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Abstract 

Cancer is the leading cause of mortality in Andalucía (southern Spain) for both men 

and women, and lung cancer is the main cause of cancer mortality for men. Radon-gas 

exposure is the second most important cause of lung-cancer after tobacco-smoking, 

which also causes larynx cancer, and Chronic Obstructive Pulmonary Disease 

(COPD). Radon-gas is a radioactive decay element which originates from radium. 

Consequently, presence in the soil varies according to lithology (rock composition) 

which is a surrogate measure for potential radon-gas exposure. Lithology can explain 

some lung-cancer deaths, but not deaths due to either larynx cancer or COPD. 

A small-area analysis was implemented for the period 1986-1995. Fully-Bayesian 

regression analysis was used to assess the association between lithology and the spatial 

distribution of lung-cancer deaths (25,006 cases). Area-level deprivation, a surrogate 

measure for tobacco-smoking, was accounted for. The number of deaths due to larynx 

cancer (3,653 cases) and COPD (5,143 cases) were also modelled for comparison 

purposes. Computation was accomplished via Markov Chain Monte Carlo methods, 

using WinBUGS software. 

 

The spatial distribution of lung-cancer deaths (but neither larynx cancer, nor COPD) 

was positively associated with lithology, which is consistent with current 

epidemiological knowledge. These results remained after adjusting for area-level 

deprivation. The model used allows for separate estimation of risk due to both 

lithology (RR = 1.02; 95% Credible Interval (CI) = 1.015 – 1.031) and deprivation 

(RR = 1.04; 95% CI = 1.033 – 1.048). This lithology score overcomes the difficulties 

in obtaining actual radon-gas measurements, and can be further improved. The results 

go some way to explaining the regional variability in lung cancer mortality in 

Southern Spain. 
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Abbreviations and glossary 

Adjacency matrix: Or, broadly speaking, neighbourhood weight matrix. It is used in    

Conditional Autoregressive (CAR) models for neighbourhood definition. 

Neighbourhood weight matrices can be defined using adjacency-based or distance-

based criteria, as well as key variable information. The way the adjacency matrix is 

built determines the degree of smoothing of the estimates.  

AIC: Akaike Information Criterion (or penalised log-likelihood). It provides a means 

for model selection by adjusting the deviance according to the number of 

parameters present in the model: AIC = deviance + 2 * (No. of explanatory 

variables +1). The prefered model is the one with the lowest AIC. If the difference 

between  magnitudes of AIC is less than 2, models are considered to be of the same 

value.  

ArcGIS: Proprietary GIS software by Environmental Systems Research Institute 

(ESRI)  

Bayesian analysis: Bayesian statistical analysis deals with uncertainty of estimates 

through Bayes' rule of conditional  probabilities. It allows modifying prior 

assumptions in parameter estimates, according to the evidence provided by the data. 

The combination of the prior probability and the data (the likelihood) produces the 

posterior probability.  

Burn-in period: Number of values sampled from the posterior (also known as the 

target) distribution, which are discarded from the whole MCMC computation. A 

burn-in period is needed given that sampled values obtained by MCMC algorithms 

are highly correlated to each other, at the beginning of the process. Therefore, 

starting values do not adequately represent the target distribution.  

BGR: Brooks-Gelman-Rubin statistic ( R̂ ). It helps deciding when convergence of 

different MCMC chains has been achieved. It is computed as the square root of the 

variance of pooled chains (between-chain  variance) divided by the average within-

chain variance. As a rule of thumb, R̂ should be ≤ 1.1 for all parameter estimates.  

BMI: Body Mass Index. It is computed as the ratio of the person's body weight by the 

square of the person's body height; it is measured in Kg/m2, or lb/in2  . 

BYM: Besag-York-Mollié model. It is a hierarchical Bayesian model which 

incorporates random effects due to both spatially-correlated (or clustering) and non-
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spatial heterogeneity. The inclusion of these effects are responsible for the local and 

global smoothing effects, respectively, of RRs estimates.   

CAR model: Conditional Autoregressive model. It is used in spatial epidemiology for 

local smoothing of RRs estimates, by means of  adjacency matrices, or broadly 

speaking, neighbourhood weight matrices. 

Carstairs-Morris index: Area-level socio-economic index, which is indicative of 

material deprivation. The census variables used to build this index are: 

overcrowding, male unemployment, low social class, and lack of car ownership.  

CH: Spatially-correlated heterogeneity, or general clustering. It is one of the two 

components of the residual variance within the BYM model.  

CI: Credible Interval. The CI summarises the range of values of the posterior 

distribution that encompasses a specified area (e.g. 95% CI); that is to say, the 

parameter of interest is itself a variable. Conversely, a confidence interval (its 

frequentist counterpart) is the range of values containing the true parameter (in this 

case an unknown constant) with certain probability, if a sample was repeatedly 

drawn.  

CO: Carbon Monoxide. It is a colourless, odourless, and tasteless gas which is a toxic 

ambient-air pollutant produced by incomplete combustion of compounds that 

contain carbon, such as biomass fuel, or vehicles exhaust. Tobacco smoking is also 

a CO source. 

CO2: Carbon dioxide. CO2 is a byproduct of normal human metabolism which is 

expelled with the air exhaled through the lungs. CO2 

Compositional variables: Individual-level characteristics.         

is also produced by burning 

fossil fuel, as well as from decomposing vegetation, or chemical reactions in the 

soil. 

Contextual variables: Area-level (geographical) characteristics.  

COPD: Chronic Obstructive Pulmonary Disease. COPD is a health condition that 

causes permanent damage of the air flow and eventually leads to disability and 

death. COPD is known to be mainly due to tobacco smoking.  

CR: Confirmation rate. CR, or Positive Predictive Value (PPV), is the conditional 

probability of cases being classified as cancer by the gold standard (clinical records 

and/or pathology), given that they were classified as cancer by death certificates.  
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CRF: Chronic Respiratory Failure. CRF is characterised by high levels of CO2

CVD: Cardiovascular Diseases. The most important causes of CVD mortality are: 

Ischaemic Heart Disease (or heart attack) , Cerebrovascular Disease (or stroke), and 

Hypertensive Heart Disease (or high blood pressure). 

 in the 

blood (hypercapnia), low levels of oxygen (hypoxemia), or both. COPD is 

frequently associated with CRF.  

DIC: Deviance Information Criterion. DIC is the the Bayesian counterpart of the AIC 

when applied to multilevel models. The DIC is computed from the mean posterior 

deviance and the effective number of parameters (pD). DIC = mean deviance * pD.  

DNA: deoxyribonucleic acid. DNA is responsible for the transmission of the genetic 

information and, hence, the hereditary characteristics of individuals.  

DNA-adducts: Linking of DNA with chemical susbstances (e.g. TSNs). Although 

DNA-adducts are supposed to be initiated by the human body as a detoxifying 

mechanism, this process actually triggers carcinogenesis.  

DR: Detection rate. DR (or sensitivity) is the conditional probability of cases being 

classified as cancer by death certificates, given that they were classified as cancer 

by the gold standard (clinical records and/or pathology).  

EB: Empirical Bayes. EB estimation is a type of Bayesian analysis where the prior 

probabilities are obtained from the data under scrutiny. Conversely, in Fully 

Bayesian analysis (as in the present research study), the prior probabilities are 

obtained from information other than the data under analysis (in this case, data from 

a previous time period).  

Ecological fallacy: Systematic bias that happens when group-level characteristics are 

attributed to the individuals. This is why findings from ecological studies need 

confirmation at the individual level.  

Ecological study: Epidemiological study-design that gathers information at the group-

level (instead of the individual-level), for both the exposure and event of interest.  

EPA: US Environmental Protection Agency.  

Epi Map: Free software for statistical analysis and mapping, by the US Centers for 

Disease Control and prevention (CDC).  

EPIC: European Prospective Investigation into Cancer and nutrition.  

ETS: Environmental Tobacco Smoke. Also known as secondhand, passive, or 

involuntary tobacco smoking.   

FB: Fully Bayesian analysis (see EB).  
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FEV1: Forced Expiratory Volume in 1 second. FEV1 is obtained by spirometry (test 

of respiratory function) and is correlated to the magnitude of airway obstruction and 

quality of life, in patients with COPD.  

GeoBUGS: WinBUGS add-on software for mapping.  

GeoDa: Free GIS software by Luc Anselin.  

GIS: Geographic Information Systems.  

GRASS: Geographic Resources Analysis Support System. Free, open source, GIS 

software.  

GSTMG1: enzyme glutathione S-transferase mu gene. Although DNA-adducts are 

responsible for triggering carcinogenesis, lack of DNA adducts formation due to the 

inherited absence of GSTMG1 can also promote tumorigenesis.   

Hyperparameters: Parameters of prior distributions. Contrary to the frequentist 

approach (where parameters are considered to be unknown constants), in Bayesian 

statistics parameters (and hyperparameters) are considered to be variables with their 

own probability distribution.  

Hierarchical regression model: Also known as random-effects model, multilevel 

model, or mixed model. Hierarchical regression allows for the computation of 

estimates with lower MSE than non-hierarchical modelling; this is achieved as 

parameter estimates come from data grouped within hierarchies (e.g. deaths within 

municipalities). Parameter estimates are pooled down in relation to their variance 

(see Smoothing). The BYM model is a Bayesian hierarchical model.  

HRQoL: Health-Related Quality of Life.  

IARC: International Agency for Research on Cancer.  

ICD: International Classification of Diseases.  

Iteration: Every value sampled from the posterior distribution by means of MCMC 

algorithms, such as Metropolis-Hastings and Gibbs sampling.  

INE: Spanish National Statistics Institute  

IQR: Interquartile range. The IQR is a measure of statistical dispersion, which is 

computed as the difference between the 3rd and the 1st

Kriging: Method of interpolation of unknown values, based on sample points.  

 quartiles. 

LET: Linear Energy Transmission.  

Lithology: Rock composition. According to lithology, the main types of rocks are: 

sedimentary, plutonic, volcanic and metamorphic.  

MAGNA: Spanish National Geological Map.  
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MAPE: Mean Absolute Predictive Error. As DIC, MAPE can be used as a measure of 

goodness of fit of the model. Together with MSPE, MAPE is a loss function which 

compares observed and predicted values and it is computed according to the 

formula: MAPEj = ∑i │Y i - Yij
pred │∕ m, where Y i and Yij

pred denotes the ith 

observed and predicted data, respectively, under each model (j subscript), while m 

represents the number of observations. An alternative measure is MSPE (Mean 

Square Predictive Error); MSPEj = ∑i (Yi - Yij
pred )2 

MC error: Monte Carlo error. MC error measures the variability of the estimates 

obtained by MCMC simulation. The MC error should be kept lower than 5% of the 

posterior standard deviation of the correponding parameter estimate. In this case, 

convergence is considered to have been reached. The more values are simulated, the 

lower the MC error will be.  

∕ m. Models with lowest values 

of MAPE and MSPE are preferred.  

MCMC: Markov Chain Monte Carlo methods. MCMC are a set of algorithms devised 

for sampling of random values from a target distribution. Simulation, that is, 

generation of pseudo-random numbers, is the basis for Monte Carlo methods. When 

many different values are simulated, a chain is said to be obtained. If any future 

value does not depend on previous estimates, a Markov process is being used. Both 

Metropolis-Hastings and Gibbs sampling algorithms are MCMC methods.     

Meta-analysis: Quantitative statistical method for synthesising results of research 

studies.  

MLE: Maximum Likelihood Estimate. The one with highest probability under the 

probability distribution assumed for the sampled data.  

MSE: Mean Square Error. A frequentist criterion for reliability of estimates, that 

accounts for both bias and variance simultaneously. Bayesian computation can 

produce estimates with lower MSE than their frequentists counterparts; this is due to  

higher precision of the estimates obtained by MCMC methods.  

MSPE: Mean Square Predictive Error (see MAPE).  

NCO: Spanish National Classification of Occupations.  

NHL: non-Hodgkin's lymphoma. NHL is a large group of malignant lymphomas 

originated from either B or T lymphocytes.  

NHST: Null Hypothesis Significance Testing. Frequentist statistical method used to 

measure the evidence against (null hypothesis) the research (alternative) hypothesis. 

NHST make use of p values and confidence intervals. Decisions made by means of 
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NHST are subject to the so called type I (where the null hypothesis is wrongly 

rejected) and type II (if the null hypothesis is erroneously not rejected) errors.   

NO2: Nitrogen Dioxide. NO2

NPV: Negative Predictive Value. NPV is the conditional probability of a person being 

healthy given that the diagnostic test was negative.  

 is a toxic gas from sources such as automobile engines 

and tobacco smoking.  

Overdispersion: It is present when the variance of a random variable is larger than the 

mean. Under these circumstances the Poisson assumption can no longer be upheld. 

Overdispersion can be due to spatial autocorrelation, excess of zero values, and/or 

random heterogeneity.  

PAH: Polycyclic Aromatic Hydrocarbons. PAH are ambient-air pollutants. Common 

sources of PAH are combustion of fossil fuels and tobacco. Some PAH are 

responsible for triggering carcinogenesis.  

PAR: Population Attributable-Risk. PAR, or aetiologic fraction, is computed as the 

relative difference between the risk of disease in the total population (Rt) and the 

risk in the non-exposed population (Rne). PAR =  (Rt-Rne) / Rt * 100.  In spatial 

analysis PAR can also be computed as PE(RRE - 1) / PE(RRE - 1) + 1*100, where 

PE denotes the proportion of the population that is exposed (that is, residing in some 

specific geographical area) and RRE

PC-axis: Free software developed by Statistics Sweden. It is used by many statistical 

offices around the world.  

 is the relative risk of the same population.  

PCFA: Principal Component Factor Analysis. PCFA is a statistical technique based 

on finding a small number of linear combinations of the original variables in a 

dataset, so that this smaller dataset can represent most of the variation found in the 

original one.  

PHCD: Primary Health Care Districts.PHCD are the administrative health-areas in 

Andalucía.  

PM: Particulate Matter. Indoors and outdoors ambient-air pollutant consisting of 

particles of solid matter. Mortality from CVD and COPD is directly associated with 

presence of PM in the ambient air.  

PPL: Posterior Predictive Loss. PPL functions are used to measure model adequacy 

(see MAPE and MSPE).  

Posterior probability: In Bayesian analysis, the posterior probability  -p(θ/D)- is 

computed as the prior probability - p(θ)- times the likelihood -p(D/θ), where θ 



 

xiv 

 

represents the values of the parameter which is to be estimated, and D represents the 

observed data. Therefore, p(θ/D) = p(θ) * p(D/θ).   

Prior probability: Prior assumptions (or weights) used in Bayesian analysis that in 

conjunction with the likelihood (expressed by the data) produce the posterior 

probability (see Posterior probability).  

PPV: Positive Predictive Value (see CR).  

QGIS: Quantum GIS. Open source software.  

R: Free software environment for statistical computing and graphics.  

Radon: Radioactive, colourless, odourless and tasteless gas that is originated from 

radium. Radon-222 gas is found in certain types of rocks such as granite, which 

belongs in the plutonic lithological class and shales, which belongs in the sedimentary 

group. Radon-gas desintegration produces even more radioactive components (radon 

daughters) which are responsible for producing lung cancer.    

RAM: Random Access Memory. Computer memory used for computation.  

REDIAM: Andalusian Environmental Information Network  

ROC: Receiver Operating Characteristics curve. The ROC curve is obtained by 

plotting the false positive rate (on the x axis) against the true positive rate (on the y 

axis). The higher the area under the ROC curve the better the discriminative power 

of the classification criteria that were used.   

RR: Relative Risk, or Risk Ratio. RR is the ratio of the risk of becoming ill (or dying) 

in the exposed population as compared to the non-exposed population. High RRs 

support cause-and-effect associations.  

Radon daughters: See radon.  

SCLC: Small Cell Lung Cancer. SCLC is one of the main histological types of lung 

cancer. Other types include: squamous cell carcinoma, adenocarcinoma (more 

frequently diagnosed in women) and large cell carcinoma.  

SEM: Structural Equation Model. SEM are characterised by presence of both 

observable variables (as in usual regression analysis) and non-observable (or latent) 

variables (as in PCFA). Content of radon-gas in the soil can be treated as a latent 

quantity, which can be measured via a surrogate variable (lithology).  

SES: Socio-economic status.  
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Shapefile format: ESRI digital file format for using in GIS. They can store vector-

data (points, lines and polygons) as well as its related feature attributes (ID codes, 

names, area, or population size).  

SMR: Standardised (usually, age standardised) Mortality/Morbidity Ratio. SMRs 

allow for comparing rates between groups of differing age (or any other potentially 

confounding factor) structures. SMR = ∑Oi / ∑Ei, where Oi is the observed number 

of cases, for each ith age-group in the exposed population, and Ei is the expected 

number of cases if the age (or any other confounder) specific rates were the same as 

those of a non-exposed population. Therefore, Ei =  ∑nexp_i * Ynon_exp_i / nnon_exp_i, 

where nexp_i is the number of exposed people for each ith age-category, Ynon_exp_i is 

the observed number of cases, in each age stratum, of a non-exposed population, 

and nnon_exp_i 

Smoothing: Shrinking, or partial-pooling analysis (see CAR). In hierarchical models, 

parameters are estimated as a weighted average of the mean of the observations in a 

specific area and the mean over all geographical areas (most EB methods), or over 

the subset of neighbouring areas (as in Fully Bayesian methods, such as BYM 

modelling). The general form of the weighting scheme is given by (n

is the non-exposed population size for each ith age-category.  

i /σ2
within*Ỹi ) 

+ (1/ σ2
between * Ỹneighbours) / (ni /σ2

within) + (1/ σ2
between), where ni is the number of 

observations within a specific area, σ2
within is the within-area variance and Ỹi is the 

mean of the observed values within the ith area. σ2
between is the variance amongst 

neigbouring areas, and Ỹneighbours is the mean of the observed values for all 

neighbouring areas. Hence, the higher the variance within a specific area the smaller 

the weight will be for Ỹi; conversely, in these circumstances, the weight will be 

higher for the pooled, more precise, estimate Ỹneighbours

Statistical interaction: It is said to exist when the effect of a certain exposure is 

modified by the level of other exposure (e.g. the effect of radon-gas depends on the 

smoking habit; that is to say, tobacco smoking modifies the effect of radon-gas 

exposure, which is analytically checked by testing for interaction).     

.       

Thinning interval: As consecutive values sampled from the target distribution, during 

MCMC computation, may be very similar to one another (high autocorrelation) a nth 

thinning interval can be used; this means that only 1 value every nth iterations will 

be used for parameter estimation. Another advantage of thinning is that some 

computer resources are saved, as WinBUGS (and OpenBUGS) stores all sampled 

values in the computer RAM. As a drawback, computation will take longer.  
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THS: Third-Hand Smoke. Pollutants from tobacco smoke, such as nicotine, are known 

to persist in the environment (e.g. surfaces in smoker's cars, or homes) for months. 

These pollutants can further react with other chemicals (e.g. nitrous acid) to produce 

carcinogenic susbstances (for instance, TSNs)  

Townsend index: Index of material deprivation based on four variables taken from 

censuses, as the percentage of: unemployment amongst people economically active  

who are ≥ 16 years old; non-car ownership; non-home ownership, and household 

overcrowding. These four variables are combined to give an index score. The higher 

the score, the more deprivation is thought to exist.  

TSNs: Tobacco-Specific Nitrosamines. TSNs (together with PAH) are potent 

carcinogenic substances produced during tobacco combustion. Their carcinogenic 

effect is mediated through DNA damage, which leads to uncontrolled cell 

proliferation.  

UH: Uncorrelated (or non spatially-correlated) Heterogeneity. One of the two 

components (together with CH) which the residual variance is partitioned into, 

when the BYM model is used. CH expresses within area variability (see CH).  

VPC: Variance Partition Coefficient. The VPC is computed similarly to an Intraclass 

Correlation coefficient to convey what the proportion of the residual variance is due 

to CH, which in turn is thought to be due to contextual variables. Therefore, VPC = 

(CH / CH + UH) * 100  

Vague prior: A situation where there is not strong prior assumptions; a low-weight 

prior probability does not modify the likelihood to much extent.  

WHO: World Health Organisation  

WinBUGS: Free software for Bayesian analysis Using Gibbs Sampling (see MCMC).  

ZIP model: Zero Inflated Poisson model. ZIP models are used when overdispersion 

exists that is due to excess of zero values, such as in the rare-disease context, or for 

small geographical areas.  
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Figure 1.1. The Spanish autonomous region of Andalucía (red area). 

Chapter 1. Introduction 

1.1 Background 

Understanding the causes of spatial patterning in the incidence of disease and 

mortality is important for both understanding the aetiology of disease, and also in 

mitigating their effects [1]. Cumulative evidence from research accomplished in Spain 

has shown that there is a pattern of higher mortality rates in the south-west of the 

country, due to all-cause as well as certain specific causes. Numerous investigations 

dealing with the spatial distribution of mortality have been implemented in Spain over 

the last 26 years [2-16]. One conspicuous result of this research is the spatial 

patterning in mortality showing higher age-adjusted rates (for both men and women) 

in the southern autonomous region of Andalucía. This is the most populated region in 

the country (more than 8 million inhabitants, or 18% of the whole Spanish population 

[17]) and the second-largest one geographically (87,597 km2

Figure 1.1

, which represents 18% of 

the area of the country [18]).  shows the geographical location of Andalucía 

(own elaboration using QGIS software [19]; the digital Andalusian borders were 

obtained from the Andalusian Health Office; countries borders and raster layer were 

downloaded from Natural Earth [20]).  
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Spain is divided administratively into 17 autonomous communities, which are further 

subdivided into provinces (eight in Andalucía -Figure 1.2) and municipalities [21, 22]. 

The 1978-1992 Spanish Atlas of Mortality from Cancer [9, p. 19, 214-9, 244] showed 

that four of the eight Andalusian provinces (Cádiz, Málaga, Huelva and Sevilla) had 

the highest age-adjusted mortality rates among all the Spanish provinces, when 

considering neoplasms associated with tobacco smoking and alcohol drinking: cancers 

of the lung, larynx, oesophagus and bladder. The male-female ratio was greater than 

6:1 for all these causes together. For larynx cancer, the male-female ratio was 38:1. 

Furthermore, the province of Cádiz had the highest all-cause age-adjusted mortality 

rates: 1,166.65 per 105 inhabitants versus an average value of 951.55 for Spain (or 

23% more than average) and 682.8 versus 579.52 in Spain (or 18% more than average) 

for men and women, respectively. These differences were even higher when lung 

cancer was analysed (91.44 in Cádiz versus 60.16 for Spain, or 52% higher). It is 

interesting to note that this pattern of mortality was no longer seen when ill-defined 

causes, a measure of data quality regarding mortality analysis, was considered. For 

 

Figure 1.2. Administrative boundaries of Andalucía. 

The eight Andalusian provinces –boldface names- overlying the towns borders (own 

elaboration using QGIS software). 
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these causes, rates for both men and women were slightly lower than the average value 

for Spain. 

However, around one third of deaths caused by cancer in men within Andalucía were 

due to lung cancer. It is also important to note that lung cancer was responsible for 

nearly 30% of Years of Potential Life Lost (YPLL), or premature death due to cancer, 

as the mean age at death was 66 years. An atlas from Andalucía for the period 1975-

1997 [23] identified lung cancer as the leading cause of cancer-related mortality for 

men with 44,027 deaths for the whole period or 31% of all deaths; in women, it was 

the fourth cause of mortality with 4,532 deaths or 6%, in that 22-year period. 

Another Spanish small-area mortality analysis, for the period 1987-1995 [10, 11, 13], 

also showed the earlier-mentioned pattern of higher mortality rates in the south-west 

of the country. The Andalusian provinces of Huelva, Sevilla, Cádiz and Málaga 

(Figure 1.2) were revealed as those which accounted for the greatest number of areas 

with the highest risk of mortality due to all causes, as well as specific causes including 

lung cancer. At a smaller area-level, the Spanish municipal atlas of cancer mortality 

for the period 1989-1998 [16], not only confirmed the previous findings on lung 

cancer, but also highlighted that the situation had extended to the region of 

Extremadura which is situated to the north-west of Andalucía. Furthermore, mortality 

due to lung cancer was again shown to be much higher in men residing in the south-

western part of Spain; conversely, the geographical pattern of mortality for women 

showed the highest rates in the north-west of the country. 

The authors of this Spanish atlas of mortality [16] suggested that the heterogeneity in 

the spatial distribution of lung-cancer mortality (by sex) might be related to the 

influence of distinct carcinogenic exposures: tobacco smoking for men and radon-gas 

for women; although a possible interaction between tobacco smoking and radon-gas 

may play a role. The study period targeted by this analysis included mainly cohorts of 

women born before the 1940s; that is to say, those who would not yet have massively 

acquired the habit of tobacco smoking. The hypothesis of distinct risk factors for men 

and women for developing lung cancer was also consistent with a recognised 

differential-prevalence in the histological type of tumours [16]: Small Cell Lung 

Cancer (SCLC) as well as non-SCLC (squamous-cell carcinoma type) for men; while 

non-SCLC (adenocarcinoma type) is more prevalent amongst women. 
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Low socio-economic status (SES) is known to be associated with lower life 

expectancy, as well as higher risk for cancer development and poorer survival rates 

after diagnosis [24]. The excess of cancer risk in populations with lower socio-

economic status has been consistently shown in many (but not all) countries, for 

cancers of the lung and larynx. SES, in turn, is known to vary by small geographical 

areas. Therefore, the study of the spatial distribution of SES at area level is relevant in 

understanding heterogeneity in the mortality distribution of these cancer sites. Thus, 

the 1989-1998 Spanish municipal atlas of cancer mortality [16] showed that all 

variables related to SES  (including income, illiteracy and unemployment) exhibited a 

north-south pattern. This drew attention to Andalucía again, as one of the more 

deprived regions of the country. Furthermore, a high variation of SES has been shown 

to exist within cities [25-28]. Another ecological study for the period 1987-1995 [29] 

found the same north-south geographical pattern for both mortality and deprivation. In 

this study, both of two different indices of deprivation were associated with the 

geographical distribution of mortality. The so called index I (a summary compound of 

social class, unemployment and illiteracy) was associated with mortality in the oldest 

group (aged 65 years or more). Index II (comprising overcrowding, unemployment 

and illiteracy), was more closely associated with mortality (showing a steeper 

gradient) in the youngest group (0-65 year-olds). 

Later research on the relationship between deprivation and mortality, for the period 

1987-1995 [30] reported a further analysis on the association of the above mentioned 

deprivation indices (I and II) with mortality due to different causes. Index I was 

associated (amongst others) with Chronic Obstructive Pulmonary Disease (COPD) for 

both men and women. Index II was shown to be strongly and positively associated 

with mortality due (but not exclusively) to lung cancer and COPD, in men. More 

recent research [27] has investigated the relationship between SES and mortality in 

Andalucía, at a smaller area-level (census tracts) within the capital cities. A summary 

deprivation index (comprising social class, unemployment and illiteracy) showed to be 

positively associated with mortality in seven of the eight Andalusian capital cities; this 

association was found for both men and women. Within cities, mortality was found to 

be higher in more deprived census tracts. 

As was mentioned earlier, lower SES has been consistently found to be associated 

with higher mortality. Moreover, it has been also associated with higher incidence due 
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to all-malignant tumours and some specific sites (such as lung and larynx cancer), 

across different populations and countries [24, 31]. All this has been partially 

explained by the association between lower SES with some well-known intermediate 

health risks: particularly tobacco smoking, but also lack of physical exercise, alcohol 

drinking, as well as occupational and environmental exposures. Tobacco smoking has 

been causally associated with a number of cancer sites, such as lung and larynx, but 

also with some non-cancer conditions such as COPD. Although lower SES 

(deprivation) is usually associated with tobacco smoking, SES also operates through 

some other intermediate factors which are not completely understood. For instance, 

incidence of lung cancer is higher amongst men with lower SES, even if they are not 

smokers [31, 32]. 

Lower SES has been also associated with poorer survival after diagnosis. This is 

relevant not only from a public health perspective, but also from an analytical point of 

view; it makes analysis of incidence-data preferred over mortality-data in instances of 

low fatality rate [33, p. 65]. Furthermore, SES has been reported to vary across 

geography. Hence, concerning the spatial heterogeneity of disease distribution, 

geography is thought to serve as a compound surrogate of different factors, such as 

lifestyle, environmental exposures, socio-economic characteristics, as well as genetic 

traits [1, 14, 34-42]. So, the spatial heterogeneity of distribution of the key 

determinants of health could be responsible for distinct geographical patterns of 

morbidity and mortality, not only at the international, national, or regional level, but 

also at much smaller geographical level like municipalities, and census tracts within 

cities. 

1.2 Rationale 

Understanding why the incidence of disease varies is critical to managing it. Where 

spatial patterns occur it is not often easy to explain why. A formal analytical approach 

at the individual level is not always feasible. In a spatial context, the information may 

not be available, or it may be unlikely to obtain ethical approval. Nowadays, 

ecological studies can be used to analyse risk factors for disease, regarding not only 

large-scale, but also small-area level populations. Some recent advances have 

promoted development of Spatial Epidemiology, e.g. the availability of modern 

Geographic Information Systems (GIS) and development of new statistical tools [43-
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54]; also, computational availability and increased accessibility to routinely collected 

data on health-related factors [55, 56]. Some field-related disciplines are especially 

relevant to this research area: namely, GIS and Applied Spatial Data Analysis. An 

increasing availability of commercial (e.g. ArcGIS) and free software (e.g. GRASS, 

GeoDa, R) has provided a means to implement small-area-analysis research. Also, 

complex statistical modelling can nowadays be applied to better understand the 

heterogeneity of health-status distributions. 

In some cases, ready-to-use information includes data regarding socio-economic 

characteristics as well as health-related behaviour concerning the study populations, 

such as smoking, alcohol drinking and physical activity [57]. In other instances there 

is availability of attributes related to the surrounding environment that are thought to 

be hazardous and therefore monitored, including chemical products and biological 

agents present in drinking water, soil and ambient air [1, 14, 46, 57-59]. For example, 

a digitised map exists on lithology that gives detailed information on the rocks 

composition, for the Andalusian soils [60]. This allows lithology to be used as a 

surrogate measure for potential radon-gas exposure at the small area-level [61]. Other 

data sources, such as mortality registries as well as censuses, provide necessary 

information with respect to socio-demographic factors. Municipal registries, in Spain, 

also provide demographic information on a yearly basis. Therefore, statistical 

modelling and disease mapping can provide better identification and interpretation of 

health differences among populations [62, 63].  

Ecological studies can contribute to the knowledge of the epidemiological features of 

the health status of populations, by describing the distribution of their essential 

attributes (’person’, ‘place’, and ‘time’). However, area-level analyses on the 

significance of risk factors are hindered by potential biases, as well as confounding. 

These potential issues can arise from unmeasured variables (frequently SES [1, 34, 64, 

65]). The ecological fallacy is especially relevant, where there is a systematic bias 

which attributes group-level-characteristics to the individuals. Nevertheless, using 

information at small geographical level helps to lessen this bias by making exposure 

measurement closer to the individual level [1]. Moreover, current analytical techniques 

in statistical modelling allow for different important issues, such as spatial 

autocorrelation [63, p. 10], to be addressed. As a result, analysis at the small-area level 

has expanded in order to both describe spatial heterogeneity, and determine the main 
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sources of variability. Even though findings at group-level analysis need to be 

confirmed at the individual-level, spatial analyses can be hypothesis-generating.  

Another important point is whether to use incidence-data or mortality-data. The former 

is more appropriate to measure the risk of disease and therefore to establish cause-

effect associations. This is especially the case, when the outcome of interest has a low 

fatality rate [33, p. 65]; this hinders mortality from being a good surrogate measure for 

incidence, as it may also reflect other influences, some  of which may be related to 

survival status [66]: thus, accuracy of death-certificate records, health-care 

accessibility, prompt diagnosis, treatment availability, or variability in clinical 

practice. Notwithstanding all these advantages of incidence-data over mortality-data, 

practicality often calls for death-records to be used instead, as they are readily 

available. Additionally, that mortality analysis has a long history of major 

contributions to the knowledge of cancer epidemiology [33, p. 65-6], although 

incidence is preferred whenever is available. 

It is also important to bear in mind that mortality data have been widely structured 

according to international recommendations by the World Health Organisation (WHO) 

[67]. This helps to lessen misclassification problems. In this respect, statistics derived 

from death certificates have been reported to underestimate death due to cancer in just 

4% of the cases; misclassification is considered to be greater for more difficult 

diagnoses such as brain and liver cancer. Therefore, mortality (instead of morbidity) 

was considered, given easy accessibility to the Andalusian Mortality Registry. 

Reliability of death certificates in Spain is thought to be similar to other countries [68] 

for some health events, such as lung cancer. Also, given the high fatality rate of some 

conditions (especially lung cancer), mortality would not be much affected by 

differentials in survival rates throughout different geographical areas. 

In Spain, data from mortality registries is considered to be the only comprehensive 

source of information on cancer for the whole country, or at the regional level. Pérez-

Gómez et al. published a review of studies about the quality of data dealing with 

mortality due to cancer of different sites, for the period 1980-2002 [69]. The detection 

(DR) and confirmation (CR) rates were estimated for different types of cancer. 

Clinical and/or pathology data was considered to be the gold standard which death-

certificates information was compared with. DR (or sensitivity) was computed as the 
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conditional probability of cases being classified as cancer by death certificates, given 

that they were classified as cancer by the gold standard; that is to say, the probability 

of a case being classified as cancer, given that it truly is a cancer case. CR (or positive 

predictive value) was calculated as the conditional probability of cases being classified 

as cancer by the gold standard, given that they were classified as cancer by death 

certificates; that is to say, the probability of a case classified as cancer being a true 

cancer case. Accuracy of death certification was considered to be good if both DR and 

CR were >= 80%. Over-certification was considered to occur with DR >=80% and CR 

<= 80%. Conversely, under-certification was thought to exist if DR <= 80% and CR 

>=80%. Cases where both DR and CR were <= 80% were considered to be ill-certified 

(low proportion of ill-certification being considered characteristic of a high-quality 

standard of information). 

Published reports from different cancer registries in Spain, including the one in the 

province of Granada (Andalucía), showed that lung cancer mortality had been well 

certified during the study period, while larynx cancer had been over-certified [69]. 

Interestingly, during the 1980s mortality registries at the regional level became 

responsible for dealing with these data. During these years, the trend of both ill-

certified tumours and ill-certified non-cancer conditions decreased, while they rose in 

1999 (by 31%, for tumours) and then stabilised. The increment in ill-certified cases in 

1999 coincided with the introduction of the 10th revision of the International 

Classification of Diseases (ICD-10) in Spain. Ill-certification was proportionally 

higher (lower quality of data) in women than in men, along all the study period, even 

when age-adjusted rates were used. 

Some variables, especially age and sex, are well known to account for heterogeneity in 

the distribution of overall and cause-specific mortality, among different populations. 

To adjust for these potential confounding variables, the Standardised Mortality Ratio 

(SMR) has been widely used as a comparison measure. SMR is considered to be a 

Maximum Likelihood Estimate of Relative Risk (RR) and is calculated as the ratio of 

observed to expected number of cases (O/E) [63, p. 4-5]. Different methods have been 

devised to estimate E [51, 70-75] assuming a multiplicative model. The downside of 

the SMRs are that in the case of absence of observed cases (which is frequently the 

case at the small-area-level), E cannot be computed (so, the ratio is null). Moreover, 

estimates can be statistically unstable (small changes in E can produce large variation 
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in SMRs). Given that mortality analysis is concerned with count events, a Poisson 

distribution is usually assumed to fit this kind of data [62, p. 314, 76, p. 86, 183-96 , 

77, p. 250, 528-39]. Therefore, the observed number of cases is modelled instead to 

give SMR estimates. 

The Poisson assumption is supported by the data in some scenarios. Nevertheless, 

over-dispersion is a drawback to always bear in mind [44, 77, p. 540-6, 78, p. 21, 114-

6, 320]. In these cases, the data show extra-variability which causes the sampling 

distribution not to fit to a theoretical Poisson distribution. This is just one of the 

reasons for fitting different models to count-data: e.g. a Negative Binomial or its 

Bayesian counterpart, the hierarchical Poisson-Gamma model. 

Bayesian modelling offers some advantages over frequentist analysis [79, 80]: Thus, 

Bayes’ theorem is, always, the only basic principle used in every analytical situation. 

This theorem allows for prior knowledge to be incorporated into the analysis of 

current data (also known as the likelihood) to produce direct posterior probability 

estimates; these estimates concern the actual dataset being analysed. Conversely, the 

frequentist approach resorts to the Null Hypothesis Significance Testing (NHST) 

paradigm [81]. In this case, confidence intervals are not related to the actual data 

gathered by the researcher. Instead, they are referred to all potential datasets fitting a 

theoretical sampling distribution: nothing is assumed about the specific dataset under 

analysis [79]. Furthermore, Bayesian analysis usually produces more precise estimates 

than those obtained by frequentist methods [82]; this is especially the case when 

dealing with small sample sizes. In these situations, Bayesian estimates surpass 

frequentist estimates even if the former ones are biased. This is due to larger precision 

of the Bayesian estimates, which produce smaller Mean Square Errors (MSE); the 

MSE is a frequentist criterion for reliability of estimates, that accounts for both bias 

and variance simultaneously [76, p. 164, 82].  

Bayesian modelling can be broadly categorised into Empirical Bayes (EB) and Fully 

Bayesian (FB) methods. EB methods estimate prior parameters from the data; 

conversely, FB methods make use of external information, or assume a range of 

plausible values. This is the reason why EB methods do not take into consideration 

uncertainty of prior parameters information. FB methods accounts for this potential 

source of variability [82]. A whole range of EB models are in use [50, 62, p. 316-21]. 
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Some of them (Poisson-Gamma model, Log-Normal, Marshall) shrink SMRs to a 

global mean calculated from the data, and some are computationally unstable. To 

overcome these problems, Fully Bayesian (FB) methods have been proposed that 

make the SMRs to be locally smoothed by taking into account the estimates of 

neighbouring areas. Furthermore, some of these hierarchical models (Besag-York-

Mollié [BYM]) allow for covariates to be incorporated [63, ch. 8, 83]. 

1.3 Main Hypotheses 

There is spatial variation in mortality due to lung cancer, COPD and larynx cancer, in 

Andalucía. Spatial variation in lung-cancer mortality is dependent on presence of 

radon-gas, and area-level deprivation which is a surrogate for smoking. These two 

factors may interact; they are also dependent on the lithology which determines the 

source of radon and also the deprivation of those residents in the landscape (Figure 

6.1).  

In contrast, spatial variation in larynx cancer and COPD are dependent on deprivation 

(as a surrogate for smoking) but not on radon and the lithology that determines it. 

1.4 Secondary hypotheses 

Lithology, as a surrogate measure for potential radon-gas exposure, can help to explain 

heterogeneity in the spatial distribution of lung cancer mortality. 

Lithology cannot help to explain heterogeneity in the spatial distribution of either 

larynx cancer or COPD. 

1.5 General Aim 

To analyse the potential value of lithology in explaining the spatial distribution of lung 

cancer mortality in Andalucía, for the period 1986-1995 

1.6 Specific objectives 

To develop a lithology score, as a surrogate measure for potential radon-gas exposure, 

by municipalities in Andalucía 

To model the spatial distribution of lung-cancer mortality in Andalucía, using 

lithology as a potential explanatory variable, while adjusting for area-level socio-

economic status (SES) 
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To model the spatial distribution of mortality due to larynx cancer and COPD, using 

lithology as a potential explanatory variable, while adjusting for area-level SES 

To map the distribution of lung cancer mortality in Andalucía as explained by the 

whole model, as well as the individual components 

1.7 Introduction summary 

Several mortality analyses published in Spain have shown that all-causes mortality, as 

well as mortality due to some specific diseases such as lung cancer, is higher in the 

southern autonomous region of Andalucía. Although this geographical pattern of 

mortality has been known for a long time, reasons remain incompletely understood. 

Both tobacco smoking and ambient-air pollution by radon-gas have been shown to be 

the most important causes of lung cancer mortality. As individual-level information on 

these two was unavailable, an ecological study was mandatory. Furthermore, lung 

cancer mortality, as well as some risk factors (such as radon-gas exposure), is known 

to vary by small geographical areas. The same variation has been reported for SES at 

the area-level, which is known to be a surrogate measure for tobacco smoking, while 

lithology can be used as a surrogate measure for radon-gas exposure. Spatial 

epidemiology at the small-area level is thought to counteract the ecological fallacy; 

this is done by producing aggregated measurements that are closer to the individual-

level characteristics than the ones provided by large-scale studies. Geo-referenced data 

(at the small-area level) dealing with mortality, population size, SES, and lithology 

was available in digital format. Nowadays, GIS software eases the use of spatial data 

and current statistical tools (such as the BYM model) can handle some of the 

downsides of spatial analysis at the small-area level (instability of rates, spatial 

autocorrelation, and excess of zero values). 
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Chapter 2. Literature review 

2.1 Aims and strategy  

This literature review was intended for retrieving the most relevant scientific literature 

concerning the spatial patterning of mortality in Andalucía. The four main areas of 

interest were: firstly, current knowledge about main causes of mortality in Andalucía 

and their distribution according to place, person and time characteristics; secondly, the 

state of the art in small-area analysis in relation to the statistical modelling, 

computation and spatial representation of mortality distribution; thirdly, the 

epidemiology of lung cancer. Interest was focused on influence and area-level 

measurement of tobacco smoking, radon-gas exposure, and SES. In addition, the 

epidemiology of larynx cancer and COPD was also reviewed. 

Different databases were searched (Medline, Scopus, and Web of Knowledge) and 

bibliographic alerts were set up for additional papers to be identified whenever they 

cited key articles. Key words for the literature search were identified by means of 

Medical Subject Headings (MeSH) thesaurus, which is available through PubMed 

online [84]. Some MeSH terms used were ‘small-area analysis’, ‘exp Mortality’, 

‘social class’, and ‘socio-economic factors’; also, ‘exp Radon/ae [Adverse Effects]’, 

‘Air pollution, Indoor/ae [Adverse Effects]’, and ‘Geographic Information Systems/is, 

ut [Instrumentation, Utilization]’. When needed, the literature search was narrowed by 

means of MeSH terms which are indicative of quality of study design (i.e. ‘Cohort 

Studies’, ‘Case-Control Studies’, or ‘Cross-sectional Studies’). To retrieve relevant 

information on the spatial distribution of mortality in Andalucía, various reports were 

also accessed online through the Andalusian Health Office website [23, 85, 86]. Some 

grey literature was also identified which was significant to the purpose of this review 

[51]. Although the bibliographic search was meant to find the most up-to-date 

information, some old but highly influential papers were also reviewed [87, 88]. 

EndNote software [89] was used to store citations together with their respective 

articles in PDF format, so that an annotated bibliography could be built and eventually 

cited and referenced.  

2.2 Overview 

The main causes of mortality in Andalucía are reviewed, emphasising the 

heterogeneity of its geographical distribution, across the region. Lung cancer mortality 
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is subsequently appraised and the two most important aetiological factors associated 

with it (i.e., tobacco smoking and radon exposure) are addressed. Surrogate measures 

of potential radon-gas exposure are taken into consideration. Socio-economic status 

(SES) is dealt with in some detail, given the relevance of this variable to predict many 

different health outcomes. Several indices of area-level deprivation are discussed. 

Methodological approaches to the spatial analysis of disease distribution are also 

evaluated: the analytical process stresses the need of a hierarchical model and the 

advantages and limitations for a Bayesian perspective. Finally, mapping alternatives 

are put into the context of current availability of tools for both computation and 

representation of spatial data. 

2.3 Spatial heterogeneity of mortality in Andalucía 

The particular patterning in mortality rates, which shows higher rates in the southern 

autonomous region of Andalucía, has been extensively investigated. This pattern is 

due to all-cause mortality, as well as specific causes, in both men and women. One 

major publication was a comprehensive study authored by López-Abente et al. [9], 

who analysed mortality due to cancer and other causes for a 15-year period (1978-

1992). This mortality atlas described patterns of mortality by geographical areas at the 

provincial level (52 such areas, plus two autonomous cities, in Spain) and studied 

mortality time-trends over three five-year periods, while accounting for a total of 

fifteen million deaths which occurred in the whole country. The 1975 and 1986 

municipal population registries, as well as the 1981 and 1991 census databases were 

used to obtain population data by age and sex. Information on deaths, provided by the 

National Statistics Institute of Spain, was classified using the 9th revision of the 

International Classification of Diseases (ICD-9). Mortality rates were adjusted by the 

direct method using the standard European population, given similarities with the age-

structure of the Spanish population. Poisson regression analysis was used to model the 

observed number of cases while accounting for age, geographical area, and time-

period. Interestingly, mortality rates due to some cancer sites associated with tobacco 

smoking and alcohol drinking (lung, bladder, larynx and oesophagus) were highest in 

the west of Andalucía; especially in the province of Cádiz, but also in those of Málaga, 

Huelva, and Sevilla. The male-female ratio was 6:1 for lung cancer and 38:1 for larynx 

cancer. This indicates distinct lifestyles between Spanish men and women, at that 

time, concerning exposure to the main risk factors. The authors also found that 
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mortality rates due to diabetes and cardiovascular diseases were highest, as well, in 

western Andalucía. This geographical study was not a small-area analysis and did not 

take into account potential overdispersion due to spatial autocorrelation, or excess of 

zero values; if overdispersion had been present, too narrow confidence intervals (or 

credible intervals, if a Bayesian analysis had been used) would have been obtained, 

which would have led to false alarms [90]. However, this study by López-Abente et al. 

[9] produced a very comprehensive mortality atlas that uncovered many different 

mortality patterns, on numerous diseases. Moreover, in a further study [16] at a much 

smaller area level (see pg. 25) this author confirmed the same results by means of a 

Bayesian model that took overdispersion into consideration.  

Ischaemic heart disease (heart attack) was also studied at the provincial level to 

analyse mortality during two four-year periods (1988-1991 and 1994-1997) in Spain. 

Boix-Martínez et al. [12] analysed mortality data provided by the National Statistical 

Institute of Spain, while population data were computed by the authors using 

interpolation methods on census data. Log-linear Poisson regression was used to 

estimate time-trends while adjusting for age. Smoothing techniques were not applied, 

nor was socio-economic status accounted for. A decreasing time-trend in mortality due 

to ischaemic heart disease was found in Spain between the two study periods. Overall 

mortality rates in Spain were second lowest (after France) when compared with 

mortality rates of all European countries. Nevertheless, high spatial variation was 

observed within the country. Andalucía was amongst the regions with higher mortality 

rates, especially in the provinces of Sevilla and Cádiz. 

A subsequent study by Ramis-Prieto et al. [91] undertook a spatial analysis at a 

smaller geographical unit of analysis: 8077 municipalities were analysed to study the 

geographical distribution of haematological neoplasms. These malignancies included 

leukaemia, non-Hodgkin's lymphoma (NHL) and multiple myeloma. Data on cases for 

the period 1989-1998 were provided by the National Statistics Institute of Spain, and 

population data by age and sex were obtained from the 1991 census and 1996 

municipal registries. Standardised Mortality Ratios (SMRs) were computed by the 

indirect method, using the whole Spanish population as the source of rates (internal 

standardisation) by age-group and sex. Three different Bayesian hierarchical models 

were compared: The BYM model (section 5.3) [92], the Zero Inflated Poisson [44, 90, 

93] (ZIP) (see pg. 67)  model and Lawson's mixtures model [94]. All three gave 
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similar results, the BYM model being the more conservative one as it caused fewer 

false alarms; that is to say, Relative Risks (RRs) estimates were less frequently higher 

than 1 that is raw SMRs were not indicative of an excess in risk. Highest RRs were 

estimated in municipalities within Barcelona province (northern Spain) as well as the 

Canary Islands. With regard to Andalucía, the western cities of San Juan de 

Aznalfarache, Huelva, and Sevilla showed the highest risks. In eastern Andalucía, it 

was the city of Granada which emerged as a high risk area for haematological 

malignancies. The authors concluded that this concentration of risk in highly urbanised 

areas could be explained by environmental factors in relation to industrialisation, as 

this is the case for western Andalusian provinces. According to the authors, an 

alternative aetiological hypothesis that associates childhood leukaemia with common 

infections and population mixing [36] would be plausible in Barcelona. Nevertheless, 

the observed geographical pattern was only due to mortality in older age-groups. 

Another small-area analysis at the municipal level was carried out by Aragonés-Sanz 

et al. [95] to investigate the geographical distribution of mortality due to cancer of the 

oesophagus in Spain during the period 1989-1999. The 1991 census and 1996 

municipal registries were used to obtain population data by age and sex. The SMRs 

were computed using the indirect method; the overall Spanish population (internal 

standardisation) provided the rates to compute the expected number of cases. The 

authors used Bayesian analysis by means of the BYM model to smooth the RRs 

estimates. An excess risk was found amongst men residing in, but not only, 

municipalities in the provinces of Cádiz and Sevilla, in western Andalucía. 

Conversely, an excess of risk was found for women in the south-east of Andalucía 

(Málaga and Granada). The authors attributed this spatial heterogeneity in risk by 

sexes to differences in the distribution of some risk factors such as tobacco smoking, 

alcohol drinking, obesity, and diet. They recommended that future studies should 

account for socio-economic status, as a surrogate measure for exposure to various risk 

factors: low socio-economic level has been associated with higher rates of 

oesophageal cancer, as well as other cancer sites [95]. With regard to cancer of the 

oesophagus, this association was thought to be due to higher levels of tobacco 

smoking and alcohol consumption in people of lower socio-economic status. In 

addition, people in lower socio-economic strata tend to live in more polluted areas, 

follow less healthy diets, and have more difficulties in accessing health services. 
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Another Spanish atlas of mortality, at a smaller geographical level than the previous 

one [2], was produced by Benach et al. [11]. They studied mortality due to 14 different 

causes of death in 2218 small-areas in Spain, during the period 1987-1995. The units 

of analysis were constructed by GIS software using municipalities (8077 according to 

the 1991 census) as the building structure; these new small-areas had a minimum of 

3500 inhabitants to preserve confidentiality, in agreement with the National Statistical 

Institute of Spain. For this same reason, deaths were aggregated over a nine-year 

period. Socio-demographic data were also obtained from the census. The expected 

numbers of cases were computed by means of Indirect, internal standardisation. 

Empirical Bayes analysis was used to compute RR estimates. The authors considered 

that data from mortality registries were the most important source of information for 

small-area analysis in Spain. This was not only due to ready availability of 

information, but also because the quality of death certificates in Spain was considered 

to be of a similar standard compared with other European countries. In this paper, the 

authors published results concerning lung cancer as well as breast cancer. Andalucía 

was one of the four Spanish autonomous regions (out of 17) with highest mortality 

rates due to lung cancer. An excess of risk was detected in areas within the provinces 

of Huelva, Sevilla, Cádiz and Málaga (western Andalucía). This excess of risk was 

found for both age-groups studied, people less than 65 years old, and age 65 years and 

older. Most high risk areas for breast cancer were concentrated in Cataluña (northern 

Spain). However, areas within some western provinces of Andalucía (Cádiz and 

Sevilla) also showed excess mortality risk. The authors considered the inclusion of 

socio-economic and environmental indicators to be of major importance in future 

research to help explain this spatial variation in risk of death. This small-area analysis 

published by Benach et al. [11] used EB analysis, instead of FB methods as was the 

case in the study by López-Abente et al. [16]; interestingly, both studies (which 

analysed overlapping periods of time, 1987-1995 and 1989-1998, respectively) found 

the same spatial patterning of higher mortality in western Andalucía. However, none 

of them either formally tested any hypothesis about exposure to potential risk factors, 

or adjusted for any confounders other than age. Later research on small-area analysis 

[96] confirmed these results (although confined to people aged 65 years and older) 

during the whole period 1981-2006. 



 

17 

 

More recently, Ocaña-Riola et al. [15, 27] addressed an ecological study to analyse the 

association between deprivation and all-cause mortality for the period 1992-2002. 

These researchers used the smallest geographical units of analysis readily available: 

census-tracks (between 500 and 2000 inhabitants). The capital cities of Andalucía 

(southern Spain) and Cataluña (northern Spain) were studied so that regions with 

different levels of deprivation could be compared; at that time, per capita income in 

Cataluña was 54% higher than in Andalucía. Information on deaths was supplied by 

the Regional Ministry of Health in each of the two autonomous regions. The 1991 

census was used to obtain population data. Principal Component Factor Analysis 

(PCFA) was used to derive an area-deprivation index comprised of the percentage of 

manual workers, unemployment and illiteracy. A BYM was fitted to the observed 

number of cases, via Markov Chain Monte Carlo methods (MCMC). Results for men 

showed higher mortality rates in more deprived areas of both Andalucía and Cataluña. 

However, this pattern was not so obvious for mortality in women in either region. 

These consistent results through very different socio-cultural contexts suggest that this 

deprivation index is appropriate to measure socio-economic differences at the area-

level in Spain, at least in men. The results were also in agreement with previous 

research using this same deprivation index at the provincial or municipality level. 

After adjusting for deprivation, residual (not explained by the model) variation was 

mainly due to the spatially-structured component in the model. This finding was 

attributed by the authors to contextual effects. These were considered to be area-level 

(neighbourhood) characteristics that might be related to deprivation, especially in 

women, which would explain differences between sexes. Another interesting 

characteristic of this study is the use of the smallest spatial units of analysis (census-

tracks). The association found in this study [15, 27] between the index of deprivation 

and mortality, and the fact that this index worked well in distinct socio-economic 

settings, provided a useful measure of deprivation for using in the analysis of spatial 

epidemiology in Spain.   

There has also been considerable research on the relationship of health events 

(particularly different types of cancers) with putative environmental risk factors. One 

of these studies, by López-Abente et al. [97], carried out a spatial point-source analysis 

in relation to mortality due to cancer. The aim was to analyse Spanish towns close to 

nuclear power plants and nuclear fuel facilities, for the period 1975-1993. Log-linear 
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models were used and socio-demographic variables at the area-level (such as income, 

unemployment and illiteracy) were accounted for. "Near versus far" comparisons were 

used to analyse differences between exposed and unexposed towns, while adjusting for 

population size and deprivation at the area-level. An excess of risk was detected for 

mortality due to lung and renal cancers in towns nearby nuclear fuel facilities. The 

authors recommended monitoring of incidence and mortality in areas close to health-

hazard facilities. In this study [97] the number of deaths was modelled while allowing 

for important covariates (deprivation and population size); overdispersion was also 

accounted for. An interesting result was the association between residence nearby 

nuclear fuel facilities, and lung-cancer mortality. Although relevant, this finding 

cannot explain the characteristic patterning of higher mortality in western Andalucía; 

there is just one such facility in the region, which is located in the province of Córdoba 

(Figure 1.2). In addition, the exposure area that was considered to be biologically 

plausible was only 30 km around the plant. 

Another ecological study at the municipal level (López-Abente et al. [98]) assessed the 

link between environmental factors associated with farm-related activities, such as 

pesticides, and mortality due to brain cancer in northern Spain. This study highlighted 

the suitability of small-area analysis using Bayesian hierarchical models to allow for 

true mortality patterns to emerge. Furthermore, Bayesian hierarchical models, such as 

BYM that include a spatial auto-correlated term, help in accounting for residual 

variation in risk. This residual variance is considered to be due to unmeasured risk 

factors which are linked to geography (contextual effects). 

Putative environmental factors responsible for cardiovascular diseases have been also 

investigated. In this way, Ferrándiz et al. [14, 99] analysed influence of water hardness 

(due to presence of calcium and magnesium) in relation to mortality risk from 

cardiovascular diseases, for the period 1991-1998. Both cerebrovascular disease 

(stroke) and ischaemic heart disease (heart attack) were studied. This was a small-area 

analysis at the municipal level in the autonomous region of Valencia (eastern Spain). 

Indirect, internal standardisation was used to compute expected number of cases, using 

the overall population of interest as the source for the rates. An Empirical Bayes (EB) 

hierarchical Poisson-gamma model was use to fit the data (see pg. 144). The authors 

took into account deprivation at the area-level, by means of an index comprised of the 

percentage of illiterate and unemployed people, as well as the number of vehicles per 
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person. They found a weak U-shaped protective effect of magnesium concentration in 

drinking water, from mortality due to cardiovascular diseases. That is to say, 

magnesium seems to be protective at medium concentrations, which the authors found 

to be in agreement with previous research in France. This study highlights suitability 

of ecological studies to address research concerning small environmental risks which, 

in addition, show slight spatial variations. 

2.4 Main causes of mortality 

Cardiovascular diseases and cancer of different sites were the most important causes 

of mortality for both men and women residing in Andalucía, during the 22-year period 

spanning from 1975 to 1997. Amongst all cancer sites, lung cancer was the leading 

cause of mortality, with a total of 48,559 deaths (or 25.8% of all deaths due to cancer 

[23]). Figure 2.1, Figure 2.2, Figure 2.3, and Figure 2.4 (own elaboration with data 

from the Andalusian Health Office) show information obtained from a study 

accomplished for the period 1975-1997 [23]. The geographical units of analysis used 

in this study were Primary Health Care Districts (PHCD), whose population ranged in 

size from 11,000 to 300,000 inhabitants in the year 1988. Information on deaths 

included in this study was provided by the National Statistical Institute of Spain for the 

period 1975-1991 and by the Andalusian Statistical Institute for the period 1992-1997. 

Data on sex, age, and year of death were analysed according to the 8th revision of the 

International classification of diseases (ICD) for the first period, while the ICD-9th 

revision was used to classify deaths for the second period. Crude rates, as well as age-

adjusted ones were computed; for the latter ones, the European population was used as 

a reference source to obtain the expected number of cases. SMRs were also obtained 

using indirect, internal standardisation; in this case, the overall Andalusian population 

was used as source for the rates to derive the expected numbers of cases. Years of 

Potential Life Lost and percentage of change (year-to-year, and first-to last-five year 

periods) were calculated for cancer, cardiovascular diseases (CVD), diabetes, traffic 

accidents and other causes. Deprivation was, nevertheless, not accounted for.  



 

20 

 

Figure 2.1 and Figure 2.2 show that the four most important causes of mortality were 

the same for both men and women: CVD, cancer, respiratory and digestive diseases. 

Respiratory diseases were responsible for 73,869 male deaths (or 11.7% of all-cause 

mortality in men) and 48,497 female deaths (or 8.5% of all-cause mortality in women). 

Amongst all respiratory diseases, Chronic Obstructive Pulmonary Disease (COPD) 

was the major cause of mortality amongst both men (37,718 deaths) and women 

(14,598 deaths). These differences between sexes can be explained by gender 

heterogeneity in the exposure to the main risk factor for COPD (tobacco smoking 

[100]); the male-female mortality rate ratio was 2.8:1 in 1975 and 5.8:1 in 1997. 

Concerning the spatial distribution of mortality, a previous report on these data [85] 

found the characteristic pattern of higher risk in western Andalucía, when all-cause 

mortality was mapped at this small geographical level. Thus, PHCD in the provinces 

of Cádiz, Sevilla, and Huelva, had the highest risk of mortality. When causes of death 

were analysed by groups, the same spatial pattern remained: this was the case for CVD 

and cancer (all sites) as well as lung cancer. Interestingly, mortality due to ill-defined 

causes did not show any geographical pattern. This group of causes of mortality not 

clearly identified is commonly used as a quality indicator of death certification. 

Therefore, lack of heterogeneity in the spatial distribution of ill-defined causes showed 

that geographical disparities in quality of certification were not responsible for the 

 

Figure 2.1. Main causes of mortality in men. 
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geographical pattern in mortality. Only a small proportion of deaths were recorded 

under this category for both men and women: 2.2% and 3.3%, respectively. 

Many risk factors (including tobacco smoking, obesity, arterial hypertension, low rates 

of physical activity, poor diet, heterogeneity in access to health-care services and 

quality of health care) have been studied with an aim of explaining geographical 

disparities in mortality. Also SES, at the individual or area level, has been considered 

because of its predictive value as a surrogate measure for risk factors exposure. 

Nevertheless, known risk factors and socio-economic determinants, as studied to date, 

are only considered to account for a small fraction of the known variability. Although 

not completely understood, environmental, social and occupational factors have been 

also suggested that should be related to this mortality pattern. Thus, an editorial 

published by Benach [10], highlighted the pattern of higher mortality in western 

Andalucía, during the period 1987-1995: only 8% of the Spanish population lived in 

the provinces of Cádiz, Huelva and Sevilla. In contrast, one third of all deaths in 

Spanish high-risk mortality areas occurred in towns within these three provinces. 

Occupational, environmental and socio-economic factors were considered worthy of 

further investigation, as up-to-date knowledge had not provided a complete answer to 

this public health issue. 

In addition, some components of SES seem to play an important role in this striking 

pattern of geographical disparity: namely illiteracy, unemployment and overcrowding. 

 

Figure 2.2. Main causes of mortality in women. 
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Moreover, some already known risk factors, such as tobacco smoking, are strongly 

related to SES [24, 31]. This strong dependency between SES and tobacco smoking 

led Escolar-Pujolar [101] to think that the relevance of factors responsible for this 

geographical pattern of higher mortality in south-western Spain has varied with time. 

Based on the Atlas of Mortality in the Province of Cádiz for the period 1975-1979, the 

author concluded that this mortality pattern already existed before current industries 

started operating in the province. Neither petrochemical plants nor manufacturing 

industries such as cellulose, gas, steel, or thermal power stations operated before 1967. 

The author hypothesised that no single factor was responsible for this mortality pattern 

and causes are probably changing across time. Therefore, higher mortality observed in 

the area of ‘Campo de Gibraltar’ (towns of Jimena de la frontera, Castellar de la 

frontera, San Roque, La Línea, Los Barrios, Algeciras and Tarifa) was thought to be 

mediated by poverty and tobacco exposure. Poverty, acting as a surrogate measure for 

exposure to various risk factors, could explain the excess of mortality due to cancer of 

different sites. Low SES has been associated with worse living conditions and less 

healthy life-style (including higher rates of tobacco smoking). According to the author, 

this was the case in Campo de Gibraltar for many decades before the study period 

(1975-1979) while new environmental hazards may contribute to the excess mortality 

which occurred afterwards. That deprivation may play a substantial role in the spatial 

distribution of mortality in Andalucía is in accord with an earlier small-area analysis 

by Benach et al. [7]; the spatial distribution of a deprivation index (that comprised 

unemployment, illiteracy, and overcrowding) was shown to mimic that of higher 

mortality rates in western Andalusian municipalities.      

Tomatis [31] showed, in a review paper, how lower SES is related to higher incidence 

and mortality due to differing cancer. Thus, lung and larynx cancer are amongst the 

tumours for which this differential has been found to be greatest. SES is considered to 

be an intermediate factor between different kinds of exposures and disease incidence 

and mortality. Many different variables are in use to measure SES. For instance, lower 

education is associated with worse living and working conditions, material 

deprivation, and less healthy life-styles. Furthermore, education seems to be a better 

predictor (of incidence and mortality due to cancer) than occupation. Exposure 

differences between people of high and low SES are related to well-known 

aetiological risk factors, such as tobacco smoking and alcohol drinking, which are 
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more frequent amongst people of lower SES. Nevertheless, these risk factors cannot 

completely explain differences in mortality. Hence, the residual higher risk remaining 

in lower SES groups when analysing lung cancer, even after adjusting for tobacco 

smoking habit. This review [31] highlights the need of accounting for deprivation in 

small-area studies, as this covariate is not only a surrogate measure (and a potential 

confounder) for tobacco smoking [102], but also for many other exposures [103].  

Kogevinas et al. [24, 66] also reviewed the association between SES and cancer. An 

excessive incidence of and mortality from respiratory cancers (lung, larynx, and nose) 

has been reported in men of lower SES; there is also an excess of risk, in people of 

lower SES, for tumours of the mouth, pharynx, oesophagus, stomach, and cancer as a 

whole, in different populations from various countries. Conversely, higher SES has 

been associated with some other cancer sites (colon, brain and skin). Tobacco smoking 

has been aetiologically associated with cancer of different sites, especially lung, 

larynx, mouth, pharynx and bladder. In most industrialised countries (including Spain) 

rates of tobacco smoking are higher in people of lower social class and these 

differences are greatest amongst men. Occupation is another important intermediate 

factor frequently measured as a component variable of SES, as manual workers tend to 

be more frequently exposed to hazardous substances with carcinogenic effect. An 

excess of risk for cancer development and mortality has also been associated with 

unemployment. Interestingly, this risk remains after tobacco smoking, social class and 

alcohol drinking are accounted for. Exposure to environmental factors is also mediated 

by SES; some evidence suggests that people of lower SES are more frequently 

exposed to certain air pollutants, which in turn is a risk factor for lung cancer [103, 

104]. Notwithstanding this link between deprivation and exposure to environmental 

pollutants, recent research has shown that this association can be either positive or 

negative, depending on the environmental factor under consideration. As an opposite 

example to tobacco smoking, a negative association has been shown to exist between 

deprivation and radon-gas exposure; that is to say, people residing in less deprived 

areas have been found to be more exposed to radon-gas [103].   

Amongst various mortality causes due to different cancer sites, lung cancer was 

identified as the leading cause of cancer-related mortality for men, in the report 

published by the Andalusian Health Office for the period 1975-1997 [23]. With age-

standardised rates of 81 deaths per 100,000 men, 44,027 cases (or 30.4% of all male 
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deaths due to cancer) were recorded for the whole period. This cancer site was the fifth 

cause of mortality for women with age-standardised rates of 5 deaths per 100,000 

women: 4,532 cases (or 5.5% of all female deaths) in that 22 year period. Figure 2.3 

and Figure 2.4 show the burden due to each cancer site according to number of deaths 

for men and women, respectively.  

 

Figure 2.3. Cancer mortality in men. 
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A small-area analysis at the municipal level (8,000 Spanish towns) was published by 

López-Abente et al. [16] for a period (1989-1998) overlapping that of the report by the 

Andalusian Health Office (1975-1997) [23]. Poisson log-linear hierarchical regression 

models were used to account for spatial autocorrelation, which is an important source 

of overdispersion in models dealing with counting data. Specifically, the BYM model 

was used. Updated information on lung cancer was provided by the authors who 

highlighted that this tumour still had, in 2004, a very poor prognosis (only a five-year 

12% age-adjusted survival rate) and was the most frequent malignancy in men (28% 

of mortality due to neoplasms); in women lung cancer caused 5% of all deaths due to 

cancer. According to the authors, age-adjusted rates in men reached maximum levels 

in 1995 and then declined. Conversely, age-adjusted rates in women started to rise at 

the end of the 1980s. The authors observed specific cohort effects in women: those 

born before 1917 experienced a progressive increment in risk; mortality decreased 

then in women born before 1940 and risk rose again for birth cohorts born after 1940, 

in parallel with tobacco smoking consumption amongst women. This led the authors to 

hypothesise that a lung cancer epidemic in women could be expected. 

The characteristic geographical pattern was again found in this small-area analysis: 

mortality due to lung cancer was higher in towns in south-western Spain (provinces of 

Cádiz, Huelva, Málaga, and Sevilla). However, this pattern previously observed had 

 

Figure 2.4. Cancer mortality in women. 
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been extended during this study period (1989-1998) to the adjacent autonomous 

community of Extremadura, to the northwest of Andalucía. As the geographical unit of 

analysis (towns) was smaller than the one used in previous studies (provinces) the 

authors could describe in more detail how towns on the coast line had the highest rates 

in known high-risk provinces. This finding was attributed to higher urbanisation of 

those municipalities. The authors considered of special interest mapping of lung 

cancer mortality in women, given that mortality in this period was mainly represented 

by birth-cohorts older than the generation born after 1940, when Spanish women 

massively acquired the habit of tobacco smoking. Therefore, risk factors (e.g. 

environmental exposures) other than tobacco smoking could be responsible for any 

geographical pattern in women’s mortality. Thus, the high mortality rates also 

observed in north-west Spain (autonomous region of Galicia) were considered to be 

potentially associated with radon-gas exposure; these conclusions were supported by 

high levels of radon-gas detected in this area. On the other hand, high rates in 

Barcelona (north-east Spain) were presumed to be due to industrial pollution. 

Nevertheless, no hypothesis (other than urbanisation) was offered for the high rates 

observed in towns of south-western Andalucía. 

Additionally, the authors claimed that distinct risk factors could be responsible for 

differences between men and women. This hypothesis was based on distinct 

histological types usually found between sexes: squamous-cell carcinoma and SCLC, 

which are strongly related to tobacco smoking, are more frequent in men. In contrast, 

adenocarcinoma is more commonly diagnosed in women. Another cancer site, larynx, 

was also found to have a geographical pattern of mortality similar to that of lung 

cancer. Larynx cancer has been causally associated with tobacco smoking (and alcohol 

intake). In 2004, Spain was the European country with the highest incidence and 

mortality due to larynx cancer, in men. Conversely, in women, incidence and mortality 

rates due to larynx cancer was amongst the lowest in Europe. In Andalucía, the 

provinces of Huelva, Sevilla, and Cádiz showed the highest mortality rates, similar to 

rates of mortality due to lung cancer. However, unlike lung cancer, larynx cancer 

showed a high age-adjusted survival rate (60% five-year survivorship).   

2.4.1 Aetiology and epidemiology of lung cancer 

One of the earliest investigations into the association between tobacco smoking and 

carcinoma of the lung was a case-control study published by Doll and Hill [87], that 



 

27 

 

compared more than 2,000 hospitalised patients; cases had been diagnosed of cancer 

of the lung, stomach and large bowel, while a second group of patients with diagnoses 

other than cancer were used as controls. A much larger proportion of smokers were 

found amongst lung cancer patients than control. Also, a dose-response relationship 

between tobacco smoking and lung cancer was found, although no differences were 

found, for the effect of smoking, between those that inhaled and did not inhale the 

smoke, a finding that the authors could not explain. At that time, arsenic was the only 

known substance present in tobacco manufactures thought to have a possible (but not 

yet proved) carcinogenic effect. In this study [87], no association was found between 

tobacco smoking and incidence of cancer other than lung cancer or non-cancer 

diseases (including other respiratory conditions and cardiovascular diseases). 

The authors were very cautious about drawing any conclusions concerning a potential 

causal association between smoking and lung cancer, given the weak biological 

plausibility of such a relationship at that time. Nevertheless, this case control study 

was carefully designed and analysed: subjects were comparable as they were all 

recruited from the same setting (hospitalised patients). Lack of any associations 

between tobacco smoking and diseases other than lung cancer, as well as with the 

smoking pattern (smoke inhalation) would be afterwards contradicted by the analysis 

of a large cohort-study also published by Doll [105, 106]. This disagreement in the 

results between both studies could have been due to the small number of cases 

analysed in the case-control study, as compared with the cohort study (2,475 vs. 

34,439). An ample group of people were studied that suffered from different diseases, 

including cancer sites other than lung, which was useful to counteract any differences 

attributable to recall bias. The finding of a dose-response relationship (drawn by 

means of a detailed and structured smoking history) supported the tenet of a causal 

relationship between tobacco smoking and lung cancer.     

Tobacco smoking has been causally associated not only with cancer of the lung but 

also with cancer that affects other close organs such as the mouth, pharynx, larynx and 

oesophagus, as well as distant ones such as bladder and kidney. Contrary to the state 

of knowledge at the time when Doll and Hill accomplished their case-control study in 

1950 [87], nowadays it is known that tobacco smoking entails exposure to thousands 

of substances, 100 of which, at least, are known to have possible carcinogenic effect 

[107]. According to a review by Shields [108], one of the most important carcinogenic 
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substances present in tobacco smoke are tobacco-specific nitrosamines (TSNs) as the 

concentration of this substance in tobacco manufacturing has increased. In contrast to 

TSNs, nicotine (which is responsible for addiction to tobacco smoking) has decreased 

with time. This has, in turn, led smokers to consume more cigarettes and to inhale 

smoke more deeply so that they are able to maintain nicotine concentration in their 

blood and thus avoid abstinence syndrome [108]. 

The mechanism by which TSNs contribute to develop lung cancer (as well as cancer 

of other sites) is well understood [107, 108]. TSNs are formed during the process of 

tobacco manufacturing and are known to induce deoxyribonucleic acid (DNA) damage 

by forming different types of chemical adducts. As DNA contained within cell nuclei 

is responsible for the genetic information involved in cell replication, alteration of this 

process leads to uncontrolled reproduction of organ cells, which initiates 

carcinogenesis. The ultimate mechanism by which carcinogenic substances present in 

tobacco smoke exert their effect seems to be mediated by interfering with DNA repair 

through gene mutations. The level of exposure to these carcinogenic substances 

present in tobacco smoke seems to be determined by the individual smoking habit of 

each tobacco user: firstly, the lifespan of the habit and number of cigarettes smoked 

per day; secondly, the type of cigarettes consumed as composition varies between 

brands and thirdly, the way cigarettes are consumed (e.g. the depth of inhalation and 

frequency). Individual susceptibility is also thought to play an important role in 

determining cancer risk [108]. Thus, increased susceptibility to mutagenic effects has 

been found in lung cancer patients that were smokers. 

Differences in cancer risk are also known to exist between sexes. Men tend to suffer 

from SCLC, while adenocarcinoma is more frequently diagnosed in women; 

moreover, women have twice as high a risk as men. Some researchers have 

hypothesised that these differences between sexes could be related to exposure to 

different environmental carcinogens: tobacco smoke for men and radon-gas for 

women [16]. Alternatively, Shields proposed that these differences could be due to 

different smoking patterns [108]. Hence, women would be exposed to greater 

concentrations of TSNs as they acquired the tobacco habit more recently, i.e., when 

cigarettes already had higher concentrations of this carcinogenic substance. There is 

also evidence of higher levels of DNA adducts mediated by other chemical 

compounds, such as Polycyclic Aromatic Hydrocarbons (PAH), in women, which 
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supports the hypothesis that women are more susceptible to the adverse effects of 

tobacco smoking. 

Alberg et al. published a comprehensive review on the aetiology of lung cancer. In this 

paper, the authors claimed that both epidemiological and biological evidence have 

undisputedly established the causal relationship between tobacco smoking and lung 

cancer [109]. Moreover, tobacco smoking is considered to be responsible for more 

than 90% of all lung cancer cases. This association between tobacco smoking and lung 

cancer had been found in many case-control studies [87, 110] in the UK and the USA 

(amongst other countries) in the 1950s and was later on confirmed by large studies 

such as the British doctors’ cohort study by Doll et al. [87, 111] that followed a cohort 

of more than 34,000 British male doctors for a 50-year period (1951-2001). Data on 

participants' habits were periodically assessed. This study provided new insight into 

tobacco smoking and mortality due to cancer of different sites. Tobacco smoking was 

associated not only with lung cancer but with many other cancer sites, such as oral and 

nasal cavities, sinuses, larynx, oesophagus, liver, stomach, pancreas, kidney, bladder, 

uterus, and with myeloid leukaemia [111]. Although only one in ten smokers suffers 

from lung cancer, 50% of the smokers die prematurely from a tobacco-related disease. 

This study showed that a smoker’s life expectancy is reduced by 20 years as compared 

to a non-smoker. Nevertheless, quitting smoking at any age partially reduces this 

difference between smokers and non smokers. Results from the study by Doll et al. 

[87, 106] were closely in agreement with a review by the International Agency for 

Research on Cancer (IARC) concerning the carcinogenic effect of tobacco smoke 

[112]. This study found a positive association between tobacco smoking and cancer of 

28 different sites; for these types of cancer, a dose-response relationship with tobacco 

smoking was also found.   

It has been shown that smokers have a 20-fold increase in risk for lung cancer 

compared to non-smokers [109]. Furthermore, rates of tobacco smoking predict those 

of lung cancer 20 years later. Amongst the main determinants, duration of the smoking 

habit is now considered to be the most relevant predictor of lung cancer development, 

over and above the number of cigarettes smoked. Although quitting smoking is always 

beneficial, risk in ex-smokers remains higher than in never-smokers for more than 40 

years after the habit has been abandoned [109]. Research in molecular epidemiology 

[107, 113] has found that individual susceptibility is associated with gene-environment 
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interaction that may determine heterogeneity of outcomes after exposure to similar 

levels of tobacco smoke.  

Thus, gene-environment interaction can modulate factors such as metabolism of 

carcinogenic substances and production of DNA adducts [107, 108], which is thought 

to also underlie race and sex differences for susceptibility to tobacco smoke, as well as 

patterns of smoking behaviour (mediated by dopamine receptors in the brain). These 

patterns can explain why changes introduced in cigarette manufacturing in the 1950s 

(such as low tar and low nicotine, as well as filtered cigarettes) that were thought in 

the past to entail a lower risk for lung cancer, caused exactly the opposite effect. Doll 

et al. [106] compared risk of mortality within the cohort of British physicians between 

the two 20-year periods and showed a higher risk of mortality for the second half of 

the follow-up period. This has been explained by changes in the smoking pattern due 

to lower content of nicotine and higher content of TSNs present in cigarettes 

manufactured since 1950. 

Some epidemiological reviews [107] have included cohort studies which have shown 

that tobacco smoke is associated with lung cancer, in non-smokers who are passively 

exposed to tobacco smoke. Thus, it has been reported that non-smokers who were 

married to smokers had a 20% increase in lung cancer risk [109]. Although a dose-

response relationship between tobacco smoking and lung cancer has been shown to 

exist, it is interesting to note that a threshold level seems not to exist; that is to say, 

some risk still remains even at levels of exposure much lower than those experienced 

by active smokers. It is considered by some authors [107-109] that tobacco smoke can 

lead to different histological types of cancer: the more common ones are squamous-

cell carcinoma, adenocarcinoma, and SCLC, while others [16, 114] have hypothesised 

that these differences can be the result of distinct environmental exposures (such as 

radon-gas). 

Many environmental factors other than tobacco smoke have also been associated with 

lung cancer. Thus, occupational factors such as arsenic, chromium, nickel and asbestos 

(the last one interacting synergistically, in a multiplicative way, with tobacco smoke) 

cause lung cancer [109]. Ionizing radiation is also known to be a risk factor to develop 

lung cancer. This is the case for High Linear Energy Transmission (LET) radiation, 

such as radiation from radon-gas exposure, which produces more organ damage than 

low-LET radiation (e.g. x-rays) [109]. Radon-gas is known to emit alpha particles that 
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cause permanent damage of tissues in organs. As for tobacco smoke, a non-threshold 

dose-response relationship is thought to exist between exposure to radon-gas and lung 

cancer [115]. Radon is now considered to be second to tobacco smoke in the number 

of lung cancer cases attributable to exposure to environmental factors [116]. Radon-

gas has been considered to be responsible for 10% of all lung cancer cases in the US 

[117]. It is considered that tobacco smoke can act synergistically with other factors to 

initiate or promote lung cancer. For instance, it is thought that tobacco smoke and 

radon-gas exposure have a supra-additive (but not multiplicative) effect for lung 

cancer risk [114]. 

Indoor air pollution due to both second-hand tobacco smoke and radon-gas exposure 

are considered to be the most important environmental risk factors for lung cancer. 

Conversely, outdoor, air pollution is thought to be accountable for a small fraction 

(compared with tobacco smoking) of lung cancer cases (around 1% to 2%) [114]. This 

could partially explain the association consistently found between the degree of 

urbanisation and lung cancer mortality. Nevertheless, other factors such as smoking 

patterns and occupation could contribute to these differences. In a small-area analysis 

about the effect of urbanisation on lung cancer Pearce et al. [118], after adjusting for 

smoking rates at the area-level, found that tobacco smoking explained most of the risk 

associated with urbanisation, although some residual variation remained unexplained. 

This excess of risk associated with urbanisation was thought to be due to factors such 

as air pollution, occupation, or selective migration of people at higher risk for lung 

cancer. 

Although the study by Pearce et al. [118] was devised as an ecological design, it was 

analysed at the small-area level, which is thought to lessen the potential bias due to the 

ecological fallacy [1]. Interestingly, information about the smoking pattern was 

available by output areas (which comprise around 50 households). The observed 

number of cases was modelled using multivariate Poisson regression analysis, while 

adjusting for age-group, sex, tobacco smoking behaviour at area level, and population 

density. Although potential overdispersion due to spatial autocorrelation was not 

accounted for, a scan statistic was used for clustering detection.   

Bray et al published an age-period-cohort analysis in 15 European countries for the 

period 1967-1999 which showed that lung cancer was the leading cause of mortality 

due to cancer; this cancer site accounted for 90% of cancer cases in men and 60% in 
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women [119]. Differences in mortality rates amongst countries were attributed to 

heterogeneity in the prevalence and pattern of tobacco smoking. To differentiate 

between effects due to smoking patterns and carcinogenic exposures which occurred 

many years in the past (attributable to changes in tobacco manufacturing) young 

cohorts were studied. During this study period (1967-1999) death rates in Spanish men 

aged 35-65 years started to stabilise. In contrast, there was evidence of a rise of 

epidemic proportions (3% annual increase) for death rates in Spanish women. Data 

pointed at women born around 1950 as those accounting for this cohort effect, because 

of the increase in the prevalence of smoking among women, which is consistent with 

previous knowledge about trends in the prevalence of smoking amongst Spanish 

women [16]. 

Another study by Levi et al. [120] further studied lung cancer mortality in young 

women. Mortality due to lung cancer in females aged 20-44 years was analysed for the 

period 1970-2004 in six European countries. In Spain, mortality rates decreased 

between 1979 and 1985 and then steadily increased (from 0.8 deaths /100,000 people 

in 1985-1989 to 5.0/100,000 in 2000-2004). Between these two periods, the 

prevalence of smoking in young women rose from less than 40% to around 50%. If 

public health interventions do not counteract the prevalence of smoking in Spain, the 

current situation is expected to lead to a lung cancer epidemic in women, within the 

next 20 to 30 years. Mortality rates could reach 20/100,000, according to these 

authors.  Although this is an ecological study, tobacco smoking is known to be 

responsible for most cases of lung cancer [107]. This is why the conclusions of the 

study by Levi et al. [120], concerning a rising in mortality due to lung cancer amongst 

young Spanish women, are in accordance with data on the trends of the smoking 

prevalence in women.  

2.4.2 Aetiology and epidemiology of Chronic Obstructive Pulmonary Disease 

(COPD) 

It is interesting to note that cancer is not the only health hazard causally associated 

with tobacco smoke [113, 121]. COPD is a health condition that causes permanent 

damage of the airflow and eventually leads to disability and death. COPD is known to 

be mainly due to tobacco smoking. Respiratory diseases (from which COPD is the 

major component) were the third most important cause of mortality in both men and 

women residing in Andalucía during the period 1975-1997 [23] (see Figure 2.1 and 
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Figure 2.2). What is more intriguing is the fact that some evidence suggests that 

COPD could be responsible for lung cancer as well, that is to say, after accounting for 

the effect of tobacco smoking [100, 122]. However, given the strong association 

between tobacco smoking and COPD, it seems analytically difficult to separate both 

effects as COPD might be an indicator of a heavier exposure to carcinogens from 

tobacco smoke. 

In a review by Viegi et al. [100], COPD was considered to be the third most common 

cause of morbidity and mortality in Europe. This was the also the case for Andalucía 

during the period 1975-1997. COPD is an inflammatory disease which leads to 

progressive, non-reversible, airflow limitation. The two main COPD components are 

chronic bronchitis and emphysema. Chronic inflammation of the bronchi produces 

characteristic symptoms such as frequent cough and expectoration that helps in 

diagnosing COPD episodes on clinical grounds. The second component, emphysema, 

is related to the non-reversible nature of COPD course, as it describes histological 

changes comprising destructive enlargement of walls in the smallest, more distant, air 

spaces (alveoli). Emphysema eventually leads to Chronic Respiratory Failure (CRF), 

as exchange of oxygen (needed for normal cell function) and carbon dioxide (or CO2, 

a toxic metabolite which is exhaled) takes place within the blood vessels irrigating the 

alveoli walls. CRF, in turn, is characterised by low levels of oxygen (hypoxaemia) and 

high levels of CO2

Therefore, COPD has a very strong negative impact on health-related quality of life 

(HRQoL) measures. COPD has been causally associated with tobacco smoking, which 

has been identified as the major risk factor for COPD incidence and mortality. 

Furthermore, Doll et al. showed a dose-response relationship between tobacco 

smoking and mortality due to COPD, from the analysis of their 50-year follow-up 

 (hypercapnea) in the blood. All these changes are responsible for 

progressive deterioration of performance status. Patients suffer from shortness of 

breath after variable efforts when they are at the initial stage of the disease or even at 

rest, when alveoli destruction is at the end-stage. Moreover, COPD is frequently 

associated with other diseases (co-morbidity) such as other respiratory diseases 

(pneumonia, asthma and pulmonary embolism [100, 123]), cardiovascular conditions  

(ischaemic heart disease and heart failure [124]), malignancies (lung cancer [125, 

126]), endocrine diseases (diabetes [123]) and psychiatric disorders (depression and 

anxiety [127]), amongst many others. 
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cohort study on male British doctors [105]. Age at which the smoking habit starts, the 

number of cigarettes smoked and current smoking status are all good predictors of 

mortality due to COPD. There is also a dose-response relationship between tobacco 

smoking and severity of COPD symptoms. Although some other risk factors for 

COPD exist (such as air pollution, occupational exposures, and genetic factors) 

smoking cessation is the single most important preventive measure. Quitting tobacco 

smoking is also beneficial for COPD sufferers as it helps in diminishing the rate of 

deterioration of lung function. Viegi et al. [100] had also reviewed other cohort studies 

where some differences in risk were found between only-pipe smokers and only-cigar 

smokers. The former had been reported to have an increased risk for mortality due to 

COPD; the latter were shown to have an increased risk for COPD incidence. 

Environmental tobacco smoking (ETS), both at work and home, has also been 

associated with COPD. Hence, second-hand tobacco smoking is responsible for 

numerous deaths due to COPD and lung cancer in females. Particulate matter (PM), 

nitrogen dioxide (NO2) and carbon monoxide (CO) and biological allergens are other 

potential indoor pollutants that can cause respiratory disease. Some urban-related 

factors, such as traffic load and outdoor NO2

In another review, Mannino et al. [122], highlighted the relevance of COPD due to 

morbidity, mortality and health costs attributed to this disease and also that this public 

health problem is only expected to increase due to the ageing population across the 

world. According to this review, in 2001 COPD was recognised to be the fifth leading 

cause of mortality in high-income countries and the sixth in low-income ones. COPD 

, have also been associated with the 

prevalence of COPD symptoms. It is important to note that COPD is no longer 

considered to exclusively affect a small proportion of elderly male smokers. Contrary 

to previous knowledge, COPD is now known to affect a large proportion of smokers 

(22% in a prevalence study of Spanish smokers aged 40-76 years [128]); it may 

already be present in those as young as 20-45 years and the differences between sexes 

are decreasing. Prevalence of COPD is frequently underestimated given the poor 

correlation between lung function status and presence of symptoms (cough, 

expectoration and dyspnoea). This is partly due to the fact that patients change their 

habits to prevent dyspnoea. Therefore, symptoms may not be present until the end-

stage of COPD. Nevertheless, COPD can be diagnosed using spirometry tests even at 

early stages of the disease [100, 128].      
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also accounts for a high number of cases of disability. Different COPD phenotypes are 

thought to exist depending on which disease component predominates - cough and 

expectoration, airways reactivity, emphysema- or genetic factors. It was stressed that 

diagnosis should be based on (post-bronchodilator) spirometry tests as it is known that 

clinical diagnosis may under-estimate COPD prevalence and spirometry (without 

bronchodilation) may over-estimate presence of COPD. Furthermore, lung-function 

spirometry tests are good predictors of mortality, especially when used in conjunction 

with measurement of Body Mass Index (BMI), as well as dyspnoea and exercise level 

[129]. Although tobacco smoking was admitted to be the major risk factor to develop 

(and die from) COPD, other factors were also recognised to be responsible for a small 

proportion of COPD cases. Thus, alpha-1 antitrypsin deficiency is thought to account 

for 1% to 3% of all COPD cases, although the risk of developing this disease is 

enhanced by tobacco smoke [130]. 

This paper by Mannino et al. [122] also reviewed exposure factors such as outdoor and 

indoor air pollution. Around 19% of COPD cases in the USA have been considered to 

be caused by occupational exposures (fumes, dust, and chemical vapours). Non-

smoking Chinese women in rural areas may suffer a threefold increased rate in COPD 

compared to non-smoking women in urban areas, as a result of their indoor exposure 

to fumes (e.g. from coal and wood). Notwithstanding these other risk factors, it is 

important to note that tobacco smoking is thought to account for 73% of mortality due 

to COPD; also, that contrary to previous knowledge it has been shown that a high 

proportion of smokers (up to 50%) develop COPD. Interestingly, in contrast to the 

relationship found between environmental tobacco smoking (ETS) and lung cancer, 

second-hand tobacco smoking has been found to increase the risk for respiratory 

symptoms, but not for COPD. Outdoor air pollution has been estimated to be of much 

less importance than tobacco smoke and occupational exposures in the development of 

COPD (only 1% to 2% of all cases). This review also found that differential 

prevalence between sexes seems to be diminishing as there has been a massive 

increase in women’s smoking.  

Low socio-economic status (SES) has also been found to be associated with the 

incidence of (and complications from) COPD [100, 121]. SES is considered to be a 

surrogate measure for exposure to various risk factors (such as tobacco smoking and 

other pollutants, as well as infections). As COPD patients tend to suffer from many 
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other co-morbid diseases, mortality due to COPD is known to be frequently attributed 

to other causes (e.g. cardiovascular diseases). Although tobacco smoking is the major 

risk factor for COPD, a significant proportion of smokers do not develop the disease, 

which highlights the influence of other risk factors [131]. The increasing number of 

women and adolescents who smoke tobacco is contributing to the increment in the 

incidence of COPD. Much of the variation in the prevalence of COPD may be caused 

by differences in the way the disease is diagnosed, as various organizations have 

published different disease definitions. Longitudinal studies have shown that reversion 

of airway obstruction by treatment can improve survival rates of COPD patients [126]. 

The 10-year survival rate of COPD patients has been reported to be only 50%, which 

highlights the importance of this disease as a cause of mortality given that, on average, 

people are first diagnosed when they are 40-50 years old [121]. COPD progresses 

from a lack of appropriate development of lung function during infancy through a 

progressive impairment in adulthood for several decades. Mortality has been shown to 

be associated with some clinical components of the disease, namely mucus 

hypersecretion (that leads to expectoration) and breathlessness. Mucus hypersecretion, 

in turn, is associated with impairment of lung function as is reflected by a decrease in 

Forced Expiratory Volume in 1 second (FEV1) and hospitalisation due to lower 

respiratory infections. HRQoL is also known to be greatly affected by the disease.  

Prevalence of COPD is difficult to estimate as clinicians usually see only severe cases 

but miss mildly ill patients who are the main bulk of the disease. Mortality due to 

COPD is also thought to be under-estimated due to co-morbidity and misclassification, 

especially if only the underlying cause of death is used to classify cases. Common 

causes of death in these patients are pulmonary infections and embolism, as well as 

complications involving the heart ('cor pulmonale') [132]. 

Evidence from longitudinal studies suggests that women are more susceptible to 

COPD than men. It is thought that bronchial hyperreactivity in response to 

environmental exposures may lead to a higher degree of decline in FEV1 for either 

smoker or ex-smoker women as compared with men. This review [121] also 

considered tobacco smoking as the major risk factor for COPD development. Both 

cross-sectional [133] and longitudinal studies [134] have shown an association 

between tobacco smoking and decreased FEV1. A dose-response relationship has also 

been shown to exist between both. Low socio-economic status (SES) is also associated 



 

37 

 

with lower FEV1. Different components of SES, such as poor schooling, poor housing 

and low income, have all been shown to be independent predictors of impaired lung 

function. These socio-economic variables are considered to be surrogate measures for 

exposures either in utero, or early in life (e.g. smoking, respiratory infections, 

nutritional, occupational or housing factors). 

A brief review by Devereux [135] recognised the association between COPD and all 

kinds of tobacco smoking. Although cigarettes are the most important risk for COPD, 

pipe and cigar smoking have also been associated with COPD development. The main 

components of COPD are known to be airflow obstruction, chronic bronchitis and 

emphysema. Asthma is usually considered to be a separate entity, although it can 

occur in association with COPD. Up to 40-50% of COPD cases may remain 

undiagnosed given that spirometry tests are not always undertaken. COPD used to be 

more common in men and is known to be associated with low socio-economic status. 

The author considered that COPD was expected to become the third leading cause of 

mortality in Europe by 2020. Case-control studies [133, 135] have found that second-

hand tobacco smoking is associated with COPD development. Smoking during 

pregnancy is also known to impair the ventilatory function during infancy, childhood 

and adulthood. Hence, antenatal exposure is thought to be of greater impact on health 

than postnatal exposure. 

2.4.3 Aetiology and epidemiology of larynx cancer 

A pooled analysis of case-control studies undertaken in Europe and America was 

devised to estimate the multiplicative interaction parameter and population 

attributable-risk (PAR) due to the biological interaction between tobacco smoking and 

alcohol drinking in the development of head and neck cancers [136]. Of all head and 

neck cancer sites, 72% were attributed to tobacco smoke or alcohol; tobacco smoke 

alone was accountable for 33% of cases, while 4% of cases were attributed to alcohol 

alone, and 35% of cases to the combined used of tobacco and alcohol. The estimated 

joint effect of both tobacco and alcohol use, on the incidence of all head and neck 

cancer sites (including larynx cancer, although not statistically significant), was 

greater than multiplicative. A statistically significant more than additive interaction 

(between tobacco smoke and alcohol) was found for larynx-cancer risk [136]. 

Estimates were adjusted for educational level and sex. The PAR (due to both tobacco 

smoke and alcohol) for laryngeal cancer was 89% (95% CI: 82-92). Both risk factors 
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combined are responsible for a greater proportion of cases in men than in women and 

in the older age groups, while in women, tobacco smoke alone is responsible for a 

greater number of cases than the combination of both exposure factors. 

Although the relationship between tobacco smoking and lung cancer was established 

in the 1950s, the associations of tobacco smoke with other cancer sites was found 

around thirty years later. In a meta-analysis of studies dealing with tobacco smoking 

and cancer of different sites, Gandini et al [137] found that the pooled relative risk 

(RR) estimate (current vs. former smokers) for larynx cancer (RR =6.98; 95% CI = 

3.14 - 15.52) was the highest one after lung cancer (RR = 8.96; 95% CI = 6.73 - 

12.11). Other findings were that RR estimates varied by study design, gender, and 

adjustment for confounding factors. Thus, RR estimates were higher for case-control 

studies than cohort studies. High incidence rates of larynx cancer have been found in 

men from southern and central Europe, people from South America and black people 

living in the USA [138]. The predominant histological type is squamous-cell 

carcinoma (more than 90%). The risk for larynx cancer is 10 to 15 times greater for 

smokers than for non smokers and this neoplasm predominantly affect the glottis area 

(that is, the voice box). Most cases of larynx cancer in rich countries are attributed to 

tobacco smoking, alcohol drinking, or the combined effect of both toxic agents. As for 

the association between tobacco smoking and lung cancer, a dose-response 

relationship also exists between tobacco smoke and laryngeal cancer: therefore, the 

risk increases with duration of the habit and amount of tobacco smoked. The same 

way, the risk progressively decreases and approaches non-smokers risk after 15 years 

of smoking cessation. Dark tobacco users seem to undergo a higher risk for larynx 

cancer than Virginia tobacco smokers. It seems that filters may provide some 

protection. Forms of tobacco use other than cigarettes (including smokeless tobacco) 

also increase the risk for laryngeal cancer. 

Smoking is known to account for up to 15% of all cancer cases. The proportion of 

attributable-cases is higher in men and in rich countries. Stopping smoking has been 

recognised as the most important preventive measure even for long term smokers 

[113]. Mortality is lower amongst smokers of low tar cigarettes; however, it is known 

that smokers of low-nicotine, low-tar cigarettes, increase depth of inhalation to 

maintain blood levels of nicotine. This, in turn, increases their exposure to 

carcinogenic substances present in tobacco smoke. The mainstream smoke produced 
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by cigarette combustion, that is, the smoke inhaled by the smoker, is known to contain 

thousands of chemicals. Many of the by-products present in tobacco smoke are known 

to have carcinogenic effects and 80% of these particles deposit in the trachea and 

bronchi. Conversely, sidestream smoke reaches the ambient air directly from a 

smouldering cigarette; this smoke contains more tobacco substances as it has not been 

filtered. Although sidestream smoke is diluted in the ambient air, it is important to 

note that no safe limit exists for exposure to carcinogenic substances. Particles from 

the sidestream smoke deposit in the smaller lung airways. Carcinogenesis starts when 

the balance between cellular mitosis (replication) and apoptosis (death) is lost. This 

happens as a consequence of mutations in either oncogenes (genes that promote cell 

growth) or suppressor genes (that determine apoptosis). 

For tobacco smoke to be detoxified carcinogenic substances must be transformed by 

phase I enzymes and then eliminated by phase II enzymes. However, carcinogenic 

substances can be activated by phase I enzymes, which produce DNA-adducts. This, 

in turn, allows cells to grow uncontrollably [109]. As cells have their own repair 

mechanisms, decades of exposure to tobacco smoke are needed to eventually develop 

cancer. Nowadays it is estimated that more than a billion people in the world smoke, 

mainly in east Europe and central Asia [113]. Tobacco smoking has become a habit of 

the poor and globally of men. However, the situation is changing in developed 

countries where wealthier people quit smoking more frequently. 

Interestingly, a protective effect seems to exist for some diseases, namely endometrial 

cancer and female breast cancer, as well as prostate cancer; this seems to be due to the 

anti-oestrogenic effect of tobacco smoke on the former two instances, and the anti-

testosterone effect on the latter [113]. Other exposure factors such as diet and genetic 

traits can act as effect modifiers of tobacco smoke. Thus, high fruit and vegetables 

intake is thought to give some protection against lung cancer as high levels of some 

vitamins (E, C, retinol, alpha-tocopherol and beta-carotene) were found to be 

negatively associated with presence of Polycyclic Aromatic Hydrocarbon (PAH) DNA 

adducts, therefore protecting smokers from cancer. Alcohol is also known to be an 

effect modifier as it would facilitate penetration of carcinogenic substances from 

tobacco smoke within human tissues. Cancer is known to be more frequent amongst 

the elderly, which has been associated with longer duration of exposure to smoking 

and impaired DNA-repair processes. The same inverse relationship exists between 
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inherited absence of the enzyme glutathione S-transferase mu gene (GSTMG1) and 

presence of PAH DNA-adducts, which in this case entails higher risk for larynx cancer 

as cells would not able to excrete metabolites of carcinogenic substances. Evidence 

also suggests that the same mechanisms are implicated in cancer development due to 

second-hand tobacco smoke where haemoglobin adducts have been identified [139]. 

Therefore, tobacco smoking has been known for a long time to be a major risk factor 

for disease incidence, disability, and mortality. Thousands of chemical components 

produced during tobacco combustion exert such a potent effect, that second-hand 

tobacco smoke, as an indoor pollutant, has also been long recognised to be a main 

public health problem. More recently, potential health-hazards due to third-hand 

smoke (THS) have been under investigation [140]. THS has been characterised by the 

so called three Rs, as tobacco pollutants: remain on surfaces and dust for a long time 

(at least months); they can be re-emitted into the ambient air, and react with other 

chemicals in the environment to further produce new contaminants. For instance, one 

of the most well known tobacco by-products, nicotine, has been found to persist for a 

long time in the dust of homes and cars of smokers. Nicotine contained onto surfaces 

can later react with other indoor pollutants, such as nitrous acid from gas hobs, to 

produce tobacco specific nitrosamines (TSNAs), which are potent carcinogenic 

substances; nicotine is also capable of reacting with ozone to produce very small 

particles that can reach different body organs. Although it is still to be determined if 

exposure to THS would entail a significant health risk, this query is thought to be 

answerable as millions of children and non-smoking adults around the world are 

exposed to second-hand tobacco smoke and presumably to THS. 

2.5 Socio-economic status and mortality due to cancer 

The term social class comes from the industrial revolution in the nineteenth century. 

Social class is a construct devised to infer the material state of people [141]. The 

relevance of this construct for health allied disciplines is due to the proven strong 

relationships of social class, and derived measures of socio-economic status (SES), 

with patterns of disease and mortality. So, health conditions, survival rates, and life 

expectancy are all worse in poorer, developing countries. The same relationship is well 

established within rich, developed and highly industrialised countries. In this case, a 

pattern of health differences between more and less affluent people has also been 

found. There is nowadays a wide consensus on the great influence that social 
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structures exert on the health status of the populations. Therefore health inequalities 

are, to a large extent, considered to be rooted in social inequalities [24, 142]. These 

inequalities are increasing not just between countries, but also among social classes 

within the same country. The mechanisms by which SES might influence the health 

status of populations are considered to be related to distinct patterns of environmental 

or occupational exposures across the whole SES scale [32, 104, 143-145]. People of 

lower SES might be exposed to higher levels of ambient pollutants due to either a 

preference for pollution-related sources to be placed in less affluent areas, or migration 

of disadvantaged people to unhealthy places [103]. 

Moreover, a complex influence of socio-economic factors on populations’ behaviour 

is thought to exert a great impact on health. Thus, it is nowadays notorious how people 

of lower SES (either those living in poorer countries when compared to people living 

in wealthy regions, or less affluent people within rich countries) are more vulnerable 

to tobacco smoking advertising. Furthermore, regarding smoking cessation, the reverse 

is also shown: people of higher SES benefit the most from health promotion 

interventions aimed at stopping the habit. The latest Spanish atlas of mortality [16], 

which analysed municipalities for the period 1989-1998, revealed the relevance of all 

SES variables considered (income, illiteracy and unemployment). A north-south 

pattern was shown that pointed out to Andalucía, as one of the poorest Spanish 

regions. Furthermore, a high variation was hypothesised to exist within cities. The 

strong influence of SES on health can help to explain why most studies have shown 

both incidence and mortality due to different cancer sites (especially lung cancer) to be 

higher in people of lower SES. 

The mechanisms by which some socio-economic factors influence health status are 

quite complex. Unemployment [24] has been found to be a risk factor for cancer 

incidence (mainly lung cancer) after taking into account tobacco smoking, alcohol 

intake, and SES. It is therefore worthy of note that known risk factors cannot 

completely explain the strong relationship between SES and health. Finally, it is 

important to point out that SES have been widely recognised to exert a high impact on 

the health status both at an individual and aggregated area-levels  [25, 37, 40, 146-

149]. Therein its pivotal relevance while considering public heath research given the 

high impact that changes at the population level can achieve [150]. Different 

approaches have been used to measure SES as a broader concept than social class: 
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historically it was restricted to traits of individual wealth, prestige and power [151]. 

SES at the individual level has been measured by means of one or more characteristics 

frequently arising from information over income, education and/or occupation (using a 

single variable, or a compound index). These are thought to be proxy measurements of 

features such as health related behaviours, social status, and access to resources [152].  

It is important to bear in mind that there is no one measurement strategy that is 

completely satisfactory and often the chosen methodology is based on data 

availability. Therefore, unemployment has been used as a proxy measure for income 

and material resources, and is thought to be useful to predict health disparities, as well 

as accessibility to health-care services in small-areas [153]. Education is considered to 

measure both material and social deprivation. Occupation has been used to a great 

degree, especially in the U.K., since the beginning of the last century. The British 

Registrar General classified occupation according to the level of education or skill and 

it has been shown to be able to predict health inequalities. Some limitations of this 

measure have been pointed out [147], as difficulties to assess SES for women or 

lacking of research to investigate the mechanisms underlying heath inequalities. After 

being adapted according to the Spanish National Classification of Occupations (NCO) 

as of 1979, this measure by the British Registrar General has also been widely used in 

Spain. Later, the Spanish Epidemiologic Society devised a different classification 

using the 1994 version of NCO. 

However, individual-level SES is not always available; e.g. large-scale Health Surveys 

do not usually provide estimates of SES for small geographical areas, such as census 

tracts. To address this gap, different area-level deprivation measures have been 

proposed. Two of them, widely used in the U.K. and with some modifications also 

abroad, are the Carstairs-Morris and Townsend indexes. Both of them have been 

proven to be useful to predict mortality and health-related behaviours, such as 

smoking [102, 154]. The rationale for adapting both the Carstairs-Morris and 

Townsend indexes, for use in countries other than the U.K., is a matter of 

practicability as well as a conceptual issue [155]. Information at the small-area level is 

often lacking on census databases, precluding its direct application in the past. Also, 

direct use of those indexes assumes that the individual variables are of explanatory 

value in the socio-economic context where the index is going to be implemented. 
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It has to be pointed out that compound indexes, as well as single measures, have some 

drawbacks [152]. They tend to mask differences due to the possibility that two 

different composite measurements eventually give the same score. Some recently 

devised indexes have been calculated using Factorial Analysis of Main Components. 

These indexes allow objective weighting, while some former approaches are based on 

compound measures which attribute the same importance to all variables. Moreover, 

studies comparing both individual and area-based socio-economic characteristics have 

shown that compound indexes are good predictors of different health events. One of 

these studies, implemented in Spain [15, 28], analysed mortality by census tracts in the 

capital cities of provinces in the autonomous regions of Andalucía and Cataluña. 

Socio-economic factors at the area-level (percentages of manual labourers, 

unemployment and illiteracy) were shown to be better predictors of differences in 

mortality across geographical areas. Mortality was modelled by means of Hierarchical 

Bayesian Regression, and main results showed a positive relationship between male 

mortality and a deprivation index, in all the capital cities of Andalucía. In contrast, 

results for females were suggestive of a lack of association between mortality and 

deprivation at the area-level. Furthermore, a similar pattern of male mortality in 

association with deprived areas was shown to occur in Cataluña, a region in which per 

capita income was at that time around 54% higher than that in Andalucía. These 

findings substantiate this deprivation index, as being sensible enough to behave 

consistently in quite different scenarios, given that cumulated evidence from different 

studies suggest that deprivation is a continuum along the social scale [152]. 

A growing number of studies based on the joint analysis of individual and area-level 

SES [40, 102, 146, 152, 156] suggests that deprivation indexes at aggregate level are 

relevant surrogate measures for missing estimations of individual SES. They are also 

thought to capture aspects of the related social context of ‘neighbourhoods’ in which 

people live [152]. Thus, availability and accessibility to health services, the kind of 

infrastructures, as well as attitudes and behaviours, can greatly influence health status. 

Various studies [7, 25, 27, 29, 154, 157, 158] highlighted the interest of ecological 

analyses as a means to better describing the health status of populations, and to also 

address relevant public health concerns. It is thought that the area-level variables 

might be a proxy measurement of individual-level characteristics, while lacking 

estimations at the area-level (neighbourhoods) would prevent a better understanding of 
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causes and mechanisms of health inequalities [152]. Neighbourhood has been 

considered to express lifetime exposure to contextual variables, that is to say, socio-

economic characteristics at the area-level which are associated with health outcomes; 

different studies have consistently found slightly higher risks for mortality in deprived 

neighbourhoods, while compositional variables (individual-level socio-economic 

characteristics) show a stronger relationship with health events than contextual 

variables. 

A health survey undertaken in Barcelona in 1992 [40] was used to test the association 

between SES and several health outcomes: perceived health status, smoking habit, and 

presence of chronic diseases. Area-level as well as individual-level SES variables were 

used as a means to check external validity for the ecological variables. To this end, 

percentages of unemployed, illiterate, and occupationally unskilled people were used 

for the former as extracted from the 1991 Spanish census; individual-level information 

included education (as the highest level achieved) and social class (as adapted from 

the British Registrar General classification). The authors found that worst health 

outcomes were associated with lower educational level, as well as lower social class. 

This association was shown for measures of both area-level and individual-level SES. 

Interestingly, smoking among women showed a negative association with lower, 

individual-level (but not area-level), SES. 

The association between tobacco smoking and lung cancer after adjusting for SES was 

investigated within the European Prospective Investigation into Diet and Cancer 

(EPIC) [32]. SES was defined by the highest level of education achieved; sex and 

region within the 10 participant countries were also accounted for. The analysis of a 

sub-cohort of nearly 400,000 people and around 2,000 incident cases of lung cancer 

studied the amount of variation left after fitting a model that adjusted for smoking 

behaviour. Participants were followed for a mean period of eight years. Lower SES 

was known to be associated with higher risk of both lung cancer incidence and 

mortality. Within the EPIC project, results for northern Europe were consistent with 

previous studies. However, after adjusting for tobacco smoking differences between 

SES strata were no longer statistically significant for southern European regions 

(including Spain). Smoking was found to explain 50% of the variation between SES 

strata. The association between incidence and mortality due to lung cancer and lower 

SES was stronger for small cell carcinoma. This association was also statistically 
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significant for squamous-cell carcinoma. After adjusting for tobacco smoking, 

differences for adenocarcinoma were no longer statistically significant. Adjusting for 

fruit and vegetables consumption did not make any difference. These results suggest 

than factors other than tobacco smoking may explain differences in risk for disease 

incidence and mortality due to lung cancer (e.g. use of health-care resources or 

willingness to adopt healthier life-style patterns). 

The association between social class and mortality was assessed through an ecological 

study that retrieved demographic information from the 1996 Spanish census [149]. 

Mortality concerning the autonomous region of Madrid was obtained from registries 

for the two-year period 1996-1997. In this study, a gradient in mortality was shown to 

exist depending on social class based on occupation according to the Spanish national 

classification of occupations. Mortality risk was found to be highest in groups VI and 

VII (manual workers) and lowest in groups I and II (managers and professionals). The 

highest gradient in mortality explained by occupation occurred for respiratory diseases 

and the lowest gradient was seen for cardiovascular diseases. The authors attributed 

this differential to the stronger association between tobacco smoking with the 

respiratory diseases and the less important relationship with the cardiovascular 

diseases. It was shown that men in the lower-class occupational groups (VI and VII) 

had achieved lower educational levels than men in higher-class occupational groups (I 

and II), which explained most variation in mortality between occupational categories. 

Employment status (either employee or employer) only explained a small amount of 

variation between occupational categories. The mechanisms by which higher 

education poses a lower risk of mortality is thought to be associated with better control 

over daily life stressful situation which, in turn, would influence lifestyle choices. 

Higher education is also known to be associated with higher incomes which determine 

living standards. Higher rates of tobacco smoking, physical inactivity, and alcohol 

drinking had been shown for Spanish people in lower educational groups at that time. 

Also, Spanish people in higher educational groups had higher incomes, which was 

determined by academic qualifications, rather than work experience. 

2.6 Radon-gas exposure 

Even though tobacco smoking is considered to be the most important risk factor for 

lung cancer, indoor radon-gas pollution is widely acknowledged for exerting a 

synergistic effect along with smoking [114, 159]. Also, the heterogeneous 
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geographical distribution of lung cancer (especially notorious among both sexes) 

would support the importance of environmental factors interacting with tobacco 

smoking. Radon-gas (Rn222) is a decay product derived from radium (Ra226) which, in 

turn, is derived from uranium (Ur238

Lung cancer has been the only adverse health effect clearly associated with indoor 

radon exposure [115, 116]. Knowledge about radon health effects came up from 

epidemiological studies on uranium miners [115]. More recently, at least one meta-

analysis [161], and two pooled-analyses of case-control studies implemented in 

Europe and the U.S. have been able to support the association, as well as the dose-

response relationship, between residential exposure to radon-gas and lung cancer [162, 

163]. Most cancers associated with radon-gas exposure are located in the bronchi, 

which are the anatomic sites where radon particles accumulate. Moreover, all 

histological types of cancer are deemed able to arise in association with radon 

exposure. Radon-gas exposure is nowadays considered as one of the most important 

ambient-related causes of death. Its relevance concerning lung cancer is thought to 

follow immediately after that of tobacco smoking. Mortality from lung cancer 

attributed to radon-gas exposure is considered to be even higher than that due to 

passive smoking [115]. It is estimated that 15000 cases of lung cancer a year (14% of 

all cases) in the U.S. and 2000 cases a year (6% of all cases) in the U.K., are due to 

radon exposure [115, 116]. Also, it is estimated that from 900 radon-attributed cases a 

year diagnosed in Sweden, two thirds could be preventable [164]. In addition, it is 

) [116]. Radon-gas can be found underground 

where uranium ores are present. It is remarkable that radon, in contrast to its 

precursors, has a very short half-life of around 3.8 days [116, 160]. It quickly spreads 

from the ground into the air, where it can attach to dust particles, clothing and other 

materials alike, allowing humans exposed to the polluted environment to inhale the 

gas. The short half life of radon and radon daughters (by-products) is so short that the 

human respiratory system cannot remove the pollutants from the body before they 

have had a harmful effect. Radon daughters have short half-lives of less than 30 

minutes. Furthermore, radon cannot be perceived by human senses, because it is 

odourless, colourless and tasteless. Moreover, acute exposure to radon does not cause 

any symptoms that allow its presence to be suspected. Consequently, only direct 

measurement allows detection. Radon (and its daughters) is primarily a problem of 

enclosed spaces, where it can accumulate if the space is not ventilated. 
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believed that there is a synergy between tobacco smoking and radon exposure that 

underlies different patterns of lung cancer incidence between smokers and non-

smokers exposed to radon [115, 116], as set out under heading 2.6.1. 

Radon-gas became a public health concern in 1984 [160]: an electrical engineer 

working at the Limerick nuclear plant of Pennsylvania (U.S.A.), who was not 

supposed to be in contact with any radioactive materials, caused the contamination 

alarm to go off. As this happened both at exiting and entering work, the engineer’s 

house was later identified as the source of radon decay products attached to his 

clothing. The U.S.A. Environmental Protection Agency had fixed safety limits for 

radon at 4 pCi/L (or 148 Bq/m3

Once radon-gas diffuses into houses, it tends to accumulate in the lowest levels of the 

building (such as basements) and is able to spread to other levels, depending on 

several variables such as ventilation rate, or temperature; seasonal and even daily 

variations are known to influence indoor radon concentration [116, 166]. Therefore, 

many distinct factors are responsible for radon pollution inside buildings, such as 

lithology underneath the houses and building materials [61, 165, 167-172], 

atmospheric environment, ventilation habits of the occupants, and origin of the water 

supply [58]. In summary, tobacco smoking and radon-gas exposure are currently the 

primary aetiological risk factors for lung cancer. Since primary prevention measures 

are available for both of them, the most important public health interventions to be 

considered are tobacco smoking cessation, and reduction of environmental radon 

exposure (whether occupational [173] or residential). Different kinds of measures can 

be implemented to mitigate indoor radon pollution. Most of them are directed to 

prevent the soil-gas entry into the buildings, rather than to evacuate the indoor gas. 

). Remedial actions were recommended when those 

limits were surpassed. In contrast, concentrations of radon daughters at this engineer’s 

house exceeded safety limits in as much as 500 times. This was almost 70 times higher 

than the occupational exposure tolerated for miners in most countries [159]. It was 

then found that radon could seep into buildings, throughout floor cracks, or dirt floors 

and even throughout certain building materials (e.g. concrete). Still worse, some 

building materials can be a source of indoor radon pollution (e.g. granite, brick [165], 

and shale [116]). Radon can also enter buildings accompanying water supply (mainly 

groundwater), and diffuse over the surrounding environment.  
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Nevertheless, exhausting the gas is also considered to be a useful measure [116, 174, 

175]. 

As already mentioned, due to the chemical characteristics inherent to radon-gas, it can 

only be detected by direct measurement. Therefore, to implement appropriate 

interventions that mitigate indoor radon pollution, a quantitative estimate of actual 

concentration of gas inside buildings is needed. Given that available radon tests and 

mitigation remedies are resource consuming, several health policy strategies have been 

devised to quantify indoor radon pollution. They range from universal scrutiny (one or 

two step confirmatory measures) to targeted measurement on high-risk areas. To help 

provide an informed decision-making process some cost-effectiveness analyses have 

been undertaken [176], where the latter option (measurements on previously identified 

high-risk areas) was shown to be the most cost-effective one. Many studies in the 

U.S.A. and Europe have been carried out to produce risk maps at the national, 

regional, or local level [165, 167, 168, 172, 177, 178]. These maps have been based on 

direct or indirect measurements of indoor radon-gas concentration. Different kinds of 

radiation detectors were used throughout short-term (some days), or long-term (up to 

several months) follow-up periods. Random sampling measurement of radon-gas 

concentration inside buildings has been used while bearing in mind features such as 

seasonal and/or daily fluctuation, type of building or geologic characteristics of the 

soil. The aim is to take sampling measurements that are as much representative of the 

area under study, as possible. Such studies have shown to be useful in Spain with a 

view to highlighting large areas worthy of closer investigation. A series of such 

investigations implemented in Spain, have been published between 1991 and 2004 

[58, 61, 165, 179-181]. 

As in other countries [182], a national survey regarding indoor radon-gas pollution 

was implemented. The Spanish survey [165] was carried out during winter time 

(where maximum radon concentrations are reported to be found) in 1988 and replicate 

measures were taken the following year. This survey identified, at a national scale, 

geographical areas of high indoor radon concentrations (e.g., the autonomous region of 

Galicia, to the North West of the country) which are also known for having soils of 

granitic composition. In this study the median levels of radon-gas were between 17.6 

and 117.6 Bq/m3 (the latter one in Galicia). The median value for the country as a 

whole (41.1 Bq/m3) was reported to be similar to values measured in other countries 
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[159]. According to this study, 13% of investigated houses in Spain, had radon 

concentrations above recommended EPA limits for remedial actions to be 

implemented. This proportion was as high as 39%, in some specific areas of the 

country [180]. Limitations inherent in the methods for radon-gas measurement (such 

as cost [61, 167]) have forced random sampling as a design feature of research while 

choosing areas to be measured. Also, replicate measurements (so that more precise 

estimations are obtained) have suffered from constraints related to cost. 

Due to the great number of different factors able to modify effective radon exposure 

(such as temperature, ventilation habits, building materials and water supply) other 

approaches have been developed. They are essentially aimed to using easily accessible 

surrogate measures for potential radon exposure. In some cases methods have been 

devised as a complement to allow a better characterisation of areas where few 

measurements were previously taken [61, 165]. Several studies have tried to assess the 

extent to which surficial geology is a good predictor for potential radon-exposure, 

when the gold standard of radiation measurement methods is impractical or too 

expensive [61, 167-169, 172, 183-185]. One of these studies, implemented in Spain 

[61], compared mapping of natural gamma radiation from soils (obtained by 

radiometric measurements) with geological maps of the country. A good correlation 

was found between gamma radiation and geology. Then a radon mapping was 

predicted from gamma radiation and compared to direct radon measurements, obtained 

from a former national survey. A good correlation was also found between observed 

and expected values for radon concentration [165]. 

Notwithstanding this close similarity between the distributions of spatial gamma-

radiation, geology, and measured as well as predicted values, indoor radon 

concentration was only warranted by visual inspection of choropleth maps; no further 

analysis was presented. Furthermore, one would expect (at least to a degree) some 

correlation to arise as an artefact due to design issues, given that they had to estimate 

some missing radiometric measurements from geological characteristics. Finally, 

although a repeated measurement design was used (30 measurements on each 

location) throughout the whole country, many places (such as urban areas) remained 

unmeasured. For the whole region of Andalucía (87,547 Km2, or 18% of Spanish 

surface [186]), measurements were only taken in 8 distinct places. In reference to the 

above methodological issues, some researchers [182, 187] have pointed out that the 
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sampling distribution of radon concentration measurements is typically a log normal 

one (as it was also shown by the Spanish report [165]). The usual parameter of interest 

to be estimated is the percentage of homes which geometric mean of radon 

concentration is on, or above, the limits set by the EPA. To this aim, 30 replicate 

measurements would be enough for the standard error of estimates being less than 

20%, given the variability found in these studies [167, 168]. 

Therefore, the number of measurements at each sample point was probably sufficient 

to estimate the frequency distribution of radon levels at each place. However, the total 

number of points sampled in Andalucía was too small to provide an effective map of 

radon risk at the small-area level. When considering representativeness of sample 

measurements (which is more than only a statistical issue) it is important to bear in 

mind that radon concentration can greatly vary by smaller areas than the ones usually 

analysed. This could be partly explained by the presence, at some restricted areas, of 

permeable deposits that allow radon-gas to diffuse.  

It is also worthy of comment that the preceding study [168] reported a very poor 

response rate: 3,215 out of 9,080 (or 35%) mailed home owners applied to joining the 

survey. Subsequently, 1,645 out of 3,215 (or 51% of them) produced effective 

measurements. That is to say, only 18% of the potential study population participated. 

This could have been a serious flaw provided that a bias (such as a self selection) had 

occurred. Nevertheless, although the authors did not report any kind of analysis to 

address this potential drawback, it seems plausible that missing values had happened 

randomly. 

It is also worth noting that, in this study, the geometric mean of radon concentration 

for each town and city was estimated as a compound measure made from a variable 

number of existent radon measurements (up to 30 readings) or radon measurements 

plus correlations of measurements to the surficial geology. More recently, published 

research on radon-risk mapping [183, 185] has taken advantage of geo-statistic 

techniques to support the idea that the spatial distribution of radon concentration (or 

radon potential, as a derived variable) has a main component, the trend, which can be 

modelled using surficial geology as a categorical variable. In fact, different 

classifications made from geologic and lithologic characteristics of soils, as a 

surrogate measurement for radon potential. The variability shown by data and 

explained by the fitted model depends (within a limited range from around 5% to11%) 
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upon how detailed the geologic/lithologic information is. Nevertheless, even a coarse 

classification in a few geologic categories is shown to be useful to model the 

geometric mean of radon potential. Of course, a residual component was still remained 

and most probably was not related to geology/lithology, but to other variables 

controlling radon concentration. 

Concerning the scale at which geology should be used as a surrogate measure for 

radon concentration, the previous study pointed out that the most relevant issue has to 

do with the aim of the research. A high resolution (scale 1:50,000) might be necessary 

if a local description is going to be considered. Moreover, it is of most importance to 

bear in mind that traditional geology, which is mainly based on rocks’ age, might not 

be the best classification method to be used as a surrogate, categorical, variable for 

radon concentration, or radon potential, in some instances. Lithology, which takes into 

account rock composition, was shown in this study to be useful while modelling radon 

potential trend. Other structural variables as texture (which may be a good proxy for 

soil permeability) and geo-chemistry were considered to be worthy of investigation in 

the future. 

2.6.1 Joint effect of radon-gas exposure and tobacco smoking 

As mentioned in section 2.5, different patterns of lung-cancer mortality between 

smokers and non-smokers, who are both exposed to radon pollution, could be 

explained by a synergistic effect of tobacco smoking and radon [114]. Statistical 

interaction shown on large scale cohort studies, suggests a multiplicative or a mixture 

between additive and multiplicative risk models [114, 159, 188]. It indicates effect 

modification of radon exposure on lung cancer incidence while a concomitant 

exposure to smoking occurs. So, it is considered that among people suffering from 

lung cancer due to radon exposure, most of them (95 % of men and 90% of women) 

had ever smoked. Conversely, other cohort [117] and case control studies [189] did 

not find any statistical interaction that suggests the effect of radon-gas exposure be 

modified by tobacco smoke. 

Given the existing interdependence between radon and tobacco effects on lung cancer, 

it is of great importance to take into account the distribution of tobacco smoking while 

analysing radon exposure, either at an individual or area-level. Different attempts have 

been made to estimate smoking prevalence in small area studies. Since there is a good 
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correlation between perceived health status and health indicators, such as mortality 

[156], it would be very helpful to investigate the problem at the large scale taking 

advantage of Health Surveys. 

Moreover, one might claim the superiority of individual-level information coming 

from cross-sectional studies like Health Surveys, which are not prone to bias due to 

ecological fallacy, which is the main drawback of aggregate studies. Nevertheless, 

even though information provided by large-scale Health Surveys, at national or 

regional level, would be very useful at the small-area level, they are not usually 

designed with such a purpose in mind. Therefore, estimates for smaller areas (by using 

sub-samples) would produce very imprecise results. To overcome this drawback, 

different approaches have been devised by taking into account both individual-level 

characteristics and a measurement of the geographical context (socio-economic 

features and environmental factors, with which people interact). The reasoning 

underlying analysis, jointly at the aggregate and individual level (the so called 

multilevel or contextual analysis [152, 156, 158]) is that a better insight about the 

complex relationships of exposure and disease would be reached. In this respect, 

small-area ecological studies can be of great value. 

To assess the smoking habit at the small-area level, some researchers made use of 

information already available from large-scale Health Surveys. Others, made 

predictions from surrogate sources, such as SES at the aggregate level (deprivation 

indices [154, 157]), or local availability of tobacco (convenience stores [157]). As an 

example, one of the preceding studies [154] showed a highly significant association 

between individual smoking behaviour and socio-economic deprivation at the area-

level using the Carstairs-Morris index, after adjustment for age and sex. Introduction 

of individual socio-economic group, still allowed the Carstairs-Morris index to remain 

in the model as a significant variable, collinearity between both individual and 

aggregate socio-economic variables was considered to be nonexistent. According to 

the hypothesis pointed out above, which stresses the relevance of multilevel analysis, 

these results showed a higher prevalence of smoking for both individuals in lowest 

socio-economic strata as well as those living in most deprived areas. That is to say, 

smoking behaviour variability could be better explained when SES was measured not 

only for individuals, but also for neighbourhoods in which those individuals lived. 
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Another multilevel study [102], used the Norfolk cohort of the European Prospective 

Investigation into Cancer (EPIC) study to also assess the predictive value of area-level 

SES (using the Townsend index) in association with the smoking prevalence. It was 

found that both individual and area-level SES independently predicted smoking 

behaviour. A more recent study [157], also concluded that the area-level components 

could exert an important effect, independently of individual SES. In this case a higher 

concentration of convenience stores, where tobacco was easily accessible, was 

positively associated with smoking prevalence as ascertained by individual-level 

information. The concentration of convenience stores was reported to operate 

differently in people of high compared to low SES, the former group being protected 

to a degree. Nevertheless, people of high SES, living in deprived areas, or where a 

greater concentration of convenient stores occurred, were more likely to be smokers. 

The relationship between tobacco accessibility at the area-level and smoking 

behaviour was shown not to be altered when different measures of accessibility, other 

than convenience store density, were considered. 

2.6.2 Literature review summary 

Several ecological studies have described a characteristic pattern of higher mortality in 

western Andalucía, for different overlapping periods between 1981 and 2006, in both 

men and women [7, 10, 11, 13, 16, 96]. This pattern has been reported to exist for all-

cause mortality, as well as for some specific causes such as lung cancer [9, 11]. In 

Andalucía, lung cancer was the leading cause of mortality due to cancer in men, and 

the fifth cause in women, from 1975 to 1997 [23]. Different hypotheses have been 

suggested that would explain this excess of mortality in western Andalucía, from 

lifestyle-related exposures to environmental pollutants [101], while there is consensus 

in the need for measuring area-level deprivation, as a surrogate measure (and a 

potential confounder) for exposure to different risk factors [1, 7, 24, 28-31, 34, 103]. 

One such factor, radon-gas exposure, has been recognised to be the second most 

important cause of lung-cancer mortality, after tobacco smoking [109, 115-117, 189]. 

This is the reason why many countries have implemented programmes to mapping the 

spatial distribution of potential radon-gas exposure [61, 165, 167, 182, 187]. 

However, measurements of indoor radon-gas concentration have some drawbacks due 

to costs, and problems of interpretation in terms of their correlation with actual human 

exposure [190, 191]. Difficulties in taking actual measurements of indoor radon-gas 
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concentration has led to obtaining national maps of rather low resolution, when 

compared to the information needed for studies at the small-area level [165]. To tackle 

these difficulties, different alternatives have been implemented to deriving potential 

radon-gas exposure; most of them take advantage of the correlation between content of 

radon-gas in the soil and surficial lithology and geology [58, 61, 168, 169, 171, 172, 

185, 192, 193]. Nevertheless, even though a digitised, high-resolution, lithology map 

is available for Andalucía [60], there is sparse published research in Spain that has 

made use of lithological information to deriving radon maps at the small-area level 

[61].  

Surrogate measurements for potential radon-gas exposure have been usually derived 

from modelling of actual samples of concentration measurements [61, 168, 169, 171, 

192, 194]. However, in the case of the Andalusian radon map, measurements had been 

taken in just eight sample points [165] across the whole region; this seems to be a 

situation where modelling of latent (unobserved) variables is appropriate. Although 

SEM has been used with applications in the spatial epidemiology of health events 

[195-197], no references were found concerning the estimation of potential exposure 

to radon-gas, by means of SEM.    
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Chapter 3. Data collection and handling 

3.1 Overview 

The geographical and temporal study scope will be presented along with a description 

of data format and sources. Digitised boundaries were available at the municipality 

level (see 3.2); population estimates, mortality data (see 3.3), and socio-economic data 

(see 3.4) were obtainable with the same geographical resolution. Therefore, both the 

SMRs and the socio-economic deprivation score were computed for all the 

municipalities in Andalucía. Lithological information (see 3.2) was obtained for the 

whole Andalusian region; data for each individual municipality was subsequently 

extracted, by means of GIS software, to be used in the analysis stage (see 5.2.1).  

3.2 Administrative Boundaries and lithological data 

The municipality is the smallest geographical area at which mortality information was 

available. Therefore, further geographical subdivisions (collective and singular 

population-entities, nuclei and scattered populations) were not used in this study. On a 

yearly basis, the National Statistics Institute publishes an updated catalogue on place 

names, where an eleven-digit code is used to identify geographical areas. Those codes 

were assigned for the first time during the 1981 census was accomplished and have 

remained in use. Terminated codes are not reused (unless the corresponding place 

names are introduced again), and new places are assigned additional codes. Only the 

first five digits were of interest for the analysis stage: the first two digits correspond 

with the province, while the following three represent the municipality. 

Due to administrative changes from 1975 to 2001, several municipalities had to be 

aggregated and/or separated. Hence, to provide population inter-census estimates 

which are geographically homogeneous through the period 1981-2002, those changes 

had to be considered. The Andalusian Statistics Institute provides population data for 

individual municipalities whenever possible. Otherwise (individual information not 

being available for every single year) data belong to aggregations of two to four joined 

municipalities. Thus, 21 municipality codes were the result of aggregations 

corresponding with 47 formerly individual municipalities. Therefore, while the 

original database comprised 770 municipalities they became only 759. To merge both 

datasets, the latter was aggregated by the author of this research thesis, using my own 
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Epi Info scripts. The same changes needed to be reflected onto the digital boundaries 

to match all data and maps.   

The digital map of Andalucía was available, from the Andalusian Health Office, as 

shapefile format. Shapefiles have been devised by the Environmental Systems 

Research Institute, Inc (ESRI) for use in Geographical Information Systems (GIS) 

representation [198]. They can store vector-data (points, lines and polygons) as well as 

its related feature attributes (ID codes, names, area, or population). A shapefile is 

actually a set of files which is comprised of three main datasets: a geometry file (.shp), 

after which the term shapefile is named, that stores information for object 

representation (administrative borders, roads, rivers, streets, buildings); an index file 

(.shx) which speeds access to data; and a dBASE format file (.dbf) that contains the 

information on the feature attributes to be represented on the map. In this case, SMRs 

and RRs, were plotted by using colour shades (choropleth maps). Shapefiles are not 

only used by proprietary products like ESRI ArcGIS, they are also handled by free and 

open-source software like GRASS, Epi Map, GeoBUGS, GeoDa, QGIS and R [50]. 

GeoBUGS, a WinBUGS module (see section 4.2.2), is especially relevant as it made 

possible instant mapping of results after data analysis [199].  

The Andalusian municipal map was exported to GeoBUGS, after its boundaries were 

modified according to municipality aggregation status. The original shapefile map was 

first read into ArcGIS to modify its boundary limits, according to the data aggregation 

already discussed. To rearrange the boundaries, those sets of municipalities to be 

combined were first given a common code, within the attribute table. The boundaries 

were then combined using the Dissolve ArcGIS tool. As a result, a new shapefile was 

obtained that only had 759 polygons, instead of the 770 original areas. The modified 

map was afterwards read from R software using the readShapePoly function built 

within the maptools library [200]. To make the map eventually readable by 

GeoBUGS, it was exported into S-Plus format using the sp2WB function. Although 

ArcGIS is more flexible for GIS representation, GeoBUGS (an add-on to WinBUGS) 

offers some convenient features: the possibility of immediate mapping, after the 

modelling stage, was considered an essential vantage point. 

The lithological map of Andalucía (Figure 3.1) was available online from the 

Andalusian Environmental Office, in shapefile format [60]. The file is publicly 
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available through the Andalusian Environmental Information Network (Red de 

Información Ambiental de Andalucía, REDIAM) which has integrated, 

environmental-related information produced by different regional institutions and 

made available various downloadable products. The lithological map had been jointly 

edited with the Regional Office for Transport and Infrastructure. The map was 

designed with a scale of 1:400,000, based on the national Mining Geological Map at 

the same scale. It was further improved with information from the Spanish Institute of 

Geology and Mining: the National Geological Map (Mapa Geológico Nacional, 

MAGNA) with scale of 1:50,000. Unlike other geological maps, the ground was 

classed according to the physical and chemical composition of the rocks, irrespective 

of its chronological evolution or age. This is relevant given the intimate link between 

potential radon exposure and bedrock composition [61], as presence of radon in the 

soil depends on the content of uranium in the underlying rocks (section 2.6). 

The attribute table accompanying the lithological map consisted of 41 different rock 

classes which belonged to four main groups: volcanic (3 classes), plutonic (4 classes), 

 

Figure 3.1. The Andalusian towns overlaying the lithological map. 

(own elaboration using QGIS software: digital administrative boundaries from the 

Andalusian Health Office; lithological boundaries from the Andalusian 

Environmental Office). 
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metamorphic (15 classes) and sedimentary (19 classes) [60]. In Spain, radium is 

present mainly in some types of rocks such as granite (that belongs in the plutonic 

group), clay (which is a sedimentary rock), and shale (metamorphic) [58, 61]. 

However, other rocks, such as sandstone (sedimentary) and carbonate rocks 

(metamorphic) can also be a radium (and hence, radon) source. Therefore, 

classification of rocks in the four main lithological groups (volcanic, plutonic, 

metamorphic, and sedimentary) where considered appropriate to deriving a surrogate 

measure for potential radon-gas exposure. With the aim of estimating the surface that 

each lithological group occupied within each municipality, the digitised version of the 

lithological map of Andalucía was imported into ArcGIS. All different lithological ID 

codes were re-coded to fit into the four main lithological groups and their respective 

areas (in square kilometres) were computed using ArcGIS software. 

3.3 Mortality data 

Data from the Andalusian Mortality Registry were directly provided by the regional 

Health Office (Consejería de Salud). The Health Office is the governmental body in 

charge of public-health policy development. It is also responsible for supervision of 

health-care management and supply [201]. Several other public institutions are also 

involved in supplying death-related information to help accomplish all the necessary 

registering activities, which leads eventually to electronic mortality records. One of 

the collaborating institutions is the Andalusian Statistics Institute (Instituto de 

Estadística de Andalucía), which is responsible for the coordination of statistical 

activities implemented by attached bodies. The Institute is also in charge of creating, 

maintaining and managing regional statistical-databases using available information 

from various administrative sources [202]. So, death-related information sources are 

comprised of death certificates and death statistical forms (Boletín Estadístico de 

Defunción). As required by law, the physician certifying the death provides all the 

information included in the former, while they only complete the latter on those 

sections related to the causes of death. The rest of this form contains information about 

the identity of the deceased, which is provided by relatives or acquaintances. The 

municipal Civil Registry where the death takes place, supply additional administrative 

data. On a monthly basis, Civil Registries from all 770 municipalities send collected 

certificates and statistical forms to each of the eight corresponding provincial branches 

of the Statistics Institute [203]. 



 

59 

 

The Andalusian Statistics Institute then implements quality-control activities. It 

produces electronic records while checking for comprehensiveness and consistency of 

information. At a further stage, it sends those electronic files to the Natural Population 

Movement Unit (Unidad de Movimiento Natural de la Población). This unit, 

comprising staff from both the Health Office and the Statistics Institute, is responsible 

for coding all causes of death. The set of criteria used for this task is the International 

Classification of Diseases (ICD), as established by the World Health Organization 

(WHO) [67]. Information on deaths has been collected electronically from the year 

1975 onwards. For that purpose, the ICD-8th revision has been in use to record deaths 

that occurred from 1975 to 1979; the ICD-9th revision was used from 1980 until 1998, 

while the ICD-10th

The resulting socio-demographic information is eventually passed onto the Andalusian 

Mortality Registry, within the Health Office. Available data include: date (day, month 

and year) and place of birth (municipality and province); sex, marital status (single, 

married, widow, or separated/divorced); occupation, according to twelve main groups 

of the National Classification of Occupations (Clasificación Nacional de 

Ocupaciones); place of residence (province and municipality (see section 

 revision was introduced in 1999. Quality-control activities are 

systematically implemented for both the socio-demographic and death-cause variables: 

data retrieval is accomplished wherever there is some missing information on the 

death statistical forms; coding revision and checking of consistency, between the 

underlying cause of death and socio-demographic variables are also implemented 

[203]. 

3.2) and 

place and date of death registration, which usually (but not always) coincides with 

each other. For statistical purposes, place of usual residence (instead of place of death) 

is recorded, so that international standards are fulfilled. Even though mortality data are 

available for analysis since 1975, year-by-year population data (by age-group, sex and 

municipality) are only obtainable since 1981 [204]. Given that population data are 

required to estimate the expected number of cases and therefore the SMRs, mortality 

data previous to 1981 were discarded for the modelling stage of the work. 

Information on deaths, as provided by the Andalusian Health Office, needed data 

handling before analysis. Data were provided as a Microsoft Access file, where 

anonymised information had been aggregated according to the number of deaths by 

municipality, year, sex, and cause. The original wide-code format (19 distinct age-



 

60 

 

group variables, from ‘0-1’ to ’85 and older’) was converted into a long-code format 

(one single age-group variable with 18 values, from ‘0-4’ year olds to ’85 and older’). 

By doing so, comparability with age-groups used by available population data (see 

section 3.4 below) was made possible. This produced a more than twofold increase in 

the number of records, although it gave a ready-to-analyse file. Epi Info software 

versions 3.5.1 (launched in 2008) to 3.5.3 [205] were used to handle data import and 

conversion given its relational-database capabilities and Microsoft Access 

compatibility and the previous experience of the author. Since then, a new version of 

Epi Info has been released [206]. Many different scripts were also written (using Epi 

Info and R), or adapted (using WinBUGS and R), to support quality of data-

acquisition and analysis. In this way, any disagreement between original and derived 

files was double-checked by reviewing and amending, where needed, the 

corresponding script. Further data-handling was required, due to changes in 

administrative boundaries throughout the study period. The Andalusian Statistics 

Institute provides online information about aggregation and segregation of 

municipalities [204]. In accordance with that information, some codes had to be 

recoded so that they fitted the boundaries later used for the mapping process (see 

section 3.2). Recoding affected 11 out of 770 (or 1%) geographical codes. 

After that, cases and populations were aggregated by municipality for each year, 

death-cause, age-group, and sex. To reach this stage, I wrote (specifically for this 

purpose) several Epi Info scripts. They allowed addition of variables that labeled 

codes and, therefore, made analysis output easier to interpret and less prone to error. 

That was the case for variables such as death-cause and sex. Another crucial step, to 

make sure that population data were accurate, was to produce zero-count records (for 

the variable number of cases) where no deaths had occurred. These zero-count records, 

represented as missing values in the original 19 age-variables, were unavoidably lost 

while adding the number of cases by age. Taking advantage of Epi Info relational-

database capabilities, the case-file was linked to an aggregate population file. This 

dataset only shared some variables with the former (municipality, age-group and sex) 

while the case-file also contained data on death-cause and year. To prevent manually 

repeating the same task, and reducing the risk of error, I wrote new specific scripts to 

be run within Epi Info. Missing values were replaced with due codes: death-cause, 
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year of reference or zero-counts. As a consequence, computability of both the expected 

number of cases and SMRs figures (see 4.2.1 below) were assured. 

All data preparation eventually produced a first file ready for initial descriptive-

analyses of mortality. Only 759 different municipal codes were left, after the recoding 

process. Given that Epi Info allows for files to be exported to (and imported from) 

different formats, this capability was used throughout the process. It was not only 

useful for data-handling, but also helped in the transition to data modelling (especially 

where exporting data to R software). Mortality data were directly read into Epi Info 

from Microsoft Access files, while population data (see 3.4 below) were imported from 

Microsoft Excel files. 

3.4 Population and socio-economic data 

The Andalusian Statistics Institute (see section 3.1 above) has published online 

population-data at the municipal level [204]. Three different data sources are 

available: decennial censuses, yearly Municipal Register of Inhabitants (Padrón 

Municipal de Habitantes) and year-by-year inter-census population estimates. 

Censuses involve large-scale operations at the national level and are paramount for 

civil services to plan, manage, implement and follow-up public policies [207]. Both 

the national and regional governments have authority on statistics affairs at their 

respective scales. Therefore, a collaborative agreement exists between the Andalusian 

Statistics Institute and its national counterpart, the Spanish National Statistics Institute 

(Instituto Nacional de Estadística, INE,), to coordinate efforts for censuses production 

[207]. There are three different types of censuses that record data about resident 

population, dwellings, and buildings and premises, respectively. To collect 

information on both population and dwellings, four different questionnaires are used 

which have been devised to be self-administered by the interviewees themselves. 

Nevertheless, concerned people can be also assisted by civil servants if required. 

One of these questionnaires (hoja padronal) includes data on individual identification 

variables collected from municipal registries. It is intended for the interviewee to 

review it and amend it where needed. These variables include place of residence 

(province and municipality), date of birth, sex, place of birth (in case of foreigners, 

just country of origin) and nationality. A second questionnaire is the home one, which 

collects information on marital status, achieved level of studies and type of studies. 
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Occupational status classified people as either in the labour force (employed or 

unemployed) or economically inactive. 

Another source of population data is The Municipal Register of Inhabitants, which 

constitutes the official administrative record that proves place of residence [208]. 

These data bases are recorded and maintained by every city council across the country 

and collect information from all population centres. Although intended for 

administrative purposes, as determining financial quotas and legislative representation, 

they are also useful for statistical applications. Thus, Municipal Registers (like 

censuses) supply information about population counts and its demographical structure, 

including age and sex [209]. Both the Andalusian and the National Statistics Institute 

provide online access to the Municipal Register of Inhabitants. The National Statistics 

Institute server hosts much of the information as PC-axis files. This free-software 

format has been developed by Statistics Sweden and is used by many statistical offices 

around the world. It is a convenient tool for data tabulation, which also allows for files 

to be exported using different formats [210, 211]. In contrast, the regional website 

provides on-screen spreadsheet views that can only be copied and pasted, which would 

make data retrieval cumbersome [212]. Therefore, PC-Axis software (2007 version) 

was also downloaded from the National Statistics Institute to read and export data 

from the Municipal Register of Inhabitants. Inter-census population estimates (by 

municipality, sex and five-year age-groups), were available for the period 1981-2001. 

A single PC-Axis file was available through the Andalusian Statistics Institute 

website. It comprised population data by municipality age-group and year, which 

included both the study period (1986-1995) and the period used to provide prior 

probabilities to implement a sensitivity analysis, concerning the clustering and 

heterogeneity components (1981-1985). This file was exported to dBASE format and 

then read from Epi Info to combine all 18 age-variables into a single one, using a 

purpose-written script. 

Socio-economic information was drawn from the census. Data from the 1991 census is 

available online both through the Andalusian and the National Statistics Institute 

websites [212, 213]. Therefore, population census data needed to compute area-level 

socio-economic deprivation were downloaded from the National Statistics Institute 

website as PC-axis files. Three different files were obtained on the number of people, 

by municipality, who were illiterate, unemployed and doing manual jobs. As those 
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files consisted of information concerning all Spanish municipalities, they were 

exported to exploit Epi Info relational-database capabilities. This made it possible to 

select only Andalusian municipalities, more efficiently than through a highlight-and-

select process available within PC-Axis. A previous step though, was to export these 

files to Microsoft Excel format. The aim was to exclude some values of no use and 

make some calculations prior to computing the deprivation scores. 

The original PC-Axis file related to literacy level had three fields: municipality, sex 

and literacy level. The files on employment level and job description had the first two 

fields (municipality and sex) in common. The municipality field had 8,127 unique 

numerical codes followed by their literal names, as one single character-string within 

the same field; sex had values for both sexes and the total number of people; the 

literacy level was classified according to thirteen different classes (from illiterate to 

doctorate, plus several subtotals and a grand-total value). Since only three of these 

values on literacy level were needed, the rest were not exported to Microsoft Excel. 

Then, only the total-population count, and the number of people who were illiterate 

(not able to read or write) or had no studies degree were exported to Excel format. Sex 

counts were not exported, as the area-level deprivation index did not intend to address 

sex differences in populations. Illiteracy has been previously defined as the number of 

people (10 years or older) who were illiterate or had no studies [28, 155]; it was 

computed by the author (using Microsoft Excel) as the percentage out of the total (10 

years or older) population.  

The employment status had been classified in the original PC-Axis file using eleven 

different categories. Both the economically-active (16 to 64 year olds) and inactive (all 

others) populations had been included by the National Statistics Institute. The former 

group had been divided in three different classes: employed, unemployed looking for 

their first job, unemployed who had worked before. The latter had been classified in 

four groups: retired, students, doing housework, and others. Additional subtotals and 

grand-total counts completed the original variable about employment level. The 

unemployment component has been previously defined as the number of unemployed 

people within the economically-active population [28, 155]. It was computed as the 

percentage out of the total economically-active population. The Manual workers group 

is defined as people belonging to any of the following five (out of twenty) different 
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classes: those specialised in building construction, mines and metallurgic industries, 

any other industries, machinery and facilities, and non-skilled workers [155]. 

Once all deprivation components (percentages of illiteracy, unemployment, and 

manual workers) were computed, a Microsoft Excel file was created that also included 

the municipality codes. That file was then imported into Epi Info to select only those 

records which municipality code belongs to Andalucía (see section 3.2). After that, the 

file was exported to R software (as a dBASE file) to implement a Principal 

Component Analysis (PCA) and subsequently produce an area-level (by municipality) 

deprivation score. This final deprivation score (computed for the 759 municipalities) 

had a median value of 0.01 and standard deviation 1.18. The minimum and maximum 

values were -3.46 and 3.38, respectively. The interquartile range was 1.58. As a 

measure of material deprivation, the higher the score, the more deprived an area is.
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Chapter 4. Methods 

4.1 Overview 

This section will describe the health outcomes that were analysed (mortality due to 

lung cancer, larynx cancer and COPD) and how the magnitudes of their effects were 

estimated and subsequently modelled and mapped. Details will be given on how 

mortality estimates were computed for both men and women. Firstly, the use of 

internal, indirect, standardisation to compute the SMRs for all three mortality causes 

will be presented. Secondly, the modelling process will be described in detail. 

Two different models were used to explain geographical heterogeneity in the mortality 

distribution. Firstly, a Structural Equation Model (SEM) [195, 196] was fitted to 

confirm that rock composition (as a surrogate measure for potential content of radon-

gas in the soil) explained spatial heterogeneity in a lithology score. This lithology 

score, in turn, was produced from a Conditional Autoregressive (CAR) model as it 

was hypothesised to be spatially auto-correlated. That is to say, lithology of 

neighbouring areas was expected to be more similar to each other than to 

geographically-distant areas. Secondly, a BYM model was used that split the residual 

(not explained by the model) variance into two different components: spatially auto-

correlated heterogeneity (CH, or clustering) and uncorrelated heterogeneity (UH, or 

random heterogeneity). In both cases (the SEM and BYM models) adjustment for 

socio-economic status (SES) at the area-level was implemented using a deprivation 

score. This deprivation score was computed by means of Principal Component 

Analysis (PCA) that made use of the percentage of illiterate and unemployed people, 

as well as the percentage of manual workers, by municipality. 

Lastly, mapping of SMRs, and RRs obtained from the BYM model will be presented 

for lung-cancer mortality, separately for both men and women. Individual RR maps 

will be shown for each of the model components so that they are visually appraised. 

Thus, maps of RR due to lithology, deprivation and the residual variance (both 

clustering and heterogeneity) will be presented. Also, exceedance probabilities maps 

(of an RR being greater, or less, than 1) were produced to convey the likelihood that 

there is an excess, or lack, of risk of mortality for lung cancer, at some specific areas. 
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4.2 Health outcomes estimates 

4.2.1 Estimates of the expected number of cases 

Any mortality (or morbidity) frequency measure used to compare different populations 

must consider structural differences that may exist among them. Then, age and sex, as 

well as social class are considered to be common potential confounders to be adjusted 

for. This consideration is based on: firstly, these covariates may be simultaneously 

related to both the outcome and the exposure of interest; secondly, these relationships 

may be independent of each other; thirdly, the populations may differ in the 

distribution of the covariates. When these circumstances are present, a confounding 

effect may bias the statistical association between the exposure of interest and the 

outcome. As a result, any association (e.g. as measured by means of the relative risk) 

may be either overestimated or underestimated. When an exposure-outcome 

relationship is confounded, a true statistical association may not be detected; and the 

reverse, a finding of a spurious statistical association, may also happen. To address a 

potential confounding effect in the analysis stage of observational studies, different 

solutions can be implemented. Three different techniques have been used in this 

thesis: standardisation, stratification, and multivariable regression analysis. 

Standardisation was used to take account of differences in the age structure of the 

populations under comparison. Stratification was applied so that data for males and 

females were analysed separately. Multivariable regression analysis adjusted for area-

level deprivation while estimating the effect of lithology, on mortality.  

To accomplishing age-standardisation, the indirect, internal, method was used; it 

started with rates coming from age-groups of an internal population (the whole 

Andalusian population) which were then multiplied by the within-strata study-

population sizes corresponding to each geographical area [214, 215]. In this way, the 

expected numbers of cases were estimated and, then, summed across strata (age 

groups). Then, the ratio of observed to expected numbers was computed to derive a 

frequency measure. This ratio is the SMR. In this scenario (a small number of cases 

arising from a relatively large population), the observed number of cases is considered 

to be Poisson distributed. Under this assumption (which must be checked) the SMR is 

the Maximum Likelihood Estimate (MLE) of the RR [43, 63, 73].  
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Another important step in the SMR computation process is to choose the population 

providing the rates [43]. Internal standardisation was used where the rates came from 

the addition of every single study population, as a whole. An iterative computational 

method devised by Mantel and Stark and subsequently simplified by Breslow and Day 

has been used in the past for rate standardisation [70, 71]. These methods are based on 

the assumption of a multiplicative model for the distribution of the observed number 

of cases. Consequently similar results can be achieved by fitting a Poisson regression 

model on the log scale [43, 47, 90]. Nevertheless, modelling of the SMRs by basic 

Poisson regression has some limitations. One of the restrictions of the Poisson model 

is that the variance and the mean are assumed to be equal. This assumption is, in 

practice, difficult to maintain and overdispersion (that is, the variance being larger 

than the mean) may occur. Overdispersion can arise due to one or more of the 

following: spatial autocorrelation, an excess of zero-event values (such as in a rare-

disease situation), or just random heterogeneity [44, 90, 216, 217]. Where a Poisson 

model does not fit the data, it underestimates the standard error of the point estimates 

for the explanatory variables. 

As an alternative a Negative-Binomial model, which allows for overdispersion, might 

be fitted, instead. The Negative-Binomial distribution would give the same point 

estimates, but larger standard errors, and hence, wider confidence intervals. Another 

difficulty that both the Poisson and Negative-Binomial models can encounter is when 

fitting data where an excess of zero-values (sparseness) is present; this may be the case 

where rare diseases are analysed. In these instances, a Zero Inflated Poisson (ZIP), or 

Zero Inflated Negative Binomial (ZINB) model can be useful alternatives. However, 

neither ZIP models, nor ZINB models, take spatial auto-correlation into consideration. 

Nevertheless, both ZIP and ZINB models can be further extended to accommodate 

complex hierarchical structures that account for both, spatial auto-correlation 

(clustering), and unstructured (heterogeneity) effects. 

Therefore, to account for the potential confounding due to differences in the age-

structure of the populations being analysed, age-adjusted SMRs estimates were 

calculated for both men and women in every Andalusian municipality. Estimates were 

calculated for a total of 759 municipalities, for the periods 1981-1985 and 1986-1995. 

Internal, indirect standardization [51, 62, p. 312-5] was used that obtained the rates 

from the whole study population. Subsequently, the rates and the corresponding study 
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populations were used to estimate the expected number of cases. These figures were 

applied, in turn, to model the SMRs via Bayesian regression analysis (see 4.2.2). The 

SMRs were computed for all three distinct mortality causes: lung cancer, larynx 

cancer, and COPD. 

To obtain age-and-sex adjusted rates, the glm (generalised linear models) function 

(within R stats-library [218]) was used to fit separate Poisson regression models to the 

data concerning mortality due to lung cancer, larynx cancer and COPD, respectively. 

The outcome of interest was the observed number of cases and the variable population 

was specified as an offset. The starting point was a saturated model, where the 

predictor variables ‘age-group’, ‘sex’ and the interaction ‘age-group by sex’ were 

included. The Akaike Information Criterion (AIC), or penalised log-likelihood, guided 

model fitting [77, p.353-4]. The AIC is a derivation of a likelihood ratio test [215, p. 

309-10] which in addition takes into consideration (penalises) complexity of the 

model, according to the number of parameters included. The automated stepAIC 

function was used: it drops one parameter at a time and prints the value of AIC for 

each model. The model with the minimum-significant AIC was chosen. The saturated 

model (age-group + sex + [age-group*sex]), remained as the minimum adequate 

model.  

The subscript utility, available within the R software, was used to write a script that 

recorded the estimated rates of age-groups for each sex. This utility allows for access 

and manipulation of any elements stored within R objects (vectors, matrices, arrays, 

data frames and lists) [219]. The output produced after fitting a Poisson regression 

model (by means of the glm function) produces a list object or, more precisely, a list 

of lists. One of its elements contains the regression coefficients estimated by the 

model. These coefficients can be extracted as a group, using the ‘coef’ function 

available in the R stat-library [218]. Alternatively, the regression coefficients can be 

individually referred to by means of the subscripting utility, which allows for the 

manipulation of its values. So, the regression coefficients resulting from Poisson 

regression analysis were accessed and the estimated rates were computed in the 

original, multiplicative, scale: that is, as the antilog of the corresponding linear 

combination of parameters (age-group, sex and the interaction between them, plus the 

intercept). The resulting variable, the estimated rates, was then merged with the file 

containing the observed number of cases by municipality. To accomplish this task, 
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both files were linked by common fields (age group and sex) by means of the same 

script. Additional information contained in the final file included yearly population 

size, as obtained during data collection (see 3.4). 

The estimated rates previously obtained allowed the computation of the expected 

number of cases and, consequently, of the SMRs. Firstly, the rates were multiplied by 

the population size to calculate the expected number of cases. Figures were obtained 

for age group, sex and yearly strata within every municipality. The data were 

aggregated by municipality where each one had a total number of observed and 

expected cases, per year. All this computation was accomplished using Epi Info 

software, where the summarise function (within the Analyse Data module) allowed for 

data aggregation. The next step, computing the SMRs, required further modelling 

implementation. 

Although SMR calculation (as the ratio of observed over the expected number of 

cases) is apparently straightforward, two different issues were to be addressed: 

computational difficulties and spatial auto-correlation. When SMRs are calculated at 

the small area level, instability of the ratios (due to small expected number of cases) is 

likely to be encountered, leading to imprecise estimates. This can happen in the 

presence of either rare health events, and/or very small study populations. The second 

issue, spatial auto-correlation, concerns the lack of independence of observations. 

Both difficulties were addressed by modelling the SMRs using WinBUGS software, 

assuming that the observed number of cases followed a Poisson distribution. The 

previously estimated expected number of cases, instead of the populations was used as 

an offset [220]. Age-group and sex (as well as the interaction between both variables) 

were adjusted for as in the previous model and for the same periods of time (1981-

1985 and 1986-1995). To allow for spatial auto-correlation, the BYM model was used; 

it partitions the residual variance into two different components: correlated 

heterogeneity (CH, or clustering) and uncorrelated heterogeneity (UH, or random 

heterogeneity) [63, p. 123-7, 221, p. 84-92, 119]. The clustering component arises 

from a Conditional Autoregressive (CAR) model; in the BYM model, the log disease-

rate of a particular area is a function of both, explanatory variables, and potential 

confounders. The local average of disease rate in neighbouring areas partially pools 

(or smoothes) the original rates towards a local mean-value [222]. For the present 

analysis a queen-style adjacency weight-matrix was defined using the ‘nb2WB’ R-
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software function, implemented within the R ‘spdep’ library [223]. This neighbouring 

definition (which borrows its name from chess moves) considers polygons to be 

neighbours if they share either a single boundary or vertex (section 4.2.2 ). The second 

component of the residual variance in the above-mentioned BYM model is the 

spatially-uncorrelated (or random) heterogeneity. This component was modelled as a 

normal distribution. 

4.2.2 Modelling of Standardised Mortality Ratios 

Observations arising from the same or close geographical areas tend to be similar to 

each other, while observations at locations which are far apart from each other tend to 

be dissimilar. These kinds of processes give rise to observations that are said to be 

clustered (or pseudo-replicated); that is to say, they are not independent from each 

other. In this situation, usual statistical estimates would produce too-narrow Credible 

Intervals (CIs), so that the effect of the explanatory variable of interest would be 

imprecisely estimated. As a further downside, this analytical method would prevent 

from gaining knowledge about any residual variability that is spatially correlated.  

Consequently, a specific statistical approach is needed to address spatial 

autocorrelation. One simple alternative could be to summarise information for each 

individual area (no-pooling analysis). The drawback of such an approach is the 

potential instability of the SMRs [63 p. 4-5]. Extreme values would be estimated for 

areas with small population size and, hence, low number of expected cases. These 

extreme estimates would have over-estimated standard errors. To overcome this 

difficulty, individual-area estimates can be weighted (partial-pooling analysis, 

shrinking, or smoothing) according to their relative variance, as compared to an 

average variance. Estimates based on smaller denominators would express a value 

close to the average; conversely, estimates based on larger denominators would show 

a magnitude closer to the individual (un-weighted) area-value. In this way, emphasis is 

laid on the most reliable estimates. To weight the estimated SMRs, different 

approaches can be made to decide about the kind of smoother to use; this, in turn, is 

closely related to the computation of the adjacency matrix, which is a crucial element 

when Conditional Autoregressive (CAR) distributions are used to implement 

hierarchical models [224].  
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The adjacency matrix is actually comprised of three different matrices that contain 

related pieces of information. Two of them contain the polygon identification and the 

number of its adjacencies (neighbouring polygons) which provide the neighbour 

definition adopted by the researcher. A third one gives the weights assigned to each 

polygon, which will contribute to the smoothing of outcome estimates. Even though 

GeoBUGS (version 1.2) can easily generate the adjacency matrix, a potential flaw 

exists: this software does not check that any particular area is not specified as its own 

neighbour. For this reason, R (instead of WinBUGS) was chosen to compute the 

adjacency matrix. The spdep (spatial dependence) library [223] has different functions 

to create neighbours lists from polygon data frames. So, the poly2nb function was used 

to create an R neighbour list from the imported municipal shapefile. Then, the nb2WB 

function exported that information into WinBUGS, 3-dimensional array, format. 

Differently to WinBUGS, R allowed for checking that no area was declared as a 

neighbour of itself. The function nb2mat produced a binary weights matrix, where 

neighbour relationships were coded as 1 and lack of vicinity as 0. It was then 

straightforward to use the diag function to check values from the matrix main 

diagonal: all of them were 0, as the leading diagonal represented municipality self-

matches.  

Different generic terms are in use to refer to models devised to allow for clustered 

observations: Multilevel, mixed models, cross-sectional time series, random effects, as 

well as hierarchical-models, which is the term used henceforth in this thesis. Among 

the vast array of hierarchical-models applicable to this study, many of them assume 

that the observed number of cases follows a Poisson distribution. In these models, the 

mean value (for each area and stratum) is the product of the estimated rate times the 

expected number of cases. Nevertheless, this assumption has to be checked given that, 

in a very rare-disease situation, it might not be valid. In these cases, sparseness of data 

may lead to an excess of zero values, which would make it inappropriate to model the 

data as if they followed a Poisson distribution. To overcome this difficulty a Zero 

Inflated Poisson (ZIP) model can be fitted (section 4.2.1). 

Two main strands of computational techniques can be followed to fit spatial models: 

frequentist and Bayesian analytical approaches. The former has been the standard 

statistical approach to data analysis for a long time. Nevertheless, Bayesian statistics 

have gained widespread use in the last few years. This is mainly due to the availability 
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of fast hardware, modern computational techniques, and software. Current hardware 

helps taking advantage of Bayesian strengths while managing computational demands; 

computing techniques based on simulation, like Markov Chain Monte Carlo methods 

(MCMC), assist in modelling complexities. Practical feasibility of Bayesian analysis 

has influenced its widespread use as the benefits now outweigh previous difficulties. 

One of the advantages of using a Bayesian approach is related to the overall 

performance of Bayesian estimates. From the frequentist point of view, the best 

estimator (the Maximum Likelihood Estimate [MLE]) is the minimum-variance, 

unbiased estimator. Performance is then measured by the Mean Squared Error (MSE), 

which is a linear combination of both, variance, and bias. Even when the frequentist 

criterion is applied to assess Bayesian estimates, these usually outperform the 

frequentist ones. This happens as the former can be much more precise than the latter. 

This causes the MSE to be lower for Bayesian estimates in many instances, especially 

with small simple sizes. 

Some other advantages of Bayesian estimation are related to the integration of 

information, as well as interpretability. Frequentist inferences are based on the MLE; 

this is the most likely value that the sample statistic would represent, assuming an 

underlying probability model. This statistic would estimate the unknown, but fixed, 

parameter with certain error (which determines the confidence interval width). All of it 

provided the, unrealistic, scenario that the experiment under consideration was 

repeated an indefinite number of times. Therefore, both the point estimate and the 

confidence interval are not referred to the sample actually obtained; it is a theoretical 

range of values that would be obtained in the long-run. In contrast, the Bayesian 

approach brings together two different sources of information to produce inferences: 

information coming from the actual data under the assumed probability model (the 

likelihood), and previous beliefs (the prior probability). These two give the inference 

(the posterior probability). Its foundation is based on the Bayes’ rule that relates to 

conditional probabilities. Using Bayes’ rule, it is possible to estimate the probability of 

any conditional event, if the probability of the related one is known. This foundation 

makes the inferential process divert greatly from frequentist methods. 

Consequently, a direct probability statement can be made about the parameters of 

interest, as they are considered to be random variables. And the same direct 

interpretation applies to estimates of error (credible intervals). A further advantage of 
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Bayesian analysis is that inference is not limited to point estimates (and error 

measurement); the posterior probability gives the whole probability distribution of the 

estimated parameter. It is also important to note that even when numerical results 

obtained by both methods are similar, interpretative differences still remain. Similar 

results may be obtained by both methods as they all use information provided by the 

likelihood, in the inferential process. In the Bayesian approach, though, the likelihood 

is weighted by the prior probability; therefore, a low weight (vague prior) would not 

modify the likelihood to a great extent. 

Notwithstanding this circumstantial agreement in the results, some more advantages 

can still favour the use of Bayesian methods, as these incorporate prior beliefs into the 

modelling stage and can take advantage of simulation (random number generation). 

Use of the prior probabilities allows for inclusion of uncertainty about the parameters, 

which are now considered to be random variables. This is useful as new knowledge is 

an ever cumulative experience. It is also feasible given that researchers are usually 

aware of some kind of previous information. As data quality is always essential, 

choice of prior information is a key element, as it influences (together with the 

likelihood) the posterior estimates. This is the reason why a sensitivity analysis is 

frequently advocated to decide on the best prior to use. 

Simulation is another asset that Bayesian analysis can use. Inferences based on 

simulation rely on random number generation, instead of point estimates and standard 

errors, to summarise results. As a result, an exhaustive description of inferences is 

obtained in the form of a probability density function. Simulation is considered to be 

the most reliable method to address inferential uncertainty and is well suited for very 

small sample size situations. In these cases, frequentist methods rely on the Central 

Limit Theorem to assume that the normal distribution assumption is valid. Simulation, 

instead, allows for an increment of sample size nearly at will and hence, helps to 

reduce uncertainty. It also accommodates complicated models, which makes it 

convenient to fit hierarchical structures, irrespective of the assumed probability model. 

Notwithstanding the advantages that simulation entails, Bayesian analysis can also be 

tackled from a different perspective. 

Bayesian models can be broadly categorised as Empirical Based (EB) or Full Bayes 

(FB) methods. The former approximate the posterior distribution and estimate 
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hyperprior values from the data; conversely, the latter draw samples from the exact 

posterior distribution and estimate hyperpriors from different data sources. FB 

methods use a range of algorithms within the common family known as Markov Chain 

Monte-Carlo (MCMC) methods. By using MCMC, FB methods overcome some 

difficulties that EB methods may encounter. EB methods are based on numerical 

integration to calculate the posterior distribution, which may be difficult where a high 

number of parameters are to model. In these situations, only an approximation to the 

posterior may be achieved. As an alternative to calculating the posterior distribution, 

FB methods draw a random sample from the posterior. An immediate advantage of 

this method is that the sample size can be increased to reach the desired precision. 

Also, given that FB computation is not a major issue nowadays, a vast array of models 

with varying complexity can be fitted.  

Several hierarchical models have been proposed for the spatiotemporal analysis of 

epidemiological data. The BYM model is a FB method that allows for spatial auto-

correlation [62, p. 321-32, 63, p.123-7, 92, 225, 226]. A hierarchical model is 

assumed, in which a random effect variance-component is set as a mixture of 

correlated (spatially structured) and uncorrelated heterogeneity. The spatially-

structured variance is then given a prior distribution under the Conditional 

Autoregressive (CAR) assumption which shrinks SMRs according to a local mean 

depending on neighbouring estimates [62, p. 282-7]. The car.normal distribution 

function (available in WinBUGS) was used to model the prior probability for the 

spatially-structured component of the variance [63, p. 70-1, 123-7]. Fitting this model 

required information about the adjacency matrix which defines neighbouring of spatial 

polygons (see 3.2). This information was supplied and exported as data, from R into 

WinBUGS. A binary weighting list was also required by the model, which assigns the 

value 1 in case a polygon is a neighbour of some specified area, and 0 otherwise. This 

is the simplest way to build an adjacency matrix and the accepted standard when no 

other assumptions are being considered; that is, just the mere existence of 

neighbouring areas, with no additional knowledge or hypotheses concerning 

geographical links. 
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4.3 Software description and analysis implementation 

To be able to model the SMRs by means of the BYM model, different pieces of 

software were used: R [218] and WinBUGS [227] were especially relevant. Both R 

and WinBUGS are free software, readily available on the internet. R is very well 

suited for data analysis, statistical modelling and graphical representation, as well as 

data manipulation (see 4.2.2). One of its main advantages is the availability of many 

different packages that can be installed to tailor specific needs. The spatial 

epidemiology field is not an exception and different packages have been developed to 

assist in different steps: from data import through data manipulation, analysis and 

export [50]. Especially relevant is the ability of R to import/export data with different 

formats. This helped in data manipulation and analysis, as files could be transferred 

from and to different specialist software, like Epi Info, WinBUGS and GeoBUGS. 

WinBUGS is also free software, devised for complex data analysis using a Bayesian 

approach through MCMC methods (specifically the Gibbs sampling algorithm). The 

BUGS project has become open-source [228] and future developments will be only 

made for this version. Nevertheless WinBUGS v1.4.3, which is a stable version, will 

remain available. GeoBUGS is an add-on module to WinBUGS (and OpenBUGS) that 

allows for spatial representation of data. It is particularly convenient for immediate 

mapping of data after they are modelled using WinBUGS. GeoBUGS can also assist in 

creating the adjacency matrix needed to fit Conditional Autoregressive (CAR) models. 

Nevertheless, it does not check that each polygon is not included as its own neighbour; 

for this reason R was used instead, at this step (see 3.2). Different R packages were 

used to accomplish these tasks: ‘maptools’ [229] and ‘spdep’ [223] were useful to 

address boundary data (see 3.2) and the spatial information related to the adjacency 

matrix.  

Convergence is at heart of MCMC methods. All simulated chains are expected to 

reach a common equilibrium state, beyond which they would keep giving the same 

estimation. This estimation (the posterior distribution) would be an accurate 

representation of the target distribution, irrespective of the initial starting point for 

each chain. The BGR statistic is a convergence diagnostic tool that can be used when 

more than one Markov chain is run. It is calculated as the ratio of the variability of 

pooled chains over the average variability of all chains. At an early stage, the BGR 
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statistic ( R̂  tends to be greater than 1. As simulated chains reach a state of 

equilibrium, the statistic becomes closer to 1. Gelman suggests a value of R̂  ≤ 1.1 to 

consider that convergence has been approached, or at least R̂  ≤ 1.5 for some 

parameters, if the process is slow. This latter value is the one Spiegelhalter suggests be 

used. It may be also interesting to analyse convergence using WinBUGS to map 

results in GeoBUGS, immediately after that. 

WinBUGS can apply a number of diagnostic-tools. So, autocorrelation histograms 

help in deciding about the thinning interval, the burn-in period, and the total number 

of iterations to run. Given that the initial estimates of any MCMC chain tend to be 

highly auto-correlated, it is standard procedure to discard part of it; this is the burn-in 

period, which can be incremented to try sampling from the posterior distribution at its 

equilibrium state. The autocorrelation graph also provides details about the lag beyond 

which autocorrelation becomes negligible. This information is used to reduce the 

number of iterations kept, which saves computer memory. This is quite relevant as 

WinBUGS, like R, stores all output analysis in the computer random-access memory 

(RAM). Consequently, too much output-data can cause the software to crash by 

exhausting all available memory. 

There are at least two circumstances where computer-memory exhaustion may be 

encountered: first, if too many parameters are monitored at the same time; secondly, if 

too many iterations are run. The former may arise where several estimates for many 

different areas (such as the 759 different municipalities, in this study) are monitored. 

The latter may happen where precision of estimates needs enhancing, by running long 

chains. To address the first issue, parameter monitoring should proceed gradually. To 

counteract the second one, a thinning interval can be used; in this way, only one in 

several iterations is actually kept (e.g. 1 in 10, if thinning is set to 10). After the 

software has finished running a first set of foreseen iterations, convergence has to be 

checked.     

When the MCMC process consists of more than one chain, WinBUGS allows for 

graphing of BGR statistic against the number of iterations. The graph represents 

values of BGR in three different lines: The green one shows the variability (as 80% 

width intervals) of posterior estimates of pooled chains. The blue one corresponds 

with the average within-chain variability. Finally, the red one is the ratio of between-

BGP
Typewritten Text

BGP
Typewritten Text
 )

BGP
Typewritten Text



 

77 

 

chain to within-chain variability ( R̂ ). As all the chains approach the equilibrium state, 

they become similar to each other. Therefore, the BGR statistic is close to 1 and both, 

the lines representing variance between chains, and within chains, tend to stabilise. 

Other graphs are also available to check convergence. So, trace plots represent 

sampled estimates against the iteration number. Where chains are approaching 

convergence, they tend to mix with each other adopting the ‘fat hairy caterpillar’ 

shape. It is important to allow that the chains start from different points and afterwards 

assess convergence towards a common distribution. 

To run different chains, initial values have to be provided for every stochastic node 

(random parameter). In the model that was fitted, initial values were set for elements 

that composed the residual variance, that is, clustering and heterogeneity. Different 

possibilities exist to decide on the initial values for each chain. Thus, WinBUGS can 

generate initial values. However, it has been reported that this method may cause the 

software to crash. Therefore, random values were generated in R, and passed as data 

into WinBUGS. An important decision concerning initial values has to do with the 

underlying distribution from which the values are generated. This is especially 

relevant where estimates concern parameters of prior distributions (hyperparameters). 

Consequently, it is worth considering a sensitivity analysis where alternative initial 

values, arising from different distributions, are used each time. Some researchers 

especially advocate not using the inverse-gamma vague prior to estimate variance 

parameters. The rationale behind this recommendation is that this distribution, which 

is ‘L’ shape, strongly constrains the posterior. As a result, the posterior distribution 

becomes very sensitive to the chosen parameters. When vague priors are used, some 

researchers suggest generating values from normal distributions for all stochastic 

nodes, with the exception of variance parameters, which are constrained to be positive, 

in which case the uniform distribution would be used, instead of the inverse-gamma 

one. Yet another possibility is to take advantage of previous knowledge from actual 

data; this information can be used, therefore, as the prior probability. This seems most 

appropriate, as FBM are intended to integrate past knowledge into current data. 

According to this, the BYM model was fitted to mortality data from 1981-1985 to 

generate prior information, about hyperparameters; this hyperprior values were used, 

afterwards, to fit data from the period 1986-1995. 
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4.4 Ecological analysis 

4.4.1 Socio-economic Status 

Socio-economic Status (SES) is a highly relevant covariate to take into consideration 

both in individual-level studies and ecological research (see 2.4). It has been 

extensively reported as a confounder in many epidemiological associations between 

different exposures, and health-related events. Furthermore, SES has been also 

considered a relevant explanatory contextual variable by itself. It was accounted for 

through an area-level deprivation index. This index was based on percentages (by 

municipality) of: unemployed and illiterate people, as well as manual workers. 

Principal Component Analysis (PCA) was used to derive this area-level deprivation 

score.  

Subsequently, unmeasured variables with potential spatial dependencies (also known 

as contextual effects) were taken into consideration. To adjust for these unmeasured, 

spatially auto-correlated effects, general clustering of mortality rates was taken into 

consideration. To this end, a BYM model was fitted to lung cancer mortality data in 

both men and women. This way, the residual (not explained by the model) variance 

was split into two different components: clustering (or spatially correlated variability) 

and heterogeneity (or non-spatially correlated variability). The BYM model took also 

account of both area-level deprivation score from PCA analysis, and the lithological 

risk score derived from the SEM. 

4.4.2 Potential radon-gas exposure 

Spatial heterogeneity in rock composition (lithology) was hypothesised to be 

associated with geographic disparities in mortality rates due to lung cancer. This 

hypothesis was based upon two grounds: firstly, the correlation between lithology and 

content of radon-gas in the soil, according to previous studies; secondly, the reported 

effect of radon-gas exposure, which is considered to be a main risk factor in lung 

cancer development. The spatial dependence of mortality on lithology was also 

evaluated for two additional outcomes: chronic obstructive pulmonary disease 

(COPD) and larynx cancer. The reason for extending the analysis to these additional 

outcomes was based on previous knowledge showing that while tobacco smoking was 

a major risk factor for all the three conditions, radon-gas exposure has only been 

associated with lung cancer incidence. 
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Structural Equation Modelling (SEM) was used to assess the value of lithology in 

explaining geographical differences in mortality rates. The structural part of the SEM 

took account of a lithological risk score derived from a spatial Conditional 

Autoregressive (CAR) distribution. The measurement part of the SEM assessed the 

explanatory value of lithology on the lithological risk score. The SEM was fitted to 

mortality data due to each one of these three distinct causes: lung cancer, COPD and 

larynx cancer. 

4.5 Disease Mapping 

GeoBUGS software v 1.2 (an add-on to WinBUGS) was used to map raw and 

smoothed SMRs, the latter ones being labelled as RR to differentiate between them 

(sections 4.2.1 and 4.2.2). Also, statistically significant RRs were mapped as the 

probability of an RR being greater than 1. Given the small range of posterior RR 

estimates beyond 1, under the BYM model, no other threshold references were 

considered. Both spatially-structured and uncorrelated heterogeneity were mapped, 

where a relevant pattern was important to highlight. For this purpose, regional digital-

boundaries in shapefile format were imported into R; afterwards, the file was exported 

into S plus format to be read from GeoBUGS (see section 3.2). Once the map was read 

into GeoBUGS, mapping was accomplished following the modelling stage 

implemented using WinBUGS. After modelling of the SMRs was completed, some 

other issues had still to be considered; among these, which estimate components were 

relevant to be mapped and how to represent them.  

It is useful to produce maps that convey different sorts of information: thus, raw 

(SMRs) and smoothed (RR) maps, as well as individual RR regression components. 

By comparing raw and smoothed maps, the degree of shrinking (rendered during the 

modelling stage) can be conveyed graphically. This is relevant to be aware of over-

smoothing that would hide the underlying risk variation [230]. Mapping of individual 

regression components, on the other hand, can show interesting graphical information 

generated through the modelling stage [63]. This is equivalent to partitioning the RR 

into estimates of risk that originate from different sources. This is accomplished by 

taking the antilog of the corresponding regression coefficients, which can be 

programmed using WinBUGS code. In this way, the geographical heterogeneity due to 
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these different sources is highlighted. So, variability in the RR explained by a variable 

(such as SES, or lithology) can be mapped. 

Especially interesting is mapping of the residual RR. This helps to have a feeling of 

the overall goodness-of-fit of the model, which has to be also formally tested (see 

4.2.2). This component contains the estimate of the variability not captured by the 

explanatory variables (and covariates) allowed for in the model. Under the BYM 

model, the residual RR is calculated as the antilog of the intercept plus both, the 

clustering and uncorrelated components (see 4.2.2). The last two components can be 

also calculated and mapped independently from each other. Mapping of these 

components in isolation allows for a graphical representation of where the residual RR 

is mostly laid. So, although different diseases can naturally arise in clusters, spatially-

structured variability may also be due to unspecified area-level explanatory variables; 

among these, environmental risks or contextual (area level) effects may be potential 

explanatory variables for this residual RR. The uncorrelated heterogeneity, on the 

contrary, contains random-noise variability. 

Another set of maps that can help understanding the modelling performance is 

exceedence probability maps, which represent the probability of area-level RRs being 

greater than some specified value. To represent this kind of map, some decisions have 

to be made: first, about the threshold reference for the RR to be detected; so, an RR 

greater than 1, where the number of observed cases is greater than expected (see 

section 4.2.1), may be decided. Secondly, about which cut-off –posterior- probability 

should be considered unusually high to deserve attention (e.g. 0.80, but not necessarily 

this value). In this way, exceedance-probabilities maps can help highlight individual 

high-risk (hot-spot clustering) areas. Thus, some researchers have analysed different 

decision rules concerning both, the RR threshold, and cutoff probabilities, by 

simulation from various Bayesian models [230]. The posterior distribution of RR in 

different scenarios, as compared with true values generated by simulation, was used as 

a guideline for decision making. 

One reported simulated scenario corresponded with a situation similar to this research 

thesis: first, the total number of observed cases equated the total number of expected 

cases (that is, internal standardisation was simulated); second, simulation was 

addressed to render a realistic mixture of observed and expected cases (reflecting a 
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scenario comprised of populated and rural areas). Trying different cut-off-probabilities 

is important as the BYM model has shown to be conservative; to put it another way: it 

tends to miss small RRs, due to over-smoothing. As in most simulated scenarios an 

RR greater than 1.5 is rarely encountered, it seems reasonable to keep an RR threshold 

of 1, while adjusting the cut-off probabilities; this allows for the method to be set at 

different sensitivity and specificity values, according to the aims of the mapping 

process. 
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Chapter 5. Results 

5.1 Overview 

Outputs from two separate models will be presented. Firstly, results from a Structural 

Equation Model (SEM). This model will be separated, in turn, into the measurement 

(section 5.2.1) and the structural (section 5.2.2) parts of the model. Secondly, results 

from a BYM model will be presented (sections 5.3 and 5.3.4). Immediately after the 

model results, maps of SMRs, before and after modelling (Relative Risk maps), will 

be shown (sections 5.3.3 and 5.3.4).  

The posterior parameter distributions corresponding to all sets of analyses will be 

described in tabular form by means of its percentile values (2.5%, 50%, and 97.5%) as 

well as both the posterior mean and the posterior standard deviation. The Monte Carlo 

(MC) error will be presented also so that precision of estimates can be appraised; the 

aim was to achieve a MC error with magnitude less than 5% of the posterior standard 

deviation of each estimate. Additionally, the whole posterior distributions of parameter 

estimates will be presented as probability-density graphs. To provide a visual 

perception of the effect of modelling on the SMRs mapping of SMRs, by 

municipalities, before and after modelling (RR maps) will be presented. Maps of RR 

for lung-cancer mortality will be presented for men and women separately. To help 

appraise the relative importance of each explanatory variable, RR maps will be 

decomposed into the components due to each explanatory variable: lithology, 

deprivation, and the two components of the Variance Partition Coefficient (clustering 

and heterogeneity). Exceedance probability maps of an RR being greater (and less) 

than 1 will also be presented; these maps are intended to provide a geographical 

perception of how meaningful the posterior RR estimates are for each municipality. 
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5.2 Structural Equation Modelling 

5.2.1 Measurement model 

Table 5.1 shows the results from the measurement part of the Structural Equation 

Model (SEM). All three of the loading factors (represented by rock composition) were 

positively associated with the lithological risk score. The posterior mean values and 

95% credible intervals (CI) for metamorphic, plutonic and volcanic rocks were 1.16 

[1.07-1.17], 1.37 [1.30-1.44] and 0.46 [0.41-0.51], respectively. In other words, all of 

these three types of rocks were positively associated with the lithology score. The 

most relevant soil-feature was the existence of plutonic rocks, followed by 

metamorphic and volcanic ones. 

 

Given that the lithological characteristics of all Andalusian municipalities were 

summarised in only four main classes (sedimentary, metamorphic, plutonic and 

volcanic rocks) many zero values were generated for all places where any of these 

rocks were nonexistent. The ratio variance/mean was much higher than 1 for the 

frequency distribution of all four lithological classes: 255.08 for sedimentary rocks, 

111.61 for metamorphic, 144.55 for plutonic, and 84.17 for volcanic rocks. Therefore, 

a ZIP model was fitted for this measurement part of the SEM. The number of square 

kilometres taken by each rock within any municipality was considered to follow a 

multinomial distribution; therefore, an equivalent method was used which consisted of 

fitting a Poisson regression model against a baseline (sedimentary rocks in this case) 

Rock-type 

node 

mean sd MC error 2.5% median 97.5% start sample 

Metamorphic 1.16 0.02389 0.001307 1.071 1.116 1.165 4001 5100 

Plutonic 1.365 0.03677 0.001793 1.292 1.366 1.437 4001 5100 

Volcanic 0.4586  0.02475 5.249E-4 0.4115 0.4584 0.5083 4001 5100 

Table 5.1. Measurement model. Lithology-indicator loadings: posterior estimates. 
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Figure 5.1. The measurement part of the model: posterior probability-density distributions 

of the lithology-indicator loadings. 

for non-zero values. Zero values were modelled as a random effects binomial 

distribution, which accounted for the extra-variability due to presence of zero counts.   

Figure 5.1 shows that all three posterior probability-densities were on a positive axis 

and did not include the zero value. Therefore, zero is not a believable value for the 

regression coefficients concerning the rocks composition variables that explain the 

lithological risk score. 
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Figure 5.2. The measurement part of the model: autocorrelation plots and Brooks-

Gelman-Rubin graphs for the lithology-indicator loadings. 

 

Figure 5.2 shows how convergence was reached for the loading factors estimates in 

the measurement part of the SEM, after using a thinning interval of 40. History plots 

show how the three independent chains, for each one of the different factor loadings, 

had eventually mixed adequately (Figure 5.3, with red, blue, and green-coloured 

chains). The Monte Carlo error was no greater than 5% of the posterior standard 

deviation, for all three factor-loading estimates (Table 5.2). That is to say, precision 

was achieved to the aimed standard. 
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Figure 5.3. The measurement model. Lithology-indicator loadings: 

history plots. 
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5.2.2 Structural model 

Table 5.2 shows the results from the structural part of the SEM model. The posterior 

mean values for the regression coefficients concerning the first two mortality causes, 

COPD and larynx cancer, were -0.01 and -0.015, respectively.  These results suggest a 

negative association between the lithology score and mortality due to either COPD or 

larynx cancer. However, inspection of their respective 95% credible intervals (95% 

CIs) shows that they include zero as a likely value. Thus, the 95% CIs ranged from -

0.040 to 0.019 and from -0.044 to 0.015, for COPD and larynx cancer respectively. 

The posterior mean value for the regression coefficient from lung-cancer mortality 

data was positive (0.023). In addition, the 95% CI for the regression coefficient did not 

include zero; it ranged from 0.011 to 0.035. 

 

Lithology- 
score 
node 

mean sd MC 
error 2.5% median 97.5% start sample 

COPD -0.01018 0.01493 1.977E-4 -0.03991 -0.01014 0.01939 11001 30000 

Larynx 

cancer 
-0.01513 0.01486 1.964E-4 -0.04442 -0.01523 0.01453 11001 30000 

Lung 

cancer 
0.02252 0.006198 8.384E-5 0.0107 0.02242 0.03483 11001 30000 

Table 5.2. Structural Model: lithology-score regression coefficients estimates for Chronic 

Obstructive Pulmonary Disease (COPD), larynx cancer, and lung-cancer mortality, in men. 
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Figure 5.4. The structural part of the model: posterior probability-densities for the Relative 

Risk (RR) of mortality explained by the lithology score, in the modelling of Chronic 

Obstructive Pulmonary Disease (COPD), larynx cancer and lung cancer, in men. 

Upper row: posterior probability-densities for RR explained by the lithology score, in 

three different diseases (log scale). 

Middle row: proportions of the posterior probability-densities for ln(RR) being zero or less 

(0), or greater than zero (1). 

Lower row: posterior probability-densities for RR explained by the lithology score –ratio 

scale. 

 

As a visual aid to interpretation, the whole posterior probability density for the 

lithology score (for all three mortality causes) can be assessed in Figure 5.4. The upper 

and bottom rows show the densities on the logarithmic and the ratio scale (RR), 

respectively. It can be seen that the first two densities included the null value (zero on 

the log scale and one on the original, ratio scale) as a likely estimate. Conversely, the 

whole posterior density concerning lung cancer did not include the null value. The 

middle row in Figure 5.3 shows this fact more clearly. It depicts both the areas of the 

respective curves at (or below) the null value (marked as ‘0’) and above the null value 
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(marked as ‘1’). It can be seen that the whole posterior regression-coefficient density 

was above zero, or one on the ratio scale, only for lung-cancer. For the other two 

mortality causes, the densities included the null value; moreover, the areas above the 

null value were relatively small (24% and 16% for COPD and larynx-cancer, 

respectively). Therefore, the distribution of lung-cancer deaths (but not COPD or 

larynx-cancer deaths) was positively associated with the lithological risk score.  

Table 5.4 presents posterior estimates for the regression coefficients accounting for 

area-level deprivation. In contrast to the lithology score, the mean posterior values for 

deprivation in all three diseases are positive; 0.037, 0.042 and 0.053 for COPD, larynx 

cancer and lung cancer, respectively. Their 95% CIs range from 0.013 to 0.061, from 

0.020 to 0.065 and from 0.044 to 0.062, for COPD, larynx cancer and lung cancer, 

respectively. Therefore, there is evidence of a positive association between the SES 

scoring (deprivation) and all three of the mortality causes. 

 

 

 

 

 

 

 

Deprivation-
score node mean sd MC error 2.5% median 97.5% start sample 

COPD 0.03681 0.01216 2.576E-4 0.01315 0.03672 0.06097 11001 30000 

Larynx cancer 0.04221 0.01164 2.18E-4 0.01975 0.04224 0.06523 11001 30000 

Lung cancer 0.05301 0.00475 1.037E-4 0.0437 0.05295 0.06242 11001 30000 

Table 5.3 The structural part of the model: estimates for the deprivation-score regression 

coefficients. Chronic Obstructive Pulmonary Disease (COPD), larynx cancer, and lung-cancer 

mortality, in men. 
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The same interpretation can be drawn from the shape of their whole posterior densities 

shown in Figure 5.5. The upper and bottom rows show the probability densities on the 

log and ratio (Relative Risk -RR) scales, respectively. It can be seen that none of the 

densities for all three diseases (COPD, larynx and lung cancer) included the null value.  

 

 

 

Figure 5.5. The structural part of the model: posterior probability-densities for the 

relative risk (RR) explained by the deprivation-score.   

 

Upper row: posterior probability-densities for the RR explained by the deprivation-

score, in all three different diseases: Chronic Obstructive Pulmonary Disease (COPD), 

larynx cancer, and lung cancer; log scale. 

Middle row: proportions of the posterior probability-densities for ln(RR) being zero or 

less (0), or greater than zero (1). 

Lower row: posterior probability-densities for The RR explained by the deprivation 

score. 
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This is also depicted by the graphs in the middle row (Figure 5.4) where the whole 

area under the density curve is marked as 1 (as they were greater than the null value) 

for all three diseases. 

Lastly, Figure 5.6 provides additional assessment of convergence for deprivation 

estimates. History plots show adequate mixing of the three independent chains in all 

the three cases (COPD, larynx and lung cancer). The BGR diagnostic graph also 

shows that the BGR ratio statistic (in the colour red) had stabilised close to the value 

of one. All these diagnostic criteria helped in demonstrating that the posterior 

estimates had been drawn from the target distribution. 

 

Figure 5.6. The structural part of the model: convergence of the deprivation-score 

estimates. 

From top to bottom, history-plots (first column) and Brooks-Gelman-Rubin graphs 

(second column) for the deprivation-score regression coefficients in modelling of 

Chronic Obstructive Pulmonary Disease (COPD), larynx cancer and lung cancer, 

respectively. 
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5.2.3 Summary of the Structural Equation Model 

Presence of metamorphic, plutonic and volcanic rocks, are all features that correlate 

well with a lithology score that presumes spatial similarity (autocorrelation) of nearby 

geographical areas. Furthermore, this lithology score is positively associated with the 

spatial distribution of deaths due to lung cancer in men, and the association remains 

after controlling for deprivation in the model. The deprivation score turns out to also 

be positively associated with the spatial distribution of male deaths due to lung cancer. 

Similarly, there exists a positive association between deprivation and the spatial 

distribution of deaths due to both COPD and larynx cancer. However, there is no 

evidence of an association between lithology and the number of deaths due to either 

COPD, or larynx cancer. 

5.3 Lung-cancer mortality modelling 

5.3.1 Besag-York-Mollié model: males 

A BYM model was fitted to lung-cancer mortality data in men. The lithology score 

derived from the SEM (see 5.2), as well as area-level deprivation were included in all 

models. Five different models were simultaneously fitted: An intercept-only model 

(model ‘y1’); intercept plus the lithology score (model ‘y2’); intercept, plus lithology 

and deprivation scores (model ‘y3’); a further model that included a clustering 

component (model ‘y4’), and the last one which also included a random-heterogeneity 

component (model ‘y5’), which is the full BYM model. The relative merit of all these 

models was assessed for both, the goodness of fit of observed data as well as their 

predictive ability. To assess the relative goodness of fit of the observed data, the 

Deviance Information Criterion (DIC) was used to determine the optimal model. The 

model with the smallest DIC value was chosen as the best fitting model amongst those 

compared. This model (Table 5.4) turned out to be the full BYM model with the 

lithology and deprivation scores included (model ‘y5’). In this case, the DIC was 

4,050, much lower than the second best one (model ‘y4’) which gave a DIC value of 

4,552. 
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 Dbar Dhat pD DIC Model 

y1 5265.610 5265.240 0.373 5265.980 I 

y2 5247.930 5247.120 0.812 5248.740 I + L 

y3 5120.540 5118.970 1.568 5122.100 I + L + D 

y4 4294.880 4037.320 257.563 4552.440 I + L + D + CH 

y5 3767.430 3484.760 282.667 4050.090 I + L + D + CH + UH 

total 23696.400 23153.400 542.984 24239.400  

 Dbar = posterior mean of the Deviance (average deviance) 

Dhat = Deviance of the posterior mean 

pD = Effective number of parameters (Dbar - Dhat) 

DIC = Deviance information Criterion (Dhat + 2pD = Dbar + pD). Lower 
values of DIC are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated –spatially structured- Heterogeneity 

UH = Uncorrelated Heterogeneity  

Table 5.4 Besag-York-Mollié model: relative goodness of fit of observed data, for all 

different models. Lung-cancer in men. 
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To assess the relative predictive ability of the different models two different loss 

functions were used that measured the difference between the observed and the 

predicted values (also known as Posterior Predictive Loss). The loss functions used 

were the Mean Square Predictive Error (MSPE), which is shown in Table 5.5, and the 

Mean Absolute Predictive Error (MAPE), in Table 5.6. As for the DIC, the model with 

the smallest value (either for the MSPE or the MAPE) is preferred. The model with the 

lowest MSPE value was the full BYM model (model ‘y5’, MSPE = 65), while the 

second best one (model ‘y4’) had a much larger value (MSPE = 782). Models were 

ranked the same way when the MAPE was taken into consideration. The full BYM 

model (‘y5’) had a posterior mean MAPE value of 4.6, while the second best model 

(‘y4’, which was the one without the random-heterogeneity component) had a value of 

7.2. Therefore, the full BYM gave the best fit for both the observed values and the 

predicted ability. The Posterior Predictive Loss (PPL) can also be used as a mean to 

assess convergence.  Table 5.5 and Table 5.6 show that the Monte Carlo error (MC 

error) for both the MSPE and MAPE estimates (and all the models compared) was 

around 1% of their posterior standard-deviation estimates, which demonstrates that 

convergence had been achieved; this is required for the estimates to arise from the 

target distribution. 
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MSPE mean sd MC 
error 

2.5% median 97.5% start sample Model 

y1 403.1 50.22 0.3613 310.9 400.5 507.8 1001 21990 I 

y2 419.1 52.1 0.362 324.9 416.5 527.9 1001 21990 I + L 

y3 224.0 27.82 0.1895 175.8 222.0 284.7 1001 21990 I + L + D 

y4 782.3 170.0 2.265 483.2 770.6 1149.0 1001 21990 I + L + D + 
CH 

y5 65.05 14.06 0.09957 45.05 62.53 99.29 1001 21990 I + L + D + 
CH + UH 

 MSPE = Mean Squared Predictive Error. Lower values of MSPE are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity 

Table 5.5 Besag-York-Mollié model. Relative goodness of predictive ability (MSPE) for all 

different models. Lung cancer in men. 
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MAPE mean sd MC error 2.5% median 97.5% start sample Model 
y1 7.722 0.1767 0.001221 7.378 7.723 8.07 1001 21990 I 
y2 7.68 0.1779 0.001232 7.331 7.679 8.032 1001 21990 I + L 
y3 7.174 0.18 0.001173 6.825 7.175 7.526 1001 21990 I + L + D 
y4 7.167 0.3873 0.005444 6.427 7.159 7.941 1001 21990 I + L + D + 

CH 
y5 4.545 0.1834 0.001524 4.199 4.54 4.914 1001 21990 I + L + D + 

CH + UH 
 MAPE = Mean Absolute Predictive Error. Lower values of MAPE are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity 

Table 5.6 Besag-York-Mollié model. Relative goodness of predictive ability (MAPE) for all 

different models. Lung cancer in men. 
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Once the model had converged, posterior estimates were obtained for the regression 

coefficients for both the lithology and deprivation scores. The posterior mean-

estimates on the log scale were 0.023 and 0.04 for the lithology and deprivation 

scores, respectively. Their respective 95% CIs ranged from 0.015 to 0.031 and 0.033 

to 0.046 (Table 5.7). An interaction term between the lithology score and area-level 

deprivation (as surrogate measures for potential radon-gas exposure and tobacco 

smoking, respectively) did not improve the goodness of fit of the model; the mean 

posterior estimate for the interaction term was -0.001 with 95% CI [-0.002, 0.002].  

 

Therefore, there is a positive association between the lithology score and mortality due 

to lung cancer in men. There is also a positive association between the deprivation 

score and lung cancer mortality in men. The same interpretation can be seen on the 

ratio (RR) scale. The computed posterior mean-values were 1.02 and 1.04 for the 

lithology and deprivation scores, respectively. Their respective posterior 95% CIs 

varied from 1.015 to 1.031 for the former and 1.033 to 1.048 for the latter (Table 5.8). 

 

 

Node  mean  sd  MC error 2.5% median 97.5% start sample 

Intercept 0.01229 0.004091 3.664E-5 0.004321 0.01227 0.02027 8331 38010 

Lithology 0.02292 0.00389 3.166E-5 0.0153 0.02291 0.03051 8331 38010 

Deprivation 0.03953 0.003565 4.049E-5 0.03257 0.03955 0.04647 8331 38010 

Table 5.7 Besag-York-Mollié model. Regression-coefficients estimates (log scale). Lung-

cancer in men. 

Node mean sd MC error 2.5% median 97.5% start sample 
Lithology 1.023 0.00398 3.24E-5 1.015 1.023 1.031 8331 38010 
Deprivation 1.04 0.003709 4.212E-5 1.033 1.04 1.048 8331 38010 

Table 5.8 Besag-York-Mollié model: regression-coefficients estimates (ratio scale). Lung-

cancer in men. 
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This means that the mortality risk due to lung cancer increases 2% on average, for 

every unit of increment in the lithology score (from 1.5% to 3.1%, according to its 

95% CI). The effect for the deprivation score was twice as much as for the lithology 

score; a 4% average increment in risk for every unit that the deprivation score 

increases (it ranged from 3.3% to 4.8%). It can be seen from both Table 5.7 and Table 

5.8 that all these estimates were obtained with a MC error of around 1%, of their 

respective posterior standard-deviation estimates. 

The Relative Risk of lung-cancer mortality in men, averaged aver all 759 

municipalities was 1.04 with an interquartile range of 0.24 (Table 5.9); the average 

Monte Carlo error was less than 5% of the average standard deviation, which shows 

that convergence, amongst all three chains that were run, was achieved. The range of 

the RR varied between 0.49 and 2.42 while the range of the SMR was between 0 and 

3.25 which shows the smoothing effect of modelling; this effect is also seen in the 

difference of the mean values averaged across all municipalities (Table 5.9): the 

average RR was pooled towards one, which is the RR value of no effect. However, 

after modelling, the RR interquartile range increased over the SMR interquartile range, 

which improved differentiation between high and low-risk areas. 

 

  

 mean sd MC error 2.5% 97.5% IQR 

SMR 0.88 0.46 5.11e-9 0.876 0.884 0.003 

RR 1.05 0.18 0.003 0.72 1.45 0.24 

Table 5.9 Average values of the SMR and RR, for lung-cancer mortality in 

men. 

SMR = Standardised Mortality Ratio 

RR = Relative Risk 

sd = Standard deviation 

MC error = Monte Carlo error 

2.5% = 2.5 percentile 

97.5% = 97.5 percentile 
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Figure 5.7 to Figure 5.14 show the distribution of posterior RR estimates across all 

759 municipalities analysed, while being grouped by provinces. Box plots limits 

represent the posterior quartiles; the middle bars within the boxes are the posterior 

mean values, and the whisker lines reach the 2.5% and 97.5% posterior percentiles. 

The reference line represents the posterior mean which was averaged over all 

municipalities (within each province). It can be seen that the mean posterior RR were 

highest in the provinces of Cádiz (mean RR 1.35; Figure 5.8), Sevilla (mean RR 1.34; 

Figure 5.14) and Huelva (mean RR 1.15; Figure 5.11) while they were lowest in the 

provinces of Jaén (mean RR 0.80; Figure 5.12) and Granada (mean RR 0.89; Figure 

5.10). However, there was ample heterogeneity within provinces and the RR estimates 

which represent lower and higher risk than the average value, for any particular 

province, can be clearly identified from their individual box plots, as their green areas 

represent 95% CI.    

  
 
 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Almería province (mean baseline Relative Risk = 1.03)

Relative Risk
    0.0     1.0     2.0     3.0     4.0

 

Figure 5.7. Ranking of posterior estimates of Relative Risk boxplots, for all 

101 muncipalities in the province of Almería. Lung-cancer in men. 
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Cádiz province (mean baseline Relative Risk = 1.35)

Relative Risk
    0.5     1.0     1.5     2.0     2.5

 

Figure 5.8. Ranking of posterior estimates of Relative Risk boxplots, for all 

42 muncipalities in the province of Cádiz. Lung-cancer in men. 
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Córdoba province (mean baseline Relative Risk = 1.02)

Relative Risk
    0.0     1.0     2.0     3.0

 

Figure 5.9. Ranking of posterior estimates of Relative Risk boxplots, for all 

75 muncipalities in the province of Córdoba. Lung-cancer in men. 
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Granada province (mean baseline Relative Risk = 0.89)

Relative Risk
    0.0     1.0     2.0     3.0

 

Figure 5.10. Ranking of posterior estimates of Relative Risk boxplots, for 

all 166 muncipalities in the province of Granada. Lung-cancer in men. 
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Huelva province (mean baseline Relative Risk = 1.15)

Relative Risk
    0.0     1.0     2.0     3.0

 

Figure 5.11. Ranking of posterior estimates of Relative Risk boxplots, for 

all 79 muncipalities in the province of Huelva. Lung-cancer in men. 
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Jaén province (mean baseline Relative Risk = 0.8)

Relative Risk
    0.0     0.5     1.0     1.5     2.0

 

Figure 5.12. Ranking of posterior estimates of Relative Risk boxplots, for 

all 96 muncipalities in the province of Jaén. Lung-cancer in men. 
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Málaga province (mean baseline Relative Risk = 1.08)

Relative Risk
    0.0     1.0     2.0     3.0

 

Figure 5.13. Ranking of posterior estimates of Relative Risk boxplots, for 

all 99 muncipalities in the province of Málaga. Lung-cancer in men. 
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Sevilla province (mean baseline Relative Risk = 1.34)

Relative Risk
    0.0     1.0     2.0     3.0     4.0

 

Figure 5.14. Ranking of posterior estimates of Relative Risk boxplots, for 

all 102 muncipalities in the province of Sevilla. Lung-cancer in men. 
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The frequency distribution of the observed number of lung-cancer cases in men was 

overdispersed (ratio variance/mean = 518.3; Bohning’s statistic 53.81, p value < 

0.001). Therefore, further analysis was implemented for checking if overdisperion was 

only due to unstructured heterogeneity (e.g., because of excess of zero counts: 4.4% of 

all records in the male lung-cancer dataset) or spatial autocorrelation was also present. 

A Moran’s I Monte Carlo test was run as well within R software, for testing the spatial 

dependency of the SMRs distribution; the adjacency matrix was used as weights for 

this test (Moran’s I statistic = 0.25 after 1,000 simulations, p value = 0.001). Given 

that spatial autocorrelation was present, a hierarchical BYM model was fitted 

afterwards, where separate estimates for the residual variance components were 

computed: namely, spatially-correlated (clustering) and uncorrelated (random) 

heterogeneity. This allowed for the Variance Partition Coefficient (VPC) to be 

calculated. The posterior mean estimate of the VPC was 0.95 and its posterior 95% CI 

ranged from 0.93 to 0.97 (Table 5.10).  

 

Consequently, most (95%) of the residual variance (not explained by the model) was 

due to spatial autocorrelation of the estimates amongst nearby municipalities, and just 

a small amount (5%) was due to random variability within geographical areas. 

Therefore, most of the variability not explained by the model was due to (unmeasured) 

factors that vary across geographical areas.  

5.3.2 Besag-York-Mollié model: females 

The same BYM model previously used (see 5.3.1) was applied to model mortality due 

to lung-cancer in women. Five different models were also adjusted and simultaneously 

compared. From the simplest to the most complex one, those models were: an 

intercept-only model (‘y1’); model ‘y2’, which added the lithology score to the 

Node mean sd MC 
error 

2.5% median 97.5% start sample  

VPC 0.9541 0.009781 2.011E-4 0.9326 0.9552 0.9708 41001 2742  

Table 5.10. Besag-York-Mollié model: Variance Partition Coefficient (VPC) estimates. 

Lung-cancer in men. 
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previous one; model ‘y3’ increased complexity by further accounting for area-level 

SES (deprivation); model ‘y4’ included a clustering component (correlated 

heterogeneity [CH]) to all the previous covariates; finally, model ‘y5’ adjusted for all 

those variables plus uncorrelated heterogeneity (UH). As with the model previously 

used to fit data concerning lung-cancer mortality in men, the Deviance Information 

Criterion (DIC) was used as a measure of relative goodness of fit of observed data. 

Table 5.11 shows DIC values for all the five models fitted to the data. As in section 

5.3.1, the whole BYM model (‘y5’) was the preferred one as it had the smallest DIC 

value (1,815); the second best model (‘y4’) was the one excluding the UH term (DIC 

value of 1,817). According to their DIC values, the relative goodness of fit of observed 

data, for these two models, was not clearly different; nevertheless, they were far better 

 Dbar Dhat pD DIC Model 

y1 1988.170 1987.820 0.346 1988.510 I 

y2 1987.890 1987.160 0.730 1988.620 I + L 

y3 1961.890 1960.460 1.425 1963.310 I + L + D 

y4 1694.050 1571.460 122.590 1816.640 I + L + D + CH 

y5 1692.260 1569.160 123.099 1815.360 I + L + D + CH + UH 

total 9324.250 9076.060 248.190 9572.440  

 Dbar = posterior mean of the Deviance (average deviance) 

Dhat = Deviance of the posterior mean 

pD = Effective number of parameters (Dbar - Dhat) 

DIC = Deviance information Criterion (Dhat + 2pD = Dbar + pD). Lower values 
of DIC are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity 

Table 5.11. Besag-York-Mollié model: Relative goodness of fit of observed 

data, for all different models. Lung cancer in women. 
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than models ‘y1’, ‘y2’ (DIC values of 1,989 for both models) and ‘y3’ (DIC of 1,963). 

Goodness of fit of predicted values was also assessed by means of loss type functions: 

Table 5.12 shows estimates of the Mean Square Predictive Error (MSPE) for each 

model. The lowest (preferred) values happened for models ‘y4’ and ‘y5’ (mean 

estimated value of around 6, for both models); while the estimates for model ‘y3’ 

(MSPE = 7) and models ‘y1’ and ‘y2’ (MSPE = 10) were higher.  

 

 

 

 

 

Table 5.13 shows posterior estimates for a second form of loss function (Mean 

Absolute Predictive Error [MAPE]). Again, the lowest mean values were obtained for 

MSPE mean sd MC error 2.5% median 97.5% start sample Model 

y1 10.69 2.33 0.01403 6.754 10.48 15.84 1001 30000 I 

y2 10.59 2.335 0.01516 6.697 10.37 15.8 1001 30000 I + L 

y3 6.924 1.34 0.007901 4.864 6.735 10.04 1001 30000 I + L + D 

y4 6.036 2.164 0.02011 3.378 5.514 11.57 1001 30000 I + L + D + 
CH 

y5 5.573 1.788 0.01544 3.335 5.154 10.14 1001 30000 I + L + D + 
CH + UH 

 MSPE = Mean Squared Predictive Error. Lower values of MSPE are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity. 

Table 5.12. Besag-York-Mollié model: relative goodness of predictive ability (MSPE) for all 

different models. Lung-cancer in women. 

MAPE mean sd MC 
error 

2.5% median 97.5% start sample Model 

y1 1.361 0.04935 2.787E-4 1.265 1.361 1.458 1001 30000 I 

y2 1.359 0.04883 3.03E-4 1.264 1.358 1.456 1001 30000 I + L 

y3 1.311 0.0493 2.764E-4 1.216 1.31 1.408 1001 30000 I + L + D 

y4 1.154 0.05856 4.505E-4 1.045 1.152 1.275 1001 30000 I + L + D + 
CH 

y5 1.146 0.0562 3.81E-4 1.041 1.144 1.262 1001 30000 I + L + D + 
CH + UH 

 MAPE = Mean Absolute Predictive Error. Lower values of MAPE are preferred. 

I = Intercept only 

L = Lithology score 

D = Deprivation score 

CH = Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity 

Table 5.13. Besag-York-Mollié model: Relative goodness of predictive ability (MAPE) for 

the different models. Lung cancer in women. 



 

110 

 

model ‘y5’ and ‘y4 (MAPE = 1.1 and 1.2, respectively). The estimated MAPE was 1.4 

for both models ‘y1’ and ‘y2’, and 1.3 for model ‘y3’. All these results (DIC, MSPE 

and MAPE) showed that the BYM model was the best one (amongst those compared) 

to fit lung-cancer mortality data in women. However, there was not much difference 

between the model adjusting for both correlated (CH) and uncorrelated (UH) 

heterogeneity and the one including only a CH term (plus lithology and deprivation as 

covariates). 
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Figure 5.15. Besag-York-Mollié model: posterior probability-densities for 

lithology and deprivation. Lung-cancer in women. 

Upper row: lithology (beta) and deprivation (delta) scores: posterior probability-

density distributions (log scale). 

Middle row: Proportions of the posterior probability-densities for the regression 

coefficients being zero or less (0), or greater than zero (1): Probability(lithology-

score) >0 = 0.8973. Modelling of lung-cancer deaths in women. 

Lower row: regression coefficients (ratio scale). 

 

A visual guide for the relevance and magnitude of both the lithology and deprivation 

scores is given in Figure 5.16. The first and last rows in this graph show the posterior 

probability-densities for both variables, on a linear and ratio (RR) scales, respectively. 

In contrast to the results obtained from fitting the BYM model to the male dataset, the 

posterior probability density for the lithology score includes the null value (zero, or 

one, on the linear and ratio scales, respectively).  
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This result suggests that lithology is not associated with the geographical distribution 

of lung-cancer mortality in women. However, it is worth noting that most of the 

density (90%) is above the non-effect value (Figure 5.16, middle row). For the 

deprivation score, the estimated posterior probability-density curve was completely 

above zero (or one on the RR scale). All these results can also be checked in Table 

5.14, where some posterior point-estimates regarding both lithology and deprivation 

are given. On the ratio scale, the posterior mean estimates for the RRs are 1.016 and 

1.057 for lithology and deprivation respectively. This suggests that the risk of 

mortality due to lung cancer (in women) increases 1.6% for each unit of increment in 

the lithology score; also, that the risk of mortality raises 5.7% for each unit of 

increment in the deprivation score. Table 5.14 also shows 95% Credible Intervals 

(CIs). The 95% CI for lithology (on the RR scale) ranged from 0.991 to 1.041, while 

the 95% CI for deprivation ranged from 1.035 to 1.081. 

These results (as the probability-density curves in Figure 5.16) show that there is 

evidence of a positive association between deprivation and lung-cancer mortality in 

women. Concerning lithology, the results also suggest a positive association with 

lung-cancer mortality in women; nevertheless, lack of such an association cannot be 

completely excluded in women (see section 5.3.1 for results in males). The same 

conclusions are obtained from the examination of the posterior point estimates on a 

node mean sd MC 
error 

2.5% median 97.5% start sample 

Lithology 0.01562 0.01238 1.2E-4 -0.00866 0.01563 0.03978 1001 30000 

Deprivation 0.05582 0.01111 1.345E-4 0.03401 0.05584 0.07744 1001 30000 

exp(Lithology) 1.016 0.01257 1.218E-4 0.9914 1.016 1.041 1001 30000 

exp(Deprivation) 1.057 0.01175 1.422E-4 1.035 1.057 1.081 1001 30000 

Table 5.14. Besag-York-Mollié model: regression coefficients estimates on the log scale (two upper 

rows) and ratio scale (two lower rows). Lung-cancer in women. 
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linear scale, where zero is the null (non-effect) value (Table 5.14, two upper rows). 

 As for the model in males (see pg. 97), an interaction term between area-level 

deprivation and lithology did not improve the goodness of fit of the model for the 

female distribution of lung-cancer mortality; in this case the posterior mean value for 

the interaction term was 0.04 with 95% CI [-0.004, 0.007]. 

Table 5.15 shows the posterior point-estimates for the Variance Partition Coefficient 

(VPC). The mean posterior estimate of the VPC was 0.999 (or 99.9%). This means 

that virtually all the residual (not explained by the model) variability is due to the 

Correlated Heterogeneity (CH) component (or clustering). This is the reason why 

models with, or without, the Uncorrelated Heterogeneity (UH) component were 

considered to be equivalent in terms of goodness of fit. These results suggest again 

(see 5.3.1) that there exist some socio-economic or environmental factors (not 

measured in this study) related to lung-cancer mortality, which have effect across 

neighbouring areas (contextual effects).  

As for the male dataset (see pg. 107) the frequency distribution of the observed 

number of female lung-cancer deaths was overdispersed (ratio variance/mean = 61.47; 

Bohning’s statistic = 4.31, p value < 0.001). Although the number of zero values was 

much higher for females (46% of all records) than for males (only 4.4%), the 

clustering component of the residual variance was again much higher than the 

heterogeneity component (VPC = 99.9%, Table 5.15); therefore, a hierarchical BYM 

node mean sd MC error 2.5% median 97.5% start sample 

VPC 0.9986 0.001564 1.592E-4 0.9943 0.9991 0.9998 1001 750 

 VPC =Variance Partition Coefficient. VPC = CH / CH + UH; if close to 1 
indicates relevance of a hierarchical model. 

CH = Spatially Correlated Heterogeneity 

UH = Uncorrelated Heterogeneity. 

Table 5.15. Variance Partition Coefficient: posterior estimates. Lung-cancer in 

women. 
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Figure 5.16. Standardised Mortality Ratio estimates for lung-cancer mortality in 

men. 
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model was again justified, as spatial autocorrelation, rather than random heterogeneity, 

seemed to be responsible for virtually all overdispersion.  

5.3.3 Mapping of lung-cancer mortality modelling: males 

 Figure 5.17 shows the Standardised Mortality Ratios (SMRs) due to lung-cancer 

mortality in men. It represents the observed (that is, before modelling) SMRs values, 

where there is a high concentration of municipalities with values greater than one to 

the west of the region, as reported by previous studies. 

 

To distinguish between observed SMRs values and posterior (modelled) estimates, the 

latter had been labelled as Relative Risks (RR). To visually appraise the relative 

magnitude of each model component (see 5.3), mapping of RR of lung-cancer 

mortality in men was implemented by taking into consideration all the modelling 

components and, separately, each one of them. Figure 5.18 maps the posterior lung-

cancer RR estimates in men, for each one of the 759 municipalities in the whole 

region. These estimates were obtained from the full BYM model that accounted for 

both lithology and deprivation scores. The model also included a variance component 

that comprised spatial autocorrelation and random heterogeneity. 
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Figure 5.18 gives the number of municipalities (within parenthesis) for each RR cut-

off point. It can be seen that amongst municipalities with a high-risk of mortality, 323 

(84%) had an estimated RR up to 50% higher than expected. 53 municipalities (14%) 

had an RR of lung-cancer mortality which was up to 100% above expectation. Finally, 

only 7 municipalities (2%) had an increased RR beyond 100% of expected. 

 

To aid interpretation of these estimates, Figure 5.19 presents an exceedance-

probabilities map. Given that the whole posterior RR density was available for every 

municipality, it was possible to compute the area under the curve lies above some 

specific value. In this case, the map was devised to classify the municipalities 

according to the probability that its estimated RRs were greater than 1, which is the 

null RR. The more area under the RR curve would lie above the value of 1, the more 

the hypothesis of an RR greater than expected would be supported. This map (Figure 

5.19) shows that there were 47 municipalities for which the probability of an RR 

greater than 1 ranged between 0.75 and 0.85; another 59 areas had a probability of an 

excessive risk between 0.85 and 0.95; in another 50 areas that probability varied 

between 0.95 and 0.99. Lastly, for 105 further areas the probability of an excessive 

risk was virtually 1; in other words, for each of these 105 municipalities, all of the area 

belonging to their respective posterior RR probability-density curves was situated 

 

Figure 5.17. Posterior Relative Risks of lung-cancer mortality in men. 
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above the value of 1.This smoothed exceedance-probabilities map clearly shows how 

municipalities with higher risk concentrated to the west of the region, as reported in 

previous studies [10, 13].  

 

 

 

 

 

 

Figure 5.18. Exceedance-probabilities map (Probability [Relative Risk > 1]). Lung-

cancer mortality in men. 
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Later in this section (pg. 124), it will be explained that clustering is the model 

component responsible for this spatial pattern. A mirror image of the previous map is 

given by Figure 5.20, which gives, for each municipality, the probability of their RR 

being less than expected. It shows that the areas with the highest probability of their 

posterior RRs being less than 1 are concentrated to the east of Andalucía. 

 

 

 

 

 

 

 

 

   

 

Figure 5.19. Exceedance-probabilities map (Probability [Relative Risk < 1]). Lung-

cancer mortality in men. 
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To further analyse the fitted model, mapping was presented separately for each model 

component. Figure 5.21 represents the RR explained only by lithology scores, where 

401 municipalities out of a total of 759 (or 53%) were classified as areas with an RR 

(due to lithology) greater than expected. Of these high risk areas, 301 (75%) had an 

RR up to 2.5% higher than expected; 100 municipalities (25%) had an RR greater that 

2.5% above expectation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.20. Relative Risks explained by lithology scores. Lung-cancer mortality in 

men. 

(13) <   0.95

(91)    0.95 -   0.975

(254)   0.975 -     1.0

(301)     1.0 -   1.025

(100) >=  1.025

(samples)means for RR_litho

  200.0km

N



 

119 

 

The corresponding exceedance-probabilities map (Figure 5.22) shows that 401 

municipalities (or 53%) had RR estimates for which virtually all their probability-

density curves were above the value of 1. These geographical areas were mainly 

situated on two separated strips across the north and south of the region.  

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Exceedance-probabilities map for lithology scores (Probability 

[Relative Risk > 1]). Lung-cancer mortality in men. 
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The complementary map (Figure 5.23) shows the areas (a middle band across the 

whole region) where the probabilities of an RR, due to lithology, being less than 1 

were higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.22. Exceedance-probabilities map for lithology scores (Probability 

[Relative Risk  < 1]). Lung-cancer mortality in men. 
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A second RR component individually analysed was SES at area level, which was 

represented by the deprivation score. Figure 5.24 displays 361 geographical areas out 

of a total number of 759 (or 48%) that showed an RR –due to deprivation- greater than 

1. Within all these high-deprivation areas, 334 municipalities (93%) had an excess of 

risk up to 10% greater than expected. Only 27 areas (or 7%) had a risk increased 

above 10% of expectation. 

 

 

 

 

 

 

 

 

 

 

Figure 5.23. Relative Risks explained by deprivation scores. Lung-cancer mortality 

in men. 
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Exceedance-probabilities maps for the RR due to deprivation are shown in Figure 5.25 

(for an RR greater than 1) and Figure 5.26 (for an RR less than 1). There were 361 

municipalities (48%) for which the probability of an RR being greater than expected 

was virtually 1 (or 100%). Unlike the risk associated with the lithology component, 

the one due to deprivation does not seem to concentrate on any particular area. The 

clustering component was actually not captured by either of the two explanatory 

variables (lithology or deprivation) included in the model. 

 

  

 

 

Figure 5.24. Exceedance-probabilities map for deprivation scores (Probability 

[Relative Risk > 1]). Lung-cancer mortality in men. 
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Figure 5.25. Exceedance-probabilities map for deprivation scores (Probability 

[Relative Risk < 1]). Lung-cancer mortality in men. 
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The residual RR and its two components (clustering and heterogeneity) was the third 

(and last) RR component analysed. Figure 5.27 shows the map of posterior RR 

estimates due to the residual variability. In this map, 317 geographical areas of high-

risk of mortality (or 83%) had a risk which increased up to 50% beyond expected (RR 

from 1 to 1.5). 58 areas (15%) had an increment in risk between 50% and up to 100% 

(RR between 1.5 and 2). 6 areas (2%) showed a risk increment greater than 100% (RR 

greater than 2). The map exhibiting the residual RR is very similar to the one showed 

in Figure 5.18, which took into consideration all the explanatory variables plus the 

residual-variance components. This shows that the factor responsible for this 

characteristic spatial pattern of mortality was not captured by any of the two 

explanatory variables included in the model. 

 

 

 

 

 

 

 
Figure 5.26. Residual Relative Risks. Lung-cancer mortality in men. 
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Figure 5.28 gives additional information as an exceedance-probabilities map for the 

residual RR. It shows that there were 99 municipalities (13%) for which their whole 

probability-density curves were above the value of 1. That is to say, all the posterior 

values indicate a greater than expected residual RR. 45 additional municipalities (6%) 

also had an extremely high probability (between 0.95 and 0.99) of having residual RRs 

greater than 1. Moreover, these areas were mainly concentrated to the west of 

Andalucía. 

 

 

 

 

 

 

 

 

 

Figure 5.27. Exceedance-probabilities map for residual Relative Risks (Probability 

[Relative Risk > 1]). Lung-cancer mortality in men. 
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An opposite pattern is shown in Figure 5.29, which presents an exceedance-

probabilities map of the residual RR being less than 1. It can be seen that 56 

geographical areas (7%) had virtually all their residual-RR curves below the null 

value, while for 62 additional municipalities (8%), between 95% and 99% of the area 

of their probability-density curves were below the value of 1. In contrast to the 

previous map (Figure 5.28) these low-probability risk areas are mainly concentrated to 

the east of Andalucía. 

 

 

 

 

 

 

 

 

 

 

Figure 5.28. Exceedance-probabilities map for the residual Relative Risks 

(Probability [Relative Risk < 1]). Lung-cancer mortality in men. 
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The BYM model allows for the residual RR to be partitioned into two different 

components: the spatially-correlated (or clustering) and the uncorrelated 

(heterogeneity). Figure 5.30 shows the first of these residual components, also known 

as clustering. There were 404 areas (53%) that had posterior estimates indicating a 

high risk due to clustering (or spatially Correlated Heterogeneity [CH]). Of all these 

areas, 332 (82%) had an increased in risk up to 50% above the null value (RR greater 

than 1 and up to 1.5). 65 of these high risk municipalities (16%) showed an increment 

of between 50% and 100% beyond expected (RR from 1.5 to 2). Another 7 

geographical areas exhibited an increment in risk, due to clustering, greater than 100% 

(RR greater than 2). The clustering-component map showed concentration of high-risk 

municipalities to the west of Andalucía. This means there must be some factors 

(unmeasured in this study) that have a strong, spatially-correlated, effect that makes 

risk to vary smoothly across geographical areas. 

 

 

 

 

 

Figure 5.29. Relative Risks explained by spatially Correlated Heterogeneity. Lung-

cancer mortality in men. 
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To further assess the high and low-risk posterior estimates, Figure 5.31 and Figure 

5.32 show the exceedance-probability maps. The former gives the probabilities of an 

RR being greater than 1, while the latter shows the probabilities of an RR being less 

than 1. It can be seen (Figure 5.31) that there were 115 municipalities (15%) for which 

virtually all the area (at least 99%) under their respective RR curves were above the 

value of 1 being, therefore, representative of high-risk values. Another 56 (7%) 

municipalities had high probability (0.95 to 0.99, or 95% to 99%) of being 

representative of high-risk zones. Again, the probabilities of finding high-risk 

municipalities are greater to the west of Andalucía, as shown previously by the RR 

map due to the clustering component. 

 

 

 

 

 

 

 

Figure 5.30. Exceedance-probabilities map for Relative Risks explained by spatially 

Correlated Heterogeneity (Probability [Relative Risk > 1]). Lung-cancer mortality in 

men. 
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The opposite can be seen in Figure 5.32 where the probability of finding a low RR 

(due to clustering) municipality was at least 0.99 (or 99%) for 63 of them out of 759 

(or 8% of all the municipalities). While that probability varied from 0.95 to 0.99 (or 

95% to 99%) for another 56 (7%) municipalities. Most of these high-probability low-

risk areas were concentrated to the east of Andalucía. These two complementary maps 

show that the unmeasured factor (or factors) responsible for this spatial pattern seems 

to operate to the west of the region. 

 

 

 

 

 

 

 

 

 

 

Figure 5.31. Exceedance-probabilities map for Relative Risks explained by spatially 

Correlated Heterogeneity (Probability [Relative Risk < 1]). Lung-cancer mortality in 

men. 
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The second residual RR component, Uncorrelated Heterogeneity (UH) was mapped in 

Figure 5.33, Figure 5.34, and Figure 5.35. Mapping of the RR due UH (or random 

within-area variability) did not show a clear pattern, contrary to the one due to 

clustering; that is to say, random noise is not responsible for this spatial pattern of 

higher mortality to the west of the region. The maps show that 135 out of 759 areas 

(18%) had an uncorrelated-RR of at least 1, and they were all scattered throughout the 

region. Furthermore, only 2 municipalities showed a probability of being high-risk 

areas, of 60% or greater (Figure 5.34) and 46 municipalities (6% of all geographical 

areas) had a probability of at least 80% of being low-risk zones (Figure 5.35). 

 

 

 

 

 

 

 

 

Figure 5.32. Relative Risks explained by Uncorrelated Heterogeneity. Lung-cancer 

mortality in men. 
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Figure 5.33 Exceedance-probabilities map for Relative Risks explained by 

Uncorrelated Heterogeneity (Probability [Relative Risk > 1]). Lung-cancer mortality 

in men. 
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Figure 5.34. Exceedance-probabilities map for Relative Risks explained by 

Uncorrelated Heterogeneity (Probability [Relative Risk < 1]). Lung-cancer mortality 

in men. 
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5.3.4 Mapping of lung-cancer mortality modelling: females 

Similarly to the mapping implemented in section 5.3.3, the SMRs, before and after 

modelling (in this case labelled as RRs), were mapped. Figure 5.36 presents the 

SMRs, while Figure 5.37 shows the posterior RRs. It can be seen that while the SMRs 

ranged from 0 to 8, the RRs were smoothed, the estimated values ranging only from 0 

to 1.5, which is a characteristic inherent to multilevel models (such as the BYM 

model). This smoothing effect was lower when fitting the males’ dataset (Figure 5.17 

and Figure 5.18) as the RR estimates were based on a greater number of cases. This, in 

turn, produced more reliable estimates which were not pulled down towards the 

average value. 

 

 

 

 

 

 

 

 

Figure 5.35. Standardised Mortality Ratios. Lung-cancer mortality in women. 
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Figure 5.37 shows that only 80 municipalities out of 759 (or 10%) had a posterior RR 

greater than 1. Most of these areas of high-risk mortality (75, or 95%) had up to a 25% 

increment in risk. In contrast, 383 municipalities (or 50%) were classified as high risk 

areas when the same BYM model was used to fit the males’ dataset (see 5.3.3 and 

Figure 5.18). There is also a noticeable difference, between women and men, in the 

magnitude of the risk: 323 of all high-risk areas (or 84%) showed up to a 50% 

increment in risk. These results suggest a differential effect between men and women 

of the explanatory variables included in the model. The spatial distribution of lung-

cancer mortality is also different for women; there is not a clear pattern of high-risk 

areas concentrated to the west of the region (in contrast, see 5.3.3 for males’ results). 

 

 

 

 

 

 

 

 

 

Figure 5.36. Posterior Relative Risks of lung-cancer mortality in women. 
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The exceedance-probabilities map of an RR being greater than 1 helps identify those 

municipalities likely to be high-risk areas. Figure 5.38 shows that the probability of an 

RR being greater than 1 was lower than 0.75, for most of the areas (748 out of 759, or 

99% of all municipalities). This means that, for these municipalities, less than 75% of 

the area under their estimated probability-density curves was above the RR-value of 1. 

Therefore low-risk values (lower than 1) are also likely (probability of 0.25). 

 

 

 

 

 

 

 

 

 

 

Figure 5.37. Exceedance-probabilities map (Probability [Relative Risk > 1]). Lung-

cancer mortality in women. 
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Figure 5.38. Exceedance-probabilities map (Probability [Relative Risk < 1]). Lung-

cancer mortality in women. 
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Figure 5.39 shows the exceedance-probabilities map of an RR being lower than 1. 

This is a mirror image of Figure 5.38, which highlights probability of low-risk areas. 

Thus, there are 299 areas (or 39%) for which the probability of being low-risk areas 

ranged between 0.85 and 0.95. 47 areas (or 6%) were classified as low-risk areas with 

probability between 0.95 and 0.99. Only 1 area had an estimated probability which 

was, at least, 0.99. 
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Mapping of the clustering component for the women model (Figure 5.40) shows some 

similarities with the model in men (Figure 5.30), as there seems to be a higher risk of 

mortality, due to the clustering component, in the west (but also in the south) of 

Andalucía. 

 

5.4 Summary of lung-cancer mortality modelling 

When compared to the model in section 5.2 (with just lithology and deprivation as 

explanatory variables) model in section 5.3.1 was preferred based on different 

functions. In this new model, there is also evidence of a positive association between 

the lithology score and mortality due to lung cancer in men. Likewise, there exists a 

positive association between deprivation and lung cancer mortality in men. 

Additionally, the geographical variability in lung cancer mortality in men not captured 

by either lithology or deprivation was also estimated. These estimates show that most 

of the unexplained variance seems to be due to some factor (or factors), unmeasured in 

this study, with a strong effect over neighbouring areas to the west of Andalucía. 

Nevertheless, lithology is still shown to be an explanatory variable for lung-cancer 

mortality in men.   

 

Figure 5.39. Relative Risks explained by spatially Correlated Heterogeneity. Lung-

cancer mortality in women. 
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Chapter 6. Discussion 

6.1 Findings 

The spatial distribution of lung-cancer deaths in Andalucía was found to be associated 

with a lithology score, especially devised for this study as a surrogate measure for 

potential radon-gas exposure. Furthermore, this association remained after adjusting 

for area-level deprivation so that the potential confounding effect of tobacco smoking 

was taken into account. These findings are in agreement with current scientific 

knowledge: firstly, different epidemiological studies have consistently found an 

association between lung cancer and radon-gas exposure [115, 189, 231], which is 

known to be the second most important cause (after tobacco smoking [106]) of lung 

cancer; secondly, presence of radon in the soil is known to depend on the bedrock 

composition (e.g. there is high content of radon in granite [58, 61]), which explains the 

high correlation that exists between radon content in the soil and lithology [61, 169, 

170, 183, 190, 232, 233]. 

A positive (although weak) association was found, in this study, between the spatial 

distribution of male lung-cancer deaths, across the Andalusian municipalities, and the 

lithology score. This association was, on average, also positive for female lung-cancer 

deaths; however, lack of such an association could not be excluded for women: the 

posterior distribution for the estimate of the regression coefficient was scattered 

around zero (see Figure 5.16). Some authors have hypothesised that the predominance 

of distinct histological types in men (SCC) and women (adenocarcinoma) might be 

explained by the exposure to different environmental factors: tobacco smoking and 

radon-gas in men and women, respectively [16]. This hypothesis has been thought to 

be supported by findings of a higher mortality rate due to lung cancer, in some cohorts 

of women residing in northwest Spain. That is to say, those who were born before the 

1940s (mostly non-smoking women) and resided in a predominantly granitic region [5, 

16, 61, 165, 179, 180]. Nevertheless, there is epidemiological evidence of gender 

susceptibility to tobacco smoke exposure [108]. This differential susceptibility has 

been associated with higher levels of DNA adducts formation in women, which in 

turn, is thought to be due to higher levels of female TSNs exposure. The number of 

adenocarcinoma diagnoses increased in parallel with the female smoking prevalence 

that, in Spain, started to reach epidemic proportions since the 1970s [234]. 
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Additionally, it has been reported that major changes occurred in the tobacco 

composition (such as manufacturing of filtered, as well as low-nicotine, cigarettes) at 

that time. Hence, some researchers have attributed the responsibility for the 

histological differences between male and female lung cancer, to these biological, 

epidemiological, and manufacturing characteristics [107, 108]. 

Tobacco smoking is also thought to modify the effect of radon-gas exposure [114, 

115]. From the statistical point of view, this interaction has been reported to have a 

multiplicative (or nearly multiplicative) effect. This way, exposure to radon-gas would 

entail a higher risk of lung-cancer development amongst smokers compared to non-

smokers. The way tobacco smoking modify the effect of radon-gas exposure is not 

completely understood [116, 117]. However, several (non-exclusive) hypotheses exist: 

radon-gas can penetrate the smaller airways by attaching to dust particles in the 

ambient air; ventilation and deposition patterns differ between smokers and non-

smokers; the carcinogenic effect exerted by each exposure can eventually occur at 

different, or similar, stages. Therefore, tobacco smoking and radon-gas can be 

responsible for lung-cancer mortality by exerting their effect either independently 

from each other, or synergistically. Consequently, it is important to take into account 

both the potential confounding and interaction effects of tobacco smoking while 

studying the association between lung-cancer mortality and lithology. Even though 

direct information on tobacco smoking was not available, area-level deprivation was 

used as a surrogate measure for tobacco smoking; this decision was based on reported 

evidence about the association between smoking prevalence and area-level deprivation 

[152, 156, 157]. It is important to note that in some instances [154], deprivation was 

found to predict the smoking habit even after adjusting for individual-level SES. 

In Spain, lower individual-level SES (as measured by educational level, or 

occupational class) has been reported to be associated with higher rates of tobacco 

smoking, as well as poorer self-perceived health status and higher prevalence of 

chronic diseases [40]. Interestingly, measures of area-level deprivation were, overall, 

reported to be in agreement with individual-level SES measures. The only exception 

was for the association between female SES and the tobacco smoking habit. In this 

case, lower individual-level SES was associated with lower prevalence of tobacco 

smoking, while area-level deprivation was not associated with the smoking 

prevalence. It is worth mentioning that the same area-level deprivation index and 



 

139 

 

census (the one from the year 1991) have been used in the present study. This 

disagreement between individual-level SES and area-level deprivation measures 

suggests that the latter may not be valid for adjusting on tobacco smoking, in this 

female cohort. A study at the European level on a cohort recruited in the 1990s [32] 

has confirmed the reverse association between female individual-level SES in Spain at 

that time, and the smoking prevalence; however, no comparisons were made with 

area-level deprivation in this instance. 

Area-level deprivation is relevant in this context, not only because of its proven 

association with measures of individual-level SES (with some exceptions [40]) which, 

in turn, have been shown to be proxy measures for the prevalence of tobacco smoking, 

as well as other health-related exposures. In addition, area-level deprivation has been 

reported to be associated with radon-gas exposure [103]; interestingly, although 

environmental pollution tends to be higher in most deprived areas, the association 

between area-level deprivation and radon-gas exposure is the opposite way round: 

least deprived areas are exposed the most to radon-gas (Figure 6.1). This inverse 

association between deprivation and radon-gas has been explained by Briggs et al. 

[103] by the fact that urban areas (which concentrate highly deprived zones) are 

usually settled in lowland areas, where radon-gas concentration is lowest. In contrast, 

high-altitude rural areas are both more exposed to radon-gas, and less deprived. 

Therefore, area-level deprivation, as a surrogate measure for the prevalence of tobacco 

smoking, can be used to check for the potential modifying effect (statistical 

interaction) of smoking, on the association between lung cancer and radon-gas 

exposure. Furthermore, adjusting for area-level deprivation (if interaction was not 

present) is also important to controlling for the potential confounding effect of 

deprivation on this same relationship between radon-gas exposure and lung-cancer 

mortality. Notwithstanding the proven association between area-level deprivation and 

both lung-cancer mortality and radon-gas exposure, it may be the case that the 

deprivation index which was used, did not attain to reach a strong association with 

either lung-cancer or radon-gas because of the individual components (percentage of 

illiterate, unemployed, and unskilled workers) that comprises this index of deprivation. 

Other possibilities exist and all have been reported to have a variable degree of 

association depending on the outcome under consideration and the age groups that are 

analysed [30]. 
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Figure 6.1. Pathways in the association of deprivation with lung cancer and radon-gas. 

   = inverse association   = direct association 

                    

(Both causal and non-causal associations are indicated by arrows) 
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An alternative explanation for the absence of a clear association between lithology and 

lung-cancer mortality in women can be based on two grounds: firstly, the modifying 

effect of tobacco smoking on radon-gas exposure, as it has been reported that most 

deaths due to radon-gas occur amongst smokers [115]; secondly, the prevalence of 

smoking amongst women during the study period (1986-1995). Given that most 

female deaths due to lung cancer took place in women aged 60 years and older, they 

may mostly represent deaths of non-smoking women (the Spanish women born before 

1940 did not have joined the tobacco-smoking habit yet). Consequently, a much 

smaller risk (mean RR in women = 1.016 vs. mean RR in men = 1.023) may have 

become undetectable due to the lack of statistical power (see 5.3.1 and Table 5.8, and 

5.3.2 and Table 5.14): the same number of units of analysis (759 municipalities) were 

used to detect a smaller RR [235]. Interaction (modelled as a multiplicative term 

between area-level deprivation and the lithology scores) was not statistically 

significant for either men or women. This can be explained by the fact that the area-

level deprivation is a proxy measure not only for tobacco smoking (at least in men) but 

also for other various exposures; many of them may not modify the effect of radon-gas 

exposure.  

There is some research evidence that substantiates a small attributable risk due to 

domestic radon-gas exposure in non-smoking women (1-4%), after 25 or more years 

of exposure [236]. This was shown for a population of non-smoking women residing 

in areas where the median radon-gas concentration was 4 pCi/L (or 150 Bq/m3): this 

coincides with the threshold limit for which the US Environmental Protection Agency 

(EPA) establishes the need to implement remedial actions. In contrast, some studies 

have reported that the mean potential indoor radon-gas concentration in Andalucía is 

around 25 Bq/m3. Nevertheless, it has also been reported that there exists some risk 

even at lower levels than the limit set by the EPA. For instance, Darby et al. have 

reported averaged estimates (from case-control studies) of RR = 1.06, for exposures to 

doses around 100 Bq/m3 (95% confidence interval: 1.01-1.10) compared to non-

exposure. Also at concentrations of 20 Bq/m3 reported to be the average value in the 

UK (lower than the mean estimated values in Andalucía), it was estimated to exist a 

cumulative risk of lung-cancer death of 30% for smokers. This risk was only 0.8% for 

non-smokers. The proportion of cases attributed to radon-gas exposure, alone, was 

calculated to be 1% [115], which is in agreement with estimates reported by other 
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researches [189]. In the present study, the estimated magnitude of the average male 

RR due to lithology (when comparing the highest vs. the lowest quintile of the 

lithology score) was 1.07 (95% CI: 1.04-1.09).  

Although extensively investigated, only lung-cancer has been associated with radon-

gas exposure, but no association has been established between other cancer sites and 

radon [237, 238]. The findings in the present study are consistent with this. Tobacco 

smoking is known to be the major risk factor for both COPD [100, 121, 131] and 

larynx cancer [113, 239, 240]. In contrast, radon-gas exposure has not been related to 

either of them [117, 238] (see 2.4.2 and 2.4.3 for COPD and larynx cancer, 

respectively). Interestingly, the spatial distribution of male deaths due to either COPD, 

or larynx cancer was not associated with the lithology score devised for this study (see 

5.2.2). In contrast, all three diseases (lung cancer, COPD, and larynx cancer) were 

positively associated with the area-level deprivation score; this is consistent with 

current scientific knowledge concerning the association between lower SES and higher 

rates of mortality due to all these diseases (see 2.4 and 2.5). These results point 

towards a specific, plausible association between the spatial distribution of male lung-

cancer deaths in Andalucía, and the lithology score (as a surrogate measure for 

potential radon-gas exposure).  

However, some important factors remained unmeasured, as the residual variance 

revealed. The individual estimation of the clustering and heterogeneity components 

allowed the computation of the VPC (see Table 5.10 and Table 5.15). The VPC was 

95% and 100% for the male and female models, respectively. This means that virtually 

all the variance not explained by the models was due to the general clustering. This 

component, which is spatially auto-correlated, is usually interpreted in terms of 

unmeasured area-level factors that vary smoothly across the geographical areas; that is 

to say, any particular area shares some (modelled) level of risk with its neighbouring 

areas and differentiates from distant places.  

 Figure 5.30 and Figure 5.40 present the maps with the RRs due to the clustering 

component for women and men, respectively. It can be observed that there is a pattern 

of higher RRs of lung-cancer mortality (for both men and women) to the southwest of 

Andalucía. This pattern of spatial variation in risk was not due to either lithology (or 

not completely) or SES, but to some other unmeasured factor. Environmental factors 
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are frequently hypothesised to be responsible for this residual, spatially correlated, 

variability. 

Area-level deprivation is not only important as a surrogate measure for tobacco 

smoking, but also because poorer health status has been consistently associated with 

lower SES [142]. Furthermore, lung cancer incidence and mortality rates are higher 

amongst people of lower SES even after adjusting for tobacco-smoking [32]. This is 

due to the fact that SES can act as a proxy measure for many other lifestyle, as well as 

environmental and work exposures (such as diet, physical activity, alcohol intake and 

exposure to toxic substances). In this study, the spatial distribution of deaths due to all 

three diseases (lung cancer, COPD, and larynx cancer) in both men and women has 

been found to be positively associated with lower area-level deprivation. For lung 

cancer, the mean estimated value of the RR due to area-level deprivation was 2% 

higher than the RR due to lithology (1.04 vs. 1.02, Table 5.8); this is in agreement 

with previous research that showed that the association between tobacco smoking and 

SES was stronger for men than women [241].       

6.2 Strengths and limitations 

Small-area analysis is characterised by the small number of events under scrutiny 

within the units of analysis. It is this characteristic that allows modelling of sparse data 

by means of the Poisson distribution [235]. However, this theoretical probability 

distribution is based on the strong assumption that the variance/mean ratio equals one. 

If this premise does not hold due to the variance being greater than the mean, 

overdispersion is said to exist. Three main overdispersion sources are unstructured (or 

random) heterogeneity, spatially-correlated (or clustering) heterogeneity, and excess of 

zeros in the data (due to the fact that this kind of analysis deals with rare events) [90]. 

Another strong premise when modelling the RRs is the proportionality assumption 

[14, 99, 220, 235], which requires that the RRs in each stratum of the confounding 

variable (e.g. age) be proportional to the corresponding strata in all the geographical 

areas under study. 

6.2.1 Bayesian analysis and modelling 

Hierarchical Bayesian methods are well suited for the spatial analysis of 

epidemiological data, as they allow the researcher to address these statistical issues 

(see 6.2) [80]. Furthermore, Bayesian analysis offers some advantages over its 
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frequentist counterpart [79], such as incorporating prior knowledge into the analysis, 

producing estimates with lower MSE than the frequentist ones, and allowing for a 

direct interpretability of CIs, while a single postulate is used in any scenario: the 

Bayes’ rule (see 4.2.2). Some of the modelling possibilities include the Poisson-

gamma, the log-normal and the BYM model; a further modification of the latter one, 

by Waller, takes time into consideration. The Poisson-Gamma model is, from a 

mathematical point of view, the simplest one. It models the observed number of cases 

as Poisson distributed and considers the RR as a Gamma-distributed random effect 

[63], which results in a Negative-Binomial posterior distribution [76, 242]. Although 

mathematically convenient, as it addresses overdispersion (see 4.2.1), two main points 

remain unresolved: covariate adjustment and spatiotemporal autocorrelation (or 

clustering). Conversely, the log-normal model offers some advantages by modelling 

the Poisson parameter on a log scale; this, allows for a linear combination of different 

covariates to be included. A random component for the RR is included, which is 

Gaussian distributed. This model can also accommodate a range of hierarchical 

structures to analyse the spatiotemporal components of health-related events. One of 

these hierarchical structures is implemented by means of the BYM which was used in 

this study. This model splits the random component into CH and UH. The CH 

component is, in turn, modelled by means of a CAR distribution (see 4.2), which 

requires a definition of what neighbouring areas are to be considered, by means of the 

adjacency matrix. 

The way ‘neighbouring’ is defined (through the adjacency matrix) has been reported to 

greatly affect the regression estimates. As a consequence, some researchers have 

advocated a sensitivity analysis to take account of this issue [224]. These same 

researchers showed the differences to be expected under distinct neighbourhood 

structures. In all these settings, the comparative performance was assessed by means 

of various common criteria. They took into consideration the degree of smoothness 

attained as well as the magnitude of the clustering effect introduced; also, the effect on 

the Deviance Information Criterion (DIC, see 4.2.2 ) which is used for model 

selection. To quantify the agreement between observed and predicted values, the 

Kappa index was used, a low-value being due to a high smoothing effect (see 4.2.2). 

Interestingly, these researchers resorted to the Receiver Operating Characteristics 

(ROC) curve to find the most appropriate predictive cutoff points; the aim was to 
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decide which one gives the best compromise between sensitivity and specificity; with 

the same aim, other researchers have advocated fixed cut-off points based on 

simulation studies (see 4.4). 

The ROC curve analysis offers some advantages over the fixed cut-off point proposal: 

firstly, it allows for the setting of cut-off points to be tailored to the actual data under 

scrutiny; secondly, any predicted value across the whole variable range can be 

assessed by means of the ROC curve. This is also advantageous, as different decision 

rules (favouring either sensitivity or specificity) may be preferable under diverse 

circumstances. The ROC curve is built by graphing the true positive ratio (sensitivity) 

against the false negative ratio (1-specificity) [224, 225]; they are usually represented 

on the y and x axis, respectively. To find these values, researchers studying modelling 

performance under different neighbourhood definitions, cross tabulated observed and 

predicted values [224]. Afterwards, they calculated the true positive and false negative 

ratios within tertiles of the variable range. When the ROC curve is used to assess 

modelling performance, the cut-off points defining the highest area under the curve are 

preferred; this happens when the highest true-positive ratio and lowest false-negative 

ratio co-occur. In this case, it was reported to happen under a predictive probability of 

0.33; much different from the 0.7 cut-off point advised from simulation studies (see 

4.4) [230] . The researchers concluded that neighbourhood structures based on 

adjacencies (as in this study) produce the highest smoothing effect on the RR 

estimates. Hence, they produce the least agreement between observed and predicted 

values (kappa = 0.05). Conversely, distance-based models produce lower smoothing 

and, therefore, higher agreement with observed values (kappa = 0.07). On the other 

hand, adjacency-based neighbourhoods introduce the least amount of clustering, when 

compared with distance-based models. They also determined that DIC reached the 

highest values for adjacency matrices; this would make other structures (like distance-

based models) to be preferred, under this criterion. 

 Therefore, different possibilities (other than contiguity neighbours) exist, which can 

be implemented. So, distance-based neighbours could also be devised; in this 

approach, different lag distances (from their centroids) might be defined, as the 

number of neighbours would increase with distance [224]. Also, adjacency matrices of 

order higher than 1 (lists of neighbours of neighbours) can be considered; this was 

shown to improve sensitivity from 77% to 78% and specificity from 41% to 43%, 
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when the first-order Queen-style model was compared with its second-order 

counterpart. Distance-based models (or adjacency-based structures of order higher 

than 1) may be important where some processes (like migration flows) are nested into 

the weighting matrix; in this case, binary values would turn to different weights (e.g. 

average of inflow/outflow migration rates). If such a tenet seems plausible, different 

neighbouring definitions and weighting schemes should be tested in a sensitivity 

analysis [224]. This is relevant when a CAR model is implemented, where differences 

in neighbouring definitions and weighting schemes can be highly influential. This is 

because they determine the smoothing rate, which is at the core of Bayesian 

hierarchical modelling-techniques. Smoothing is designed to lessen random noise due 

to the statistical instability inherent in the SMRs calculation. However, how much 

smoothing is desirable constitutes a compromise between variance and bias.  

As already discussed, the FB BYM model (that was used in this study) implements 

smoothing by means of locally-varying weights; conversely, most EB methods use 

global smoothers. There are some other important similarities (and differences) 

between EB and FB methods. There is an EB version by Marshall, which uses local 

smoothers, as the BYM model; the method devised by Marshall produces the least 

shrinking effect when compared to other EB counterparts. Another similarity between 

EB and FB methods is that some EB techniques fit the data through a log-normal 

model; these EB models are considered to be the most statistically stable amongst its 

class [62]. Despite all the affinities between these two kinds of Bayesian models, none 

of the EB methods take into consideration inferential uncertainty (hyperprior-estimates 

coming from the data itself). Hence, their RR estimates show less variability than 

those produced by FB methods. This downside can also be considered advantageous, 

due to the higher simplicity and quicker computation of EB methods.  

In the present study, prior knowledge was incorporated into the analysis by fitting the 

BYM model to male lung-cancer mortality data concerning the period 1981-1985. A 

vague gamma hyperprior with parameters 0.5, 0.0005 was used to estimate both 

components of the residual variance (CH and UH). The posterior estimates of these 

two components were then used in the study of male lung-cancer mortality for the 

period 1986-1995. In this second stage, a sensitivity analysis was done to assess the 

effect of different hyperpriors on the RR estimates. The use of vague hyperpriors was 
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compared with the informed ones obtained in the previous step: there were not any 

meaningful differences in the range of the RR estimates. 

Further methods have more recently been proposed. These alternatives have arisen 

from geostatistics, in view of the limitations of EB methods and complexity of FB 

techniques; among the latter, the high shrinking effect of the BYM and subjectivity to 

choose the adjacency matrix have encouraged new options. Some of these models 

recently proposed rely on methods used to interpolate unknown values based on 

known sample points (Kriging) [62, 77, 243-246]. Thus, Area-to-Area Poisson Kriging 

has been claimed to outperform both EB and FB methods [246]. This superiority has 

been grounded on modelling properties and practical results, as modelling through 

Poisson Kriging can still produce a full posterior distribution, like FB models (under a 

Gaussian assumption, this time). Results based on simulation studies have also shown 

better discrimination between high-risk and low-risk RRs, for Poisson Kriging. 

However, this depends on the sensitivity and specificity and which threshold values 

are set by choosing different cutoff points. 

An additional benefit of the Poisson Kriging method is that the characteristics and 

effects of different adjacency matrices can be thoroughly described, which allows an 

informed selection to be made. Also, smaller errors concerning both inferential and 

predictive uncertainty have been reported, when compared to Bayesian methods [246]. 

Notwithstanding these findings, it is worthy of note that Area-to-Area Poisson Kriging 

(as EB methods) does not address parameter uncertainty; this, in turn, provides with an 

artifactual reassurance about the estimates precision, as all the information comes from 

the data itself. All the arguments considered throughout this chapter contributed 

turning to FB methods (specifically the BYM model) for the analysis stage. 

A trade-off between sensitivity and specificity is always at issue where diagnostic 

tools are used. This is also the case when the mapping process is meant to detect areas 

of unusual high/low risk. As both characteristics counteract each other, the researcher 

always has to decide to favour either sensitivity or specificity. In spatial analysis, 

sensitivity refers to the ability of the mapping process (and the underlying model) to 

detect true raised-risk areas. This is equivalent to the conditional probability of some 

areas being classified as high-risk ones, given that its true risks are raised. Vice versa, 

specificity names the capacity to detect true lowered-risk areas. Likewise, it is the 
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conditional probability of some areas being classified as low-risk ones, given that its 

true risks are lowered. Most importantly, the researcher is interested about a different 

set of conditional probabilities: the so called positive and negative predictive values. 

Therefore, once the modelling stage has classified some areas as high-risk ones, the 

probability of their true risks being raised is sought; this would be given by the 

positive predictive value (PPV). The negative predictive value (NPV), would address 

the opposite question: once the model has classified some areas as low-risk ones, the 

probability of their true risks being lowered is of interest. These are the sort of 

conditional probabilities that the modelling process addresses, through the estimates 

obtained from the posterior distribution. Both sensitivity and specificity are mainly 

inherent to the model itself, while the predictive capacity can vary under different 

circumstances. So, the BYM model is known to produce over smoothing on both the 

background and raised-risk areas, in general terms. This causes the model to have high 

specificity and lower sensitivity, which may prevent from identifying small risks; such 

a situation may be encountered where environmental risks are implicated in small-area 

analysis [230], which is the case in this study.  

Concerning predictive ability, the modelling performance may be affected by different 

circumstances, such as the distribution of high-risk areas (either isolated or in clusters) 

as well as the magnitude of the risk to be identified. Furthermore, for the same 

magnitude of the RR, the number of cases expected may affect the predictive 

performance (PPV and NPV); nevertheless, this affects the smoothed RRs in a much 

lesser extent than the raw RRs. Therefore, the smoothed RRs are highly shrunk to the 

value of 1 (under most conditions) for background (not raised-risk) areas. In contrast, 

the raw RRs remain over-dispersed. It is also important to consider that all the above 

characteristics (sensitivity/specificity and predictive values) are interrelated. This 

interrelationship can be summarised as follows: high sensitivity leads to a high NPV 

through a decrease in the number of false-negative results. Whereas high specificity 

results in a high PPV by lessening the number of false-positive results [225]. 

Similarly, whenever sensitivity is set to a high value (by assuming a higher probability 

of false positive results) specificity drops. And the reverse is also true; if high 

specificity is sought (by assuming a higher probability of false-negative results) 

sensitivity decreases. 
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To adjust sensitivity and specificity, some research based on simulation has addressed 

the above issues to produce practical decision rules [230]. These decision rules are 

meant to allow choosing the best compromise between sensitivity and specificity (RR 

detection threshold) for a desired predictive value (or posterior probability cutoff 

point). To select the most appropriate values, several loss functions were used where 

false positive and false negative results were weighted using different rules [230]. The 

aim was to find the smallest value for any particular loss function; all of it, within a 

reasonable range of probabilities of detecting certain RR magnitude. An RR threshold 

of 1 and a probability value of 0.80 were advocated when the CAR distribution (see 

4.2.2) is applied. This was shown to be a decision rule with high specificity (around 

97%), but lower sensitivity (around 71%). Keeping an RR threshold of 1 and changing 

to a cutoff point of 0.7, sensitivity raised to 82%, while specificity dropped just to 94% 

(under the assumption of a true RR of 1.65).  

Another decision to be made, involves a common topic to any kind of map: how many 

categories should be represented and which break points should be used. To address 

this issue concerning class intervals, it is important to realise that different methods 

can convey quite different information [62]. One method which is extensively used 

consists of using quantiles (e.g. tertiles, quartiles or quintiles); the corresponding break 

points can be used to partition the range of the cumulative distribution function of the 

variable to represent. This method would distribute the number of observations evenly 

in each class, across the whole range of the variable. Nevertheless, it is far from being 

perfect; values of magnitude that are far apart from each other may be classified in the 

same interval. This may happen as the only criterion used by the quantiles method is 

the number of observations per class, rather than their magnitude. Although the 

quantiles method may be useful to map uniform distributions, these are not usually 

encountered in spatial analysis; more frequently, the risk surface is spatially 

heterogeneous. Nevertheless, it may be acceptable where highly shrunk risks are 

mapped, which is usually the case when the BYM model is used. 

An alternative method is the equally spaced intervals (or absolute cut-points). This 

technique (as well as the quantiles one) is supplied by GeoBUGS; in this case, the 

range of the distribution is partitioned into class intervals of the same width; again, 

this is appropriate to map variables that are uniformly distributed. In contrast, other 

methods are meant to minimise the within class variance and maximise the between 
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class variance; it helps to label similar observations within the same class. Amongst 

these, the Fisher-Jenks method uses this sort of ‘natural breaks’; this technique is 

especially useful to map multimodal distributions. Another common method, 

addresses variables that are Gaussian-like distributed; in this case, classes can be 

devised to take into consideration dispersion from the mean value, in terms of 

standard-deviation units.  
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Chapter 7. Conclusions 

7.1 Summary 

Results from the measurement part of a confirmatory SEM showed a positive 

association between a spatially-correlated score variable and lithology (rock 

composition) as a surrogate measure for potential radon-gas exposure (see 5.2.1); this 

association was, as expected (see pg. 58), highest for plutonic and metamorphic rocks 

(Table 5.1). The structural part of the SEM showed a positive association between the 

lithology score, derived from the measurement part of the SEM, and the spatial 

distribution of male lung-cancer deaths in Andalucía, for the period 1986-1995 (Table 

5.2 and Figure 5.4). Moreover, this association remained after adjusting for area-level 

deprivation, so that the potential confounding effect of deprivation [103], on the 

association between lithology (as a surrogate measure for potential radon-gas 

exposure) and the spatial distribution of lung-cancer mortality, was controlled for 

(Table 5.7 and Table 5.8). 

Lithology was also associated with the spatial distribution of female lung-cancer 

deaths, although lack of such an association could not be completely excluded (Figure 

5.16 and Table 5.14). A multiplicative interaction term between area-level deprivation 

and lithology (as surrogate measures for tobacco smoking and potential radon-gas 

exposure, respectively) was shown not to improve the goodness of fit of either the 

male (see pg. 97) or the female model (see pg. 113). In contrast with the association 

found between lithology and lung-cancer mortality in men, no association was found 

between the lithology score and the spatial distribution of mortality due to either 

larynx cancer or COPD (Table 5.2 and Figure 5.4). After adjusting for deprivation, 

most of the residual (not captured by the model) variance, as measured by the VPC, 

was due to spatial autocorrelation rather than random (non-spatial) heterogeneity 

(Table 5.10 and Table 5.15). In contrast with lithology, deprivation was positively 

associated with the spatial distribution of mortality due to all three diseases (lung 

cancer, COPD and larynx cancer) in men (Figure 5.5, Table 5.7 and Table 5.8). 

According to the DIC, the best model (in both men and women) was the one which 

included not only lithology and deprivation, but also a clustering component (which 

accounted for spatial autocorrelation), as well as a random-heterogeneity component 

(Table 5.4 and Table 5.11). The full (all variables) model was also the one with least 
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predictive error, as shown by the results of the computed MSPE and MAPE (Table 

5.5, Table 5.6, Table 5.12 and Table 5.13). The model accounting for spatial 

autocorrelation attained a high smoothing effect on the SMR, while improving the 

distinction between high and low-risk areas (Table 5.9). This, in turn, eased the 

identification of high-risk municipalities. Even though the provinces of Cádiz (Figure 

5.8) and Huelva (Figure 5.11) show the highest mean posterior RR (1.35 and 1.34, 

respectively) there is ample heterogeneity amongst municipalities (Figure 5.7-Figure 

5.14). At the other extreme, the provinces of Jaén (Figure 5.12) and Granada (Figure 

5.10) show the lowest mean posterior RR (0.80 and 0.89, respectively). 

Therefore, the well-known pattern [9, 10, 13, 16] of higher lung-cancer mortality in 

western Andalucía, for the period 1986-1995 was confirmed (Figure 5.17-Figure 

5.19). Mapping of the residual variance in men showed that the spatial variation in risk 

was not completely explained by the model (Figure 5.27 and Figure 5.28). 

Furthermore, the residual variance was mainly due to the clustering component 

(Figure 5.30 and Figure 5.31), which is the sort of influences that have been linked to 

the so called contextual variables [98, 152, 156, 230]; in contrast, the random-

heterogeneity component did not show any visual patterning (Figure 5.33 and Figure 

5.34). Notwithstanding these results, lithology can partially explain the spatial 

distribution of lung-cancer mortality in Andalucía (Figure 5.21-Figure 5.23), 

especially in men. Differences were found between men and women, in the effect of 

the clustering component on the spatial distribution of lung-cancer mortality. A clear 

pattern of higher risk in western Andalucía was seen in men (Figure 5.30 and Figure 

5.31), while in women there was also higher risk to the south (Figure 5.40). 

7.2 Contribution 

This is the first time that the spatial distribution of potential radon-gas exposure from 

the Andalusian soils has been comprehensively analysed without the aid of direct 

radon measurements. Previous research had mainly relied on the availability of radon-

gas measurements for the design of risk maps by large areas [58, 61, 165, 179, 180]. 

Surrogate measures for radon-gas concentration had been only used when missing 

values for actual measurements had to be confronted [61]. Although there has been 

extensive research on the correlation between both geology and surface lithology, and 

potential radon-gas exposure [168, 169, 171, 192] modelling of radon-gas 
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concentration as a latent (unobservable) variable (see 4.4.2 and 5.2.1) had not been 

previously accomplished. The SEM approach to modelling had been already applied to 

research on health related outcomes [195-197], but not to the analysis of the 

association between lithology and lung-cancer mortality at the small-area level (see 

5.2.2).  

The present study has explored a novel lithology score which can partially explain the 

spatial distribution of lung-cancer deaths in Andalucía. Lithology, as a surrogate 

measure for potential radon-gas exposure, overcomes some difficulties inherent in the 

actual measurement of radon-gas concentration. One such difficulties is the cost of 

measurements that limits the number of sampled places [165]; also, lack of 

measurements reliability due to spatial and seasonal variation in radon levels [116, 

166, 173], as well as differing patterns of behaviour styles of the people dwelling in 

the buildings [58]. In contrast a wealth of lithological information, of a high resolution 

level, is available at no cost for the Andalusian soils [60]. FB methods are well suited 

for the analysis of small RR due to environmental pollutants [1, 103], such as the one 

posed by radon-gas exposure [115]; this is especially the case in Andalucía, where the 

mean levels of radon-gas concentration are low [61]. The model developed in this 

study has the potential for future improvement, so that it helps to guide public health 

policy concerning potential radon-gas exposure in Andalucía; one key advantage is the 

possibility to individually identify high-risk areas (Figure 5.7 and Figure 5.14). In 

addition, this model can identify areas according to the risk which is solely due to 

potential radon-gas exposure (Table 5.7, Table 5.8, Figure 5.21 and Figure 5.22), 

which can be useful to prioritising municipalities where direct radon measurements 

should be implemented, so that remediation actions be taken where needed [176]. 

7.3 Future research 

The lithology score devised in this study (section 5.2) can be further elaborated in 

different directions. Given that there is availability of comprehensive information on 

the lithology of the Andalusian soils (see pg. 56 and Figure 3.1)[60], the SEM can be 

used to explore different measurement approaches to accounting for the latent variable 

(potential radon-gas exposure). Thus, extension of geological faults or different 

lithological classes can be used [58, 61] for a better ascertainment of the latent 

variable; simultaneously alternatives to the CAR model that was used to derive the 
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lithology score (section 5.2.1) can be checked by exploring model sensitivity to 

different definitions of the adjacency matrix other than contiguity (see pg. 69); this 

way, proximity, concentration, or intensity, concerning the latent variable (presence of 

radon-gas), could be better captured [103].  

Given that the area-level deprivation has been shown to be inversely associated with 

radon-gas exposure [103], as well as (in a variable way) with lung-cancer mortality, it 

seems appropriate to investigate the potential confounding effect of other choices of 

deprivation indices (see pg. 4). Therefore, instead of using the so called index I 

(illiteracy, unemployment, unskilled work), index II (illiteracy, unemployment, house 

overcrowding) could be adjusted for [30]. As the chances are that neither index I or II 

be associated with smoking in the women’s cohort that was analysed (section 6.1) 

[40], a different surrogate measure for tobacco smoking should be used to test for the 

potential interaction effect between lithology and smoking (Figure 6.1). An interesting 

variable to use as a surrogate measure for tobacco smoking is COPD incidence, given 

that this condition is mainly caused by tobacco smoke (section 2.4.2). Because of the 

very poor survivorship of lung cancer patients (see pg. 5), there may not be a great 

difference between modelling either lung-cancer incidence or mortality. In contrast, 

COPD is characterised by a much better prognosis (section 2.4.2) that can make it 

difficult distinguish between aetiological and prognostic factors, which, in turn would 

produce biased results. In addition, using information concerning histological types 

could also help to checking the hypothesis that different histological types (SCLC in 

men and mainly adenocarcinoma in women) are due to distinct aetiological causes, 

namely tobacco-smoking in men and radon-gas exposure in women [16]. Last but not 

least, smaller geographical areas can be used to lessen the potential bias due to the 

ecological fallacy. To this aim, digital boundaries at the census tract level are readily 

available [27, 28].  
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