SDN should publish in well description document all

details related to, how and when resource consumption is computed, and put a

solution for any potential source that may affect the consumer’s measurements.

For instance, propagation delays.

3.4.6 Summary of Nirvanix NDS case study

3.4.6.1 General

The important result obtained from Nirvanix NDS experiments is that the Nirvanix

NDS accounting model has more or less the same features as the Amazon S3

accounting model, which implies that Amazon S3 and Nirvanix NDS applied the same

policy in building their accounting models. More importantly, similar to the results

obtained from Amazon S3, we found from all Nirvanix NDS experiment results that a

Nirvanix NDS consumer can independently collect all metering data that is required for

calculating the consumption of all Nirvanix NDS resources. Furthermore, the

experiment results show that there is no document available that gives any details about

the Nirvanix NDS accounting model. We also pointed out that the experiment results

show that Nirvanix NDS has selected the end point of each consumption interval as a

fixed checkpoint to calculate the resource consumption of all resources. Finally, our

results show that it is possible for a Nirvanix NDS consumer to independently

implement their own RAS that can be used to compute and verify their resource

consumption.

3.4.6.2 Storage

Five conclusions can be drawn from the Nirvanix SDN experiment results: first, the

mapping between bytes uploaded by PUT requests and bytes stored in Nirvanix SDN

correspond one-to-one; second the user and system metadata do not impact storage

consumption; third, an empty folder does not consume storage space; fourth, our

observations show that Nirvanix NDS has selected the end point of each CI as their

71

fixed checkpoint to compute resource consumption. Finally, we have observed that

uploading and deleting objects between two checkpoints does not affect storage

consumption; however it affects other resource consumption.

3.4.6.3 Operations

Nirvanix SDN does not charge for operations such as Amazon S3.

3.4.6.4 Bandwidth

First of all we need to clarify that we have only used a RESTful interface to execute our

experiments; we have found that bandwidth consumption is only used by the file data;

finally, similar to the storage consumption outcome, Nirvanix SDN has a fixed

checkpoint for Bandwidth consumption; it is equal to the end point of each

consumption interval.

3.5 Third case study: Amazon EC2

EC2 is a computation service offered by Amazon as an IaaS [52]. The service offers

raw virtual CPUs (also called a Virtual Machine or VM) to subscribers. A subscriber is

granted administrative privileges over his VM, which he can exercise by means of

sending remote commands to the Amazon Cloud from his desktop computer. For

example, he is expected to configure, launch, stop, re-launch, terminate, backup, etc. his

VM. In return, the subscriber is free to choose the operating system (e.g. Windows or

Linux) and applications to run.

In EC2 terminology, a running virtual CPU is called an instance whereas the frozen

bundle of software on disk that contains the libraries, applications and initial

configuration settings that are used to launch an instance is called the Amazon Machine

Image (AMI).

Currently, Amazon offers six types of instances that differ from each other in four

initial configuration parameters that cannot be changed at running time: amount of EC2

compute units that it delivers, size of their memory and local storage (also called

http://aws.amazon.com/ec2/

72

ephemeral and instance storage) and the type of platform (32 or 64 bits). An EC2

compute unit is an Amazon unit and is defined as the equivalent CPU capacity of a 1.0-

1.2 GHz 2007 Opteron or 2007 Xeon processor.

Thus Amazon offer small, large, extra-large and other types of instances. For example,

the default instance type is the Small Instance and is a 32 bit platform that delivers 1

EC2 compute unit and provided with 1.7 GB of memory and 160 GB of local storage.

These types of instances are offered to subscribers under several billing models: on-

demand instances, reserved instances and spot instances. In our discussion we will

focus on on-demand instances.

EC2 instances can be physically placed at different locations. Amazon organizes their

infrastructure into two availability zones: N. California and N. Virginia are located in

the USA; while Ireland and Singapore are located, respectively, in Europe and Asia.

Each region is completely independent and contains several availability zones that are

used to improve the fault tolerance within the region. We suspect that each availability

zone is an isolated data centre which is powered by its own power line. Different

availability zones in the same region are placed very close to each other. The region

useast-1 has three availability zones, us-east-1a, us-east-1b and us-east-1c. The region

eu-west-1 has two availability zones, eu-west-1a and eu-west-1b [52]. These types of

instances are offered to subscribers under several billing models: on-demand instances,

reserved instances and spot instances. In our discussion we will focus on on-demand

instances.

73

Table 3. 11 EC2 pricing schema

Under the on-demand billing model, Amazon defines the unit of consumption of an

instance as the instance hour (instanceHrs). Currently, the cost of an instance hour of a

small instance running Linux or Windows are respectively, 9.5 and 12 cents as shown

in Table 3.11. On top of charges for instance hours, instance subscribers normally incur

additional charges for data transfer that the instances generates (Data Transfer In and

Data Transfer Out) and for additional infrastructure that the instance might need such as

disk storage, IP addresses, monitoring facilities and others. As these additional charges

are accounted and billed separately, we will leave them out of our discussion and focus

only on instance hours charges.

The figures above imply that if a subscriber accrues 10 instanceHrs of small instance

consumption, running Linux, during a month, he will incur a charge of 95 cents at the

end of the month. In principle, the pricing tables publicly available from Amazon web

pages should allow a subscriber to independently conduct his own accounting of EC2

consumption. In the absence of a well-defined accounting model this is not a trivial

exercise.

3.5.1 EC2 Accounting Model

EC2 accounting model description is spread over several on-line documents from

Amazon. Some insight into the definition of instance hour is provided in the Amazon

74

EC2 Pricing document [58] (see just below the table of On-demand Instances) where it

is stated that Pricing is per instance-hour consumed for each instance, from the time an

instance is launched until it is terminated. Each partial instance-hour consumed will be

billed as a full hour. This statement suggests that once an instance is launched it will

incur at least an instance hours of consumption. For example, if the instance runs

continuously for 5 minutes, it will incur 1 instanceHrs; likewise, if the instance runs

continuously for 90 minutes, it will incur 2 instanceHrs.

The problem with this definition is that it does not clarify when an instance is

considered to be launched and terminated. Additional information about this issue is

provided in the Billing section of FAQs [69], Paying for What You Use of the Amazon

Elastic Compute (Amazon EC2) document [52] and in the How You're Charged section

of the User Guide [72]. For example, in [52] it is stated that each instance will store its

actual launch time. Thereafter, each instance will charge for its hours of execution at the

beginning of each hour relative to the time it launched.

From information extracted from the documents cited above it is clear that Amazon

starts and stops counting instance hours as the instance is driven by the subscriber,

through different states. Also, it is clear that Amazon instance hours are accrued from

the execution of one or more individual sessions executed by the subscriber during the

billing period. Within this context, a session starts and terminates when the subscriber

launches and terminates, respectively, an instance.

3.5.1.1 EC2 Accounting Model Description

Session-based accounting models for resources that involve several events and states

that incur different consumptions, are conveniently described by Finite State Machines

(FSMs). We will use a Finite State Machine (FSM) to describe EC2 accounting model.

States of an instance session: The states that an instance can reach during a session

depend on the type of memory used by the AMI to store its boot (also called root)

device. Currently, Amazon supports S3-backed and EBS-backed instances. EBS stands

for Elastic Block Store and is a persistent storage that can be attached to an instance.

The subscriber chooses between S3 or EBS backed instances at AMI creation time.

75

Unfortunately, the states that an instance can reach during a session are not well

documented by Amazon. Yet after a careful examination of Amazon's online

documentation we managed to build the FSM shown in Figure. 3.9.

Figure 3. 9 Session of an Amazon instance represented as Finite State Machine.

The figure 3.9 shows that the FSM of an Amazon instance has two types of states:

permanent and transient states. Permanent states (represented by large circles, e.g.

running) can be remotely manipulated by commands issued by the subscriber; once the

FSM reaches a permanent state, it remains there until the subscribers issue a command

to force the FSM to progress to another state. Transient states (represented by small

circles, e.g. stopping) are states that the FSM visits temporarily as it progresses from a

permanent state into another. The subscriber has no control over the time spent in a

transient state; this is why there are no labels on the outgoing arrows of these states.

We have labelled the transitions of the FSM with event/action notations. The event is

the cause of the transition whereas the action represents the set (possibly empty) of

operations that Amazon executes when the event occurs, to count the numbers of

instance hours consumed by the instance.

There are two types of events: subscriber’s and internal to the FSM events. The

subscriber's events are the commands (launch, application commands, reboot, stop and

terminate) that the subscribers issues to operate his instance; likewise, internal events

76

are events that occur independently from the subscriber's commands, namely, timer =

60min and failure.

AMI configured: is the initial state. It is reached when the subscriber successfully

configures his AMI so that it is ready to be launched. running: is the state where the

instance can perform useful computation for the subscriber, for example, it can respond

to application commands issued by the subscriber. terminated: is the final state and

represents the end of the life cycle of the instance. Once this state is reached the

instance is destroyed. To perform additional computation after entering this state the

subscriber needs to configure another AMI. The terminated state is reached when the

subscribed issues the terminate command, the instance fails when it was in running state

or the instance fails to reach running state. shuttingdown: is reached when the

subscriber issues the reboot or terminate command. stopped: this state is supported

only EBS-backed instances (S3-backed instances cannot be stopped) and is reached

when the user issues stop or terminate commands, say for example, to perform backup

duties.

States and instance hours: In the figure, NinstHrs is used to count the number of

instance hours consumed by an instance during a single session. The number of instance

hours consumed by an instance is determined by the integer value stored in NinstHrs

when the instance reaches the terminated state. Timer is Amazon's timer to count 60

minutes intervals; it can be set to zero (timer = 0) and started (starttimer).

In the FSM, the charging operations are executed as suggested by the Amazon's on line

documentation. For example, in Paying for What You Use Section of [2], Amazon

states that the beginning of an instance hour is relative to the launch time.

Consequently, the FSM sets NinstHrs = 1 when the subscriber executes a launch

command from the AMI configured state. At the same time, timer is set to zero and

started. NinstHrs = 1 indicates that once a subscriber executes a launch command, he

will incur at least one instance hour. If the subscriber leaves his instance in the running

state for 60 minutes (timer = 60min) the FSM increments NinstHrs by one, sets the

timer to zero and starts it again.

77

From running state the timer is set to zero when the subscriber decides to terminate his

instance (terminate command) or when the instance fails (failure event). Although

Amazon's documentation does not discuss it, we believe that the possibility of an

instance not reaching the running state cannot be ignore, therefore we have included a

transition from pending to terminated state; the FSM sets the timer to zero when this

abnormal event occurs.

As explained in Basics of Amazon EBS-Backed AMIs and Instances and How You're

Charged of [72], a running EBS-backed instance can be stopped by the subscriber by

means of the stop command and drive it to the stopped state. As indicated by timer = 0

operation executed when the subscribed issues a stop command, an instance in stopped

state incurs no instance hours. However, though it is not shown in the figure as this is a

different issue, Amazon charges for EBS storage and other additional services related to

the stopped instance. The subscriber can drive an instance from the stopped to the

terminated state. Alternatively he can re-launch his instance. In fact, the subscriber can

launch, stop and launch his instance as many times as he needs to. However, as

indicated by the NinstHrs + + , timer = 0 and starttimer operations over the arrow, every

transition from stopped to pending state accrues an instance hours of consumption,

irrespectively of the time elapsed between each pair of consecutive launch commands.

3.5.2 EC2 Experiments and Results

To understand EC2’s accounting model we have run several experiments; for each

experiment the consumer collected metering data about each run and shutdown instance

request/response details. The experiment is described as follows below:

3.5.2.1 EC2 Usage Report Experiment

In an attempt to audit our own EC2 bill we studied the EC2 Usage Report, aiming to

gain a complete understanding of how Amazon EC2 is representing its accounting data

and what is the meaning of each data presented in the Amazon EC2 Usage Report.

 The aim: to understand how Amazon EC2’s accounting data is represented and

the meaning of each item in the accounting data

78

 Client Actions:

o Client has already created a number of instances and run each instance

for particular time.

o Client downloads Amazon EC2’s Usage Report.

 Observation

A downloaded EC2 Usage Report is shown in Table 3.12. From the EC2 Usage Report

we understand the following:

 The resource consumption is divided into a consumption interval CI, where each CI

has a start and end point SP and EP respectively.

 The length of each CI is an hour, day or month. We have selected the hourly CI.

 The start point (SP) of each CI is represented by 00:00:00 GMT of each hour.

Table 3. 12 Amazon EC2’s Usage Report

 The end point (EP) of each CI is represented by 00:00:00 GMT of the next hour.

 The EP of CIi represents the SP of CIi+1.

 The instance is measured by hourly unit.

i. EC2 Accounting Model Experiment

To verify that the accounting model described by the FSM of Fig. 3-a) matches

Amazon's description, we (as subscribers) conducted a series of practical experiments.

79

In particular, our aim was to verify how the number of instance-hours is counted by

Amazon.

The experiments involved 1) configuration of different AMIs; 2) launch of instances; 3)

execution of remote commands to drive the instances through the different states shown

in the FSM. For example, we configured AMIs, launched and run them for periods of

different lengths and terminated them. Likewise, we launched instances and terminated

them as soon as they reached the running state. 4) To calculate the number of instance

hours consumed by the instances, we recorded the time of execution of the remote

commands launch, stop, terminate and reboot, and the time of reaching both transient

and permanent states as independent consumer’s metering data. Collect metering data

from run or shutdown instance request/response. We also collected instance ID and the

response status. 5) Download EC2 Usages Report. From the consumer’s metering data

and EC2’s Usage Report we will try to understand how EC2 computes instance

consumption.

 Observation

As shown in Table 3.13, the client collected metering data about each instance, where

an instance ID represents the ID of the running instance, the running time represents

the request time stamp of the client run instance request, the shutdown time represents

the time stamp of the client shutdown instance request and usage represents the

instance usage, which means how long the instance run for in minutes. In EC2’s

accounting data, the resource represents the type of resource that the consumer uses,

the start and end points represent the CI start and end points and usage represents the

value of resource consumption which is computed in hour units. As shown in Table

3.13, the client collected metering data about each run and shutdown instance

request/response, where at instance ID represents the ID of the running instance,

running time represents the request time stamp of the client-run instance request,

shutdown time represents the time stamp of the client shutdown instance request and

usage represents the instance usage which means how long the instance runs for in

minutes.

80

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

No

i-9b9466f5

i-41ed1e2f

i-554a45b

i-8d27d7e3

i-bfb0b13

i-49be4e27

i-0b54a565

i-7904f517

i-b5c736db

i-5db44333

i-db6591b5

i-3907f257

i-c114fcaf

i-05c72f6

i-b734a0d9

Instance

ID

1
16:00

14:05:11

15:00

14:05:11

BoxUsage1

Minute

14:05:11

T 16:14

14:05:11

T 16:14

14:05:11

T 16:13

14:05:11

T 16:12

14:05:11

T 16:12

111:00

13:05:11

10:00

13:05:11

BoxUsage60

Minutes

13:05:11

T 12:29

13:05:11

T 12:29

13:05:11

T 11:29

13:05:11

T 11:29

13:05:11

T 11:29

122:00

16:05:11

21:00

16:05:11

BoxUsage:

m1.large

59

Minutes

16:05:11

T 23:19

16:05:11

T 23:16

16:05:11

T 22:17

16:05:11

T 22:09

16:05:11

T 22:09

220:00

16:05:11

18:00

16:05:11

BoxUsage:

m1.large

61

Minutes

16:05:11

T 20:18

16:05:11

T 20:16

16:05:11

T 19:15

16:05:11

T 19:09

16:05:11

T 19:09

117:00

16:05:11

16:00

16:05:11

BoxUsage:

m1.large

60

Minutes

16:05:11

T 18:13

16:05:11

T 18:11

16:05:11

T 17:11

16:05:11

T 17:04

16:05:11

T 17:04

216:00

16:05:11

14:00

16:05:11

BoxUsage:

m1.xlarge

68

Minutes

16:05:11 T

17:00

16:05:11

T 16:57

16:05:11

T 15:49

16:05:11

T 15:43

16:05:11

T 15:43

1
14:00

16:05:11

13:00

16:05:11

BoxUsage:

m1.large

0

Minute

16:05:11

T 14:22

16:05:11

T 14:22

16:05:11

T 14:22

16:05:11

T 14:15

16:05:11

T 14:15

113:00

16:05:11

12:00

16:05:11

BoxUsage:

m1.large

1

Minute

16:05:11

T 13:06

16:05:11

T 13:06

16:05:11

T 13:05

16:05:11

T 13:05

16:05:11

T 13:05

1
12:00

16:05:11

11:00

16:05:11

BoxUsage:

m1.large

0

Minute

16:05:11

T 12:15

16:05:11

T 12:14

16:05:11

T 12:14

16:05:11

T 12:13

16:05:11

T 12:13

0

N/A N/AN/A

0

Minutes

16:05:11

T 11:14

16:05:11

T 11:12

16:05:11

T 11:12

16:05:11

T 11:11

16:05:11

T 11:11

210:00

16:05:11

08:00

16:05:11

BoxUsage:

m1.large

68
Minutes

16:05:11

T 11:09

16:05:11

T 11:07

16:05:11

T 09:59

16:05:11

T 09:53

16:05:11

T 09:53

120:00

15:05:11

19:00

15:05:11

BoxUsage:

m1.large

1
Minute

15:05:11

T 20:11

15:05:11

T 20:10

15:05:11

T 20:09

15:05:11

T 20:01

15:05:11

T 20:01

1
18:00

15:05:11

17:00

15:05:11

BoxUsage:

t1.micro

58
Minutes

15:05:11

T 19:57

15:05:11

T 19:56

15:05:11

T 18:59

15:05:11

T 18:58

15:05:11

T 18:58

112:00

15:05:11

11:00

15:05:11

BoxUsage59
Minutes

15:05:11

T 13:06

15:05:11

T 13:05

15:05:11

T 12:07

15:05:11

T 12:06

15:05:11

T 12:06

1
17:00

14:05:11

16:00

14:05:11

BoxUsage55
Minutes

14:05:11

T 18:53

14:05:11

T 18:53

14:05:11

T 17:58

14:05:11

T 17:57

14:05:11

T 17:57

ValueEnd

Time

Start

Time

Type

usage

Amazon EC2 ResultUsages

Time

Terminate

State time

Terminate

Req time &

Shuttingdown

Running

time

Pending

time

Lunching

time

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

No

i-9b9466f5

i-41ed1e2f

i-554a45b

i-8d27d7e3

i-bfb0b13

i-49be4e27

i-0b54a565

i-7904f517

i-b5c736db

i-5db44333

i-db6591b5

i-3907f257

i-c114fcaf

i-05c72f6

i-b734a0d9

Instance

ID

1
16:00

14:05:11

15:00

14:05:11

BoxUsage1

Minute

14:05:11

T 16:14

14:05:11

T 16:14

14:05:11

T 16:13

14:05:11

T 16:12

14:05:11

T 16:12

111:00

13:05:11

10:00

13:05:11

BoxUsage60

Minutes

13:05:11

T 12:29

13:05:11

T 12:29

13:05:11

T 11:29

13:05:11

T 11:29

13:05:11

T 11:29

122:00

16:05:11

21:00

16:05:11

BoxUsage:

m1.large

59

Minutes

16:05:11

T 23:19

16:05:11

T 23:16

16:05:11

T 22:17

16:05:11

T 22:09

16:05:11

T 22:09

220:00

16:05:11

18:00

16:05:11

BoxUsage:

m1.large

61

Minutes

16:05:11

T 20:18

16:05:11

T 20:16

16:05:11

T 19:15

16:05:11

T 19:09

16:05:11

T 19:09

117:00

16:05:11

16:00

16:05:11

BoxUsage:

m1.large

60

Minutes

16:05:11

T 18:13

16:05:11

T 18:11

16:05:11

T 17:11

16:05:11

T 17:04

16:05:11

T 17:04

216:00

16:05:11

14:00

16:05:11

BoxUsage:

m1.xlarge

68

Minutes

16:05:11 T

17:00

16:05:11

T 16:57

16:05:11

T 15:49

16:05:11

T 15:43

16:05:11

T 15:43

1
14:00

16:05:11

13:00

16:05:11

BoxUsage:

m1.large

0

Minute

16:05:11

T 14:22

16:05:11

T 14:22

16:05:11

T 14:22

16:05:11

T 14:15

16:05:11

T 14:15

113:00

16:05:11

12:00

16:05:11

BoxUsage:

m1.large

1

Minute

16:05:11

T 13:06

16:05:11

T 13:06

16:05:11

T 13:05

16:05:11

T 13:05

16:05:11

T 13:05

1
12:00

16:05:11

11:00

16:05:11

BoxUsage:

m1.large

0

Minute

16:05:11

T 12:15

16:05:11

T 12:14

16:05:11

T 12:14

16:05:11

T 12:13

16:05:11

T 12:13

0

N/A N/AN/A

0

Minutes

16:05:11

T 11:14

16:05:11

T 11:12

16:05:11

T 11:12

16:05:11

T 11:11

16:05:11

T 11:11

210:00

16:05:11

08:00

16:05:11

BoxUsage:

m1.large

68
Minutes

16:05:11

T 11:09

16:05:11

T 11:07

16:05:11

T 09:59

16:05:11

T 09:53

16:05:11

T 09:53

120:00

15:05:11

19:00

15:05:11

BoxUsage:

m1.large

1
Minute

15:05:11

T 20:11

15:05:11

T 20:10

15:05:11

T 20:09

15:05:11

T 20:01

15:05:11

T 20:01

1
18:00

15:05:11

17:00

15:05:11

BoxUsage:

t1.micro

58
Minutes

15:05:11

T 19:57

15:05:11

T 19:56

15:05:11

T 18:59

15:05:11

T 18:58

15:05:11

T 18:58

112:00

15:05:11

11:00

15:05:11

BoxUsage59
Minutes

15:05:11

T 13:06

15:05:11

T 13:05

15:05:11

T 12:07

15:05:11

T 12:06

15:05:11

T 12:06

1
17:00

14:05:11

16:00

14:05:11

BoxUsage55
Minutes

14:05:11

T 18:53

14:05:11

T 18:53

14:05:11

T 17:58

14:05:11

T 17:57

14:05:11

T 17:57

ValueEnd

Time

Start

Time

Type

usage

Amazon EC2 ResultUsages

Time

Terminate

State time

Terminate

Req time &

Shuttingdown

Running

time

Pending

time

Lunching

time

Table 3. 13 Client metering and accounting data with EC2 accounting data

In EC2’s accounting data the resource represents the type of resource that the

consumer is using, the start and end points represent the CI start and end points and

usage represents the value of resource consumption which is computed in hourly

units. We have found that EC2 does the following:

o As shown in Table 3.13, a comparison of data collected from our experiments

against Amazon's data from their usage report reveals that: currently, the

beginning of an instance hour is not the execution time of the subscriber's

launch command, as documented by Amazon, but the time when the instance

reaches the running state. These findings imply that the accounting model

currently in use is the one described by the FSM of Figure 3.10.

81

Figure 3. 10 Accurate FSM session representation of an Amazon instance

As shown in the figure, the NinstHrs is incremented when the instance reaches

the running state.

o EC2 computes the resource consumption for each instance for the time that the

instance reach running state up to the time that the consumer triggers a

terminate command. As shown in experiment No. 15 in Table 3.13, where the

different between the time of the lunching instance and the time when the

consumer issued the terminate request is greater than one hour while in EC2

Usage appear that EC2 charges the customer for just one hour.

o We notice that it is possible that a consumer launch and terminated an instance

but EC2 does not charge the consumer about this instance, as shown in

experiment No. 8 in Table 3.13.

3.5.3 Shortcomings in the Amazon EC2 accounting model

An Amazon EC2 customer is charged for On-Demand Instances, Bandwidth, Elastic

Block Store, Elastic IP Addresses, Cloud Watch and Elastic Load Balancing. We have

selected only the On-Demand Instance. In this section we examined whether the data

that the Amazon EC2 accounting model requires for calculating billing charges can be

collected independently by the consumer (or a TTP) with sufficient accuracy. Our

82

investigations show that this is possible because all data required for computing On-

Demand Instances can be collected independently by the consumer. However, our

experiments show that Amazon EC2s accounting model suffered from ambiguous and

incomplete documentation: our experiments show that EC2 accounting model

description is published in different separated documents and these documents do not

included all the EC2 accounting model description. Furthermore, some documents

related to EC2 model included information that did not match with our finding such as

how the resource consumption of on-demand instance is computed.

3.5.4 Summary of Amazon EC2 case study

In this section we present a summary that has been obtained from all experiments

conducted on Amazon EC2. First, the Amazon EC2 accounting model has the same

general features as Amazon S3 and Nirvanix SDN, where resource consumption is

divided into consumption intervals (CI) and each CI has a start and end point,

checkpoint, Usage Report, and so on. Second, the minimum charging unit is an hour,

and if the consumer runs an instance for just a few minutes then Amazon EC2 will

charge him for one hour. Third, we have concentrated only on the CPU resource

consumption which is represented by Instance Consumption in EC2. In this regard, we

found that all required metering data can be collected locally by the consumer and from

the timestamp for run and terminate instance requests, the consumer can easily compute

the resource consumption of each instance.

3.6 Comparing Charges

The provision of a full description of the accounting model for each resource can help

the consumer who is planning to use a cloud provider (e.g. a storage provider such as

Amazon S3) to implement a resource calculator (RC) which can be used to compute

their estimated resource consumption based on an estimated workload; consequently,

by using the description of the pricing model the consumer can easily compute the

charges as well. The idea behind computing resource consumption based on the

consumer’s estimated workload is to help the consumer to use the result to estimate

83

their projected budget plan. Furthermore, RC can be used to compare different service

providers to find the cheapest provider.

3.6.1 Resource Calculator (RC)

A Resource Calculator (RC) is used to compute the estimated consumption and cost of

each resource based on a customer’s estimated workload. The RC uses the description

of the provider’s accounting model to compute the resource consumption, whereas

using the charging (pricing) model computes the charge of each resource. In this

section, we will present an overview of how the RC is implemented. We have used Java

programming language to develop the RC which does the computation for both

resource and cost. To illustrate the RC implementation, we have selected Amazon S3

accounting and charging models as examples for the development of RC.

An estimate of the consumer’s workload is the input for this programme and the output

is the cost and resource consumption of storage, bandwidth and operations.

3.6.1.1 Estimate resource consumption and cost

In this section, we demonstrate how the Amazon S3 accounting and charging models

implementation was used to estimate resource consumption and cost based on estimated

workload. The estimated workload described in Table 3.14 was used as an input to the

programme. The program produced the consumption and charges of each resource as

output. The charge and the resource consumption of storage are described in Table 3.15

whereas the charge and resource consumption of operation, upload and download

bandwidth are described in Table 3.16.

0Average Number of Delete Requests/Day5

1 GBAverage Number of Bytes Transferred/PUT Request4

1Average Number of PUT Requests/Day3

10Average Length of Files Name2

20Average Length of Folders Name1

ValueDescription of work loadNo.

0Average Number of Delete Requests/Day5

1 GBAverage Number of Bytes Transferred/PUT Request4

1Average Number of PUT Requests/Day3

10Average Length of Files Name2

20Average Length of Folders Name1

ValueDescription of work loadNo.

Table 3. 14 Customer’s estimated workload

Table 3.15 shows the resource consumption and charges of storage produced by the

programme based on the consumer’s workload described in Table 3.14.

84

326.17500911322423 $/YEARTOTAL STORAGE CHARGE PER YEAR

52.350001462642105 $/MONTH349.00000975094736 GB/MONTH12th MONTH

47.77500133481808 $/MONTH318.5000088987872 GB/MONTH11th MONTH

43.20000120699405 $/MONTH288.00000804662704 GB/MONTH10th MONTH

38.62500107917003 $/MONTH257.5000071944669 GB/MONTH9th MONTH

34.050000951346014 $/MONTH227.00000634230676 GB/MONTH8th MONTH

29.400000821426513 $/MONTH196.00000547617677 GB/MONTH7th MONTH

24.825000693602487 $/MONTH165.50000462401658 GB/MONTH6th MONTH

20.250000565778464 $/MONTH135.00000377185643 GB/MONTH5th MONTH

15.67500043795444 $/MONTH104.50000291969627 GB/MONTH4th MONTH

11.100000310130417 $/MONTH74.00000206753612 GB/MONTH3rd MONTH

6.675000186497345 $/MONTH44.50000124331564 GB/MONTH2nd MONTH

2.250000062864274 $/MONTH15.00000041909516 GB/MONTH1st MONTH

COSTSTORAGE CONSUMPTION

AMAZON S3

326.17500911322423 $/YEARTOTAL STORAGE CHARGE PER YEAR

52.350001462642105 $/MONTH349.00000975094736 GB/MONTH12th MONTH

47.77500133481808 $/MONTH318.5000088987872 GB/MONTH11th MONTH

43.20000120699405 $/MONTH288.00000804662704 GB/MONTH10th MONTH

38.62500107917003 $/MONTH257.5000071944669 GB/MONTH9th MONTH

34.050000951346014 $/MONTH227.00000634230676 GB/MONTH8th MONTH

29.400000821426513 $/MONTH196.00000547617677 GB/MONTH7th MONTH

24.825000693602487 $/MONTH165.50000462401658 GB/MONTH6th MONTH

20.250000565778464 $/MONTH135.00000377185643 GB/MONTH5th MONTH

15.67500043795444 $/MONTH104.50000291969627 GB/MONTH4th MONTH

11.100000310130417 $/MONTH74.00000206753612 GB/MONTH3rd MONTH

6.675000186497345 $/MONTH44.50000124331564 GB/MONTH2nd MONTH

2.250000062864274 $/MONTH15.00000041909516 GB/MONTH1st MONTH

COSTSTORAGE CONSUMPTION

AMAZON S3

Table 3. 15 Storage consumption and cost

362.6796591$/YEARTOTAL CHARGE PER YEAY

0 $/YEAR0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTHPER MONTH

COSTTIRE 2 REQUESTS/MONTH

0.00465 $/YEAR465.0 REQUESTS/YEARPER YEAR

0.00131 $/MONTH131.0 REQUESTS/MONTHPER MONTH

COSTTIRE 1 REQUESTS/MONTH

36.5 $/YEAR365 GB/MONTHPER YEAR

03.1 $/MONTH031 GB/MONTHPER MONTH

COSTDATA – TRANSFER IN

AMAZON S3

362.6796591$/YEARTOTAL CHARGE PER YEAY

0 $/YEAR0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTHPER MONTH

COSTTIRE 2 REQUESTS/MONTH

0.00465 $/YEAR465.0 REQUESTS/YEARPER YEAR

0.00131 $/MONTH131.0 REQUESTS/MONTHPER MONTH

COSTTIRE 1 REQUESTS/MONTH

36.5 $/YEAR365 GB/MONTHPER YEAR

03.1 $/MONTH031 GB/MONTHPER MONTH

COSTDATA – TRANSFER IN

AMAZON S3

Table 3. 16 Bandwidth and operation consumption and cost

Table 3.16 shows the resource consumption and the cost of bandwidth and operation

produced by the programme based on the consumer’s estimated workload, as described

above.

3.6.1.2 Which is the cheapest cloud provider?

The availability of fully described accounting and charging models of different service

providers help the consumer (or Third Party) to build different RCs that can be used to

compare different service providers to find the cheapest provider based on the same

workload. In this section we demonstrate how the Amazon S3 and Nirvanix SDN

85

accounting and charging models were compared, in order to find the cheapest provider

using the same estimated workload which is described in Table 3.13.

i. Storage Consumption and Cost

As shown in Table 3.17 and Figure 3.11, in terms of resource consumption we found

that the Nirvanix and Amazon S3 customer had almost the same amount of storage

consumption (GB/MONTH). This is because of the similarity of their accounting

model. On the other hand, in terms of cost we found that Amazon S3 was cheaper than

Nirvanix.

543.625 $/YEAR326.17500911322423 $/YEARTOTAL STORAGE CHARGE PER YEAR

87.625 $/MONTH349.0 GB/MONTH52.350001462642105 $/MONTH349.00000975094736 GB/MONTH12th MONTH

79.625 $/MONTH318.5 GB/MONTH47.77500133481808 $/MONTH318.5000088987872 GB/MONTH11th MONTH

72.000 $/MONTH288.0 GB/MONTH43.20000120699405 $/MONTH288.00000804662704 GB/MONTH10th MONTH

64.375 $/MONTH257.5 GB/MONTH38.62500107917003 $/MONTH257.5000071944669 GB/MONTH9th MONTH

56.750 $/MONTH227.0 GB/MONTH34.050000951346014 $/MONTH227.00000634230676 GB/MONTH8th MONTH

49.000 $/MONTH196.0 GB/MONTH29.400000821426513 $/MONTH196.00000547617677 GB/MONTH7th MONTH

41.375 $/MONTH165.5 GB/MONTH24.825000693602487 $/MONTH165.50000462401658 GB/MONTH6th MONTH

33.750 $/MONTH135.0 GB/MONTH20.250000565778464 $/MONTH135.00000377185643 GB/MONTH5th MONTH

26.125 $/MONTH104.5 GB/MONTH15.67500043795444 $/MONTH104.50000291969627 GB/MONTH4th MONTH

18.500 $/MONTH74.0 GB/MONTH11.100000310130417 $/MONTH74.00000206753612 GB/MONTH3rd MONTH

11.125 $/MONTH44.5 GB/MONTH6.675000186497345 $/MONTH44.50000124331564 GB/MONTH2nd MONTH

03.750 $/MONTH15.0 GB/MONTH2.250000062864274 $/MONTH15.00000041909516 GB/MONTH1st MONTH

COST STORAGE CONCOSTSTORAGE CONSUMPTION

NIRVANIXAMAZON S3

543.625 $/YEAR326.17500911322423 $/YEARTOTAL STORAGE CHARGE PER YEAR

87.625 $/MONTH349.0 GB/MONTH52.350001462642105 $/MONTH349.00000975094736 GB/MONTH12th MONTH

79.625 $/MONTH318.5 GB/MONTH47.77500133481808 $/MONTH318.5000088987872 GB/MONTH11th MONTH

72.000 $/MONTH288.0 GB/MONTH43.20000120699405 $/MONTH288.00000804662704 GB/MONTH10th MONTH

64.375 $/MONTH257.5 GB/MONTH38.62500107917003 $/MONTH257.5000071944669 GB/MONTH9th MONTH

56.750 $/MONTH227.0 GB/MONTH34.050000951346014 $/MONTH227.00000634230676 GB/MONTH8th MONTH

49.000 $/MONTH196.0 GB/MONTH29.400000821426513 $/MONTH196.00000547617677 GB/MONTH7th MONTH

41.375 $/MONTH165.5 GB/MONTH24.825000693602487 $/MONTH165.50000462401658 GB/MONTH6th MONTH

33.750 $/MONTH135.0 GB/MONTH20.250000565778464 $/MONTH135.00000377185643 GB/MONTH5th MONTH

26.125 $/MONTH104.5 GB/MONTH15.67500043795444 $/MONTH104.50000291969627 GB/MONTH4th MONTH

18.500 $/MONTH74.0 GB/MONTH11.100000310130417 $/MONTH74.00000206753612 GB/MONTH3rd MONTH

11.125 $/MONTH44.5 GB/MONTH6.675000186497345 $/MONTH44.50000124331564 GB/MONTH2nd MONTH

03.750 $/MONTH15.0 GB/MONTH2.250000062864274 $/MONTH15.00000041909516 GB/MONTH1st MONTH

COST STORAGE CONCOSTSTORAGE CONSUMPTION

NIRVANIXAMAZON S3

Table 3. 17 Amazon S3 and Nirvanix storage consumption and cost

0

10

20

30

40

50

60

70

80

90

100

1st
 M

O
NTH

2nd M
O

NTH

3rd
 M

O
N

TH

4th
 M

O
NTH

5th
 M

O
NTH

6th
 M

O
NTH

7th
 M

O
NTH

8th
 M

O
NTH

9th
 M

O
NTH

10t
h M

O
NTH

11t
h M

O
NTH

12t
h M

O
NTH

AMAZON S3 COST NIRVANIX COST

$
 /

 M
O

N
T

H

0

10

20

30

40

50

60

70

80

90

100

1st
 M

O
NTH

2nd M
O

NTH

3rd
 M

O
N

TH

4th
 M

O
NTH

5th
 M

O
NTH

6th
 M

O
NTH

7th
 M

O
NTH

8th
 M

O
NTH

9th
 M

O
NTH

10t
h M

O
NTH

11t
h M

O
NTH

12t
h M

O
NTH

AMAZON S3 COST NIRVANIX COST

$
 /

 M
O

N
T

H

Figure 3. 11 Amazon S3 and Nirvanix storage costs

86

ii. Bandwidth and Operation Consumption and Cost

Table 18 shows that for the same estimated workload described in Table 3.18, we found

that the Nirvanix and Amazon S3 customer consumed exactly the same amount of

upload bandwidth consumption (GB/MONTH) and both providers charged the

consumer the same amount of money. This is because of the similarity of their

accounting and, more importantly, for the first 10 TB Amazon S3 uses the same

charging model as Nirvanix (for the first 2TB) for downloads bandwidth consumption.

Moreover, the same result was obtained for upload bandwidth consumption. However,

Amazon S3 charged for operation (computation power) while Nirvanix SDN does not;

however, the charge for operation was insignificant (because the consumer made only a

small number of requests).

36.5 $/YEAR36.50465 $/YEARTOTAL CHARGE PER YEAY

0 $/YEAR0 REQUESTS/YEAR0 $/YEAR0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTH0 $/MONTH0 REQUESTS/MONTHPER MONTH

COSTTIRE 2 REQUESTS/MONTHCOSTTIRE 2 REQUESTS/MONTH

0 $/YEAR0 REQUESTS/YEAR0.00465 $/YEAR465.0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTH0.00131 $/MONTH131.0 REQUESTS/MONTHPER MONTH

COSTTIRE 1 REQUESTS/MONTHCOSTTIRE 1 REQUESTS/MONTH

36.5 $/YEAR365 GB/MONTH36.5 $/YEAR365 GB/MONTHPER YEAR

3.1 $/MONTH31.0 GB/MONTH03.1 $/MONTH031 GB/MONTHPER MONTH

COSTDATA – TRANSFER - INCOSTDATA – TRANSFER IN

NIRVANIXAMAZON S3

36.5 $/YEAR36.50465 $/YEARTOTAL CHARGE PER YEAY

0 $/YEAR0 REQUESTS/YEAR0 $/YEAR0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTH0 $/MONTH0 REQUESTS/MONTHPER MONTH

COSTTIRE 2 REQUESTS/MONTHCOSTTIRE 2 REQUESTS/MONTH

0 $/YEAR0 REQUESTS/YEAR0.00465 $/YEAR465.0 REQUESTS/YEARPER YEAR

0 $/MONTH0 REQUESTS/MONTH0.00131 $/MONTH131.0 REQUESTS/MONTHPER MONTH

COSTTIRE 1 REQUESTS/MONTHCOSTTIRE 1 REQUESTS/MONTH

36.5 $/YEAR365 GB/MONTH36.5 $/YEAR365 GB/MONTHPER YEAR

3.1 $/MONTH31.0 GB/MONTH03.1 $/MONTH031 GB/MONTHPER MONTH

COSTDATA – TRANSFER - INCOSTDATA – TRANSFER IN

NIRVANIXAMAZON S3

Table 3. 18 Consumption and cost of upload bandwidth and operation

iii. Summary of Compared Resource Consumption and Cost

On conclusion, for the same workload, we found that the resources consumed in

Amazon S3 were almost the same as Nirvanix; however, Nirvanix SDN was nearly

equal, being 1.66667 less expensive than Amazon S3. The consumer or a third party

can use the description of the provider’s accounting and charging models to develop a

service (a Resource Calculator) that can be used to estimate the consumption and cost

of each resource, and it can also be used to compare between different providers to find

the cheapest providers.

87

3.7 Summary

In order to investigate the visibility of consumer-side accounting, the accounting model

of a given cloud infrastructure services of Amazon Simple Storage Service S3, Nirvanix

and Amazon Elastic Cloud Computing EC2 were evaluated. It is of course necessary

that consumers are provided with an unambiguous resource accounting model that

precisely describes all the constituent chargeable resources of a service and how billing

charges are calculated from resource usage (resource consumption) data collected on

behalf of the consumer over a given period. We pointed out several cases where an

accounting model specification was ambiguous or not complete. For example, regarding

bandwidth consumption, it is not clear from the available information what constitutes

the size of a message. It is only through experiments that we worked out that for

RESTful operations, only the size of the object is taken into account and system and

user metadata is not part of the message size, whereas for SOAP operations, the total

size of the message is taken into account. Failure handling is another area where there is

lack of information and/or clarity. For example, concerning EC2, it is not clear how

instances that fail accrue instance hours. On the whole, for IaaS services, consumer-side

accounting appears quite feasible if, a full description of accounting model is made

public and all data required for compute resource consumption can be collected

independently by the consumer or TTP.

88

Chapter 4

Consumer Side Resource Accounting

4.1 Introduction

In the previous chapter we have shown that consumers can independently compute their

resource consumption charges if; 1) all the required metering data to compute the

resource consumption can be collected independently by the consumer; and 2) a full

description of the provider accounting model is made available. In this chapter we

discuss possible causes that may lead to conflict between metering data collected by

consumers and providers and present possible solutions for avoiding such conflicts.

Next, we present Consumer-Centric Models, suggest a systematic way of constructing

and specifying consumer-centric resource accounting models and use it to describe and

evaluate Nirvanix, S3 and EC3 and Elastic Storage Block (ESB) accounting models.

Finally, a summary of this chapter is presented.

4.2 Potential Sources of Conflict

Naturally, different metering data produce different resource consumption figures. We

anticipate that there could be several reasons which lead the consumer and the provider

to use different metering data to compute resource consumption for the same

consumption interval. We will discuss how factors such as network latency, different

checkpoints, operation latencies, ambiguities in the description of accounting models,

and the use of different measurement processes can cause mismatches between the

figures computed by consumer and provider.

4.2.1 Network latency

As we stated earlier in Chapter 3, resource consumption is divided into consumption

intervals (CI), and since the consumer and the provider are geographically distributed, it

89

is possible they are in different time-zones, and may potentially use different time

coordinates. Generally, this situation can arise for two reasons, firstly, when the

provider does not offer precise information to the consumer about when to start and end

a given consumption interval, secondly, when the consumer’s and the provider’s clocks

are in different time zones. However, in practice we have found that most service

providers precisely stated the time zone they are using. For instance, from the

Authenticating SOAP Requests Section of the Amazon Developer Guide [37] it is clear

that S3 servers are synchronised to Universal Time Coordinated (UTC) which is also

known as Zulu Time (Z time) and is in practice equivalent to Greenwich Mean Time

(GMT).

1EP

1SP

2EP

1CI

2CI

11 TT - EP

22 TT - EP

1TT
N

M

Consumer Provider
Upload Request

Time Time

2TT

R1

Rn

R1

Rm

1EP

1SP

2EP

1CI

2CI

11 TT - EP

22 TT - EP

1TT
N

M

Consumer Provider
Upload Request

Time Time

2TT

R1

Rn

R1

Rm

Figure 4. 1 impact of network latency in consumer’s and provider’s measurements.

However, even when both of them (the consumer and the provider) use the same time

zone and the same consumption interval, still the network latency (message

transmission time, TT) can contribute to discrepancies. In practical applications, TT is

normally of the order of 100 milliseconds. In Figure 4.1, TT represents the average

transmission time. As shown graphically, this parameter can cause divergences between

the consumer’s and provider’s accounting results for a given consumption interval. For

the sake of simplicity, we will assume that the consumer and provider’s start point (SP)

and end point (EP) of a given CI are synchronised. Under this assumption, convergence

between the consumer’s and provider’s accounting records can be achieved by

compensating the provider’s results by the amount of resources consumed by the

90

requests in the wire, that is, requests issued in a given interval but received and counted

in the following interval due to TT.

Let us take an arbitrary interval CIi. The consumer can calculate its resource

consumption RCi by the mathematical formula described by the accounting model.

However, to compensate for TT, the provider would need to use the following equation.

|| MNRCRC ip (1)

Where N is the amount of resources consumed by requests issued and counted by the

consumer in interval CIi but received and counted by the provider in interval CIi+1 due

to the effect of TT, in Figure 4.1 this time gap is shown as TT1. Similarly, M is the

amount of resources consumed by requests issued and counted by the consumer in

interval CIi-1 but to be received and counted by the provider in interval CIi, due to TT;

in Figure 4.1, this time gap is shown as TT2. Both N and M can be calculated by a

formula described by the accounting model. Notice that for the first interval N is to be

taken as N = 0.

The above approach requires estimating TT. A better solution is to make use of

message timestamps to determine the consumption interval the message belongs to. It is

necessary for the consumer and provider both to agree to use the timestamp (e.g.

response). This is further discussed in section 4.2.3.

4.2.2 Different checkpoints

Generally, cloud computing providers may or may not have selected a fixed CP to

compute the resource consumption for each CI as discussed in Chapter 3. For example,

Nervanix SDN has selected the EP of each CI as a fixed CP to compute resource

consumption (storage and bandwidth). However, other providers such as Amazon S3

arbitrarily select a CP to compute the storage consumption for the entity CI, where the

CP could be any point located between the SP and the EP of that CI. Therefore,

different CPs may cause conflicts between the consumer and the provider

measurements.

91

To illustrate this, let us take storage as the selected resource and Amazon S3 as the

provider in our example which is shown in Figure 4.2. In the Figure below, the CP30:

2GB indicates that CP30 was conducted on the 30
th

 day of the month at the time

specified by the arrow and reported that at that time the customer had 2 GB stored in

Amazon S3. SC stands for Storage Consumption and is explained below.

Figure 4. 2 Amazon S3’s checkpoint

As shown in Figure 4.2, Amazon S3 uses the results produced by a CP for a given day,

to generate a customer account for 24 hrs, regardless of the operations that the customer

might perform during the time left between the CP and the 23:59:59 GMT hours left in

the day. For example, the SC for the 30th will be taken as 2 × 24 = 48 GBHrs; where 2

represents the 2GB that the customer uploaded on the 30th and 24 represents the 24 hrs

of the day. The significance of knowing the specific point in time at which the

checkpoints are conducted is shown in Figure 4.3 below.

Figure 4. 3 The impact of checkpoints on storage accountability

92

Figure 4.3 shows the execution time of four PUT and one DEL operations executed by

the customer during the last two days of March. The first day of April is also shown for

completeness. For simplicity, the Figure assumes that the earliest PUT operation is the

very first executed by the customer after opening his account. The Figure also shows

the specific points in time when checkpoints are conducted independently by two

parties, namely, Amazon S3 and a customer. Thus, CP and cp represent, respectively,

Amazon S3’s and the customer’s checkpoints; the gigabytes shown next to CP and cp

indicate the storage consumption detected by the checkpoint. For example, on the 30th,

the provider conducted its checkpoint at about 5 am and detected that, at that time, the

customer had 6 GB stored (CP30: 6GB). On the same day, the customer conducted his

checkpoint just after midday and detected that, at that time, he had 3 GB stored (cp30:

6GB). SC and sc represent, respectively, the storage consumption for the month of

March, calculated by the provider and by the customer, based on their checkpoints.

Figure 4.3 demonstrates that storage consumption as calculated by Amazon S3 and by

the customer might differ significantly depending on the number and nature of the

operations conducted within the time interval determined by the two parties’

checkpoints, for example, within CP31 and cp31.

Scenario a) shows an ideal situation where no customer operations are executed within

the pair of checkpoints conducted on the 30
th

 or 31
st
. The result is that both parties

calculate equal storage consumptions. In contrast, b) shows the worst case scenario

where the DEL operation is missed by CP30 and counted by cp30 and the PUT operation

is missed by cp31 and counted by CP31; the result of this is that Amazon and the

customer calculate SC and sc, respectively, as 312 GB and 144 GB.

Ideally, Amazon's checkpoint times should be made known to consumers to prevent any

such errors. Providing this information for upcoming checkpoints is perhaps not a

sensible option for a storage provider, as the information could be ‘misused’ by a

consumer by placing deletes and puts around the checkpoints in a manner that

artificially reduces the consumption figures. An alternative would be to make the times

of past checkpoints available (e.g., by releasing them the next day).

93

4.2.3 Impact of operation latency

In the previous discussion concerning the calculation of GBHrs (illustrated using Figure

4.3), we have implicitly assumed that the execution of a PUT (respectively a DELETE)

operation is an atomic event whose time of occurrence is either less or greater than the

checkpoint time (i.e., the operation happens either before or after the CP). This allowed

us to say that if the CP time used at the provider is known to the consumer, then the

consumer can match the GBHrs figures of the provider. However, this assumption is

over simplifying the distributed nature of the PUT (respectively a DELETE) operation.

Figure 4. 4 Network and operation latencies

In Figure 4.4 we explicitly show operation execution latencies for a given operation,

say PUT; also, i, j, k and l are provider side checkpoint times used for illustration. Let

us assume that at the provider side, only the completed operations are taken into

account for the calculation of GBHrs; so a checkpoint taken at time i or j will not

include the PUT operation (PUT has not yet completed), whereas a checkpoint taken at

time k or l will. What happens at the consumer side will depend on which event

(sending of the request or reception of the response) is taken to represent the occurrence

of PUT. If the timestamp of the request message (PUT) is regarded as the time of

occurrence of PUT, then the consumer side GBHrs calculation for a checkpoint at time i

or j will include the PUT operation, a discrepancy since the provider did not. On the

94

other hand, if the timestamp of the response message is regarded as the time of

occurrence of PUT, then a checkpoint at time k will not include the PUT operation

(whereas the provider has), again a discrepancy. In short, for the operations that occur

'sufficiently close' to the checkpoint time, there is no guarantee that they get ordered

identically at both sides with respect to the checkpoint time.

Also, for another resource such as operations (number of requests executed issued and

executed at a well-defined period of time, e.g. consumption interval), as we stated

earlier, it is straightforward for a consumer to count the type and number of operations

performed on S3. There is a potential for discrepancy caused by network latency:

operations that are invoked 'sufficiently close' to the end of an accounting period (say i)

and counted by the consumer for that period, might get counted as being performed in

the next period (say j) by the provider if due to the latency, these invocation messages

arrive in period j. This leads to the accumulated charges for the two periods not being

the same. This is actually not an issue, as Amazon S3 uses the timestamp of the

invocation message for resolution, so the consumer can match the provider's figure.

4.2.4 Ambiguous description of accounting models

Based on our experiments’ results described in the previous chapter, we found that there

are many examples which can be used to demonstrate how the ambiguous description

of the accounting model may lead to discrepancies between the consumer and the

provider. However, we will use only two cases to explain this situation. For the first

case we have selected the EC2 accounting model for the on-demand instance

consumption as an example to illustrate the problem.

As described in the previous chapter, the mismatch between Amazon EC2's

documented accounting model and the one currently in use by Amazon EC2 as shown

in Figure 4.5 (a and b, respectively) might result in discrepancies between the

subscriber's and Amazon EC2's calculations of instance hours. Where, EC2 stated that

each instance stores its actual launch time [52]. Thereafter, each instance will charge for

its hours of execution at the beginning of each hour relative to the time it launched as

shown in Figure 4.5-a. However, our experiment which was described in chapter 3

95

showed that each instance will charge for its hours of execution at the beginning of each

hour relative to the time when the instance reached the running stat as shown in Figure

4.5-b.

 a) b)

Figure 4. 5 Session of an Amazon instance represented as FSM.

For example, let us assume that it takes five minutes to reach the running state. Now

imagine that the subscriber launches an instance, leaves it running for 57 minutes and

then terminates it. The subscriber's NinstHours will be equal to two: NinstHrs = 1 at

launch time and then NinstHrs is incremented when the timer = 60min. In contrast, to

the subscriber's satisfaction, AmazonEC2's usage records will show only one instance

hour of consumption. One can argue that this discrepancy is not of the subscriber's

concern since, economically, it always favours him.

More challenging and closer to the subscriber's concern are discrepancies caused by

failures. Amazon EC2's documentation does not stipulate how instances that fail accrue

instance hours. For example, examine Figure 4.5-b and imagine that an instance

suddenly crashes after spending 2 hrs and 15 min in a running state. It is not clear to us

whether Amazon EC2 will charge for the last 15 min of the execution as a whole

instance hour. As a second example, imagine that after being launched either from AMI

configured or stopped states, an instance progresses to a pending state and from there,

96

due to a failure, to terminate. It is not clear to us if Amazon EC2 will charge for the last

instance hour counted by NinstHrs.

We believe that, apart from these omissions about failure situations, the accounting

model of Figure 4.5-b can be implemented and used by the subscriber to produce

accurate accounting. A salient feature of this model is that all the events (launch, stop

and terminate) that impact the NinstHrs counter are generated by the subscriber. The

only exception is if the timer = 60min event, but can be visible to the subscriber if he

synchronises his clock to UTC time.

The accounting model that Amazon EC2 actually uses (Figure 4.5-a) is not impacted by

failures of instances to reach a running state because in this model, NinsHrs is

incremented when the instance reaches a running state. However, this model is harder

for the subscriber to implement since the event that causes the instance to progress from

a pending to running state is not under the subscriber's control.

For the second case, we think one likely source of difficulty about the charges for

operations and bandwidth is determining the liable party for failed operations. For

example, currently, this decision is taken unilaterally by the provider. In this regard, we

anticipate two potential sources of conflict: DNS and propagation delays, as explained

by Amazon S3, are some requests which might fail and produce a Temporary Redirect

(HTTP code 307 error) due to temporary routing errors which are caused by the use of

alternative DNS names and request redirection techniques [38]. Amazon's advice is to

design applications that can handle redirect errors, for example, by resending a request

after receiving a 307 code (see [37], Request Routing section). Strictly speaking, these

errors are not caused by the customer as the 307 code suggests. It is not clear to the

consumer who bears the cost of the re-tried operations.

97

4.2.5 The use of different measurement processes

Differences can arise at the accounting level between the two sides’ measurements due

to the different calculation techniques, used to produce accounting data which relates to

the different data collecting techniques used by the consumer and the provider. For

example, the calculation of GBHrs serves as a good example. We expect that for a

checkpoint, the provider will directly measure the storage space actually occupied,

whereas, for a given checkpoint time, the consumer will mimic the process by adding

(for PUT) and subtracting (for DELETE) to calculate the space, and as we discussed

with respect to figure 4.4, discrepancies are possible.

4.2.6 Other reasons

The Internet is not 100% reliable, which may lead to lost, drop or corrupt messages.

Furthermore, the metering services are applications (software) which might fail at any

time and take some time to recover. Consequently, during this failure there are three

possible scenarios which may occur:

1. MS misses collecting metering data about an upload request but collects

metering data about response. OR

2. MS collects metering data about upload requests and misses to collect the

metering data of the response. OR

3. MS misses collecting any metering data about the upload request and the

response.

Regarding storage consumption; at the consumer’s side all three scenarios may affect

the storage consumption measurement because some of the required data that is used to

compute the storage consumption will not be collected and missed as in scenario 1 and

2 whereas no metering data will be collected in scenario 3.

This may cause a huge dispute in the long run for accumulative resource consumption.

Where accumulative resource means that the resource consumption in CIi+1 = resource

consumption consumed at CP of CIi + resource consumption consumed at CP of CIi+1.

Storage in per-pay-use models is a good example of an accumulative resource because

the value of Storage Consumption (SC) at CI2 = SC at CI1 + SC at CI2. Whereas, un-

98

accumulative resource consumption means that the resource consumption of each

consumption interval does not affect the resource consumption of any consumption

interval. Bandwidth is a good example of un-accumulative resource consumption,

where the bandwidth consumption is equals to the total number of bytes transferred

during any CI.

To illustrate the problem, we assume that the consumer’s and provider’s clocks are

synchronised and are using a fixed checkpoint (CP) to compute storage consumption. In

Figure 4.6, the CI stand represents the consumption interval, whereas the SCP and SCC

stands are for provider and consumer storage consumption respectively, the CP stand is

for checkpoints.

PUT 3GB

SCPCP2= 3GB

PUT 4GB DEL 2GB

CI2 CI3
CI4

SCPCP – Storage consumption at provider’s at Check Point

SCCCP – Storage consumption at consumer’s at Check Point

CI – Consumption interval

CI1

SCPCP1= 0GB SCPCP3= 7GB SCPCP4= 5GB

CI5

P
ro

vid
e
r

SCCCP2= 0GB

PUT 4GB DEL 2GB

CI2 CI3
CI4CI1

SCCCP1= 0GB SCCCP3= 4GB SCCCP4= 2GB

CI5

C
o
n
su

m
e
r

PUT 3GB

SCPCP2= 3GB

PUT 4GB DEL 2GB

CI2 CI3
CI4

SCPCP – Storage consumption at provider’s at Check Point

SCCCP – Storage consumption at consumer’s at Check Point

CI – Consumption interval

CI1

SCPCP1= 0GB SCPCP3= 7GB SCPCP4= 5GB

CI5

P
ro

vid
e
r

SCCCP2= 0GB

PUT 4GB DEL 2GB

CI2 CI3
CI4CI1

SCCCP1= 0GB SCCCP3= 4GB SCCCP4= 2GB

CI5

C
o
n
su

m
e
r

Figure 4. 6 Impact of accumulated resource and consumption intervals.

Figure 4.6 shows that at the 1
st
 consumption interval (CI1) the consumer and the

provider at the 1
st
 CP1 have produced the same storage consumption SCPCP1=SCCCP1=

0 GB, this is because both of the consumer’s and the provider’s metering services did

not record any metering data before the consumer’s and the provider’s 1
st
 checkpoint

(CP1). However, in the 2
nd

 consumption interval CI2 the consumer and the provider

produced different storage consumptions where the provider produced 3 GB and the

consumer produced 0 GB at the CP2. This is due to the provider’s metering service

(MSP) collecting metering data about a successful 3 GB upload request whereas for

some reason (as discussed at the beginning of this section), the consumer’s metering

99

service (MSC) missed collecting the metering data about the request, the response or

both of them (as described by scenarios 1, 2 and 3) about the same 3GB upload

operation. As a result of this, the consumer’s accounting service ASC did not count the

storage consumption of the 3GB upload operation because ASC did not find all or some

of the required metering data.

We recommended the following steps at the consumer side to deal with such problems.

When the ASC finds metering data for an upload request without a response or response

without an upload request, in the first case ASC can easily verify whether this request

eventually succeed or not by executing any operation that does not affect storage

consumption such as downloading the upload file, if the ASC obtained a successful

response then it should consider this request as a successful request and include it when

computing the storage consumption of the entity request.

On the other hand, if the MSC missed recording the metering data completely (no record

of request or response message, it is not easily solved by the consumer’s accounting

side because the consumer did not have any information which can be used to track this

request. Furthermore, the discrepancy in the measurements between the consumer and

the provider will be carried for all of the following CI. Mutual intervention will be

necessary.

An accounting model for resource consumption should describe how charges are

calculated from the resource usage data. For a given resource, the model should include

a description of all the parameters of resource usage that are measured, measurement

times, the frequency of the measurement, the start and end of the accountable period

and other relevant information that would be needed by a measurement service to

collect the resource usage data (resource consumption data) that forms the basis for

billing. The availability of such information will empower consumers in several ways,

such as:

1) Selecting a suitable service provider; 2) making the billing for their applications

clear; 3) planning the organization’s budgets for IT billing; 4) creating a third party

brokering service that automates resource provision in line with the customer’s needs.

100

Clearly, implementing any of the above functionalities will require consumers to have

access to resource usage data. An important issue, then, is the accountability of the

resource usage data: who performs the measurement to collect resource usage data – the

provider, the consumer, a trusted third party (TTP), or some combination of them?

However, provider-side accountability is the norm for traditional utility providers such

as water, gas and electricity who make use of metering devices (trusted by consumers)

that are deployed in the consumers’ premises. Furthermore, provider-side accountability

is also the basis for cloud service providers, although as yet there are no equivalent

facilities of consumer-trusted metering; rather, consumers have no choice but to take

whatever usage data is made available by the provider as trustworthy.

4.3 Consumer-Centric Models

An accounting model for resource consumption should describe how charges are

calculated from the resource usage data. For a given resource, the model should include

a description of all the parameters of resource usage that are measured, measurement

times, the frequency of the measurement, the start and end of the accountable period

and other relevant information that would be needed by a measurement service to

collect the resource usage data (resource consumption data) that forms the basis for

billing.

Based on the above discussion, we propose the notion of a Consumer-Centric

Resource Accounting Model for a cloud resource. We say that an accounting model is

weakly consumer–centric if all the data that the model requires for calculating billing

charges can be queried programmatically by the provider. Further, we say that an

accounting model is strongly consumer–centric if all the data that the model requires for

calculating billing charges can be collected independently by the consumer (or a TTP);

in effect, this means that a consumer (or a TTP) should be in a position to run their own

measurement service. We contend that it is in the interest of the providers to make the

accounting models of their services at least weakly consumer–centric. Strongly

consumer–centric models should prove, even more attractive to consumers as they

enable consumers to incorporate independent consistency/reasonable checks as well as

101

raise alarms when apparent discrepancies are suspected in consumption figures.

Furthermore, innovative charging schemes can be constructed by consumers that are

themselves offering third party services. The strong consumer-centric accounting

models have the desirable property of openness and transparency, since service users

are in a position to verify the charges billed to them.

4.3.1 Abstract resource

In this section we suggest a systematic way of describing resource accounting models

so that they can be understood and reasoned about by consumers. The key idea is very

simple: first, define a set of “elementary” chargeable resources (e.g. storage, bandwidth,

etc); second, describe the overall resource consumption of a given resource/service in

terms of an aggregation of the consumption of these elementary resources. With this

view in mind, we present the resource consumption model of an abstract resource. Next

we will argue that with some small resource specific variations, the accounting models

of resources such as Nirvanix, S3, EC2, EBS and other infrastructure level resources

can be represented as special cases of the abstract resource accounting model, and

therefore can be understood and reasoned about in a uniform manner.

We consider a typical configuration where a server (cloud) resource and a consumer

resource interact with each other by means of requests/responses (req/res) sent through

a communication channel (see Figure. 4.7).

Figure 4. 7 Accounting model of an abstract resource

As shown in the figure, the client resource uses the interface of the server resource to

place its requests and collect the corresponding responses. This deployment incurs three

102

types of consumption charges: traffic consumption, operation consumption and

resource consumption.

Traffic consumption represents the amount of traffic (for example in MBytes) generated

by the requests and responses on the communication channel. Operation consumption

captures the activities generated by the client resource on the interface such as the

number of requests (also called operations) and the number of responses produced.

Finally, resource consumption represents the actual consumption of the resource

measured in units that depend on the specific nature of the resource, for example, in

units of volume (for example, MBytes), time or a combination of them (for example,

MBytesHours).

As the figure suggests, the accounting model for a given resource is an aggregation of

three elementary models: a model for traffic consumption, a model for operation

consumption and a model for resource consumption. These elementary models operate

independently of each other, thus they can be specified and examined separately. In

particular, a provider should ensure that each of the three elementary models are

consumer-centric. This should be done by paying attention to the causes (identified at

the beginning of this section) that could lead to discrepancies between the data collected

by consumers and providers.

4.3.2 Another Look at Nirvanix, Amazon S3 and EC2

The accounting models of Nirvanix, S3 and EC2 easily map to that of the abstract

resource and permit us to analyse them (from the point of view of consumer–centricity)

in a succinct manner. Below we will briefly discuss whether the current accounting

models of Nirvanix, S3 and EC2 (on-demand instance offered by) are strongly or

weakly consumer-centric.

Related to Nirvanix (charges only for bandwidth and resource consumption), we can

say that the models of traffic and resource consumption are strongly consumer-centric,

but suffer from incompleteness and ambiguities. In practice, Nirvanix does not publish

any documents describing its accounting model. Also, the storage accounting model

103

needs to state explicitly how the uploaded data is mapped into consumed bytes. For

example, does user metadata or file metadata impact storage consumption? Related to

bandwidth consumption, Nirvanix SDN’s accounting model needs to clarify explicitly

how bandwidth consumption is computed for all APIs, and whether failed operations

consume bandwidth or not.

Concerning S3, we can say that the models of the two elementary resources for traffic

consumption and operation consumption are strongly consumer-centric, but suffer from

incompleteness and ambiguities. For instance, there is a source of difficulty regarding

the charges for operations. In particular, how to determine the liable party for failed

operations due to temporary routing errors which are caused by the use of alternative

DNS names and request redirection techniques [38]. Strictly speaking these errors are

not caused by the customer as the 307 code suggests. It should be clearly stated by

Amazon S3 accounting model which party bears the cost of the re–tried operations. In

relation to bandwidth, DataTransfer-In and DataTransfer-Out include, respectively,

request and response overheads. The difficulty here is that from the Amazon S3

accounting model, it is not clear how message size is calculated in DataTransfer-In and

DataTransfer-Out. The resource consumption accounting model is weakly consumer-

centric (a checkpointing event which is not observable), making the overall model

weakly consumer-centric.

The accounting model of EC2 for the traffic consumption is strongly consumer-centric

and the operation consumption is free of charge. However, the accounting model suffers

from ambiguity and incompleteness. For example, the EC2 accounting model

description is published in different documents and none of these documents include the

entire EC2 accounting model description. Overall, the model is weakly consumer-

centric because, as we explained in chapter 3, the event that causes a virtual machine

instance to progress from pending to a running state is not visible to the consumer.

4.3.3 Elastic Block Storage

EBSs are persistent block storage volumes frequently used for building file systems and

databases. They support two interfaces: a Web service interface and a block–based

104

input/output interface. The Web service interface can be used by the client to issue (for

example, from his desktop application) administration operations, such as create

volume, delete volume, attach volume, detach volume, etc. The block-based input/

output interface can be used by EC2 VMIs and becomes available upon attaching the

EBS to the VMI. Amazon offers EBSs volumes of 1GB to 1 TB. Upon request, EBSs

can be allocated to a client and can be attached to VMIs. The storage space of an EBS

becomes available when the clients creates the volume and is released when it is

explicitly deleted by the client. During this time period, the EBS can be attached and

detached several times and to different VMIs but only to one at a time.

The accounting model for EBS is shown in Figure 4.8. Omitted from the figure is the

communication channel that the client uses to issue administration operations to the

EBS.

Figure 4. 8 EBS accounting model

In principle and as shown in the figure, an EBS incurs traffic consumption. However,

Amazon does not currently charge for this traffic. Operation consumption is measured

as the number of input/output operations that the EC2 VMI places against the EBS.

Resource consumption is measured in units of time (for example, hrs) and is determined

as the time that elapses between the creation and deletion of the EBS. The reason for

this is that the amount of storage consumed by the client is determined at the EBS

creation time.

The EBS accounting model is weakly consumer–centric, because the accounting model

for operation consumption includes unobservable events: as Amazon points out in their

documentation, the exact number of disk input/output operations cannot be determined

105

accurately by clients because of caching that takes place within applications and

operating systems. Fortunately, the number of input/output operations as ”seen” by a

client is likely to be less than the actual numbers, so the discrepancy always favours the

client.

4.4 Summary

The ‘Pay only for what you use’ principle underpins the charging models of widely

used cloud services that are on offer. An important issue then is the accountability of

the resource usage data: Who performs the measurement to collect resource usage data,

the provider, the consumer, a trusted third party (TTP), or some combination of them

all. Currently, consumers have no choice but to take whatever usage data has been made

available to them by the provider as trustworthy. This situation motivated us to propose

the notion of the consumer centric resource accounting model. An accounting model is

said to be weakly consumer-centric if all the data that the model requires for calculating

billing charges can be queried programmatically from the provider. An accounting

model is said to be strongly consumer-centric if all the data that the model requires for

calculating billing charges can be collected independently by the consumer (or a TTP);

in effect, this means that a consumer (or a TTP) should be in a position to run their own

measurement service. We evaluated infrastructure level resource accounting models of

a prominent cloud service provider (Amazon) and found that they were only weakly

consumer–centric. We presented ideas on how accounting models should be

constructed so as to make them strongly consumer centric. We also suggested a

systematic way of describing resource accounting models so that they can be

understood and reasoned about by consumers.

Service providers can learn from our evaluation study to re-examine their accounting

models. In particular, we recommend that a cloud provider should go through the

exercise of constructing a third party measurement service, and based on that exercise,

perform any amendments to the model, remove potential sources of ambiguities in the

description of the model, so that as much as possible, consumers are able to collect with

ease their own usage data that matches provider side data with sufficient precision.

106

Chapter 5

Conclusion and Future Work

The main objective of this thesis is to address the issues related to developing an

independent consumer-side accounting mechanism which allows customers to compute

their outsourced resource usage charges.

To achieve this, several experiments have been conducted on different IaaS cloud

providers (Amazon S3, EC2 and Nirvanix SDN) and different resources (storage,

bandwidth, computer power and CPU) in order to understand the accounting model of

each resource. Furthermore, the study has addressed the issues related to building a

consumer-side resource accounting service which shows how metering data is collected

and what parameters might cause a potential source of conflicts between the consumer’s

and the provider’s measurements.

In this chapter we summarise the achievements and also suggest some potential

developments for future research.

5.1 Summary of achievements

The achievements of this thesis are:

1. We proposed the notion of a Consumer–centric Resource Accounting Model for a

cloud resource. We say that an accounting model is weakly consumer–centric, if all

the data that the model requires for calculating billing charges can be queried

programmatically by the provider. Further to this, we say that an accounting model is

strongly consumer–centric, if all the data that the model requires for calculating

billing charges can be collected independently by the consumer (or a TTP); in effect,

this means that a consumer (or a TTP) should be in a position to run their own

measurement service. We contend that it is in the interest of the providers to make

107

the accounting models of their services at least weakly consumer–centric. Strongly

consumer–centric models should prove even more attractive to consumers as they

enable consumers to incorporate independent consistency/reasonableness checks as

well as raise alarms when apparent discrepancies are suspected in consumption

figures. Furthermore, innovative charging schemes can be constructed by consumers

that are acting as brokers offering third party services.

Based on our definition of the consumer–centric accounting model we found the

following:

 Nirvanix models of the bandwidth and resource consumption are strongly

consumer-centric, but suffer from incompleteness and ambiguities.

 Concerning S3, we have found that the models of bandwidth and operation

consumption are strongly consumer-centric, however, they suffer from

incompleteness and ambiguities as we pointed out earlier (see chapter 3)). The

model for resource consumption is weakly consumer-centric due to an

unobservable checkpoint event which makes the overall Amazon S3 accounting

model weakly consumer-centric.

 The EC2 bandwidth consumption accounting model is strongly consumer-

centric. Whereas, the accounting model of the EC2 on-demand instance is

weakly consumer-centric because the event that causes a virtual machine

instance to progress from pending to a running state is not visible to the

consumer.

2. Discrepancies between the accounting data computed by consumer and the provider

can be classed into three categories discussed below.

 Incompleteness, ambiguities and inconsistencies: we highlighted several cases

where an accounting model specification was ambiguous or not complete. For

example, concerning EC2, it is not clear how instances that fail accrue instance

hours. Also, for different APIs, the service provider may apply different

accounting models to compute resource consumption. For instance, Amazon S3

computes bandwidth consumption based on the whole message size for SOAP

operations, while for RESTful operations S3 computes the bandwidth as the

bytes transferred per request or response. We also pointed out that the

108

operations executed by different APIs may have different levels of resource

consumption. For instance, in Amazon S3, executing an operation using a

RESTful request consumes fewer resources than the same operation executed by

a SOAP request. This can be counted as a good example of inconsistency.

 Unobservable events: If an accounting model uses one or more events that

impact resource consumption, but these events are not observable to (or their

occurrence cannot be deduced accurately by) the consumer, then the data

collected at the consumer side could differ from the provider’s. The calculation

of storage consumption in S3 (GBHrs) is a good example: here, the checkpoint

event is not observable.

 Differences in the measurement process: Differences can arise if the two sides

use different techniques for data collection. Calculation of GBHrs again serves

as a good example. We expect that for a checkpoint, the provider will directly

measure the storage space actually occupied, whereas, for a given checkpoint

time, the consumer will mimic the process by adding (for PUT) and subtracting

(for DELETE) to calculate the space, as we discussed in chapter 4.

3. We also suggested a systematic way of describing resource accounting models so

that they could be understood and reasoned about by consumers. The idea is to

define a set of “elementary” chargeable resources and then describe the overall

resource consumption of a given resource/service in terms of an aggregation of the

consumption of these elementary resources. Service providers can learn from our

evaluation study to re-examine their accounting models. In particular, we

recommend that a cloud provider should go through the exercise of constructing a

third party measurement service, and based on that exercise, perform any

amendments to the model, remove potential sources of ambiguities in the description

of the model, so that as far as possible, consumers are able to collect with ease their

own usage data that matches the provider side data with sufficient precision.

109

5.2 Future Work

In this section we propose some potential developments that could stem out from our

work.

5.2.1 Consumer-side accounting for PaaS and SaaS

As stated earlier in chapter 2, cloud computing has three service models; Software as a

Service (SaaS), the Platform as a Service (PaaS), and the Infrastructure as a Service

(IaaS) [22, 23, 26]. This study has tackled the issues related to the consumer-side

accounting in IaaS services. Further work should investigate the challenges and

technical issues that are related to consumer-side accounting at the level of Paas and

SaaS.

5.2.2 Verifying Billing Charges

When consumers use cloud resources they need to understand how a given deployment

will be charged. Ideally, consumers should be in a position to verify the charges billed

to them. In turn this requires taking into consideration the particularities (for example,

geographical location of resources) of the deployment and the provider’s current pricing

policies. We believe that the abstract resource accounting model provides a good

starting point for developing a tool that can take deployment configuration information

and pricing policies to compute billing charges. We suggest this as another direction of

future work, and use the hypothetical deployment shown in Figure 5.1 for the sake of

illustration.

110

Figure 5. 1 Resource deployment

The deployment of Figure 5.1 involves the client’s application and three types of

Amazon basic resources: S3 storage, EC2 virtual machine instances (VMIs) and EBS

volumes. It also involves two Amazon regions (US East and US West) and two

availability zones (av–zoneA and av–zoneB) located within the US West region. The

Amazon cloud is divided into regions which are physical locations geographically

dispersed (e.g. US–East in Northern Virginia, US–West in Northern California and the

EU in Ireland).

The EC2 cloud is divided into zones which are failure–independent data centres located

within Amazon regions and linked by low latency networks. The arrowed lines

represent bi–directional communication channels. Omitted from the figure are the

communication channels used by the client to issue administrative commands to the

VMIs (launch, stop, reboot, etc.) and the EBSs (create volume, attach volume, etc.).

We open this discussion with a study of the charges that apply to EBS1 and EBS2.

Imagine for the sake of argument that they are volumes of 50 GB and 100 GB,

respectively. Of concern to us here is the operation consumption and time consumption

of the EBSs. EBS1 will be charged for the number of input/output operations thatVMI1

111

places against the EBS1 interface and also for the period of time of usage of the

allocated 50 GB. Being currently detached, the charges for EBS2 are simpler to

calculate, they will only consider the time consumption for 100 GB. In general,

Amazon charges for traffic in (Data Transfer–In) and out (Data transfer–Out) of the

Amazon cloud and for traffic in and out of the EC2 cloud. However, Amazon does not

charge for traffic between a VMI and another resource (say S3 storage) located within

the same region. Neither do they charge for traffic between two VMIs located within

the same availability zone. However, Amazon charges for inter–region traffic between a

VMI and another resource (for example, S3) located within a different region. In these

situations, the sender of the data will be charged for Data Transfer–Out whereas the

receiver will be charged for Data Transfer–In. With these pricing policies in mind, let

us study the charges for VMI1. Of concern to us here is traffic consumption and

resource consumption. VMI1 will be charged for inter–region traffic (Data Transfer–In

and Data Transfer–Out) consumed on the channel that links it to S3. In addition, VMI1

will be charged for traffic (Data Transfer–In and Data Transfer–Out) consumed on the

channel that links VMI1 to the client application, as the latter is outside the Amazon

cloud. There are no charges for traffic consumed by the interaction against EBS1 as

traffic consumed by the interaction between VMIs and EBSs is free. Neither are there

charges for traffic consumed by the interaction against VMI2 since VMI1 and VMI2

share availability zone A. Resource consumption of VMI1 will be counted as the

number of hours that this instance is run.

The charges for VMI2 will take into account traffic consumption and resource

consumption. The traffic consumed will be determined by the amount of Data Transfer–

Out and Data Transfer–In sent and received, respectively, along two channels: the

channel that leads to the client’s application and the one that leads to VMI3. There are

no charges for traffic consumed on the channel that leads to VMI1 because the two

instances are within the same availability zone. Again, resource consumption will be

counted as the number of instance hours of VMI2. The charges for VMI3 can be

calculated similarly to VMI2.

112

We can visualise that S3 will incur charges for traffic consumed on the channel that

links it to VMI1 and on the channel that links it to the client’s application. In addition,

S3 charges will account for operation consumption counted as the aggregation of the

number of operations placed against S3 by the client’s application and VMI1. In

addition, the charges will take into consideration resource consumption (storage space

consumed) measured in storage–time units. This will be counted as the aggregated

impact of the activities (put, get, delete, etc.) performed by the client’s applications and

VMI1.

5.2.3 Cost estimation of service delivery

The idea presented in the previous subsection can be extended further to make cloud-

based applications billing aware, by developing techniques for estimating at run-time

the charges that an application has incurred so far. A cloud service broker managing

applications on behalf of customers can use such techniques for estimating at run-time,

the cost of service delivery to its customers and whether the service is adequately

provisioned. A broker can ensure that the customer's applications do not exceed agreed

budgets, and use cloud resources in cost-efficient manner.

113

Bibliography:

1. H. Ragib, Y. William, and M. Suvda, The evolution of storage service providers: techniques and

challenges to outsourcing storage, in Proceedings of the 2005 ACM workshop on Storage

security and survivability. 2005, ACM: Fairfax, VA, USA.

2. C. Molina-Jimenez, N. Cook, and S. Shrivastava, On the Feasibility of Bilaterally Agreed

Accounting of Resource Consumption, in Service-Oriented Computing - Icsoc 2008 Workshops,

G. Feuerlicht and W. Lamersdorf, Editors. 2009, Springer-Verlag Berlin: Berlin. p. 270-283.

3. A. Mihoob, and C. Molina-Jimenez. A Peer to Peer Protocol for Online Dispute Resolution over

Storage Consumption. in The Fourth European Young Researchers Workshop on Service

Oriented Computing. 2009. Pisa, Italy: EPTCS 2 - YR-SOC 2009.

4. Amazon web services, Amazon Simple Service Storage (S3), http://aws.amazon.com/s3. 2006.

5. B. Aboda, J. Arkko, D. Harrington: "Introduction to Accounting Management", RFC2975,

October 2000

6. Amit Goyal, Sara Dadizadeh (2009). A Survey on Cloud Computing. University of British

Columbia, Technical Report, 2009.

7. Shastri JC Philip, “What Is Cloud Computing?”; http://factoidz.com/what-is-cloud-computing-1/

8. R. Miller, (2008, March 25). What's In A Name? Utility vs. Cloud vs. Grid. Retrieved

September 29, 2009, from Data Center Knowledge:

http://www.datacenterknowledge.com/archives/2008/03 /25/whats-in-a-name-utility-vs-cloud-

vs-grid/.

9. A. Khalid. “Cloud computing: Applying Issues in Small Business”, International Conference on

Signal Acquisition and Processing, 2010, pgs. 278 – 281.

10. Life in the Cloud, Living with Cloud Computing,

http://computinginthecloud.wordpress.com/2008/09/25/utility-cloud-computingflashback-to-

1961-prof-john-mccarthy/Published on: 25/09/2008 / 13:09

11. La’Quata Sumter, “Cloud Computing: Security Risk”, Proceedings of the 48th Annual Southeast

Regional, 2010 - portal.acm.org, ACMSE '10, April 15-17, 2010, Oxford, MS, USA.

12. Martin Adolph, Distributed Computing: Utilities, Grids & Clouds (March 2009), ITU-T

Technology Watch Report 9, International Telecommunication Union.

13. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud Computing and Emerging

IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future

Generation Computer Systems, 25(6): 599-616, Elsevier Science, Amsterdam, The Netherlands,

June 2009.

14. L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl, "Scientific Cloud

Computing: Early Definition and Experience," in 10th IEEE International Conference on High

Performance Computing and Communications, HPCC '08. , pp. 825-830, 2008.

15. J. Geelan. Twenty one experts define cloud computing. Virtualization, August 2008. Electronic

Magazine, article available at http://virtualization.sys-con.com/node/612375.

16. I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and Grid Computing 360-degree

compared,” in Grid Computing Environments Workshop, 2008, pp. 1–10.

17. Terrence V. Lillard, Clint P. Garrison, Craig A. Schiller (2010). The future of cloud computing.

Digital Forensics for Network, Internet, and Cloud Computing, 2010, Pages 319-339.

20. SearchCloudComputing, definition cloud computing (December 2007),

http://searchcloudcomputing.techtarget.com/definition/cloud-computing, retrieved on

(01/12/2011).

21. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,Andy

Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia, “Above

the Clouds: A Berkeley View of Cloud Computing”, UC Berkeley Reliable Adaptive Distributed

Systems Laboratory,http://radlab.cs.berkeley.edu/, February 10, 2009.

22. Mell, P. and Grance, T. 2009. The NIST Definition of Cloud Computing. National Institute of

Standards and Technology.

23. F. Panzieri, O. Babaoglu, V. Ghini, S. Ferretti, M. Marzolla, Distributed Computing in the 21st

Century: Some Aspects of Cloud Computing, , May 2011.

http://aws.amazon.com/s3
http://factoidz.com/profile/Shastri/
http://factoidz.com/what-is-cloud-computing-1/
http://factoidz.com/what-is-cloud-computing-1/
http://www.datacenterknowledge.com/archives/2008/03%20/25/whats-in-a-name-utility-vs-cloud-vs-grid/
http://www.datacenterknowledge.com/archives/2008/03%20/25/whats-in-a-name-utility-vs-cloud-vs-grid/
http://computinginthecloud.wordpress.com/
http://computinginthecloud.wordpress.com/
http://computinginthecloud.wordpress.com/2008/09/25/utility-cloud-computingflashback-to-1961-prof-john-mccarthy/Published
http://computinginthecloud.wordpress.com/2008/09/25/utility-cloud-computingflashback-to-1961-prof-john-mccarthy/Published
http://virtualization.sys-con.com/node/612375
http://searchcloudcomputing.techtarget.com/definition/cloud-computing

114

24. Dave Malcolm Surgient,The five defining characteristics of cloud computing , Special to

ZDNet, http://www.zdnet.com/news/the-five-defining-characteristics-of-cloud-

computing/287001, April 9, 2009 10:31 AM PDT.

25. Maria Spínola “The Five Characteristics of Cloud Computing- Including a look at the possible

delivery and deployment models”, cloud computing journal, http://cloudcomputing.sys-

con.com/node/10874, 26September 6, 2009.

26. Judith Hurwitz, Robin Bloor, Cloud computing for dummies. HP special edition [book]

27. Microsoft Azure. http://www.microsoft.com/azure.

28. Google App Engine. http://code.google.com/appengine.

29. Nirvanix Storage Delivery Network. http://www.nirvanix.com/

30. P. Patel, A. Ranabahu, and A. Sheth, “Service Level Agreement in Cloud Computing,” in

Proceedings of the Workshop on Best Practices in Cloud Computing: Implementation and

Operational Implications for the Cloud at ACM International Conference on Object- Oriented

Programming, Systems, Languages, and Applications, Orlando, FL, Oct. 2009.

31. D. Nurmi, R. Wolski, etc., “The Eucalyptus Open-source Cloud computing System,” in

Proceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and

the Grid, Shanghai,2009, 124-131.

32. B. Sotomayor, K. Keahey, I. Foster. Combining Batch execution and Leasing Using Virtual

Machines, HPDC 2008, Boston, MA, 2008, 1-9

33. K. Keahey and T. Freeman, “Science Clouds: Early Experiences in Cloud Computing for

Scientific Applications,” in proceedings of Cloud Computing and Its Applications 2008,

Chicago, IL. 2008.

34. V. Srinvasa Rao, K. Nageswara Rao, E. Kusuma Kumari, “Cloud Computing: an overview”,

“Journal of Theoretical and Applied Information Technology”, © 2005 - 2009 JATIT.

www.jatit.org

35. Steve Bennett, Mans Bhuller, Robert Covington, Oracle White Paper in Enterprise Architecture

– Architectural Strategies for Cloud Computing August 2009, Redwood Shores, CA 94065

U.S.A.

36. L. Youseff, M. Butrico, and D. Da Silva, “Towards a Unified Ontology of Cloud Computing,”

Proc. Grid Computing Environments Workshop (GCE), IEEE Press, 2008; doi:

10.1109/GCE.2008.4738443.

37. Amazon (2006), “Amazon Simple Storage Service, Developer guide, API version 2006-03-01”.

Available from: www.amazon.com. (Accessed on: 20-8-2009).

38. J. Murty, Programming Amazon Web Service. O’Reilly, 2008.

39. Nirvanix, “Nirvanix Storage Delevery Network, Develop guide, API version 2.1”, Available

from: http://developer.nirvanix.com/sitefiles/1000/API.html. (Accessed on: 2009)

40. C. Mills, D. Hirsh, G. Ruth, RFC 1272, " INTERNET ACCOUNTING: BACKGROUND",

Network Working Group, November 1991.

41. N. Brownlee, C. Mills, G. Ruth: "Traffic Flow Measurement: Architecture ", RFC 2063,

Network Working Group, January 1997.

42. N. Brownlee, C. Mills, G. Ruth, Traffic Flow Measurement: Architecture, RFC 2722, Network

Working Group, October 1999.

43. C. Rigney, S. Willens, A. Rubens, W. Simpson, RFC 2865, "Remote Authentication Dial In

User Service (RADIUS)", Network Working Group, June 2000.

44. T. Zseby, S. Zander, G. Carle,Fraunhofer FOKUS, "RFC 3334 Policy-Based Accounting",

Network Working Group, October 2002.

45. G. Carle, Fraunhofer FOKUS, G. Gross, L. Gommans, J. Vollbrecht, D. Spence , "RFC 2904

Generic AAA Architecture ", Network Working Group, August 2000.

46. J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat , M.

Holdrege, D. Spence, RFC 2904 " AAA Authorization Framework", Network Working Group,

August 2000.

47. A. Pras, B.-J. van Beijnum, R. Sprenkels, R. Parhonyi: Internet Accounting, IEEE

Communications Magazine, May 2001, pp 108-113.

48. V. Agarwal, N. Karnik and A. Kumar,“Metering and accounting for composite e-Services,” in

Proc. 1st IEEE Int’l Conf. on E-Commerce, pp. 35-39, 2003.

http://www.zdnet.com/news/the-five-defining-characteristics-of-cloud-computing/287001
http://www.zdnet.com/news/the-five-defining-characteristics-of-cloud-computing/287001
http://mariaspinola.sys-con.com/
http://cloudcomputing.sys-con.com/node/10874
http://cloudcomputing.sys-con.com/node/10874
http://www.microsoft.com/azure
http://code.google.com/appengine
http://www.nirvanix.com/
http://www.jatit.org/
http://www.amazon.com/
http://developer.nirvanix.com/sitefiles/1000/API.html

115

49. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system

integration. IEEE Computer, 35(6):37–46, June 2002.

50. S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, and R. Neyama.

Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI. Sams,

2001.

51. H. Motahari-Nezhad, B. Stephenson, and S. Singhal, “Outsourcing Business to Cloud

Computing Services: Opportunities and Challenges,”Available at www.

hpl.hp.com/techreports/2009/HPL-2009-23.html, 2009.

52. Amazon Web Service, Elastic Cloud Computing, http://aws.amazon.com/ec2/

53. Elmroth, E., Marquez, F., Henriksson, D. and Ferrera, D. "Accounting and billing for federated

cloud infrastructures"'2009 Eighth International Conference on Grid and Cooperative

Computing', IEEE, 2009, pp. 268-275.

54. Ge Zhang, Bernd Reuther (2005). A model for user based traffic accounting. EUROMICRO '05

Proceedings of the 31st EUROMICRO Conference on Software Engineering and Advanced

Applications.

55. McKell, L.J., Hansen, J.V., Heitger, L.E.: Charging for computing resources. Computing

Surveys 11(2), 105-120 (Jun 1979).

56. Kim, S.D., Park, S.H., Keum, C., Chung, T.M.: A study new challenge for billing system in

converged service platform. In: Proc. 6th Int'l Conf. on Networked Computing and Advanced

Information Management (NCM'10). pp. 390-395 (2010)

57. Amazon Web Services. http://aws.amazon.com/

58. Amazon Web Service, Elastic Cloud Computing, http://aws.amazon.com/ec2/pricing

59. G. Dantzig and B. Curtis Eaves, Fourier-Motzkin elimination and its dual, Journal of

Combinatorial Theory (A), Vol. 14, pp. 288–297, 1973.

60. M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon S3 for science grids: a

viable solution? In DADC ’08: Proceedings of the 2008 international workshop on Data-aware

distributed computing, pages 55–64. ACM, 2008. 4, 5, 19.

61. C. Molina-Jimenez, S. Shrivastava, On the Monitoring of Contractual Service Level

Agreements, in Proceedings of the First IEEE International Workshop on Electronic

Contracting. 2004, IEEE Computer Society.

62. Asawa, M., Measuring and analyzing service levels: A scalable passive approach, in 1998Sixth

International Workshop on Quality of Service. 1998, Ieee: New York. p. 3-12.

63. Debusmann, M. and A. Keller. SLA-driven management of distributed systems using the

common information model. in Integrated Network Management, 2003. IFIP/IEEE Eighth

International Symposium on. 2003.

64. K. Alexander, L. Heiko, The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. J. Netw. Syst. Manage., 2003. 11(1): p. 57-81.

65. S. Akhil, M. Vijay, S. Mehmet, L. Li Jie, and C. Fabio, Automated SLA Monitoring for Web

Services, in Proceedings of the 13th IFIP/IEEE International Workshop on Distributed Systems:

Operations and Management: Management Technologies for E-Commerce and E-Business

Applications. 2002, Springer-Verlag.

66. Ludmila Cherkasova Yun Fu, Wenting Tang and Amin Vahdat, Measuring and characterizing

end-to-end Internet service performance. ACM Trans. Internet Technol., 2003. 3(4): p. 347-391.

67. Keynote Systems, http://www.keynote.com.

68. J. Pruyne, Enabling QoS via Interception in Middleware, in Software Technology Laboratory

HP Laboratories Palo Alto 2000, HP.

69. Amazon Web Service, “Amazon ec2 faqs,” 2011. [Online]. Available: aws.amazon.com/ec2/faqs

70. A. Korn, C. Peltz, and M. Mowbray, “A service level agreement authority in the cloud,” HP

Laboratories, Tech. Rep. HPL-2009-79, 2009.

71. A. Haeberlen, “A case for the accountable cloud,” in 3rd ACM SIGOPS: Int’l Workshop on

Large–Scale Distributed Systems and Middleware (LADIS’09), 2009.

72. Amazon: Amazon elastic compute cloud user guide (api version 2011-02-28) (2011),

docs.amazonwebservices.com/AWSEC2/latest/UserGuide/

73. http://davidpallmann.blogspot.com/2010/08/hidden-costs-in-cloud-part-1-driving.html

74. http://davidpallmann.blogspot.com/2010/08/hidden-costs-in-cloud-part-2-windows.html

http://aws.amazon.com/ec2/
http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://www.keynote.com/
http://davidpallmann.blogspot.com/2010/08/hidden-costs-in-cloud-part-1-driving.html
http://davidpallmann.blogspot.com/2010/08/hidden-costs-in-cloud-part-2-windows.html

116

75. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of scientific

applications. In: Proc. 10th Int'l Symposium on Pervasive Systems, Algorithms and Networks (I-

SPAN'09) (2009).

76. Wang, G., Ng, T.S.E.: The impact of virtualization on network performance of Amazon ec2 data

center. In: Proc. 29th IEEE Conf. on Computer Communications (INFOCOM'10). pp. 1-9

(2010).

77. Wachs, M., Xu, L., Kanevsky, A., Ganger, G.R.: Exertion-based billing for cloud storage access.

In: Proc. 3rd USENIXWorkshop on Hot Topics in Cloud Computing (HotCloud'11) (2011).

78. Wang, H., Jing, Q., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed systems meet economics:

Pricing in the cloud. In: Proc. 2nd USENIX Workshop on Hot Topics in Cloud Computing

(HotCloud'10) (2010).

79. Den Bossche, R.V., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in hybrid iaas

clouds for deadline constrained workloads. In: Proc. IEEE 3rd Int'l Conf. on Cloud Computing

(Cloud'10). pp. 228-235 (2010).

80. Li, A., Yangi, X., Zhang, S.K.M.: Cloudcmp: Shopping for a cloud made easy (2010).

81. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on the

cloud: The montage example. In: Proc. Int'l Conf. on High Performance Computing,

Networking, Storage and Analysis (SC'08) (2008)

82. Chris Mitchell, " Trusted Computing: Putting a security module on every desktop ", Information

Security Group Royal Holloway, University of London, (Visiting Erskine Fellow, University of

Canterbury), www.opentc.net 28 March 2007.

83. Nancy R. Mead and Gary McGraw, Understanding Trusted Computing, IEEE SECURITY &

PRIVACY MAY/JUNE 2003.
84. P.C. van Oorschot, “ Revisiting Software Protection ”, Proc. 6th Information Security Conf.

(ISC’03), Bristol, UK, LNCS 2851, Springer, 2003.
85. P. Wang, S.-K. Kang and K. Kim, “Tamper-resistant Software Through Dynamic Integrity

Checking”, Proc. Symp. on Cryptography and Information Security (SCIS’05), Maiko Kobe,

Japan, 2005.

86. Morgan, G., Parkin, S., Molina-Jimenez, C. and Skene, J, Monitoring Middleware for Service

Level Agreements in Heterogeneous Environments, In Challenges of Expanding Internet: E-

Commerce, E-Business, and E-Government. 5th IFIP Conference on e-Commerce, e-Business,

and e-Government (I3E 2005), October 28-30 2005, Poznan, Poland Funabashi, M. and Grzech,

A. (eds.)

87. A. M. Odlyzko, “Internet pricing and the history of communications”, Computer Networks,

36(5-6):493–517, Aug. 2001.

88. Mark O'Neill, CTO, Vordel (2010). Who meters the cloud? Available at

http://www.ebizq.net/topics/cloud_computing/features/12250.html

89. James Skene, Allan Skene, Jason Crampton, Wolfgang Emmerich, " The Monitorability of

Service-Level Agreements for Application-Service Provision", WOSP’07, February 5–8, 2007,

Buenos Aires, Argentina. Copyright 2007 ACM 1-59593-297-6/07/0002.

90. Pias, M., Wilbur, S., Bhatti, S., Crowcroft, J.: Securing the internet metering and billing. In:

Proc. IEEE Global Telecommunications Conf. (GLOBECOM'02). pp. 1603-1607 (2002)

91. R Steinberg, “Pricing internet service”, (2003), Working Paper (University of Cambridge WP

18/2002).

92. VMware vMotion, 2010. http://www.vmware.com/products/vmotion/.

93. Xen hypervisor, 2010. http://www.xen.org/.

94. A. M. Odlyzko, “Internet pricing and the history of communications”, Computer Networks,

36(5-6):493–517, Aug. 2001.

95. Mark O'Neill, CTO, Vordel (2010). Who meters the cloud? Available at

http://www.ebizq.net/topics/cloud_computing/features/12250.html

http://www.ebizq.net/topics/cloud_computing/features/12250.html
http://www.xen.org/
http://www.ebizq.net/topics/cloud_computing/features/12250.html

