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PREFACE

The purpose of this thesis is to describe an investigation concerned
with the problem of localized defects in semiconductors which was carried
out in the Department of Theoretical Physics at the University of Newcastle
upon Tyne during the period 1974-1977. The investigation was a cooperative
effort involving Dr. Milan Jaros and the author.

The main results of the work have previously been put forward in the
publications below:

Physical Review Blk plho6  (1976),

Proceedings of the 13th International Conference on the Physiecs

of Semiconductors (Rome 19T76) pl090,

Solid State Communications 21 p875 (1977).

In this thesis a more comprehensive discussion than was possible

within the context of the published works i1s presented.
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CHAPTER 1

INTRODUCTORY COMMENTS




Introductory Comments

“Section 1.1 Preliminary remar¥s

In recent years there has been much interest in the general problem
of point imperfections in solids, particularly in the context of the
technologically important semiconducting materials. Quite apart from the
possible practical implications there are also challenging academic reasons
for pursuing studies of this subject. A number of features characteristic
of low symmetry defect centres within an otherwise perfect crystal lattice
await more full understanding by theoreticians. One of the most fundamental
problems, and one which has yet to be dealt with in a totally satisfactory
manner, is that of determining the response of the valence electrons to
the presence of localized defects, (We shall treat this many-body problem
by recourse to the perfect crystal screening function but this is obviously
an approximate means.) In addition it would be valuable to better
appreciate the precise numerical significance of the Jahn=Teller effect and
other distortion—dependent phenomena such as the Stoke's shift and various
aspects of the electron—phonon interaction. Unfortunately, much of the
theory required for a completely detailed understanding of these topics,
and others, has yet to be developed in a satisfactory form. Although some
characteristics of defect systems have been accounted for by relatively
simple approaches the necessity for large-scale computer studies is
increasingly apparent if good numerical agreement is to be obtained.
However, even with the aid of powerful computing facilities there are still
many difficulties to be overcome. A vast amount of experimental information
concerning semicanductor properties has been accumulated but much of this has
still to be explained on a firm theoretical basis. This situation will
almost certainly prevail for some time to come. Meanwhile, we must

continually employ theoretical methods and models which may ultimately lead



to more complete understanding, The task is not an easy one, however,

and even some of the more accepted results are continually in need of
revision, Consequently it is not surprising that some of the less well
understood properties of semiconductors, particularly those in relation to
chemical impurities and intrinsic defects, are still subject to considerable
discussion and indeed confusion,

The first, relatively uncomplicated impurities to be modelled
theoretically were those leading to the production of “shallow" states
(those with energy levels less than about 0.1 eV from the band edges) in
silicon and germanium and these have been well understood for some time.(l)
This understanding was achieved using the sowcalled Effective Mass Theory
(EMT) which utilizes a straightforward coulombic impurity potential model
with a dielectric constant and effective mass appropriate to the host
material. This approach is directly analogous to the standard treatment
of the hydrogen atom, Unfortunately, the agreement with experiment is in
most cases only fair and additional central cell corrections for the particular
impurity considered are necessary in order to explain the departure from the
simple coulombic energy levels, Fabrication of many useful devices has
followed from the deliberate modification of electrical properties of semi-
conductors by the controlled introduction of shallow state impurities,

In practice, it turns out that a number of observed energy levels
do not fall into the shallow category. Many are found to lie well within
the forbidden gap regionggl EMT has been used in attempts to understand
such levels but this theory is at its' best in dealing with states derived
from a turning point or series of turning points of the upper valence band
or lower conduction band with a correspondingly well defined effective
mass. For a less well defined state in k-space such as one composed of a

spread of conduction or valence bands or both we need to formulate alternative

methods, This is the situation which arises when we come to study the type



of impurity which leads to the production of levels which we classify under

the heading "deep".

Section 1.2 The localized states problem

When an atom in a crystal is replaced by one of generally similar nature
(in terms of atomic radius, core shells etc.) but of different valence then
it is likely that predominantly coulombic type delocalized impurity states
will result. The delocalization GSSOX radius) is a direct result of the
relatively long range of the impurity potential. However, this is not
the only departure from perfect crystallinity which can be envisaged. If,
for example, replacement by a much larger or smaller atom is attempted then
distortion of some kind is likely to occur., In addition there is the classic
vacancy problem which could again give rise to similar relaxation effects.
Isoelectronic substituents can also produce impurity states yet these are
certainly not of the aforementioned coulombic nature. They are due to
short range differences in the potentials of the host and substituted atomic
cores, There is also the problem of more complicated defect systems., It
may be that complexes of two or more vacancies, impurities or impurity-
vacancy pairs will occur. In such cases it may be expected that the strong,
short range potentials will dominate in the formation of the defect states.
Clearly, the long range coulomb potentials may have an influence but in
general we may anticipate that these effects will be of secondary importance
and would not expect energy modification to exceed the typical 0,1 eV EMT
value. The energy levels produced will not necessarily be deep within the
gap region, they may indeed be resonant with the valence or conduction bands,
This is something which must be investigated for individual cases, However,
we can expect that deep level states may result. With this in mind it 1is
necessary to seek methods which can realistically be used in what is basically

a short range potential problem.,



In considering an impurity/defect system within the context of a bulk
501id we are attempting to deal with what is, in effect, an infinite particle
many-body problem. An exact solution is, of course, impossible and it is
immediately apparent that the problem must be reduced to some sort of
manageable form. In practice, the basic formulations for dealing with
localized defects can be grouped into two main categories. In the molecular
methods the problem is simplified by replacing the crystal with a finite
size molecule which can then be treated by standard quantum chemistry
techniques, Alternatively, we can formulate a representation based upon
initial knowledge of the host crystal bandstructure.

The molecular orbital methods, exemplified by the early calculations
of Coulson and Kearsley,(3l for example, who studied the diamond vacancy
problem, rely on the treatment of the impurity/defect system as a "defect
molecule", The relevant atomic orbitals or some approximation to them are
required as an initial starting point and then suitable molecular orbitals
are formed. Although Coulson and Kearsley included only nearest neighbours
in their calculations much less restricted studies have since been attempted.

(L)

In the more recent calculations of, for example, Messmer and Watkins who
also considered the yacancy in diamond, not only the nearest neighbours but
also next nearest and possibly further removed neighbouring atoms are taken
as being part of the defect molecule, It is essential that these larger
molecules be studied if reliable interpretation with respect to the bulk
solid is aimed for.

The Green's function Koster—Slater type methods proceed from a line
of approach in which full knowledge of the host crystal eigenfunctions and
energies is required, An intermediate set of localized functions is then
introduced. In general, because of the need for complete knowledge of the

host crystal eigenfunctions and the way in which this information appears

when looking for solutions, this method can require substantial amounts of



computing time, The use of Wannier functions, as originally suggested by

(s,

.Koster and Slater 6lhas heen the basis of a number of calculations,
However, the computer time required has usually curtailed the number of
bands and/or sites used and this has inevitably reduced the value of results,
Tt was only in 1967 that Callaway and Hughes were able to present results

(1)

using for the first time a many<band calculation, As will be shown
later, however, localized functions other than the Wannier functions can
be employed, thus leading to significant advantages,
In a given situation the symmetry of the resulting defect states is
just about the only useful exact information which is available, Consequently,

a feature common to all the localized defect methods is in the use of symmetry

considerations to facilitate the calculations.

Section 1.3 The significance of localized states

As has already been pointed out the use of delocalized shallow donor/
acceptor states in the modification of the electrical properties of semi-
conductors has been much exploited. There is also a great deal of interest
in the practical application of the optoélectronic properties of semiconductors,
particularly with regard to the production of light emitting devices, The
emission of visible radiation requires that electron-hole recombination with
resulting liberation of approximately 2 eV of energy occurs, Consequently,
materials with band gaps, Eg’ of this order are the primary source of interest
with respecttothis effect, Unfortunately, the most popular and hence most
widely studied semiconductors, germanium and silicon, are of little use for
such applications because of their relatively small Eg. This has directly led
to the investigation of alternative materials because, quite apart from
their intrinsic interest, they may be of useful practical importance, A
number of direct band gap materials have been discovered with appropriate
E_ but they have tended to suffer from difficulties of preparation or

self-absorption or unsuitable electrical properties, As a result of this,



great interest has been focused upon indirect band gap materials, particularly
‘gallium phosphide with Eg¥ 2.3 eV,

Due to the restrictions of momentum conservation across—the-gap
recombination in indirect gap materials cannot occur unless phonon coupled
and consequently emission levels are disappointingly low, However, the
presence of localized states within the gap can, because of k-space spreading of
the wave function and thus overlap at k=0, lead to the possibility of much
higher radiative efficiencies., Unfortunately, radiative recombination must
compete with other, non—radiative processes such as Auger or, perhaps,
mﬁltiphonon emission (MPE) effects and so the search for satisfactory light
emitting preparations is strewn with difficulties. Tt can be seen that a
study of all localized defects, whether for their useful, or indeed adverse

properties, may lead to significant knowledge.

Section 1.4 The present work

The purpose of the present work is twofold. To .begin with we wish
to demonstrate the practicability of a new method of dealing with the
localized defect problem. The method, related to the Koster-Slater Green's
function approach, is described in Chapter 3., In parallel with the
feasibility study we shall attempt to gain some insight into various aspects
of localized defect electron states. Although our main concern will be
with the III-V semiconductors GaAs and GaP, results of studies in diamond
will also be given,

In particular, we shall extend the scope of earlier calculations(g) in
relation to the gallium vacancy in GaAs in order to allow for the effects
of Jahn—Teller distortion. As it seems likely that many defect systems may
be complexes we have generalized our formulation to include twowcentre
problems and results for the divacancy and vacancy-oxygen pairs in GaAs
are presented, In addition, displacement studies of the nitrogen impurity

in diamond and oxygen—like impurity potentials in GaAs, GaP and diamond are



carried out. Investigations of the latter type may have some relevance with

regard to MPE capture processes and related phenomena,



CHAPTER 2

BACKGROUND INFORMATION




10

Background Information

‘Section 2.1 Omissions

In an account of the present kind it is not possible, nor indeed
would it be appropriate, to include detalls of all the background ideas and
theory upon which the work is based. DMuch of this detail has been widely
discussed and documented in the literature and pressures of space preclude
its' reiteration. However, in order to provide a reasonable basis of
understanding for the methods used a broad outline of some of the fundamentals
will be given in this chapter. Recourse to suitable references will be

made both to fill in gaps and to expand -upon the presented material.

Section 2.2 The pure crystal Hamiltonian

Making an immediate, explicit distinction between nuclei and electrons

the Hamiltonian for a crystal can be expressed as

- > > .2 s o o
B = -3 272u)V2 4 (Peme) Tommfe - 3 (022, )V

+ (7787 ) 1% Lrgy = (P/LTE) 2 5 /e

A}

(2.2.1)

where upper and lower case subscripts refer respectively to nuclear and
electronic terms. Spin-orbit coupling is not included and therefore 1t will

be assumed that all orbitals are doubly degenerate and can be occupied by

two electrons of opposite spin. A simplification of the Hamiltonian can

be achieved by making use of the Born—Oppenheimer approximation, The nuclei

are considered as fixed at their equilibrium positions which lie at periodically
positioned sites in the perfect crystal., This sets the first term of H as

zero, The second term is a constant depending upon the details of the lattice
system concerned and can be dismissed as we will be mainly interested in

the electronic terms and not, for instance, in cchesive energies.



In order to make any reasonable progress at this point it becomes
necessary to invoke the one~electron formulation. The simplest way in
which we could make use of this would be to assume a total wave function

of the Hartree form

N
I
\i)(gl, Qs GgoeeeeeeeOy) =iy ‘f) 1(g;) - (2.2.2)

where the g label both spatial and spin coordinates, However, q) does
not have the correct antisymmetric propérties and so does not satisfy

the Pauli exclusion principle. This form can, nevertheless, be useful but
as we will aim towards an empirical solution eventually we can accept the
additional complications which arise and utilize the full Hartree-Fock

form. The determinantal function

Y (95 Qos Ggaererengy) = kal‘\(gl) \Fl(ge) C e (2.2.3)
‘fé(g_l) \Pg"(gg)

\PN(Q'N)

is automatically of the required antisymmetric form with respect to
exchange of coordinates and hence satisfies the exclusion principle. Slater
considered total wave functions of this type and showed that the individual

one—electron wave functions are the self-consistent solutions of Equation

(2.2.4).
2 2 2
[— h /(2m)v - (e /hﬁeo) ZI/rIl:l Wok(g-l

+[e2/(Lmé ﬂ‘fk,(g_e)\ d't]\{? (g,)
- [e /(b ) Zﬁ?k fk(ql) P rlao) P yle et ] Prlay)

‘d .
JP‘“Q rlz‘f.k (q,) \fk(gl)'

11
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= E P, (g) (2.2.4)

Slater argued that the final term on the left, the so—called Fermi or
exchange hole, is an insensitive function of k and can thereforebe sensibly
replaced by a straightforward potential function common for all k.(9) The

one—electron Hamiltonian can thus be expressed as

H=T + Vﬂ(._l;) + Vel(r_). + Ve,x(g) (2.2.5)

where T is the kinetic energy operator

Vn(gj is the potential energy of an electron in the field of the
nuclei (which is periodic for an infinite or cyeclic lattice)

Vel(z) is the potential due to all electrons, and

Vex(g) is the weighted average exchange potential.
Cf course, it would be totally inconceivable to even consider the direct
solution of such a problem for a macroscopic system. Fxact analytic solutions
are available for systems with one electron only. However, by using

general arguments it is possible to obtain information concerning the form

of the solutions as will be seen in the next section

Section 2.3 The general form of solutions of the periodic potential problem

Overlocking the precise details of the potential let us consider the
general form of the solutions of

-h%«em)v?W VEip= EY (2.3.1)

The information concerning the potential is limited to the knowledge that

V(r + nja, + 18, +n3§3) = V(r) (2,3.2)

where a,, &, and a, are the primitive translation vectors of the direct

lattice and the n can take all integral values. This periodic form of

potential means that we are considering a solid of infinite extent, or, more



13

convenilently, we can choose to employ cyclic Born-von Kérman boundary

conditions. This restricts the solutions to those satisfying
+ + =
\P(..lz +Na +Na, +Nal) \f)(g) (2.3.3)

where Nl, N2 and N3 are suitable large integers., We now introduce the basic

translation operators Ta., Ta_ and Ta3 which we define by thelr effect upon

2

the position vector r:

Ta Ta.r =r + a (2.3.h)

Ta.r = r + a é@’ 3r

1ETET & S

L
and their effect upon the wave function:
- P SR ,
Tal\{) (r) = \P(Talx_') = &P(r_vg_l} ete, (2.3.5)

Some authors use a different notation when operating upon functions but
this inverse form is employed throughout the present work. The effect of
the general translation operator, T, involving any number of combinations

of Tal, Ta_ and Ta. is self~evident:

2 3

T\P(g) =kf)(g—zf_) (2.3.6)
Because of the construction of H it is apparent that
T(,Hf) = H(,TY)) = E(T\F) (2.3.7)

and this commutation relation implies that (T\f) is also an eigenfunction
of H with the same eigenvalue, E. Tt follows either that there are a semi-
infinite number of essentially different wave functions, (T\f), or that these

are all equivelent, differing only by a phase factor such that
T\o= T\{J (2.3.8)
It is easily seen that eigenvalues given by

A = e—i_lg._‘_T_ (2.3.9)
T



1k

are consistent with our requirements., The k are given by
(ng /N, Ja, + 27 (a /N Ja, + 27 (n /N, )ax (
k = 2% (ny /N, )2, M, /Nya, + 2W(n /N )2, (2.3.10)

* *
2ma, and 27ra, are the familiar reciprocal lattice vectors

*
where 2ra., 2, 3

1
which satisfy

* %
v &. =c[,. 2.3,11
él - 1,.J (2.3 )
Equation (2.3.8) can now be expressed as
' ik.R
+ = g ==
\Pg(r_ Rl =e \PE(;_) (2.3.12)

where we have put R = fg_in order that the equation may take the usual
form. In the 1limit as the N->o00, k can be treated as a continuous quantity.

Equation (2.3.12) is consistent with \Pk(;) of the form
_ _ik.r
(ngz) = e ug(gl (2,3.13)

where uk(g) has the same periodicity as the potential, This result was

first demonstrated by Bloch for the particular case of a crystal lattice

but was familiar to mathematicians from an earlier date under the title of

Floquet's theorem. It can be seen that these solutions give rise to a charge

density, kP*\P , with the periodicity of the lattice and are thus perfectly

consistent solutions of Equation (2.2,L4), We have, of course, excluded

in the initial formulation any terms which could have destroyed the periodicity.
Kronié and Penney applied the results which have Jjust been presented

to the case of a periodic square well potential in a one dimensional lattice

and were able to show that simple results could be obtainedglo) However,

the solution of a real physical problem such as that contained in Section

2.2, and which 1s at the root of bandstructure calculations, involves

considerably greater problems and correspondingly requires the use of

additional techniques, One of these techniques will be introduced in the

following section.
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Section 2,4 The orthogonalized plane waye pseudopotential method

We will now consider a method which will lead towards the solution of
Equation (2.2.1). Equation (2.3.13) already gives an indication of the
form of wave functions which may be expected, Expanding the periodic part,

uk(r), as a three dimensional Fourier series we obtain

Jlg.r (2.4.1)

where the g are the reciprocal lattice vectors which, of course, depend

upon the details of the direct lattice structure. In the absence of any atomic
cores we are reduced to the free electron situation in wich a =1 and all
other ?5 are equal to zero, The solutions are then of the plane wave form,
ei§’£3 and are normalized to unit volume, A constant potential also gives
solutions of this type. When the self-consistent potential,V(r),is periodic
and small the use of perturbation theory might be considered in the calculation
of the a . The production of forbidden energy regions is then seen to be a
consequence of this perturbation (in 1-d at least), This approach in which

a continuous energy spectrum becomes split to form energy gaps is complementary
to that of the tight-binding method in which discréte energy levels can be

seen to spread out to form bands, Unfortunately, even for metallic

materials perturbation theory is inadequate when applied in this way as the
strength of the potential in the core reglons gives rise to substantial
modification of the simple plane wave solutions, The number of éa'with
significantly greater than zero values becomes large and perturbation theory
breaks down. Herring suggested that this problem could be overcome by the
modification of the plane waves by the addition of atomic<like functions in

(11)

the core regions. These so called orthogonalized plane waves (OPW's)

are given by

q)_lg+5_: ei@;_'*'_&l'_l;_gao(@g‘ +5.)o< (2.’4—.2)
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where the o represent normalized atomic functions of all species present
at their respective positions throughout the lattice, If the coefficieénts
are given by

b .
axlk +g) = V(‘x T BT o (2.4.3)

—

then the ? are automatically orthogonal to all core states, hence giving
rise to their name. This supposes, of course, that the core functions are
so localized that it can be assumed that their overlap is negligible. Using
(2.4.3) it 1s apparent that the substracted term in Eguation (2.4,2)
consists of a summation of Bloch=like LCAO tight<binding wave functions.

For individual core states we assume that
[—h‘?/EmVQ + v(;_ﬂlob: E,. |oQ (2.4.1)

where the Dirac notation has now been adopted in the interests of future
brevity. V(r) is due predominantly to the local core potentials over the
range where oA (r) is significant and hence the deep core levels are

probably little affected by the presence of the rest of the crystal. The

E . will be slightly different from their isolated atom values and the wave

o

functions can reasonably be thought of as remaining unaltered, The original
designation of those atomic states which can be treated in this manner must,
of course, be dealt with in a sensible manner,

The solutions which we seek are expanded in terms of the OPW's:

|\Fl<-> {;5(5) ,(P.Is+5> (2.4.5)

It can be seen that all eigenfunctions of this form must be orthogonal to
all core states and therefore cannot converge to give these core wave functions.
We have therefore produced a formulation which allows us to focus attention

primarily upon the valence and conduction band characteristics, and it is



1T

these which determine many of the properties specific to solids. Inserting

Equation (2.4.5) in Equation (2.3.1) we obtain
[-—‘hg/zmvg ¥ V(;‘_)] Zﬁbé(k)‘ { lk+g) 2]k +g) ‘DO:]
=
_ | xlk+6) [ (2.1.6)
-5, 2p () Llk+e) - 2 <1k £) 1o ]
which can be rearranged in the form

472030, (k) k + g) + [ v+ ‘é (EkvED()\o(X"‘_'J %ﬁ@l K+ g)

= Ekngg(g) | k+g) (2.4.7)

where use has been made of Equation (2.4.4).

Defining a new eigenfunction
bS\
NEPRRAROIEEFY (2.1.8)

which is known as the pseudo wave function, and a corresponding

pseudopotential
Vs y(r) v 2 (BB o> K] (2.5.9)

Equation (2.4.7) takes the form

(2 + PP =5 lPE) (2.1.10)

T is the kinetic energy operator., This new form of the eguation has the
same eigenvalues as, but different eigenfunctions to, those of *&kband was

(12) It is apparent from

originally formulated by Phillips and Kleinman,
Equations (2.4.2), (2.4.5) and (2,4.8) that the pseudo wave function is

identical to the actual wave function outside the core regions and thus over

most of space. Multiplying Equation (2.4,10) on the left by | k + gty we
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obtain

[(32/on ) v} 2- 5] bg"(}gﬁgbg @ Cr+a )l v lerg) =0

(2.4,11)

We therefore need to solve the secular eguation

\(h2/2m|_1{_+5'| 2-—-Ek) Jg,&v +<5+»5'\VPSU;+~QI =0 (2.k.12)

in order to obtain the required eigenvalues and eigenvectors, If the
original expansion (2.4,1) had been retained the vP® would simply have been
replaced by V. The advantage of (2.4.12) is that the determinantal matrix is
of much smaller size and consequently is easier to deal with. The
reduction in size can be shown to be equivalent to a matrix partitioning
process.

There are many interesting features of the pseudopotential formulation
which could be described here but it is considered sufficient for our
purposes that only the salient points be presented, The reader is referred
to a number of alternative works in which full treatment of these various
features can be found, The two properties which are of particular importance
to us with regard to the use of the pseudopotential are given below.

1) The matrix elements of the pseudopotential are relatively small in
comparison to the kinetic energy terms, This is because the second,
orthogonalization component of VPS, as was pointed out by Phillips and

(13)

Kleinman originally and studied more closely by Cohen and Heine and

Austin, Heine and Shamglu)is of a repulsive nature and consequently has the
effect of cancelling the strong attractive potential, V(g).
2) There is, in practice, considerable flexibility in the choice of

pseudopotential: we need not involve ourselves in the difficulties associated

with the form (2.4,9). Tt is basically the effect of the orthogonalization



operator upon the matrix elements and not the precise details of the operator
itself which are important. Numerous models are available which take
advantage of this fact.

We now briefly consider some consequences of the aforementioned points.
The smallness of VE° means that it may, in some circumstances, be possible
to apply simple perturbation theory to the problem, This obviates the use
of {2.4.12) and reduced the mathematical labour involved, Such an approach
is usefully employed by Harrison in his illuminating discourse concerning
the application of the pseudopotential method to the theory of metals.(lB)
In the case of semiconductors, in which we shall be mainly interested, the
greater departure from the nearly free electron situation means that this
technigue would be less successful, It may be noted, although we have given
no justification for it at this stage, that the replacement of the strictly
non-local operator form of the orthogonalization term by a local potential
(this deletes the dependence upon k+g", k+ g\and Ek) would considerably

<

simplify the problem,

Section 2.5 The practical application of the pseudopotential method

In the preceding sections a framework which can be usefully employed
in the calculation of perfect crystal bandstructures has been developed.
If the aim was to lnvestigate the theoretical strength of this framework
we could begin with an attempt to perform ab initio calculations of the
electron eigenstates. The results could then be compared with experimental
information. However, our main interest lies not in the testing of the
veracity of the pseudopotential method but in its praétical application
to the study of the effects of imperfections of ecrystals, Conseguently we
desire as a starting point a reliable, but also convenient, description
of the perfect crystal. If these initial conditions are not met then our
final aims are unlikely to be realized. The requirements we seek are not

fulfilled by the use of a completely ab initio approach and so we resort to

19
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the adoption of an alternative technique. We choose to employ the
empirical pseudopotential method, To begin with a local pseudopotential,
VPS(E), is assumed, Consistent with earlier arguments it is taken to have

the lattice periodicity:
V() =2vP%(g)e BT (2.5.1)

Tn the empirical pseudopotential method we determine values for Vps(g)
(which can be complex) in order that experimental energy splittings are
reproduced as nearly as possible when Equation (2.5.1) is inserted in Equation
(2.4.12). As no spin dePendent terms are included in the original Hamiltonian,
sultably averaged energy values are used. Only the first few vps(g) are
fitted and all others are set to zero,

In addition to the expansion given by Equation (2,5,1) we introduce the

concept of individual overlapping pseudoatom potentials such that
ps 2 .S,
A r) = =V r-R. . 2.5.2
(@) = FPUrR; ;1) (2.5.2)

where i runs over all unit cells and j over atoms within theunit cell., It
will later be seen that the use of individual atomic pséudopotentials is
essential for our defect studies. The atomic pseudopotentials are spherically
symmetric and thus consistent with linearly screened spherically symmetric
core potentials (which corresponds to a system of filled atomic shells).
It then follows that

vPE(g) = Z.i_ig';-j je—ig-z w25 (r) ar (2.5.3)

= I J - = :

where {1 is the unit cell volume and the r; represent the positions of the
pseudoatoms within the unit cell. Because of the sphericity of the atomic
pseudopotentials the atomic form factors depend only upon the magnitude of
the reciprocal lattice vectors. In calculating band structures the empirical

pseuodopotentials of Cohen and Bergstresser (16) and Saslow et alg%T) will be

used.



Of course, it would not he realistic to expect to achieve a completely
accurate description of all crystal properties simply by the specification
vof a few parameters adjusted to fit observed energy separations, In any
case, the experimental values themselves are not without error, However,
the energy bands are well behaved, quasi-smoothly varying functions of k
and if we obtain reasonable fits to the energy gaps available we can expect
that the overall representation of the energy spectrum will be reasonable,

In practice, agreements of fit are to about 0.1 eV in the gap regions

between occupied and unoccupied states in the case of semiconductor materials.
This does not in itself necessarily imply that determinations of physical
properties based upon the bandstructure calculations are in similarly close
agreement. It might be thought that the agreement could be improved simply
by increasing the number of parameters but this does not automatically follow.,
This is because we have assumed a local potential for ease of calculation

but we know that in principle a strictly non-local operator form should be
used. We can not overcome the basic limitations which are inherent in this
approximation by simply increasing the number of parameters., Ultimately, as
in other cases, the value of the method must be judged on the basis of the
quality of results produced.

Throughout the remainder of this work the superscript P% 4i11 be omitted
for convenience and it will be implicit that all calculations are carried out

within a pseudopotential scheme.

Section 2.6 Symmetry considerations

Tn Section 2,3 it was demonstrated that due to the translational
invariance of the pure crystal Hamiltonian the eigenfunctions take a
particular form and can be associated with the label k, If it was so
wished they could be found by resorting to the method previously prescribed
for all k., However, there are additional symmetries of H (i.e. operators
which commute with H) and knowledge of these considerably simplifies the

problem. The translations are, in fact, only a subgroup of the full crystal

2l
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space group which encompasses all geometrical symmetries of the crystal
.potential (and H). These extra symmetries consist of point operations
(rotations etc.), possibly in association with non-primitive translations
(screw rotations etc.), which leave the crystal potential unaltered. The
effects of the operators defined in analogy with the so-called active

viewpoint of Equations (2.3,4) and (2.3.5), are given in the Seitz notation

by
{Ddi&}_rf«xz*za (2.6.1)
and
{‘X‘Eu}‘f’(ﬁj =\P({o<|:c_&}"l;) (2.6.2)
where

{exlt  J7 - {oc2 «o':lz.,»} (2.6.3)

Operating upon a particular eigenfunction of the Bloch form produces

another eigenfunction given by

{elt }Z{‘E*@%Ze« A+ g (L~ o) (2.6.1)
Z\0g g &
‘10 k(l”.) : eioa_._r_z‘a e—-io((g_ + 5)’Ea¢ei°(5'£ (2.6.5)
Xk s &

Knowledge that the o are real orthogonal matrices has been invoked. An

., . i 90( (k) . . . .
additional phase Factor e =" can be 1ncluded 1n the transformation in order
that the Bloch functions vary smoothly in k-space but this is superfluous to
our arguments and so will be ignored from the outset, The reason for denoting
the transformed wavefunction by ?kaﬁgj is apparent for in analogy with

Equation (2.3.12) we have

- JxkaByy
\Puk(_l; +R)=e ‘fu-k-(_r_'_) (2.6.6)
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The translation properties of the transformed Bloch function correspond

, to an eigenfunction consistent with the label &k, It follows that for

a particular crystal system with n~fold symmetry that n-1 additional

eigenfunctions associated with the same eigenvalue, Ek’ can be generated

if %)k is known. (This does not apply for k values l;ing at special

points or lines but we shall not be concerned with such values,) In

group theory terminology these degenerate T)E.are sald to form an

n-dimensional representation of the group of the Schrdédinger eguation. Only

a knowledge of iP K in 1/n of k-space is initially required., This volume

can be reduced still further if the geometrical inversion operator is not

included in the © for then \P %&f denoted by \P X’ must also be an

additional eigenfunction (this is a consequence of time — reversal symmetry).
In the present work crystals with the face centred cubic Bravais lattice

structure only will be encountered although~ the associated basis will vary.

The reciprocal lattice, which depends only upon the Bravais lattice and not

the basis, will thus be of the body centred cubic type. In the case of

diamond, with the origin taken at an atom site, the full space group is denoted

vy [ io; in the Schonflies notation. This contains the tetrahedral point

group, Td’ as a subgroup. The total complement of 24 point group operations

can be generated in terms of the direct product of the two subgroups shown

overleaf. The particular factorization involving the CBV subgroup will

be seen to be of significance later. The space group is non-symmorphic as

it includes the inversion coupled with a non-primitive translation of

A/L(1,1,1) (A is the lattice constant). With the same choice of origin the

symmorphic zinc—blende space group, r'iTi, also has Td symmetry. In this

example the atoms of the basis are no longer identical and so the inversion

related geometrical symmetry operation does not apply. However, use can

be made of time-reversal symmetry and so for both structures initial

knowledge of Bloch functions in only 1/48 of k-space is required,
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Section 2,7 Summary

In this chapter a description has been given, albeit in a less than
complete fashion, of the manner in whic¢h the pure crystal problem can be
tackled. The idea of a self-consistent periodic potential is seen to be
compatible with the one-electron formulation, It has been with this
general result in mind, rather than with the precise detalls of the form
of the one-electron Hamiltonian, that the solution of the pure crystal
problem has been approached. Using the idea of a pseudopotential, in
particular the empirical pseudopotential method of Cohen and Bergstresser,
and making use of the simplifying action of symmetry considerations it
has been shown how the crystal (pseudo) eigenfunctions and energies can be
obtained. This initial knowledge is of crucial importance with regard to
the method in which the localized defect problem shall be treated.

(18)

Much more detailed discussion of the one-electron formulation, the

pseudopotential method(lgland various aspects of group theory and crystal

(20,21,22)

structures is readily available elsewhere,

25
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Dealing with the localized defect prohlem

‘Section 3.1 Opening remarks

In the previous chapter attention was focused upon the calculation
of the perfect crystal bandstructure (this being a pre-requisite to our
further studies). Such an unblemished object is never realized in practice.
Even the most carefully prepared crystal contains, although possibly small
in percentage terms, a very large number of deviations from the perfect.
These deviations take a number of different forms including vacancies
and substituted atoms, possibly coupled with related lattice relaxation
_ effects. For convenience, a more general definition than is standard is
used and all such excursions from the perfect will be grouped together as
being "defects" of the system. The nature of such defects is varied, If
we consider spatial extent, for example, the effective volume of influence
of simple coulombic impurities can be several hundred times greater than
that of localized defects. It is not very surprising to find that no single
technique is suitable for use in all cases, For example, effective mass
theory is sultable for dealing with impurity states of long range coulombic
origin but cannot be expected to be as successful in short range potential
situations. Defects involving not only long range coulombic but also short
range potentials should ideally be treated in a manner which deals equally
well with both of these contributions. However, such a general method is
not likely to be easy to implement as it would almost certainly lead to great,
if not prohibitive, computational effort if treated comprehensively., The
scheme presented here has no pretensions of dealing with totally general
situations, It is specifically designed to cope with localized defect
problems and any long range coulombic potential is considered as being only
a modifying factor and as such of secondary importance in influencing the
characteristics of the defect states. Before describing the details of

the method & slight digression to clarify notation is in order.
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In Chapter 2, for conyenience, the pure crystal eigenfunctions and
energies were distinguished by use of the label k, However, scrutiny of
Section 2.3 suggests that this system of labelling is not unique for any
label k + g, where g is a reciprocal lattice vector, is consistent with
the expected translational properties of LF . We shall choose to make use
of the reduced zone representation in which k is confined to the first
Brillouin zone {the unit cell of the reciprocal lattice constructed using
the Wigner-Seitz method) and an additional band index, n, labels the Bloch

functions in order of increasing energy,

Section 3.2 General solutions of the defect problem

Our object is to find solutions of the defect Schrodinger equation:

(Ho +h)\Y =EL'Y. (3.2,1)

Ho is the pure crystal Hamiltonian for which it is assumed that (pseudo)

eigenfunctions and energies given by

Ho\fn,5= En,g\{jn,g (3.2.2)

have already been found. The problem of determining the real space defect
(pseudo) potential, h, is discussed in Section 3.7. U{ is expressed as an

expansion in terms of the pure crystal Bloch functions, &Fn X such that
| il

’\.\J = Z &k An,k \P n,k (3.2.3)

n

Inserting this expansion into the time-independent Schrgdinger equation
*
(3.2.1), multiplying by a particular \F at g end integrating over all
=

space the consistency relations

- E) f%j ak An,£<fn',g' | h‘jo n,£> =0 (3.2.4)
BZ
> = J(&vli_')Jn,n'),

Ant‘ ,kQ (-En' ’1_{-!

are obtained (70 is normalized in form <)0n',5“ fn' k!
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Jaros and Ross have used a direct finite sampling point technique to solve
(23,2k)
this system of equations as they stand but there are advantages in

following an alternative method along the lines suggested by Bassani et al.(25’26)
To begin with the potential, h, is assumed to be of factorizable form:

h = n%’. (3.2.5)

Making use of the complete set of orthonormal functions gN(g) the identity
+ Cf —t =zi t ¥t
Sd;_ (') =7 J@r_ gX(r') egylr), (3.2.6)

together with Equation (3.2.5) is inserted into Equation (3.2.4), The
resulting eguations are

, = E) +szj dk An,_k_ \/\fn',_k_'\ hnlgN> <gN\ n° ‘ \Pn’l—‘>: 0

A (E_,
(3.2.7)

n',.k n'k

It is apparent that the effect of the insertion of the &y is to achieve a
separation of the real space integral into a product of integrals containing

only \P *n',k' or \Pn,k alone, Defining new coefficients AN given by

A= an‘ﬂip‘n,g_ <gN\ hb\ \On_lg> (3.2.8)

N BZ

we obtain a modified version of Equation (3.2.7):
A (E - E) + ZZ?!L <<: \ h? \g :> =0 (3.2.9)
n',l{_' n' ,_15;_' N N n!k__! N .

For a particular value of E the general solution, if it exists, is given

by

A_nt,}_g' = PZAN <\Pn',£'\ ha] gN> + ﬁ (n',k',E) (f(E—En,’E, )
N

)

(E-E , .,
nLk (3.2.10)
where ﬂ is determined by boundary conditions and P signifies that the
principal part must be taken in any integral, As h—> O the first term in

Equation (3.2.10) disappears and P = 1 because the scattering states must

tend towards the pure crystal Bloch functions as the defect potential vanishes.
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the general solution of the defect problem for a state with energy E is

given by
*
¢ = Ja La ey
E BZ N . n,k
(E - En,;g)
* nj%lii (% (n,k,E) J(E - En,l_{_)‘ \F n,k (3.2.11)
where

Fﬁ(—n@ = < ey |n® \ “Fn,k > (3.2,12)

—

Section 3.3 Particular solutions — the forbidden gap region

At this stage it does not appear that any general simplification of the
defect problem has been achieved, and indeed this is true., However, if
attention is directed solely towards the solutions for values of E that
lie within the forbidden gap region then some progress can be made. This is,
in fact, the restriction which we shall accept. The aim will be to find
particular isolated solutions within the region of the pure crystal energy gap
between occupied and unoccupied states. The solutions in the normal band
regions will be altered to some extent but the wave functions should
asymptotically tend towards the pure crystal Bloch functions as the defect
potentials we shall consider will be highly localized, It will be assumed
that the overall bandstructure remains essentially unaltered.

For E# E (for any n',k) we have from Equation (3.2,10)

nt ’5—!

b+ 2 <P ey o (3.3.1)

n',k

(E_, - E)

n',k!
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Multiplying by F&b (nt,k'] and integrating over all n',k% we obtain

Ay *ZNAN Jdg F;a(n‘“,ylf‘;‘(n‘,k‘) =0 (3.3.2)

The consistency relations are now formulated completely in terms of the

. The advantage of this is that if

coefficients AN rather than the An K
’—.—u

the functions gy are chosen sensibly then the factorized defect potential
overlap integrals, F, will quickly converge to zero and the number of AN
to be considered will be small., Solutions are obtained by searching for

energies, E., corresponding to zeros of the Fredholm determinant

d

*a : b
JN{N + Zn jdli— Fy (mE)Fy, (n.k)
BZ

(En,g‘ - Ed)

I
o

(3.3.3)

Sufficienttrial values are used in order that the Ed be located as
accurately as required, When the defect state energy eigenvalues have been

found (if they exist) the related eigenvector, Al

can be calculated. A

2

Having done this there are, in principle, two direct methods which can be
used to calculate the defect wave functions. The k-space coefficients, An X’
]

can be found using Equation (3.3.1) and can then be inserted in Equation

(3.2.3). Alternatively we might be able to proceed as follows.

Let us expand the defect wave function as

WEQ: Zjaj‘gﬂ (3.3.1.)



Multiplying hy <:gi‘hb' we ohtain
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<gi\ n® | \]U Ed> = EJ: e <gi\ n? | g5 ) (3.3.5)

Inserting the k—-space expansion for W)E s then
4

En:J%—kZ An,_lg <gi \ hb\ \Pna3> = ZJ.‘ 8 <gi\ n° | gj> (3.3.6)

A, = Z a.<gi\hb\ g. ) (3.3.7)

1 d J d

In matrix form

e \wle)  <eglPlay .. o\ a0\ L,
<g2\ 1‘1b\ gl> <%‘2| ?b‘ g2> ----- ?2 ) 1}2
‘ & <gl\ 1 | gl> <gl\ e | 8,0 e ~L A
a.a? - <g2 ‘ hb| gl> <g2‘ hbl g2> ceee .6.2
(3.3.9)

The real space expansion coefficients, a;, are simply related to the Ai'

It is interesting to note that if the defect potential is factorized in

the form

h=hzx1 (i.e. h~ = 1) (3.3.10)

then the particularly simple result



a. = A. (,3.3011)
'is obtained. The defect wave function is then readily calculated.

Section 3.4 The choice of functions, g
N 1N

In section 3.2 the complete orthonormal set of functions gN\(“-I-'—)" was
introduced in order to facilitate the defect calculations, The particular

choice of functions will now be revealed. We take

gyx) =6, @) Yp, (B, 9) (3,4.1)

with n = 0,1,2, «+» E=O,l,2...n m=7'f2\-Q+l\..O\..,.+Q

The Y§ , m( 9 ,cl)) are the familiar spherical harmonics which, of course

satisfy
Wy
* A . .
0 O (3.4.2)
The Gn,Q(_I;) are given by
_ /2 {2 1
Gn’Q(_;'_) —_i_ r Ln_Q(.r) (3.k.3)

\/Cn,ﬂ

¢ . ] .
where the Ln—ﬁ(r) are the associated Laguerre polynomials, The normalization

constant,

C = n!
n, { (-1 ) (3.4,4)

ensures that the required normalization condition for the radial functions

is satisfied.
o0

L o
jGn.’Q(z)Gn’Q(._I_'_),r dr = Jn‘,n' (3.)4'5)
0

33
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In practice we will use nmax‘;,g, Q<= 0,1 only., The spherical harmonics

required are thent

v (8,4)=/0m?
Y]_;—l(je , Q ) = (3/8M )_%'sinB e?\iq)
Yl,o(e > ) (3/47T )2cos® (3.4.6)

v, (8, 9) 1

-(3/8M)%sinB eiQ

In addition it 1s useful to know that:

0
Y (M-8, T+ 9) = (-1) vy (8, ¢) (3.1.7)
*
Y (8.0 = (1", (8.¢) (3.1.8)
T
JJ Yﬂ,m( ©, ‘P)YQ,—m(B R cp)sine ae d?} = (-1)" (3.4.9)
Cc C

The appropriately normalized associated Laguerre polynomial coefficients
for ¢ - 0, { = 1 are listed in Tables 3.4.1, 3.L4.2 respectively and a few

of the resulting radial functions G, o(r), G 1(r) plotted in Figure 3.L.1.
3

2

Section 3.5 Simplification of the form of the determinant

We will now consider in some detail the form of the determinant (3.3.3)
and show how the calculation of the matrix elements can be simplified.
Three particular defect potential systems will be studied.
CASE 1 The defect potential is given by a sum of two individual spherically

symmetric potentials at different sites i.e.

h(r) =n (lr - R\) + h,(lx - R, 1)
=31z - R Dug(lz - RD)
+ 031z - B, Dyl - By1) (3.5.1)

Instead of the insertion of a single complete set of orthonormal functions we

37



insert two, one centred at each of the individual sites "R

,1;*32, of the

total defect potential, The quantity within the k-space integral which we

wish to calculate is given by

¥ b . * a
: = 1 - o
Fy, 1 (0K, 5(nsk) —— | Jan1 @ s R:1)ey (r-R,)
© Tn,k space
En’E—E
* RV xR 1) P (r)
X f dZ'._ gNt Q—BJ‘hj - .I_‘B_J d ?n,g-a (3~5'2)
all

space

where T =1 or 2, J =1 or 2,

Py (nk) = Zga;(n,g_) J ar e HETEEA() pp ) g (2oR)

i Zga;(n,g)e—i(l{_ = .EI J d(-I—'-_EI)e_i(}E = (I-—B‘I)hi( \ -IL—B-I | )gN('I:‘_BI)

= jz a;(n,l_{,)e_i(-h +-g)'BI M( dr e_i(-lg+ gl.r h?(r)gN(E)

£ Y a1l
space

(3.5.3)

where ngi has been relabelled as r for convenience. In order to calculate

the integral we make use of the plane wave expansion

Jdar wLZM (19 dplar)xy (0 ¢ 0x (8, 9) (3.5.1)

e R Z:_ﬁ (-i)LjL(qr)YL,M(Sa,ﬁ’g)Yz,M(9 »?) ]

where 89-,?9- represent the angular coordinates of g with respect to the
coordinate system employed and the jL are the spherical Bessel functions.

Thus we obtain

38
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*g, _ * » —\j_gbg . L :
Py (k) = Z& NERSRL L %M(,ll 7 (82,00

x jd_r_‘_ j (e id)e, g2y (B, 8y (8,4)  (3.5.5)

where @ = k + g. Due to the orthogonality of the spherical harmonics only
the term in which I={ and M=m is picked out of the plane wave expansion. We

are left with

F;;(n,g) = hT((—i)Q Zga;(n,_lg)e—i'q"BI Y, ,m(eg,%)sflj (@) (3.5.6)
where

Si:z(Q) = \Jdrrgjl (qr)h?(r)Gn’Q(,r),. (3.5.7)
Similarly we find that

FE',J(H’E) = L iﬁ‘ Z ag'(“’g)eig"_RJY;,m' (ng,?g'_)sifg,(q') (3.5.8)

g.l

We now demonstrate how the considerations of Section 2.6 can be utilized
in order to simplify the problem.

In the conventional coordinate system the perfect crystal nearest
neighbours are situated at © A/8(1,1,1) with respect to the bandstructure
origin. The position vectors Bif EQ are both directed along the (1,1,1)

axis and hence the overall defect potential has C - symmetry. It is convenient

3

to define a new coordinate system in which the z axis is along the (1,1,1)

direction and this is the choice we shall make. Let us consider a particular

| #a b
g, &' component, C, E‘gﬁgf), of the product F I(n,&)FN,’J(n,h). We have

H 2
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JUT- SN A -iq.R iq'.R o
Cn,k( £,8') = 16T (-i) i~ a (n,k)e 421 o 190y qSILn?£)

PN _ -ig.R; _ig'.R *
= K(-1) 17 a (ke (nuk)e I M5y (8 L9 )y, (B L9 )
(3.5.9)

where the terms which are unaltered by the symmetry operations have been

combined in the constant, K. If we sum over the C__ operations, ﬁ .

3v

we obtain

'__.‘2.9.'* -ig. 1_(1{3
l/K%— CH,FQ(‘E"& Y = (-1) 1 aﬁ(n,_}g_ a _,(n,k) Z F’
*
x Yz,m(emﬂ?w)ya,’m.(em, ’?Fﬂ')

(s s =ig.R. ig!Ry *
= () Daglnklag, (nk)e ™ e % Yﬂ,m(BF*Q.’?Pﬂ)yz',m'(eﬁﬂ."?f‘ﬁ')

(3.5.10)

As R R. are along the z axis they are unaffected by the C operations,

=I* =J 3v
ﬁ—l. Explicit insertion of the LY rrl( 9, (P) of Equation (3.4.6) shows

o IILi

that these spherical harmonics the summations in Equation (3.5.10) are in

accordance with the Table 3.5.1 below.

TABLE 3.5.1

* * Y* Y*
YO,O Yl,o 1,-1 1,1
Y NZ NZ 0]
0,0 0

0 0]

Yl,o NZ NZ
Y) oy O 0 NZ 0
Y 0 0 0 NZ



This is true for all products Cn k”(:gq,_g‘ ) and hence the determinant (3.3,3)
=

factorizes in the same hlock form, For the non<zero (NZ) elements we have

uKch’M(g,g) = 6(-1)" i a’f(n,l:_)a&,(n,k)e_i_gg_lh _ig"R;

p g
%*
X YZ,m(e_q;’ ?Q)Yﬂl’m((eg“¢9‘,) (3‘5.11)
and hence
Z F;?I(,n,ﬁE)FE.’J(n,PK) ) 6F;?I(n,li_)F§,,J(n,g). (3.5.12)
P -
En,pg_ - EH:E - E

The amount of labour required in order to calculate the elements of the
determinant is reduced by a factor of six. Let us now consider the
simplification which arises upon application of time-reversal symmetry. We

have, as can easily be shown,

I.,a
(93, ‘_q_)sn,Q(q‘) (3.5.13)

b o (as Q’Z % -ig.R. * . ' J,b ,
F (n,—li_) = LN (_l) a f(n’—lg)e 9‘_} Yﬂ',m'( ag_" ?ﬂ')sn'ag"(q )

(3.5.1k)

Ir YQ ,m( 69_ , d[“)g‘), and YQ, ,m.(Bﬂ, (PQ.') are both real then 1t is immediately
apparent that

*a
N,T

E]

*a b
F (,n,g)FN,,J(_n,_lg) + F

b
N,I (n, =k )Fy,

(n,=k)
i) > =

¥*.
= 2 Real F aI(_n,I_i_)Fb

v, N,’J(n,_lg) (3.5,15)
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Consequently, for the upper left<hand corner of Table 3.5.1 the length of
calculation is reduced by a further factor of two, The final k~space

integrals are then given by

12 Real Z Z dl_iF;aI (n,}¥ &).FE, J(.na"é k)
n ? ?
8 1/48 B
BZ n,k

-z (3.5.16)
where the ‘6 represent the remaining four operations.,
In the calculations we perform the sites I,J represent the nearest

neighbour positions ¥A/8(1,1,1).

CASE 2 This is closely related to CASE 1 as the overall Hamiltonian has
the same, C3v’ symmetry. However, we eleminate one of the defect potentials
giving a corresponding decrease in the order of the determinantal matrix.

With the bandstructure centred on an atomic site the defect potential is

h(r) = h(lr - R}) (3.5.17)

where R is again along the (1,1,1) direction, the z axis.

CASE 3 represents a further simplification of the previous cases for

we consider the situation in which we have one defect centre but in addition
we put R = 0. The defect potential and bandstructure are centred at an
atomic site and the Hamiltonian has tetrahedral symmetry. It is a trivial

matter to show that a decoupling of the ¥ 0 products results upon
2

0,0 11

C C group of operations. The Y determinant

application of the E,C oy® “2g 0,0

2x°

elements can then be calculated by using simply

48 Z jdk_ F;a(n,g),FE,(n,g)
n

1/48
BZ Box ~ F

(3.5.18)
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Section 3,6 - Labelling the defect states

In Section 3,5 it was shown by practical example how the symmetry
properties of the defect potential lead to a particular block factorization

of the Fredholm determinant, When the potential has C symmetry it was

3v
seen that the determinant partitions into a combined YO O’Yl o and two
2 b
separate Y blocks, The latter give rise to two degenerate energy defect

1,-1
states, In analogy with the usual atomic/molecular terminology we will
occasionally refer to these as corresponding to hybridized 5P, and P> py
defect states. The results are not unexpected and indeed are exactly
what we would anticipate on the basis of quite general group theoretical
arguments. Group theory tells us that the wave functions must transform
according to the irreducible representations of the particular defect
Hamiltonian. In the case of a Hamiltonian with C3v symmetry it 1s then
usual for the states to be labelled a, (s—pz) and e (pX, ;&). (It is
customary to label l-dimensional representations by the symbol a, 2-dimensional
representations by e and 3-dimensional representations by t.) The ay state

corresponds to the most symmetric solutions which remains unaltered upon

application of the symmetry operations of the C3v group i.e.

{810} Yoy, (3.6.1)

The wave function has full C3v symmetry. The doubly degenerate e states are
individually transformed by the operations, p , but the resulting functions
can always be expressed in terms of the two P> py basis functions.

In the case of a Hamiltionian with tetrahedral symmetry the defect
wave functions are labelled al(s) and tz(px, py, pZ). The a, State then has
full tetrahedral symmetry and is unaltered by the 24 Td point group operations.

The triply degenerate p-states transform in accordance with the t2 (three

basis functions) representation.,



In the chapters which follow we will employ both systems of terminology

the usage depending upon which is most appropriate in the particular context.

Section 3,7 The formation of the real space defect potential

In Chapter 2 the idea of an atomic pseudopotential was introduced.
The total crystal pseudopotential can be expanded in the form
Vir) = Z

1) (3.7.1)

A . - R
1 Vl(‘z- =1

where the v, and Bi represent the perfect crystal atomic pseudopotentials
and positions respectively and i runs over all unit cells and atoms within
the unit cell. v consists of the individual ionic pseudopotential together
with a screening contribution due to the valence electrons. We now consider
what happens when some form of defect is introduced into the system.

For example, let us create a vacancy at Bj' The crystal pseudopotential is

then

2

Vi) = v (r - R.) (3.7.2)

i = -

where we have excluded the atomic pseudopotential at Bj and have denoted
the new relaxed equilibrium positions and pseudopotentials by B& and

vi respectively. (The idea that we can deal with the defective crystal
in this manner, within the pseudopotential formulation and incorporating
the use of linear screening, is lengthily dealt with by Rossng) We shall

not re—cover this ground and will assume that the method is indeed applicable.)

We then have a defect potential given by

Zvi(l

n(r) = i vik - R - G

r-Rl) (3.7.3)

As it stands we would be totally unable to deal with a defect potential of
this form and simplifying assumptions must be made, They are
1) The individual spherically symmetric atomic pseudopotentials are not

deformed by the creation of the defect and subsequent relaxation i.e.

Ly



VJ!‘_:'V- (,3[70)"').

'We will make furthér'use of this nonwdeformation in Chapter 5,
2} We then further assume that the equilibrium positions of the pseudoatoms
remain unchanged by creation of the defect. (An approximate method of
dealing with nearest neighbour relaxation can be employed later if
necessary,.,) This assumption is made not because in principle our method
is incapable of dealing with a multiple defect centre problem—we have shown
otherwise in Section 3.5 (an alternative technique using two—centre integrals
could also be considered) — but because the computer time required to do
so would be. inordinate.

As a consequence of these assumptions the vacancy defect potential

is given by

h(r) = ij(.\r_ - R,1) (3.7.5)

which is the simple form which we require.

The real space vacancy potential can be found by fitting to
pseudopotential coefficents, v(q), such as those compiled by Cohen and
Heine928) As these v(q) include screening we have then created a vacancy by
removal of what 1s in effect a self-consistently screened neutral pseudoatom.
It is interesting to note that despite differences in screening function,

€ (q), for different materials the v(q) for aparticular atomic species
are little changed. This lends credence to assumption 1).
In the case of a substitutional impurity Equation (3.7.5) becomes

hir) = vsub(l_xg—B_jl) - vj(l;-gjn (3.7.6)

In practice the determination of the substitutional impurity potential is

more involved for we should first calculate

45



ion(; - viOl’l (q)
sub L host -

€ (q)

hiq) = v

(3.7.7)

(27)

and then fit to a real space potential. (See Ross for details of how
this can be done using model potential parameters together with an
appropriate dielectric function for the host material.)

In order that the defect potential may be satisfactorily incorporated
into the defect scheme of the preceding sections we choose to fit to the
factorizable form

o=t (a%Peg?)e T (3.7.8)

p®h° = (*f (ar + B)e ™72y ¢ ((ar-B)e XF/2)

(3.7.9)

It is appreciated that the method outlined for forming the real space
defect potential leads to a function which is neither unique nor error
free. As a consequence it is one of the primary sources of inacouracies in
our calculations. Further discussion of the significance of these errors

will be presented in the following chapters.

Section 3.8 Some practical aspects of the calculations

In the previous sections a description of the main theoretical details
relevant to the method of dealing with the defect problem has been given.
Some of the more practical aspects will now be mentioned. To begin with, we
need to calculate the real space integrals, S. Inserting the explicit forms

for h, G and the spherical Bessel functions, jL’ given by

jL(x) = xL(;ﬂjx_g_ ) L sin x
dx x (3.8.1)

and in particular

J (x) = sin x (3.8.2)
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TABLE 3.8.1

k-space sampling points

kx ky kz wnits 2 ¢ /A
0.14 "~ 0.09 ~ 0.04
R0 N I .00 0.04
3. 00 0.09 0.04
.74 0.09 0.04
.94 0.09 0.04
.38 0.09 0.04
0.86 0.09 0.04
0.62 0.09 0.04
10.26 0.21 0.04
0.38 [ 0.21 0.04
0.50 T0.21 0.04
0.62 0.21 0.04
0.74 0.21 0.04
0.89 | T 0.21 0.04
0.94 0.21 0.04
0.38 ~0.33 0.04
0.50 T 0.33 T0.04
0.62 0.33 0.04
0.74 | 0.33 0.04
0.86 0.33 0.04
0.50 0.45 0.
0.62 0.45 0.04
0. 74 0.45 0.04
0.62 0.57 0.04
0.26 0.21 0.1
0.38 0.21 0.15
0.50 0.21 0.15
0.62 0.21 0.15
0.74 0.21 0.15
0.86 0.21 0.15
0.38 0.33 0.15
0.50 0.33 0.15
0.62 0.33 0.1
0.74 0.33 0.15
0.50 0.45 0.15
0.62 0.45 0.15
0.38 0.33 0.27
0.50 0.33 0.27
0.62 0.33 0.27
0.50 0.45 0.27
0.50 0.45 0.39




jl(x) = sin x - cos x
x2 X (3.8.3)

it can be seen that only component integrals of form

Jdr e Y ( sin > (ar) ‘(.3.8.&)
: cos
result (y is integral or half integral). These are standard integrals

and so there is no great difficulty encountered in the calculation of the
S by the formation of the appropriate combinations. In calculating the
k-space integrals it is, however, necessary to resort to approximate means
because the Bloch functions,kfnlé, are known only at chosen points and not

as a continuous function of n,k. We use a point sampling technique and

take
- N
S *g, b _ A s *g, b
L) & Fo(n,k)F, (nk) = =2 > > P (n,k )P, (nLk. ) (3.8.5)
n NS i=1l n
B En,g.— B En,k. - E
£

where 1 is the Brillouin zone volume and NS is the number of sampling
points. In practice 41 general sampling points within the irreducible 1/48
volume will be employed. These points (Table 3.8.1) form a grid within the

BZ section | - LUXWKL illustrated in Figure (3.8.1) below.

FIGURE 3.8.1

48

BZ



We sum over 10 bands and so the numerical integration involves a total

of 19,680 points. In expanding the Bloch functions as
1 .+ . -0,
\P (I') = Za (nak-,)el(E:L g‘) r (3 8 6)
n,k. — g 1
£ g

the first 65 plane wave cqefficients, %g? associated with type (0,0,0),
(1,1,1), (2,0,0), (2,2,0), (3,1,1), (2,2,2), and (4,0,0) reciprocal lattice
vectors are taken into account. The errors arising from the plane wave
truncation and sampling technique lead to uncertainties of about 0.1 eV

(29) (27)

in the final results (see the works of Vinsome and Ross for details
of convergence of energy bands and sampling). Although this is a non-
negligible error it is in line with the magnitude of other errors which may
be present and consequently there is no great advantage to be gained in

reducing it at the expense of much increased computational effort.

Section 3.9 Summary

In this chapter a method of dealing with the localized defect problem
has been outlined. The introduction of suitable sets of localized functions
and the restriction of attention to the forbidden gap region has been
suggested. A real space defect potential of suitable form is constructed
and then a point sampling technique is used to carry out the calculations
for a number of trial defect energy values. The actual defect levels, Ed’
can then be located if they exist within or near the band gap.

During the course of the fdllowing chapters we shall embark upon the
application of the method to a number of particular defect problems. The
method will be assessed in the light of experimental information and a

comparison with other theoretical approaches will be made.

L9
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Vacancies in semiconductors

Section 4.1 Introduction

In the previous chapters an attempt has been made to develop a
reasonable theoretical foundation from which we may build in order to study
some aspects of localized defect problems. In this chapter some of the
results obtained when the method is applied to the problem of vacancies and
vacancy complexes in semiconductors, and in particular to the III-V compound
gallium arsenide, will be presented. Previously most of the theoretical
studies have been confined +to the elemental materials silicon and diamond.
It is for this reason that we choose to investigate alternative materials
in the hope that useful insight of these less frequently considered compounds
will be gained. Before doing so, however, a historically oriented review will
be given of some of the significant theoretical and experimental studies of

vacancies in covalently bonded materials.

Section 4.2 General review of vacancy studies

By the beginning of the nineteen fifties a number of experiments had
been performed on irradiated germanium and silicon and it was apparent that
some form of theoretical model was required in order to account for the
observed results. The defects produced were clearly of an intrinsic-related

(3O)tried to explain the p—type

nature and thus James and Lark-Horovitz
compensation of n—type germanium by considering the possible consegquences

of the introduction of isolated vacancies and interstitials. Using simple,
qualitative arguments derived from the hydrogenic model they attempted to
deduce the approximate positions of the resulting defect electronic energy
levels and then to relate them to the alteration in conductivity. Some years

(Bl)proposed an alternative model with a hybridized sp3 tight—

later Blount
binding scheme as a starting point. The ordering of the energy levels implied

different charge states for the defects in the two approaches. Neither model
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was adequate for they did not really predict the actual energy levels but
rather were designed to position these levels with respect to the band edges
in order to account for observed results. In addition the models were not
suitable for dealing with more general situations. The authors of both
formulations were, of course, aware of these limitations and also were careful
to point out the possibility of more complex defect systems which could cloud
the issue. In the light of later knowledge this caution was well justified.

(3) (32)were probably

The studies of Coulson and Kearsley and Yamaguchi
the first to theoretically consider the valsnce crystal vacancy problem in

a really quantitative manner. Using molecular orbital techniques they
attempted to directly comparé the total electronic energies for different
total wave function configurations in the case of a vacancy in diamond. By
this means Coulson and Kearsley (CK) hoped to be able to explain the
absorption spectrum of diamond and in particular the 2 eV GR1 band. Being
a material of low polarizability the influence of the bulk of the crystal
upon the local defect characteristics was considered to be minimal and this
made diamond a particularly suitable subject for such studies. This
property was one of the factors leading to the further considerable interest
in this defect problem. In their investigation it was CK who put forward
the concept of the "defect molecule" which, as we shall see, has continued
to be frequently employed. They formed one—electron wave functions

transforming as the irreducible representations of the T, point group from the

d
sp3 "dangling bonds" on the four nearest neighbour atoms to the vacancy. The
infiuence of the remainder of the crystal was largely, but not entirely,
neglected. They then formed appropriate many-electron wave functions and
calculated the associated energies. They were able to put forward a number
of proposals including the suggestion that the neutral vacancy was the most
energetically favourable configuration. CK were aware of the possible

(33,3k4) (

consequences of the Jahn-Teller effect the removal of electronic



degeneracy in response to distortion of the system) although they did not
incorporate this into their calculations. This effect has since been a
topic of much discussion. Yamaguchi used a similar approach to that of
CK but came to the conclusion that the singly negative charged vacancy was
the more energetically stable state.

Probably the most significant contribution to our knowledge of vacancy-—
related defects in silicon is due to the important experimental work of Corbett
and Watkins and co—workers. Consequently we shall consider the findings
of this work in some detail. In a series of reports beginning in 1959 they
recorded the indentification of a number of defects in 1.5 MeV electron
irradiated silicon, primarily by use of the electron spin resonance technique
but also in conjunction with ENDOR, infra-red absorption, illumination and
strain response experiments. The actual positions of the energy levels
cannot be revealed by EPR work and so the complete determination of the
defect characteristics must be inferred by association with the results
of complementary procedures. (This process is not always simple, however,
and there are still considerable information gaps.) The existence of two
particularly interesting EPR spectra (later to be denoted Si-Bl, Si-G8) due
to the so—-called A and E centres was apparent. These were initially
tentatively suggested as comprising of a negatively charged vacancy-oxygen

(35)

interstitial pair and a neutral vacancy—-phosphorus pair respectively.

(36,37,38)

Subsequent work confirmed these suppositions. In general, the
experiments were carried out well below room temperature and so it was
evident, contrary to previous belief, that the isolated vacancy was mobile at
low temperatures. The positively charged isolated vacancy was detected in the

(39) The results

form of an EPR spectrum (Si-Gl) in p—type silicon below 20°K.
indicated that no nearby silicon interstitial was present and so it appeared

that the interstitial was an exceedingly mobile species even at very low

temperatures. Later, the analysis of another spectrum (Si-G2) in n-type

>3
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Lo)

material led to the identification of the negatively charged vacancy.
In addition the doubly negatively charged vacancy, which is unobservable by

EPR,was inferred from the generation by light of the Si-G2 spectrum. An
(41)

also indicated the existence of several charge states for

(L2)

initial report
the divacancy and this was subsequently confirmed. The EPR spectra

Si-G6, Si-Q7 were associated with the singly positively and singly negatively
charged states respectively. In their defect analyses Corbett and Watkinms
found their results to be consistent with a simple Jahn-Teller distorted one-
electron model in which only the nearest neilghbour atomic orbitals need be
included. This seemed to be an adequate sized defect molecule for it appeared
that approximately 60-70% of the wave function was localized within this
region. For the various charge states of the isolated vacancy there are two

alternative Jahn-Teller distortion routes which could be postulated and these

are shown in Figure L4.2.1

Te'\:rosona] Ty —> Dig —> Cav 0,

e e e e vwm v e e e =

Trlﬂond Tqg —> Gy —> Cs CD
FIGURE 4.2.1

The first of these was found to be in agreement with the experimental results.
A small activation energy associated with the rate of reorientation following
stress was initially thought to be a direct measure of the Jahn-Teller
stabilization energy. If this had indeed been so then a quite modest
stabilization energy would have been implied. However, much to the detriment

of simple theoretical analysis, this line of reasoning was rejected and when
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Flkin and Watkins came to recalculate this quantity a disconcertingly large

gus)

value of the order of 1 eV was obtained In addition there is also the
complication due to possible symmetric relaxation effects to be considered. It
is usual to assume a linear relationship for the lowering of the electronic

energy in response to a Jahn-Teller distortion amplitude, Qr' The total

energy relative to the undistorted state is then

E =-C_ q + 1/2 KQ° (4.2.1)

where Cr is the Jahn-Teller coupling coefficient and K is an effective
force constant for a particular distortion mode, F. CrQr_might then, for
example, represent the magnitude of the one-electron energy reduction when

one electron is placed in the degenerate t_, level of Figure L.2.1. and

2

subsequent distortion takes place. In order to calculate the minimum energy,

E;p™ —Ci / (2Kr) (Lh.2.2)

it is first necessary to obtain values for Cr and KF' A number of calculations

giving values for the Jahn-Teller stabilization energy have been made such

(bh)

but see also reference (L5))and silicon(h6)

(47) (18)

and Stoneham.

as those of Larkins for diamond
vacancies. Values for silicon are also quoted by Watkins
(These references also contain useful reviews of the vacancy situation.)

There is, however, much scope for error in these calculations and agreement
upon the dominant mode of distortion is not always obtained. For the moment
we shall take leave from such complications and will return to the progress of
basic theoretical calculations of vacancy energy levels.

(5,6)

The Koster—Slater (K-S) Wannier function approach was suggested as
early as 1954 but the tremendous computational effort required in performing

such a calculation precluded any realistic application of the method to the

semiconductor defect problem for a number of years. Then in 1967, working
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within the pseudopotential formulation, Callaway and Hughes published results
for the silicon vacancy which demonstrated that the method was indeed

(1) (L9)

feasible. Later the silicon divacancy was also considered. Although
the achievement of Callaway and Hughes was creditable the final results were
not completely satisfactory because bound states within the band gap could
only be produced by an arbitrary scaling of the vacancy pseudopotential

(in the case of the single vacancy a factor of 1.6 was required). In addition,
the results showed an alarming sensitivity to scaling (scaling by a further
25% pushed the level right through the gap) and no definite conclusion con-—
cerning convergence was reached. Despite this the method has certain
advantages for in contrast to the molecular orbital methods the energy levels
obtained are well defined with respect to the band edges. The K-S technique
has since been applied to the problem of vacancies in the IV-VI compound PbTe

(50,51)

by Parada and Pratt and the results are in broad agreement with
experiment. The non-freeze—out of conductivity and resulting n and p-type
properties were attributed to the existence of tellurium and lead vacancies
respectively.

A number of calculations have continued to be based upon the original C-K

many-electron molecular orbital method. The works of Coulson and Larkins on the

diamond Vacancy(SQ) and divacancy(Ss)

(k5,L6) (45)

and the additional work by Larkins on the

isolated silicon and diamond vacancies are probably representative.
Tt must be stressed that due to the difficulty of relating the results of this
type of calculation to the band edges their main purpose lies in the
prediction of the ordering and symmetry of the ground and excited states and the
difference in 'their energies. Attempts are then made to explain optical
asborption spectra in terms of transitions between the localized states.

In addition to the K-S and CK approaches a number of alternative methods
of dealing with localized defects have been proposed. Two of these, the one-

(51)
electron extended Huckel theory (EHT) and Xo{ scattered wave methods,(55)have
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attempted tabridge the gap between the K-S and CK approaches. Both

consider clusters of atoms much larger than the number used in the CK

method and in doing so hope to give a reasonable description of the bulk
material as well as the properties of the local defect. The measure of
success in describing the bulk material is usually Jjudged in terms of

the ability to represent the band gap in an adequate manner. Messmer and
Watkins, who first applied the EHT method to the problem of the sustitutional

(56)

nitrogen impurity in diamond, also investigated the diamond vacancy and
found a localized state with energy close to the valence band edge (see, for
example references (4) and (57)). Lee and McGill applied the EHT tethnique
to the calculation of the electronic energy levels of the silicon divacancy
and found two localized states with energies in the gap regionESS) They
modelled a distortion mode consistent with the divacancy interpretation of

(k2)

Watkins and Corbett and reached qualitative agreement with experiment.
The levels were associated with the charge states leading to the Si-Gf and
Si-G7 electron paramagnetic resonance spectra. In using the self-consistent
X scattered wave method (which involves the first principles numerical
solution of the Schrodinger equation) Hemstreet has considered vacancies in

(59,60)

the IV-VI compounds PbS and PbTe and has obtained results in general
agreement with the K-S calculations of Parada and Pratt although some of the

details differ. We note that self—-consistent calculations based on alternative

schemes have been performed by Louie et al§6l) for silicon and by Surratt and
Goddard(62) for both diamond and silicon vacancies.

We conclude this section by saying that the given list of vacancy
calculations is by no means exhaustive but a representative sample has been
included. Results specific to calculations on III-V compounds will be referred
to in the following section. Brief outlines of mathematical details of some
of the theoretical methods which have been mentioned can be found in Chapter 6

where comparison with the method of Chapter 3 is made.
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Section 4,3 Vacancy-related defects in gallium arsenide—theory

In the previous chapter a theoretical scheme which we believe to be
suitable for dealing with the problem of calculating the electronic energy
levels associated with localized defects was developed. The results obtained
when the method is applied to the problems of single vacancies, the divacancy
and the vacancy-oxygen pair in GaAs will be described. A number of general
conclusions which may be useful within the overall context of vacancies in
similar materials are put forward. This presentation is based upon the initial

(8) (63)

short account by Jaros and the later expansion by Jaros and Brand.
A natural starting point is the 'study of isolated gallium and arsenic
vacancies in the unrelaxed GaAs lattice. We recognize that this may not
well represent the real physical situation for some form of local distortion
is 1likely to occur but we must be able to deal with this basic problem
before any complications are introduced. These complications will be
considered later. Applying the methods already described we cobtain self-
consistently screened vacancy pseudopotentials. These are illustrated in
Figure 4.3.1. (At this stage the validity of these potentials could be
questioned for it may be argued that the introduction of the vacancy will be
such as to change the local screening properties of the system. It will be
seen later why such effects are not thought to be greatly significant.) Using

these potentials we try to locate 8 and p—type (al and t.) electronic states

2
by searching for energies within the forbidden gap region which give zeros
for the Fredholm determinant (3.3.3). In practice only one out of four states
with possible energies within this region is detected. This corresponds

to a threefold degenerate t,. level associated with the gallium vacancy

2
approximately 0.2 eV above the valence band edge. Although our method is,
strictly speaking, only valid within the forbidden gap region we can infer

the existence of resonance levels near the band edges if these can be

"pulled" into the gap region by slightly scaling the potential. When this
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FIGURE L-3-|
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scaling procedure is carried out it is found that the additional three

states are detectable. Both gallium and arsenic a, levels appear to be

1
about 0.1 eV below the valence band edges whereas the arsenic t2 level is
about the same amount above the conduction band edge. In the light of the
inherent errors in the calculations (sampling, band structure inaccuracies
and potential strength) it is not possible to say for certain that these
oné-electron levels lie outside the gap region. However, if any of them do
lie within this region then the a; states are the most likely candidates for,
as we shall see when the results for the defect pairs are presented, the
higher symmetry states are more sensitive to scaling and thus the error is
likely to be greater.

In comparison with the location of the energy eigenvalues, Ed, the
calculation of the associated wave functions is a much less straightforward
task. Unfortunately, the pseudopotential factorization (3.3.10) which would
lead to very easily obtainable wave functions fails to produce a convergent
eigenvalue. When the factorization (3.7.9) is employed (this factorization
is used throughout the present work) a perfectly satisfactory energy
convergence is achieved (see for example Figs. 4.3.5 and L4.3.7). However,
the AN obtained from the eigenvector of (3.3.3) do not converge to any
significant degree. As a consequence it is not possible to find a suitable
unique wave function in terms of the & that we use. It may be that an

alternative basis set would give adequate convergence of both energy and wave

60

function but this is not known at present. The non-convergence of wave function

does not imply a failure of our overall method but only of this particular
means of obtaining it. If the defect wave function is obtained via the
Bloch function expansion (3.2.3) then this convergence problem is not
encountered. For the present purposes a wave function of this form is not
very convenient for our only usage of it will be in the calculation of the

electron—electron interaction and a simple analytic real space function is



much more useful in this context. Such a function can be obtalned by
fitting to the results of the Bloch function expansion or by various trial
function methods. For example, if we have an anelytic trial function,ﬁ)t,
which is a good representation of the Bloch function expansion, w , then the

Schrodinger equation can be written in the form

(Hy +nly S \\r> =Ed“})>

(4.3.1)
<\{)t'\h\\i(t>
By suitable manipulation(6h) we can obtain the consistency relation
Lo inly 3 -
1+ n’_lg‘ \Fnak h \Vt>| =0 (4.3.2)

1
(k}lt\h\\})t) S

which may be satisfied by adjusting the paramepters of QJt accordingly.
Alternative trial function methods such as that described by Jaros(65) may
also be possible. All of these methods give broadly similar results but
none can be considered as ideal. The s—-type wave functions tend to be
highly localized (r2 | q}‘ 2 having a maximum within a few atomic units)
and the p-type rather less so. Because of the less reliable nature of the
wave functions little will be said of their specific details. However,
there is still useful general information concerning the construction of
the defect states which can be obtained by other means. For example,
consider Figure %.3.2 in which the significance of various bands in the
determination of the energy of the gallium vacancy t2 state 1s displayed.
It can be seen that ten bands are necessary in order to obtain reasonable

convergence. This immediately makes us suspicious of arguments that are

based upon a truncated band expansion. It is apparent that both the upper

valence and lower conduction bands are particularly significant in determining
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the final energy of the vacancy state, Not only are the conduction bands
important with respect to the value of the energy, they also have the effect
of greatly reducing the sensitivity to scaling of the final result. This
lack of sensitivity to scaling leads us to believe that any initial error in
the strength of the potential will not be of crucial importance. However,

it is the upper valence bands which really dominate the state for it is these
bands which ensure that the vacancy level lies in the gap region to begin
with. The conduction bands, although important in determining the precise
position of the level, are essentially a modifying influence.

On the basis of the results for the gallium vacancy, V., , in GaAs we can

Ga
attempt to anticipate the approximate positions of the t2 level in other
ITIT-V compounds. In GaP the valence bands, which will again be expected

to dominate the state, are very similar to those of GaAs. The VGa energy
would thus be expected to be similar, quite close to the valence band edge.
The larger band gap would be expected to result in a smaller conduction band

contribution and hence a larger t, —state energy but the difference 1n shape

2
of the conduction bands is a complicating factor. A full calculation gives

a level at about 0.1 eV from the valence band edge. This is a little less
than might be anticipated but the overall position within the gap is still

what we would expect. Tﬁe valence bands of InSh are not as wide as those of
GaAs but are of similar shape so we would expect the valence band contribution
to lead to a higher VIn t2 level. On the other hand the smaller band gap
should lead to a compensatingreduction in energy in response to the increased
conduction band contribution. A full calculation yields a level in the

middle of the gap at about 0.25 eV from the valence band edge (the large
spin-orbit splittings means that the InSb band gap is not well represented

in the CB scheme). Although not particularly startling the overall results are

in line with what we would expect.
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The arsenic vacancy potential, as can be seen from Figure L.3.1 is
significantly stronger than that of VGa and this explains why the

corresponding t, level is pushed into the conduction band region. General

2
arguments concerning the group V vacancies are less likely to be reliable
but we would expect to find the t2 levels in the region of the conduction
band edge as was the case for VAs' Calculations of the positdon .of the t2
level associated with VP in GaP give support to this conclusion for we locate
this level about 0.4 eV into the conduction band.
In addition to modelling single vacancies or substitutional impurities
we are also able to deal with simple complexes such as divacancies or vacancy-
impurity pairs. We shall begin by considering the VGa—OAS pair. As has
already been shown the isolated gallium vacancy gives rise to a triply
degenerate one-electron level within the forbidden gap region. The substitutional
oxygen impurity at the arsenic site produces an s-type state with energy in
the middle of the gap. Any p-type state which may result has an energy well
into the conduction band region and is thus not of interest. The oxygen
impurity potential is shown in Figure 4.3.3. A similar strength potential
representing OP in GaP gives an energy in good agreement with experimentg66)

Figure U4.3.4 shows the energy levels associated with Vi O which appear

As
within the band gap.
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Also shown are the results for the divacancyT The pairing of the

‘attractive oxygen impurity potential with the gallium vacancy leads to
lowering and splitting of the VGatQ level to produce a non-degenerate ay
level and a doubly degenerate e level. The VGa potential has the effect

of pushing the oxygen impurity a. level up into the conduction band region.

1

The interaction between the two vacancies in the VGa_v pair again leads to

As
splitting and shifts of the t2 levels. A precise analysis of the positions
of the levels is difficult due to the dual attractive/repulsive nature of
the vacancy potentials, uncertainties in the initial wave functions and the
exact role of the host crystal.

In Figure L.3.5 the convergence of the defect pair singlet state
energies as a function of n(see Section 3.U4) is shown. It can be seen that
good convergence is achieved for a value ofn= 9. The sensitivity to
scaling of the same two levels is shown in Figure 4.3.6. Fortunately, the
energy is much less sensitive to scaling than the early results of Callaway
and Hughes for silicon. Even for the worst of the two curves a 25% increase
in potential strength only causes approximately 0.25 eV change in energy.

We can be assured that an initial small error in potential strength will not

prove too disastrous. Figures k.3.7 and L4.3.8 show the corresponding results

for the doubly degenerate levels. Again there is good convergence as a function

of n. The e—-state energy is even less sensitive to changes in strength
of the potential (note the change in scale). It seems that the role of
the host crystal in determining the nature of the state is much more
important in the case of the lower symmetry, more delocalized states.
Both the convergence with n and sensitivity to potential strength of the

defect pair energy levels are similar to the results for O, in gallium

P
phosphide and single vacancies. It now seems well established that the method
of Chapter 3 is capable of giving truly convergent one—electron energy levels

for a variety of localized defect potentials. Also it is clear that the

inherent difficulties of producing a good real space defect potential do not
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FIGURE L-3-5
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FIGURE L-3-6

Enenga of dwacanc.J and vacancy-oxyqen pair gmg\et states as
a Function of sca\m3 ( both Potentm\s scaled )
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FIGURE L-3-7
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FIGURE L -3-8
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constitute a serious threat to the accuracy of the final results.

We will now return to the question of the basic validity of using
the screened atomic pseudopotentials as we have done. It was pointed out
that it could be argued that the introduction of the defect potential could
alter the local screening properties thus leading to an error in the initial
potential. However, the potentials we use are of short range and hence the
most important k-space contributions are at large k i.e. short wavelength.
For such values of k the crystal screening effects do not dominate. For
example, if we consider € (k), the dielectric screening function, at k

Fermi

(which corresponds to the sort of wavelength we are interested in) then we find

€( )J®R1.5. Thus the polarizablility contribution, the part which can be

Kpermi
altered by valence charge redistribution, is only 0.5. It would require a

very drastic change in order to give rise to any meaningful alteration in

final electronic energy given the insensié&vity to potential strength which

we have observed. Therefore it would appear that the defec% potentials we
employ are quite adequate for our purposes.

The discussion so far has been centred upon the location of the one-
electron levels as determined by the self-consistent screened defect potential
in an unrelaxed lattice. However, we cannot in general expect to directly
relate these levels to experiment. To explain why this 1is so we will suggest
a simple model for the neutral vacancy. The defect molecule approach of
Coulson and Kearsley will be followed. In creating a neutral vacancy it is first
necessary to break the bonds connecting the atom which is to be removed
from the nearest neighbours. Normally there are eight valence electrons
forming bonding pairs with these nearest neighbours. If we remove, say,

a gallium core plus three valence electrons in order to create a neutral
gallium vacancy then there will be five arsenic nearest neighbour electrons
to be accomodated inthe resulting dangling bonds. If we create an arsenic

vacancy then three electrons remain. In our model these remaining electrons



T2

occupy the localized orbitals generated by our defect formalism and which
we assoclate with the dangling bonds. However,if we do attempt to occupy
these orbitals ir such a manner then we can expect a certain degree of energy
modification to occur as a result of electron-electron interaction. In
addition, when we come to occupy the threefold degenerate t2 levels it
can be anticipated that a Jahn-Teller distortion will occur in an effort to
reduce the total energy of the system. Symmetric relaxation effects must also
be expected. TIdeally all such effects should be included in a self-consistent
manner from the outset but this is at present beyond our capabilities.
However, we can attempt to gain some insight into the consequences of these .
complicating factors.

We begin by considering the neutral gallium vacancy in which case we
must be prepared to occupy the localized states with a total of five electrons.
The first two, with opposite spin, will inhabit the lowest energy 8, level.
Flectron—-electron interaction will cause an increase in energy of the level
but a compensating symmetric relaxation will almost certainly ensure that the
level remains within the valence band region. The next electron to be added

must occupy the triply degenerate t,. level and we expect Jahn-Teller

2
distortion to cause splitting into anon-degenerate (apart from spin) level
and a higher energy doubly degenerate level. We can attempt to estimate the
size of the splitting by searching for zeros of the determinant (3.3.3) for

a trigonally displaced gallium vacancy potential (see figure 4.3.9(a)). This
corresponds to distortion route<)<3f Figure L.2.1. Figure 4.3.9 (b) shows
the resultant splitting as =a fgnction of displacement. With the present
programs it is not possible to simulate the alternative tetragonal distortion
route. Because of the different localization of the a; and t2 states we do
not expect significant electron-electron interaction between electrons in
these states. Consequently it will be assumed that we can populate aq states

within the valence band region without giving rise to noticeable energy
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alteration of the t2 levels. When we come to place a second spin paircd
electron into the lower t2 derived state a non-negligible electron-electron
interaction is to be expected. Within the Hartree scheme and using a wave

function obtained by trial methods the estimation of energy increase shown

(66)

in Figure 4.3.9(b) is obtained. A previous study by Jaros indicated that

symmetric relaxation in response to localization of charge can lead to an
energy reduction greater than the Hartree scheme electron—electron interaction
increase and we assume a similar result in this case. It is then likely that

the doubly occupied t, derived level will "relax" into the valence band. At

this stage our model still only represents the V+ charge state. In order to
obtain VO we need to add a further electron which will lead to a Jahn-Teller
splitting of the remaining doubly degenerate e states. We expect to find
the fifth electron occupying a level just within or in the region of the
valence band edge. The final situation 1s illustrated in Figure L4.3.10.

For the arsenic vacancy the position is much simpler for there are only

three electrons to deal with. Two are placed in the valence band al level

and thethird occupies a t2 level resonant with the conduction band. Jahn-Teller

distortion may bring this level down into the band gap region

The situation for the VGa-O pair may be viewed in analogy with the V

As Ga

arguments. In this case we have six electrons to deal with however. The

additional electron occupies the V, hole and the remaining unoccupied level

Ga
within the gap is slightly lower due to the initially lower energy levels.

Given the gallium vacancy domination of this complex it seems reasonable to

anticipate similar results for other VGa—impurity systems. We are then led

to predict the existence of a number of VGa related defect states with

similar properties., In particular, we would expect to find a number of VGa
related energy levels close to the isolated vacancy level.

There are again six electrons to be accomodated when considering the

divacancy but the additional states within the gap complicate the issue.
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In this case it is probably simplest and safest to put forward the suggestion
that there are likely to be a number of unoccupied levels introduced into
the lower part of the band gap.

The immediately preceding arguments concerning the population of the
defect states are at best of a semi—quantitative nature only. We cannot
at this time include the effects of valence charge redistribution, electron-
electron interaction and distortion in a truly self-consistent manner. It
is not possible to base the calculations upon a minimum energy configuration,
Despite this it is hoped that some measure of insight has been gained. In
particular it is indicated that isolated gallium and arsenic vacancies behave
as single acceptors and donors repectively-and we expect corresponding results
for group III and group V vacancies in similar materials.

There have been few other reported theoretical studies of the electronic
energy levels associated with vacancies in ITI-V semiconductors but a few do
exist. hsing a tight~binding cluster method Lowther obtained results similar
to those of Jaros concerning the ordering and general positions of the Ga and

(67)

As vacancy one—electron energy levels in GaAs. Unpublished results by

Bernholc and Pantelides are also in very good agreement. Calculations for
8)

vacancies in both GaAs and GaP have been performed by Il'in and Masterov.

level for V s

The results for VGa in GaAs and GaP and also those for the t2 A

in GaAs are similar to those obtained using the present method. The VAS a;
level and the results for V? do not agree however. These calculations

were based upon a two band model. The general agreement between theoretical

calculations for vacancies in GaAs seems encouraging.

Section .4 Vacancy-related defects in gallium arsenide—experiment

Compared with our knowledge of vacancy-related defects in silicon, which
is still far from complete, the situation for gallium arsenide is considerably
more vague. This state of affairs is not only due to the more recent birth

of interest in this material. There are a number of inherent experimental



7

difficulties which have impeded progress. The electron paramagnetic resonance
technique, which has proved such an invaluable tool in the study of silicon,

is much less well suited to dealingwith defects in GaAs and there is little
information availablefrom this source. Before giving the reasons for this it is,
perhaps, appropriate to point out why the method is so successful with silicon,
The silicon isotope thi28 which comprises 92% of the naturally occurring

30, also with zero magnetic moment,

element has no nuclear magnetic moment. thi
comprises a further 3%. Only thigg with about 5% natural abundance has a
resultant nuclear spin. Thus the EPR spectra of unpaired defect electrons in
silicon exhibit only a small hyperfine splitting effect due to the presence of
only a small percentage of magnetically active nuclei. This interaction is
useful for it does give information concerning the defect centre. However, it
does not drown out the effects of nearby impurity atoms. The situation is
similar for diamond. In gallium arsenide the situation is not favourable for

all the nuclei of the two constituent elements have magnetic moments and there

is a total of three naturally occurring isotopes, all in significant quantities.
The task of resolving the multiply split and broadened EPR defect spectra is thus
a considerable one. In addition the problem of interpretation is more difficult
to begin with. Not only is there the possibility of two alternative types of
vacancies but due to there being two inequivalent interpenetrating f.c.c.
lattices there are also more interstitial configurations. The two anti-site
possibilities must also be taken into account. There are, of course, all the
other complications which have already been encountered in silicon. Defect
complexes, multiple charge states, conductivity type and other existing defect
centres can all affect the results. Add to this the extra preparation difficulties
and the need to eliminate trace impurities and it can be appreciated that the
task of experimental interpretation is not an easy one. It thus comes as

no surprise to find that there are no absolutely unambiguously indentified

native defects in GaAs, although proposals regarding possible identifications
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are legion. For instance,it has been suggested that gallium vacancies

are acceptors, that arsenic vacancies are acceptors, that both gallium and
arsenic vacancies are acceptors or, as proposed by Chiang and Pearson,
that arsenic vacancies are donors and gallium vacancies acceptors.(69)
(Chiang and Pearson give a number of references whereevidence supporting
the other suggestions can be found.) Hasegawa and Majerfield have
reported an electron trap 0.83 eV from the conduction band and a hole trap
0.64 eV from the valence band of n—type GaAs which seem to be related to

(70)

gallium and arsenic vacancies respectively. Given the multitude of.
conflieting alternatives it can be fairly said that it is possible to find

some experimental evidence to support almost any theoretical prediction. In fact,
there can be some argument as to whether isolated vacancies in GalAs are likely
to exist in observable quantities at all near room temperature.. Certainly

on the basis of our knowledge of vacancies in silicon, germanium and other
materials thils question would seem very reasonable. As we have already seen,
gallium and arsenic vacancies may behave as acceptors and donors respectively.
They are then likely to be in opposite charge states and be attracted to form
divacancies. It is known that in silicon vacancies and interstitial oxygen
have an affinity for each other and combine to form the so~called A centre.
Oxygen, a ubiquitous impurity, is also present in GaAs although in this case

is more likely to be in a substitutional position. The two might then combine
to form the neutral VGa—OAs pair with the oxygen atom providing. the electron
to fill the gallium hole as suggested in the last section. The concentration
of such defect complexes is crucially dependent upon vacancy mobility, however,
and it can be argued that this is much lower in GaAs than in silicon. In Gals
vacancy migration requires a next nearest neighbour Jjump and this process
must be considered less likely than the straightforward nearest neighbour
exchange in silicon., Therefore we might well expect to find stable isolated

vacancies in GalAs even at room temperature.
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Recently considerable information concerning the positions of defect
‘energy levels in GaAs has become available. This is due to the Deep Level

(71) Although there had

Transient Spectroscopy (DLTS) method of Lang.
been previous interest in pn or Schottky jurction capacitance measurements it
was Lang who extended the basic technique to give 1t the status of a truly
spectroscopic method. The basic method involves the observation of capacitance
transients resulting from the non—equilibrium occupation of energy levels
within the band gap produced by the use of bias voltage pulses. Langs' DLTS
expansion allows the location of individual electronic energy levels in a
convenient manner. Although much information can be obtained using this method
it cannot directly identify the defect centres responsible for a particular
level. Probably the most convincing possible identification of a level
associasted with a vacancy in GaAs has been made in conjunction with the use of
DLTS. On the basis of considerable circumstantial evidence Lang, Logan and
Kimerling have associated the DLTS E3 level shown in Figure k.k.1 with the

(72)

gallium vacancy. The peculiarly constant position of the electron

irradiation induced E3 level relative to the valence band edge of AlXGal_XAs
implies a defect wave function strongly related to the valence band. As
pointed out in the previous section and in line with the theoretical results

61)

for siliconof Louie &t aﬁ.and others, and indeed the early work of Callaway

and Hughes,(T)such a property is characteristic of vacancies. On the basis

of the results presented in the last section the postion of the E3 level seems
consistent with it being due to the arsenic vacancy. However, the

experimental results seem to exclude this possibility and Lang et al. suspect
that VGa is the culprit. At first sight this conclusion seems totally
incompatible with the theoretical results. However it may be that a

negatively charged defect centre is involved. Also, the measured E3 level cannot

be directly equated with the theoretical levels for the electron-electron

interaction energy is given up to the electron on emission to the



ENERGY (eV)

FIGURE 4 -

80

Composition depandent Jeep levels in Al Go,_, As .

20

1.8

16

14

12

A24G0y_xAS Eg(300K)—n

10

04

02

I * | | !

! |

O

005 010 015 020 025 030 035
ALUMINUM FRACTION, X

£
¥
¥
T



81

conduction band. In our theoretical scheme the true level would then lie

ca charge state

near the middle of the gap. Given this and assuming that a V
energy level is involved then it may be possible to reconcile the experimental

and theoretical results.

Section 4.5 Summary

The results of a number of calculations giving the electronic energy
levels associated with vacancy-related defects in gallium arsenide have been
presented. It is apparent that Jahn-Teller and symmetric distortion together
with electron—electron interaction are all of equal importance in determining
the final energy levels. An attempt has been made to incorporate these
factors into a semi—-quantitative analysis of the gallium and arsenic vacancy
and vacancy-oxygen palr problems. There seems to be reasonable agreement
petween alternative theoretical schemes, at least at an elementary level, but
the extent to which this may merely represent a mutual inability to cope with
what may be the real problems remains to be seen. It is clear that much
more "hard" experimental information is required before an obJective

assessment of the theoretical results can be made.
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Displacement dependent energy levels

Section 5.1 Introduction

We shall now concentrate attention upon the topic of displacement
dependent energy level behaviour. Previously we have used the available
computer programs to calculate the size of the Jahn-Teller splitting in
response to a particular distortion mode simulated by axial movement of the
vacancy potential. However, this is not the only context in which such studies
can be of importance. For example, we might wish to know if the substitutional
site is likely to be the stable configuration for an impurity atom when an
electron is bound into a localized state. The energy level may be a
sensitive function of displacement and indeed may be lowered when these
movements take place. In such cases we would expect lattice readjustment
to occur in order to minimize the total energy of the system when the level
is occupied by an electron. Theoretical investigations of the type to be
presented could be of value in predicting whether such readjustments are
likely to be energetically favourable. As a consequence useful information
concerning the symmetry of the defect states may be obtained.

Another of the features of interest with respect to the properties of
defect cenfres is the manner in which carriers are captured. By what mechanism
is the energy lost by an electron falling into a deep level carried away?

Tt is now quite apparent that in many instances non-radiative capture is
occurring. There are three processes which can be invoked to explain such
non-radiative transitions. These are the cascade, Auger and multiphonon
emission processes.

(73)

In the cascade model of Lax energy is dissipated by-independent
emission of single phonons as an electron drops through a series of closely
spaced energy levels with separation equal to a typical phonon energy. We

would only expect to find such a series of levels associated with a charged,

attractive centre. The final transition to the ground state may involve the
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dissipation of a considerable amount of energy. However, provided that thermal
emission is not much more likely to occur then this last step does not
constitute a limiting factor for the overall process. The capture cross

15 to lO_12 cm?. Lax

sections of attractive defects are large, typically 10
originally suggested that polarization could give rise to a similar series of
levels associated with neutral defects which could explain a number of rather
smaller observed cross sections. Later, Bonch-Bruevitz and Glasko showed

that improbably high polarizabilities would be required for this to be possible.(Th)

In principle, as we have recently demonstrated£63)realistic short range potentials
can produce excited states within the gap which would be likely to enhance the
probablility of capture but we shall not consider the consequences of this
result. In general we cannot expect the cascade mechanism to be of great
importance when considering capture by neutral centres.

We will not consider the Auger effect in detail but note that it has
been identified as occurring in several instances of bound exciton recombination.
Auger effect energy losses via free.carriers can be easily recognized for the
capture cross sections are then linearly related to carrier concentration.
There is little dependence of _cross section upon temperature and so there is
not much probability of confusion with the MPE process which shall be described
next. |

The multiphonon emission process 1s probably best understood in terms of
the configuration coordinate diagram. TFigure 5.1.1 (a) shows a hypothetical
unoccupied defect energy level with a linear dependence upon coordinate
which we denote by a single variable, @, for simplicity. Although in our
theoretical calculations no such simple linear dependency has been observed
this linear form is appropriate for illustrative purposes for it serves to
conveniently demonstrate the basic MPE capture process. The defect energy
level is a sensitive function of displacement and at Qz and QZ is equal to

the respective conduction and valence band electronic energies,. The elastic
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energy of the lattice is l/EK(Q—Qu)2 relative to the unoccupied equilibrium
minimum at Q, vhere K is a suitable force ccnstant. In Figure 5.1.1(b) the
total of elastic + electronic energy is plotted as a function of Q for the
defect and band edge states. If sufficient thermal lattice vibration energy
EB(=1/2K(Q§ - Qu)g) isavailable then the unoccupied defect level crosses

into the conduction band and electron capture can occur. Upon capture the
system is far from the new equilibrium position at QO and the excess elastic
energy is liberated by means of  violent local vibrations thus justifying the
multiphonon emission nomenclature. Hole capture can occur in a similar manner
if the electronic energy of the occupied defect state crosses the valence band
at QZ. Relative to the occupied equilibrium positon at Qo thermal energy
EB'(=1/2K(QZ_Q0)2) is required for this to occur. The value of our defect
scheme with respect to the MPE problem is in the investigation of whether the
band edge crossings are likely for we can calculate the energy of the localized
state as a function of Q. We shall not in this account involve ourselves in
the theoretical calculation of the capture cross sections. Theoretical
treatment of non-radiative transitions by MPE was first attempted by Huang and

(75)

and later by various other workers. The most recent study is that of

(76)

Henry and Lang (references to earlier works are given by these authors).

Rhys

Henry and Lang found thatthe experimental temperature dependent behaviour of
a number of cross sections was consistent with their theoretical MPE model,
As can be seen from the extrapolations in Figure 5.1.2 the cross sections near

room temperature can be described by an expression of the form

T =D = Ok e B0 /KT (5.1.1)

5 1k

where Oy, is usually of value 10 +°-10 cn® and

Eog = Eg~kTp . (5.1.2)
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In addition to the academic interest engendered by the possibility
,of MPE processes there are a number of very good practical reasons for
considering the consequences of this phenomenon. To begin with, it is quite
clear that any competing non-radiative carrier capture process is not likely
to be looked upon favourably by producers of L.E.D.'s. The quantum
efficiency of these devices is notoriously low and understanding of one of the
possible reasons for this is obviously of importance. Apart from the problem of
carrier removal there has also been some interest in the topic of recombination-—
enhanced defect reactions (REDR's). In the complete across—the—gap MPE
recombination process a total energy Eg is released in the region of the
defect and this energy may promote REDR., For example, let us consider an
interstitial atom with a barrier height E to be overcome 1in order that the
interstitial may jump to a new site. If E is much greater than the average
available thermal energy then we would expect to see little migration under
normal circumstances. However, if the interstitial acts as an MPE recombina-
tion centre then the violent lattice vibrations resulting from the local release
of energy during the electron/hole capture processes are likely to enhance
the probability of interstitial movement. This could lead to the eventual
disappearance of the isolated interstitial due to joint interstitial-vacancy
annihilation or to combination with other defects. Alternatively, & more
complex defect aggregate could be dissociated under the action of the energy
release. The experimental work of Lang and Kimerling indicates that such
REDR effects do occur in semiconductors. As shown in Figure 5.1.3 they found
the annealing rate of the electron irradiation induced E3 level in Gals
(the same level encountered in the previous chapter) to be related to

(77,78)

forward diode current and thus to recombination rate. Lang and

Kimerling found that a number of irradiation induced defects in GaP also

(79)

exhibit similar enhanced annealing rates. There has also been some

speculation that the degradation of the ZnGa—OP red luminescence could be
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related to MPE carrier capture energy release. Recombination enhanced

defect reactions have been discussed in a recent review article by Dean

and Choyke.(8o)

FIG 1.3

Annealing rate of
GaAs E3 electron trap
as a function of
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The results in the following sections demonstrate the response to
static and vibrational modifications to lattice coordinate, Q, of various
impurity energy levels. In particular, we shall be interested in the
trigonal displacement mode. General studies of this sort may be of some
interest with regard to the prediction of symmetry type and the possible

carrier capture mechanisms occurring at defect centres.

Section 5.2 The isolated nitrogen impurity in diamond

One of the features of natural diamonds is the large concentration of
impurities which they are known to c¢ontain. Nitrogen is of particular interest
for in some cases the abundance can be as much as 0.1%. We might attempt to
theoretically treat such a group V impurity as a simple donor within the
effective mass theory approach. However, the low dielectric constant and high
effective mass for diamond would then lead to a small orbital radius from
which we would infer that the use of EMT was inappropriate. We must expect

a well localized defect state dominated by the short range characteristics of
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the impurity potential. Such a defect is sultable for treatment by our
theoretical scheme and is also a candidate for experimental investigation

by electron spin resonance methods (as has already been stated diemond is a
good subject material for such experimental studies). Indeed, it was with the

81)

use of the EPR technique that Smith and co—workers( were first able to
analyse the characteristics of this impurity. Interpretation o the hyperfine
structure made it quite evident that the impurity state was axially symmetric
with the fifth nitrogen electron located primarily within the region of the
nitrogen sustituent and a single carbon atom. Tt was also suggested that there
was an outward displacement of the nitrogen atom leading to a lengthening of
the C-N bond. Later, analysis of more detailed results by Loubser and

Du Preez(gg%firmed the general conclusions of Smith et al. although some
modification concerning the precise details of the charge localization was
proposed.

Before beginning our theoretical calculations we first need to decide
upon the choice of a suitable nitrogen pseudopotential. There is some
difficulty in this respect for more than one potential is avallable, We could
contemplate the use of the model (Heine—Aberenkov) potentials produced by

(83) or Appapillai and Heineg8h) To avoid what would

Jones and Lettington
in effect have to be an arbitrary choice betﬁeen these alternatives we
perform calculations utilizing both. The difference in the final energy levels
will give an indication of the error whichis to be expected as a result of
uncertainties in the initial potential.

We now consider the total defect potential which corresponds to a

static outward axial displacement of the substitutional nitrogen impurity as

shown in Figure L4.3.9(a). In real space we have

h(r) = v (lrl) - vc(lz + R|) (5.2.1)

M

where Vys Vo are respectively the nitrogen and carbon screened ion potentials.
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Relative to the perfect crystal substitutional site the nitrogen impurity

is situated at R which is taken to be the origin for the purpose of the
calculation. We could treat the system as a two centre problem as was done
for VGa—VAS (CASE 1 of Section 3.5) but we will elect to follow a different
line of approach. In reciprocal space the total defect potential is

given by

h(g)= v (q) - e=v, (q) (5.2.2)

Although the individual v(g) are taken to be dependent upon g} only,
h(g) has an angular dependence due to the el-q-'B factor arising from the
different positions of the two potentials. Making use of (3.5.4), Equation (5.2.2)

can be expressed as

h(q) = v, _(g) W JL (aR) LM(B P )y (B ,@) (5.2.3)

R’ L,M

. . . . ig.R . .
We include only the first term in the expansion of elg'— and this gives

n(a) = vyla) - v,(a)singR (5.2.1)
gR

This is equivalent to an angular averaging process. As R— 0 the simple
substitutional form is obtained. After fitting to a suitable real space
potential(3.7.8) we are ready to procede with the calculation using CASE 2
of Section 3.5. We include gm of s and pz type. The use of CASE 2 rather
than CASE 1 leads to a considerable saving in computer time which is particularly
significant as we need to repeat the calculation for various R and also for
the alternative potentials. Figure 5.2.1 shows the resultant energy level
as a function of displacement. As is illustrated by the shaded area, there
is a large uncertainty in the results but it is quite evident that the
overall position of the energy level is in the upper part of the

forbidden gap region. Also, there can be no doubt that the energy
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is lowered in response to outward movements of the nitrogen impurity.
Therefore, when the impurity state is occupied by an electron we expect
a trigonal distortion to occur. Unfortunately, we cannot calculate
the precise position of the occupied level for we are unable to adequately
account for the changes in the valance band which would allow us to predict
the minimum energy configuration. Any such attempt would also be frustrated
by the errors arising from the lack of self-consistency, the increasing failure
of the approximation (5.2.4) and, of course, the initial uncertainties in the
potential. Although we have sacrificed some degree of accuracy by using the
truncated form (5.2.4) this is well justified considering the time-saving
which is gained. On investigation of the importance of the individual
contributions in determining the position of the level we find that the purely
s—type matrix elements of (3.3.3) dominate. However, the energy level would
rise by up to 1/2 eV if we did not include P, functions in the = The
convergence of the energy with number of functions and also the response
to scaling the potential are similar to the vacancy results of Chapter L
and the results presented in the following section.

It may be of interest to compare our findings with those of an earlier
thoeretical study of the same problem. We refer to the EHT work of Messmer and

(56,57)

Watkins. These authors found the simple substitutional nitrogen
impurity level to be in the region below the conduction band minimum in broad
agreement with our result. They also found the outward trigonal displacement

to lead to an increase in binding energy. However, in these calculations the
energy was found to be very sensitive to displacement: the binding energy was
increased by about 6 eV in response to a 25% displacement (the EHT cluster model
gave a band gap of 9.5 eV rather than the observed value of 5.5 eV). In
comparison the figure obtained from our calculation is.only'Q§O.5 eV. Messmer

and Watkins attempted to locate the equilibrium position of the impurity level

by minimizing the total one-electron energy. Using this method they concluded
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that the energy level was to be found at & EV + 2 eV. However, there is some
doubt concerning the validity of this energy minimization scheme for electron-
electron and nuclear interaction terms are not dealt with in a totally
satisfactory manner. To quote Larkins, who has also made use of the EHT method
"it is improbable that reliable distortion studies can be undertaken within
this framework."(BS) We do not encounter such problems using our method for
any realistic displacement still leads to the same general result i.e. the
nitrogen donor level is to be found in the upper part of the band gap. This
conclusion seems to be supported by the practical results which have been
accumulated for type 1b diamonds (type 1b . diamonds are believed to contain
nitrogen impurities in isolated form as opposed to the associated la type).

(86)

The optical and thermal excitation experiments of Farrer suggest that the

nitrogen donor level may lie 1.7 eV below the conduction band edge. A recent

(87)

analysis by Davies of available experimental information lends support to
this claim.

Tn conclusion we may say that our results for the nitrogen impurity in
diamond are in broad agreement with experiment. The theoretical studies

support the proposition that this impurity centre has C3v symmetry and also

that the energy level lies in the upper part of the band gap.

Section 5.3 Further displacement studies : MPE capture

In this section we shall continue to be concerned with the displacement
dependent behaviour of energy levels but our interpretation will mainly be
within a vibrating lattice, MPE context. It will be assumed that the
adiabatic approximation is applicable.

We begin by considering the deep level associated with a single electron
bound by the oxygen impurity in gallium phosphide. From experiment this
familiar level is known to be 24 0.9 eV from the conduction band and it

is believed that the state is of a; symmetry. As has been previously demonstrated
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by Jaros(66) the energy obtained using the present theoretical scheme is

in very good agreement with experiment. The success in dealing with this
particular problem leads us to think that it will be amenable to further
theoretical investigation. Consequently, we have decided to calculate the
position of the oxygen impurity state—1 energy level as a function of
trigonal displacement. The results obtained are displayed in Figure 5.3.1.
(Obviously, the relisbility of the large displacement results is rather
suspect and, in any event, normal thermal vibrations are not likely to give
rise to such large excursions. However, our comments will be of a fairly
general nature and we think the form of the results to be of some interest so
these large displacements have been retained.) In Figures 5.3.2 and 5.3.3
the convergence and response to scaling is shown. It is apparent that there
is no basic difference between the substituticnal and displaced results. To
simplify the calculations we have made no attempt to include the energy
contribution arising from the long range component of the impurity potential.
The neglect of this term means that the level - is a little higher than
otherwise but the form of the results will be little affected. It is clear
from Figure 5.3.1 that the occupied state will be of high symmetry for the
energy is at a minimum at the substitutional site. It can be seen that if
we include only s—-type functions in (3.3.3) we would expect MPE capture to be
likely because the energy level fairly rapidly crosses the conduction band
edge. However, the full 5P, results contradict this conclusion for we find
that crossing does not occur for any displacement, no matter how large. In
addition we already know that the level is not sensitive to symmetric
distortion. Consequently, we are led tobelieve that electron capture via MPE
processes cannot occur in this case. This conclusion is substantiated by
experiment for the temperature dependent cross section does not exhibit the

behaviour we would expect for MPE capture.
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In contrast to our results for the one electron oxygen state we find

~that the neutral Zn a-O acceptor-donor pair should be capable of MPE capture.

G
It can be seen from Figure 5.3.1 that the electron binding energy for this
centre is a sensitive function of displacement. Additionally, the level is
fairly close the the conduction band to begin with. Therefore, a relatively
small displacement is necessary in order that the conduction band edge crossing
may occur and thus we expect a large MPE capture cross section. Consultation
of Figure 5.1.2 shows that this prediction is confirmed by the experimental
data. Theoretical calculations indicate that MPE capture to form the two
electron oxygen state 1s also possible. In this example, however, the
symmetric rather than the trigonal vibration mode is responsible for the

energy crossing. Our efforts to obtain numerical agreement with the observed

cross sections for the Zn

(88)

Ga—o and oxygen state-2 impurity systems can be

found elsewhere. The agreement 1s reasonably encouraging in both cases
but additional work will be necessary before really reliable quantitative
theoretical results can be expected.

In addition to our efforts inrelation to the one electron impurity level
in GaP a comparitive study utilizing the same potential in alternative materials
has been made. In particular, we have considered gallium arsenide and diamond,
similar and dissimilar materials to GaP respectively. The potential
characteristic of the oxygen impurity in GaP has been used as an input for
impurity level calculations in GaAs and diamond. The purpose of the study is
not necessarily to relate the results obtained to any particular impurity
(i.e. oxygen). Our aim is rather to investigate the role of the host crystal
in determining the general properties, symmetry, capture processes etc.
associated with typical deep donors in these materials. The substitutional
site impurity level is consistently found in the upper half of the band gap.

Not unexpectedly, the results for GaAs are quite similar to those for GaP

as can been seen in Figure 5.3.L. The OAS and OP impurity potentials are not



100

FIGURE 5-3-L
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very different and so in this case we may fairly reliably relate our

‘results to what we would actually expect for substitutional oxygen in Gads.
(this does not apply for diamond). Again, we find that the energy is

a minimum at the substitutional site thus implying high symmetry for the
impurity centre. Although the Gals Ec - 0.75 eV level (associated with the
curve labelled O n(O) in Figure 5.1.2) which has been observed by a number

of experimentalists has previously been thought to be due to isolated oxygen,
the high non-radiative capture cross section cannot be reconciled with our
theoretical findings. The theoretical results indicate that this one electron
state should not exhibit a large MPE capture cross section. There have also been
some doubts regarding the precise indentification of this level from
experimental sources. See for example, the report by Tyler et al.(89)

TFor diasmond we obtalin results considerably different from those for GaP
and GaAs. In this case the depth of the impurity level is a rapidly increasing
function of trigonal displacement as indeed it was for the nitrogen impurity
in the previous section. It seems that this purely covalent material responds
in a fundamentally different manner to the presence of deep donors. The
substitutional site appears to be an inherently unstable configuration and we

therefore predict substantial lattice relaxation.

Section 5.4 Summary

In this chapter we have used our localized defect scheme to model
the displacement dependent behaviour of various impurity energy levels.
Unfortunately, at this stage we cannot produce any reliable quantitative
results for the necessary theory which would allow us to do so is not
available. Nevertheless, even at the present "computational experiment" level
valuable general information can be obtained. The results concerning the
symmetry and overall position of the nitrogen impurity level in diamond and

the MPE predictions are examples of the possible applications of the method.
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Tn addition, studies of the temperature broadening of impurity levels may
be considered. Our results indicate that any convincing theory of MPE

capture will need to take into account the symmetry of the localized state
for this factor can be of crucial importance in determining the likelyhood

of the non-radiative transition.
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General assessment of method

Section 6.1 Introduction

In the previous chapters we have shown that our localized defect
scheme can be usefully applied to a number of problems. The specific
results of the calculations have already been discussed and we shall not
here be concerned with their reiteration. However, little has been said
with regard to the practical advantages of our method. There are, of course,
numerous alternative methods which are available and it is instructive to
make a direct comparison with some of these. By this means we shall
demonstrate the particular areas of superiority and also the weak points of
the present scheme. Finally, we shall bring together some of the general
pesults which have been obtained while using this method with may be of some

interest.

Section 6.2 Comparison with other methods

At the outset it should be said that it is not intended to comprehensively
review the various defect energy level methods. The aim is merely to give
comparison with some of the alternatives. WNo attempt shall be made to
compare our method with EMT type approaches which are certainly better
suited to dealing with defect states dominated by long range potentials. Nor
shall we discuss the many-electron CK type schemes which do not try to relate
the resulting energy levels to the band edges. We shall consider two
approaches similar to our own in that they require initial knowledge of the
host crystal bandstructure, and also two of the defect molecule.cluster
methods. We begin with brief descriptions of these four formulations.

a) The Koster—-Slater Wannier function method
In the Wannier function (W.F.) representation we express the defect

wave function as

> - nZ,Bwn@_) | v (zB) ) (6.2.1)
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where n and R refer to band index and lattice site respectively and the
~ localized W.F.'s are given by

lv_(z-R)> = (fL/873)1/2 j

ik.R
BZdE el__'\fn,5> (6.2.2)

L is the primitive cell volume. The W.F.'s satisfy

<w (@B v (2R)D = J 4
n',n R',R (6.2.3)
" - - a
Inserting (6.2.1) into the Schrodinger Equation (3.2.1) and multiplying by

<wh,(£j3‘)| we obtain

nZan(B_)hn, n(g' ,R) + Z[En,(B_'—B) -J E] wn,(g) =0 (6.2.4)

where
h o, n(B'-B_) =<w .(r-R',), h\wn(£—§)> (6.2.5)

and

B, (B'-B) = (f/8%)1/2 J ax ®, o (BR) (6.2.6)

J Bz noHE

The basic problem is to find the energy, E, such that the system
of equations (6.2.4) is satisfied. If the defect potential h, is well localized
then hn,’n(g',ﬁ)"4> 0 for sites increasingly removed from the defect centre.
Thus W.F.'s on only a few sites need to be taken into consideration. The
complexity of the associated secular equation is correspondingly reduced. 1In
the most extreme approximation only one W.F. derived from a single site and
band is taken into account. The method is not really suitable for dealing
with problems involving long range defect potentials for W.F.'s on many sites
would then be necessary. The main problem with the W.F. representation is

in the calculation of the matrix elements (6.2.5) which requires a double

k-space integration. The integrals must be calculated numerically and as the

sampling
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density increases the computational labour becomes very substantial.

Various Wannier function calcutions have been reported but none have
conclusively demonstrated convergence in terms of number of lattice sites,
bands and sampling. In such cases there must remain some doubt concerning the
reliability of the final result.

b) Direct solution of the Bloch function formulation.

The present method as described in Chapter 3 and the Wannier funection
formulation, a), both rely upon the introduction of sets of localized
functions in order to hasten convergence by limiting the size of the associated

(23,24)

matrices. However, the method employed by Jaros and Ross avolds such
intermediate stages and the systems of equations (3.2.4) is solved directly
by numerical means. The advantages of this method are that it can more
conveniently deal with long range potentials and the scattered (as opposed
to bound) states. When the defect energy level, E, is found, the associated
eigenvector immediately yields the Bloch function coefficients, An,k’ The
dimension of the matrices involved in such calculations depends upon the
product of sampling point number and number of energy bands. It is apparent
that the size of the matrix grows alarmingly as additional bands and sampling
points are included. As a consequence, it is the availability of computer
resources which ultimately restricts the application of this approach.
c) The extended H&ckel theory method

In the EHT method the host material is represented by a relatively small

cluster of atoms (usually less that 50). The one—electron wave functions are

expanded in the form

;> = % a. . |p> (6.2.7)

ip
where the summation is over all valence atomic orbitals for each atom in the
cluster. The atomic orbitals can be taken as simple Slater—type functions.

We then solve the secular determinantal equation
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‘Hc(ﬁ —Ei<o<\f;>\ =0 (6.2.8)
where

Hyip = 1/2K(In+Ip) <! R>. (6.2.9)

The I are the free atom ionization potentials and K is a constant, usually
taken to be 1.75 (except for = = ﬁ> in which case K = 1). It is hoped that as
the cluster is enlarged an increasingly better representation of the bulk
solid will be achieved. Identification of the defect states is made by
comparison of the results for the "perfect crystal" with those obtained when
the appropriate defect atom(s) is substituted (omitted).

The basic appeal of the EMT method lies in it's simplicity for the
calculations are fairly straightforward to perform. However, although it
may be possible to obtain qualitatively correct results in some cases, the
EHT method must be regarded with some suspicion. There is no theoretical
justification for the assignment of the value of K and in addition there are
theoretical inconsistencies in the formulation. It is known that unreliable
predictions are likely to be obtained for ionic systems. In practice, the
results are sensitive to cluster size, boundary conditions and choice of
orbital exponent:the positions and ordering of the energy levels can be
significantly altered by changes in these factors. Extensions of the basic
method such as the molecular unit cell superlattice approach (MUCA) have been
attempted but it is difficult to imagine the development of a truly
quantitative EHT defect scheme. The reader is directed to the works of

(85) (50) (91)

Larkins, Coulson” and Lidlard for more detailed discussion of the

limitations of EHT.
(55)
a) The X scattered wave method

A more mathematically satisfying cluster approach is that of the so-called

X scattered wave method. In this approach the perfect and defect crystals



108

are modelled by limited size molecules partitioned into atomic, interatomic
‘and extramolecular regions. The initial wave functions are taken to be those
associated with the free atoms. Within each region of the system a suitable
spherically averaged or volume sveraged potential is calculated and the
one—electron Schr8dinger equation is solved by numerical means. Matching of
the resulting wave functions is enforced at the boundaries of the various
regions. The new molecular wave functions are then used as a starting point
for further calculation and iteration is continued until self-consistency
is achieved. To account for the effects of exchange the X« approximation,
in which the exchange potential is dependent upon local charge density only,
is employed.

In practice the X™ SW method fails to adequately represent the host
crystal for the observed band gap is not reproduced. Therefore, although
interesting general information may be obtained, it cannot be expected

that this method will give reliable quantitative results.

Traditionally, methods requiring full knowledge of the host crystal
such as a) and b) have involved considerable utilization of computer resources.
As a consequence, the application and flexibility of such approaches have
been somewhat limited. In addition, none of the calculations based upon
these methods have previously demonstrated the capability of producing a
truly convergent result. It is thus not surprising that much effort has been
redirected towards the cluster-type methods. However, as we have tried to
indicate, methods of this kind such as c¢) and d) have their own associated
problems. The finite cluster size and the significance of the related surface
effects simply cannot be overlooked. The advantages of convenience and
possible incorporation of self-consistency do not outweigh the resulting
disadvantages. It would seem that none of the methods a)-d) is a generally

viable means of dealing with the problem of localized defect energy levels in
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semiconductors. They aretoo prohibitive in the use of computer time to
implement or alternatively provide an inadequate representation of reality.
We have argued that the other methods are far from being ideal in treating
the localized defect problem but what, it may be asked, have we to gain by
employing the method we have used? It is apparent that many of the details
of our approach are similar to those of a) and b). It is obvious that the
input, the bandstructure and real space defect potential, is an identical
requirement for all three approaches and is thus subject to the same degree
of error. The fairly inconvenient form of the defect wave function and the lack
of a truly self-consistent procedure are features common to all. The crucial
difference is in the computational labour. The method we use is much less
demanding in this respect and thus many advantages result. As an example
if we were to calculate the energy of the 8, level associated with Op in GaP
we would require about 20 seconds of central processing unit time on an IBM
370/168 computer using our method. (This is for a calculation involving Ll
sampling points in the 1/48 BZ, 10 energy bands, Bloch functions consisting
of a 65 plane wave expansion, 10 basis functions, &, and 10 trial energies.)
In comparison, literally hours of CPU time would be required to perform the
equivalent calculation using the direct Bloch function method, b). The
lower symmetry calculations such as those involved in the displacement studies
of Chapter 5 require approximately 3 mins., of CPU time. Such calculations
would be all but impossible using method b). The Koster-Slater approach is
similarly profligate in it's demands. Due to the speed of the calculation
it is a trivial matter to demonstrate that our final result is convergent in
terms of number of basis functions and also number of bands. Additional
sampling points, bands and basis functions can easily be incorporated if
desired. Convergence has never been satisfactorily demonstrated by users of
methods a) and b) and usually much more restrictive conditions that we have

employed have been necessary in order to make the calculations feasible.
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Tt is thus quite clear that our method is superior to a) and b). We can
see little reason to favour the cluster approaches such as c) and d) for,

as we have already pointed out they do not at present appear to promise
quantitative results. (It should be said, however, that the cluster methods
do provide more convenient real space defect wave functions.) The previous
support for calculations of this type has primarily been due to their low
CPU demands but, as we have seen for the simpler problems at least, this is
also a characteristic of our present method. With this in mind there seems

little justification for pursuing the more time-consuming MUCA calculations.

Section 6.3 Concluding remarks

In this account an attempt has been made to study various aspects of the
localized defect problem while simultaneously demonstrating the applicability
of our basic method. Although little in the way of quantitative results
has heen presented this is to some extent a consequence of the particular
investigations which have been undertaken. It can be expected that much
additional work will be needed before the vacancy problem is satisfactorily
resolved. While not as yet being able to completely adequately tackle
problems such as this useful information can, nevertheless, be obtained., In
a more well defined situation our method can be expected to be more successful.
For instance, in the case of a given short range defect potential we can in
principle accurately compute the associated one—electron energy level provided
that reliable bandstructure is provided as an input.

Qur calculations tend to reinforce the belief that both valence and
conduction bands have an important role in determining the characteristics
of localized states. Therefore, it is unreasonable to think, generally speaking,
that formulations based on EMT will give realistic results. The precise
position of the energy level associated with a localized state depends upon
a delicate balance between the contributions of the various bands. If this

balance is changed then significant alteration of the binding energy can
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occur. However, there does not seem to be a correspondingly great

alteration in the details of the localization of the defect wave function

(it would seem that the angular and nodal characteristics of the defect

wave functions are mainly responsible for determining the observable
properties of localized states). Thus the practice of relating the depth

of the energy level to the localization, as can be done with states of
coulombic origin, is not appropriate in the case of "deep" levels. If we
employ the coulombic model then the localized state wave function collapses

and merges into the delocalized band edge Bloch function as the binding

energy (measured from the appropriate band edge) decreases. However, if we
merely change the balance between the valence and conduction bands then no
such drastic alteration of wave function occurs and the existence of well
localized states resonant with the conduction band is possible. Defect centres
giving rise to electronic states of this type may exhibit interesting properties
The persistent photoconductivity of the so—called DX centres in AlXGal_XAs

(92)

may be an example. This effect has been explained by Lang and Logan on the
basis of a large—-lattice-relaxation model involving a localized state with an
unoccupied energy level resonant with the conduction band and an occupied
energy level within the band gap (detailed discussion of the DX centre
has been given by Lang, Logan and Jaros(93) Yo

In conclusion, it can be said that we believe our scheme to be a
promising means of investigating the localized defect problem. At present
it 1s not possible to obtain really good defect wave functions but it is hoped
that increased effort will to some extent improve this situation. One of the
main difficulties we encounter in our formulation is in the production of a
reliable defect potential although, as we have seen, this does not always
greatly affect the results. The simple process of screening the bare potential

with the perfect crystal dielectric function probably does not represent an

adequate self-consistent precedure. Attempts to produce a more realistic defect
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potential are proceeding. It is hoped that with additional work means whereby
~the more comprehensive treatment of the general problem of localized defects

in semiconductors will be developed.
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