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Abstract 

Blanket bog habitat is a globally scarce resource and as a result is amongst the 

most important of British vegetation types in an international context. The habitat 

supports four Annex 1 bird species including golden eagle (Aquila chrysaetos) as 

well as red grouse (Lagopus lagopus) which is only found on heather moorland 
habitats and provides an important food source for golden eagle. The habitat is a 
Biodiversity Action Plan habitat with a target to restore 845,000 hectares of 
degraded blanket bog by 2015. At least 190,000 hectares of blanket bog habitat 
have been planted with conifer plantation, mainly Sitka spruce (Picea sitchensis), 
which is unlikely to mature until 2020-2030. This thesis explores the potential for 

restoring blanket bog, to provide habitat for red grouse, through the removal of 
immature Sitka spruce plantation. Three different tree clearance techniques are 
considered in terms of impact on the developing vegetation plant community. . 
The most cost effective method of clearance, in situ chipping using an excavator 

mounted flail, is investigated in detail; in particular the effect of wood-chip depth 

on changes in wood chip decomposition, plant colonisation, plant community 
development and vegetation structure. Monitoring and experimental data were 

analysed using multivariate methods including Principal Response Curves, 

Detrended Correspondence Analysis and Redundancy Analysis, and univariate 

methods including linear mixed effects and spatio-temporal models. Restoration 

of blanket bog vegetation is clearly achievable within a relatively short timescale 

that is dependent on the size of the trees and hence depth of wood chip. Plant 

community recovery following in situ chipping of trees (yield class 10) that are 20, 

25 and 30 years old is predicted to take 7,9 and 10.5 years respectively. 
Vegetation structure is linked to plant community, with the cover and age of 
Calluna vulgaris being particularly important. As a result it seems likely that 

suitable red grouse habitat will be achieved as the target blanket bog plant 

community is reached. 
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1.1 Blanket Bog, extent and importance 

1.1.1 Blanket Bog 

Blanket bog is the dominant form of ombrotrophic peatland habitat in the British 

Isles (Lindsay et at. 1988). All ombrotrophic mires are rain-fed (Gk. ombros =a 
storm of rain, trophos = feeder, nurse) (Lindsay et al. 1988; Wheeler 1993; 
Anonymous 1995; Tallis et at. 1997), and there are essentially two types of 

ombrogenous bog in Britain, raised bog and blanket bog, although intermediate 

or transitional forms also occur (Goode and Ratcliffe 1977; Hulme 1980). 

Blanket bog formation is controlled primarily through climate, whilst raised bog 
formation is more closely related to topography (Lindsay et al. 1988). 

Blanket bog forms in situations where the climate ensures that the soil is 

maintained in a waterlogged condition. This encourages the growth of a specific 

type of vegetation which decays slowly and causes peat to be formed in a 

process known as patudification (Sjors 1983). Peat accumulation occurs directly 

over a waterlogged mineral soil that is said to be paludifying (Joosten and Clarke 

2002). As a result this type of peat formation is not confined to the level terrain 

or basins required by raised bogs, but can occur on slopes and often covers the 
land in a smothering mantle (Lindsay 1995). Blanket bog is common in the north 

and west of Britain where the climate and the underlying rock creates highly 

suitable conditions for peat formation. Rainfall is consistently high and the 

temperatures are generally low ensuring low evapotranspiration, production and 
decomposition. Poor decomposition is also attributable to the low numbers of 
bacteria that occur in acidic organic surface horizons on peatland (Maltby 1989). 
The prevalence of hard, acidic rocks and base-deficient soils, coupled with the 
leaching and podsolisation characteristic of the cool, wet climate helps to 

promote the development of acidophilous bog vegetation and subsequent 
formation of peat (Lindsay 1995). 
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Intact blanket bog is differentiated into two functional layers (Clymo 1978; Ingram 

1978; Ingram 1983; Clymo 1984; Clymo 1984a). The accumulation of dead plant 

material which gives the bog its overall shape and depth is called the catoteim 

and is permanently waterlogged (Proctor 1993). This is sealed and protected by 

the acrotelm which is no more than 30cm deep and provides the bog with a small 

scale surface pattern. This layer is at least intermittently aerobic and is the 

region where organic matter is progressively broken down and added to the 

surface of the catotelm as the bog grows (Proctor 1993). Decay rates of organic 

material, from the surface vegetation, decrease down the profile until permanent 

waterlogging reduces it to very low levels (Doyle and Dowding 1990). 

Hydrological processes in the acrotelm are rapid compared to the catoteim, with 

water flow rates up to 1000 times faster (Ivanov 1981; Lindsay 1995). 

Blanket bogs have evolved as part of the British upland landscape for at least the 

last 7000 years, the exact time varying from one region to another (Tallis 1993). 

It is thought that many blanket bogs originated following human destruction of 
higher altitude forest and scrub during the new stone age (Jacobi et at. 1976; 

Tallis 1991; Moore 1993). Since that period peat has accumulated between 1cm 

and 12cm per hundred years to achieve depths of 5m or more in some places 
(Clymo and Reddaway 1971; Talfis 1993). 

Blanket bog remains completely waterlogged for most of the year (Lindsay 1995). 

This occurs because water enters the bog from above via rainfall, its downward 

progress through the peat is very slow but losses by evapotranspiration are also 
limited because this only occurs from the surface actrotelm. In addition air 
temperatures are typically low where blanket bog accumulates, further reducing 

evapotranspiration. As a result blanket bog tends to be made up of 95-98% 

rainwater and 2-5% peat, by weight (Lindsay 1995). The slow rate of water 

movement through peat is a result of the amorphous nature of the peat matrix 

and the water retaining properties of blanket bog species, for example 
Sphagnum sp. which retains water even when dead (Lindsay 1995). It is also 
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thought that water movement is restricted because some of the interstitial spaces 

between peat particles are blocked by microscopic bubbles of methane (Brown 
1989). 

As a result of the high water table, low pH and low concentrations of many 

essential nutrients blanket bog is a relatively hostile environment for plant growth. 
Although peat contains a large reserve of organic nitrogen only a small 

proportion is mineralised each year due to the waterlogged and acid conditions 
that limit microbial activity (Williams 1989). Primary production of ombrogenous 
bog vegetation is generally low compared with other upland vegetation types 

(Bradbury and Grace 1983) and ombrogenous bog vegetation often shows 

minimal response to nutrient-addition experiments on ombrogenous peat (Proctor 

1993). It is thought that this is, in part, due to the inherently slow growth rate and 

efficient nutrient retention characteristic of wild species adapted to nutrient-poor 

habitats (Chapin et al. 1979). 

Bog vegetation is characterised by a dominance of acidophilous plants (Lindsay 

1995). On the wetter areas the Sphagnum species that are adapted to highly 

stagnant waterlogged and acidic conditions including S. papillosum, S. 

capillifolium and S. magellanicum form a carpet which higher plants grow within. 
Surfaces which are naturally drier or disturbed have a greater abundance of 

vascular plants including Calluna vulgaris, Eriophorum vaginatum and Scirpus 

cespitosus (Lindsay 1995). The National Vegetation Classification (NVC) 

(Rodwell et al. 1991) defines eight major bog communities (M15, M16, M17, 

M18, M19, M20, M21 & M2) which provides a valuable summary of bog plant 

communities at a site level, although bogs are know to have more detailed 

variation according to the pattern of the bog surface (Lindsay 1995). 
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1.1.2 Extent of blanket bog 

Blanket bog is a globally restricted habitat confined to cool, wet and typically 

oceanic climates where precipitation exceeds evaporation (Talfis 1993; Talfis et 

al. 1997). A precise figure for the area of blanket bog, both nationally and 

worldwide, is not currently available because different authors refer to different 

habitat definitions. However, there is generally considered to be between 1 and 
2 million hectares of blanket bog in the British Isles (Tallis 1993) depending on 

peat depth. Lindsay (1995) reports a total area of 1.4 million hectares of 1 metre 
deep blanket bog. 

There are problems determining the distribution and extent of blanket bogs in 

other parts of the world because the floristics of blanket bog can vary widely 
depending on geographical location (Stroud et al. 1987). Even if blanket bog 

vegetation is identified there may be little published information about the extent 

of the habitat. The common features are peat characteristics, bog structure and 

relationships to topography (Stroud et al. 1987). Based on this information and 

climatic information blanket bog is thought to exist on the East coast of Canada, 

the North American Pacific coast, the southern-most tip of South America, New 

Zealand and other Southern Ocean islands, North-east Asia and in the 

mountainous region of central equatorial Africa. A number of European countries 
have extensive areas of blanket bog including Iceland, north-western France, 

western Norway and Finland, but the blanket mire in Ireland and Scotland is 

better developed than anywhere else in Europe (Stroud et al. 1987). The total 

global extent of the resource is thought to be in the region of 10 - 12 million 
hectares (Lindsay et al. 1988) indicating that the British Isles have between 10- 

15% of the global resource (Tallis 1993; Lindsay 1995; Coupar et al. 1997). 

Indeed blanket mires are among the most important of British vegetation types in 

an international context (Tallis 1993) and the habitat is considered to be a 

globally scarce resource (Lindsay 1993; Tallis et al. 1997). 
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1.1.3 Importance of blanket bog 

Lindsay (1995) highlights the importance of blanket bog listing twelve features of 
the habitat that are either beneficial or worthy of note. These include global rarity 
of the habitat, support for a number of rare plant, invertebrate and bird species, 
importance in local and regional hydrological cycles, significance as a carbon 

sink and value as an historic archive. 

In a report on heather moorland loss from the UK, a habitat description which 
includes many of the blanket bog and mire communities, 40 species of birds are 
identified as being associated with the habitat (Thompson et al. 1995). These 
include 8 species listed under Annex I of the EC Directive on the Conservation 

of Wild Birds (79/409/EEC), which requires the UK Government to take special 

measures, including the designation of Special Protection Areas to ensure the 

survival and reproduction of these species throughout their area of distribution. 

Four of these species, golden plover (Pluvialis apricaria), merlin (Falco 

columbarius), hen harrier (Circus cyaneus) and golden eagle (Aquila chrysaetos), 

are currently decreasing in numbers with one of the reasons stated as 

afforestation (Thompson et at. 1995). Other bird species supported by blanket 

bog that are either uncommon or not found in other habitats include wigeon, 
greenshank, dunlin, curlew, snipe, red grouse and raven (Stroud et al. 1987). 

Blanket bog in general, and some specific blanket bogs, are protected by various 
international legislation including The Ramsar Convention, The Bem Convention 
(The Convention on the Conservation of European Wildlife and Natural Habitats), 
The EC Directive on the Conservation of Wild Birds (Directive 79/409/EEC), The 
EC Directive on the Conservation of Natural and Semi-natural Habitats and of 
Wild Fauna and Flora (Directive 92/43/EEC) and The United Nations Biodiversity 
Convention. 

Extensive areas of blanket mire are given legal protection by being designated as 
Special Site of Scientific Interest (SSSI) or Special Area of Scientific Interest 
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(ASSI) (Anonymous 1995). Precise UK-wide data on the extent protected are 
lacking because the presence of blanket mire is often part of the general interest 

of a site, rather than being the specific reason for site designation in its own right. 
Current estimates suggest that SSSIs/ASSIs which include blanket mire as part 

of the designated interest extend to around 160,000 ha in England, 350,000 ha in 

Scotland, 12,000 ha in Northern Ireland and 15,700 ha in Wales (Anonymous 

1995). The largest and most intact areas of blanket bog in the world are found 

in Caithness and Sutherland where 150,000 hectares of blanket bog and 

associated habitats are designated as SSSI's under the Wildlife and Countryside 

Act (1981) (Anonymous 2005). Much of this area has now been classified as a 
Special Protection Area under the EU's Birds Directive on account of the 

populations of breeding waders, wildfowl and raptors, a Special Area of 
Conservation under the EU's Habitat Convention and it is designated as a 
Wetland of International Importance under the Ramsar Convention. The area is 

also being considered as a World Heritage Site, of which there are only 3 sites in 

the whole of Scotland (Anonymous 2005). 

Another important aspect of peat is its composition, containing a high proportion 

of carbon. One hectare (100x100m) of 1m deep peat contains 1000 tonnes of 

carbon which could be released if the bog were damaged through drainage or 

cutting (Lindsay 1995). Drainage of peatland has been shown to increase 

carbon dioxide emissions by between 2.5 and 3.4 times due to decomposition of 
the peat (Moore and Knowles 1989). As a result water level drawdown is 

predicted to enhance the greenhouse impact (Laine et al. 1996). However, 

drainage of peatland reduces methane production, a gas that has a far greater 
impact on the greenhouse effect than carbon (Byrne et al. 2000). Although new 

evidence suggests that undamaged blanket bogs have a closed methane cycle 

and that it is only after disturbance that methane begins to be released. 
Research is currently ongoing to examine the greenhouse gas balances of a 
number of management options of cutaway peatlands (Byrne et al. 2000). 
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1.2 Red grouse and blanket bog 

One third of the area of grouse moor in the British Isles is located on blanket bog 

(Butterfield and Coulson 1975), a habitat that is defined along with dry heath and 

acid grassland as 'upland heather moorland' by Thompson et al. (1995). Red 

grouse require Calluna vulgaris in their diet and studies indicate that they will 
consume between 90 - 98% (Jenkins et al. 1963) even when C. vulgaris cover 
is relatively low (Lance and Mahon 1975). In general blanket bog plant 

communities tend to have a lower percentage cover of C. vulgaris due a high 

water table but this species is present in all of the NVC blanket bog plant 

communities (Rodwell et al. 1991). 

The health and breeding success of adult red grouse are dependent on the 

nutrient content of their food (Moss 1969; Moss et al. 1972), particularly C. 

vulgaris. There is also evidence to suggest that nitrogen and phosphorus may 
be critical to successful breeding and subsequent survival of the young (Moss et 

al. 1972). It is thought that insects may provide an important supply of nitrogen 

and phosphorus for grouse living on blanket bog sites where C. vulgaris may be 

limited and relatively low in nutrients (Butterfield and Coulson 1975). Indeed 
insects contain considerably more nitrogen and phosphorus than C. vulgaris for 

example the species Tipula subnodicomis (cranefly) contains 9 and 7 times more 
nitrogen and phosphorus respectively (Butterfield and Coulson 1975). Insects 

such as the cranefly are notably absent from dry heathland sites where C. 

vulgaris tends to dominate. 

Despite the requirement of red grouse for a diet composed largely of C. vulgaris 
there is considerable evidence to suggest that the percentage cover of heather or 
C. vulgaris is not related to red grouse numbers. For heather covers between 
46-94% Smith et al. (2001) found no relationship between cover and grouse 
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numbers and Moss (pers. comm. ) suggests that a cover of 30% is adequate to 

support red grouse. 
1.3 The causes and extent of blanket bog damage 

1.3.1 Classification of bog damage 

Bogs can be classified into two groups, primary and secondary bogs (Lindsay 

1995), depending on their overall status and any damage they exhibit. A primary 
bog retains all the original peat depth and a surface formed through natural 

growth, although it does not necessarily need to be actively growing. Secondary 

bogs have had part of the original expanse of peat removed so this includes cut 

bogs through to those where the land has claimed for agriculture that involves 

cultivation. Both these classifications can then be further subdivided to describe 

their surface condition in more detail. This provides a more accurate view of the 

current land-use and conservation value of the bog (Lindsay 1995). 

1.3.2 The causes and extent of damage 

There are a number of factors that have caused damage to blanket bog and 

these include peat mining or cutting, drainage, afforestation, agriculture, climate 

change and pollution deposition. 

1.3.2.1 Peat mining 
Peat mining or cutting is a major anthropogenic disturbance (Lavoie et al. 2005). 

Peat extraction covers approximately 5 million hectares or 10% of the worlds 

peatland resource (Joosten and Clarke 2002). This includes all peatlands, both 

ombrotrophic and minerotrophic. The main uses for mined peat is in horticulture, 

agriculture, domestic heating and energy generation, although there are other 

small scale uses. Peat mining on a commercial scale often involves draining the 

site, removal of the vegetation and the extraction of a thick layer of peat. This is 

done over a relatively long period of time leaving an extremely hostile 

environment where vegetation establishment is not straightforward (Lavoie et at. 
2005). For example most sites that have been mined using vacuum machines, a 
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practice commonly used in Canada, are almost totally devoid of vegetation after 

decades of abandonment (Lavoir et al. 2003). This is probably due to a 

combination of factors including a low water table, lack of necessary propagules 
(Salonen 1987; Huopalainen et at. 1998), altered chemical conditions (Wind- 

Mulder et at. 1996) and the extreme conditions which retard plant colonisation 
(Campeau and Rochefort 1996; Lavoie and Rochefort 1996). Peat is laid down 

over many thousands of years so it is likely that the lower levels of peat have a 

different chemical composition to the surface layers. Similarly different surface 

conditions following peat extraction will influence the chemical composition of the 

peat (Wind-Mulder et at. 1996). 

Peat mining or cutting has had a major impact on blanket bog habitats in a range 

of different countries including UK, Ireland, Finland, Sweden, Estonia and 

Canada (Wind-Mulder et al. 1996; Farrell and Doyle 2003; Vasander et at. 2003; 

Waddington et at. 2003). In many countries, particularly Ireland, peat mining is 

still ongoing, primarily for electricity generation. For example an active extraction 

site at Bellacorick, County Mayo, includes 8000 hectares of blanket bog (Farrell 

and Doyle 2003). 25% of this site has now been exhausted and taken out of 

production. There are remnants of the original blanket bog vegetation on the site 

and some areas of regeneration on cut away sites where the water table has 

been accidentally increased due to impeded drainage channels. However, active 

peat formation is not occurring although experimentation has indicated that a 

programme of re-wetting the cut away peat would allow this to occur (Farrell and 
Doyle 2003). 

1.3.2.2 Drainage 

The main requirement for carbon accumulation in peatland is that dead plant 
material is exposed to anaerobic conditions, associated with a high water table 

(Clymo 1984; Charman et al. 1994). This limits decomposition and hence allows 
the build up of peat. Drainage can lower the water table so that it descends into 
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the catotelm during dry weather (Ingram 1989). This causes peat to decompose, 

releasing CO2 (Charman et al. 1994) and causing the colloidal constituents of the 

catotelm to undergo irreversible physical alteration which manifests itself as 

shrinkage, cracking and mechanical weakening for the structure supporting the 

acroteim (Ingram 1989). Where drainage on boreal peatlands in Finland is 

considered effective it has been shown to cause in the order of 100% increase in 

C02 fluxes (Silvola et at. 1996). These effects are most obvious close to the 

drain where the peat of the catotelm can begin to fragment in a process of 

structural disintegration. The acrotelm becomes more sharply drained so that 

mosses become suppressed by dwarf shrub species and peat formation is 

disrupted. These effects spread outwards from the drain until a new hydraulic 

equilibrium supervenes (Stewart and Lance 1983). 

The impact of drainage on the water levels of mires is not clearly understood 

(Smith et al. 1995). However, direct measures of water table lowering on either 

side of ditches show that its extent is negligible where annual rainfall exceeds 
1200mm/annum (Coulson et al. 1990). Other research supports these findings 

and demonstrate that the effect of drainage on peat is very localized with the 

water table depression being restricted to within a few meters of ditches, 

regardless of peat depth (Robinson and Newson 1986; Stewart and Lance 1991). 

Open drains are frequently referred to as grips and it is a technique that has 

been used for over 100 years to drain land. However, the extent of gripping only 

really increased significantly when mechanical techniques replaced manual 
digging. The 'feed Britain' post World War II era saw government grants for 

expansion of drainage works paid at 70%, particularly on agriculturally marginal 

upland areas (Holden et al. 2004). It was in the 1960's and 1970's that most of 
the drainage or gripping of blanket bog took place (Coulson et al. 1990; Holden 

et al. 2004). A study of aerial photographs indicate that over 50% of hill land in 
England and Wales has been drained (Coulson et al. 1990). In Scotland it is 
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estimated that, in addition to the forested areas 5000km2 of the uplands have 
been drained with open ditches (Coulson et al. 1990). 

1.3.2.3 Afforestation 

The impacts of afforestation on blanket bog occur over a relatively long period of 

time from ground preparation for planting until canopy closure, which may be 20 

years later (Anderson 2001). Firstly there is a discontinuation of the burning and 

grazing regimes that were used to manage the site prior to afforestation, allowing 

more litter to accumulate and a thicker layer of vegetation to develop (Shotbolt et 

al. 1998). Recent forest practice, when planting conifers on blanket bog, 

involved ploughing the site to create drainage channels and subsequent 

application of phosphate, potassium and sometimes nitrogen (Taylor 1991). 

Drainage is thought to cause a slight lowering of the water table (Anderson et al. 

1995) although this effect is minimal in very high rainfall areas (Coulson et al. 

1990). It is thought that the application of phosphate and potassium increases 

microbial activity, particularly if waterlogging is reduced by drainage, so that 

nitrogen mineralisation occurs more rapidly (Williams 1989). Even if fertilizer is 

not applied there is evidence to suggest that plant nutrient element 

concentrations in the upper 50cm of the peat profile increase after drainage for 

forestry (Laiho and Laine 1994). 

During the first 10-20 years of growth the plantation will have an increasing 

influence on blanket bog vegetation with a gradual increase in shade, shelter, 

rainfall interception and pollutant deposition from the foliage (Anderson 2001). In 

addition water uptake by the trees has a significant drying effect on the peat 
(Anderson et al. 1995). Most studies on the effect of drainage and afforestation 

on peat have concentrated on tree growth however one study (Anderson et at. 
1995) compared the water content profile of peat under 30 year old forest with 
that in failed plots that were drained (Anderson et al. 1995). The plots where the 

tree crop had failed demonstrated almost no drying effect due to drainage alone. 
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Pyatt and John (1989) report that tree growth on peat can cause eventual 

shrinkage and cracking of the peat which is irreversible and contributes to further 

drainage of the site (Anderson et al. 1995). A study at Rumster Forest, 

Caithness showed that closely spaced furrow ploughing lowered the water table 

sufficiently to allow a tree crop to become established but that the main drying 

effect was caused by the 20 year old trees which caused irreversible reductions 

in peat water content and consequent subsidence (Pyatt et al. 1989). 

In the north-west of England and the majority of Scotland, more than half of all 
forestry planting up to 1978, was done on peat soils (Taylor 1983). During the 

1980s this proportion increased considerably due to Foresty Commission grants 

and government tax incentives for private forestry companies, which promoted 

planting forest on this type of ground (Lindsay 1995). By 1993 approximately 

190,000 hectares of plantation forest was located on blanket bog that is over 

45cm deep, which represents 9.5% of the British resource (Pyatt 1993). 

Extensive areas have been planted in Wales, the Cheviots, the Southern Scottish 

Uplands, flow-lands in the Wigtown district, Caithness and Sutherland and 

scattered areas in the western and eastern highlands. 30% of the blanket peat 

on the Kintyre peninsula has been lost to forestry since 1945 (NCC 1982). In 

Ireland 75% of all peatland has been lost to afforestation with only high level 

blanket bog, that is totally unsuitable for forestry, being left unplanted 
(Anonymous 2004). Approximately 84% of all afforestation in Ireland during 

1990-2000 has taken place on peat bogs (Anonymous 2004). 

A Forestry Commission policy guidance note that was published in July 2000 

states that the Forestry Commission will not approve applications for planting on 

active, raised or blanket bogs where the peat averages 1m or more in depth or 

any associated peatland where afforestation could alter the hydrology of such 

areas (Patterson and Anderson 2000). In addition they will encourage the 

conservation of peatland within forests and may support restoration of former bog 
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habitats through re-structuring, drain blocking and the removal of unwanted 

natural regeneration. They have also commited to do similar work in Forestry 
Commission forests where it is considered appropriate to do so. 

1.3.2.4 Agriculture 

In some situations bogs have been converted to agricultural use and there is no 

evidence today from the vegetation that the ground was ever a peat bog (Lindsay 

1995). This type of agricultural improvement has not really affected blanket bog 

which tends to be located at higher altitudes and in high rainfall areas where 

cropping is not feasible (Lindsay 1995). However, more extensive agriculture is 

widely practiced on blanket bog where it provides rough grazing for livestock 

(Lindsay 1995). Due to slow vegetation growth and poor nutritional quality, 

blanket bogs can only support low densities of grazing animals (Anonymous 

2005). Because of this stocking rates tend to be low but there are examples 

where burning and draining has been used in an attempt to improve the quality of 

the vegetation, causing considerable damage to the blanket bog surface. 

Overgrazing and excessive trampling can both lead to erosion, where the slow 

growth of vegetation and a cool wet climate slows or prevents vegetation 

recovery (Anonymous 2005). However, a study including seven water catchment 

sites in the UK and Ireland concluded that burning and excessive grazing on 
blanket bog is not clearly implicated in causing peat erosion (Rhodes and 
Stevenson 1997). There is also evidence to suggest that a certain level of 

grazing is necessary to maintain a diverse ombrogenous plant community on 
blanket bog, particularly on shallower peats in order to prevent scrub 

encroachment (Chapman and Rose 1991). 

Much of the blanket bog managed within agricultural livestock systems has been 

drained at one time or another (Vasander et al. 2003) but the extent of this type 

of management has not been documented. 
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1.3.2.5 Climate change 
Climate change is believed to have affected mire vegetation during the twentieth 

century with summer temperature changes causing water table declines (Hendon 

and Charman 2004). Changes in mire hydrology and vegetation on the Border 
Mires in northern England was studied using palaeoecological data for the last 

200 years (Hendon and Charman 2004). Although the mires surrounded by 

plantation forestry have become drier over the last 40 years there is also clear 

evidence to suggest that mires outside the direct influence of forestry have also 
become drier during the twentieth century. The extent of the drying suggests that 

forestry is not the main cause of changes observed on sites near forestry and 
that water table declines began earlier than the main phase of forest planting. 
Future projections for regional climate change suggest a summer temperature 

increase of 2-4°C and summer precipitation decrease between 30-50% for 

Northern England (Hulme et al. 2002). Given these predictions it seems likely 

that mires in the UK will continue to become drier whatever management is 

applied (Hendon and Charman 2004). 

1.3.2.6 Pollution 

Increased nitrogen and sulphur deposition is thought to have caused 

considerable changes to blanket bog pH and vegetation composition in many 

places (Hogg et al. 1995; Gunnarsson et al. 2000). Acid deposition leads to the 
lowering of peat pH and this acidification appears to be associated with a 

reduction in litter decomposition rates (Cresser et al. 1997). Detailed 

assessments of vegetation change and pH on a lowland bog in Yorkshire 

showed acidification of around 0.5 pH units between 1978 and 1991. The site is 
located downwind of a major industrial area and a large group of coal burning 

power stations and as a result, is considered to have the greatest depositions of 
hydrogen ions in the UK (Laboratory 1990). Vegetation composition on the bog 

changed considerably over the experimental period indicating not only increased 

acidity but also increased nitrogen availability (Hogg et al. 1995). In the South 
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Pennines a long history of atmospheric pollution has caused extensive 

modification of large areas of blanket bog with the virtual elimination of the once 
dominant Sphagnum cover (Baxter et al. 1989). This loss of sphagnum cover 
has in turn led to serious peat erosion and loss of the blanket bog habitat. 

1.4 Blanket Bog Restoration 
Environmental management of peatlands, landscape ecology, reduced economic 

viability of forestry on peatland and the protection of key habitats have created 

needs and pressure to restore damaged peatlands to natural mire ecosystems 
(Vasander et al. 2003). The UK Biodiversity Action Plan includes action plans for 

key habitat types including blanket bog (Anderson 2001) and there is a target of 

845,000 hectares of blanket bog to be restored by 2015 (Anonymous 1995). 

This represents 75% of the total area of blanket bog in the UK that is considered 

to be restorable (Anonymous 1995). This 75% target is also an integral part of 

the Ireland Biodiversity Action Plan for blanket bog (Anonymous 2003). Other 

countries including Finland, Sweden, Estonia, USA and Canada have large scale 

restoration plans for forested and cut away peatlands (Succow and Lange 1984; 

Steiner 1985; Vasander et al. 1992; Heikkila and Lindholm 1995; Anonymous 

2003; Vasander et al. 2003). In Finland, where approximately 60% of the original 

peatland area has been drained for forestry (Paavilainen and Paivanen 1995), at 
least 60,000 hectares is within existing or planned national parks (Heikkila and 
Lindholm 1995) and will therefore be subject to restoration policy (Vasander et al. 
1992). 

The main aim of most habitat restoration projects is to shorten the successional 

pathways towards plant communities that are functionally similar to the pre- 
disturbance state (Lockwood and Pimm 1999). In the case of blanket bog this 

process may be relatively simple, involving grazing reductions or cessation of 
burning management, or it may be more involved requiring a programme of re- 

wetting and the removal of unwanted plant species i. e. forest plantation or scrub 
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or the introduction of suitable propagules to establish the desired bog vegetation 
(Salonen 1987; Wilkie et al. 1997; Komulainen et al. 1999; Tuittila et al. 2000b; 

Anderson 2001; Vasander et al. 2003; Waddington et al. 2003). 

The majority of documented bog restoration projects have involved restoring cut 

away or drained bogs where general conservation of an important habitat or 

reducing CO2 emissions is the main aim of the work (Heikkila and Lindholm 

1995; Komulainen et at. 1999; Rochefort et at. 2003; Waddington et at. 2003). 

1.4.1 Restoration of cut away bogs 

Cut away peatlands have shown some ability to recover through spontaneous re- 

vegetation, although this depends on the peat mining technique used and how 

much drainage has been done (Lavoie et al. 2003). Despite this it is recognized 

that peat mining seriously hampers the natural capacity of the bog to regenerate 

and a proactive approach to restoration is often required (Rochefort et at. 2003). 

This usually involves re-wetting and perhaps the introduction of diaspores from 

an intact natural bog. It is estimated that a significant number of characteristic 

bog species can be established in 3-5 years, a stable high water-table in about a 
decade, and a functional ecosystem that accumulates peat in perhaps 30 years 
(Rochefort et at. 2003). However, periods of restoration have been too short to 

determine whether or not the appropriate ecosystem structure, function, trophic 

organization and biodiversity will ultimately be restored (Gorham and Rochefort 

2003). 

The two plant species that are considered the most useful in restoring cut away 

peatland are Sphagnum sp. and Eriophorum vaginatum (Lavoie et al. 2003). 

Sphagnum sp. the most abundant and important component of ombrogenous 
bog vegetation (Lindsay 1995) provides the means for active peat formation and 
Eriophorum vaginatum stabilizes the peat surface (Campbell et al. 2002) and 
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increases relative humidity levels near the peat surface that may improve 

conditions for moss establishment (Lavoie et al. 2003; Lavoie et al. 2005). 

Several studies indicate that it is possible to re-establish Sphagnum vegetation 
cover on post-extracted Sphagnum bogs (Rochefort et at. 1995; Campeau and 
Rochefort 1996; Rochefort et at. 2003). Experiments to investigate Sphagnum 

growth in natural peatland compared with experimentally-restored cut over 

peatland indicate that growth and capitula density is greater in the restored 

peatland, probably due to lack of competition (Waddington et at. 2003). There is 

also evidence to suggest that under optimal water level conditions Sphagnum 

production can revert a restored peatland to a net carbon sink (Tuittila et at. 

1999) indicating that active peat production is occurring. 

Eriophorum vaginatum or cotton grass has many characteristics that facilitate its 

establishment and survival in nutrient poor environments. These include the 

ability to produce numberous seeds, as many as 24 million seeds per hectare, 

(Lavoie et al. 2005) that are dispersed efficiently by wind (Salonen 1987; 

Campbell et al. 2003); a deep root system that allows the plant to tolerate 

prolonged periods of drought (Wein 1973); a constant plant root/leaf biomass 

ratio (Kummerow et al. 1988) with long-lived tussocks (Mark et al. 1985) where 

nutrients are translocated from dying leaves to support new leaves (Jonasson 

and Chapin 1985; Cholewa and Griffith 2004). Lastly the plant can absorb and 

utilise organic nitrogen directly from the soil (Chapin et al. 1993). 

When the water table is less than 40cm below the soil surface massive cotton 

grass growth and expansion has been recorded (Komulainen et al. 1998; 

Komulainen et at. 1999; Tuittila et al. 1999; Tuittila et at. 2000b; Price et at. 2003; 

Lavoie et al. 2005). In fact, there is clear link between cotton grass cover and 

water table (Lavoie et al. 2005). A number of researchers have suggested that 

cotton grass can facilitate the colonization and establishment of other bog plants 

on exposed peat, particularly Sphagnum species (Grosvernier et al. 1995; Tuittila 
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et al. 2000a; Lavoie et al. 2003) and paleoecological studies also support this 

(Buttler et al. 1996; Hughes and Dumayne-Peaty 2002). However, Lavoie (2005) 

found no evidence for this facilitation hypothesis and suggest that the 

establishment of mosses and liverworts were associated more with particular 
hydrological characteristics than with the presence of a dense cotton grass 

cover. It is certain that cotton grass contributes to stabilising the peat surface 
(Campbell et al. 2002) and increasing relative humidity levels near the peat 

surface (Lavoie et al. 2003) and this may improve establishment conditions for 

moss (Lavoie et al. 2005). However, cotton grass tussocks can intercept 

between 30-80% of precipitation and lose significant amounts of water through 

transpiration which may negate the benefits provided by cotton grass for moss 

establishment (Lavoie et al. 2005). It may improve establishment conditions for 

other species which prefer drier conditions, such as Calluna vulgaris. 

Fertilisation increases growth of Eriophorum vaginatum (Heikkila and Lindholm 

1995). In fertilisation experiments NPK (25: 25: 30.6g M, 2) fertilisation on Alaskan 

tundra more than doubled the total biomass per unit area of tussock (Shaver et 

al. 1986). The increase was due mainly to higher tiller density, although tiller size 

also increased. N was found to be the most strongly limiting element (Shaver et 

al. 1986). In a laboratory experiment researchers found that applications of 3 or 
60kg N ha' yr' increased tiller production in Eriophorum vaginatum but did not 
affect shoot elongation or flowering (Leith et al. 1999). These application levels 

were used as the authors estimate that most upland sites will receive in excess 

of 10kg N hä' yr' and approximately 5% of upland sites will receive up to 30 kg 

N hä' yr' (Leith et al. 1999). 

1.4.2 Restoration of drained bogs 

When damaged bogs have retained their acrotelm and catoteim, and mire 
species are found either on the site or nearby, then restoration can rely on 
natural regeneration of mire vegetation (Komulainen et al. 1999). Rewetting of 
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an ombrogenous bog in Finland had a clear effect on vegetation with the cover of 
Sphagnum species increasing and the cover of Cladonia and Calluna vulgaris 
decreasing. The water table rose by an average of 20cm so hollows were 

considerably wetter than before and this caused the Callum vulgaris to die off 
(Komulainen et al. 1999). The rates of C02 efflux from the soil surface also 
decreased after rewetting (Komulainen et al. 1999). 

A number of the drained border mires in Kleider Forest, Northumberland have 

been dammed with various types of dams including peat dams, plywood dams 

and large elmboard dams on larger drains or gullies. Subsequent changes in 

plant species composition have revealed rapid changes on some of the mires 
(Smith et al. 1995) with the restoration of ombrogenous vegetation. 

1.4.3 Restoration of forested bogs 

There are a number of documented bog restoration projects involving tree 

clearance from raised bogs (Anderson 2001). The best examples are the 

Langlands Moss rehabilitation project in South Lanarkshire (Brooks and 
Stoneman 1997) and the Border Mires Project (Burlton pers comm. ) where a 

number of raised mires have been or are in the process of being restored (Smith 

and Charman 1988; Smith et al. 1995). The Langlands Moss rehabilitation 

project, following tree clearance and drain blocking, reports an increase in 

Sphagnum cover. There is no published information relating to vegetation 
development on the Border Mires. Results from Scandinavia have been mixed 

although sites where the water table was successfully increased report 

vegetation changes in keeping with the restoration of bog vegetation (Anderson 

2001). On a damaged ombrogenous mire in Finland, where trees were removed 

and drains dammed, the vegetation changes indicate a shift towards a functional 

mire ecosystem (Jauhiainen et al. 2002). 
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The only documented restoration attempt of afforested blanket bog in Britain is 

the EU Life Peatlands Project in Caithness and Sutherland (Wilkie et al. 1997; 
Anonymous 2005). A partnership of the Royal Society for the Protection of Birds, 

Scottish Natural Heritage and Caithness and Sutherland Enterprise received 
funding for the project in 1994. Since then the project has cleared over 2000 

hectares of conifer forest from blanket bog (Wilkie pers. comm. ). For the most 

part trees have been cut, either by chainsaw or using an excavator mounted 

shears and dropped into the plough furrows. During 2004 10 hectares of forest 

were cleared using a forest mulcher, a tracked machine with a large flail at the 
front, operating at ground level. This technique was effective in clearing the trees 

but completely obliterated all ground vegetation which may delay vegetation 

restoration and could facilitate erosion (Wilkie pers. comm. ). 

Although tree clearance has been extensive in the EU Life Peatlands project only 

a small area is being scientifically monitored to determine the effect of the work 

on blanket bog restoration and vegetation development (Cowie pers. comm. ). A 

vegetation monitoring programme has been set up on one restoration area, the 
Talaheel plantation on the RSPB Forsinard Researve (Maier 2004). The 

Talaheel plantation was planted with a mixture of Sitka spruce and Lodgepole 

pine between 1983 and 1985 (Maier 2004). Tree growth was poor and canopy 

cover remained open even after 15 years of growth with elements of bog 

vegetation still present within the conifer blocks. Most of the site is covered by 

blanket peat with a depth of at least 1 metre. The site was cleared of trees early 
in 1998 and the cut trees were placed into the forestry plough furrows in an 
attempt to impede drainage. A few very deep or eroded drainage channels were 
dammed using plastic or wooden dams. 

The vegetation monitoring programme involved a baseline survey which was 
done in winter 1997, prior to tree clearance, with a follow up survey done during 
the winter of 2003/2004,6 years later (Maier 2004). In 1997, species indicative 

of blanket bog were only present at low cover values and Calluna vulgaris was 
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the most abundant species in all compartments. By 2003, many blanket bog 

species had increased substantially, notably Eriophorum vaginatum, Eriophonam 

angustifolium and Sphagnum capillifolium. Pleurocarpous mosses, commonly 
found on blanket bog, such as Hylocomium splendens and Pleurozium schreberi 
had also increased and the vegetation cover for the whole of the site was much 

more continuous with little bare ground (Maier 2004). Vegetation community 

change was not investigated as part of the follow up work and species or 

community change was not considered in relation to environmental variables 
including slope, soil type, peat depth and soil moisture (Maier 2004). 

Despite these documented cases of bog restoration following forest clearance 
evidence of successful restoration is limited and little has been published on the 

results of attempts to restore blanket bog vegetation (Anderson 2001). There are 

some signs that forested bogs can be restored but there has been, as yet, no 

clear demonstration of success (Anderson 2001). 

A large scale habitat management plan to restore over 280 hectares of blanket 

bog in Central Kintyre was agreed in 1999 (ScottishPower 1998; ScottishPower 

2000). The main aim of the plan was to restore blanket bog vegetation to an 

area of immature Sitka spruce forest through removal of the trees and in so doing 

create habitat suitable for red grouse and ultimately golden eagle foraging 

(ScottishPower 2000). This project provided an opportunity to investigate the 

restoration potential of forested blanket bog on the west coast of Scotland. This 

is of particular interest to Scottish Power and other wind farm development 

companies as a large number of proposed on-shore wind farm sites are likely to 

be built on forested blanket bog (Mortimer pers. comm. ). These sites are usually 

very windy, they have limited conservation potential as they are under forest but 

at the same time offer clear opportunities to improve the conservation value of 
the site (Mortimer pers. comm. ) by restoring an internationally important habitat 

(Anonymous 1995). 
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1.5 Thesis aims and objectives 
The main aim of this thesis is to investigate the development of blanket bog 

vegetation, as potential habitat for red grouse, following the clearance of 
immature Sitka spruce plantation from blanket bog peatland in Central Kintyre. 

This aim will be addressed by the following objectives that relate to the four 

experimental chapters within the thesis. 

1. To investigate plant community development in relation to forest clearance 

method and the environment. 

Taking the most cost effective forest clearance method, 'in situ' chipping with an 

excavator mounted flail... 

2. Assess the impact of forest age/tree size on vegetation development. 

3. Assess how differences in blanket peat micro-site influence germination and 

growth of Calluna vulgaris. 

4. Investigate the development of vegetation structure in relation to red grouse 

habitat preferences. 
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CHAPTER 2 

PROJECT AND SITE DESCRIPTION 
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2.1 The Central Kintyre Habitat Management Project 
The work described in this thesis was completed as part of an ongoing project to 

create new foraging areas for a pair of golden eagles in Central Kintyre. The 

project was initiated to mitigate the negative effects of a 30MW wind farm that 

was installed within the golden eagle territory (ScottishPower 2000). The likely 

negative effects of the wind farm were thought to be disturbance, displacement 

and collision so the mitigation proposals aimed to replace foraging areas one and 

a half times larger than the ground lost within the windfarm. 

The land lost to the windfarm comprised approximately 260 hectares of blanket 

bog vegetation that was dominated by heather and rough grass. The main aim 

of the habitat creation project was to recreate this type of vegetation on an 
immature forest site. It is widely agreed that one of the main causes of decline in 

golden eagle populations on the West coast of Scotland is afforestation 
(ScottishPower 1998). In Kintyre the forest area increased twelve fold between 

1980 and 2000 and the eagle population declined from 8 to 3 pairs 
(ScottishPower 1998). As a result, clearance of immature forestry was 

considered by Scottish Natural Heritage, the Royal Society for the Protection of 
Birds and Argyll and Bute Council to be the best approach to help mitigate the 

effects of the new wind farm. This is a management option for a large number of 

other sites where conservation objectives are now considered to be more 
important than timber production. For example in Caithness and Sutherland 

where extensive areas of blanket bog were planted during the 1980's 

(Anonymous 2005). 

Over 280 hectares of immature Picea sitchensis (Sitka spruce) forest, located on 
deep peat blanket bog, were cleared during the first two years of the project 
(1999-2001) and this opened up 450 hectares of new foraging ground for the 

eagles. The cleared area had been planted during the 1980's following ground 

preparation that involved general drainage of the site as well as ploughing using 
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a double mouldboard plough to create a series of plough furrows that were 50cm 

deep, at approximately 3m intervals across the site. Two rows of trees were 

planted on the ridge between each plough furrow. Some areas were ploughed 

but left unplanted so there were islands of partly-drained, semi-natural vegetation 

within the forest. These areas amounted to 170 hectares in total but were mainly 

small patches surrounded by forest and consequently unavailable to the eagles 
(Madders pers. comm. ). 

Several different methods of tree removal and land management can be used in 

forest clearance projects to restore blanket or raised bog. These include whole- 
tree chipping, chainsawing, and mechanical tree removal (see section 2.2.2). 

Such schemes have sometimes included drain blocking measures (Wilkie 2005 

pers. comm. Burlton 1993 pers. comm. ). Drain blocking is done to increase 

water levels and hence encourage peat forming species, such as Sphagnum sp. 
to colonise the site and restore the bog to an active state. Drain blocking was not 

considered necessary in this situation for a number of reasons: 
a) almost all the drains had been rendered inactive by vegetation growth 
b) chipping of the trees using an excavator mounted flail allowed the chip to be 

directed into the plough furrows which further prevented any surface run off of 

water 
c) the average annual rainfall on the hill ground in Kintyre is over 2000mm, and 

since it is well distributed throughout the year, peat drying is unlikely. 
d) tree removal from blanket bog is known to reduce evapotranspiration 

significantly, which would further contribute to raising the water table on the 

cleared blanket bog (Anderson et al. 1995). 

2.2 Site Description 
The project area is located in Central Kintyre between Carradale on the East side 

of the peninsula and Glenbarr on the West side of the peninsula (Grid Reference 
for centre of area - NR 175 639). A map of this area is shown at Appendix 1. 

The forest clearance area extends to 450 hectares including 280 hectares of 
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cleared forest and 170 hectares of unplanted open ground. The altitude ranges 
from 150-362m although the majority of the site is around 300m. Peat depth 

varies enormously but a large proportion of the area has depths well over 2m. 

There are numerous rock outcrops on the site where peat depth is as little as 2- 

3cm. The considerable variation in peat depth is reflected by the vegetation on 
site which includes mire National Vegetation Classification (NVC) communities 

such as M15 (Scirpus cespitosus-Ericetum tetralix wet heath), M17 (Scirpus 

cespitosus-Eriophorum vaginatum blanket mire), M18 (Erica tetralix-Sphagnum 

papillosum raised and blanket mire), M19 (Calluna vulgaris-Eriophorum 

vaginatum blanket mire) but also some dry heath and acid grassland 

communities including H10 (Calluna vulgaris-Erica cinerea heath), H12 (Calluna 

vulgads-Vaccinium myrtillus heath), H 18 (Vaccinium myrtillus-Deschampsia 
flexuosa heath), H21 (Calluna vulgaris-Vaccinium myrtillus-Sphagnum 

capillifolium heath) (Rodwell et al. 1991; Rodwell et al. 1992). Much of the 

ground is highly acidic with pH ranging from 2.7 to 4.2. There are a few nutrient- 

rich flushes on the site where pH may be a little higher but they do not have 

sufficiently high pH to be classified as base-rich. 

The climate in Central Kintyre is strongly oceanic with higher than average wind 

speeds and precipitation. The long term average rainfall for the area is 

approximately 1250mm per annum although the annual average for the 5 year 

period 2000-2004, on the hill ground is considerably higher than this at over 2000 

mm/annum (results from on-site weather station). There is good distribution of 

precipitation throughout the year, with reasonably high summer rainfall. Although 

winter temperatures are generally higher than average, with very little snow or 
frost, summer temperatures are often relatively cool which limits growth, 

evapotranspiration and decay (Lindsay et al. 1988). 
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2.2.1 Management 

Domestic livestock are excluded from the forest clearance area although there is 

limited grazing by the wild deer population which is controlled by Forestry 

Commission Scotland. Since the grazing pressure was and still is very low the 

patches of vegetation on open ground that existed within the forest plantation are 
in relatively good condition with some areas of active blanket bog where peat 
formation is occurring. Blanket bog vegetation on drier areas is dominated by 

C. vulgaris but heather burning is not practised due to the close vicinity of 
forested ground. In many locations the C. vulgaris is layering well so burning is 

not necessary anyway. 

2.2.2 Forest Clearance 

Yield class of the forest varied considerably over the whole site but it was 

generally very poor and tree growth was often patchy. Tree height varied 
between 2 and 8m with trunk diameter at breast height varying between 5 and 
20 cm. Because of the poor yield class and inaccessibility of the site the cost of 

extracting timber to clear the forest would have been prohibitive. Instead the site 

was cleared using three methods. 
1. Chipping 'in situ' using an excavator-mounted flail. 
2. Felling to waste using a chainsaw where the branches were removed and 

the trunk cut up into several pieces. 
3. Whole tree harvesting where the tree was removed at ground level and 

used in its entirety to create a corduroy road for improved excavator 

access around the site. As a result no part of the tree was left on the area 

where it was harvested from. 

Photographs of the three different tree clearance techniques and the type of 
material left on site following clearance are shown below in Figure 2.1. Table 2.1 

highlights the differences between the three different clearance techniques. 
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Figure 2.1: Photographs of the three tree clearance methods, along with the state of the ground 
following tree clearance. 

ý; ý; 
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In situ' chipping with an excavator mounted flail 



Manual felling and branch removal using a chainsaw 
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Whole tree removal using a conventional harvester (for corduroy brash track construction as 

shown below) 
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Table 2.1: Comparison of the Three Different Tree Clearance Techniques 
Clearance Size and Ground % of Type of ground 
method description of disturbance clearance 

material left on area 
site 

Excavator- Wood chips from 1 Considerable as 80% Variety of slopes, 
mounted flail cm2 to chunks excavator tracks peat depths and 

between 10-40cm frequently cut into wetness. (very 
long. Small pieces peat and caused steep or boggy 
of branch & leaf some compaction areas avoided as 
(10-20 cm) excavator access 

poor) 
Chainsaw to All branches No disturbance or 15% Mainly steep slopes 
waste removed and the compaction as all and very boggy 

tree trunk cut into done manually ground although 
1-1.5 m lengths some flatter areas 

that were 
inaccessible to 
excavators 

Whole tree Whole trees No disturbance 5% Variety of slopes, 
harvesting removed for where tree removed peat depths and 

building tracks so as machinery on wetness. 
no material left on track adjacent to 
site cleared area. 

2.3 Materials & Methods 
Data collected from a series of permanent monitoring quadrats form the basis of 
the work presented in Chapters 3,5 & 6. Methods relating to quadrat sampling 
design and set up are provided here with further methods relating to specific data 

collection detailed in the relevant chapters. Species nomenclature used is 

according to Jermy et al (1982) for sedge species, Smith (1978; 1990) for 

mosses and liverworts, Hubbard (1954) for grasses and Rose (1981) for other 

vascular plants. 

QUADRAT SAMPLING DESIGN 

Eighty 10x10 m permanent monitoring quadrats were established during July and 
August 2001 on the tree clearance area. The quadrats were arranged using a 

stratified-random design, to ensure good geographical distribution over the 

treatment area and to include three different tree clearance methods (flail, 

chainsaw and harvested) and two different controls (existing blanket bog 

vegetation or'target' vegetation and uncleared 15 year old Sitka spruce). The 
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number of quadrats on each tree clearance method or control is shown in Table 
2.2. 
Table 2.2 Number of quadrats on each tree clearance method or control 
Tree clearance method or control No. Quadrats 

established 
Flail 46 

Chainsaw 10 

Harvested 4 

Existing blanket bog vegetation (target vegetation) 10 
Uncleared 15 year old Sitka spruce 10 

Three quadrats were lost during the monitoring period, one each from the three 
tree clearance methods. All three were lost due to excessive growth of 

vegetation so that the markers could not be re-located. They were, however, 

located in very fertile areas and as the vegetation developed it became apparent 
that they were not representative of the rest of the site. 

The tree clearance programme extended over a period of 20 months from 

October 1999 until June 2001. All the monitoring quadrats were established 
during the summer of 2001 so that the time since tree clearance varied for each 

quadrat. In order to determine a 'time since tree clearance' for each quadrat 
three tree clearance years were defined and this was done according to the 

season in which the clearance work was completed (Table 2.3) 

Table 2.3: Tree clearance periods 
Tree Clearance Year Period of Tree Clearance 

7 1999 1 Oct. 979 - 30 April 00 

2000 1 May 00 - 30 September 00 

2001 1 March 01 - 31 May 01 

The first vegetation assessments were done in 2001 when the quadrats were 

established and these were repeated annually for four years. The combination of 
three different tree clearance years and four sampling years creates a 
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chronological sequence of data that spans six years since tree clearance (year 0 

- year 5). Table 2.4 below shows how this chronological sequence is comprised 

and Table 2.5 shows the number of quadrats in each year since clearing 

category. 

Table 2.4: Chronological sequence of year since tree clearance of monitoring quadrats 
Clearance Yr Years Since Tree Clearance 

2001 

Sampling Year 

2002 2003 2004 
1999 2 3 4 5 

2000 1 2 3 4 

2001 0 1 2 3 

Table 2.5: Number of quadrats in each year since tree clearance category 
Yr. Since Clearance No. of Quadrats 

Flail Chainsaw Harvester 

0 8 3 1 

1 21 7 2 

2 45 9 3 

3 45 9 3 
4 37 6 2 

5 24 2 1 

QUADRAT SET UP 

The tree clearance area was divided into 5 geographic units (see Appendix 2). 

Initially these units were used to prioritise felling but they were also used to 

stratify the tree clearance area to ensure good distribution of quadrats. Between 

10 and 25 grid references, depending on the size of the unit, were generated at 

random. Each grid reference was located using a hand held GPS and this point 

was marked with a wooden stake (5 x5x 75 cm). Treatment quadrats were 

rejected if they had greater than 50% cover of existing vegetation. For control 

quadrats 100% existing vegetation was required. 
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The 10x1 Om quadrat was established with the SW comer 1m due north of the 

wooden stake, as shown in Figure 2.2. A sighting compass and tape measure 

were used to achieve this and an exact square was marked out by measuring the 

hypotenuse and creating two contiguous right angled triangles. Once the square 

had been marked the NE corner was also marked with a stake to facilitate re- 

location of the quadrat in subsequent years. 

Figure 2.2. Quadrat layout and method of permanent marking (not to scale) showing main 10 x 
10 m monitoring quadrat, containing five 1x1m mini-quadrats. 
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1-1 

p Marker 

Marker 

Five 1 x1 m 'mini-quadrats' were established within the main 10x10m quadrat. 

These were located in each comer and in the centre, as shown in Figure 2.2 

above. The central mini quadrat was located by dividing the main quadrat into 

quarters using canes and string so the centre of the quadrat could be pinpointed. 
When the quadrats were established the following environmental data were 

recorded at each 10x10 main quadrat: tree clearance method and estimated 

clearance date, peat depth (to the nearest cm, mean of five depth readings 1), 

slope (from the highest to the lowest point of the quadrat), number and diameter 

of tree stumps and pH (mean of 5 readings). 

The depth and pH measurements were taken in each of the five mini-quadrats. 
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CHAPTER 3 

PLANT COMMUNITY DEVELOPMENT OVER SIX YEARS 

FOLLOWING DEFORESTATION OF FORMER BLANKET 

BOG HABITAT 

Al A910 
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3.1 Introduction 
Clearance of immature conifer forest from blanket bog is a necessity if the UK is 

to meet its Biodiversity Action Plan target to restore 845,000 hectares of 
degraded blanket bog by 2015 (Anonymous 1995). During the 1980's Forestry 

Commission grants and government tax incentives encouraged planting of 

conifer forest on marginal land (Lindsay 1995) and by 1993 190,000 hectares of 

plantation forest had been planted on blanket bog (Pyatt 1993). The age range 

of these plantations is not available but it seems likely that a significant 

proportion of the area will not reach economic maturity until at least 2020-2030, if 

at all. If this is the case then there is a considerable area of immature conifer 
forest that could be cleared during the next 8 years to start the process of 

restoring blanket bog habitat and contribute to the BAP restoration target. 

Blanket or raised bog restoration that involves the removal of plantation forestry 

has been done in a few places in the UK (Bunton 1993; Brooks and Stoneman 

1997; Wilkie et al. 1997). In all of these cases it was deemed necessary to 

remove the trees prematurely before it was economically viable to do so. As a 

result there was a net cost which varied from £250 to £9,000/ha depending on 
timber volume and value, accessibility and how much material could be left on 

site. Costs can certainly be reduced by delaying restoration until the trees are 

more valuable but it is generally thought that this will reduce the chances of 

achieving successful blanket bog restoration (Anderson 2001). The cheapest 

method of clearing trees is felling to waste using a chainsaw which may involve 

dropping the tree and leaving it intact or removing the branches and cutting up 
the trunk into small pieces. Either way the method still leaves whole trees or 

portions of trees on site that can obscure the ground for many years. The most 

expensive method of clearing trees is cutting with a chainsaw and removing the 

whole tree with a helicopter or skyline winch. Trees can be cut and extracted 

more cheaply using conventional forest harvesting machinery although the costs 
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are still relatively high, especially if the timber that is being extracted has little or 

no value. 

Scientific monitoring data relating to vegetation development post forest removal 
is virtually non existent and those data that do exist have not been published 
(Wilkie pers comm., Burlton pers comm. ). As a result there is a need to 

investigate the impact of different tree removal methods on re-vegetation of 
blanket bog and to determine likely timescales for achieving blanket bog 

restoration. Other factors that will influence the speed of recovery are the forest 

plantation species, age and yield class although Sitka spruce is the most widely 

planted species on blanket bog (Anderson 2001). It is the main commercial 
timber species in the UK (Taylor 1991) and since the species has some tolerance 

to waterlogged soil conditions it is the most commonly planted species on blanket 

bog (Anderson 2001). 

The tree clearance project in Kintyre involved the removal of 280 hectares of 18- 

20 year old Sitka spruce forest (yield class 6-14) from former blanket bog habitat, 

using three different methods of tree clearance: whole tree removal with a 

conventional tree harvester, in situ chipping with an excavator mounted flail and 

cutting by hand using a chainsaw. A detailed monitoring programme was set up 
to investigate the development of blanket bog vegetation following tree 

clearance. The investigation was targeted primarily at the in situ chipping 

removal technique as this method was the most cost and time effective method. 
It was also used to clear the majority of the trees on the tree clearance area 
(80% of area). The other two removal techniques were included in the study to 

provide some comparisons to the results of in situ chipping although sample 

sizes were considerably lower for these techniques. The impact of various 

environmental variables, including slope, pH and peat depth, on vegetation 
development were also investigated to determine where blanket bog restoration 
is likely to be most successful. 
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3.2 Materials and Methods 
DATA COLLECTION 

Sampling design and quadrat set up is described in detail in Section 2.3.1. The 

77 monitoring quadrats were assessed annually from 2001 - 2004. Each year 
the quadrat was marked out using the same method, as described in Section 

2.3.1. 

A visual estimate of percent cover was recorded for all plant species, rock, bare 

peat, water and tree remains (chip or brash). All vascular plants and bryophytes 

were identified to species level. In order to make percent cover estimates as 
accurate as possible each 1 Ox1 Om quadrat was divided into four 5x5m quarters 
using canes and string. Each quarter was searched carefully and a species list 

recorded. 10 minutes (2.5 mins/quarter) was allocated to searching the quadrat 
for different plant species and becoming familiar with the plant community. After 

the 10 minute familiarisation period a percent cover estimate was made for each 

species recorded in the species list. 

Percent cover estimates for all plant species, rock, bare peat, water and tree 

remains were also recorded for each of the five mini quadrats (1 m2 quadrats). 
This was done with the aid of a1 x1 m grid divided into one hundred 1 Ox1 Ocm 

cells. 

DATA ANALYSIS 

A series of multivariate analysis techniques were used to investigate the 

monitoring quadrat data. These included Detrended Correspondence Analysis 

(DCA), Canonical Correspondence Analysis (CCA), and Redundancy Analysis 

(RDA) using CANOCO version 4.5 (Braak and Smilauer 1998). 
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DCA (Hill 1979) was used to investigate the development of vegetation over a six 

year period since tree clearance. Data from the monitoring quadrats were 

analysed in conjunction with computer generated random 'pseudo quadrats' 
(Rushton et at. 1996; Critchley et at. 2002a; Critchley et at. 2002b; Smith et at. 
2002) of the 4 main National Vegetation Classification (NVC) communities found 

on the tree clearance site. The appropriate NVC communities on which to apply 

the pseudo quadrat technique were determined by running the existing blanket 

bog ('target) vegetation control quadrat data (all years) through MATCH (Malloch 

1990). DCA was used instead of Principal Components Analysis (PCA) because 

the gradients of axis 1 and 2 were greater than 3.5 (Leps and Smilauer 2003). 

The DCA analyses were done using data from the main 10x10m quadrats and 

repeated with the mini quadrat data in order to investigate the effects of sampling 

scale. All treatment and control monitoring quadrats and the pseudo NVC 

community quadrats were included as active samples within the analysis. 

The DCA analysis described above includes vegetation samples that were 

collected over four years (2001-2004) but represent 6 years since tree clearance 
(see section 2.3.1 for more details). Each group of `year since tree clearance' 

samples contains samples collected in up to three different years. The variation 
between sample year but within `year since tree clearance' was explored using 
RDA. To do this each `year since tree clearance' group was analysed with 

sample year as a nominal variable. Significance of the first canonical axis was 
tested using a Monte Carlo permutation test (999 permutations) to determine any 

significant variation between sample years. This was only done for quadrats 

where tree clearance occurred and was not possible for control quadrats or NVC 

pseudo quadrats. 

RDA was used to investigate the influence of a series of measured 

environmental variables on the vegetation development. The environmental 

variables include slope, peat depth, pH and estimated fresh weight of chip (for 

flailed quadrats only). In addition, year since tree clearance was included as a 
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continuous variable. Loess smoothing models (Hastie and Tibshirani 1990) were 
used to create species response curves for each individual environmental 

variable and the Shannon Diversity index was used to calculate species diversity 

for each quadrat in each year. 

RDA was selected for this constrained analysis, rather than CCA, because an 
initial DCA analysis had relatively short gradient lengths, all less than 3. This 

analysis was done using the main I Ox10m quadrat data only and a separate 

analysis was done for the flailed and chainsawed quadrats. As there were only 3 

harvested quadrats there was insufficient data to complete this analysis 

separately. The mini quadrat data were not used for this analysis as the 

environmental variables were measured at the main quadrat level. 

3.3 Results 

3.3.1 DCA analysis of main and mini quadrat data 

NVC COMMUNITIES 

The four main NVC communities that were used to generate the pseudo NVC 

quadrats are detailed below: 

M15 Scirpus cespitosus - Erica tetralix wet heath 

M19 Calluna vulgaris - Eriophorum vaginatum blanket mire 
H18 Vaccinium myrtillus - Deschampsia flexuosa heath 

H21 Calluna vulgaris - Vaccinium myrtillus - Sphagnum capillifolium heath 

MAIN QUADRATS 

In the DCA analysis of all main quadrats and the pseudo NVC quadrats 20.4% of 
variation was explained by the first 4 axes. Most of this variation was explained 
by axis I and 2 at 8.3% and 6.3% respectively. Sample results from the first two 

axes (Figs 3.1 a-d), show a clear movement of the post tree clearance vegetation 
towards the pseudo NVC communities and the 'target' vegetation on site. Axis 1 

appears to represent a gradient of species diversity with high scores for low 
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diversity and Axis 2 shows a dry to wet gradient with wetness increasing with the 

axis score. Axis 3 and 4 provided little additional information about the post tree 

clearance vegetation development so it has not been included here. In order to 

aid interpretation of the DCA ordination diagram in Figures 3.1a-d not all the 

samples, included in the analysis, are shown on the diagram. All the pseudo 
NVC community samples are shown so that the distribution and relationship to 

the 'target' vegetation on site can be seen clearly. Only year one samples for the 
'target' vegetation and Sitka control samples are shown because there was no 

change over the four assessment years (Table 3.1). For the tree clearance 

samples the mean DCA scores for each tree clearance method in each year 

since tree clearance are shown together (a) and in separate diagrams (b-d) with 

standard error bars to indicate variation. 

Table 3.1: p-values from ANOVA to compare DCA scores in four different sample years. 
Control quadrats p-values from ANOVA on sample year 

DCA Axis 1 DCA Axis 2 

Target vegetation 0.953 0.986 

Sitka 0.933 0.967 

It is clear that there are substantial changes over time since tree clearance for all 
tree clearance methods. The post tree clearance vegetation is certainly 
developing into plant communities that already exist on site although there 

appears to be little difference between tree clearance methods. The `target' 

vegetation control quadrats that represent existing blanket bog vegetation on 

site are mostly similar to the M19 NVC community (Rodwell et al. 1991), although 

one quadrat is clearly more like the H18 community. The Sitka control samples 
that represent vegetation in immature Sitka spruce forest are spread out along 
Axis 1. This is because these quadrats were located in forest of differing 

densities from complete canopy cover, with only dead spruce needles for ground 

cover ('litter') to sparse tree cover where a fully developed blanket bog 

community exists underneath the trees. 
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Figure 3.1a Main quadrat DCA Ordination Diagram, Axis 1&2. All pseudo NVC community 

samples shown, year 1 heather and Sitka control samples and the mean sample score for each 

tree clearance treatment in each year since tree clearance. 

b) 

4- --- ---- -- - 

Q 3.5 QQ 

49 

13 
13 dtiý (3 

& 
C3 

3Q 

2.5 
0 

000 00 
00 

o%o o  Yr5 Yr4 Yr3 Yr2 Yrt Yr0 
N20ö01o"e 

H33, r- 
"- 

Flailed Quadrats 

n4ý en 
cm 

öo%i 
00 

C 
III A" f" 

1.5 
a& A4A AA e ao 

0 
a& 

An 0"" 

  

0 
0.5 o 

ö0Q 

0 

0 0.5 1 1.5 2 2.5 3 3.5 4 

O H18 

H21 

0M15 

*M19 

  Target Yrl 

" Sitka Yrl 

Q Flail 

4.5 



C) 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 

00 

me O 
to 

O 
0 

  
%0 

S"" 

o0 0T ' 
vr5 

YO 
Yr3YMý cn. in. ýww cu. aM. 

e 
4Aý o `"bo 

TI 

Yr2. Aý 

LAA 
and 

ft 
£" 

0 
o0o 

o 
0 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Ax i 

o H16 

e H21 

0M15 

. M19 

" Target Yr1 

*Sift VA 

O Chdroaw 

d) 

4 

3.5 

3 

2.6 

2 

1.5 

I 

0.5 

0 

oýoa 
00 

13 
o mý O 

O 
0 

  
O 

" 

: ýo "oýo 
o Yr S. rr o 

oa _d 
Qo ""x r-jH x Hovestsd Ou"drot4 

A 
em 

: 

000 

e 1-i+Fýi " 
"" 

0 
oýo o 

a o. a + 1. a s 2.5 3 35 4 4.5 

Axt 

Figure 3.1b-d Main quadrat DCA Ordination Diagram, Axis 1&2, for each tree clearance method 
b) Flailed c) Chainsawed d) Harvested. All pseudo NVC community samples shown, year 1 
heather and Sitka control samples and the mean sample score (+- SE bars) for the tree clearance 
method in each year since tree clearance. 

50 

O HIS 

" H21 

cM15 

. M19 

a Target Yrl 

" Situ Yrl 

XHarvartad 



Figure 3.2 shows the species results for the first two axis of the main quadrat 
DCA analysis. Litter, tree remains and several colonising species including 

Chamaenerion angustifolium, Cirsium palustre and Dicranella cerviculata and D. 

heteromalla dominate the far right hand side of the diagram with the high axis 1 

scores. On the sample ordination (Fig 3.1a-d) high axis 1 scores represent the 

tree cleared quadrats zero years since clearing where litter, tree remains and 

quick growing colonisers were dominant. It is clear that both wet and dry mire 

species are influencing the shift of quadrats through ordination space towards the 

lower axis 1 scores with axis 2 accounting for the split between wetter mire 

species (Sphagnum sp. Erica tetralix and Eriophorum angustifolium) and 

communities (i. e. M15 and M19) and the drier heath species (Vaccinium 

myrtillus, Galium saxatile and Rhytidiadelphus squarrosus) and communities (i. e. 
H18 and H21). Species including Eriophorum vaginatum, Molinia caerulea, 
Potentilla erecta, and Carex echinata were very quick to colonise during the early 

years following tree clearance and were reasonably ubiquitous across the site. 
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Figure 3.2 Main quadrat DCA Species Ordination Diagram for Axis I&2 showing key species. 
Dros rotu = Drosera rotundifolia; Spha papi = Sphagnum papilbsum; Spha palu = Sphagnum palustre; Spha 
subn = Sphagnum subnitens; Eric tetr = Erica tetralix; Eric cine = Erica cineria; Spha capi = Sphagnum 
capillifolium; Call vulg = Calluna vulgaris; Erio angu = Eriophorum angustifolium; Junc squa = Juncus 
squarrosus; Moli caer = Molinia caerulea; Pote erec = Potentilla erecta; Spha mage = Sphagnum 
magellanicum; Care echi = Carex echinata; Junc arti = Juncus articulatus; Junc bulb = Juncus bulbosus; Epil 
angu = Chamaenerion angustifolium; Dicr hete = Dicranella heteromalla; Tree rems = Tree remains; Hoic 
lana = Holcus lanatus; Poly comm. = Polytrichum commune; Dicr cerv = Dicranella cerviculata; Junc acut = 
Juncus acutiflorus; Cirs palu = Cirsium palustre; Litt sp. = Litter, Poly Juni = Polytrichum juniperinum; Eno 
vagi = Eriophorum vaginatum; Rhyt lore = Rhytidiadelphus loreus; Desc flex = Deschampsia flexuosa; Gali 
saxa = Galium saxatile; Anth odor = Anthoxanthum odoratum; Vacc myrt = Vaccinium myrtillus; Rhyt squa = 
Rhytidiadelphus squarrosus; Hylo sple = Hybcomnium splendens; Desc cesp = Deschampsia cespitosa; 
Fest ovin = Festuca ovina 

MINI QUADRATS 

A DCA ordination was also performed on the mini-quadrat data using exactly the 

same options as the analysis of the main quadrat data and including the pseudo 
NVC community quadrats. 13.4% of variation was explained by the first 4 axes 

with 4.7 and 3.2 percent explained by axis 1&2 respectively. These results 

suggest greater variability in the mini quadrat vegetation data compared with the 

main quadrat data and there were a number of outliers that probably reduced the 

proportion of variability explained by each of the axis. The general pattern of 
movement towards the pseudo NVC communities and the 'target' vegetation, 

which is clear in the main quadrat analysis, is more obvious for the mini quadrats. 
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Diagrams 3.3 and 3.4 demonstrate this differential clearly where a proportion of 
the mini quadrat samples have reached the far left of the ordination diagram 

amongst the pseudo NVC and established heather samples. This indicates that 

patches of vegetation at a 1x1 m scale have developed into a plant community 

similar to nearby mature blanket bog vegetation within 6 years. However, at the 

10x10m scale the vegetation is still not fully mature. Similarly there is 

considerably more variation along Axis 2 of the mini quadrat ordination diagram 

compared with the main quadrat ordination. If this is viewed in conjunction with 
the species ordination diagrams (3.2 and 3.6) it would suggest that there is a 

wider range of vegetation along the wet/dry gradient represented by the mini 

quadrats, with Juncus bulbosus and Juncus effusus having a big influence on the 

ordination in the first two years. 
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Figure 3.4: Mini quadrat DCA Ordination - flailed only samples shaded depending on year since 
tree clearance. Pseudo NVC samples and year 1 heather and Sitka control samples are 
included. 

The DCA ordination of the mini quadrats compared with the main quadrats 

shows much greater variability along the third and fourth axis. However, as for 

the main quadrat analysis these axes do not provide any additional information 

about the development of the vegetation because most of the samples are 

located in the same part of the ordination diagram. Only very few samples cause 

the gradient of the axis to be lengthened and these respresent mini quadrats that 

have a large amount of one particular species i. e. Molinia caerulea. As it is only 

relevant to very few samples it is not worth looking at these axes in more detail. 

Diagram 3.5 shows the mini quadrat DCA ordination results with the mean 

sample score for each tree clearance treatment in each year since tree 

clearance. Compared with the same diagram for the main quadrat DCA 

ordination (Diagram 3.1) it shows larger differences between tree clearance 

methods and between years for each tree clearance method. Figure 3.6 the 
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species ordination for axis 1&2 of the mini-quadrat analysis shows a similar 

pattern as for the main quadrat species ordination with litter and tree remains 
dominating the high Axis 1 scores. This is followed by a number of colonising 

species and at the lower Axis 1 scores there is an Axis 2 split that represents a 

gradient between dry heath and wet mire species, as for the main quadrat DCA 

analysis. If considered in conjunction with the quadrat ordination diagram (Figure 

3.5) it appears that the chainsawed quadrats have a tendency to be drier and 

appear to be moving towards a drier heath vegetation type. The flailed quadrats 

are moving from a situation dominated by tree remains, with a high axis 1 score 

and low axis 2 score, towards wetter vegetation similar to the M19 and M15 NVC 

plant communities. The harvested quadrats started from a distinctly different 

point where the quadrats had no tree remains but were dominated by litter and 
they have remained reasonably high on axis 2 indicating the development of 

wetter vegetation from the beginning. 
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method is represented by a different symbol as shown on the key and each year since tree 

clearance is indicated by a corresponding number i. e. 'O' years since clearance 
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Figure 3.6: Mini quadrat DCA Species Ordination Diagram for Axis 1&2 showing key species. 
Dros rotu = Drosera rotundifolia; Spha papi = Sphagnum papillosum; Spha palu = Sphagnum palustre; Spha 

subn = Sphagnum subnitens; Spha recu = Sphagnum recurvum; Eric tetr = Erica tetralix; Spha capi = 
Sphagnum capillifolium; Call vulg = Calluna vulgaris; Erio angu = Eriophorum angustifolium; Junc squa = 
Juncus squarrosus; Moll caer = Molinia caerulea; Pote erec = Potentilla erecta; Spha malte = Sphagnum 

magellanicum; Care echi = Carex echinata; Junc arti = Juncus articulatus; Junc bulb = Juncus bulbosus; Epil 

angu = Chamaenerion angustifolium; Dicr hete = Dicranella heteromalla; Tree rems = Tree remains; Holc 
lana = Holcus lanatus; Poly comm. = Polytrichum commune; Dicr cerv = Dicranella cerviculata; Litt sp. _ 
Litter; Poly form = Polytrichum formosa; Poly alpe = Polytrichum alpestre; Erio vagi = Eriophorum 

vaginatum; Rhyt lore = Rhytidiadelphus loreus; Desc flex = Deschampsia flexuosa; Gall saxa = Galium 

saxatile; Anth odor = Anthoxanthum odoratum; Vacc myrt = Vaccinium myrtillus; Rhyt squa = 
Rhytidiadeiphus squarrosus; Hylo sple = Hylocomnium splendens; Desc cesp = Deschampsia cespitosa; 
Fest ovin = Festuca ovina 

3.3.2 RDA analysis of 'year since clearance' sample groups 

Table 3.2 below shows how each 'year since tree clearance' group of main 
quadrat samples is composed. Zero years since clearance only has samples 
taken in 2001, one year since clearance includes samples taken in 2001 and 
2002 and so on. The Monte Carlo tests that were applied during the RDA 
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indicate that in all cases, except one, the between sample year variation is not 

significant. There is a significant difference between samples on ground that was 

cleared in 1999 compared with 2000 or 2001 but this is only evident in the first 

sample year and is only just significant with a p-value of 0.0426. By the second 

sampling year (2002) the effect had disappeared. Two RDA ordination plots for 

the '2 years since' and the `3 years since' (Figure 3.7 a& b) tree clearance 

groups show how the difference between sampling year diminishes with the 

samples mixed to a greater extent in Fig 3.7b, 3 years since chipping. 

Table 3.2: Between sampling year differences within 'year since tree clearance' group. Numbers 
represent year in chronosequence and letters represent the year that trees were cleared i. e. a, b 
&c equals ground cleared in 1999,2000 & 2001. 

Clearance Yr Year Since Tree Clearance 

2001 

Sampling Year 

2002 2003 2004 

1999 2a (F = 2.138, 

P=0.0426) 

3a 4a 5 

2000 la 2b 3b 4b 

2001 0 lb 2c 3c 
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Figure 3.7a & b: RDA Ordination diagrams for a) two years since tree clearance and b) three 

years since tree clearance with different sample years indicated by different symbols. 

3.3.3 RDA analysis of main quadrat data with environmental variables 
FLAILED QUADRATS 

The unrestricted Monte Carlo test on all axes of the ordination was significant at 

p=0.001 with 35.2% of the variation in the vegetation accounted for by the 

environmental variables. 28.1% of the variation is explained by the first axis with 

a further 5.2% explained by the second axis. The ordination biplot (Figure 3.8) 

for the sample scores and environmental variables from the first two axes show 

all the samples colour coded according to year since tree clearance. The lengths 

of the environmental vectors represent their relative importance, with year since 

tree clearance explaining the largest proportion of the variance (23.7%). The 

remaining environmental variables explain relatively little variance (Table 3.3) 

although they are still highly significant. 
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Figure 3.8: Ordination diagram from the RDA analysis of flailed quadrats showing samples and 

environmental variables for a)ds 1&2. Samples are colour/shape coded according to the 

number of years since tree clearance took place. Year since = year since tree clearance; Fresh 

Weight = estimated fresh weight of wood chp on quadrat; Peat depth = average peat depth; pH = average 

pH; Slope = slope from highest to lowest point of quadrat. 

Table 3.3: Explained variance by each environmental variable 
Environmental Variable Explained 

Variance 

F- value P- value 

Year since tree clearance 23.7% 55.308 0.001 

Fresh weight of wood chip 4.3% 11.286 0.001 

Peat depth 4.5% 11.092 0.001 

pH 2.0% 5.43 0.001 

Slope 1.3% 3.59 0.001 
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Figure 3.9a & b: Ordination diagrams from the RDA analysis of flailed quadrats showing a) 
species with most influence in the ordination and b) environmental variables for axis 1&2. Year 
since = year since tree clearance; Fresh Weight = estimated fresh weight of wood chip on quadrat; Peat 
depth = average peat depth; pH = average pH; Slope = slope from highest to lowest point of quadrat. 
Agrosp = Agrostis sp; Barepeat = Bare peat; Call vulg = Calluna vulgaris; Campintr = Campylopus 
introflexus; Campsp = Camplylopus sp; Desc flex = Deschampsia flexuosa; Dicrsp = Dicranum sp; Eric tetr = 
Erica tetralix; Erio angu = Eriophorum angustifolium; Eno vagi = Eriophorum vaginatum, Gal saxa = Galium 
saxatile; Hypncupr = Hypnum cuppresiformi; Junceffu = Juncus effusus; Lophbide = Lophocolea bidentata; 
Lophvent = Lophozia ventricosa; Moli caer= Molinia caerulea; Poly form = Polytrichum fomiosa; Spha recu 
= Sphagnum recurvum; Tree rems = Tree remains. 

The ordination plots for species and environmental variables (Axes 1& 2) are 

shown separately because the species completely obscure the environmental 

variables when plotted on the same biplot (Figure 3.9 a& b). The species plot 

shows 19 species that have the most influence over the ordination. As RDA is a 
linear ordination method, species positions are indicated with arrows, the length 

of which indicates importance within the ordination. These species fall within the 
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species fit range 7-100% of the first ordination axis. The species fit range is 

restricted to the first ordination only because most of the variation is explained by 

this axis. Tree remains and bare peat are clearly "species" that dominate in the 

early years after tree clearance with various blanket bog species becoming more 
dominant as year since clearance increases. Agrostis sp, Galium saxatile and 
Juncus effusus all appear to be closely associated with steeper slopes and the 

relationship between these species and slope is highlighted in Figure 3.10. 

Figure 3.10: Species response 
(using a Loess smoothing 
function) on the first RDA ads 
to increased slope on flailed 
quadrats. Agrosp = Agrostis sp; 
Gall saxa = Galium saxatile; 
Junceffu = Juncus effusus. 

a, (0 
C 
O 
a 
a) 

Similarly Molinia caerulea, Dicranum sp, Hypnum cupressiforme, Calluna 

vulgaris and Eriophorum angustifolium are associated with deeper peat and this 

relationship is shown in Figure 3.11. The species that show the most significant 

change over time since tree clearance (Figure 3.12) are Calluna vulgaris, 

Deschampsia flexuosa, Eriophorum vaginatum and Tree remains. As the RDA 

ordination described above represents the development of vegetation following 
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tree clearance an increase in species number over time would be expected. 

However, this trend is not as obvious as expected as can be seen in Figure 

3.13a. What is more pronounced is the increase in species diversity (Figure 

3.13b) 
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Figure 3.11: Species 
response (using a Loess 
smoothing function) on the 
first RDA axis to increased 
peat depth on flailed 
quadrats. Call wlg = Calluna 
vulgans; Dicrsp = Dicranum 
sp; Eno angu = Eriophorum 
angustifolium; Hypncupr = 
Hypnum cuppresiformi; Moli 
caer = Molinia caerulea; 

Figure 3.12: Species change on 
the first RDA axis over time since 
tree clearance. Call vulg = Calluna 
vulgaris; Desc flex = Deschampsia 
flexuosa; Eno vagi = Eriophorum 
vaginatum; Tree rems = Tree 
remains. 
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Figure 3.13: Biplot diagrams generated from results of the RDA analysis of flailed quadrats 
showing samples and environmental variables. The size of the sample symbols correspond to a) 
number of species and b) Shannon species diversity. 

CHAINSAWED QUADRATS 

The unrestricted Monte Carlo test on all axes of the RDA ordination was 

significant at p=0.001 (F= 8.010). 42.7% of the variation in the vegetation was 

accounted for by the environmental variables with 22.9% and 7.8% explained by 

the first two axis respectively. The ordination biplot (Figure 3.14) for the sample 

scores and environmental variables from the first two axes shows that, as for the 

flailed quadrats, year since tree clearance explains the largest proportion of the 

variance (18.7%). Table 3.4 details the proportion of variance explained by each 

of the environmental variables which are all significant. 
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Figure 3.14: Ordination 
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fresh weight of wood chip 

on quadrat; Peat depth = 

average peat depth; pH = 

average pH; Slope = slope from highest to lowest point of quadrat. 

Table 3.4: Explained variance by each environmental variable for the chainsawed quadrats 

Environmental Variable Explained 

Variance 

F- value P- value 

Year since tree clearance 18.7 7.11 0.002 

Peat depth 7.2 2.195 0.008 

pH 6.1 2.610 0.018 

Slope 5.4 2.427 0.030 

Fresh weight of wood chip 5.3 2.482 0.020 

64 



0 

0 

0 

0 
N 

_N 
ü 

_o 

-o 

-0 

.8 
Pleuschr 

Ca/! w/g, - 
.6 Paleerec 

Polycomm 
4 ylos le 

2 

Treerema 
- ------------ - --- 

Camps 

4 / Polyform 

Spha bn harecu 
sphapapi 

.6 Eriovagi 

.8 
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 

Axis 1 

0.2 

0.1 

pH 
N 0.0 -- 

-U. 1 

-0.2 

since 

-0.31 
Peat depth 

+ 

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

Axis 1 

Slope 

Figure 3.15a & b: Ordination 

diagrams from the RDA 

analysis of chainsawed 

quadrats showing a) species 

with most influence in the 

ordination and b) environmental 

variables for axis 1&2. Yr 

since = year since tree clearance; 
Fresh Weight = estimated fresh 

weight of wood chip on quadrat; 
Peat depth = average peat depth; 

pH = average pH; Slope = slope 
from highest to lowest point of 

quadrat. Call wig = Calluna 

vulgaris; Campsp = Camplylopus 

sp; Eno vagi = Eriophorum 

vaginatum, Hylosple = Hylocomium 

splendens; Pleu schr = 
Pleurozium schreberi; Poly comm 

= Polytrichum commune; Poly 

form = Polytricchum formosum; 

Potentilla erecta; Spha papi = 
Sphagnum papillosum; Spha recu 

= S. recurvum; Spha subn = S. 

subnitens; Tree rems = Tree 

remains. 

65 



The ordination plots of species and environmental variables for axes 1&2 

(Figure 3.15 a&b) shows 12 species that have the most influence over the 

ordination. These species fall within the species fit range 25-100% of the first 

ordination axis. C. vulgaris, P. schreberi and P. erecta are the three species most 

closely associated with slope and the species response curve that describes their 

relationship with slope is shown in Figure 3.16. Peat depth also has four species 
that are closely associated (S. subnitens, S. recurvum, S. papillosum and 
Eriophorum vaginatum) and the response curves are shown in Figure 3.17. 
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Figure 3.16: Species response (using a Loess 

smoothing function) on the first RDA axis to 

increased slope on chainsawed quadrats. 

Callvulg = Calluna vulgaris; Pleuschr = Pleurozium 

schreberi; Poteerec = Potentilla erecta. 
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3.17: Species response (using a 
Loess smoothing function) on 
the first RDA axis to increased 
peat depth on chainsawed 
quadrats. Erio vagi = Eriophorum 
vaginatum; Spha recu = Sphagnum 
recurvum; Spha subn = Sphagnum 
subnitens; Spha papi = Sphagnum 
papillosum. 
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3.4 Discussion 

MONITORING QUADRAT DATA 

Chronosequence data are widely used in ecological research (Zou and Gonzalez 

1997; Jones and Henry 2003) as it is an effective way to investigate ecological 

change over a longer time scale than is available for the research project. 
Considering the tree clearance monitoring data as a chronological data sequence 

effectively extended the research period from four to six years. This was 

sufficient time to see the development of patches of blanket bog vegetation that 

resembled the mature blanket bog vegetation on site. This vegetation was 

represented by the four pseudo NVC communities and the 'target' vegetation 

control quadrats. By creating the pseudo NVC communities it was assumed that 

there was no change in the mature plant community during the project and this 

was supported by monitoring results from the 'target' vegetation control quadrats, 

which did not change significantly over the four sample years. 

Although the chronological data sequence represented zero to five years since 
tree clearance there was some variation within the chronological year 2 (since 

clearance). Ground cleared in 1999 and first sampled in 2001 was significantly 
different from ground cleared in 2000 or 2001 and sampled in 2002 or 2003 

respectively. It is likely that this difference occurred because the spring and 

summer of 2000 was very warm and dry compared with other years. As a result 

ground cleared in 1999 was subjected to an 'unusual' first growing season which 

was not repeated for ground cleared in subsequent years. However, the effect 

was small and was only evident for one year indicating that the use of 

chronological year is valid for this investigation. 

The importance of scale in vegetation monitoring has long been recognized 
(Greig-Smith 1983) and it is not appropriate to sample sub-shrub heaths and 

woodland field layers with the same sized quadrat as that which would be used 
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fora dwarf-shrub heath community (Rodwell et al. 1991). Although the target 

vegetation type following tree removal was a blanket bog community and this 

does not include scrub and tree species, a certain amount of scrub growth was 

anticipated. Species such as Sorbus aucuparia, Salix caprea and Betula 

pubescens are very common on ground immediately adjacent to the tree 

clearance area and as some drying of the peat was evident colonisation by these 

species was thought to be very likely. In addition it was thought that some Sitka 

spruce regeneration may occur following forest clearance and all of these tree 

species would create a scrubby vegetation community. The National Vegetation 

Classification project sampled this type of community using a1 Ox1 Om quadrat 

(Rodwell et al. 1991) so it was selected as the main sampling unit for this project. 

In order to capture more detailed information about the developing blanket bog 

community five 1x1 m'mini' quadrats were nested within the main quadrat. The 

NVC project used 2x2m quadrats for dwarf-shrub heath communities (Rodwell et 

al. 1991) but it was decided that five 1x1 m quadrats, one in each corner and one 

in the middle of the main quadrat, would give more information about small scale 

heterogeneity within the main sampling unit. More complex monitoring 

techniques using a series of nested quadrats would have allowed the variation in 

scale to be measured more precisely than the chosen technique (Hodgson et al. 

1993; Critchley and Poulton 1998) but these techniques are extremely time 

consuming to conduct (approximately 6 hours per stand of nested quadrats) and 

the data collected are difficult to interpret. 

CONTROL VEGETATION 

Two types of control vegetation were included within the monitoring programme, 

existing mature blanket bog vegetation, which is referred to as 'target vegetation 

and the vegetation found beneath Sitka spruce plantation. The DCA ordinations 
indicated that the 'target' vegetation quadrats are mostly similar to the M19 NVC 

community (Rodwell et al. 1991) although there are some similarities with the 

other three pseudo NVC communities. This control vegetation provided the most 
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sensible reference for the tree cleared ground as it could be considered as a 

'target' for vegetation developing post tree clearance. The Sitka control quadrats 

were less informative although they do demonstrate the range of plant 

communities that existed on apparently forested ground. In some locations the 

trees had achieved canopy cover so the ground cover was limited to litter and 

possibly some shade tolerant mosses. At the other end of the scale tree growth 

was very patchy with a mature blanket bog plant community existing between the 

stunted Sitka spruce trees. These locations tended to be the wettest areas 

where Sitka spruce growth would have been severely inhibited due to lack of 

nutrients associated with constantly waterlogged conditions (Taylor 1991). 

TREE CLEARANCE METHODS AND VEGETATION DEVELOPMENT 

Vegetation development occurred at different rates depending on the tree 

clearance methods. The most rapid change was seen on the harvested quadrats 

which have the greatest difference in Axis I scores from year 0 to year 5. There 

were only three 'harvested' quadrats so the results must be viewed with caution. 
However, the results are not surprising given that the clearance method removes 

whole trees leaving an undisturbed ground surface for plant colonisation. Bare 

peat was unlikely to be present after clearance by harvesting because machinery 

would not have travelled over the ground. There was a layer of dead Sitka 

spruce needles that may have hindered plant germination but not in the same 

was as wood chip or brash remains. Vegetation on the flailed quadrats showed a 

similar response to the harvested quadrats moving consistently towards the 

'target' vegetation on site. The chainsaw method of tree clearance left a huge 

quantity of brash on the ground, often at depths greater than one metre. This is 

almost certainly the reason why there was very little change in the vegetation 

over the first three years following tree clearance with only relatively small 

movements in years 4 and 5. 

Although the main and mini quadrat ordinations are similar the mini quadrat 

ordination identifies differences between the tree clearance methods which are 
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not obvious at the larger scale. It appears that vegetation on flailed ground is 

becoming increasingly wet with years since tree clearance and this is probably 
the result of peat re-wetting. Twenty year old plantation forest on blanket bog 

has been shown to cause significant drying (Anderson et al. 1995) so it would 
follow that tree removal with the cessation of evapo-transpiration and rainfall 
interception will certainly have increased the amount of water reaching the peat 

surface. In addition the wood chip created during the flailing process was 
directed into the plough furrows which also enhanced water retention of the peat. 
Vegetation on harvested ground showed a similar response to the flailed ground 

although the vegetation appeared to be wetter from the start. Vegetation 

developing on ground cleared with chainsaws tended to be slightly drier than on 
harvested or flailed plots. This was almost certainly because the majority of 

ground that was cleared with chainsaws was sloping and hence better drained. 

The excavator mounted flail and harvester could not access steeply sloping 

ground so chainsaws were the only available option. 

In general all the main quadrat ordination diagrams indicate that although the 

developing vegetation is moving towards existing vegetation on site it has not yet 

reached the target point for any of the treatments. However, the mini quadrat 

ordination shows considerable variation in the vegetation with many of the 

quadrats already similar to existing vegetation. There are mini quadrats 2,3,4 

and 5 years since tree clearance occupying the same ordination space as the 

'target' vegetation control quadrats and the NVC pseudo quadrats. This 

indicates that small patches of the vegetation (1x1 m) are already fully developed 

but this is not the case for the larger scale main quadrats (10x10 m). There are 
two explanations for the apparent difference in plant community development 

and the first is related to heterogeneity in wood chip depth which appears to 

influence speed of vegetation development. In addition the main quadrats were 
sited based on randomly generated grid references with a selection criterion that 
there had to be greater than 50% cover of wood chip. As a result some of the 

main quadrats were located with a small part of the quadrat on existing mature 
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vegetation so in some instances one or more of the mini quadrats contained 
'target' vegetation when monitoring started. 

The NVC plant community M19 is clearly the most dominant plant community on 

site and a large proportion of vegetation developing on the tree cleared ground 

moving towards this community. Plant community type appears more varied at 
the small scale of 1x1 metre indicating that there is an intimate mix of wet mire 

and drier heathland communities with the former being more dominant. This was 

certainly evident on site both on existing vegetation and on ground which had 

been cleared of trees. Microtopography of the tree cleared ground provided the 

sort of terrain that might encourage this type of plant community heterogeneity. 

Due to ground preparation prior to tree planting the ground immediately adjacent 
to the tree stump was much higher than surrounding areas and this was 

colonized by drier species such as Rhytidiadelphus sp. Vaccinium myrtillus and 
Deschampsia flexuosa. Initially C. vulgaris also dominated in these patches 

probably because there was only limited wood chip on the ground so light was 

reaching the peat surface. Light is required to stimulate germination in C. 

vulgaris seed (Mallik et al. 1984a; Pons 1989). 

Away from the tree stumps the ground sloped down to plough furrows located 

between each double row of trees. During the chipping process wood chips were 
directed into the plough furrows which caused them to fill with water fairly rapidly 

after tree clearance. The most hydrophilic plant species started to colonise these 

areas including Eriophorum vaginatum, C. angustifolium, Sphagnum palustre, S. 

recurvum and S. magelanicum. In general the site is very wet with a high annual 

rainfall so much of the peat quickly became waterlogged following tree clearance 
but drier patches were still obvious even after five years. 

PLANT COLONISATION 

The species ordination diagrams for both the main and mini quadrats clearly 
demonstrate the process of colonization. Tree remains and litter are on the far 
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right of the ordination diagrams and these were the dominant ground cover 
immediately after tree clearance. The first species to colonise were Cirsium 

palustre, Chamaenerion angustifolium, Juncus bulbosus and Dicranella sp. (D. 

cerviculata and D. heteromalla). These are all species that are commonly found 

in new or damaged acidic habitats with the first three species frequently found on 

spoil and wasteland (Hodgson et al. 1995) and the two species of Dicranella 

found on partially dried peat, especially peat cuttings (Smith 1978). J. bulbosus 

was particularly prevalent on very wet areas of completely bare peat, especially 

where small areas of open water had accumulated. Work done on the 

recolonisation of mine spoils (Pietsch 1996) and lakes resulting from coal mining 

operations (Chabbi 1999) has showed that J. bulbosus initiates aquatic 

colonization in highly acidic conditions. J. bulbosus growth is promoted by high 

CO2 and ammonium concentrations (Roelofs et al. 1994) which may have 

occurred following tree clearance as the peat was disturbed and hence exposed 
to weathering processes and oxygen. These conditions would enhance peat 
decomposition creating CO2 and possibly NH3. The species is relatively mobile 

and appears to be encouraged by habitat disturbance (Grime et al. 1988). 

There is no particular reference to using J. bulbosus as a species for peatland 

restoration work but it may be an appropriate species if the conditions are very 

acid and wet, particularly with areas of open water. E. vaginatum has been used 
for this purpose (Campbell et al. 2002; Lavoie et al. 2003; Lavoie et al. 2005) and 
the species did colonise wetter ground on the tree clearance area very quickly. 
Individual plants also grew very quickly and produced a mass of seed within the 

first growing year. This was particularly obvious on peat that was waterlogged 
for most of the year. 

None of the initial colonizing species are recorded in any of the four NVC 

communities that were located on site, except J. bulbosus which is only 'scarce' 

in the M15 community (Rodwell et al. 1991). There are some similarities 
between the 'primary ecological strategies' (Grime et al. 1988) of these species 
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which might indicate why they all colonised the site quickly but did not persist in 

the developing plant community. C. palustre and J. bulbosus are both classed as 
'stress tolerant ruderals' (Grime et al. 1988) and Dicranella sp would probably 

come in this category as well. Seed/spore production is reasonably high and 

either transported by wind or maintained as a persistent seed bank (Grime et al. 
1988). As a result germination was relatively rapid following exposure of bare 

ground. As the plant community developed with more 'competitive' and 'stress 

tolerant' species such as C. vulgaris and E. vaginatum the competition for 

resources almost certainly caused the initial colonisers to decline. In addition the 

development of permanently waterlogged conditions would have had an adverse 

affect on C. palustre (Grime et al. 1988). C. angustifolium is classed a 
'competitor which represents a different ecological strategy to the other 

colonizing species. However, the species does produce a large number of seeds 

which are transported by the wind (Grime et al. 1988) and hence quickly 
distributed to newly exposed ground. The reason why this species did not persist 
in the developing community is probably due to the highly acidic and anaerobic 

conditions that developed as the water table increased following tree removal. 

In the second growing season following tree clearance many of the community 
defining species started to appear with some growing more quickly than others. 
For example Carex echinata, Molinia caerulea, E. vaginatum and Potentilla 

erecta covered the ground very quickly in the wetter communities and these are 

all 'constant species' found in abundance within the two NVC mire communities 
(M15 and M19) on site (Rodwell et al. 1991). Deschampsia flexuosa, 

Rhytidiadelphus loreus, Galium saxatile and Anthoxanthum odoratum quickly 

colonised drier ground and again, with the exception of A. odoratum, these are all 
'constants' within the NVC heath communities (H18 and H21) on site (Rodwell et 

al. 1991). Other species such as many of the Sphagnum species, Calluna 

vulgaris, Vaccinium myrtillus and Hylocomium splendens appeared within a 

couple of years of tree clearance and expansion of these species was steady but 

relatively slow. 
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VEGETATION AND THE ENVIRONMENT 

All of the environmental variables included within the RDA analysis of flailed 

quadrats had a significant effect on variation in the vegetation community 

composition. Year since tree clearance, although not strictly an environmental 

variable, explained two thirds of the explained variation which is not surprising 

given the results from the DCA analysis. Four species showed a clear response 
to year since tree clearance, these were 'tree remains' which decreased rapidly 

overtime, D. flexuosa, E. vaginatum and C. vulgaris which all increased 

consistently with time. Fresh weight of wood chip explained a further 5.8% of the 

variation but it was not closely associated with any particular species. The effect 

of weight of wood chip is discussed in more detail in Chapter 4 but vegetation 
development did appear to be inhibited as the amount of wood chip increased. 

Peat depth, pH and slope all had small but significant affects on variation in the 

vegetation with a few key species closely linked to peat depth and slope. For 

example, Agrostis sp, Juncus effusus and Galium saxatile all increased in cover 

with increasing slope. These species are all typical of the drier heathland 

communities which one might expect to occur on sloping ground. Although deep 

peat can occur on slopes this is not the case on the tree clearance area where 
the slopes tended to be associated with a shallow peat cover, better drainage 

and hence drier conditions. Deeper peat occurred on flatter ground and in 

basins and the species that were closely associated with these conditions were 
Hypnum cupressiforme, Molinia caerulea and C. vulgaris. pH had the smallest 

effect on the vegetation, probably because the pH range was relatively limited 

and highly acidic. 

The RDA analysis for the chainsawed quadrats showed broadly similar results to 

the equivalent analsysis for the flailed quadrats with year since tree clearance 

explaining the highest proportion of variation in the vegetation. There were only 
9 chainsawed quadrats included in the analysis and they were not really 

representative of a range of different environmental variables. Chainsaws were 
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only used to clear trees on ground that was not accessible to the flail or 
harvester. As a result most of the ground was steeply sloping (over 70 degrees) 

and 6 of the quadrats were located on steep slopes with a shallow peat cover 
(less than 20cm). The remaining three quadrats were located on completely flat 

ground that was also very deep peat. In effect the quadrats were located at 

extremes of a slope and peat depth gradient with no representation along the 

rest of the gradient. This, coupled with the small number of quadrats included in 

the analysis, is almost certainly why the species response curves are not 

particularly interpretable. C. vulgaris cover appears to increase with increasing 

slope to 7 degrees then declines with slopes up to 14 degrees and then 

increases again. These results suggest that it is not possible to generalise about 

species response to environmental variables following tree clearance by 

chainsaws on this experimental site. 

IMPLICATIONS FOR THE RESTORATION OF BLANKET BOG FOLLOWING FOREST CLEARANCE 
The restoration of blanket bog vegetation following the clearance of 15-20 year 

old immature Sitka spruce is clearly achievable within a relatively short period of 
time. At a small scale, patches of the 'target' vegetation may develop within 6 

years, although it will take a few years longer for whole areas to develop. This 

heterogeneity in time taken for various plant communities to develop, post tree 

clearance, is probably a reflection of the heterogeneity in Sitka spruce size. 
Where trees have reached the thicket growth stage, with the ground vegetation 

completely shaded out, the plant community will take more than six years to 

develop. However, where patches of mature vegetation still exist between 

stunted Sitka spruce trees the plant community quickly recovers after tree 

clearance operations. 

Vegetation development following the three different tree clearance methods 

showed some differences in response. Clearance of trees using chainsaws 

creates a deep covering of brash and tree remains on the ground and this 

appeared to inhibit vegetation development compared with the harvesting and 
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flail clearance methods. In general the chainsawed ground was located on steep 

slopes so the developing vegetation was different to that on less sloping ground 

and deeper peat. However, where slopes were cleared with a flail the vegetation 
did respond more quickly than after chainsaw clearance. Similarly vegetation on 
flat chainsawed ground responded more slowly than equivalent areas that were 
flailed. This indicates that the brash inhibited vegetation development rather than 

a factor inherent in the ground that was cleared by chainsaws. Whole tree 

harvesting, as a method of clearing trees from blanket bog, would allow blanket 

bog restoration to occur most rapidly as there are no tree remains left on the 

ground at all. However, this method of clearance was only used to create 

corduroy tracks (a track created by placing tree trunks side by side in a corduroy 

pattern) for flails to travel over boggy ground and it was not considered to be a 

cost effective method for clearing large areas. In general blanket bog sites are 

not particularly accessible so, removing trees with no timber value from the site 

would be prohibitively expensive in most situations. In addition the results clearly 
demonstrated that although vegetation development was initially much quicker, 
following whole tree harvesting compared with flail clearance, the vegetation was 

at a similar point for both clearance methods 6 years post tree removal. 
Therefore, unless the site is extremely important in conservation terms it is not 

worth the substantial extra cost to clear the trees by whole tree harvesting. 
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CHAPTER 4 

THE EFFECT OF WOOD-CHIP DEPTH ON THE 

DEVELOPMENT OF BLANKET BOG VEGETATION 

FOLLOWING IN SITU CHIPPING OF IMMATURE SITKA 

SPRUCE 
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4.1 Introduction 
There are a small number of blanket and raised bog restoration projects in the 

UK where tree removal has been an integral part of the restoration work (Burlton 

1993; Brooks and Stoneman 1997; Wilkie et al. 1997). 'In situ' chipping of trees 

has been used on two of the sites (Burlton 1993; Wilkie 2005) although this was 

achieved in two separate operations where the trees were felled, either manually 

or mechanically and then fed into a stand alone chipping machine. Although the 

tree clearance project in Kintyre reviewed a number of different tree clearance 

techniques 'in situ' chipping using an excavator mounted flail appeared to offer a 

solution that balanced cost with likelihood of achieving successful blanket bog 

restoration. The method was considerably cheaper than whole tree harvesting 

with the associated costs of extracting low value timber from a highly 

inaccessible site and it provided a more acceptable way of leaving woody debris 

on site than the manual chainsaw felling option. Whole trees, including the 

trunk, branches and brash were reduced to relatively small wood chips and 

woody debris that was spread around in the immediate vicinity of the flail. 

The excavator mounted flail as a wood chipping device had been used for 

Rhododendron clearance in woodland but it had never been used to clear conifer 
forest growing on blanket bog. Consequently there were no results relating to 

the success or otherwise of this technique for blanket bog restoration. A number 

of specialists had voiced concerns about the potential nutrient release associated 

with leaving material on site whether it was whole trees, bits of trees, brash or 

wood chips (Bunton 1993; Brooks and Stoneman 1997; Anderson 2001). 

Ombrotrophic vegetation has very low nutrient requirements and the concern is 

that increased nutrient levels would encourage the growth of nutrient demanding 

species that are not native blanket bog species (Anderson 2001). The ecological 

consultant employed to advise on the tree clearance project in Kintyre was also 

concerned that if a dense layer of wood chip was left on site germination and 

growth of blanket bog vegetation would be inhibited (Moss pers. comm. ). 
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This study was set up to investigate the main concerns relating to 'in situ' 

chipping of trees to facilitate blanket bog restoration. The objectives of the 

experiment were firstly to investigate the effect of different wood chip depths on 

the development of blanket bog vegetation, including speed of recovery and the 

type of plant community and secondly to measure decomposition rates of wood 

chip at different chip depths so that the relationship between decomposition and 

vegetation development could be investigated. The chip depth treatments were 

selected to represent the size/age of trees that are too big to fell to waste (i. e. cut 
down with a chainsaw and leave as whole trees on site) and too small to have 

any value as timber/wood fuel. In addition, a six-year chronosequence of 

vegetation change is analysed in the context of estimated depth of wood chip 
deposited on the ground after tree-clearance. 

4.2 Materials and Methods 

4.2.1 Wood chip depth experiment 

A randomised block experiment was set up to investigate the effect of wood chip 
depth on vegetation development and wood chip decomposition following 'in situ' 

chipping of immature plantation forest planted on former blanket bog habitat. 

The experiment was established on the forest clearance area, the exact location 

is indicated on the map at Appendix 2. The location was chosen because tree 

growth prior to forest clearance had been good and complete canopy cover had 

been achieved. Trees in the area were 18 years old when they were cleared with 

an average diameter at breast height of 15cm. As a result there was no ground 

vegetation present at the beginning of the experiment. The trees were chipped 

using an excavator mounted flail as part of the tree clearance programme over 
the whole area. 
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EXPERIMENTAL DESIGN 

The experiment comprised four treatments plus a control, each replicated three 

times within three blocks. The blocks were located to control for variation in peat 
depth and wetness. Plot size was 3x3 metres, with 15 randomly-located plots 

within each block. Prior to applying the chip treatments all wood chip was raked 

up and removed and the treatments were applied as shown in Table 4.1. The 

exception was Treatment 4 (control) where the pre-existing woodchip on the site 

was left undisturbed. 

Table 4.1: Treatments/control used in the chip experiment 
Treatment No. Description 

0 No wood chip 
1 Normal rate (8 kg/m )* 

2 Double rate (16 kg/ m) 

3 Triple rate (24 kg/m2) 

4 Control: Natural - no woodchip removed or re-applied 
* normal rate is the average amount of wood chip present per m` on this part of the forest 

clearance area assessed using 20 randomly located 1 m2 plots. 

After tree clearance and raking (except Treatment 4) the chip treatments were 

applied and two samples of chip were taken from the upper layer of chip on each 

plot. A small feed scoop (500ml) was used to take each sample. The samples 

were oven dried and the % moisture content calculated. Chip treatments were 

applied within a period of I week across all plots, and since the weather 
conditions were consistent chip moisture contents were within 1% across all 

samples. As a result it was assumed that replicates of the wood chip 
treatments, in terms of their initial moisture content, are comparable. 

DATA COLLECTION 

On each of the 45 experimental plots two permanent 1x1 m quadrats were 

established and assessed annually from 2001-2004. These were located 

immediately adjacent to each other, either side of a middle line running through 

the centre of each 3x3m plot. The middle line was permanently marked with 
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wooden stakes at either end of a block of plots and re-established each year 

using a tape measure. Each plot was 3m long so the quadrats were located 

between 1-2m, exactly central along the length of the plot as shown in Figure 4.1. 

Figure 4.1: Plot and quadrat layout on the experimental plots 

A visual estimate of percent cover was recorded for all plant species, rock, bare 

peat, water and tree remains (chip or brash) within each quadrat. This was done 

with the aid of a1 x1 m grid divided into one hundred 1 Ox1 Ocm cells. All vascular 

plants and bryophytes were identified to species level. Assessments were 

carried out in July in 2001-2004. 

DATA ANALYS IS 

Two statistical methods were used to analyse the data from the chip depth 

experiment, depending on whether the response of individual species was being 

tested in univariate analyses via linear mixed effects models (Pinheiro & Bates, 

2000), or all species simultaneously in multivariate tests through constrained 

ordination (Ter Braak and Smilauer 1998). 
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Linear mixed effects modelling 
Percentage cover of individual species was subjected to linear mixed effects 
(LME) modelling (Pinheiro and Bates 2000) to test the effect of chip depth 

treatment on plant establishment at the species level. Six species that were 
found across all treatments and on more than 70% of the experimental plots, 

were selected for this analysis. The species were Calluna vulgaris, Eriophorum 

vaginatum, Hypnum cupressiforme, Deschampsia flexuosa, Polyttichum sp. 
(P. commune & P. formosum) and Campylopus sp. (C. pyriformis, C. atrovirens 

and C. introflexus). The two species of Polytrichum have similar ecology and 

were frequently found in an intimate mix on the experimental plots so they were 

considered as one species for the purposes of this analysis. This was also the 

case for Campylopus species. 

For all species except Campylopus sp. the percentage cover data were log 

transformed (log(cover+l)) as there were a large number of zeros in year 0 and 1 

of the experiment with rapid increase in cover in years 2 and 3. This 

transformation was considered appropriate, rather than an arcsine transformation 

which is commonly used on percentage cover data, because no individual 

species exceeded 30% cover in any year. For Campylopus sp. the response 

was unimodal for three of the treatments so the data were not transformed and a 

quadratic term for year was included within the model. Two designs of LME 

models were fitted for each species and all models included fixed and random 

effects. The first model included 4 chip depth treatment levels as fixed effects 
(Tmt 0- all chip removed, Tmt 1- normal, Tmt 2- double and Tmt 3- triple) and 
the second included only two chip depth treatment levels (Tmt I- normal and 
Tmt 4- Natural) as fixed effects. Both models included year as a fixed effect. 
The random effects were year nested within individual plots. Hence, species 

abundance in treatment i, plot j, and year k, S;; k could be modelled as: 
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Sijk' ti+pl+ Yk+tYik+Tj+PJ+Yk+Eijk 

where t is the treatment effect, p the plot effect, y the year effect, T the random 

error associated with treatment, P the random error associated with plot, Y the 

random error associated with year, and F. the overall residual across all 
treatments, plots and years. 

Where necessary temporal autocorrelation was accounted for within models 

using a first-order autoregressive function (Pinheiro and Bates 2000; Crawley 

2002), this was done by specifying residual correlation that decays exponentially 

with distance between years. Similarly, where appropriate, differences between 

treatment variances were accounted for, by specifying separate error terms for 

each level of chip depth. In all cases, the simplest possible model that gave the 

best fit to the data, and most appropriate residual error distribution was sought. 
Different models were compared by likelihood ratio tests and if models were 

significantly different (p<0.05), the model with the lower Akaike's information 

criterion (Burnham and Anderson 2002) was selected: 

AIC = -2logLik + 2n 

where n is the number of parameters in the model, and is effectively a 'penalty 

term' related to the complexity of the model. 

For the species where treatment effect was significant, an orthogonal contrast 

analysis (Crawley 2002) was performed on model 1. The following contrasts 

were made; Tmt 0 compared with Tmts 1,2 & 3, Tmt 2 compared with Tmt 3 and 
Tmt 1 compared with Tmts 2&3. It was not necessary to repeat the orthogonal 

contrast analysis for the LME model 2 as they only contained two treatments, 

Tmts 1 and 4. 

84 



Principle Response Curve Analysis 

For analysis of the vegetation community data the multivariate technique 

Principal Response Curve (PRC) analysis (Frampton et al. 2001; Pakeman et al. 
2003) was used to display temporal changes in species composition between 

treatments. PRC analysis is based on the multivariate ordination technique 

redundancy analysis (RDA) but is designed to evaluate the extent of differences 

among individual time steps and also among individual treatments (Van den 

Brink and Ter Braak 1998; Frampton et al. 2001). One problem with displaying 

multivariate patterns that change over time in an RDA plot, is that with several 
treatments over a number of years, the plots often become complex and difficult 

to interpret. This difficulty is compounded by the fact that time is represented by 

a haphazard trajectory within the plot, rather than a single axis. PRC analysis 

simplifies the presentation of such time-based analyses by plotting the 

differences in community composition for each treatment relative to a baseline 

treatment (typically a control) against time. In a PRC analysis the basic model 
(following the syntax of Van den Brink & Ter Braak, 1999) is: 

Yd(J)tk - YOtk + bkCdt +Ed(J)tk 

where ydu)tk is the abundance of species k in replicate j of treatment d at time t 

yOLk is the mean abundance of species k at time tin the control (d=0); bk is the 

weight of each species, fitted to the basic response cdt; td(9tk is an error term with 
zero mean and cj variance. Note that cot=0 for every treatment t and species k, 
i. e. all values on the control for every species are deliberately constrained to zero 
on each date, and all other PRC response values for the remaining treatments 

(i. e. cdr where d is not the baseline control) are scaled relative to this. The partial 
least-squares estimates of these cdt coefficients can be determined through 

partial RDA (redundancy analysis), and the cdt values plotted as PRC axis 1 (on 
the y-axis) against sampling time (x-axis) for each treatment. The resulting 
curves for each treatment show the principal community response over time, in 

comparison with the baseline treatment. The species weights (bk) show how 
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closely each species matches the overall community change with time, and can 

also be plotted on the PRC graph. 

The practicalities of performing a PRC analysis within CANOCO software are 
described in detail by Leps and Smilauer (2003) and this method was followed 

using the same selection of options. The significance of the whole PRC can be 

tested via a Monte Carlo permutation test of the samples (i. e. permuting whole 
time-series) in the partial RDA used to develop the PRC. Multiple comparison 
testing of each treatment at each time point on the PRC (Frampton et al. 2001) 

was done by performing a series of normal RDA analyses at each sampling point 
including only the two treatments to be compared. These treatments were then 

included as the environmental variables, with block as a covariable. This allowed 
letters a, b, c etc. to be used to demonstrate where significant variation between 

treatments exists (Van den Brink pers. comm. ). Differences were only recorded 

as significant where the p-value was lower than 0.008 (Bonferroni correction to 

avoid Type I statistical error). 

Two PRC analyses were done using different 'control' or'reference' data. Firstly, 

only experimental data were included in the PRC and the natural treatment was 
taken as the reference. This is the most obvious treatment to use as a control 
because no chip was removed or returned to the plot. However, in order to 

provide a reference line that represented mature vegetation i. e. completely 

untreated with no trees planted and none removed/chipped the 'target' vegetation 

monitoring quadrats were used as the reference data in the second set of PRC 

analyses. These quadrats were clearly not part of the experiment but it is useful 
to visualise how the vegetation is likely to develop in the short- to medium- term. 
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4.2.2 Wood chip decomposition 

EXPERIMENTAL DESIGN 

An experiment to investigate the decomposition of wood chip at different chip 
depths was nested within the main experiment described in section 4.2.1 

(Experimental design). One of the three plots for each treatment, in each block 

was selected at random to be included in this investigation (randomised block 

design but no within-block replication). Sixty'chip decomposition' bags were 

made up using specially made medium weight nylon net bags. These were 
20x2Ocm with a drawstring cord that could be tied to prevent wood chip being 

lost from the bag. The mesh size was 5x5mm which was sufficiently small to 

prevent wood chip from falling out of the bag. Enough wood chip to fill all the 

bags was collected and mixed to ensure homogeneity of the sample. Each bag 

was then filled with approximately 300g of wood chip and the exact weight of the 

chip was recorded. The bag was then closed and a numbered marker attached 
to the end of the cord so the bag could be identified during the investigation. 

Three additional samples were taken and oven dried at 100°C for 24 hours. 

These were used to calculate a dry weight for wood chip in each of the bags. 

Four bags were placed on each of the 15 plots included in the investigation (5 

treatments, 3 blocks) and pegged to the ground using a plastic peg. The bags 

were located in the NW corner of each plot in a group together. They were 

placed underneath the wood chip treatment on each plot so the bags on the 

'triple' treatment plots (Tmt 3) were underneath three times as much woodchip as 
the bags on the 'normal' treatment plots. The bags on the 'all removed' 
treatment were not covered at all. The bags were always located in the same 

position (NW comer) on each plot so for the natural treatment the bags were 

under whatever wood chip was present in this part of the plot. 

DATA COLLECTION 

The bags were put out on the plots in October 2001 and one bag was then 

removed from each plot in October of the four subsequent years (2002,2003, 
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2004 & 2005). These samples were oven dried at 100°C for 24 hours and 

weighed to obtain the dry weight of wood chip. This figure was then subtracted 
from the estimated dry weight calculated at the beginning of the experiment to 

give a percentage wood chip remaining and hence a measure of chip 
decomposition. 

An attempt was made to collect temperature data on each of the plots where the 

chip decomposition bags were located. Tinytag Transit temperature loggers 

(Gemini Data Loggers (UK) Ltd) were used and placed immediately adjacent to 

the chip bags. For example loggers on the triple, double, normal and natural 
treatment plots were underneath different depths of wood chip and the loggers 

on the all removed treatments were placed on directly on the peat. 
Unfortunately a large number of problems were encountered with these loggers 

due to malfunction and feral sheep damage. As a result the data set had too 

many missing data points for any sensible analysis to be completed. 

DATA ANALYS IS 

The percentage of woodchip remaining in each of the four years was subjected 
to linear mixed effects modelling (Pinheiro and Bates 2000) to test the effect of 

chip depth treatment on wood chip decomposition. The method is described in 

detail in section 4.2.1 (Data analysis, univariate analysis) and the same model 

was fitted although the data were not transformed. The series of models were 
fitted all of which showed no significant difference between treatments. The 

residual error distribution was normal. 

4.2.3 Chip depth and vegetation change on the 6 year chronosequence of 
monitoring quadrats 

DATA COLLECTION 

The number and diameter of all tree stumps on each of the monitoring quadrats 
was recorded when the quadrat was established. In order to transform these 
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data into an estimate of wood chip on each quadrat the relationship between 

trunk diameter just above ground level and the weight of the trunk and branches 

was determined by doing a calibration using 15 trees. A range of different sized 

sample trees were chosen to be destructively sampled. They were harvested 

using a conventional harvesting machine and then cut into manageable pieces 
(approximately 1m lengths). The diameter just above ground level was recorded 

and the weight of the tree was determined by weighing each piece of the trunk 

and the branches. 

DATA ANALYSIS 

The stump diameter vs. tree fresh weight calibration was calculated using linear 

regression. The diameter measurement was converted to radius cubed (r) 

because the relationship between diameter increase and fresh weight increase is 

most similar to a cubic relationship. The regression model was then used to 

convert all the stump diameters on each monitoring quadrat to fresh weight of 

wood chip and a total weight for each monitoring quadrat was calculated. The 

normal, double and triple wood chip treatments in the chip depth experiment 

were equivalent to 8,16 & 24kg woodchip/m3 and these were used to categorise 
the monitoring quadrats (flailed only) by the estimated weight of wood chip on the 

quadrat. Up to 12kg/m3 was classed as normal, between 12-20kg/m3 was 

classed as double and over 20kg/m3 was classed as triple. 

The wood chip weight categories were used as a 'treatment' factor within a PRC 

analysis on the 6 year chronosequence of monitoring quadrats. The heather 

control monitoring quadrats were included as the control / reference data (a 

mean of all four sample years was used for each of the six time points). It was 
not possible to do a single permutation test of the whole PRC as described by 
Leps and Smilauer (2003) where each annual assessment on each quadrat is 

treated as a split plot and whole plots are permuted at random but split plots are 
not permuted. This is because the data used represented a chronosequence of 
years so quadrats in year 0 are not the same as those in year 5. Instead of the 
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split plot approach the plots were considered as a time series and permuted 

using cyclic shifts. The resulting diagram can be interpreted as other PRC 

diagrams but the overall Monte Carlo test is not valid. However, the mulitple 

comparison testing of each treatment at each time point on the PRC is still valid 

as this is done in a separate RDA analysis, as described in section 4.2.1 

(multivariate analysis) above. 

A linear regression model was fitted to each of the 6 year chronosequence PRC 

curves in order to predict the number of years for the three treatments to reach 

the 'target' vegetation (where the modelled line intersects the 'target' vegetation 

line on the PRC). Confidence intervals for each of the PRC curves were 

calculated as detailed in Zar (1996) for an inverse prediction procedure. 

4.3 Results 

4.3.1 Wood chip depth experiment 

Linear mixed effects modeling 
69 species were recorded in the experimental plots over the four sampling years 
including the pseudo species; tree remains, bare peat, water and rock. Of these 

only 6 species were found (>1% cover) in 70% or more of the experimental plots 

in the final assessment year, 2004. These include Calluna vulgaris, 

Campylopus sp. Deschampsia flexuosa, Eriophorum vaginatum, Hypnum 

cupressiforme, Polytrichum sp. 

The LME models showed that four of the species (C. vulgans, Campylopus sp., 
E. vaginatum, Polytrichum sp. ) demonstrated significant differences in response 

over time between treatments. The other two species (D. flexuosa and H. 

cupressiforme) increased in cover over the four year experiment but no treatment 

effect was evident. The composition of each LME model is summarised in Table 

4.2 along with the analysis of variance p-value for the treatment effect and the 
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treatment*year interaction effect. The necessity of accounting for first-order 

temporal correlation and/or differences in treatment variances in the model, as 
well as the P-values for the orthogonal contrasts are also detailed in Table 4.2. 

Of the four species that showed a treatment and treatment*year interaction effect 
C. vulgaris and Polytrichum sp. showed the most dramatic differences between 

treatments with all treatments significantly different from each other except 

normal and the natural control. The absolute differences between treatments 

were as might be expected with the most rapid increase in the species cover 

seen on the all chip removed treatment followed by the normal, double and triple 

treatments (see Figure 4.2 for the C. vulgaris response curves). The response of 
E. vaginatum (Figure 4.3) was fairly similar to that of C. vulgaris although growth 

occurred more rapidly on the natural control (Tmt 4) compared with the normal 
treatment (Tmt 1) (p=0.0245). The differences between other treatments were 

not as great and the only significant difference was between normal and 
double/triple. This indicates that the response was the same on the all removed 

and normal treatments and the same on the double and triple treatments. 

Campylopus sp response (Figure 4.4) was noticeably different from the other 
three species showing a unimodal response to the shallower wood chip depth 

treatments/control (all removed, normal & natural). In general the cover of 
Campylopus sp increased very quickly in the first year, for example 0 to 30% in 

some plots, and then started to decrease in years 2 or 3. The response to the 

double and triple treatments was exponential as for the other species. 
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Principle Response Curve Analysis 
PRC diagrams for chip depth treatments with the natural treatment as a baseline 

reference (Fig. 4.5) and the heather control quadrats as a baseline reference 
(Fig. 4.6) concisely show differences in plant community development over time. 

The first analysis (Fig 4.5) shows all the treatments moving together from three 

distinct points. The 'all removed' treatment starts with no wood chip and 

complete cover of bare peat, giving high PRC1 scores. The 'normal', 'double' 

and 'triple' treatments all start with 100% cover of wood chip, and the same low 

PRC1 score in 2001, whilst the natural treatment is a mixture of woodchip, bare 

peat and litter (zero baseline in Fig. 4.5). It is clear that the 'double' and 'triple' 

woodchip treatments are moving more slowly towards a fully developed 

vegetation but that they are still moving in the same direction. By year 3 (2003) 

the 'double' woodchip treatment is not distinct from the 'normal' and 'natural' 

treatments but the 'triple' woodchip treatment is still significantly different from 

most of the other woodchip treatments in years 3 and 4 (2003 & 2004), although 
it overlaps with the double woodchip treatment (Tmt 2) to some extent. Change 

on the 'all removed' treatment is occurring at a relatively fast pace compared with 
the other treatments but this is to be expected as there is no woodchip restricting 

germination and growth of individual plants. 

The analysis that includes the heather control monitoring quadrats as a reference 
(Fig. 4.6) shows a similar pattern as Figure 4.5 except that all the treatments are 

now, understandably below the reference line. The differences between 

treatments are still the same but the diagram provides a clear picture of how far 

the treatments are from becoming mature blanket bog vegetation. 
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Figure 4.5: PRC diagram and species weights for all chip depth 
treatments with 'natural' included as the reference. At each year PRC 
1 values differ significantly (p<0.008) between treatments that do not 
share the same letter code (a-c). Shared or omitted letter codes 
denote contrasts that do not differ significantly. 

Figure 4.6: PRC diagram and species weights for all chip depth 
treatments with heather control monitoring quadrats included as the 
reference. At each year PRC 1 values differ significantly (p<0.008) 
between treatments that do not share the same letter code (a-d). 
Shared or omitted letter codes denote contrasts that do not differ 
significantly. 
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4.3.2 Wood chip decomposition 

There was no significant difference (p=0.3177) in chip decomposition rate 
between the four different chip depth treatments; all removed, normal, double 

and triple. Similarly there was no significant difference (p=0.3213) between the 

normal and natural control treatment. The similarity in chip decomposition rate 
between the different treatments is highlighted in figure 4.7 below. 
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4.3.3 Chip depth and vegetation change on the 6 year chronosequence of 

monitoring quadrats. 

TRUNK RADIUS/TREE FRESH WT CALIBRATION 

The regression model that defines the relationship between tree radius at ground 

level (r) and total fresh wood chip weight (Figure 4.8) for 15-20 year old Sitka spruce 

explains 86.7% of the variation (p = 0.0001). The model was used to predict chip 

fresh weight for each of the flailed monitoring quadrats using the trunk radii figures for 

all trees within each quadrat. These predictions provided a good range of chip fresh 

weights across the 45 quadrats allowing each of the quadrats to be categorised into 

one of three chip depth levels (normal, double and triple, as used in the chip depth 

experiment). There were nearly equal numbers of quadrats in each 'chip depth' 

category (16 normal, 15 double and 14 triple). 

Fresh Weight = 15.6228 + 0.0665980 x r3 
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Figure 4.8: Regression model showing the relationship between tree radius at ground level (r3) and 
total fresh weight of 15-20year old Sitka spruce trees. 
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PRINCIPLE RESPONSE CURVE ANALYSIS 

The PRC diagram for the six year chronosequence of monitoring quadrats (Figure 

4.9) clearly shows how the vegetation development after tree chipping is moving 
towards the existing heather vegetation on site. Species that are dominant in an M19 

plant community (Rodwell et al. 1991) including C. vulgaris, Pleurozium schreberi and 
Sphagmum capilifolium have high PRC weightings, near the heather baseline 

reference, and all three of the wood chip weight/depth categories are moving in the 

same direction. Apart from a small discrepancy at the beginning (before year 2) the 

movement toward heather vegetation is consistent for all three treatments and in the 

expected order with 'normal' most similar to the mature vegetation then `double' and 
'triple'. A significant difference between the treatments emerges in year 2 but starts 
to disappear again in year 5. 

Figure 4.9: PRC diagram and species weights for the six year 
chronosequence of monitoring quadrats using wood chip weight categories 
(normal, double, triple) as a treatment factor and heather control quadrats 
as the reference. Significant differences (p<0.008) are indicated by different 
letters at each time interval for each treatment. 
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By fitting a linear regression model to each of the PRC curves in figure 4.9 (Figure 

4.10) it is possible to predict the number of years that it might take for the normal, 
double and triple treatments to reach a state of mature blanket bog vegetation, 

assuming that rates of change remain constant. These predictions are detailed in 

Table 4.3 along with the R-squared value for each regression model. 

Figure 4.10: Predicted time for blanket bog vegetation to develop under three different chip depths 
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Table 4.3. Predicted number of years, with 95% Cl, for mature vegetation to develop under the normal 

(<12kg/m2), double (12 -20 kg/m2) and triple (>20kg/m2) wood chip quantities. 

Woodchip 

quantity 

R-squared 

value 

Predicted no 

of years to 

mature veg. 

95% Cl Shortest time 

to mature 

vegetation 

Longest time 

to mature 

vegetation 

Normal 98.6% 7.17 0.93 6.25 8.10 

Double 99.7% 8.86 0.43 8.43 9.29 

Triple 99.3% 10.44 0.77 9.66 11.21 
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4.4 Discussion 

VEGETATION DEVELOPMENT 

The restoration of blanket bog vegetation, following 'in situ' chipping of Sitka spruce, 

planted on former blanket bog habitat, appears to be achievable based on these 

findings. However the size of the trees, pre clearance, will affect the time taken for 

the vegetation to reach the target state. As the size of the trees increase, the volume 

of wood chip left on site after chipping increases and this almost certainly has an 
inhibitory affect on vegetation development. After four years the plant community on 
the all chip removed treatment was considerably closer to existing mature blanket bog 

vegetation than any of the chip treatments. The three chip treatments; normal, 
double and triple had a predictable effect on plant community development with all 
treatments moving in the same direction but at different rates. The predicted time to 

the target plant community under treatments normal, double and triple is 7,9 and 
10.5 years respectively although these are estimates based on rates of change being 

constant in the extrapolated area. It is possible that rates of change become slower 
the closer the vegetation succession gets to the blanket bog climax, as with other 

plant communities (Myster and Pickett 1994; Foster and Tilman 2000), so these 

estimates should be considered as estimates at the lower end of the potential 
timescale. 95% confidence limits indicate that these predicted times to target 

vegetation are significantly different between different chip depths. 

The other factor to consider in the restoration of blanket bog vegetation following tree 

clearance is time since the plantation achieved full canopy cover. When Sitka spruce 

plantations achieve canopy cover light is totally excluded from the ground and as a 

result ground vegetation disappears (Taylor 1991). The length of time that vegetation 
has been absent is likely to affect the composition and size of the propagule bank and 
this may have implications for the development of the plant community. 

There have been a number of studies done on seed banks beneath conifer 

plantations of different ages (Hill and Stevens 1981; Granstrom 1988; Pywell et al. 

103 



2002) although only one of these was done on a blanket bog site (Hill and Stevens 

1981). There was undoubtedly a decline in the size of the seed bank with age of 

plantation, although there were still viable seeds (C. vulgaris, E. tetralix and Carex sp. ) 

after 43 years. The other two studies were done on heathland sites and the results 

are conflicting, with studies in the south of England indicating a significant exponential 
decline in the log transformed number of viable C. vulgaris and Erica sp. seeds 
(Pywell et al. 2002). Despite this there were still a small number of viable seeds in 

the seed bank 70 years after the site was planted. In Sweden a similar study showed 

no trend in the decline of seed densities with forest stand age (Granstrom 1988) 

although site conditions may have differed significantly from the previous study. 
Dominance of C. vulgaris seed in the seed bank was a result common to all of the 

studies and in addition the seed banks were relatively species poor, even under the 

younger forest stands. Apart from C. vulgaris the species that seemed to have some 
longevity within the seed bank included Molinia caerulea, Erica tetralix, Erica cinerea, 
Juncus effusus, Juncus squarrosus, Rumex acetosella, Vaccinium myrfillus and 
Potentilla erecta (Chippindale and Milton 1934; Hill and Stevens 1981; Pywell et al. 
2002). 

Many bryophyte species have the capacity to form a persistent spore bank (Sundberg 

and Rydin 2000; Ghorbani et al. 2007) and some species, notably species from the 

genus Sphagnum, can regenerate vegetatively from fragments of leaf or stalk as well 

as from spores (Clymo and Duckett 1986; Rochefort et al. 1995). Vegetative 

regeneration has occurred from sphagnum bog peat cores taken up to 30cm below 

the surface vegetation and representing an age range from 25-60 years (Clymo and 
Duckett 1986). Some species of leafy liverwort also grew from these peat cores 

although it was not clear whether they grew from spores or vegetative propagules. It 

is also suggested that some vascular plants including E. vaginatum and Vaccinium 

myrtillus regenerate from vegetative parts found in mires and that this may be the 

most important method of plant regeneration following disturbance (Jauhiainen 1998). 

Van der Valk and Davis (1979) suggest that a more appropriate term for a wetland 

seed bank would be a 'propagule bank' and it is thought that the cool, dark and 
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anaerobic conditions, coupled with the sterility of very acid sphagnum peat may 

account for seed, spore and vegetative propagule longevity (Clymo 1965; Leck 1989). 

Quantity of woodchip on the ground and time since the plantation achieved canopy 

closure is closely linked but it appears that the depth of woodchip is probably more 

significant in determining how quickly a blanket bog community develops. Some 

species never become part of the propagule bank despite being common in the 

above vegetation (Chippindale and Milton 1934; Miller and Cummins 2003). As soon 

as canopy cover is achieved and the ground vegetation disappears a number of 

species are rapidly lost from the propagule bank (Chippindale and Milton 1934; Hill 

and Stevens 1981; Pywell et al. 2002; Ghorbani et al. 2007). Those species that 

have any long term viability in the propagule bank are likely to remain viable, at some 
level, for a number of decades and at least for the first rotation (as is the case on the 

tree clearance area), which is 45-55 years for Sitka spruce (Anonymous 1981). 

Provided conditions are conducive to germination and growth after the trees have 

been removed, these species will be the first plants to grow and influence plant 

community development. Seeds and spores will undoubtedly move into a newly 

cleared area from neighbouring mature vegetation, either through wind or animal 
dispersal, but this will depend on the dispersal mechanism which may not be 

immediate. It is likely, therefore, that ingression of seeds will increase species 
diversity of the developing plant community over a reasonably long period of time. 

On the experimental plots the average number of species found on each of the 

treatments; natural, all removed, normal, double and triple, one year after the 

treatments were applied, were 9.7,13.4,10,8.4 & 3.6 respectively. Given that the 

propagule bank and distance to existing seed sources would have been roughly the 

same for all the plots it is clear that increasing wood chip depth had an inhibitory 

affect on plant germination and establishment. Potentilla erecta, Hypnum 

cupressiforme, Campylopus sp. and Rhytidiadelphus loreus were found on all of the 

treatments one year after the treatments were applied. All these species have 

demonstrated persistence in a peat propagule bank (Hill and Stevens 1981; Ghorbani 
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et al. 2007) and it appears that they do not require much, if any, sunlight to stimulate 

germination and growth. C. vulgaris is well known for requiring sunlight to stimulate 

seed germination (Pons 1989) but this species was certainly present on some of the 

deepest chip depth treatment plots in year one. It can only be assumed that seed 
had worked its way into the chip layer during the raking and re-distribution of chip as 

experimental treatments. 

There were four plant species, Molinia caerulea, Vaccinium myrtillus, Juncus 

bulbosus and E. vaginatum, that only occurred consistently in year one on the all chip 

removed treatment. The first three species could have germinated from seed 

although if this was the case then it should have appeared on the other treatments 

which it did not. E. vaginatum shows no persistence in the seed bank (Miller and 
Cummins 2003) so either seed was brought in by wind or the plants grew from 

vegetative propagules as described by Jauhiainen (1998). Raking of chip from the 

experimental plots did involve a considerable amount of disturbance to the peat 

surface and this may have exposed vegetative propagules. Since no wood chip was 

returned to the 'all removed' treatments all vegetative propagules at the peat surface 

would have been exposed to a high level of light and peat surface warming. These 

are the conditions that triggered immediate growth from vegetative propagules in 

degraded mire peat samples and this method of propagation was thought to be the 

most important for restoration of degraded mire (Jauhiainen 1998). 

WOOD CHIP TREATMENTS AND FOREST AGE/SIZE 

The chip depth treatments, normal (8kg/m2), double (16kg/m2) and triple (24kg/m2) 

roughly equate to a Sitka spruce plantation that is 20 years old, with a yield class of 
10,12 & 14 respectively. The UK average yield class for Sitka spruce is 12 with a 

range between 6 and 24 (Hibberd 1991) and the range on the tree clearance area 

was thought to be 6-14. An alternative way of looking at what the chip depth 

treatments represent would be to fix the yield class at 10 and the normal, double and 
triple chip treatments would represent trees at 20,25 & 30 years old. 
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Yield class, the maximum mean annual increment of one hectare of forest plantation 
(m3/ha/yr), is determined from top height/age curves published by the Forestry 

Commission (Anonymous 1981). The top height in a stand of trees is a very 

specifically defined measurement that is calculated by selecting a defined number 
(depending on stand area) of trees that have the largest diameter at breast height. 

The average height of these trees is the top height of the stand. Top height data 

were obviously not available for the different chip depth treatments but height data 

was collected for the trees used in the trunk radius/tree fresh weight calibration 

exercise. These data were used to determine an approximate yield class for 20 year 

old trees that would have produced the three chip depth treatments. The majority of 

the trees on the tree clearance area were 20 years old when they were cleared. 

It was not considered necessary to have a chip depth treatment that represented 

older trees because by this time it would probably be economically viable to extract 
the timber for paper pulp, particle board or biomass heat/electricity generation 
(Sheridan pers. comm. ). This would be a more cost effective way of clearing forest to 

restore blanket bog as some of the costs would be covered by selling the timber. 

Similarly, a chip depth treatment to represent younger trees or lower yield classes 

was not included as the trees are unlikely to have achieved canopy cover. As a result 

a certain amount of ground vegetation would still be present. In this situation chip 
depth and distribution would be patchy and unlikely to inhibit growth or germination to 

a great extent. 

SPECIES RESPONSE 

At a plant community level the vegetation on the experimental plots appear to be 

moving in the same general direction, irrespective of treatment. A DCA ordination 

was done using only 2004 data to explore the possibility that different treatments 

might lead to the development of different plant communities. This ordination 

produced no distinct groups of vegetation on either the first or second axis and this is 

not too surprising given that all the plots were in the same location and likely to 

develop into a similar plant community. 
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Given that the plant community is moving in the same direction on all the treatments, 

albeit at different rates, one might expect the same sort of response from individual 

species within the plant community. To a large extent this was the case with the 

cover of C. vulgaris, P. commune/formosa, E. vaginatum, D. flexuosa and H. 

cupressiforme all increasing over the four year experiment. There were treatment 

differences for the first three species, particularly C. vulgaris and 
P. commune/formosa, with the increase in cover occurring more slowly as the wood 

chip became deeper. This was also the case with E. vaginatum but the treatment 

differences were not so obvious. It seems highly likely that these three species 

appeared from the propagule bank and that they all require some level of light to 

initiate germination and growth. As the chip depth increases, levels of light reaching 
the peat surface decrease having an inhibitory effect on growth and establishment. 

Deschampsia flexuosa and Hypnum cupressiforme showed no treatment differences 

and cover increased at exactly the same rate on all treatments. Interestingly enough 

neither of these species appeared on any of the plots until year two suggesting 

perhaps that they did not originate from the propagule bank but were introduced 

through wind dispersal from nearby mature blanket bog vegetation. D. flexuosa seed 
is noted for its transient nature within a seed bank, rarely persisting for longer than 

one year (Hodgson et al. 1995) so introduction through wind dispersal seems the 

most obvious explanation. There is no information available relating to dispersal of H. 

cupressiforme spores but it is an extremely common moss (Watson 1981) so it is 

highly likely that the species produces and disperses spores very effectively. If seeds 

and spores of D. flexuosa and H. cupressiforme were introduced during the first year 
then the chip depth treatment may be irrelevant if the seeds/spores could germinate 
in the woodchip. This is certainly possible as the chipping process projected wood 

chip down towards the ground at high speed so there would inevitably be some 

mixing of peat and woodchip and this would provide a substrate for seed and spore 

germination. 
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The response of Campylopus sp was slightly different to the other species 
investigated although it was in keeping with reports that this genus is a primary 

coloniser of bare peat (Watson 1981; Equihua and Usher 1993). On the shallower 

chip depth treatments (all removed, normal and natural) Campylopus sp. showed a 

unimodal response, increasing in cover exponentially during the first two years and 
then starting to decrease in years three or four. On the deeper chip depth treatments 

(double and triple) the species increased more slowly and did not start to decrease in 

cover during the four year experiment. Given the response curves for the other five 

species it seems likely that Campylopus sp. colonised areas of bare peat very quickly 

and then started to die out as other species began to compete for resources. On the 

deeper chip treatments the colonisation potential was limited and other species did 

not increase in cover as quickly so there was less competition for resources. 

WOOD CHIP DECOMPOSITION 

The rate of wood chip decomposition did not appear to be influenced by chip depth in 

any way. This is surprising given that microclimatic factors, such as moisture and 
temperature have been shown to have a high level of influence on the decay rate of 

wood (Abbott and Crossley 1982) and forest litter (McClaugherty et al. 1985). 

Although the TinyTag temperature loggers were unreliable and did not provide a data 

set that was suitable for statistical analysis, they did provide an indication of the 

temperature fluctuations on the all chip removed and shallow chip treatments 

compared to the deeper chip treatments. For example on a warm summer day 

surface temperatures frequently reached 35-40°C on the all chip removed treatment 

but never exceeded 15°C on the triple chip treatment. In addition, wood chip (in the 

chip decomposition bags) on the all chip removed treatment was found to be 

completely dry on several occasions in the summer but on the triple chip treatment it 

never dried out. However, it appears that the most important factor affecting 
decomposition of wood and woody litter is the level of microbial abundance and 

activity (Abbott and Crossley 1982; McClaugherty et al. 1985). Other factors such as 
temperature and moisture influence decomposition because they affect microbial 

activity. This suggests that the temperature and moisture fluctuations on the different 
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chip depth treatments were not for sufficiently long periods to significantly affect 

microbial activity. Weather conditions on the tree clearance area were generally wet 

and cool for most of the year which is typical for the west of Britain (Lindsay 1995) so 
the extreme temperatures recorded on the Tiny Tag loggers were only on hot sunny 
days, which are relatively infrequent in Kintyre. If the climatic conditions were 
different with lower summer rainfall then perhaps the wood chip decomposition rates 

would differ between treatments. 

Although decomposition of woodchip occurred at the same rate the impact of this on 
the different treatments may have been different. Romero et al (2005) found that the 

first two month period following deposition of coarse woody debris in mangrove forest 

was characterized by rapid loss of mass as labile components were leached out of 
the wood. After this initial period and for a few years the wood served as a sink for 

nitrogen and phosphorus (Romero et al. 2005) with microbial activity fuelled by 

nutrients from substrates surrounding the wood. If there had been a similar decay 

response for wood chip on the experimental plots the all chip removed treatment 

would not have received the initial pulse of nutrients leached from the wood chip but 

similarly a higher level of nutrients would be available for plant growth throughout the 

first few years following tree clearance. As the amount of wood chip increased on 

chip depth treatments double and triple this may well have increased the size of the 

nitrogen and phosphorus sink. Further research would be required to determine what 

ecological processes occur when Sitka spruce wood chip decomposes on blanket 

bog but if nutrients are tied up in the decay process then growth of vegetation may be 

inhibited by nutrient supply as well as the physical obstruction posed by a layer of 

wood chip. This may help to promote the development of an ombrotrophic vegetation 

community which is known to have a very low nutrient requirement (Anderson 2001). 

Restoration of forested blanket bog sites through 'in situ' chipping of trees is certainly 

affected by tree size. This is mainly due to the quantity of wood chip that is left on 
site rather than the impact that tree size has on ground vegetation and the associated 

propagule bank. The physical barrier that is created by the wood chip inhibits many 
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species although different species respond differently to chip depth and this is thought 

to be due to their individual requirements for light to stimulate growth. As a result tree 

size affects the time taken for a blanket bog plant community to establish but it 

appears to have no effect on plant community composition. 
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CHAPTER 5 

MICROSITE VARIATION AND THE EFFECT ON GERMINATION 

AND GROWTH OF CALLUNA VULGARIS 
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5.1 Introduction 
Factors affecting species distribution at a small scale (1 x1 metres) have been 

described in terms of seed availability / dispersal and the presence of suitable micro- 

sites for germination and growth (Munzbergova and Herben 2005; Calvino-Cancela 

2007). There is a gradient from full seed limitation to full micro-site limitation, with 

each species population lying somewhere in between (Munzbergova and Herben 

2005). C. vulgaris is known to produce copious amounts of seed (Legg et al. 1992; 

Barclay-Estrup and Gimingham 1994) which accumulates in the soil to form a long- 

lived seed bank (Granstrom 1988; Miller and Cummins 2003). Cummins and Legg 

(1995) estimated a lifespan for C. vulgaris seed of 150 years in blanket peat. 
Although no work has been done to investigate the spatial distribution of C. vulgaris 

seed in blanket peat it seems highly likely that it will be ubiquitous where the species 
has been a dominant component of the vegetation cover within the recent history of 
the site. 

The term micro-site has been used to describe the local growing environment for 

seeds and seedlings (Dalling and Hubbell 2002; Calvino-Cancela 2007; Balogh 

Benard and Toft 2008) and it includes several different aspects of the environment, 

ground substrate conditions, the influence of other plant species and the fine scale 
topography, or micro-topography of the ground surface. Micro-topography describes 

soil surface variation encompassing both vertical relief (variation in absolute 

elevation) and surface roughness (Moser et al. 2007). Micro-topography can 
influence hydrology, physiochemistry and other aspects of micro-site variability and it 

is therefore important in determining vegetation patterns (Moser et al. 2007). The 

germination requirements of species vary widely and consequently, the array of 

micro-sites offered on any natural surface will favour some species more than others 
(Harper et al. 1965). In addition it is important to remember that the nature of micro- 

sites will change throughout the year as weather conditions vary (Sheldon 1974). 
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A number of researchers have investigated the effect of micro-topography on seed 

germination and seedling growth of a wide range of species (Harper et al. 1965; 

Sheldon 1974; Calvino-Cancela 2007; Balogh Benard and Toft 2008) and small 

changes in seed placement, in relation to micro-topography, can have dramatic 

effects on germination and establishment (Harper et al. 1965; Sheldon 1974). It is 

particularly important for surface lying seeds (Sheldon 1974) which are constantly 

subjected to weathering processes such as drying, wetting and frost. C. vulgaris 

requires some sunlight to stimulate germination (Gimingham 1972) so seeds will only 

germinate if they are on or close to the peat surface. It also depends on an adequate 

and maintained water supply (Gimingham 1960) so a ground substrate that reduces 
the chances of extreme drying is likely to improve survival for germinating seeds and 

new seedlings. This was shown by Equiha and Usher (1993) when investigating the 

effect of carpets of Campylopus introflexus on germination and growth of C. vulgaris. 
Presence of the moss had a significant negative impact on germination but a positive 

effect on post germination performance of seedlings. The depressive effect of the 

moss on germination was because a large number of seeds slipped into the moss 

carpet and thus were deprived of light. This indicates that although moss carpets of 
C. introflexus offer a potential water supply buffer for seedlings they do not provide 

good micro-sites for germination (Equihua and Usher 1993) and this is likely to be the 

case for a number of other moss species. 

Increased species diversity is often associated with greater environmental 
heterogeneity (MacArthur and MacArthur 1961; Tilman 1982) and micro-topographic 

variation has been strongly correlated with plant distribution, performance of 
individual plant species and floristic diversity (Harper et al. 1965; Sheldon 1974; 

Eldridge et al. 1991; Vivian-Smith 1997). Small scale (1-3cm) variability in micro- 
topography on experimental wetlands produced highly significant differences in plant 

community structure with diversity, richness and evenness consistently greater in 

communities with more heterogeneous micro-topography (Vivian-Smith 1997). 
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No specific research has been done to explore the effect of micro-topography on 

germination and growth of C. vulgaris although work has been done on a variety of 

other plant species either to investigate the behaviour of seeds (in general) in relation 

micro-topography (Harper et at. 1965; Sheldon 1974) or to investigate the 

establishment of specific species, usually in and environments (Eldridge et al. 1991; 

Nash et al. 2004; Calvino-Cancela 2007; Balogh Benard and Toft 2008). There is 

also a considerable body of research relating to wetland micro-topography in restored 

wetlands both in relation to wetland function (Bruland and Richardson 2005) and 

species richness or diversity (Vivian-Smith 1997; Moser et at. 2007). In many 

ecological studies micro-topography is described qualitatively with descriptors such 

as hummock, hollow and flat (Bruland and Richardson 2005), windward and lee 

aspects of interspaces between shrubs, under shrub canopies and under snag 

canopies, respectively (Balogh Benard and Toft 2008) and 'open ground', 'underneath 

female shrub', 'underneath male shrub' (Calvino-Cancela 2007). Alternatively, micro- 

sites have been simulated at a relatively large scale by applying treatments such as 
litter addition or removal and ground disturbance (Edwards and Crawley 1999; Dalling 

and Hubbell 2002). Relatively few ecological studies have measured micro- 
topography quantitatively (Werner and Zedler 2002; Nash et at. 2004; Moser et al. 
2007) although these investigators have used a variety of techniques that were 

originally developed for use in tillage and water erosion research where it is important 

to measure soil surface variation at a very small scale. The most appropriate method 
for calculating surface roughness at the scale of a 1x1m quadrat on blanket peat is a 

method used by Moser (2007) where the spatial distance (up and down slopes) 
between two points is divided by the planar distance (from one point to another 

assuming they are at the same relative height). 

The aim of this investigation was two fold, firstly to determine how differences in 

micro-site influence germination, growth and survival of C. vulgaris seedlings. The 

description 'micro site' is used to define small scale topographical variations in the 

peat surface (micro-topography) as well as the dominant vegetation type which will 
influence resource availability for developing seedlings. Micro-topography and 
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dominant vegetation was assessed at the cell level (1 Ox10cm) and analysed at both 

the cell and quadrat level (1x1 m). Since micro-topography, at the quadrat level, is a 
relatively complex thing to measure five different methods for quantifying the soil 

surface height diversity are compared. The assumption that C. vulgraris seed is 

ubiquitous across the tree clearance area forms the basis of this work. 

The second aspect of this investigation was to explore the hypothesis that 

coexistence is facilitated in heterogeneous environments (Tilman 1982; Keddy 1984; 
Sterling et al. 1984) by investigating the relationship between species richness or 
diversity of plant communities and the mico-topography of the peat surface. Again 

the five measures of soil surface height diversity were used to explore the relationship 
between micro-topography and species diversity. 

5.2 Materials and Methods 
DATA COLLECTION 

Sampling design, quadrat set up and relocation is described in detail in Section 2.3.1. 
In 2002 a series of micro-site assessments were made in each of the middle mini- 

quadrats on flailed and harvested ground (48 mini-quadrats). A 1x1 m quadrat with 
100 10x10cm cells, on adjustable legs, was placed over the mini-quadrat location and 
a spirit level used to adjust the legs so that the quadrat was level above the 

miniquadrat. A1m measuring stick was used to measure the vertical distance from 

the level quadrat to the ground. 144 measurements were taken, one in the middle of 

each of the 100 10x10cm cells of the quadrat with an additional measurement 

creating a buffer around the quadrat, essentially making the quadrat 120x120cm in 

size. The measured distances were adjusted so that the lowest point of each 

quadrat, within the 120 x 120 area, was recorded as zero. Measurements were 
recorded in height bands with each band representing a 5cm range so 0=0,5=1-5cm, 
10=6-10cm and so on providing a micro-topographical map of each quadrat, as 
shown in Figure 6.1 below. In addition to the micro-topography data the dominant 

plant species or ground type (bare peat, litter, tree remains) was recorded for each of 
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the 100 10x10 cells and where present the number of Calluna vulgaris seedlings was 

counted. In 2004 a record was made of the presence or absence of C. vulgaris plants 
in each of the 100 1 Ox1 Ocm. 

a) b) 

Figure 6.1a & b: Microtopographical map of a quadrat a) Two dimensional diagram `looking down' on to 

the quadrat, including heights relative to the lowest point (zero) 

b) Three dimensional diagram showing variation in heights relative to lowest point. 

DATA ANALYSIS 

The data were analysed at two different scales, first at the quadrat level and then at 

the individual cell (1Ox1Ocm) level. 

Quadrat level 

A series of analyses or calculations were performed in order to `characterise' the 

micro-site profile of each quadrat. Firstly, ordination was employed as a data 

reduction tool to provide a predictor variable for regression analysis (Beals 2006; 

Watts et al. 2008). In general ordination is used descriptively to explore continuity of 

species change within a plant community but here the categorical height data for 

each 1Ox1 Ocm cell was incorporated into a DCA analysis with height categories 

treated as species and quadrats as samples. A similar analysis was done using the 

dominant species/ground cover data and the DCA Axis 1 and 2 scores for each 
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analysis were used as `quadrat characters' of micro-topography and dominant 

species composition respectively. Secondly, the 'roughness' (Moser et al. 2007) of 

each quadrat was calculated by dividing the spatial distance between all points in the 

quadrat by the planar distance. Each height record was taken in the centre of each 

10x10cm cell so the planar distance between points was a constant 10cm. The 

approximate spatial distance was calculated using Pythagoras theorem where the 

absolute height and length of an equilateral triangle provides the distance of the slope 

(see Figure 6.2 below). 180 spatial and planar distances were calculated within each 

1x1m quadrat, between all points along 10 rows and down 10 columns of the quadrat. 

Surface roughness is calculated using the formula below. 

Surface roughness =I spatial distances / Y_ planar distances 

Planar distance (10cm) 

Height difference 
between points 

Approx. spatial difference 

IF I between points calculated 
using Pythagorus theorem 

Figure 6.2: A schematic diagram showing the measurements required for the calculation of surface 

roughness. 

Lastly, height diversity, evenness and richness of each quadrat was calculated using 

the Shannon diversity Index and Shannon evenness index shown below. Height 

richness equates to the total number of height bands in each quadrat. 

H' = -yLp' In p, E= (-jp; In p; )/n height bands 

Where p, is the proportion of heights in each i'th height band 
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The micro-site profile characters are summarised in Table 6.1 and different 

combinations of these characters were included within a series of multiple regression 

analyses to explore the effect of micro-site on total number of C. vulgaris seedlings in 

2002 (cv seed), C. vulgaris presence in 2004 (cv present) and species 
diversity/richness of the plant community in 2004 (species H and species R 

respectively). The species diversity and richness indices were calculated using the 

percentage cover data for all species present in the quadrat in 2004. 

Table 6.1: Summary of the quadrat-level microsite profile characters 

Microsite profile character Description 

DCA_htl Axis 1 scores of DCA analysis including quadrat 
surface height data 

DCA_ht2 Axis 2 scores of DCA analysis including quadrat 
surface height data 

DCA vegl Axis 1 scores of DCA analysis including dominant 
vegetation data 

DCA_veg2 Axis 2 scores of DCA analysis including dominant 
vegetation data 

Roughness Spatial distance divided by planar distance 
between quadrat surface heights 

Height diversity (H) Shannon diversity index of proportion of heights 
in each height band 

Height evenness (E) Shannon evenness index of proportion of heights 
in each height band/total no. height bands 

Height richness (R) Total number of height bands 

Cell level 
A mean weighted height figure was calculated for each cell. This was done by 

subtracting the heights in each of the 8 neighbouring cells around a cell from the 

height in the cell. The mean weighted height was calculated from the 8 individual 

subtraction calculations. The dominant vegetation types in each cell were 

categorized into 11 different categories: 1. bare peat, 2. Campylopus sp, 3. C. vulgaris, 
4. Eriophorum vaginatum, 5. fine leaved grasses, 6. herbs, 7. litter, 8. moss, 9. tall 

sedges/grasses, 10. Sphagnum sp, 11. tree remains. 
Initially the number of C. vulgaris seedlings in each cell in 2002 was subjected to a 

series of generalised linear models with negative binomial or poission distribution in 
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order to control for the large number of zeros in the response data. Of the 4800 cells 

only 536 cells contained C. vulgaris seedlings. However, an appropriate residual error 

distribution could not be found due to zero inflation of the data which caused serious 

over dispersion in the residuals. As an alternative the data set was reduced to the 

536 cells that contain the C. vulgaris seedlings. These data were subjected to linear 

mixed effects modelling (Pinheiro and Bates 2000) to test the effect of weighted 

height and dominant vegetation category (micro-site) on the extent of C. vulgaris 

germination where germination had occurred in 2002. The number of seedling data 

were log transformed (log(seedling no +1)) and the LME model fitted included fixed 

and random effects. The model included weighted height and 11 levels of dominant 

vegetation category as fixed effects and quadrat as the grouping variable for 

estimating random effects. 

In order to explore the presence/absence of C. vulgaris (cv seedlings) in 2004 three 

versions of the data were subjected to binary regression analysis. The predictor 

variables included in each of the initial models were cv seedlings in 2002, dominant 

vegetation category, weighted height index and cv patch. Cv patch was calculated 

from the cv seedling data based on the assumption that if C. vulgaris seedlings exist in 

a cell they are more likely to grow in neighbouring cells because the micro-site 

characteristics are more likely to be similar. To calculate a cv patch index the total 

number of seedlings in each cell and the surrounding 8 cells were summed and 

divided by the total number of seedlings that could have been found in those 9 cells, 

which was 144. The largest number of seedlings found in any of the cells was 16 so 

the maximum potential number of seedlings in 9 cells was assumed to be 144. Cells 

that contained no seedlings could have a cv patch index if one or more of the 8 

surrounding cells contained seedlings. As a result the number of cells with a record 

of cv increased from 536 cells containing cv seedlings to 1542 cells that were within a 

'cv patch'. 

The first data set used in the binary regression analysis included those samples 

where C. vulgaris seedlings were present in 2002 (536 samples). Therefore this 
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analysis looked specifically at survival of seedlings between 2002 and 2004. The 

second data set included those samples with a cv patch index in 2002 (1542 

samples) so this analysis explored the relationship between micro-sites that are most 
likely to support C. vulgans germination and those that continue to provide a good 

environment for establishment and growth of C. vulgans seedlings. The final analysis 
included all cells (4800 samples) and provides a detailed picture of the types of micro- 

sites where C. vulgaris will become and will not become successfully established. The 

final analysis included data with approximately five times as many zeros as ones in 

the response variable and a large number of zeros in two of the predictor variables, 

cv seed and cv patch. However, this is not considered to be a problem as zero 
inflation of the residual error distribution and associated over dispersion of residuals 
does not exist with binary regression (Crawley 2002). 
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5.3 Results 

5.3.1 Quadrat level 

Figure 6.4 shows results for the cell height DCA analysis where Axis 1 represents an 
increasing range of variation in height across the quadrat as axis scores increase. 

Axis 2 distinguishes between quadrats that have high height diversity but the height 

bands do not exceed 45cm and quadrats of high height diversity including some 
heights between 50-75cm i. e. Axis 2 score decreases when height extremes (>50cm) 

are included in the quadrat. The ordination diagrams in Figure 6.5 shows results for 

the dominant vegetation DCA analysis where Axis I is related to cover of woodchip 

and scores are highest when most of the cells have tree remains as the dominant 

ground cover. Axis 2 defines a wet to dry wet gradient as scores increase. 
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Figure 6.4: Height x quadrat (species x sample) ordination biplot of DCA Anis I and 2 scores. 
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Results from the series of linear regression analyses (Table 6.2) indicate that 

germination and growth of C. vulgaris is influenced by micro-site both in terms of 
the micro-topography and dominant vegetation. Axis I of the cell heights DCA 

analysis provides a good predictor of cv presence in 2004 (model 2a) and is 

almost significant (P<0.057) as a predictor for cv seed (model 1 a). Axis 1 

represents increase in height variation and both cv seed and cv present are 

negatively correlated with increasing axis score. This indicates that quadrats 

with most height variation have fewer C. vulgaris seedlings in 2002 and less 

C. vulgaris in 2004. Axis 1 of the dominant vegetation DCA analysis (Fig. 6.5b) 

is a significant predictor of cv seed and cv presence (model 1a & 2a). The 

picture is similar for Axis 2, particularly for cv present (model 2a) and although it 

is non-significant as a predictor for cv seed there is some indication of an effect 
(P<0.1; model 1 a). Axis 1 represents increasing cover of tree remains and both 

cv seed and cv present are negatively correlated with increasing Axis 1 scores 
indicating that as cover of wood chip increases the likelihood of C. vulgaris 

seedlings growing and becoming established plants is reduced. Axis 2 

represents a wet to dry gradient with increasing scores and both cv seed and cv 

present show a positive correlation with increasing dryness. 
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Table 6.2: Details of linear regression analyses including model structure and results 

Model 

No. 

Response variable Predictors Significance 

of predictor 

Regression 

ANOVA 

p-value R-Sq F P 

la Log (cv seed +1) DCA_htl 0.057 44.0 8.46 <0.001 
DCA ht2 0.375 

DCA vegl 

DCA veg2 

<0.001 

0.095 

1b Log (cv seed +1) H 0.224 3.2 1.52 0.224 

1c Log (cv seed +1) E 0.294 2.4 1.13 0.294 

R 0.156 3.4 2.08 0.156 

1d Log (cv seed +1) Roughness 0.427 5.7 1.35 0.269 

2a Cv present DCA_htl 

DCA ht2 

0.006 

0.451 

46.5 9.34 <0.001 

DCA_veg 1 0.002 

DCA_veg2 0.002 

2b Cv present H 0.106 5.6 2.72 0.106 

2c Cv present E 0.086 6.3 3.08 0.086 

2d Cv present R 0.075 6.7 3.31 0.075 

2e Cv present Roughness 0.568 5.0 1.19 0.315 

2f Cv present Log (cv seed+1) <0.001 66.3 90.694 <0.001 

3a Species H DCA_htl 

DCA_ht2 

0.467 

0.793 

1.3 0.31 0.738 

4a Species R DCA_ht1 

DCA_ht2 

0.997 0 0 0.997 

4b Species R Cv present 0.011 13.3 32.24 0.011 

Height diversity, evenness, richness and roughness showed no significant 

correlations with either cv seed or cv present. However, there is some weak 

indication (p = 0.086) that cv present is positively correlated with height evenness 

(model 2c) and negatively correlated (p = 0.075) with height richness (model 2d) 

in linear regression analyses with only one predictor in each case. There is a 

highly significant and very clear positive correlation between cv seed and cv 
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present but it appears that species richness of the plant community declines as 
the cover of C. vulgaris increases. This is not a particularly strong correlation but 

it is significant (p = 0.011). Species richness and diversity does not appear to be 

correlated in any way with micro-topography (models 3 and 4). Only the results 
for regression analyses with the height and dominant vegetation DCA Axis 

scores are reported in table 6.4 but the results were very similar for regression 

analyses with height diversity, evenness, richness and roughness. 

5.3.2 Cell level 

Results from the Ime model, to determine the effect of weighted height and 
dominant vegetation category on extent of C. vulgaris germination where 

germination had occurred in 2002 are shown in Table 6.3. Weighted height was 

not significant and of the eleven different dominant vegetation categories 
C. vulgaris germination was less likely to occur with litter, moss or tree remains 

compared with bare peat and equally likely to occur with Campylopus, C. vulgaris, 
E. vaginatum, fine leaved grasses, herbs, sedges & tall grass and Sphagnum sp 

as with bare peat. 

Table 6.3: Results from the Ime model to determine the effect of different factors on the extent of 
C. vulgaris germination where germination had occurred in 2002. 

Factor T- value P- value 
Weighted height of cell 0.609 0.542 

Campylopus -1.301 0.194 
C. vulgarls -1.043 0.298 

E. vaginatum -1.512 0.131 
Fine leaved grasses -0.294 0.770 

Herbs -2.219 0.400 
Litter -2.219 0.027 

Moss -2.422 0.016 

Tall sedges and grasses -1.397 0.163 

Sphagnum -1.050 0.294 

Tree remains -3.104 0.002 
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Results from the three binary regression analyses are presented in Table 6.4 

with significant predictors highlighted in red. The first model, where only cells 
that contained C. vulgaris seedlings in 2002 were included in the analysis, shows 
that cv seedling is not significant in predicting the presence of C. vulgaris plants in 

2004. Cv patch was a significant predictor which suggests that although there 

was a high level of mortality amongst C. vulgaris seedlings between 2002-2004 

new seedlings did emerge in cells that were immediate neighbours to the cells 

that originally contained C. vulgaris seedlings and that these seedlings 

subsequently grew into heather plants. Most of the dominant vegetation types 

had the same impact on seedling survival/mortality as bare peat although there 

was significantly more mortality where Eriophorum vaginatum was the dominant 

vegetation type. 

Table 6.4: T-values and p- values for predictors in each of the three binary regression models. 

Response variable = C. vulgaris plants in 2004, Predictors= cv patch, cv seed, dominant 

vegetation category (11 categories with bare peat used as reference level for comparisons +_ 

more C. vulgaris plants than bare peat, -= fewer than bare peat). 

Predictors Model 1 (cv seed cells) Model 2 (cv patch 
cells) 

Model 3 (all cells) 

t-value p-value t-value -value t-value -value 
Cv seed -1.184 0.236 0.030 0.976 -1.719 0.086 
Cv patch 2.427 0.015 5.434 <0.001 13.840 <0.001 
Campylopus -1.098 0.272 - -0.999 0.318 (-) -1.360 0.174 
C. vul aril 0.770 0.441 + 3.491 <0.001(+) 7.109 <0.001 + 
E. vaginatum -2.677 0.007 -3.580 <0.001 - -4.495 <0.001 - 
Fine leaved 

rasses 
0.274 0.784 (-) -2.093 0.036 (-) -4.950 <0.001(-) 

Herbs -0.098 0.922 -0.133 0.894 - 0.078 0.938 
Litter -0.226 0.821 - 1.066 0.286 - -0.808 0.419 
Moss 1.045 0.296 (-) 2.705 0.007 (-) 0.457 0.648 (-) 
Tall sedges 
and grasses 

-1.844 0.065 (-) -1.048 0.295 (-) -2.665 0.008 

S ha num 0.025 0.980 - -0.016 0.987 - -2.056 0.040 - 
Tree remains -0.198 0.843 (- 0.526 0.599 (-) -4.504 <0.001(-) 

The second model, where only cells that had a cv patch index were included, 

shows a similar picture to model 1 except that cv patch index is a highly 

significant predictor and more of the dominant vegetation types had a significant 
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impact on the survival of C. vulgaris seedlings. C. vulgaris plants were more likely 

to be present in cells in 2004 where either C. vulgaris vegetation or moss had 
been the dominant vegetation type in 2002 compared with bare peat and less 
likely to be present in cells where either E. vaginatum or fine leaved grass had 

been the dominant vegetation type in 2002 compared with bare peat. 

In the final analysis where all cells are included cv seed is not a significant 

predictor of cv present in 2004 although there is some indication of a relationship 
(p=0.086) and cv patch is highly significant. Again C. vulgaris was more likely to 

be present in cells where C. vulgaris had been the dominant vegetation type in 

2002 compared with bare peat and less likely to be present in cells where 
E. vaginatum, fine leaved grasses, tall sedges and grasses, sphagnum or tree 

remains were the dominant vegetation type in 2002. In this analysis C. vulgaris 

seedlings were as likely to survive on moss as they were on bare peat and this 

was the same for litter, herbs and Campylopus species. 
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5.4 Discussion 
Micro-site characteristics, both micro-topography and ground cover / dominant 

vegetation, have a clear influence on germination and growth of C. vulgaris. It 

appears that micro-topography is important at the scale of the quadrat but not at 
the cell level and that flatter ground is more suitable for C. vulgaris germination 

and subsequent survival. A wide range of different methods were used for 

calculating a figure to represent the micro-topography of quadrats and although 
these figures are all significantly correlated with one another they describe 

different aspects of the micro-topography. 

The DCA analysis of height data with height categories considered as species 

appears to capture more of the elements of micro-topography that are important 

for C. vulgans growth than the other methods. The key aspects of micro- 
topography, that increase the likelihood of C. vulgaris growth, appear to be the 

number of height categories (fewer the better for C. vulgaris) as well as the 

particular height categories that are included. So the best combination is a few 

height categories at the lower end of the scale (0-20cm). The Shannon diversity 

and evenness index and height richness figures do not identify which height 

categories are included within a sample so quadrats with equal amounts of 
height categories 0,5,10 & 15 would be the same as quadrats with equal 

amounts of height categories 0,20,35,60 and these quadrats clearly have a 

different micro-topography. In reality the chances of the second quadrat 

occurring are very small because ground height is unlikely to go straight from 

35cm to 60cm without a slope in between. As a result the height evenness and 

richness figures, which take into account the number of height categories in a 

sample, do appear to provide some indication of ground suitability for C. vulgaris, 

although it is non significant. Roughness would certainly distinguish between the 

two quadrats described above but it would not identify a quadrat with lots of small 

changes in height from one with a few large changes in height and this difference 

appears to be important for C. vulgaris growth. These results suggest that using 
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ordination as a data reduction tool is an effective method to capture the essence 

of a multi dimensional data set which appears to make more biological sense 
than the single dimension diversity, evenness, richness and roughness indices. 

The dominant vegetation type or ground cover is also important at both the scale 

of the whole quadrat and the individual cell. At the quadrat scale, Axis 1 and 2 of 

the DCA analysis of dominant vegetation types provides good predictors of 

C. vulgaris germination, survival and establishment of plants with C. vulgaris being 

more likely to grow where there is less wood chip on the ground and the ground 

conditions are generally drier. This response would be expected as C. vulgaris 

requires some light for germination (Gimingham 1972) and although it will grow 

successfully on soil with a wide range of water contents the best growth occurs 

when the soil is at least moderately well drained (Pearsall 1938; Poel 1948; 

Gimingham 1960). Optimal development of C. vulgaris occurs when soils are able 

to oxidise, and even in the wettest soils some level of oxidation must occur at 

some time during the year (Poel 1948). 

The cell level analysis provides more specific information relating to the preferred 

micro-site characteristics of C. vulgaris. Germination tends to occur in patches 

which are generally greater in size than a1 Ox10cm cell and although this may be 

related to seed availability it is more likely to be a result of the ground conditions 

and existing ground cover. Compared with bare peat, germination is less likely to 

occur when the ground is covered with litter, moss or tree remains and these 

results are supported by the findings of Mallik et al (1 984b) who reported that 

significantly more seedlings established where litter and moss (P. schreberi or 
Hypnum sp. ) were absent. The other seven vegetation types, Campylopus, 

C. vulgaris, E. vaginatum, fine leaved grass, herbs, sedges/ tall grass (M. caerulea) 

and Sphagnum species were just as likely to support C. vulgaris germination as 
bare peat. These results indicate that C. vulgaris is less likely to germinate where 

a dense layer of litter, moss or wood chip is already covering the ground but will 

readily germinate within the vicinity of other vegetation irrespective of plant 
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morphology. One might expect that Campylopus and Sphagnum species would 
have a similar ground covering effect as other mosses but these species did not 
cover the ground as quickly as other moss species and this is one of the reasons 
why they were considered separately in the analysis. 

Survival of C. vulgaris seedlings between 2002 and 2004 was generally poor as 

cv seed was not a significant predictor of C. vulgaris presence in 2004. High 

mortality of C. vulgans seedlings has been reported after heather burning (Mallik 

et al. 1984a) probably as a result of dry conditions. C. vulgaris is susceptible to 

drought (Rosen 1984) so germination and survival is increased considerably if 

the seedbed substrate has good water retention properties such as a dense layer 

of organic matter (Mallik et at. 1984a; Mallik et al. 1988). Drought conditions are 

not something one would expect on the west coast of Scotland but the surface 
layer of peat is prone to drying especially if there is little or no vegetation cover. 
The summer of 2003 was relatively dry so it is highly likely that localised drying of 

the peat surface could have caused some seedling mortality during the summer. 
Other causes of mortality could be competition from other plant species for light, 

water and nutrients or water logging of the peat during the winter. Where 

E. vaginatum was recorded as the dominant vegetation type C. vulgaris seedling 

mortality was significantly higher than on bare peat. 'Tall sedges and grasses' 
had a similar effect, although the result was not quite significant. This effect is 

thought to be a result of plant competition for resources although it is possible 

that C. vulgaris did poorly in the vicinity of E. vaginatum due to water-logging of 

the peat. E. vaginatum will tolerate prolonged water logging (Wein 1973) but 

C. vulgaris seedlings are less tolerant (Poet 1948). 

C. vulgaris plants became established in quite specific locations relative to other 

plants that were colonising the peat surface. Apart from cells where mature 
C. vulgaris plants already existed the most likely locations for C. vulgaris 

establishment were bare peat, Campylopus sp., herbs, litter or moss. The 'herbs' 

category includes mainly Potentilla erecta and Galium saxatile which are both 
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ground covering species so with the exception of bare peat the most suitable 

micro-sites for C. vulgaris establishment offered good ground cover but minimal 

competition for light. The water holding capacity of the peat was almost certainly 

enhanced by these 'vegetation' categories as it would be protected from the 

drying affects of sun and wind and the Campylopus, moss and litter categories 

may have also provided a potential water supply buffer for the growing plants. It 

is interesting that although moss and litter cover appeared to inhibit germination 

of C. vulgaris, once the seedlings were established their chances of survival 
increased significantly in these micro-sites. These results are supported by work 
done on the impact of Campylopus introflexus on C. vulgaris establishment where 

presence of the moss had a significant negative impact on germination but a 

positive effect on post germination performance of seedlings (Equihua and Usher 

1993). Other moss species where C. vulgaris seelings have been found growing 
in close association include Hylocomium splendens, Pleurozium schreberi, (in a 

water saturated atmosphere only, as hypnacious mosses are prone to drying) 

Aulacomnium palustre, Dicranum scoparium and Sphagnum sp (Gimingham 

1960). All of these species were included within the 'moss' category, except for 

Sphagnum which was a category in its own right. 

Despite considerable evidence that micro-topographic variation is correlated with 
floristic diversity (Harper et at. 1965; Sheldon 1974; Eldridge et al. 1991; Vivian- 

Smith 1997) this was not found to be the case for developing blanket bog 

vegetation on the tree clearance area. This may be a result of the immaturity of 

the plant community which was only 4-6 years since tree clearance. 
Alternatively the variation in micro-topography may not have been sufficient to 

provide the range of micro-sites required for enhanced diversity. However, on 

experimental wetlands small scale variability in micro-topography, in the order of 
1-3cm, produced highly significant differences in species diversity (Vivian-Smith 

1997). It is therefore unlikely that the height variation between 0- 75cm 

recorded in quadrats on the tree clearance area did not provide sufficient 

variability. The only correlation with species richness that was found was a 
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negative relationship with the presence of C. vulgaris suggesting that where 
C. vulgaris is present species richness of the plant community is reduced. As the 

likelihood of C. vulgaris being present in a quadrat increased as the ground 
became flatter perhaps there is a weak link between species richness and micro- 
topography but this is unlikely. 

In general wood chip and litter have an inhibitory effect on germination and 

growth of C. vulgaris. If colonisation of a site by this plant species is the desired 

objective then it would be sensible to minimise the amount of woodchip 
deposited on the drier patches of ground within the vicinity of tree stumps. A 

certain amount of ground disturbance should be beneficial as this will create 
breaks in the litter layer, exposing peat for colonisation by C. vulgaris or other 

species that may improve micro-site conditions for C. vulgaris. However, 

excessive disturbance is likely to increase surface roughness of the peat which 

may reduce the suitability of the site for colonisation by C. vulgaris. 
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CHAPTER 6 

THE DEVELOPMENT OF VEGETATION STRUCTURE ON 

BLANKET BOG FOLLOWING DEFORESTATION, WITH 

PARTICULAR REFERENCE TO RED GROUSE 

r: 
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6.1 Introduction 
Habitat heterogeneity or the structural diversity of vegetation has long been 

recognized as a fundamental variable indicative of species diversity (MacArthur 

and MacArthur 1961; Southwood et a!. 1979; Goetz et al. 2007). The habitat 

heterogeneity hypothesis proposed by Tewes et aL (2004) states that the more 

complex the habitat, in terms of structure, the more niches are available, and 
therefore the higher the animal species richness. A literature survey found that 

85% of all studies on the relationship between habitat heterogeneity and animal 

species diversity found a positive correlation (Tews et al. 2004). In general, 
invertebrate (Lassau et al. 2005; Poyry et al. 2006; Reid and Hochuli 2007), bird 

(MacArthur and MacArthur 1961; Moss 1978; Goetz et al. 2007) and small 

mammal (Williams et al. 2002) species diversity increases with increasing 

structural diversity or vegetation complexity. 

Population density of red grouse (Lagopus lagopus scoticus) has been positively 

correlated with the structural diversity of moorland vegetation where diversity at a 
landscape scale is increased by heather burning (Picozzi 1968; Hudson 1992; 

Tharme et al. 2001). Red grouse require heather at different growth stages and 
they particularly like shorter more nutritious heather immediately adjacent to tall 

vegetation so they can feed but quickly hide from predators (Bains et al. 1999). 

Although C. vulgaris forms a significant proportion of the diet of red grouse 
(Jenkins et al. 1963; Lance and Mahon 1975) there is evidence to suggest that 

invertebrates (Butterfield and Coulson 1975) provide an important source of 

nitrogen and phosphorus at certain times during the year, particularly in the 

spring. Invertebrates are also a very important food source for red grouse chicks 
during the first few weeks after hatching (Park et al. 2001). Although a 

considerable amount of work has been done investigating the invertebrate 

populations of upland vegetation (Butterfield and Coulson 1975; Coulson and 
Butterfield 1986; Coulson et at. 1990; Coulson et at. 1995; Downie et at. 1995) 

there is no clear indication that species diversity increases with structural 
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diversity of the vegetation. Coulson and Butterfield (1986) indicate that there are 

other factors, such as a high and exposed water table, which may influence the 
invertebrate diversity to a greater extent than the plant architecture. However, 
large invertebrate populations on moorland tend to be limited to cool and wet 

climates, where most blanket bog exists (Butterfield and Coulson 1975), and 

vegetation complexity certainly affects invertebrate distribution (Downie et al. 
1995) even if a direct relationship between invertebrate diversity and vegetation 

complexity has not been shown. 

Vegetation structural diversity is likely to be important for red grouse at two 

different scales. Firstly, small scale plant community architecture, within a 
10x1 Ocm area, where taller and more complex vegetation may yield a higher 

number and diversity of invertebrates. Secondly, large scale patch structure, 

over distances greater than 10m, providing edges between different types of 

vegetation where grouse can feed, shelter and hide from predators, within the 

same patch. A number of different workers have assessed structure in grassland 

or heathland habitats at the small scale (Southwood et al. 1979; Downie et al. 
1995; Borges and Brown 2001; Poyry et al. 2006) and the large scale (Tharme et 

al. 2001; Pearce-Higgins and Grant 2006) and various different approaches to 

measurement have been taken. At the small scale mean vegetation height has 

been used as a surrogate for vegetation structure (Poyry et al. 2006) but more 
detailed assessments have used the pin intercept method (Southwood et al. 
1979; Downie et al. 1995; Borges and Brown 2001) where vertical pins, usually in 

a pin frame, are passed through the vegetation with the number of vegetation 
touches recorded in various height categories, from 2- 20cm intervals depending 

on the vegetation type. The number of pins/sample varied from 20-45 but the 

diameter of the pin and distance between each pin was not always specified. 
Estimation of percentage cover or biomass for different species using the pin 
intercept method are sensitive to pin diameter (Goodall 1952; Frank and 
McNaughton 1990) and this is likely to be the case for measuring vegetation 

136 



density, so it is important to ensure that pin diameter is consistent for repeat 
assessments (Hill 2005). 

Whilst planning vegetation monitoring on the tree clearance area a number of 
tests were done using a 10 pin frame and it took between 10 - 15 minutes to 

complete each sample. The weather was particularly poor whilst these tests 

were being done (high winds and rain), which is common in Kintyre, making the 

sampling particularly difficult. It was decided that a quick method, where 

relatively consistent results would be obtained in different weather conditions, 

needed to be developed. The Game Conservancy Trust use a technique to 

assess heather height and condition on moorland (Bains et al. 1999) and this 

involves using a narrow cane, Im in length and approximately 1 cm in diameter, 

which is placed vertically into the vegetation to be sampled. The maximum 
heather height is measured to the nearest 5cm and the number of heather 

contacts on the cane is recorded. This technique has been used on a large 

number of moorland estates in Scotland so it was decided that a modification of 
the technique would be used to assess small scale vegetation structure on the 

tree clearance area. 

On a large scale various techniques have been used that involve the use of 

vegetation height or vegetation density over a relatively large area i. e. 1-2km2 

(Tharme et al. 2001; Pearce-Higgins and Grant 2006). Tharme et al (2001) 

collected 40 vegetation height records in a 1km2 area and used these data to 

calculate the Shannon evenness index of the vegetation where values close to 

zero indicated an even stand and higher values represented a more complex 

vegetation structure such as tussocky grass or the presence of muirbum. 
Pearce-Higgins and Grant (2006) used a more complex approach measuring 

vegetation height and assessing vegetation density using a bamboo cane with 
10cm height intervals marked on it. They recorded heights in three different 

height categories (0-15cm, 15-30cm, >30cm) for three different vegetation types 

(dwarf shrubs, graminoids and all vegetation) and assessed the density by taking 
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a mean of the number of height intervals that were visible through the vegetation 

across all sampling points. Essentially the three methods described above all 

produced one figure to describe vegetation height variability for a specified area 

which was then used to give an index of structural diversity. 

One of the main aims of the Central Kintyre Habitat Management Plan is to 

restore blanket bog habitat for red grouse through the clearance of immature 

Sitka spruce forest by'in situ' chipping. Prior to setting up the monitoring 

quadrats on the tree clearance area the mean number of red grouse on the rest 

of the management area was 8.78 pairs/km2. This figure is a three year mean 

(1999 - 2001) and is relatively low compared with managed grouse moors in the 

north east of England and Scotland (Hudson 1992). However, it represents a 

good sized population for unkeepered moorland on the west coast of Scotland 

(Moss pers. comm. ). It was assumed, therefore, that the structure of the existing 

blanket bog vegetation on site could be used as a 'target' for the purposes of 

monitoring vegetation structure development on the tree clearance area, against 

the aims of the management plan. 

The aim of this study was to investigate development of vegetation structure on 

the tree clearance area at two different scales, a small scale that would be 

relevant to invertebrate populations and a larger scale that is likely to influence 

red grouse territory size and therefore red grouse numbers. ' Structural diversity 

of the developing vegetation, post tree clearance, was compared with that of 

existing mature blanket bog vegetation. In addition the structural diversity of 

vegetation developing on ground with different depths of wood chip was also 

studied. Conventional methods of assessing structural richness and diversity are 

compared with a multivariate approach using Principle Components Analysis to 

investigate the relationship between plant species and structure. 
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6.2 Materials and Methods 

6.2.1 Vegetation structure - large scale 
DATA COLLECTION 

As part of the grouse monitoring work for the Central Kintyre Habitat 

Management Plan a series of vegetation transects were established over the 

whole management area in 2001. Five transects were located on the tree 

clearance area and four transects on the two management units immediately 

adjacent to the tree clearance area (see Appendix 3). Transects were located on 

vegetation that was considered to be representative of the whole management 

area, although as there was very little vegetation on the tree clearance area the 

transect route was selected to include the full range of peat depths, slopes, 

aspects and wetness. The transects were also routed to ensure that the start, 

any midpoints and the end were easily relocated i. e. fence posts, large and 

recognisable rocks or hill summits. 

Once the transects were located, records were taken annually every 10 paces 

along the transect. The maximum vertical height of the leaf or shoot, touching 

the end of the observer's boot after the tenth pace, was measured at the end of 

the tenth pace. The measurement was made at the highest point of the leaf or 

shoot, above ground level, to the nearest cm, using a one metre measuring stick 

where the scale starts at 0. No attempt was made to keep paces even, so each 

pace varied in length depending on the slope. As a result the total number of 

measurements per transect varied by a small amount (<5%) each year. 

DATA ANALYS IS 

The vegetation height data were categorised into 5cm height bands. The range 

of vegetation heights was 0-98cm giving a total of 20 height bands. The 
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Shannon Diversity Index was calculated for the 'target vegetation and the tree 

clearance vegetation in four sample years 2001 - 2004, using Eqn. 1 below. 

In order to compare values of H for different vegetation in different years the 

variance and t-values were calculated as detailed by Magurran (1988) using 

equations 2-4 below. 

ti 
H= -t p, in p, 

r-i 
Eqn, 1 

where p, is the proportion of the total number of hits, h, in each i'th height 

category 

YarH=ýpr(1npr)2-(ýP, 
inp, )2 s-1 

N 2N 2 
Eqn. 2 

H, -H2 
(VarH, + VarH2)"2 

Eqn. 3 

df, _ 
(VarH, + VarH2 )2 Eqn. 5 

[(VarH, )2 /N, ]+[(VarH2)2 /N2] 

Where pi is the proportion of heights in each i'th height band, VarH is Shannon 

variance, S is number of height bands and N is number of individuals. 

Differences were only recorded as significant where the p-value was lower than 

0.005 (Bonferroni correction to avoid Type I statistical error). 

6.2.2 Vegetation structure - small scale 

DATA COLLECTION 

Quadrat location, establishment and the annual re-location procedure is 

described in detail in Section 2.3.1. In each assessment year (2001-2004) a 
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vegetation structure measurement was made in each of the five mini-quadrats 

within the flailed and heather control main quadrats. A cane (1 meter long x 
7mm diameter with height intervals marked every 10cm) was used as a 'pin' and 
this was placed vertically in the centre of each mini quadrat (see figure 5.1). All 

vegetation touching the pin was recorded including the species and height 

interval at which the touch occurred. One pin was assessed for each mini- 

quadrat giving five replicates within each main quadrat. 

o' ý 

a 5. 

Figure 5.1: Diagram of the 'pin' used to assess vegetation structure. ̀ ' 

DATA ANALYS IS 

Structural diversity and richness was explored in a number of different ways 

using conventional indices as well as two multivariate techniques. Two different 

interpretations of structural richness and the Shannon Diversity Index were used 
to compare the developing vegetation on the tree clearance area with 'target' 

blanket bog vegetation on adjacent management units. The influence of chip 
depth on development of small scale vegetation structure over time was 
investigated using the two structural richness indices and Shannon Diversity 

index but also through a PRC analysis. Lastly, Principle Components Analysis 
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(Ter Braak and Smilauer 1998) was used to explore the full small scale 

vegetation structure data set which includes species, height category and sample 

and is essentially a three dimensional data set. 

Structural richness and diversity 

For the small scale structure assessment two variations of structural richness 

were calculated for each sample. The first richness index (RI) was mean 

number of vegetation hits (or mean number of individuals) on the 5 pins/sample 

and the second (R2) was mean number of height categories on the 5 

pins/sample, which is equivalent to species richness (Magurran 1988). 

Shannon Diversity Index was calculated for each sample using equation 1 above. 

The figures calculated for RI, R2 and Hwere subjected to linear mixed effects 
(LME) modelling (Pinheiro and Bates 2000) to test the effect of time, treatment 

(target or tree clearance) and chip depth (tree clearance only) on structural 

richness and diversity. Three designs of LME models were fitted for each 

richness/diversity index and all models included fixed and random effects. The 

first model included only the 'target' vegetation quadrats to check for differences 

between sample year, including sample year (2001-2004) as a fixed effect. The 

second model included only tree clearance quadrats to check for differences 

between year since clearance and chip depth, where year since clearance (0-5) 

and chip depth treatment (three levels: Tmt 1- normal, Tmt 2- double and Tmt 

3- triple) were included as fixed effects. The third model included 'target' and 

tree clearance vegetation to check for differences between treatment and 

treatment over time, where sample year (2001-2004), treatment and the 

year*treatment interaction were included as fixed effects. The random effects 

were year nested within individual quadrats. 

Where necessary temporal autocorrelation was accounted for within models 

using a first-order autoregressive function (Pinheiro and Bates 2000; Crawley 

2002), this was done by specifying residual correlation that decays exponentially 
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with distance between years. Differences between treatment variances, either 

chip depth or vegetation type depending on the model, were checked and in one 

case separate error terms were specified for the two different vegetation types. 

Other models were improved by including separate error terms for treatment but 

it was not possible to include the autoregressive function and the treatment 

variance function in the same model. In all cases, the simplest possible model 
that gave the best fit to the data, and most appropriate residual error distribution 

was sought. Different models were compared by likelihood ratio tests and if 

models were significantly different (p<0.05), the model with the lower Akaike's 

information criterion, as shown in equation 5, was selected (Burnham and 
Anderson 2002): 

AIC = -21ogLik + 2n Eqn. 5 

where n is the number of parameters in the model, and is effectively a 'penalty 

term' related to the complexity of the model. 

Ideally a series of multiple comparison tests would have given some indication of 

whether or not structural richness and diversity on the tree clearance area was 

moving towards the target vegetation. However, there is no specific method for 
doing a multi comparison test within an Ime model and the technique is not 
particularly well suited to the theory of Ime models (Bates 2003). In order to 

visualize the change in small scale structural diversity on the tree clearance area, 

relative to the target vegetation, mean values and the standard errors for R1, R2 

and H were calculated and shown graphically in three separate figures. 

Principal Response Curve Analysis 

The multivariate technique Principal Response Curve (PRC) analysis (Frampton 

et al. 2001) is described in detail in section 4.2.1, Data analysis, multivariate 
analysis. PRC was used to display temporal changes in structural diversity 

between 'target' vegetation and tree clearance vegetation under three chip depth 
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treatments. Sample year was used as the time variable rather than year since 
chipping as 'target' vegetation data were only available for sample year. The 

same method was followed as that described in section 4.2.1 including multiple 

comparison testing of each treatment at each time point on the PRC (Frampton 

et at. 2001). To avoid a Type 1 statistical error a Bonferroni correction was 

applied to the significance level for p-values based on doing three 

comparisons/year. As a result differences were only recorded as significant 

where the p-value was lower than 0.017. It was not possible to undertake a 

single Monte Carlo permutation test for the PRC analysis as this requires equal 

numbers of samples for each treatment and control. 

Three dimensional Principal Components Analysis 
For each pin sampled all vegetation touching the pin was recorded both in terms 

of species and the height category at which it was touching the pin. 
Conventional richness and diversity indices can only use one aspect of a 

potentially three dimensional data set (as shown in Figure 5.2), for example 

either the height categories where vegetation touches the pin, the species 
touching the pin or the species in different height categories. As a result two 

dimensions of these data are lost when studying structural richness or diversity 

and these may be important components of vegetation structure. 

Height 

category 
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Figure 5.2: Schematic diagram 

demonstrating the 3-Dimensional nature of 
the small scale vegetation structure data 

In order to explore all three dimensions of these data Principle Components 

Analysis (PCA) (Ter Braak and Smilauer 1998) was employed. Detrended 

IV 
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Correspondance Analysis gave relatively short gradients (< 3.00) therefore PCA 

was selected for these analyses. Aggregate values across any two dimensions 

were calculated to create three separate 2D matrices, which were subject to 

PCA: 

1. Sample x Height category 
2. Sample x Plant species 
3. Plant species x Height category 
In each case the aggregate values were calculated as a sum of the vegetation 
touches. For sample x height category the data were total number of vegetation 
touches, in each height category, across the five mini-quadrat replicates and 

therefore gives a measure of vegetation height density. For sample x plant 

species the data were total number of vegetation touches, for each species, 

across the five mini-quadrat replicates and therefore gives a measure of species 

composition. For plant species x height category the data were total number of 

vegetation touches for each species in each height category giving a measure of 

species height diversity. In all analyses both the plant species and height 

category data were log transformed. 
rj 

'Target' vegetation for four sample years (2001-2004) and tree clearance 

vegetation for six years since chipping (0-5) were included in all PCA analyses. 
Target and tree clearance vegetation, as well as sample or year since chipping 

year can be identified in ordination diagrams from the first two PCA analyses but 

this is not possible in the last PCA analysis. For this analysis (plant species x 

height category analysis) data are used from across all years and both 

vegetation types. 
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6.3 Results 

6.3.1 Vegetation structure - large scale 

Large scale structural diversity (Shannon Diversity Index) of target and tree 

clearance vegetation is compared over a four year period (2001 - 2004) in Table 

5.1. The multiple comparison tests, also shown in Table 5.1, indicate that in 

2001, which is when the tree clearance work was completed, large scale 

structural diversity of the vegetation was significantly higher on the target 

vegetation compared to the tree clearance vegetation (F=-8.70, P=<0.001). This 

difference was also significant in 2002 (F=-8.26, P=<0.001) and apparent, 

although not significant, in 2003 (F=-2.94, P=0.005). By 2004 there was no 
difference between the two vegetation types indicating that the diversity of 

vegetation height on the tree clearance area had become similar to that on the 

target vegetation. Diversity (Table 5.1. column 3) of the target vegetation shows 

some unexpected variation between years with 2002 being lower than 2001 and 
2003. This can be partly explained because the diversity and variance appears 
to be unusually high in 2001 and this is thought to be due to sampling date. In 

2001 the transects were assessed during May when vegetation growth had 

started but in all other years the work was completed by the end of April. Growth 

of the vegetation is likely to have increased vegetation height variation across the 

site, increasing diversity compared with other years. This sampling difference 
may have affected the results for the tree clearance vegetation aswell which 

would explain why there is not an obvious increase in structural diversity between 

2001 and 2002. 
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6.3.2 Vegetation structure - small scale 

6.3.2.1 Structural richness and diversity 

The number of vegetation hits on each pin ranged from 1-13, for both the target 

and tree clearance quadrats. There were a total of 8 height categories (0-80cm) 

recorded across all samples although hits in the 7th (60-70cm) and 8th (70-80cm) 

height categories were limited to three quadrats that had Juncus effusus or 

flowering Deschampsia flexuosa growing in the centre of the quadrat. Lastly the 
Shannon Diveristy Indices ranged from 0 -1.97. 

The composition and results from each Ime model are summarised in Table 5.2. 

The necessity of accounting for first-order temporal correlation and/or differences 

in treatment variances in the model is also detailed. Firstly, the Ime model to 

investigate change over time of the target vegetation clearly indicates that there 

were no changes in either of the richness indices or the diversity index. Change 

over time of the tree clearance vegetation showed a different picture with year 

since tree clearance showing a highly significant effect on richness and diversity. 

However, chip depth had no effect on either of the richness indices or the 

diversity index. Differences in richness and diversity between the target and tree 

clearance vegetation were highly significant with a highly significant interaction 

with sample year (time). The three richness/ diversity indices are very similar 

and all demonstrate a movement of the tree clearance vegetation towards the 

target vegetation, as shown in Figure 5.3 below. Structural richness and diversity 

is relatively low following tree clearance but with time it increases and becomes 
more similar to the structural richness and diversity of the target vegetation. 

4 

148 



m Ch ý ti U) 
CC) ý 

b O O O 

CL Cc 
m v 06 

0 

LC 
U$ 

(D 

a 
ö 

(D 
04 
1s 

ýp 

V) 
a o O 

m 

m 
0 
0 

ö 
0 > o 0 0 

V 

o 
0 
ö 

0 ö 
>a o ö ö 

m 

H 
a 
ö ýö o 

oo 
o 

o 00 o 

ö o" ö ö 

m 

> 

0 .0 

0 . r 

c. 
m 

0. r a E 
IX äi 

a i% ä 

V a 

n 

ý 'o 
i 
a 

Qi ä 
" 
i. cri ä> 

.C .G 
1 

9 

m& 

0. 

.0ö 
I 

13 
78 

2 J22 

a, 
V 0 E 
a> 

rc 

0 
U 

U) v 0 E 

a) 



a 

r 

s 

s 
a 

,s 
,ý 

.o 

1 

3.5 

3 

2. S 

2 

1.3 

1 

O. S 

0 

', 

8 

a5 
P 

4 

s to 

s 

0 

ýK 
i 

0 

I a 

1 4 . 

1.2 

1 ..................... 

0. e 

0. e 

0.4 

0.2 

0 
2001 2002 2003 2004 

Yew 

Figure. 5.3 Mean (+I- SD) of a) RI (mean no. height categories), b) R2 (total vegetation hits) and 

c) H (Shannon diversity index) respectively, in years 2001-2004. Black line represents target 

vegetation, dashed line represents flailed quadrats. 

150 

2001 2002 2003 2004 

vow 

2001 2002 2003 2004 
Ye.. 



6.3.2.2 Principal Response Curve 

The PRC diagram for three different chip depth treatments (normal =< 12kg/m2, 
double =12-20kg/m2, triple = >20kg/m2) and the target vegetation as a baseline 

reference (Fig. 5.4) show differences in vegetation structure over time. 

Vegetation structural diversity is increasing with time on the tree clearance area 

and moving towards the target vegetation. By 2004 the normal and double chip 
depth treatments are not significantly different from the target vegetation although 
the Triple treatment is still different. Between 2001 - 2003 there was no 

significant difference between chip depth treatments but a small difference 

between the normal and triple treatment becomes apparent in 2004. 

soot 
0.05 

0 

-O. O5 

-0.1 

-0.16 

-02 

-025 
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-a - Double 

- , h-. Triple 

-HenAw 

Figure 5.4: PRC diagram of 'vegetation structure' development over time since chipping at three 

different chip depths compared with mature heather vegetation. At each year, PRC I values 
differ significantly (p<0.017 for individual contrasts) between treatments that do not share the 

same letter code (a or b). Shared or omitted letter codes denote contrasts that do not differ 

significantly. 
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6.3.2.3 Three dimensional Principal Components Analysis 

Ordination diagrams from the three separate Principal Components Analyses are 
shown in figures 5.5-5.7 below. 

SAMPLE BY HEIGHT CATEGORY ANALYSIS - SHOWING VEGETATION HEIGHT DENSITY 

Figures 5.5 a&b show results from the analysis of a matrix of total number of 
hits (on 5 pins/sample) In each height category. Axis I reflects the total number 

of hits in the sample which increases with year since chipping on the tree 

clearance area and remains constant on the target vegetation in each sample 

year. Axis 2 is more difficult to interpret but it may represent the most prevalent 
height categories in different vegetation samples. For example the target 

vegetation is dominated by height categories 20 - 40cm, with a greater number of 
hits in these height categories than the tree cleared samples. Despite this there 

is a large amount of variation indicating that there is a reasonable amount of 

vegetation in all of the height categories so the vegetation is probably more 
dense throughout the profile than the tree clearance vegetation. The tree 

clearance vegetation shows a clear movement towards the target vegetation in 

terms of total number of hits (Fig. 5.5a) but the relatively small variation on axis 2 

suggests that only a narrow band of height categories are important in each year 

since chipping. The location of height category vectors in Figure 5.5b considered 
in conjunction with the sample ordination (Fig 5.5a) suggest that in years 0,1 and 
2 the '1' height category (ground level) is the most important height category and 
in years 3-5 height categories 10 and 20 become more important. 

SAMPLE BY SPECIES ANALYSIS - SHOWING SPECIES COMPOSITION 

Figures 5.6 a&b show results from the analysis of a matrix of total number of 
hits (on 5 pins/sample) for each plant species. Axis 1 probably represents an 
increase in number of species per sample and Axis 2 appears to reflect the range 

of species (plant community) found in each sample. The target vegetation in the 

bottom right hand comer of the ordination has the largest number of species per 
sample (highest Axis 1 score) with C. vulgaris and M. caervlea being the most 
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important species in these samples. The tree clearance vegetation has an 
increasing number of species recorded in each sample with year since chipping 
but the dominant species in year 5 are E. vaginatum and D. flexuosa. Both these 

species were much quicker to colonise and grow on the tree clearance area than 
C. vulgaris and M. caerulea. From examination of only axis 1, it is apparent that 
the tree clearance vegetation has almost reached the target vegetation by year 5 

since chipping. However, axis 2 demonstrates how different the vegetation 

actually is and that growth of some of the slower growing species, typically 

C. vulgaris, is necessary before the 'target' is achieved. 

SPECIES BY HEIGHT CATEGORY ANALYSIS - SHOWING SPECIES HEIGHT DIVERSITY 

Figures 5.7 a&b show results from the analysis of a matrix of total number of 
hits for each plant species in each height category. 
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Figure 5.5: Sample by height category PCA ordination plots a) sample plot including tree 

clearance vegetation (diamond symbol) each year since chipping and target vegetation (square 

symbol) for sample years b) height category plot showing influence of height categories on the 

ordination. 
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Figure 5.6: Sample / species PCA ordination plots a) sample plot including tree clearance 

vegetation (diamond symbol) each year since chipping and target vegetation (square symbol) for 
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Sphagnum recurvum; Spha capi = Sphagnum capillifolium; Call vulg = Calluna vulgads; Erio angu = 
Eriophorum angustifolium; Moll caer = Molinia caerulea; Tree rems = Tree remains; Litt sp. = Litter, Erio vagi 
= Eriophorum vaginatum; Rhyt lore = Rhytidiadelphus loreus; Desc flex = Deschampsia flexuosa; Ba repeat 
= Bare peat; Agrosp = Agrostis species; Lophbide = Lophocolea bidentata; Vaccmyrt = Vaccinium myrtillus; 
Empenigr = Empetrum nigra; Pleuschr = Pleurozium schriebri; DeadCv_ = Dead Calluna vulgaris; Carenigr 

= Carex nigra; Nartossi = Narthecium ossifragum. 
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Axis 1 represents frequency of species in all height categories. Tree remains 
(wood chip), E. vaginatum, D. flexuosa, C. vulgaris and M. caerulea are the 
'species' to be hit most frequently by all pins. Axis 2 defines vegetation height 

and is inversely proportional to dominant height category. Tree remains are the 

most frequently hit 'species' at height category 1 with a high axis 2 score and 
E. vaginatum, D. flexuosa, C. vulgaris and M. caen. dea are the most frequently hit 

species at height categories 20,30 and 40 with a low axis 2 score. Figure 5.9a 

clearly shows groupings of species that have similar structures for example most 
of the species above 0.5 on Axis 2 are all short mosses; between 0 and 0.5 the 

species are all relatively short in stature or are creepers that cover the ground; 
from 0 to -0.5 the species include the smaller dwarf shrubs i. e. V. myrtillus and E. 

nigrum and more substantial grass species; finally the taller sedge, grass species 
and C. vulgaris are found between -0.5 and -1.0 
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PCA ordination plots a) species plot. 
Agrosp =Agrostis species; Anthodor 
Anthoxanthum odoratum; Aulapalu = 
Aulacomnim palustre; Barepeat = Bare peat; 
Call vulg = Calluna vulgaris; Campsp = 
Campylopus species; Careechl = Carex 

echinata; Carenigr = Carex nigra; Carepani = 
Carex panicea; Caresp = Carex species; 
Descflex = Deschampsia flexuosa; Dicrcerv 
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As 1 Empetrum nigra; Epilangu = Chamaenerion 
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Erictetr = Erica tetrali4 Erio angu = Eriophorum angustifolium; Erio vagi = Eriophorum vaginatum; Galisaxa 

= Galium saxatile; Hypncupr = Hypnum cupressiforme; Hylosple = Hylocomnium splendens; Juncacut = 
Juncus acutiflora; Juncarti = Juncus articulatus; Juncbulb = Juncus bulbosus; Junceffu = Juncus effusus; 
Littsp = Litter, Lophbide = Lophocolea bidentata; Lophvent = Lophozia ventricosa; Moll caer = Molinia 
caerulea; Nartossi = Narthecium ossifragum; Plagundu = Plagiothecium undulatum; Pleuschr = Pleurozium 
schriebri; Polycomm = Polytrichum commune; Polyform = Polytrichum forrnosa; Poteerec = Potentilla erecta; 
Rhyt lore = Rhytidiadelphus breus; Rhytsqua = Rhytidiadelphus squarrosus; Rumeacet = Rumexacetosella; 
Spha capi = Sphagnum capllifolium; Sphapalu = Sphagnum palustre; Sphapapi = Sphagnum papillosum; 
Spha recu = Sphagnum recurwm; Sphasubn = Sphagnum subnRens; Tree rems = Tree remains; Treestum 

= Tree Stump; Vaccmyrt = Vaccinium myrtillus. 
b) height category plot showing the influence of different height categories on the ordination. 
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6.4 Discussion 
Conventional indices that seek to describe diversity and richness provide a useful 

means of comparing structural differences between similar vegetation types and 
describing structural development of vegetation over time. The selected indices 

clearly indicate that vegetation structure on the tree clearance area, at both a 

small and large scale, was becoming increasingly diverse with time since tree 

clearance and that it was approaching the levels of diversity seen in the target 

vegetation. On the assumption that changes in structural diversity of vegetation 

affects the distribution of invertebrate populations and that increased structural 
diversity may increase invertebrate diversity it is probable that the tree clearance 

vegetation is supporting a greater diversity of invertebrates with time since 

chipping. 

There appeared to be no significant difference in richness or diversity between 

chip depth treatments which is similar to the results of the PRC analysis. Here 

there was no difference in structural diversity between the three different chip 
depth treatments until 2004 when the triple chip treatment is significantly different 

from the normal treatment. This response is rather difficult to interpret as one 

would expect the effect of the chip depth treatments to diminish with time but 

perhaps slower growing species, such as C. vulgaris, started to appear on the 

normal and double treatments in 2004 but not on the triple treatment creating this 

difference. The lack of differences between the chip depth treatments was a little 

surprising as one might expect to find less dense vegetation where the chip 
depth is greatest, especially in the earlier years since chipping. Perhaps the 

species that do well when the ground is covered in a dense layer of wood chip, 
i. e. species that do not require light to germinate, are generally good at covering 
the ground. For example Potentilla erecta was present on all of the chip depth 

experimental plots one year after the treatments were applied, irrespective of 
treatment. This species was very quick to cover the ground and was common on 
all the flailed quadrats. It is possible that this species and other colonisers 

created similar structural profiles irrespective of chip depth. Alternatively it is 
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possible that there are differences in vegetation structure between chip depth 

categories but that five vertical pins per sample provides insufficient data to 

detect these differences. Other researchers have certainly used more pins per 

sample to measure structure with anything from 20 - 45 pins/sample (Southwood 

et al. 1979; Downie et al. 1995; Borges and Brown 2001; Hartley et al. 2003) but 

the initial objective for collecting these data was to compare vegetation structure 

year on year following tree clearance. It was thought that the differences 

between years would be so great that 5 samples would be adequate to measure 
change and indeed this is the case. 

The many diversity indices available seek to characterise the diversity of a 

sample or community with a single number (Magurran 1988) and as a result a 

considerable amount of information about the sample or community is lost. In 

addition the various techniques completely ignore species identity which may be 

critical when describing the structural diversity of vegetation. By using 

multivariate techniques, such as PCA, it is possible to incorporate all the different 

dimensions of the data set and in this case it has been used to explore the 

following relationships. 
1. Vegetation height diversity or total number of vegetation hits (all species) in 

each height category for each sample. 
2. Species composition or number of hits for each species in each sample. 
3. Species height diversity or total number of hits in each height category for 

each species. 

Vegetation height diversity and species diversity on the tree clearance area 

showed an obvious movement towards the target vegetation with year since tree 

clearance. However, in both cases the movement appears to be in one 
dimension only i. e. in terms of total number of hits either in each height category 

or for each species. The multi dimensional view of each measure of diversity 

indicates that the tree clearance vegetation does not have the full complement of 
height categories or species that are found in the target vegetation. Interestingly 
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enough the PCA multi dimensional approach gives roughly the same end result 
as the conventional diversity and richness indices i. e. that the tree clearance 

vegetation has not reached the target by the end of the monitoring period. This 

suggests that the conventional approach is reasonably accurate but does not 

provide any insight as to why differences in diversity or richness exist. 

The species height diversity analysis elegantly demonstrates the relationship 
between vegetation structural diversity and the taxonomic identity of species. 
Vegetation structure of blanket bog vegetation is clearly linked to plant species 

although rather than being closely associated with individual species it is dictated 

by types of species that have the same sort of growth form. For example Juncus 

bulbosus, Potentilla erecta and Galium saxatile have a similar growth form, all 
fairly low growing with lots of side branches or leaves. They are unlikely to be in 

the same sort of plant community because J. bulbosus grows in very wet 
locations (Chabbi 1999), P. erecta in slightly drier locations and G. saxatile in 

locations that are slightly drier still. However, they all have roughly the same 

structural profile. The species height diversity ordination shows a number of 

similar groupings where the species are unlikely to be found in the same plant 

community but share similar structural profiles which suggests that vegetation 

structure is only loosely related to plant community, at least during the first five 

years of plant community development on blanket bog. 

The multi dimensional approach to assessing the structural diversity and species 

composition of vegetation is particularly useful for comparing similar samples and 
for investigating time series data especially where a control or'target' is available 
that acts as a point of reference for the other samples. It would not be suitable 
for comparing the diversity/composition of totally unrelated and completely 
different samples because ordination relies on the assumption that there is 

continuity of change (Leps and Smilauer 2003). Conventional diversity Indices 

would be more appropriate for comparing unrelated samples (Magurran 1988). 
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The PCA species composition analysis indicates that C. vulgaris cover is 

considerably lower on the tree clearance area, five years after the trees were 

cleared, compared with the target vegetation. C. vulgaris makes up at least 90% 

of the diet of a red grouse (Jenkins et al. 1963) so the presence of this plant 

species is essential if the habitat is going to support red grouse. Research on 
feeding preferences of red grouse indicate that they select C. vulgaris that is 

greater than 2 years old and less than 8 years old (Savory 1978). It is thought 

that this is linked to both the nutrient content of the shoots, which is higher in 

younger plants, as well as the height of the plant and therefore the potential to 

provide cover from predators and shelter from bad weather (Moss et al. 1972; 

Savory 1978). The preferred age range of C. vulgaris equates to a height range 
between 10 and 37cm (Savory 1978). The height of a squatting adult red grouse 
is approximately 15cm so C. vulgaris at 10cm would not provide effective cover 
but is almost certainly more nutritious than older and taller heather (Thomas 

1956). The full height of an adult red grouse is about 30cm so it is thought that 

vegetation greater than 37cm would restrict visibility and movement and hence 

become less attractive (Moss et at. 1972). 

The PCA vegetation diversity results indicate that height categories 20 and 30 

are the most important categories defining the target vegetation and the PCA 

species composition results show that C. vulgaris is the most influential species 
for the target vegetation. This suggests that the target vegetation on site is highly 

suitable for red grouse with plenty of C. vulgaris between 20 and 30cm high. Data 

on C. vulgaris height on the tree clearance area in 2004 indicates that for the 

height bands 10,20,30 & 40 C. vulgaris is present in 58,42,4 &0 percent of 

quadrats. It seems reasonable to assume, therefore, that by year 5 the tree 

clearance ground is providing good quality heather shoots for grouse food but the 

cover provided by C. vulgaris is limited. Grouse numbers on the tree clearance 

area did increase over the period of the project (Sheridan 2005) so presumably 

the birds were using other plant species or patches of mature heather adjacent to 

tree clearance ground to provide cover and shelter. 
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It is clear that vegetation structure on the tree clearance area is moving towards 

the 'target' both at a small and large scale. Although the vegetation height 

diversity target was achieved by the last year of the investigation this assessment 
does not take into account species composition which is of importance for red 

grouse. It seems likely that the C. vulgaris component of the vegetation needs to 
increase, both in terms of cover and height, before the vegetation will provide 
habitat that meets all the needs of red grouse. 
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CHAPTER 7 

GENERAL DISCUSSION 
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7.1 Can blanket bog vegetation be restored when immature 

Sitka spruce plantation is removed from blanket peat? 

7.1.1 Tree clearance method 

'In situ' chipping of trees using an excavator mounted flail is an effective method 
to clear large areas of conifer forest, between 3-8 m high, from blanket bog sites. 
The resultant wood chip layer does not appear to hinder vegetation regeneration 
in the long term or affect the plant community that is predicted to develop. It 

would not be worth chipping trees smaller than 3m high because the blanket bog 

vegetation beneath the trees would be relatively intact and may be damaged by 
the machinery. For trees that are taller than 8m high extraction for paper pulp, 

paper board or biomass fuel is likely to be cost effective (Sheridan pers. comm. ). 

Manual felling of trees using a chainsaw is not a suitable method for clearing 
trees, between 3-8m high, from blanket bog if blanket bog vegetation restoration 
is the key objective. The process creates a deep brash layer (0.5-1 m deep) that 

inhibits vegetation establishment. It may be suitable for felling trees that are 

smaller than 3m high especially if the brash and trunk can be used to block up 

plough furrows (Wilkie 2005). 

Whole tree removal using a conventional harvesting machine can be used 

effectively although the costs will be substantially greater (£3,000 - £4,000/hat) 

than 'in situ' chipping of trees with an excavator mounted flail (£1,200 - 
£1,800/ha2). Initial vegetation response to whole tree removal is quicker than 

with in situ chipping but the differences in vegetation development are negligible 

after 6 years. 

2 These figures were estimated by Tilhill Economic Forestry as part of the project planning 
process 
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7.1.2 Size of trees 

The size of trees and hence the amount of wood chip has a significant affect on 
the time taken for blanket bog vegetation to develop. It is estimated that it will 
take 7,9 & 10.5 years for the blanket bog vegetation to develop following in situ 

chipping of Sitka spruce trees (yield class 10) that are 20,25 and 30 years old 

respectively. The physical barrier to light that a layer of wood chip creates 

appears to be the main reason why vegetation development is delayed as wood 

chip depth increases. Increasing depth of wood chip certainly delays the 

appearance of many plant species including some of the most common blanket 

bog species, C. vulgaris, E. vaginatum, Campylopus sp. and H. cupressiforme. It 

is also very clear that wood chip on the peat surface inhibits germination and 

growth of C. vulgans seedlings. 

In reality chipping trees with an excavator mounted flail does not deposit wood 

chip evenly over the ground. To a certain extent the flail can be angled to 

influence the direction of wood chip and this was done in some parts of the tree 

clearance area in order to fill plough furrows. As a result the higher ground near 
the tree stumps received only small amounts of chip even when the trees were 

relatively tall. This creates a highly heterogeneous situation where patches of 
deep wood chip are within one metre of patches of shallow wood chip leading to 

differential vegetation development at a scale of a few metres. The monitoring 

quadrat design with five mini quadrats (1x1m) nested within the main quadrat 

(1 Ox1 Om) provided a useful data set that allowed the differential vegetation 
development to be detected very clearly. 

Directing wood chip is a feature of the excavator mounted flail that is not 

necessarily common to all flail equipment. Some machinery operates at ground 
level, knocking the trees down and chipping them on the ground surface (see 

Appendix 4 for a picture of this type of flail machinery). The excavator mounted 

machinery offers considerable flexibility which may facilitate blanket bog 

restoration in two ways. Firstly, by blocking plough furrows to encourage re- 
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wetting of the peat and secondly by minimising wood chip cover on higher areas 

of ground allowing vegetation to develop more quickly. 

There is considerable evidence to suggest that the propagule bank of forested 

blanket bog sites is likely to decrease with increase in size of the trees and the 

associated time since canopy closure (Hill and Stevens 1981). However, those 

species that have any longevity within the seed bank appear to remain viable for 

at least 45-55 years (Hill and Stevens 1981) which is the length of time that a 
Sitka spruce crop takes to mature (Taylor 1991). So it seems likely that, provided 
the forest plantation is in its first rotation, there will still be some viable 

propagules in the surface peat. The propagule bank certainly appears to be 

important during the first year of plant colonisation following tree clearance but in 

subsequent years seed dispersal from nearby mature blanket bog vegetation 

starts to influence vegetation development. If there was no existing blanket bog 

vegetation within the vicinity of a tree clearance site then the propagule bank may 
be more important although it will not supply anything like the full complement of 
blanket bog species as many species are only transitory within the seed bank 

(Grime et al. 1988). In this situation seed introduction may be necessary to 

create the desired plant community. 

7.1.3 Development of blanket bog vegetation 
Development of the plant community, following in situ chipping of the trees, 

showed a clear movement towards the target vegetation. Subtle changes in the 

plant community over the 6 years since chipping indicate that the peat was 
becoming increasingly wet with time since clearance. A tree crop planted on 
blanket bog has a significant drying effect on the peat by year 20 (Pyatt et al. 
1989) so removal of the crop should start to reverse this effect (Anderson 2001) 

provided that significant cracking of the Catotelm has not occurred (Anderson et 

al. 1995). Many of the plough furrows and drainage channels on site had 

become partially blocked with moss or general forest detritus before tree 
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clearance began and no attempt had been made to maintain the forest drainage 

system. For this reason, coupled with the high rainfall levels in Kintyre, it was 
decided that no additional effort should be made to re-wet the site following tree 

clearance except using wood chips to block plough furrows. On drier sites where 
forest drainage has been more effective it may be necessary to put additional 

effort into blocking plough furrows and forest drainage systems in order to ensure 
that the desired blanket bog plant communities develop. 

Then: was a good range of peat depths found on the tree clearance area varying 
from 10cm on steep slopes to over 2m on some of the flatter areas. As expected 
there was a clear difference in plant community development depending on peat 
depth and slope with the true mire communities (M19 and M15) (Rodwell et al. 
1991) developing on the areas of deep peat. pH had some influence on the plant 

community but as the pH range was only relatively small and all areas were 
below pH 4 it was not possible to see a clear differentiation of plant community 

type in relation to pH. 

7.1.4 Ground disturbance 

Whilst setting up the chip depth experimental plots the ground was raked to 

remove all the wood chip which was then re-applied as different treatments. This 

was not done on the 'natural' control as it was left untouched and although there 

were patches of chip on these control plots there were also patches of bare 

ground. Plant growth on these plots differed from that on the 'all removed' 

treatment suggesting that the raking disturbance on the 'all removed' treatment 

stimulated the vegetative, seed and spore propagules in the peat. On second 

rotation sites or sites where the trees are older the propagule bank may be 

limited and it is possible that a level of surface disturbance may stimulate 

propagules that would not develop if undisturbed. This is only really relevant if 

there is relatively little wood chip on the surface because light availability is also 
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thought to be important (Jauhlainen 1998) and not necessary where mature 
blanket bog vegetation exists within the vicinity. 

7.2 Does blanket bog vegetation, which has been restored 
through tree removal, provide suitable habitat for red 

grouse? 

7.2.1 Manual felling of trees 

Manual felling of trees using a chainsaw is a completely unsuitable method for 

clearing forested ground if red grouse habitat creation is the desired objective. 
The brash layer that is created by felling trees between 3-8m high is too deep to 

provide sensible cover for the birds and it hinders development of the vegetation. 
It is thought that vegetation taller than 37cm would be unattractive to red grouse 
as it restricts visibility and movement (Moss et al. 1972) so a brash layer of 50cm 

or more is unlikely to be used by red grouse. During spring 2001 a red grouse 
nest was found under a pile of Sitka spruce brash on the tree clearance area but 
the brash pile was relatively small with very good visibility in all directions. 
Extensive areas of brash would severely inhibit visibility and movement to a 
much greater extent than the tall vegetation described by Moss et al. (1972). 'In 

situ' chipping or complete removal of trees are far more appropriate methods to 

clear forest to create habitat for red grouse. 

7.2.2 Calluna vulgaris on blanket bog 

Calluna vulgaris is an essential component of the vegetation if a blanket bog 

habitat is going to support a red grouse population. This is largely to do with the 
diet of red grouse with at least 90% of their diet made up of C. vulgaris shoots 
(Jenkins et al. 1963). C. vulgaris is a 'constant' species in all but one of the NVC 
blanket bog plant communities (M20) where it is found in 21-40% of examples of 
the plant community (Rodwell et al. 1991). This is perhaps surprising given that 
the species grows best when the soil is at least moderately well drained (Pearsall 
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1938; Poel 1948; Gimingham 1960) but it will grow where some level of oxidation 

occurs for some time during the year (Poel 1948). C. vulgaris is unlikely to exist 

at high percentage covers in blanket bog communities, although this depends on 

management (Rodwell et al. 1991) but it is thought that a percentage cover 

above 30% is sufficient to support red grouse (Moss pers. comm. ). 

Vegetation on the tree clearance area had not reached the 'target' by 2004 and 

this was largely to do with the dwarf shrub component of the plant community 

which had not become fully established. The mean percentage cover of 

C. vulgaris in the monitoring quadrats on flailed ground in 2004 was 10.82% 

compared with 45% in the 'target' vegetation control quadrats. The maximum 

predicted time to achieving the 'target' vegetation on flailed ground was 10.5 

years so one would assume that the percentage cover of C. vulgaris will have 

continued to increase after 2004. Indeed data from vegetation monitoring along a 

series of transects on the tree clearance site indicates that the percentage cover 

of C. vulgaris was 11% in 2001,15% in 2004 and is now 33% in 2008 (Sheridan 

2008). 

E. vaginatum became established across much of the tree clearance area in a 

relatively short space of time (during the first year after tree clearance) indicating 

that the species is good at colonising bare peatland sites. Indeed the species 

has been used in the restoration of mined peatlands which are usually completely 

devoid of vegetation. Initially it was thought that E. vaginatum may provide a 

'nurse crop' for C. vulgaris seedlings as suggested by Lavoie et al. (2005). 

However, the reverse was found to be true with C. vulgaris doing significantly 

less well where E. vaginatum was present. This may be due to competition for 

light and nutrients but may also be related to wetness of the site as C. vulgaris 

tends to prefer reasonably dry conditions (Poel 1948) and although E. vaginatum 

can tolerate drought it will also grow on waterlogged peat (Wein 1973). Re- 

wetting of a site through drain blocking is certainly a pre-requisite for the 

restoration of mined peat bogs using E. vaginatum (Tuittila et at. 2000a). The 
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M19 NVC plant community (Rodwell et al. 1991) is the pre-dominant vegetation 
type on and around the tree clearance area and this community is suitably 

named the Calluna vulgaris - Eriophorum vaginatum blanket mire community 

with these two species being the most abundant within the community (Rodwell 

et al. 1991). This suggests that although the two species may have slightly 
different micro-site requirements they do co-exist well at the plant community 
level. In any case E. vaginatum is an important food item for red grouse as the 

flowers or'cotton buds' are a rich source of protein during early spring when hen 

grouse need to be in good condition for egg laying (Moss pers. comm. ). 

7.2.3 Vegetation structure 

Development of the vegetation structure, following in situ chipping of the trees, 

showed a clear movement towards the target vegetation. At a large scale (> 
I Om) structural diversity or vegetation height diversity was the same on flailed 

ground 4-6 years after chipping as it was on the target blanket bog vegetation. 
However, at a small scale (1 Ox10cm -1x1 m) the vegetation structure and plant 

community composition indicated that the cover of C. vulgaris was not anywhere 

near as high on the flailed ground as the target vegetation. Since red grouse rely 

so heavily on C. vulgaris (Jenkins et al. 1963) the vegetation structure/ 

composition combination is unlikely to have provided ideal habitat for the birds 4- 

6 years after tree removal. C. vulgaris was present on the flailed ground but the 

plants were relatively young and therefore short, providing a good source of food 

but only limited shelter and cover from predators (Thomas 1956). It is possible 
that other plant species could provide the necessary cover for red grouse but all 

the taller species were grasses, sedges or rushes and the growth habit of these 

species is considerably different to C. vulgaris. It seems likely that although the 

vegetation on the tree clearance area offered some potential as a habitat for red 

grouse 4-6 years after tree clearance the potential would improve as the cover 

and height of C. vulgaris increased. It is predicted that it may take 10 years 
before the 'target' plant community is reached so perhaps this is a realistic 

170 



estimate for achieving the 'target' vegetation structural diversity that is required to 

support a red grouse population at its maximum capacity. 

Red grouse numbers have been monitored on the tree clearance area every year 

since 2000. An initial increase was seen between 2000 and 2004 of 3.1 grouse 
pairs/km2. However, since then numbers have declined back down to the levels 

seen in 2000. Although this suggests that the developing habitat is not ideal for 

red grouse there are a number of other factors that affect grouse numbers 
including predators and weather conditions, particularly during the spring and 

early summer (Moss pers. comm. ). One of the main reasons for this blanket bog 

restoration project was to create habitat for red grouse and ultimately to provide 
live prey for a pair of golden eagles. The golden eagle monitoring indicates the 
birds have increased their use of the tree clearance area since 2000 (Walker et 

al. 2005) so it is possible that the small declines in grouse numbers since 2004 

are a result of increased numbers of grouse are being taken by the eagles. 

7.3 What scale is the most appropriate for monitoring blanket 

bog vegetation? 

The questions explored in this thesis were studied at a range of scales and the 

results varied considerably depending on the scale of study. Plant community 
development of the blanket bog vegetation appeared to reach the 'target' in some 

quadrats, within 5 years of tree removal when working at a scale of 1xim. 

However, at the larger scale of 1Ox1 Om the vegetation was some way off the 

'target' 5 years after the trees were removed. This difference in results was 
largely due to heterogeneity in wood chip depth, which varied considerably from 

one metre to the next, but was also influenced by vegetation cover that existed 

prior to tree clearance. At the 1x1 m scale some patches of vegetation did 

develop quickly or existed prior to tree clearance but the larger scale 

assessments indicated that this was not sufficiently widespread to assume that 
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the target vegetation composition had been reached over the whole tree 

clearance area. 

The vegetation structure assessments that were done at a large scale with 

transects that cover the whole tree clearance area, showed that the vegetation 
height diversity at the end of the study was the same as the 'target' vegetation. 
However, at the small scale of 1 Ox1Ocm the data showed a completely different 

picture where the structure of the vegetation, 5 years after the trees were 

removed, was not as diverse as the target vegetation. This was in part due to the 

assessment techniques used with the small scale measurements being more 

sensitive to species composition which had an influence on vegetation structure. 

The influence of micro-site characteristics on C. vulgaris germination and growth 

was also considered at a range of scales from 1 Ox10cm to 1x1 m and although 

there were similarities in the results there were some clear differences. For 

example it appears that micro-topography is important for C. vulgaris germination 

and growth at the 1x1 m quadrat scale but the relative height of I Ox10cm cells 

around a1 Ox10cm patch does not influence the suitability of that micro-site for 

C. vulgaris germination. 

Initially it was thought that a multi-scale approach would allow the most 

appropriate scale of study to be identified in each situation. However, study at 

each scale provided complimentary data that improved understanding of the 

different processes under investigation and aided interpretation of all the results. 

Different species respond to their environment at a unique range of scales (Levin 

1992) so there is no single correct spatial scale at which to describe species 

habitat relationships (Wiens 1989; Saunders et al. 1998). Indeed many 

ecological relationships between species pattern and process may occur along a 

continuum of scale (Saunders et al. 1998). The results from small scale 

ecological experiments cannot always be extrapolated directly to larger scales 

(Carpenter et al. 1995; Schneider et al. 1997). Similarly it is unusual that fine 
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scale predictions can be obtained from coarse scale data (Hartley et al. 2004). 

As a result multi-scale approaches, similar to that taken in this thesis, are 

necessary in the study of species habitat relationships (Graham and Knight 2004; 

Graf et al. 2005). 
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Appendix 1 
Project and tree clearance area 
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Appendix 2 
Five geographic areas within the tree clearance area used to managed tree 
clearance and to stratify sampling for monitoring quadrats. Includes location of 
the chip depth experimental plots 
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Appendix 3 
Location of vegetation transects on the tree clearance area and on the two 
management units immediately adjacent to the tree clearance area. 
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Appendix 4 
Ground level flail machine 
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