
On Dynamic Resource Allocation in Systems with Bursty
Sources

Thesis by

Joris Slegers

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

Newcastle University

Newcastle upon Tyne, UK

2009

(Submitted February 12, 2009)

ii

To my parents

&

To Louise

iii

Acknowledgements

First and foremost I’d like to thank my joint supervisors: Dr. Nigel Thomas and Prof. Isi Mitrani.

You have given me invaluable advice and guidance even though I was sometimes too stubborn

to follow it! This thesis owes much to the three-and-a-half years of patient supervision you have

both given me. But perhaps more importantly, I, as an academic and a human, owe much to that

supervision too.

Secondly I’d like to thank my examiners: Will Knottenbelt of Imperial College London and Aad

van Moorsel for a very enjoyable viva and interesting comments.

Many thanks also go to Chris Smith for our discussions about this and related work. As well as

the necessary occasional drink and laugh.

I’d also like to thank everyone at Warwick University involved in the ‘Dynamic Operating Policies

for Commercial Hosting Environments’ project. In alphabetical order: David Bacigalupo, Adam

Chester, Stephen Jarvis, Dan Spooner and James Wen Jun Xue.

Also many thanks to my friends and family for the help and, especially, the distractions they

provided.

And finally I’d like to acknowledge the valuable contributions the anonymous reviewers of my

papers, as well as the participants of the workshops and conferences I attended. They have given

important perspective and often interesting criticism on my work, thus improving it tremendously.

iv

Abstract

There is a trend to use computing resources in a way that is more removed from the technical

constraints. Users buy compute time on machines that they do not control or necessarily know the

specifics of. Conversely this means the providers of such resources have more freedom in allocating

them amongst different tasks. They can use this freedom to provide more, or better, service by

reallocating resources as demand for them changes. However deciding when to reallocate resources

is not trivial.

In order to make good reallocation decisions, this thesis constructs a series of models. Each of

the models concerns a resource allocation problem in the presence of bursty sources. The focus of

the modelling, however, varies.

In its most basic form it considers several different job types competing over the allocation of a

limited number of servers. The goal there is to minimize the (weighted) mean time jobs spend in the

system. The weighting can reflect the relative importance of the different job types. Reallocation

of servers between job types is in general considered to be neither free nor instantaneous. We

then show how to find the optimal static allocation of servers over job types. Finding the optimal

dynamic allocation of servers is formulated as solving a Markov decision process. We show that this

is practically unfeasible for all but the most simple systems.

Instead a number of heuristics are introduced. Some are fluid-approximation based and some

are parameterless, i.e. do not require the a priori knowledge of parameters of the system. The

performance of these heuristic policies is then explored in a series of simulations.

A slightly different model is formulated next. Its goal is not to optimize allocation of servers

over several job types, but rather between powered up and powered down states. In the powered

up state servers can provide service for incoming jobs. In the powered down state servers cannot

service incoming jobs but incur a profit due to power savings. Balancing power and performance

is again formulated as a Markov decision process. This is not explicitly solved but instead some of

the heuristics considered earlier are adapted to give dynamic policies for powering servers up and

v

down. Their performance is again tested in a number of simulations, including some where the

arrival process is not only bursty but also non-Markovian.

The third and final model considers allocation of servers over different job types again. This

time the servers experience breakdowns and subsequent repairs. During a repair period the servers

cannot process any incoming jobs. To reduce the complexity of this model, it is assumed that

switches of servers between job types are instantaneous, albeit not necessarily free. This is modeled

as a Markov decision process and we show how to find the optimal static allocation of servers. For

the dynamic allocation previously considered heuristics are adapted again. Simulations then show

the performance of these heuristics and the optimal static allocation in a number of scenarios.

vi

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

1.1 Background . 1

1.2 Structure of Thesis . 3

1.3 Publication History . 4

2 Literature Review 5

2.1 Introduction . 5

2.2 Technical Background . 5

2.3 Directly Related Work . 6

2.3.1 Dynamic Server Allocation . 6

2.3.2 Power management . 7

2.3.3 Breakdowns and Repairs . 9

2.4 Summary . 9

3 Model and Preliminary Results 10

3.1 Introduction . 10

3.2 Model Description . 10

3.2.1 Introduction . 10

3.2.2 Markov Decision Processes . 11

3.2.3 Formal Model . 12

3.3 Optimal Static Solution . 17

3.4 Stability . 23

3.5 Extensions and Limitations . 25

vii

3.5.1 Non-server Systems . 25

3.5.2 Multiple Jobs per Server . 25

3.5.3 Heterogeneous Servers . 26

3.5.4 Batch Arrivals . 26

3.5.5 Correlated Arrivals . 26

3.5.6 Heavy-tailed Arrivals or Service Times . 27

3.5.7 Different Optimization Goal . 27

3.6 Summary . 28

4 Optimal Dynamic Allocation 29

4.1 Introduction . 29

4.2 Optimization Goal . 29

4.3 Policy Improvement . 30

4.4 Value Iteration . 32

4.5 Comparison of Solutions . 34

4.5.1 Example 1: Lightly Loaded System . 34

4.5.2 Example 2: Medium Loaded System . 37

4.5.3 Heavily Loaded Systems . 39

4.6 Possible Speedup Methods . 39

4.6.1 Censoring Markov Chains . 40

4.6.2 Distributed Implementation . 41

4.7 Summary . 43

5 Heuristic Policies 44

5.1 Introduction . 44

5.2 Fluid-approximation Based Heuristics . 44

5.2.1 Average Flow Heuristic . 45

5.2.2 On/Off Heuristic . 46

5.3 Parameterless Heuristics . 47

5.3.1 Window Heuristic . 47

5.3.2 Queue Length Heuristic . 48

5.4 Comparison to the Optimal Solution . 48

5.4.1 Increased Arrival Rates . 48

viii

5.4.2 More Expensive Bursts . 52

5.4.3 Less Intensive Bursts . 53

5.4.4 Increased Switching Times . 54

5.5 Performance . 56

5.6 Summary . 59

6 Power Management 60

6.1 Introduction . 60

6.2 Model . 60

6.3 Policies . 63

6.3.1 Introduction . 63

6.3.2 Idle Heuristic . 63

6.3.3 Threshold Heuristic . 64

6.3.4 Semi-static Heuristic . 64

6.3.5 High/Low Heuristic . 65

6.3.6 Average Flow Heuristic . 66

6.4 Performance . 67

6.4.1 Increased Bursts . 67

6.4.2 Increasing Cost Differential . 68

6.4.3 Asymmetrical Switching Times . 70

6.4.4 The Threshold Policy . 72

6.5 Non-Poisson arrival processes . 72

6.5.1 Hyper-exponential Busy Times . 73

6.5.2 Batch Arrivals . 75

6.6 Summary . 76

7 Breakdowns and Repairs 77

7.1 Introduction . 77

7.2 Model . 77

7.3 Optimal Static Solution . 80

7.4 Heuristics . 84

7.4.1 Average Flow . 85

7.4.2 High/Low . 85

ix

7.5 Experiments . 85

7.5.1 Introduction . 85

7.5.2 Increasing Arrival Rate . 85

7.5.3 Increasing Breakdown Rate . 86

7.5.4 Increasing Repair Time . 87

7.5.5 Increased Switching Cost . 88

7.6 Summary . 90

8 Conclusions and Future Work 91

8.1 Conclusions . 91

8.2 Future Work . 92

Bibliography 94

A Notation 98

1

Chapter 1

Introduction

1.1 Background

Computing science has changed a great deal since its inception. The need to optimize performance

has, however, remained. In this thesis we will formulate and examine a series of these optimiza-

tion problems. The inspiration for the problems we look at comes from a series of fairly recent

technological developments.

The first of these developments is the ever increasing popularity of what we will call ‘grid com-

puting’. Although this term can be used in a more precise, technical, fashion here we mean using

large sets of computers to complete a task or tasks, without the user knowing, or caring, which

specific machine runs his task, cf. cluster computing. These systems can be used to either compute

large tasks by cutting them up in smaller tasks or run many smaller tasks. At some level of ab-

straction the two are indistinguishable since the smaller sub tasks in the former case can be seen as

tasks themselves. Likewise the exact hierarchy of the system does not matter, again at some level of

abstraction. For example a highly centralized Condor system and the peer-to-peer based Seti@home

system have a notional central controller that receives, distributes and collects tasks.

The second is the emergence of utility computing. In that paradigm users can buy access to

computing resources, both storage and computation, on demand from some third party. This means

they consume these resources without owning the infrastructure or hardware required to run them.

A parallel can be drawn with traditional utilities like electricity where consumers consume a resource,

power, without owning a power plant. And just like with traditional utilities, consumers are metered

for their services and billed accordingly. It is this latter aspect that adds a sense of cost and

optimization to more traditional grid systems. Clearly a best effort policy is no longer acceptable

here: users pay for resources and expect some level of performance.

2

The third development that has motivated this work lies in the technological layer below the

two concepts referred to above. It is the increasing popularity of virtualization. Here we see the

emergence of technology that allows us to abstract away the characteristics of specific computing

resources, such as which operating system it is running, the exact processor, the file space it has.

Instead we can create a virtual machine that runs almost any given piece of software in a, known,

standard environment. This gives us, at least notionally, a standard machine, even when the under-

lying physical machines are very different. This type of technology is developing rapidly. Currently

running a virtual machine has a significantly negative impact on the performance but we can imagine

that this will greatly improve in the future. And a small negative impact would probably still be

acceptable given the computing flexibility it gives to the user. Such reconfiguring of machines is not

in general instantaneous, however.

Apart from these technological developments, another observation inspired this work: the jobs or

tasks we are discussing here typically arrive in a (very) bursty fashion. By this we mean that they do

not tend to come in as a steady trickle, but rather occasionally in large quantities and occasionally

in small quantities. This behaviour is seen on many timescales, from say the behaviour of packets

in a TCP stream, to say the dramatically increased usage of certain web sites during major news

events.

Drawing on these developments, we envision a future, and indeed it happens in the present,

where providers will use large amount of servers to complete different ‘jobs’ for consumers. Instead

of providing one or more servers per type of job, the provider will want to reconfigure servers for

each job type on demand. This way the provider can get maximum performance out of his available

servers especially since he can use his resources for exactly the task that currently has a large

demand. Likewise the consumer will no longer care where exactly his job is run, but will demand a

certain performance from the provider.

The question then arises: when does a provider reconfigure his servers? This requires a careful

balancing of the loss of service during a reconfiguration period, the loss of performance to the job

type the server was formally assigned to and the increased performance to the job type that receives

the reassigned server. In this thesis we will consider a number of different, but related, models and

develop policies for deciding when to reallocate servers from one task to another.

3

1.2 Structure of Thesis

This thesis consists of eight chapters, a bibliography and an appendix. To start with the latter:

appendix A lists most of the notation used in this thesis for reference. The list is certainly not

exhaustive but most of the notation not listed there isvery standard. And in any case, whenever a

symbol is used for the first time, its definition is given.

The eight chapters start with this introductory Chapter 1. Next a brief literature survey is

presented in Chapter 2. In it the reader is given an overview of some of the related work in this

area. The difference with the work in this thesis is also stated.

In Chapter 3 we introduce the model and the optimization goal used in Chapters 4 and 5. It

concerns a series of servers that can be dynamically reassigned between several job types. The

optimization goal is to minimize the (weighted) average time jobs spend in the system. We also give

some preliminary results and also discuss how extensible this model is. Chapter 4 then explores the

(im)possibility of finding the optimal solution to the optimization problem. Several solution methods

and their problems are discussed, as well as two methods that could speed up the computation of

the optimal solution.

Having established the difficulty of finding this solution, we turn to heuristics in Chapter 5.

Several heuristic policies are introduced and compared to both the optimal solution, where available,

and each other under several conditions.

Chapter 6 introduces a different but related model where our primary concern is balancing power

consumption and performance of a system of servers that can be powered down to reduce power

consumption but also have to service incoming jobs. We introduce some (heuristic) policies that try

to minimize the cost incurred through delayed service to jobs, whilst maximizing the energy savings

through powering down servers. The performance of these heuristics is then compared to each other

for several scenarios.

The last content chapter, Chapter 7, considers yet another system. Here the servers can be

reassigned instantaneously between different job types but are subject to breakdowns and subsequent

repairs. Again our optimization goal is to minimize the (weighted) average time jobs spend in the

system.

Finally in Chapter 8 we summarize the conclusions of the work presented in this thesis. We also

make recommendations for future work.

4

1.3 Publication History

Much of this thesis has been published in peer-reviewed publications and/or presented at workshops

and conferences. In this section we will list this publication history.

An early version of the model and most of the preliminary results described in Chapter 3 were first

presented at the 2006 Euro-NGI workshop ‘Stochastic Performance Models for Resource Allocation

in Communication Systems’. A slightly different version of this work was also submitted to the

Workshop on Middleware Performance, WOMP 2006, held in conjunction with the International

Symposium on Parallel and Distributed Processing and Applications (ISPA 2006). It was accepted

and published in the proceedings in [SMT06].

The Euro-NGI workshop was also the starting point for a special issue of ‘Annals of Operations

Research’ which will appear in 2009. Our article [SMT09] has been accepted for that special issue

and contains the extended version of the results that is also present in this thesis, albeit in a slightly

different form. The only significant part of Chapter 3 that is not included in that paper is Section

3.5 on the limitations and possible extensions of the model.

Very early versions of the results on the optimal dynamic solution found in Chapter 4 were

first presented at the Euro-FGI workshop on “New Trends in Modelling, Quantitative Methods and

Measurements” in 2007 and the 2007 UK Performance Engineering Workshop. Subsequently an

early version of this work was accepted for the 2007 European Performance Engineering Workshop

and published in the proceedings in [SMT07]. We were then invited to submit an extended version

for publication in a Performance Evaluation special issue. Most of the results in Chapter 4 can also

found in that article which has been submitted, reviewed, revised and is currently being re-reviewed.

The results on heuristics found in Chapter 5 have mostly been published in conjunction with the

model and preliminary results found in Chapter 3. Its publication history is therefore very much

the same. Specifically it can be noted that the two fluid based approximations described in Section

5.2 are present in both [SMT06] and [SMT09]. The parameterless heuristics found in Section 5.3

can only be found in [SMT09].

The publication history for the work in Chapters 6 and 7 is much shorter. An early version

of the work in Chapter 6 was accepted for and presented at the SPEC International Performance

Evaluation Workshop 2008. It also appears [STM08] in the proceedings. The results of Chapter 7

have not been published in any form so far.

5

Chapter 2

Literature Review

2.1 Introduction

The optimization problems considered in this thesis do not appear to have been studied before.

Nonetheless there is a body of background and related work available. In this chapter we will briefly

outline some of the related research strands and provide references for the background to this work.

To this end we first discuss some of the literature that is of interest to this thesis as background

work in Section 2.2. Some of this will be referred to in the individual chapters and summarized

there; others contain background work assumed to be known to the reader of this thesis. In the

subsequent Section 2.3, we will address some more directly related literature. We end this chapter

with Section 2.4 which summarizes these discussions.

2.2 Technical Background

The general area of this thesis is that of dynamic optimization. There is extensive literature in this

area. Out of the many available general texts those by Ross [Ros83] and particularly Tijms [Tij94]

can be highly recommended. The latter contains much of the background theory used in Chapter

3 and 4. For the latter chapter, the seminal work remains the book by Kleinrock [Kle75]. Several

other, more specialized, topics are also considered background knowledge in this thesis.

For a general discussion of parallel and distributed algorithms we would like to point the reader

to work by Bertsekas and Tsitsiklis [BT89]. The discussion on convergence in Chapter 4, Section

4.6.2 owes much to that work, even though the specific case in this thesis is not considered there.

The method of spectral expansion used in Chapter 7, Section 7.3 was perhaps most lucidly

described by Mitrani and Chakka in [MC95]. We refer the reader to that paper for the, rather

6

technical, details of the technique.

There is a wealth of publications on fluid-approximations. The approximations used in this thesis

are first order but more complicated approximations can e.g. be found in work by Kella and Whitt

[KW90] and work by Boxma and Dumas [BD98].

Throughout this thesis we will do mean value analysis since our optimization goals are only

formulated in terms of mean sojourn times. This means the queueing discipline, i.e. the order in

which incoming jobs are processed, is irrelevant. However there is a large body of work that does

consider scheduling discipline. A good overview can be found in the special issue of Performance

Evaluation Review edited by Mor Harchol-Balter, [HB07].

2.3 Directly Related Work

2.3.1 Dynamic Server Allocation

The most closely related work to this thesis is probably the work by Palmer and Mitrani [PM05].

There the authors too consider a system of servers that can be reallocated between difference job

types. The main difference, from a modeling perspective, to the work outlined in Chapters 3, 4 and

5 lies in the arrival process. The arrival process considered there is a normal Poisson process. This

means the arrivals do not experience burstiness. The interrupted Poisson process used in this thesis

adds considerable complexity to the model.

The added complexity means that, e.g. the optimal static server allocation is very different. We

have also not used the dynamic heuristics from this work. There are two reasons for this. Firstly the

difference in arrival process makes the adaptation of the heuristic developed in that paper not readily

applicable to this model. Secondly the heuristic contains a ‘magical’ constant, whose meaning is not

clear and cannot be explicitly related to the parameters under consideration.

Despite these differences there is some relation between that work and this thesis. Indeed, the

work in [PM05] was the direct inspiration for this thesis as can be readily seen from the modeling

choices.

There does not seem to exist any other work that considers the dynamic allocation of multiple

servers over multiple job types, either with or without bursty arrivals. There is, however, a sub-

stantial body of work concerned with polling systems. See e.g. the paper by Levy and Sidi [LS90]

for an early introduction. In a polling system a single server visits several queues in some order. A

non-zero switching time between queues can be present. A basic version can be found in a paper by

7

Hofri and Ross, see [HR87] where a system is considered with two, unbounded, queues and a single

server. Arrivals occur according to a Poisson process and job services cannot be interrupted. It is

found that the optimal policy is then exhaustive service, i.e. a server is only reassigned once the

current queue has been emptied. Once the current queue has been emptied, the server should only

be reassigned once the other queue exceeds some threshold. Expressions for these two threshold

values are given.

Two more general cases are considered by Duenyas and Van Oyen in [DO95] and [DO96]. In

[DO95] a polling system is considered with non-zero switching times, but no switching costs. There

are N queues with different holding costs. The service and switching times have a general distribu-

tion. A heuristic is developed which performs well compared to threshold and exhaustive policies.

The optimal policy is partially characterized but not fully computed.

The paper [DO96] by the same authors considers the case where there are no switching times but

there are switching costs. In this case an optimal policy is calculated for a truncated state space.

The complexity of this calculation is such that this optimal policy can only be found for very simple

systems. Hence the authors also consider a heuristic which is shown to perform well.

Similar work on single server polling systems can be found in two papers by Koole, [Koo97] and

[Koo98]. Both papers extend the previous work and discuss the optimal policies at some length.

Results are either only partial or very difficult to characterize.

We will end our discussion of polling systems with the reference of a paper by Liu, Nain and

Towsley, [LNT92], where the authors characterize the optimal polling system policy in the absence

of different priorities for different queues and of switching costs. This corresponds to a model where

the optimization goal is to minimize the number of jobs in the system. Even though they do allow

non-zero switching times, the absence of different holding costs makes their work inapplicable in

systems where these do exist.

There is one more paper that should be mentioned in the context of Chapter 3, specifically

Section 3.3. The short paper by Buyukkoc, Varaiya and Walrand, [BVW85] shows that when both

switching times and switching costs are zero, the optimal policy for a system with multiple servers

is to give priority to the most heavily loaded system (weighted with the holding cost).

2.3.2 Power management

Power management, as addressed in Chapter 6, has become an increasingly popular topic for re-

search. Mostly, however, at a ‘lower’ level than the server level considered here. The work done

8

at component, or even chip level, cannot be readily applied to server level. This is because the

technological constraints and design considerations that exist there are mostly absent, or entirely

different at this level. We will therefore focus on the relatively small amount of literature that does

model at the server level.

An overview of early work in this area can be found in a paper by Bianchini and Rajamony,

[BR04]. There too it is noted that very little previous work addresses the specific challenges in

modeling at the server level. In [PBCH03], Pinheiro et. al. model a cluster of homogeneous servers

that can be powered down and up at will, albeit with (asymmetrical) delays. They then used

an approach inspired by control theory and load balancing to keep the performance acceptable

whilst aggressively powering down servers. No explicit trade off between power and performance is

made. Their resulting policy is not characterized but rather presented as a set of controllers and

parameters. As a result it is unclear what the influence of various system parameters on their system

is. In addition the arrival process they consider is not bursty.

An interesting variation on the work above can be found in a paper by Lefurgy, Wang and

Ware, [LWW07] where again a controller approach is used, but the goal this time is to maximize

performance whilst maintaining a given level of power consumption. This IBM inspired work does

not consider bursty arrivals either and generates a policy that is implicit just like in [PBCH03].

A completely different approach can be found in work by Chase et. al [CAT+01]. There the load

on a cluster of servers is taken from both real data and synthetic data. Both are bursty and heavy

tailed. The requests are for different services and a virtual economy is created to allocate resources

(servers) between these different job types and also an idle state which yields energy saving benefits.

These ‘services’ then compete by bidding for the scarce resources. The resulting system is quite

adaptive but again the influence of various system parameters is very hard to infer.

Finally we can mention work by Ranganathan et. al. [RLIC06]. The main aim of this work is to

reduce power consumption of servers by assigning it multiple tasks and taking implicit advantage of

statistical multiplexing effects, i.e. the unlikeliness of simultaneous peak arrivals for several tasks. It

too considers an economic approach. Here a system of server blades is considered in conjunction with

a set of tasks. Each of the tasks has a usage profile taken from real traces. The servers themselves

have an energy budget assigned to them. By dynamically changing its power consumption (through

CPU voltage scaling), each server has to complete its tasks within that budget.

9

2.3.3 Breakdowns and Repairs

The kind of system considered in Chapter 7, i.e. servers that are subject to breakdowns and re-

pairs, is quite widely considered. Probably the earliest work, considering a single server queue with

breakdowns and repairs, using preemptive resume, can be found in a paper by White and Christie

[WC58]. This strand of work has been generalized to N servers, see for instance [MC95]. Finding

the mean queue length of a system of N servers subject to breakdowns and repairs is given as an

example of the spectral expansion technique mentioned earlier.

Despite the relatively common nature of this type of model, to the best of our knowledge the

combination of reconfigurable servers, bursty arrivals and breakdowns and repairs has not been

considered in the literature before.

The nearest work is a series of publications by Mitrani and various other authors, e.g. with King

in [KM81], Chakka in [MC95], Thomas in [TM95], Palmer in [PM06] and finally Martin in [MM08].

The main addition of the work in this thesis over those papers lies in the presence of bursty sources.

2.4 Summary

As we have shown above, there is a wide range of work related to the problems under discussion in

this thesis. None, however, address the exact models we discuss here. Closest is [PM05] and other

work by those authors that, indeed, formed the inspiration for this work. The match is not exact

however, as the systems under consideration in this thesis have substantial additional complexity in

the form of bursty arrival processes. This makes direct application of that previous work impossible.

To the best of our knowledge, the application of Markov (decision) processes to a server power

management problem, as outlined in Chapter 6 is completely new. Some other work on server power

management has been referred to above, but none of these papers formally model the system as

extensively as in this thesis.

The modeling of breakdowns and repairs has a much longer tradition. However the combination

of dynamic server allocation, breakdowns and repairs and bursty arrivals is, to the best of our

knowledge, unique.

10

Chapter 3

Model and Preliminary Results

3.1 Introduction

In this chapter we will describe the model that we will use for most of this thesis in some way or

other. In Chapters 4 and 5 this model will be used directly. In Chapter 6 we will apply a very

similar model, which will be discussed there. And finally in Chapter 7 we will develop a related

model. Since the model discussed here is so central to this thesis, it will be described in some detail

in Section 3.2. This will raise two main questions which we will also discuss in this chapter. The

first is deriving the optimal static solution to our model, which will be addressed in Section 3.3. The

second concerns the stability conditions for the system we are modeling, which will be discussed in

Section 3.4. After discussing these two questions, we will briefly consider possible extensions as well

as limitations of the model outlined in this chapter, in section 3.5. We will end with a brief summary

of this chapter in Section 3.6. Most of the results here have been published previously in [SMT09].

3.2 Model Description

3.2.1 Introduction

The system we examine is illustrated in Figure 3.1. As an example we can think of the BBC server

park. The servers there have different tasks. Some will provide, say, webhosting of the BBC News

pages, other provide the BBC iPlayer service and yet others provide the up to date football scores.

Demand for these services can be expected to fluctuate, typically in a bursty fashion. We could e.g.

expect the amount of webpage requests to increase dramatically when a major news event occurs.

Likewise the start of a football match will generate more requests for up to date scores, etc. Many

of these request peaks will not be easily foreseen and can thus be considered to arrive at random

11

lll-
??? ??

l-
??????

ll-
??? ??

Figure 3.1: Heterogeneous clusters with on/off sources

times. The required resources to deal with each of these requests is, in general, dependent on the

type of request. Following our example scenario, it is easy to see that a simple score update request

requires much lower service time than an iPlayer request for an entire 1 hour documentary. We also

assume that the exact amount of time or service required to complete a request fluctuates. A stream

can for instance be paused or, as another example, we can have randomness inherent to the system

when hosting a web page due to unpredictable system behavior.

We now consider the servers capable of hosting either of these three services, provided they get a

sufficient amount of time to be reassigned and possibly incurring a penalty cost. This will allow us to

reassign servers from one type of task, or job type as we will call it throughout this thesis, to another

as demand fluctuates. The jobs themselves can also have an associated importance or resilience to

delay. A request to update a news web page for example should be handled more promptly than

the request for the streaming of a long program. To reflect this, we assign a cost to each request,

linearly dependent on the amount of time it spends in the system, and (in general) different for each

type of request.

A large part of this thesis will now consider the problem of when to reallocate the servers between

different job types. The goal here is to minimize the cost incurred by delay to the jobs that pass

through the system and switching costs.

3.2.2 Markov Decision Processes

We will model this system using a Markov decision process (MDP). We will give a very brief intro-

duction to this technique here. A more extensive introduction to MDPs can be found in e.g. [Tij94]

or [Ros83].

Suppose we have a simple Markov chain, modelling a single queue with a single server. We

12

will assume there are jobs arriving in the system according to a Poisson process with parameter λ.

Likewise job completion is a Poisson process with parameter µ. We can describe the state of the

Markov chain by noting the number j of jobs in the system. The transition rates of the Markov

chain are

r(j, j′) =


λ if j′ = j + 1

µ if j′ = j − 1
. (3.1)

Now suppose we want to consider a slightly different, but related, case where the jobs arriving in

the system can be rejected if the queue has grown to a certain size, say K. We do not yet know

what K value we choose but rather have an optimization goal in mind. This could be e.g. to have

the probability of rejecting a job below a certain value. One way of modelling this is by turning the

Markov chain into a Markov decision process. We do this by associating a set of allowable decision

{a(j)} with each state. Here these decisions are to either allow a job to be accepted, which we will

denote by a(j) = 1 or to reject any incoming job a(j) = 0.

The resulting Markov decision process would be:

ra(j, j′) =


a(j)λ if j′ = j + 1

µ if j′ = j − 1
. (3.2)

The advantage of this model is that we can ask question such as: what decisions should I take so

that the probability of rejecting a job is below a certain value? In the next subsection and indeed

throughout this thesis we will use these Markov decision process extensively.

3.2.3 Formal Model

A more formal description of the model outlined above is as follows. The system contains N servers,

each of which may be allocated to the service of any of M job types. There is a separate unbounded

queue for each type. Jobs of type i arrive according to an independent interrupted Poisson process

with on-periods distributed exponentially with mean 1/ξi, off-periods distributed exponentially with

mean 1/ηi and arrival rate during on-periods λi (i = 1, 2, ...,M). The required service times for type

i are distributed exponentially with mean 1/µi.

Any of queue i’s servers may at any time be switched to queue j; the reconfiguration period,

during which the server cannot serve jobs, is distributed exponentially with mean 1/ζi,j . If a service

is preempted by the switch it is eventually resumed from the point of interruption. This is done to

13

preserve the Markovian nature of the model since we would otherwise know that a job would take

at least a certain amount of time.

We denote the number of jobs of type i present in the system by ji, the on/off state of job type

i by li = 0 for a job type that is off and li = 1 for a job type that is on. The number of servers

currently assigned to a job type is denoted by ki and the number of servers currently being switched

from type i to type j is denoted mij .

Using this notation we can describe the state S of the system as:

S = (j, l,k,m) , (3.3)

where j, l and k are vectors of size M , and m is an M × M matrix. If no action is taken the

instantaneous transition rate r(S, S′) from state S to state S′ is given by:

r(S, S′) =



liλi if j′ = j + ei

min(ki, ji)µi if j′ = j− ei

mijζij if k′ = k + ei

and m′
i,j = mi,j − 1

liξi if l′i = 0

(1− li)ηi if l′i = 1

, (3.4)

where ei is the vector whose i-th element is 1 and all others are 0.

The transition rates in (3.4) correspond to

• Job arrival

• Job completion

• Switch completion

• Arrival stream turning off

• Arrival stream turning on.

The above Markov process becomes a ‘Markov decision process’ by associating with each state,

S, a set of actions, {a}, that may be taken in that state. An allowable action, a, consists of choosing

a particular pair of job types, i and j, and switching a number of servers from type i to type j. If

14

that number is k, then state S changes immediately to state Sa, where

ka
i = ki − k ; ma

ij = mij + k ; k = 0, 1, . . . , ki . (3.5)

The case k = 0 corresponds to the action ‘do nothing’.

These immediate state changes are not part of the Markov transition structure. We say that Sa

is the ‘resulting’ state of action a in state S. The transition rate of the Markov decision process

from state S to state S′, given that action a is taken in state S, is denoted ra(S, S′). By definition,

it is equal to the transition rate (3.4) from the resulting state Sa to state S′:

ra(S, S′) = r(Sa, S′) . (3.6)

In order to apply existing Markov decision theory, it is convenient to transform the continuous

time process into an equivalent discrete time one. This is done by means of a mechanism called

‘uniformization’ (see e.g. [dSeSG01]), which introduces fictitious transitions from a state to itself, so

that the average interval between consecutive transitions no longer depends on the state. A Markov

chain is then embedded at these transition instants.

For this we need a uniformization constant, Λ, which is an upper bound for the transition

rate out of each state, under all possible actions. Although the tightness of the bound does not

matter in principle, the numerical properties of the solution are improved if the bound is tight. The

uniformization constant we use is given by

Λ =
M∑
i=1

λi + N max
i

µi + N max
i,j

ζi,j +
M∑
i=1

max(ξi, ηi) . (3.7)

The one-step transition probabilities of the embedded Markov chain, in the absence of any actions,

15

are denoted by q(S, S′) and are given by

q(S, S′) =



liλi/Λ if j′ = j + ei

min(ki, ji)µi/Λ if j′ = j− ei

mijζi,j/Λ if k′ = k + ei

and m′
ij = mij − 1

liξi/Λ if l′i = 0

(1− li)ηi/Λ if l′i = 1

1−
∑

S′ 6=S

q(S, S′) if S′ = S

. (3.8)

Again, this Markov chain becomes a discrete time Markov decision process by associating actions

a with state S. The one-step transition probability of that process from state S to state S′, given

that action a is taken in state S, is denoted by qa(S, S′). By definition it is equal to the transition

probability (3.8) from the resulting state Sa to state S′:

qa(S, S′) = q(Sa, S′) . (3.9)

An optimization problem is associated with the Markov decision process. Let ci be the cost of

keeping a type i job in the system per unit time (i = 1, 2, ...,M). These ‘holding’ costs reflect the

relative importance, or willingness to wait, of the M job types. In addition, there may be a cost, ca,

associated with carrying out action a (this represents the monetary cost of switching servers from

one job type to another). Then the total one-step cost, ca(S), incurred when the system is in state

S and action a is taken, is given by:

ca(S) = ca +
M∑
i=1

ciji . (3.10)

The special case of ca = 0 represents cost-free, but not necessarily instantaneous, switching.

A mapping, f , from states S to actions a is called a ‘policy’. Moreover, f is said to be a

‘stationary policy’ if the action taken in state S is unique and depends only on S, not on the process

history prior to entering that state.

Consider the average long-term cost incurred per step when a stationary policy f is in operation.

Denote by Qf the one-step transition probability matrix of the Markov decision process under policy

16

f . The elements of Qf are given by (3.9), with actions specified by f . Then the n-th power of Qf ,

Qn
f , contains the n-step transition probabilities of the process under policy f . By definition, Q0

f is

the identity matrix.

Suppose that the process starts in state S and proceeds for n steps under policy f . The total

average cost incurred over that period, Vf,n(S), is equal to

Vf,n(S) =
n−1∑
t=0

∑
S′

qt
f (S, S′)cf (S′) , (3.11)

where qt
f (S, S′) is the (S, S′) element of Qt

f , i.e. the t-step transition probability from state S to

state S′; cf (S′) is the one-step cost (3.10) incurred in state S′ with action specified by f .

The long-term average cost incurred per step under policy f , gf , is defined as the limit

gf = lim
n→∞

1
n

Vf,n(S) . (3.12)

For an irreducible process (which is our case), the right-hand side of (3.12) does not depend on the

starting state S, see e.g. [Tij94].

The optimization problem can now be stated as that of determining the minimum achievable

average cost, g = minf{gf}, together with a stationary policy, f , that achieves it. For this problem

to be numerically tractable, the infinite-state Markov decision process must be truncated to a finite-

state one. This is done by imposing bounds, ji,max, on all queue sizes. In other words, all one-step

transition probabilities qa(S, S′) where S′ contains a queue size exceeding its bound, are set to 0.

This will be referred to as the ‘truncated model’. There are obvious trade-offs in setting the queue

size bounds: the larger they are, the more accurate the truncated model, but also the more expensive

to solve. We will address this in more detail in Chapter 4.

There is also a second way of looking for an optimal policy. Instead of aiming for the average

cost criterion, one could try to minimize the total discounted cost over an infinite horizon. Using a

discount factor 0 < α < 1, the n-step cost (3.11) becomes

Vf,n(S) =
n−1∑
t=0

αt
∑
S′

qt
f (S, S′)cf (S′) , (3.13)

and Vf,∞(S) is finite. It then makes sense to look for a policy f that, for each state S, minimizes

the total future cost incurred when starting in that state. The advantage of discounted optimization

is that the factor α speeds up numerical convergence. The disadvantage is that an optimal policy

17

under a discounted cost criterion is not necessarily optimal under an average cost one (except in the

limit α → 1, where the numerical advantage of α is lost). These methods and their pros and cons

will be discussed at some length in Chapter 4. In the next section of this chapter we will focus on a

different optimal solution, the optimal static solution.

3.3 Optimal Static Solution

In this section we will consider a related problem to that discussed in the previous section. Instead

of dynamically reallocating servers between job types, we will consider the problem of pre-assigning

the N available servers over the M different job types. So we are interested in finding the vector

~n = (n1, n2, · · · , nM), where
M∑
i=1

ni = N , such that allocating ni servers to the i-th job type will

minimize the overall (average) cost of the system. For the case where the arrival process is standard

Poisson and the holding costs for each job type are identical, it is well known (this is a property of

the Erlang C function) that the so called ρ-rule is optimal. We allocate the available servers roughly

proportionate to the loads ρi = λi

µi
. The ‘roughly’ here relates to the fact that we have a discrete

number of servers and that we have to allocate at least one server to each job type with a non-zero

arrival rate. In the case of non-homogenous holding costs, the ρ-rule can easily be adapted to reflect

this.

Unfortunately there does not seem to be a similar (simple) result for the system under considera-

tion here. Instead we will find the optimal static allocation in two steps. First we will investigate an

isolated queue with ni servers and an interrupted Poisson arrival process (in the Kendall-notation

an IPP/M/ni queue). We will show how we can calculate the mean queue length for this queue and

give a useful approximate expression. Secondly we will show how we can, quite efficiently, search

through the possible allocations to find the optimal one, using this approximate expression or the

actual mean queue length expression. To simplify notation, the index i will be omitted in this

section.

The state of the queue is described by the pair (j, u), where j is the number of jobs present and

u is 0 if the arrival process is in an off-period, 1 if it is on. For a graphical depiction see Figure 3.2.

Let pj,u be the equilibrium probability of state (j, u). Also denote by µj the total service completion

rate when there are j jobs present: µj = min(j, n)µ.

The steady-state probabilities satisfy the following set of balance equations (j = 0, 1, . . . ; u =

0, 1):

[λu + µj + ξu + η(1− u)]pj,u = λupj−1,u + µj+1pj+1,u

18

N-1, off N-1, on

.

.

.

ξ λ

η
Νµ Νµ λ

N, off

Νµ

N, on
ξ

η

.

.

.
Νµ λ

(Ν−1)µ (Ν−1)µ

0, off 0, on
ξ

η
µ µ λ

1, off 1, on

2µ

ξ

η
2µ λ

Figure 3.2: Transition diagram for single queue, no switching

+ [ξ(1− u) + ηu]pj,1−u , (3.14)

where p−1,u = 0 by definition.

This model can be solved numerically by treating it as a ‘Markov-modulated queue’. The

Markovian environment that influences the behaviour of the queue is the phase of its arrival pro-

cess. Then one can compute performance measures by applying either the spectral expansion (see

[MC95, MM91]) or the matrix-geometric solution method (see [Neu81]). However, the present model

is sufficiently simple to allow both an explicit exact analysis and an approximate solution in closed-

form. This avoids the necessity of computing the matrix R used by the matrix-geometric solution,

or the eigenvectors needed by the spectral expansion.

It is convenient to introduce the generating functions of the probabilities corresponding to off-

and on-periods, respectively:

g0(z) =
∞∑

j=0

pj,0z
j ; g1(z) =

∞∑
j=0

pj,1z
j . (3.15)

Multiplying the balance equations (3.14) by zj and summing, these can be transformed into a set

19

of two equations for g0(z) and g1(z).

[ηz − nµ(1− z)]g0(z) = ξzg1(z)− µ(1− z)P0(z) , (3.16)

[λz(1− z)− nµ(1− z) + ξz]g1(z)

= ηzg0(z)− µ(1− z)P1(z) , (3.17)

where P0(z) and P1(z) are two polynomials involving ‘boundary’ probabilities (corresponding to

states with state-dependent departure rates):

P0(z) =
n−1∑
j=0

(n− j)pj,0z
j ; P1(z) =

n−1∑
j=0

(n− j)pj,1z
j . (3.18)

From equations (3.16) and (3.17), g0(z) and g1(z) can be expressed in terms of P0(z) and P1(z).

g0(z) = µ
(1− z)(nµ− λz)P0(z)− ξz[P0(z) + P1(z)]

d(z)
, (3.19)

g1(z) = µ
(1− z)nµP1(z)− ηz[P0(z) + P1(z)]

d(z)
, (3.20)

where

d(z) = ληz2 + nµ[(1− z)(nµ− λz)− (ξ + η)z] . (3.21)

Setting z = 1 in (3.19) and (3.20), and bearing in mind that g0(1) + g1(1) = 1 (this is the

normalizing equation), we obtain

P0(1) + P1(1) = n− λη

µ(ξ + η)
. (3.22)

This result has a clear intuitive explanation. The left-hand side of (3.22) gives, by the definitions

(3.18), the average number of idle servers. The overall arrival rate, averaged over the on and off

periods, is equal to λη/(ξ + η). Therefore, the fraction in the right-hand side of (3.22) is the offered

load, i.e. the average amount of work that comes into the system per unit time. Since, in a stable

system, the offered load is equal to the average number of busy servers, the right-hand side of (3.22)

is also equal to the average number of idle servers.

The necessary and sufficient condition for stability is that the offered load, ρ, is less than the

20

number of servers:

ρ =
λη

µ(ξ + η)
< n . (3.23)

So far, the generating functions g0(z) and g1(z) have been expressed in terms of 2n unknown

probabilities, the coefficients of P0(z) and P1(z). The balance equations (3.14) for j < n− 1 supply

2n − 2 equations for those unknowns. An additional equation is provided by (3.22). We need one

more equation in order to determine the unknowns.

The final equation is obtained by observing that any generating function of a probability dis-

tribution must be analytic in the interior of the unit disc. Therefore, if the denominator, d(z),

appearing in (3.19) and (3.20), has a zero in that region, then the numerators must also vanish at

that point. Now, d(z) is quadratic in z. Moreover, we note that d(0) > 0, d(1) < 0 and d(∞) > 0

(the second of these inequalities is due to the stability condition). Therefore, d(z) has two real zeros,

z1 and z2, such that 0 < z1 < 1 and 1 < z2 < ∞. These zeros are given by

z1 =
b−

√
b2 − 4ac

2a
; z2 =

b +
√

b2 − 4ac

2a
, (3.24)

where a = λ(η + nµ), b = nµ(λ + nµ + ξ + η) and c = n2µ2.

By the analyticity of the generating functions, setting z = z1 in the numerator of, say, (3.20),

should make it vanish:

(1− z1)nµP1(z1)− ηz1[P0(z1) + P1(z1)] = 0 . (3.25)

This gives us the additional equation we need. The numerator of (3.19) is also equal to 0 at z = z1,

but that is not an independent equation.

All unknown probabilities, and hence the full distribution of the queueing process, are now

determined.

The average number of jobs present, L, is given by

L = g′0(1) + g′1(1) . (3.26)

We can also derive an approximate expression for L, which is much simpler and easier to evaluate,

and is asymptotically exact in heavy traffic.

21

The quadratic denominator, d(z), given by (3.21) can be written in the form

d(z) = λ(nµ + η)(z − z1)(z − z2) , (3.27)

where z1 and z2 are its two zeros. Since z1 is also a zero of the numerators in (3.19) and (3.20), those

numerators are of the form (z − z1)Q0(z) and (z − z1)Q1(z), respectively, where Q0(z) and Q0(z)

are some polynomials involving the boundary probabilities. Adding (3.19) and (3.20), canceling the

factor (z−z1) and dividing the resulting numerator by (z−z2), we find that the generating function

of the number of jobs present, g0(z) + g1(z), has the form

g0(z) + g1(z) = Q(z) +
a

z2 − z
, (3.28)

where Q(z) is some polynomial whose coefficients are linear combinations of the boundary probabil-

ities, and a is a constant. This form implies that the tail of the queue size distribution is geometric

with parameter 1/z2. Moreover, when the queue is heavily loaded, the boundary probabilities are

small and hence the coefficients of Q(z) are small. Indeed, in the limit when the left-hand side of

(3.23) approaches the right-hand side, Q(z) vanishes. Neglecting the first term in the right-hand

side of (3.28) and treating the queue size as being geometrically distributed, leads to a very simple

approximation for the average queue size:

L =
1/z2

1− 1/z2
=

1
z2 − 1

. (3.29)

Using this approximation speeds up the search for the optimal static server allocation considerably.

We now have exact and approximate expressions for evaluating the cost function for any given

static policy that allocates servers to queues at time 0 and thereafter leaves them in place. An

allocation (n1, n2, . . ., nM), with n1 +n2 + . . .+nM = N , is feasible if the stability condition (3.23)

is satisfied for every queue. For such static policies to exist, the number of queues must not exceed

the number of servers, M ≤ N .

When the number of possible partitions of N into M positive components is not very large (i.e.,

when either M is small or M is close to N), one can find the optimal static policy by an exhaustive

search through all feasible allocations: evaluate the cost C for each allocation and choose the best.

If the exhaustive search is prohibitively expensive (N , M and N − M are all large), then we

propose a ‘steepest descent’ method for minimizing the cost. This can be justified by arguing that

22

the cost function is convex with respect to its arguments (n1, n2, . . . , nM). Intuitively, it is clear

that queue i benefits as ni increases, but does so less and less. On the other hand, as nk decreases,

queue k is penalized more and more. Such behaviour is an indication of convexity. One can therefore

assume that any local minimum reached is, or is close to, the global minimum.

The algorithm suggested by the above observation works as follows.

1. Start with some allocation, (n1, n2, . . . , nM); for example, choose ni roughly proportional to

the product of holding cost and offered load, ni ∝ ciρi, if that is feasible.

2. At each iteration, try to reduce the cost by increasing ni by 1 and decreasing nk by 1 (where

i, k = 1, 2, . . . ,M ; i 6= k). If more than one of these ‘swaps’ achieves a reduction, choose the

best.

3. If no swap reduces the cost, stop the iterations and return the current allocation.

If the approximate expressions (3.29) for the queue sizes are used, then the arguments ni of the

cost function can be treated as continuous variables. One can then employ an existing constrained

minimization procedure (several are available in Matlab) to find the optimal allocation. The latter

is not integer, so its integer neighbours need to be evaluated and the best one chosen. Continuous

minimization tends to be very fast.

As an example we can consider a test case where N = 60 servers are to be distributed over

M = 6 job types. The other parameters of the system are chosen randomly to reflect a medium

loaded system. Here a brute force search using the approximation formula takes roughly 15 seconds,

examining in the order of 105 server allocations and ignoring in the order of 106 server allocations due

to stability conditions. When solving the continuous problem and examining the integer neighbours

of that continuous optimum, the calculation takes less than a second, examining just 113 server

distributions. If we increase the number of servers to N = 100 and the number of job types to

M = 10, the procedure using the continuous optimum still finds the optimal server allocation in less

than a second, examining 153 server allocations. The brute force search does not scale at all in this

case and takes over 24 hours to complete. Here the approximate formula was used, but using the

exact cost per server distribution instead, adds a linear increase in computational effort per state

examined, indicating that solving the continuous problem and then looking at all integer neighbours

is still effective.

Since the computation of the exact solution is considerably more expensive than that of the

approximation, it may also be advantageous to use a hybrid approach. That is, the optimum obtained

23

with the continuous minimization of the approximate expressions is used as a starting point for the

iterative algorithm with the exact solution. This should reduce the number of iterations required.

As a final remark we should note that there is a certain amount of hand waving involved in

this convexity argument since the functions only exist for integer values of the number of servers.

Convexity for integer functions tends to be a lot more laborious than for continuous functions.

Furthermore the mean queue length function is quite complex and not easily described in closed

form. This makes a rigorous proof infeasible within the context of this thesis.

3.4 Stability

In this section we turn our attention to the question of the stability of the Markov decision process.

This is, of course, dependent on the policy but here we will try to say something about the stability

of the system under the optimal policy, without defining it. Stability of Markov decision processes

is a very interesting but also very complex subject. In the context of an implemented system the

point is also often moot since the performance of any queueing system will rapidly deteriorate once

the load it experiences nears the capacity it can handle. Because of this and the difficulty of the

subject, determining the stability of the system is largely out of scope for this thesis, but we will

make some initial observations nonetheless.

If we consider the optimal static policy, the stability constraint is fairly straightforward. There

needs to be a partition ~n, with
M∑
i=1

ni = N , of the servers so that:

∀i ∈ {1, 2, · · · ,M} :
λiηi

ξi + ηi
< niµi , (3.30)

which simply reflects the necessary and sufficient condition that the completion rate should be higher

than the overall arrival rate. It is clear that this is also a sufficient condition for the stability of the

system under the optimal dynamic policy. But we can expect it to be too restrictive and not strictly

necessary. On the other hand we have the, somewhat similar, necessary condition:

M∑
i=1

λiηi

µi(ηi + ξi)
< N . (3.31)

Condition (3.31) states that the total capacity of the system should be greater than the total arrival

rate of the system. This is clearly a necessary requirement. This would also be the sufficient

requirement in the presence of instantaneous switching. We can then model the entire system as

24

one big queue with jobs of various size being served by multiple servers that do not have to be

reconfigured. However since even the best policy will have to contend with, in general, non-zero

switching time, we might expect requirement (3.31) to be necessary but not sufficient. We will argue

that this is probably not true and that (3.31) is indeed the necessary and sufficient condition for

stability of the system under the optimal policy.

We can compare the stability conditions for this system to those of a polling system. For that

system the stability condition is known, see e.g. [FL96] and other work by these authors. A polling

system is a system with one server and several queues that are visited (polled) in turn by the server.

The exhaustive service in the aforementioned paper denotes that when the server arrives at a non-

empty queue it serves this queue until it is empty, including arrivals during that service time. The

decision on what queue to poll next is not specified here, but can be state dependent. An example

would be greedy routing that chooses the largest queue as a next polling queue. The time it takes

for the server to move from one queue to another is not assumed to be zero. Finally, the arrival

process under consideration is a Poisson process. To be exact: the arrival instances is assumed to

be homogeneous Poisson. At each instance, there can be bulk arrivals.

They prove that the system is stable if and only if:

M∑
i=1

λi

µi
< 1 . (3.32)

This would be similar to the, certainly necessary, condition (3.31) for our system.

At first glance this polling system seems to closely resemble the system we are interested in with

a very specific policy, i.e. polling. Although this would not help us in determining the optimal policy,

it will give us a stability bound since the optimal policy would surely be at least as stable as this

polling policy. There are, however, some problems. The result holds for one server. Furthermore

it is claimed that the results hold for more general (independent identically distributed) arrival

processes, but no proof is given.

Intuitively we would expect either problem to be manageable. There seems to be little difference

(stability wise) in several servers polling as a group versus one of them. Although there remains the

finesse that a straight-forward adaptation like that means a group of servers may poll to a queue

where there is not enough work in the queue and thus capacity is wasted. But this seems a minor

problem. And if the result does hold for more general arrival processes, the relatively well-behaved

interrupted Poisson process under consideration here should qualify. Unfortunately the proof for the

original polling system (as found in [FL96]) is complicated and very technical. This makes adapting

25

it to the current case out of scope for this system.

3.5 Extensions and Limitations

In this section we take a look at some possible extensions of the model and also at aspects it cannot

model without extensive changes. The aim is to give the reader insight into how general this model

is, but also for which situations it is not suitable.

3.5.1 Non-server Systems

Perhaps the first thing to note is that although we will consistently talk about servers, there is

nothing in the model preventing us from applying it to, say, cores in a multicore system. The main

limitation there is that the optimization goal formulated in this thesis is exclusively interested in

minimizing the mean time jobs spend in the system. For a system of processors that is probably

not a suitable optimization goal, since there we want e.g. the processors (servers) to be powered

down periodically to decrease the heat generated. Furthermore the locality of the cores (servers)

is not considered in our model but is probably of interest. Adding this to the optimization goal is

somewhat difficult.

In general the optimization goal will be the biggest constraint for our application area. As long

as it is possible to focus on the average time ‘jobs’, whatever they may be, spend in the system the

model should be fairly adaptable.

3.5.2 Multiple Jobs per Server

It is sometimes more efficient for servers to service multiple jobs in parallel. This can be due to

programming considerations, the presence of multiple processors (cores) or to exploit multiplexing

gains. It is straightforward to adapt the model outlined here for that case. We just consider the

notion of virtual servers, whereby for each physical server capable of running, say, 4 jobs in parallel

our model contains 4 virtual servers. The only difference lies in the decisions that we can make.

Instead of being able to switch 1 or more servers between job types, we can now only switch a given

numbers of servers, 4 in this example. It does not impact our model significantly and the heuristics

we will consider in Chapter 5 can also easily be adapted.

26

3.5.3 Heterogeneous Servers

The assumption that the servers are identical can also be relaxed, albeit at significant cost to the

size of the state space. We can simply group likewise servers into separate job types. Say we have

two types of servers and three job types, we consider a system where there are 6 virtual job types.

We assign the servers to a suitable starting state, i.e. servers of type 1 are assigned to one of the

three virtual job types associated with that server type and likewise for type 2. Switching between

un-associated job types is then made prohibitively slow and/or expensive. The service given to

incoming jobs is now more complicated as two server pools share the same job queue. But this too

can be easily adapted and again the heuristics in the later Chapter 5 can be adapted to handle this

situation.

If the servers are very heterogenous, i.e. they are not easily grouped in a small number of types,

this solution is probably unfeasible. The amount of job types and switching decisions we must

consider grows too rapidly then. This is not surprising, just a reflection of the much-increased

complexity of the system under consideration.

3.5.4 Batch Arrivals

A much easier extension is that of batch arrivals. We have defined our model in such a away that at

every arrival instance only one job enters the system. Nothing prevents us to change this to batch

arrivals, if these are of fixed size. This would have no impact on the complexity of the system. If

the size of the batch is again a stochastic variable, the complexity of the system does grow greatly

and this can really be considered an extension that is out of scope for the work considered here.

3.5.5 Correlated Arrivals

Some systems experience (highly) correlated arrivals. This can for example be due to the arriving

jobs being part of larger streams of requests. The model we use here is not easily adapted to deal

with this situation. Even though there is a correlation between arrivals in the sense that they

experience ‘on’ and ‘off’ periods, arrivals within such periods are uncorrelated. This is an essential

aspect of our system since it preserves the Markovian nature of our arrival process, and cannot

really be changed without getting a completely different model. Using this Markovian model to get

estimates for correlated arrivals should be done with caution since it has been noted many times

that such estimates can be significantly off.

27

3.5.6 Heavy-tailed Arrivals or Service Times

Similarly to the correlation discussed above, heavy-tailedness is also sometimes considered an impor-

tant characteristic of arrival processes. This is also sometimes considered a characteristic of service

times, corresponding to the occasional presence of a ‘problematic’ or exceptionally large task. This

cannot be easily included in the model presented in this thesis, neither for the arrival nor for the

completion process. As before, the Markovian nature would most likely be broken and as a conse-

quence the model changes significantly. A possible generalization that does not break this Markovian

assumption is to introduce service times that are distributed according to a phase-type distribution.

This allows for much more complicated service times with high second moments. Although not prop-

erly heavy-tailed, since the second moment will still be finite, this might be a sufficient description

for some arrival processes. The major downside of this is the large increase in state space this will

cause.

3.5.7 Different Optimization Goal

As a final possible extension of the model we will look at a the possibility of using a different

optimization goal. In formulating this model we have assumed that performance is measured in terms

of the average time jobs spend in the system. For some contracts or SLAs this is not appropriate.

There the performance is e.g. measured as a percentile of a submitted stream. Say: 95% of the

jobs has to be completed and returned within 1 minute. It is also possible to have a per job pricing

structure such that the provider gets his full reward if a job is completed within a certain time

restriction.

In both cases the model described here cannot easily be adapted. Optimizing for mean value is

after all not necessarily the same as optimizing for percentile and also not the same as optimizing to

keep the time each job spends in the system below a certain value. So although interesting problems

in their own right, results for more complicated optimization goals are not easily derived from the

current model. It then, e.g. becomes important what queueing discipline is used since mean value

analysis is not sufficient. Perhaps the required modeling techniques would therefore come from

queueing theory, rather than straight-forward Markovian theory.

28

3.6 Summary

In this chapter we discussed a model we will be using for substantial parts of this thesis. It was

formally defined in Section 3.2 and we also introduced the related optimization problem. Having

defined model and problem, we showed how we can calculate the optimal static solution in Section

3.3. We also gave an explicit formula that is an approximate solution. Although an approximation,

it is asymptotically exact under heavy traffic assumptions and furthermore it allows us to do quick

calculations. In Section 3.4 we briefly discussed the stability of the Markov decision process under

consideration. Here we hypothesized a necessary and sufficient stability condition. Although no

formal proof was given, since the matter is rather complex, we gave some convincing arguments why

this is probably true. In the final Section 3.5 we considered the generality of the model by looking at

some possible extensions. This concludes this chapter, introducing the model. In the next chapter

we will explore the possibility and difficulty of finding the optimal dynamic policy.

29

Chapter 4

Optimal Dynamic Allocation

4.1 Introduction

In this chapter we will discuss how to calculate the optimal solution to the optimization problem

outlined in the previous chapter in Section 3.2. This will be described in more detail in Section 4.2.

To solve this problem we will introduce two techniques for finding the optimal policy of a Markov

decision process, policy improvement, in Section 4.3 and value iteration, in Section 4.4. Both these

algorithms have a full cost and a discounted cost ‘flavour’ which we will both describe. In Section

4.5 we will discuss these two algorithms in both discounted and full cost form and compare their

results. Next, in Section 4.6, we will address possible speedups to the methods used and finally end

with a summary of this chapter in Section 4.7. Most of the work in this chapter has been previously

published in [SMT07].

4.2 Optimization Goal

In Section 3.2 we formulated the long term average cost incurred per step under a policy f as the

limit (3.12):

gf = lim
n→∞

1
n

Vf,n(S) . (4.1)

And we also introduced its discounted counter-part (3.13):

Vf,n(S) =
n−1∑
t=0

αt
∑
S′

qt
f (S, S′)cf (S′) , (4.2)

and noted that Vf,∞(S) is finite for a discount factor 0 < α < 1.

So it then makes sense to look for a policy f that, for each state S, minimizes the total future

30

cost incurred when starting in that state. Here we have to choose between discounted and full cost

optimization. The advantage of discounted optimization is that the factor α speeds up numerical

convergence. The disadvantage is that an optimal policy under a discounted cost criterion is not

necessarily optimal under an average cost one (except in the limit α → 1, where the numerical

advantage of α is lost). We will show results for both in this chapter.

We will use a known result in Markov decision theory (see [Tij94]), which states that if there

exist a set of numbers, {vS} (one for each state), and a number g, such that for every S,

vS = min
a∈A(S)

{ca(S)− g +
∑
S′

qa(S, S′)vS′} , (4.3)

where A(S) is the set of all possible actions in state S, then

1. The actions achieving the minima in the right-hand side of (4.3) constitute an optimal sta-

tionary policy.

2. The long-term average cost achieved by that policy is g.

The numbers vS are not actual incurred costs in various states but may be thought of as ‘relative

costs’. Note that if a set of relative costs provides a solution to (4.3), then adding any fixed constant

to all of them would also produce a solution. Hence, one of the relative costs can be fixed arbitrarily,

e.g. vS = 0 for some particular S.

4.3 Policy Improvement

In this section we will look at policy improvement to find the optimal policy. The policy improvement

algorithm is due to Howard [How60] and has four steps.

1. Choose an initial policy, f , i.e. allocate to every state S, an action a to be taken in it. For

example, one could choose the policy that ‘does nothing’ in all states. Also, select the state

whose relative cost will be 0.

2. For the policy f , calculate the relative costs, vS , and the average cost, g. This requires the

solution of the set of simultaneous linear equations:

vS = cf (S)− g +
∑
S′

qf (S, S′)vS′ . (4.4)

There are as many equations here as unknowns, since we also set one of the vS to 0.

31

3. Find, for every state, the action a that achieves the minimum in

min
a∈A(S)

{ca(S)− g +
∑
S′

qa(S, S′)vS′} , (4.5)

using the relative costs and g computed in step 2. This set of actions defines a policy, f ′, which

is at least as good as f and possibly better.

4. If f ′ and f are identical, terminate the algorithm and return f and g as the optimal policy

and the minimal average cost. Otherwise set f = f ′ and go to step 2.

The computational complexity of this algorithm tends to be heavily dominated by step 2. It is

convenient to rewrite this step in matrix and vector form:

V = cf + AfV , (4.6)

where V = (v, g) is the vector of relative costs vS and the average cost g; Af = [Qf ,−1] is the

one-step transition probability matrix under policy f , extended with a column of (-1)s; the last

equation (4.6) is the condition vS=0, for the chosen S.

This equation can be rewritten in the standard form

(I −Af)V = cf . (4.7)

There are many numerical methods for solving this type of equation. We have used the direct

solution method (a version of partial pivoting) provided by Matlab (and inherited from LAPACK).

The choice is somewhat pragmatic. The other method tried, Gauss-Seidel iterations, suffered from

more problems. We have not tried further methods, e.g. conjugate gradient methods, although they

could perhaps perform slightly better. This can sometimes suffer from numerical instabilities; it

turns out to be better to solve yet another form of equations (4.6), namely:

(I −Af)∗(I −Af)V = (I −Af)∗cf , (4.8)

where B∗ denotes the transpose of matrix B. This equivalent equation is more convenient because

we now from linear algebra that for any non-singular matrix B the matrix B∗B is positive definite.

This greatly helps the numerical stability of most procedures, including the ones used by Matlab.

The form (4.8) was therefore adopted.

32

This full cost policy improvement algorithm can easily be adapted to solve the discounted cost

problem (4.2). We simply replace the equations (4.4) and (4.5) by their discounted forms:

vS = cf (S)− g +
∑
S′

αqf (S, S′)vS′ , (4.9)

and

min
a∈A(S)

{ca(S)− g +
∑
S′

qa(S, S′)vS′} . (4.10)

As mentioned before, this discounted problem has better convergence properties. The reason for

this can be found in linear algebra. It is know (see e.g. [GL96]) that iterative solutions of the linear

equations of the form Ax = b converge at a geometric rate if the spectral radius ρ(A) < 1. But

since A is a stochastic matrix we know that ρ(A) = 1. So if we use a discount factor 0 < α < 1,

it is guaranteed that ρ(αA) < 1 and we get geometric convergence. For ρ(A) = 1 the convergence

is much more complicated in general (see e.g. [Szy98]) but an exception can be made for matrices

that are positive definite, where the convergence is geometric once again. This is the reason why we

used form (4.8) over (4.7).

The main advantage of policy improvement is that it has a definite stopping criterion. When

in step 4 the two policies are identical, they are also guaranteed to be optimal. Furthermore its

convergence has some nice properties as well. The only formal statement we can make is that it

converges in a finite number of steps. For the proof of this, and similar statements about convergence

in the next section, see [Tij94]. Empirically it has been found that the convergence is typically very

fast and somewhat independent of the size of the state space.

Conversely the main disadvantage of the policy improvement algorithm lies in the computational

intensity of step 2. Here we solve a large set of simultaneous equations. This severely limits the size

of the state space we can handle.

4.4 Value Iteration

The value iteration algorithm is due to White [Whi63]. It too has four steps.

1. Initialize the cost V0 at step 0 of each state S to some value. Here we used the obvious choice

of the holding cost as the selected starting cost:

V0(S) =
M∑
i=1

ciji . (4.11)

33

Also initialize some termination accuracy ε.

2. Choose a state S∗. Calculate the cost in that state as:

gn = min
a∈A

[ca(S∗) +
∑
S′

qa(S∗, S′)Vn−1(S′)] . (4.12)

We use this as our normalizing cost.

3. Given the n − 1 step cost Vn−1 for each state, calculate the n step cost Vn(S) and n step

optimal decision a(S) in each state. We do this by finding the decision a that minimizes:

Vn(S) = min
a∈A

[ca(S)− gn +
∑
S′

qa(S, S′)Vn−1(S′)] . (4.13)

and the cost Vn(S) that results from this decision.

4. Calculate the maximum Mn and minimum mn change in cost as:

Mn = maxS[Vn(S)− Vn−1(S)] and mn = minS[Vn(S)− Vn−1(S)] . (4.14)

If the termination criterion:

Mn −mn ≤ εmn , (4.15)

is satisfied, we terminate with the decisions a(S) as output. Otherwise we go to step 2.

Again this algorithm can be converted to solve the discounted cost problem (4.2). This can be done

by just introducing the discount factor α in the relevant equations. But a more efficient method is

to remove step 2 from the algorithm. This step was only introduced to counter the problems of the

costs Vn tending to infinity in the full cost case. Having removed step 2, we replace equation (4.13)

by:

Vn(S) = min
a∈A

[ca(S) + α
∑
S′

qa(S, S′)Vn−1(S′)] . (4.16)

The rest of the algorithm is left unchanged.

The main advantage of the value iteration algorithm is that it does not require the solving of

any large simultaneous set of equations. It just has a large set of simple arithmetic operations that

have to be executed. This not only relaxes the memory constraints greatly, it also allows possible

parallel implementation. We will discuss this further in Section 4.6.

34

The convergence properties of this method are less appealing. The upper bound Mn and lower

bound mn converge monotonically, but recall that this is the difference in increase between two steps

of the algorithm and does not relate directly to the value (or cost) for each state. More encouraging

is that, under a technical assumption satisfied here, it holds that there are finite constants α > 0

and 0 < β < 1 such that:

|Mn −mn| ≤ αβn , n ≥ 1 . (4.17)

This means in particular that in the limit Mn and mn converge. However it does not help us in

picking the factor ε where we deem the values sufficiently close. Furthermore we can expect the

number of iterations required for convergence to depend heavily on the size of the state space,

because we in essence ‘see’ n steps deep into the chain after n steps of the algorithm. For large state

spaces this is a rather unappealing property since it implies the algorithm will need more steps to

converge, despite the scalability of each individual step.

4.5 Comparison of Solutions

In this section we will compare the two algorithms mentioned above, policy improvement and value

iteration. We vary both the truncation level and the discount factor, including setting it to 1, i.e.

using the full cost. We then compare the different methods in terms of performance achieved (in

terms of achieved cost) and time required to compute.

4.5.1 Example 1: Lightly Loaded System

The first case considers a system with just two job types and two servers, i.e. N = 2 and M = 2.

The system is symmetrical in both job types, lightly loaded and each job type is ‘on’ half of the

time. In terms of the parameters: λ1 = λ2 = 0.047, µ1 = µ2 = 0.113 and η1 = η2 = ξ1 = ξ2 = 0.01.

The two job types are not symmetrical in cost assigned to them. The holding cost for job type 2

is twice that of job type 1, c1 = 1, c2 = 2. And finally switching is free but takes an average of

one completion time to finish, i.e. Csw = 0 and ζ1,2 = ζ2,1 = 0.113. We examine the effect of the

chosen discount factor on this system for the policy improvement algorithm and fix the truncation

levels of our system at queue length 20. The effect of the truncation level will be discussed in more

detail later on and in other examples. Results generated by the value iteration algorithm will also

be discussed in a later example.

35

Table 4.1: Optimal actions for example 1 with various discount factors: (α = 0.9, α = 0.99,
α = 0.999). 1 denotes switching a server from job type 1 to job type 2 and −1 denotes the converse
switch. The columns represent different values for queue length 2 and the rows for queue length 1

j1 j2 = 0 1 2 3 4 5 6 7 8 9 10
0 1,0,0 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1 1,1,1
1 1,1,1 1,1,1 1,1,1 1,1,1
2 1,0,0 1,1,1 1,1,1 1,1,1
3 1,0,0 1,1,0 1,1,1 1,1,1
4 1,0,0 1,1,0 1,1,1 1,1,1
5 -1,-1,-1 1,0,0 1,0,0 1,1,1 1,1,1
6 -1,-1,-1 1,0,0 1,0,0 1,1,0 1,1,1
7 -1,-1,-1 1,0,0 1,0,0 1,1,0 1,1,1
8 -1,-1,-1 1,0,0 1,0,0 1,1,1
9 -1,-1,-1 1,0,0 1,0,0 1,1,0
10 -1,-1,-1 1,0,0 1,0,0 1,1,0

Table 4.1 shows some of the actions the optimal policy makes, given various discount factors. An

optimal policy is of course defined for every state and the table here only shows the actions made

when one server is assigned to each of the two job types and both job types are in an ‘on’ period.

In the table the actions for queue lengths up to 10 are displayed. The first number denotes the

action made by the optimal policy calculated with a discount factor of 0.9, the second for a discount

factor of 0.99 and the third one for a discount factor of 0.999. Here 1 denotes the decision to switch

a server from job type 1 to job type 2, −1 denotes the decision to switch a server from job type 2 to

job type 1 and 0 denotes the decision not to switch. Where the table is left blank, all three policies

made the decision not to make any switch.

Recall that the job types are symmetrical but that job type 2 is twice as expensive. This explains

the much higher willingness of all the optimal solution to switch a server to job type 2, rather than the

other way round. The optimal solution is also less willing to switch when the discount factor is closer

to 1, i.e. when future costs are discounted less. The explanation seems to be that although there

is a short term benefit in reducing the current queue length by switching a server to a (relatively)

heavily loaded system, there is also a longer-term disadvantage since the system is taken out of a

stable state. This means that the other queue length will grow and the server will have to switched

back at some point. Systems with a discount factor closer to 1 should penalize this behavior more

heavily. Not shown in the table are the actions of the optimal policy when there is no discount, i.e.

α = 1. For the states in the table, these actions are identical to those generated by the α = 0.999

discounted policy. In fact, the action is different in just 48 of the 17640 states considered here.

The obvious next question is how these different decisions affect the system in terms of the

36

performance of the policy, expressed as a cost. It should be noted that the cost is derived from

direct computation, not simulation. The idea is that, given the (optimal) decision f(S) in each

state S, we calculate the steady state distribution denoted ~πf . The average cost of the system is

then calculated as the product gf = ~π′f · ~V (S). There is a slight complication. Due to the policy

some states can be unreachable. Those states are removed from the system in order to solve the

steady state equations. All this is not necessary in the case of the optimal solution found by the

non-discounted policy improvement algorithm, as the optimal cost g∗ is actually outputted there.

The cost achieved by the optimal policy generated with a discount factor of α = 0.9, α = 0.99,

α = 0.999 and the full cost version, is 1.5095, 1.4250, 1.4249 and again 1.4249 respectively. In this

example there is a clear benefit of setting the discount factor to at least 0.99, a very modest benefit

to setting it to 0.999 and no noticeable benefit to calculating the full cost policy. The downside of

setting a higher discount policy is the increased computation time it requires. There is no straight-

forward formula for calculating the exact increase since it is not caused by an increase in state space,

but by the ease with which the matrix equation (4.8) can be solved. In general this is harder (i.e.

requires more iterations) if α is closer to 1, a property relating to the size of the spectral radius.

We know that a smaller spectral radius means quicker calculation although the exact nature of this

relationship is somewhat obscure. Indeed in this example it took about half an hour to calculate

the policy with discount factor 0.9, 1 hour for α = 0.99, 5 hours for α = 0.999 and 7 hours for the

full cost version.

It is difficult to draw any definitive conclusions from this example since the results are completely

dependent on the parameters of the system, e.g. although here a discount factor of 0.99 seems to

achieve a reasonable balance between performance and computational effort, it could very well be

that for different system parameters the ‘best’ discount factor is different. Indeed in the next few

examples different values will be presented. But the trade-off is general: higher discount factors

require significantly more computation time but offer better performance.

A second factor of interest is the effect of the truncation level on the policy. Table 4.2 shows

the actions of two policies, both generated by the full cost policy improvement algorithm, one for

a system truncated at maximum queue lengths of 10 and a second truncated at queue lengths 20.

As mentioned before, the second actions are identical to those generated with α = 0.999. The most

striking differences in decisions between the two policies can be found where both queue lengths

are big. Here the policy computed with the maximum queue length set at 10 makes seemingly odd

decisions. When, e.g. j1 = 10 and j2 = 7 it still decides to switch the server assigned to queue 1 to

37

Table 4.2: Example 1 continued: Optimal actions for different truncation levels (10,20)
j1 j2 0 1 2 3 4 5 6 7 8 9 10

0 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
1 1,0 1,1 1,1 1,1
2 1,1 1,1 1,1
3 1,1 1,1
4 1,1 1,1
5 -1,-1 1,0 1,1
6 -1,-1 1,0 1,1
7 -1,-1 1,0 1,1
8 -1,-1 1,0 1,0 1,0
9 -1,-1 1,0 1,0 1,0
10 -1,-1 1,0 1,0 1,0 1,0

Table 4.3: Example 2: cost of policy computed with various queue lengths and discount factors
QL=10 QL=20 QL=30 QL=40

PI, 0.9 4.1769 6.8937 11.003 16.77
PI, 0.99 4.0411 6.7794 10.745 16.201
PI, 0.999 3.961 5.8398 8.4187 13.644
PI, full 3.961 5.7952 8.2851 12.794
VI, 0.9 4.1769 6.8937 11.003
VI, 0.99 4.0411 6.7794 10.745
VI, full 3.961 5.8231

queue 2. The explanation is that the system cannot get any worse with respect to job type 1 at that

point, so it makes sense to try and decrease the more expensive queue 2 and not make any efforts

towards reducing queue 1. While this is truly the optimal solution for the truncated system, it is

obviously nonsensical if the system under consideration allows larger or even infinite queues. This

makes the generalization of results for truncated systems to larger ones problematic.

4.5.2 Example 2: Medium Loaded System

The second example considers a system with very similar parameters to the previous one. The only

change is in the load during an on period. Here these are λ1 = λ2 = 0.1, leading to a system that

could be considered to experience medium load. The focus will be on the effect of truncation and

discount factor on the performance of the policy, rather than on its form. There are also some results

from the value iteration algorithm.

Table 4.3 shows the cost of the policy computed under various conditions. Horizontally we vary

the allowed maximum queue length and vertically we consider several ways of computing the policy.

Here ‘QL’ stands for the maximum allowed queue size of both job types, PI stands for the policy

improvement algorithm, VI for the value iteration algorithm, the numbers 0.9, 0.99, 0.999 for the

38

discount factors used and the addition ‘full’ indicates that the full cost policy was computed. The

cost increase with the maximum allowed queue size because the cost is computed for the system

with the specified maximum queue length. So if QL = 20 any job request arriving to a queue that

already contains 20 jobs (including those being served), is rejected. There is no cost attached to

this rejection. This makes the different policies somewhat more difficult to compare, but as noted

previously, there is no clear cut way of generalizing a policy to allow for a system with higher queue

lengths.

Although some patterns are similar to ones noted earlier, one remarkable difference can be found

in the effect of the discount factor. Where in the previous example a discount factor of 0.99 seemed

to generate reasonable results, here a big reduction of cost seems to be possible when using the

higher 0.999 discount factor or even using a full cost policy. This effect is much more pronounced

when the allowed maximum queue lengths are higher. This re-emphasizes the caution one must use

when computing a discounted policy.

The results of the value iteration are very similar to those of the equivalent policy improvement

algorithm. This is probably caused by the stopping criterion used. Recall that criterion mentioned

in Section 4.4 means the algorithm terminates when the biggest and the smallest change in values

between two iterations are relatively (with some proportional factor ε) close. Here that factor was

chosen as ε = 0.001, a fairly strict but somewhat arbitrary criterion. To guarantee stopping in

a reasonable amount of time, there was a second stopping criterion. If the number of iterations

exceeded 10000 the algorithm terminated as well. For a maximum queue length of 10, both the 0.99

discounted and the full cost calculations terminated after less than 10000 iterations, meaning that

the relative convergence criterion was achieved. This yields equivalent policies (and hence cost) to

the guaranteed optimal solution generated by the policy improvement algorithm. For a maximum

allowed queue length of 20, the 0.99 discounted computation also terminated on the ε criterion, after

1115 iterations. However the full cost version terminated due to reaching the 10000th iteration. As

can be seen, this results in a suboptimal policy.

In a way this is rather surprising. It implies that the changes made in the policy by the value

iteration algorithm are significant, even after many iterations. For the policy improvement algorithm

this is widely considered (see e.g. [Tij94]) not to be the case. There the changes made in the initial

iterations have by far the most impact on the performance of the policy.

Table 4.4 shows some of the compute times and number of iterations required. The compute

times are only an indication since they are dependent on the machine running the algorithm. In

39

Table 4.4: Example 2 continued: compute time and number of iterations required for various policies
QL=10 iterations QL=20 iter QL=30 iter QL=40 iter

PI, 0.9 2 mins 5 27 mins 5 3 hours 5 7 hours 5
PI, 0.99 3 mins 7 45 mins 8 3.5 hours 8 14 hours 10
PI, 0.999 3 mins 8 45 mins 8 3.5 hours 8 14.5 hours 10
PI, full 3 mins 8 51 mins 9 4.5 hours 10 15 hours 10
VI, 0.9 32 mins 311 5.5 hours 328 23 hours 344
VI, 0.99 2 hours 1115 1 day 1596 4.5 days 1789
VI, full 14 hours 10000 5 days 10000

this case a 2.8 GHz. desktop with 2 GB of RAM was used. The size of the state space is 4841 for

a truncation level of 10 (implying 48412 possible transitions, although most of them are zero) and

17641, 38441 for truncation levels 20 and 30 respectively. In general, for N servers, M job types

and QL maximum queue length the size of the state space is:

|S| = (QL + 1)M · 2M ·
(

N + M2 − 1
M2

)
,

with the terms representing the size of the queue length space, the amount of possible on/off states

and the amount of possible server allocations respectively.

It should be noted that the time to compute the policies using the value iteration algorithm,

significantly exceeded that of the policy improvement algorithms. For the smaller or more heavily

discounted systems, this could perhaps be helped by setting a less stringent convergence criterion.

But the case of the full cost value iteration algorithm with a maximum queue length of 20 provides

an indication that this is not likely to consistently generate optimal results.

4.5.3 Heavily Loaded Systems

We will not show experiments on heavily loaded systems. In these the mean queuelength is large.

And furthermore, the probability of being in a system with large queuelength is non-negligible. This

means the states at the edges are important. But we have already noted that the policy derived

from a truncated model is unreliable for these states. Consequently a policy derived from truncating

a heavily loaded system would be very poor for an untruncated system.

4.6 Possible Speedup Methods

In this section we will discuss two, unrelated, possible speed ups for the calculation of the optimal

solution. We will show why one method, using censored Markov chains, does not seem to work and

40

how another, distributed computation, could be implemented. Both subsections will be rather brief

and describe ideas and concepts and not implementation.

4.6.1 Censoring Markov Chains

In this subsection we will outline an idea and why it does not work. The idea was to not use

truncation of the Markov chain, but instead use a censoring approach to get a model for the infinite

Markov chain. This model can then be used as the input for either a policy improvement or value

iteration algorithm to get the solution of the related Markov decision process.

The idea of censoring Markov chains dates back to [Sen67]. The idea is this: suppose we have

a large, possibly infinite, Markov chain. Getting results for it might be prohibitively expensive or

even impossible. So instead we censor the Markov chain, i.e. we only look at a smaller, finite, part

of it. We then do analysis on this censored Markov chain. This is used as an indication of, and

sometimes a bound on, results for the original, uncensored Markov chain.

There is a fundamental difference between this approach and the truncation of the state space

we applied earlier. There we simply prohibited transitions out of the truncated state space. This in

effect redistributes the probability weight over the state space evenly. In a censored Markov chain

the states outside the bound are simply disregarded and their probability weight is lost. Although,

as we will see, in order to get bounds and do analysis, we often reassign it to a boundary state.

We are interested in using this approach because it might negate some of the difficulties we had

with decisions near the truncation level. Since here there is a notion that things can get worse when

the queue lengths grow. Hopefully this will allow us to model a system effectively using smaller

maximum queue lengths and thus a smaller state space.

We follow here the algorithms outlined by Truffet in [Tru97]. It is defined for a one-dimensional

Markov chain, or at least a Markov chain that can be ordered in such a way. We will get back to this

point later. The first step is to simply add the missing probability weight to the final state. This

makes the final state a lumped ‘bad’ state. In our terminology: the final state is the worst queue

length state we can achieve. Next we want to apply ‘Vincent’s algorithm’ [AAV98]. Details can be

found there or, since that paper seems quite hard to find, in [FPY07]. Roughly speaking Vincent’s

algorithm ensures the rows of the transition matrix are stochastically monotone. This will give us

a lower bound for the cost in each state. A lower bound because the cost of the censored states is

considered as bad as the worst cost in the observed state space. This is an underestimation.

Unfortunately this does not seem feasible as it turns out that Vincent’s algorithm is O(|S|3),

41

which we can reduce to O(|S|2) at the cost of increased memory usage. Clearly this is unacceptable

for the type of problem we are interested in. We can recall that although most of the work presented

so far seemed to be of that same order, the sparsity of the matrices involved makes it O(|S|).

A next try could be to just use a part of Truffet’s approach of adding all the missing probability

weight to a lumped, ‘bad’ state and not using Vincent’s algorithm. This would mean our result

is not a bound, but it might still be useful. Here an implementation problem occurs. Recall that

our state space is M · 2M ·
(
N+M2−1

M2

)
dimensional for M job types. We can more or less collapse

this, at least notionally, to M dimensional, corresponding to the queue length dimensions, since the

‘badness’ of a state seems to be dominated by those parameters. But our algorithms all consider a

single lumped state and there seems to be no obvious way of generalizing this. The most obvious

work-around seems to be to select a single lumped state. This again will mean this model is not

necessarily a bound.

However even this does not seem to work. Between each iteration of the policy improvement

algorithm, the decisions change and hence the model given by the censoring changes. So we are in

essence trying to solve a different model at each iteration with a policy that is applicable for the

previous model. Although we could have hoped the impact of this to be minimal, it turns out that,

at least for the simple models tried, the consecutive iterations do not converge at all. Even a model

with very reduced queue sizes did not converge on a policy after over 500 iterations of the policy

improvement loop; this in stark contrast to the relative quick convergence for the truncated model.

This seems to lead to the inevitable conclusion that using censored Markov chains is inapplicable

for this problem. There are technical difficulties in how to censor a multi-dimensional problem,

numerical problems with the complexity of algorithms that provide bounds and, most problematic of

all, the change in model between iterations of the policy improvement algorithm prevents convergence

on a single policy.

4.6.2 Distributed Implementation

In this subsection we consider the possibility of a distributed implementation of the optimal policy

computation. We did not implement a distributed implementation since it would enable at best a

linear increase, with respect to the number of available computers, in the size of the state space we

can handle. However model size increases worse than linear in almost all interesting parameters, e.g.

for the truncation level this can be linear (if we consider an increase in the truncation level of only

one job type), but even then the constant of the linear increase can be expected to be very large. If

42

we increase the amount of servers in the system, the size of the state space grows much worse than

linear. And an even worse growth in state space size can be found when the amount of job types in

the system is increased. All in all this makes distributed implementation not very attractive.

Furthermore we can only feasibly implement the value iteration in a distributed fashion. The

policy improvement algorithm has as its most computationally intensive step the solving of a large

set of related linear equations. Although there has been work on solving these in a distributed

fashion, there does not seem to be any efficient way of doing this.

In contrast, the value iteration algorithm is in essence an iterative algorithm of the form:

V n
i = fi(~V n−1) .

We can solve these equations in a parallel fashion, assigning to each available computer a subset

S′ of the state space. Each computer would then be able to compute the new values for V n
S′ based

solely on the values of the function from the previous iteration. A downside of this would be that

the individual computers would have to wait for all to finish before they can start a new iteration.

In addition they have to propagate the values of the previous iteration throughout the system which

might be a bottleneck if the state space is large.

More efficient would be a distributed implementation. The difference with an parallel systems

is that in a distributed system we assume that each computer works independently on part of the

state space for multiple iterations. For our purpose it seems reasonable to assume only partial

asynchronism in the system. In essence this means that we can use outdated values for some of the

costs per state V n−1
S , but there is a finite bound on how outdated these values can be. For a much

more detailed description of partial asynchronism, see [BT89]. There we can also find the proof

(based on Lyapunov stability) that this type of partial asynchronous algorithm converges and, if the

cost function is linear, the convergence is geometric.

Thus we suggest the following distributed implementation:

1. Set an initial cost for each state on a central database. Also specify a stopping criterion.

2. Partition the state space S in i sets, where i is the number of available servers and an initial

number of iterations niter that each run will consists off. This should all done centrally. The

next steps are executed by each server independently.

3. Let each server calculate, independently, the cost for its chunk of the state space Si for niter

iterations. Here we use the newly calculated, and locally updated, cost for the states in Si and

43

the initial, outdated, cost for the other states.

4. Return the newly calculated cost after niter iterations for Si and overwrite these (centrally)

as the cost for these states.

5. Check the stopping criterion. If this is not satisfied, get the most up to date cost calculations

from the central database for each state and go to step 3 to calculate the cost of Si for the

next niter iterations.

In the algorithm above, the art would lie in picking the partition and the number of iterations

in step 2. Clearly we want to pick the size of each partition proportional to the speed with which

it can calculate the cost over these states. We also want to minimize the interdependency between

each partition, i.e. we want each partition to be strongly connected (in a topological sense) but the

partitions to be weakly connected to each other. The number of iterations each computer should

run before updating its information should balance the overhead of doing so with the improved

convergence properties. This is difficult as there seems to be no way to estimate the latter. The use

of theory on graph or hypergraph partitioning would seem appropriate here. All in all the speed

up gains from a distributed implementation seem, therefore, not significant enough to outweigh the

technical difficulties in implementing it.

4.7 Summary

In this chapter we presented, in Section 4.2, several optimization goals for the model presented

in Chapter 3. We then discussed two solution methods: policy improvement, in Section 4.3 and

value iteration, in Section 4.4. These were compared in Section 4.5. There it was found that policy

improvement seems the preferable algorithm. But it was also shown that it is only possible to get

the optimal policy for very small systems and that even then there are several non-trivial modeling

decisions that we have to take. This seems to strongly suggest that calculation of the optimal

policy is infeasible for interesting systems. Even careful precalculation of the optimal solution would

be problematic since the optimal policy depends on all the parameters of the system. In Section

4.6 we discussed two possible speed up methods: using censored Markov chains and a distributed

implementation of the calculation. Although the latter seems a promising method, both have serious

drawbacks and do not seem to be a panacea for the problems of calculating the optimal solution.

44

Chapter 5

Heuristic Policies

5.1 Introduction

Since we showed in the previous chapter that computing the optimal policy is almost always infeasi-

ble, we will introduce some heuristics in this chapter. These should give a good performance without

the need of lengthy computations. We will split our discussion on possible heuristics in two separate

parts. In the first part, in Section 5.2, we discuss two fluid-approximation based heuristics. In the

second Section, 5.3, we consider two heuristics that do not require knowledge of the parameters of

the system.

We then compare these for a few limited cases to the optimal dynamic solution in Section 5.4.

Next, in Section 5.5, we compare the performance of the heuristics with each other and two static

allocations. We end the chapter with the usual summary in Section 5.6. It should be noted that these

policies were recently implemented in a real system by A. Chester et. al. from Warwick University,

see [CXHJ08] for more information.

5.2 Fluid-approximation Based Heuristics

In this section we will discuss two heuristics based on fluid approximation of queues. These two

heuristics, the average flow heuristic discussed in Subsection 5.2.1, and the on/off heuristic discussed

in 5.2.2, are very similar in approach. They both treat the various queues in the system as fluid

queues. This is a very common approximation method and will allow us to get simple, explicit

expressions for the time it takes to empty each queue, given a decision. This in turn will allow us to

pick the best decision. The main difference between both heuristics will lie in the way they model

the on/off periods in the arrival process.

45

The use of a first order fluid approximation, which we use here, is appropriate when we are only

interested in mean value analysis. Furthermore, for the approximation to be accurate, the number

of jobs passing through the system should be large.

5.2.1 Average Flow Heuristic

This policy ignores the on/off periods and treats queue i as a deterministic fluid which arrives at

rate γi, given by

γi =
λiηi

ξi + ηi
. (5.1)

That fluid is consumed at rate kiµi, where ki is the number of servers currently allocated to queue

i.

Suppose that two queues, i and j, have current sizes ki and kj , and currently allocated numbers

of servers ki and kj , respectively. If no further actions are taken and both queues are stable (i.e.

γi < kiµi and γj < kjµj), then those fluid queues would decrement at constant rates and would

empty in times ji/(kiµi − γi) and jj/(kjµj − γj), respectively. The total holding costs incurred

would be proportional to the areas of the triangles defined by the slope of the service rates and the

intervals until the queues empty. For a graphical representation of this, see Figure 5.1.

j j

jswi

1/ζ

kµ-γ

j/(kµ-γ)

Figure 5.1: The triangle whose area represents the holding cost (left) and the cost when there is a
switch present (right).

46

Hence, the Average Flow heuristic estimates the cost of taking no action with queues i and j as

C0(i, j) =
cij

2
i

2(kiµi − γi)
+

cjj
2
j

2(kjµj − γj)
. (5.2)

On the other hand, if a decision is made to switch a server from queue j to queue i, and that

switch takes time 1/ζj,i (deterministic), then the service rate at queue j immediately reduces to

(kj − 1)µj , while that at queue i remains the same for the duration of the switch and then increases

to (ki + 1)µi. Assuming that queue i does not empty during the switch, its size at the point when

the switch is completed would be equal to mi, where

mi = ji − (kiµi − γi)/ζj,i . (5.3)

See also Figure 5.1. The total holding cost incurred in clearing both queues is estimated as

C1(i, j) =
ci(ji + mi)

2ζj,i
+

cim
2
i

2((ki + 1)µi − γi)
+

cjj
2
j

2((kj − 1)µj − γj)
. (5.4)

As before, the terms in the right-hand side correspond to the areas of triangles bounded by

different service slopes.

At every arrival or departure event, the Average Flow heuristic evaluates C0 and C1 for every

pair of queues i and j, where i is the queue where the arrival occurred, or j is the queue where the

departure occurred. If C1 < C0, a server is switched from queue j to queue i. If that inequality

holds for more than one queue i, the switch is made to the queue for which the difference C0 − C1

is largest. If a contemplated switch would leave queue j potentially unstable (i.e., (kj − 1)µj ≤ γj),

then it is not made. If, at a decision instant, a server is in the process of being switched, it is counted

as being already available at the destination queue.

5.2.2 On/Off Heuristic

When making allocation decisions, this heuristic assumes that the current phase of each arrival

process, whether it is ‘on’ or ‘off’, will last forever. So if queue 1 is in an ‘on’ arrival state and queue

2 in an off arrival state, this approximation assumes they will stay that way. Again each queue i is

treated as a fluid, but the arrival rate is taken to be γi = λiui, where ui = 1 if the queue i arrival

process is in an on-period and ui = 0 if it is in an off-period.

Switching decisions are made not only at arrival and departure instants, but also when an arrival

47

process changes phase from ‘on’ to ‘off’ or vice versa. As well as evaluating the estimated costs C0

and C1, of doing nothing or switching one server from queue j to queue i, the On/Off heuristic

evaluates the costs Cs, of switching s servers from queue j to queue i, for s = 2, 3, . . . , kj . This is

necessary because a phase change can make a big difference to the arrival rate at a queue, requiring

or releasing more than one server. When calculating Cs for s > 1, one could assume that all s servers

become available at queue i after a switching interval of length 1/ζi,j . Alternatively, the assumption

could be that the s switches complete at different times: the earliest after an interval 1/(sζi,j), the

next after a subsequent interval 1/((s−1)ζi,j), etc. The first alternative would be appropriate if the

switching times are nearly constant, the second if they are exponentially distributed. In both cases,

the costs are evaluated by adding together areas under linear segments. We will use the second

version throughout.

As before, the switching decision that yields the largest cost reduction is taken. If no reduction

is possible, or if all estimated costs are infinite (that can happen, for example, if all arrival processes

are in an on-period and the corresponding arrival rates are greater than the available service rates),

then no action is taken.

5.3 Parameterless Heuristics

In this section we will discuss two other heuristics. They are somewhat similar in that neither of

them uses a priori knowledge of the parameters of the system. They do have some basic knowledge

about the system, e.g. the existence of on/off periods, the number of job types, relative holding

cost of each job type etc. But this knowledge can be assumed for most systems. What they lack is

the value of parameters of the system such as the arrival rates, completion rates, length of on/off

periods, etc. Also neither of them considers the presence of switching costs. At the given point in

time, the new allocation is implemented, regardless of the cost of that switch.

5.3.1 Window Heuristic

This policy uses a sliding window of length w for the purpose of collecting queue size statistics.

It ignores the existence of on- and off-periods. Allocation decisions are made at intervals of fixed

length, v. If, at a decision point t, the average size of queue i observed during the interval (t−w, t)

is Li (i = 1, 2, . . . ,M), then the number of servers allocated to queue i for the duration of the next

48

decision interval is roughly proportional to ciLi. More precisely, those numbers are given by

ki =

⌊
N

ciLi∑M
j=1 cjLj

+ 0.5

⌋
(i = 1, ...,M − 1) ; kM = N −

M−1∑
j=1

kj , (5.5)

if all ki are non-zero. If any ki is zero, replace ki with 1 and the largest kj (i 6= j) by kj − 1. Repeat

this process until all ki are non-zero. If N is sufficiently large, the resulting allocation should be

feasible.

5.3.2 Queue Length Heuristic

Again, a sliding window of length w and a decision interval of length v are used and again on- and

off-periods are ignored. However, the statistics collected during the window are for the purpose

of estimating the current arrival rate of type i, λi, and the current service rate of type i, µi; the

resulting estimate of the current offered load of type i is ρi = λi/µi. Based on these observations,

the number of servers allocated to queue i is set to be roughly proportional to ciρi:

ni =

⌊
N

ciρi∑M
j=1 cjρj

+ 0.5

⌋
(i = 1, ...,M − 1) ; nM = N −

M−1∑
j=1

nj , (5.6)

adjusting, if necessary, the numbers to make them positive. Also, if all loads are observed to be zero

during the current window, then servers are allocated proportional to holding costs only.

5.4 Comparison to the Optimal Solution

The cost of each policy is calculated throughout by simulation. For some of the policies it is possible

to calculate an analytical cost (although not completely trivial). But for the two heuristics that are

responsive, i.e. the window and the Queue Length heuristics, this is not possible. So for consistency

we used simulation for all of them. It should also be remembered that for a feasible calculation of the

optimal policy, we need to restrict the maximum allowed queue size quite severely. Here all optimal

policies were calculated for queue sizes up to 30. This means the simulations are also limited thusly.

This could be thought of as corresponding to admission blocking when the queue size is 30.

5.4.1 Increased Arrival Rates

As a first experiment we increase the number of arrivals for a system with two job types who are

almost completely symmetrical. Both arrival streams are on for a mean time of ξ−1
1 = ξ−1

2 = 200

49

and off for a mean time of η−1
1 = η−1

2 = 100. Jobs can be completed at a rate of 0.1 for either job

type by each of the three servers in the system. The only asymmetrical aspect of the system is that

job type 2 is considered twice as expensive as job type 1. We increase the arrival rate for this system

from 0.015 to 0.15 for both job types.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

5

10

15

A
ve

ra
ge

 C
os

t p
er

 u
ni

t T
im

e

Optimal policy
Average flow heuristic
On/Off heuristic
Queue Size heuristic
Optimal static allocation

Figure 5.2: Increasing arrival rate for both job types on x-axis, mean cost on y-axis, for optimal
policy and several heuristics

In Figure 5.2 we show the resulting cost for the optimal policy and several heuristics. They show a

very similar trend, where the heuristics are reasonably close to the performance of the optimal policy,

if we keep the amount of effort required to obtain the latter in mind. It is especially noteworthy

that the parameter free Queue Length heuristic is performing well.

It is interesting to see the way in which the optimal policy improves on the heuristics. To this

end we show the amount of switches made by each policy in Figure 5.3. The remarkable drop in

the number of switches by the On/Off heuristic when the arrival rate reaches 0.1 is due to the fact

that the arrival rate at 0.1 is equal to the completion rate of both job types. This implies that

assigning just one server to a job type that is on will make that queue (temporarily) unstable, both

in reality and according to the On/Off heuristic. This will prevent the heuristic from making any

switch leaving just one server serving a queue that is on. The other heuristics and the optimal policy

do not have these considerations.

If we look at the amount of switches it seems that the optimal policy is not so different; if

anything it is slightly more conservative. So the difference in performance seems to lie mainly

in the intelligence of the switches. We will examine this in a bit more detail for the case where

50

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
50

100

150

200

250

300

350

400

450

500

550

A
ve

ra
ge

 n
um

be
r

of
 s

w
itc

he
s

Optimal policy
Average flow heuristic
On/Off heuristic
Queue size heuristic

Figure 5.3: Increasing arrival rate for both job types on x-axis, number of switches on y-axis, for
optimal policy and several heuristics

Table 5.1: Decisions of (optimal policy, Average Flow heuristic, On/Off heuristic). 1 denotes switch-
ing a server from job type 1 to job type 2 and −1 denotes the converse switch. Likewise −2 denotes
the switch of two servers from job type 2 to job type 1. The columns represent different values for
queue length 2 and the rows for queue length 1.
j1 j2 = 0 1 2 3 4 5 6 7 8
0 0,0,1 1,0,1 1,0,1 1,0,1 1,0,1 1,0,1 1,0,1
1 0,-2,-2
2 -2,-2,-2 -1,0,0
3 -2,-2,-2 -1,-1,0
4 -2,-2,-2 -1,-1,-1 0,-1,-1
5 -2,-2,-2 -1,-1,-1 0,-1,-1 0,-1,-1
6 -2,-2,-2 -1,-1,-1 0,-1,-1 0,-1,-1
7 -2,-2,-2 -1,-1,-1 0,-1,-1 0,-1,-1 0,-1,-1
8 -2,-2,-2 -1,-1,-1 0,-1,-1 0,-1,-1 0,-1,-1 0,-1,-1

λ1 = λ2 = 0.06.

We can look at the decisions of what is in a sense the most straightforward case. Both job types

are on, 1 server is allocated to job type 1 and 2 to job type 2, which is twice as expensive. Here we

would expect the policies to do very little. And indeed the optimal policy does little when the queue

lengths are small, as we can see in Table 5.1. As before, the decisions are shown as triples, this

time signifying the decision made by the optimal policy, the average flow heuristic and the on/off

heuristic. Empty spaces mean all three policies made the decision not to switch any server. Both

heuristics however, are much more aggressive in switching servers from job type 1 to job type 2,

when the latter queue grows.

51

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ar

gi
na

l p
ro

ba
bi

lit
y

Optimal policy
Average flow heuristic
On/Off heuristic

Figure 5.4: Marginal density for low queue lengths, for job type 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ar

gi
na

l p
ro

ba
bi

lit
y

Optimal policy
Average flow heuristic
On/Off heuristic

Figure 5.5: Marginal density for low queue lengths, for job type 2

The effect of this on the marginal densities for both job types can be seen in Figures 5.4 and

5.5. Job type 2 has a (slightly) lower marginal probability for low queue lengths under the heuristic

policies. But this is more than compensated for by the lower marginal probability for lower queue

lengths of job type 1.

52

5.4.2 More Expensive Bursts

Next we look at a case where job type 2 represents steady ‘background’ traffic without any on/off

periods. The average arrival and completion rate of this type is 1, which is also the mean time it

takes to perform any switch. Job type 1 is bursty. It has off periods with a mean of 100 units of

time and on periods with a mean of 10 units of time. When it is on, the arrival rate is 10. The

objective here is to increase the cost, but not the intensity, of the bursts and see how the system

copes with this. To this end we fix the cost of job type 2 at 1, but increase the cost of job type 1

from 0.5 to 10. There are three servers in the system.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

C
os

t p
er

 u
ni

t t
im

e

Optimal Dynamic
Average flow heuristic
On/off heuristic
Queue size heuristic
Optimal static allocation

Figure 5.6: Increasingly expensive bursts. The x-axis displays the cost of the bursty job type, while
the y-axis has the mean cost per unit time

In Figure 5.6 we can see the effect this has on the overall cost. That in itself is not so interesting,

since we could expect the cost of the system to rise more or less linearly. We note that the heuristics

perform about as well as the optimal static allocation. The notable exception being the Queue Length

heuristic which does very well indeed. The window heuristic is not displayed in this graph since it

performs so poorly that it makes the graph less legible. More interesting than these observations

with regards to the increased cost, is the impact this increased cost has on the decisions the different

policies make. For the optimal policy this is fairly minimal, even when we compare the policy for the

lowest cost of job type 1, i.e. 0.5, to that with the highest, 10. The policy is just slightly more willing

to move a server away from the cheaper background traffic to the more expensive bursty traffic when

both job types have jobs arriving. But for both the on/off and the average flow heuristic there is

no difference at all. This is somewhat surprising. When we examine the policies in detail, we see

53

they more or less behave in the following way. When there is no burst, all the servers are assigned

to the (background) job type 2. When a burst starts and the queue for job type 1 increases, one of

the three servers is moved from job type 2 to job type 1. When the burst ends and the queue for

job type 1 is emptied, that server switches back to job type 2. Although there is clearly room for

improvement over this policy, this cannot be enforced by even a very hefty increase in cost for the

bursty job type.

5.4.3 Less Intensive Bursts

In this example we examine the effect of increasingly less intensive bursts on the system. Job type

2 will again represent steady background traffic, devoid of on/off periods. The average arrival rate

is 0.1. Job type 1 will be increasingly less bursty, whilst keeping the average number of arrivals over

time the same. This means that the mean on-time (ξ−1
1) will vary from 50 to 140 units of time,

whilst this job type will be off with a mean time of 50. To keep the mean number of arrivals for this

job type the same throughout, the arrival rate is fixed at:

λ1 =
ξ1 + η1

10η1
. (5.7)

There are three servers in the system that can serve either job type 1 or job type 2 at a rate of 0.1

each. Both job types are equally expensive. Switching is free, but in the mean takes the equivalent

of one job completion, i.e. µ1 = µ2 = 0.1 = ζ1,2 = ζ2,1.

50 60 70 80 90 100 110 120 130 140
5

10

15

20

25

30

35

40

M
ea

n
co

st
 p

er
 u

ni
t t

im
e

Optimal Policy
Average flow heuristic
On/Off heuristic
Queue size heuristic
Window heuristic
Optimal static allocation

Figure 5.7: Increasingly less intensive bursts, keeping the total number of arrivals the same. The
x-axis displays the mean length of the bursts, while the y-axis has the mean cost per unit time

54

In Figure 5.7 the average cost per unit time is plotted against the length of the bursts. The

cost is an average in the sense that these costs are the mean of 50 simulation runs with the policy.

The length of each run is about 10000 units time, roughly equivalent to between 100 and 50 cycles

of on/off periods, depending on the parameters of the system. The relative 95% percentile error of

these averages is typically small, i.e. below 7%, except for the window heuristic, where it can get to

be as high as 23 %.

All policies seem to be doing better when the bursts are shorter and hence more intensive. This

seems quite logical as that is the scenario in which they can make the biggest gain by switching

resources over when the bursts become active. The difference between the performance of the

optimal policy and the average flow heuristic is quite small. The other heuristics do not perform

quite that well and fall in the band between the optimal dynamic policy and the optimal static

allocation, where no switching is carried out. The notable exception here is the window heuristic

which does remarkably poorly. The reason for this is not immediately obvious. It can perhaps

be attributed to several causes. First of all the heuristic requires a problem specific time between

switching decisions Tswi. Choosing this can be fidgety and it is hard to make a good choice. The

results in the graph are for Tswi = 4
ξ1

, but the results are similar for many other choices. And

secondly, the heuristic estimates the parameters of the system based on a past window size, Twin

which again has to be chosen quite carefully. This makes it hard to strike a good balance between

stability of the results and flexibility to reflect changes in the system. By contrast, the policy that

allocates servers based on mean queue length does quite well. Here the window size and switching

frequency were both chosen at Twin = Tswi = 2
ξ1

and the heuristic seems sufficiently robust to give

good results.

5.4.4 Increased Switching Times

In the final experiment shown in this section, the switching times are increased. Whereas previously

we had a switching time of roughly one job completion, we now consider switching times from 1 job

completion to 2.5 job completions. The other parameters of the system are the same as those in the

example considered in Subsection 5.4.1. So there are three servers, two symmetrical job types with

a mean on-time of 200 and a mean off-time of 100. The arrival rate for both job types is fixed at

0.06. The two job types differ in the holding cost associated with them, i.e. job type 2 is twice as

expensive (important) as job type 1.

In Figure 5.8 we see the effect of this increase in mean switching time. It should be noted that

55

10 15 20 25
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

A
ve

ra
ge

 C
os

t

Optimal policy
Average Flow heuristic
On/Off heuristic
Queue size heuristic
Optimal static allocation

Figure 5.8: Increasingly longer switching times. The x-axis displays the mean length of the switching
time, while the y-axis has the mean cost per unit time

the system is fairly lightly loaded, so it is not surprising that the heuristics are outperformed by

the static policy when the switching times increase too much. We can expect that the more heavily

loaded the system is, the higher the switching times can be to still allow switching to be profitable.

10 15 20 25
50

100

150

200

250

300

350

400

450

N
um

be
r

of
 S

w
itc

he
s

Optimal policy
Average Flow heuristic
On/Off heuristic
Queue size heuristic

Figure 5.9: Increasingly longer switching times. The x-axis displays the mean length of the switching
time, while the y-axis has the number of switches

It is surprising that the optimal policy seems very insensitive to increased switching times. This

can partly be explained by Figure 5.9. There we can see the optimal policy switches relatively little

and seems fairly insensitive to the mean switching times in the amount of switching it does. We

56

also see that the average flow and on/off heuristics do decrease the amount of switches they make,

more or less linearly, when the switching times go up. The Queue Length heuristic however, does

not. This is because there is no notion of switching time. We can therefore expect this heuristic

to perform poorly when the switching times are very large. But then that is also the case where

switching is a lot less attractive.

5.5 Performance

In this section we will investigate the performance of the heuristics in more detail and for more

realistic systems than those considered in the previous Section 5.4. We also show some results

using the ρ-rule allocation which was discussed previously in this thesis. Because the systems

under consideration in this section contain a lot more servers and experience fairly high loads, they

require very large state space descriptions which make calculation of the optimal dynamic allocation

unfeasible.

The following parameters were kept fixed throughout.

Number of job types: M = 2.

Number of servers: N = 20.

Average required service times: 1/µ1 = 1/µ2 = 1.

For the Queue Size and Load heuristics, the statistics window and the decision interval were

equal: w = v = 50.

In the first experiment, the average ‘on’ and ‘off’ periods were equal at the two queues, and so

were the average switching times: 1/ξi = 1/ηi = 100, i = 1, 2; 1/ζi,j = 1, i, j = 1, 2. The two

arrival rates were also equal, and were increased simultaneously. Some asymmetry was introduced

by making type 2 jobs more expensive than type 1: the holding costs were c1 = 1, c2 = 1.5. The

simulated time for each run was 10000 time units. Since each arrival process is ‘on’ for about half

of that time, if λ1 = λ2 = 10, a total of about 100000 jobs go through the system. (Note that the

simulations were required only for the dynamic policies. The static ones could have been solved

numerically, but since the simulation programs could easily be adapted to different policies, they

were used in all cases.) The 95% confidence intervals were computed, but are not included in the

figures. Their worst half-widths vary from around 20% of the estimated value, for the heavily loaded

57

0

2000

4000

6000

8000

10000

12000

4 6 8 10 12 14 16 18

A
ve

ra
ge

co
st

Arrival rates λ1 = λ2

On/Off heuristic

♦ ♦
♦ ♦

♦

♦
Average Flow heuristic

+ +
+ +

+ +

+
Optimal Static

� �
�

�

� �

�

�
ρ-rule static

× × × × × × × × × × × × × × × × × × × ×

×
× ×

×

Load heuristic

44444444444444444444444
44

44

4

4
Queue Length heuristic

? ?
? ?

?

? ?
?

?

Figure 5.10: Policy comparisons: increasing λ1, λ2

ρ-rule results, to around 5% for the heavily loaded average flow heuristic. Generally, the results are

more accurate when the load is lower.

Figure 5.10 shows the average costs achieved by the two static and four dynamic policies, as the

load increases. As expected, at light loads it does not matter very much which policy is adopted.

However, differences start appearing at medium loads and become even larger at heavy loads.

The ρ-rule has the worst performance. The application of Equation (5.6) results in 8 servers

being allocated to type 1 and 12 servers to type 2 throughout. Hence, when λ1 ≥ 16, the system

becomes unstable and in the long run incurs infinite cost. The Optimal Static policy allocates 9

servers to type 1 and 11 to type 2 for most of the range, changing to 10 and 10 when the arrival

rates become greater than about 17. That policy achieves considerably lower costs than the ρ-rule,

and remains stable for λi < 20. The Load heuristic has a similar performance to the optimal static

policy.

The other dynamic allocation policies have a significantly better performance, particularly for

λi > 13. The costs they achieve are similar, although the Average Flow policy appears to be

consistently slightly better than On/Off heuristic, which in turn is slightly better than the Queue

Length heuristic.

Note that the Queue Length heuristic does not require any knowledge of parameters for its

operation; it relies on its own statistics. The fact that it performs almost as well as policies that

need the exact values of all parameters is very encouraging.

58

A
ve

ra
ge

co
st

Average switching time 1/ζ

200

400

600

800

1000

1200

1400

0 5 10 15 20 25

On/Off

♦
♦

♦ ♦
♦

♦ ♦

♦ ♦ ♦
♦ ♦

♦ ♦

♦

♦ ♦ ♦
♦

♦
♦

♦ ♦
♦

♦

♦
Average Flow

+ + +
+ + + +

+ + +
+

+
+ +

+ +
+

+
+ + + +

+ + +

+
Optimal static

� �

�
Load heuristic

×
×
× × × ×

× × ×
× ×

× × ×
×
×

×

× ×

× ×

×
×
× ×

×
Queue size

4 4
4 4 4 4

4
4
4 4

4 4 4
4
4
4 4 4

4

4 4 4
4 4

4

4

Figure 5.11: Performance of different policies for increasing switching times

The second experiment aims to examine the effect of increasing the average switching time, in a

moderately loaded system (λ1 = λ2 = 14). The results are shown in Figure 5.11. The half-widths of

the 95% confidence intervals of the results are around 10% of the mean for all of the results except

the Load heuristic, where they can go up to 15% of the mean. We observe that all dynamic heuristics

outperform the Optimal Static policy (whose allocation does not change) for most of the range, and

the Average Flow heuristic does so for the entire range. When the switching times are large, the

Queue Length heuristic is the next best one, with a similar performance to the Optimal Static; the

Load and On/Off heuristics appear to become worse.

The static allocation policy based on the ρ-rule is not included in these and subsequent compar-

isons because its performance can only be worse than that of the optimal static policy.

It is again notable that the Queue Length heuristic performs well over the entire range of switching

times, despite having no information about those parameters.

The last experiment involves a system with asymmetric traffic characteristics. Type 1 jobs arrive

in a stream which is ‘on’ most of the time: ξ1 = 1/100000, η1 = 1, λ1 = 10. That stream would

need at least 10 servers in order to remain stable. Jobs of type 2 arrive in short bursts, with long

intervals in between: ξ2 = 1/25, η2 = 1/500 (i.e., the arrival stream of type 2 is ‘on’ for less than

5% of the time). The arrival rate of type 2 during ‘on’ periods, λ2, is increased from 20 to 120 in

steps of 5, thus increasing the overall load of job type 2. The switching costs are very small.

Figure 5.12 illustrates very clearly the benefits of using an appropriate dynamic allocation policy.

59

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

20 40 60 80 100 120

A
ve

ra
ge

co
st

Intensity of bursts

On/off heuristic

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
♦

♦
♦

♦ ♦ ♦

♦
Average Flow

+ + + + + + + + + + + + + + + + + +
+

+ +

+
Optimal Static

� �
�

� �

� � � �
�

�
� �

�

�

�
�

�

�
�

�

�
Load heuristic

× × × × × ×
× ×

× ×
× × ×

×
×

×
× ×

×
×

×
×

Queue size

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4

4

Figure 5.12: One steady and one bursty source: increasing λ2

Three of the heuristics, namely Average Flow, On/Off and Queue Size, have a similar performance.

However, the average cost achieved by any of them can be an order of magnitude lower that that of

the optimal static policy. The Load heuristic is reasonable when the input is not very bursty, but

becomes as bad as the optimal static policy when the burst intensity increases.

Once more, it is worth pointing out that the Queue Length heuristic, which does not need to

know the values of the parameters, performs nearly as well as the policies that do.

5.6 Summary

In this chapter we introduced several heuristics. These provide us with possible dynamic policies

for resource allocation in large systems. In Section 5.2 we introduced two fluid-approximation based

heuristics, of which the Average Flow heuristic seemed to perform best under a variety of scenarios, as

can be seen from the results in Section 5.5. Likewise in Section 5.3 we introduced two parameterless

heuristics. Of those the Queue Length heuristic did very well, especially considering it does not use a

priori knowledge of the parameters of the system; again this can be seen in Section 5.5. Despite those

positives the results in Section 5.4 show that there is still some scope for improving the performance

of the heuristics when compared to the optimal dynamic policy. This is especially true when the

switching times are large.

60

Chapter 6

Power Management

6.1 Introduction

In this section we will examine a model that is highly related to that examined in Chapter 3 and the

subsequent chapters. But here we do not consider multiple job types. Instead we have a single job

type, and consider the trade off between power consumption and response time, i.e. we allow servers

to be powered down and up dynamically. Powered down servers cannot serve jobs, but generate

energy savings instead.

This is clearly a related problem to that considered previously but it also has some unique

characteristics. In Section 6.2 we begin by discussing our model for this situation. After that we

introduce some heuristic policies in Section 6.3. We then proceed to show some results with regards

to the performance of these policies in Section 6.4. Section 6.5 will briefly consider non-Poisson

arrival processes. And we will conclude the chapter with a summary in Section 6.6.

Some of this work has appeared previously in [STM08].

6.2 Model

As before we consider a model where there are N homogeneous servers. Instead of being assigned to

different job types, these can be in one of two states: power up or power down. When a server is in

power up, it can service incoming requests. When a server is in power down, it cannot process any

requests, but will consume less (or no) power. The details of the power down state are expressly left

ambiguous. It can mean the server is completely shutdown, in some sleep state or any other state,

as long as it is less power consuming. We will refer to ‘powering up’ to denote the decision to switch

a server from the power down state to the power up state and ‘powering down’ for the converse.

61

The service time of a request is assumed to be exponentially distributed with rate µ. The requests

themselves arrive according to a two-phase Poisson process, i.e. there are ‘high’ and ‘low’ arrival

periods. During a high period, denoted by l = 1, requests arrive as a Poisson process with rate

λhigh. During a low period, notation l = 0, fewer requests arrive, with rate λlow. The high and

low periods themselves have durations that are distributed exponentially with mean 1/ξ and 1/η

respectively. We consider the servers that are currently powered up to be part of one (logical) pool,

called the powered servers pool, with an unbounded queue which holds the incoming requests. We

denote the number of powered up servers by kup. The number of jobs in the queue (including jobs

currently being processed) will be denoted by j. The other servers, which are powered down, are in

a pool as well, which we will call the powered down pool. We will denote their amount by kdown.

Since all the servers are homogeneous, we do not distinguish between individual servers in each pool,

but rather focus on the number of servers powered up or down.

As before we assign a cost, cjob, to keeping a job in the system for one unit of time. These holding

costs reflect the relative value of completing a job quickly. Conversely we assign a negative cost (i.e.

profit) cpow to keep a server powered down for a unit of time. This should reflect the relative energy

savings of not powering up a server. Please note that here we normalized energy costs of a powered

up server to be zero. This means that the total cost can be negative, i.e. imply a profit, through

power savings. This obviously does not reflect the real cost but serves as an equivalent optimization

goal.

A server can be switched from the pool of powered servers to that of powered down servers.

This will take an amount of time, assumed to be exponentially distributed with rate ζdown. We will

denote the number of servers powering down by mdown. Conversely they can be powered up again.

The number of servers powering up will denoted mup. The time this will take is again assumed to be

exponentially distributed, now with rate ζup. During a switch a server cannot serve jobs but it does

consume power, i.e. it does not accumulate a profit from energy savings. Furthermore, the powering

up and down of machines can incur additional costs, e.g. through peak power consumption, which

we will denote by Cup and Cdown for powering up and powering down respectively.

This means we can describe a state S of the system by:

S = (j, l, kup, kdown,mup,mdown) . (6.1)

There is some redundancy in the notation since the total number of servers in the system should be

constant, i.e. kup+kdown+mup+mdown = N . This is done because of convenience and has no further

62

impact. The system behaviour is further characterized by the following transition probabilities (when

no switching decision is made):

r(S, S′) =



lλhigh + (1− l)λlow if j′ = j + 1

min(kup, j)µ if j′ = j − 1

mdownζdown if k′down = kdown + 1 and m′
down = mdown − 1

mupζup if k′up = kup + 1 and m′
up = mup − 1

lξ if l′ = 0

(1− l)η if l′ = 1

. (6.2)

This characterizes a continuous time Markov chain. We can convert this into a Markov decision

process by associating a set of allowed actions {a} with each state S. Here we consider these actions

to be:

• doing nothing, denoted by a = 0

• powering down i servers, with 0 < i ≤ kup, denoted by a = −i

• powering up i servers, with 0 < i ≤ kdown, denoted by a = i.

These delays and costs will make the decision of when to power a server up or down non-trivial,

especially in an environment with bursty arrivals. Our overall optimization goal is now to minimize

the cost of the system, i.e. to find a policy of powering up/down that minimizes the average cost

of the system per unit time. Here the relative value of the holding cost cjob versus the profit from

keeping a server powered down are implicitly traded off.

Please note that the model given here is a (continuous time) Markov decision process (MDP)

again. In principle these can be solved, i.e. we can find the policy that minimizes the long-term

mean operating cost of the system, but as we have shown in Chapter 4 this is often very difficult.

We can summarize the results we found there and apply them to this model. For example, a proper

solution requires truncation of the maximum allowed queue length. We could consider a system

with 25 servers and a maximum allowed queue length of 50. This number includes the jobs currently

being processed, so it allows for roughly 25 waiting jobs, a rather low number. Such an MDP has

334152 states. This might seem a manageable number, but this would give rise to a system of

334152 simultaneous equations in as many different variables. These equations would then have to

be repeatedly solved to find the optimal power-policy, in effect requiring the use of a (admittedly

63

very sparse) matrix with over 111 billion elements. For a system of 26 servers, this rise to 372708

states and a matrix of just under 139 billion elements. To make matters worse, the calculated policy

is non-trivially dependent on every single parameter of the system, making even the most clever

precalculation infeasible.

So in line with the results in Chapter 4, we find that we will be unable to calculate the optimal

dynamic policy for interesting cases. Furthermore the ways to calculate this policy are, in principle,

the same as those described in the previous chapter. So we will not discuss the optimal dynamic

policy for this model any further. In the next section we will examine some other policies.

6.3 Policies

6.3.1 Introduction

In this section we will discuss some power management policies. The optimal static policy is excluded

here, since in this context it does not seem as meaningful. After all, if some servers are permanently

powered down, they cannot really be regarded as part of the system.

The heuristics that are considered here are quite similar to those discussed in Chapter 5. Since

the model is slightly different, there are some differences. Therefore the description of the heuristics

here will be somewhat elaborate.

6.3.2 Idle Heuristic

This heuristic policy follows the näıve policy of powering down any server that is idle and powering

up a server, if possible, when there are jobs in the queue that are not currently being served by

any server. It does not take account of switching times. Because in general the switching times are

non-zero, we have to be slightly more precise. That is, we power up a server, if possible, when the

number of jobs in the queue is bigger than the number of servers currently servicing a job and the

number of servers being switched on, i.e. when: j > kup + mup. This assumes there are no batch

arrivals, but we can easily extend the heuristic for that case by saying we power up j − kup −mup

servers.

It is worth noting that even when switching is both instantaneous and free, this ‘idle heuristic’ is

not necessarily optimal. Consider the slightly odd situation where i · cjob < −cpow, i.e. the savings

per unit time of having a single server powered down outweigh the penalties of having i ≥ 1 jobs

waiting. Then clearly the optimal policy is to only power up a server when there are more than i

64

jobs waiting to be served. Although this is a somewhat artificial situation, it does show how, even

when the model is vastly simplified, finding the optimal policy is not completely trivial. In the next

chapter we will discuss the optimal policy for a similar model at some length.

6.3.3 Threshold Heuristic

The Threshold Heuristic is a generalization of the Idle Heuristic. For this heuristic we choose some

threshold, jthresh. Servers are then powered down when there are less than jthresh jobs waiting to

be served. In terms of our model, this means we power down a server if j < jthresh + kup + mup.

Conversely we power up a server if j > jthresh + kup + mup, i.e. if there are more than jthresh jobs

waiting to be served.

Choosing the right threshold jthresh is not straightforward and should, in general, depend on

both the differential between the holding cost and the power savings, and the switching times. The

Idle Heuristic is equivalent to setting jthresh = 0.

6.3.4 Semi-static Heuristic

In this heuristic we detect whether the arrival process is in the low or in the high state. Depending on

what arrival state the system is in, the optimal number of servers is allocated, assuming the high/low

period lasts an infinite amount of time, i.e. we allocate as many servers as would be optimal if the

arrival behaves as a standard Poisson process.

Since there are N servers in the system, we can consider any distribution of n powered up servers,

serving the queue, and N − n powered down servers. The queue has a certain load ρ = λ
nµ , where

we use the appropriate λhigh or λlow depending on whether we are in a high or low arrival phase.

The formula for the mean response time, R̄, for this M/M/n queue is quite well known (see e.g.

[Kle75]) and uses the famous Erlang C formula for the probability that all the servers in the queue

are busy, which we will denote by Q here. The mean response time is:

R̄n =
1
µ

[1 +
Q

n(1− ρ)
] . (6.3)

So that we can easily find the n that minimizes:

cjobR̄n + cpow(N − n) , (6.4)

where we assume that the queue is stable, i.e. λ < nµ for the appropriate λhigh/low.

65

6.3.5 High/Low Heuristic

The High/Low Heuristic is a modified version of the On/Off heuristic introduced in the previous

chapter, Section 5.2.2. It treats the queue of jobs as a deterministic fluid and assumes high/low

periods last an infinite time. This means jobs arrive at rate

γ =


λhigh if l = 1

λlow if l = 0
, (6.5)

where we recall that l = 1 denotes that the arrival stream is high and l = 0 denotes that it is low.

Jobs are served at rate kupµ. We will use this approximation to calculate the cost of a decision until

the queue empties. Since the system is (assumed to be) stable, this fluid approximation guarantees

the queue will empty in finite time. We assume that switching servers complete their switches

deterministically in the mean time indicated by the exponential distribution, i.e. when there are

mup servers being powered up, the first one completes its power up after mup

ζup
units of time, the

second mup−1
ζup

units of time after that, etc.

Suppose there are kup servers serving the queue, no servers currently being powered up or down

and no powering up or down decision is made at this time. Then the queue decreases at constant

rate kupµ − γ and empties at time j
kupµ−γ . So the expected cost under these approximations can

be shown to be the area of a triangle (see Figure 6.1, left) with as its length the time to empty the

queue and as its height the queue size j at the start. More formally we obtain:

C0 =
cjobj

2

2(kupµ− γ)
+

cpowkdownj

kupµ− γ
. (6.6)

The first part of Equation 6.6 represents the holding costs until the queue empties and the second

part represents the power savings, again until the queue empties.

Figure 6.1: The triangle whose area represents the holding cost (left) and the cost when there is a
switch present (right).

When there is already a server being powered up (see Figure 6.1, right), assuming that the queue

66

does not empty during the switch, its size at the point when the switch is completed, i.e. after 1/ζup,

would be equal to jswi, where

jswi = j − (kupµ− γ)/ζup . (6.7)

This means that the total cost is:

C1 =
cjobjswi

ζup
+

cjob(j − jswi)
2ζup

+
cjobj

2
swi

2((kup + 1)µ− γ)

+ cpowkdown(
1

ζup
+

jswi

(kup + 1)µ− γ
)

. (6.8)

Here the first two terms represent the cost of the queue until the switch is expected to be completed,

the third the cost of the queue after that moment until the switch is completed and the last term

represents the savings from powered down servers. Extending (6.8) to multiple switches is straight-

forward, although the formulae become increasingly convoluted. It should further be noted that

when the decision is taken to power up i servers, (6.8) should be increased with the term iCup.

Finally, we can consider the case where a server is already being powered down. The cost then

becomes:

C−1 =
cjobj

2

2((kup − 1)µ− γ)
+

cpowkdown

ζdown
+ cpowkdown(

j

(kup − 1)µ− γ
− 1

ζdown
) . (6.9)

This too can be easily extended when multiple servers are powering down and should be increased

with the term iCdown when it is a current decision to power i down servers, rather than an existing

situation.

This heuristic now chooses the switching decision that minimizes the expected cost, at every

state change. This calculation may seem prohibitively expensive; however note that we have to

consider at most N + 1 possible decisions, assuming all our decisions will result in stable systems.

Furthermore, it is entirely feasible to precalculate a table of decisions, or even to recalculate one on

a very regular basis to deal with changing parameters.

6.3.6 Average Flow Heuristic

The average flow heuristic discussed here is the power modelling version of the one discussed in

the Section 5.2.1. It is very similar to the High/Low heuristic. The entire analysis of the previous

paragraph is applicable, with one change. For this heuristic we average out the high and low

periods. This can be thought of as assuming that these periods are very short. This implies we can

67

use Equations 6.6, 6.8 and 6.9, but have to substitute:

γ =
λhighη + λlowξ

ξ + η
. (6.10)

The rest of the analysis is entirely the same. It should be noted that with this heuristic we can

restrict ourselves to just considering 3 possible decisions: powering 1 server up, powering 1 server

down or doing nothing. This is because there are no wholesale changes in state (like the arrival

stream turning on or off) and we can thus expect the proposed switches to be much more modest.

6.4 Performance

In this section we will present some results. The heuristics in the previous section will be compared

in performance under two different scenarios. We will also examine the effect of asymmetry in

powering up and powering down times. And finally we will take a separate look at the performance

of the threshold heuristic.

6.4.1 Increased Bursts

Figure 6.2: Increasingly more intensive arrivals in the high period. The x-axis shows the high arrival
rate λhigh and the y-axis the mean cost.

For this experiment the system contains N = 35 servers, which process requests at a mean rate

68

of µ = 1. The arrival rate in the low period is λlow = 10 throughout the experiment, so that if all

the servers are powered up, utilization is 10
35 ≈ 29%. The arrival rate in the high period is plotted

on the x-axis and varies from λhigh = 10 to λhigh = 30. This means that if the system is a high-

arrival period and all the servers are powered up, utilization varies from 29% up to 86%. Here the

high arrival periods last a mean time of ξ−1 = 10 and the low arrival periods last a mean time of

η−1 = 100. This means the highest average utilization is just 34%, but the peak demands mean

this number is very misleading. Powering up or down is free, but takes ζ−1
up = ζ−1

down = 1, or the

equivalent of one completion time in the mean. Finally we consider the holding cost of a job to

be cjob = 1 and the benefit of powering down cpow = −0.5 half that. These numbers are of course

relative and it just signifies that having a job in the queue is twice as expensive as having a server

powered up.

In Figure 6.2 we show the performance of the system under several heuristics. The costs were

obtained from simulating the system for T = 10000 units of time and the displayed results form the

averages from 50 runs. The 95 percentile of the relative error for each of these is small, typically

within 5%, although the static allocations are a lot more susceptible to stochastic noise in the

simulation and here the 95 percentile relative error can be higher.

The dash-dotted line represents the cost when all the servers are powered up all the time. This

can be considered a baseline cost of sorts. As we can see, the idle heuristic, an obvious choice for a

heuristic, does not manage to improve on this. The semi-static heuristic performs similarly almost as

good as the completely dynamic heuristics at lower peak arrival rates, but its performance degrades

steeply as the peak arrival rate increases.

The two fluid-approximation heuristics perform very well, even when the peak load is high. They

seem to strike a good balance between the relatively high time needed to power up/down servers

and the advantages of powering down servers when the system is quiet. There is a notable drop in

average cost for the average flow heuristic from λhigh = 20 to λhigh = 21. In Figure 6.3 we can see

this is related to the amount of switches the average flow heuristic makes. When λhigh = 21, the

mean arrival rate γ increases to just over 11 and this seems to make the heuristic a lot less prone to

switching.

6.4.2 Increasing Cost Differential

For this experiment we focus on the effect of the cost differential between the power costs and the

holding costs. Please recall that the system is modeled in such a way that the (negative) power cost

69

Figure 6.3: Increasingly more intensive arrivals in the high period. The x-axis shows the high arrival
rate λhigh and the y-axis the mean number of switches per unit time.

cpow of a powered down server is the difference between being (fully) powered up and powered down.

This means we can add an arbitrary constant to any cost we find. This will explain the negative

overall cost in the following results, since we have fixed the cost of the system when all the servers

are permanently powered up at 0. We can do this, since this cost is obviously independent of the

benefit we gain from any powered down server.

Here the low arrival rate is λlow = 10 and the high arrival rate is λhigh = 25. Again, the mean

duration of a high period is ξ−1 = 10 and the mean duration of a low period is η−1 = 100. Powering

up or down is free but lasts ζ−1
up = ζ−1

down = 1 unit time, which is also the mean time for a job

completion µ−1 = 1, of one of the N = 35 available servers. Please recall that we have normalized

time and therefore do not use a unit here.

In Figure 6.4 we show the cost for a relative power cost of cpow = −2 up to cpow = −0.1. For

the latter case it makes almost no sense to ever power a server down, as the power savings will be

minimal. But for the first case we will rather have 2 more jobs waiting in the queue than power up

a server. Again the results are averages of 50 runs for T = 10000 units of time.

Here we see that the cost improvement we can get by using the Average Flow heuristic is large.

The High/Low heuristic also significantly improves over having no servers powered down, especially

when the cost differential between holding and power costs increases. Surprisingly the semi-static

heuristic follow the High/Low heuristic very closely in this scenario. This would suggest that they

70

Figure 6.4: The effect of increasing cost differential between holding and power costs. The x-axis
shows the (negative) power cost of a powered down server. The y-axis shows the cost savings relative
to having all the servers powered up.

behave very similarly in this scenario. Indeed, Figure 6.5 seems to indicate this is true, at least

for the amount of switching both heuristics do. Finally we note that the Idle heuristic continues to

perform poorly.

6.4.3 Asymmetrical Switching Times

It can be noted that there is often a significant asymmetry between the time required to power up

and that to power down. This depends on the mechanism used for this powering up and down, e.g.

the time required to hibernate a normal desktop is much longer than the time needed to wake it

from hibernation. In contrast, complete shutdown of a computer is often a lot quicker than boot

up. The first asymmetry seems more attractive since we can then power up servers quickly when

needed, whereas the powering down occurs when the system is under used. But we could also argue

that the total time required to go through the cycle of powering up and down is the determining

factor, since that determines the overall responsiveness of the system. In this subsection we show

the results of an experiment where we vary the asymmetry between the powering up and down but

not the total time required to power a server up and then down.

In Table 6.1 we see the result of differing asymmetry on the performance of three heuristics. The

system under consideration here has N = 35 servers, which complete jobs at a rate µ = 1 each.

71

Figure 6.5: The number of switches made by the Semi Static and High/Low heuristics. The x-axis
shows the (negative) power cost of a powered down server. The y-axis shows the number of switches.

Slow up Even Fast up
Idle Heuristic 35.5 35.4 35.6
Average Flow Heuristic 25.9 25.8 25.7
High/Low Heuristic 26.5 26.8 26.4

Table 6.1: The impact of different asymmetry between powering up and powering down times on
some heuristics.

72

High arrival periods last a mean time of ξ−1 = 100 and have an arrival rate of λhigh = 30. Low

arrival periods last a mean time of η−1 = 100 and have an arrival rate of λlow = 20. The holding

cost for jobs is cjob = 1 and the negative powering down cost is cpow = −0.5. Powering up or down

is not free but costs Cup = Cdown = 0.5. The total powering time is fixed at ζ−1
up + ζ−1

down = 2. But

for the first column the powering up time ζ−1
up = 1.5 and ζ−1

down = 0.5, implying that we have slow

powering up but quick powering down. For the second column both the powering up and down time

is ζ−1
up = 1 = ζ−1

down, meaning both powering up and down take the same amount of time. Finally the

third column has quick powering up, ζ−1
up = 0.5 but slower powering down ζ−1

down = 1.5. It is clear

from Table 6.1 that the impact of the asymmetry in powering up and down times on the performance

of the heuristics is negligible. This means it is the overall time it takes to complete a power up and

power down cycle that matters, not just the time taken to power up.

6.4.4 The Threshold Policy

We now consider the performance of the previously described threshold heuristic. This heuristics

need a parameter denoting the acceptable threshold. In Figure 6.6 we show the average cost of the

threshold heuristic, given a queue length parameter from 0, i.e. it will behave as the idle heuristic,

to 10, i.e. it will view a queue of at most 10 jobs as a sign to power down a server. On the other

axis in the plane, the different λhigh are displayed, just as in the subsection 6.4.1. On the z-axis we

have the average cost.

Here the cost is almost linearly increasing in the selected value of the threshold but with a

minimum at 0. This implies that the threshold policy does no better than the Idle heuristic, which

we now know to be poor. A similar result holds for the threshold policy under the experiment in

6.4.2. This means we can consider the threshold policy to be a poor choice for a heuristic.

6.5 Non-Poisson arrival processes

In this section we will have a very brief look at non-Markovian arrival processes and the performance

of the heuristics under such conditions. The discussion will be brief since this is not really the main

focus of this thesis. But at the same time it provides an interesting glimpse into how applicable our

model for bursty arrivals is.

Throughout this thesis we have assumed that the arrival process is not just bursty, but bursty

in such a way that the arrival process can be modeled as alternating on/off (or high/low) arrival

73

Figure 6.6: Increasingly more intensive arrivals in the high period. The x-axis shows the high arrival
rate λhigh and the y-axis the selected threshold. The z-axis shows the mean cost per unit time.

periods. This can be considered the most basic approximation of bursty arrivals. Below we will

consider two slightly more sophisticated models.

It is quite difficult to select the exact property we want to model when we discuss bursty arrivals.

At least intuitively we consider the concept of burstiness related to heavy tailed-ness, self similar

traffic and correlated arrivals. The interrupted Poisson model we have used so far has none of these

properties. Its second moment is decidedly finite, there is no self similarity and, at least within an

on/off (high/low) period, there is no correlation between arrivals.

6.5.1 Hyper-exponential Busy Times

As a first alternative arrival model we will consider the case where the second moment is significantly

higher, albeit still finite. Truly heavy-tailed arrival processes are somewhat more difficult to simulate.

The arrival process has two phases: a quiet phase and a busy phase. The duration of a quiet phase

is exponentially distributed as before, with mean duration of η−1 = 100. During a quiet period, jobs

will arrive as a Poisson process with rate λquiet = 10. During a busy period, jobs also arrive as a

Poisson process but with rate from λhigh = 33. The duration of a busy period is now, however, not

exponentially distributed, but rather hyper-exponentially. Meaning that with a certain probability

α the busy period lasts ξ−1
1 and with a probability 1 − α it lasts ξ−1

2 . Here we take the specific

parameters such that most, from α = 0.9 to α = 1−0.1·0.99, of the busy periods last an exponentially

74

distributed amount of time with a mean from ξ−1
1 = 10. We keep the total mean arrival rate the

same, meaning that some of the busy periods last very long. The probability of such a long busy

period goes down from 1 − α = 0.1 to 1 − α ≈ 0.04. But the duration of such a busy period goes

from ξ−1
2 = 110 to ξ−1

2 ≈ 268.

The rest of the system is identical to that considered in the rest of the chapter, with N = 35

servers, a mean job completion time of µ−1 = 1 and powered down servers give half the benefit

compared to holding costs, i.e. cpow = −1/2 and cjob = 1. Powering up/down costs Cup = Cdown = 1

each way and takes an average of 1 job completion, ζup = ζdown = 1.

Figure 6.7: Decreasing probability of an increasingly long arrival period. On the x-axis, the proba-
bility α2 of a long busy period. On the y-axis the average cost of the system.

In Figure 6.7 we have plotted the average cost, over 50 runs, of the system under the average

flow and high/low heuristics. The cost of the system when all the servers are permanently left on is

also plotted for comparison. It should be noted that the scale is quite fine grained which causes the

erratic look of the line. The arrival of a very long busy period is quite rare, but the simulation time

of T = 10000 per run should ensure they do occur.

The heuristics seems quite resilient to the exact nature of the occasional long busy period.

However they do not outperform the system with all the servers on. This can be partially explained

by the very heavy load of the system. Nonetheless it is quite disappointing that these heuristics

perform so poorly even when the extremely long busy periods are relatively short. This seems to

75

suggest the extendability of these heuristics to non-Markovian arrivals with a heavy tail is very poor.

We shall have another look at this in the next subsection.

6.5.2 Batch Arrivals

As a next experiment we introduce batch arrivals. In Figure 6.8, we have applied the heuristics

considered in this chapter to a system with batch arrivals. There are N = 35 servers in the system,

each with a job completion rate of µ = 1. The holding cost for a job is cjob = 1, twice as much as

the poer saving profit, cpow = −1/2. Switching a server on or off takes roughly one job completion,

ζup = ζdown = 1 and costs Cup = Cdown = 1 each way. Both high and low arrival periods last a

mean of ξ−1 = η−1 = 100 units of time. During a low arrival period, λlow = 10 jobs per second

arrive. During a high arrival rate λhigh = 10 batches of jobs per second arrive. In Figure 6.8 we

varied the batch size. The size of the batch is (uniformly) randomly chosen between 1 and the size

displayed on the x-axis. So e.g. for the right most point, each batch had between 1 and 6 jobs, with

a mean of 3.5, meaning the system is borderline unstable during a high period.

Figure 6.8: Increasing batch size arrivals. The x-axis shows the upper limit of the batch size. Each
batch size is uniformly distributed between 1 and this upper limit.

The heuristics are slightly different from those described in Section 6.3. Instead of assuming a

76

mean arrival rate γ, both the High/Low and Average Flow heuristics were adapted to assume that

during a high arrival period the mean arrival rate was:

γbatch = λhigh ·
batch size + 1

2
. (6.11)

Unfortunately the heuristics seem to cope very poorly with these batch arrivals even with this

adaption. The performance of the heuristics for batch size 1, corresponding to the arrival process

assumed in the rest of this thesis, is better than that of leaving all the servers on all the time. But for

higher batch arrival sizes, the heuristics are outperformed by leaving all the servers on. In the case

of the temporarily marginally unstable system with a possible batch size of 6, the heuristics perform

spectacularly poorly. The explanation seems to be that even for relatively low batch sizes, powering

down any servers is unwise since the system will be in a poor position to deal with the occasional

incoming larger batches. Regardless of the explanation, the poor performance of the heuristics for

non-Poisson arrival streams is again very pronounced and disappointing.

6.6 Summary

In this chapter we introduced a similar model to the one examined earlier. However, this time the

trade off did not have to be made between performance of several job types, but rather between the

performance of a single job type and possible energy savings by powering down servers. A model was

formulated in Section 6.2 and similar policies to those examined before were introduced in Section

6.3. These policies were then tested in Section 6.4 by simulation under several different scenarios.

These results were encouraging, but when we tried to apply two of the policies to a system with

non-Markovian arrivals in Section 6.5 the results were disappointing.

77

Chapter 7

Breakdowns and Repairs

7.1 Introduction

In this chapter we introduce a final model, that is again related to the ones examined earlier. The

focus of our model will be slightly different this time. The servers in question will be now be

subject to breakdowns and subsequent repairs. This will add significant complexity to our model.

To counteract this somewhat, we will assume the switching between job types is instantaneous. This

greatly decreases the size of the state space under consideration. Throughout this chapter we will

use the results from earlier chapters when appropriate and discuss the differences with this model.

The structure will be as follows. First we will describe the model formally in Section 7.2. Then we

will show how to find the optimal static number of servers to allocate in Section 7.3. We will proceed

by adapting the heuristics used in earlier chapters for this model in Section 7.4. The performance of

these heuristics and the optimal static solution will then be compared in Section 7.5. And we will

conclude this chapter with a summary in Section 7.6.

7.2 Model

The system under consideration in this model is somewhat similar to that described in Chapter

3. For some of the more technical issues of this model, we refer the reader to that chapter. In

particular the formal translation of the continuous time Markov chain described in this section to a

discrete time Markov process will not be addressed here. It can be done by the same uniformization

process as described there. Similarly we will be brief in the translation from Markov process to

Markov decision process. Details of the more formal translation are again essentially the same as

those found in Chapter 3.

78

The model considered here has N homogeneous servers which supply service for M job types.

Each server can work on one job at the time and likewise jobs can only be worked on by one server

at a time. The time it takes to complete a job is exponentially distributed with rate µi, for a job of

type i. The servers can be reassigned to serve a different job type at any time. Although we assume

here that switching is instantaneous, it is not necessarily free. We will assume that there is a cost

Ci,j associated with reallocating a server from serving job type i to serving job type j. This means

that, despite having instantaneous switching between job types, it still makes sense to talk about

the amount of servers, denoted ki, assigned to each job type i = 0, 1, · · · ,M .

The jobs in question arrive according to a two-phase Poisson process, i.e. there are ‘high’ and

‘low’ arrival periods. During a high period, denoted by li = 1, requests arrive as a Poisson process

with rate λi,high. During a low period, notation li = 0, fewer requests arrive, with rate λi,low. This

is the same as in the previous chapter, but for multiple job types. As before the, Poisson, high

arrival periods end with rate ξi and the, also Poisson, low arrival periods end with rate ηi. The

arrived jobs of type i join a (notional) queue ji which they leave when service is completed. Each

job has a holding cost ci assigned to it, which reflects the relative importance of its type.

Finally we assume the servers break down occasionally and undergo subsequent repair. We

model this by setting the operation period of each server to be independently distributed, lasting an

exponentially distributed amount of time, with mean ζ−1
down. Since we envision the servers switching

between different job types on a regular basis, we assume the breakdown rate is independent of

the current job type a server is assigned to. It would be very straightforward to change this. We

denote the amount of broken down servers by kdown. As before, there is some redundancy in this

notation since we must conserve the amount of servers in the system, i.e.
∑

i=1,··· ,M ki + kdown = N

throughout.

Repairs also take an exponentially distributed amount of time, with mean ζ−1
up . We assume that

once servers are repaired they can be freely assigned to any job type, without any additional cost.

It is possible to assign a cost here, either depending on the new job type they are allocated to, or a

blanket cost, independent of the new assignment. For that model we would have a pool of unassigned

servers and would have to make a decision on whether to assign them, much like the powering up

decision in the previous chapter. We will not examine this case in this chapter, meaning that, at

least notionally, upon repair a server is always immediately assigned to a job type.

This description alone does not describe a Markov process since we have not specified whereto a

repaired server is reassigned. Instead of finding a work around for this, we will introduce a relevant

79

Markov decision process immediately. To this aim we assume there is a policy f(S), that defines

where the next repaired server is assigned based on the current state. The instantaneous transition

rate r(S, S′) (cf. Chapter 3, equation 3.4) can then be found as:

r(S, S′) =



liλi,high if j′ = j + ei

(1− li)λi,low if j′ = j + ei

min(ki, ji)µi if j′ = j− ei

liξi if l′i = 0

(1− li)ηi if l′i = 1

kiζdown if k′ = k− ei

and k′down = kdown + 1

kdownζup if k′ = k + ef(S)

and k′down = kdown − 1

, (7.1)

where ei denotes the ith unit vector as usual and ef(S) denotes the unit vector with the 1 for the

job type policy f(S) assigns the next repaired server to.

These transition rates relate to:

• job arrival in a high arrival period

• job arrival in a low arrival period

• job completion

• end of a high arrival period

• end of a low arrival period

• break down of a server

• repair of a server,

respectively.

If we have a policy f(S) that reassigns operative servers based on a changing state, we use

the technique outlined in Chapter 3 to incorporate these instantaneous transitions in the resulting

Markov chain. For the formal details, including more on the required uniformization, we refer the

80

reader to that chapter. Informally we recall that the idea was to change the resulting transitions

out of the current state as if the switch has already been made.

We will not be using this formal model explicitly in rest of this chapter. In the next Section 7.3

we will describe a slightly different relevant model. Even the simulation used to get the results in

Section 7.5 will use a more convenient form of this model, not this formal definition.

Similarly we will be somewhat informal in our description of the cost function we are trying to

minimize in this model. Notionally we are trying to minimize the weighted (by ci) time jobs spend

in the system. This cost is increased by a switching cost Ci,j every time the decision to switch a

server from type i to type j is made. Instead of formulating the formal cost model as in Section 3.2,

we will outline a more informal, but perhaps more intuitive, cost function here.

Suppose we have a trace ~S of the system for a given (finite) series of events (state changes) and

the time at which they occurred (~T), where S0 is the initial state and Ti is the time that the system

was in state Si. We can then define the cost of that (timed) trace as follows. Set the cost of the

trace, ctrace, initially at zero. Then we go through all events in the trace. For each interval i we

increase the cost of the trace ctrace by the total holding cost in that epoch
∑

m=1,···M cmjmTi and if

a server is switched from serving job type i to type j also by Ci,j . This is how we calculate the cost

in a simulation trace. The cost of a given policy can be thought of as the weighted (by probability)

cost over all possible (infinitely long) traces. The formal translation is more problematic but at least

intuitively it coincides with a formal cost similar to that found in Section 3.2.

7.3 Optimal Static Solution

In this section we will aim to find the optimal static allocation of servers in a system with bursty

arrivals and breakdowns and repairs. This is very much parallel to what we did in Chapter 3, Section

3.3. Again we adapt the model in the previous section to only allow static allocation of servers, i.e.

no switching between job types is possible. Once a server is allocated to a certain type, it will be

allocated there indefinitely. We assume this includes allocation of repaired servers, i.e. they retain

a ‘memory’ of which job type they were assigned to. The question now becomes: given that we

have M job types with known parameters λi,high, λi,low, ξi, ηi, ζdown and ζup, what is the best way

to assign N servers over them? Here ‘best’ is defined as minimizing the overall average cost of the

system.

The first thing to note is that this requires the number of servers to be at least equal to the

number of job types, i.e. N ≥ M , since otherwise the cost of the system is infinite. Secondly we

81

can note that this problem is easily solved if we can find the average queue length of any job type

i, given that we assign ni servers to it, so that we will suppress the use of the index i in the rest of

this section. The arguments here are similar to those found in Section 3.3. Using the same solution

technique as there, i.e. direct calculation, is somewhat problematic, however. The system under

consideration is significantly more complex and the analysis would involve very complex calculus

resulting in rather unattractive formulae. Instead we will use the technique of spectral expansion,

first proposed for semi-infinite lattice strips in [MC95], where more details on this technique can be

found.

For our problem to be amenable to the spectral expansion method, we have to model our system

as a Quasi-Birth-and-Death process. On first sight this is somewhat problematic, as the state space

of a single queue with both breakdowns and repairs and a high/low arrival process is most naturally

modeled as a three dimensional lattice strip (of dimensions {0, 1, · · · , N}×{high, low}×{0, 1, · · · }),

rather than the required two dimensional one. We can however relabel the states such that we

have a two dimensional lattice strip {1, · · · , 2N + 2} × {0, 1, · · · }, e.g. by labeling such that state

i has low arrival rate if i is even and a high arrival rate if i is odd. And such that the amount of

operational servers of the ith state is given as b i−1
2 c. Under this labeling the first state corresponds

to no operative servers and a high arrival rate, the second state has no operative servers but a low

arrival rate, the third state has one operative server and a high arrival rate, etc.

With this model it is now possible to find the three families of matrices Aj , Bj and Cj needed by

the spectral expansion method. For more details we refer the reader to [MC95]. We will note that

the index j refers to a parameter relating to our position on the second (infinite dimensional) part

of the lattice strip. Here this corresponds to the queue length. Matrix Aj is now the matrix whose

i, k-th element corresponds to the transition rate from state (i, j) to state (k, j). In this model these

are the state transitions corresponding to either busy/quiet period changes or servers breaking down

and being repaired. Clearly this is not related to the amount of jobs in the queue in our model. As

an example we can look at the simple case with just one server. Then the matrices Aj we find are:

Aj = A =



0 ξ ζup 0

η 0 0 ζup

ζdown 0 0 ξ

0 ζdown η 0


. (7.2)

82

In general we find that:

Aj = A = diag2N+2
(+1) [ξ, 0, ξ, 0, · · · , ξ] + diag2N+2

(−1) [η, 0, η, 0, · · · , η]

+ diag2N+2
(+2) [Nζup, Nζup, (N − 1)ζup, (N − 1)ζup, · · · , ζup, ζup]

+ diag2N+2
(+2) [ζdown, ζdown, 2ζdown, 2ζdown, · · · , Nζdown, Nζdown]

. (7.3)

Here diagj
(±i)[~v] denotes the j × j matrix with ~v on the i-th super (sub) diagonal.

Similarly we can find the matrices Bj corresponding to the job arrival transitions. For the case

with just one server we find:

Bj = B =



λhigh 0 0 0

0 λlow 0 0

0 0 λhigh 0

0 0 0 λlow


. (7.4)

And similarly the general form is:

Bj = B = diag2N+2[λhigh, λlow, · · · , λhigh, λlow] . (7.5)

The third family of matrices, Cj relates to job completions. Obviously this depends on the

current queue length as the completion rate for jobs is proportionate to the minimum of operative

servers and jobs in the queue. So we find, for one server, that:

C0 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


, (7.6)

and

Cj = C =



0 0 0 0

0 0 0 0

0 0 µ 0

0 0 0 µ


. (7.7)

83

In general we find that for j < N :

Cj = diag2N+2[0, 0,min(j, 1)µ,min(j, 1)µ, · · ·min(j,N)µ,min(j, N)µ] , (7.8)

and for j ≥ N :

Cj = C = diag2N+2[0, 0, µ, µ, · · · , Nµ, Nµ] . (7.9)

Using these matrices we can find the exact expression for the probability vectors ~vj , where:

~vj = (p1,j , p2,j , · · · , p2N+2,j) j = 0, 1, · · · , (7.10)

and pi,j denotes the probability of being in state (i, j) of the lattice strip, i.e. being in arrival/operative

server state i with queue length j. In particular this will allow us to find the mean queue length L,

i.e.

L =
∞∑

j=0

[j
∑

~vj] . (7.11)

The details of this process are rather technical and we gladly refer the reader to the original article

[MC95].

It should be noted that the calculated mean queue length L is exact (up to numerical precision)

and this calculation is extremely quick even for very large numbers of job types and servers. Using

this queue length calculation we can find the optimal number of servers to allocate to each job type,

simply by minimizing the average cost of the system
∑

i=1,··· ,M ciLi(ni), subject to
∑

i=1,··· ,M ni =

N . We can use either a brute force search for this (which will be sufficiently fast in most cases) or

use the steepest descent algorithm outlined in Section 3.3 if we are optimizing very large systems.

In this chapter we have to also model another stochastic process, that of the breakdowns and

repairs. We will this introduce two approximations of this. The first assumes each server that is

currently operational will remain operational for ever. Likewise each broken down server will remain

inoperational for ever. This means that if out of N servers, one breaks down the system is considered

to have just N − 1 servers and treated as such for all decisions made after that point until another

breakdown or repair occurs.

The second model of the breakdown and repair process would be to assume all servers have a

capacity that is multiplied by their fraction of operational time. So if e.g. a server on average breaks

down every 100 units of time and then, again in the mean, needs a 10 units of time to be repaired,

it is considered to permanently have 100/110 ≈ 0.91 of its operational capacity. There are two

84

immediate problems with this approach. The first one is that it seems quite unrealistic. After all, it

assumes the servers break down so often that this is a reasonable approximation, which is probably

not acceptable in any real system. The second problem is that we also assume inoperational servers

to have a capacity and indeed do not distinguish between operational and inoperational servers. This

means it is quite problematic to assign servers since we can no longer get away with just assigning a

random server. For significant repair times it will, after all, matter a great deal whether that server

is currently operational or being repaired. Due to these problems we will not use this model.

The third obvious model would be to assume servers break down exactly after the mean amount

of time and get repaired exactly after the mean amount of time. This seems more reasonable but

again runs into the problem that we are assigning servers that are currently broken down. This

seems an unproductive strategy since it is clearly more efficient to only assign a server once it is

operational. After all, we have more information about the current system state. So a slightly

different model seems in order. We do assume servers break down according to the mean rate, but

we assume broken down servers remain inoperative. The problem with this model, however, is that

for fairly heavily loaded systems, the approximation quickly turns unstable. And when the system

is perceived to be unstable, it is impossible to make a good decision.

Consequently we can also discard this model for breakdowns and repairs, leaving us with only one

appropriate model for breakdowns and repairs: until a breakdown occurs we assume that server will

be operational indefinitely. Once it has occurred we will assume the server will not be operational

again. When a server is repaired, we make a new allocation decision. Using this approximation we

can easily adapt two previously considered fluid-approximation based heuristics.

7.4 Heuristics

In this section we will discuss some heuristic policies for dynamically allocating servers between job

types. We will again use the ideas set out in the previous chapters, particularly Chapter 5. The

heuristics used here are again fluid-approximation based. It can be noted that those heuristics,

Average Flow and On/Off, were in essence only distinguished by their assumption on the duration

of the arrival periods. The Average Flow heuristic assumed both on and off periods were infinitely

short, whereas the On/Off heuristic assumed it lasted infinitely long. Both of them modeled the

(stochastic) switching process in yet another way. There it was assumed that the mean time to switch

a server over was the exact time it would take. Since we assume here switching is instantaneous, we

do not have to model that process here.

85

7.4.1 Average Flow

As before we will consider an average flow heuristic. The details can be found in Chapter 5, subsec-

tion 5.2.1. The only difference to the heuristic described there is that we no longer have to consider

delays when switching servers.

7.4.2 High/Low

The second heuristic will be a High/Low adaptation, as in Chapter 6, Subsection 6.3.5, of the On/Off

heuristic described in Chapter 5, subsection 5.2.2.

7.5 Experiments

7.5.1 Introduction

In this section we will compare the performance of two heuristics outlined above, Average Flow and

High/Low, to that of the optimal static solution, outlined in Section 7.3. Please recall that for the

optimal static solution, the method used to find it, spectral expansion, already gives the mean queue

length for each job type. We will use this analytical result to calculate the cost for this policy. For

the two dynamic heuristics we will use simulation results.

7.5.2 Increasing Arrival Rate

In this first scenario we vary the high arrival rate of one of the job types, while leaving the rest of the

system untouched. The system under consideration has N = 50 identical servers that provide service

for M = 2 job types. Jobs of both types are completed with a mean of 1 per second, µ1 = µ2 = 1,

and have a holding cost of c1 = 1 and c2 = 2 respectively. Both the high and low arrival periods

for each job type are exponentially distributed with rate ξ1 = ξ2 = η1 = η2 = 1/50. During a low

arrival period, the arrival rate for each job type is λlow,1 = λlow,2 = 10. The high arrival rate for job

type 2 is set at λhigh,2 = 20. We vary the high arrival rate for the first job type from λhigh,1 = 10.5

to λhigh,1 = 20. Servers of both types break down on average once every ζ−1
down,1,2 = 500 units of

time. It then takes an average of ζ−1
up = 10 units of time to repair them. While a server is being

repaired, it cannot service any jobs. After repair it can be assigned to any job type without cost.

In Figure 7.1 the resulting average cost is displayed. For the two heuristics, the plotted line

displays the mean of 50 runs for a duration of 10000 units of time each. The size of the confidence

86

Figure 7.1: The influence of higher busy-period arrivals. Increasing high arrival rate for job type 1
on the x-axis. Mean cost on the y-axis.

interval is at most ±5% and typically well below that value. It should be noted that the analytically

determined cost for the optimal static allocation seems to be less smooth in the last few points.

This is probably due to numerical problems since MATLAB does warn of these for some of the

calculations.

The behavior of all three policies is much as would be expected. The two dynamic heuristics

outperform the static allocation and behave very similarly as in previous chapters, i.e. a more or

less linear increase. The cost for the optimal static allocation, however, does not increase linearly

but seems to grow more rapidly.

7.5.3 Increasing Breakdown Rate

In the previous experiment the breakdown rate was not that high: each server broke down once

every 500 units of time, in the mean. For this experiment we increase this breakdown rate from

ζdown,2 = 1/100 to ζdown,2 = 1/5 for job type 2. For job type 1 we keep it at a steady ζdown,1 = 1/500.

The other parameters are very similar to the ones used previously. There are M = 2 job types and

N = 50 servers with a completion rate of µ1 = µ2 = 1 for both job types. Busy periods last a mean

of ξ−1
1,2 = 50 units of time for each job type, during which jobs arrive with a rate of λhigh,1,2 = 20.

Likewise quiet periods last a mean of η−1
1,2 = 50 units of time for each job type, during which jobs

87

arrive with a rate of λlow,1,2 = 10. Servers are again repaired after a mean of ζ−1
repair = 10 units of

time. Job type two is twice as expensive as job type one, c1 = 1 and c2 = 2.

Figure 7.2: The influence of increasing breakdown rate. On the x-axis the breakdown rate for job
type 2 is varied. The y-axis shows the average cost.

In Figure 7.2 we display the relationship between this increasing breakdown rate and the average

cost of the system. It should be noted again that the costs for the heuristics are the mean values

generated by simulation and that the 95% confidence interval is typically around ±2.5% but always

below 5%. We can also note some further numerical inaccuracies in the analytically calculated cost

for the optimal static allocation.

The trend for the cost is again somewhat predictable: higher breakdown rate means the cost

increases. For the static allocation this has a more severe impact since it cannot dynamically reassign

servers from job type 1 to handle these server shortages. As throughout this thesis, it also seems

that the average flow heuristic outperforms the high/low heuristic.

7.5.4 Increasing Repair Time

As the penultimate experiment of this chapter and the final experiment aimed mainly at under-

standing the behavior of the optimal static allocation, we vary the repair time for servers rather

than make breakdowns increasingly common.

For this we use parameters much like those before. There are M = 2 job types and N = 50

88

servers with a completion rate of µ1 = µ2 = 1 for both job types. Busy periods last a mean of

ξ−1
1,2 = 50 units of time for each job type, during which jobs arrive with a rate of λhigh,1,2 = 20.

Likewise quiet periods last a mean of η−1
1,2 = 50 units of time for each job type, during which jobs

arrive with a rate of λlow,1,2 = 10. Both server types break down every ζ−1
down,1,2 = 500 units of time

in the mean. The time it takes to repair a server is now varied from ζ−1
up = 5 to ζ−1

up = 100. Job

type two is twice as expensive as job type one, c1 = 1 and c2 = 2.

Figure 7.3: The influence of increasing repair time. On the x-axis the repair time for servers is
increased. The y-axis shows the average cost.

Figure 7.3 shows the effect of increased repair time of the servers on the average cost of the

system. We can note that both dynamic heuristics have very similar behavior: they significantly

outperform the optimal static allocation for relatively low repair times. When the repair time grows

significantly they rapidly approach the cost of the static allocation. This is probably because for

high repair times there are occasional periods of time where the system is unstable. During these

periods the dynamic heuristics are very poorly defined and more or less revert to static behavior.

These periods also contribute very heavily to the average cost of the system.

7.5.5 Increased Switching Cost

Another scenario in which the dynamic policies converge on the static policy is that where the

switching cost is increased. Please recall that throughout this chapter we assume instantaneous

89

switching. Also note that for the previous experiments switching was free. In this last experiment

we will increase the switching cost.

The parameters used are again very much like before. There are M = 2 job types in the system

again and the N = 50 servers have a completion rate of µ1 = µ2 = 1 for each job types. Busy

periods last a mean of ξ−1
1,2 = 50 units of time for each job type, during which jobs arrive with a

rate of λhigh,1,2 = 20. Likewise quiet periods last a mean of η−1
1,2 = 50 units of time for each job

type, during which jobs arrive with a rate of λlow,1,2 = 10. Both server types break down every

ζ−1
down,1,2 = 500 units of time in the mean. The time it takes to repair a server is fixed at ζ−1

up = 10.

Job type two is twice as expensive as job type one, c1 = 1 and c2 = 2. We vary the switching cost

from Cswi = 0 to Cswi = 9.5.

Figure 7.4: The influence of increasing switching cost. On the x-axis the switching cost is increased.
The y-axis shows the average cost of the system.

As we can see from Figure 7.4, a high switching cost indeed makes the dynamic allocations

ineffective. It can even make them worse than the optimal static allocation. This should correspond

to the case where the heuristics overestimate the badness of the current queue size. Switching a

server is a good decision in the short term but a poor one in the longer term since the cost to switch

a server back is not taken into account.

90

7.6 Summary

In this chapter we introduced a model for a set of servers that experience breakdowns and repairs

in Section 7.2. We also showed, in Section 7.3 how to use this model and the spectral expansion

technique to calculate what the optimal static distribution of servers over multiple job types is. After

that we introduced two fluid based heuristics for dynamic allocation in Section 7.4. The performance

of these three allocation policies were then compared in several experiments in Section 7.5. Although

the dynamic heuristics left scope for improvement, especially in the presence of large switching costs

and repair times, they also provided a decent improvement over the optimal static allocation.

91

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we have considered three related models. The first, outlined in Chapter 3, concerns

the allocation of servers between different job types when experiencing bursty arrivals. The system

was formally modelled. The static optimal solution was found in Section 3.3 together with a quick,

and under heavy traffic asymptotically exact, approximation method. We suggested a necessary

and sufficient stability condition of the optimal dynamic solution in Section 3.4, and discussed how

extensible this model is in Section 3.5.

We then turned our attention to finding the optimal dynamic solution in Chapter 4. Two solution

methods were discussed at length in Sections 4.3 and 4.4, as well as two different optimization goals

in Section 4.2. We compared the solutions found by different methods and optimization goals in

Section 4.5, showing how problematic finding the optimal dynamic solution is, even for small systems.

Possible speedup methods were also considered in Section 4.6 and shown to be insufficient.

This led us to introduce heuristics in Chapter 5. Two of these, see Section 5.2, were fluid-

approximation based. Two others, discussed in Section 5.3, did not require any knowledge of the

parameters of the system. Their performance was compared to that of the optimal dynamic solution

for some small systems and found to be reasonably good. The heuristic policies were also compared

to each other in Section 5.5. There we found that the two fluid based heuristics performed best, but

that a parameterless one, the Queue Length heuristic, performed very well too.

A different model was considered in Chapter 6. Here the trade off is not between different

job types, but between providing service for a single job type and reducing power consumption by

powering down servers. Similar policies as before were introduced in Section 6.3 together with a

couple of new ones. In Section 6.4 their performance was compared for several scenarios. The fluid

92

approximation based heuristics far outperformed the others, including the base case where servers

are never powered down. A brief look in Section 6.5 at how these heuristics perform when the arrival

process is not an interrupted Poisson process was, however, somewhat disappointing. The heuristics

did poorly in that case.

In Chapter 7, we modeled a system of servers subject to breakdowns and repairs, again in the

presence of bursty arrivals. We showed how to calculate the optimal static allocation of servers over

job types for this scenario and adapted two fluid based heuristics from Chapter 5 for this scenario.

The results of experiments for these policies found in Section 7.5 seem to suggest that although

dynamic policies can improve performance of the system, these specific fluid based heuristics are not

entirely well suited as they are outperformed by the static allocation in some cases.

Finally we have show that we can use this work as an inspiration for similar modeling of other sys-

tems. Application to e.g. component level modeling or more extensive power modeling in particular

would be possible and very interesting.

8.2 Future Work

The scope for future work is rather large.

On a more theoretical front it would be interesting to formally prove the stability result of Section

3.4. On a more general level the connection between the systems considered here and polling systems

can be examined at greater detail, especially if we assume switching is both free and instantaneous

but the servers experience breakdowns and repairs as in Chapter 7. For that simplified case the

results in polling systems are rather strong, making it tempting to connect the models considered

here to those polling systems.

There are many possible extensions to the model described in Chapter 3. Most obvious perhaps

is the addition of the features of Chapters 6 and 7, i.e. powering down servers and breakdowns

and repairs. More complicated arrival and completion processes, especially those involving heavy

tailed characteristics, would also be of interest. Although this could possibly make the model too

complicated for detailed analysis.

It would also be of interest to consider a similar system, yet requiring entirely different modelling

techniques, where the optimization goal is not driven by minimizing the average time a job spends

in the system. Using percentile-based SLAs and stream based contracts would be particularly

interesting. Especially in combination with admission control on the part of the provider, allowing

rejection of jobs if the system is too heavily loaded or the offered reward is not attractive enough.

93

Further work on the heuristics would also be of interest. Here it would, however, be very useful to

have a particular system with particular characteristics in mind. For a more specific system it might

be possible to develop more sophisticated heuristics and verify them to some extend by comparing

them for a few select cases to the optimal dynamic solution.

This holds in particular for the situation considered in Chapter 6. The power management

problem seems to have a solid economical and ecological rationale. It can therefore serve as a very

good concrete scenario for the future modelling extensions outlined above.

Likewise the results in Chapter 7 seem to suggest that the heuristics considered there can be

improved on if server breakdowns and repairs are a major feature of the system.

94

Bibliography

[AAV98] O. Abu-Amsha and J.-M. Vincent, An algorithm to bound functionals of Markov chains

with large state space, 4th INFORMS Conference on Telecommunications, Boca Raton,

FL, 1998.

[BD98] O. Boxma and V. Dumas, The busy period in the fluid queue, SIGMETRICS (1998),

100–110.

[BR04] R. Bianchini and R. Rajamony, Power and energy management for server systems, Com-

puter 37 (2004), no. 11, 68–74.

[BT89] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation, Prentice-Hall Inter-

national, London, 1989.

[BVW85] C. Buyukkoc, P. Varaiya, and J. Walrand, The cµ rule revisited, Advances in Applied

Probability 17 (1985), 237–238.

[CAT+01] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle, Managing energy and server

resources in hosting centers, ACM SIGOPS Operating Systems Review 35 (2001), no. 5,

103–116.

[CXHJ08] A.P. Chester, J.W.J. Xue, L. He, and S.A. Jarvis, A system for dynamic server allocation

in application server clusters, UKPEW Proceedings, 2008, pp. 199–216.

[DO95] I. Duenyas and M.P. Van Oyen, Stochastic scheduling of parallel queues with set-up costs,

Queueing Systems Theory and Application 19 (1995), 421–444.

[DO96] , Heuristic scheduling of parallel heterogenous queues with set-ups, Management

Science 42 (1996), 814:829.

[dSeSG01] E. de Souza e Silva and H.R. Gail, Performability modelling, ch. The Uniformization

Method in Performability Analysis, Wiley, 2001.

95

[FL96] S. Foss and G. Last, Stability of polling systems with exhaustive service policies and

state-dependent routing, Annals of Applied Probability 6 (1996), no. 1, 116–137.

[FPY07] J.-M. Fourneau, N. Pekergin, and S. Younés, Censoring Markov chains and stochastic

bounds, Formal Methods and Stochastic Models for Performance Evaluation, proceedings

of EPEW 2007 (K. Wolter, ed.), Lecture Notes in Computing Science, vol. 4748, Springer-

Verlag, 2007, pp. 213–227.

[GL96] G.H. Golub and C.F. Van Loan, Matrix computations, Johns Hopkins University Press

Balitmore, 1996.

[HB07] M. Harchol-Balter, New perspectives on scheduling, Performance Evaluation Review 34

(2007), no. 4.

[How60] R.A. Howard, Dynamic programming and Markov processes, Wiley New York, 1960.

[HR87] M. Hofri and K.W. Ross, On the optimal control of two queues with server set-up times

and its analysis, SIAM Journal of Computing 16 (1987), 399–420.

[Kle75] L. Kleinrock, Queueing systems, vol. Volume 1: Theory, John Wiley & Sons, 1975.

[KM81] P.J.B. King and I. Mitrani, The effect of breakdowns on the performance of multipro-

cessor systems, 8th International Conference on Modelling and Performance Evaluation

(Performance ’81) (F.J. Kylstra, ed.), North-Holland, November 1981.

[Koo97] G. Koole, Assigning a single server to inhomogeneous queues with switching costs, The-

oretical Computing Science 182 (1997), 203–216.

[Koo98] , Structural results for the control of queueing systems using even-based dynamic

programming, Queueing Systems Theory and Application 30 (1998), no. 323-339.

[KW90] O. Kella and W. Whitt, Diffusion approximations for queues with server vacations, Ad-

vances in Applied Probability 22 (1990), 706–729.

[LNT92] Z. Liu, P. Nain, and D. Towsley, On optimal polling systems, Queueing Systems Theory

and Application 11 (1992), 59–83.

[LS90] H. Levy and M. Sidi, Polling systems: Applications modelling and optimization, IEEE

Transactions on Communications 38 (1990), no. 10.

96

[LWW07] C. Lefurgy, X. Wang, and W. Ware, Server-level power control, International Conference

on Autonomic Computing, IEEE, 2007.

[MC95] I. Mitrani and R. Chakka, Spectral expension solution for a class of Markov models:

Application and comparison with the matrix-geometric method, Performance Evaluation

23 (1995), 241–260.

[MM91] I. Mitrani and D. Mitra, A spectral expansion method for random walks on semi-infinite

strips, IMACS Symposium on Iterative Methods in Linear Algebra, Brussels, 1991.

[MM08] S.P. Martin and I. Mitrani, Analysis of job transfer policies in systems with unreliable

servers, Annals of Operations Research 162 (2008), no. 1, 127–141.

[Neu81] M.F. Neuts, Matrix geometric solutions in stochastic models, John Hopkins Press, 1981.

[PBCH03] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath, Compilers and operating systems for

low power, ch. Dynamic Cluster Reconfiguration for Power and Performance, pp. 75–91,

Springer, 2003.

[PM05] J. Palmer and I. Mitrani, Optimal server allocation in reconfigurable clusters with multiple

job types, Journal of Parallel and Distributed Computing 65 (2005), no. 10, 1204–1211.

[PM06] , Empirical and analytical evaluation of systems with multiple unreliable servers,

2006 International Conference on Dependable Systems and Networks (DSN 2006), 2006,

pp. 517–525.

[RLIC06] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, Ensemble-level power management

for dense blade servers, SIGARCH Comput. Archit. News 34 (2006), no. 2, 66–77.

[Ros83] S.M. Ross, Introduction to stochastic dynamic programming, Academic Press, 1983.

[Sen67] E. Seneta, Finite approximations to infinite non-negative matrices, Proc. Camb. Phil.

Soc 63 (1967), 983–992.

[SMT06] J. Slegers, I. Mitrani, and N. Thomas, Server allocation in grid systems with on/off

sources, Proceedings of ISPA 2006 Workshops (Min et. al., ed.), Lecture Notes in Com-

puting Science, vol. 4331, Springer, 2006, pp. 897–906.

[SMT07] , Optimal dynamic server allocation in systems with on/off sources, Formal Meth-

ods and Stochastic Models for Performance Evaluation, proceedings of EPEW 2007

97

(K. Wolter, ed.), Lecture Notes in Computing Science, vol. 4748, Springer-Verlag, 2007,

pp. 186–200.

[SMT09] , Static and dynamic server allocation in systems with on/off sources, Annals of

Operations Research (2009).

[STM08] J. Slegers, N. Thomas, and I. Mitrani, Dynamic server allocation for power and perfor-

mance, Performance Evaluation: Metrics, Models and Benchmarks (S. Kounev, I. Gor-

ton, and K. Sachs, eds.), Lecture Notes in Computing Science, vol. 5119, Springer-Verlag,

2008, pp. 247–261.

[Szy98] D.B. Szyld, The mystery of asynchronous iterations convergence when the spectral radius

is one, Tech. Report TR 98-102, Department of Mathematics, Temple University, 1998,

http://www.math.temple.edu/˜szyld/papers.html.

[Tij94] H.C. Tijms, Stochastic models, Wiley, 1994.

[TM95] N. Thomas and I. Mitrani, Routing among different nodes where servers break down

without losing jobs, 1st IEEE International Computer Performance and Dependability

Symposium (IPDS ’95), IEEE Computer Society Press, 1995, pp. 246–255.

[Tru97] L. Truffet, Near complete decomposability: Bounding the error by a stochastic comparison

method, Advances in Applied Probability 29 (1997), 830–855.

[WC58] H.C. White and L.S. Christie, Queueing with preemptive priorities or with breakdown,

Operations Research 6 (1958), 75–95.

[Whi63] D.J. White, Dynamic programming, Markov chains and the method of successive approx-

imations, Journal for Mathematical Analysis and Applications 6 (1963), 373–376.

98

Appendix A

Notation

In this appendix we will list some notation used in this thesis. The list is not exhaustive. We

have strived to be consistent in notation and often the same notation denotes the same concept

throughout this thesis. When a symbol has a (slightly) different meaning in different chapters, the

relevant chapter is mentioned in brackets after the explanation. For example ζ : Switching rate

(3,4,5); powering down rate (6) means that ζ denotes the switching rate in Chapters 3, 4 and 5 but

the powering down rate in Chapter 6.

99

cf (S) : Cost of state S given action f is taken, with other indices it can indicate other costs

g : Average cost

ji : Queue length of job type i

ki : Number of allocated servers of job type i

li : On/off state for job type i, where 0 denotes off and 1 denotes on

mi,j : Number of servers switching from job type i to job type j

M : Number of job types

N : Number of servers

q(S, S′) : Transition probability from state S to state S′

r(S, S′) : Transition rate from state S to state S′

v : Length of time between two decisions

Vn : n-step cost

w : Length of interval in which parameters are observed

α : Discount factor

ζ : Switching rate (3,4,5); powering down rate (6); breakdown rate (7)

η : Rate with which off-periods end, i.e. inverse of mean off-time

λ : Job arrival rate

Λ : Uniformization constant

µ : Job completion rate

ξ : Rate with which on-periods end, i.e. inverse of mean on-time

ρ : Load

