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Abstract 
Asphaltenes are the heaviest components of petroleum and bitumen consisting of a complex 

mixture of heteroaromatic substances that have been associated with various deposition 

problems in both upstream and downstream sectors of the petroleum industry. This thesis 

describes characterisation of asphaltenes from a variety of sources and geographical areas 

using FTIR, NMR, as well as selective chemical degradation methods in combination with 

GC/MS & GC/IRMS with the aim of understanding how their compositions vary with source 

and geochemical history. 

Asphaltenes were observed to co-precipitate with substances such as waxes that are 

components of the maltene fraction. Quantitative removal of the co-precipitated substances 

requires Soxhlet extraction of the asphaltenes for several hours. The extraction time was found 

to vary with different asphaltenes. The so-called occlusion or physical entrapment of 

biomarkers in the cage-like structure of the asphaltenes is more than likely a consequence of 

the co-precipitation of the waxes. 

Analysis of mid-infrared spectra of the asphaltenes revealed that petroleum asphaltenes 

consist predominantly of aliphatic moieties bonded to condensed aromatic structures with 

relative proportions of aromatic carbon in range of 30 to 40% for non-biodegraded petroleum 

asphaltenes as revealed by 13C NMR. Biodegraded asphaltenes are less aromatic with relative 

aromatic carbon being 27% or less although the aromatic moieties tend to have relatively 

greater degree of condensation than asphaltenes from ono-degraded oils . Although n-alkyl 

and iso-alkyl groups are the dominant aliphatic moieties, naphthenic groups, mainly in form of 

homohopanoids and steroids, are significantly present. Oxygen functionalities are mainly in 

form of hydroxyl, ether, ester, and carboxyl as well as conjugated ketone groups. Ester groups 

were detected only in coal and black shale asphaltenes. Carboxyl groups were detected in all 

the asphaltenes irrespective of source and geographical region, although they were 

particularly prominent in black shale and coal asphaltenes even at a relatively high rank of Ro = 

1.5%. Nitrogen functionalities were present as pyridinic and pyrrolic heteroaromatic systems in 

addition to tertiary aromatic amines. 

With increasing thermal stress, asphaltenes were observed to evolve towards an equilibrium 

structure or composition in which aromatic moieties become dominant over aliphatic moieties 

as a result of increasing condensation and dealkylation. Distribution of alkyl moieties shifts 

towards increasing proportions of the lower molecular weight homologues with increasing 

thermal maturity. The thermal stress also results in loss of oxygen functionalities mainly from 

ester and carboxyl groups. At the molecular level, isomerisation of bound hopanoids and 

steroids to form an equilibrium composition was observed with increasing maturity. However, 

while isomerisation of bound hopanoids in asphaltenes appear to be in phase with the 

corresponding isomerisation of hopanes in the maltene fraction, the isomerisation of bound 

steroids lags significantly behind the corresponding isomerisation of the steranes in the 

maltenes. 

There is good potential in using multivariate pattern recognition tools in oil/oil correlations 

based on asphaltene bulk composition as measured using FTIR. Notwithstanding some 

misclassification, the techniques tend to correlate asphaltenes with common source. Similarly, 

the aliphatic moieties of asphaltenes also reflect the organic matter sources of the 

asphaltenes. The n-alkyl moieties from asphaltenes with common source not only show similar 



Muhammad 

iii 

 

distributions, but also similar δ13C trends even in asphaltenes from biodegraded oils. Likewise, 

bound hopanoids also reflect the organic matter source such that asphaltenes with common 

source show similar hopanoid distributions. The aliphatic moieties therefore have good 

potential that may be comparable to the conventional hydrocarbon-based biomarkers in oil/oil 

correlations. 

In general, the composition of asphaltenes is controlled by the source organic matter and its 

thermal evolution. The effect of biodegradation is not yet completely understood but, with the 

exception of steroids, it does not appear to affect the aliphatic composition of the asphaltenes. 

There is therefore a significant potential in using asphaltenes in discrimination/correlation of 

oils particularly where the hydrocarbons in the maltene fraction are lost to biodegradation. 



Muhammad 

iv 

 

Acknowledgement 
All thanks are to Allah (SWT), the most gracious, the most merciful, for life, sustainance, health 

and everything enabling to undertake this study. 

I wish to thank my supervisor, Dr Geoff D Abbott for advice and support whenever I needed 

them. Your friendship and guidance have been source of motivation to me throughout these 

years. Thank you so much! 

I am very grateful to Dr Claire Fialips for the invaluable assistance she gave me on FTIR. In 

addition she puchased the GRAMS/AI and showed me how to use it. Thank you! I am also 

grateful to Dr Steve Robertson who first suggested using FTIR to me. 

I am also grateful to Mr Bernie Bowler, Mr Ian Harrison, Mr Paul Donohoe and Phil Green. 

Special thanks to Dr David Apperley and Mr Fraser Markwell of Solid-state NMR Service at 

Durham University for running my samples for nothing! 

My mother; Malama Hadiza Bayawa appears to be the only person who listens, understands 

and believes my story. I can’t imagine myself without you! Thank you for the unconditional 

understanding and endless prayers. 

My wives; Rabi’ah Abubakar Shinkafi and Hadiza Abubakar D/Daji, and children; Fatima, Aisha, 

Maryam and of course Ahmad (who I am yet to hug!), have been wonderful and very 

supportive. God bless you for your endless love. You are always close to my heart. 

My friends; Dr Yusuf Saidu and Malam Muhammad Gidado Liman, have been very helpful in 

looking after my interests at Sokoto while I was way on this programme. I am grateful for your 

friendship. 

I appreciate the moral support and company of my pals; Bello Adamu, Sani Yahya, Aminu 

Mohammed, Murtala Mohammed, Uzochukwu Ugochuchu, Ojiugo Okafor, Bashir Aliyu,  Umar 

Ba and Nykky Allen. You made me laugh when I was about to cry! 

Finally, I am grateful to the management of Usmanu Danfodiyo University Sokoto, Nigeria for 

granting me study leave, and Petroleum Technology Development Fund (PTDF), Nigeria for 

sponsorship, to undertake this programme. 

Aminu B Muhammad 
20 October 2009 



Muhammad 

v 

 

Table of Content 
The Molecular Composition and Geochemical Applications of Asphaltenes ................................ i 

Declaration .....................................................................................................................................ii 

Dedication ...................................................................................................................................... i 

Abstract ..........................................................................................................................................ii 

Acknowledgement ........................................................................................................................ iv 

Table of Content............................................................................................................................. v 

Chapter 1 Introduction and Literature Review ...................................................................... 1 

1.1 Introduction .................................................................................................................. 1 

1.2 Definition, Stability and Precipitation Behaviour .......................................................... 2 

1.2.1 Asphaltenes: what are they?................................................................................. 2 

1.2.2 Solubility and stability nature of asphaltenes in oils............................................. 4 

1.2.3 Precipitation behaviour of asphaltenes ................................................................ 5 

1.3 Molecular Size and Weight ........................................................................................... 6 

1.4 Chemical Composition and Structure ........................................................................... 7 

1.5 Biomarkers in Asphaltenes ............................................................................................ 9 

1.6 Research Problem ....................................................................................................... 11 

1.7 Aim and Objectives ..................................................................................................... 11 

1.8 Relevance .................................................................................................................... 11 

1.9 Scope and Delimitation ............................................................................................... 12 

Chapter 2 Materials and Methods ....................................................................................... 13 

2.1  Introduction ................................................................................................................ 13 

2.2 Description of Samples ............................................................................................... 13 

2.2.1 Black shales ......................................................................................................... 14 

2.2.2 Northsea oils ....................................................................................................... 16 

2.2.3 Oman oils ............................................................................................................ 17 

2.2.4 Kuwait oils ........................................................................................................... 17 

2.2.5 Qatar oils ............................................................................................................. 18 

2.2.6 Yemen oil ............................................................................................................. 18 

2.2.7 Other oils ............................................................................................................. 18 

2.2.8 Coal samples ....................................................................................................... 19 

2.3  Methods of Sample Preparation ................................................................................. 19 

2.3.1 Powdering of rock and coal samples ................................................................... 19 

2.3.2 Extraction of bitumen from the black shale and coal samples ........................... 19 

2.3.3 Precipitation and purification of asphaltenes ..................................................... 20 

2.3.4 Fractionation of maltenes ................................................................................... 21 

2.3.5 Urea adduction .................................................................................................... 22 

2.3.6 Ruthenium ion catalysed oxidation (RICO) of asphaltenes ................................. 22 

2.3.7 Potassium permanganate oxidation of asphaltenes ........................................... 23 

2.3.8 n-Butylsilane reduction ....................................................................................... 23 

2.3.9 Extraction of acids from oils and bitumen .......................................................... 25 

2.3.10 Esterification of acids ...................................................................................... 25 

2.3.11 Preparation of samples for FTIR analysis ........................................................ 26 



Muhammad 

vi 

 

2.4 Analytical Methods ..................................................................................................... 27 

2.4.1 Total carbon, hydrogen, nitrogen and sulphur analysis ...................................... 27 

2.4.2 Total organic carbon analysis .............................................................................. 27 

2.4.3 Rock-Eval pyrolysis .............................................................................................. 28 

2.4.4 Gas chromatography (GC) ................................................................................... 28 

2.4.5 Gas chromatography/mass spectrometry (GC/MS) ............................................ 29 

2.4.6 Compound specific isotope ratio analysis (CSIR) ................................................ 29 

2.4.7 Fourier transform infrared spectroscopy (FTIR) ................................................. 31 

2.4.8 Solid-state nuclear magnetic resonance spectroscopy ....................................... 31 

Chapter 3 Characterisation of the Samples ......................................................................... 33 

3.1 Introduction ................................................................................................................ 33 

3.2 Methodology ............................................................................................................... 33 

3.3 Results and Discussion ................................................................................................ 33 

3.3.1 Black shale samples ............................................................................................. 33 

3.3.2 Coal samples ....................................................................................................... 41 

3.3.3 Oil samples .......................................................................................................... 46 

3.4 Summary and Conclusions ................................................................................................. 59 

Chapter 4 Adsorption and Occlusion in Asphaltenes .......................................................... 60 

4.1 Introduction ................................................................................................................ 60 

4.2 Methodology ............................................................................................................... 62 

4.2.1 Selection of samples ........................................................................................... 62 

4.2.2 Analytical procedure ........................................................................................... 62 

4.3 Results and Discussion ................................................................................................ 64 

4.3.1 Determination of time required for efficient extraction of asphaltenes ............ 64 

4.3.2 Determination of an ideal asphaltenes degradation reaagent ........................... 67 

4.3.3 Comparative analysis of maltene, adsorbed and ‘occluded’ biomarkers ........... 71 

4.3.4 Simulation of occlusion of hydrocarbons in asphaltenes ................................... 78 

4.4 Summary and Conclusions ................................................................................................. 80 

Chapter 5 Bulk Composition and Structure of Asphaltenes by FTIR and NMR .................... 81 

5.1 Introduction ................................................................................................................ 81 

5.2 Methodology ............................................................................................................... 83 

5.2.1 Samples and sample preparation........................................................................ 83 

5.2.2 Pre-processing and curve fitting of FTIR spectra ................................................ 85 

5.2.3 Chemometric multivariate statistical analysis .................................................... 87 

5.3 Results and Discussion ................................................................................................ 87 

5.3.1 Assignment of bands ........................................................................................... 87 

5.3.2 Coal asphaltenes: evolution with maturity ......................................................... 94 

5.3.3 Black shale (source-rock) asphaltenes ................................................................ 98 

5.3.4 Petroleum asphaltenes ..................................................................................... 102 

5.3.5 Chemometric discrimination and correlation of asphaltenes .......................... 108 

5.4 Summary and Conclusions ........................................................................................ 119 

Chapter 6 Bound Biomarkers in Asphaltenes Released by Ruthenium Ion Catalysed 
Oxidation 121 

6.1 Introduction .............................................................................................................. 121 



Muhammad 

vii 

 

6.2 Methodology ............................................................................................................. 123 

6.2.1 Selection and preparation of samples .............................................................. 123 

6.2.2 Identification of compounds and data analysis ................................................ 124 

6.2.3 Chemometrics ................................................................................................... 125 

6.3 Results and Discussion .............................................................................................. 125 

6.3.1 Method development and verification ............................................................. 125 

6.3.2 n-Alkanoic acids ................................................................................................. 127 

6.3.3 α,ω-n-Alkandioic acids ...................................................................................... 134 

6.3.4 Branched alkanoic acids .................................................................................... 137 

6.3.5 Hopanoic acids (HA) .......................................................................................... 138 

6.3.6 Steranoic acids (SA) ........................................................................................... 145 

6.3.7 Effect of biodegradation ................................................................................... 148 

6.3.8 Asphaltene versus maltene biomarkers ............................................................ 152 

6.3.9 Effect of thermal maturation on asphaltene biomarkers ................................. 157 

6.3.10 Assessment of solvent effect on asphaltene biomarkers ............................. 159 

6.3.11 Correlation using asphaltenes biomarkers ................................................... 161 

6.4 Summary and Conclusions ........................................................................................ 163 

Chapter 7 Summary and Future Work ............................................................................... 165 

7.1 Overall Conclusions ................................................................................................... 165 

7.2 Future Work .............................................................................................................. 167 



Muhammad 

1 

 

Chapter 1 Introduction and Literature Review  

1.1 Introduction 

Considerable amount of work has been published on asphaltenes indicating a great deal of 

scientific interest on these materials (Mullins et al., 2007; Sheu, 2002; Sheu and Mullins, 1995; 

Bunger and Li, 1981). The interest in these chemical substances is not only out of scientific 

curiosity in wanting to know what they are but mainly for the wide range of problems they 

have been found to be associated with as a result of their chemical composition and 

propensity to precipitate out of solution and form deposits. These problems cover both 

upstream and downstream sectors of the petroleum industry and include obstruction of 

reservoirs, plugging of wells and pipelines, separation difficulties and fouling as well as catalyst 

deactivation/poisoning and environmental pollution during processing (Ancheyta, 2007; 

Shedid and Zekri, 2006; Kokal and Sayegh, 1995; Galoppini, 1994). They have also been found 

to stabilise oil-water emulsions which are difficult to process at surface facilities (Khadim and 

Sarbar, 1999). It is clear therefore that the detrimental effect of asphaltenes in the petroleum 

industry is widespread, hence they are termed the “the cholesterol of petroleum” (Kokal and 

Sayegh, 1995). This is clearly illustrated in Figure 1.1. 

Consequently, understanding these substances is very important more so for the fact that 

onshore reserves of the conventional crude is on the decline and hence more attention is now 

being directed to deep water offshore reserves and in such environments any flowline 

plugging problem will be expensive to clear (Creek, 2005; Saniere et al., 2004). This further 

justifies the increasing in work on these substances as summarised in Figure 1 of Ancheyta et 

al. (2002) and several published books (Mullins, 2007; Sheu and Mullins, 1995). Most of the 

published works revolve around their characterisation and stability/precipitation properties 

with the main aim of developing convenient and efficient ways of alleviating the problems they 

cause. This chapter gives a broad overview of some relevant work on these important 

materials. 

  
 Figure 1.1: Asphaltenes are likened to cholesterol in human body that precipitates and deposits to 
plug the pipeline leading to shut down of the system for repairs (Headen et al., 2007; Creek, 2005). 
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1.2 Definition, Stability and Precipitation Behaviour 

1.2.1 Asphaltenes: what are they? 

Asphaltene are chemical substances in petroleum or bitumen defined by their solubility 

properties. Although solubility of asphaltenes at ambient condition is a function of their 

molecular weight and polarity (Long, 1981), Speight and Moschopedis (1981) classified them as 

being soluble in polar solvents (such as benzene, dichloromethane, tetrahydrofuran etc) with 

surface tension higher than 25 dyne cm–1 and insoluble in liquids (principally hydrocarbons) 

with surface tension less than 25dyne cm–1 (Speight and Moschopedis, 1981). Nevertheless, 

the principal solvents used in precipitation of asphaltenes are the lower alkanes (Speight, 

2004); particularly n-pentane, n-hexane and n-heptane, notwithstanding the fact that, for 

economic reasons, in the downstream sector of the petroleum industry liquid propane is also 

used (Speight, 1999). 

It is clear from the above definition that the intrinsic composition of asphaltene as a class of 

compounds is dependent on many factors. The solubility of a chemical compound is not only a 

function of its chemical nature (elemental composition, its structure and functionality) but also 

its molecular weight, the nature of the solvent as well as the temperature. This is evident in 

even as simple class of homologues as the alkanes (Jennings and Weispfennig, 2005). 

Consequently, it is very difficult to include/exclude compounds from the class. Nevertheless, 

asphaltenes as a pseudo-class of compounds are still defined and studied per se often with 

more restrictions placed to limit the ‘membership’ of the class as much as possible (Creek, 

2005; Speight, 2004). Thus Creek (2005) summarised that asphaltenes by definition should 

meet the following three criteria: “(i) precipitates from oil when diluted 20:1 or more with 

paraffin solvents (n-C5, n-C7, ...) but is soluble in toluene; (ii) can be filtered (not extruded) at 1-

1.5 μm; and (iii) does not include contributions from resins and waxes” (Creek, 2005). 

Nevertheless, despite restrictions, such as above, in defining asphaltenes, what is and what is 

not a member of the asphaltene ‘class’ could still be variable. The effect of different n-alkane 

solvents used in precipitating asphaltenes on the bulk composition of the asphaltenes 

precipitated has been studied by a number of workers. Corbett and Petrossi (1978) observed 

that the relative proportion of asphaltene precipitated is a function of the solvent used (Figure 

1.2). In general, the relative amount of asphaltene precipitated is not only dependent on the 

nature of the oil or bitumen but has also been observed to decrease with increasing molecular 

weight of the n-alkane used in the precipitation in an asymptotic fashion (Figure 1.2). n-Hexane 

and lower homologues have been found to precipitate higher proportion of resins as well 

thereby resulting in overestimation of the asphaltenes (Long, 1981; Corbett and Petrossi, 

1978) hence the common adoption of n-heptane in precipitation of asphaltenes (Hammami et 

al., 1995).  
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Figure 1.2: Graph showing the effect of different n-alkanes (paraffin solvents) on the weight of 
asphaltene (insolubles) precipitated (Corbett and Petrossi, 1978). 

However, even when a specific solvent is consistently employed in precipitation of asphaltenes 

other factors have been observed to influence the relative proportion, and therefore 

composition, of asphaltenes precipitated (Speight, 2004). Alboudwarej et al. (2002), for 

example, observed that the yield of asphaltenes obtained when n-heptane is used is 

significantly dependent on contact time and heptane-to-bitumen ratio (Figure 1.3). The yield 

increases with contact time, with equilibrium reached at about 24 hours. The yield also 

increases with proportion of      n-heptane used, with optimum reached at 25 cm3 of n-heptane 

per 1g of oil or bitumen. It is therefore a common practice to use about 40 cm3 for 1 gram of 

oil with contact time of about 24 hours for the precipitation of asphaltenes (Alboudwarej et al., 

2002; Speight, 1984), although Speight (2004) recommends equilibration period of 8 to 10 

hours. 

  
Figure 1.3: Linear plots showing variation in yield of asphaltene against time the mixture is allowed to 
equilibrate (a), and the yield versus oil to solvent ration employed (b). The plots show about 20 hours 
is required for equilibration and about 30 ml of solvent 

Generally, asphaltenes form a pseudo-class of somewhat complex chemical substances with 

no clear boundary with resins and thus the composition is significantly influenced by a wide 

range of factors. Nonetheless, they are precipitated with lower   n-alkanes employing a ratio of 

40 cm–1 per gram oil and equilibration period of up to 24 hours followed by Soxhlet extraction 

to remove co-precipitated non asphaltene substances. 
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1.2.2 Solubility and stability nature of asphaltenes in oils 

One of the fundamental issues in asphaltenes science is their physical state in the oil. Are they 

intrinsically soluble or insoluble in an oil medium? This is important in developing a physical 

model for prediction of asphaltene stability (Cimino et al., 1995). In this regard, two conflicting 

descriptive models are generally used to describe the physical state of asphaltenes in oils 

(Donaggio et al., 2001; Neves et al., 2001; Cimino et al., 1995). The first model considers 

asphaltenes in crude oils as lyophilic dispersions of molecules. In this model the asphaltene 

molecules, and/or aggregates, are inherently dissolved in the oil (maltene) matrix more or less 

as are other smaller molecules are (Figure 1.4 (a)). The model does not give any special role to 

the resins; they are just part of the predominantly hydrocarbon solubilising medium. The 

whole system is therefore a homogeneous one phase solution of molecules in delicate 

harmony. This model implies that precipitation of the asphaltenes is simply a phase splitting 

process where a phase rich in asphaltenes and a phase rich in the solvent are formed and 

coexist in equilibrium (Donaggio et al., 2001).  

The second model (i.e. the lyophobic model) invokes a system where the asphaltenes are 

intrinsically insoluble components that are dispersed and stabilised in the medium by the 

peptising action of other components (i.e. resins) as illustrated in Figure 1.4 (b). The resins are 

believed to be adsorbed on the asphaltene surface and through steric effect, stabilise the 

asphaltenes against flocculation and precipitation. Precipitation of the asphaltenes, according 

to this model, involves partitioning of the resins between the surface of the asphaltenes and 

the oil medium resulting in desorption of the peptising resins from the asphaltene surface 

(Speight, 2004; Andersen and Speight, 2001). It is however still not clear whether the 

asphaltenes are molecularly peptised (Hammami and Ratulowski, 2007; Speight, 2004) or 

peptised in form of submicrometer aggregate particles (Pereira et al., 2007); both molecules 

and aggregate could however exist in equilibrium (Cimino et al., 1995). 

  
Figure 1.4: Pictorial representation of the two descriptive models of asphaltenes in oil matrix; (a) the 
lyophilic model with no specific role for resins, and (b) the lyophobic model with resins as peptising 
agents. 

Neither of the models, however, can account for all the observed phase properties of 

asphaltenes (Donaggio et al., 2001) and it is possible that all the models could be true to some 

extent. Castillo et al. (2001), based on fractionation studies, postulate that asphaltenes consist 

of the most insoluble fraction, which constitutes the colloidal phase, and the remaining 

sparingly soluble fraction, which constitutes the dispersing components that adsorb on the 

colloidal phase and stabilise the system in solution. This is somewhat supported by the work of 
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Gutierrez et al. (2001), Acevedo et al. (2004) and Alboudwarej et al. (2002). Cimino et al. 

(1995) suggest a thermodynamic equilibrium between asphaltene molecules and asphaltene 

micelles. 

In general however, it is agreed that the stability of asphaltenes in oil matrix appears to be 

based on delicate compositional equilibrium which depends on many factors, the most 

important of which are composition and pressure, and to a lesser extent temperature 

(Hammami and Ratulowski, 2007; Andersen and Speight, 2001). Altering the composition (e.g. 

by mixing with incompatible hydrocarbon fluids, miscible flooding, CO2 flooding, gas lift 

operation), for example, could destabilise the equilibrium resulting in desorption of the 

peptising agents from the asphaltenes and therefore precipitation of the asphaltenes from 

solution (Hammami and Ratulowski, 2007). Resins are generally associated with peptisation of 

the asphaltenes in solution (Speight, 1984). 

The importance of the resins in stabilisation of asphaltenes in oils has been a subject of 

investigations (Pereira et al., 2007; Gonzalez et al., 2006; Andersen and Speight, 2001; 

Carnahan et al., 1999). Carnahan et al. (1999), for example, observed that although stability of 

asphaltenes varies with the nature of the resins, it increases linearly with the amount of the 

resins. These findings are also supported by the results of Hammami et al. (1998). Leon et al. 

(2000), however, did not observe any positive relationship between bulk composition of the 

dispersion medium and the stability of asphaltenes in crude oils.  Pereira et al. (2007), on the 

other hand, concluded from their findings that resins, depending on their nature, could have 

both stabilising and destabilising effect on asphaltenes; resins with low tendency to self-

associate could stabilise asphaltenes, otherwise destabilisation could occur as adsorbed resins 

could be providing attractive surfaces for aggregation to proceed. There is also evidence that 

electrostatic repulsion probably contributes to stabilisation of the asphaltenes in solution 

(Neves et al., 2001). 

1.2.3 Precipitation behaviour of asphaltenes 

Irrespective of the physical form in which asphaltenes exist in the oil/maltene matrix, it has 

been established that in the presence of nonpolar solvents (i.e.                n-alkanes), 

asphaltenes tend to aggregate, form clusters and flocculate thereby precipitating out of 

solution. This is true even in dilute solutions. Furthermore, the precipitation process is 

accompanied by adsorption and co-precipitation of other non-asphaltene components such as 

resins and hydrocarbon waxes (Ekulu et al., 2005). Hence the characteristics, including texture, 

of the asphaltenes precipitated tend to also depend on the type and quantity of the solvent 

used (Hammami et al., 1995). 

Empirical observations suggest that the precipitation of asphaltenes occurs in stages in accord 

to the so-called Yen Model (Mullins, 2007). Evdokinov et al. (2006), using different techniques, 

show that asphaltene monomers start to aggregate, possibly into dimers and trimers, at 

concentrations below 10 mg/l. This appears to be followed by the formation of the so-called 

nanoaggregates possibly from the dimers and trimers. The threshold concentration above 

which the nanoaggregates form is termed the critical nanoaggregation concentration (CNAC) 

so far detected only using High Q-ultrasonic spectroscopy (Figure 1.5 (a)) (Andreatta et al., 

2007; Andreatta et al., 2005a; Andreatta et al., 2005b).  Although the CNAC varies with 
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different oils from as high as ca 400 mg/l to as low as 50 to 150 mg/l (Badre et al., 2006), the 

apparent specific volumes of the nanoaggregates is in the order of 0.8 cm3/g.  

The next stage of the aggregation process is the formation of even bigger aggregates, often 

referred to as micelles, apparently from the nanoaggregates. This is said to occur above 

threshold concentration called the critical micelle concentration (CMC) (Figure 1.5 (b)). Though 

this has not been detected by ultrasound spectroscopy, it has been observed through many 

other methods including calorimetry (Andersen and Christensen, 2000; Andersen and Birdi, 

1991), vapour pressure osmometry (Yarranton et al., 2000), NIR spectroscopy (Oh et al., 2003; 

Mullins, 1990), small-angle scattering (Shue and Storm, 1995), surface and interfacial tension 

measurements (Yarranton et al., 2000; Mohamed et al., 1999; Shue and Storm, 1995). In 

general, it was observed that the CMC is dependent on the nature of the asphaltenes and the 

solvent used.  Furthermore, the size of the aggregates formed increases with decrease in 

asphaltene concentration and increase with amount of the precipitating solvent added (Neves 

et al., 2001). 

  
Figure 1.5: Plots showing the detection of the concentration thresholds at which the two known 
aggregation stages set in; (a) Critical nanoaggregation concentration (Andreatta et al., 2005b), and (b) 
critical micelles concentration for two different asphaltenes (A1 & A2) (Oh et al., 2003). 

Physical examination of the aggregation of asphaltenes shows that growth of the aggregates 

follows a pattern: from spots to string to small flocs and finally to large fractal-like flocs. The 

lag time before appearance of the precipitate appears to be concentration dependent with 

higher concentration having shorter lag time (Angle et al., 2006; Speight and Moschopedis, 

1981).  

1.3 Molecular Size and Weight 

Many investigations have been carried out on the size, shape and molecular weight of 

asphaltenes. The results are however anything from being consistent and are thus subject of 

intense debate (Herod et al., 2008; Mullins et al., 2008; Badre et al., 2006) which is a clear 

indication of the variability and complexity of these materials (Speight and Moschopedis, 

1981). Different methods for molecular weight determination tend to give grossly different 

results and consensus is yet to be achieved (Mullins, 2009; Strausz et al., 2008; Bunger and Li, 

1981). 

In a review on the molecular nature of asphaltenes, Speight and Moschopedis (1981) reported 

asphaltene molecular weight values of up to 300,000 amu using ultracentrifuge method; and 

between 80,000 to 140,000 amu using osmotic pressure and monomolecular film methods. 
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Other techniques such as ebullioscopic method, viscosity determinations, light adsorption 

coefficients, cryoscopic method, and vapour pressure osmometry give much lower values in 

the range of 1,000 to 5,000 amu.  There is however a general recognition of the fact that 

asphaltenes form aggregates, whose formation is not only dependent on the nature of the 

asphaltenes but also on solvent polarity, concentration and temperature. The observed high 

molecular weights could therefore be of such aggregates (Speight and Moschopedis, 1981). 

Mass spectrometric methods using various ionisation techniques including field ionisation, 

field desorption, electrospray, atmospheric pressure photoionisation, and laser desorption 

give molecular weights in the range between 400 to 1400 amu with mean value at about 800 

amu (Mullins, 2009; Mullins et al., 2008). This is corroborated by results using other methods 

such as time-resolved fluorescence depolarisation, Taylor dispersion diffusion, fluorescence 

correlation spectroscopy and nuclear magnetic diffusion. Although this may seem conclusive, 

some workers still contend that the molecular weight is in the range of several thousands, and 

methods that show otherwise (as outlined above) detect only the low molecular weight 

components and are incapable of detecting the macro components (Morgan et al., 2009; 

Herod et al., 2008; Strausz et al., 2008). 

The general geometry of the asphaltene ring system is a largely pericyclic sheet of 4 to 10 

(Badre et al., 2006) or 10 to 20 (Groenzin and Mullins, 1999) fused rings although coal 

asphaltenes are said to be significantly smaller than petroleum asphaltenes. Fluorescence 

depolarisation method has been used by Groenzin and Mullins (1999) to observe a strong 

correlation between the size of fused ring system of asphaltenes and the absolute size of the 

molecule. The asphaltene diameter varies between 10 and 20 Å (Groenzin and Mullins, 1999) 

although Badre et al. (2006) reported an absolute molecular size of ca 12 Å for petroleum 

asphaltenes and even smaller size for coal asphaltenes. 

1.4 Chemical Composition and Structure 

Asphaltenes principally consist of carbon, hydrogen, nitrogen, oxygen and sulphur. The 

proportion of each element however varies slightly with source and the precipitating solvent 

used (Speight and Moschopedis, 1981). Carbon and hydrogen vary within a narrow range of 

82±3% and 8.1±0.7%, respectively. Nitrogen, oxygen and sulphur are however more variable: 

0.6 to 3.3%, 0.3 to 4.9% and 0.3 to 10.3% respectively. The H/C ratio is generally low 

(1.15±0.05) suggesting condensed aromatic structures with heteroatomic units (Speight and 

Moschopedis, 1981).  

Various methods, including infrared spectroscopy, X-ray diffraction and chemical degradation, 

have been employed to investigate the structure of asphaltenes (Yen et al., 1984; Yen et al., 

1961). Although some aspects of the structure of asphaltenes is still being debated (Section 

1.3), there appears to be agreement that it consists of an aromatic core with appendages (and 

contentiously bridges?) made of aliphatic chains (Speight and Moschopedis, 1981). 

Spectroscopic methods including NMR and IR, suggest the aromatic core consists of condensed 

aromatic rings (Figure 1.6). The geometry of the aromatic core has been shown by carbon X-

ray Raman spectroscopy to be the more stable pericondensed rather than catacondensed ring 

system (Bergmann et al., 2003; Gordon et al., 2003).  However, rather than pure hydrocarbon, 

the core is heteroatomic with other elements, principally oxygen, nitrogen and sulphur, 

dispersed in the aromatic core. 
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Oxygen occurs predominantly in the form of phenolic hydroxyl group and quinones together 

with ketones (Speight and Moschopedis, 1981). The distribution of nitrogen and sulphur has 

been studied using X-Ray Absorption Near Edge Structure (XANES), a very sensitive and 

selective method that discriminates between different nitrogen and sulphur species (Mitra-

Kirtley and Mullins, 2007; George and Gorbaty, 1989).  It has been found that all the sulphur 

exist in the form of thiophene, sulphide and sulphoxide with the relative proportion of each 

being dependent on the nature of the asphaltenes. In the eight samples (from USA, Canada, 

Kuwait and France) studied by Waldo (1992), it was observed that sulphoxide is dominant 

(44%) in only one sample; others show about 10% or less. The overall dominant sulphur 

species, however, are the reduced sulphide (16-43%) and thiophene (36-67%) with the latter 

always being greater than the former in the ratio 1.2 to 3.4. Other sulphur species such as 

sulphone and sulphate are about 4% or less. 

In contrast, almost all the nitrogen in asphaltenes is in the form of aromatic pyrrolic and 

pyridinic species with little or no saturated amine. In the seven asphaltenes samples from 

different sources studied by Mitra-Kirtley et al. (1993b), 65 to 80% of the nitrogen is in pyrrolic 

form while pyridinic nitrogen varies between about 20 to 30%. The saturated amine is 

generally less than 4%. Furthermore, unlike in kerogen and bitumen, no pyridonic nitrogen 

(and quaternary nitrogen) was observed in petroleum asphaltenes (Mitra-Kirtley et al., 1993a; 

Mitra-Kirtley et al., 1993b). 

The nature of the appendages attached to asphaltene condensed heteroaromatic core has also 

been investigated. Coleman (1995) using NMR and IR has estimated that the average chain 

length per alkyl side chain varies with sample but is between about 3 to 7. This is corroborated 

by the work of Peng et al. (1999a), who, using Ruthenium Ion Catalysed Oxidation (RICO), show 

the predominance of short chain alkyl groups although homologues up to C32 were also 

observed.   The presence of the high molecular weight alkyl homologues as side chains in 

asphaltenes has also been shown using pyrolysis-GC/MS (del Rio et al., 1995).  The alkyl groups 

in asphaltenes are linked to the aromatic core via a number of different bonds. Ether, ester 

and sulphide linkages have all been identified. The vast majority of the alkyl groups, however, 

appear to be bonded through C–C linkage (Peng et al., 1997). 

The most controversial issues concerning asphaltene science, apart from molecular weight but 

related to it, is whether asphaltene macromolecules are monomeric or polymeric. The 

polymeric hypothesis is supported by Peng et al. (1997) who observed that the high molecular 

weight asphaltene (HMA) fraction of Athabasca asphaltene, unlike the low molecular weight 

asphaltene (LMA) fraction, consist of core fragments linked via S-bridges and upon 

desulphurisation, the HMA breakdown into the composite cores with significant decrease in 

molecular weight corresponding to generation of the monomeric units. This is, however, in 

direct contradiction with the conclusions of Badre et al. (2006) and other workers (see Mullins 

et al. (2007)) who argued that the so-called polymeric structure is inconsistent with their 

observations from various techniques (see Section 1.3). 
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Figure 1. 6: Hypothetical structure of asphaltenes of different origins; (a) showing inter-aromatic core 
linkages, and (b) showing no such linkages (Cimino et al. (1995)) 

 

1.5 Biomarkers in Asphaltenes 

Biomarkers are geochemical fossils – trace organic compounds in sedimentary organic matter 

(SOM), such as bitumen, kerogen, coal and oil, which are directly derived from their biological 

precursors (see Figure 1.7 for example). These compounds are often indicative of the biota 

from which the SOM formed and consequently are widely used in geochemical investigations 

(Killops and Killops, 2005; Peters et al., 2005b; Peters et al., 2005a; Hunt, 1995). 

As in all other fractions of crude oils, biomarkers have been found in asphaltenes. In general, 

asphaltene biomarkers can be grouped into broad two classes. The first group consists of 

biomarkers that are chemically bound via covalent bonds and are therefore part of the 

asphaltenes structural network. These are probably the ‘true’ asphaltene biomarkers. The 

other group consists of biomarkers that are essentially not asphaltenic compounds and are 

simply physically trapped within the asphaltene structural network, possibly, during formation 

of the asphaltenes, and/or following precipitation of the asphaltenes from solution. 
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Figure 1.7: Illustration of transformation of biological compounds into geochemical fossils 
(biomarkers). (a) Shows bactraiohopanepolyols resulting in hopanes, and (b) sterols resulting in 
steranes (Peters et al., 2005a). 

Investigation of trapped biomarkers appears to have been first made by C. M. Ekweozor 

(Ekweozor, 1986; Ekweozor, 1984) using chemical degradation (sodium/naphthalene) to break 

down the asphaltenes and release the trapped biomarkers. A possible problem with 

Ekweozor’s method however lies in the precipitation/purification of the asphaltenes. The 

asphaltenes were precipitated according to the method of Speight (1984) without further 

Soxhlet extraction to removed adsorbed maltene components. This problem was however 

addressed by Liao and co-workers (Liao et al., 2006a; Liao and Geng, 2002) with the revival of 

the occlusion hypothesis (see Chapter 4 for further discussion). These authors used hydrogen 

peroxide/acetic acid reagent for the chemical degradation of the Soxhlet-extracted 

asphaltenes aromatic moieties in order to release the physically trapped biomarkers (Liao et 

al., 2006b). 

Almost all molecular components found in the maltene fraction of oils have been also found in 

asphaltenes as physically trapped or co-precipitated components. Bowden et al. (2006) 

observed the presence of n-alkanes, steranes, hopanes and tricyclic terpanes in asphaltenes 

fraction of Jet Rock as well as other fractions of the bitumen extract albeit with clear 

differences in concentration and distribution. They noted asphaltenes and resin fractions 

contain much lower proportion of biomarkers than free hydrocarbon and kerogen fractions. 

However, extended tricyclic terpanes (>C30) are relatively more prominent in the asphaltenes 

and resins than in the free aliphatic fractions (Bowden et al., 2006). Both sterane and hopane 

isomerisations have been noted to be hindered in asphaltenes and other macromolecules. In 

addition, diasteranes do not appear to be present in asphaltenes (Bowden et al., 2006; Peng et 

al., 1997). 

Biomarkers covalently bound to asphaltenes have also been investigated using a wide range of 

methods depending, and more or less specific, to the nature of the chemical bond involved 

(Peng et al., 1997; Mojelsky et al., 1992). GC amenable compounds (often after derivatisation 

or conversion to hydrocarbons), include linear/branched alkanoids such as alkanes, alkanoic 

acids etc, have been observed through these procedures. Traditional biomarkers such as 
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steroids, hopanoids as well as tricyclic and tetracyclic terpenoids have also been observed. 

These biomarkers, particularly those obtained through ruthenium ion catalysed oxidation, 

have been shown to have potential in oil/oil correlations (Ma et al., 2008). The bound 

biomarkers, particularly those bound via C–C bond linkage, are considered in more detail in 

Chapter 6. 

1.6 Research Problem 

Despite the great deal of work on asphaltenes, the transformation and variation of 

composition of asphaltenes from similar and different oils and source rocks are still unclear. 

Many important questions still unanswered include: What is the relationship amongst 

asphaltenes from different sources? Are there any differences/similarities amongst 

asphaltenes of different ages, maturities and depositional environments? Are there any 

differences between source rock and reservoired oil asphaltenes? Answers to these questions 

could greatly help in understanding asphaltenes and in developing correct models for 

predicting their properties as well as in using them for geochemical applications such as 

correlations, palaeoenvironmental investigations etc. 

1.7 Aim and Objectives 

The main aim of this work is to characterise the composition of the asphaltenes from different 

geochemical histories in order to have a deeper insight into their probable differential origins 

and explore possible geochemical applications for such differences. Specific objectives of the 

project include: 

1. to investigate the adsorption/occlusion hypothesis of asphaltenes with the aim of 

ascertaining the validity of the hypothesis 

2. to investigate the bulk composition of asphaltenes using mid-infrared Fourier 

transform infrared spectroscopy 

3. to characterise aliphatic moieties particularly the bound biomarkers in asphaltenes 

4. to investigate variations in composition of asphaltenes with their geochemical histories  

5. to explore the potential of using the bulk composition of asphaltenes in 

discrimination/correlation of asphaltenes from similar and/or different sources 

6. to exploit the bound biomarker content of asphaltenes in discrimination/correlation of 

asphaltenes 

1.8 Relevance 

This work provides fairly deep information on genesis and composition of asphaltenes. This is 

of geochemical importance as asphaltenes, being resistant macromolecules, could preserve 

information of correlation and palaeoenvironmental importance. Furthermore, more data on 

the variability of chemical compositions of asphaltenes would in turn enhance accuracy in 

modelling their physical properties in solutions and their behaviour in refinery processes; and 

this is vital information in designing ways to tackle production, transport and refinery 

problems associated with them.  
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1.9 Scope and Delimitation 

The work is confined to characterisation of the chemical composition and structure of 

asphaltenes for the purpose of achieving the stated objectives. Consequently, asphaltenes 

from source rocks (black shales), coal and petroleum will be used in this work. However, 

physical properties, including molecular weights, of asphaltenes will not be covered. 

For the purpose of this work, asphaltenes are considered to be components of petroleum 

(including heavy oils or bitumens) and bitumens from coal and black shales that are insoluble 

in n-pentane, n-hexane or n-heptane but excluding co-precipitated components such as 

hydrocarbon waxes and resins which are removed by Soxhlet extraction with the precipitation 

solvent for at least 48 hours. 
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Chapter 2 Materials and Methods  

2.1  Introduction 

This chapter gives a brief description of the samples used in this study and the methods used 

to prepare the samples for analysis. The conditions of instruments used to acquire the 

data/results presented are also fully described. The chapter is therefore divided into three 

major sections accordingly. Note, however, information on some of the samples is not 

provided because of data protection agreements.  

2.2 Description of Samples 

In general, a total of 57 samples, including 19 black shales, 34 oils and 4 coal samples were 

used in this work. The oil samples were obtained from different geographical areas and ages 

(Table 2.1). Twenty two of the oils were obtained courtesy of Fugro-Robertson Ltd. Dr Howard 

Armstrong of Durham University, UK provided the Tanezzuft and Batra black shale samples. 

The Kimmeridge mudstone and the 4 coal samples were provided by my supervisor, Dr Geoff D 

Abbott. These samples are briefly described below. 
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Table 2. 1: List of oils used in the study 

Sample ID Reservoir age Source rock age Field Country 

A39 - Jurassic - Abu Dhabi 

AR3 - - - U. States 

B58 Miocene-
Pliocene 

Oligocene/Miocene Habigong Bangladesh 

BN - Jurassic - U. Kingdom 

C26 Ordovician Ordovician Midale Canada 

C30 Ordovician Ordovician Midale Canada 

CH - - - Canada 

K77 Cretaceous Jurassic Raudhatain Kuwait 

K78 Cretaceous Jurassic Sabriyah Kuwait 

NA1 - - Gaj Serbia 

NA2 - - Gaj Serbia 

NB - - - Nigeria 

O28 Cretaceous Cretaceous Natih Oman 

O31 Cretaceous Cretaceous Natih Oman 

PR1 - - - U. States 

Q49 Cretaceous Jurassic Al Shaheen Qatar 

Q61 Late Jurassic Jurassic Bul Hanine Qatar 

U01 - Jurassic Kittiwake U. Kingdom 

U02 Carboniferous Jurassic Flora U. Kingdom 

U04 L. Plaeocene - - U. Kingdom 

U05 - Jurassic Kittiwake U. Kingdom 

U07 Jurassic Jurassic Fergus  U. Kingdom 

U14 Upper Jurassic Jurassic Ettrick  U. Kingdom 

U16 - Jurassic Captain U. Kingdom 

U32 Tertiary Jurassic Nelson U. Kingdom 

U54 Upper Jurassic Jurassic Ettrick  U. Kingdom 

U56 Jurassic Jurassic  Alder U. Kingdom 

U59 Statjord Jurassic Bruce U. Kingdom 

U68 U. Paleocene Jurassic - Norway 

U84 Paleocene Jurassic Nelson U. Kingdom 

U89 - Jurassic Britannia U. Kingdom 

U93 Jurassic Jurassic Gannet west U. Kingdom 

UFN - Jurassic - U. Kingdom 

Y32 Cretaceous Jurassic Hemiar Yemen 

 

2.2.1 Black shales 

The Tanezzuft black shale (Lower Silurian) core samples were obtained from well H29 logged 

on the 18th of December, 2005 in the H field NC-115 concession in Murzuq Basin which is 

located in the southwest of Libya, about 500 km from Tripoli (Figure 2.1 (a)). Forty eight 

samples were collected from the core on 19th of December, 2005 at about 10 cm intervals from 

the base of the 5 m thick ‘hot’ black shale (Figure 2.1(b)). The base of the formation starts at 

depth of about 4884 ft (1488.64 m). The 16 rock samples used for asphaltene studies were 

selected following preliminary analysis of the 48 samples as described in Chapter 3. 
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Figure 2. 1: A map showing distribution of the Tanezzuft black shale in Marzuq Basin relative to other 
basins in Libya (Hallett, 2002); (b) A photograph of a section of the basal 'hot' black shale (4858 - 4861 
feet) from HC29-NC115 core (courtesy of Dr H Armstrong) 

Physical examination of the shales (Figure 2.1 (b)) shows that the first ca 1 m (from the base), 

consists of black shale with silty laminae and pyrite-rich silty blebs. This is followed by 

approximately another 1 m section of intensely fractured black shale with sandy nodules near 

the top. The middle section contains rounded pyritic sandstone blebs (about 1 cm long and 0.5 

cm wide), and graptolite fragments streaks and lenses of siltstone/fine sandstone are present 

but rare. The upper ca 2 m section consists of typical black shale with faint silty streaks and 

lenses on mm to sub-millimetre scale (Turner, 2006, personal communication). 

The basal Tanezzuft 'hot' shale in Murzuq basin has been estimated to have a generation 

potential of over 40 billion barrels of oil (Aziz, 2000) although by 2000 only about 5200 million 

barrels was discovered in place, out of which only about 31% is recoverable. This accounts for 

only 3.9% of total Libyan oil reserves (Hallett, 2002). By the year 2007 however the discovered 

recoverable reserves was in excess of 1.9 billion barrels (Sarkawi et al., 2007). 

The Batra ‘hot’ black shales, on the other hand, are Lower Palaeozoic, Late Ordovician shales 

deposited following Hirnantian to early Silurian deglaciation resulting in increased photic zone 

primary productivity with establishment of anoxic stratified water column resulting good 

preservation of the organic matter (Armstrong et al., 2009). The two samples, B348 and B372 

(from core depths of 34.8 & 37.2 m above the base of the formation, respectively) used in this 

work were from 18 m section of the formation from Wadi Batn el Ghul well BG14. The samples 

are immature (Tmax = 419 °C) with Type II (HI = 267 mgHC/gC; TOC = 3.89%) marine organic 

matter (Armstrong et al., 2009; Muhammad, 2004). The black shale samples used in this study 

are listed in Table 2.2. 

Table 2. 2: List of black shale samples used in the study 

Sample Height above base (m) Age Basin Formation  Country 

T01 0.0 Silurian Murzuq Tanezzuft Libya 

T02 9.1 Silurian Murzuq Tanezzuft Libya 

T05 36.4 Silurian Murzuq Tanezzuft Libya 

T07 54.6 Silurian Murzuq Tanezzuft Libya 

T10 81.9 Silurian Murzuq Tanezzuft Libya 

T15 131.0 Silurian Murzuq Tanezzuft Libya 

T19 171.0 Silurian Murzuq Tanezzuft Libya 

T24 222.2 Silurian Murzuq Tanezzuft Libya 
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T28 263.8 Silurian Murzuq Tanezzuft Libya 

T32 318.4 Silurian Murzuq Tanezzuft Libya 

T35 345.7 Silurian Murzuq Tanezzuft Libya 

T38 373.0 Silurian Murzuq Tanezzuft Libya 

T39 382.1 Silurian Murzuq Tanezzuft Libya 

T43 422.1 Silurian Murzuq Tanezzuft Libya 

T46 452.1 Silurian Murzuq Tanezzuft Libya 

T48 472.1 Silurian Murzuq Tanezzuft Libya 

KMS - Jurassic - Kimmaridge U. Kingdom 

B348 34.8 Ordovician Batn el Ghul  Batra Jordan 

B372 37.2 Ordovician Batn el Ghul  Batra Jordan 

 

2.2.2 Northsea oils 

A total of sixteen (16) Northsea oils, out of which only two (2) were biodegraded, were used in 

this study. The oils were obtained from different wells and reservoirs (Appendix 1A). Brief 

descriptions of these oils are given below based on their respective locations. 

Three samples; two from Palaeocene reservoir (U78 & U84) and one from Tertiary reservoir 

(U32), were from Nelson Field. The field consists of four Blocks, namely 22/11, 22/6a, 22/7 and 

22/12a, in the UK Central Northsea. The oil accumulation is mainly in the Palaeocene Forties 

Sandstone member. The Field has about 420 to 450 MMB of low sulphur recoverable oil with 

density of about 40.6 °API (Kunka et al., 2003). The Nelson oil is believed to be sourced from 

the mature Jurassic Kimmeridge Clay Formation in the East and the West Forties Basins mainly 

about 50 to 10 Ma ago during Middle Eocene and Miocene (Kunka et al., 2003; Will and 

Peattie, 1990). 

Only one sample (U07) was obtained from Fergus Field. The field is a small satellite field 

located in north-eastern part of Block 39/2a, about 5 km SE of the much bigger Fife Field. The 

field has 16.3 million barrels of initial oil in place. The recoverable reserve is however 

estimated at 11.3 million stock tank barrels (MMSTB). The reservoir is the Late Jurassic Fife 

Sandstone Member. The oil is sweet and light (36.4 °API) and was sourced from the Upper 

Jurassic organic rich shale of the Kimmeridge Clay Formation in the southern Central Graben 

(Shepherd et al., 2003). 

Furthermore, one oil sample (U02) was obtained from Flora Field. The field splits between 

Blocks 31/26a and 31/26c of the UK sector of the Northsea. It is about 325 km southeast of 

Aberdeen and about 14 km northeast of the Fergus oilfield. The reservoir is the Upper 

Carboniferous Flora Sandstone. The oil, light (38.2°API) and undersaturated, is a mixture of oils 

sourced mainly from Upper Jurassic Kimmeridge Clay Formation in the Central Graben to the 

north of the field and the laterally equivalent Farsund and Mandal Formations of the Dutch él 

Basin to the east. The field was discovered in 1997 with 69 MMSTB in place (Hayward et al., 

2003). 

The Captain Field (about 38 km2) is the source of one oil sample (U16). The field is located in 

Block 13/22a, about 129 km northeast of Aberdeen. The reservoir is the Late Aptian (Early 

Cretaceous) Captain Sandstone member of the Valhall/Wick Sandstone Formation. The oil, 
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originally considered to be a typical Northsea black oil, was biodegraded in the Tertiary and is 

relatively heavy with 19 - 21 °API gravity. It was sourced from Kimmeridge Clay Formation from 

both the West Halibut Basin and Smith Bank Graben possibly in the early Tertiary. The Field 

was discovered with 1000 MMB oil-in-place (Pinnock and Clitheroe, 2003). 

Other oils from the Northsea that have been used in this study are listed in Appendix 1A.  

2.2.3 Oman oils 

The two oils (O28 & O31) from Oman were obtained from the Natih oil field (Figure 2.2 (a)). 

The field was discovered in 1963 and has about 475 million m3 of oil in place (Alsharhan and 

Nairn, 1997). The Natih Formation (344 to 450 m thick) is dominantly open-marine carbonates 

and is lithologically divided into 7 units ( namely Unit A to G) with the middle part of Unit B and 

basal part of Unit E as the source rocks and Units A, C, D and E as the reservoirs (Terken, 1999; 

Alsharhan and Nairn, 1997). The most important source rock however is the 50 m-thick Unit B 

with average TOC of about 5% and hydrogen index of 200 to 600 mgHC/gTOC indicating good 

to excellent quality Type I/II kerogen with potential for petroleum generation (Terken, 1999). 

The oils have about 32 °API gravity and 1.0 to 1.13% sulphur content (Alsharhan and Nairn, 

1997) with geochemical characteristics that are distinct from other oils in Oman (Grantham et 

al., 1990; Grantham et al., 1988).  

2.2.4 Kuwait oils 

The two Kuwait oils, K77 and K78 (Appendix 1A) were obtained from Raudhatain and Sabriyah 

oil fields located in the northern region of Kuwait (Figure 2.2 (b)). Raudhatain field, discovered 

in 1955 produces 28 - 40 °API oil from Cretaceous reservoir; and Sabriyah field, discovered in 

1956, produces 28 - 32 °API oil from mid Cretaceous Burgan and Mauddud reservoirs (Abdullah 

and Connan, 2002; Carman, 1996).  

  
Figure 2. 2: Map showing the location of (a) the Natih field, the source of the two oils from Oman 
(Abdullah and Connan, 2002); and (b) the Raudhatain & Sabriyah fields from which the Kuwait oil 
samples were obtained (Terken, 1999). 

The 120 – 275 m thick Late Jurassic Sulaiy Formation and the overlaying 120 – 360 m thick 

Early Cretaceous Minagish Formation (both dominated by limestone lithology) are considered 

as the potential source rocks for these oils (Abdullah and Kinghorn, 1996) although this is still 

not established (Abdullah and Connan, 2002). 
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2.2.5 Qatar oils 

The two oils, Q49 & Q61, from Qatar were obtained from offshore fields namely Al Shaheen 

and Bul Hanine (Figure 2.3 (a)) respectively. The Al Shaheen Field, in Block 5 offshore Oman, 

was discovered in 1974 although production started in 1994. It has five reservoirs although the 

dominant one is the mid-Cretaceous Kharaib Formation. The oil produced is heavy and sour 

with density of 30 °API and sulphur content of about 1.9% (Al-Siddiqi and Dawe, 1999).  The 

Bul Hanine Field, on the other hand, was discovered in 1965 but production started in 1972. 

The Late Jurassic Arab D limestone is the most prolific reservoir here with initial oil in place of 

2.4 billion barrels with 36 °API gravity (Alsharhan and Nairn, 1997). 

 
 

Figure 2. 3: Maps showing the location of (a) the two oil fields, Al Shaheen and Bul Hanine, from 
where the two oils from Qatar were obtained; and (b) location of Hemiar oil field from where the 
single oil sample from Yemen was obtained (Murphy, 2007). 

The Upper Jurassic Jubailah (0.5 - 3.5% TOC) and Hanifa (1.0 - 6% TOC) Formations have been 

established a the main source rocks for almost all the oils in Qatar oil fields (Alsharhan and 

Nairn, 1997). However, the basal part of the Arab D reservoir, underlying the Hanifa and 

Jubaila formations, is organic rich (0.43 - 8.55% TOC) and mature to be a possible additional 

source rock for the oils (Al-Saad and Ibrahim, 2005). 

2.2.6 Yemen oil 

The oil Y32 was obtained from Hemiar field discovered in 1991 (Special, 1998). The field is 

located in about the middle of eastern half of Yemen in a group with six other fields (Alsharhan 

and Nairn, 1997). It produces heavy oils with gravity in the range of 18.0 to 22.0 °API (Special, 

1998). All the Yemen oils are believed to be sourced from Amran Group - a Middle Jurassic 

single bituminous black shale although there are other potential source rocks (Alsharhan and 

Nairn, 1997). 

2.2.7 Other oils 

Details of ten oil samples are not fully disclosed as requested by the supplier. Two of these oils 

(AR3 & PR1) were from the Gulf of Mexico; three oils (C26, C30 & CH) are from Canada, and 

one each from Bangladesh (B58) and Abu Dhabi (A39). Two heavy oils (NA1 & NA2) were from 

Pannonian Basin, Serbia (Stojanovic et al., 2009). A bitumen sample (NB) from Southwest 

(Ondo State) Nigerian bitumen deposit was generously provided by Mr Abubakar B/Kebbi of 

Waziri Umaru Polytechnic, B/Kebbi. The bitumen has been characterised by Adebiyi and 

Omode (2007). 
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2.2.8 Coal samples 

The four coal samples (C04, C56, C69 & C15) used were provided by Dr Geoff D Abbott, 

Newcastle University, UK. Sample C15 was obtained from Harvey Beaumont seam, County 

Durham. It is Westphalian A and B Coal Measures in the Northumberland Coalfield and has 

been to contain about 0.85 to 2.25% total sulphur and 0.3 to 1.7% pyritic sulphur (Turner and 

Richardson, 2004). Samples C04, C56 and C69, on the other hand, were obtained from Brent 

coal, Northsea from depths of 1891.60, 2781.50 and 3293.10 m, respectively. The vitrinite 

reflectances (Ro) of the coals were previously determined to be 0.40, 0.56, 0.69 and 1.50% for 

C04, C56, C69 and C15, respectively. 

2.3  Methods of Sample Preparation 

This section describes the various procedures used in processing the 'raw' samples into a form 

that is amenable for analysis. Often procedures were adopted to reduce the complexity of the 

analytical samples to help identification of the components.  

2.3.1 Powdering of rock and coal samples 

Prior to extraction of bitumen from black shales or coals, the rock/coal samples are powdered. 

This increases the surface area of the sample thereby increasing the degree of contact 

between the sample and the extraction solvent. The powdering of the rock samples was done 

using a Tema mill and the powdered samples were stored in glass jars. The mill was washed 

with detergent, rinsed with distilled water and then dried before powdering each sample. 

2.3.2 Extraction of bitumen from the black shale and coal samples 

There are three methods for extraction of bitumen from carbonaceous samples: (1) In Soxhlet 

extraction method ‘fresh’ solvent (from continuous evaporation and condensation) at 

temperature above ambient temperature is continuously recycled through the powdered rock 

to extract the soluble components. (2) In Accelerated Solvent Extraction (Buckley et al., 1998), 

hot solvent is forced through the powdered rock at high pressure to effect extraction. (3) In 

ultrasonic extraction, on the other hand, high frequency (>20 kHz) sound waves are 

continuously passed through the rock/solvent mixture to aid dissolution of the soluble 

components into the solvent. Although all the methods have comparable efficiencies, the last 

two are faster. 

The kind and quantity of the extractable components are dependent on the kind of solvent 

used and the timing of extraction. Different solvents are used by different laboratories. In 

general, however, fairly polar organic solvents or solvent mixtures are used. In common use is 

an azeotropic mixture of dichloromethane (DCM) and methanol (MeOH) (93:7, v/v). The timing 

of extraction also varies from about 24 to 72 hours depending on the extractability of the 

sample. 

In this work Soxhlet extraction was used. All materials, e.g. cellulose thimbles, cotton wool, 

were Soxhlet extracted (DCM, 24 hours) prior to their use in sample extraction. A known 

weight (±0.1 mg) of the powdered sample was extracted for 48 hours (72 hours for coal) with 

200 ml of DCM/MeOH mixture (93:7, v/v). Small amounts of activated copper turnings were 

added in the solvent to remove any free elemental sulphur which degrades GC columns. The 
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solvent was removed from the extract by rotary evaporation (30 °C, 25 mmHg) followed by 

drying under a stream of nitrogen until a constant weight was obtained. 

2.3.3 Precipitation and purification of asphaltenes 

(a) Precipitation of Asphaltenes 

As discussed in Chapter 1, asphaltenes are defined based on solubility properties (Speight and 

Moschopedis, 1981). The quantity and quality of asphaltenes vary with both the kind of 

solvent employed and the precipitation procedure adopted (Alboudwarej et al., 2002). Normal 

pentane, hexane and heptane are the common hydrocarbon solvents used for precipitation of 

asphaltenes from oils and bitumens although the latter is more commonly used. The 

precipitation procedure is usually based on the method of Speight (1984) which involves triple 

re-dissolution and re-precipitation after initial precipitation from oil or bitumen. In this work, 

n-hexane was mainly used for the precipitation of the asphaltenes for cost reasons and for the 

fact that the observed difference in yield between hexane and heptane is not as significant as 

that between pentane and hexane. However, n-pentane and n-heptane were also used to 

precipitate asphaltenes from three samples for comparison. 

Briefly, a known weight of oil/bitumen was added to a conical flask. It was then treated with a 

40-fold (w/v) excess of n-hexane in small increments portions with regular swirling. Bitumen 

and heavy oils were dissolved in 1 cm3 DCM before precipitating the asphaltenes with n-

hexane. The mixture was then stirred for at least 2 hours and then allowed to equilibrate for 

24 hours. The asphaltenes were recovered from the mixture by centrifugation at 3500 rev/min 

for 10 to 15 minutes. The asphaltenes were then re-dissolved in a minimum amount of DCM 

(about 1 to 2 cm3) and re-precipitated with 40-fold n-hexane. After about 30 minutes of 

stirring, the asphaltenes were recovered by centrifugation. This was repeated two more times 

and finally the asphaltenes were transferred into a pre-weighed glass vial with minimal volume 

of DCM. The excess solvent was removed by evaporation leaving about 1 cm3 which was then 

allowed to stand at ambient temperature until evaporation was completed leaving a residues 

of solid asphaltenes. 

(b)  Purification of asphaltenes 

Although Speight (1984) recommend only the triple re-dissolution and re-precipitation 

described above for purification of asphaltenes from the co-precipitated resins and waxes, this 

was observed to be inadequate (Alboudwarej et al., 2002). Consequently additional 

procedures such as ultrasonication, Soxhlet extraction etc. are used to remove the co-

precipitated substances from the asphaltenes. Alboudwarej et al. (2002) compared some of 

these procedures (except the latter) and concluded in favour of Soxhlet extraction of the 

asphaltene for 72 hours. This procedure was therefore adopted in this work. 

The dried asphaltenes were crushed with a spatula and extracted for between 24 and 240 

hours in pre-extracted (DCM, 24 hours) Whatman cellulose thimbles (1 x 10 cm) using the 

solvent used in the precipitation process. However, for the study of adsorption/occlusion 

properties of asphaltenes (Chapter 4), acetone was used for extraction of the asphaltenes to 

be consistent with the method of Liao et al. (2006b). 
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2.3.4 Fractionation of maltenes 

Prior to instrumental analysis such as GC and GC/MS, maltenes are often separated into broad 

compound classes namely: aliphatic hydrocarbons consisting of acyclic and cyclic alkanes 

(naphthenes); aromatic hydrocarbons consisting of pure aromatics, including polycyclic 

aromatic compounds (PAHs) and naphtho-aromatic compounds; and resins, which consist of 

both aliphatic and aromatic heteroatomic (mainly N, S and O) organic compounds. The 

separation generally improves instrument sensitivity and aids in the identification of the 

compounds. 

Traditionally column and thin layer chromatographic methods are used for fractionation of 

oils/bitumen and maltenes. These methods are relatively time consuming however. This led to 

the development of a rapid fractionation method (Bennett and Larter, 2000) that allows 

handling as many as ten samples at the same time. The method is a two-step process involving 

initial separation of resins from hydrocarbons on SPE column. The hydrocarbon fraction is then 

separated into aliphatic and aromatic fractions using agentation column chromatography with 

silver nitrate/Kieselgel 60G (AgNO3/SiO2) column (Bennett and Larter, 2000). This method was 

adopted for the analyses described in this thesis. 

In general, each ISOLUTE C18 column (500 mg/3 cm3; Kinesis Ltd.) was first cleaned with 4 cm3 

DCM, flushed with air and dried (60 ºC, 24 hours). Sample (50 to 60 mg) was weighed directly 

on the column and hydrocarbon and resin fractions were recovered with 4 cm3 n-hexane and 4 

cm3 DCM respectively. Deutrated n-hexadecane (Sigma-Aldrich) and 4-methyl biphenyl (Sigma-

Aldrich) were added in the hydrocarbon fraction as internal standards. The fraction was then 

concentrated to about 0.5 cm3 under stream of nitrogen gas. 100 to 150 μl was then loaded on 

to the AgNO3/SiO2 column pre-cleaned with 4 cm3 n-hexane. Aliphatic and aromatic fractions 

were recovered with 3 cm3 n-hexane and 4 cm3 DCM respectively.  The fractions were 

concentrated under stream of nitrogen gas to about 0.5 cm3 and transferred into GC vials for 

analysis. In each batch of 8 samples a blank control and a standard (Brent oil) sample was also 

separated. 

Slight modifications to the above procedure were made to conveniently separate some 

unusual samples. It was observed that desorbed components obtained from Soxhlet extraction 

of asphaltenes were not completely soluble in n-hexane and could not be suspended even 

after ultrasonication; and so could not be loaded on the C18 column for fractionation into 

hydrocarbon and resin fractions. To address this problem, DCM, instead of n-hexane, was used 

as eluent on AgNO3/SiO2 column, instead of C18 column. The fraction so obtained was dried 

under nitrogen gas and then re-dissolved in n-hexane, in which it dissolves. This solution was 

then loaded on another AgNO3/SiO2 column and aliphatic and aromatic fractions were 

collected as outlined above. This procedure was adopted after successful initial trials with one 

oil sample.  

The AgNO3/SiO2 column was prepared as follows (Bennett and Larter, 2000): About 30 g 

Kieselgel 60G (Merck) was thoroughly mixed with 60 cm3 5% aqueous AgNO3 (100%, Sigma-

Aldrich) solution in a conical flask. The flask, containing the slurry, was completely wrapped 

with aluminium foil (to protect the AgNO3 from photolysis) with only small holes to allow 

escape of water vapour. The slurry was left to dry in a drying cabinet (85 ºC, 7 days). The dry 
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lumps were then crushed into fine powder in a mortar and pestle. The powder was transferred 

back into the flask, covered with foil and kept in drying cabinet until required.  

The column was prepared in ISOLUTE Empty Reservoir (3 cm3, Kinesis Ltd.). An ISOLUTE Frit (20 

μm, 3 cm3/9 mm; Kinesis Ltd) was inserted into the reservoir and about 550 mg of the 

AgNO3/SiO2 adsorbent added. This was covered with another Frit. The adsorbent was then 

compacted to a thickness of about 1 cm with the help of a specially made cylindrical 

aluminium rod.  

2.3.5 Urea adduction 

Compound specific isotope ratio (CSIR) analysis requires good purification of the samples to 

avoid contamination of the isotopic data by co-eluting compounds. Consequently, in CSIR 

analysis of linear aliphatic hydrocarbons, cyclics are often separated from the acyclics, 

particularly n-alkanes. For this purpose, there are essentially two main methods in common 

usage namely: urea adduction and molecular sieving. Urea adduction has been used widely to 

separate n-alkanes from the cyclics and iso-alkanes (Murphy, 1969). The method is based on 

the observed phenomenon that as urea precipitates out of solution it exclusively traps n-

alkanes within its crystal lattice (forming clathrates) while the branched and cyclic compounds 

remain in solution. The method has been found to give comparable results to those from 

molecular sieving (Xu and Sun, 2005; Murphy, 1969) and was thus adopted in this study. 

About 10 to 20 mg of aliphatic fraction or methyl esters was dissolved in about 0.5 cm3 DCM in 

20 cm3 vial. Then about 10 cm3 of saturated urea (99.5%, BDH) solution in methanol was 

added. The mixture was placed in a refrigerator (below 0 °C,    6 hours). After the crystallisation 

was complete, the supernatant solution, containing the cyclic and branched compounds, was 

decanted and the crystals washed with cold n-hexane (10 cm3, x3) and then dried under 

stream of nitrogen gas. Then about 20 cm3 of deionised water was added to dissolve the 

crystals and then the released occluded linear compounds were extracted with n-hexane (10 

cm3, x3). The solvent was removed from the extract by rotary evaporation to about 2 cm3 and 

then further dried to about 0.5 cm3 under nitrogen before being transferred to GC vials for 

analysis. 

Where the cyclic compounds are of interest, for example in the identification hopanoic and 

steranoic acid methyl esters, the decanted solution is treated with        20 cm3 of water, 

extracted and concentrated as described above.  

2.3.6 Ruthenium ion catalysed oxidation (RICO) of asphaltenes 

RICO is a chemical technique that selectively oxidises aromatic ring structures into CO2 with 

the aliphatic moieties converted to fatty acids. It has been widely used to elucidate the 

aliphatic composition of geopolymers (Peng et al., 1999b; Stock and Tse, 1983). The active 

reagent, ruthenium tetroxide (RuO4), has been prepared and used in different forms (Lee and 

van den Engh, 1973). The in situ preparation, in which only catalytic amount of the ruthenium 

salt is used, is however more convenient and is now widely used for chemical oxidation of 

asphaltenes and other forms of sedimentary organic matter (Ma et al., 2008; Peng et al., 

1999a; Mojelsky et al., 1992). The method has good selectivity with respect to the products 

formed (Stock and Tse, 1983) and could therefore be used in reconstruction of the original 

structure. 
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The procedure adopted in this work is as follows: About 50 mg of the asphaltenes was 

dissolved in 4 cm3 DCM and 4 cm3 acetonitrile (BDH) was added. Then    5 cm3 of 12% aqueous 

sodium periodate (NaIO4) and then about 5 mg RuCl3.XH2O (Sigma-Aldrich) were added. After 

24 hours of magnetic stirring at room temperature (ca 20 oC), about 10 cm3 of DCM and 10 cm3 

methanol (to destroy excess oxidising agent) were added and the mixture was centrifuged 

(3500 rpm, 15 minutes). The supernatant was decanted and the residue washed with 10 cm3 of 

DCM and 10 cm3 of water.  The washings were combined with the supernatant and the organic 

phase, containing free carboxylic acids, was recovered. The solvent was removed from the 

organic phase by rotary evaporation (25 °C, 25 mmHg). Traces of water were removed by 

adding 5 cm3 of acetone and re-evaporating. Before analysis, the acids were derivatised into 

methyl esters as described in Section 2.3.10. 

2.3.7 Potassium permanganate oxidation of asphaltenes 

Potassium permanganate is a very strong oxidising agent which has been used in degradation 

polycyclic hydrocarbons (Gates-Anderson et al., 2001) and geopolymers such as kerogen and 

coal (Vitorovic et al., 1984; Ward et al., 1945). However it barely attacks saturated 

hydrocarbons (Lee and Spitzer, 1969; Stewart, 1965). This selectivity was taken advantage of in 

this work in order to break down the aromatic structure of asphaltene without attacking the 

saturated hydrocarbons that might have been trapped within the asphaltenes. 

The potassium permanganate oxidation of asphaltene was done as follows: About 100 mg of 

the asphaltenes was dissolved in 5 cm3 dichloromethane in a 100 cm3 conical flask. To this 

were added 20 cm3 of 0.1M aqueous potassium permanganate and 5 cm3 of 3% sulphuric 

acid. After 24 hours of continuous stirring at room temperature, 30 cm3 of deionised water 

was added and the mixture was extracted with dichloromethane (50 cm3, x3). Internal 

standard (deutrated hexadecane) was added to the combine extracts before the solvent was 

rotoevaporated to about 5 cm3 and then to about 1 cm3 under nitrogen. This was then treated 

with 40 cm3 n-hexane and the insoluble material was removed by centrifugation (3,500 

rev/minute, 10 minutes). The n-hexane soluble material was recovered and solvent reduced to 

1 cm3 and aliphatic hydrocarbons isolated by column chromatography as described in Section 

2.3.4. 

2.3.8 n-Butylsilane reduction 

This is a very versatile method that reduces most of the oxygen-based functionalities such as 

hydroxyl, carbonyl, carboxylic acid, and ester (Nimmagadda and McRae, 2006b; Nimmagadda 

and McRae, 2006a) into the corresponding hydrocarbon and ether (in case of ester) as 

illustrated in Figure 2.4, without any effect of carbon skeleton of the compound involved. The 

method has been used to elucidate the backbone structure of fulvic acids by reduction of the 

polar functional groups thereby making it amenable for GC/MS analysis (Nimmagadda and 

McRae, 2007). 

In this work, the method was used to reduce carbonyl and carboxylic functional groups in 

asphaltenes sample in order to eliminate aliphatic side chains with terminal carboxylic group 

as an alternative/additional source of ,-dicarboxylic acids observed in RICO products 

(Section 6.3.3 (c)). For this purpose, 137.4 mg of the asphaltene sample (NBA) from the 

Nigerian biodegraded bitumen (NB) was dissolved in 3 cm3 dry toluene (Sigma-Aldrich) in a 100 
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ml three-neck round-bottomed flask. This was fitted with a condenser and the two side arms 

and condenser closed with septa. The system was flushed with nitrogen for about 30 minutes. 

Then about 10 mg of tris(pentafluorophenyl)borane [B(C6F5)3] (Sigma-Aldrich) dissolved in 2 

cm3 toluene was introduced via a syringe. After about 30 minutes of mixing with a magnetic 

stirrer, 500 μl n-butylsilane ( 97.0%, Sigma-Aldrich) was introduced. The reaction was allowed 

to proceed at room temperature for 24 hours under static nitrogen atmosphere maintained 

with the help of a balloon (Leonard et al., 1995). 

 
Figure 2. 4: Chemical equations showing reduction of oxygen functional groups by n-butylsilane to 
corresponding hydrocarbon structures (Nimmagadda and McRae, 2006a). 

After the 24 hours of reaction, the solvent was removed by rotary evaporation and the 

asphaltenes were precipitated as described in Section 2.3.3. The reduction was repeated on 

the precipitated residual asphaltenes as described above. After this about 101.3 mg 

asphaltenes were recovered by precipitation. Portions of the asphaltene, before and after 

reduction, were prepared and analysed by FTIR as described in Sections 2.3.11 and 2.4.7 

respectively, and the remaining analysed by RICO (Section 2.3.5) followed by GC/MS (Section 

2.4.5). 

The reduction procedure used here is modified from Nimmagadda and McRae (2007) after 

successful trials on model compounds: A mixture of stearic acid (53.2 mg), cholestrol (43.4 mg) 

and ergosterol (48.6 mg) was treated, as described above, with     5 mg [B(C6F5)3] and 300 l n-

butylsilane. After 24 hours the reaction mixture was diluted to 20 ml with DCM. 3 cm3 was 

then column chromatograph (5 g silica) and the hydrocarbon products eluted with 70 cm3 n-

hexane and analysed on GC/MS. Dry toluene was used as solvent for the reaction instead of 

dry dichloromethane as using the later requires the reaction to be done in the dark to avoid 

photolytic production of HCl from DCM which has been observed to seriously retard the 

reaction (Nimmagadda and McRae, 2006a). 
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2.3.9 Extraction of acids from oils and bitumen 

Acidic compounds in crude oils and bitumen (commonly referred to as naphthenic acids) occur 

mainly as carboxylic acids consisting of aromatic and aliphatic (both cyclic and acyclic) 

structures. They occur in relatively small proportions depending on the maturity and 

biogeochemical history of the oil; often immature and biodegraded crudes tend to have 

relatively high proportions of the acids (Lochte and Littman, 1955). Consequently, the free acid 

contents of some of the oil samples were analysed to investigate whether there was any 

significant contributions from the free acids to the RICO acid products. 

Methods employed for extraction of the acids from the crude oils and bitumen are based on 

the principles of acid/base reaction in which direct saponification (Behar and Albrecht, 1984; 

Costantinides and Arich, 1967) or a base adsorbent is used to chemisorbed the acids (perhaps 

as salts) from the oil medium. The acids are then recovered from the adsorbent using a 

stronger acid solvent to reverse the process. The most common adsorbent used is potassium 

or sodium hydroxide on silica (Ramljak et al., 1977; Douglas and Powell, 1969) or silicic acid 

(Farrimond et al., 2002; McCarthy and Duthie, 1962). However, recently our laboratory has 

developed and optimised a new method based on quaternary amine ion exchange 

chromatography (Jones et al., 2001). Although the method is lengthy, requiring up to 24 hours 

for completion, up to about ten separations can be handled simultaneously which makes it a 

method of choice where many samples are to be analysed. This method was therefore 

adopted in this work.  

About 400 mg of oil sample was placed in a vial and 10 μl of surrogate standard (β-cholanic 

acid (Sigma-Aldrich), 1 mg/cm3) was added. This was then applied to a pre-cleaned (10 cm3 

hexane followed by 10 ml 1:1 hexane/DCM) SAX quaternary amine (10 g) SPE 6 cm3 column 

(International Sorbent Technology) with the help of small aliquots of DCM and hexane. The 

non-acid components were then eluted with 20 cm3 of hexane/DCM mixture (1:1) followed by 

25 cm3 of DCM. The acids were eluted with 30 cm3 of 2% (v/v) formic acid (Sigma-Aldrich) in 

diethyl ether (Sigma-Aldrich) followed by 20 cm3 of 5% (v/v) formic acid in diethyl ether. The 

acid solution was then evaporated to about 1 cm3 using rotary evaporator at room 

temperature. This was then transferred into a vial, dried under a stream of nitrogen, and 

allowed to stand overnight until the odour of formic acid no longer detected. Before analysis, 

the acids were derivatised as described in Section 2.3.10. Deutrated hexadecane was added as 

internal standard. 

2.3.10 Esterification of acids 

Carboxylic acids are polar compounds with strong intermolecular hydrogen bonds. This makes 

them fairly non-volatile and therefore non-GC amenable and hence the need for derivatisation 

to improve their volatility. Although there are many GC amenable derivatives of carboxylic 

acids (e.g. silyl esters, methyl esters, etc), their esters with alkanols, and particularly methanol 

(methyl esters), are not only the most common (making identification much easier), they are 

also easy to prepare. 

There are a number methods of preparing methyl esters of carboxylic acids (Christie, 2006; 

Knapp, 1979). In geochemical studies diazomethane and boron trifluoride are the most 

common methods employed. The former is particularly rapid and efficient especially in the 

presence of catalytic amount of methanol. It however requires dedicated/special apparatus 
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and requires special training for safety reasons. Boron trifluoride, on the other hand, is 

inefficient in methylation of aromatic acids. In this work sulphuric acid was used to catalyse the 

esterification of the acids in methanol (Christie, 2006). 

About 1 ml DCM was used to transfer the acids into a boiling tube. Then 7 cm3 of 2 % 

concentrated sulphuric acid (98%, BDH) in methanol was added with few anti-bumping 

granules. The mixture was refluxed on a test tube heater for 3 hours. After cooling, 10 cm3 

water was added and the methyl esters were extracted with DCM       (10 cm3, x3). The esters 

were dried over sodium sulphate (>99%, Sigma-Aldrich), and the excess solvent removed using 

a rotary evaporator (20 °C, 25 mmHg) to about 2 cm3 and reduced further to about 0.5 cm3 

under nitrogen. The esters were transferred into a GC vial for analysis. Deutrated hexadecane 

(~2 mg/cm3) was added (50 μl) as internal standard. 

The esterification method was adopted following trial on standard compounds. A mixture of 

stearic acid (3.9 mg) and isophthalic acid (4.9 mg) was esterified and treated as described 

above, and analysed on GC. The conversion was found to be 100% and 93.8% respectively after 

2 hour of reflux. 

2.3.11 Preparation of samples for FTIR analysis 

There are many sampling techniques that can be used for FTIR analysis of samples depending 

on the nature of the sample (Smith, 1996). However, by far the most common methods 

employed KBr pellets (transmission mode) and Diffuse Reflectance (DR). The most important 

advantage of the former is that the absorbance so obtained is directly proportional to the 

concentration of the absorbing species according to the Beer-Lambert law. Quantification is 

easy and straightforward if absorbtivity is known. This sampling technique was therefore used 

for analysis of the asphaltenes using FTIR. 

The samples were prepared as follows: About 5 mg of the asphaltene was mixed with ~ 495 

mg of potassium bromide (99.5% IR Spectroscopic grade, Sigma-Aldrich) to give an optimal 

concentration of about 1% (w/w). The mixture was grounded into a fine powder with agate 

mortar and pestle (International Crystal Laboratory) until crystals of KBr are no longer visible 

and the mixture tends to stick to the mortar (Smith, 1996). The powder was wrapped in 

aluminium foil and kept in dessiccator until required for analysis. A blank, consisting of only 

KBr, was also prepared similarly. The mortar and pestle were washed with DCM and wiped 

with tissue before every sample was prepared. All samples were analysed within one week of 

being prepared.  

The pellets were prepared using a 15 ton manually operated hydraulic press (Specac Ltd). 

About 200 mg of the sample/KBr powder prepared above was placed in a 13 mm standard die 

(Specac Ltd) sandwiched between to two 13 mm dies. The die system was centrally placed on 

the lower bolster pressing face and the top bolster pressing face was lowered to tightly hold 

the die component in place. The pressure release screw was then closed and 5 ton pressure 

was applied for 5 minutes before it was increased to 10 ton where it was held for 15 minutes. 

After this the pellet was recovered, wrapped in aluminium foil and kept in desiccator until 

required. The pellets were not oven dried to avoid thermally induced chemical changes in the 

samples. A blank pellet (KBr without sample) was prepared and treated similarly. 
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2.4 Analytical Methods 

2.4.1 Total carbon, hydrogen, nitrogen and sulphur analysis 

This involves quantification of relative amounts of carbon, hydrogen, nitrogen, and sulphur in 

powdered rock, coal and asphaltene samples. The analysis was done as a preliminary 

characterisation to find the relative proportions of the major elements in the samples. About 

100 mg of the powdered sample was weighed into special ceramic cup and 100 mg of tungsten 

(VI) oxide (Elementar R22), which facilitates the combustion process, was added. A standard 

sample (sulfadiazine) was prepared similarly; about 75 mg of sulfadiazine (99.0%min., Sigma-

Aldrich; 47.99%C, 22.37%N & 12.81%S) was weighed into a cup without the accelerator. The 

blank was an empty ceramic cup.  

The analysis was done with Elementar Vario Max CNS instrument fitted with auto-sampler. The 

instrument was first calibrated by several analyses of a standard sample. Furthermore, a 

standard was analysed after every ten analytical samples. The average value obtained from the 

analysis of two blanks was subtracted the averages of both the standard and the analytical 

samples. Replicate anslysis (n=16) of the standard sample (sulfadiazine) revealed the standard 

deviation were respectively ±0.46%, ±0.23% and ±0.76%; and relative error were 0.44%, 0.55% 

and 2.09% for carbon, nitrogen and sulphur respectively. 

Analysis of carbon, hydrogen, nitrogen and sulphur in asphaltenes was carried out by Mr J R 

Baron using a Carlo Erba 1108 Elemental Analyser controlled with CE Eager 200 software at 

Advanced Chemical and Materials Analysis (ACMA), Newcastle University, UK. The results of 

the elemental analysis are in Appendix 2A. 

2.4.2 Total organic carbon analysis 

Total organic carbon (TOC) is the common form in which the relative amounts of organic 

matter in sediments is expressed. It is determined using many methods although dry 

combustion is the most accurate, reliable and rapid (Bisutti et al., 2004). The variant of the 

method used in this work involves complete combustion of the decarbonated sample at 1000 

– 1100oC in stream of O2 to convert any organic carbon (OC) into CO2 which was then 

quantified.  

The powdered rock sample was first decarbonated as follows: About 100 mg of the sample 

was weighed into ceramic filtering crucible (Alpha AR 8028) and 2 cm3 of 50% (v/v) HCl (BDH 

AnalaR, 38.4%, & 1.18 specific gravity) was added and allowed to stand in hood. When all the 

acid solution percolated through the crucible, about 2 cm3 of deionised water was added to 

wash off the excess acid. This was repeated five more times before the samples were dried in 

an oven (105 °C) for at least 5 hours. Each sample was prepared and analysed in duplicate. 

The TOC was determined using a LECO CS-244 Carbon and Sulphur Determinator. The 

instrument was first calibrated using eight LECO carbon and sulphur steel calibrating samples 

(%C = 0.834±0.005 %S = 0.0044±0.0003). A ring of the calibrating sample was placed in a 

ceramic crucible and 1.2 g of tungsten accelerator (SL 266, Sci Lab Analytical) was added to 

facilitate combustion. This was combusted in the determinator at O2 flow pressure of 2.4-2.6 

bar. The analytical samples were analysed similarly; in addition the tungsten accelerator about 

0.6 g of iron chip accelerator (AR 077, Sci Lab Analytical) was however added to facilitate 
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ignition. A calibrating sample was analysed after analysis of every six analytical samples to 

ensure the determinator performs within calibration. Repeatability and bias of the method 

based on replicate analysis (n = 17) of the calibrating sample were 0.8497±0.0050% and 

0.6870%, respectively. 

2.4.3 Rock-Eval pyrolysis 

Rock-Eval pyrolysis is used to identify the type and maturity of organic matter and assess it 

petroleum potential. The method involves gradual thermal cracking of sedimentary organic 

matter in the absence of O2 and then measurement of the amount of the products 

(pyrolysates) evolved. Depending on the instrument used the pyrolysates are divided into S1, 

the ‘free’ component (~bitumen); S2, the kerogen component; and S3, the carbon dioxide 

from organic matter. These are used to calculate the hydrogen index (HI), a measure of 

type/quality of the organic matter; and the petroleum generation index (PI). The temperature 

at the peak of S2 generation is also recorded as Tmax. Both Tmax and PI are measures of 

maturity of the organic matter. Rock-Eval pyrolysers of versions latter than Rock-Eval II (e.g. Oil 

Show Analyzer) do not measure S3 but splits the S1 into gas and oil components. 

In this work Oil Show Analyser Multichrom CH10 was used for analysis of the black shale and 

coal samples. About 100 mg of the powdered sample was weighed into pyrolysis crucible. The 

analysis was done in accordance with the method of Peters (1986). Briefly, the sample was 

gradually heated in a helium atmosphere to 300 °C where it was held for 3 minutes. The 

temperature was then programmed at 25°C/minute to 550°C. The pyrolysates were quantified, 

using flame ionisation detector (FID), as volatile gas component and oil component (S1), and 

pyrolysed non-volatile organic matter (S2). Tmax (in °C) was also recorded. 

Each sample was analysed in duplicate and the average value calculated. Blank (an empty 

crucible) and in-house reference standard (352/123; TOC=5.15%, S1=0.27 mg/gRock, S2=13.59 

mg/gRock & Tmax=430°C) were analysed prior to every 22 crucibles of samples. In general, 

bias of the method was less than 1% for all parameters and repeatability, based on replicate 

analysis (n=10) of sample T1, was 432±2oC for Tmax, 8.41±0.36 mg/gRock for S1 (taken as sum 

of the gas and oil peaks) and 45.07±2.34 mg/gRock for S2. Hydrogen index (HI) and petroleum 

generation index (PI) were computed from equations 2.1 and 2.2, respectively. 
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2.4.4 Gas chromatography (GC) 

GC is a molecular separation technique for separation of mixtures of organic compounds that 

can be volatilised without decomposition. The technique involves sweeping the mixture over a 

stationary phase (held in a column) with a mobile phase (carrier gas). The differential 

interaction between the components of the mixture and the two phases results in differential 

speeds through the column and therefore differential time at which they exit the column. As 

the components more or less individually exit the column, they are detected using a detector 
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such a flame ionisation detector or a thermal conductivity detector. The signal is used to 

produce a response versus retention time graph (chromatogram) with peaks representing 

individual components. 

In this work, GC was mainly used for preliminary analysis prior to GC/MS or GC/IRMS for 

quality control purposes. The instrument used was an HP 5890 series II gas chromatograph 

equipped with an HP-5 capillary column (30 m x 0.25 mm) with 0.25 μm thick dimethyl 

polysiloxane stationary phase. The GC oven was temperature programmed to 50 °C where it 

was held for 2 minute, and ramped at 4 °C/minute to 300 °C where it was held 20 minutes. 

Hydrogen was used as the carrier gas at approximate flow rate of 2 ml/minute with initial 

pressure of 100 kPa. Acquisition of the data was with Atlas software on an HP desktop 

computer. 

2.4.5 Gas chromatography/mass spectrometry (GC/MS) 

GC/MS is a technique in which GC is joined to mass spectrometer (MS). The GC separates a 

mixture into individual compounds and as each compound elutes out of the GC column, it 

passes into the mass spectrometer where the molecules are ionised (often by electron 

impact). Some of the primary ions so generated may further undergo fragmentation 

generating secondary ions the kind of which is dependent on the structure of the compound. 

These ions are separated and analysed by the spectrometer giving a unique signature of the 

original compound that can be used to reconstruct its molecular structure (Kitson et al., 1996). 

This is the full scan mode. In selected ion monitoring (SIM) mode only a few fragment ions of 

interest are monitored with added advantage of sensitivity but the mass spectra is lost. 

Aliphatic and aromatic hydrocarbon fractions of oils and bitumen and as well as methyl esters 

of carboxylic acids were analysed using GC/MS.  The instrument was a Hewlett-Packard 6890 

GC, with split/splitless injector (280 °C), linked to a Hewlett-Packard 5973MSD mass 

spectrometer set at electron ionisation energy of 70 eV; source temperature of 230 °C; 

quadruple temperature of 150 °C;  multiplier voltage of 2000 V; and interface temperature of 

310 °C. The acquisition was controlled by a HP computer on Chemstation platform. All samples 

were analysed in selected ion monitoring mode (SIM) set to monitor ions of interest with a 

dwell time 35 ms per ion. A few samples were, however, analysed in full scan mode covering 

the range 50 to 550 amu in order to obtain the mass spectra of compounds for identification.  

The GC was equipped with a fused silica capillary column (30 m x 0.25 mm i.d) coated with 

0.25 μm dimethyl polysiloxane (HP-5ms) phase. The GC was temperature programmed as 

follows: held for 5 minutes at 40 °C, and then ramped at 4 °C/minute to 300 °C where it was 

held for 20 minutes. The carrier gas was helium with a flow rate of approximately 1 

cm3/minute and initial pressure of 50 kPa while split at 30 ml/minute. The sample (1 μl) in 

DCM or n-hexane was injected by an HP7683 autosampler and the split opened after 1 minute 

to vent the solvent. 

2.4.6 Compound specific isotope ratio analysis (CSIR) 

CSIR analysis is a technique used to measure the relative proportions of the stable isotopes of 

an element in a chemical compound. This isotopic signature may give an insight into the 

biosynthetic path for the compound and possibly the organism that synthesised the 

compound. It therefore provides an additional tool for possible discrimination of compounds 
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of different sources. The most common method used for CSIR analysis is the GC/IRMS. The GC 

separates the mixture into the composite individual compounds. As each compound elutes, it 

is combusted into CO2 that is then passed to mass spectrometer which then separates and 

measures the relative proportion of the two main isotopically different CO2 molecules based 

on their molar masses (44 for 12CO2 versus 45 for 13CO2). The isotopic signature of the 

compound, expressed in the per mil (‰) unit, is universally calculated relative to the 

international standard Vienna Peedee belemnite (VPDB) from equation 2.3. The technique was 

used in this work to determine the δ13C of n-alkanes and n-alkanoic acid methyl esters from 

some samples for the purpose of comparison and discrimination.  
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The GC/IRMS analysis was performed on a Thermo Electron Trace Ultra GC equipped with 

split/splitless injector (280 °C) via a Combustion III Interface linked to a Thermo Electron Delta 

V Plus IR-MS set at electron ionisation energy of 70 eV; source temperature of 230 °C; quad 

temperature of 150 °C; multiplier voltage of 2000 V and interface temperature of 310 °C. The 

acquisition was controlled by a Dell computer using Isodat software, initially in carbon mode 

monitoring the 13/12 ratio of CO2.  

The sample (1 μl) in hexane was injected by a CTC autosampler and the split opened after 1 

minute. The GC was temperature programmed from 50 to 320 °C at 5 °C/minute and held at 

320 °C for 6 minutes. The carrier gas was helium at 1 ml/minute, initial pressure of 50 kPa and 

split at 20 ml/min. The solvent peak was diverted to the FID and CO2 reference gas was pulsed 

into the mass spectrometer and after 7 minutes the back flush valve directed the split sample 

via the combustion furnace (940 °C) and reduction furnace (650 °C) into the mass 

spectrometer and the isotope ratio measured. Chromatographic separation was performed on 

a fused silica capillary column (30 m x 0.25 mm i.d.) coated with 0.25 μm dimethyl polysiloxane 

(HP-5) stationary phase. The acquired data were processed using the Isodat dynamic 

background integration Workspace software to give the peak retention times and isotope 

ratios as δ13C values. The data were also stored on DVD for any further processing, integration 

or printing. 

Accuracy of the measurements was monitored by analysing a standard mixture of methyl 

esters of fatty acid (C16 to C25) of known δ13C values before and after analysis of analytical 

samples. The error and deviation are generally within acceptable limits (Table 2.1). 
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Table 2.3:  Summary of statistical analysis of stardard methyl esters of aliphatic acid mixture δ
13

C 
analysis  

Carbon number C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 

Actual values -30.5 -31.0 -31.0 -33.1 -32.2 -29.0 -32.8 -31.7 -33.2 -28.5 -32.9 -28.5 -32.1 -31.0 -33.1 

Measurement 1 -31.2 -32.1 -32.0 -34.0 -33.3 -30.1 -33.6 -32.2 -34.2 -29.0 -33.5 -29.0 -32.9 -31.7 -33.6 

Measurement 2 -31.1 -30.6 -30.9 -33.3 -32.8 -29.8 -33.2 -32.2 -33.9 -29.3 -33.7 -29.3 -32.8 -29.2 -35.0 

Measurement 3 -30.9 -31.1 -31.2 -33.4 -32.7 -29.5 -33.1 -31.6 -32.9 -28.4 -32.7 -28.7 -32.2 -31.1 -33.5 

Mean -31.1 -31.3 -31.4 -33.6 -32.9 -29.8 -33.3 -32.0 -33.7 -28.9 -33.3 -29.0 -32.6 -30.7 -34.0 

Standard Dev. 0.2 0.8 0.6 0.4 0.3 0.3 0.3 0.3 0.7 0.5 0.5 0.3 0.4 1.3 0.8 

Rel. error (%) 1.9 0.9 1.2 1.4 2.3 2.8 1.5 0.9 1.4 1.4 1.2 1.8 1.7 -1.1 2.8 
 

2.4.7 Fourier transform infrared spectroscopy (FTIR) 

FTIR is a powerful analytical method for identification and quantification of many 

functionalities in a chemical system (Smith, 1996; Nakanishi, 1962). The method has various 

sampling techniques (Smith, 1996) of which transmission and diffuse reflectance (DRIFTS) are 

widely used. In the former, an IR beam (Io) incident on sample (in KBR pellet or sealed cell) is 

partly absorbed and partly transmitted (I). The absorbance (Ao) is directly proportional to 

concentration (c) of the absorbing group in accordance with the Beer-Lambert's law (equation 

2.4). This quantification however requires absorptivity (i.e. the proportionality constant, ε), 

which varies with the chemical environment of the absorbing group.  
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The asphaltene samples were analysed in transmission modes. The pellet was held in place 

using a special pellet holder which was then slotted in place on the Smart Transmission E.S.P 

holder. A pure KBr pellet was used as background which was automatically subtracted from 

each spectrum. Repeatability of the method was based on replicate (x3) analysis of a sample 

(K78) each prepared as other analytical samples (2.3.11). Precision of the measurements was 

determined by triplicate analysis of a single sample (U54). 

The instrument used was Thermo Nicolet Nexus 870 FTIR spectrometer (Thermo Nicolet Corp.) 

with DTGS KBR detector and XT-KBr beam splitter with aperture of 69 and Autogain mode. The 

spectral quality check facility was set on for automatic detection of any abnormality during 

analysis. Each spectrum was acquired in mid-infrared region (400 - 4000 cm–1) by co-adding 70 

scans at a resolution of 4cm–1. The data acquisition was carried out with OMNIC 6.1a (Thermo 

Nicolet Corp.) software on Dell desktop computer. 

2.4.8 Solid-state nuclear magnetic resonance spectroscopy 

Nuclear magnetic resonance spectroscopy is a very powerful analytical technique in structure 

elucidation of chemical compounds. The technique exploits the magnetic properties of 

spinning nuclei (e.g. 13C and 1H) and the effect of that on the electron clouds of the nearby 

atom in the molecule to derive information on the structure of the chemical compound 

(Lambert and Mazzola, 2003). Although NMR was originally developed to study compounds in 

the liquid phase, development of solid-state NMR has widen the applications of the technique 

to the study of insoluble materials such as polymers, coal, kerogen etc. (Sfini and Legrand, 

1990; Tekely et al., 1990; Vassallo et al., 1987). Bulk structural parameters of asphaltenes have 

also been investigated using the technique (Calemma et al., 1998; Calemma et al., 1995). In 
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this work the technique was employed to complement FTIR bulk characterisation of the 

asphaltenes. 

The solid-state NMR analysis was performed at Durham University, EPSRC National Solid-state 

NMR Research Service, on a Varian VNMRS 400 spectrometer using a double-resonance (H-X) 

MAS probe equipped with a 4 mm rotor. The resonance frequencies for 1H and 13C NMR were 

399.88 and 100.56 MHz, respectively. The Soxhlet extracted asphaltene samples were used 

without further preparation. The sample rotor was spun at 12 kHz. A pulse repetition delay of 

2 s was used and a cross polarization (CP) contact time of 0.50 ms was applied for all the 

experiments. Modulated (TPPM) decoupling was carried out at a nutation frequency of 76 kHz. 

Spectral referencing is with respect to external neat tetramethylsilane. 
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Chapter 3 Characterisation of the Samples  

3.1 Introduction 

Sedimentary organic matter and carbonaceous materials (including bitumen, kerogen, oil and 

coal) are products of geological transformation of terrestrial and marine biomass.  Although 

the original biological composition is significantly altered through the transformation 

processes (i.e. diagenesis, catagenesis and metagenesis), the resulting substances may still 

contain 'fossilised' information that can be used to distinguish the substances based on their 

sources, depositional condition and environment as well as degree of transformation (Killops 

and Killops, 2005; Tissot and Welte, 1984). Consequently, over the years geochemical tools 

have been developed for characterisation of  sedimentary organic matter (Peters et al., 2005a; 

Peters et al., 2005b; Hunt, 1995). This chapter describes a comprehensive use of these 

traditional organic geochemical tools to characterise the samples used in this work in order to 

provide foundation for discussion of the information obtained from the asphaltene presented 

in the subsequent chapters of the thesis.  

3.2 Methodology 

All the samples were characterised based on the chemical composition of the aliphatic and 

aromatic fractions of the oils and bitumen after precipitation of the asphaltenes (Section 

2.3.3). The maltenes were fractionated into aliphatic hydrocarbon, aromatic hydrocarbon and 

resin fractions as described in Section 2.3.4. The fractions were analysed by GC and GC/MS 

(Section 2.4.4 and 2.4.5). Identification of compounds of interest was achieved using the mass 

spectra and relative retention times with the help of literature (Peters et al., 2005a). 

In addition to visual examination of the chromatograms, various source, age and maturity 

related biomarker indices were computed using peak areas of the compounds from the 

relevant selected ion mass chromatogram as recommended by Peters et al. (2005a). 

Interpretation of the results obtained was based on established procedures as reported in the 

literature (Peters et al., 2005a). Furthermore, the multivariate statistical tools in Minitab® 15 

Statistical Software (Minitab Inc.) platform were used to comprehensively analyse the 

multivariate data. 

3.3 Results and Discussion 

3.3.1 Black shale samples 

(a)  Bulk geochemistry 

Table 3.1 summaries the elemental analysis and Rock-Eval pyrolysis results from the 48 

samples from Tanezzuft black shales. The black shale is generally carbon rich with average 

total carbon of 21 wt % and a minimum of over 11 %. With TOC value of about 20 wt %, most 

of the total carbon is organic; the ‘carbonate’ carbon being only 0.80±0.14 wt %. The observed 

maximum TOC value (25.26%) is about 34 % higher than the value reported by Aziz (2000) and 

Lüning et al. (2000) as the maximum in the concession NC115. Furthermore, with minimum 

value of about 8 wt % and mean value of 9.75 wt %, sulphur is relatively high. However, 
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compared to carbon and sulphur, nitrogen, with uniform value of about 1 wt %, is relatively 

low in these samples.  

Table 3.1:  Summary of bulk elemental analysis and Rock-Eval pyrolysis results of the Tanezzuft black 
shale sample (n = 48)* 

  C (%) N (%) S (%) TOC (wt %) Tmax S1  S2  HI  PI 

Mean 20.49 0.81 9.75 19.70 432.0 9.69 47.81 243.0 0.17 

Stdev 2.38 0.10 1.76 2.24 2.0 1.15 5.22 14.0 0.01 

Max 26.94 1.07 17.48 25.26 439.0 13.39 62.18 276.0 0.19 

Min 11.46 0.42 7.61 11.25 429.0 5.64 31.02 222.0 0.15 

*C, N, S and TOC are in wt %; Tmax in °C; S1 and S2 in mgHC/gRock; and HI in mgHC/gTOC. Stdev = 
Standard deviation; Max = Maximum value; Min = Minimum value. 

The Rock-Eval pyrolysis parameters are surprisingly low considering the high TOC values 

recorded (Table 3.1). This is clear from the relatively low hydrogen index (HI) values with 

maximum value of 276 mgHC/gTOC and average value of about 243 mgHC/gTOC. Moreover, 

with uniform values of about 0.2, the petroleum generation index (PI) is also low and agrees 

with the Tmax values, which show a maximum Tmax value of 439 °C and average value of 432 

°C. 

  
Figure 3. 1: Cross-plots of (a) total carbon versus total organic carbon (TOC) (R

2
 = 0.98), and (b) total 

nitrogen versus TOC (R
2
 = 0.85) showing positive correlation between the parameters. 

The total carbon and nitrogen correlate with TOC (Figure 3.1). A similar relationship between 

TOC and total nitrogen was observed by Nara et al. (2005) in 23 ka old Lake Hovsgol sediments. 

The total sulphur versus TOC relationship, on the other hand, does not appear to correlate 

with TOC (Figure 3.2). This lack of relationship is common in both recent and ancient 

sediments (Hofmann et al., 2000; Leventhal, 1995; Berner, 1984). Furthermore, both Rock-Eval 

pyrolysis S1 and S2 also positively correlate with TOC (R2 = 0.67, R2 = 0.76; p < 0.05) as shown 

in Figure 3.2. 
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Figure 3. 2: Cross-plots of (a) total sulphur versus total organic carbon (TOC) showing no signifcant 
correlation (R

2
 = 0.17), and (b) S1 and S2 from Rock-Eval pyrolysis versus TOC (R

2
 = 0.67 and 0.77, 

respectively). 

Temporally, the total carbon, TOC and total nitrogen show similar variation and general 

increase up-section (Figure 3.3). It is interesting to note that although the total sulphur does 

not correlate with TOC (Figure 3.3), the three highest values of total sulphur correspond to 

minima and maxima of TOC (Figure 3.3). Furthermore, there is also a general increase in the 

total sulphur up-section although to a lesser extend compared to the TOC and total nitrogen. 

Conversely, the TOC/N ratio shows an even more pronounced general decrease up-section 

(Figure 3.3). Based on the observed temporal variation in the bulk geochemistry of the 

samples, sixteen samples were selected for molecular geochemical study and asphaltene 

compositional investigation by FTIR (Chapter 5). These samples represent the major spikes in 

TOC and sulphur and other intermediate samples. 
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Figure 3. 3: Line plots showing temporal variation total organic carbon (TOC), total nitrogen, total sulphur, TOC/N as well as Rock-Eval S1, S2 and hydrogen index (HI) 
with height (cm) above the base of the black shale. 
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(b)  Molecular geochemistry 

Results of molecular analysis of aliphatic and aromatic fractions of the selected 6 samples give 

further details on the geochemistry of the Tanezzuft 'hot' black shale. Figure 3.4 show a typical 

TIC of the aliphatic fractions. The chromatogram is dominated by n-alkanes (C10 to C33) with 

positively skewed (maxima between C12 and C17) unimodal distribution. Isoprenoids, 

particularly pristane (Pr) and phytane (Ph), are relatively low in all the samples. 

 
Figure 3. 4: TIC of the aliphatic fraction showing the n-alkane, the dominance of the C12 to C16 
homologues and relatively small isoprenoids (integer = carbon number of the n-alkane, Pr = Pristane & 
Ph = Phytane). 

Figure 3.5 shows a typical distribution of the cyclic terpanes from m/z 191 mass chromatogram 

of the aliphatic fraction. The distribution is dominated by the tricyclic terpanes (Figure 3.5 (a)) 

followed by the hopanes, Ts (i.e. C27 18α(H)-22,29,30-trisnorneohopane), C29 and C30 hopanes. 

The 17α(H),21β(H) isomers are dominant over other isomers. The homohopanes are generally 

low and C34 and C35 homohopanes are only barely detectable in some samples. Sample T46 has 

barely detectable cyclic terpanes particularly the hopanes. Amongst the homohopanes, the 

22S isomers are slightly dominant over their biological 22R counterparts (Figure 3.5 (b)). This 

terpane distribution is similar to that observed in the coeval Saudi Arabian Qusaiba Member 

which is the main source of Palaeozoic petroleum of the Central Province of Saudi Arabia (Cole 

et al., 1994).  
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Figure 3. 5: m/z 191 mass chromatogram showing tricyclic, tetracyclic and pentacyclic terpanes in 
aliphatic fractions of Tanezzuft ‘hot’ shale bitumen. (See Appendix 6A for Assignment). 

The m/z 217 mass chromatogram comprising the regular and rearranged steranes is 

dominated by the C21 5(H)α,14β(H),17β(H) (i.e. pregnane) and C22 5(H)α,14β(H),17β(H) (i.e. 

homopregnane) isomers (Figure 3.6 (a)). The C29 sterane is the dominant homologue (albeit 

slightly over C27) amongst the C27 to C29 extended steranes. The rearranged diasteranes are also 

abundant and dominated by the 13β(H),17α(H) isomers. There is a general slight dominance of 

the 20S epimer over the biological 20R amongst the C27 to C29 homologues (Figure 3.6). The 

C28/C29 steranes ratio with average value of 0.45 (Appendix 3A) being less than 0.5 is in 

agreement with Lower Palaeozoic source rocks (Grantham and Wakefield, 1988). The steranes 

are in general proportionally greater than the hopanes as illustrated by sterane/hopane ratio 

being in the range of 1.5 to 4.0 (Appendix 3A). 

  

Figure 3. 6: A typical m/z 217 mass chromatogram showing typical distribution of the steranes in 
aliphatic fractions of Tanezzuft ‘hot’ shale bitumen. (See Appendix 6B for Assignment) 

 

(c) Thermal maturity 

Maturity is the extent of thermal transformation of sedimentary organic matter. It is estimated 

using optical, Rock-Eval and molecular tools (Hunt, 1995; Peters, 1986; Tissot and Welte, 

1984). The shales’ average Tmax and PI values of 435 oC and 0.10 respectively indicate the 

organic matter is in the early maturity stage (Peters, 1986). This is supported by the unimodal 

distribution of the n-alkanes (Figure 3.4) and distributions of the steranes and hopanes 

(Figures 3.5 and 3.6) as well as the molecular maturity parameters (Appendix 3B). Both 
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average values of 20S/(20S+20R) sterane and 22S/(22S+22R) homohopane ratios (0.51 and 

0.54 respectively, Appendix 3B), are below the respective equilibrium values of 0.55 and 0.60 

which are established at the early maturity stage (Seifert and Moldowan, 1986). Furthermore, 

the CPI values being generally greater than 1 (Appendix 3A) indicate the early maturity of the 

shales (Peters et al., 2005a; Bray and Evans, 1961). Although the aromatic 

methylphenanthrene (MPI), the associated calculated vitrinite reflectance (Rc) and PP-1 values 

(Appendix 3B) may suggest higher maturity, this is possibly an over estimation similar to 

observations of Radke et al. (1982) and Cassani et al. (1988) that the distribution of these 

compounds is often affected by migration and lithology. 

 (d) Depositional condition and environment 

Anoxia is a condition of zero (or low) oxygen that develops following water stratification and 

depletion, without replacement, of dissolved oxygen due to aerobic oxidation of biomass. It is 

characterised by fine lamination of sediment, due to absence of benthic feeders, and pyrite 

framboids formed from reaction of hydrogen sulphide with reactive iron (Wignall, 1994). The 

Tanezzuft black shales have all these characteristics indicating deposition under stratified 

anoxic water column. This probably explains the relatively high amounts of sulphur observed in 

the shales (Table 3.1) and is supported by the anomalously high TOC/N ratio. 
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Figure 3. 7: Plot of (a) dibenzothiophene/phenathrene (DBT/P) ratio against pristane/phytane (Pr/Ph) 
ratio (Hughes, 1984); (b) Ts/(Ts+Tm) versus Dia/(Dia+Reg) C27 steranes showing the Tanezzuft ‘hot’ 
shales as marine shales deposited under anoxic condition (Moldowan et al., 1994). 

Although it has been observed that sediments deposited under oxic condition show S/TOC 

ratio of about 0.40 while values greater than 0.40 with positive intercept of the sulphur-axis is 

characteristic of deposition in anoxic condition, sometimes anoxic sediments display an 

independent relationship between sulphur and TOC (Dean and Arthur, 1989; Berner, 1984). 

This situation has been observed in both recent (e.g. Black Sea (Berner and Raiswell, 1983) and 

ancient (e.g. Cretaceous, (Dean and Arthur, 1989)) sediments. It occurs when pyrite formation 

is limited by availability of detrital reactive iron minerals; a situation found in distal settings 

where the sediment is mainly calcareous (Berner, 1984) or when sulphate reduction 

overwhelms the reactive iron supply. This was possibly the situation during deposition of the 

Tanezzuft basal 'hot' shales. As shown in Figure 3.2 there is no correlation between the sulphur 

and TOC (cf: Leventhal, (1995) and Hofmann et al., (2000)) indicating the sediments were 
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deposited in anoxic condition in which reactive iron was limited or overwhelmed. This is 

further supported by molecular data. 

The position of the samples in Figure 3.7 (a) and (b) is consitent with marine shales deposited 

in anoxic depositional setting (Moldowan et al., 1994; Hughes, 1984). Furthermore, Moldowan 

et al. (1994) have shown, using data from marginally mature Toarcian source rocks, that the 

relative position of samples on Pr/(Pr+Ph) versus C27 Dia/(Dia+Reg) steranes can be used to 

discriminate among anoxic carbonates, anoxic shales and suboxic strata. Figure 3.8 (b) is a 

similar plot for samples analysed in this work and the position of the samples clearly 

corresponds to anoxic shales as shown by other proxies discussed above. 

  
Figure 3. 8: Cross-plot of (a) Pr/(Pr+Ph) vs. Dia/(Dia+Reg) C27 steranes showing the samples within the 
anoxic shales region of the graph; and (b) S2 versus TOC showing the kerogen typing. The regression 
line represents the normal marine relationship. 

 

(e)  Nature of the organic matter 

Although the type and source of organic matter in black shales or sedimentary rock has been 

traditionally studied by direct examination under microscope, other geochemical proxies that 

adequately give this information have been developed. For example, hydrogen index (HI) is 

commonly used to interrogate the nature of sedimentary organic matter (Peters, 1986). 

Accordingly, the Type II/III kerogen, observed in this 'hot' black shale (Figure 3.8 (b)), is often 

interpreted as a mixture of Type II, predominantly phytoplankton-based organic matter, and 

Type III, fairly oxidised marine organic matter and/or land plant-derived organic matter, 

kerogens (Hunt, 1995; Langford and Blanc-Valleron, 1990). Neither of these is however 

acceptable considering that: (1) land plant did not evolve until Devonian (Gray, 1993); (2) as 

discussed in Section 3.3.1 (d), the sediments were deposited under anoxic condition which 

provided good condition for preservation of the organic matter. 

Furthermore, although bacterial reworking of the original phytoplankton organic matter using 

sulphates and nitrates as electron sink may lead to the observed low HI, this was unlikely to be 

the case. The very low presence of hopanes, as proxies of bacterial contribution, as shown in 

both absolute concentrations and sterane/hopane ratios, suggests a bacterial contribution was 

minimal.  
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Tanezzuft black shale has been observed to be particularly rich in graptolites (Aziz, 2000) which 

have been observed to be abundant in these samples (Section 2.2.1). Graptolite has been 

shown to consist mainly of aromatic structure (in fact more aromatic than vitrinite) with 

aliphatic groups (Bustin et al., 1989). This graptolite-rich organic matter type is likely to be 

responsible for the unusually low hydrogen index in these samples. 

3.3.2 Coal samples 

(a) Bulk geochemistry 

Table 3.2 show results from bulk characterisation of the four samples studied in this work. The 

elemental compositions show that the tatal carbon content increases with maturity of the 

coal. Similarly the Tmax increases from C04 to C15 in agreement with vitrinite reflectance. 

Table 3. 2: Bulk geochemical parameters of the coal samples 
 

Sample Ro C (%) H (%) N (%) S (%) S1 S2 Tmax (oC) HI 

C04 0.40 24.85 1.74 0.38 2.55 7.7 38.8 424 156 

C56 0.56 48.58 3.25 0.96 3.90 8.0 70.3 434 145 

C69 0.69 76.88 6.06 1.71 2.65 20.3 157.0 440 204 

C15 1.50  82.38  4.55  1.64  3.91 3.2 111.3 459  135 

 

(b) Molecular geochemistry 

The molecular characterisation of the aliphatic fraction of the coal bitumens reveals that the 

saturated hydrocarbon composition is dominated by n-alkanes, isoprenoids and cyclic 

biomarkers (Figure 3.9). 

  



Muhammad 

42 

 
 

Figure 3. 9: TIC of aliphatic fractions of the coal bitumens showing differences and similarities in 
distribution of the dominant hydrocarbons. The integers represent the carbon numbers of the n-
alkanes, Pr = pristane, Ph = phytane, and IS = internal standard. 

There are however differences amongst the coals in the distribution of the dominant 

compounds. C04 has a pronounced bimodal distribution with dominance of C20 and C21 

homologues (Figure 3.9) and C15 has a unimodal distribution with dominance of the C16 to C20 

homologues. C56 and C69, on the other hand, show distributions somewhat intermediate 

between C04 and C15 although C56 has a more pronounced dominance of n-alkanes with odd 

carbon number between C20 to C28 compared to C69.  



Muhammad 

43 

 

  

  
Figure 3. 10: m/z 191 Mass chromatograms of aliphatic fractions of some of the oils showing 
distributions of cyclic terpanes. (See Appendix 6B for assignment of peaks). 

Figure 3.10 shows the distribution of the terpanes in the four coal samples. The tricyclanes and 

tetracyclanes are generally very low except in C15. Ts (C27 18α(H)-22,29,30-trisnorneohopane) 

is significantly present in C15 and barely detectable in other coals. Tm (C27 17α(H)-22,29,30-

trisnorhopane), on the other hand, although present in all the samples, is relatively more 

pronounced in C56 and C69. The hopanes are dominated by the C29 and C30 homologues and 

17α(H),21β(H) isomers. Homologues up to C35 were however detected in all the samples and 

particularly in C15. The 17β(H),21α(H) isomers are significantly present in C04 and C56. 

Amongst the homohopanes, the 22S epimers are greater than the corresponding 22R except in 

C04 where the opposite in the case. 
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Figure 3. 11: m/z 217 mass chromatograms of aliphatic fractions of some of the oils showing 
distributions of cyclic terpanes. (See Appendix 6B for assignment of peaks) 

The sterane distribution consisting of the C27 to C29 homologues is shown in Figure 3.11. The 

24-ethylcholectanes (C29 homologues) are the dominant homologues, constituting of up 60% in 

three of the sample and about 47% in C15. The cholestanes (C27 homologues) are the next 

most abundant except in C15 where 24-methylcholestanes (C28 homologues) are second 

dominant steranes. The diasteranes are relatively high in all the samples and are dominated by 

the 13β(H),17α(H) isomers. 

(c) Thermal maturity 

The four coal samples have different maturities as shown by their respective vitrinite 

reflectance (Table 3.3); the maturity increases in the order C15 > C69 > C56 > C04. This is 

substantiated by both elemental data and Rock-Eval-based maturity parameter Tmax (Peters, 

1986) as shown in Table 3.3. The relative carbon content of the coals increase with Ro and 

there is a good positive correlation between Ro and Tmax (R2 = 0.95, p < 0.05). Molecular 

maturity parameters further support these results. 

 The Ts/(Ts+Tm) ratio, although affected by organic matter source (Moldowan et al., 1986), 

may also reflect level of maturity (Peters et al., 2005a). It is low in the three less mature 

samples and up to 0.35 for the most mature C15. The βα/αβ ratio also shows progressive 

decrease with maturity from C04 to C69 in accord with conversion of the less stable 

17β(H),21α(H) isomer to the more stable 17α(H),21β(H) isomer (Seifert and Moldowan, 1980). 

The index is however partly source and depositional environment dependent (Peters et al., 

2005a) which may explain why C15 has an usually high value relative to other samples despite 

being the most matured (Table 3.3). 

Table 3. 3: Some molecular maturity parameters calculated from the compounds and biomarkers in 
aliphatic fractions of the coals 
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C04 0.40 2.49 1.61 1.39 2.15 0.10 0.83 0.19 0.20 0.18 
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C69 0.69 1.80 1.31 1.18 1.31 0.06 0.11 0.59 0.60 0.52 
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C15 1.50 1.22 0.96 0.90 1.07 0.36 0.38 0.57 0.59 0.57 
 

The homohopane-based 22S/(22S+22R) maturity proxy (Table 3.3) indicates that the 22R↔22S 

isomerisation equilibrium (0.57 to 0.62, (Seifert and Moldowan, 1980)) has been established in 

the three most mature coal samples. This is shown in Figure 3.12(a) in agreement with the fact 

that such equilibrium has been observed to be attained at Ro = 0.6% and sometimes slightly 

less (Zumberge, 1987). The slight difference between the C31-and C32-based %22S values is not 

unusual as it has been previously observed (Zumberge, 1987). The maturity difference 

amongst the coals is however more clearly shown by sterane-based 20S/(20S+20R) from 

5α(H),14α(H),17α(H) ethylcholestanes (C29), the value of which increases with Ro as illustrated 

in Figure 3.12(a). The order shows gradual increase in the value with Ro until it levels out at 

about 0.55; equilibrium value is established at about 0.52 to 0.55 (Moldowan et al., 1986). 
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Figure 3. 12: Linear plots showing evolution of molecular maturity parameters with increasing 
maturity as measured by vitrinite reflectance 

The progressive maturation of the coal samples is further reflected in the evolution of other 

maturity-dependent parameters. For example, both CPI and OEP, which measure the odd to 

even carbon ratio of the n-alkanes, fall towards equilibrium value of 1 with increasing maturity 

(Figure 3.12(b)) in agreement with observations of Bray and Evans (1961) and Scalan and Smith 

(1970). The slight disparity between CPI and OEP2 versus CPI1 and OEP1 might be because the 

former applies to higher molecular weight homologues compared to the later parameters. This 

suggests the former indices might be more suitable for assessment of relative odd to even 

carbon predominance in coals. 

(d)  Source and depositional environment 

The relatively high Pr/Ph ratio (Table 3.4) is indicative of terrigenous organic matter under oxic 

depositional environment (Peters et al., 2005a; Didyk et al., 1978). The difference in the values 

of the parameter among the samples further suggest different source for the four coals. This is 

further reflected in Pr/C17 ratio and Ph/C18 although both are influenced by with maturity. The 

CPI being significantly greater than 1, although also influenced by maturity, indicates land 

plant organic particularly for the samples with low maturity. The dominance of ethylcholestane 

(C29 sterane) further support the high plant organic matter source as is the case for coals. 
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Table 3.4: Results of some molecular source parameters computed from biomarkers in aliphatic 
fractions of the coal bitumens. 
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C04 1.97 3.68 2.33 0.23 0.19 0.44 0.46 0.15 0.17 0.68 

C56 7.57 5.63 0.64 0.52 0.02 0.42 0.44 0.22 0.16 0.62 

C69 4.83 1.30 0.26 0.80 0.04 0.33 ND 0.16 0.17 0.67 

C15 2.92 1.53 0.50 0.46 0.50 0.21 0.46 0.13 0.41 0.46 
 

Furthermore, the relative distribution of the sterane homologues (Table 3.4) indicates that the 

three less mature samples were sourced from similar organic matter which is obviously 

different from that of C15 as illustrated by the relative positions of the samples in ternary 

diagram (Figure 3.13). Although C31R/C30 > 0.25 is said to indicate marine depositional 

environment (Peters et al., 2005a), the ratio is obviously influenced by maturity and therefore 

decreases as 22R stereomer isomerises to 22S as clearly shown in Figure 3.15 (R2 = 0.95, p < 

0.05). 
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Figure 3. 13: (a) Ternary diagram showing the respective position of the four coal samples with 
respect to relative proportions of the cholestane (C27), methylcholestane (C28) and ethylcholestane 
(C29); (b) Scatter plot showing influence of maturity on C31R/C30 ratio (R

2
=0.94) 

The relatively high proportion of diasteranes relative to regular steranes as depicted by 

Dia/(Dia+Reg) ratio (Table 3.6) suggests prevalence of clay minerals (Sieskind et al., 1979; 

Rubinstein et al., 1975) and/or acidic and oxic condition (Brincat and Abbott, 2001; Moldowan 

et al., 1986), necessary for conversion of the regular steranes to diasteranes, in the 

depositional environment.  

3.3.3 Oil samples 

 (a) Molecular geochemistry 
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Examination of the TICs from the analysis of the aliphatic hydrocarbon fractions reveals that 

the dominant chemical compounds in all the non-biodegraded oils are the n-alkanes ranging 

from C10 to C36+ homologues with positively skewed unimodal distribution and maxima around 

C14 to C16 homologues (Figure 3.14). An exception is sample NA2 from Serbia that shows nearly 

equal proportion of n-alkanes from C13 to C30. The isoprenoids are also present albeit in 

different proportions; abundant in some of the oils and relatively low in others as depicted in 

Pr/C17 and Ph/C18 ratios (Appendix 3C). There seems to be slight dominance of odd carbon n-

alkanes over even carbon members in the carbon range from C25 to C34 which disappears in C23 

to C30 as depicted by CPI and CPI(1) (see also OEP values) respectively (Appendix 3C). The the 

terrigeneous/aquatic ratio (TAR) is very low indicating the dominance of the lower 

homologues (C15 to C19) over the high molecular weight members (C27 to C31). 

  

Figure 3. 14: TIC showing (a) typical distribution of n-alkanes and isoprenoids in most of the non-
biodegraded oils, (b) an unusual distribution of the compounds in a non-biodegraded Serbian oil 
(NA2). 

On the other hand, major cyclic compounds identified in the aliphatic hydrocarbon fractions of 

the oils are the terpanes and steranes. The terpanes, consisting of tricyclic, tetracyclic and 

pentacyclic terpanes are present in variable proportions in different oil samples. The tricyclic 

terpanes range for C19 to C29 with 13β(H),14α(H) configuration and 22S and 22R doublets for 

C25 to C29 homologues. However, only C24 tetracyclic terpane was indentified. Most of the 

samples (about 60%) have relatively high proportion of the tricyclic and tetracyclic terpanes 

with no clear separation amongst the sample with respect to geography or age. However, in 

almost all samples, except in A39, the C23 homologue is the major tricyclic terpane followed by 

C24 (Figure 3.15) 
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Figure 3. 15: m/z 191 chromatograms showing typical distribution of terpanes in the oils; note relative 
proportions of tricyclic terpanes (peaks 1 to 7); C29 (peak 14) vs C30 (peak 16) and C34 (peaks 24 & 25) 
vs C35 (peaks 26 & 27) hopanes in the different oils. (See Appendix 6A for assignment of peaks). 

The pentacyclic terpanes are the most abundant of the terpanes in all the oils. Homologues 

identified range from C27 to C35 in two stereomeric configurations although 17α(H),21β(H) 

isomers are the dominant isomers with 17β(H),21α(H) isomers occurring in relatively small 

proportions; measurable only with respect to C29 and C30 homologues. Only two isomers of C27 

and one of C28 pentacyclic terpanes were identified namely: 18α(H)-22,29,30-

trisnorneohopane (Ts), 17α(H)-22,29,30-trisnorhopane (Tm), and 17α(H),21β(H)-28,30-

bisnorhopane (BNH). The later however has been observed to co-elute with its 17β(H),21β(H) 

isomer in most analytical conditions (Moldowan et al., 1984). The BNH was observed in 

Northsea oils, the two oils from Canada (C26 and C30) and one Gulf of Mexico oil (PR1) albeit 

in different relative abundance even amongst the Northsea oils as reflected in BNH/(BNH+C30) 

ratio (Appendix 3C). 

In almost all the oils, except A39 from Abu Dhabi (Figure 3.16), C29 17α(H),21β(H) and C30 

17α(H),21β(H) are the most abundant homologues amongst the terpanes. The relative 

proportions of the two homologues vary amongst the samples. In most of the samples C30 is 

dominant over C29 (e.g. the Northsea oils). The two homologues are nearly equal in the oils 

from Canada and Qatar (Figure 3.15), and C29 is clearly dominant over C30 in the two Kuwait 

oils as reflected in values of C29/C30 ratio (Appendix 3C). Furthermore, the C31 to C35 pentacyclic 

terpanes (i.e. the homohopanes), each consisting of the 22S and 22R epimers, are dominated 

by the C31 homologues. The relative proportion of the homohopanes gradually decrease with 

increasing carbon number except in some samples (e.g. K77, C26 and U01) in which C35 is equal 

to or greater than the C34 homologue as revealed by values of C35/C34 ratio of the oils 

(Appendix 3C).  In addition to the terpanes, the m/z 191 mass chromatograms of the oils from 

Serbia (NA1 and NA2) and Canada (C26 and C30) show the presence of gammacerane (Figure 

3.15).  

The Abu Dhabi oil (Sample A39) is unusual (compared to the other oils), with respect to 

distribution of the tricyclic, tetracyclic and pentacyclic terpanes (Figure 3.16). The distribution 

of the terpanes in this oil is dominated by Ts followed by C29Ts. Furthermore, unlike other oils 

where C19 tricyclic terpane occur in small amounts compared to other tricyclics, in A39 it is the 

dominant tricyclic terpane, followed by the C20 homologue. In addition, C24 tetracyclic terpanes 

is also unusually abundant (compared to other oils) - being the third most abundant amongst 

the tricyclic and tetracyclic terpanes. 
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Figure 3. 16: m/z 191 mass chromatograms of sample A39, Abu Dhabi oil, showing 'unusual' 
distribution of terpanes. Note dominance of Ts (peak 12) and C29Ts (peak 15), and C19 and C20 tricyclic 
terpanes (peaks 1 and 2) and C24 tetracyclic terpanes (peak 8). (See Appendix 6A for assignment of 
peaks). 

Steranes ranging from C27 to C29 were also identified in all the oils samples (Figure 3.17). In 

addition, C21 and C22 steranes are also present in all the oils, and C30 sterane in the Northsea 

oils (Figure 3.17). The C21 and C22 steranes consist of 5α(H),14β(H),17β(H) isomers. The C27 to 

C29 homologues broadly consists of the regular steranes and the diasteranes. The diasteranes 

are generally dominated by 13β(H),17α(H) isomers although the 13α(H),17β(H) isomers are 

also present. Each stereomer has 20S and 20R epimer. In general, the proportion of the 

diasteranes relative to the regular steranes varies with sample. Nevertheless, in the Northsea 

oils, the C27 diasteranes are the dominant steranes (over 60%) as shown in Dia/(Dia+Reg) 

sterane ratio (Appendix 3C). Conversely, low proportions of the diasteranes were observed in 

Canadian oils (C26 and C30), Oman oils (O28 and O31) and particularly in the two Kuwait oils 

(K77 and K78). 

As for the diasteranes, the C27 to C29 regular steranes occur in variable proportion amongst the 

oils. In almost all the oils, however, the dominant homologue, albeit slightly, is either C27 or C29 

a (Appendix 3C). The Oman oils (O28 and O31) however have nearly equal proportions of all 

the homologues. The homologues consists of the two main isomers observed in oils namely; 

5α(H),14β(H),17β(H) and 5α(H),14α(H),17α(H) consisting of the biological R and the geological 

S epimers due to configuration at C20 position. In most samples the geoisomers 

5α(H),14β(H),17β(H) are slightly dominant over their biological 5α(H),14α(H),17α(H) 

counterparts as depicted by ββ/(ββ+αα) ratio (Table 3.5). 5α(H),14α(H),17α(H) 20R 

propylcholestane  was also tentatively identified in the Northsea oils (Figure 3.17). 
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Figure 3. 17: m/z 217 mass chromatograms showing distribution of the steranes; (a) and (d) have 
relatively small diasteranes (e.g. peaks 5 & 6) compared to (b) and (c) in which they are among the 
dominent compounds. (See Appendix 6B for assignment of peaks). 

 

(b) Biodegradation 

Biodegradation is the microbial alteration of petroleum composition that often happens when 

hydrocarbons are exposed to microbes (mainly bacteria) under the correct condition. In 

general, biodegradation of petroleum shows selectivity with respect to different compounds; 

thus, petroleum compounds are eliminated at different rates. Consequently, the extent of 

biodegradation of petroleum can be estimated by examination of the pattern of removal of 

the composite compounds (Peters et al., 2005a). 

About six of the oils used in this study are variably biodegraded. Figure 3.18 contains the TIC of 

these oils. Two of these oils (BN and U16) are from the Northsea, one each from Canada (CH), 

Serbia (NA1), Gulf of Mexico (AR3) and Nigeria (NB). In general, the n-alkanes are completely 

removed in all these oils. The isoprenoids are intact in AR3 and partially removed in BN and, to 

even greater extent, in CH. The compounds are completely removed in U16, NA1 and NB. 

Terpanes and steranes are generally unaffected in all the samples except NA1 and NB. 
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Figure 3. 18: TIC of the six biodegraded oils showing complete elimination of the n-alkanes and 
complete or partial elimination of the isoprenoids. 

Figure 3.19 shows the m/z 191 chromatograms of the degraded and non-degraded Serbian 

oils. Note the enhanced tricyclic terpanes peaks relative to pentacyclics in the biodegraded oil 

(NA1) compared to the non-degraded oil (NA2) in agreement with the observation that the 

tricyclic are more resistant to biodegradation than the pentacyclics. Another major difference 

is also the enhanced gammacerane (G) peak compared to C31 17α(H),21β(H) homohopanes in 

the biodegraded oil (NA1) in agreement with the fact that gammacerane is more resistant to 

biodegradation that the hopanes (Peters et al., 2005a). Furthermore, it appears the 

biodegradation preferentially remove the higher molecular weight hopanes relative to the 

lower molecular homologues as shown by diminished peaks in the biodegraded oil compared 

to the non-degraded one. The lower homologue steranes (C27 and C28) are partially removed 

relative to the C29 steranes resulting in dominance of the latter in the biodegraded oil (NA1) 

although C28 is the dominant homologue in the non-degraded oil. 
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Figure 3. 19: m/z 191 mass chromatograms showing the distributons of the terpanes in (a) 
biodegraded Serbian oil (NA1), and (b) a non-biodegraded Serbia oil (NA2); and m/z 217 mass 
chromatograms showing the distributions of the steranes in (c) the biodegraded oil (NA1), and (d) the 
non-biodegraded oil (NA2). G = gammacerane. 

 

The Nigerian bitumen (NB) is the most extensively biodegraded amongst all the biodegraded 

oils. In addition to the fact that all the n-alkanes and isoprenoids are completely removed, the 

terpanes and steranes are severely altered. The regular hopanes are almost completely 

removed (Figure 3.20). The dominant terpanes present are the C26 to C29 norhopanes. Other 

terpanes tentatively identified are the methylhopanes ranging from C30 to C34 showning m/z 

205 as the base peak and methylnorhopanes. The later have m/z 205 as the base peak and m/z 

355 indicative of norhopanes. Other unusual biomarkers observed in the NB aliphatic 

hydrocarbon fraction are what tentatively appear to be dimethylhopanes and 

trimethylnorhopanes with m/z 219 and m/z 233 as the base peaks respectively. 
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Figure 3. 20: m/z 191, 177 and 205 and m/z 217 mass chromatograms of the biodegraded (NB) from 
Nigeria showing distributions of the terpanes and steranes in this extensively biodegraded bitumen. 

 

(c) Thermal Maturity 

Thermal maturity is “the extent of heat-driven reactions that convert sedimentary organic 

matter in petroleum” (Peters et al., 2005a). Heat dependent molecular isomerisations and 

structural transformations have been widely employed to estimate maturity of source rocks at 

the time of expulsion of petroleum. These tools are particularly important where only oil 

samples, rather than source rock, are available (Peters et al., 2005a). Some of these thermal 

maturity parameters have been computed (Table 3.5) for the oils used in this work. 

The homohopane isomerisation at C22 chiral centre involves heat-mediated conversion of the 

biological R isomer to the S isomer. The 22S/(22S+22R) ratio thus increases from zero until 

equilibrium is established at about 0.57 to 0.62 (Seifert and Moldowan, 1980). As is clear from 

Table 3.8, the equilibrium has been established in all the samples as expected since the 

equilibrium is established at early maturity. On the other hand, the 20S/(20S+20R) ratio varies 

from 0.40 to 0.55 amongst the samples although most of the samples have attained the 

equilibrium value. For this parameter equilibrium is established at ~0.52 and oil generation 

(early maturity) starts about 0.40 (Mackenzie et al., 1982). Notably, oils generated in the early 

maturity stage include the two oils from Kittiwake Oil Field in the Northsea and some other 

Northsea oils (Table 3.5). 
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Table 3. 5: Some molecular thermal maturity parameters computed from biomarkers 
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A39 0.99 0.44 0.49 1.07 0.60 0.50 0.57 0.55 0.66 

B58 0.48 4.27 0.01 0.05 0.25 0.58 0.60 0.52 0.65 

BN 1.14 0.62 0.14 0.10 0.32 0.57 0.57 0.51 0.69 

C26 0.88 0.35 0.56 0.16 0.11 0.58 0.60 0.50 0.68 

C30 0.94 0.35 0.56 0.17 0.11 0.58 0.60 0.50 0.67 

K77 0.67 0.32 0.10 0.17 0.06 0.55 0.59 0.50 0.66 

K78 0.71 0.28 0.09 0.14 0.04 0.54 0.59 0.50 0.65 

O28 0.23 0.68 0.32 0.12 0.17 0.58 0.59 0.55 0.62 

O31 0.41 0.57 0.32 0.15 0.16 0.58 0.59 0.48 0.62 

Q43 0.71 0.37 0.12 0.17 0.24 0.57 0.60 0.50 0.65 

Q61 0.68 0.40 0.13 0.23 0.27 0.56 0.60 0.51 0.66 

U32 0.42 0.72 0.22 0.09 0.37 0.56 0.59 0.51 0.66 

U54 0.35 0.60 0.05 0.04 0.30 0.58 0.58 0.42 0.49 

U59 0.47 0.70 0.04 0.04 0.22 0.59 0.59 0.46 0.58 

U68 0.31 0.80 0.14 0.09 0.32 0.58 0.58 0.49 0.61 

U79 0.39 0.58 0.38 0.11 0.34 0.56 0.58 0.50 0.65 

U84 0.40 0.72 0.19 0.10 0.40 0.58 0.58 0.51 0.68 

Y32 0.36 0.66 0.06 0.05 0.29 0.58 0.58 0.51 0.63 

U01 0.51 0.96 0.18 0.18 0.50 0.56 0.56 0.44 0.69 

U05 0.51 1.05 0.19 0.20 0.53 0.56 0.57 0.40 0.69 

U02 0.30 0.66 0.07 0.07 0.30 0.58 0.59 0.49 0.56 

U04 0.00 0.71 0.14 0.11 0.36 0.56 0.60 0.49 0.66 

U07 0.35 0.74 0.10 0.09 0.30 0.58 0.59 0.49 0.65 

U46 0.37 0.93 0.14 0.12 0.43 0.57 0.58 0.45 0.62 

U56 0.40 0.74 0.15 0.12 0.41 0.56 0.58 0.46 0.69 

U93 0.42 0.75 0.07 0.07 0.34 0.58 0.58 0.47 0.67 

AR3 0.39 0.67 0.22 0.06 0.30 0.56 0.58 0.54 0.63 

CH 0.56 0.48 0.53 0.08 0.09 0.57 0.60 0.48 0.63 

M5 1.03 1.02 0.00 0.00 0.17 0.56 0.58 0.51 0.63 

NA1 0.18 0.71 0.08 0.04 0.19 0.58 0.58 0.66 0.54 

NA2 1.01 0.83 0.02 0.04 0.24 0.56 0.59 0.68 0.58 

Pr1 0.55 0.62 0.20 0.07 0.15 0.57 0.59 0.44 0.57 

FN 0.33 0.80 0.08 0.06 0.27 0.57 0.60 0.57 0.66 

U89 0.35 0.71 0.16 0.10 0.48 0.33 0.58 0.58 0.61 

U14 0.36 0.57 0.07 0.04 0.32 0.58 0.58 0.39 0.48 

NB 1.05 0.97 1.88 0.49 0.38 0.52 0.62 ND ND 

The two oils from Serbia are rather unusual with respect to their values of 20S/(20S+20R) ratio 

(> 0.65). Values of the parameter above the equilibrium value of 0.55 are usually because of 

preferential biodegradation of the 20R isomer relative to the 20S isomer (Rullkötter and 

Wendisch, 1982). However, since NA2 is not biodegraded and has nearly the same value as the 

biodegraded NA1, the higher value might be related to the organofacies of the source rock of 

the oils. This is clear from Figure 3.21 which, in addition to showing the two samples as 

outliers, also shows the ββ/(ββ+αα) ratio equilibrium is yet to be established despite 
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20S/(20S+20R) ratio being above the equilibrium value. Figure 3.21 also shows most of the 

samples have reached full maturity with respect to the two maturity parameters. Samples 

outside the equilibrium region are mainly the Northsea oils, U54, U59, U02, U46 etc and PR1 

from Gulf of Mexico. This suggests these oils were generated in the early part of the ‘oil 

window’. 
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Figure 3.21: Plot of 20S/(20S+20R) versus ββ/(ββ+αα) of C29 sterane showing differential maturity 
amongst the oils. 

 

(d)  Depositional environment and condition 

The molecular composition (especially biomarkers) of oils has been widely used to successfully 

delineate the environment and condition under with the source rock that generated the oils 

was deposited (Peters et al., 2005a; Peters et al., 1986). Using these tools, the oils can be 

grouped into two/three main groups based on lithology of source rock; namely carbonate, 

shale and marl (Peters et al., 2005a). Oils from carbonate source rock show characteristic low 

relative proportion of diasteranes as depicted by low C27 Dia/(Dia+Reg) ratio (Hughes, 1984) 

and high C29/C30 hopane ratio (Ten Haven et al., 1988). The oils also have high C35 homohopane 

relative to the C34 homologue (McKirdy et al., 1983) as semi-quantitatively shown in C35/C34 

ratio and homohopane index (%C35). In general, most oils sourced from marine carbonate 

source rock show C35/C34 > 0.8 and C29/C30 > 0.6 (Peters et al., 2005a). Furthermore, Pr/Ph ratio 

is 1 or less for these oils (Moldowan et al., 1985; Hughes, 1984). 

On the other hand, shale-sourced oils display their expected characteristics. For example, all 

the Northsea oils, sourced from argillaceous Kimmeridge Clay Formation, have high 

diasteranes (Dia/(Dia+Reg) sterane = 0.45 to >0.7); low C29/C30  ratio being generally less than 

0.6 and high pristane relative to phytane (Pr/Ph > 0.9). The C35/C34 ratio however varies from 

0.73 to 1.43, although for over 50% of the Northsea oils it is greater or equal to 1.  
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The two oils (U01 & U05) from Kittiwake oil field (Northsea) have particularly high C35/C34 

compared to other Northsea oils. High C35 homohopane has also been found to be an indicator 

of highly reducing conditions during deposition of the sediment (Peters and Moldowan, 1991) 

as is supported by positive correlation between the homohopane index and hydrogen index 

(Rangel et al., 2000). In such conditions, the precursor extended C35 hopanoid is reduced 

and/or incorporated in kerogen, resulting in preservation of the extended side chain, rather 

than oxidised and decarboxylated resulting in homohopanes with shorter side chains (e.g. C34, 

C33 etc). The index however is affected by maturity; it decreases with increasing maturity 

(Peters and Moldowan, 1991). This may explain the variability in the observed index amongst 

the Northsea oils. Otherwise, it may indicate variable extent of establishment of anoxia in 

different sections of the Kimmeridge Clay depositional settings. 

The two oils from Qatar (Q43 & Q61) however do not seem to respect the above 

interpretation. Although the oils have a C29/C30 ratio being greater than 0.90, characteristic of 

marine carbonates, they nevertheless have relatively high diasteranes - a property commonly 

associated with clay-rich sediments such as shale. In fact, the Dia/(Dia+Reg) ratio of the oils 

(over 0.5) is higher than that of some Northsea oils known to be sourced from Kimmeridge 

Clay Formation. Consequently, the oils (Q43 & Q61) may apparently have been sourced from a 

marine shale rather than marine carbonate. This apparent discrepancy, however, is resolved 

from the lithology of the source rock. The source rock for these oils has been established as 

the Jubailah formation and the underlying Hanifa formation (Alsharhan and Nairn, 1997). Both 

of these source rocks are argillaceous (clay-rich) limestone (Alsharhan and Nairn, 1997). The 

source rocks, therefore, although carbonate, contains clay minerals that have been observed 

to catalyse conversion of regular steranes to the re-arranged diasteranes (Rubinstein et al., 

1975). 

Based on the above general pattern of biomarker characteristics, six other oils (about which no 

information of the source was available) are possibly sourced from marine carbonate source 

rocks. These include the three oils from Canada (C26 &C30), which show signatures of marine 

carbonate namely low Dia/(Dia+Reg) ratio (<0.40), high C29/C30 ratio (>0.80) and high C35/C34 

ratio (>1.20) as shown in Appendix 3C. Similarly, PR1 and M5, from the Gulf of Mexico, show 

characteristics of marine carbonate sourced oils albeit less strongly due to relatively lower 

C29/C30 ratio and relatively high Dia/(Dia+Reg) ratio with respect to PR1. This may imply 

argillaceous carbonate source rock for this oil, as may also be the case with respect to sample 

A39 from Abu Dhabi.  

Thus it is clear that these three parameters are useful in the classification of oils based on their 

depositional environment. Consequently, in addition to dibenzothiophe/phenanthrene 

(DBT/P) ratio (Hughes, 1984), they were used collectively in principal component analysis to 

classify the samples. The results show that the first two principal components (PC1 and PC2) 

account for about 80% of the variation with C29/C30, Dia/(Dia+Reg) and DBT/P giving the major 

contributions to PC1 and C35/C34 being the major contributor to PC2. Figure 3.22 is the score 

plot of the two major components (PC1 and PC2) showing clear discrimination between 

various depositional settings. The marine carbonate-sourced oils are on the positive side of 

PC1 and marine shale-sourced oils on negative side. Furthermore, oils with C35/C34> 1.0, 

reflecting anoxic setting, are in the positive half of PC2, while those with lower values are in 
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the negative half. In general, oils with the same source have similar scores and are therefore 

located closely. This classification is in agreement with the method of Hughes (1984) with 

respect to marine carbonates as shown in Figure 3.23. However, most of the marine shale oils 

are wrongly classified as lacustrine sulphate-poor possibly due to the effect of maturity on 

Pr/Ph ratio.   
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Figure 3. 22: Score plot from principal component analysis based on C35/C34 homohopane ratio C29/C30 
hopane ratio and Dia/(Dia+Reg) C27 sterane showing classification of the oils based on depositional 
environment. 

The marine depositional environment of the oils is further emphasised by the proportion of 

C31R homohopane relative to C30 hopane. Marine carbonate, shale and marl have C31R/C30 

greater than 0.25 (Peters et al., 2005a) as is the case with almost all the oils used in this work 

(Appendix 3C). The only outlier in this respect is sample NA1 from Serbia (C31R/C30 = 0.17). This 

oil however is biodegraded. As discussed above, the hopanes, in addition to other biomarkers, 

are altered by the biodegradation. It has been observed that lower homologues in the hopane 

range from C27 to C32 are biodegraded more slowly than the higher homologues (Rullkötter and 

Wendisch, 1982). Consequently, it is reasonable that the observed low C31/C30 ratio in NA1 is 

because of preferential degradation of C31 relative to C30 and thus the value of the parameter 

in unbiodegraded oil could be higher than the observed 0.17 as is the case in NA2 (Appendix 

3C). 

Furthermore, in addition to all the Northsea oils, the two oils from Canada and one oil from 

Gulf of Mexico (PR1) show the presence of 28,30-bisnorhopane (BNH). The relative proportion 

of this compound however varies even among the Northsea oil as shows by BNH/(BNH+C30) 

ratio (Appendix 3C). BNH is thought to be produced by chemoautotrophic bacteria that thrives 

at the oxic-anoxic boundary and thus has been associated with some anoxic depositional 

settings (Peters et al., 2005a). The presence of this biomarker in the Northsea oils is in 

agreement with anoxic deposition condition under which the Kimmeridge Clay was deposited 
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and suggests similar condition was established during deposition of the source rock from 

which PR1 oil and the two oils from Canada were sourced. The variability in the value of the 

BNH/(BNH+C30) ratio amongst the Northsea samples (Appendix 3C) could be a consequence of 

differential maturity as it has been observed to decrease with increasing maturity among 

Monterey oils (Curiale et al., 1985). 

The establishment of an anoxic depositional setting during deposition of source rock is further 

corroborated with respect to the oils from Canada and Serbia by the presence of 

gammacerane in the hydrocarbon fraction of the oils. Although the origin of this compound 

has not been established (Peters et al., 2005a), nonetheless, it is thought to be a diagenetic 

product of gammaceran-3β-ol (i.e. tetrahymanol) (Ten Haven et al., 1989; Venkatesan, 1989) 

mainly produced by bacteriovorous ciliates which thrives at the interface between oxic and 

anoxic regions of stratified water column (Sinninghe Damsté et al., 1995a). The presence of 

this biomarker therefore indicates source rock of the oils was deposited in stratified water 

column, often due to hypersalinity, under highly reducing conditions (Moldowan et al., 1985).  
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Figure 3.23: Linear plot showing classification of the oil samples into various depositional 
environments 

 (e)  Organic matter input 

The predominant type organic matter from which oils are generated can be broadly classified 

into marine, terrigenous and lacustrine organic matter. A combination of geology and 

composition of petroleum can be used to have an insight into the nature of precursor organic 

matter from which the oil was derived. In general, oils generated from source rocks deposited 

earlier than the Silurian are sourced from marine organic matter. This is because land plants, 

the main contributors to terrigenous organic matter did not evolve until the Silurian. Thus, the 

two oils from Canada are sourced from marine organic matter. Similarly, the Northsea oils, 
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although sourced from Jurassic Kimmeridge Clay, the presence, in these oils, of C30 sterane, a 

diagenetic product of 24-n-propylcholestrols produced by marine Chrysophyte algae, indicate 

marine phytoplankton organic matter input (Moldowan et al., 1985). 

3.4 Summary and Conclusions 

Samples of varying geochemical histories were obtained in order to investigate how the 

composition of asphaltenes is influenced by the varying histories of the samples. Traditional 

geochemical characterisation of the three black shale samples reveals they were deposited in 

marine environment with maturity ranging from immature to marginally mature. Similarly, the 

coal samples range from immature, early mature, mature and late mature; these are suitable 

for investigating the influence of thermal history on the asphaltenes. 

Characterisation of the oils reveals, although their maturity does not vary very much, that they 

were principally sourced from marine carbonates, marls and shales. Furthermore, the oils 

consist of both biodegraded and non-biodegraded oils. The latter were characterised to have 

varying degree of biodegradation and therefore suitable for assessing how such properties 

affect the composition of asphaltene. 
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Chapter 4 Adsorption and Occlusion in Asphaltenes 

4.1 Introduction 

Asphaltenes are materials consisting of a wide range of macromolecules of different sizes and 

shapes but are principally considered to consist of condensed aromatic cores with side chain 

appendages (Badre et al., 2006) and possibly interlinked by polymethylene bridges through 

carbon-carbon, sulphide, ether as well as ester bonds (Strausz et al., 1999a). This 

macromolecular structure of asphaltenes is at the heart of the “occlusion hypothesis”. 

The “occlusion hypothesis” is based on the premise that, because of their macromolecular 

and/or solubility properties, asphaltenes can trap smaller molecules within their structural 

framework and thus in aessence exclude them from the bulk of the oil matrix (maltene). This is 

based on the assumption that either a typical asphaltenes is (i) polymeric with a cage-like or 

clathrate structure (Mujica et al., 2000), and/or (ii) molecules exists in aggregates in an oil 

medium. Thus, during the formation of such cage-like structures or aggregates, some of the 

surrounding smaller molecules, including biomarkers, are securely engulfed or trapped. The 

entrapped molecules are therefore protected from secondary alteration processes (Liao and 

Geng, 2002; Ekweozor, 1984). 

The implication of this hypothesis is that, if asphaltenes were formed in source rocks, 

molecular fossils (biomarkers) of the source organic matter will remain entrapped within the 

asphaltene structural framework even after severe biodegradation of the oil because 

asphaltenes, being the most resistant fraction of the oil, protect the entrapped biomarkers. 

This therefore makes asphaltenes potentially of vital geochemical importance in oil-source and 

oil-oil correlation, environmental forensics and palaeoenvironmental studies particularly in 

such cases (Liao et al., 2006a; Liao et al., 2006b; Liao and Geng, 2002).  

The occlusion hypothesis appears to have been first put forward by C. M. Ekweazor (Ekweozor, 

1986; Ekweozor, 1984) about 25 years ago and recently revived by Z. Liao and co-workers (Liao 

et al., 2006a; Liao and Geng, 2002). In both cases it seems to be a consequence of empirical 

observation that there was an apparent difference between the distributions (or of computed 

indices) of maltene saturate biomarkers and the corresponding “free” (i.e. extractable) 

biomarkers recovered from asphaltenes after breaking up the asphaltenes by chemical 

degradation methods. Despite this it is still not confirmed whether the so-called occluded 

compounds are products of occlusion, and not merely remnants of adsorbed components of 

maltene. Although Ekweozor (1984) acknowledged the possibility of generation of the 

observed biomarkers through chemical processes, Liao and Geng (2002) concluded that the 

compounds they observed were ‘free’ compounds occluded within the asphaltene structures 

and have no dynamic contact with the maltenes. 

An attempt was made to simulate occlusion and test whether or not the observed saturated 

hydrocarbons from the chemical degradation of Soxhlet-extracted asphaltenes were products 

of occlusion (Liao et al., 2005). In the experiment, 100 mg of deuterated n-eicosane (C20D42) 

was added to a toluene solution of pre-extracted asphaltenes (200 mg in 20 ml toluene). The 

findings showed that over 98% of the C20D42 was recovered from the extracts. However, no 
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C20D42 was detected in the occluded fraction following chemical degradation of the 

asphaltenes with H2O2/acetic acid reagent although “trapped” hydrocarbons were observed 

(Liao et al., 2005). Consequently, they conclude that asphaltenes are microporous substances 

that form aggregates within which biomarkers are trapped and protected from secondary 

alteration processes. 

Several questions arise from this however. It is not clear whether toluene mimics or is 

comparable to maltene in solubilisation of asphaltenes. Obviously, toluene and maltene have 

different solvent properties, and in particular resins have been reported to play an important 

roles in the solubilisation and stabilisation of asphaltenes in the petroleum medium (Pereira et 

al., 2007; Speight, 2004; Andersen and Speight, 2001). Second, it has been established that the 

concentration above which asphaltenes exist as nanoaggregates in toluene, varies between 40 

to 400 mg/l (Andreatta et al., 2007; Badre et al., 2006). Consequently, the asphaltene 

concentration (10,000 mg/l) used by Liao et l. (2005) in the experiment is well above the 

critical nanoaggregate concentration (CNAC) and so any marker compound added in such 

aggregate solution of asphaltenes would not be occluded since the asphaltenes were already 

in an aggregated state. This might therefore explain why the marker compound was not 

detected in the occluded fraction. 

Furthermore, it is known that during the precipitation process, asphaltenes adsorb and co-

precipitate non-asphaltene substances, such as resins, hydrocarbons and particularly waxes, 

which are otherwise components of maltene. Thus, in analysis of the occluded compounds, the 

asphaltenes are Soxhlet extracted to remove the co-precipitated components before further 

analysis (Liao et al., 2006b; Creek, 2005; Alboudwarej et al., 2002). However, variable timing is 

used for the extraction and it is not clear what time of extraction is enough to selectively 

remove the adsorbed/co-precipitated compounds from the asphaltenes. Moreover, the 

acetone extraction was developed to separate the so-called low molecular weight asphaltenes 

from high molecular weight fraction (Peng et al., 1997) and may therefore be unsuitable for 

removal of the adsorbed components. 

Still more, the procedures used to release the compounds that may be trapped (occluded) 

within the asphaltenes 3D structure are based on chemical degradation of the asphaltenes. 

The aim is to selectively breakdown the asphaltenes macromolecules without 'damaging' the 

compounds trapped within them which are then recovered and analysed. Although other 

reagents such as potassium/naphthalene (Ekweozor, 1984) and NaIO4/NaH2PO4 (Liao and 

Geng, 2002) have been used, Liao and co-works appear to favour hydrogen peroxide in acetic 

acid as a mild degradation reagent (Liao et al., 2006b). Nevertheless, the suitability of the 

reagent, with respect to its selectivity in breaking down the asphaltenes without affecting the 

occluded components, has not been established. 

Consequently, it is the aim of this section of the work to re-evaluate critically the occlusion 

hypothesis. Leading from the above review, the following specific objectives will be addressed. 

1. to determine the timing of Soxhlet extraction suitable for removing adsorbed and co-

precipitated compounds from asphaltenes 
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2. to test the efficiency of conventional chemical oxidations methods for the selective 

degradation of asphaltenes in order to release the 'occluded' hydrocarbons 

3. to investigate whether 'occlusion' is a consequence of adsorption and co-precipitation 

or an inherent process during the early formation of asphaltenes 

4. to compare and contrast the free, adsorbed, and ‘occluded’ biomarker distribution in 

context of oil/oil correlation exercises 

4.2 Methodology 

4.2.1 Selection of samples 

Twelve oil samples, ten of which are in pairs (from different geographical areas and source 

rocks) were chosen for this study. Each pair consists of oils from the same source, and in some 

cases obtained from the same field and reservoir. The samples were selected to examine the 

level of agreement and disagreement between members of a pair and members of different 

pairs. 

4.2.2 Analytical procedure 

The following analytical procedures were designed to address the respective objectives stated 

in Section 4.2.1. 

(a) Suitable timing of Soxhlet extraction for cleaning asphaltenes 

Three non-biodegraded oils from different geographical areas and basins namely B58 

(Bangladesh), U56 (Northsea) and Y32 (Yemen) were selected for this study. The asphaltenes 

were recovered as described in Section 2.3.3(a). Each was Soxhlet extracted with acetone in six 

successive stages of 48 hours each (Section 2.3.3(b)). The extracts were collected, fractionated 

and the saturated hydrocarbon fractions analysed (Sections 2.3.4 and 2.4.6). The saturated 

hydrocarbon fractions from the maltenes were recovered and analysed as well. Figure 4.1 

summarises the process. 
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Figure 4.1: Flow diagram showing the steps followed in investigating the time it takes to remove co-
precipitated components from asphaltenes 

 

(b) Suitability of asphaltenes degradation reagents 

Following literature survey, experiments were conducted on the effect of (i) hydrogen 

peroxide (H2O2); (ii) potassium permanganate (KMnO4); and (iii) ruthenium ion catalysed 

oxidation (RICO) reagent on authentic standards of aromatic and aliphatic compounds namely 

pyrene, tricosane and androstane. Thereafter, further experiments were undertaken to 

determine the feasibility of using the reagents for selective degradation asphaltenes in order 

to release the ‘occluded’ biomarkers.  

(c) Simulation of occlusion of aliphatic hydrocarbons in asphaltenes 

Marker compounds (deuterated hexadecane (C16D34) and androstane) were added to three oil 

samples namely BN and U54 from Northsea, UK and O28 from Oman. The oils were 

magnetically stirred for 30 days after which the asphaltenes were recovered (Section 2.3.3) 

and extracted using Soxhlet method with acetone for the appropriate time. The extracts and 

the products from the chemical degradation of the asphaltenes were analysed to determine 

whether the added marker compounds were exclusively present only in the extracts. 

(d) Comparative analysis of free, adsorbed, and occluded hydrocarbons 

Twelve oils were selected for comparative analysis of the composition and distribution of 

aliphatic hydrocarbons of maltene fractions to those of the corresponding adsorbed and 

occluded fractions. The asphaltenes were recovered from the oils as described in Section 

2.3.3(a) and then Soxhlet extracted for 10 days to recover the adsorbed components (Section 

2.3.3 (b)). Occluded saturated hydrocarbon components, on the other hand, were recovered 
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by using the most suitable chemical degradation method (i.e. aqueous potassium 

permanganate) based on the results of the work described in Section 4.2.2 (b). Finally, the 

saturated hydrocarbon fractions from the maltene, adsorbed and occluded fractions were 

recovered and analysed using chromatographic method and GC/MS (Sections 2.3.4. and 2.4.6). 

4.3 Results and Discussion 

4.3.1 Determination of time required for efficient extraction of asphaltenes 

Generally, only about 6 to 10 % (w/w) of the original asphaltenes was recovered from the 

stepwise Soxhlet extraction of the asphaltenes. On the other hand, continuous extraction 

without solvent replacement, as was the case in stepwise extraction, gave relatively greater 

proportion (8 to 22%, w/w) of extractable components.  

Although this may suggest the continuous extraction is more efficient than the stepwise 

extraction, the observation may however be because the composition of the extraction 

solvent, and therefore its solvent properties, is continuously altered by the extracted 

components from the previous extraction cycle. The resulting more polar solvent may perhaps 

extract relatively more of the adsorbed materials from the asphaltenes in subsequent 

extraction cycles. Nevertheless, irrespective of the method used, more extractable 

components were obtained from the Northsea oil (U56) asphaltenes compared to the other 

asphaltenes (Figure 4.2 (a)). B58 and Y32 asphaltenes show less variability in relative amounts 

of the extracts obtained from the two extraction procedures (i.e. continuous vs. stepwise 

extractions). 

  
Figure 4.2: (a) Bar chart showing the relative proportions of extractable components desorbed from 
asphaltenes after 10 days of extraction using continuous and stepwise extraction; (b) Scatter plot 
show the evolution of the stepwise extraction with time with respect to the relative amounts of 
components desorbed. 

All the asphaltenes irrespective of the their sources display a similar asymptotic trend with 

regard to the relative proportions of the total amount of the original asphaltenes 

desorbed/recovered over time from the stepwise extraction process (Figure 4.2 (b)). The 

asymptotic nature of the extraction shows although there is gradual fall in the relative 

proportion of the extractable components, the amounts only tend to zero at infinite extraction 

time. In other words, there is theoretically no end time at which nothing would be desorbed 

from the asphaltenes. 
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Examination of compositions of the aliphatic hydrocarbon components of the fractions 

recovered from the stepwise Soxhlet extraction process reveals further information. The first 

extract recovered after 48 hours of extraction from all the asphaltenes is dominated by high 

molecular weight n-alkanes (waxes). The waxes exhibit symmetric unimodal distribution with 

maxima at C32 to C36 homologues but covering C20 to C44 range (Figure 4.3). Subsequent 

extracts from B58 and Y32 asphaltenes contain only trace amounts of n-alkanes (Figure 4.3). 

This suggests almost all the extractable waxes were practically removed from the asphaltenes 

within the first 48 hours of Soxhlet extraction although other non-aliphatic hydrocarbon 

components (possibly resins) were still being extracted in subsequent steps. 

  

  

  

Figure 4.3: TICs showing n-alkane contents from desorbed fractions of two asphaltenes from oils B58 
and Y32 obtained after 48, 96 and 240 hours of Soxhlet extractions. 

The Soxhlet stepwise extracts from the asphaltenes of the Northsea oil (U56), on the other 

hand, display a different composition. Here although over 75% of the adsorbed saturated 

hydrocarbons were removed in the first 48 hours of extraction as shown in Figure 4.4, 
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subsequent extracts have significant amounts of waxes mainly in the range of C32 to C40 

homologues; even at the fifth step (240 hours i.e. 10 days) of the extraction process. The wax 

composition of these subsequent extracts also exhibit symmetric unimodal distribution which 

is rather broad with maxima shifting towards higher molar weight (C37 or C38) homologues 

(Figure 4.4).  

  

  
Figure 4.4: TIC showing distribution of n-alkanes in (a) first step extract (b) fifth step extract of U56 
asphaltenes;  scatter plots showing: (c) distributions of n-alkane with extraction progress, and (d) 
asymptotic trend of total n-alkane desorption from stepwise extraction of asphaltenes from sample 
U56 

The concentration profile of desorbed n-alkanes relative to asphaltenes is shown in Figure 4.4 

(c). The regression curve (Figure 4.4 (d)) shows that the amounts of waxes desorbed from the 

asphaltenes decrease rapidly with time but never reach zeros (i.e. asymptotic trend). This 

shows the difficulty of complete removal of waxes from this asphaltene sample and suggests 

there may be no clear boundary between adsorbed and occluded components. It is 

noteworthy that although this is quantitatively observed in only U56 asphaltene, trace 

amounts of waxes were detected in all the extracts from B58 and Y32 asphaltenes (Figure 4.3). 

These results show very important information not only on the time required to clean up 

asphaltenes but also on the nature and variability of the asphaltenes. First although 

asphaltenes appear to adsorb or co-precipitate similar kinds of n-alkanes, their strength or 

adsorptive power varies. While some asphaltenes appear to bind fairly strongly to the 

adsorbed aliphatic components others do so less strongly. The practical implication is at what 

extraction time are asphaltenes devoid of waxes as is required by Creek’s definition of 

asphaltenes (Creek, 2005). Furthermore, what is the boundary between adsorbed and 
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‘occluded’ components particularly since the n-alkanes desorption profile is asymptotic trend 

with time. 

Differential strength by which asphaltenes adsorb components has important implication for 

study of their structure. Purification of asphaltenes by mere triplicate re-dissolution/re-

precipitation or few hours of extraction (Bowden et al., 2006; del Rio et al., 1995; Jones et al., 

1988; Speight, 1984) is clearly inadequate as waxes may still remain adsorbed on the 

asphaltenes. Analysis of such asphaltenes samples by spectroscopic methods (e.g. IR and NMR) 

and pyrolysis for structural and compositional studies could lead to erroneous information 

because adsorbed or co-precipitated components could significantly contribute to the 

products that may be generated directly from the asphaltenes. 

4.3.2 Determination of an ideal asphaltenes degradation reaagent 

As discussed in Chapter 1, asphaltenes consists of condensed polynuclear aromatic structures 

with aliphatic appendages (Speight and Moschopedis, 1981). In such structures ‘occlusion’ 

could either occur by engulfing smaller compounds within the macrostructure of an 

asphaltene molecule or by sandwiching the compounds within aggregates of the 

macromolecules. Either case, the ‘occluded’ compounds could be released by breaking the 

asphaltenes molecular structure or aggregates into smaller soluble molecules. 

‘Safe’ release of ‘occluded’ compounds from asphaltenes requires the use of an agent that 

ideally should: (i) break up the aromatic core of the asphaltenes; (ii) not alter the occluded 

compounds; and (iii) preferably be effective at room temperature or less to avoid evaporative 

loss of occluded biomarkers. For this purpose three oxidising reagents known to degrade 

aromatic structures are considered. These include hydrogen peroxide, potassium 

permanganate and ruthenium tetroxide reagents and their suitability is assessed in the 

following sections. 

 

 

(a) Hydrogen peroxide solution 

Hydrogen peroxide (H2O2) has a standard redox potential of 1.76 V which is higher than that of 

potassium permanganate (1.70 V). Nevertheless, it is a relatively weak oxidising agent. Yet, 

unaided, H2O2 has been observed to slowly attack several types of compounds including 

aromatic hydrocarbons, mainly because it has both nucleophilic and electrophilic properties 

(Jones, 1999). However, in most of its applications, and particularly those involving oxidation 

of compounds that have no nucleophilic or electrophic sites that could be easily attacked,  

H2O2 has to be activated to increase both its oxidation strength and selectivity (Jones, 1999). 

Consequently, many inorganic and organic substances are used to activate H2O2. Among these 

substances iron salts and acetic acid are of particular importance. In Fenton’s reagent, an iron 

(II)/(III) salt is added to hydrogen peroxide solution to catalyses the formation of hydroxyl 

radicals (HO·) and perhydroxyl radicals (HO2·) as the active species (Jones, 1999) as shown in 

equations 4.1 to 4.3. The HO˙ is a very reactive specie capable of abstraction hydrogen from 

substrates (including hydrocarbons) generating free radicals that may be terminated or 
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undergo further chain reactions (equations 4.4 & 4.5). It is however not selective in its activity. 

Hence, Fenton’s reagent is used in degradation of organic wastes (Gates-Anderson et al., 2001; 

Watts et al., 2000). Similar reactions could take place during treatment of asphaltenes with 

H2O2 as asphaltenes have been observed to contain significant amounts of iron in addition to 

other trace metals (Duyck et al., 2002). 

H2O2 + Fe+2    OH– + Fe+3 + HO·     4.1 

 H2O2 + Fe+3    H+ + Fe+2 + HO2·     4.2 

H2O2 + HO·    H2O + HO2·      4.3 

RH + HO·    H2O + R·      4.4 

R· + Fe+3   Fe+2 + products     4.5 

Hydrogen peroxide is also commonly activated with carboxylic acids to form percarboxylic acid 

the most common of which is peracetic acid (Jones, 1999). Although industrially prepared 

peracetic acid is available, the reagent can be prepared in situ by direct mixing of acetic acid 

and hydrogen peroxide solution (e.g. (Liao et al., 2005)). Similarly, peracetic acid has been 

found to effectively oxidise several types of organic compounds, including aromatics, alkenes, 

alkynes, alkanes, alkanols as well as sulphur and nitrogen compounds through mechanism 

involving free radicals (N’guessan et al., 2004; Jones, 1999). 

It therefore appears that contrary to claims of Liao and co-workers (Liao et al., 2006b; Liao and 

Geng, 2002), literature shows H2O2-based reagents could degrade aliphatic hydrocarbon in 

addition to aromatics (N’guessan et al., 2006; N’guessan et al., 2004; Watts et al., 2000; Jones, 

1999; Watts and Stanton, 1999; Augusti et al., 1998). There is therefore the possibility of 

alteration of the occluded saturated compounds that may be released via this method. 

However, in order to investigate this possibility further, experiments were conducted to 

investigate the effect of varying amounts of H2O2/acetic reagent on mixture of representative 

aliphatic hydrocarbons (n-tricosane, n-hexatriacontane and androstane). The results show that 

about 45% of the hydrocarbons were lost to degradation relative to the control within 24 

hours (Figure 4.5 (b)). 

  
Figure 4.5: Plots showing: (a) degradation of pyrene by H2O2/AcOH; and (b) relative degradation of 
androstane (And), n-tricosane (C23) and n-hexatriacontane (C36) by H2O2/AcOH solution. 



Muhammad 

69 

Nevertheless an attempt was made to use H2O2/acetic acid reagent to degrade asphaltenes in 

order to recover the ‘occluded’ compounds. However to determine the amount of the reagent 

required to oxidise the aromatic moieties of the asphaltenes, further experiments were 

conducted on pyrene, as a representative aromatic hydrocarbon. The results reveal the 

compound was degraded at the rate of about 1.7mg/cm3 of the reagent (Figure 4.5 (a)). 

Extrapolation of this to asphaltenes, assuming that asphaltenes are about 30% aromatics (del 

Rio et al., 1995), shows that degradation of 100 mg of asphaltenes requires about 17.6 ml of 

the reagent which is about twice the amount used by Liao et al. (2006). However, when 

asphaltene was treated with this proportion of the reagent, the asphaltene was observed to 

cluster together into lumps which did not dissolve or degrade even after 24 hours of 

continuous stirring. Based on these findings it was concluded that the reagent was not suitable 

for oxidative degradation of asphaltenes to release any occluded aliphatic hydrocarbons. 

(b) Potassium permanganate solutions 

Potassium permanganate (KMnO4) solution has been widely used to degrade polyaromatic 

hydrocarbons (PAH), kerogen and coal to carboxylic acids (Gates-Anderson et al., 2001; 

Rullkotter and Michaelis, 1990; Vitorović, 1980; Ward et al., 1945). Literature on the use of 

KMnO4 solution to degrade saturated hydrocarbons is however generally lacking. 

Nevertheless, Stewart (1965) and Lee (1969) observed that the reagent is barely effective in 

oxidative degradation of saturated hydrocarbons.  

  

Figure 4.6: Plots showing: (a) degradation of pyrene, and (b) degradation of androstane (And), n-
tricosane (C23) and n-hexatriacontane (C36) by 0.1M KMnO4 solution. 

Nonetheless, experiments were conducted to investigate the oxidative activity of the reagent 

on both aromatic, represented by pyrene, and saturated hydrocarbons, represented by n-

tricosane (C23), n-hexatriacontane (C36) and androstane. The results show that about 0.18 to 

1.19% of the aliphatic hydrocarbons were degraded per 1 cm3 of the reagent at room 

temperature in 24 hours (Figure 4.6 (b)). This is much lower than the 45% degraded by 

H2O2/acetic acid reagent and confirms observations of Stewart (1965) and Lee (1969) that the 

reagent is barely effective against saturated hydrocarbons.  

The action of acidic KMnO4 solution on pyrene (an aromatic hydrocarbon) is rather different. 

The compound was degraded at about 0.9 mg/cm3 of the reagent at room temperature (Figure 

4.6 (b)). This suggests that about 35 ml of the reagent is required to degrade 100 mg of 
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asphaltenes assuming it has 30% aromatic moieties. Treatment of an asphaltene sample with 

reagent resulted in complete dissolution and degradation of the asphaltenes. 

(c) Ruthenium ion catalysed oxidation 

Ruthenium ion catalysed oxidation (RICO) is a powerful technique for oxidative degradation of 

aromatic moieties. For example, Stock & Tse (1983) observed that while aromatic compounds 

were degraded with conversion of about 74 to 100%, more than 95% of saturated aliphatic 

hydrocarbon such as decane was recovered unchanged. Consequently, RICO is widely used to 

selectively degrade aromatic moieties in structural studies of coal, kerogen and asphaltenes 

(Peng et al., 1999a; Standen et al., 1991; Singleton et al., 1985). 

Nonetheless, to confirm the above observation and to further test the effect of RICO on cyclic 

saturated hydrocarbons, experiments were conducted accordingly. From these it was observed 

that while in all the experiments the aromatic hydrocarbon (pyrene) was completely degraded 

with none recovered, the saturated hydrocarbons, both acyclic n-tricosane and cyclic 

androstane, were quantitatively recovered (Figure 4.7).  

Furthermore, the activity of the reagent was tested on asphaltenes. The results indicate 

complete degradation of the asphaltenes with the black asphaltenes solution in DCM changing 

to tan as observed by Peng et al. (1999a). However, recovering the ‘occluded’ saturated 

hydrocarbons was problematic. This required saponification of the aliphatic acids generated 

from the degradation of the aromatic moieties in order to solubilise them into the aqueous 

phase and then extract the released occluded hydrocarbons. However, separation of the two 

phases was found to be particularly difficult because of formation of foam by the long chain 

fatty acid salts formed from the saponification.  

 
Figure 4.7: Plots showing the effect of RICO reagent on the representative standard compound with 
increasing concentration of the reagent (C23 = tricosane; And = androstane). 

Consequently, although ruthenium ion catalysed oxidation was found to be the best oxidising 

agent in breaking down the asphaltene molecules/aggregates without affecting the saturated 

hydrocarbons, it was abandoned in preference of acidic potassium permanganate solution for 
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practical reason and for the fact that it is relatively more benign on the analytes compared to 

hydrogen peroxide/acetic acid reagent.  

4.3.3 Comparative analysis of maltene, adsorbed and ‘occluded’ biomarkers 

(a) n-Alkanes 

As discussed in Section 4.3.1 the aliphatic fraction of components desorbed from asphaltenes 

by Soxhlet extraction is dominated by high molecular weight n-alkanes (waxes) ranging from 

C20 to C43. The distribution of the waxes from all the asphaltenes, irrespective of their sources, 

exhibits a symmetric unimodal distribution with maxima at C33 to C35 homologues (Figure 4.8). 

The isoprenoids pristane and phytane were not detected. This distribution is similar to the 

observation of Pan et al. (2002) although they used a different procedure. These authors 

conducted a series of dissolutions and precipitations (4 times) of the asphaltenes after initial 

precipitation from oil. Analysis of the aliphatic fraction from each step revealed a continuous 

increase in the proportions of the waxes while the lower molecular weight n-alkanes decrease 

such that the fourth fraction is dominated by the waxes in the range C16 to C42 with maxima at 

C31 to C33. Notably, in one of the samples (a biodegraded oil), although the maltene fraction 

contains only small amount of n-alkanes, the fourth and fifth fractions are dominated by waxes 

(Pan et al., 2002). 

  

  
Figure 4.8: TICs of aliphatic fractions from components desorbed after 48 hour Soxhlet extraction of 
asphaltenes from different oils. Note: IS = internal standard; the integers = carbon number of the 
corresponding n-alkane homologues 

The n-alkane composition of the 'occluded' fraction of the asphaltenes is variable but in 

general only trace amount were detected in most of the samples. However, in some samples 
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such as asphaltenes from some Northsea and Canada oils, significant amount of waxes 

consisting mainly of C35 to C40 homologues were detected (Figure 4.9). The similarity in 

composition and distributions of these n-alkanes to those observed in the fifth extraction step 

of U56 asphaltenes (Section 4.3.1) suggests these n-alkanes are remnants of the adsorbed/co-

precipitated waxes. 

 
 

 
 

Figure 4.9: TICs of aliphatic fractions from ‘occluded’ components of asphaltenes from different oils; 
(a) Qatar oil (Q43), (b) Yemen oil (Y32), (c) Canadian oil (C30), and (d) Northsea oil (U32); showing 
while barely no aliphatic hydrocarbons were detected in some asphaltenes (e.g. (a) & (b)), in some 
others (e.g. (c) & (d)) significant waxes were detected. IS = internal standard. 

(b) Terpanes 

All the terpanes detected in maltene fractions of oils were also detected in the corresponding 

adsorbed and occluded fractions. There is broadly a general agreement amongst the maltene, 

asphaltenes adsorbed and occluded fractions; samples, for example, that have relative high 

proportions of tricyclic terpanes in the free maltene, also exhibit high proportions of the 

compounds in the adsorbed and occluded asphaltenes fractions (Figure 4.10). In some 

samples, the C34 and C35 homohopanes were barely detectable. Similarly, although 

bisnorhopane (BNH) was detected in all the Northsea oils, it was not positively identified in the 

occluded fractions 
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Figure 4.10: m/z 191 mass chromatograms showing distributions of terpanes in the occluded 
hydrocarbon fractions from two asphaltenes from Canada and UK Northsea oils 

(c) Steranes 

Steranes were also present in both adsorbed and occluded hydrocarbon fractions. The 

homologues identified include C27, C28, C29 and, in some samples C30 steranes including both 

regular, 5(H)α,14α(H),17α(H) and 5(H)α,14β(H),17β(H), and diasteranes. The distributions of 

these compounds are similar to those from the corresponding free maltene oil fractions as 

shown in Figure 4.11 It is, however, noteworthy that the occluded fractions of asphaltenes 

from oils (C26 and C30) from Canada show enhanced diasteranes compared to other 

compounds. 
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Figure 4.11: m/z 217 mass chromatograms showing distributions of steranes in the occluded 
hydrocarbon fractions from two asphaltenes from Qatar and Canada oils 

(d) Maturity parameters 

To compare and contrast the three fractions based on effect of maturation, typical parameters 

used for assessment of maturity of carbonaceous materials calculated from the three fractions 

(free maltene, adsorbed and occluded) are compared. Ts/(Ts+Tm) shows no significant 

difference among the fractions in some of the samples (Q61, C30 and BN) (Table 4.1). Where 

significance difference was observed, it is rather not systematic and cannot therefore be 

attributed to either adsorption or occlusion. For example, for this parameter occluded-based > 

maltene-based > adsorbed-based for B58 while the reverse is the case for Y32 and U54 (also 

compare C26 and Q43) (Table 4.1).   

Homohopane-based maturity parameter (22S/(22S+22R)) for both C31 and C32 homologues do 

not display any significant differences among the fractions (Table 4.1). The only exception is 

the biodegraded Northsea oil BN which shows low value (0.43) of the parameter from 

occluded fraction. On the other hand, although there is significant differences among different 

fraction with respect to C29 sterane-based maturity parameter (20S/(20S+20R)), the 

differences are not systematic or consistent and cannot therefore be reliably attributed to 

either adsorption or occlusion by the asphaltenes. 

Comparison of the ββ/(ββ+αα) parameter among the three fractions also shows the maltenes 

are generally in agreement with the corresponding occluded fractions in all the samples; and 

adsorbed fractions for some samples. The adsorbed fractions from Canadian oils C26 and C30; 

and Qatar oils Q43 and Q61, however, display significantly lower values of the parameter 

compared to the maltene and occluded fractions (Table 4.1). 
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Table 4.1: Some maturity-related parameters calculated from biomarker contents of maltene (M), 
adsorbed (A) and occluded (O) aliphatic contents. 
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BNA 1.26 0.54 0.46 0.42 0.41 

BNM 1.23 0.55 0.67 0.57 0.49 

BNO 1.33 0.38 0.45 0.45 0.45 

C26A 0.79 0.17 0.52 0.57 0.43 

C26M 0.59 0.16 0.65 0.53 0.47 

C26O 0.80 0.26 0.49 0.41 0.46 

C30A 0.64 0.24 0.59 0.50 0.41 

C30M 0.65 0.17 0.65 0.46 0.50 

C30O 0.67 0.22 0.56 0.44 0.47 

Q43A 1.19 0.25 0.59 0.51 0.45 

Q43M 1.20 0.36 nd nd 0.50 

Q43O 1.41 0.43 0.54 0.52 0.45 

Q61A 1.36 0.42 0.62 0.49 0.44 

Q61M 1.35 0.43 nd nd 0.51 

Q61O 1.38 0.43 0.42 0.30 0.34 

U54A 1.25 0.43 0.41 0.39 0.36 

U54M 0.99 0.40 0.42 0.48 0.36 

U54O 0.81 0.43 0.43 0.44 0.33 

Y32A 1.49 0.43 0.52 0.43 0.48 

Y32M 1.04 0.44 0.68 0.54 0.57 

Y32O 0.94 0.44 0.39 0.39 0.43 

B58A 0.76 0.37 0.54 0.47 0.48 

B58M 1.29 0.42 0.67 0.65 0.56 

B58O 1.58 0.35 0.43 0.42 nd 
 

 

About 50% of the samples (Y32, U54, Q61 and B58) in Table 4.1 show agreement amongst the 

maltene, adsorbed and occluded fractions with respect to C29/C29Ts maturity parameter. Other 

samples, however, show variable disagreement amongst the fractions on this parameter. For 

example, while for Q43, occluded-based > maltene-based > adsorbed-based; BN occluded-

based < maltene-based ~ adsorbed-based (see also C30 and C26, Table 4.1). In general, the 

variability is also inconsistent and difficult to be attributed to either occlusion or adsorption. 

(e) Source parameters 
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The ratio of C29 to C30 hopanes (C29/C30 αβ) is an important parameter for the identification of 

depositional environments of petroleum source rocks (see Section 3.3.3). For most of the 

samples the values of the parameter are similar amongst the fractions (Table 4.2) and 

therefore lead to same conclusions with respect to the depositional environments of the oils. 

Exceptions are B58 and BN for which occluded and adsorbed fractions have significantly high 

values that may lead to erroneous classification of the oils as marine carbonate (cf: Section 

3.3.3 (d)). 

On the other hand, C31R/C30 ratio is used to distinguish marine from non-marine depositional 

environments. The values of the parameter show agreement amongst the fractions for 75% of 

the samples analysed (Table 4.2). Nevertheless, even in samples that have significant 

differences in absolute values of the parameter amongst the fractions, the same conclusion 

would be arrived at with respect to the marine environment of the oils. 
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Table 4.2: Some source and age-related parameters calculated from biomarker contents of maltene 
(M), adsorbed (A) and occluded (O) aliphatic contents. 
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BNA 2.09 0.37 0.41 0.24 0.19 0.17 0.00 0.00 0.93 0.36 0.26 0.38 0.27 

BNM 1.72 0.38 0.29 0.22 0.19 0.15 0.15 1.04 1.06 0.37 0.28 0.35 0.38 

BNO 1.28 0.34 0.29 0.17 0.19 0.20 0.15 0.74 1.15 0.40 0.24 0.35 0.32 

C26A 0.80 0.41 0.31 0.26 0.13 0.12 0.18 1.54 0.55 0.31 0.13 0.56 0.14 

C26M 0.92 0.45 0.31 0.22 0.14 0.13 0.19 1.43 0.85 0.40 0.14 0.47 0.10 

C26O 0.91 0.44 0.28 0.25 0.14 0.15 0.18 1.19 0.85 0.39 0.16 0.46 0.26 

C30A 1.04 0.34 0.29 0.25 0.16 0.14 0.16 1.19 0.64 0.34 0.13 0.53 0.09 

C30M 0.97 0.42 0.28 0.21 0.16 0.14 0.21 1.48 0.73 0.35 0.17 0.48 0.10 

C30O 1.12 0.39 0.29 0.23 0.18 0.13 0.17 1.29 0.71 0.33 0.19 0.47 0.26 

Q43A 0.87 0.43 0.39 0.24 0.15 0.11 0.10 0.90 0.91 0.39 0.18 0.43 0.30 

Q43M 1.07 0.52 0.36 0.25 0.18 0.11 0.11 1.04 0.67 0.34 0.16 0.50 0.53 

Q43O 1.22 0.37 0.31 0.22 0.16 0.14 0.17 1.20 0.86 0.36 0.22 0.42 0.37 

Q61A 1.23 0.40 0.36 0.26 0.15 0.11 0.12 1.10 0.72 0.35 0.15 0.49 0.34 

Q61M 1.06 0.43 0.34 0.25 0.16 0.13 0.13 0.99 0.76 0.37 0.15 0.48 0.53 

Q61O 1.19 0.40 0.32 0.23 0.19 0.12 0.13 1.08 0.69 0.33 0.19 0.48 0.34 

U54A 2.10 0.33 0.36 0.23 0.19 0.13 0.09 0.69 1.12 0.39 0.26 0.35 0.36 

U54M 1.96 0.38 0.34 0.23 0.20 0.11 0.10 0.91 0.98 0.36 0.27 0.37 0.34 

U54O 2.22 0.37 0.32 0.21 0.20 0.13 0.13 1.07 0.96 0.36 0.27 0.37 0.37 

Y32A 2.04 0.35 0.33 0.21 0.19 0.12 0.15 1.30 0.89 0.37 0.22 0.41 0.36 

Y32M 2.27 0.34 0.37 0.25 0.19 0.11 0.08 0.74 0.86 0.38 0.19 0.44 0.39 

Y32O 1.98 0.33 0.34 0.24 0.16 0.12 0.14 1.17 0.89 0.35 0.26 0.39 0.36 

B58A 1.65 0.36 0.34 0.22 0.16 0.14 0.14 1.03 0.76 0.35 0.19 0.46 0.37 

B58M 2.10 0.35 0.37 0.25 0.18 0.12 0.09 0.79 0.95 0.39 0.20 0.41 0.40 

B58O 1.13 nd 0.35 0.45 0.20 0.00 0.00 0.47 0.93 0.32 0.33 0.35 0.39 
 

Furthermore, the Dia/(Dia+Reg) sterane parameter used to differentiate between shale and 

carbonate petroleum source rocks also shows similar values amongst the fractions irrespective 

of the sample (Table 4.2). The Canadian samples (C26 and C30) however, have low values of 

the parameter for occluded fraction compared to the adsorbed and maltene fractions. For 

these samples, the diasteranes are relatively enriched in the occluded fraction (Table 4.2). 

The ratio of C27 to C29 steranes is commonly used as an age discrimination parameter. The 

values of this parameter for all the fractions are comparable in almost all the samples (Table 

4.2). The adsorbed fractions however have significantly low values compared to the maltene 

and occluded fractions in samples C26 and C30. 

The above observations are generally true of other biomarker parameters (e.g. Figure 4.12). 

There is reasonable agreement between cyclic biomarker indices from the free, adsorbed and 



Muhammad 

78 

‘occluded’ fractions of any given sample (Table 4.2); differences among values are rather 

unsystematic and could not be attributed to any physical phenomena under investigation (i.e. 

adsorption or occlusion). The differences could therefore be due to random error in analysis. 

Most importantly, same geochemical conclusions would be reached from the biomarker 

indices of the three fractions of a given oil sample in most cases. 
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Figure 4.12: Top are line plots distributions of homohopanes and bottom are bar charts showing 
distribution of steranes from maltene (M), adsorbed (A) and occluded (O) fractions from two 
asphaltenes from Canada (C26) and Qatar (Q61) oils 

4.3.4 Simulation of occlusion of hydrocarbons in asphaltenes 

Results of the occlusion experiment revealed none of the added marker compounds was 

detected in the ‘occluded’ fraction following chemical degradation of the asphaltenes after ten 

days of Soxhlet extraction. This observation suggests that there was no dynamic contact 

between the occluded compounds and free compounds in the maltene. The occluded 

compounds appear to be encapsulated and the added marker compounds although dissolved 

in the maltene could not penetrate the asphaltene structural network or aggregate. This 

apparently supports the ‘occlusion’ hypothesis.  

Although this is the most obvious interpretation of the observation, it however does not 

account for other observations such as: 

1. Absence of smaller molecules in the occluded fraction. The smaller the compounds the 

greater the chance of being occluded since smaller compounds such as low molecular 

weight n-alkane occupy less space 
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2. Absence of any systematic difference between the biomarkers in the so-called occluded 

fraction and free maltene fraction 

3. Stepwise extraction did not show any clear demarcation between adsorbed and 

occluded fractions 

4. Predominant presence of waxes in the occluded fractions of many asphaltenes. Stepwise 

Soxhlet extraction of the asphaltenes suggests such waxes are remnants  (i.e. the 'tail 

end') of the waxes observed in the adsorbed fraction 

The observations, and in particular 3 and 4, suggest the so-called occlusion is solubility 

controlled co-precipitation rather than entrapment and protection controlled by the structure 

or aggregation of asphaltenes molecules. Experimental solubility data show that the solubility 

of n-alkanes in a given solvent is dependent on the solvent, the molecular weight of the n-

alkane and temperature (Jennings and Weispfennig, 2005). In general, the lower the molecular 

weight of the solvent the more of the solute n-alkane it dissolves at any particular 

temperature. On the other hand, in any particular solvent (e.g. toluene) the solubility increases 

with temperature and decreases with molecular weight of the solute n-alkane (Figure 4.13). 

Note from Figure 4.13(a) that at 20 °C n-hexatricontane (C36H74) and higher homologues are 

practically insoluble in toluene which has similar solubility properties as n-heptane (Jennings 

and Weispfennig, 2005).  

 
 

Figure 4.13:  (a) shows the effect of molecular weight of n-alkanes and temperature on the solubility 
of the n-alkanes (b) shows the effect of solvent and temperature of solubility of n-hexatricontane 
(from Jennings & Weispfenning (2005)) 

This supports the solubility influence on the precipitation properties of waxes and other 

components in petroleum. On addition of the precipitation solvent (e.g. n-hexane) equilibrium 

is established between the solubilised and precipitated phases based on solubility properties 

of the solutes. Greater proportions of the more soluble components (e.g. low molecular 

weight n-alkanes) remain in the solubilised phase while greater proportion of the less soluble 

components (e.g. waxes) are found in the precipitated phase. Thus relatively more waxes 

precipitate out with the asphaltenes. When the asphaltenes are re-dissolved and precipitated 

with fresh solvent, the solubilised phase is enriched in the waxes compared to the lower 

molecular weight homologues in the previous cycle. This explains the observation of Pan et al. 

(2002) that more high molecular weight n-alkanes relative to the lower molecular weights are 
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found with increasing washings. It also explains the observation in this work that maxima of 

waxes from stepwise extraction shifts towards higher molecular weight homologues and only 

these higher weights homologues were predominantly found in the so-called occluded 

fraction. This may also be why the marker compounds used in the occlusion experiment were 

not detected in the occluded fraction. It is believed that the cyclic biomarkers observed in the 

occluded fraction are remnants of those in the free maltene that co-precipitated with the 

asphaltenes. 

4.4 Summary and Conclusions 

Occlusion of compounds, in particular biomarkers, is a very promising hypothesis particularly 

in the study of extensively biodegraded oils if established. The hypothesis is critically 

investigated to assess its validity or otherwise. Specifically, the extent of Soxhlet extraction 

required to remove adsorbed/co-precipitated components from asphaltenes, and the most 

suitable chemical degradation method for recovering the occluded compounds were 

investigated. Furthermore, simulation experiments were conducted to test the occlusion 

hypothesis and hydrocarbon compositions of the maltene adsorbed and occluded fractions 

were compared to investigate whether the differences amongst the fractions are significant. 

Results of the investigation reveal the following: 

1. Sequential stepwise Soxhlet extraction of asphaltenes reveals an asymptotic pattern not 

only with respect to the total amount of component desorbed but also with respect to 

the n-alkanes recovered which suggests there is no clear demarcation between 

adsorbed and occluded components 

2. The adsorbed components from all the asphaltenes are dominated by waxes in the 

range C20 to C42. The occluded components, on the other hand, are also dominated by 

the waxes in the range C36 to C42 in some of the samples. 

3. Among the three reagents investigated, acidified potassium permanganate solution was 

found to be practically the most suitable. Hydrogen peroxide solution with acetic acid 

was observed to significantly attack saturated hydrocarbons. 

4. Comparative analysis of the saturated hydrocarbon components in maltene, adsorbed 

and occluded fractions revealed clear differences in distributions of the n-alkanes 

amongst the fractions. However, maturity and correlation indices calculated from the 

biomarkers of the fractions show general agreement amongst them. Where differences 

were observed, they were unsystematic and could not therefore be attributed to either 

adsorption or occlusion. 

5. The so-called occlusion of compounds by asphaltenes is most likely a consequence of co-

precipitation controlled by solubility properties of the compounds in addition to 

temperature and solvent properties. 
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Chapter 5 Bulk Composition and Structure of Asphaltenes by 
FTIR and NMR 

5.1 Introduction 

Infrared spectroscopy and nuclear magnetic resonance spectroscopy are among the most 

powerful tools available to the chemist for investigation of structure and composition of 

chemical substances. The infrared spectroscopy is based on the differential interaction of 

chemical bonds with the infrared radiation while the nuclear magnetic resonance spectroscopy 

exploits differential interaction of magnetic moments of atomic nuclei with radio frequencies. 

The infrared is part of the spectrum of electromagnetic radiation between the high frequency 

end of the visible region to the low frequency end of the microwave region. Specifically, it 

covers the electromagnetic waves with wavelength between 0.78 to 1000 µm (13000 to 10 

cm–1). The IR region is further divided into near IR (NIR) covering 0.78 – 2.5 µm (13000 – 4000 

cm–1); mid IR (MIR) covering 2.5 – 25 µm (4000 – 400 cm–1); and far IR (FIR) covering 25 – 1000 

µm (400 – 10 cm–1). Although all these regions have applications in the chemical sciences, MIR 

was specifically used in this study because of its application in determination of functional 

groups in chemical systems (Bellamy, 1975; Nakanishi, 1962). 

The IR spectrum of a compound consists of a series of absorption (or emission) bands of 

variable intensities. Ideally, each absorption band in the spectrum corresponds to a vibrational 

transition within the molecule, and gives the position of absorption and intensity of the 

frequency at which the vibration occurs. Thus, as different bonds have different vibrational 

characteristics (because of differences in bond strength and masses of atoms connected); they 

absorb at different frequencies and therefore each absorption band provides structural 

information about the molecule. The absorptions are however affected by the chemical 

environment of the bond. Consequently, the IR spectrum is a molecular fingerprint with 

unique information on the molecule (Nakanishi, 1962). 

IR, and in particular the preferred and more versatile (Thermo Nicolet, 2001) Fourier transform 

IR (FTIR) spectroscopy has been widely used in the study of carbonaceous materials (e.g.: 

Ibarra et al., (1996); Cerný (1996); Holmgren and Norden (1988); Haberhauer and Gerzabek 

(1999); Petersen et al. (2008); Christy et al. (1989); Calemma et al. (1995)). The studies cover 

applications ranging from quantitative estimation of bulk components to qualitative and 

quantitative interrogation of structural features. Wilt and Welch (1998), for example, used 

FTIR and partial least squares (PLS) analysis on crude oils to develop models for quantitative 

estimation of asphaltene content of the oils with excellent prediction potentials. Similarly, 

Sarya et al. (2007) successfully used combination of FTIR in the NIR region and chemometrics 

(PCA & PLS) to develop models for prediction of bulk properties (carbon residue, density, 

average molecular weight, sulphur, nitrogen, saturates, aromatics, resins and asphaltenes) of 

crude oils (see also (Aske et al., 2001; Wilt et al., 1998; Honigs et al., 1985)). 

Most of the structural investigations of carbonaceous materials are, however, mainly on coal 

structural chemistry (e.g. Ibarra et al. (1996); Geng et al. (2009); Cerný, (1996); Holmgren & 

Nord, (1988); Guillen et al. (1992); Painter et al., (1981)). For example, Ibarra et al. (1996) 
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studied the maturity evolution of structural features of coals using FTIR. With the help of a 

curve fitting algorithm, they were able to deconvolute each spectrum into composite 

absorption bands more or less specific for individual chemical features that make up the coal 

structures. From this, among other things, they observed increasing aromaticity with 

increasing maturation and progressive conversion of aliphatic carboxylic groups into aromatic 

carbonyl groups (Ibarra et al., 1996). 

Investigations of asphaltene structure using FTIR are rather inadequate. Most of the work is 

limited to obtaining spectra of the asphaltenes and, in some cases, computing therefrom ratios 

of some peaks without detailed investigation of the information such spectra may contain. An 

exception, however, is the work of Coelho et al. (2007). This work, although limited to 

aromatic features, employed FTIR analysis, together with curve fitting techniques and 

computational chemistry, to characterise the aromatic functionalities in the 2900 – 3100 cm–1 

and 700 – 900 cm–1 regions of the asphaltenes and resins. 

Investigation of asphaltenes using NMR, and particularly using solid-state NMR, is even 

scantier. However, the method has been extensively used to elucidate the distribution of 

carbon in coals (Wilson and Vassallo, 1985; Sullivan and Maciel, 1982). Traditionally 

quantitative determination of distribution of carbon in carbonaceous materials using dipolar 

dephasing cross polarisation 13C NMR with magic angle spinning (CP/MAS 13C NMR) require 

measurements at multiple dephaing time (Wilson and Vassallo, 1985) which is requires alot of 

spectrometer time. Wilson et al. (1984) has shown that it is possible to estimate some 

important structural parameters of coal using CP/MAS 13C NMR at just two dipolar dephasing 

times; t = 0 and t = 40 µs. Measurement at t = 0 gives the total aliphatic and aromatic carbon 

from which the aromaticity factor, fa can be calculated. The measurement at t = 40 µs, on the 

other hand, gives mainly signals from quaternary aromatic carbon and a combination of 

tertiary and primary aliphatic carbon (Wilson et al., 1984; Murphy et al., 1982) and allow for 

estimation of other structural parameters (equation 5.1 to 5.5) such as fractions of the 

aromatic carbon that is protonated (i.e. tertiary aromatic carbon, fa
a,H) and nonprotonated 

(quaternary aromatic carbon, fa
a,N); fraction of the total carbon that is protonated ( fa

H) and 

nonprotonated ( fa
N); as well as the fraction of the total hydrogen present in the aromatic 

systems (Ha) (Wilson et al., 1984). 
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Where A, N, P and T are the signal intensity of aromatic carbon at t = 0, signal intensity of 

nonprotonated aromatic carbon at t = 0, signal intensity of protonated aromatic carbon at t = 

0, and is the total signal intensity of carbon at t = 0, respectively. M is the measured signal 

intensity of aromatic carbon at t = 40 µs. 

Although the values of the parameters obtained for the equations above are less accurate than 

those obtained from measurements at multiple t (sometimes by up to 15%), the figures are 

good and are useful for comparison purposes. 

 Therefore this section of the work is generally aimed at the investigation of the bulk 

composition and structure of asphaltenes using FTIR and solid-state NMR. Specific objectives 

include: 

1. to identify the various functional groups in asphaltenes 

2. to investigate the changes in composition of asphaltenes with their thermal evolution 

3. to investigate variations in chemical composition from different asphaltenes 

4. to compare and contrast the chemical composition of asphaltenes from oils, black shales, 

and coals 

5. to explore/develop a classification system of oils from asphaltene FTIR spectra 

5.2 Methodology 

5.2.1 Samples and sample preparation 

Samples were selected to enable coverage of the above objectives.  The samples selected for 

this study are shown in Table 5.1. They consist of asphaltenes from oils, coal bitumen and 

source rock bitumen. The results of the preliminary characterisation of these samples were 

presented in Chapter 3. The oils obtained from different geographical regions of the world 

including United Kingdom, North America, Middle East etc., and depositional environment 

including marine carbonate, marine marls, marine shales etc. 

Coal samples, C04, C56, C69 and C15, with vitrinite reflectance 0.40, 0.56, 0.69 and 1.50% 

respectively were from Northsea coal deposits. These were selected to investigate the thermal 

evolution of the asphaltenes. The black shale samples were obtained were obtained from the 

Batra Formation, Jordan (2 samples); Kimmeridge Clay, UK (1 sample) and Tanezzuft 

Formation, Libya (16 samples) all deposited under marine stratified anoxic settings. However, 

while the Batra black shale and Kimmeridge Clay were immature, the Tanezzuft black shale 

was marginally mature. Bitumen from the coals and black shales samples were recovered by 

Soxhlet extraction as described in Section 2.3.2. The asphaltenes from the oils and bitumen 

were recovered and Soxhlet extracted to remove co-precipitated maltenes as outlined in 

Section 2.3.3.  
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Table 5.1: List of some the samples used in the FTIR and NMR analysis of asphaltenes 

SN Sample ID Country Field Org. Matter Dep. Environment 

1 AR3 Gulf of Mexico - Marine - 

2 A39 Abu Dhabi - - - 

3 B58 Bangladesh Habigong Marine Marine shale 

4 BN Northsea, UK - Marine Marine shale 

5 C26 Canada Midale Marine Marine carbonate 

6 C30 Canada Midale Marine Marine carbonate 

7 CH Canada - Marine Marine carbonate 

8 FN Northsea, UK Veslefrikk Marine Marine shale 

9 K77 Kuwait Raudhatain Marine Marine carbonate 

10 K78 Kuwait Sabriyah Marine Marine carbonate 

11 U01 Northsea, UK Kittiwake Marine Marine shale 

12 U05 Northsea, UK Kittiwake Marine Marine shale 

13 NA1 Serbia Gaj - - 

14 NA2 Serbia Gaj - - 

15 NB Nigeria - - - 

16 O28 Oman Natih Marine Marine marl 

17 O31 Oman Natih Marine Marine marl 

18 Q43 Qatar Al Shaheen Marine Marine marl 

19 Q61 Qatar Bul Hanine Marine Marine marl 

20 U02 Northsea, UK Flora Marine Marine shale 

21 U56 Northsea, UK Alder Marine Marine shale 

22 U07 Northsea, UK Fergus Marine Marine shale 

23 U16 Northsea, UK Captain Marine Marine shale 

24 U54 Northsea, UK Ettrick Marine Marine shale 

25 U59 Northsea, UK Bruce Marine Marine shale 

26 U68 Northsea, UK ? Marine Marine shale 

27 U84 Northsea, UK Nelson Marine Marine shale 

28 U89 Northsea, UK Britannia Marine Marine shale 

29 U93 Northsea, UK Gannet West Marine Marine shale 

30 Y32 Yemen Hemiar Marine Marine shale 

FTIR analyses were carried out in transmission mode (Section 2.4.10). Pellets of the asphaltene 

samples were prepared as described in Section 2.3.12. Precision of the FTIR measurements 

was gauged by statistical analysis of triplicate measurements on a pellet of sample U54. In 

order to assess the repeatability of the analysis triplicates of K78 (an oil asphaltene) and T28 (a 

black shale asphaltene) were prepared and analysed with the analytical samples. Relative 

standard error of the mean was calculated to estimate the level of error in the analysis. 

Asphaltenes were also precipitated from an oil (U56) using n-pentane, n-hexane and n-

heptane respectively to investigate the effect of hydrocarbon solvent used in the precipitation 

on the chemical composition of the asphaltene. 
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5.2.2 Pre-processing and curve fitting of FTIR spectra 

The FTIR spectra obtained from the asphaltenes were pre-processed (Beebe et al., 1998; 

Maddams, 1980) before curve-fitting and further analysis by multivariate chemometric 

methods.  The spectra were baseline linearised using multi-point option and adjusted to zero 

absorbance. Smoothing, to reduce noise in the data, was performed using Savitzky-Golay 

algorithm (Savitzky and Golay, 1964) with second degree polynomial convolution function at 

15 points on GRAMS/AI platform.However,  to ensure the structural features of the spectra 

were not significantly altered by oversmoothing fine bands were monitored during the 

smoothing (Smith, 1996). Figure 5.1 compares the original (unsmoothed) spectrum and the 

smoothed spectra at different points. 

 
Figure 5. 1: Mid-infrared spectrum (1800 – 920 cm

–1
) of the asphaltenes from C26 oil before and after 

smoothing at different points showing the shapes and positions of the bands in the original spectrum 
was not significantly altered by the 15 point smoothing used in preprocessing. 

Curve fitting is a method used to separate overlapping peaks in a spectrum (Maddams, 1980). 

The procedure, which is based on least squares algorithm using GRAMS/AI software (Thermo 

Scientific, Inc.), was performed in three steps covering the spectral regions: 3100 – 2750 cm–1, 

1800 – 925 cm–1 and 925 – 680 cm–1, respectively.  In each case the number of bands that 

make up the composite bands and their positions (maxima) were identified with the aid of the 

second derivative of the spectra and literature (Painter et al., 1981; Maddams, 1980). The 

limits of the determined maxima were set to within ±10 cm–1. The width at half height of each 

band was estimated from the second derivative as the distance between inflection points 

(Painter et al., 1981). Since the shape of the bands was unknown, shape functions of equal 

Gaussian and Lorentzian functions were initially adopted and allowed to vary during the 

iterative procedure (Ibarra et al., 1996; Painter et al., 1981). Some typical curve-fitted sections 

of the mid-infrared spectra are shown in Figure 5.2. 
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Note that prior to the curve fitting, each spectrum was normalised to the percentage (w/w) of 

the asphaltene in KBr pellet. The FTIR measurement is governed by the Beer-Lambert law 

(equation 5.6). The absorbance (A) at a band by a chemical functionality is proportional to the 

area (Ab) of the band. Since thickness of the pellets prepared is fairly uniform and asphaltene 

have similar bulk chemical composition, both l and ε are assumed to remain constant (β) 

between samples. Therefore Ab is proportional to the concentration, c of the absorbing 

functionality. This allows similar chemical functionalities to be semi-quantitatively compared 

using the integrated areas of their respective bands (equation 5.7). 

6.5clcAA b  

 

7.5cAb 

 

 

  

  

  
Figure 5.2:  Typical curve fitting of mid-infrared spectra of petroleum asphaltenes showing 
deconvolution of bands in the three regions ((a) & (d), (b) & (e) and (c) & (f)) of the spectra of the 
Canadian asphaltenes (C26) and Tanezzuft black shale asphaltenes (T35). 
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5.2.3 Chemometric multivariate statistical analysis 

Statistical chemometric tools were employed to provide comprehensive view of the covariate 

FTIR data mainly with the aim of developing classification methods of the oils based on the 

asphaltene FTIR data. Prior to this, all the spectra were normalised to the respective maximum 

absorbance to remove the effect of concentration on the data (Beebe et al., 1998). Each of the 

three main regions (3100 - 2750, 1800 - 925, and 925 - 680 cm–1) of the spectrum was analysed 

separately in the classification procedure. The multivariate statistical tools used to aid the 

classification were principal component analysis (PCA) followed by hierarchical cluster analysis 

(HCA) (Hair et al., 2006; Adams, 1991; Smith, 1991). 

In general, the high dimensionality of the data was reduced by PCA. The analysis transforms 

the original multicollinear spectral data into mutually orthogonal independent variables (i.e. 

principal components or PCs) such that PC1 extracts the maximum variance in the data and 

PC2 extracts the maximum variance of what remains and so on, so that the first few PCs 

extract most of the information in the original data (Tabachnick and Fidell 2007; Hair et al., 

2006; Beebe et al., 1998). The score plot of PC1 against PC2 was used to initially explore the 

structure of the data and identify outliers. Then, the number of PCs accounting for most of the 

variance in the original data was identified from eigenvalue plot (eigenvalues vs. PCs). In order 

to eliminate the negative effect of multicollinearity in the original spectral data, the selected 

PCs were used as variables in HCA for more extensive classification (Hair et al., 2006).  

The best combination of linkage method and distance measure in the HCA was found to be the 

Ward linkage method and squared Euclidean distance measure in agreement with Hair et al. 

(2006). The number of relevant clusters was identified based on examination of similarity 

levels and dendrograms. Similarity in chemical composition amongst asphaltenes was assessed 

based on similarity and distance levels in the HCA results and analysis of the various variables 

that have significant loadings on the relevant PCs (Tabachnick and Fidell, 2007; Hair et al., 

2006; Brereton, 2003; Beebe et al., 1998). 

5.3 Results and Discussion 

5.3.1 Assignment of bands 

(a) Assignment of solid-state 13C NMR absorption bands 

The solid-state 13C NMR spectra of the asphaltenes generally consist of two broad absorption 

bands at 0 – 60 ppm and 100 – 150 ppm (Figure 5.3 (a)) assigned to aliphatic carbon and 

aromatic carbon, respectively (Murphy et al., 1982). The aromatic carbon consists of primary 

(methyl), secondary (methylene) and tertiary (methine) carbon. The aromatic carbon, on the 

other hand, consists of tertiary carbon (bonded a one hydrogen) and quaternary carbon 

(bonded to no hydrogen).  

The dipolar dephased 13C NMR spectra also consist of the two broad absorptions (Figure 5.3 

(b)). The peak at 0 – 60 ppm is mainly due to quaternary aromatic carbon as the signals from 

the protonated tertiary carbon have been mostly removed by the dephasing programme. 



Muhammad 

88 

Therefore, the peak is indicative of the degree of condensation in the aromatic ring system of 

the asphaltenes. The peak at 100 – 150 ppm in the dipolar dephased spectra (Figure 5.3 (b)), 

on the other hand, represents signals from the tertiary aliphatic carbons and mobile primary 

(methyl) carbons (Murphy et al., 1982). 

 

 
Figure 5. 3:  Solid-state 13C spectra of K78 asphaltene (a) before dipolar dephasing and (b) after dipolar 
dephasing (40 μs)  

  

(b) Assignment of 3500 to 2750 cm-1 region 

This region of the FTIR spectra of asphaltenes consists of a number of bands provided by 

various chemical functional groups. The broad absorption band between 3500 and 3100 cm–1 

(Figure 5.4) is assigned to hydroxyl (O–H) and pyrrolic (N– H) stretching vibrations. The band is 

often sharp where the functional groups are isolated. However, if the groups are involved in 

polymeric intermolecular hydrogen bond and/or chelation with carbonyl (C=O) group 

(Nakanishi, 1962) a broad absorption band is observed as in Figure 5.4. In general, the band is 

weak in almost all petroleum asphaltenes analysed in this work (Figure 5.4 (a) & (b)). It is 

however prominent and strong in the spectra of asphaltenes from coals and black shales 

(Figure 5.4 (c) & (d)). This suggests the OH and NH functionalities are relatively more abundant 

in coal and black shale asphaltenes than is the case in petroleum asphaltenes. 
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Figure 5. 4:  Typical mid-infrared spectra of asphaltenes derived from (a) Bangladesh oil; (b) a Northsea 
oil; (c) a black shale asphaltene from Kimmeridge mudstone; and (d) a Northsea coal 

The two relatively weak bands between 3100 and 3000 cm–1 are attributed to aromatic C–H 

stretching vibration. The bands are barely detectable in immature asphaltenes from black 

shales and coals (Figure 5.4 (c) & (d)). They are however relatively strong in spectra of the 

asphaltenes from petroleum, the Tanezzuft black shale and mature coal (e.g. (a), (b) & (d) in 

Figure 5.4). They often appear as a shoulder to the aliphatic C–H stretching aliphatic band or 

may occur below 3000 cm–1 in which case they may overlap with the aliphatic stretching 

bands. Winberley & Gonzalez (1961) observed that the band shifts from about 3000 to 3050 

cm–1 as number of aromatic rings decreases (Yen et al., 1984). The band at 3020 cm–1 may 

therefore indicate structures with 5 or more aromatic rings while that at 3050 cm–1 may be 

due to structures with 3 rings or less. 

Wavenumber (cm
-1
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 Figure 5. 5: Second derivative (top) of 3100 – 2750 cm
–1

 region of the mid-infrared spectrum of the 
asphaltenes from (a) Oman  oil (O28) and (b) Tanezzuft black shale (T35) showing deconvolution of 
the superimposed bands in the region. 
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The 3000 to 2750 cm–1 region of the spectrum reveals three main bands at approximately 

2920, 2925 and 2850 cm–1 (Figure 5.4). Second derivative of the region however shows five (5) 

bands at about 2954, 2923, 2897, 2869 and 2850 cm–1 (Figure 5.5). These bands are generally 

assigned to C–H stretching vibrations of aliphatic groups as shown in Appendix 5A. The first 

two bands at 2954 and 2923 cm–1 are assigned to asymmetric stretching vibrations due to C–H 

at 2° and 1° carbons (i.e. methylene, R2CH2 and methyl, RCH3 groups respectively) while the 

last two bands at 2869 and 2850 cm–1 are due to the corresponding symmetric stretching 

modes of the respective two groups. The middle band at 2897 cm–1 is attributed to C–H 

stretching vibration at 3° carbon (i.e. methine, R3CH) (Guiliano et al., 1990; Yen et al., 1984). 

(c) Assignment of 1800 to 925 cm-1 region 

This is a very complex region with at least eighteen bands as revealed by the second derivative 

of the region (Figure 5.6). The band at about 1770 cm–1 in spectra of coals and black shale 

asphaltenes is assigned to carbonyl (C=O) functionality in ester group (RCOOR) while the band 

between 1695 and 1715 cm–1 is attributed to carbonyl (C=O) functionality in carboxylic acid 

group. Both bands are prominent in black shale and coal asphaltenes. In petroleum 

asphaltenes the ester band is absent while the acid band occurs only as a shoulder to the 

aromatic band at about 1600 cm–1 in some others (Figure 5.4). The band at 1660 cm–1, on the 

other hand, is assigned to highly conjugated carbonyl (C=O) group of the quinone-type (Ibarra 

et al., 1996; Guiliano et al., 1990). 

Note however that definite assignment of the acid carbonyl band is difficult as C=O 

functionality in ketones also absorbs in the same region (Painter et al., 1981; Nakanishi, 1962). 

The later possibility is particularly reinforced in petroleum asphaltenes by the fact that 

carboxyl carbonyl group absorbs at about 1700 cm–1 or higher wavenumbers and are 

accompanied by a fairly broad band at 3500 to 3100 cm–1 due to hydroxyl (O–H) group which is 

not significant in the petroleum asphaltenes. 
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Figure 5. 6: Second derivative (top) of the 1800 – 925 cm
–1

 mid-infrared spectrum (bottom) of the 
asphaltenes from (a) Oman oil (O28) and (b) Tanezzuft black shale (T35) showing the deconvolution of 
superimposed bands in the region. 

The four bands at about 1600, 1570, 1487 and 1439 cm–1 have been observed in coal spectra 

to intensify with coalification and thus are attributed to absorptions by aromatic C=C 

stretching vibrations and are therefore indicative of the aromatic ring system in the 

asphaltenes (Ibarra et al., 1996; Guiliano et al., 1990). The first three bands are enhanced by 
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conjugation with carbonyl (C=O) functionality (Ibarra et al., 1996). Note however that positive 

correlations were observed between relative amounts of nitrogen in petroleum asphaltenes 

and the first three absorption bands respectively (Figure 5.7). This suggests a significant 

contributions from aromatic C=N absorption to the bands and thus indicates aromatic nitrogen 

is an important functionality is petroleum asphaltenes. 
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Figure 5. 7: Plot showing correlation between asphaltene N/C ratio and the absorption bands at (a) 1571 
cm

–1
 (R

2
 = 0.42) and (b) 1487 cm

–1
 (R

2
 = 0.32) respectively indicating the bands have contributions from 

aromatic C=N stretching vibrations. 

The band at 1459 cm–1 is assigned to asymmetric deformation by aliphatic methyl (CH3–) and 

methylene (–CH2–) groups. Similarly, the band at 1413 cm–1 is assigned to asymmetric 

methylene (–CH2–) and/or OH group deformations. The intensity of the band at about 1375 

cm–1 was observed to increase with coal rank and is consequently attributed to deformation 

vibrations by methyl (CH3–) group attached to aromatic system. Likewise, the band at 1348 

cm–1 is attributed to symmetric deformation vibrations of methyl (CH3–) group attached to 

carbonyl (C=O) functionality (Ibarra et al., 1996; Guiliano et al., 1990). Note however that the 

two bands at 1414 and 1375 cm–1 correlate positively with nitrogen content of the asphaltenes 

(Figure 5.8). Consequently, the bands are likely by alkyl groups attached to nitrogen 

functionally possibly in tertiary amine structures as corroborated by presence of aromatic 

amine C–N absorption bands (see below). 
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 Figure 5.8: Plots showing correlation between asphaltene elemental N/C ratio against relative band 
areas of the bands at (a) 1414 cm

–1
 (R

2
 = 0.43) and (b) 1375 cm

–1
 (R

2
 = 0.36) indicating the bands are 

associated with nitrogen. 

The bands between 1300 and 1000 cm–1 are difficult to assign because many groups absorb in 

the region (Painter et al., 1981). Nevertheless, Ibarra et al. (1996) assigned these bands to 
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stretching vibrations by C–O groups from various functionalities including ethers, phenols, 

alcohols etc. (Appendix 5A). However, C–C stretching, O–H and –CH2– deformations also 

absorb in this region in addition to S=O (sulphoxides, R2S=O), SO2 (from sulphones, R2SO2),  and 

C– N (from aliphatic, R3N, and aromatic, ArNR2, amines) (Socrates, 1980; Nakanishi, 1962). The 

bands could also be due to mechanical coupling of these vibration (Painter et al., 1981). 

Consequently, Painter et al. (1981) conclude that “it is likely that bands between 1000 and 

approximately 1300 cm–1 cannot be described in terms of simple motions of specific functional 

groups or chemical bonds, but instead have complex, poorly defined, mixed character ”. 

The band at 1035 cm–1 resolves into two bands in the second derivative of the spectra (Figure 

5.6). They have been assigned by Ibarra el al. (1996) to C–O stretching vibrations. Some other 

workers (Permanyer et al., 2005; Lamontagne et al., 2001; Boukir et al., 1998) however have 

assigned them to stretching vibrations by sulphone (S=O) and sulphoxide (SO2) functional 

groups. Correlation of the bands with S/C ratio however did not show any relationship 

between the parameters. This suggests the bands might not be due to the sulphur 

functionalities. 

Nevertheless, four bands within the range show clear positive correlation with N/C elemental 

ratio (Figure 5.9). Studies of standard compounds have revealed that absorptions by stretching 

vibrations of C–N bond of tertiary aliphatic amines occur between 1230 and 1030 cm–1 while 

those by aromatic C–N bond (i.e. Carom–N) and aliphatic C–N bond (i.e. Caliph–N) in aromatic 

amines absorb in the range 1360 – 1250 and 1280 – 1180 cm–1, respectively (Nakanishi, 1962). 

Consequently, the three bands at 1348, 1311 and 1269 cm–1 are assigned to Carom.–N. The 

fourth band at 1234 cm–1 is assigned to Caliph.–N functionality of tertiary aromatic amines. The 

weakness of the correlation might be due to influence of bands of other functionalities that 

absorb in the region and the fact that the nitrogen is not exclusively fixed in these 

functionalities. 
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Figure 5. 9: Plots showing positive correlation be asphaltene N/C ratio and (a) 1348 cm
–1

 (R
2
 = 0.44), (b) 

1311 cm
–1

 (R
2
 = 0.39), (c) 1269 cm

–1 
(R

2
 =0.40), and (d) 1234 cm

–1
 (R

2
 =0.42). 

 

(d) Assignment of 925 to 700 cm-1 region 

This region commonly contains three fairly strong absorption bands (Figure 5.4) which are 

generally assigned to out-of-plane deformations of aromatic C–H group (Yen et al., 1984; 

Nakanishi, 1962). The bands reflect various degrees of substitution on the aromatic ring 

system (Ibarra et al., 1996; Guiliano et al., 1990; Yen et al., 1984; Nakanishi, 1962). Yen et al. 

(1984) and Guiliano et al. (1990) have shown that the region can be clearly divided into: 890 - 

850 cm–1 attributed to 1 isolated hydrogen; 830 – 815 cm–1 attributed to 2 adjacent hydrogens; 

800 - 775 cm–1 attributed to 3 adjacent hydrogens; and 760 - 745 cm–1 attributed to  4 adjacent 

hydrogens on an aromatic ring system.  
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 Figure 5. 10: Second derivative (top) of mid-infrared spectrum (bottom) of asphaltene (925 – 680 cm
–

1
) showing the superimposed bands in the region for (a) Oman oil asphaltenes (O28) and (b) Tanezzuft 

black shale asphaltenes (T35) 

The three bands however consist of up to ten superimposed bands as revealed by second 

derivative of the region (Figure 5.10). These bands are curve fitted and assigned as defined in 

Appendix 5A (Ibarra et al., 1996). The band at 724 cm–1 is aliphatic rather than aromatic and is 

generally attributed to rocking vibration by methylene (–CH2–) unit of long alkyl (greater that 

butyl) groups (Nakanishi, 1962). There is however disagreement on assignment of the band at 

about 830 to 840 cm–1. Guiliano et al. (1990) assigned this to rocking vibration by cyclic 

methylene (–CH2–) unit based on Kuehn et al. (1984) observation that the band correlate with 

evolution towards cyclic saturated structures. On the other hand, Ibarra et al. (1996) assigned 

it to out-of-plane vibration by 2 adjacent hydrogens on aromatic ring. 

5.3.2 Coal asphaltenes: evolution with maturity 

Table 5.2 shows the relative proportions of the major elements in the four coal asphaltenes 

with carbon being over 70% of the total weight of the asphaltenes and hydrogen being only 

about 6%. Although oxygen is significant, it appears to be dependent on the coal rank 

(maturity). 

Table 5.2: Results of elemental analysis of the coal asphaltenes showing the relative proportions of 
the five major elements (oxygen (O) was calculated by difference) 

Sample Ro  N (%) C (%) H (%) S (%) O (%) 

C04A 0.40 0.93 70.18 5.76 4.72 18.41 

C56A 0.56 0.89 77.35 5.48 4.54 11.74 

C69A 0.69 1.34 81.47 5.70 3.90 7.59 

C15A 1.50 1.44 83.62 5.51 3.67 5.76 

The relative carbon content of the asphaltenes increases with increasing maturity (Table 5.2, 

Figure 5.11 (a)). On the other hand, H/C, O/C as well as S/C ratios decrease with thermal 

maturity (vitrinite reflectance, Ro). The trends however appear to level off at relatively high 

maturities (Ro >1.0%) as the relative change in the respective ratios decrease (Figure 5.11). The 

relative amount of nitrogen (N/C) however increases, albeit more slowly than either oxygen or 

sulphur, with increasing maturity as shown in Figure 5.11 (d). Similar trends were observed by 

Rouxhet et al. (1980) with respect to thermal evolution of coals and kerogens. Li et al. (1997) 
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also observed enrichment in pyrrolic nitrogen in Duvernay Formation source rocks with 

increasing maturity. Although they attributed their observations to interaction of the nitrogen 

compounds with solid organic/mineral matter, the observation in this work has alternative 

explanation. 

  

  
Figure 5. 11: Plots showing the effect of increasing thermal stress on (a) the proportion of carbon, (b) 
sulphur/carbon ratio, (c) oxygen/carbon ratio, and (d) nitrogen/carbon ratio the coal asphaltenes (C04, 
C56, C69 & C15). 

The observed gradual increase in nitrogen with maturity might be because of two dynamic 

processes during diagenesis of the organic matter. First the loss of other elements occurs more 

rapidly (Figure 5.11 (b) & (c)) than nitrogen (Figure 5.11 (d)) such that the net effect is 

enrichment in nitrogen content of the residual organic matter. Secondly, a significant 

proportion of the total nitrogen might be fixed in functional groups (e.g. aromatic pyridinic & 

pyrrolic nitrogen (Baxby et al., 1994)) that are relatively more stable than sulphur and oxygen 

functional groups. The overall observable effect is therefore gradual increase in the nitrogen 

content of the asphaltenes as shown in Figure 5.11 (d). 
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Figure 5. 12: Plots showing the relationship between vitrinite reflectance and (a) aliphatic and (b) 
aromatic contents; and between elemental hydrogen content and (c) aliphatic and (d) aromatic contents 
of the coal asphaltenes (C04, C56, C69 & C15). 

The total carbon in the asphaltenes can be broadly grouped into aliphatic and aromatic 

carbons as observed from solid-state 13C NMR analysis. The aliphatic carbon in the asphaltenes 

gradually decreases with increasing maturity to a near constant values at Ro > 1.0 % (Figure 

5.12 (a)). The aromatic carbon, on the other hand, increases with increasing maturity towards 

equilibrium value at Ro values greater than about 1.0 % (Figure 5.12 (b)). This suggests 

formation of more aromatic structures from the aliphatic, possibly naphthenic structures with 

increasing maturity of the asphaltenes although dealkylation occurs as well (Rouxhet et al., 

1980). This is supported by the inverse relationship between aromatic carbon content and H/C 

ratio (Figure 5.12 (d)) of the asphaltenes which suggests aromatisation is accompanied by 

hydrogen loss. 

Although the aromaticity factor (fa), indicating aromatic carbon content, of the asphaltenes 

increases with increasing maturity (Ro) (Figure 5.13 (b)), the fraction of quatenary carbon in the 

aromatic carbon (fa
a,N) appears to be independent of maturity (Table 5.3). This suggests the 

degree of condensation of the aromatic ring system is idependent of maturity with maturity 

range under investigation (Ro = 0.40 to 1.50%). Note, for example, the least mature C04 (Ro = 

0.40%) has mare condensed aromatic structures than the most mature C15 (fa
a,N = 0.66 against 

0.57, Table 5.3) although the later has greater proportion of aromatic carbon as reflected in 

their respective aromaticity factor, fa (Table 5.3). Note however, the fraction aromatic 

hydrogen (Ha) and tertiary aromatic carbon (fa
H) relative to the the total carbon in the 

asphaltenes appear to increase with maturity (Table 5.3). These observations are consitent 

with results of Wilson and Vassallo (1985) in their study of distributions of carbon in coals. 
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They attributed this dealkylation of aromatic side chains and aromatisation of alicyclic moieties 

with increasing thermal stress (Wilson and Vassallo, 1985). 

Table 5. 3: Structural parameters calculated from the results of the solid-state 
13

C NMR analysis of the 
coal asphaltenes 

Sample Ro  fa fa
a,H fa

a,N fa
H Ha 

C04 0.40 0.42 0.34 0.66 0.14 0.17 

C56 0.56 0.48 0.46 0.54 0.22 0.28 

C69 0.69 0.56 0.47 0.53 0.26 0.28 

C15 1.50 0.63 0.43 0.57 0.27 0.41 
 

The thermal evolutions of various oxygen functionalities are monitored by following the 

change in relative amounts of the respective functionalities as represented by the normalised 

areas (A) of the bands. Thus the evolutions of relative proportions of the ester (A1768), carboxyl 

(A1698) and conjugated carbonyl (A1607) groups with increasing maturity are presented in Figure 

5.13. All these functionalities follow similar trend; decreasing with increasing maturity. The 

ester functional group (A1768) decreases more sharply approaching zero with increasing 

maturity. The C–O functionalities, measured from the sum of the bands between 1,300 and 

950 cm–1, also decrease with increase in thermal maturity of the asphaltenes. 

However, the thermal evolution does not seem to very much affect the broad band between 

3100 and 3500 cm–1 (Appendix 5B). In fact, Rouxhet et al. (1980) observed that evolution of 

hydroxyl groups is preceded by carbonyl and aliphatic functionalities. 
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Figure 5. 13: Plots showing the evolution of oxygen functionalities; (b) ester (A1768), (d) carboxyl (A1698) and 
(f) conjugated carbonyl (A1607) in the coal asphaltenes with thermal maturity (vitrinite reflectance). (a), (c) 
and (e) show correlation of the respective functionalities with O/C ratio. 

 

5.3.3 Black shale (source-rock) asphaltenes 

In order to investigate the similarities and differences amongst asphaltenes isolated from 

source rock, bitumen samples from three different black shale samples namely Batra black 

shale, Kimmeridge mudstone and Tanezzuft black shale were analysed. The similarities and 

differences amongst the asphaltenes are quite clear from their spectra (Figure 5.14) even 

between asphaltenes from same black shale column (cf: B358 & B372, Figure 5.14). 

Deconvolution and curve-fitting of the spectra however gives deeper insight as discussed 

below. 
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Figure 5. 14: Mid-Infrared spectra of asphaltenes from different black shales; (a) & (b) from Batra 
black shale, (c) from Kimmeridge black shale, and (d) from Tanezzuft black shale. 

 

(a) Aliphatic functionalities 

The aliphatic composition of the asphaltenes does not seem to vary very much particularly 

amongst the three immature asphaltenes from Batra black shale (B372 & B348) and 

Kimmaridge clay (KMSA). In these asphaltenes, the hydrogen content appears to be almost 

exclusively saturated hydrogen with relative proportion of aromatic hydrogen, ha ≤ 0.01 (Table 

5.4) compared to Tanezzuft asphaltene in which over 10% (ha = 0.11, Table 5.4) of the 

hydrogen is on aromatic rings as corroborated by 13C NMR data (Ha = 0.17, Table 5.5) . 

Similarly, the Tanezzuft asphaltene (T35A) appears to have greater proportion of long chain 

alkyl moieties as depicted in its higher R value (Table 5.4). The Batra asphaltenes have the 

lowest proportions of the long chain alkyl groups with R values being less than 1.4 compared 

to 2.44 for Kimmeridge and 2.94 for Tanezzuft asphaltenes. This is somewhat in agreement 

with the fractions of methyl, methylene and methine groups in the asphaltenes as measure by 

fCH3, fCH2 and fCH respectively (Table 5.4). High fCH2 coupled with low fCH3 indicate relatively 

long chain alkyl groups. On the other hand, the values of fCH (Table 5.4) suggest Kimmeridge 

asphaltene (KMS) contains less branched alkyl structures than other asphaltenes as high fCH 

values indicate high tertiary carbon and therefore high branching. 

(b) Oxygen functionalities 

All the asphaltenes show prominent broad absorption between 3600 and 3100 cm–1 by 

hydroxyl (O–H) and amine/pyrrolic N–H involve in polymeric hydrogen bonding. From the 

relative proportion of this band in black shale asphaltenes compared to petroleum asphaltenes 
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(Figure 5.14 and Figure 5.16), it is clear that the former have relatively greater proportions of 

hydroxyl, and possibly amine/pyrrolic, functional groups. 

There is a clear difference amongst the source-rock asphaltenes particularly in the region 

between 1300 and 700 cm–1. In all the asphaltenes the acid carbonyl band at 1700 cm–1 is quite 

intense. However, in immature asphaltenes (B348, B372 & KMS), it is the most intense in the 

region; being more intense than the aromatic C=C band at 1600 cm–1. The spectra of the 

immature asphaltenes also show the presence of ester carbonyl group band at about 1750 cm–

1 which seems to be more prominent in B348. The Batra asphaltene has generally greater 

proportion of carbonyl (C=O) than either T35 or KMS asphaltenes with the 1700 cm–1 being the 

dominant band (Figure 4.14). 

There is also clear difference amongst the asphaltenes in the distribution of the C–O 

functionalities as exhibited by the bands between 1300 and 1000 cm–1 which are generally 

attributed to these functionalities. In general, the immature asphaltenes (B348 & KMS) have 

higher proportions of these functional groups than marginally mature T35 asphaltenes (Figure 

5.14). This might however be source dependent as both B348 and B372 asphaltenes from 

Batra ‘hot’ shale appears to have higher proportion of these functionalities than the 

corresponding immature KMS asphaltenes from Kimmeridge mudstone (Figure 4.14). 
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Table 5.4: Showing values of asphaltene structural parameters calculated* for the mid-infrared data 
of the asphaltenes 

Sample B348 B372 KMS T35 

CO Index 0.71 0.69 0.66 0.49 

CO/Ar 1.29 1.04 0.96 0.32 

fCOe 0.02 0.01 0.02 0.00 

fCOa 0.53 0.48 0.49 0.33 

fCOc 0.44 0.51 0.49 0.67 

C-O/C=O 0.46 0.44 0.48 0.62 

C-O/CHx 1.95 1.66 1.27 0.88 

fCH3 0.40 0.39 0.31 0.26 

fCH2 0.44 0.40 0.61 0.60 

fCH 0.16 0.21 0.08 0.14 

R 1.37 1.25 2.44 2.94 

ha 0.00 0.00 0.01 0.11 

hs 1.00 1.00 0.99 0.89 

Pc 0.14 0.26 0.14 1.32 

*see Appendix 7 for equations used to calculate the parameters 

(c) Aromatic functionalities 

Aromatic structures also appear to vary amongst the asphaltenes. The asphaltene from 

marginally mature Tanezzuft black shale (T35) shows prominent absorption between 3100 and 

3000 cm–1 from aromatic C–H stretching vibrations which is barely detectable in both the 

immature asphaltenes from Batra and Kimmeridge shales. This is in agreement with the 

aromatic C–H out of plane bands between 900 and 700 cm–1 which are intense in T35. A closer 

look at the relative intensities of the bands reveals that the band resulting from an isolated 

hydrogen (1H) is significantly lower than that from 4 and 5 adjacent hydrogens in the 

immature asphaltenes (B348 & KMS) compared to the marginally mature T35. This indicates 

greater degree of condensation in the marginally mature asphaltene (T35). This is 

substantiated by the values of Pc, a measure of degree condensation (Table 5.4). While the 

immature asphaltenes have values that are generally less than 0.3, the Tanezzuft asphaltene 

have a value of about 1.3 which is surprisingly higher than most of the petroleum asphaltenes 

(cf: Appendix 5C). Solid-state 13C NMR data of this sample (T35) show 52% (fa = 0.52, Table 5.5) 

of the carbon is present in aromatic moieties while aromatic carbon in petroleum asphaltenes 

is generally 40% or less (Figure 5.15). Most of the aromatic carbon (72%) in the Tanezzuft 

asphaltenes is present as quaternary carbon (fa
a,N = 0.72, Table 5.5) indicating highly 

condensed ring system comparable to some petroleum asphaltenes (Table 5.5). Similarly, the 

relative proportion of aromatic hydrogen of the Tanezzuft asphaltene is significantly greater 

(over 10%) than in the other asphaltenes (<1.0%) as shown by their respective ha values (Table 

5.4). This is corroborated by 13C NMR data (Ha = 0.17, Table 5.5) 
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Figure 5. 15: Solid-state 

13
C NMR spectra of the asphaltenes from (a) sample T35, Tanezzuft black 

shale and (b) a Northsea oil (U02) from Flora oil field showing the marginally mature Tannazuft 
asphaltenes contains relatively more aromatic carbon (52%) than the oil asphaltenes (40%). 

The pronounced aromatic content of Tanezzuft black shale asphaltenes compared to other 

black shale asphaltenes, and even most petroleum asphaltenes (Figure 5.15), is believed to be 

a reflection of organic matter source rather than being a consequence of maturity. This is 

because the shale is only marginally mature with average 20S to 20R (C29 steranes) and 22S to 

22R (C32 homohopanes) ratios of 0.51 and 0.54 respectively (see Chapter 3) in agreement with 

Rock-Eval maturity indices (Tmax = 432°C, PI = 0.17). Tanezzuft black shale has been observed 

to be particularly rich in graptolites (Aziz, 2000) which has been shown to consist mainly of 

aromatic structure (in fact more aromatic than vitrinite) with aliphatic groups (Bustin et al., 

1989). This predominantly aromatic substance is likely to have influenced the composition of 

the asphaltenes. 

In general, although the above observations are amongst asphaltenes from different black 

shales, a similar variability in the chemical functionalities was observed amongst asphaltenes 

from the same source rock unit (the basal Tanezzuft ‘hot’ shales) but from different depth 

intervals. Sixteen asphaltenes were taken and analysed by FTIR from the black shale samples 

from different intervals from the 470 m thick unit. The asphaltenes show significant aromatic 

content (similar to T35) that does not vary very much. The aliphatic content is also similar 

amongst the samples. The greatest variability is seen in the oxygen functionalities and 

particularly the carboxyl group and some C–O groups which may be related to the carboxyl 

functional group (Appendix 5C).  

5.3.4 Petroleum asphaltenes 

The mid-infrared spectra of asphaltenes from petroleum are generally very similar irrespective 

of their different sources (Figure 5.16). The prominent bands in the spectra are those resulting 

from aliphatic C–H stretching vibrations, aromatic C=C stretching and aromatic C–H out-of-

bound vibrations. The band by C=O is prominent in some asphaltenes (Figure 5.16 (a) & (c)) 

and occurs only as a shoulder in some others (Figure 5.16 (b) & (d)). Nevertheless, for detailed 

analysis the spectra were deconvoluted and curve-fitted to resolve and semi-quantify the 

overlapping bands and are discussed below. 
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Figure 5. 16:  Mid-infrared spectra of some petroleum asphaltenes from different geographical areas and 
sources; from (a) non-degraded Canadian oil from carbonate source rock, (b) non-degraded Kuwait oil 
from carbonate source rock, (c) biodegraded Northsea oil from shale source rock, and (d) non-degraded 
Northsea oil from shale source rock. 

 

(a) Aliphatic functionalities 

Absorption bands by aliphatic groups appear to be the dominant functionalities in petroleum 

asphaltenes (Figure 5.16) in contrast to black shale and coal asphaltenes where carbonyl 

groups dominate (cf: Figure 3.14). This is agreement with results from NMR analysis of 20 

asphaltenes which show; the relative proportion of aliphatic carbon in asphaltenes is generally 

between 60-70% for asphaltenes from non-biodegraded oils. Asphaltenes from biodegraded 

oils have even higher proportions of the aliphatic carbon (>70%). 

(b) Oxygen & nitrogen functionalities 

Oxygen functionalities in petroleum asphaltenes are mainly carbonyl (C=O) groups from 

carboxylic acids and conjugated quinone-type carbonyl systems. Hydroxyl (O–H) groups from 

carboxylic functionalities, and possibly from phenols, are also present but in relatively low 

proportions compared to coal and black shale asphaltenes considering the relative proportion 

of the OH/NH broad band between 3600 and 3100 cm–1 (Figure 5.16).  

The carbonyl (C=O) groups in the petroleum asphaltenes vary widely. In general, ester groups 

(band at 1770 cm–1) are absent in all the asphaltenes and the carbonyl functionalities occur 

exclusively as carboxylic acid and conjugated quinones. The relative proportions of these 

groups in asphaltenes from oils vary widely. While in some samples, particularly most of the 

Northsea asphaltenes, the carboxyl carbonyl group (fCOa) is dominant by up to 70%, in others 

(e.g. C26/C30, K77/K78, and O28/O31) the conjugated carbonyl group (fCOc) dominates by 
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similar proportions (Appendix 5C). It is interesting to note that the conjugated carbonyl group 

is dominant in asphaltenes from oils generated from carbonate and marl source rocks 

(C26/C30, K77/K78, Q43/Q61, and O28/O31) with higher proportions in asphaltene from 

carbonate-sourced oils (e.g. C26/C30 & K77/K78) than marl-sourced oils. Most of the 

asphaltenes from oils generated from shale source rocks (e.g. the Northsea oils), on the other 

hand, have higher proportions of the carboxyl carbonyl groups. This observation is likely to be 

due to contrasting acidity of the carbonate (basic) and clay (acidic) mineralogy of the source 

rocks. Carbonates being basic could neutralise and adsorb acidic organic matter. Nevertheless, 

differential source and maturity could also play a role in the distribution of the functionalities 

(Ibarra et al., 1996) and this may explain why some Northsea asphaltenes have greater 

proportions of the conjugated carbonyl functionality. 

Furthermore, asphaltenes from oils with common reservoir and source rock (e.g. C26/C30, 

NA1/NA2 and O28/O31) have similar proportions of the two types of carbonyl functionalities. 

On the other hand, where the asphaltenes are from different reservoirs (e.g. the Northsea oils, 

K77/K78, and Q43/Q61), the relative proportions of the carbonyl groups tend to vary possibly 

because the oils were generated from different source kitchens and/or experienced different 

thermal histories. 

Previous FTIR studies have completely overlooked the importance of nitrogen functionalities in 

infrared spectra of asphaltenes (e.g. Yen et al. (1984)). Analysis of nitrogen functionalities in 

asphaltenes and other carbonaceous substances has been mainly undertaken using X-ray 

Absorption Near Edge Structure (XANES) from which it has been observed that pyrrolic and 

pyridinic nitrogen are the dominant nitrogen functionalities in petroleum asphaltenes with 

little or no saturated amines (Mitra-Kirtley et al., 1993b).  

In this work nitrogen functional groups have been tentatively identified from the spectra of 

petroleum asphaltenes. In addition to aromatic ring nitrogen (see below), the nitrogen 

functionalities occur bonded directly to aromatic carbon (Carom–N) and aliphatic (alkyl) carbon 

(Caliph–N) in tertiary aromatic amines (Figure 5.17 (a) & (b)). These functionalities were only 

observed in petroleum asphaltenes through correlation of certain bands with N/C elemental 

ratio (Figure 5.7). The apparent absence of similar nitrogen functionalities in black shale 

asphaltenes might be because of the presence of significant proportion of oxygen 

functionalities, particularly O–H groups, such that any C–N bands are completely overwhelmed 

by C–O absorption bands in the same region. 
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Figure 5. 17: Simplified examples of chemical structures with different nitrogen functionalities tentatively 
identified from the mid-infrared spectra of petroleum asphaltenes; ((a) & (b)) tertiary aromatic amines, (c) 
pyridinic nitrogen; and (d) pyrrolic nitrogen 

In general, the presence of these polar functionalities at the early stage of maturity, as is the 

case with respect to T35, and their relatively low presence in petroleum asphaltenes might be 

because of geochromatography and/or thermal maturity. Geochromatography during 

migration results in selective removal of polar compounds (e.g. carbazoles) from the migrating 

oil as a result of preferential chemisorption on carrier rock minerals (Bennett et al., 2002; 

Krooss et al., 1991). Oxygen- and nitrogen-based functionalities are particularly susceptible to 

geochromatography because of their acidic and basic character owing to the lone pair of 

electrons and possible hydrogen bonding. The effect of maturity on geomacromolecles based 

on studies on coals of different ranks show that oxygen-based functionalities and particularly 

hydroxyl groups are lost with increasing rank (maturity) of the coals (Ibarra et al., 1996). 

(c) Aromatic functionalities 

Results from solid-state 13C NMR analysis of nineteen of the ashaltenes from oils reveal the 

aromaticity factor (fa), indicating the relative proportion of aromatic carbon, of the sixteen 

petroleum asphaltenes varies between 0.24 and 0.40 and averages at 0.36. Generally, the 

asphaltenes from biodegraded oils have lower values of fa than asphaltenes from non-

degraded oils. The biodegraded samples (AR3, BN, CH and BN) have values between 0.23 and 

0.29 and averages at 0.26 while the non-degraded samples have the fa values between 0.27 

and 0.40 and averages at 0.34 (Table 5.5). 

Although the asphaltenes from the biodegraded oils have low proportion of aromatic carbon 

relative to the total carbon, the fraction (fa
a,N) of non-protonated (quaternary) carbon in the 

aromatic moieties of the asphaltenes indicate most of the aromatic carbon in the degraded 

asphaltenes is present as quaternary carbon. The average value of this parameter is 0.79 
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(range = 0.70 to 1.00, Table 5.5) for the biodegraded asphaltenes while the non-degraded 

asphaltenes have 0.63 (range = 0.42 to 0.78, Table 5.5). This suggests a significantly greater 

degree of condensation in the the asphaltenes from the biodegraded oils than asphaltenes 

from the non-degraded oils. 

There is wide variation in degree of condensation, as indicated by fa
a,N values (0.42 – 0.78) 

amongst the asphaltenes from the non-degraded oils (Table 5.5) even between samples with 

common source rock. For example, the asphaltenes from the two Canadian oils (C26 & C30), 

and the two Qatar oils (Q43 & Q61), respectively have significantly different fa
a,N values. 

Nevetheless, other samples with common source such as the two samples from Kuwait (K77 & 

K78), the two samples from Oman (O28 & O31), and five samples from the Northsea (U02, 

U07, U56, U59 and U89), respectively have similar values of the parameter. This observation is 

generally true with respect to other structural parameters from solid-state 13C NMR data 

(Table 5.5). 

Table 5. 5: Structural parameters calculated from the results of the solid-state 
13

C NMR analysis of the 
petroleum and Tanezzuft (T35) asphaltenes (See section 5.1 for equations used to calculate the 
parameters) 

Sample fa fa
a,H fa

a,N fa
H fa

N Ha 

AR3 0.29 0.30 0.70 0.09 0.20 0.07 

BN 0.27 0.30 0.70 0.08 0.19 0.07 

C26 0.32 0.25 0.75 0.08 0.24 0.07 

C30 0.39 0.36 0.64 0.14 0.25 0.13 

CH 0.23 0.00 1.00 0.00 0.25 0.00 

K77 0.32 0.40 0.60 0.13 0.19 0.12 

K78 0.30 0.40 0.60 0.12 0.18 0.10 

NB 0.24 0.25 0.75 0.06 0.18 0.05 

O28 0.27 0.38 0.62 0.10 0.17 0.10 

O31 0.34 0.37 0.63 0.13 0.22 0.12 

PR1 0.29 0.45 0.55 0.13 0.16 0.11 

Q43 0.29 0.58 0.42 0.17 0.12 0.15 

Q61 0.36 0.34 0.66 0.12 0.23 0.16 

U02 0.40 0.35 0.65 0.14 0.26 0.13 

U07 0.32 0.40 0.61 0.13 0.20 0.13 

U54 0.40 0.22 0.78 0.09 0.31 0.08 

U56 0.36 0.37 0.63 0.13 0.23 0.14 

U89 0.33 0.35 0.65 0.11 0.21 0.09 

U59 0.39 0.34 0.66 0.13 0.26 0.12 

T35 0.52 0.28 0.72 0.15 0.37 0.17 
 

The FTIR results also show the aromatic groups in the petroleum asphaltenes are quite 

prominent as depicted by bands at 3100 – 3000 cm–1 and 900 – 700 cm–1 by aromatic C–H 

stretching and out-of-plane vibrations respectively and the presence of band at 1600 cm–1 by 

aromatic C=C stretching vibrations. The band at 3100 – 3000 consists of two overlapping bands 
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at 3050 and 3017 cm–1 that are possibly due aromatic structures with 3 or less and 5 or more 

aromatic rings (Yen et al., 1984). 

There is indication of heteroaromatic structures in asphaltenes from the infrared spectra. In 

particular, nitrogen in aromatic ring system appears to be important in asphaltenes to warrant 

correlating bands traditionally assigned to aromatic C=C vibrations to N/C elemental ratio 

thereby indicating the importance of the C=N group although both tend to absorb in the same 

region. This was however only observed in petroleum asphaltenes as attempt to correlate 

similar bands in Tanezzuft asphaltenes to the N/C ratio did not show any trend. This however 

might be because such bands are overshadowed by other more prominent bands possibly 

those by C–C, C–O etc. 

It is noteworthy that the two bands at 892 and 872 cm–1 resulting from isolated hydrogen have 

been observed to inversely correlate with the relative proportion of sulphur in the asphaltenes 

(Figure 5.18). These bands indicate the degree of condensation and/or substitution on the 

aromatic ring system in the asphaltenes. The inverse relationship therefore suggests, aromatic 

ring condensation and/or substitution decrease with increase in sulphur content of the 

asphaltenes. 
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Figure 5. 18: Plots showing correlation of relative amount of sulphur in asphaltenes (S/C ratio) against 
the normalised band areas at (a) 892 cm

–1
 (R

2
 = 0.54) and (b) 872 cm

–1
 (R

2
 = 0.63) showing inverse 

relationship between the parameters 

 

 

(d) Effect of precipitation solvent on the precipitated asphaltenes 

The mid-infrared spectra of asphaltenes precipitated from the same non-biodegraded 

Northsea oil sample (U56) using n-pentane, n-hexane and n-heptane respectively are 

presented in Appendix 5D. As is the case in other petroleum asphaltenes the spectra generally 

show similar characteristic bands. Deconvolution (by curve-fitting) results are presented in 

Appendix 5D. The structural parameters are generally similar and appear to be independent of 

the solvent used in the precipitation of the asphaltenes. This is further corroborated by the 

solid-state 13C NMR results (Table 5.6). The structural parameters of the asphaltenes are 

generally in agreement irrespective of the solvent used in the precipitation of the asphaltenes. 
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The values of the parameters are also in agreement with what were observed in other Northea 

asphaltenes (Table 5.5).  

Table 5. 6: Structural parameters calculated from the results of the solid-state 
13

C NMR analysis of the 
asphaltenes precipitated from the Northsea oil (U56) using n-pentane (U5), n-hexane (U6) and n-
heptane (U7) 

Sample fa fa
a,H fa

a,N fa
H fa

N Ha 

U5 0.37 0.40 0.60 0.15 0.22 0.14 

U6 0.36 0.37 0.63 0.13 0.23 0.14 

U7 0.33 0.42 0.58 0.14 0.19 0.14 
 

However, this may appear to contradict the observations of Corbett & Petrossi (1978) and 

Long (1981) that the composition of asphaltenes vary with the kind of solvent used such that 

lower molecular weight solvents (e.g. n-pentane) precipitates greater amounts of resins with 

the asphaltenes than the higher molecular weight solvents (e.g. n-heptane). These differences 

however could have been removed through Soxhlet extraction of the asphaltenes which tend 

to ‘clean’ the asphaltenes by desorbing co-precipitated resins and waxes (see Chapter 4). It is 

therefore concluded that asphaltenes precipitated using n-pentane, n-hexane and n-heptane 

have similar structure and composition and the solvent employed in the precipitation of the 

asphaltenes has no significant effect on the composition of the asphaltenes provided 

appropriate measures were taken to remove co-precipitated materials. 

5.3.5 Chemometric discrimination and correlation of asphaltenes 

As seen above, petroleum asphaltenes generally have similar IR spectra and thus their 

discrimination based on visual examination of the spectra could be very difficult. However, 

with the aid of chemometric tools, infrared spectra could be used for such discrimination as 

has been applied to materials such as polymers (Beebe et al., 1998) and coal (Bona and 

Andrés, 2007). In this section unsupervised pattern recognition multivariate tools, including 

principal component analysis (PCA) and hierarchical cluster analysis (HCA), are used on the 

FTIR spectra of asphaltenes to explore the potential of identifying similarities and differences 

in chemical composition of the asphaltenes, and to correlate/discriminate amongst them 

based on these similarities and differences. Consequently, PCA was performed separately on 

three regions of the spectra namely 3100 – 2750, 1800 – 925, and 925 – 780 cm–1 to 

investigate the best region in correlating the samples. 

(a) Analysis of 3100 – 2750 cm-1 spectral region 

The principal component analysis of 3100 to 2750 cm–1 spectral region is summarised in Figure 

5.19 (a) which shows that out of over 180 principal components (PCs) computed from the 

spectral data about 5 are the most important accounting for over 99% of the variance in the 

data. PC1 accounts for 72.1% while PC2 account for 14.4% variance and together they account 

for 86.5% of the variance in the data. This suggests score plot of PC1 against PC2 (Figure 5.19 

(b)) could be useful in discriminating the asphaltenes and therefore the samples. The plot 

(Figure 5.19 (b)) however shows the asphaltene sample A39 from Abu Dhabi oil as an outlier. 

This asphaltene is quite different from all others in this study having prominent hydroxyl 
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absorption band. As outliers disproportionately affect PCA, this sample was removed and the 

analysis repeated. 

Results of this analysis show the original multivariate data is reduced to about 6 important PCs 

accounting for 98.7% of the variance in the original data. Note that the elimination of A39 from 

the data set results in an increase in eigenvalues of PC2+ and consequently PC1 and PC2 

together now account for only 71.2% of the variance. The loadings of various sections of the 

spectral region on PC1 show the most important contributors to this components are 3100 – 

2995 cm–1 and 2910 – 2750cm–1 which respectively correspond to aromatic C–H and aliphatic 

R3CH, symmetric RCH3 and R2CH2 stretching vibrations. On the other hand, the most important 

contributors to the second component (PC2) consist of the spectral region from 3000 – 2925 

cm–1 corresponding to asymmetric stretching vibrations of the aliphatic RCH3 and R2CH2 

groups. 
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Figure 5. 19:  Summary of results of PCA of 3100 – 2750 cm
–1

 region of the petroleum asphaltenes mid-
infrared spectra showing the eigenvalue plots ((a) & (c)) and the score plots ((b) & (c)) before and after 
removal of the outlier A39 

Although the first two components (PC1 and PC2) account for about 71% of the variance in the 

data, the score plot of PC1 against PC2 shows no meaningful pattern attributable to the 

common source characteristic of the asphaltenes. Note the proximity of the samples in the 

plot indicates similarity in their chemical characteristics, and therefore chemical composition, 

described by the C–H vibrations. The only meaningful pattern is with respect to assessment of 

reproducibility of the measurements. Samples K781, K782 and K783 are triplicates of the 

Kuwait oil asphaltene (K78) prepared using the same procedures. The proximity of the samples 
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in the score plot indicates good reproducibility of the sample preparation method. The 

reliability of the instrument, on the other hand, was assessed by triplicate analysis of one 

sample (U54) at different points during the period of the analysis. These triplicate analyses are 

presented as U54a, U54b and U54c. The close proximity of these analyses on the score plot 

shows very good precision and therefore reliability of the measurements.  

Furthermore, the proximity of BN, PR1, NA1 and CH in the plot is also noteworthy. These 

asphaltenes, although from different geographical regions, are biodegraded. The proximity 

may apparently reflect this although two other asphaltenes from biodegraded oils (U16 & NB) 

have significantly different scores on both PCs indicating they are significantly different from 

the other five samples. The asphaltenes from the two Northsea Kittiwake oils (U01 & U05) also 

have similar scores on PC1. The disparity between them is on their different on PC2 which 

although positive are significantly different. 

Improvement in discrimination betweeb the asphaltenes is achieved using hierarchical cluster 

analysis (HCA) using the principal components generated from PCA as independent variables in 

order to remove the negative influence of the multicollinearity of the original spectral data on 

the analysis (Hair et al., 2006). For this purpose six significant PCs (PC1 to PC6), accounting for 

98.9% of the variance in the data, were selected based on eigenvalues versus component 

number plot (Figure 5.19 (c)) for the HCA. This results in a general improvement in 

discrimination and classification of the samples.  

A total of seven clusters were obtained although two of them (clusters 5 and 7, Figure 5.20) 

are one-sample clusters and represent unusual observations with respect to their scores on 

the PCs and therefore their 3100 – 2750 cm–1 IR spectral characteristics (Figure 5.20). These 

unusual observations are the asphaltenes from the Serbian (Pannonian Basin) biodegraded oil 

NA1 which was observed to have an unusual n-alkanoic acid distribution from results of the 

ruthenium ion catalysed oxidation (RICO) of the asphaltene (Chapter 6). The unusual FTIR 

character of this sample might be reflecting this ‘usual’ distribution of the alkyl side chain of 

the asphaltene compared to other oil asphaltenes. 
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Figure 5. 20: Dendrogram showing clusters formed from hierachical cluster analysis using PC1 to PC6 
derived from PCA of the IR spectral data (3101 – 2750 cm

–1
). 

The dendrogram further shows the level of precision of the measurement and reproducibility 

of the analysis. The three measurements on sample U54 (i.e. U54a, U54b & U54c) are not only 

grouped in same cluster but have similarity level of over 98%. Similarly, the three samples 

prepared from K78 asphaltene (i.e. K781, K782 & K783) are also grouped together (cluster 4) 

with similarity of over 99%.  

Furthermore, the three asphaltenes U5, U6 and U7 precipitated from U56 oil from Northsea 

using n-pentane, n-hexane and n-heptane respectively are grouped in the same cluster (cluster 

6) with similarity amongst them of 94 to 97% indicating very similar chemical composition with 

respect to their scores on the PCs and therefore their C–H vibration signatures of their 

respective aliphatic and aromatic moieties. 

In general, the asphaltenes from Northsea oils seem to be grouped together compared to 

other asphaltenes. Thus, with the exception of Q61 from Qatar and NB from Nigeria, clusters 6 

and 3 exclusively consist of asphaltenes from the Northsea oils. Although this may be due to 

compositional similarity amongst the asphaltenes, it also could be because these asphaltenes 

form the bulk of the sample set. Other clusters are mixtures of asphaltenes from oils of 

different geographical regions and different sources. Cluster 1 for example consists of 

asphaltenes from the Gulf of Mexico (AR3), Middle East (K78), Canada (C30) and Northsea 

(U01 & U05). Similarly, cluster 2 is a combination of asphaltenes although both asphaltenes 

from the two Oman oils (O28 and O31) are grouped in this cluster with similarity of over 95%.  

Notably, there are many asphaltenes from oils generated from the same source rock that are 

classified in different clusters. This suggests the asphaltenes are chemically (in terms of 

aliphatic and aromatic C–H signatures) more similar to other members of their groups than 

they are to asphaltenes with which they share common source rock but classified in different 
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clusters. For example, K77 is grouped in cluster 1 while K78 in cluster 4 and C30 in cluster 1 

while same source C26 is grouped in cluster 2 although clusters 1 and 2, with distance between 

centroids of 2.66 are the closest clusters in the classification. 

It is also clear from Figure 5.20 that biodegradation does not seem to influence classification of 

the asphaltenes. Asphaltenes from the biodegraded oils (AR3, NA1, CH, BN, NB and U16) are 

grouped in different clusters with other members that are not biodegraded. This suggests that 

the biodegraded oil asphaltenes are compositionally, in terms of aliphatic and aromatic C–H 

signatures, more similar to the non-biodegraded oil asphaltenes that are members of their 

clusters than they are to other biodegraded oil asphaltenes. 

(b) Analysis of 1800 – 925 cm-1 spectral region 

This is a complex region consisting of bands by various kinds of functional groups such carbonyl 

C=O, aromatic C=C, aliphatic C–C and C–O in ether and ester groups. Figure 5.21 is the result of 

PCA on the spectral region from 1800 to 925 cm–1. The PCA condense the information in the 

region into six significant principal components (PC1 to PC6) which cumulatively account for 

96% of the variance in the data (Figure 5.21 (a)). PC1 and PC2 together account for 61.4% of 

the variance. The loadings of the original variables on the two PCs show that PC1 is a fair 

representation of all the wavenumbers covering 1700 to 1000 cm–1 with all the major bands, 

except those at 1031 and 1006 cm–1. PC2, on the other hand, has a more complex loading. The 

carboxylic and conjugated carbonyl (C=O) bands have significant but negative loadings as do 

the two bands at 1031 and 1006 cm–1. Aromatic C=C and aliphatic bands between 1450 and 

1300 cm–1, however, have significant positive loadings on the PC. 
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Figure 5. 21: Summary of results of PCA of 1800 to 925 cm
–1

 region of the petroleum asphaltenes mid-
infrared spectra showing the eigenvalue plots ((a) & (c)) and the score plots ((b) & (c)) before and after 
removal of the outliers A39 & NB. 

The score plot of PC1 and PC2 is presented in Figure 5.21 (b). The plot shows the dimensional 

structure in the samples based 61.4% variance of the data. As in Figure 5.20, sample A39 and 

NB are possibly outliers and are thus removed from the data set. This increased the 

Eigenvalue, and therefore the proportion of the variance, of PC1. The first five PCs now 

cumulatively account for 92.1% of the variance, and PC1 and PC2 together account for 76.3% 

of the variance in the data. The score plot of PC1 and PC2 (Figure 5.21 (d)) is therefore a better 

representation of the information in the data than initially observed before the removal of the 

outliers and thus accounts for more dimensionality in the samples. 

As in chemometric analysis of the 3100 – 2750 cm–1 region of the asphaltene spectra, the 

precision of the measurements and reproducibility of the analysis are respectively reaffirmed 

by proximity of the triplicates of samples U54 and K78 (Figure 5.22) on the PC1 versus PC2 

space. The plot also shows four of the six biodegraded oil asphaltenes are closely located 

which indicates similarity in chemical composition amongst the asphaltenes. This is in addition 

to close proximity of the three K78 samples and the three U54 measurements in support of 

good repeatability and precision of the methods as observed in the analysis of the 3100 – 2750 

cm–1 region. 



Muhammad 

114 

K
W

1
K

7
7

K
7

8
2

C
H

N
A

2
K

W
5

O
3

1
C

3
0

C
2

6
U

8
9

U
6

8
U

0
2

Q
6

1
Y3

2
Q

4
3

U
0

7
K

7
8

3
U

9
3

K
7

8
1

U
0

4
B

N
U

7
U

5
U

8
4

U
6

U
1

6
B

5
6

U
5

4
c

U
5

4
b

U
5

4
a

U
5

9
O

2
8

FN
N

A
1

P
R

1
A

R
3

-50.22

-0.15

49.93

100.00

Observations

Si
m

ila
ri

ty

(Ward Linkage, Squared Euclidean Distance)

1

4 2

5

3

 
Figure 5. 22: Dendrogram showing clusters formed from cluster analysis using PC1 to PC5 derived from 
PCA of the IR spectral data (3100 – 2750 and 1800 – 700 cm

–1
). 

Note also in this score plot that U01 and U05 have similar plot scores on the PC2 although their 

scores on PC1 are significantly different thereby stetting them significantly apart on the plot 

the reverse is however the case with respect to marine carbonate sourced C26 and C30 from 

Canada. Nevertheless, in general asphaltenes from Northsea oils, all of which are believed to 

be sourced from the Jurassic Kimmeridge Clay Formation, are scattered in nearly all sections of 

the score plot. This shows heterogeneity in the chemical composition of the samples as 

represented in the two PCs 

As the first two PCs represent only about 76% of the variance, there is still significant 

information that has not been captured in the score plot above. Thus hierarchical cluster 

analysis (HCA) was done using scores of the asphaltenes on the first five orthogonal PCs. The 

analysis grouped the asphaltenes into five clusters of significant chemical heterogeneity and 

members of which are of similar chemical characteristics as represented by the PCs. The first 

cluster has three members all of which are biodegraded and two (AR3 and PR1) of which are 

from Gulf of Mexico and which are more similar to each other than they are to the asphaltene 

from the biodegraded Pannonian Basin oil (NA1). 

The second cluster contains, with exception of B58 from Bangladesh, asphaltenes from 

Northsea oils sourced from Jurassic Kimmeridge Clay. U5, U6 and U7 are however from the 

same oil (U56) but precipitated using n-pentane, n-hexane and n-heptane respectively. 

(c) Analysis of 925 – 680 cm-1 spectral region 

The PCA of aromatic C–H out-of-bound vibration spectral region of the asphaltenes reduced 

the multivariate data with over 95% of the variance captured in the first four PCS (Figure 5.23). 

The first two PCs (PC1 & PC2) account for 85% of the variance. The score plot of the two PCs is 
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shown in Figure 5.23. From this sample A39 appears to be an outlier as observed in analysis of 

other spectral regions. It was therefore removed from the analysis. 

The resulting PCA shows that PC1 and PC2 together now account for about 70% of the variance 

in the data. Loadings of the variables on the two PCs show that PC1 has nearly equal 

contributions from all the bands in the region. PC2 on the other hand has significant negative 

loading from bands between 900 and 860 cm–1 and between 775 and 735 cm–1 which are 

respectively by isolated hydrogen (1H) and four neighbouring hydrogens (4H) on aromatic 

system. The bands at 850 and 720 cm–1 resulting from 1H and alkyl chain greater than butyl 

have significant positive loadings on the PC. The PC might therefore be a presentation of 

degree of condensation and substitution on the aromatic ring systems in the asphaltenes. 
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Figure 5. 23: Summary of results of PCA of 925 to 700 cm
–1

 region of the petroleum asphaltenes mid-
infrared spectra showing the eigenvalue plots ((a) & (c)) and the score plots ((b) & (c)) before and after 
removal of the outlier A39. 

The score plot of PC1 against PC2 displays the asphaltenes based on their respective scores as 

represented in the two PCs. As in analysis of the other spectral regions presented in earlier 

sections, precision and reproducibility measurements are very good as depicted by the 

proximity of the three U54 measurements and K78 samples respectively. Four of the six 

asphaltenes from biodegraded oils also plot fairly closely. Most other samples however have 

similar scores on PC1 and cluster together on the score plot thereby making difficult to discern 

any meaningful structure from the plot. 
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Figure 5. 24: Dendrogram showing clusters formed from cluster analysis using PC1 to PC5 derived from 
PCA of the IR spectral data (925 – 680 cm

–1
). 

The first four PCs accounting for 96% of the variance in the data were used in HCA. The results 

of the analysis are summarised in Figure 5.24. Five clusters with significant heterogeneity and 

within cluster similarity level of at least 68% were obtained. Precision measurements (U54) are 

grouped in cluster 3 with over 99% similarity level. Similarly, repeatability samples (K78), 

grouped in cluster 4, have about 99% similarity level. Clusters 3, 5 and 6 consist exclusively of 

asphaltenes from Northsea oils, except that NA2 asphaltene from Pannonian Basin non-

biodegraded oil is grouped in cluster 3. Cluster 4, on the other hand, consist of asphaltenes 

from Middle East (Qatar and Kuwait) oils all of which were sourced from marine 

carbonate/marl source rocks (see Chapter 3). 

Clusters 1 and 2 consist of mixture of asphaltenes from different geographical regions and 

sources. The heterogeneous membership of these clusters is exemplified by the grouping in 

cluster 2 of the two asphaltenes (C26 & C30) from marine carbonate sourced Canadian oils and 

asphaltenes (U68 & U89) from marine shale sourced Northsea oils in addition to asphaltenes 

(O31 & Y32) from Oman and Yemen oils. Nonetheless, the clustering the level of similarity 

between same source asphaltenes is greater than other members of the cluster particularly 

with respect to C26/C30 and U68/U89 pairs. Note however that while O31 is grouped in 

cluster 2, its same source counterpart O28 is grouped in cluster 1. Although this may reflect 

different source kitchens with significant difference in organo-facies as reflected in the 

distribution of steranes in the maltene fractions of the two oils, the difference observed here 

may not be extremely significant considering the level of similarity of 67% between cluster 1 

and 2 which is similar to the similarity level of 68% observed in cluster 6. It is interesting to 

note that cluster 1 consists of 5 of the 6 asphaltenes from biodegraded oils used in this study, 

although it also contains 2 asphaltenes (B56 & O28) from non-biodegraded oils. 
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Cluster 5 comprises exclusively the asphaltenes from the two Northsea Kittiwake oils. This 

shows the asphaltenes are compositionally, with respect to the substitution pattern on the 

aromatic ring systems, similar to each other. It is however not clear why the two asphaltenes 

are considerably different from other asphaltenes and particularly from those obtained from 

other Northsea oils. The significance of the difference is shown from the fact that the distance 

between cluster centroids (3.8 to 4.6) is highest wherever it is involved. The only recorded 

distinct feature of these samples is they have particularly high C35 homohopanes with C35/C34 

homohopane ratio of about 1.40 which significantly higher than other Northsea oils which 

average at about 1.0. Since Kimmeridge Clay was generally deposited under stratified anoxic 

condition (Wignall, 1994; Tyson et al., 1979), the difference could be a reflection of the level of 

maturity when the oils were generated. The two Kittiwake oils (U01 & U05) are likely less 

mature than other Northsea oils to explain the pronounce C35 homohopanes and therefore just 

as A39 appears as an outlier in the analyses because of its advanced maturity, U01 and U05 

appear to have ‘unusual’ characteristics because of their relatively low maturity. 

(d) Complete spectral analysis 

The three spectral regions are further analysed together to explore whether this could 

improve the discrimination of the asphaltenes. Results of the PCA show that fewer that 20 PCs 

account for 99% of the variance in the data. The first PC accounts for 42.1% of the variance and 

together with PC2 cumulatively account for 71.6% of the variance (Figure 5.25). The loadings 

of the variables on the two PCs are generally as described the three sections above. 
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Figure 5. 25: Summary of results of PCA of 3100 – 2750 cm
–1

 and 1800 to 700 cm–1 regions of the 
petroleum asphaltenes mid-infrared spectra showing (a) the eigenvalue plots, and (b) the score plots. 
The outliers A39 & NB have been removed from the analysis. 

Score plot of PC1 against PC2 is presented in Figure 5.25. As observed in the previous 

sections, U54 and K78 respectively plot closely indicating good precision and repeatability of 

the measurements and sample preparation methods adopted. Note that most of the samples 

have similar scores on PC1 and most of the differences amongst the asphaltenes is based on 

their scores on PC2. Nonetheless, it is interesting to note that 5 of the six asphaltenes 

(represented by solid triangles, Figure 5.25) from biodegraded oils have relatively high 

negative scores (> –10) on PC1 and low score (< –10) on PC2. The Kittiwake asphaltenes U01 

and U05 have the highest (> 30) scores on PC2 and Veslefrikk asphaltene FN has the highest 

score (> 40) on PC1 thereby setting them apart on the plot. 
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Figure 5. 26: Dendrogram showing clusters formed from cluster analysis using PC1 to PC5 derived from 
PCA of the IR spectral data (1801 to 925 cm

–1
). 

For HCA six significant PCs that cumulatively account for 92.3% of the information in the 

original variables were used. The results of the analysis give eight clusters (Figure 5.26) 

although two of them are one-sample clusters and represent unusual samples. These have 

been discussed in earlier sections. Nevertheless, U04 have negative scores on all the six PCs 

and NA1 has positive scores on PC2 to PC5 although other samples opposite scores. 

Cluster 8 consists exclusively of asphaltenes from Northsea oils. Three of the asphaltenes (U5, 

U6 & U7) were precipitated from U56 Northsea oil using n-pentane, n-hexane and n-heptane 

respectively. The grouping of these asphaltenes in the same cluster and their level of similarity 

of 90% indicate near identical chemical composition irrespective of the solvent used in the 

precipitation of the asphaltene. 

Members of clusters 1 and 4 come from wide variety of sources and depositional 

environments. Cluster 4 however has the highest within-cluster heterogeneity that may 

warrant identification of two groups; one consisting of the asphaltenes (K77 & K78), with 

similarity level of 84%, from marine carbonate-sourced Kuwait oils. The second consists of the 

two asphaltenes (Q43 & Q43) from Qatar oils, both sourced from marine marl source rock, and 

some asphaltenes from Northsea oils. 

Cluster 3 consist of Northsea oils asphaltenes except O28 from one of the two Oman oils; the 

other being grouped in cluster 2. This may be because of differences in organic matter 

characteristics of the source kitchens of the two oils as suggested by distribution of the 

steranes from aliphatic fractions of the oils. As observed previously, cluster 5 is a two-sample 

cluster consisting of the asphaltenes from the Northsea Kittiwake oils. Cluster 2, on the other 

hand, consists of the three asphaltenes from Canada oils all of which were sourced from 

marine carbonate sources. 
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In general, statistical multivariate analysis of the similarities and differences amongst the 

different asphaltenes from different sources, depositional environment and geographical 

regions reveal that asphaltenes from a common source rock tend to show similar chemical 

composition as measured by FTIR and such asphaltenes are commonly classified in same 

groups. Misclassifications are however encountered and these could be attributable to 

differences in chemical composition because of maturity levels of the oils and/or subtle 

differences in organo-facies of different source kitchens. The results also show there no 

significant difference between asphaltenes precipitated by n-pentane, n-hexane and n-

heptane. Furthermore, the chemical composition of the asphaltenes does not appear to reflect 

the depositional environment of the source rock which could be because the asphaltenes were 

formed early in the genesis of the organic matter. In addition, asphaltenes from biodegraded 

oils appear to exhibit significant similarity in the chemical composition resulting in some having 

similar IR spectral characteristics and therefore being classified in similar group. 

5.4 Summary and Conclusions 

Asphaltenes are complex heterogeneous substances with high molecular weights and a wide 

range of molecular composition making it almost impossible to elucidate their chemical 

composition using traditional chromatographic/mass spectrometry techniques. However, bulk 

composition of complex materials such asphaltene may be investigated using FTIR particularly 

with the aid of curve-fitting tools to help resolve the complex overlapping bands that are 

commonly the product of the FTIR analysis of carbonaceous substances. These techniques 

together with chemometric tools were used to investigate the composition of the asphaltenes 

from a variety of sources. The results obtained show that: 

1. Asphaltenes consists of complex chemical substances with diverse functionalities but 

principally saturated aliphatic and aromatic structures. Oxygen functionalities in the form 

of hydroxyl, carboxylic, ester and conjugated carbonyl are significantly present. Nitrogen 

functionalities mainly in form of aromatic tertiary amines, and aromatic pyridine- and 

pyrrole-type were also tentatively identified but only in petroleum asphaltenes 

2. Asphaltenes from black shales generally have higher proportions of oxygen functionalities 

than petroleum asphaltenes. Hydroxyl and carboxylic acid groups are particularly 

abundant and in fact are the dominant functional groups in some black shale asphaltenes. 

Ester groups were detected only in black shale and coal asphaltenes. 

3. Aromatic structures are particularly prominent in petroleum asphaltenes and only barely 

detectable in immature asphaltenes from black shales. This however was observed to not 

only be maturity dependent but also be source dependent as asphaltenes formed from 

aromatic-rich organic matter exhibit a high aromatic signature comparable to matured 

samples. 

4. The relative proportion of carbonyl group in carboxylic and conjugated functionalities 

appears to related to the depositional environment with asphaltenes from oils sourced 

from carbonate and marl source rocks having greater proportion of conjugated carbonyl 

groups and the shale-sourced having greater proportion of the carboxylic carbonyl group. 
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5. The kind of light hydrocarbon solvent used in precipitation of petroleum asphaltenes does 

not appear to have a significant  effect on the bulk composition asphaltenes so 

precipitated 

6. Correlation/discrimination of asphaltenes based on their mid-infrared spectra with the 

aid of chemometric tools shows potential in correlating asphaltenes with similar 

chemical characteristics. However, as the composition of asphaltenes is dependent on 

their thermal histories, asphaltenes tend to evolve towards an equilibrium composition 

and asphaltenes with different source could be classified in the same group. 
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Chapter 6 Bound Biomarkers in Asphaltenes Released by 
Ruthenium Ion Catalysed Oxidation 

6.1 Introduction 

In Chapter 4 results were presented on the hydrocarbons (e.g. biomarkers) physically 

adsorbed/trapped in petroleum asphaltenes. In addition, asphaltenes are also known to 

contain biomarkers that are chemically bound to the asphaltene (aromatic) core via linkages 

such as the ester, ether, sulphide and carbon - carbon bond (see Section 2.5) and are therefore 

part of the asphaltene chemical structure of asphaltenes (Peng et al., 1997; Trifilieff et al., 

1992).  

The biomarkers bound in asphaltenes via carbon-carbon bonds appear to be formed during 

diagenesis rather than after the oil generation. While other bonds (i.e. ester and ether) could 

be formed in the reservoir from acids supplied through biodegradation for example (Aitken et 

al., 2004), carbon-carbon bond formation in asphaltenes is most likely catalysed by clay 

minerals (Trifilieff et al., 1992) and therefore might have occurred in sediments during or 

immediately after deposition as a result of diagenesis.  

There are many methods, such as permanganate, dichromate etc oxidation, for oxidative 

destruction of aromatic moieties (Barakat and Yen, 1988; Barakat and Yen, 1987). Ruthenium 

ion catalysed oxidation (RICO) using sodium periodate (NaIO4) as oxidant is however 

particularly important. This technique was first used and reported by Djerassi and Eagle (1953). 

Since then the reagent, in its many forms, has been widely used in oxidation of various kinds of 

organic substrates ranging from alkenes to heteroatomic compounds (Kasai and Ziffer, 1983; 

Lee and van den Engh, 1973). The method involves using ruthenium ion (III) to catalyse fairly 

selective destruction (through oxidation) of the aromatic core to a carboxylic group without 

affecting any aliphatic appendages that may be attached to the aromatic ring system. The 

aliphatic groups are released as carboxylic acids (Figure 6.1). 
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Figure 6.1: Chemical equations showing the nature of the various carboxylic acid products generated 
from ruthenium ion catalysed oxidation (RICO) on different model aromatics compounds (Mojelsky et 
al., 1992). 

RICO is a selective method in that the oxidation predominantly occurs at the α-aromatic ring 

carbon and so generates the alkyl group with carboxyl group from the degradation of the ring 

system. This has been confirmed by oxidation of pure compounds as illustrated in Figure 6.1. 

The figure, in addition, shows other bonds of interest, such as sulphide and ether, do not 

significantly interfere. For example, sulphides are converted to sulphones and sulphoxides, and 

ethers mainly to esters (Ilsley et al., 1986b; Gore, 1983). 

Consequently, RICO has been widely used to elucidate structures of macromolecules including 

soil organic matter (Ikeya et al., 2007); coal (Li et al., 2004; Blanc and Albrecht, 1991; Stock and 

Wang, 1986; Stock and Tse, 1983); kerogen (Blokker et al., 2006; Dragojlovic et al., 2005; Li et 

al., 2004; Boucher et al., 1991); asphaltenes (Peng et al., 1999a; Strausz et al., 1999a; Su et al., 

1998; Mojelsky et al., 1992; Trifilieff et al., 1992); and other geopolymers (Ikeya et al., 2007; 

Blokker et al., 2006; Blokker et al., 2000).  

The method has been successfully used to reveal that asphaltenes contain acyclic and cyclic 

aliphatic moieties, attached to aromatic moieties (Strausz et al., 1999a). Peng et al. (1999a), 

for example, studied an immature asphaltene using RICO and observed that the oxidation 

products principally consists of n-alkanoic acids and diacids, as well as benzenepolycarboxylic 

acids. They also found biomarkers including hopanoic acids, steranoic acids and 



Muhammad 

123 

gammaceranoic acid in the oxidation products. Most importantly, from the geochemical 

perspective, Peng et al. (1999a) were able to classify the oil, based on these biomarkers, as 

immature, possibly deposited in hypersaline lacustrine environment under suboxic conditions. 

Although this sort of information can be obtained from asphaltenes, there appears to be only 

two published work (Ma et al., 2008; Guanjun et al., 2003) that attempt to use asphaltene 

biomarkers to correlate oils. 

Thus, the main aim of this part of the work is to use RICO to investigate the aliphatic content, 

and in particular bound biomarkers, in asphaltenes and explore the geochemical information 

that can be derived from these biomarkers. Specific objectives include: 

1. to investigate the composition of the aliphatic moieties in asphaltenes from different 

sources and geographical regions 

2. to investigate the significance of and the differences in molecular composition of the 

chemically bound biomarkers linked to asphaltenes from different sources, ages, 

geographical regions and palaeoenvironments of deposition 

3. to investigate the evolution of the aliphatic moieties in asphaltenes with thermal 

maturation 

4. to elucidate geochemical information that can be obtained from the chemically bound 

biomarkers 

5. to analyse the relevance of such information in correlating/discriminating similar/different 

oils compared to information based on hydrocarbon biomarkers in the maltene fraction 

6.2 Methodology 

6.2.1 Selection and preparation of samples 

Samples of crude oils were selected to cover different geographical regions, geological ages, 

sources and depositional environments (see Chapter 3) to enable the assessment of the 

influence of such variables on the information obtained. In order to study the influence of 

thermal maturation on the asphaltene biomarker, coal samples (C04, C56, C69 & C15) of 

different maturity (0.4 to 1.5% vitrinite reflectance) were also included in the study. The 

asphaltenes used were obtained from the oils and coals listed in Table 6.1. 

Table 6. 1: List of samples used in the RICO bound biomarker studies presented in this Chapter 

SN Sample ID Field Source rock Country 

1 A32 - Jurassic  Abu Dhabi 

2 C26 Midale Ordovician Canada 

3 C30 Midale Ordovician Canada 

4 K77 Raudhatain Jurassic  Kuwait 

5 K78 Sabriyah Jurassic Kuwait 

6 O28 Natih Cretaceous  Oman 

7 O31 Natih Cretaceous Oman 

8 Q43 Al Shaheen Jurassic Qatar 
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9 Q61 Bul Hanine Jurassic Qatar 

10 U02 Flora Jurassic UK 

11 U54 Ettric Jurassic UK 

12 U59 Bruce Jurassic UK 

13 U68 - Jurassic UK 

14 U89 Britannia Jurassic UK 

15 B58 Habigong Olig./Miocene. Bangladesh  

16 NBA - - Nigeria 

17 Y32 Hemiar Jurassic Yemen 

18 NA1 Gaj - Serbia 

19 NA2 - - Serbia 

20 AR3 Confidential  Confidential US 

21 PR1 Confidential Confidential US 

 

Bitumens were extracted from coal samples as described in Section 2.3.2. Asphaltenes were 

precipitated from bitumens and oils as described in Section 2.3.3. In order to minimise 

interference from co-precipitated hydrocarbon biomarkers from maltene fraction (Chapter 4), 

the asphaltenes were extracted with n-hexane for 10 days using the Soxhlet method as 

described in Section 2.3.3. The RICO procedure adopted and subsequent sample preparation 

are respectively described in Sections 2.3.6, 2.3.10 and 2.4.6.  

6.2.2 Identification of compounds and data analysis 

The carboxylic acid products from the RICO treatment of asphaltenes were analysed as methyl 

esters. However, the aromatic acids were not analysed because the available esterification 

method only allowed for analysis of organic phase products. The methyl esters were identified 

using their respective mass spectra and their relative retention times in mass chromatograms 

in comparison with published data as described in the text. 

Concentrations of the compounds of interest were calculated (equation 6.1) using deutrated 

hexadecane-d32 as the internal standard. The relative response factor was assumed to be one. 

The concentration (wx) in mg/g asphaltenes was converted in number (nx) per 100C or 1000C 

using equation 6.2. 
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Where: Ax and As are the respective peak areas of the analyte and the internal standard; wa 

and ws are the respective weights of the asphaltenes and internal standard; %C is percentage 
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weight of carbon in the asphaltenes; and 12 and Mx are the molar masses of carbon and the 

analyte respectively. 

6.2.3 Chemometrics 

Although the importance of visual examination in comparing chromatographs and indices 

cannot be overemphasize particularly as different indices may have different weighting in 

decision making, chemometrics has the advantage of objectivity in finding subtle differences 

and similarities amongst the samples. This was therefore used in order to consider all variables 

simultaneously in comparing the samples. 

The chemometric methods used for the purpose of pattern recognition are principal 

component analysis (PCA) and hierarchical cluster analysis (HCA). These multivariate tools are 

described in Section 5.2.3. 

6.3 Results and Discussion 

6.3.1 Method development and verification 

The efficiency/yield of the method used for esterification of the RICO products (Section 2.3.10) 

was assessed using pure compounds (octadecanoic acid and aromatic benzene-1,2-

dicarboxylic). The results show 99% of the stearic acid and 93% of the dibenzoic acid were 

converted to the corresponding esters. The method was therefore suitable for application in 

esterification of the RICO products. Nevertheless, only the aliphatic acids that partitioned into 

the organic phase of the RICO products were analysed. Aromatic acids partitioned into the 

aqueous phase and were therefore not amenable to the esterfication method employed.  

Carboxylic acids are known to be present in petroleum in varying proportions depending on 

the nature, maturity and geochemical history of the oil (Lochte and Littman, 1955). Thus, to 

ensure that the acids observed in products of RICO treatment of asphaltenes have no 

significant contribution from the free maltene acid pool, ten oils (consisting of both 

biodegraded and non-biodegraded oils) were analysed for free acid content. This was then 

compared to the asphaltene RICO products. 

The results of the analyses show that the distribution of the free carboxylic acids in the 

maltenes is distinctively different from that in the asphaltene RICO products (Figure 6.2). The 

main n-alkanoic acids present in the maltenes are C16 and C18 homologues; other members up 

to C30 are present but in relatively very low amounts ((cf: Figure 6.2 (a) & (b))). Steranoic acids 

(SA) are absent in both the biodegraded and non-biodegraded oils analysed. Hopanoic acids, 

on the other hand, are either absent or present in very low amounts in the non-biodegraded 

oils. Significant amounts of the hopanoic acids were however detected in the biodegraded oils. 

Nevertheless, unlike the hopanoic acids in the asphaltene RICO products, the hopanoic acids 

observed in the maltene fractions of the biodegraded oils consist predominantly of C30 to C32 

homologues; homologues greater than C32 are in general absent (cf: Figure 6.2 (c) & (d)). 
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Figure 6.2: ((a) & (b)) m/z 74 mass chromatograms showing distribution of n-alkanoic acids in free 
maltene (a) and in product of RICO treatment of asphaltene (b); and ((c) & (d)) m/z 191 mass 
chromatograms showing typical distribution hopanoic acids the maltene (c) and in product of RICO 
treatment of asphaltenes (d) from the biodegraded oil (BN) from the Northsea. 

Furthermore, to confirm that the bound biomarkers observed in the asphaltene RICO products 

are only significantly present in asphaltenes, maltene fractions from ten biodegraded and non-

biodegraded, oils were subjected to RICO as well and the products analysed. The results 

(Figure 6.3) show that the maltene RICO products contain significant amounts of the n-alkanoic 

acids, but mainly consisting of the lower molecular weight homologues in range of C6 to C13; 

C14+ homologues are present in relatively low amounts. This distribution is quite different from 

the distributions of the n-alkanoic acids observed in both maltenes and RICO products of 

asphaltenes. The most likely sources are the alkyl aromatic compounds in the maltenes. 

Hopanoic acids and steranoic acids, however, are generally not detected even from maltenes 

of biodegraded oils. 

These results therefore clearly show that there was no significant contributions from free acids 

in the maltenes to the observed acids in the RICO products of asphaltenes; and that the acids 

observed in from the products of RICO treatment of asphaltenes are not likely to be from any 

co-precipitated components of the maltenes that might have remained in the asphaltenes 

even after the Soxhlet extraction of the latter. 
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Figure 6.3: m/z 74 mass chromatograms showing typical distribution n-alkanoic acid methyl esters 
from product of RICO on maltenes (top) and the corresponding asphaltenes (bottom). 

 

6.3.2 n-Alkanoic acids 

(a) Identification of the n-alkanoic acids 

n-Alkanoic acids are the major products of the RICO treatment of all the asphaltenes. The 

acids, as methyl esters, were identified from their respective mass spectra using the following 

outline fragmentation patterns (Christie, 2008): 

 the molecular ion, M+• = the corresponding n-alkane molecular ion + 44 from COO group 

 [M – 31] +• due to loss of a methoxy (CH3O) group 

 [M – 43] +• due to loss of a C3 unit lost via a complex rearrangement  

 m/z 74 due to a McLafferty rearrangement ion confirming methyl ester 

 m/z [CH3OCO(CH2)n]+• = 87, 101, 115, … showing there is no other functional group on the 
chain 

As an example, Figure 6.4 is the mass spectrum of methyl n-pentacosanoate (C25 methyl ester) 

showing the important fragmentations used in identification of the compound. 
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Figure 6.4: Mass spectrum of methyl pentacosanoate showing fragmentation pattern used in the 
identification of the n-alkanoic acids methyl esters. 

 

(b) Distribution of the n-alkanoic acids 

The n-alkanoic acids display a positively skewed unimodal distribution with homologues 

ranging from C6 to C35 with maxima typically between C7 and C10 (Figure 6.5). This distribution 

is similar to the observation of Strausz et al. (1999b) with respect to Boscan asphaltenes but is 

rather different from the observations of Trifilieff et al. (1992), Strausz et al. (1999a) and Peng 

et al. (1999a), which show maxima at C14 to C18 homologues. This could be because similar 

workup procedure to that used by the former was used in this work. Alkaline hydrolysis of the 

acids used by Strausz et al. (1999a) could result in loss of the lower molecular weight 

acids/esters. In addition, lengthy workup procedures involving chromatographic separations of 

the esters (Trifilieff et al., 1992) could further result in significant loss of the volatile lower 

molecular weight homologues thereby shifting the observable maxima towards the higher 

molecular weight homologues. 
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Figure 6.5: TIC showing typical distribution of n-alkanoic acids methyl esters from RICO product. 
Integers = the carbon number of the respective acids. IS = Internal standards. 

The similarity in distribution of the n-alkanoic acids of all the asphaltenes analysed is further 

illustrated by range of values obtained from indices, such terrigenous-aquatic index (TAR), 

carbon preference indices (CPI & CPI1), and odd-even preference indices (OEP1 & OEP2) (Table 

6.2), which are commonly used to characterise the distribution of n-alkanes from crude oils 

(Peters et al., 2005a).  Peng et al. (1999a) observed a clear even-to-odd carbon preference in 

the n-alkanoic acids distribution from an immature asphaltenes. In this work, however, the 

values of all the n-alkanoic acid-based indices vary within a narrow range as indicated by small 

standard deviations of ±0.13 for CPI. This may be a reflection of the effect of the thermal 

maturity of the samples. 
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Table 6.2: Some geochemical parameters describing the distributions of the n-alkanoic acids 
recovered following RICO treatment of asphaltenes 

Sample Location TAR CPI CPI(1) OEP(1) OEP(2) 

A39 Abu Dhabi 0.08 1.19 0.91 0.91 0.94 

AR3 GoM 0.04 1.45 1.07 1.14 1.13 

B58 Bangladesh 0.10 1.28 0.98 0.97 1.02 

BN Northsea 0.10 1.28 1.00 1.02 1.03 

C26 Canada 0.14 1.22 1.00 1.02 1.00 

C30 Canada 0.16 1.05 0.92 0.93 0.93 

CH Canada 0.09 1.24 0.99 1.02 1.02 

K77 Kuwait 0.08 1.01 0.86 0.88 0.89 

K78 Kuwait 0.08 0.99 0.84 0.86 0.86 

NB Nigeria  0.20 1.13 0.93 0.94 0.93 

NA1 Serbia 0.20 1.35 1.07 1.08 1.07 

NA2 Serbia 0.15 1.15 0.88 0.87 0.92 

O28 Oman 0.12 1.16 0.93 0.98 0.90 

O31 Oman 0.10 1.17 0.91 0.97 0.88 

PR1 GoM 0.07 1.32 1.01 1.02 1.07 

Q43 Qatar 0.08 1.25 0.97 0.99 1.00 

Q61 Qatar 0.07 1.22 0.94 0.95 0.96 

U02 Northsea 0.07 0.75 0.68 0.71 0.69 

U56 Northsea 0.10 1.25 1.00 1.02 1.01 

U79 Northsea 0.07 1.32 1.01 1.04 1.04 

U93 Northsea 0.11 1.19 0.99 1.04 1.00 

Y32 Yemen 0.09 1.32 1.03 1.03 1.05 
 

Asphaltenes with a common source display a more striking similarity in the distribution of the 

n-alkanoic acids. For example, the Oman asphaltenes O28 and O31 from same reservoir (Natih) 

and field show no odd-to-even carbon predominance. This is also true for other asphaltene 

pairs such as Q43 & Q61 from Qatar (Figure 6.6), and Canadian asphaltenes, C26 & C30, from 

Midale reservoir and being from same source rock. Furthermore, asphaltenes, K78 and K77, 

from Kuwait, although obtained from different oil fields (Table 6.1), display similar distribution, 

with distinct even carbon predominance between the C10 and C23 homologues. Both also have 

a prominent C16 homologue (Figure 6.6). 
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Figure 6.6: m/z 74 mass chromatograms showing striking similarity in distribution of n-alkanoic methyl 
esters from asphaltenes following RICO treatment for pairs of same source oils. The integers = the 
total carbon atoms per molecule of the respective acids. 

TAR compares the relative proportions of high molecular weight (waxy) acids (indicative of 

terrigenous organic matter input) to low molecular weight acids (indicative of marine organic 

matter input) (Peters et al., 2005a). Although this index is maturity dependent (Peters et al., 

2005a), the observed low values (0.10±0.03) (Table 6.2) apparently suggest predominance of 

marine organic matter input in all the oils in agreement with results obtained from analysis of 

hydrocarbon fractions of the oils as presented in Chapter 4.  

  

  

Figure 6.7: m/z 74 mass chromatograms showing variable distribution of the n-alkanoic acid methyl 
esters from RICO degradation products of coal asphaltenes. The integers show the carbon number of 
the respective acids 

Coal asphaltenes display similar composition of n-alkanoic acids with homologues also ranging 

from C6 to C36 (Figure 6.7) in the asphaltenes RICO products in petroleum asphaltenes. The 
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distribution of the homologues is, however, distinctly different. The immature coal 

asphaltenes (C04, Ro = 0.4%) shows dominance of the high molecular weight homologues (C24 

to C30) with strong predominance of even carbon number (Figure 6.7) homologues. The lower 

homologues (<C24) are relatively small. The marginally mature C56 (Ro = 0.56%), on the other 

hand, exhibits significant increase in the relative proportions of the lower homologues 

although the hump in the C20 to C26 homologues is still distinctive. The more mature 

asphaltene C69 (Ro = 0.69%) shows a similar distribution of n-alkanoic acids as C56 but with 

increased relative proportions of the lower homologues. Sample C15 (Ro = 1.5%), which is the 

most mature exhibit dominance of the lower homologues although there is prominent C16 as in 

sample C56. 

 

(c) Source of the n-Alkanoic acids 

The n-alkanoic acids are mainly generated from the n-alkyl side chains attached to the 

aromatic units of the asphaltene macromolecules. The RICO results in degradation of the 

aromatic units with the aliphatic side chains being released as alkanoic acids as illustrated 

Figure 6.8 (Mojelsky et al., 1992). However, although only C6+ n-alkanoic acids (Figure 6.5 and 

6.7) were detected in the RICO oxidation products, the lower homologues also exist but in the 

aqueous phase of the product which was not analysed here. In fact, Strausz et al. (Strausz et 

al., 1999b) observed that the C1 to C5 homologues are the dominant alkyl moieties (up to 50 to 

70%) in asphaltenes which may why the average chain length to about 4 to 7 (Strausz et al., 

1999b). 

 
Figure 6.8: Decomposition of asphaltene by RICO showing the typical products obtained. Note cyclic 
alkanes generate mainly dicarboxylic acids. 

The relative amounts of the total n-alkanoic acids in the asphaltene oxidation products 

generally vary with different asphaltenes from about 8.0 to 39 μg/mg asphaltene. In general, 

some asphaltenes with a common source (e.g. C30/C26 & K77/K78) have similar weights of the 

acids per weight of asphaltene. However, the Oman (O28 vs. O31) and Qatar (Q61 vs. Q43) 

asphaltenes despite being respectively from same source rocks (see Chapter 3), have 

significantly different relative amounts (35 to 45 μg/mg asphaltene) of the n-alkanoic acids. 

This variation could be due to one or more factors namely differences in: (a) organofacies of 
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source kitchens, (b) maturities of the asphaltenes, and (c) degree of preservation of the 

organic matter during diagenesis. 

The results of the δ13C analysis of the n-alkanoic acids from the asphaltene RICO products 

reveal that asphaltenes from the same source rock generally have similar δ13C values. Most 

striking however are the similar δ13C trends across the homologues exhibited by asphaltenes 

with common source rock. This was observed to be true even between asphaltenes from 

biodegraded and non-biodegraded oils (Figure 6.9). 
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Figure 6.9: Plots of δ
13

C values of methyl esters of n-alkanoic acids released from RICO degradation of 
asphaltenes showing similar trends for asphaltenes from common source rocks. 

The relative sulphur content of the asphaltenes fairly correlates positively (R2 = 0.62, p<0.05) 

with the relative amounts of the n-alkyl moieties (n-alkanoic acids) in the asphaltenes as 

shown in Figure 6.10. This suggests sulphur may play a role in the relative amount of aliphatic 

structures incorporated in the asphaltenes. It is known that good preservation of organic 

matter is facilitated by anoxic conditions (Tyson and Pearson, 1991; Demaison and Moore, 

1980) – a situation where free hydrogen sulphide exists and extends into the water column 

thereby suffocating most of the more efficient grazing microbes (Tyson and Pearson, 1991).  

The observed positive correlation may therefore reflect increasing preservation and therefore 

increasing availability of the hydrogen-rich n-alkanoid materials for incorporation in the 

asphaltenes (and kerogen). However, as the model explains only about 62% of the variance in 

the data, other factors, possibly the nature of the original biomass, diagenesis and maturation, 

could be responsible for the unacounted variance. 
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Figure 6.10: Linear plot of relative sulphur content of asphaltenes against the alkyl appendages in the 
asphaltene (R

2
 = 0.62, p < 0.05). 

 

6.3.3 α,ω-n-Alkandioic acids 

(a) Identification of the α,ω-n-alkandioic acids 

This class of compounds, as methyl esters, elute close to the n-alkanoic acids methyl esters. 

They were identified from their relative retention time and most importantly their mass 

spectra (Christie, 2006). The mass spectra of all the homologues show the following 

fragmentation characteristics: 

 small, sometimes absent, molecular ion (M+•) peak 

 a prominent  m/z [M-31] +• ion due to loss of methoxy (CH3O) group 

 m/z [M-64] +• due to loss of two CH3O groups  

 m/z [M-73] +• due to loss of CH3OCOCH2 group from McLafferty rearrangement ion 

 m/z [M-92] +•due to loss of CH3O+CH3OCOCH2 +2H 

 m/z [M-105] +• due to loss of CH3O+CH3OCOCH2+H 

 m/z [M-123] +• due to loss of CH3O+CH3OCOCH2 +H2O+H 

 series of ions m/z [84 + 14n] +•, n = 1, 2, 3, … 

Figure 6.11 is the mass spectrum of 1,13-dimethyl tridecanedioate showing the fragmentation 

pattern used in the identification of the homologues. 
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Figure 6.11: Mass spectrum of 1,13-dimethyl tridecanoate showing typical ions used in identification 

of the α,ω-n-alkandioic acids, methyl esters. Note the absence of molecular ion typical of the 
dibasic acids methyl esters. 

 

(b) Distribution of the α,ω-n-alkandioic acids 

The α,ω-n-alkandioic acids in the RICO product of the asphaltenes range from C10 to C36 

displaying a positively skewed unimodal distribution with maxima at C11 to C14 homologues and 

gradual fall towards the high molecular weight members (Figure 6.12). Homologues below C10 

are generally low in all the asphaltene RICO products which might be related to their solubility 

in the aqueous phase that was not analysed. 

  

Figure 6.12: m/z 98 mass chromatogram showing typical distributions of α,ω-alkandioc acid dimethyl 
esters. Note slight predominance of the even homologues and conspicuous low proportions of the 
homologues less than the C10 homologue. 

 

(c) Source of the α,ω-n-alkandioic acids 

The n-alkandioic acids are believed to be derived from polymethylene bridges that link 

aromatic cores in asphaltenes (Mojelsky et al., 1992). The oxidative degradation of the cores 

yields the diacids (route (a) of Figure 6.13). This interpretation however advocates that 
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asphaltenes have polymeric, or at least oligomeric, structure where polymethylene bridges of 

different chain length interconnect condensed aromatic cores. As discussed in Section 1.3 of 

Chapter 1, this structure is rather controversial (Badre et al., 2006) as it is claimed to be 

inconsistent with data obtained using various techniques (Mullins et al., 2007). 

However, alternative/additional sources of the diacids are alkyl side chains with terminal 

carboxyl or hydroxyl groups (Figure 6.13). The presence of these groups has been established 

from mid-infrared spectra of asphaltenes which invariably show the presence of absorption 

bands at 3100 – 3500 and 1700 cm–1 which can be assigned to hydroxyl and carboxyl groups. 

Furthermore, These alternative/additional sources for the diacids are supported by the 

predominance of the diacids over the monoacids in RICO products of immature asphaltenes 

(Peng et al., 1999a) compared to mature asphaltenes which generally show much lower 

proportions of the diacids (Peng et al., 1999a; Strausz et al., 1999b). It has been shown in 

Chapter 5 of this thesis (see also Ibarra el at (Ibarra et al., 1996)) that the amounts of carboxyl 

and other oxygen functionalities fall with increasing maturity so that the more mature 

asphaltenes contain less proportion of the alkyl appendages with terminal carboxyl groups and 

therefore give less diacids in the RICO products.  

 

Figure 6.13: Schematic showing two possible sources of NSDA in asphaltenes (a) from polymethylene 
bridges and ((b) & (c)) from alkyl side chains with terminal carboxylic or hydroxyl group following 
oxidative destruction of the aromatic moieties 

Nevertheless, to further explore investigate the contributions of these alternative sources for 

the diacids, an experiment was designed to eliminate contributions from the alternative 

sources so that any diacids observed afterward might be from only the polymethylene bridges. 

An asphaltene sample (NB) was treated with a non destructive reduction procedure which 

completely reduces carboxyl and hydroxyl groups (Section 2.3.8). Figure 6.14 shows the mid-

infrared spectra of the asphaltenes before and after the reduction process showing elimination 

of carboxylic group.  
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Results of the RICO treatment of the asphaltenes after reduction shows the presence of the 

α,ω-n-alkandioc acids albeit in lower proportions compared to before the reduction 

procedure. Although this does not imply polymeric structure for asphaltenes, it however 

suggests the existence of such linkage between at least a pair of aromatic units. 

Furthermore, it has been observed that asphaltenes become more aromatic (Section 5.3.2) 

with increasing maturation. It is therefore reasonable to argue that bound saturated cyclic 

structures (such as hopanoids (see Section 6.3.5)) undergo aromatisation becoming part of 

aromatic units linked by polymethylene bridges. In fact, this may explain why hopanoic and 

steranoic acids were not observed in the C15 asphaltenes (Ro = 1.5%) RICO products (Section 

6.3.9). 
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Figure 6.14: FTIR spectra of asphaltene sample before (a) and after (b) n-butylsilane reduction 
procedure showing the presence and absence of carboxylic carbonyl absorption band. 

 

6.3.4 Branched alkanoic acids 

Branched alkanoic acids were also detected in the oxidation products of RICO treatment of all 

the asphaltenes. They are however less abundant than the n-alkanoic acids and α,ω-n-

alkandioic acids (Figure 6.15). The mass chromatograms representing the series were obtained 

from m/z 102, 116 and 130 for α-ethyl, α-propyl and α-butyl alkanoic acid methyl esters 

respectively (Peng et al., 1999a; Strausz et al., 1999a). The mass spectra were however weak 

and the assignment could not be confirmed.   

The simple branched alkyl groups were possibly incorporated into the asphaltenes structure 

from their corresponding branched alcohols and/or unsaturated alkenes via Friedel-Craft-type 

alkylation (See Section 6.3.4 (c)). 

It is interesting to note that isoprenoic acids, particularly pristanoic and phytanoic acids were 

not detected in the oxidation products of the asphaltenes. This could possibly be because they 

were not available in a form suitable for incorporation in asphaltenes via carbon-carbon bonds. 

The possible precursors for these compounds are in bound form (ester & ether) in their 

original compound and are not available for incorporation vai carbon-carbon bonds. 
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Figure 6.15: Mass chromatograms (m/z 88, 102 116, & 130) showing methyl esters of α-methyl, α-
ethyl, α-propyl and α-butyl alkanoic acids respectively. 

 

6.3.5 Hopanoic acids (HA) 

(a) Identification of the hopanoic acids 

Hopanoic acids are the major cyclic carboxylic acids in the products of RICO treatment of 

asphaltenes. The homologues of this group were identified from their mass spectra and 

relative elution pattern compared to published chromatograms (Bennett and Abbott, 1999; 

Peng et al., 1999a; Trifilieff et al., 1992; Jaffe et al., 1988). The mass spectra of the hopanoic 

acid methyl esters show the following fragmentation characteristics: 

 the molecular ion peak M+• = the molecular ion of the corresponding hopane + 46 from 
the additional OOCH3 

 m/z [M+•– 15] from loss of CH3 group  

 a base peak m/z 191 from the cleavage in B ring as in the hopanes 

 a prominent m/z [148+(CH2)nCOOCH3]
+• where n = 0, 1, 2, … for C30 to C36 

corresponding to cleavage in the B ring 

 as in hopanes, hopanoic acids methyl esters show m/z [148+(CH2)nCOOCH3]
+•<50% of 

m/z 191 for 17α(H),21β(H); and > 50% for 17β(H),21α(H) and >m/z 191 for 
17β(H),21β(H) (Jaffe et al., 1988) respectively 

 a relatively small m/z 369 due to the ring system (i.e. from loss of the side chain) 

 as in hopanes, the elution order is C30, C31, C32, … In every homologue the 
17α(H),21β(H) elute before the 17β(H),21α(H) and in every doublet 22S before 22R 
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Figure 6.16 is the mass spectrum of methyl esters of C32 17α(H),21β(H) hopanoic acid showing 

the major fragmentations useful in identification of the series. Figure 6.17, on the other hand, 

shows the elution pattern of the hopanoic acid methyl esters. 

 
Figure 6.16: mass spectrum of C32 17α(H),21β(H) homohopanoic acid methyl ester showing the 
fragmentation patterns generating the main ions important in identification of the compound. 

 

 

 

(b) Distribution of the hopanoic acids 

As shown in Figure 6.17 the hopanoic acids from the RICO treatment of asphaltenes range 

from C30 to C36 homologues. The C28 hopanoic acid is also invariably present in all samples. The 

C32 hopanoic acids are the dominant homologues except in NA2 asphaltenes where C33 

dominate (Table 6.3, page 190). There is a progressive decrease in abundance of the 

homologues from C32 to C36 with C32 & C33 generally being greater than C31. The C36 homologue 

is only faintly detected in some asphaltenes (e.g. Figure 6.18) although it is relatively 

prominent in other (e.g. C26 & C30 asphaltenes from Canada).  

The stereochemical configurations of the hopanoic acids consist of the 17α(H),21β(H) and 

17β(H),21α(H) isomers. In some asphaltenes 17β(H),21β(H) isomers were also present. All the 

homologues from C30 to C36 hopanoic acids have the 22S and 22R epimers.  In general, the 

17α(H),21β(H) and the 22S epimers are the more prominent isomers in each homologue. The 

C31 17β(H),21α(H) is significantly present in all the asphaltenes. In some other asphaltenes the 

17β(H),21α(H) diastereomer of the C30 and C32 homologues are also prominent. 
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Generally, there is a similarity in hopanoic acids distributions amongst the various asphaltenes 

analysed particularly with respect to the predominant homologues and isomers present. 

Nonetheless, hopanoic acids distributions from asphaltenes obtained from oils that have a 

common source rock are even more similar amongst themselves than they are to hopanoic 

acids distributions of asphaltenes obtained from oils of different source (Figure 6.18). 

Furthermore, it is important to note that although hopanes are almost completely removed 

from the maltenes of the Nigerian bitumen (NB) due to severe biodegradation (Chapter 3), the 

asphaltenes of the bitumen contains abundant hopanoic acids in the RICO product. In addition, 

gammaceranoic acid is prominent (peak G, Figure 6.17) although gammacerane was detected 

in the aliphatic hydrocarbon fraction. 

 

 
Figure 6.17: Selected ion mass chromatograms showing elution pattern of the HA methyl esters. The 
respective homologues are enhanced using their characteristic m/z [148+(CH2)nCOOCH3]

+
 ions.  
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The products of RICO treatment of the coal asphaltenes show the presence of the C28 and C30 

to C33 hopanoic acids with traces of C34 homologue for C04, C56 and C69 asphaltenes. No 

hopanoic acids were detected in C15 asphaltenes. As in oil asphaltenes, C32 is dominant 

hopanoic acids in the RICO products of all the three coal asphaltenes.  
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Figure 6.18: m/z 191 mass chromatograms of six different asphaltenes RICO products showing 
similarity in distributions of hopanoic acids for asphaltenes with a common source.  

The main difference amongst the coal asphaltenes, however, is in the distribution of isomers of 

the hopanoic acids. In the immature C04 asphaltene, the biological 17β(H),21β(H) 

predominates followed by 17α(H),21β(H). The less stable 17β(H),21α(H) are also present. The 

22S epimers are generally very small compared to the 22R epimers. In the mature C56 and C69 

asphaltenes, on the other hand, 17α(H),21β(H) are the dominant isomers and the 

17β(H),21α(H) are practically absent. Unlike in C56 asphaltenes, however, in C69 asphaltenes, 

the 22S epimers are dominant over 22R for 17α(H),21β(H) isomers across the homologues. The 
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reverse is, however, the case for 17β(H),21β(H)  isomers in all the two asphaltenes (Figure 

6.19).  

 
Figure 6.19: m/z 191 mass chromatograms of RICO products of coal asphaltenes showing the 
distribution of the hopanoic acids methyl esters.  No hopanoic acids were detected in RICO product of 
the most mature C15 asphaltenes. 

 

(c) Source and incorporation of the hopanoic acids 

Hopanoic acids are, like other geohopanoids, molecular fossils of bacteriohopanepolyols 

(BHPs).  BHPs are ubiquitous terpenoids synthesised mainly by prokaryotes (Rohmer et al., 

1984) and thus found in various environmental settings (Talbot et al., 2008; Talbot and 

Farrimond, 2007). This class of natural products is found in wide range of structural variations 

although the most common is one with four functional groups at C32, C33, C34 and C35. BHPs 

with five (additional group on C31) or six functional groups (additional groups on C31 and C30) 

are also common in the environment. The hydroxyl group is the main functional group 

occupying these positions although, BHPs with other groups such as the amino or aminosugar 

functionalities at C35 have been observed (Talbot and Farrimond, 2007). 

The diagenesis of the BHPs in the geosphere gives rise to a complex web of chemical reactions. 

This involves the formation of a complex mixture of geohopanoids including, amongst others, 

hopenes, hopanoic acids and hopanols with 17β(H),21β(H), 17β(H),21α(H), and 17α(H),21β(H) 

as well as 22R and 22S stereochemical configurations (Farrimond et al., 2002; Bennett and 

Abbott, 1999; Innes et al., 1998; Innes et al., 1997; Sinninghe Damsté et al., 1995b). 

Incorporation of hopanoids, and other biomarkers, into macromolecular materials such as 

kerogen and asphaltenes via formation of carbon-carbon, ether, ester and carbon-sulphur 
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linkages, has also been observed (Innes et al., 1997; Peng et al., 1997; Sinninghe Damste and 

De Leeuw, 1990).  

The current hypothesis of the mode of incorporation of cyclic biomarkers in the asphaltene 

aromatic moiety is via Friedel-Crafts alkylation with clay minerals as catalyst (Trifilieff et al., 

1992). The catalytic effect of clay minerals in alkylation and acylation reactions is well 

established (Cornélis et al., 1990; Laszlo, 1990; Clark et al., 1989). Various clay minerals have 

been observed to efficiently catalyse the coupling of an alcohol (e.g. benzyl alcohol) with an 

aromatic hydrocarbon (e.g. toluene) forming the corresponding alkylated compound (e.g. 

benzyl toluene)  (Narender et al., 2006). In fact, Trifilieff et al. (1992) have shown that the clay 

mineral K-10 montmorillonite catalyses alkylation of cholestan-3β-ol on benzene forming  3β-

phenylcholestane with about 40% yield. The resulting product on treatment by RICO gave 3β-

cholestanoic acid. 

OH

+ H+

OH2

- H2O

 
Figure 6.20: Simplified chemical equations showing Friedel-Craft-type alkylation of hopanol moiety 
onto an aromatic moiety. 

Consequently, it is reasonable to infer that hopanols can be alkylated on aromatic units in 

reaction similar to one illustrated in Figure 6.20. Terminal hopanols have been observed in 

sediments (Watson and Farrimond, 2000; Innes et al., 1998; Innes et al., 1997). Interestingly, 

the hopanol distribution is believe to reflect the different side chain functionalities of the 

precursor BHP (Innes et al., 1998). Therefore, if the hopanol distribution is further preserved 

through incorporation into asphaltenes, the hopanoic acids obtained from RICO treatement of 

the asphaltenes may reflect the original distribution of the hopanols and therefore the BHPs 

(considering the good selectivity of RICO). Thus, the C31, C32 and C33 hopanoic acids distribution 

in the RICO products could be proxies for distributions of the hexa-, penta- and tetra 

functionalised BHPs present at the onset of diagenesis. 
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Figure 6.21: Simplified flow diagram showing various BHPs as possible precursors to the C30 to C32 
hopanols pool which are in turn the precursors of the asphaltene hopanoids 

It seems that, it is feasible for hexa- and penta-functionalised BHPs to generate all the C30+ and 

C31+ hopanols respectively according to illustration in Figure 6.21. This could obviously explain 

the predominance of C32 hopanoic acid in almost all the asphaltenes. It however fails to 

account for low C33 relative to C32 hopanoic acids. It is expected that if the above proposition 

holds, C32 hopanol having more precursors than either C30 or C31 hopanols, would predominate 

during diagenesis and therefore more of it will be incorporated into asphaltenes resulting in 

greater proportions of C33 hopanoic acids in RICO procucts of the asphaltenes. Consequently, 

the author maintains that the relative distribution of C31, C32 and C33 hopanoic acids observed 

in asphaltenes RICO product is a proxy for distribution of functionalised BHPs prior to 

diagenesis. It should however be cautioned that substrate-to-oxidant ratio is important in the 

distribution of products from RICO; high ratio tends to generate significant amounts of the 

lower molecular weight acids (Ilsley et al., 1986a). 

Finally, as shown in Section 6.3.1 the observed hopanoic acids, and other acids, in the 

asphaltenes RICO products are predominantly from oxidation of the asphaltenes and any 

contributions from free acids in the maltene is rather insignificant. This is further corroborated 

by the presence of C36 homohopanoic acids in the RICO products and absence of its 

hydrocarbon equivalent (C36 hopane) in the maltene fraction. RICO is known to add an extra 

carbon atom from the degraded aromatic moiety to the aliphatic moiety attached to the 

aromatic moiety (Mojelsky et al., 1992). 

6.3.6 Steranoic acids (SA) 

(a) Identification of steranic acids 

The steranoic acids consist mainly of 3β-carboxysteranes and those steranoic acids with 

carboxyl group on the side chain. Members of the latter type of steranoic acids (m/z 217 mass 

chromatogram) were not observed in the asphaltenes RICO products although they were 

detected in RICO product of Athabasca asphaltenes by Strausz et al. (1999a). The 3β-

carboxysteranes, on the other hand, were detected in the RICO products of all the asphaltenes 

analysed in this work. They were identified from their mass spectra and relative elution time 
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(Barakat and Rullkötter, 1995; Barakat and Rullkötter, 1994). In general, the following 

fragmentations are useful in the identification of the 3β-carboxysteranes. 

 the molecular ion peak M+• = molecular ion of the corresponding sterane +58 from the 
additional COOCH2 from the ester group 

 an m/z [M+•– 15] from loss of methyl (CH3) group  

 a base peak m/z 275/276 from the cleavage in D ring as in the steranes 

 an m/z 317 is due to the ring system 

 m/z 207 and m/z 290 are due to cleavages in C and D rings respectively 

 as in steranes, m/z 275 > m/z 276 for 5α(H),7α(H),17α(H), and m/z 275 < m/z 276 for 
5α(H),7β(H),17β(H) 

 a similar elution pattern and the corresponding steranes 

Figure 6.22 shows the mass spectrum of 3β-carboxycholestane illustrating the typical 

fragmentations displayed by the steranoic acid methyl esters. 

 
Figure 6.22: Mass spectrum of methyl 3β-carboxycholestane showing important ions used in 
identification of the compound. 

 

(b) Distribution of the steranoic acids 

In general, the asphaltene RICO products comprise complex mixture of steranoic acids some of 

which could not be identified. However, regular steranoic acids tentatively identified consist of 

the homologues of 3β-carboxysteranes. The mass spectra of these acids (as methyl esters) 

display m/z 275 (or m/z 276) as base peak and molecular ions of 430, 444 and 458 

corresponding to C28, C29 and C30 respectively. The C30 is the dominant homologue in most 

asphaltenes. Diasteranoic acids were not detected in the asphaltenes oxidation products.  
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Assuming the relative elution of the steranoic acids is similar to that of the regular steranes, 

the homologues appear to consists of 20S and 20R doublets of the 5α(H),7α(H),17α(H), and 

5α(H),7β(H),17β(H) configurations. It is noteworthy however that the 5α(H),7β(H),17β(H) are 

in low amounts in some of the samples (Figure 6.23).  

  

Figure 6.23: m/z 275 mass chromatograms showing methyl esters of steranoic acids for (a) mature 
distribution, and (b) ‘immature’ distribution. 

Another class of steranoic acid present in the oxidation products are the A-ring methylated 4α-

methyl-3β-carboxy-5α-(H)-sterane and/or 3β-carboxymethyl-5α(H)-steranes (Figure 6.24) 

These were detected from m/z 289 and they range from C29 to C31 homologues (Barakat and 

Rullkötter, 1994). They are mainly prominent in asphaltenes from biodegraded oils and 

especially the serevely biodegraded bitumen NB from Nigeria. In general, these compounds 

have been observed as important components of RICO products of asphaltenes by other 

workers (Ma et al., 2008; Peng et al., 1999a).  

 
Figure 6.24: Mass chromatograms showing methyl esters of regular steranoic acids (m/z 275), and the 
corresponding methyl steranoic acids (m/z 289) respectively. 
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(c) Sources of the steranoic acids 

The 3β-carboxysteranes have been reported both as extractable ‘free’ compounds in 

sediments and oils,  and as bound components of kerogen released by alkaline hydrolysis 

(Barakat and Rullkötter, 1995; Barakat and Rullkötter, 1994) indicating they are bound via 

ester linkages. The origin of these compounds is unknown as they have not been detected in 

biological systems and thus might be diagenetic products of biological steroids (Barakat and 

Rullkötter, 1995; Barakat and Rullkötter, 1994). Nonetheless, Barakat and Rullkötter (1994) 

hypothesised that the 3β-carboxysteranes may represent unrecognised constituents of marine 

and freshwater algae, possibly  as part of the resistant macromolecular cell wall structure of 

dinoflagellates, which have been selectively preserved in macromolecular structures and could 

be precursors of 3β-methylsteranes observed in sediments and petroleum (Summons and 

Capon, 1988). 

The 3β-carboxysteranes observed in the RICO products of asphaltenes are however bound into 

the asphaltene structure via carbon-carbon bonds; they are unlikely to be the free 3β-

methylsteranes. This is because, firstly neither the 3β-carboxysterane nor the 3β-

methylsteranes, the possible diagenetic products of the former, were detected in the maltene 

fractions of the oils analysed in this work. Secondly, Trifilieff et al. (1992) have shown that 

cholestanol could be incorporated into aromatic structures via carbon-carbon bonds and RICO 

on the product released 3β-carboxycholetane as the main product.  

It is therefore reasonable to conclude that sterols, an important component of cell wall 

structure of eukaryotes (Mackenzie et al., 1982), are the precursors of both steranes in 

maltene and the steroids in the asphaltenes. The asphaltene steroids were, in the early stages 

of diagenesis, incorporated into the asphaltenes via Friedel-Crafts-type alkylation. 

6.3.7 Effect of biodegradation 

The products of RICO treatment of asphaltenes from biodegraded oils have similar 

composition and distribution of n-alkanoic acids as asphaltenes from non-biodegraded oils. 

This is also true with respect to other acyclic components. For example, despite the obvious 

differences, there is clear similarity between relative distributions of the n-alkanoic acids 

homologues of biodegraded NA1 and non-biodegraded NA2 asphaltenes from the two 

Pannonian basin heavy oils (Table 6.1). This similarity is further emphasised by the fact that the 

n-alkanoic acids from the asphaltenes of NA1 display distribution that is strikingly similar to the 

n-alkane distribution of NA2 oil as shown Figure 6.25. This suggests the the potential of using 

distribution of asphaltenes n-alkyl moieties as replacement for the distribution of the n-

alkanes in the maltenes where the n-alkanes are lost to biodegradation. 

The similarity is also observed in the δ13C of the n-alkanoic acid methyl esters. Asphaltenes 

from both biodegraded and non-biodegraded oils generated from the same source rock show 

similar n-alkanoic acids methyl esters δ13C values and trend across the homologues as 

illustrated in Figure 6.9. 
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Figure 6.25: Distributions of n-alkanoic acids (m/z 74) from non-biodegraded oil (NA2) and 
biodegraded oil (NA1) asphaltenes and maltene n-alkanes (m/z 85) from the non-biodegraded oil 
(NA2).  

Furthermore, the hopanoic acid composition and distribution from the products of RICO 

treatement asphaltenes from biodegraded and non-biodegraded oils are also similar, to some 

extent. For example, both NA1 and NA2 asphaltenes have barely detectable hopanoic acids 

greater than C34 homologue. Both also have prominent C28 hopanoic acid content (Figure 6.26). 

Similarly, NA1 has a relatively small gammaceranoic acid peak (G, Figure 6.26) which is barely 

detectable in NA2 in agreement with the relative proportions of the compound in their 

respective hydrocarbon fractions. Nonetheless, there are differences in some cases. For 

example, while in the NA1 asphaltene, as in all other asphaltenes, C32 hopanoic acid is the 

dominant homologue, in NA2 asphaltene C33 hopanoic acid predominates. These similarities 

and differences between these heavy oils might indicate the fact that although the oils have 

same bulk source rock, their respective source kitchens might have subtle differences in 

organic facies. 
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Figure 6.26: m/z 191 mass chromatogram showing HA distributions from products of RICO treatment 
of asphaltenes from Serbian biodegraded (NA1) and non-biodegraded (NA2) oils. 

It is interesting to note that although the maltene hydrocarbons, including biomarkers, of the 

Nigeria bitumen (NB) were extensively biodegraded and are hardly detectable, as the m/z 191 

mass chromatogram is dominated by the norhopanes (Chapter 3), the RICO product of the 

asphaltenes from NB contains abundant n-alkanoic acids as shown in Figure 6.27. The RICO 

product is also rich in hopanoic acids with mature distribution and prominent gammaceranoic 

acid (Figure 6.27). This suggests the source rock of the bitumen was deposited in anoxic, 

possibly hypersaline, setting (Sinninghe Damsté et al., 1995a) with hydrogen-rich kerogen; and 

the pre-biodegradation oil was rich in aliphatic hydrocarbon particularly the n-alkanes.  

 
 

Figure 6.27: (a) m/z 74 mass chromatograms showing distributions of n-alkanoic acid methyl esters, 
and (b) m/z 191 mass chromatograms showing distribution of the hopanoic acid methyl esters from 
the RICO product of asphaltenes of the extensively biodegraded bitumen (NB) from Nigeria. (See 
Appendix 6C for assignment) 

In general, biodegradation does not appear to change the bound acyclic and pentacyclic 

terpenoid composition of asphaltenes. The n-alkanoic acids and hopanoids are not only 

present but also exhibit a mature distribution that tends to mimic the maltene hydrocarbon 

composition. The observed mature distribution is not expected if there is any contribution 

from immature hopanoid pool from microbes responsible for the biodegradation activity. 

Conversely, the bound steroids in asphaltenes seem to be affected by biodegradation. The 

composition and distribution of the 3β-carboxysteranes from RICO treatment of the 

asphaltenes from all the biodegraded oils exhibit an immature distribution. The distribution is 

dominated by the biological 5α(H),7α(H),17α(H) isomers and 20R epimers; the geological 

5α(H),7β(H),17β(H) and 20S are very low is some samples and barely detectable in others 
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(Figure 6.28). Similar distributions of the 3β-carboxysteranes from RICO products of 

asphaltenes from biodegrade oils have been reported by other workers (Ma et al., 2008; 

Trifilieff et al., 1992). 

 
Figure 6.28: m/z 275 mass chromatogram distribution of 3β-carboxysteranes from asphaltene of 
biodegraded oils from different areas (UK, Canada, USA and Nigeria). 

It is not yet clear why some asphaltenes, particularly those from biodegraded oils, exhibit 

immature distributions of the steranoid acids. Some workers speculate that the asphaltenes 

protect the bound steroids from secondary alterations including maturation (Trifilieff et al., 

1992). This is however unlikely for two reasons: (a) asphaltenes from most non-biodegraded 

oils exhibit mature distribution of the bound steroids; (b) bound hopanoid biomarkers in 

asphaltenes from both biodegraded and non-biodegraded oils exhibit mature distribution. If 

asphaltenes provide the claimed protection, it should be consistent in all asphaltenes and 

biomarkers. The fact that this is not the case; rather the phenomenon is consistently 

associated with biodegradation, strongly suggests the phenomenon is a latter in-reservoir 

occurrence most likely associated with biodegradation.  

This is rather still puzzling. If biodegradation (and therefore microbes) is responsible for the 

alteration of the bound steroids in asphaltene, the alteration might occur through one or both 

of the following: (a) selective elimination of the geological isomers resulting in concentration 

and enhancement of the biological isomers. This is however problematic considering the 

observation that biodegradation results in preferential elimination of the biological isomers 

(Peters et al., 2005a); (b) selective addition of the biological isomers into the system so that 

the geological isomers are overwhelmed. This is also complicated; if clay minerals are required 

for incorporation of the steroids on the asphaltenes structure via carbon-carbon bond and for 

the fact that prokaryotes are responsible for biodegradation and should therefore enrich 

hopanoids rather than steroids which they do not synthesis. 
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It should however be noted that although this immature distribution is consistently observed 

in the asphaltenes from biodegraded oils, the distribution was also observed in oils that may 

otherwise be classified as non-biodegraded. These oils have normal n-alkanes content with no 

evidence of biodegradation. It is however possible that they are mixtures of bodegraded and 

non-biodegraded oils or biodegradation has set in although not yet significant enough to be 

detectable based on elimination of the n-alkanes. 

6.3.8 Asphaltene versus maltene biomarkers 

(a) n-Alkanoic acid versus n-alkanes 

The major similarity between the asphaltene alkyl moieties, as revealed by composition and 

distribution of the n-alkanoic acics in the asphaltene RICO products, and the free n-alkane in 

the maltenes fractions of oils is the fact that both are dominated by the lower molecular 

weight homologues. The high molecular weight homologues are relative low and decrease 

sharply with increasing molecular weight. The distributions of n-alkanoic acids are generally 

similar to that of the corresponding n-alkanes in maltene; with the highest detectable 

homologues around C33. Branched alkanes and alkyl groups are generally low. 

However, although the free alkanes in the maltenes are easily removed by biodegradation, the 

alkyl moieties in the asphaltene do appear to be affected by biodegradation as evident from 

their distributions and δ13C signatures. 

(b) Hopanoic acids versus hopanes 

There are distinct differences between the free hopanes in maltenes and the hopanoic acids 

from RICO treatment of asphaltenes. For example, C29 and C30 hopanes are the dominant 

homologues in the maltenes, while C32 hopanoic acid (not the corresponding C30 and C31 

hopanoic acids) is the dominant homologue in the RICO products. This is possibly because no 

functionalised C29 hopanoid capable of coupling onto aromatic structures occur naturally and 

thermal dealkylation of hopanoids during diagenesis and catagenesis ultimately generates C29 

norhopane. Furthermore, the asphaltenes RICO products contain C36 hopanoic acid while C36 

homohopane is absent in the maltenes. This, as explained earlier, is due to addition of extra 

carbon (the primary or carboxyl group carbon) from oxidative degradation of the asphaltene 

aromatic moiety. 
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Table 6.3: Some biomarker-based parameters computed from RICO hopanoic and steranoic acid of 
asphaltenes  
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A39 0.17 0.38 0.30 0.15 0.00 0.00 0.43 1.50 0.00 0.00 0.00 0.00 0.00 

AR3 0.33 0.45 0.16 0.06 0.00 0.00 0.49 0.99 0.00 0.34 0.29 0.37 0.80 

B58 0.21 0.39 0.24 0.09 0.05 0.03 0.16 1.53 0.61 0.32 0.26 0.42 0.62 

BN 0.14 0.40 0.26 0.11 0.06 0.04 0.03 2.19 0.67 0.30 0.28 0.41 0.68 

C26 0.16 0.32 0.25 0.13 0.08 0.06 0.11 1.37 0.81 0.34 0.21 0.46 0.45 

C30 0.15 0.34 0.24 0.12 0.08 0.06 0.13 1.51 0.76 0.33 0.19 0.48 0.40 

CH 0.27 0.40 0.18 0.08 0.04 0.03 0.17 1.15 0.59 0.29 0.25 0.47 0.52 

K77 0.22 0.38 0.22 0.10 0.05 0.03 0.13 1.13 0.58 0.31 0.27 0.42 0.65 

K78 0.27 0.38 0.18 0.09 0.05 0.02 0.15 0.97 0.54 0.33 0.26 0.41 0.64 

NA1 0.35 0.38 0.22 0.05 0.00 0.00 0.34 0.92 0.00 0.31 0.27 0.42 0.64 

NA2 0.14 0.30 0.40 0.10 0.04 0.02 0.13 1.67 0.42 0.23 0.45 0.32 1.38 

O28 0.21 0.39 0.25 0.09 0.04 0.02 0.08 1.63 0.51 0.33 0.38 0.29 1.29 

O31 0.23 0.36 0.23 0.09 0.06 0.03 0.12 1.28 0.50 0.34 0.31 0.36 0.86 

PR1 0.25 0.42 0.19 0.08 0.04 0.02 0.16 1.39 0.52 0.27 0.32 0.41 0.77 

Q43 0.22 0.37 0.19 0.11 0.06 0.03 0.11 1.24 0.50 0.32 0.21 0.48 0.43 

Q61 0.20 0.37 0.23 0.10 0.07 0.03 0.13 1.37 0.47 0.30 0.32 0.38 0.86 

U02 0.30 0.35 0.21 0.08 0.07 0.00 0.17 0.95 0.00 0.41 0.27 0.33 0.82 

U56 0.17 0.33 0.36 0.14 0.00 0.00 0.00 0.78 0.00 0.35 0.29 0.36 0.81 

U79 0.22 0.43 0.24 0.07 0.04 0.00 0.10 1.61 0.00 0.32 0.29 0.40 0.72 

U93 0.18 0.36 0.27 0.10 0.05 0.04 0.15 1.43 0.82 0.34 0.29 0.37 0.77 

Y32 0.20 0.39 0.24 0.10 0.05 0.02 0.10 1.57 0.54 0.31 0.28 0.41 0.67 
 

 In general however, oils that have a relatively prominent C35 homohopane in the maltenes 

also exhibit prominent C36 hopanoic acid. As a result there is good positive correlation between 

C35/C34 homohopane ratio from the maltenes and C36/C35 hopanoic acid ratio in samples that 

have measurable C36 hopanoic acid (Figure 6.29 (a)). This relationship indicates a common 

precursor for the homohopanes (i.e. C34 & C35) and the corresponding homohopanoic acids (i.e. 

C35 & C36) from asphaltenes.  
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Figure 6.29: (a) Plot between C36/C35 homohopane and C35/C35 hopanoic acids (HA) showing positive 
trend is some samples; (b) Possible source control on the relative proportions of C36 homohopanoic 
acid in RICO product and C35 homohopane in hydrocarbon fraction. 

Despite this positive relationship, however, the C36/C35 homohopanoic acids ratio (which is 

zero in some samples due to absence of C36 hopanoic acid) is less than C35/C34 homohopane 

ratio in any give sample (Figure 6.29 (a); Table 6.3). This is believed to be a reflection of 

accessibility of C35 position of the precursor BHP for possible incorporation on to aromatic 
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structure in asphaltenes. The BHPs in which the C35 position is bound to a group other than -

OH (or -NH2) may not be available for C35 Friedel-Crafts-type alkylation (Figure 6.29 (b)). Thus, 

the relative proportions of these types of BHPs, in addition to preservation condition, 

determine the amount of C35 hopanoid incorporated into the asphaltenes which in turn 

determines the relative proportion of C36 hopanoic acids observed in the RICO products. 

(c) 3β-carboxysteranes versus steranes 

3β-carboxysteranes (C28 to C30) from asphaltenes also display similar distribution as the 

corresponding steranes (C27 to C29) from the maltene but mainly for oils that do not have 

'biodegraded’ oil (immature) steranoic acid signature' as shown in Figure 6.30. Nevertheless, 

C29 steranoic acid homologue is consistently greater in the asphaltene RICO products 

compared to the corresponding C28 sterane in the maltene hydrocarbon fraction (Figure 6.30). 

  

  
Figure 6.30: Bar charts showing relative distributions of steroids from aliphatic hydrocarbon fractions 
and asphaltene RICO products from non-biodegraded different oils. 

However, for some of the oils particularly those that have immature steranoic acid 

distribution, the relative distributions of the steranoic acids from the asphaltene RICO products 

are rather different from the distribution of the corresponding steranes from the maltenes as 

shown in Figure 6.31. This further suggests the asphaltene-bound steroids (steranoic acids 

from RICO) might have different source from the maltene steranes. 
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Figure 6.31: Bar charts showing relative distributions of steroids from aliphatic hydrocarbon fractions 
and asphaltene RICO products from non-biodegraded different oils. 

 

(d) Hopanoids versus steroids 

Figure 6.32 compares the regular steroid/hopanoid ratio calculated from both maltene and the 

asphaltenes RICO products. The plot shows a good positive correlation between the two ratios 

(R2 = 0.59%, p < 0.05) indicating both the maltene steranes and hopanes and asphaltene based 

steranoic and hopanoic acids have common precursors.  

The plots further reveal that the sterane/hopane ratio is generally less than the corresponding 

steranoic acid/hopanoic acid ratio (Figure 6.32 (b)). In fact, the latter is greater than the former 

by up to a factor of about 3. This might be because of differences in the relative number of 

functionalities in the precursor steroids and hopanoids through which they are incorporated in 

asphaltene structures. For example, while bacteriohopanepolyols (BHPs) have 3 or more 

binding sites, steranes often have only one binding site. Thus, more of the hopanoids would be 

incorporated compared to the steroids. Consequently, the asphaltene based steroid/hopanoid 

ratio would be less that the maltene sterane/hopane ratio. 
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Figure 6.32: (a) Scatter plot of maltene hydrocarbon based sterane/hopane ratio versus asphaltene 
RICO based steranoic acid/hopanoic acid ratio (R2 = 0.59); (b) box plot of the sterane/hopane and 
steranoic acid/hopanoic acid ratios showing the asphaltene-based ratio is less that the maltene-based 
ratio. 
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6.3.9 Effect of thermal maturation on asphaltene biomarkers 

In general, analysis of products of RICO treatment of asphaltenes reveals that the distribution 

of aliphatic moieties of the asphaltenes changes with maturity in agreement with observations 

from mid-infrared spectra of the asphaltenes (Section 5.3.2). The distributions of n-alkanoic 

acids of the coal asphaltenes, for example, show lowest rank coal sample (Ro = 0.40%) displays 

a dominance of the high molecular weight n-alkanoic acids. This however shifts towards lower 

molecular weight homologues as maturity increases to the highest rank coal C15 (Ro = 1.5%) as 

shown in Figure 6.7. This is semi-quantitatively reflected in TAR, CPI and OEP which, although 

source parameters, are influenced by thermal maturity.  

Similar redistribution of the n-alkane homologues in aliphatic hydrocarbon fractions resulting 

in alteration of CPI and OEP is attributed to generation of more stable lower molecular weight 

homologues from cracking of high molecular weight homologues (Peters et al., 2005a). The 

'redistribution' of n-alkanoic acids however suggests with increasing thermal maturity the less 

stable high molecular weight alkyl side chains of the asphaltenes dealkylate and crack to free 

aliphatic hydrocarbons at a rate faster than the more stable lower molecular weight alkyl 

groups so that at higher maturity the latter tend to dominate. Therefore, the unimodal 

distribution of n-alkanoic acids from oil asphaltenes is possibly a reflection of the thermal 

effect. As the oils are mature (Ro > 0.6%), they might have experienced enough thermal stress 

to cause redistribution of the alkyl side chains of the asphaltenes with dominance towards the 

lower homologues as observed (Section 6.3.2). 

The effect of thermal maturity on the aliphatic moieties of asphaltenes is further revealed in 

the composition and distribution of the hopanoid acids in the coal asphaltenes RICO products. 

The proportions of the more thermally stable 17α(H),21β(H) and 22S isomers increase with 

maturity from C04 to C69 (Figure 6.19) as observed in free maltene hopanes (Section 3.3.2). 

This is shown by the thermal maturity parameters ββ/αβ and 22S/(22S+22R) (Table 6.4). 

Consequently, the HA from oil asphaltenes obviously have a mature distribution with 

dominance of the more stable geological 17α(H),21β(H) and 22S over the biological 

configurations (Table 6.4). 
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Table 6.4: Values of some maturity parameters based on hopanoic and steranoic acids from RICO 
products of asphaltenes 

Sa
m

p
le

 

β
β

/α
β

C
31

 

2
2

S(
2

2
S+

2
2

R
)C

3
1
 

2
2

S(
2

2
S+

2
2

R
)C

3
2
 

2
2

S(
2

2
S+

2
2

R
)C

3
3
 

2
2

S(
2

2
S+

2
2

R
)C

3
4
 

2
2

S(
2

2
S+

2
2

R
)C

3
5
 

2
2

S(
2

2
S+

2
2

R
)C

3
6
 

β
β

/(
β

β
+α

α
) 

C
30

 

2
0

S/
(2

0
S+

2
0

R
) 

C
30

α
α

α
 

A39 0.49 0.60 0.56 0.64 0.54 0.00 0.00 0.00 0.00 

AR3 0.35 0.49 0.49 0.63 0.58 0.00 0.00 0.15 0.20 

B58 0.22 0.61 0.58 0.66 0.57 0.69 0.50 0.69 0.45 

BN 0.32 0.60 0.59 0.65 0.56 0.60 0.59 0.33 0.32 

C26 0.40 0.61 0.61 0.68 0.61 0.63 0.59 0.75 0.45 

C30 0.45 0.60 0.56 0.68 0.57 0.65 0.61 0.63 0.42 

CH 0.27 0.49 0.45 0.59 0.54 0.66 0.63 0.22 0.29 

K77 0.54 0.64 0.59 0.66 0.58 0.64 0.57 0.54 0.42 

K78 0.44 0.61 0.58 0.63 0.56 0.70 0.59 0.44 0.43 

NA1 0.18 0.57 0.56 0.63 0.60 0.00 0.00 0.12 0.34 

NA2 0.29 0.61 0.57 0.66 0.59 0.64 0.49 0.91 0.44 

O28 0.14 0.61 0.59 0.66 0.62 0.71 0.50 0.40 0.47 

O31 0.19 0.59 0.62 0.67 0.54 0.67 0.59 0.26 0.35 

PR1 0.20 0.52 0.48 0.53 0.49 0.61 0.48 0.00 0.16 

Q43 0.34 0.62 0.60 0.65 0.62 0.66 0.63 0.43 0.44 

Q61 0.39 0.60 0.61 0.70 0.58 0.69 0.60 0.53 0.51 

U02 0.24 0.65 0.58 0.65 0.60 0.62 0.00 0.00 0.37 

U56 1.51 0.57 0.63 0.68 0.55 0.00 0.00 0.82 0.42 

U89 0.21 0.58 0.58 0.62 0.54 0.69 0.00 0.00 0.27 

U93 0.37 0.60 0.60 0.67 0.57 0.55 0.54 0.48 0.36 

Y32 0.20 0.61 0.58 0.64 0.60 0.63 0.60 0.69 0.43 
 

The isomerisation at C22 of bound hopanoids in asphaltenes appears to proceed without 

hinderance. In fact maturity assessment based on this isomerisation leads to the same 

conclusions as maltene based hopane isomerisation. Nevertheless, there is a difference 

between the biomarker maturity parameters from the two fractions. The asphaltene-based 

hopanoid maturity indices for C33 and C35 homologues are significantly higher (up to 0.70) 

compared to free hopane-based indices considering the equilibrium value is between 0.57 and 

0.62 for the hopane-based indices (Peters et al., 2005a; Seifert and Moldowan, 1980). Similar 

values but lower (up to 0.66) were reported by Ma et al. (2008). It is not clear why this is the 

case but is likely to be due to some unknown compounds co-eluting with the 22S epimers.  
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Figure 6.33: Trends in steranoic acids from asphaltene RICO product maturity parameters relative to 
aliphatic hydrocarbon steranes.  

The absence of hopanoic acids in the RICO products of the most mature C15 coal asphaltene 

(Ro = 1.5%) is likely to be due to the effect of thermal stress and accompanying aromatisation 

and thermal cracking that affects distribution of the aliphatic moieties. The coal probably has 

experienced enough thermal stress resulting in more or less complete loss of the bound 

hopanoids to the ‘free’ hopane pool through cracking. It is also possible that aromatisation of 

the cyclic aliphatic moieties occurs simultaneously with thermal cracking as observed from the 

results of FTIR analysis of the coal asphaltenes (Section 5.3.2).  

Table 6.4 shows that the 20S/(20S+20R) steranoic acid (C30) maturity parameter for the oils is 

generally below the equilibrium value of 0.52  (Peters et al., 2005a) although the steranes in 

the maltenes have reached equilibrium (Section 3.3.3). Even though most of the asphaltenes 

with the low maturity are either biodegraded or have immature steranoic acid distributions 

(Figure 6.33), some of the asphaltenes with mature steranoic acid distribution have relatively 

low steranoic acid-based 20S/(20S+20R) compared to the sterane-based parameter (Table 

6.4). This is also true with respect to αββ/(αββ+ααα) maturity parameter Figure 6.33 (b)). In 

general, this shows that both steroid thermally dependent stereoisomerisations in asphaltenes 

are lagging behind the corresponding stereoisomerisations in free aliphatic hydrocarbon 

fractions. 

6.3.10 Assessment of solvent effect on asphaltene biomarkers 

It is has been observed that the quality and quantity of asphaltene are partly depend on the 

solvent used for its precipitation (Long, 1981; Corbett and Petrossi, 1978). Consequently, it is 

reasonable to investigate the difference amongst the biomarker composition of asphaltenes 

precipitated using pentane, hexane and heptane. Thus, asphaltenes precipitated using these 

solvents were then subjected to RICO and the products analysed. Figure 6.34 compares the 

mass chromatograms of n-alkanoic, hopanoic and steranoic acid methyl esters from these 

treatments. This shows similar distributions irrespective of the precipitating solvent. 

Furthermore, various biomarker parameters computed from the data are presented in 

Appendix 5E. Values of these parameters further support that the results are independent of 

the solvent used to recover the asphaltene. These observations are in agreement with the bulk 

compositions of the asphaltenes as revealed by FTIR (Section 5.3.4). 
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Figure 6.34: mass chromatograms of Y32 asphaltenes (from Yemen arude oil) precipitated using n-
pentane, n-hexane and n-heptane showing similarities respective distributions of the n-alkanoic acids, 
hopanoic acids and steranoic acids from RICO treatment of the asphaltenes  

This observation may appear to contradict the findings of Corbett & Petrossi (1978) and 

Alboudwarej et al. (2002) that the quality (e.g. molecular weight) of asphaltenes is dependent 

on the precipitating solvent (Section 1.2) such that the molecular weight of the precipitated 

asphaltene decreases from n-heptane to n-pentane. This was interpreted to indicate that the 

lower molecular weight solvents (n-pentane and n-hexane) precipitate a larger proportion of 

the lower molecular weight compounds that are otherwise components of maltene fraction 

(Long, 1981; Corbett and Petrossi, 1978) thereby 'diluting' the net molecular weight of the 

asphaltenes. The observation in this work that asphaltenes precipitated using the three 

different solvents exhibit similar distribution of biomarkers suggests the biomarkers are 

incorporated in the fraction (possibly higher molecular weight) of the asphaltenes that are 

precipitated out by all the solvents. 

6.3.11 Correlation using asphaltenes biomarkers 

Previous sections have shown that although asphaltenes are influenced by thermal maturation 

processes, in general asphaltenes from oils that have a common source rock exhibit similar 

molecular characteristics. The distributions of the n-alkanoic acids, hopanoic acids and 

steranoic acids are generally similar. Furthermore, the δ13C isotopic signatures of the n-

alkanoic acids are similar and follow similar trend across the carbon range. Despite this 

however, it has also been shown that often some asphaltenes that have the same source could 

have significant differences in the distributions of the biomarkers.  

Nevertheless, it is worthwhile to investigate the extent the collective information derived from 

the molecular composition of RICO products of asphaltenes can be used to 

differentiate/correlate asphaltenes or oils into some meaningful groups possibly based on 

common source and depositional environment. Figure 6.35 is the results of principal 

component analysis (PCA) using the n-alkanoic acids based CPI and OEP data presented in 
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Table 6.2. The first two principal components (PC1 and PC2) account for about 97% of the 

variance with the four CPI and OEP parameters giving the highest contributions to PC1 and TAR 

to PC2. The figure shows some of the same source samples (e.g. K77 & K78 and O28 & O31) 

with a common source are closely grouped. Other samples (e.g. U02 & AR3, NA1) however plot 

away from rest of the groups showing these are distinctly different. 

The classification is however more clearly shown in the dendrogram (Figure 6.35 (b)) from 

hierarchical cluster analysis based on the PC1 and PC2 from the PCA. AR3 and U02 are unusual 

asphaltenes as shown in Table 6.2. There is no distict separation between asphaltenes from 

biodegraded and non-biodegraded oils. However, the Kuwait and Oman asphaltenes from a 

carbonate source rock form cluster 4. Most of the Northsea asphaltenes are in cluster 2 

although the cluster also contains asphaltenes from other regions (Figure 6.35 (b)). The two 

Canadian (C26 & C30) asphaltenes from Midale oil field as well as the two Serbian asphaltenes 

(NA1 & NA2) are grouped in cluster 3 together with the Nigerian asphaltene (NB). 
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Figure 6.35: Principal component analysis results showing classification of the samples based on n-
alkanoic acids correlation data (Table 6.2).  

Furthermore, all the parameters calculated from n-alkanoic acids, HA and SA as presented in 

Table 6.2 and Table 6.4 were used for principal component analysis to discriminate amongst 

the samples. However, no significant improvement in grouping the samples based on any 

meaningful pattern was observed as is clear from Figure 6.36. It therefore seems visual 

inspection of relevant mass chromatograms in addition analysis of the n-alkanoic acids isotopic 

data is necessary for effective correlation/discrimination of oils using asphaltene bound 

biomarkers from RICO treatment products. This might be because not all the details are 

represented in the parameters calculated in addition to the fact that asphaltene molecular 

composition is not affect by diagenesis to the similar extent as are free maltene components. 
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Figure 6.36: Principal component analysis results showing classification of the samples based on n-
alkanoic acids, hopanoic acids and steranoic acids correlation data (Table 6.2 and Table 6.4). 

6.4 Summary and Conclusions 

Ruthenium ion catalysed oxidation of asphaltenes yields the aliphatic moieties of the 

asphaltenes with good selectivity and thus the composition of the product reflects the original 

aliphatic composition of the asphaltenes. Analysis of petroleum asphaltenes from various 

sources and coal asphaltenes of different maturity revealed: 

1. The aliphatic moieties in asphaltenes are dominated by n-alkyl groups followed by α,ω-

dicarboxylic acids. Other acyclic alkyl groups identified are branched alkyl groups. 

2. Although the α,ω-dicarboxylic acids could be partly from polymethylene bridges 

between aromatic moieties, a significant proportion was due to alkyl groups with 

terminal hydroxyl and/or carboxylic groups 

3. Generally, the δ13C of n-alkanoic acids from RICO treatment of asphaltenes with 

common source show similar values and trend, and can be used to correlate samples 

of common source 

4. Thermal evolution of asphaltenes follows a similar trend as the free aliphatic 

hydrocarbon fraction in terms of the distribution of the n-alkyl groups and 

isomerisation of biomarkers. The bound steroid isomerisation, however, lags behind 

the aliphatic hydrocarbon biomarker isomerisation 

5. The asphaltene bound biomarkers have potential in the reflecting depositional 

condition anoxic/hypersaline condition through preservation of extended 

homohopanoids and gammaceranoid 
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6. The relative distribution of C31 to C33 homohopanoic acids from bound hopanoids in 

asphaltene could serve as proxies of relative distribution of hexa-, penta- and tetra-

functionalised bacteriohopanepolyols 

7. Biodegradation does not appear to affect the alkyl and hopanoid moieties even in 

extensively biodegraded petroleum. Thus the bound biomarker can be used as source 

of information lost with the loss of aliphatic hydrocarbon biodegradation 

8. Asphaltene-bound steroid composition in all biodegraded oils consistently exhibit 

immature distribution. Non-biodegraded oils, on the other hand, show both mature 

and immature steroid distribution 

9. Bound biomarkers have good potential in correlation of oils. This could be improved by 

using multivariate statistical methods such as principal component analysis. Better 

correlation can however be achieched with the help of compound specific carbon 

isotopic data. 
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Chapter 7 Summary and Future Work 

7.1 Overall Conclusions 

Occlusion of compounds in asphaltenes, in particular of biomarkers, is a very promising 

hypothesis particularly in the study of extensively biodegraded oils. The hypothesis is 

investigated to assess its validity or otherwise. Specifically, the extent of Soxhlet extraction 

required to remove adsorbed/co-precipitated components from asphaltenes, and the most 

suitable chemical degradation method for recovering the occluded compounds were 

investigated. Furthermore, simulation experiments were conducted to test the occlusion 

hypothesis and hydrocarbon compositions of the maltene adsorbed and occluded fractions 

were compared to investigate whether the differences amongst the fractions are statistically 

significant. Results of the investigation reveal the following: 

The process of precipitation of asphaltenes from oils invariably results in co-precipitation of 

components, including hydrocarbons and resins, from the maltene fraction of the oil.  Analysis 

of composition of asphaltenes therefore requires removal of the co-precipitated materials 

from the asphaltenes. This was observed to require Soxhlet extraction of the asphaltenes for 

several hours which vary with different asphaltenes. Although over 90% of the co-precipitated 

materials were removed from the asphaltenes in the first 48 hour of extraction, waxes in the 

range of C36 to C42 were observed in some asphaltenes even after 10 days of Soxhlet extraction 

which suggests there is no clear demarcation between the adsorbed (co-precipitated) and 

components or biomarkers that might have been occluded in the asphaltenes.   

Hydrogen peroxide/acetic acid reagent was observed to significantly attack saturated 

hydrocarbons which makes it unsuitable for decomposing asphaltenes in order to release any 

biomarkers that may be occluded within them. Acidified potassium permanganate solution 

was found to be practically the most suitable reagent for this purpose. Nevertheless, 

comparative analysis of the saturated hydrocarbons in maltene, adsorbed and occluded 

fractions revealed clear differences in distributions of the n-alkanes amongst the fractions. 

However, the maturity and correlation indices calculated from the biomarkers of the fractions 

show no consistent systematic differences amongst the fractions. It therefore appears that the 

so-called occlusion of biomarkers by asphaltenes is most likely a consequence of co-

precipitation which was dependent on the solubility properties of the waxes. 

Mid-infrared and solid-state 13C NMR analyses of the asphaltenes revealed that petroleum 

asphaltenes consist predominantly of aliphatic moieties bonded to condensed aromatic 

structures with relative proportions of aromatic carbon in range of 30 to 40% for petroleum 

asphaltenes. Asphaltenes from biodegraded oils, however, are relatively less aromatic (25 to 

27% aromatic carbon). The relative amounts of aliphatic and aromatic moieties in the 

asphaltenes from coal and black shales are dependent on the maturity and source of the 

organic matter.  

Oxygen functionalities in asphaltenes are mainly in the form of hydroxyl, ether and carbonyl 

(ester, carboxyl and conjugated ketone) groups. Ester groups are generally absent in 

petroleum asphaltenes but were detected in coal and black shale asphaltenes. The carboxyl 
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group was detected in all the asphaltenes irrespective of source and geographical region. The 

carbonyl groups (particularly the carboxyl group) are the dominant functionalities in black 

shale and coal asphaltenes even at relatively high maturities. Nitrogen functionalities, in form 

of pyridinic and pyrrolic heteroaromatic systems as well as tertiary aromatic amines, were 

tentatively identified from the mid-infrared spectra of the petroleum and coal asphaltenes. In 

general, there were no significant differences in the bulk compositions of the asphaltenes 

precipitated using n-pentane, n-hexane and n-heptane. 

Analysis of products of ruthenium (III) ion catalysed oxidation, a fairly selective chemical 

degradation of petroleum and coal asphaltenes, reveals the aliphatic moieties in the 

asphaltenes are dominated by n-alkyl groups followed by iso-alkyl groups. Alkyl dicarboxylic 

acids possibly generated alkyl groups with terminal carboxyl and hydroxyl groups as well as 

polymethylene bridges were also present. Relatively small amounts of naphthenic groups, 

mainly in form of homohopanoids and steroids, were also detected in the degradation 

products indicating that hopanoids and steroids were incorporated at the initial stages of 

diagenesis. The hopanoid moieties in the asphaltenes range from C30 to C36 homologues (each 

with 22S and 22R epimers) with dominance of the C32 member except in one sample where C33 

is dominant. Both 17α(H),21β(H) and  17β(H),21α(H) isomers were observed. The C36 

homohopanoid in asphaltenes was observed to positively correlate with the C35 homohopane 

in the hydrocarbon fraction of the maltenes indicating common precursor. The composition of 

the steroids in petroleum asphaltenes includes C28 to C30 regular steroids which were 

tentatively observed to consist of the 5α(H),7α(H),17α(H), and 5α(H),7β(H),17β(H) as well as 

20S and 20R configurations. Other steroids tentatively identified are the methyl steroids 

including the C29 to C31 homologues. 

The effect of organic matter source on the composition of asphaltenes could be significant 

depending on the thermal maturity of the asphaltenes. The distributions of the alkyl moieties 

in asphaltenes reflect the distribution of the n-alkanes in the maltene fractions. Similarly, the 

relative proportion of the C35 homohopanoids in the asphaltenes correlates with the relative 

proportions of the C35 homohopanes in the maltenes. This is also true with respect to the 

relative distribution of the steroids in many samples.  

The prominence of bound C36 hopanoids and gammaceranoid in some of the asphaltenes is 

also a clear indication of both organic matter source and depositional condition under which 

the organic matter was deposited. Furthermore, although mid-infrared spectra of petroleum 

asphaltenes are generally similar, multivariate statistical analysis of the spectra groups most of 

the asphaltenes based on their common sources. Deconvolution of the spectra revealed that 

the relative proportions of the carbonyl groups in carboxyl and conjugated functionalities 

appear to be related to the depositional environments. With few exceptions, asphaltenes from 

oils sourced from carbonate source rocks have greater proportion of conjugated carbonyl 

groups and the shale-sourced having greater proportion of the carboxyl group.  

The effect of biodegradation is not yet fully established. Nevertheless, solid-state 13C NMR 

revealed that asphaltenes from biodegraded oils have relatively lower proportions of aromatic 

carbon compared to asphaltenes from non-biodegraded oils. Bound hopanoids were observed 

even in asphaltenes from extensively biodegraded oils. However, the bound steroids from 
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biodegraded oil asphaltenes consistently exhibit immature distribution. Non-biodegraded oils, 

on the other hand, show both mature and immature steroid distribution.  

Furthermore, distinct differences were observed amongst asphaltenes from black shales, coals 

and crude oils. Unlike petroleum asphaltenes, the coal and black shale asphaltenes are 

dominated by oxygen functionalities although this might be related to the thermal maturities 

of the samples. However, asphaltenes from marginally mature Tanezzuft black shales show an 

aromatic content that is relatively greater than the relative aromatic content observed in 

petroleum asphaltenes which is a distinctive indication of organic matter contribution to the 

composition of the asphaltenes. 

Thermal maturity was observed to affect the composition of asphaltenes. With increasing 

thermal stress, asphaltenes were observed to evolve towards an equilibrium structure or 

composition in which aromatic moieties become dominant over aliphatic moieties as a result 

of increasing condensation and dealkylation. Distribution of alkyl moieties shifts towards 

increasing proportions of the lower molecular weight homologues with increasing thermal 

maturity. The thermal stress also results in loss of oxygen functionalities from hydroxyl, ester 

and carboxyl groups. At the molecular level, isomerisation of bound hopanoids and steroids 

toward equilibrium composition was observed with increasing maturity. However, while 

isomerisation of bound hopanoids in asphaltenes appears to be in phase with the 

corresponding isomerisation of hopanes in the maltene fraction, the isomerisation of bound 

steroids lags significantly behind the corresponding isomerisation of the steranes.  

Correlation/discrimination of asphaltenes based on their mid-infrared spectra with the aid of 

chemometric tools show potential in correlating asphaltenes with similar chemical 

characteristics. However, as the composition of asphaltenes is dependent on their thermal 

histories, asphaltenes tend to evolve towards an equilibrium composition and asphaltenes 

with different source could be classified in same group. Bound biomarkers have shown good 

potential in correlation of oils. This could however be improved by using multivariate statistical 

methods such as principal component analysis. Better correlation can however be done with 

the help of compound specific carbon isotopic data. In general, the δ13C of n-alkanoic acids 

from RICO treatment of asphaltenes with common source show similar values and trend, and 

can be used to correlate samples of common source. 

7.2 Future Work 

Despite the work undertaken and presented in this thesis, there is additional work that needs 

to be done to further have a clearer understanding of chemical composition, origin and 

incorporation of biomarkers in asphaltenes. In light of my observations in the course of this 

work, it is my opinion that the following need further investigation: 

1. The origin of the steranoic acids observed in RICO product of asphaltene from 

biodegraded oil should be established relative to the steranes in hydrocarbon fraction of 

the maltenes. This is necessary in order to unravel the dynamics of the development of 

the observed immature distribution of the steranoic acids in biodegraded oils. 

Comparative isotopic analysis of the steranoic acids and maltene steranes is a possible 

way through which this may be achieved 
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2.  It is worthwhile to investigative the factors responsible for the slight but fairly 

consistent difference observed in 22S↔22R isomerisation between odd and even HA 

homologues. This can possibly be done through quantum mechanical modelling to 

investigate how carbon number affects the stability of the biological isomers particularly 

when attached to aromatic moieties in asphaltenes 

3. Molecular investigation of aromatic moieties of asphaltene has been challenging 

because the chemical methods used tend to destroy them. Nevertheless, such work 

would be worthwhile as it will settle many issues with respect to the nature of the 

aromatic structures (e.g. number of rings) of asphaltene. This can be done by developing 

methods that selectively de-bridge the asphaltenes macromolecules without attacking 

the aromatic groups. A potential method is treatment of the asphaltenes with aqueous 

sodium dichromate solution at high temperatures (200 - 300 °C) in autoclave. The 

method has been observed to quantitatively oxidise methyl side chains of polynuclear 

aromatic compounds into carboxyl groups with negligible oxidation of the ring system 

(Friedman et al., 1965; Wiberg, 1965). Similar other methods have also been developed 

(Melchiore et al., 1965) 

4. Comparative study of biomarkers derived from asphaltenes using RICO, hydropyrolysis, 

hydrolysis, desulphurisation may be useful to evaluate the relative proportions of 

various biomarkers incorporated in asphaltenes. This could shed light on the preference 

and mode of incorporation of the bound biomarkers. 

5. The conclusion reached in this work with regard to occlusion in asphaltenes that the 

observed apparent occlusion was due to coprecipitation mainly as a result of solubility 

of waxes can further be investigated by monitoring precipitation of standard waxes in 

oils. The occlusion can also be further investigated using severely biodegraded oils in 

which all hopane and sterane biomarkers in the maltene fraction are lost so that 

occlusion can be confirmed if the full range of the biomarkers were observed in the 

occluded fraction 

6. Assignments of the bands from IR spectra of petroleum asphaltenes are generally done 

in comparison to mid-infrared spectra of coal which may have different composition and 

chemical environment. There is therefore the need to develop assignments specifically 

addressing the specific composition of asphaltenes. This is particularly emphasised by 

the observation in this work that some bands traditionally assigned to C–O might be due 

to C–N particularly in petroleum asphaltenes 

7. There are many molecular entities in the RICO products of asphaltenes that have not 

been identified. The chemistry of these products could hold very important information 

in further understanding the nature of precursor molecules and mode of incorporation 

of such products in asphaltenes 

8. Many compounds were observed in the lower retention time region of the m/z 191 

mass chromatogram of derivertised RICO products that could not be identified but are 

possibly tricyclic and tetracyclic acids. Their relative distributions were observed to be 
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source dependent. Their identification could shade light and increase the application of 

RICO products in correlation studies 
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