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Abstract 

Aspects of thermal convection in the Earth's fluid core in the presence of a 
strong azimuthal magnetic field may be understood by considering a horizontal 

plane layer, rotating about the vertical z axis, with gravity acting downwards and 
containing an applied magnetic field aligned in the y (azimuthal) direction. Since 
the OMB is not smooth, the effects of adding bumps (with axes perpendicular to 
the applied magnetic field) to the top boundary of the layer are investigated in the 

magnetogeostrophic limit. The arbitrary geostrophic flow that arises under this 
limit is evaluated using a modified Taylor constraint. 

The bumps distort the isotherms so that they are not aligned with equipotential 
surfaces, leading to an imperfect configuration. This means that a hydrostatic 
balance is not possible, and motion ensues. This motion takes the form of a steady 
transverse convection roll, with axis parallel to the bumps. The roll exists for 

all values of the Rayleigh number, except that value for which the corresponding 
homogeneous problem in the standard plane layer has a solution. The roll obeys 
Taylor's constraint, and has no associated geostrophic flow. 

The stability of this roll to perturbation by oblique rolls (which are preferred 
for 0(1) values of the Elsasser number) is considered. It is found that the most 
unstable linear mode consists of a pair of these oblique rolls, aligned so that no 
geostrophic flow is accelerated by their interaction with the basic state. Hence, 

the stability results obtained here are identical to those found by perturbing the 
hydrostatic conduction solution with oblique rolls in the standard layer. 

Finally, the nonlinear evolution through the Ekman regime of these linear in- 

stabilities is considered. It is found that the nonlinear convection behaves similarly 
to mean field dynamo models which incorporate a geostrophic nonlinearity. Vari- 

ous types of Ekman solution are found, and evolution to Taylor states is observed. 
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Chapter I 

Introduction 

1.1 Convection In The Core 

Paleomagnetic data indicate that the Earth's magnetic field has been in exis- 
tance for in excess of three billion years. Since this exceeds by several orders of 
magnitude the Ohmic decay time of the Earth (which is on the order of fourteen 
thousand years), it follows that there must be some regenerative mechanisms op- 
erative within the Earth, which maintain the magnetic field against Ohmic losses. 
These dynamo mechanisms are thought to be linked to the motion of the electri- 
cally conducting fluid in the outer core of the Earth. Trapped between the solid 
inner core and the solid mantle, this fluid is driven into motion by two mecha- 
nisms: thermal and compositional convection. Compositional convection occurs 
when the heavy iron part of the fluid freezes onto the inner core, releasing a lighter 

component. This lighter component contributes to a buoyancy force, which forces 

motion in the outer core. In addition, the temperature at the inner core boundary 
is hotter than the temperature at the core mantle boundary. This sets up an ad- 
verse temperature gradient across the outer core, which contributes to a thermal 
buoyancy force, which also forces motion in the outer core. 

The fluid flow in the core is characterised by various dimensionless parameters. 
These parameters are defined using measures of the flow in the core. Let U be 

a measure of the fluid velocity in the core, 13o a measure of the magnetic field 

strength, 11 a measure of the rotation of the Earth, Va measure of the dimensions 

of the core, va measure of the viscosity, ga measure of gravity and ßa measure 
of the adverse temperature gradient. Then the Rayleigh number, defined by 

2 

measures the strength of the adverse temperature gradient in the core ß, to thermal 
diffusion in the core, n. The constant a is the coefficient of volume expansion in 
the core. Similarly, the Elsasser number, defined by 
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A= 
B°2 (1.1b) 

f2µopo77 

measures how strong the Lorentz force (which is the force caused by the magnetic 
field) is compared to the Coriolis force (which is the force caused by the Earth's 

rotation). The constants µo, po and 77 represent the magnetic permeability, density 

and magnetic diffusivity in the core. The Roberts number, 

q=-, (1.1c) 

measures the relative strength of the thermal diffusivity and the magnetic diffu- 

sivity. The Prantl number, defined by 

P=v, (1.1d) 
Ic 

measures how strong the viscosity of the core is compared to the thermal diffusion 

of the core. The Ekman number, defined by 

E= 
S1D2, 

(1.1ed) 

measures how strong the viscous force is compared to the Coriolis force. Finally, 

the Rossby number, defined by 

Ro= ffD (1.11) 

measures how strong the inertial force is compared to the Coriolis force. Not all 

of these parameters arise is this work. 

The simplest way to model the motion is by the thermal convection of a rotating 

spherical shell of Boussinesq fluid. Studies of the non-magnetic case by Roberts 

(1965,1968), Busse (1970) and more recently by Zhang (1991) have shown that at 
the onset of instability, the motion consists of convection rolls parallel to the axis 

of rotation. These rolls propogate azimuthally due to the effects of inertia and 
the curvature of the boundaries, and are called thermal Rossby waves. They are 

confined to a thin annular region of the core (the thickness of this annular region 
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being dependent upon the value taken by the Prantl number P), where the effects 
of the rapid rotation of the Earth through the Taylor-Proudman theorem (which 

constrains the fluid motions to be two dimensional, independent of the coordinate 
parallel to the axis of rotation) are relaxed by a balance between the viscous and 
buoyancy forces. The lengthscale of the convection in the azimuthal direction is 

very short, and is given by E-4. As the thermal driving is increased, the convective 
motions become stronger, and fill the entire spherical shell. 

When the effects of a magnetic field are included, the situation is different. 
Provided the magnetic field strength is sufficiently large, the constraints of the 
Taylor-Proudman theorem may be broken by the Lorentz force, and the convection 
can initially take place on a much larger lengthscale, that of outer core itself (see 
for example Eltayeb and Kumar 1977; Fearn 1979a, b). The magnetic case will be 

considered in this work, albeit in a simpler geometry. 

1.2 The Dynamo Problem 

Discovering if (and how) such fluid motion can support a magnetic field against 
Ohmic decay is called the dynamo problem. For the Earth, the dynamo problem is 

difficult to solve for three main reasons. The first is that the equations to be solved 
constitute a highly nonlinear, coupled set of partial differential equations for the 
fluid velocity and magnetic field. These equations must be solved in a spherical 

shell geometry subject to appropriate boundary conditions. The second difficulty 

is that the dynamo problem is inherently three dimensional. This is a consequence 
of Cowling's theorem (Cowling 1934), which states that an axisymmetric magnetic 
field cannot be supported against Ohmic decay by dynamo action. To break the 

constraints of this theorem, each unknown (e. g. fluid velocity U, magnetic field B 

etc. ) is regarded as being composed of two parts: a large axisymmetric or mean 
part, and a smaller asymmetric part, which is added to break the constraints of 
Cowling's theorem. In the core, these asymmetries are thought to be planetary 
waves which ride upon the underlying axisymmetric state (Braginsky 1967). It is 
the presence of the asymmetries that makes the problem three dimensional. 

The mean magnetic field is then supported by two mechanisms. The poloidal 
part of the mean magnetic field is bowed out by the differential rotation of the 
fluid to form the toroidal part. This is called the w-effect. To complete the regera- 
tive process, the asymmetries combine to produce an a-effect, which creates the 
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poloidal part of the mean magnetic field from the toroidal part (and to a lesser ex- 
tent, it also creates toroidal magnetic field from poloidal magnetic field). If there 

are no asymmetries present, the a-effect is absent, and the poloidal part of the 

mean magnetic field would decay due to Ohmic losses. With no poloidal mean 
field to create toroidal mean field, the toroidal part is subject to a similar Ohmic 
decay. Through the a-effect, the asymmetries regenerate the mean magnetic field. 
To solve the governing equations for both the mean and asymmetric parts of the 

solution together is beyond the power of even the most powerful computers today. 
Usually, the problem is split into two simpler components. 

The first component involves solving the equations for the larger mean part of 
the solution, having prescribed the asymmetries in the form of an a-effect. This 
is the mean field dynamo problem. Several types of mean field dynamo can occur, 
depending on what processes are used to sustain the field. In an a2 dynamo, the 

a-effect is used to create both the toroidal and poloidal parts of the mean magnetic 
field. In an aw dynamo, the w-effect is used to create the toroidal part of the mean 
magnetic field, and the a-effect is used to create the poloidal part. Finally, in an 
a2w dynamo, both the a-effect and w-effect create the toroidal part of the mean 
magnetic field, while the a-effect is also responsible for creating the poloidal part. 
Examples of all three types of mean field dynamo may be found in Fearn, Roberts 

and Soward (1988). 

The second component of the problem involves solving the equations for the 

smaller asymmetric part of the solution having prescribed the mean part. This is 

called the magnetoconvection problem. This problem provides valuable informa- 

tion on the small scale processes that take place to generate the a and w-effects of 
the mean field problem. Several types of magnetoconvection problem are described 
by Chandrasekhar (1961). 

1.3 The Magnetogeostrophic Approximation 

The third difficulty in solving the dynamo problem in the Earth arises because 

of the nature of the primary force balance in the outer core, which consists of a 
balance between the Coriolis, pressure, Lorentz (and buoyancy) forces. This force 
balance occurs for the following reasons. 

The inertial terms are neglected because the Rossby number Ro is O(10-8) in 
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the outer core. This small value indicates that the inertial force is insignificant 

compared to the Coriolis force. Neglecting the inertial terms filters out inertial 

waves, whose timescales (on the order of a day) are too short to be of interest to 

the dynamo problem. Mathematically, neglecting these terms changes the equation 

of motion from a predictive equation to a diagnostic equation, that is, a condition 
that must be satisfied by the fluid velocity U for all time. 

Comparing the size of the viscous force with the Coriolis force yields the afore- 

mentioned Ekman number, E. In the core, E is 0(10-16), which indicates that the 

viscous force is also insignificant compared to the Coriolis force. Hence, neglecting 

viscous and inertial terms from the momentum equation (this is the magneto- 

geostrophic approximation which gives rise to the primary force balance in the 

outer core) yields the magnetogeostrophic equation 

2fl ATJ=-V(P)+ 
1 (VAB)AB+ pg. (1.2) 

Po ILoPO Po 

By considering the curl of this equation, it can be shown that the velocity U can 

not be determined uniquely from the magnetogeostrophic equation. It can only be 

determined up to an arbitrary geostrophic flow, 

Vg = Vg(s)ý, (1.3) 

where cylindrical coordinates with z axis parallel to the axis of rotation are em- 

ployed (see Fearn 1994). This arbitrariness can be traced to the neglect of the 

viscous term, which has the effect of lowering the order of the momentum equation 
by two. This situation, where a small parameter (in this case v, the viscosity) 

multiplies the highest derivative of an equation, is quite common in singular per- 
turbation theory. That theory suggests that although viscosity is unimportant 
over the bulk of the core (in which region (1.2) applies), viscosity is important in 

thin viscous Ekman layers close to the core mantle boundary. The question of how 

important these Ekman layers are in determining the dynamics of the outer core 
is of key importance in determining the geostrophic flow. 

Taylor (1963) argued that the Ekman layers do not affect the dynamics. In 
this situation, the solutions of (1.2) can be shown to satisfy the Taylor constraint 
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M= f fc(8) [(VAB)AB]dS=O Vs, (1.4) 

where C(s) is a cylinder of radius s coaxial with the axis of rotation, called a 
geostrophic cylinder. Physically, the Taylor constraint says that there can be no 
mean torque exerted on geostrophic cylinders by the Lorentz force. Mathemati- 

cally, the existence of a homogeneous solution Vg of the magnetogeostrophic equa- 
tion necessitates a solvability condition (i. e. the Taylor constraint) in order to find 
inhomogeneous solutions (see Fearn and Proctor 1992). Taylor argued that even if 
the Taylor constraint was not initially satisfied by the magnetic field, the resulting 
torque on the geostrophic cylinders would set up a torsional oscillation, that is, 

an oscillation of the geostrophic cylinders, which would ultimately decay in time 
to leave the Taylor constraint satisfied. In Taylor's prescription, the geostrophic 
flow is determined implicitly by the requirement that its' effect on the magnetic 
field (through the w-effect) should be precisely that needed to ensure that Taylor's 

constraint is satisfied. A solution which obeys Taylor's constraint is said to be in 

a Taylor state. 

On the other hand, it can be argued that the viscous Ekman layers do influence 

the dynamics of the outer core through the effects of Ekman suction, where fluid 

is drawn into the Ekman layers at the poles, and then ejected through the Ekman 
layers towards the equator. The resulting mass flux through the Ekman layers 

can be related to the arbitrary geostrophic flow (see Fearn 1994), leading to an 

alternative form of (1.4), given by 

2p02.701 vg =1c, ý[(VAB)AB' dS. (1.5) 
()µ 0 

This is called the modified Taylor constraint, and provides an explicit equation for 

the arbitrary geostrophic flow. The term on the left hand side of (1.5) represents 
the mass flux through the Ekman layers caused by the Ekman suction effect. 

Braginsky (1975) proposed an alternative to the Taylor model. It consists of 
an aw dynamo, in which the effects of the viscous Ekman layers are retained, and 
where the radial component of the mean magnetic field is assumed to satisfy 

Ba « 1. (1.6) 
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This assumption implies that there is weak coupling between adjacent geostrophic 
cylinders. Consequently, the torsional oscillations that are driven by the failure of 
the magnetic field to satisfy the Taylor constraint are not damped to zero (since the 
damping mechanism relies on B, being 0(1), so there is strong coupling between 

the geostrophic cylinders). Hence, although the Taylor integral is always small, it 

never vanishes, and must always be balanced by the Ekman suction term. The 

model is characterised by the shape of the poloidal part of it's mean magnetic 
field, which is aligned with the rotation axis. This led Braginsky to call it Model 

Z. Braginsky was able to show that in the limit v -> 0, Taylor's constraint remained 

unsatisfied, showing that the model always depends upon the value of the viscosity. 

1.4 The Taylor Problem 

The question of whether or not viscous effects are important in the dynamics 

of the outer core has received a lot of attention. Specifically, the question asked 
is whether or not Taylor's constraint can be satisfied in the outer core, and if so, 
how is it brought about? The failure of Braginsky's Model Z to ever satisfy the 

Taylor constraint has prompted a more cautious approach. Most authors retain the 

effect of Ekman suction (through the modified Taylor constraint) and ask whether 
the magnetic field and geostrophic flow can evolve in such a way that Taylor's 

constraint can be eventually satisfied. 

One possible evolution for a2 dynamos in a sphere was described by Malkus 

and Proctor (1975). They show that there is a critical value of a, denoted by ac, 
below which the dynamo does not work because the effects of Ohmic dissipation 

are too strong. Just above ac, the a-effect is strong enough to overcome the Ohmic 

dissipation, and the magnetic field strength begins to grow. However, at this point, 
the magnetic field strength is small, of O(vl). As a result, the most important 

nonlinearity is that generated by the geostrophic flow and the modified Taylor 

constraint, all the other nonlinearities being small enough to ignore. Hence, it is 

the viscosity that limits the field growth through the modified Taylor's constraint. 
This regime is therefore called the Ekman regime. However, by increasing a, 
Malkus and Proctor find a second critical value of a, denoted aT, at which Taylor's 

constraint becomes satisfied. As a is increased to aT, the magnetic field and 
geostrophic flow adjust so that Taylor's constraint becomes satisfied. The Taylor 

state is characterised by a rapid growth in the strength of the magnetic field, 
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which goes from O(va) to 0(1), becoming independent of viscosity in the Taylor 

state. Above aT, the other nonlinearities of the problem become important, and 
control the magnetic field strength. This is called the Taylor regime, since Taylor's 

constraint is satisfied for a> aT. In the Taylor regime, the geostrophic flow is 
determined implicitly using the method prescribed by Taylor (1963). 

This scenario has come to be known as the Malkus-Proctor scenario, and has 

been verified for a2 dynamos in various geometries. For instance, the plane layer 

model of Soward and Jones (1983), the spherical models of Ierley (1985), Hollerbach 

and Ierley (1991), Barenghi and Jones (1991) and Barenghi (1992a) all exhibit this 

evolution to a Taylor state. This is not the only behaviour possible, however. A 

second type of solution occurs where the Taylor states lie on a higher amplitude 
branch of the solution, which is not connected to the initial bifurcation of the small 

amplitude Ekman regime. This type of solution has been observed by Soward and 
Jones (1983), Barenghi and Jones (1991) and Hollerbach and lerley (1991). 

By contrast, the behaviour of aw dynamos is not so straightforward. Although 

the infinite plane layer aw dynamo of Abdel-Aziz and Jones (1987) does show the 

smooth transition to a Taylor regime envisaged by Malkus and Proctor, similar 

models in confined geometries (e. g. a duct or a sphere) do not show such a well 
defined transition to a Taylor state. 

The difference between a2 and aw dynamos is twofold. Firstly, aw dynamos 

tend to be oscillatory, while a2 dynamos are usually steady. Secondly, aw dynamos 

are prone to secondary bifurcations which lead to more and more complicated 
temporal behaviour in the solution. For instance, the aw dynamo of Wallace and 
Jones (1992) in a duct geometry has secondary bifurcations which take the initial 

solution from oscillatory to vascillatory, frequency locked, chaotic and back to 

oscillatory again, all in the Ekman regime! These secondary bifurcations do not 

seem to occur in a2 dynamos. Because of this complicated bifurcation structure, 
the transition to a Taylor state is hard to establish. Typically, the solution comes to 

an end at a subcritical Hopf bifurcation, at which a second frequency is introduced. 
In some cases (e. g. Barenghi and Jones 1991 in a sphere) an oscillatory Taylor 

state does become established. However, in the models of Hollerbach, Barenghi 

and Jones (1991) in a sphere, and Wallace and Jones (1992) in a duct, the solution 
becomes chaotic after this point, and the dependence of the solution upon the 

viscosity is hard to establish. Quite why this behaviour occurs is still an open 

question, and is the subject of ongoing research. 
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The question of whether or not Taylor's constraint can be satisfied has also 
arisen in models of magnetoconvection. Just as in the mean field case, it is found 
that when the amplitude of the magnetoconvection is small, the geostrophic nonlin- 
earity is the most important nonlinearity in the problem, and becomes responsible 
for equilibrating the amplitude of the solutions. However, the mechanism by which 
the amplitude is controlled differs from the mean field case, where viscous damping 

was resposible for controlling the amplitude. In magnetoconvection, the shear gen- 
erated by the geostrophic flow is responsible for controlling the amplitude of the 

solutions (see Fearn 1994). The Taylor problem in magnetoconvection has been 
investigated in various geometries: an infinite plane layer (Roberts and Stewart- 

son 1974,1975; Soward 1980), a duct (Soward 1986; Jones and Roberts 1990), a 
cylindrical annulus (Skinner and Soward 1988,1990) and a sphere (Fearn, Proctor 

and Sellar 1994). 

The Roberts and Stewartson model consists of a horizontal plane layer, which 
rotates about the vertical axis, with gravity acting downwards. The layer is as- 
sumed to contain a horizontal applied mean magnetic field, and the bottom bound- 

ary is made hotter than the top to facilitate thermal convection. Roberts and 
Stewartson find that once the Rayleigh number (which is a dimensionless measure 
of the adverse temperature gradient) is made large enough to overcome the effects 
of thermal diffusion, then convection in the form of rolls ensues. For weak applied 
mean magnetic field strengths, a single convection roll whose axis is perpendicular 
to the applied mean magnetic field is the preferred mode of convection. Increasing 

the strength of the applied mean magnetic field however, they find that a pair of 
oblique convection rolls, aligned at equal but opposite angles to the applied mean 
magnetic field, become preferred. These rolls can go unstable either singly (called 

a single oblique roll solution) or in a pair (called a double oblique roll solution). 

The single oblique roll solutions obey Taylor's constraint, and constitute the 
Taylor states that arise in the plane layer. Their nonlinear evolution is investigated 
in Roberts and Stewartson (1974). Of more interest, however, is the double oblique 
roll solution, since a pair of oblique rolls taken together do not satisfy the Taylor 

constraint. To investigate this solution, Roberts and Stewartson (1975) regard one 
of the oblique rolls in the double roll solution as being very small, and treat it as a 
perturbation to its' companion. The resulting linear stability problem investigates 

where the Taylor solutions (i. e. the single oblique roll solutions) are unstable. 
In the regions where instability occurs, Taylor's constraint is not satisfied, and 
there is a complicated nonlinear interaction between the two oblique rolls and 
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the concomitant geostrophic flow accelerated by the interaction of the two rolls 
through the Taylor integral. Soward (1980) investigates the subsequent nonlinear 
evolution of this instability. 

However, the double oblique roll solution found in the plane layer is degenerate, 

and arises as a consequence of the infinite geometry. It does not occur in bounded 

geometries. For instance in a sphere, a single mode which does not satisfy Taylor's 

constraint typically onsets at criticality. To remedy this, Soward (1986) bounded 

the infinite plane layer to form a duct. The simplicty of the model enabled him to 
look for Taylor solutions directly, using the method of Taylor (1963). Soward finds 

the critical Rayleigh numbers at which Taylor's constraint can be met in the duct 

model, and investigates the nature of the Taylor states that arise. In Skinner and 
Soward (1988,1990) the case of a cylindrical geometry is investigated. Using the 

modified Taylor's constraint to evaluate the arbitrary geostrophic flow, Skinner 

and Soward again find that the solution evolves to a Taylor state provided the 
Rayleigh number is made sufficiently large. 

This evolution to a Taylor state does not always occur. Jones and Roberts 
(1990) modified the duct model of Soward so that the rotation is perpendicular to 
both gravity and the applied mean magnetic field. They were able to show that 
(provided the applied mean magnetic field is made strong enough) the solution 
does not evolve to a Taylor state, no matter how large the Rayleigh number is 

made. Similarly, in a spherical model of magnetoconvection, Fearn, Proctor and 
Sellar (1993) were also unable to find Taylor solutions. As the Rayleigh number is 

increased, the solution becomes more and more complicated temporally, but does 

not settle down to a Taylor state. These results strike a cautionary note, and 
indicate that the question of whether a Taylor state will always exist in a given 

system is far from settled. 

1.5 Inhomogeneities On The CMB 

A common fact which links all of the models discussed thus far is that in 

each model, the bounding surfaces are assumed to be homogeneous. However, 

there is ample evidence to suggest that at least one of the boundaries, the core- 
mantle boundary, may have inhomogeneities in the form of topography, lateral 

temperature variations, compositional variations and variations in conductivity. 
Hide (1967) first pointed out that the presence of these inhomogeneities on the 
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core-mantle boundary could have a profound effect upon the dynamics of the outer 
core. 

The first indication the the core-mantle boundary is not homogeneous comes 
from the fact that the length of day on the Earth is not constant: it varies on 
the order of several milliseconds per decade. This so called decadal variation 
in the length of day can be traced to changes in the rotation rate of the Earth 
due to angular momentum exchanges between the core and mantle (Hide 1969). 
There are three main mechanisms by which the core and mantle exchange angular 
momentum: viscous coupling, electromagnetic coupling and topographic coupling. 

Viscous coupling, caused by friction between the core and the mantle, is uni- 
versally believed to be too small to account for the decadal variation, due to the 

small value of the viscosity in the outer core. Electromagnetic coupling, caused 
by the leakage of currents from the outer core into the mantle, is also not strong 

enough to account for the observed variations. There are also doubts as to whether 
the timescale of variations in the magnetic field is the correct one on which the 

variation in the length of day occurs (see Roberts 1988; Voorhies 1991). This leaves 

topographic coupling, which is now thought to be the main mechanism responsible 
for the length of day variations. The mechanisms by which the core and mantle 

exchange angular momentum through topographic coupling are described in detail 

by Hide (1989) and Jault and Le Moeul (1989). 

Hide (1969) argued that bumps of only tkm height on the core-mantle bound- 

ary would produce the torque required to account for the observed length of day 

variations. By observing that bumps of this height should distort the magnetic 
field and gravitational potential on the core-mantle boundary, and by then showing 
that variations in the gravitational potential and magnetic field are correlated on 
the core-mantle boundary, Hide and Malin (1970) inferred the existance of bumps 

of height tkm on the core mantle boundary. Several theoretical calculations (see 

for example Moffat 1978; Bloxham and Gubbins 1993) have confirmed that the 

topographic torque is large enough to account for the observed length of day vari- 

ations. 

Farther evidence of inhomogeneities on the core mantle boundary comes from 

maps of the radial magnetic field on the core-mantle boundary, produced by down- 

wards extrapolation of the observed poloidal field at the Earths surface. The work 
of Gubbins and Bloxham (1987) shows the existance of four or five fixed flux 
lobes at the core-mantle boundary, which have remained static, fixed in one spot 
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throughout the period 1715-1980. Bloxham and Gubbins (1987) explained these 
fixed features by saying that the convection rolls in the outer core (which cre- 
ate the flux lobes by sweeping flux up towards the core-mantle boundary) have 
become locked onto hot and cold spots on the core-mantle boundary, instead of 
propogating azimuthally as usual. By correlating variations in seismic velocity 
(which depends on the temperature of the mantle) with variations in the radial 
magnetic field at the core mantle boundary, Bloxham and Gubbins were able to 

show that the fixed features of the radial field were indeed located at hot and cold 

spots on the core-mantle boundary. 

Theoretical support for this comes from models of convection in a spherical 

shell, which is cooled inhomgeneously at the core-mantle boundary. With these 

temperature variations on the core-mantle boundary, the isotherms no longer line 

up with surfaces of constant gravitational potential, and so small scale motion is 

always forced in the shell - this is known as an imperfect configuration. Mang and 
Gubbins (1992,1993) showed that the subsequent convection forced by thermal 

instability (through an "imperfect" bifurcation) did indeed lock onto the hot and 

cold spots imposed on the core-mantle boundary. A subsequent investigation by 

Sun, Schubert and Glatzmaier (1994), which examined this boundary forced con- 

vection far into the nonlinear regime (Rayleigh number five times critical) found 

that the temperature perturbations were locked to the boundary, but deep inside 

the shell the convection was columner in structure. 

However, Gubbins and Richards (1986) have argued that the topography of 
the core- mantle boundary could also be responsible for locking these convection 
rolls into place. Using a model of the viscosity in the mantle, together with seismic 
data, Gubbins and Richards construct a model of the "dynamic" topography on 
the core-mantle boundary, and find correlation between this topography and the 

variations in the radial magnetic field at the core mantle boundary. Gubbins and 
Richards concluded that the topography was just as likely to be responsible as 
lateral temperature variations for locking the convection rolls into place. 

Support for this viewpoint has come from the models of Bell (1993) and Bell 

and Soward (1995), who use a modified form of Busse's annulus model to examine 
the effects of topography upon convection. Bell and Soward find several new types 

of convection mode driven by the bumps, the most interesting being a boundary 
locked mode, which becomes preferred once the height of the bumps is sufficiently 
large. 
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That thermal inhomogeneities and bumps produce similar effects should not 
be surprising, since the two inhomogeneities are linked in a fundamental way. Hot 

spots on the core-mantle boundary produce upwelling in the mantle. Similarly, cold 
spots will produce downwellings in the mantle. Hence, where there are temperature 

variations, there will also be bumps. Gubbins and Richards stress the need for 
further work to examine the effects of flow over topography. 

1.6 Motivation For The Problem 

The results of the previous section indicate that the inhomogeneities on the 

core-mantle boundary can have a profound effect upon the dynamics of the outer 
core. The distortion of the isotherms from the equipotential surfaces by the in- 
homogeneities produces an imperfect configuration, where small scale motion is 

always forced. This has implications when computing the basic state in such a 
system. The inhomogeneities produce new effects, such as the locking of convec- 
tion onto the inhomogeneities, found in the models of Zhang and Gubbins (1992) 

and Bell and Soward (1995). However, most of the models decribed in the previous 

section have not included the strong toroidal magnetic field that is thought to be 

present in the outer core. To remedy this, a model that examines the effects of 
boundary inhomgeneities on convection in the presence of a strong toroidal mag- 

netic field should be considered. That is the motivation for the problem studied 
in this work. Due to the similar effects of thermal inhomgeneities and bumps, 

the inhomogeneity will be assumed to take the form of bumps on the core-mantle 
boundary. 

The plane layer model of Roberts and Stewartson (1974) described earlier, 
captures all the essential aspects of thermal convection in a spherical shell, but in 

a much simpler geometry. For this reason, and to isolate the key effects associated 
with magnetoconvection in the presence of topography, the plane layer model is 

modified to include the effects of topography. Since the exact details of the topog- 

raphy are not important, the bumps are assumed to take the form of a sinusoidal 
undulation which varies in the y direction. The bumps will be assumed to be small. 
In a model such as this, which is to be applied to the core, the magnetogeostrophic 
approximation must be made, and the arbitrary geostrophic flow evaluated. With 

regard to the remarks of section 1.3, the arbitrary geostrophic flow will be evalu- 
ated by a modified Taylor condition, in the hope that the solutions of the problem 
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will evolve to a Taylor state as the Rayleigh number is increased (or decreased). 

The model is decribed in detail in chapter 2, and the equations and boundary 

conditions for the topographical convection forced by the bumps are there derived. 
The linear results of Roberts and Stewartson are reviewed in chapter 3. The dis- 

tortion of the isotherms by the bumps leads to an imperfect configuration problem. 
Specifically, a hydrostatic balance is no longer possible in a layer with bumps. The 

exact basic state must therefore be calculated from the governing equations and 
boundary conditions, and this is done in chapter 4. Since oblique rolls are the pre- 
ferred mode of convection in a plane layer when there is a strong toroidal magnetic 
field, the stability of the basic state to perturbation by these rolls, together with 
the concomitant geostrophic flow accelerated by the interaction of these rolls with 
the basic state through the Taylor integral, is considered in chapter 5 (see also 
Appendix B). Finally, the nonlinear evolution of the resulting instabilities through 
the Ekman regime is considered in chapter 6. In chapter 7, the conclusions of the 

research will be presented. 
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Chapter II 

Description Of The Model 

2.1 The Modified Plane Layer 

The outer core is modelled by a plane layer containing an electrically conduct- 
ing fluid. The layer is of infinite extent in the horizontal x and y directions, but 
is bounded in the vertical z direction. The finite geometry of the core is mimicked 
by seeking solutions which are periodic in the x and y directions, with periods T 

T- 
and 2m respectively, where l and m are real constants. The layer is bounded below 
by 

x=0. (2.1) 

This represents the boundary between the solid inner core and liquid outer core. 
This boundary is assumed flat for simplicity. To model the bumps which occur 
on the core-mantle boundary, the traditional plane layer model is modified so that 
the top boundary lies at 

z=d+, y cos(my), (2.2) 

where y is a real constant. The size of y governs the size of the bumps, while m 
governs how they vary laterally; y and m are assumed to be known a priori. Thus, 

the periodicity in the y direction is fixed by the bumps. The bumps on the core 
mantle boundary extend a distance of about tkm into the core (Hide and Malin 
1970). Since this is a small figure compared with the dimensions of the outer core, 
it is assumed that 

y«1. (2.3) 

The layer rotates about the vertical with constant angular velocity, and gravity 
acts downwards, so 
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Figure 2.1: The configuration of the model 
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SZ = Slz, g= -gi, (2.4) 

where SZ and g are real constants. This orientation of 0 and g corresponds to the 

north polar region of the outer core, but the qualitative behaviour of the system 
is not altered by choosing arbitrary orientations (Chandrasekhar 1961). 

Convection in the outer core is driven by a combination of thermal and com- 

positional effects. As thermal convection is better understood and easier to model, 
all compositional effects will be ignored. In a thermally driven system, the bottom 
boundary is maintained at a constant temperature To and the top boundary is 

maintained at a constant temperature Td. By choosing 

To > Td, 

the bottom boundary is made hotter than the top, and an adverse temperature 

gradient 

ßTO - Td 
>0, 

is set up across the layer. This arrangement is unstable since hot, light fluid lies 

beneath cold, heavy fluid. Convection ensues to restore the thermal equilibrium, 

once the adverse temperature gradient becomes large enough. 

The fluid in the layer is assumed to be Boussinesq - that is, temperature and 

pressure variations across the layer are assumed to be sufficiently small that the 
density may be treated as a constant po everywhere, except where it appears with 
the buoyancy force. There, it takes the value 

P= Po(1 - a(T - To)). (2.5) 

The constant a is the coefficient of volume expansion, T is the temperature and 
To is the temperature at the bottom boundary. The fluid has kinematic viscosity 
v, thermal conductivity sc, magnetic permeability µp, electrical permitivity co and 
electrical conductivity a. For simplicity, all these quantities are assumed to be 

constants. Note that in the core 
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v= 0(10-8), 

so the effects of viscosity will be neglected over the bulk of the layer. Viscosity 

is only important in thin, viscous Ekman layers that lie close to the bounding 

surfaces. 

2.2 The Boundary Conditions 

It is assumed that the bounding surfaces are rigid, isothermal and perfectly 
electrically conducting. Now, these boundary conditions do not reflect the true 

physics of the core. More accurate boundary conditions would reflect the fact that 
the lower mantle is (to a high approximation) electrically insulating, and not per- 
fectly electrically conducting. Similarly, a condition on the heat flux through the 
boundaries would be more realistic than arbitrarily imposing isothermal bound- 

aries. However, of primary concern is isolating the mechanisms by which bumps 

on the core-mantle boundary affect convection in the outer core. For this reason, 
these simpler, artificial boundary conditions are adopted to make the problem more 
tractable, in the hope that they retain all the essential physics of the problem. 

These boundary conditions lead to conditions that the velocity U, temperature 
T, magnetic field B and electric field E must satisfy at the boundaries. To obtain 
these conditions, the normals to the boundaries are required. They are given by 

z onz=0, 
n= (2.6) 

z+ im sin(my)y on zd+ ry cos(my). 

They are obtained by writing the boundaries in the form of a level surface 

= constant, 

so that the normals are given by 

n=04. 
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2.2.1 The Boundary Conditions On The Velocity 

At a rigid boundary, the velocity U satisfies 

U. n = 0. (2.7) 

This is the no penetration condition, which says that the fluid in the layer cannot 
penetrate into the regions outside of the layer. Using (2.6), the conditions at the 
bounding surfaces are, therefore 

UZ =0 on z=0, (2.8a) 

Uz+ 7m sin(my)Uy =0 on z=d -}- y cos(my). (2.8b) 

Because viscosity has been neglected, the no-slip boundary condition on the veloc- 
ity (namely nAU= 0) does not have to be satisfied. 

2.2.2 The Boundary Conditions On The Temperature 

At an isothermal boundary, the temperature T satisfies 

T= constant, 

which says that the boundary is maintained at a constant temperature. Recalling 
that the bottom boundary is kept at a temperature To, while the top boundary is 
kept at a temperature Td, it follows that T must satisfy 

T=To on z=0, (2.9a) 

T= Td on z=d+y cos(my). (2.9b) 

Note that To > Td, which sets up the adverse temperature gradient necessary to 
drive convection in the layer. 
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2.2.3 Electromagnetic Boundary Conditions 

The regions outside the layer are perfectly electrically conducting. Hence 

Q= oo in z<0, z>d+ -y cos(my). 

However, the fluid in the layer has a finite electrical conductivity, so o- is finite in 

the layer. This leads to a discontinuity in o at the boundaries. At a boundary 

where o is discontinous, the magnetic field B and the electric field E must satisfy 

[B. n]=0, [nAE]=0, 

where the square brackets denote the jump in value across the boundary (see 

Gubbins and Roberts in Jacobs 1987). Ignoring any electromagnetic fields outside 
the layer, B and E must satisfy 

B. n=0, nAE=0 on z=0 and z=d+ycos(my). (2.10) 

Now, using Ohm's law, the boundary condition on E can be replaced by an 

equivalent condition on the electric current, J= µo (0 A B). Ohm's law is 

1J=E+UAB. 

CT 

Taking the cross product with n and using a standard vector identity, this becomes 

nAJnAE+ (n. B)U - (n. U)B. (2.11) 

Using (2.7) and (2.10) this says that 

nAJ=O on z=0 and z=d+rycos(my). (2.12) 

Therefore, an equivalent set of boundary conditions is 
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B. n=0, nAJ=O on z=0 and z=d+rycos(my). (2.13 

Using (2.6) these become 
BZ=O on z=0, (2.14a) 

Bz+ rym sin(my)BV =0 on z=d+y cos(my), (2.14b) 

and 

J. =O, Jy =0 on z=0, (2.15a) 

J, =O, Jy= 7m sin(my)JZ on z=d+ -y cos(my). (2.15b) 

Now, J satisfies the pre-Maxwell equation 

v. J=o. 

This, together with (2.15), implies that 

oJz 

Oz =0 on z=0, (2.16a) 

(1 - yzm2 sin2(my)) 
j, 

+y (-/m sin(my)J-. ) + -/m sin(my) 
azy 

=0 

on z=d+ ry cos (my). (2.16b) 

The boundary conditions (2.16) are equivalent to (2.15), and will be used instead 

of (2.15). 
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2.2.4 Taylor Expansion Of The Boundary Conditions 

The boundary conditions on the surface z=d+ ry cos(my) are very difficult 
to apply. However, it is possible to obtain a simpler set of boundary conditions, 
which (hopefully) retain all the essential features, but which are applied on z=d. 
This is done by Taylor expanding the full set of boundary conditions in -y, using the 
fact that 7«1, retaining only 0(1) and 0(y) terms. This yields the conditions 

Uz=Q 
BZ_0 
gJ on z=0, (2.17a) 

, 9--L 0 

To 

UU + ry cos(my)jýL = -rym sin(my)UU 

eý eZJ _BZ 

e ry cos(my) --fm sin(my)By 
on z=d. 

-= -ý-Y(rym sin(my)J-. ) - -Im sin(my)- fr -{- -Y Cos (my) 

T+ ry cos(my) ez = Td 

(2.17b) 

This idealised set of boundary conditions will be applied instead of the full set. 
However, any effects caused by their imposition will be attributed to the bumps. 

2.3 The Equations 

The equations that the system must obey are derived from the various phys- 
ical laws that govern a rotating, Boussinesq fluid in the presence of a magnetic 
field. The first law is Newton's law of motion, which is used to derive the mo- 
mentum equation. Now, to model motion in the core, the magnetogeostrophic 
approximation is made, and the magnetogeostrophic equation is obtained 

211 AU= -V(P) +1 (B. 0)B +Pg, (2.18a) 
Po Popo Po 

where 
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P= Po(1 - a(T - To)), (2.18b) 

P=P-1PoIflAxj2+ 1 Bz (2.18c) 2 2µo 

are the density and modified pressure respectively. The left hand side of (2.18) 

represents the Coriolis force, while the right hand side represents the pressure 
force, the Lorentz force and the buoyancy force respectively. Recall from chapter 
1 that the fluid velocity U cannot be determined uniquely from (2.18). It can only 
be determined up to an arbitrary flow, V(x)y called the geostrophic flow. This 

arbitrariness arises as a consequence of the magnetogeostrophic approximation. 
To determine V, and hence find the flow velocity uniquely, the following equation 

must be solved 

2(Sty)"V =1 
8M 

(2.19a) 
µo po äx ' 

where 

2d 
M= 

2d Joi 
j B. Bydzdy, (2.19b) 

is the mean Maxwell stress in the y direction (see Soward 1980; Soward and Jones 

1983; Abdel-Aziz and Jones 1987). Equation (2.19) represents conservation of 
mass in the x direction, but includes contributions from the viscous Ekman layers 

that lie at the boundaries. (This is the only place in the model where the effects of 

viscosity are important). The second law is conservation of mass. This is embodied 
in the continuity equation, 

V. U = 0. (2.20) 

The first law of thermodynamics yields the heat equation 

OT 
+ (U. V)T = ý, V2T. (2.21) 
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The left hand side of (2.21) represents advection of heat by the fluid, while the 

right hand side represents the removal of heat by thermal diffusion. The laws 

of electrodynamics (namely Faraday's law, Ohm's law and Ampere's law) can be 

combined to give a single equation for the magnetic field. This is the induction 

equation, which is given by 

1B 
+ (U. V)B = (B. V)U + 77V2 B, (2.22) 

where 

1 
71_ , 1Lo0 

is the magnetic diffusivity. The left hand side of (2.22) represents advection of the 
field by the flow, while the right hand side represents stretching of the field lines 

by the motion of the fluid, and destruction of field by Ohmic diffusion. Finally, B 

satisfies a solonoidal condition 

V. B=o. (2.23) 

This equation arises because magnetic monopoles do not exist in nature. Hence, 

the flux of B through any closed surface must be zero. 

2.4 The Formulation Of The Problem 

The equations are nondimensionalised by adopting the following scalings 

x= Dx*, t= Tt*, (2.24a, b) 

1 
y= Dy*, M= 5m*, (2.24c, d) 

O. V* (2.24e) 
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where the starred quantities are nondimensional, and 

E)2 
D=-, T=D 

, 

have been adopted as length and time scales repectively. As is common in convec- 
tion problems, time has been scaled on the basis of the thermal diffusion timescale. 
The velocity, magnetic field and temperature scale as follows 

U= D(V *(x)Y +'y' ü*)ý (2.25a) 

B= Bo(Y + 7*Qb*), (2.25b) 

T= , QD(TT - z* + ry*b*), (2.25c) 

where q is the Roberts number. 

The flow V*(x)y is the geostrophic flow that arises as a consequence of the 

magnetogeostrophic approximation, but it is corrected by a flow ry*u*, which is 

determined to ensure that the geostrophic flow fits into a layer with a bumpy top 
boundary. The form of the geostrophic flow arises for the following reason. The 

true geostrophic flow in the bumpy layer takes the form U*(x, y, z)y. Consider the 

mass flux across the plane y=Z, at which the layer has height 7r. It is given by 

. *F=7rU*(x, 
2) r)' 

This mass flux J must be the same as the mass flux across any arbitrary plane 

y= yo, at which the layer has height zo =7r + y* cos(m*yo). Hence, 

.ý= aU*(x, 
2,7r) 

= (7r + -y* cos(m*yo))U*(x, yo, , zo). 

Defining V*(x) = U* (x, Z, ir) the following relation is obtained 
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U*(X, y, z) =1+ 21 cosým*y) 

Taylor expanding this in ry* and retaining terms of 0(ry*) alone, we get 

U*(ýýyýz) = v* (x) + 0(7*). 

The 0(7*) correction is absorbed into the flow it forced by the bumps, and the 

above relation is obtained. 

Similarly, the magnetic field y represents the strong azimuthal magnetic field 

thought to be present in the outer core. It is corrected by a field qy*b* to ensure 
that it also fits into a bumpy layer. Finally, the linear temperature profile set 
up by the adverse temperature gradient ß is corrected by y*9* to account for the 

presence of the bumps. Each of these corrections is topographically forced, i. e. 
they are forced by the presence of the bumps. As ry* « 1, these corrections will be 

small. Therefore, substituting (2.25) into the governing equations and boundary 

conditions, all terms of 0(, y*2) or smaller can be neglected, to obtain the following 

non-dimensional equations 

2zAu= -VP +A 
Ob 

+ RO , 
(2.26a) 

y 

r 
2r 

m (bxby)dzdy}, (2.26b) 2V = rAgOx { 
27r2 
mff 

q(Ob +V 
0b) 

= 
On 

+ qbx 
dV 

Y+ V2 b, (2.26c) 

ae ae 
_ Ft + vöy ' uz + v2o, (2.26d) 

V. u = 0, (2.26e) 

V. b = 0, (2.26f) 
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(where the stars have been dropped). The boundary conditions become 

uz bz -- 
19 
ajz =0=0 on z=0, (2.27a) 

uz+mV sin(my) = bz+ m 
sin(my) = 'ýz = 9-cos(my) =0 on z= 7r, (2.27b) 

where 

j=V Ab, (2.28) 

is the electric current forced in the layer by the bumps. 

The parameters that arise under this non-dimensionalisation are the Roberts 

number q, the Elsasser number A, the Rayleigh number R, and a modified bump 

parameter, r, defined by 

r_ ry2Dý2l 
_1 (2.29) 

V'2 E- 

where E is the Ekman number. Now, under the magnetogeostrophic approxima- 
tion, 

E<11 

since the viscous force is neglible compared to the Coriolis force. But, in the limit 

of small bumps, ry satisfies 

7 4Z 1, 

and so it is expected that r will be a finite parameter, which ensures that a finite 

geostrophic flow is obtained. Hence, equations (2.26) and (2.27) are valid in the 

asymptotic limit 
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y«1, r finite. (2.30) 

The Rayleigh number is the driving parameter of the system. Any increase or 

decrease in R corresponds to an increase or decrease in the amount of excess heat 

put in at the bottom boundary, and hence to the thermal forcing on the layer. 

Now, define 

w= uz, b=bz, C=(VAU)Z, ý=(VAb), z=iz. (2.31) 

Then a system of equations for the unknown vector 

XT = 
[B 

wbýC bx by ux uyII (2.32a) 

(which is a function of x, y, z and t), and the geostrophic flow 

V= V(x), (2.32b) 

can be derived from (2.26). This is done by applying the operators a. curl and 

2. cur12 to the momentum equation, and the operators z. and z. curl to the induc- 

tion equation. Using standard vector identities and (2.31), the following system of 

equations is obtained 
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2 
ýz 

+A=0, (2.33a) 
y 

2clz -A 
19 

(V2b) - RV JO = 0, (2.33b) 

r 2, r 

2V = PAqý { 2ý2 f '" f (bxby)dzdy}, (2.33c) 

(fit 
+V _) _ 

ýy 
+ V2b = 0, (2.33d) 

(Lb 
4(a `f' V 

ciy) 
= äy V2 +q (bý, ax dV 

äyß öx 
)), (2.33e) 

00 + v00 =w+ V29, (2.33f) y 

VHb 
,2a äz äy, (2.33g) 

ab a) ýHbý 
ayaz + aX' 

2.33h 

°Hux ̂  Ozaz - ay, (2.33i) 

V2 
02w O 

where 

a2 a2 
Ox = äx2 -f 8y2 l 
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is the horizontal Laplacian operator. (Note that the solenoidal conditions on u 
and b have been used together with the definitions of ý and C to derive the last 
four equations of (2.33)). Using (2.31) the boundary conditions become 

w=b=az-B_0 on z=0, (2.34a) 

w+ mV sin(my) =b+q sin(my) _=0- cos(my) =0 on z= ir. (2.34b) 

Equations (2.33) will be solved subject to (2.34) in the subsequent chapters. 

2.5 A Note On The Choice Of q And m 
At various points in this work, it will be necessary to make choices for the 

values of the parameters q and m. In the core, the value of q is thought to be 
0(10-6). This is an extremely small value, and as the work of Soward (1986) and 
Skinner and Soward (1988,1990) shows, the behaviour of solutions of the mag- 
netoconvection problem is extremely complicated in the small q limit. However, 

since this work is chiefly concerned with isolating the effects of the topography 

upon the magnetoconvection, it is necessary to isolate those effects from any that 

might arise as a result of the smallness of q. Hence, this work will not consider 
small values of q. 

Now, the value of m for the core is not known, and therefore it would be 

advisable to solve the problem over a range of values of m. However, the results of 
Kelly and Pal (1977) indicate that the critical values of m that arise in the standard 
plane layer model give rise to the most interesting behaviour in the bumpy layer, 

since the possibility of resonance between the bumps and the convection in the 
layer then arises (see also chapter 4 for more details). Therefore, as a matter of 
expediency, the values of m will be chosen to be the critical values of m that arise 
in the standard layer, since these appear to give the most interesting behaviour 
in the bumpy layer. However, the observation that these are but one out of a 
continuum of values of m should be borne in mind when considering the results of 
this work. 
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Chapter III 

The No Bump Case 

3.1 The No Bump System 

Before proceeding to solve the full system, it is enlightening to consider the 

no bump case, where the top boundary is flat, and given by z=d. This is the 

standard plane layer model of magnetoconvection. The problem involves solving 
the magneto-geostrophic equations 

21 A (U + V(x)Y) = -V(P) +1 (B. V)B + -f-g, 
Po Popo Po 

Z* dl 
2(Stv)' V= 

1 a{ mfmfB., Bdzdy }, (3.1b) 
µoPo ax 2ýrd ooJ 

V. (U + V(x)y) = 0, (3. lc) 

at + (U. V)T +v ay 
= , ýV2T, (3. ia) 

OB 
+ (U. V)B -4- V -äy = (B. V)U + Bx 

dx 
g+ 7lV2B, (3.1e) 

V. B=o, (3.1 f) 

(where p and P, defined by (2.18b, c), are the density and modified pressure respec- 
tively). The boundary conditions are as before, namely that the boundaries are 
rigid, perfectly electrically conducting and isothermal. They lead to the conditions 
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Uz Bs 
Oz, _T-To-O on z=0, (3.2a) 

UZ BZ 
azx =T-Td=0 on z=d. (3.2b) 

In the no bump case, these boundary conditions are exact. 

3.2 The Equilibrium Solution 

A steady solution of (3.1) subject to (3.2) is 

U=0, (3.3a) 

V=0, (3.3b) 

B= Boy, (3.3c) 

T= To -, ßz. (3.3d) 

This is the hydrostatic conduction solution, so called because the fluid in the layer 

remains at rest, and excess heat at the bottom boundary is carried across the layer 
by thermal diffusion (Chandrasekhar 1961). Such a motionless solution is possible 
because the equation of hydrostatic equilibrium is satisfied, 

VP + pgz = VP + po(1 - a(T - To))gz = 0. 

Taking the curl of this equation yields 

VTAZ=0, (3.4) 
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which says that the surfaces of constant temperature (isotherms) are horizontal. 
This is the condition that ensures that a hydrostatic balance is possible in a plane 
layer. 

3.3 The Perturbation Equations 

To see how motion develops from the hydrostatic basic state, the stability of 
(3.3) must be considered. This is done by adding small perturbations to U, B 

and T and asking whether the perturbations grow or decay with time. If the 

perturbations decay, then motion does not become established in the layer, and 
the basic state (3.3) is said to be stable. If, however, the perturbations grow in 
time, then motion does become established in the layer and (3.3) is said to be 

unstable. Denoting the perturbations by u, b and B, the velocity, magnetic field 

and temperature take the the following form in the perturbed state 

U= D(0 + Su*), (3.5a) 

B= Bo(Y + bqb*), (3.5b) 

T= ßD(TT - z* + 66*), (3.5c) 

where q is the Roberts number (defined by (1.1)), b«1 is a small parameter mea- 
suring the size of the perturbations, and the starred quantities are nondimensional. 
The unknowns have been nondimensionalised by adopting 

D-a, 
D2 T=- 

as length and time scales, respectively. Substituting (3.5) into (3.1) and (3.2), and 
neglecting all terms of 0(52) or smaller, the nondimensional equations governing 
departures from hydrostatic equilibrium are obtained. These are given by 

37 



b+ 
RBz, (3.6a) 2z Au= -VP +A äy- 

V. u = 0, (3.6b) 

ae 
= uz + v2e, (3.6c) 

at 

Ob au 2 q ýt - ýy +Ob, (3.6d) 

v. b _ a, (3.6e) 

where here and below the stars are dropped. As well as the Roberts number q, the 

other parameters of the problem are A, the Elsasser number and R, the Rayleigh 

number. Note that 

bxby = 0(52), 

so no Maxwell stress is generated at 0(5), and hence, no geostrophic flow is ac- 

celerated by the perturbations. The boundary conditions on the perturbations 

are 

z uZ - bz äj7 -0=0 on z=0, ir, 

where j=VAb is the perturbation electric current. Define 

w=u,, b=bz, C=(VAu)Z, ý=(VAb), z=. 7=. 

Then, exactly as in chapter 2, a system of equations for the vector 

XT = 
[B 

wbeC bx by u uy1, 
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may be derived from (3.6). They are 

2 
ýz 

+ Ae- = 0, (3.7a) 
y 

2iz - A-y(V2b) - RV 2=0, (3.7b) 

ab w a-vz y b=0, (3.7c) 

A- 
- 

ay 
- V2e = 0, (3.7d) 

09 
ät -w-V 2B = 0, (3.7e) 

°Hbx - -O 
2 

az 
b- 

ýy, (3.7f) 

N72 U 
aylb 

aý °A =- oz + äx, (3.7g) 

2 
02w OC 

VHUZ axaz - ey, (3.7h) 

V2 
52w 5ý 

U 
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where V is the horizontal Laplacian. The boundary conditions become 

w=b= 
ý 

=8=0 on z=0 and z=ir. (3.8) 
c9z 

3.4 Solutions Of The Perturbation Equations 

The solutions of (3.7) and (3.8) must be periodic in x and y, with periods T T- 
and respectively. To satisfy this condition, a solution of (3.7) and (3.8) is sought 
of the form 

X= Xi(z) exp(ilz + imy + At) + c. c., (3.9) 

where 

Xi '(z) _ 
[Ti(z) Wi(z) Bi(z) X, (z) Z, (z) 

B,, l(z) Byl(z) Uxl(z) Uyi(z),, (3.10) 

represents the z-structure of (3.9) and c. c. stands for complex conjugate. (The 

reason for including a subscript 1 will be made clear later). A is a complex number 
defined by 

A=3+iw, (3.11) 

where s is the growth rate and w is the frequency of the perturbations. (3.9) 

represents a convection roll, whose axis is perpendicular to the vector defined by 

k- (l, m, 0). 

Two distinct types of roll can arise, depending on their orientation with the applied 
magnetic field (which is in the y direction). A solution which has l 74 0 is called an 
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oblique roll, since it's axis makes an angle less than 2 with the applied magnetic 
field, and a solution which has I=0 is called a transverse roll, because it's axis 
is perpendicular to the applied magnetic field. Although the transverse roll is a 
special case of the oblique roll, it has different stability characteristics, and will be 

discussed in isolation. 

Substituting (3.9) into (3.7) the equations for the z-structure of the roll are 

obtained. These are given by 

2DW1 + AimX1 = 0, (3.12a) 

2DZ1 - Aim(D2 - k2)B1 + Rk2T1 = 0, (3.12b) 

(D2 - k2 - ga)Bi + imW1 = 0, (3.12c) 

(D2 - k2 - ga)Xi + imZi = 0, (3.12d) 

(D2 - kz - A)T1 + Wi = 0, (3.12e) 

k2Bz1 - iLDB1 - imX1 = 0, (3.12f) 

k2By1 - imDB1 + ilXj = 0, (3.12g) 

k2UZ, - ilDW1 - imZi = 0, (3.12h) 

k2Uyl - imDW1 + ilZ1 = 0, (3.12i) 

where here and below 
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d 

k2=12-ßm2" 

Substituting (3.9) into (3.8) the boundary conditions become 

Wi=Bl=DX1=Ti=0 on z=0 and z=zr. 

The most general solution of (3.12) and (3.13) is given by 

Xl(z) = A1X1RS(z), 

where Al is a complex constant and 

T1RS(z) 

W1RS (z) 

B1RS(z) 

X1RS(z) 

X1RS(z) = Z1RS(z) _ 

Bz1RS(z) 

By1RS (z) 

Ux1RS(z) 

Ug1RS(z) 

sin(z) 

(1-i-k2+A)sin(z) 

im 1+k2+. a 
sin(z) 1+k +qa 

2i 1+k2+. 
Am cos(z) 

2(1+k2+qa)(1+k2+a) 
cos(z) Am4m 

(k 
1+k +qa - Ak9)(1 + k2 + . 1) cos(x) 

2 

qa 
+Aß)(1 + k2 + A)cos(z) (k 

1+k + 

Z(k + 2m Amkk+qa )(1 + k2 + a) COS(z) 

i(m _ 
2t 1+kak a)(1 + k2 + A) cos(z) 

(3.13) 

(3.14) 

I. (3.15) 

This solution exists if and only if the following relation is satisfied 
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4(qA +1+ k2)2(A +1+ k2) + A2m4(A +1+ k2)(1+ k2) 

-k2Am2(ga +1+ k2 )R = 0. (3.16) 

(3.16) is called the dispersion relation. The real and imaginary parts of (3.16) give 
two equations for the two unknowns s and w. For fixed values of A and q, the 
solution of these two equations takes the form 

s= s(R, 12, m2), w= cu(R, 12, m2) 

The stability of the basic state (3.3) depends upon the sign of 3. If at given values 
of R, landm 

3(R, 12, m2) < 0, 

then the perturbations will decay exponentially in time to leave the basic state as 
it was. Hence, (3.3) is stable. However, if 

s(R, 12, m2) > 0, 

then the perturbations will grow exponentially in time, and the basic state will 
lose stability to the convection roll defined by (3.9). Hence, (3.3) is unstable. The 

point at which the basic state loses stability for given A and q is defined by 

s(R, 12, m2) = 

Now, this defines a relation of the form 

R= R(lz, m2), (3.18) 

i. e., for given values of l and m it defines the Rayleigh number at which the basic 

state (3.3) goes unstable to perturbations of the form (3.9). To find where this 
first occurs, (3.18) must be minimised with respect to 12 and m2. This is done by 

solving the simultaneous equations 
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OR OR 
äl2 8m2 - 0. 

These yield the critical wavenumbers 1, and m, for which R defined by (3.18) is a 
minimum. This is the critical Rayleigh number, and is defined by 

R, = R(lc2, m'). 

The basic state is stable to the perturbations for R<R,, but loses stability to 
the perturbations at R=R,. The frequency of the perturbations at criticality is 

given by 

wc c2 zý =w Rc, l,, m,. 

For the transverse rolls, the above procedure is repeated, but with I set to zero. 

3.5 Linear Stability Results 

The stability results quoted below were first derived by Roberts and Stewartson 
(1974). Now, R, and w. can be found directly from (3.16) by setting 

s-0, 

in (3.16). This yields 

4(giw+1 +k2)2(iw+1+k2)+A2m4(iw+1 +k2)(1+k2) 

-k2Am2(giw +1+ k2)R = 0. (3.19) 

The real part of (3.19) is 

(1 + k2) [4q(q + 2)w2 - {4(1 + k2)2 + A2m4(1 + k2) - k2Am2R}] = 0, (3.20) 
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while the imaginary part is 

w[4g2w2 - {4(2q -x-1)(1 + k2)2 +A 2M4(1 + k2) - k2 Am2qR}] = 0. (3.21) 

These provide two equations for the two unknowns R and w, from which R, and 
we can be found. 

3.5.1 The Exchange Of Stabilities 

The simplest solution of (3.21) is 

w2 = (3.22) 

This means that the basic state loses stability to steady perturbations, which is 

called losing stability through the exchange of stabilities (Chandrasekhar 1961). 

Substituting (3.22) into (3.20) gives 

R= 
4(1 + k2)2 

+ 
Am2(1 + k2) (3.23) 

Am2k2 k2 

The critical wavenumbers l, and m, are found from the simultaneous equations 

OR 0R 
äl2 amz = o. 

The solution of these equations is given by 

2ý 2/ lc =2-A, me -A 
(3.24) 

Evaluating (3.23) on these values yield the critical Rayleigh number for an oblique 
roll 

Rý=Nr3i. (3.25) 

45 



Thus, as R is increased from zero, the basic state first loses stability to an oblique 

roll (whose wavenumbers are given by (3.24)) through the exchange of stabilities 

once R equals Rc. This result depends upon the value of A: if 

<-43, 

then 

lc < 0, 

which cannot happen, since d is real. Therefore, the oblique roll can only go 

unstable for sufficiently strong magnetic fields, those which satisfy 

A> -vF3. (3.26) 

Setting l=0 in (3.20) yields R for the transverse roll 

= 
4(1 + m2)2 R Am4 -F A(I + M2). (3.27) 

The critical wavenumber m, for this roll is defined by the solution of 

OR 
äm2 

that is, as the solution of 

A2m6 - 8(1 + m2) = 0. (3.28) 

(3.28) is regarded as a cubic equation for m2, and m2 is chosen to be it's positive 

root. Evaluating (3.27) on mc yields the critical Rayleigh number for the transverse 

roll 

_ 
4(1+m)2 

Rc 
Am4 +A(l+m'c), 

c 
46 



10 

8 

6 

A 
4 

2 

0 

q 

Figure 3.1: Stability boundaries in the (q, A) plane for 
the exchange of stabilities. The oblique roll is preferred in region I, 

and the transverse roll is preferred in region II. 
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which after simplifying using (3.28) becomes 

Rc 
2(2+m2)(1+m2). 

(3.29) 

Thus, as R is increased from zero, the basic state first loses stability to a transverse 

roll (whose wavenumber is given by mc) through the exchange of stabilities when 
R equals R,. This occurs for all values of A. 

Now, when A>/, the basic state can lose stability to either a transverse roll 

or an oblique roll. It actually loses stability to only one - the one with the lowest 

critical Rayleigh number. This roll is then said to be preferred for A> A/3. Since 

6/ is the minimum of 

_ 
4(1-I- k2)2 Am2(1 + k2) 

R 
Am2k2 + k2 

over all I and m, including the case 1=0, it follows that the oblique roll has a 
lower critical Rayleigh number that the transverse roll, and is the preferred mode 

of convection for A>3. 

Hence, for weak magnetic fields, i. e. those satisfying 

n<ý, 

the basic state loses stability to a transverse roll through the exchange of stabilities. 
But, once the magnetic field strength (as measured by A) increases beyond /, 

the oblique roll becomes preferred, and the basic state loses stability to an oblique 

roll through the exchange of stabilities. This is shown in figure 3.1. 

3.5.2 Overstability 

The second solution of (3.21) is 

2= 4(2q -I-1)(1-ß k2)2 + A2 
4q2 

m4(1 + k2) - k2Am2gR 
w_ (3.30) 

Now, w is real, so 
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w2>0. 

When this holds (and conditions will be found to ensure that it does) the basic 

state loses stability to perurbations that oscillate with frequency w. This is called 
losing stability through the mechanism of overstability (Chandasekhar 1961). Sub- 

stituting (3.30) into (3.20) and simplifying yields 

R_2(4(1+kz)z+Amz(1-+ - kz)\ 
3.31 

4l Amzkz k2 
)' ) 

where 

ÄA = 1+q, 
(3.32) 

is a modified Elsasser number. Substituting (3.31) into (3.30) and simplifying 
yields 

w2 = 
(q2 - 1)Ä2m4(1 + k2) - 4(1 + k2)2 

(3.33) 4q2 

The critical wavenumbers minimising R are found from the simultaneous equations 

OROR_ 
012 _ äm2 

The solution of these equations is given by 

P=2-2 (1 + 4), me = 
2A (1 + q). (3.34) 

Evaluating (3.31) and (3.33) on these values yields the critical Rayleigh number 
and the frequency of the oblique roll, which are given by 

Rc = 
12vf3- (3.35) 

q 
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we = 
9(92 Z 2). (3.36) 

9 

Therefore, as R is increased from zero, the basic state first loses stability to an 

oblique roll (whose wavenumbers are given by (3.34)) through overstability once R 

equals R,. The frequency of the perturbations at criticality is given by w,. Notice 

that we is real only when 

Q> _V" 

Similarly, 1, is real only when 

A>Al(q) =V(1+q)" 

Thus, an overstable oblique roll is only possible in the region of the (q, A) plane 
defined by 

q>V, A> Ai (q), (3.37) 

since only in this region are both w, and 1, real. 

Setting l=0 in (3.31) and (3.33) yields the Rayleigh number and the frequency 

associated with the transverse roll 

Rq2 
(4(1Äm4 2)2 

+ Ä(1-i- m2)), (3.38) 

2- (q2 -1)Ä2m4(1 + m2) - 4(1 + m2)2 (3.39) 
4q2 

The critical wavenumber minimising R is found from the solution of 

OR 
äm2 = 0, 

i. e. from the solution of 
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A2m6 - 8(1 + 4)2(1-- m2) = 0. (3.40) 

This is again regarded as a cubic im m2, and m. is chosen to be it's positive root. 
Evaluating (3.38) and (3.39) on me and simplifying using (3.40) yields the critical 
Rayleigh number and frequency associated with the transverse roll 

A 
. Rc = Q(1 + q)(1 

+ M2)(2 + m2), (3.41) 

W2 = 
(l + mc)(2g2 -2- MC). (3.42) 

- g2m2 

Thus as R is increased from zero, the basic state first loses stability to a transverse 

roll (whose wavenumber is given by m,, ) through overstability once R equals R. 

The frequency of the transverse roll is given by w,. This solution exists provided 
the w, is real. The region of the (q, A) plane where this is true has a boundary 

defined by 

w 
2= 

From (3.42), this occurs when 

m2 = 2(q 2- 1). (3.43) 

Substituting (3.43) into (3.40) and simplifying yields 

(q2 - 1)3A2 - (1 + q)2 (2q2 - 1) = o. 

Define 

Ao(q) = 
(1 + q)(2q2 - 1), (3.44) 

(q2 - 1), 31 
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Figure 3.2: Stability boundaries in the (q, A) plane 
in the overstable case. The oblique roll is preferred in region I, 

while the transverse roll is preferred in region II. Oscillatory 

solutions are not possible in region III. 
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Examination of (3.44) reveals that Ao(q) is real only if q>1. Therefore, an 
overstable transverse roll is only possible in the region of the (q, A) plane defined 
by 

q>1, A> Ao(q), (3.45) 

since w, is real only in this region. 

Now, for q and A in the region 

q>_, ', A>A1(q), 

the basic state can lose stability to either the oblique roll or the transverse roll 
through overstability. However, repeating the argument given in the exchange of 
stabilities case, it can be shown that the oblique roll has a lower critical Rayleigh 

number than the transverse roll, and hence is preferred in this region. The trans- 

verse roll is preferred in the region defined by 

1<q<V, A> Ao(q), 

q>V, Ao(4) <_ n< Ai(4). 

This is illustrated in figure 3.2. 

3.5.3 Steady Or Oscillatory? 

The basic state can lose stability to the perturbations through two mechanisms 

- the exchange of stabilities or overstability. To find the regions of the (q, A) plane 
where each mechanism is preferred, define 

6V13- for A>/, 
Re = (3.46) 

2(1+ Me)(2-} me) forA<ý, 

where me is the positive root of 
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Alms-8m2-8=0. 

R. is the critical Rayleigh number associated with the exchange of stabilities. 
Similarly, define 

q 

0)(2 + mö) s +s 
C1 + M2 

{ia s 

where mö is the positive root of 

for q>2, A> A1(q), 

for 1<q<-., F2, A> Ao(q), 
(3.47) 

and q>-, F2, Ao(q) <A< A1(q), 

Alms -8(1 + 4)2(1 + m2) = 0. 

R,, is the critical Rayleigh number associated with overstability. Now, if for given 
A and q, R. < R,, then the exchange of stabilities is the preferred mechanism; 
however, if Re > R0, then overstability is the preferred mechanism of instabil- 

ity. The line in the (q, A) plane separating the regions where each mechanism is 

preferred is given by 

This defines the boundary curve 

Re - Ro 

A_ AE(q), 

between the two regions. This curve must be calculated numerically using (3.46) 

amd (3.47). The graph of AE against q is shown in figure 3.3. The exchange of 
stabilities is preferred to the left of the curve, while overstability is preferred to 
the right. 

Using this curve together with the stability results obtained earlier, the (q, A) 

plane may be divided into four regions, in which each of the four possible types of 
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Figure 3.3: The curve A= AE(q) which separates the 
(q, A) plane into regions where the exchange of stabilities or 

overstability is preferred. Overstability is preferred in region I, 

while the exchange of stabilities is preferred in region II. 
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Figure 3.4: The regions of the (q, A) plane where each of the 
four possible types of convection roll are preferred. Region I: Steady oblique roll. 

Region II: Steady transverse roll. Region III: Overstable oblique roll. 
Region IV: Overstable transverse roll. 
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roll (viz. steady oblique, steady transverse, overstable oblique, overstable trans- 

verse) are preferred. This is shown in figure 3.4, and represents the complete 

stability diagram for the basic state (3.3). 

3.6 Degeneracy Of The Solution 

The angle made between the oblique roll solution (3.9) and the applied mag- 

netic field is determined so that the Coriolis force in the layer is best balanced by 

the Lorentz force (see Roberts and Stewartson 1974). It transpires that this angle 

is fixed in magnitude but not in sign. That is, there is another solution of the 

perturbation equations which may be obtained from (3.9) and (3.15) by mapping 

m -º -m. 

This reverses the angle made by the oblique roll solution (3.9) with the applied 

magnetic field. The new roll is defined by 

X X-1 (Z) exp(ilx - imy + At) + C. C.. (3.48) 

where the z-structure of this roll is given by 

X-l(z) = A-IX-iRS(z), 

where A_1 is a complex constant and 

57 



T 
-IRS(-') 

W IRS(z) 

B-1RS(z) 

X-1RS(z) 

X-1RS(z) = Z-1RS(z) _ 

Bx-1RS(z) 

By-jRS(z) 

U, 
-1RS(z) 

Uy-1RS(z) 

sin(z) 

(1 + k2 + A) sin(z) 

-im i+k2+A 
sin(z) 1+k +4a 

-2i i+k2+A 
cos(z) Am 

2(l+k'+qA)(1+k2+a) 
Ami cos(z) 

(k 
i+k +qa ' eß)(1 + k2 + A)cos(z) 

21 (k 1+k +qa - Ak2m)(1 + k2 + a) cos(z) 

k_ 2m 1+k 2+qÄ)(1 
+ k2 +, X) COS(z) 

Z( - 
21 Ä 2+qA )(1 + k2 + i1) cos(z) 

This oblique roll has identical stability characteristics to the roll defined by (3.9) 

and (3.15). The difference between the two solutions is that the axis of (3.9) makes 

an angle q with the applied magnetic field, while the axis of (3.48) makes an angle 

-0 with the applied magnetic field. Therefore, the two rolls are aligned at equal 
but opposite angles to the applied magnetic field. The roll (3.9) is called a (+)-roll, 

while (3.48) is called a (-)-roll. Linearly, there is no way to destinguish between 

the two rolls. 

This means that there are two types of oblique roll solution to the perturbation 
equations. Either a single (+) or (-)-roll goes unstable at criticality, so either 

X= A1X1RS(z) exp(ilx + imy + iwt) + c. c., 

or 

X= A_1X_1RS(z) exp(ilx - imy + iwt) + c. c., 
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at criticality. These are called single roll solutions. The alternative is that a linear 

combination of a (+)-roll and a (-)-roll goes unstable at criticality, so 

X= A_1X_1RS(z) exp(ilx - imy + iwct)+ 

A1XlRS(z) exp(ilx + imy +i' t) + c. c., 

at criticality. This is a double roll solution. The existance of two distinct types 

of oblique roll solution means that the problem is degenerate. The nonlinear 

evolution of single roll solutions was examined by Roberts and Stewartson (1974), 

while Roberts and Stewartson (1975), and Soward (1980), examined the evolution 

of the double roll solution. 
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Chapter IV 

The Basic State That Arises In A Layer With Bumps 

4.1 An Imperfect Configuration 

Recall that a hydrostatic balance can only be maintained in a plane layer 

provided that the isotherms line up with surfaces of constant gravitational potential 
(see chapter 3). Since the top boundary of the modified layer, z= ir+y cos(my), is 

maintained at a constant temperature Td, it is an isotherm. However, the surfaces 

of constant gravitational potential are planes parallel to the bottom boundary, i. e. 

the planes 

z= constant, 

just as in the standard layer. The nonalignment of the isotherms near the top 

boundary with the surfaces of constant gravitational potential leads to an unbal- 

anced buoyancy torque, which forces small scale motion in the layer. This forcing 

is independent of the thermal forcing on the bottom boundary, and so motion will 
be forced irrespective of how strong the adverse temperature gradient is. This 

situation differs from what occurs in the standard plane layer model. There, mo- 
tion could only occur when the hydrostatic basic state lost stability to convection 

rolls once the adverse temperature gradient (as measured by the Rayleigh number) 

exceeded a certain critical value. 

Configurations such as this are called imperfect, and have been studied in 

various geometries with different types of forcing (e. g. Kuang and Bloxharn 1993, 

in a plane layer with bumps, Bell and Soward 1995, in an annulus with bumps, 

Sun et al 1994, in a sphere with thermal inhomogeneities). The work most relevant 
to this problem is described in Kelly and Pal (1977), who consider convection in a 
layer with bumpy top and bottom boundaries in the absence of a magnetic field. 
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4.2 The Equilibrium Solution 

To find what form is taken by the motion forced by bumps, a solution of the 

following equations is required 

2 
ýz 

+ Age- = 0, (4.1a) 
y 

2'z - A'0 (V2b) - RV IG = 0, (4.1b) 

2a 

2V = rA4ýx L2az 
Jom Jo 

(b,, by)dzdy], (4.1c) 

Ob äw 2 (4.1d) qV ay = Oy +Ob, 

aý 
_ 

LC 2b d2V 
_ 

dV (aby 
_ 

Lb. )), (4.1e) 
4V äy - ey +°+q 

(x 
dx2 dx 8y äx 

v 
00 

=w+026, (4.11) 

Z alb aý (4.1g) vgax =- axoz - 8y, 

V2 
alb O (4.1h) ýHbY 

ayaz + aý 

Z 
a2w 8c 

vHux 

axaz 8y' 

H- 
(4.1 j 

O'w 

uy 
-ay--az + ýX 

These are to be solved subject to the boundary conditions 

61 



w=b= 
a=9=0 

on z=0, (4.2a) 

w+ mV sin(my) =b+m sin(my) _ 
zz 

=0- cos(my) =0 on z=r. (4.2b) 

The solution of (4.1) subject to (4.2) will represent the basic state that arises in a 
plane layer with a bumpy top boundary. 

The boundary conditions suggest the following ansatz for the solution of (4.1) 

and (4.2), 

X= Xo(z) exp(imy) + c. c., (4.3) 

where c. c. stands for complex conjugate and 

XT (Z) = 
{To(z) Wo(z) Bo(z) Xo(z) Zo(z) 

Bxo(z) BBo(z) U,, o(z) Uyo(z)], (4.4) 

represents the z-structure of the solution. (4.3) is a steady, transverse convec- 
tion roll whose axis is parallel to that of the bumps, and perpendicular to the 

applied magnetic field. The wavenumber m of this convection roll is equal to the 

wavenumber of the bumps, and is assumed to be given. 

Now, (4.3) gives 

bxby = Bxo(z)Byo(z)e2imy + Bxo(z)Byo(x) + c. c., 

(where the star denotes complex conjugate). Using this,,, the Maxwell stress M 

generated by the transverse roll is given by 

2w 
ir 

M= "Z f 1r(bby)dzd 1fz 
Byo z dz + c. c. = const. 2a o 

y-ý 
o 

Bo() () 

Hence, the transverse roll forced by the bumps satisfies Taylor's constraint 
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2a 

äxr xL272 J0 Jo 
(bxby)dzdy1 = 0, 

and no geostrophic flow is accelerated, so 

V=0. (4.5) 

Substituting (4.3) into (4.1) using (4.5), the equations for the z-structure of the 

roll are obtained 

2DWo + AimXo = 0, (4.6a) 

2DZo - Aim(D2 - m2)Bo + Rm2T0 = 0, (4.6b) 

(D2 _M2 )BO + imWo = 0, (4.6c) 

(D2 - m2)To + Wo = 0, (4.6d) 

(D2 - m2)Xo + imZo = 0, (4.6e) 

m2Bxo = imXo, (4.6! ) 

m2Byo = imDBo, (4.6g) 

m2U o= imZo, (4.6h) 

m2Uyo = imDWo, (4.6i) 
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where D= aZ. The boundary conditions (4.2) are satisfied by (4.3) provided that 

Wo=Bo=DX0=To=O on z=O, 

im 1 
Wo=Bo- T =DXo =To-2 =O on x=ýr. 

The solution of (4.6) subject to (4.7) is given by 

To(z) 

Wo(z) 

Bo(z) 

Xo(z) 

Xo(z) = Zo(z) = 

Bxo(z) 

B o(z) 

Ux0(z) 

Uyo(z) 

Es / 
n=1 

A0n exp( z) 

En=ß(m2 - )ý)Ao,, exp()nz) 

En=1 imAon. eXp(A,, z) + 2q 
nh 

mir sinh(mz) 

Xm- Ln=1 An(mz - an)Aon eXP(A,, z) 

2 
Am ýn=1 )t (m2 - an)2Aon exp(A++z) 

x7 En 
-1 

An(mz - An)Aon eXP(\nz) 

- En=1)nA0 exp()inz) + 2q ein 
1 

rya cosh(mz) 

Am 
En=1 An(m2 - an)2Aon eXP()tnz) 

m 
En=1 An (m2 - Aý, )Ao,, eXP(%tnz) 

(4.7a) 

(4.7b) 

I, (4.8) 

where the AO,, are complex constants and the A,, are the zeros of the polynomial 

A4 
2(A2 

- m2)2 + Am2(a2 - m2) + Rm2 = 0. (4.9) 

To determine the A0,,, the boundary conditions must be applied. These yield 
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6 
E Ao, L = 0, (4.10a) 
n=1 

6 
E Ao,,, exp(A,, 7r) = 

2, 
(4.10b) 

a_1 

6 
E Aon(m2 - an) = 0, (4. lOc) 
n=1 

6 
AOn(m2 - )ºn) exp("\nir) = 0, (4.10d) 

n=1 

Am `4O"A, 2"(m2 
- J1") = 0, (4.10e) 

n=i 

2i s 

Am 
EAoll 

n(m2-an)CXP(Aj7)=0. 
(4.10f) 

n=1 

(4.10) provides six linear equations for the six unknowns A0 . They can be written 
in matrix form as 

LAo = It, 

where 

Ao = 
[Aoi A02 A03 A04 Aos A06] , 

RT = 
[0 1000 

0] , 

and the rows of the 6x6 complex matrix L are defined by 

(4.11) 
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Lln = 1, (4.12a) 

L2n = exp(an7r), (4.12b) 

Lan = m2 - an) (4.12c) 

L4, ß. _ (m2 - \') exp(, \n1r), (4.12d) 

L5 -27,2 A (m2 - Ate), (4.12e) 
m 

L6n ým)n(m2 - A2 eXP(. 1ir)" (4.12f) 

Once (4.11) has been solved to give the Ao,,, the solution of (4.1) and (4.2) will be 

complete, and given by (4.3) and (4.8). 

4.3 Parameter Values And Numerical Methods 

Completing the solution of (4.1) and (4.2) depends on being able to solve (4.9) 

for the A,, and (4.11) for the Ao.. To accomplish this, values must be assigned to 
A, q, P, m and R, and then numerical methods must be found to solve (4.9) and 
(4.11). 

The value of A in the core is thought to be 0(1), indicating the presence of a 

strong azimuthal magnetic field. We choose 

A=4.0, (4.13) 

since this is a geophysically plausible value. Three values of q are chosen, namely 
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q=0.1, q=1.0, q= 10.0, (4.14) 

to ensure that a large range of values of q is covered. 

The vanishing of the geostrophic flow V means that the solution is independent 

of the value of I', since I' only appears in the equation for V. 

The qualitative behaviour of the convection is not dependent upon the value of 

m- it merely defines the lengthscale on which the bumps vary and the convection 
takes place. For this reason, m is chosen to be the critical wavenumber associated 

with a steady transverse convection roll in a standard plane layer, as defined in 

chapter 3. That is, m2 is chosen to be the positive root of the polynomial 

Alms - 8m2 -8=0, (4.15) 

which is cubic in m2. This choice is also made in Kelly and Pal (1977). (4.15) is 

solved numerically using N. A. G. routine C02AFF. This routine uses a variant of 
Laguerre's method to find all the zeros of a complex polynomial. 

Finally, a range of values of R is chosen. For each value of R in this range, 
(4.9) is set up, and then solved numerically using N. A. G. routine C02AFF. This 

yields the A,,. Using these, the matrix L is set up, and equations (4.11) are solved 

using N. A. G. routine F04ADF. This routine uses an LU decomposition of L to 

solve (4.11) for Ao. 

In this way, the . \,, and Ao,, are found for each relevant value of the Rayleigh 

number R. These define Xo(z), and hence the solution of (4.1) and (4.2) for each 

value of R. 

4.4 The Results 

Unlike the hydrostatic basic state that arises in a standard plane layer, the 
basic state that arises in a layer with a bumpy boundary depends upon the value 
taken by the Rayleigh number R. To show this dependence, the amplitude of the 

solution is plotted against R. A convenient measure of the amplitude of the solution 
was found to be the meansquare heatflux generated at the bottom boundary by 
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the solution, denoted by H. This measure is used instead of the usual Nusselt 

number throughout this work. H is defined as follows. The temperature of the 

roll is given by 

{Aonexp(\nz)} 6B 
exp(imy) + c. c.. 

The heatflux is then given by 

I(y, z) = 
3z 

> A�Aon exp(Anz)1 exp(imy) + c. c.. 
n=1 111 

Then, define 

2a 

H 
272 

flrr(y, 0)2dzdy. 

It transpires that 

sZ 

H= 2I ý, AnAonl (4.16) 
n_1 

(Note that H is independent of q, since the equations that define the A,,, and Ao. 

are independent of q). Figure 4.1 shows a plot of H against R. 

The graph of H shows that the convection exists for all values of R (confirming 

the argument given in section 4.1) except that it is singular at one value of R, which 

shall be denoted by R,. The convection can be separated into two regimes. The 

first is 

R«R,, or R» Ra, 

and is called the quasi-conduction regime. Here, the convection is of finite ampli- 
tude. The second regime is 

RAR,, 
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and is called the critical regime. Here, the amplitude of the convection becomes 

unbounded. R, is called the critical Rayleigh number, but the phrase is used in 

a different context to it's use in chapter 3, where it referred to the value of R at 
which the hydrostatic basic state lost stability to perturbations and convection 
could take place. Instead, the critical Rayleigh number is used here to define the 

value of R at which H, and hence the basic state, has a singluarity. 

It tranpires that the value of R at which the singularity lies can be calculated 
analytically. In fact, 

Ra = Rý> 

where R, is the value of the Rayleigh number at which steady, transverse convection 

rolls go unstable in a standard plane layer. To see this, note that 

Rc _ 
4(1 + rn2)2 +A (I + m2), Am4 

ý' 1 

where m2 is the positive root of the following cubic equation in m2, 

A2m6 - 8(1 +m2) = 0. (4.17b) 

But, at R,, (4.9) gives 

(4.18a) R= 
4(-ac m2)2(-)c) 

+ A( _A2 + m2), 

where A,,, denotes the values of the A,, at Rc and where, again, m2 is the positive 
root of the following cubic equation in M2 I 

Alms - 8(1 + m2) = 0. (4.18b) 

Subtracting (4.18a) from (4.17a) yields 

(ac2 + 1)P(Ac) =0 at R= Rc, 
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Figure 4.1: The meansquare heatflux at the bottom boundary H, plotted 
against the Rayleigh number R, for the case A=4.0. This 

quantity is independent of q. 
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where P(a) is a fourth order polynomial in A. Hence, choosing 

"cl = i, Act = -i, (4.19) 

and substituting (4.19) into (4.12), it turns out that the first two columns of L are 
identical when 

R= Rc. 

Therefore, 

det L=0 when R=R,, (4.20) 

and the system of equations defined by (4.11) has no solution. Hence 

R3=R. 

Mathematically, the singularity arises because R, is the eigenvalue of the ma- 
trix L at which the corresponding homogeneous problem that arises in a standard 
plane layer has a solution. The forced, inhomogeneous problem considered here 

will not in general have a solution at the points where the homogeneous problem 
has a solution. (This is known as the Fredholm Alternative). Physically, the sin- 
gularity arises as a result of resonance - the wavelength of the bumps forcing the 

motion (namely 11) is the same as the wavelength of the free mode of convec- 
tion at R� the free mode of convection being a steady, transverse convection roll 
in the standard plane layer. Kelly and Pal (1977) call this resonant wavelength 
excitation. 

In practice, the amplitude of the convection does not become unbounded at 
R8. Close to R, the solution is outside the asymptotic limit in which the governing 

equations (4.1) are valid, and the nonlinear terms neglected in this limit become 

important. These nonlinearities prevent the amplitude of the convection from 

becoming infinite (see Kelly and Pal 1977). 

Figures 4.2,4.3,4.4,4.5 and 4.6 show plots of To(z), Uxo(z), Uyo(z), Wo(z), 
Bxo(z), Byo(z), Bo(z), Xo(z) and Zo(z) against the quantity 
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Z 0.0 
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T0(z) 

(a) 
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JA 

(b) 

Figure 4.2: Plots of (a) To(z), (b) U o(z) , against z' =j" 
for the case A=4.0, q=0.1. The values of R shown are: R=9.0 

R= 11.0 (---), and R= 13.0 (..... ). 
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Figure 4.3: As in figure 4.2, but showing (a) TJ, o(z), (b) Wo(z). 
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Figure 4.4: As in figure 4.2, but showing (a) Bzo(z)) (b) B, o(z). 
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Figure 4.5: As in figure 4.2, but showing (a) Bo(z), (b) XO(z). 
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Figure 4.6; As in figure 4.2, but showing Zo(z). 
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2z-ir 
z=, 

ir 

(which is chosen so that the layer lies on the interval [-1,1]) for various values of 
R. The unknowns were found to obey the following conditions 

To =Tös 

Ux0 =- Uxp, 

Uyo = -Uyo, 

Wo = Wo, 

Bx0 = BxO, 

Byo = Byo, 

Bo = -Bo, 

Xo = -Xä, 

Zo = Zo, 

(4.21) 

so only the relevant real or imaginary part of each unknown is plotted. Only 
By0 and B0 depend upon the value taken by q, and these are shown for q=0.1. 
The plots show that the transverse roll forced in the layer by the bumps has 

a more complicated z-structure than the free transverse roll that arises in the 
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standard plane layer. This is because the inhomogeneities on To and Bo forbid the 

solution from adopting a simple sinusoidal z-structure. The plots also show that 

the convection reverses direction above R,, since the solutions change sign once 
the Rayleigh number exceeds R8. 
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Chapter V 

The Stability Of The Basic State 

5.1 The Perturbation Equations 

Having computed the basic state that arises in a layer with a bumpy top bound- 

ary, the next step is to examine the stability of that basic state. This is done by 

adding small perturbations to the basic state, and asking whether the perturba- 
tions grow or decay in time, for given parameter values. If the perturbations grow 
in time, then the basic state is unstable to the perturbations. But if the pertur- 
bations decay in time, then the basic state is stable to the perturbations. Of key 

importance will be locating the point at which the basic state first loses stability to 
the perturbations, and what form the onset of instability takes, i. e. does the basic 

state lose stability through the exchange of stabilities or through overstability? 

Recall, the basic state has the form 

X= X(y, z), V=0. (5.1) 

Denote the perturbations by Xp and Vp, and set 

X= X(y, Z) + SXP(x, y, z, t), (5.2a) 

V=0+ SVV(x), (5.2b) 

where b«I is a small parameter governing the size of the perturbations. Sub- 

stituting (5.2) into the governing equations (2.35), subtracting off the equations 
satisfied by the basic state, and neglecting all terms of 0(52) or smaller (using the 
fact that 5 is small), the linear equations governing the perturbations are obtained 
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2aýP+Aý=0, (5.3a) 
y 

2C-A y(V2b, ) - RV2 Op = 0, (5.3b) 

w l2ii 
Jo 

(bxbvp + bxpbv)dzdy} = 0, (5.3c) 2Vp - rnqý l21rz 

a 

q ät -i q(8y)Vý - 
ýy 

- OZbý = Q, (5.3d) 

q 
at 

+q 
(ýy) vp - 

äyß 
- 02sýp 

_qýbx 
d2Vp 

_ Q(ab, _ 
abyl dVp 

= 0, (5.3e) 
dxz ax ay / dx 

OOP 
+ 

(0 0 v- wp - v28, = 0, (5.31) 

°Hbx 
219 

p- -a äz - Oj' (5.3g) 

VHbYP 
2 

äyez + 
19X ' (5.3h) 

02wp acp 
(5.3i) vHuxp 

OXOz 5y r 

vH2 uyp _a2 yaz + ex. (5.3j) 

In a similar manner, the boundary conditions on the perturbations may be obtained 
from (2.36). They are given by 
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wp=bp 
yep 

=8p=0 on z=0, (5.4a) 

wp + mV, sin(my) = bp = 
Ozp 

=O=O on z= 7r. (5.4b) 

Now, the basic state takes the form of a transverse roll, 

X= Xo(z) exp(imy) + c. c., (5.5) 

where 

XT(Z) == 
{To(z) Wo(z) Bo(z) Xo(z) Zo(z) 

B o(z) Byo(z) U o(z) Uyo(z)], (5.6) 

is the solution of equations (4.6) for the z-structure of the basic state. Recall that 
(5.5) satisfies Taylor's constraint, and has no geostrophic flow associated with it. 
The perturbations are assumed to take the form 

X, = X-1 (z) exp(ilx - imy + At)+ 

Xi (z) exp(ilx + imy + At) + c. c., (5.7a) 

Vp =U exp(ilx + At) + c. c., (5.7b) 

where, for r= ±1, 

XT(z) = 
[TT(z) w, - (Z) B, (Z) x, (Z) Z (z) 

Bxr(z) Byr(z) Ur(z) Uyr(z)1, (5.8) 
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represents the z-structure of the perturbations, and U is a constant to be deter- 

mined. A is a complex number, defined by 

A=9+ iw, (5.9) 

where 3 is the growth rate and w is the frequency of the perturbations. (5.7) and 
(5.8) define a double oblique convection roll (a (+)-roll and a (-)-roll in the notation 

of chapter 3), together with the geostrophic flow accelerated by the interaction 

of these rolls with the transverse roll forced in the layer by the bumps. In the 

standard plane layer model of magnetoconvection, these rolls are the preferred 

mode of convection for order one values of A, and have identical linear stability 

characteristics. The stability analysis carried out here will ascertain what effect 
the presence of the transverse roll has upon the stability of these rolls. 

Substituting (5.5)and (5.7) into (5.3), the equations for the z-structure of the 

perturbations are obtained 

2DW_1 - AimX_1 = 0, (5.10a) 

2DZ_1 + Aim(D2 - k2)B_1 + Rk2T_1 = 0, (5.10b) 

(D2 - k2 - ga)B_1 - imW_1 + gimBoli = 0, (5.10c) 

(D2 - k2 - ga)X_1- imZ_, - q(-imXX + 12B* ,0+ lmByo)U = 0, (5.10d) 

(D2 - k2 - . \)T_1 + W_1 + imTTU = 0, (5.10e) 

k2Bx, _i - i1DB_1 + imX_1 = 0, (5.10f) 

k2By, 
_1 + imDB_1 + ilX_1 = 0, (5.10g) 
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k2Ux, _, - iIDW_1 + imZ_l = 0, (5.10h) 

k2Uy, _, + imDW_1 + ilZ_1 = 0, (5.101) 

2DW1 + AimX1 = 0, (5.10j) 

2DZ1 - Aim(D2 - k2)Bl + Rk2Ti = 0, (5.10k) 

(D2 - k2 - qa)Bl + imWi - gimBoU = 0, (5.101) 

(D2 - k2 - q. )Xi + imZ1 - q(imXo +l2 Bxp - lmByp)U = 0, (5.10m) 

(D2 - k2 - A)Ti + Wi - imToU = 0, (5.10n) 

k2Bxi - ilDB1 - imX1 = 0, (5.100) 

k2By1 - imDB1 + ilX1 = 0, (5.10p) 

k2Uxl - ilDW1 - imZi = 0, (5.10q) 

k2Uyl - imDW1 + ilZ1 = 0, (5.10r) 

where the coefficient of the perturbation geostrophic flow is given by 
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Zf PZ2grn f (BxQBvl + BxoBy, -i + Bx, 
-1Byo + BxiBýo)dz. (5.11) 

As usual, the following definitions have been made 

ä, 

k2 = 12 + m2. 

The boundary conditions (5.4) are satisfied provided that 

W_1 = B_1 = DX_i = T_1 =0 on z=0, (5.12a) 

W-1 +i =B_1=DX_1=T_1=0 on z=a, (5.12b) 

W1 = B1 = DX1 = T1 =0 on z=0, (5.12c) 

Wi-amu=B1=DX1=T1=0 on z=z. (5.12d) 

The chief difficulty of solving equations (5.10) and (5.11) is that their coefficients 
depend upon the basic state X, and X. depends upon the value of the Rayleigh 

number R. Thus, for each value of R, the coefficients must first be determined 
from equations (4.6) before (5.10) and (5.11) can be solved for the perturbations. 
This means that (5.10) and (5.11) cannot be solved independently of (4.6). Since 

the solution of (5.10) and (5.11) must be found numerically, this means that (4.6) 

must also be solved numerically, using the same numerical method. 
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5.2 The Numerical Method 

Equations (4.6), (5.10) and (5.11) will be solved numerically using spectral 
methods, which involve approximating the solution of a system of ODE's with an 
expansion of the form 

M 
E 

n=0 

called the spectral expansion. M is a positive integer, the constants a, are the 

spectral coefficients and 

{On n=0,1,2 1, 
. 

is a set of known functions, called basis functions. For this problem, it is convenient 
to choose 

On(z)=PP(z) n=0,1,2,...., (5.13) 

where Pn denotes the nth Legendre polynomial, and 

zý-2x-7rý (5.14) 
7 

is chosen so that the interval 

0<z<7r, 

on which the layer lies, is mapped into the interval 

-1<z <1, 

on which the Legendre polynomials are defined. 

Legendre polynomials are chosen for two main reasons. The first is that they 

converge rapidly, so only a few terms of the spectral expansion are needed to give 
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a good approximation to the exact solution. The second reason is that Legendre 

polynomials are orthogonal. They satisfy 

J-1 
P, (z )P'n(z )dz 

2n +1' 
(5.15) 

where 

1 n=m, 
Snm = 

10 nom, 

is the Kronecker delta. This makes evaluating the Taylor integral M much easier, 
since it can be done analytically using (5.15). 

If a function f (z) is expanded in terms of Legendre polynomials as 

N 
f(z) 

' j, 
APn(z » 

n=0 

where N is an integer, and the coefficients f. are constants, then the derivatives 

of f have expansions of the form 

N-1 
Df =E (D f)nPn(Z ), 

n=o 

N-2 
D2f =E (D2f)nPn(z ), 

n=O 

where (D f ), l and (DZ f ),, are constants, defined using the recursion relations for 
Legendre polynomials to be 

(D f )n, =- (2n + 1) fp (0 <n<N -1), (5.16a) 
p=n+l, 
p+n odd 

N 

(D2 f )ý, =2 (n + 
2) E (p(p + 1) - n(n + 1))fß (0 <n<N- 2). (5.16b) 

p=n+2, 
-- 

p+n even 
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(See Gottlieb and Orzag 1977). Note that the expansions for Df and D2 f have 

N and and N-1 terms respectively, wheras the expansion for f has N+1 terms. 

This is caused because the operator D is a lowering operator. That is, it maps the 

set of basis functions 

{Pn n=0,1, ...., N}, 

into the set 

{Pn : n=0,1,..., N-1}. 

The values of f and Df at the boundaries can be obtained using the relations 

Pn(±i) = (f1)"ß Pn(±1) = 
1n(n 

+ 1)(±1)n+1. (5.17) 

Now, the problem being solved has inhomogeneous, non-periodic boundary 

conditions. Therefore, a spectral method called the Tau method (developed by 

Lanczos, 1956) will be used to obtain the solution (see Gottlieb and Orzag, 1977). 

To see how the method is applied to a simple equation, see Appendix A. 

5.3 The Numerical Solution Of (4.6) 

The equations for the z-structure of the basic state are given by (4.6), and 

they are to be solved subject to (4.7). These equations were solved previously 

using standard methods for linear ODE's, but here, the Tau method will be used. 
The unknowns are assumed to have the following spectral expansions 
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TO (Z) 

Wo(z) 

Bo(z) 

Xo(z) 

Xo(z) = Lo(z) = 

Bxo(z) 

Byo (z) 

U, 0(z) 

Uyo(z) 

En4 TOnPn(zr 

En öi WOn Pn (Z 

E2N BOnFn(Z) 

Zn ÜZ XOnPn(Z 

EN 1=0 ZonPn(Z ) 

Z. 
n=o 

1 Bxon. PP(z ) 

, n öi BbonPn(Z ) 

(5.18) 

N' ýn=0 UO pn(z 

En 0 UvOnP (z) 

where N is an integer and the coefficients of the expansions are complex constants. 
There are 9N + 18 complex unknowns to be determined using (4.6) and (4.7). The 

expansions (5.18) are substituted into (4.6) and (4.7) using (5.16) and (5.17), and 

the Tau method is used to derive the following algebraic equations for the spectral 

coefficients 

4(2n + 1) J\'+2 
E Wop + AimXo� =0 (0 <n <_ N), 

7r p-n+1 
p+n odd 

(5.19a) 

4(2n -}- 1) N 2(2n .f 1) N+2 
z Zop -Aim{ zE 

[p(p + 1) - n(n + 1)]Bop -m Bon} 
p=n+2 p=n+1 

p+++ odd p+n even 

+Rm2To. =0 (0 < n: 5 N- 1), (5.19b) 
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2(2n + 1) N+2 

7r2 
E [p(p + 1) - n(n + 1)]BoP - m2Bon + imWo,, =0 (0 <n< N), 

p_n+a 
-- 

p+n even 

(5.19c) 

2(2n + 1) N+2 

n2 
> [p(p + 1) - n(n + 1)]Xop - m2Xpn + imZon =0 (0 <n< N), 

p}n even 

(5.19d) 

2(2n + 1) N+2 
Z 

7r2 
E [p(p+1)-n(n+1)]Top-m Ton-FWon =0 (0 <n< N), (5.19e) 

p=n+2 
p+n even 

m2Bxpn - imXOn =0 (0 <n<N+ 1), (5.19f) 

2(2n + 1) N+2 
m2Byo, ý - im{ E Bop} =0 (0 <n<N +1), (5.19g) 

7r 
p=n+1 

p+n odd 

m2Uxon - imZon 0 (0 < n: 5 N), (5.19h) 

Z 2(2n -f- 1) N+1 
m Uya, ý-im{ E W0P}=0 (0<n<N), (5.19i) 

p=n+1 
p+n odd 

N+1 
Z (-1)PW0 = 0, (5.19j) 
p=O 

N+1 
wop = 0, (5.19k) 

p=0 
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N+2 
E (-1)PT0P = 0, (5.191) 
p=O 

N+2 
E Top = 2, (5.19m) 

P=O 

N+2 
E (-1)pBop = 0, (5.19n) 
p=0 

N+2 
Bop = 

2q 
, 

(5.19o) 
P=O 

N+2 1 E2 (_1)P+lp(p + 1)X0 = 0, (5.19p) 
p=0 

N+21 
E ZP(p + 1)Xop = 0. (5.19q) 

p=o 

(5.19) defines 9N + 18 complex equations in the 9N + 18 complex coefficients of 
the spectral expansions. In matrix notation, (5.19) takes the form 

LoYo = Ro, (5.20) 

where Lo is a (9N+18) x (9N+18) complex matrix, RO is a (9N+18) x1 complex 
vector and YO is the (9N + 18) x1 vector of unknowns defined by 

Yö = 
[Too T01... To, N+2 Woo W01... WO, N+i Boo B01... B0, N+2 

X00 X01"""XO, N+2 Z00 Z01"""ZO, N Bx00 B., 01 """Bx0, N+1 

Byoo By01... Byo, N+l Uxoo Uxoi... Uxo, N Uyoo Uyo1... UVO, N 
J. (5.21) 

Once suitable values for A, q, m and N have been prescribed, (5.20) can be solved 
for each value of R using NAG routine F04ADF. This routine uses an LU decom- 

position of Lo to solve (5.20) for Yo. 
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5.3.1 Comparison With Chapter 4 

To check the validity of the numerical method, the analytic results of Chapter 
4 are here reproduced using the Tau method. To do this, the values chosen for the 

parameters in Chapter 4, must also be used here. 

Attention is restricted to the case 

A=4, q=0.1. 

The wavenumber m is chosen as in Chapter 4: that is, m2 is chosen to be the 

positive root of the cubic 

Alms-8m2-8=0. 

To choose a value of N, and check for convergence, (5.20) is solved for various 
values of N at the point R=9.0. At this point, the meansquare heatflux at the 
bottom boundary is calcualated using the spectral approximation for To(z). Recall 
that 

H= 21DTo(O) 12. 

Substituting 

To(Z) => To. PP(Z), 

n=0 

(where the To,, are obtained from Yo) into the definition of H, the following result 
is obtained 

H- 
7r 

I (-1)n+ln(n + 1)TanI 
2 

(5.22) 
n=O 

The value of (5.22) for various N at R=9.0 must be compared to the exact value 

as calculated in Chapter 4, which is 

Hexo, ct = 0.5048671. 
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Figure 5.1: The numerically calculated meansquare heatflux at the 
bottom boundary, plotted against the Rayleigh number R, for the 

case A=4.0. 
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T0(z) 
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Ux, (z) 

(b) 

Figure 5.2: Plots of (a) To(z), (b) U,, o(z) , against z' for the 

case A=4.0, q=0.1. The value of R shown is R=9.0 
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Figure 5.3: As in figure 5.2, but showing (a) Uyo(z), (b) Wo(z). 
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Figure 5.4: As in figure 5.2, but showing (a) Bxo(z), (b) Byo(z). 
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Figure 5.5: As in figure 5.2, but showing (a) Bo(z), (b) Xo(z). 
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Figure 5.6: As in figure 5.2, but showing Zo(z). 
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The following convergence table is obtained: 

N H 
1 0.5040877 
3 0.4981831 
5 0.5048673 
7 0.5048670 
9 0.5048671 
11 0.5048671 

Table 5.1 

It can be seen that by taking a truncation of 

N=7, (5.23) 

the solution can be obtained to seven significant figures. This truncation gives 

ten Legendre polynomials in the z direction, which is accurate enough for most 

purposes. This truncation is adopted throughout the rest of this chapter. 

Figure 5.1 shows a plot of H (as defined by (5.22)) against R, while figures 5.2, 

5.3,5.4,5.5 and 5.6 show plots of To, Uxo, Uyo, Wo, Bxo, Byo, Bo, Xo and Zo (as 

defined by (5.26)) against z' at the point R=9.0. As these quantities obey the 

condition (4.21), only the relevant real or imaginary part of each is shown. The 

numerical results compare excellently to the analytic results, proving the validity 

of the method. 

5.4 Numerical Solution Of (5.10) And (5.11) 

Equations (5.10), (5.11) and (5.12) are now solved using the Tau method. The 

perturbations are assumed to have the following spectral expansions 
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T, (Z) 

Wr(z) 

B, (z) 

X, (z) 

XT(z) = Zr(z) _ 

Br,. (z) 

By,. (z) 

Ui, 
"(z) 

Uyr(z) 

1: 
n--+p 

TrnPn(z ) 

ý' p1 WrnPn(Z ) 

E IV ? BrnPn(xr) 

º , 
nn 

o XrnPn(z ) 

En p ZrnPn(zr 

En pý BxrnPn(Zr 

cEpl ByrnPn(zr 

Nr EN UxrnPn(x 

(5.24) 

N' Fn_0 UyrnPn(x 

where r= ±1. The integer N is the truncation parameter, and is fixed by (5.23). 

The coefficients of the spectral expansions are complex constants. There are 
2(9N + 18) spectral coefficients to determine from the perturbation equations. 
Substituting (5.24) and (5.18) into equations (5.10) and the boundary conditions 
(5.12) using the Tau method, the following linear equations for the spectral coef- 
ficients of X_1 are obtained 

4(2n + 1) N+1 
W_1 -- AimX_I� =0 (0 <n< N), (5.25a) 

7r 
p_n+l 

p+n odd 

4(2n 
_ 

1) N 1) N+2 
2 Z_p+Aim{2(2n+ 

7r2 
E [p(Pý'1)-n(n-}-1)]B-1p-k B-1n} 

p=n+1 p=n+2 
p+n odd p+n even 

+Rk2T_1n =0 (0 <n<N -1), (5.25b) 
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2(2n + 1) N+2 

, r2 
> (p(p + 1) - n(n + 1)]B_lp - k2B_ln - imW_In 

p=n+2 
p+n even 

+gimBO*�U = gAB_1� (0 <n< N), (5.25c) 

2(2n + 1) N+2 
ý2 

> [p(p + 1) - n(n + 1)}X_1 
- 

k2X_1n 
- 

zmZ_in 

p-n+2 
p-fn even 

-q{ - imXX� + l2Bxo� + lmB, *on}U = gaX_1n (0 <n< N), 
(5.25d) 

2(2n -f-1) 
N+2 

72 
E [p(p + 1) - n(n + 1)]T_lp - k2T-ln +W -in p_n+2 

p+n even 

+imTO*�U = AT_1r (0: 5 n< N), (5.25e) 

ýzB If 2(2n + 1) N+2 
) x, _lý - . 1{ E B_1p} + imX_1, L =0 (0: 5 n<N+ 1), (5.25f 

l p=n+1 
p+n odd 

(2(2n+1) N+2 
k2By, _ln + im > B_1P} + ilX_1ý. =0 (0 <n<N+ 1), (5.25g) 

p_n+l p+n odd 

2 2(2n -{- 1) N+1 
k Ux, _ln - il{ W-lpl + iMZ-In 0 (0 <n <_ N), (5.25h) 

r 
p=ß++1 

p+n odd 

2 2(2n + 1) N+l 
k Uý, 

_1ý + im{ W_1 } 
-I- ilZ_1i =0 (0 <n< N), (5.251) 

7r 
Pcn+l 

- 

p+n odd 
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N+1 
E (-1)PW_1p = 0, (5.25j) 
p=O 

N+1 
EW lp (5.33k) 

p, o 

N+2 
(-1)PT_ip = 0, (5.251) 

p=o 

N+2 
E T_lp = 0, (5.25m) 
p=0 

N+2 
S (-1)pB_ip = 0, (5.25n) 
p=0 

N+2 
B_lp = 0, (5.25o) 

p=0 

N+2 1 E2 (_1)P+ip(p + 1)X-lp = 0, (5.25p) 
p=o 

N+21 
2 p(p + 1)X_lp = 0. (5.25q) 

p=0 

The equations for Xl are given by 

4(2n + 1) N+l 
W1p + AimXln =0 (0< n< N), (5.26x) 

7r 
p=n+1 

p+n odd 

4(2n+ 1) f Zip - Aim{2ý27r2 
1ý E [p(p + 1) - n(n + 1))Blp - k2Bln} 

p=n+1 p=a+2 
p+n odd p+n even 

+Rk2T1� =0 (0 <n<N- 1), (5.26b) 
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2(2n + 1) N+2 

72 
E [p(p + 1) - n(n + 1)]Blp - k2B1, + imWi, 

P=n+2 
p+n even 

-gimBonU = q)Bin (0: 5 n< N), (5.26c) 

2(2n + 1) N+2 
ý, 2 

7.2 

E [p(P + 1) - n(n 1)]X1 -k 
Xln + imZln 

p=nß-2 
p}n even 

-q{imXpn + 12Bxp, 4 - lmByo }U = gAXln (0: 5 n< N), (5.26d) 

2(2n+1) E 
[p(p+1)-n(n+1)]Tlp-k2 

7r2 
Tin+W1n 

p-nß-2 
p1-n even 

-imTo�U = \T1, ß (0 <n< N), (5.26e) 

k2B 2(2n +, 1) N+2 
x, ln -ill > Blp} - imXl,, =0 (0 <n<N+ 1), (5.26f ) 

T 
p_n+l 

p+n odd 

k2By, in. - im 
2(2n + 1) N+2 

B1 }+ ilXln =0 (0 <n <_ N+ 1), (5.26g) 
p=n}1 

p+n odd 

k2Ux 2(2n + 1) Iv+l 
, iý - il{ E Wip} - im2 =0 (0 <n< N), (5.26h) 

p=n+1 
- 

p+n odd 

k2Uy, ln - im 
2(2n }1) N+1 

> wip} + ilZ1 =0 (0 
_< n <_ N), (5.261) 

p=n+1 
p+n odd 
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N+1 
E (-1)pwlp = 0, (5.26j) 

p=o 

N+1 imu 
Y' Wlp = (5.26k) 
P=O 

N+2 
r, (-1)PTip = 0, (5.261) 

p=o 

N+2 
r, Tlp = 0, (5.26m) 

p=O 

N+2 
E (-l)"Blp = 0, (5.26n) 
P=O 

N+2 
Blp = 0, (5.26o) 

p=o 

N+2 1 Z 2(_1)n+1p(p+ 1)X11, = 0, (5.26p) 
P=o 

N+21 
E 

2p(P + 1)Xlp = 0. (5.26q) 

p=0 

Equations (5.25) and (5.26) define 2(9N + 18) complex, linear algebraic equations 
in the 2(9N + 18) complex spectral coefficients. It now just remains to evaluate 
equation (5.11) for the coefficient U of the geostrophic flow using the Tau method. 
Using the orthogonality condition (5.15) this equation becomes 

I'ilAg N+i 1 
2 2n +1 

{B; 
OBY1n + BonBV, -ln + Bz, -1nByon + Bx1nBYOn} = 0. 

n=O 
(5.27) 

Defining U as an unknown, and combining (5.25), (5.26) and (5.27), a system 
of 18N + 37 complex, linear algebraic equations in 18N + 37 complex unknowns is 
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obtained. In matrix notation, this system takes the form of a generalised eigenvalue 
problem, 

LpYp = ARYp, (5.28) 

where Lp and R7, are complex matrices of size (18N + 37) x (18N + 37) and Yp is 

the (18N + 37) x1 vector of unknowns. If Yp is partitioned as follows, 

Yp 
YpT 
YpB 

where Yp ' is a (6N + 6) x1 vector of unknowns defined by 

YpT = 
[T_1OT_ll... T_INB_1OB_11... B_1NX_10X_11... X_1N 

Tio Tll... TIN Blo Bil ... BiN Xio Xii ... XlN 11 (5.29) 

and YOB is a (12N+31) x1 vector containing the remaining unknowns, then (5.28) 

takes the form 

L11 L12 YPT 
=A 

Iert+e 0 YPT [L21 
L22 

[ypBI 100 
YPB ' 

where L11 is a matrix of size (6N + 6) x (6N + 6), L12 is a matrix of size (6N + 

6) x (12N + 31), L21 is a matrix of size (12N + 31) x (6N + 6) and L22 is a matrix 

of size (12N + 31) x (12N + 31). I6N+6 denotes the (6N + 6) x (6N + 6) identity 

matrix. Therefore, the equations 

LilypT + L12YpB = AypTs 

L2IYpT + L22YpB = 0, 

are obtained. These can be rearranged to give the matrix equations 
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[Lii - L12L22 lL2lIYpT = AYpTi (5.30a) 

YpB = -L22iL21YpT, (5.30b) 

which can be solved successively. (5.30) is an equivalent system to (5.28). Now, 
(5.30a) says that YpT is the eigenvector and A is the eigenvalue of the (6N + 6) x 
(6N + 6) complex matrix defined by 

M= Lll - L12Liz L21. (5.31) 

The coefficients of the matrix M depend on the values of A, q, 1, m, Yo, P and R, 

and values must be assigned to these parameters before the problem can be solved. 
As usual, only the cases 

A=4.0, q=0.1,1.0, and 10.0, 

will be considered. The wavenumbers l and m define the lengthscales in the x and 

y directions on which the convection takes place. They are assumed to take the 

values 

l= 2- 
2 

M- 
2 

(5.32) 

These are the critical wavenumbers associated with a steady oblique convection 
roll in a standard plane layer, when A=4. Since 

Istlm;:: ýl 1, 

these values ensure that the periodic box in which the convection takes place has 

an aspect ratio of about 1. This is appropriate for modelling spherical geometry. 
The values of d and m also ensure that the two oblique rolls defined by (5.7) and 
(5.8) are orientated at angles of about ±1 to the applied magnetic field. This 

avoids any limiting cases where (for instance) the rolls are nearly parallel (small 1) 

or perpendicular (small m) to the forced transverse roll in the layer. 
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Finally, ranges of values of R and r are chosen. For each required value of R 

and F, equations (5.20) are solved for YO using the prescribed parameter values. 
Then, the matrix M is set up, and NAG routine F02AKF is employed to find 

the 6N +6 eigenvalues A and eigenvectors YPTJ of M. This routine works by 
first finding a transformation that converts M to Hessenberg form, Mg. Then, 

an LR decomposition of Mg is used to find the eigenvalues and eigenvectors of 
Mg. These are then mapped to the eigenvalues and eigenvectors of M using the 
inverse transformation. A simple matrix multiplication routine then gives YpB3 

from YpTJ. In this way, the 6N +6 eigenvalues A, and eigenvectors Ypj of (5.28) 

are obtained for each required value of R and F. 

5.4.1 The Stability Criteria 

The following definitions are made 

si = RE(aj), j=1,2, ..., 
(6N + 6), (5.33a) 

wi = IM(A ), j=1,2, ..., 
(6N + 6). (5.33b) 

Each eigenvector Ypj gives a possible z-structure for the perturbations. Each sj 

represents the growth rate, and wi the frequency, of the perturbations whose z- 

structures are given by the eigenvector Yp,. The stability characteristics of these 

perturbations are found by looking at the sj and the wj. 

Now, the sj can be ordered so that 

si>s2>83>..... >9(6N+s)" (5.34) 

With A, q, Z and m fixed, the growth rates only depend upon the values taken by 

r and R. Hence 

9J = sj(r, R) Vj. (5.35) 

It transpires that the stability of the basic state depends upon the sign of al, the 
largest growth rate. To see this, note that if 

106 



sl(r, R) < o, 

then the basic state is stable, since (5.34) then gives 

9; (r, R) <0 Vj. 

Hence, all the possible perturbations are exponentially decaying. On the other 
hand, if 

31(r, R)>0, 

then the basic state is unstable, since then the perturbations whose z-structures 
are given by Yi, 1 are exponentially growing. The point at which the basic state 
first loses stability is defined by the condition that 

31(r, R) = o. 

This in turn defines a relation of the form 

R= RI (r), (5.36) 

which, for each value of the bump parameter r, gives the critical Rayleigh number 
at which the basic state first loses stability to the perturbations whose z-structures 
are given by the eigenvector Y, 1. These perturbations will be called the most 
unstable perturbations. 

The value of 

w, = wl (r, R), 

at R= R1(r) says how the basic state loses stability. If 

w(r, Ri(r)) = 0, 
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then the basic state loses stability through the exchange of stabilities. However, if 

w(r, Ri(r)) 0, 

the the mechanism is overstability, and the frequency of the perturbations at crit- 
icality is given by wi (P, RI (r)). 

The stability criteria for each of the other possible perturbations that arise can 
be derived by analogy with those for the most unstable perturbations. 

5.5 Results 

In this section, the stability characteristics of the most unstable perturbations, 
for the chosen parameter values, are described. These characteristics define where 

and how the basic state first loses stability for the given parameter values. For 

comparison, the stability characteristics of the perturbations whose z-structures 

are given by Y, 2 are also described. These perturbations have the second largest 

growth rate, s2, and will be called the second most unstable perturbations. 

5.5.1 The Most Unstable Perturbations 

This is the preferred mode of instability for the basic state. It consists of a 
double oblique roll (i. e. a linear combination of a (+)-roll and a (-)-roll in the 

notation of chapter 3). These two rolls align themselves with the transverse roll 
forced by the bumps in such a way that Taylors constraint is satisfied at O(5), so 
the solution satisfies 

2a 
m 

Jm 
(axabvp ' bxpbýo)dady= 0. äx 21r2 of1 

(5.37) 

Hence, the perturbations do not accelerate a geostrophic flow when they interact 

with the basic state, so V. = 0. A consequence of this surprising result is that the 

stability characteristics of these perturbations are independent of the values taken 
by r and q. The critical Rayleigh numbers at which the basic state loses stability 
to these perturbations, which are defined by 
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R= R1(r), (5.38) 

turn out to be the same, no matter what value of P is chosen. In fact, the basic 

state loses stability to these perturbations once R exceeds 

Rl = 10.39230485 = 6V, 

irrespective of r. A graph of (5.38) against r is a straight line in the (T, q) plane 
(this is shown in figure 5.7). It turns out that the frequency associated with these 

perturbations satisfies 

wl(r, Ri(r)) = o. 

Again, this is irrespective of the value of F. Hence, the basic state loses stability 
to these perturbations through the exchange of stabilities mechanism (at least, for 

the parameter values chosen). Figure 5.8 shows a plot of sl and wl against R. 

In figures 5.9,5.10,5.11,5.12 and 5.13 the z-structure of the perturbations 
are plotted against z', when R= R1. These figures show that the unknowns 

adopt simple sinusoidal profiles at criticality. The solutions can adopt such simple 
z-structures since with no geostrophic flow forced by the interaction of the per- 
turbations with the basic state, there is no forcing on the perturbations, and the 
boundary conditions on the perturbations become homogeneous. Simple, homoge- 

neous boundary conditions can easily be accomodated by sinusoidal profiles. Note 

that the unknowns obey the conditions 

Tr = -Tr', 

Uxr = UxOr 

Uyr = Uyr 
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s Wr = -Wo ý 

Bx, _ -Bx, , (5.39) 

B7/T - -BlJTf 

Br = Br 
I 

X* ° Xr, 

ZT=-z;, 

where r= ±1. Hence, only the relevant real or imaginary parts of each unknown 

are plotted. 

The stability characteristics of these perturbations are identical to the stability 

results obtained by Roberts and Stewartson (1974) for steady single or double 

oblique roll solutions in a standard plane layer, with one significant difference - 
here only double roll solutions are observed. To explain this, recall from Chapter 

3 that in the standard plane layer, there was no relation which linked the (-)- 

roll to the (-)-roll in the linear case. However, here, the rolls can generate a 

mean Maxwell stress by interacting with the basic state. The equation for the 

perturbation geostrophic flow provides a linear relation between the (+)-roll and 
the (-)-roll. In order to make this geostrophic flow vanish, a positive (or negative) 

contribution to the mean Maxwell stress from one roll interacting with the basic 

state must be cancelled by a negative (or positive) contribution from the other 
rolls interaction with the basic state. This cancellation could not occur if one of 
the rolls were absent. Hence, both types of oblique roll are forced. 
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5.5.2 The Second Most Unstable Perturbations 

When the z-structures of the perturbations are given by YY2, their stability 
characteristics change quite drastically. Again, the perturbations consist of a dou- 
ble oblique roll solution. Now, however, these rolls interact with the transverse 

roll forced by the bumps to accelerate a geostrophic flow of the form 

V. =U exp(ilx) + C. C., 

in the layer. Consequently, the stability characteristics of these perturbations are 
no longer independent of r or q. 

The critical Rayleigh numbers at which the basic state loses stability to these 

perturbations are defined by a relation of the form 

32(r, R) = o, 

where s2 is the second largest growth rate. This relation yields 

R=R2(r), (5.40) 

which for each value of r gives the critical Rayleigh number at which the basic 

state loses stability to these perturbations. (5.40) defines curves in the (I', R) 

plane. These curves are plotted for the three values of q chosen in figures 5.14, 
5.15 and 5.16. It transpires that 

w2(r, R2(r)) - o, 

for each value of r (where w2 is the frequency associated with these perturbations). 
Hence, the basic state loses stability to these perturbations through the exchange 
of stabilities (again, this is only for the parameter values examined). 

The s-shape of these marginal stability curves may be explained by examining 
figure 5.17, which shows a plot of s2 and w2 against R, for the cases r=0.05, 
r=0.2, P=0.35 when q=0.1. The e2 curve consists of two branches: the first 
branch exists for 
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Figure 5.7: A Plot of R1(r) against r. 

112 

0.0 0.05 0.1 0.15 0.2 0.25 



0.6 

0.4 
SI 

0.2 

0.0 

-0.2 

-0.4 

tit 

9 10 11 12 

R 

Figure 5.8: A plot of al and wl against R. 
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Figure 5.9: Plots of (a) T_1(z) (-), T1(z) (- - -) (b) Ux, _1(z) 
(--), Ux, 1(z) (' ' -) 

against z' at the point R= R1. 
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Figure 5.10: As in figure 5.9, but showing (a) Uy, _i(z) 
(-), Uyi(z) (- - -)s 

(b) W i(z) (--)' W1(z) (- - -). 
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(b) 

Figure 5.11: As in figure 5.9, but showing (a) Bx, _1(z) 
(-), Bi(z) (- - -), 

(b) Bv, 
-i(z) 

(-), Byi(z) (- - -). 
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Figure 5.12: As in figure 5.9, but showing (a) B_i(z) (-), Bi(z) 

(b) X-i(z) (_"), Xi(z) (- - -). 
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Figure 5.13: As in figure 5.9, but showing Z_1(z) (-), Zi(z) (- - ). 
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R<R,, 

(where R, is the value of the Rayleigh number at which the basic state is singular, 
as defined in Chapter 4) while the second branch exists for 

R>R,. 

The points where the 82 curve crosses the R axis define the critical Rayleigh num- 
bers for these perturbations. Multiple critical Rayleigh numbers arise because 82 
satisfies 

S2 -- -oo as R-> Rä . 

This says that the basic state is stable to these perturbations in the region of it's 

singularity. However, if the 82 curve crosses the R axis below R, (i. e. on the first 
branch), then it must do so again to satisfy this condition. Since the second branch 

always crosses the R axis, multiple critical Rayleigh numbers are obtained for those 

values of r at which the first branch can cross the R axis. As always, however, 

it is the perturbations with the smallest associated critical Rayleigh numbers that 

will be preferred at a given value of r. 

Note also from figure 5.14,5.15 and 5.16 that 

R2(r)-moo as r -->oo, 

so increasing the bumpsize parameter makes the basic state more stable to these 

perturbations. This may be traced to the fact that larger values of r increase the 

strength of the geostrophic flow. This increases the shear generated by VP, and 
since shear suppresses convection (Fearn and Proctor 1983b; Fearn 1989) this leads 
to an increase in the critical Rayleigh number. 

In figures 5.18,5.19,5.20,5.21 and 5.22 the z-structure of these perturbations 
are plotted against z', when r=0.1, R= R2(0.1) and q=1.0. These perturba- 
tions also obey (5.39), so only the relevant real or imaginary part of each is plotted. 
Figure 5.23 shows the geostrophic flow profile set up by the interaction of the 
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Figure 5.14: A plot of R2(r) against r in the case q=0.1. 

120 

0.0 0.05 0.1 0.15 0.2 0.25 



14 

13 

R212 

11 

10 

r 

Figure 5.15: A plot of R2(r) against r in the case q=1.0. 
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Figure 5.16: A plot of R2(r) against r in the case q= 10.0. 
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Figure 5.17: A plot of s2 (--) and w2 (- - -) against R for the cases 
r, = 0.05,0.2,0.35 when q=0.1. 
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(a) 
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(b) 

Figure 5.18: Plots of (a) T_1(z) (--), Ti(z) (- - -) (b) Ux, 
_1(z) 

(--), UU, l(z) (- - -) 
against z' at the point R= R2(0.1), for the case q=1.0, r=0.1. 
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Figure 5.19: As in figure 5.18, but showing (a) Uy, _i(z) 
(-), Uyl(z) (- - -), 

(b) W1 (z) (--), Wi(z) (- - -). 
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Figure 5.20: As in figure 5.18, but showing (a) Bz, -i(z) 
(-), Bxl(x) (- - -), 

(b) Bv, 
-i(z) 

(--), Bvl(z) (- - -). 
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Figure 5.21: As in figure 5.18, but showing (a) B_1(z) (-), Bl(z) (- - -), 
(b) X-1(z) (--)' Xl(z) (- - -). 
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Figure 5.22: As in figure 5.18, but showing Z_I(z) (-), Zi(z) (- - -). 
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Figure 5.23: V(x) against x at R= R2(0.1), r=0.1, q=0.1. 
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perturbations with the basic state. The presence of a non-zero geostrophic flow 

means that the perturbations are inhomogeneously forced by the interaction of 
this flow with the bumps. These inhomogeneities forbid the perturbations from 

adopting simple sinusoidal profiles. The z-structures of these perturbations are 
more complicated than those of the most unstable perturbations, and this explains 
why these perturbations have a larger critical Rayleigh number associated with 
them: it takes more energy to excite a complicated z-structure. 

5.5.3 The Behaviour As IF -+ 0 

Examination of figures 5.14,5.15 and 5.16 reveals that 

R2 -º 6v-f3- = R1 as P --> 0. 

This occurs because in this limit, the effects of the geostrophic flow upon the second 

most unstable perturbations vanish, since 

Vý-ý0 as r--+0. 

The reduced effect of V. allows the second most unstable perturbations to adopt 

simpler z structures, while the reduced shear allows the convection to occur more 

easily, leading to a smaller critical Rayleigh number for these perturbations. 

For small, finite r, the two sets of perturbations remain distinct, the most 

unstable perturbations being the preferred mode of instability. However, when r 

becomes zero, do the two types of perturbations coalesce to form a single, unique 

mode of instability? Or do they remain two distinct modes of instability, having a 

common critical Rayleigh number (as in the case of single and double oblique roll 
solutions in the standard plane layer). 

It transpires that that this question does not arise at all for this problem, since 
r must remain finite and non-zero to have a solution of this problem. To see this, 

recall (from the definition of r) that 

r=0= =0, 
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and so zero r corresponds to the no bump case. But, the convective motions 
described here are all topographically forced, i. e. they are forced by the bumps. 
So, as r --+ 0, this forcing vanishes, and the convective motions evaporate. In the 

no bump limit, the solution (2.24) that is being examined collapses back onto the 
hydrostatic conduction solution. Therefore, the solutions considered here are only 
valid for non-zero values of r. 

5.6 A Check On The Numerics 

To check the linear stability results quoted in the previous section, the pertur- 
bation equations were solved in the limit of small but finite r, i. e. for those values 
of r which satisfy 

0<r<1. (5.41) 

The exact details of the calculation are given in Appendix B, but the main results 

will be discussed here. 

The equations yield an analytic solution for the perturbations which takes the 

form of a double oblique roll, 

Xp = {alX_1RS(z)} exp(ilx -- imy + iwcot)+ 

{-a2X 1RS(z)} exp(ilx + imy + iwcot) + c. c., (5.42) 

where the complex constants al and a2 are defined by (B. 25) and X±1RS(x) are 
the Roberts and Stewartson (+) and (-) oblique roll solutions defined in chapter 3. 
These perturbations interact with the basic state in such a way that no geostrophic 
flow is accelerated, so 

Vp=0. (5.43) 

The fact that no geostrophic flow is accelerated means that this solution is inde- 

pendent of r. That is, the solution is valid for all non zero values of r, not just 
for those values which satisfy (5.41). 
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The values of R, and we at which this solution exists are defined by (B. 19) and 
(B. 20), namely 

wcp = 0, 

R, o = 
4(1 + k2)2 

+ 
Am2(1 + k2) 

Am2k2 k2 

for the exchange of stabilities case, and 

2 (4 -1)A2m4(1 + k2) - 4(4 + 1)2(1- k2)2 
wco 4g2(1 + q)2 

_ 
2j 4(1 + q)(1 + k2)2 Am2(1 + k2) 

Re0 
ql Am2k2 + k2(1 + q) 

}. 

for the overstable case. These stability results are identical to those obtained by 
Roberts and Stewartson (1974), and quoted in chapter 3, for the stability of the 
hydrostatic conduction solution to perturbation by oblique convection rolls in the 

standard plane layer. Hence, all the stability results of chapter 3 are applicable 
here for the solution (5.42) and (5.43). 

Hence, quoting from chapter 3, the basic state (i. e. the transverse roll forced 
by the bumps) loses stability to the perturbations (5.42) through the exchange of 
stabilites once R exceeds 

Re=6V, 

the critical wavenumbers being given by 

2 2V3 2 2/ 
-A, is=2- -T-, MC = 

It loses stability to (5.42) through overstability once R exceeds 

12i 

4 
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the frequency of the perturbations being given by 

we _ 
9(gqZ 2) 

and the critical wavenumbers for this case being 

12 =2- 
2ý (1 + 4), me 2= 2A 

(1 + 4). 

The exchange of stabilities is preferred in the region 

q<2, A>v and q>2, vr3- <A<VY(1+q), 

while overstability is preferred in the region 

q>2, A> /(1 + q). 

These oblique perturbations do not exist in the region 

A<NF3, 

This is because oblique convection rolls are not supported by weak magnetic fields. 
As A is decreased towards V3-, the axis of the oblique rolls become parallel to that 

of the transverse roll forced by the bumps, and hence, do not perturb it. For this 

reason, the basic state is stable to perturbation by oblique rolls for weak magnetic 
fields. These stability results are shown in figure 5.24. 

These results can be used to check the results obtained numerically in the 

previous section. To do this, recall that the most unstable perturbations deter- 

mined numerically (i. e. the perturbations whose z-structures were given by Y 1) 
have the same characteristics as the solution (5.42) determined in Appendix B. 
They have simple sinusoidal z-structures, obey Taylor's constraint (i. e. accelerate 
no geostrophic flow through interaction with the basic state) and have the same 
stability characteristics as the Roberts and Stewartson oblique roll solutions in the 

standard plane layer. Therefore, (5.42) is the analytic form of the most unstable 
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Figure 5.24: The regions of the (q, A) plane where the basic state 
loses stability to the perturbations through overstability (region I) 

or through the exchange of stabilities (region II). The perturbations 
do not exist in region III, so the basic state is stable there. 
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perturbations found previously. To check the numerics, therfore, the numerical 
results obtained previously will be compared to these analytic results at the point 

A=4. 

As the stability results indicate that the exchange of stabilities is valid at this value 
of A, the critical wavenumbers are given by 

1Z=2- 
2, 

m2= 
2 

(5.44) 

This justifies a postiori the choice (5.32) made for l and m, since it has been shown 
that these are in fact the critical values for this stability problem. At this value of 
A, al and a2 take the values 

al = ql{(4l - m)1 - (Ofm + 1)1,1 , 
(5.45a) 

a2 = ql 
{(Vl 

+ m)12 - (l - 'vr3m)ll (5.45b) 

where the integrals Il and 12 are defined by (B. 26). Figure 5.25 shows a plot of 
Ia1J2 and 1a212 against q for A=4. 

Now, from the definitions of X±1RS, 

T_1 = alsin(z), Tl = -a2 sin(z). 

Using this, it can be shown that 

ja112 
_ 

fö T_lT*ldz (5.46) 
Tanz fö TiTidz 

The quantity on the left hand side of (5.46) is plotted against q in figure 5.26(a). 

The spectral approximations to TT1 are given by 
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Figure 5.25: A plot of Jai12 (--) and Ja212 (- - -) against 

q for the case A=4. 
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(a) 

(b) 

Figure 5.26: These graphs show plots of the ratio 
T 1T= ldz against q, 

o TIT; dz 

using (a) the analytic results, (b) the numerical results. 
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N+2 
TTY =E T±iPn(x ), 

n=0 

where N=7, P,, is the nth Legendre polynomial and z' is defined by (5.14). 
The constants T±1, ti are obtained from the eigenvector Yi, 1, obtained numerically. 
Using the orthogonality condition that holds for Legendre polynomials, it can be 

shown that 

FN+2 T' in 2 Jo T_iT*ldx +ý-o zn+l (5.47) 
N+a Tlm' - fo TIT , *dz 

'M=O 2m+i 

The quantity on the left hand side of (5.47) is plotted against q in figure 5.26(b). 

The results (5.46) and (5.47) indicate that the two curves should be identical, 

and this is borne out by the graphs in figure 5.26. This confirms that (5.42) is the 

analytic form of the most unstable perturbations obtained numerically in chapter 
5. Hence, the stability characteristics of these perturbations have been determined 
for all values of A and q. 

Now, the second eigensolution of (B. 64) yields another solution of the pertur- 
bation equations, which again takes the form of a double oblique roll 

Xp = {a3X-1RS(z) + PX_11(z) + ... 
} exp(ilx - imy)+ 

{a4X1RS(z) + rxii(z) + ... 
} exp(ilx + imy) + c. c., (5.48) 

where a3 and a4 are defined by (B. 78), X±1RS are the Roberts and Stewartson (+) 

and (-) oblique roll solutions, and X±11 are the solutions of the n=1 system of 
equations derived in Appendix B using the second eigensolution of (B. 64). These 

perturbations interact with the basic state to accelerate a geostrophic flow of the 
form 

Vp = {rul + ... 
} exp(ilx) + c. c.. 

where 
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U1 = a1a4 + a2a3. (5.49) 

This solution has a much more complicated z-structure than the previous case 
considered. It is the presence of the geostrophic flow V. which necessitates the 

complicated z-structure of this solution. This solution is dependent upon the value 
of r, and is only valid in the limit (5.41). 

The critical Rayleigh number associated with this solution is given by 

Rý = W-3 + rR. i +... (5.50a) 

where 

Rol = ala4 + a3a2. (5.50b) 

Figure 5.27 shows a plot of Rc1 against q. This graph indicates that Rc, is positive 
for each value of q. Hence, 

Rc>6-v/3-, 

so this solution has a larger critical Rayleigh number associated with it. This is 

to be expected, since the shear generated by V. suppresses convection, and makes 
this solution more difficult to excite. The basic state loses stability to this solution 
through the exchange of stabilities, since 

WC =0 to 0(12). 

Recall that the second most unstable perturbations (i. e. the perturbations 
whose z-structures are given by Y p2) have the same characteristics as this solu- 
tion. Consequently, this solution is the analytic form of the second most unstable 
perturbations. To show this, the approximation (5.50) to the critical Rayleigh 

number of this solution must be compared to the numerically calculated critical 
Rayleigh numbers associated with the second most unstable perturbations. These 

are given by 
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Figure 5.27: A plot of R, 1 against q when A=4. 
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Figure 5.28: A plot of R= R2 (r) (--) and R6f+ rR, l (- - -) 
against r for the case q=0.1, A=4. 
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Figure 5.29: As in figure 5.28, but for q=1.0. 
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Figure 5.30: As in figure 5.28, but for q= 10.0. 
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R=R2(r). (5.51) 

It is expected that (5.50) will be a linear approximation to these curves close to 
the F=0 axis. Figures 5.28,5.29 and 5.30 show plots of (5.50) and (5.51) close 
to the I' =0 axis for the cases 

q=0.1,1.0,10.0. 

The figures show that (5.50) is indeed a linear approximation to the exact, nu- 
merically calculated critical Rayleigh numbers for the second most unstable mode, 
provided that r is small. This confirms that the solution (5.48) is the analytic 
form of the second most unstable linear perturbations for small values of r. These 

results confirm the accuracy of the numerical method used in chapter 5. 
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Chapter VI 

The Nonlinear Regime 

6.1 The Nonlinear Equations 

To investigate the nonlinear regime that develops from the linear solutions 
found in chapter 5, the nonlinear terms neglected in the linear problem are re- 

stored to the governing equations. This has two main consequences. Firstly, these 

nonlinear terms lead to the formation of new harmonics in the x and y directions. 

The interaction of these new harmonics with each other produces the nonlinear 
behaviour that is investigated here. Secondly, Taylor's constraint is not in general 

satisfied in the nonlinear regime. The Maxwell stress generated by the nonlinear 

solutions leads to the acceleration of a geostrophic flow though Ekman suction at 
the boundaries. Because the shear generated by this flow is responsible for equi- 
librating the amplitude of the solutions, they are called Ekman solutions. The 

importance of these Ekman solutions lies in the fact that they may evolve in such 

a way that Taylor's constraint becomes satisfied. Of key importance is finding 

whether this occurs, and if so, how Taylor's constraint comes to be satisfied. 

For geophysical values of q, namely 

q «1, 

the results of chapter 5 indicate that the exchange of stabilities is the preferred 

mechanism of instability. For these values of q therefore, the nonlinear regime that 
develops from the linear solutions will be steady. For this reason, the oscillatory 

case will not be considered, since it is not relevant to the Earth's interior. 
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Hence, solutions of the following equations are required 

2aZ +nah =o, (6. la) y 

FZ ý- A- (V2b) - RV2 0=o, (6.1b) 2 

2w 
r 

2V =ä ý2j (bxby)dzdy], (s. ýc) 

Ob öw 
qv Z (6.14) ay= ay+Db, 

L_ LC 2 d2V 
_ 

dV äbß 5bxll 
- a-/I' 

(6.1e) 4V ay [iy+ 
E+g(bxdxz 

dx 
(Lb 

(6.11) Ve =w+V28,0Y 

V, alb a 6.1vHbx = axax - ey, ( 9) 

2 alb 
ýHby - äyöz + 8x' 

, V2 Hux ö9xa2Wz äy 
OC (4.2i) --' 

2 
2 8uy 
H ayaz + äx 

- 
(6.1j) 
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These are the nonlinear, time-independent equations governing the system. They 

are to be solved subject to the usual boundary conditions, 

w=b=Oz=0=0 on z=0, (6.2a) 

w+ mV sin(my) =b+q sin(my) =ý=0- cos(my) =0 on z=a. (6.2b) 

The solutions of (6.1) and (6.2) are assumed to take the form 

00 
X=>X. (z) exp(inlx + imy) + c. c., (6.3a) 

n=-oo 

00 
V=E Vn exp(inlx) + c. c., (6.3b) 

n=-OC> 

where 

{T(z) 
W, (z) A, (z) X, (z) Z. (z) Xn(z) = 

Byn(z) Byn(z) U 
.. 

(z) Üy, (z)], (6.4) 

represents the z-structure of the nth harmonic, and the V, a are complex constants. 
It can be seen from (6.3) that the nonlinear terms only create new harmonics in the 

x direction. This occurs because the nonlinear terms in the governing equations 
are those associated with the geostrophic flow, V. The y average in the mean 
Maxwell stress, 

M= m2ý5j Bx By dzdy, 

(which is used to determine V) has the effect of removing any new harmonics 

created in the y direction. However, any new harmonics created in the x direction 
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will be retained. Since the product of V with any other quantity can therefore only 

create x harmonics, there are no new y harmonics introduced into the problem 

Substituting (6.3) into (6.1), equations are obtained for the z structure of the 

nth harmonic and the nth coefficient of V. They are given by 

2DWn + Aim,.. = 0, (6.5a) 

2DZn - Aim(D2 - k. 2)B� + RknTT = 0, (6.5b) 

2V n= rAginl 
{1f (BPBy, 

P-n)dz}, 
(6.5c) 

ao 

00 
(D2 - kn)B� + imW, ý _ gim(VP + V*p)Bn_p, (6.5d) 

P=-00 

(D2 - kn)Xn + imZn =? q(VP + V*P) IimXn_p + pn12By, n-P - PlmBy, n-P], 
P=-o 

L 

(6.5e) 

00 
(D2 - kn)TT + Wn =E im(Vp +V *p)Tn-P, (6.5f) 

P=-00 

knBxn, = inlDB,, + imXX, (6.5g) 

nBgn = imDBn - inlX,,, (6.5h) k2 

k2Uxn = inlDWn + imZn,, (6.5i) 

knUUn = imDWW, - inlZn, (6.5j) 
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where D= and g-z 

kn = n212 + m2. 

Substituting (6.3) into (6.2), the boundary conditions become 

W,, =B, a=DX,, =T, a=O on z=0, (6.6a) 

Wn - 
t2 (Vn +V_*n){1- bpn} = Bn - 

2Q bon = DXn = Tn - 
2bpn 

=0 on z= 7r, 
(6.6b) 

where bnm is the Kronecker delta. The form of the boundary conditions on the 
top boundary is indicative of the fact that different effects are forcing different 
harmonics. It is the interaction of the geostrophic flow V with the bumps that 
forces the oblique (n L 0) harmonics, while the distortion of the isotherms and 
vertical magnetic field by the bumps forces the transverse (n = 0) harmonic. 

6.2 Non-Uniqueness Of Solution 

Equations (6.5) and (6.6) are invariant under the transformation 

0 
X 1, (6.7) 

where 0 is a real constant. This reflects the fact that the layer is invariant under 
translation in the x direction. Because of this, solutions of (6.5) and (6.6) are not 

unique. If 

00 
X= S X�(z) exp(inlx + imy) + c. c., 

n=-oo 

00 
V= >Vn exp(inlx) + c. c., 

n=-oo 

is a solution of (6.5) and (6.6), then so is 
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Xp ={ exp(in0)X,, (z)} exp(inlx + imy) + c. c., 
n=-oo l 

00 
Vo =E{ exp(inI)Vn } exp(inlx) + c. c.. 

n=-ao lJ 

To obtain unique solutions, the arbitrary phase i must be fixed. This is done as 
follows. 

Recall that the z-structure of the basic state obeys the conditions (4.21), 

namely 

TO= . 'ö , 

Uzo = -U: 0, 

Uyo =- Uyo, 

Wo=wo, 

Bxo = Bxo 

Byo = B* YO) 

Bo = -Bo *l 

Xo = -X 6) 

Zo = Zö. 
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Since the arbitrary phase does not effect the transverse (n = 0) harmonic, it can 
be assumed that the transverse harmonic continues to obey (4.21) in the nonlinear 

regime. However, by imposing (4.21) on the transverse harmonic, it transpires that 

the coefficients of the nonlinear harmonics obey the following conditions. 

Tn n even, 
Tn = 

T. n odd, 

-u: n odd, 
Uzn, _ 

Uz*n n even, 

1-Uyn n odd, 
Uyn 

Uy*n n even, 

W� n even, 
Wn = 

-Wn n odd, 

Bxn n even, 
Bxn = 

I -Bin n odd, 

Byn n even, 
Byn _ 

-Byn n odd, 

n odd, In 
Bn 

B', n even, 

-X;, n odd, 
X, = 

Xn n even, 
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Zn n even, 
Zn _ (6.8i) 

-Z; * n odd. 

That is, each unknown is either purely real or purely imaginary, depending on the 
value of n. (Note that (6.8) is also consistent with the conditions (5.47) obeyed 
by the perturbations found in chapter 5). By imposing (6.8) on the nonlinear 
solutions, the arbitrary phase the x direction will be fixed, and unique solutions 
will be obtained. 

6.3 The Method Of Solution 

The equations for the z structure of the nonlinear solutions form an infinite 

set of coupled nonlinear ODE's. To solve the system numerically, it is necessary 
to truncate the solutions in such a way that a finite number of equations is ob- 
tained. This is done by approximating the infinite series (6.3) that define the exact 
solutions by finite series of the form 

N 
X= Xn(z) exp(inlx + imy) + c. c., (6.9a) 

n=-N 

N 
V=> Vn exp(inlx) + c. c., (6.9b) 

n=-N 

where N is a positive integer. Under the approximation (6.9), only the 2N +1 
harmonics 

Xn(z), nE {-N, -N + 1, ..., N-1, N}, 

and the 2N +1 coefficients 

V11, nE {-N, -N+1,..., N-1, N}, 

need to be determined. This is done by solving 2N +1 sets of coupled ODE's (one 

set for each nE {-N, -N + 1, ..., N-1, N}) of the form 
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2DWn + AimXX = 0, 

2DZ,,, - Aim(D2 - kn)B,, + RknT,, = 0, 

N 
2V,, = rAqinl {1 J"(B,,,, B, *, p-,, 

)dzl, 
p_-N 

T 
lp-n I <N 

(DZ - kn)B, ý + imWn = 
N 

gim(V, + V*p)B,, 
_p, 

p=-N 
lp-nl<N 

(6. ioa) 

(6.10b) 

(6. ioc) 

(6.10d) 

N [imXn_p (D2 - -I imZ_ 
pN 

(V+ Vp) + pnl2Bx, n_p - plmBy, n-P] 
ip-ni <N 

(6.10e) 

(D2 - kn)Tn + Wn = 
N 

E im(Vp + V*p)Tn_p, 

p=-N 
fp-nl<N 

(6. iof) 

kn B.,, = in1DBn + imX,,, 

k2By, a - imDBn - inlXn, 

k2 nUx� = in1DWn + imZ,,, 

knUyn = imDWn - inlZn. 

(6.1Og) 

(6.10h) 

(6.10i) 

(6.1Oj) 
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The boundary conditions applied for each value of n are given by 

Wý=Bn=DX,, =T,,, =O on z=0, (6.11x) 

im im Wn- 2 (Vn-ýV 
n){1-bon}-Bn-2 

Son=DXn=Tn-2bon=0 on x=7. 
4 

(6.11b) 

The solution of (6.10) and (6.11) will tend to the solution of the exact problem in 

the limit N -º oo. Therefore, provided N is made large enough, (6.9) will be a 
good approximation to the exact solution. 

Equations (6.10) and (6.11) can be solved numerically since they constitute a 
finite system of equations. This is done using the Tau method in the usual man- 

ner. The harmonics to be determined are assumed to have the following spectral 

expansions 

TT(z) 

Wn(z) 

Bn(z) 

X (z) 

Xn(z) = Zn(z) _ 

B�(z) 

BB, a(z) 

Uzn(z) 

Uyn(Z) 
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º EMö1 WnrPP(Z ) 

Y2MÜ2 BnrPr(x ) 

º EM+ZXnrPr(Z ) 

EMO ZnrPr(x ) 

r 
sr=O 

BxnrPr(x ) 

LsMpl BynrPr(z ) 

º ýr=0 um� Pf (Z) 

Mº ýr=o Uynr pr (Z) 

(s. 12) 



where M is a positive integer, and the spectral coefficients are complex constants. 
There are 9M + 18 spectral coefficients to determine for each n. This gives a 
total of (2N + 1)(9M + 18) spectral coefficients. Including the 2N +1 complex 
coefficients in the expansion for V, there are (2N+ 1)(9M+ 19) complex unknowns 
to determine. 

(6.12) is substituted into (6.10) and (6.11) using the Tau method, and the 
following algebraic equations for the spectral coefficients of the nth harmonic and 
the nth coefficient of the expansion of V are obtained 

4(2r + 1) M+1 
E W, Z , + AimX,,, =0 (0 r< M), (6.13a) 

7r 
p_r+l 

- 

p+r odd 

4(2r + 1) M {2(2r+1) EZ [p(P+ 1) - r(r + 1)]Býp - k2Bnr Znp-Aim 
7Z 7r 

E} 
p=ri-1 p=r+2 

p+r odd p+r even 

+RknTnr 0 (0 <r<M- 1), (6.13b) 

2(2r + 1) M+2 
2 

[p(P+1)-r(r+1)]Bnp-knBnr+imWnr 
p-r}2 

p-fr even 

N 

=2 gim(V, + V*, )B(n_, ),. (05 r< M), 
#_-N 

I. -nI<N 
(6.13c) 

2(2r -} 1) M+2 
Z 

rzE 
[P(p + 1) - r(r +l )]Xnp - knXnr + imZnr = 

y=r+a p+r even 

N [iMX(8-n)r 
4(V8 ý' V *a) 

"=-N I s-nl<N 

-Fsnl2Bx, (, _n),, - slmBy, (, _�)r] 
(0 <r< M), 

(6.13d) 
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2(2r + 1) M+2 
2 

7r2 
[p(p + 1) - r(r -I-1)]Tnp - knTnr -I- Wnr 

p+r even 

N 

_ im(V, + V_ l)T(n_, ),. 
(0 <r< M), 

a--N 
je-ni<N 

(6.13e) 

2(2r + 1) M+2 
knBxn, = inl{ Bnr} + imX,,,. (0 <rCM+ 1), (6.13f) 

P=r+1 
p+r odd 

2(2r + 1) M+2 
k. 2By, 

nr = im{ E BnP} - inlXn,, (0: 5 r: 5 M+ 1), (6.13g) 
p=r+1 

p+r odd 

f2(2r+1) M+' 
%ý, Üxýn, = inl E Wnp + imZn7 (0 

_< r 
<_ M), (6.13h) 

p_r+l 
p+r odd 

2 2(2r -{-1) 
M+1 

Wr} - in1Z,, r (0 <_ r< M), (6.13i) knUy, nr - imI E 
p=r+i p+r odd 

(6.13j) 
Nf E1 Bx " Bv, ( ) 2Vn = I'Aginl l, 

P e-n P! 

#=-N r-o 
2P +1 J' 

Is-nl<N 

M+1 
(-1)PW1 = 0, (6.13k) 

p=0 

E1 
Wnp 

im(vn -f- V`n)(1- 
bon)) (6.131) 

r=o 
2 
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M+2 
E (-1)PT�p = 0, (6.13m) 
p=0 

M+2 
E T., = 2bo,,, (6.13n) 
p=O 

M+2 
E (-1)"B�. p = 0, (6.13o) 
p=0 

M+2 
B,., = 

2q bon., (6.13p) 
P=o 

M+2 
E (_1)p+lp(p + 1)Xnp = 0, (6.13q) 
p=0 

M+2 
Z p(p + 1)Xnp = 0. (6.13r) 
p=0 

(6.13) defines 9M+19 algebraic equations for each value of n. Therefore, a total of 
(2N + 1)(9M + 19) complex algebraic equations in the (2N + 1)(9M x-19) complex 
unknowns is obtained. This corresponds to a system of 2(2N + 1)(9M + 19) real 
equations in 2(2N + 1)(9M + 19) real unknowns. 

However, applying (6.8) to eliminate the arbitrary phase in the x direction, 
it can be seen that exactly half of these unknowns are trivially zero, since each 
coefficient is either purely real (no imaginary part) or purely imaginary (no real 
part). Setting the relevant real or imaginary parts of each coefficient to zero to 

satisfy (6.8) leaves a system of (2N + 1)(9M + 19) real algebraic equations in 
(2N + 1)(9M + 19) real unknowns. These nonzero unknowns are all that are 
necessary to define the coefficients of the expansions of each harmonic and the 

coefficients of the geostrophic flow. 

The algebraic equations for the coefficients of the expansions are solved using 
NAG routine CO5NCF. To use this routine, it is necessary to input an initial 

guess for the values of the unknowns. The routine then uses a modification of the 
Powell hybrid method to find the exact solution from this guess. The correction 
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to the guessed solution at each iteration is found from a convex combination of 
the Newton-Raphson and scaled gradient directions. Under reasonable conditions, 
this ensures global convergence for solutions far from the exact solution and fast 

convergence rates. In practice however, it is necessary for the guess to be close to 
the exact solution in order for the routine to converge. 

6.3.1 Parameter Values 

In order to solve the equations, values must be assigned to the parameters of 
the problem, namely A, q, i, m, r and R. 

The case 

A=41 q=1.0, (6.14) 

will be used exhaustively to discuss the results. Although the value of q lies 

outside the geophysical limit, it does lie in the region of the (q, A) plane where the 

exchange of stabilities is the preferred mechanism of instability, so the results will 
be applicable to the core. The value of q is also large enough to avoid any of the 

numerical problems associated will small values of q. The wavenumbers I and m 

are chosen to be the critical wavenumbers derived in chapter 5. That is, they are 
taken to be 

l= 2- 
2, 

m= 
2 

(6.15) 

Three values of I' are chosen, namely 

I' = 0.1,1.0, and 10.0. (6.16) 

This ensures that a large range of values of r is covered. Finally, the equations are 
solved over a range of values of the driving parameter R. 

6.3.2 Finding Nonlinear Solutions 

To find nonlinear solutions, an initial guess at the solution of equations (6.13) is 

required. To obtain this guess, consider the solutions of the linear stability problem 
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described in chapter 5. For the parameter values considered, the solutions of the 
linear stability problem have the form 

X= bX*_1(z) exp(-ilx + imy) + Xo(z) exp(imy) 

+SX1(z) exp(ilx + imy) + c. c., (6.17) 

where 5 is an arbitrary parameter, which in chapter 5 defined the size of the 

perturbations, and was there assumed to be small. Associated with (6.17) is a 

critical Rayleigh number R,, at which the basic state loses stability to the linear 

perturbations. 

Now, (6.17) can be written more compactly in the form 

1 
X= 

{s1hhl(z)} 
exp(inlx + imy) + c. c., (6.18) 

n=-1 

where 

X-1(z) = X* 
i(z), 

Xo(z) = Xo(z), X1(z) = Xl(z)" 

Recall from chapter 5 that the 94(z) are determined numerically using the Tau 

method, based on a truncation in the z direction of 

M=7. 

This numerical solution for the z structure of (6.18) will be used as an initial guess 
for the solution of the N=2, M=7 nonlinear equations at values of R just 

greater than (or just less than) R,, the critical Rayleigh number associated with 
(6.18). 

However, in addition to the desired N=2, M=7 nonlinear solution is the 

solution given by 

X=- Xo(z) exp(imy) + c. c., V=0, (6.19) 
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where Xo(z) is the solution of equations (4.6). This solution defines the basic state 

at R. To prevent the NAG routine from taking the initial guess onto the basic 

state, the parameter b is varied until convergence to the required N=2, M=7 

nonlinear solution is found. This nonlinear solution can then be used as a guess 
for solutions at higher values of N and M. 

6.3.3 Truncation Analysis 

It is necessary to find values for N and M so that the nonlinear solution is 

converged, i. e. so that any increase in N or M has no effect upon the solution. 
Now, it transires that the value chosen for M in the linear problem, namely 

M=7, (6.20) 

is also a valid choice for the nonlinear problem. Increasing M to eight has no effect 

upon the following truncation analysis. To find how many harmonics are needed 
to achieve convergence, the meansquare value of the geostrophic flow, 

< V2 >= 51 JoT 
V2dx, 

is computed at a fixed value of the Rayleigh number. Using (6.9b) and performing 
the integration, it turns out that 

N 
VZ >= IVn +V*. 12. (6.21) 

n=-N 

This quantity is calcuated for various N at the point 

R= 11.051, 

and the following convergence table is obtained 
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N <V2> 
2 0.4687013 
3 0.3784930 
4 0.3792582 
5 0.3752553 
6 0.3743778 
7 0.3743484 
8 0.3743424 
9 0.3743413 

Table 6.1 

This table shows that the solution does indeed converge as N is increased. It was 
decided to choose a truncation of 

N=6, (6.22) 

since this gives an accuracy of 5sf, which is precise enough for most purposes. This 
truncation gives thirteen harmonics in the x direction and requires the solution of 
1088 nonlinear, algebraic equations in 1088 unknowns. 

6.4 The Results 

The amplitude of the nonlinear solutions will be defined by two quantities. 
The first of these is the meansquare heatflux generated by the nonlinear solution 
on the bottom boundary. This is defined as usual by 

MI jYjm2(xyO)2dydx 
ZH 

, 

where F is the heatflux, 

N 

.ý_ zB 
=E DTn(z) exp(inlx + imy) + c. c.. 

n=-N 

Performing the relevant integrations it turns out that 
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g= 
72 

EN 
+2 IZ (_1)P+ip(p + 1)TnpI2 (6.23) 

n=-N p=O 

The second quantity used to define the amplitude of the nonlinear solution is the 

meansquare value of the geostrophic flow V, and is given by 

N 

< VZ >= EI vn + V*nI2. (6.24) 
n=-N 

H and < V2 > will be plotted against the Rayleigh number, for each solution 
found. The results for the three values of r considered will be discussed seperately. 

6.4.1 The Case r=0.1 

Figure 6.1 shows the bifurcation structure of the nonlinear solutions when 
I' = 0.1. It is a plot of H over the complete range of R considered in this case. 
The dashed curve (- - -) represents the basic state. It is the meansquare heatflux 

generated at the bottom boundary by the transverse roll forced by the bumps (as 

computed in chapter 4). All the other curves in this figure represent nonlinear 
solutions. 

The solid curve (-) represents the nonlinear evolution of the most unstable 
linear solution found in chapter 5. Figure 6.2(a) shows an enlargement of figure 

6.1 close to the bifurcation point of this solution, while figure 6.2(b) shows the 

amplitude of the geostrophic flow associated with the solution. The bifurcation is 

subcritical, and occurs at the point Rc(l) = 10.3923, (which is the critical Rayleigh 

number associated with the underlying linear solution). Because the bifurcation is 

subcritical, the solution exists for values of R less than those predicted by linear 

stability theory. In fact, the solution exists for 10.3053 <R< 10.3923. For 

each value of R on this range, two solutions exist, one with a higher value of H 

than the other. The larger amplitude solutions constitute the upper branch of 
the graph. Figure 6.2(a) shows that as R in increased from R= 10.3053, the 

amplitude of the solution on the upper branch diverges, becoming infinite at the 

point RTi) = 10.3923. Figures 6.2(b) and 6.3 (which show plots of < V2 > against 
R and H respectively) show how the amplitude of the geostrophic flow adjusts as 
the solution becomes unbounded. Together, they imply that 
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<V2>-º0 as RTRTlý. 

This is the Malkus-Proctor scenario (Malkus and Proctor 1975). The geostrophic 
flow adjusts it's amplitude in such a way that it's influence on the magnetic field 
through the induction equation can enable the field to satisfy Taylor's constraint. 
In this case, it adjusts it's amplitude to zero as RT (1) (see figure 6.2(b)). Because 
V is zero at R= RTI), the condition 

5[- 
j'T(bzb)dzdyJ=O 

at R= RTlý, 

is (trivially) satisfied, and so a Taylor state exists at R= RTl). The amplitude 
of the nonlinear solution becomes unbounded as the Taylor state is approached 
because the shear which equilibrates the solution vanishes with the geostrophic 
flow, and there is then nothing to control the amplitude of the solution, which 
increases without bound. 

This solution is a Type I Ekman solution, as defined by Soward and Jones 
(1983). Solutions exhibiting this behaviour have been observed in various models 
of kinematic dynamos incorporating a geostrophic nonlinearity (see for example 
lerley 1985; Hollerbach and Ierley 1991; Barenghi and Jones 1991 for the a2 case, 
and Abdel-Aziz and Jones 1988 for the aw case). 

The Taylor state at R= 
. 
41) is itself interesting. As RT RTl), the amplitude 

of the +1 harmonic begins to diverge to infinity, while the amplitudes of the other 
oblique harmonics all decay to zero. The Taylor state consists of a large amplitude 
(+)-roll (in the notation of chapter 3), together with the finite amplitude transverse 

roll forced by the bumps. They are aligned in such a way that that Taylor's 

constraint is satisfied. This Taylor solution can be identified with the single (-º-)- 

roll Taylor solution obtained by Roberts and Stewartson (1974). 

The dotted curve (..... ) on figure 6.1 shows the nonlinear evolution of the 

second most unstable linear solution found in chapter 5 (i. e. the solution with the 

second largest growth rate). This solution is shown more clearly in figure 6.5. It 

consists of three branches: a lower branch (labelled a), an upper branch (labelled 
b) and a middle branch (labelled c). Figure 6.6 is a plot of the geostrophic flow 

amplitudes associated with each branch close to the points where branches b and 
c bifurcate off branch a. 
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Figure 6.7(a) shows an enlargement of figure 6.1 in the region of the bifurcation 

of branch a off the basic state, while figure 6.7(b) shows the geostrophic flow 

amplitude associated with branch a. The bifurcation of branch a is subcritical, 

and occurs at RP) = 13.3230, (which is the critical Rayleigh number associated 

with the underlying linear solution), and the solution again exists for values of R 

less than those predicted by linear stability theory. 

As R is decreased from R<z), the amplitude of V adjusts it's value in such a 

way that this solution evolves towards a Taylor state at RTZý = 10.3923. It does 

this exactly as previously: the amplitude of V decays to zero, removing the shear 

which equilibrates the solution, and therby allowing the amplitude of the solution 
to diverge to infinity. However, as V is zero at R= RT2ý, Taylor's constraint is 

satisfied, so the solution satisfies 

2a 
[2 mIm/ (bZby)dzdy] =0 at R= RTZ). 

The Taylor state for this solution is different to the Taylor state found in the 

previous case, even though both Taylor states exist at the same value of R. In 

this case, as R I. RT2), it is the amplitude of the -1 harmonic that diverges to 

infinity, while the amplitudes of the other oblique harmonics all decay to zero. 
This Taylor state therefore consists of a large amplitude (-)-roll, together with 
the finite amplitude transverse roll forced by the bumps, aligned so that Taylor's 

constraint is satisfied. It is the analogue of the other single roll Taylor solution 
(the (-)-roll Taylor solution) found by Roberts and Stewartson (1974). 

Figure 6.9(a) is an enlargement of figure 6.1 in the region of the bifurcation of 
branch b off branch a, while figure 6.9(b) shows the amplitude of the geostrophic 
flow associated with branch b. The bifurcation occurs at R(3 = 10.4388 (see figure 

6.6). At this point, the solution is still in an Ekman state, although it is close to the 

Taylor state on branch a. The solutions on branch b appear to evolve to another, 
different Taylor state at the point RT(2) = 10.8698. The Malkus-Proctor mechanism 

allows the geostrophic flow to adjust so that it's influence on the magnetic field is 

precisely that which enables Taylor's constraint to be met. In order to do this, the 

geostrophic flow adjusts its amplitude so that 

< v2 >-4 0(1), 
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as the Taylor state is approached, i. e. there is still a finite geostrophic flow in the 
Taylor state. In the Taylor state, V is determined implicitly by the requirement 
that it's effect on the magnetic field be precisely that which is needed to satisfy 
Taylor's constraint: it is no longer determined through Ekman suction. Malkus 

and Proctor (1975) call aV thus determined an eigenflow. As the eigenflow gets 
selected by the solution, and Taylor's constraint becomes satisfied, the nonlinearity 
of the problem (the Taylor integral) vanishes. Once this occurs, the amplitude of 
the nonlinear solution can no longer be determined, and the solution becomes 

unbounded. 

However, despite the fact that the amplitude of the solutions on branch b are 
diverging to infinity, it is not clear whether the geostrophic flow is becoming an 
eigenflow - the amplitude is clearly continuing to grow as the amplitude of the 

solutions on branch b diverge (see figure 6.9(b) for details). Therefore, it is not 
possible to say with any certainty whether this is a Taylor state, or whether the 

solution is not fully converged on branch b. Given that the solutions on branch 
b are already of quite large amplitude, it seems that the latter is probably the 

case. It could probably be shown that this is indeed a Taylor state, and that an 

eigenflow is being selected, by increasing the truncation of the solution on branch 

b. However, this was not done, as the computing power necessary to do this was 

not available. Hence, we treat the solutions on branch b with caution, as it seems 
likely that the solution is not fully converged there. 

Figure 6.10(a) shows an enlargement of figure 6.1 in the region where the final 

branch of this solution lies. This is branch c. The geostrophic flow amplitude 

associated with branch c is shown in figure 6.10(b). Branch c bifurcates off branch 

a at the point R(c4) = 10.4744 (see figure 6.6). No Taylor solutions were found 

on branch c. As R is increased from R(4), the solutions on branch c remain in an 
Ekman state, their amplitudes controlled by the shear generated by the geostrophic 
flow. Branch c comes to an end at the point Rcbl = 18.9771, where it bifurcates 

onto the last nonlinear solution considered, which is shown as the double dashed 
(- -) curve in figure 6.1. Figures 6.11(a) and 6.11(b) show how branch c bifurcates 

onto this solution. 

The nature of the bifurcation may be understood as follows. As RT . 
fl) the 

amplitudes of the harmonics of the solutions on branch c that are not of the form 

exp(3inlx + imy), 
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Figure 6.1: The bifurcation structure of the nonlinear solutions for the case r=0.1. 
The curve (- - -) is the basic state, while all the other curves represent nonlinear solutions. 
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Figure 6.2: The nonlinear evolution of the most unstable linear solution when r=0.1. 
(a) H against R for the basic state (- - -) and this solution (-). 

(b) < V2 > against R for this solution. 
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Figure 6.3: A plot of < V2 > against H for the first nonlinear solution when r 0.1. 
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Figure 6.4: Geostrophic flow profiles for the first nonlinear solution for r=0.1 

when (a) R= 10.3823 and, (b) R= 10.3458, on the upper branch of the solution. 
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Figure 6.5: The nonlinear evolution of the second most unstable linear solution when r=0.1. 
H against R for the basic state (- - -) and this solution (--). 
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Figure 6.6: The bifurcation of branches b and c off branch a when I' = 0.1. 
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Figure 6.7: An enlargement of branch a of the second nonlinear solution when r=0.1. 
(a) H against R for the basic state (- - -) and branch a (-). 

(b) < V2 > against R for branch a. 
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Figure 6.8: Geostrophic flow profiles for branch a for r=0.1. 
(a) R= 12.9923 and, (b) R= 11.2173. 
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Figure 6.9: An enlargement of branch b of the second nonlinear solution when r=0.1. 
(a) H against R for branch b. 

(b) < V2 > against R for branch b. 
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Figure 6.10: An enlargement of branch c of the second nonlinear solution when I' = 0.1. 

(a) H against R for the basic state (- - -) and branch c (-). 

(b) < V2 > against R for branch c. 
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Figure 6.11: The bifurcation of branch c onto the solution (6.25) when r=0.1. 

(a) The curve (--) is branch c, while (- -) is (6.25). 

(b) as in (a) but showing < V2 >. 
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Figure 6.12: (a) Geostrophic flow profile for branch b at the point R= 10.7299 when r=0.1 
(b) Geostrophic flow profile for branch c at the point R= 14.9926 when r=0.1. 
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Figure 6.13: The nonlinear evolution of the solution (6.25) when r=0.1. 
(a) H against R for the basic state (- - -) and this solution (--). 

(b) < V2 > against R for this solution. 
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Figure 6.14: A plot of < V2 > against H for the solution (6.25) when r=0.1. 
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Figure 6.15: Geostrophic flow profiles for the solution (6.25) for r=0.1 

when (a) R= 18.9756 and, (b) R= 19.0675, on the upper branch of the solution. 
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Figure 6.16: The bifurcation structure of the nonlinear solutions for the case r=1.0. 
The curve (- - -) is the basic state, while all the other curves represent nonlinear solutions. 
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Figure 6.17: The nonlinear evolution of the most unstable linear solution when r=1.0. 

(a) H against R for the basic state (- - -) and this solution (-). 

(b) < V2 > against R for this solution. 
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Figure 6.18: A plot of < V2 > against H for the first nonlinear solution when r=1.0. 
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Figure 6.19: Geostrophic flow profiles for the first nonlinear solution for r=1.0 

when (a) R= 10.3458 and, (b) R= 10.1242, on the upper branch of the solution. 
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Figure 6.20: The nonlinear evolution of the second most unstable linear solution when r=1.0. 

H against R for the basic state (- - -) and this solution (-). 
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Figure 6.21: The amplitude of the geostrophic flow associated with the second nonlinear 

solution when r=1.0. (a) < V2 > against R for branch d, and 
(b) < V2 > against R for branch e. 
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Figure 6.22: (a) Geostrophic flow profile for branch d at the point R= 10.7402 when r=1.0 
(b) Geostrophic flow profile for branch e at the point R= 15.7313 when r=1.0 on the upper. 

branch of the solution. 
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Figure 6.23: The nonlinear evolution of the solution (6.25) when r=1.0. 
(a) H against R for the basic state (- - -) and this solution (-). The dotted curve 

(..... ) is branch e of the second nonlinear solution. (b) < V2 > against R for this solution. 
Again, the dotted curve is associated with branch e of the second nonlinear solution. 
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Figure 6.24: A plot of < V2 > against H for the solution (6.25) when r=1.0. 
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Figure 6.25: Geostrophic flow profiles for the solution (6.25) for r=1.0 

when (a) R= 19.1100 and, (b) R= 19.37444 on the upper branch of the solution. 
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Figure 6.26: The bifurcation structure of the nonlinear solutions for the case I' = 10.0. 

The curve (- - -) is the basic state, while all the other curves represent nonlinear solutions. 
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At the point RýS), the solution has the form 

N 
X= X3�(z) exp(3inlx + imy) + c. c., (6.25a) 

n=-N 

N 
V= V3,, exp(3inlx) + c. c., (6.25b) 

n=-N 

and the double dashed curve in figure 6.1 shows this solution. The region of the 
bifurcation of (6.25) is shown enlarged in figure 6.13(a), while 6.13(b) shows the 

amplitude of the geostrophic flow associated with (6.25). These curves represent 
the nonlinear evolution of a linear solution of the form 

1 {s11LIx3(z)} X=E exp(3inlx + imy) + c. c.. (6.26) 

The major difference between the solution (6.25) and the others described is that 
the lenghtscale of the convection in the x direction has been made shorter by a 
factor of 3. This smaller scale convection is not the preferred mode of convection, 
that being given by the solutions described previously, and larger values of R are 
needed to force it. 

The solution (6.25) bifurcates supercritically off the basic state at the point 
Rc( 6= 18.9752, which is the critical Rayleigh number associated with (6.26). The 

solution exists for 18.9752 <R< 19.0661. For each value of R in this range, 
two solutions exist, one at a larger value of H than the other. The larger ampli- 
tude solutions constitute the upper branch of the graph shown in figure 6.14(a). 
The large amplitude solutions evolve to a Taylor state at RT 4) 

= 18.9752 via the 

same mechanism as the first nonlinear solution described. That is, the geostrophic 
flow amplitude decays to zero as R R4), removing the shear that controls the 

amplitude of the solution, and allowing Taylor's constraint to be met at R= RT4). 

The Taylor solution at R= RT4) consists of a (+3)-roll whose amplitude is 
diverging (the amplitude of the other oblique modes decaying to zero) together 

with the finite amplitude transverse roll forced in the layer by the bumps. This 

occurs because as RI RT4), the +3 harmonic dominates the solution, while the 

amplitudes of the other oblique harmonics decay to zero. 
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6.4.2 The Case r=1.0. 

Increasing the value of r leads to a stronger geostrophic flow through the 

modified Taylor's constraint. The enhanced nonlinearity in this case suppresses 
the convection even more strongly, and as a consequence the amplitudes of the 

nonlinear solutions for this case (and for larger values of I') are smaller. 

Figure 6.16 shows the bifurcation structure of the nonlinear solutions obtained 

when r=1.0. Each curve on the diagram represents the same solution as found 

in the r=0.1 case. Hence, the dashed curve (- - -) represents the basic state, the 

solid curve (-) is the nonlinear evolution of the most unstable linear solution, the 
dotted curve (..... ) represents the nonlinear evolution of the second most unstable 
linear solution, and the double dashed curve (- -) is the solution (6.25) for this 

value of F. 

As figures 6.17 and 6.18 show, the nonlinear evolution of the most unstable 
linear solution is qualitatively the same for r=1.0. The solution bifurcates 

at the same point, Rýi) = 10.3923, and has a Taylor state at the same point, 
Rý1ý = 10.3923 as the r=0.1 case. The Taylor state, and the mechanism by which 
it is brought about are also similar. That is to say, the Taylor state consists of 

a (+)-roll with diverging amplitude, together with the finite amplitude transverse 

roll in the layer by the bumps. 

The nonlinear solution (6.25) also behaves in a similar manner when r=1.0, 

as figures 6.23 and 6.24 show, so it will not be discussed. 

The major difference between the r=0.1 solutions and the r=1.0 solutions 
lies in the nonlinear evolution of the second most unstable linear solution. This 

is the dotted curve in figure 6.16, which is shown enlarged in figure 6.20. Instead 

of the three branch connected solution obtained previously, two distinct seperate 
branches are obtained, an upper branch (labelled d) and a lower branch (labelled 

e). As r is increased from 0.1 to 1.0, branch a of the r=0.1 solution breaks 

into two parts. It's large amplitude part combines with branch b of the r=0.1 

solution to form branch d of this solution, while it's small amplitude part combines 

with branch c of the r=0.1 solution to form branch e of this solution. The exact 

value of r at which the break occurs has not been determined. The amplitude of 
the geostrophic flow associated with branch d is shown in figure 6.21(a), while that 

associated with branch e is shown in figure 6.21(b). 
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The solutions on branch d of this solution are unusual in that they are not 
connected to the basic state in any way. Rather, branch d connects two (probable) 
Taylor states, one at RT2) = 10.3923 and the other at RTg) = 10.8787. The Taylor 

state at R= RT) has it's origin in the Taylor state found on branch a of the 
r=0.1 solution. It consists of a (-)-roll with diverging amplitude (the amplitude 
of the other oblique modes decaying to zero), together with the finite amplitude 
transverse roll forced by the bumps, aligned so that Taylor's constraint is met. 
As figure 6.21(a) shows, there is no geostrophic flow associated with this Taylor 

state. On the other hand, as RT RT3), the solution diverges to infinity and appears 
to enter a Taylor state. However, as figure 6.21(a) shows, the amplitude of the 

geostrophic flow is now diverging as this occurs and so this result needs to be 
treated with caution. As in the r=0.1 case, it is very likely that the solution 
is not fully converged here, and an increase in the truncation of the solution is 

required to clarify matters. Again, this was not possible as the computing power 
was not available. 

The solutions on branch e bifurcate off the basic state at the point R( C2) 
15.8313 (which is the critical Rayleigh number associated with the second most 
unstable linear solution when r=1.0). The bifurcation is subcritical, and so 
the solutions exist for values of the Rayleigh number less than those predicted by 
linear stability theory. Each solution on branch e is an Ekman solution - no Taylor 

solutions were found. Branch e comes to an end at the point RP = 19.0230, where 
it bifurcates onto the nonlinear solution (6.25) in the same manner as described in 
the r=0.1 case: the amplitude of each harmonic that is not of the form 

exp(3inlx + imy) 

(where n is an integer) decays to zero as RT RC(s). It is interesting to see that 
the Taylor states for this solution (which lie on branch d) cannot be reached from 
the initial bifurcation of this solution (which occurs on branch e). This sort of 
solution, where the initial bifurcation is not connected to the Taylor states of 
the solution, has been seen before. Soward and Jones (1983) call this a type II 
Ekman solution. They have also been seen in models of kinematic dynamos (see 
for example Barenghi and Jones 1991, a2 case). 

6.4.3 The Case I' = 10.0 

The results for this value of r are shown in figure 6.26, which shows the bi- 
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furcation structure of the nonlinear solutions for this case. Since the behaviour of 
the solutions in the case I' = 10.0 is qualitatively the same as that of the r=1.0 

case, they will not be discussed. 

6.5 The Post Taylor Equilibrium 

In each of the nonlinear solutions found in this chapter, the amplitude of the 

solution diverged to infinity as Taylor's constraint became satisfied. This was the 
Malkus-Proctor scenario, where the geostropic flow evolved to the eigenflow whose 

effect on the magnetic field through the induction equation was precisely that 

needed to satisfy Taylor's constraint. As V evolves to this eigenflow, the nonlin- 

earity of the problem (the Taylor integral) vanishes. The amplitude of the solution 

cannot be determined once this occurs, and the solution diverges to infinity. 

In the Taylor state, the solution is outside the asymptotic limit in which the 

governing equations (6.5) are valid. To follow the solution further, all the nonlin- 

earities neglected in the derivation of (6.5) must be restored to the problem. These 

nonlinearities (e. g. the advective terms in the heat and induction equations) then 

become responsible for equilibrating the solution. The solutions of the full problem 

will also satisfy Taylor's constraint (having evolved through the Ekman states de- 

scribed here). Such solutions have been found in models of kinematic dynamos (see 

Abdel-Aziz and Jones 1988; Barenghi 1992a; Barenghi 1992b), but this procedure 
is not carried out here. 
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Chapter VII 

Conclusions 

The main theme of this work has been determining the effect of adding bumps 

to a rapidly rotating fluid layer containing a strong azimuthal magnetic field. The 

configuration of the layer is chosen so that the layer rotates about the vertical z 
direction, and has an applied magnetic field aligned in the horizontal y direction 
(which is chosen to represent the azimuthal direction in the core). Gravity is 

chosen to act in the negative z direction, and thermal forcing is used to drive the 

convection in the layer. 

Since the main interest lies in isolating the key mechanisms by which the bumps 

effect the convection, the bumps themselves are assumed to take a simple form, 

namely a sinusoidal undulation which varies in the y direction. The axis of the 
bumps is chosen to be perpendicular to the applied magnetic field, and lies in the 

x direction. Such a simple form of topography has also been used by Kelly and 
Pal (1977), Kuang and Bloxham (1993) and Bell and Soward (1995) as a model of 
the topography on the core mantle boundary. 

The bumps are assumed to be small in the sense that the bump size parameter 

y satisfies 

ry«1. 

To check that this is a valid assumption, -y must be calculated for the core. Taking 

rCMB = 3481km, rICB = 1221km, 

as the radii of the core mantle boundary and the inner core boundary respectively, 

and assuming a bump height of tkm (see Hide 1967,1969), then 

ry = 4.42 x 10-4, (7.1) 
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in the core. This value is certainly small enough to justify making the small bump 

approximation. 

In chapter 2 the equations governing the topographic convection in the layer 

are derived from the full MHD equations governing convection in the core (i. e. the 

magnetogeostrophic equations). The derivation makes use of the fact that 7 is 

small, and neglects all terms of 0(72) or smaller from the problem. The resulting 
system of equations, namely equations (2.35), contain the parameter 

E2 
ý 

which is a modified bump size parameter. r is the key parameter which measures 
the effect of the bumps upon the convection. It also arises in the non-magnetic 

case (see Bell and Soward 1995; Bell 1994). In chapter 2, it is argued that r is a 
finite parameter. Again, this can be checked for the core using the values of -y and 
E in the core. These values give 

I' = 19.53, (7.2) 

which is certainly finite. r appears in the modified Taylor's constraint used to 

determine the geostrophic flow. It has the role of measuring the strength of the 

geostrophic flow, and hence, the effectiveness of the geostrophic nonlinearity in 

equilibrating the convection. 

The boundaries of the layer are assumed to be rigid, isothermal and perfectly 

electrically conducting. The fact that y is small is used to simplify the boundary 

conditions on the bumpy top boundary. These boundary conditions are Taylor 

expanded in ry, and only the 0(1) and 0(7) terms are retained. In this way, a set 

of inhomogeneous boundary conditions on z =, 7r is obtained. 

The presence of the bumps distorts the horizontal applied magnetic field, cre- 

ating a small correction b to the main magnetic field. This small correction ensures 
that the main magnetic field fits into the bumpy layer, and is also responsible for ac- 

celerating the geostrophic flow through the modified Taylor's constraint. Similarly, 

the bumps create a small corrective velocity u, which ensures that the geostrophic 
flow (which is aligned parallel to the applied magnetic field) also fits into the 
bumpy layer. This small velocity field represents the topographic convection that 
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is the subject of this work. Because the top boundary is an isotherm, the isotherms 

close to the top boundary are distorted from the horizontal. This effect is quite 
important, since it means that a hydrostatic balance is no longer possible in the 
bumpy layer. 

Hence, in addition to the thermal forcing present on the bottom boundary, the 
fluid is also thermally forced by the bumps on the top boundary by the distortion 

of the isotherms. This topographic forcing is completely absent in the standard 
plane layer model, and gives this problem its' character. 

As discussed in chapter 2, the boundary conditions on the top boundary do 

not reflect the true physics at the core mantle boundary. More accurate boundary 

conditions would reflect the fact that the lower mantle is (to a high approximation) 
electrically insulating, and not perfectly electrically conducting. Similarly, a con- 
dition on the heatflux through the core mantle boundary would be more realistic 
than arbitrarily imposing an isothermal core mantle boundary. However, as has 

been said already, of primary concern is isolating the mechanisms by which the 
bumps effect the convection. For this reason, the simpler boundary conditions are 
applied, in the hope that the essential physics of the problem are retained, and 
that the qualitative behaviour of the system remains the same. 

As has been noted already, a hydrostatic balance is not possible in the bumpy 
layer. Hence, motion is forced by the bumps. This motion is investigated in chapter 
4, and is there found to take the form of a steady transverse convection roll, whose 

axis is parallel to that of the bumps, and perpendicular to the applied magnetic 
field. This motion is not the preferred mode of convection in a plane layer for 
0(1) values of the Elsasser number. As the results of chapter 3 and Roberts and 
Stewartson (1974) indicate, the preferred motion takes the form of oblique rolls, 

whose axes are not perpendicular to the applied magnetic field. The transverse 

roll is the free mode of the system, i. e. it is forced by the presence of the bumps. 

The transverse roll is found to obey Taylor's constraint, and so does not accel- 

erate a geostrophic flow. Consequently, the results of chapter 4 are independent 

of r. The roll exists for all values of the Rayleigh number R (confirming that it is 

indeed forced by the bumps) except for one value: it does not exist at that value 

of R for which the corresponding homogeneous problem in the standard plane 
layer has a solution. Close to this critical value of R, the amplitude of the forced 

transverse roll diverges to infinity. This phenomenon is called resonant wavelength 
excitation, and has also been found by Kelly and Pal (1977). 
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The stability of this transverse roll solution to perturbations which consist of 
a pair of oblique rolls aligned at equal but opposite angles to the applied magnetic 
field, together with the concomitant geostrophic flow accelerated by the interaction 

of these rolls with the transverse roll, is considered. The resulting linear stability 
problem is solved in chapter 5 (see also Appendix B). 

The results of chapter 5 show that the stability characteristics of the transverse 

roll in the bumpy layer are identical to those found by Roberts and Stewartson 
(1974) for the hydrostatic conduction solution in the standard plane layer (when 

perturbed by oblique rolls). The reason for this was traced to the form of the most 
unstable perturbations in the bumpy layer. These are given by a pair of oblique 
rolls, which align themselves with the transverse roll in such a way that no mean 
Maxwell stress is generated by their interaction with the transverse roll. That is, 
Taylor's constraint continues to be satisfied in the perturbed state. 

The vanishing of the Maxwell stress means that no geostrophic flow is accel- 
erated by the interaction of these rolls with the transverse roll. The perturbations 
can then assume a simple sinusoidal z structure. Also, the stability results become 
independent of r. That the stability results are identical to those found by Roberts 

and Stewartson (1974) can easily be seen, since with no geostrophic flow present, 
the equations for the perturbations in the bumpy layer (namely equations (5.10)) 

become identical to those solved in Roberts and Stewartson (1974) and chapter 3 
for oblique convection rolls in the standard plane layer (namely, equations (3.12)). 

This is shown more exactly in Appendix B, where the analytic form of the most 
unstable perturbations is found from equations (5.10). 

These perturbations are the preferred mode of instability in the bumpy layer for 
two reasons. The first is that there is no shear present to inhibit these convection 
rolls form going unstable, since there is no geostrophic flow accelerated. The second 
reason is that these rolls have very simple z structures which are easier to excite in 

the layer. Both of these factors lead to a lower critical Rayleigh number for these 

perturbations than those associated with the other types of perturbations found 
in chapter 5, making these perturbations the preferred mode of instability in the 
bumpy layer. 

In chapter 6, the nonlinear evolution of the linear solutions found in chapter 
5 is considered. In the nonlinear regime, Taylor's constraint is violated, and the 

resulting non-zero Maxwell stress accelerates a geostrophic velocity. The solutions 
are then in an Ekman state, where their amplitudes are controlled by the shear 
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generated by this geostrophic flow. The nonlinear solutions found have a compli- 
cated structure. In some cases, as many as three distinct nonlinear solutions can 
exist at one value of the Rayleigh number. 

The most unstable linear solution typically evolves nonlinearly as a type I 
Ekman solution (see Soward and Jones 1983). After the initial (subcritical) bifur- 

cation, these solutions evolve through an Ekman regime where the Malkus-Proctor 

scenario enables the geostrophic flow to adjust so that it's effects upon the mag- 

netic field b eventually satisfy Taylor's constraint. The amplitude of the solution 
diverges to infinity as the Taylor state is approached. This behaviour occurs for 

all the values of r considered. By contrast, the nonlinear evolution of the second 

most unstable linear solution is different. For small values of r, type I Ekman 

solutions are found, but as I' is increased, the solutions become type II Ekman 

solutions. Here, the Taylor states of the solutions lie on an upper branch, which 
is not connected to the initial bifurcation of the solution. For all values of r, a 
branch of these solutions is connected to a third type of nonlinear solution, for 

which the lengthscale of the convection in the x direction is smaller. In general, 
the evolution of the nonlinear solutions found is quite similar to the evolution of 

several mean field dynamo models incorporating a geostrophic nonlinearity (see 

for example Abdel-Aziz and Jones 1988). 

Two distinct types of Taylor solution are found. In the first, the amplitude of 
the geostrophic flow decays to zero as it adjusted via the Malkus-Proctor scenario 
to enable Taylor's constraint to be met. These Taylor solutions can be associated 

with the single oblique roll Taylor solutions found by Roberts and Stewartson 

(1974). For instance, the Taylor state reached in the nonlinear evolution of the 

most unstable linear solution consists of a large amplitude (+)-roll together with 
the finite transverse roll forced by the bumps, aligned so that no Maxwell stress is 

generated. Hence, there is an interesting connection between the large amplitude 
Taylor solutions in the bumpy layer and the Taylor solutions of the standard layer. 

The second type of Taylor solution is different. There, the amplitude of the 

geostrophic flow remains finite as the Taylor state is approached i. e. it evolves 
towards an eigenflow (Malkus and Proctor 1975). These Taylor solutions cannot be 

associated with any Roberts and Stewartson Taylor solutions, as all the harmonics 

of the solution remain. However, as noted in chapter 6, it is not known for certain 

whether these solutions do evolve to a Taylor state, since the convergance of the 

solutions are in doubt. Hence, these results must be treated with caution. The 
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doubt could be removed by increasing the truncation of the relevant solutions, but 

as the computing power to do this was not available, this was not attempted. 

In conclusion therefore, it has been shown that even small scale topography 

can have an effect upon the dynamics of a rotating plane layer. The presence of 
the bumps lead to inhomogeneities which create an imperfect configuration. This 

necessitates the calculation of an inhomogeneous basic state in the layer, which 
takes the form of a transverse roll. This transverse roll has a large effect upon the 

stability characteristics of the preferred mode of convection of the layer (i. e. the 

oblique rolls) and upon their subsequent nonlinear bifurcation structure. 

However, the effects of the bumps only really have an effect in the asymptotic 
regime considered in this work i. e. when the amplitude of the convection forced 

is small, of the same magnitude of the bumps themselves. As we have shown, the 

solutions quickly evolve to large amplitude Taylor states, outside this regime. In 

this large amplitude regime, it is probable that the bumps will not have any real 

effect save through the presence of the finite amplitude transverse roll, which is 

always forced by the bumps. 

However, a lot more work needs to be done on this problem. For instance, 

the question of the stability of the nonlinear solutions found was not considered. 
Of more importance perhaps, is the Post-Taylor regime, where Taylor's constraint 
is satisfied by the solutions. In this regime, all the nonlinearity neglected in this 

model would be restored. These new nonlinearities would become responsible for 

equilibrating the amplitude of the fully three dimensional convection that would 

ensue in this regime. Of larger interest is the question of how topography effects 

convection in a spherical shell. The results of such a study would have many 
implications for the geodynamo problem itself, and is the ultimate goal of this 

preliminary work. 
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Appendix A 

The Tau Method - Example 

Consider the following simple problem. Solve the ODE 

D2f - k2f = 

(where k is a real constant) subject to the boundary conditions 

f =0 on z=0, (A. 2a) 

f =1 on z=a. (A. 2b) 

Now, this problem has a well defined, analytic solution, given by 

f(z) _ 
sinh(kz) (A. 3) 
sinh(k7r) 

However, to solve it using the Tau method, f is expanded in terms of Legendre 

polynomials as 

M+2 
f (z) =Z fnPP(z'), (A. 4) 

n=O 

where M is a positive integer, and the fn, are constants. There are M+3 coefficients 
to be determined. Substituting (A. 4) into (A. 1) using (5.16b) yields the equation 

{2(27rä 1) E [P(p+1)-n(n+1)Jfp}Pn(z')- E2kafnPn(zl) = 0. (A. 5) 
n =O p=nt2 n=0 p+n even 
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Now, for each mE {O, 1, ..., M}, equation (A. 5) is multiplied by Pm(z'), and 
integrated from -1 to 1 in z'. Using the orthogonality condition (5.15), this 
process yields the following system of equations 

2(2n + 1) M+2 
Z 

ý2 
[p(p + 1) - n(n + 1)] fp _ A; f� =0 (0 <n< M). (A. 6) 

p=n+a 
p+n even 

Note that the solution of (A. 6) does not satisfy (A. 5) exactly. Rather, the solution 
of (A. 6) implies the modified equation, 

ME {2(2n+ 1) 12 [p(p+ 1) - n(n+ 1)]f}P(z') -) k2 fP(z') = 0. (A. ) 
p=n+2 n_0 

p+n even 

However, the difference between the solution of (A. 7) and the exact equation (A. 5) 
tends to zero as M -º oo, provided that the expansion (A. 4) converges to the 

solution of (A. 1) as M -+ oo. 

Now, (A. 6) defines M+1 algebraic equations for the f,,. But there are M+3 

spectral coefficients. To close the system, two extra equations are needed. These 

equations are obtained from the boundary conditions (A. 2). Substituting (A. 4) 
into (A. 2) using (5.17) yields the equations 

M+2 
E (-1)"f. = 0, (A. 8a) 
n=O 

M+2 
In = 1. (A. 8b) 

n=0 

Together, (A. 6) and (A. 8) define M+3 algebraic equations for the M+3 spectral 
coefficients f,,. In matrix notation, these equations take the form 

LY = R, 

where Y and R are (M + 3) x1 vectors defined by 
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yT = 
{fo 

fl f2 
.... , 

fM+21 

RT = 
[0 

00... 0 1] , 

and L is an (M + 3) x (M + 3) matrix of the form 

-k2 0 x 0 

o -k2 0 x 
0 o -k2 0 x 
0 0 0 _k2 L= , 

1 -1 1 -1 1 .. 
(-1)M+z 

1 1 1 1 1 .. 1 

where x denotes a nonzero entry. This matrix equation may be set up numeri- 
cally and solved using NAG routine F04ADF at given values of M. To ensure 
convergence, it is necessary to check that 

If (Z) 
M+2 

-E fnPn(z )I -. 0 as M -+ oo, 
n=O 

for each zE [0,7r], where f is given by (A. 3). In the case where the exact analytic 
form of f (z) is not known, the test for convergence is slightly different. In such a 
case (as is considered in the work), define 

M-f2 
fm(z) _> fPP(z ). 

n=0 

Then, the method converges if 

fM+1(z)-fM(z)l -º0 as M-4oo. 

A sequence of functions satisfying this criterion is said to Cauchy, and it can be 

shown that a Cauchy sequence converges in the usual sense (see any textbook on 
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analysis). Note that the Tau method can be easily adapted to deal with systems 

of equations with multiple boundary conditions. 
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Appendix B 

Analytic Solutions Of The Perturbation Equations In The 
Limit r<1 

B. 1 A New Notation 

While it is necessary to solve the equations for the z-structure of the pertur- 
bations numerically, analytic results can be obtained in the limit of small r, i. e. 

when r satisfies 

o<r«i. (B. 1) 

The left hand inequality is necessary since solutions of the perturbation equations 

are only valid for non-zero values of r. In order to obtain the results, it is helpful 

to write the equations that are to be solved (namely, equations (4.6) for the z- 

structure of the basic state, and equations (5.10) and (5.11) for the z-structure 

of the perturbations) in a more compact form. This will be done using matrix 

notation. Throughout the following, r is assumed to take the values -1,0 or 1. 

Let the z-structures of the unknowns be given (as usual) by the vectors 

XT '(z) = {T(z) W, -(z) B, (z) X, (z) Z, (z) 

B,, (z) By, (z) Uz, (z) Uyr(z)}. 

Then, all the derivatives that act upon the Xr in equations (4.6) and (5.10) can 
be collected together to form the following 9x9 linear differential operator 
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D, (R) = 

0 2D 0 Aim 0 0 0 0 0 
kTR 0 -Aim(D2 - k? ) 0 2D 0 0 0 0 

0 im D2 - kr 0 0 0 0 0 0 
0 0 0 DZ - kT im 0 0 0 0 

D2-kT 1 0 0 0 0 0 0 0 
0 0 -ir1D -im 0 kT 0 0 0 
0 0 -imD irl 0 0 k, z 0 0 

0 -ir1D 0 0 -im 0 0 kT 0 
0 -imD 0 0 irl 0 0 0 k, 

(B. 2) 

where D= adz-, and 

kf = r212 + m2. 

Now, the terms in equations (5.10) that describe the interaction of the perturba- 
tions with the basic state take the form 

ui* ,, UIl, 

where U is the coefficient of the perturbation geostrophic flow, and I fl is a9x1 
vector defined by 

I±1 = 

0 
0 

gimBo 

q{imXo + 12Bxo lmByo} 

imTo 

0 
0 
0 
0 

(B. 3) 
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Similarly, the terms of (5.10) that involve the complex number 

A= 3 -}- 2w, 

(where s is the growth rate and w is the frequency of the perturbations) take the 
form 

AJX±i, 

where J is a9x9 matrix defined by 

J= 

000000000 
000000000 
00g000000 

000g00000 

100000000 
000000000 
000000000 
000000000 
000000000 

I. (B. 4) 

From these definitions, the equations for the z-structures of the unknowns can be 

written in the form 

Do(R)Xo = 0, (B. Sa) 

{D*_1(Rj 
- AJ}X_i = L! I*_1, (B. 5b) 

{D1(R) 
- AJJX1 = Lill, (B. 5b) 

where U is determined from the equation 
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u= rZ27rn j (BxoByl + BxoBY, -i + Bx, -1Byo + Bx1Byo)dz. (B. 6) 

The matrix equation equation (B. 5a) represents equations (4.6) for the z-structure 
of the basic state (which is given by Xo, as in chapter 4), while (13.5b) and (B. 5c) 

represent the equations for the z-structure of the perturbations (which are given 
by X±I, as in chapter 5). Equation (B. 6) is for the coefficient of the perturbation 
geostrophic flow, Vi,. These equations are to be solved subject to the boundary 

conditions 

Wo=Bo=DXo=7b=0 on z=0, (B. 7a) 

Wo=Bo -2 =DXo=To-2=0 on z=a, (B. 7b) 
4 

W_1 = B_1 = DX_i = T_1 =0 on z=0, (B. 7c) 

W-1 +i =B_i=DX_1=T_r=0 on z=a, (B. 7d) 

W1=B1=DX1=T1=0 on z=0, (B. 7e) 

W, -Zmu=B1=DX1=Ti=0 on z=ir. (B. 7f) 

As usual, the stability of the basic state to the perturbations is decided by the 

sign of s. If s is negative, then the basic state is stable to the perturbations, but 

if s is positive, then the basic state is unstable to the perturbations. The critical 
Rayleigh number, at which the basic state loses stability to the perturbations, is 

defined to be that value R,, of R for which 

s(Rc) = 0. 
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The value of w at R., denoted by wc ., says how the basic state loses stability. If w, 
is zero, then the basic state loses stability through the exchange of stabilities; but, 

if we is non-zero, then the basic state loses stability through overstability. To find 

R, and w,, 3 is set to zero in (B. 5). This yields the following equations 

Do(R, )Xo = 0, (B. 8a) 

ID*-, (R, ) - iwýJ}X_1 = UI-1i (B. 8b) 

iwJ}Xi = Uli, (B. 8c) 

7F Z! Ia2ý 
J(ByoByi +BoBy, _i +Bx, -iByo +Bx1Byo)dz. (B. 8d) 

Equations (B. 8) must be solved subject to (B. 7) to obtain Xo, X_1i XI and w, at 
R=R,. 

B. 2 The Method Of Solution 

In the limit being considered, i. e. (B. 1), the fact that 

r«1, 

can be used to obtain analytic solutions of equations (B. 8). This is done by ex- 

panding the unknowns as power series in r. Hence, a solution of (B. 8) is sought 

of the form 

211 



00 
X, (z) =nrx, (z), (B. 9a) 

n=0 

00 
u= r"un, (B. 9b) 

n=l 

00 
Rc = `, rnRcn, (B. 9c) 

n==O 

00 

WC =E rnWcn. (B. 9d) 

n=O 
(The expansion for U arises as a consequence of (B. 8d), which says that U is 

o(r) at leading order). These expansions are substituted into equations (B. 8) 

and boundary conditions (B. 7). Using standard methods for manipulating infinite 

series, the following equations for the coefficients of the expansions are obtained 

Do(Ro)Xon = Fo. (n = 0,1,2... ), (B. 10a) 

{D* 
1(Rýo) - iwýoJ}X-ln = ý''-ln (n=0,1,2,... ), (B. 10b) 

fDI(R, 
o)-iw, oJIXI, =Fin (n=0,1,2,... ), (B. 10c) 

n ZZt1Q 
un+1 = 1: 

a I. 29f 

I 

`BzomByl, n-m + BomBy-l, 
n-m 

m=0 

-i-Bx-l, mByO, n-m +BaimBy0, 
n-m)dz} 

(n = 0,1,2, ... 
), 

(B. 10d) 

where the right hand sides of these equations are given by 
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Fpn =E{- Do(Rcm)Xo, 
n.. mj(1- öpn), (B. 11a) 

{Umti, 
n_n - {D_i(Rcm) - iwcmJIX_l, n_m}(1 - 60n), (B. 11b) 

m=1 

F1 _f 
{UmIi, 

n_. m - {D1(Rcm) - iwcmJ}X1, n-m}(1 - boT, ). (B. llc) 

m=1 

In (B. 11), is the Kronecker delta, D,, (R,, ) is a9x9 matrix defined by 

DrýRcný = 

000000000 
kr Rý, ý 00000000 

000000000 
000000000 
000000000 
000000000 
000000000 
000000000 
000000000 

and I±1,, ß is a9x1 vector defined by 

Ifl, 
n = 

0 
0 

gimBo� 

q{imXon + l2Bxo, lmByon} 

imTo. 

0 
0 
0 
0 

(n=1,2,... ), 

to=0,1,2,... ). 

(B. 12) 

(B. 13) 
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The boundary conditions (B. 7) are satisfied by (B. 9) provided that 

W0, ß=Bon=DXo�= Ton=0 on z=0 (n=0,1,2,... ), (ß. 14a) 

im Z Won = Boy, - 2q On = DXo,, = Ton. - 2bon, =0 on z= 7r (n = 0,1,2,... ), 

(B. 14b) 

W 
-in = B-1n = DX_ln = T-1n =0 on z=0 (n. = 0,1,2,... ), (ß. 14c) 

W1+z "(1- So. ) = B-I,, = DX-1,, = T_1, ß =0 on z= 7r (n = 0,1,2,... ), 
2 

(B. 14d) 

W1, = B1n = DX1n = T1n =0 on z=0 (n=0,1,2,... ), (B. 14e) 

Win_ imUn(1 
-Son) = Bin = DXin = Tin =0 on z= 7r (n = 0,1,2, ... 

). 
(B. 14 f) 

Equations (B. 10), (B. 11) and (B. 14) define a hierarchy of problems for the coeffi- 
cients of the expansions (B. 9), each of which may be solved successively, starting 
with the n=0 problem. Examination of the equations reveals that Rcn and wcn 
appear in the equations for the X7, ß. These two quantities are determined to en- 
sure that the nth system of equations can be solved. This is done by applying 
solvability conditions to the relevant equations. These solvability conditions will 
be described later. 
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B. 3 The n=O Problem 

The first problem to be considered is the n=0 problem. This is the easiest 
problem to solve, since there is no coefficient of U to determine at this order. 
Hence, setting n=0 in equations (B. 10), (B. 11) and (B. 14), the following equa- 
tions for the 0(1) terms of the expansions (B. 9) are obtained 

Do(R, o)Xoo = 0, (B. 15a) 

{D1(R0) 
- iwoJ}X-io = 0, (B. 15b) 

{D1(Rýo) 
- iwoJ}Xio = 0. (B. 15c) 

These are to be solved subject to 

Woo=Boo=DXoo =Too=0 on z=0, (B. 16a) 

Woo=Boo-2 =DXoo=Too-2=0 on z=a, (B. 16b) 
9 

W io = B-io = DX-io =T io =0 on z=0, (B. 16c) 

W io = B-io = DX-io =T 1o =0 on z= ir, (B. 16d) 

Wio = Bio = DXjo = T1o =0 on z=0, (B. 16e) 

W1o = Bio = DXxo = Tlo =0 on z= ir. (B. 16 f) 

Now, the equations and boundary conditions for X_10 and Xlo are identical to 
those solved in chapter 3 for the Roberts and Stewartson (-) and (+) oblique 
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convection rolls in a standard plane layer. Therefore, the solution of (B. 15b, c) 
subject to the relevant boundary conditions is given by 

X-io(z) = A_IOX-1RS(z), Xjo(z) = AIOXlRS(x), (B. 17) 

where X_1RS is defined by (3.49) and XiRS is defined by (3.15). A_lo and A10 are 
arbitrary complex constants. This solution only exists provided that the following 

relation holds 

4(giwco+1+k2)2(iwýo+1+k2)+A2m4(iwco+1+k2)(1+k2) 

-k2Am2(9iwco +1+ k2)Rco = 0, (B. 18) 

where 

k2=ki=k? 1=12-+2. 

In the context considered here, (B. 18) provides a solvability condition which yields 
those values of Rco and w, o for which (B. 15) and (B. 16) have a solution. Recall 
from chapter 3 that (B. 18) has two possible solutions for oblique rolls. Either 

wö=U, (B. 19d) 

Rco _ 
4(1-x- k2)2 

+ 
Am2(1 + k2) (B. 196) 

Am2k2 k2 

or 

2_ (q -1)A2m4(1 + k2) - 4(q + 1)2(1 + k2)2 
w co co - 4g2(1 + q)2 

_2 
4(1 + q)(1 + k2)2 Am2(1 + k2)1 B. 206 ße0 

q Am k2 + k2(1 + q) J"() 

These are the only values of Rio and woo for which the n=0 problem has a 
solution. 
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Using the values of R, o in (B. 15a), Xoo can be found exactly as in chapter 4. 
It is given by 

Too(z) 

Woo(z) 

Boo(z) 

Xoo(z) 

Xoo(z) = Zoo(z) = 

Bx00(z) 

Byoo(z) 

U oo(z) 

Uyoo(Z) 

E6=1 ELL Aoon exP(Anz) 

r, n_1 (m2 -) 
)Aoon exP(A Z) 

[ten-1 
imAoon exp(. 1, 

az) + 
29 

nl mý sinh(mz) 

A En_I A-(m2 - an)Aoon eXP(Anz) 

ým E6=1 A"(m2 -. 1n)2Aoo,, exp(\nz) 

En _1 
An(m2 - aý)AOOnexp(Xnz) Amw 

- Eý=1 X 
nAUOn exP('\nz) + 2q sin 

1 
ma cosh(mz) 

21 En=z. n(m2 - ))2A00 eXP(ýnx) 

; 
`-i E=li )n(m2 - .\ 

)Ao0n exp()tnz) 

I 

(13.21) 

where the . 1,,, are the zeros of the polynomial (4.9) at the point R= Rco, and the 
Am. are the solutions of the linear equations (4.10). The values of Rco in (4.9) 

are given by (B. 19b) or (B. 20b), depending on which case is being considered. 
Both cases can be considered simultaneously by retaining the term involving woo 
throughout the calculation. 

B. 4 The n=1 Problem 

Having solved the n=0 problem, the next step is to solve the n=1 problem 
for the O(17) terms in the expansions (B. 9). It is at this order that the first effects 
of the perturbation geostrophic flow are felt. The equations to be solved at this 

order are 
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Do(Rco)Xoi = -Do(R, i)Xoo, (ß. 22a) 

fD (Rco) - iwcoJ}X-il = Zf1I*_lo - 
{i1(i1) 

- iwc1J}X-lo, (ß. 22b) 

{Di(to) 
- iwoJjxll = UlIio - 

{O10(R1) 
- iwý1J}Xio, (B. 22c) 

Ul = 
22Lr4 f"(B., *, DoBylo+BxooBy, -lo+Bz, -loBvoo+BtIOBV*00)dz. 

(ß. 22d) 

These equations are to be solved subject to the boundary conditions 

Woi = Boi = DXoi = Toi =0 on z=0, (B. 23a) 

Wol = Bol = DXol = T01 =0 on z= 7r, (B. 23b) 

W_11 = B_11 = DX-11 = T_11 =0 on z=0, (ß. 23c) 

W-11 + zmUi 
= B_11 = DX-11 = T_11 =0 on z=r, (B. 23d) 

Wii = Bii = DX11 = Tii =0 on z=0, (B. 23e) 

Wll i mm, 
= B11 = DXII = Tii =0 on z= ir. (B. 23 f ) 

2 
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Now, all the quantities on the right hand side of (B. 22d) are known, having 

been found in the previous section. It is therefore easy to perform the relevant 
integrations to find U1. It transpires that 

Ui = a1Alo + a2A-lo, (B. 24) 

where A10 and A_io are the arbitrary complex constants that arose in the solution 

of the n=0 problem, and the an are complex constants, defined by 

Aqd -m2 21 1Z 
al = 2m 

I 
k2(1 + k2 + igwco) + Ak2m 1(1-ý 

k+ iwco)I2 

Aql -lm 2 j(1 2+ iw°)l�' (B. 25a) 
2m 

f 
k2(1 + k2 + igwco) Akz +k 

a2 - 
-Aql f -m2 

_ 
21 (1 + k2 -I- iwý0)12 

2m t k2(1 + k2 + igw, o) Ak2m J 

tl l! Im 2 l(1 + k2 + iwco)ii, (B. 25b) _2m lk2(1+k2+igwýo) - AkzJ 

where 

f DBoo cos(z)dz, (D. 26a) 
it o 

12 a-- Xoo cos(z)dz. (ß. 26b) 
it 

fo 

Two problems now arise. The first is that Rol and wcl must be known a priori 
before equations (B. 24a), (B. 24b) and (B. 24c) can be solved. The second problem 

relates to the operators defined by 
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G-i = D* 1(Rýo) - iwoJ, (ß. 27a) 

, Cl = D1(Rýo) - iwco]. (B. 27b) 

The normal method used to solve the equations 

jC-iX-ii = UII_10 - 
{n1(R1) 

- iw,: iJ}X-io) (B. 28a) 

Gixii = uiIio - 
{I510(Ri) 

- iwiJ}xio, (ß. 28b) 

subject to 

W-11 = B_11 = DX-11 = T-11 =0 on z=0, (B. 29a) 

W-11 +Zmul=B-11=DX-ii=T_11=0 on z=r, (B. 29b) 

W11 = BI1 = DXli = T11 =0 on z=0, (ß. 29c) 

Wil zi Bll = DXI1 = T11 =0 on z=a, (ß. 29d) 
2 

is to write the solutions in the form 

X_11 (z) = X. 11(z) + Xpl11 (Z), 

X11(2) = Xi2 (z) + Xi2 (z), 

where XIx are the free solutions, which satisfy the equations 
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£_1Xf 11 = 0, (ß. 30a) 

, 01X11 = 0, (B. 30b) 

subject to the boundary conditions (B. 29), while X}1 are the particular integrals, 

which are chosen to satisfy the inhomogeneous equations 

-iX! 
'11 -Uli* 10 - 

{1i1(R1) 
- iwc1J}X-lot (B. 31a) 

G1Xii = LfiIio - 
{]10(R1) 

- iwc1Jl 10* 
(B. 31b) 

However, because Rio and woo obey the solvability condition (B. 18), solutions of 
the equations (B. 30) will only obey homogeneous boundary conditions - that is, R, o 
and wco are the eigenvalues of the operators G±I at which homogeneous solutions 

exist. Therefore, (B. 30) cannot be solved subject to (B. 29), since the boundary 

conditions (B. 29) are inhomogeneous. Thus, a solution of (B. 28) will only exist 

provided that the particular integrals X±11 satisfy the boundary conditions (B. 29) 

as well as satisfying (B. 31). 

Both problems would be eliminated if Rol and w, could be chosen in such a 

way that XP'11 obeyed (B. 29) as well as satisfying (B. 31). The conditions that 

ensure that this occurs are called the solvability conditions. To find them, the 

adjoint problem to (B. 30) must be considered. Henceforth, X±11 shall be written 
for X1. 

B. 4.1 The Adjoint Problems 

Consider the following homogeneous problem. Solve the equations 

£1X11 = 
{Di(Ro) 

- iwcoJ}Xu = 0, (8.32) 

subject to the boundary conditions 

W11=B11=DX11=Ti1=0 on z=0 and z=ir. (B. 33) 
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Define the adjoint vector Xi by 

X,, (z) = 
[Ti(z) Wi (z) Bi (z) Xii(z) Z i(z) 

B11(z) B1 1(z) 
y U 11(z) U ll(z), 

> 
( B. 34) 

and an inner product < .,. > by 

a 
< Y, Z >= -fY. Zdz. 

7- o 

Now, the inner product of (B. 32) with Xi yields the equation 

< Xii, LiXii >= 0. 

Evaluating this inner product, and using the formulae 

11r 1W 
-J yDxdz =- [xyJ --f xDydz, 
is 

Jr 
ir o ir o 

I Jr 
yD2xdz =1 

[yDx 
- xDy]7r +1J zD2ydz, 

it o 7r 0 7- o 

the following condition (which is equivalent to (B. 36)) is obtained 

0 =<, Ci Xii>Xii >+ 

(B. 35) 

(B. 36) 

i [Wil(TAl 
+ Uy1 + Ux 1) - Bll(DW11 + DBi1 - Bml - ByI 

T 

-Til(DZii) - Xii(DXli) + Wii(Zii + DB11) + Bi(DDui) 

-Xil(DX1i)+Zi(DTli)]Ol (B. 37) 
0 
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where 

(D2 - A; 2 - iw"o)ZiI + k2RýoWii 

-2DTi1 + imBll + Zli + i1DU411 + imDUU 1 

(D2 - k2){B11 - AimWi} - igwcoBli + i1DB il + imDBy11 

(D2 - k2 - igw, o)X11 + AimT i- imB. 1+ ilB" 

, C`4XA - 1 11 - -2DW i+ imXji - imUU 1+ iZUy 1 

kZBxil 

k2BYii 

k2UZA 

k2UA q1I 

Using the boundary conditions (B. 33), the condition (B. 37) becomes 

10 
=< , C1 X1i, Xll >+ 

lv 

[Wi1(Z11 
+ DB11) 

(B. 38) 

+Bii(DB411 )- DXii(Xii) + Z41(DTi1)ýý" (B. 39) 10, 

Equation (B. 39) is satisfied provided that Xi is chosen to be the solution of 

AAB. 40 
'1 11 1 

subject to the boundary conditions 

W11=BA=DXi=Zi=0 on z=0 and z=7r. (B. 41) 
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(B. 40) and (B. 41) define the adjoint problem to (B. 32) and (B. 33). To define the 

solvability conditions, only a particular solution of the adjoint problem is required. 
One such solution is given by 

TA (z) 

W(z) 

Bi (z) 

Xi (z) 

XA(z) = Zi (z) 

Bi1(x) 

Bl 1(z) 

Uz 1(z) 

U411(z) 

-21+k2+igoýo Cos(x) Am 

sin(z) 

Aim 1+k2 
sin(z) 1+k +igwco 

m` cos(z) 

41 Fk2+i wco + Ami 1+k2 1 
sin(z) Am 1+k +igwco J 

0 

0 

0 

0 

This solution exists provided that the following relation holds 

4(qiwco +1+ k2)2(iwco +1+ k2) + Azm4(iwco +1+ k2)(1 + k2) 

-k2Am2(4iwco +1+ k2)R, o = 0, 

(B. 42) 

which is precisely the relation defining Rio and wco. This merely says that the 

eigenvalues of ACA are the same as those of G1. 

In a similar manner, the adjoint problem for the homogeneous equations 

c-iX-ii = 
{D* (Ro) - iwý, oJ}X-ii = 0, (B. 43) 

with boundary conditions 
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W_11 = B_11 = DX_11 = T_11 =0 on z=0 and z=w, (B. 44) 

can be set up. The details are ommitted, but the following particular solution of 
the resulting adjoint problem is found 

Ti 1(z) 

Wit(z) 

BA11 (z) 

XA11(z) 

XA11(z)= ZA11(x) 

-21+k2+igwco cos(z) Am 

sin(z) 

-Aim 1+k2 
sin(z) 1+k +iqw o 

m cos(z) 

J41 hk2+i w, o + Ami 1+k2 
J) sin(z) 

I. Am 1+k +iq, oo 

Bz 
-ll(z) 

By 
-ii(z) 

U4-11(z) 

Uv 
-Ii(z) 

0 

0 

0 

0 

I. (B. 45) 

Again, this solution only exists provided that (B. 18) is satisfied. 

The adjoint vectors X11 given by (B. 42) and (B. 45) will now be used to 
define the solvability conditions for equations (B. 31), which will ensure that the 

particular integrals satisfying (B. 31) also obey the boundary conditions (B. 29) 

B. 4.2 The Solvability Conditions 

Consider now the inhomogeneous equations 

{D1(R0) 
- iw, oJ)X-ii = F-iis (1.46) 
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where 

F-11 = U1I*_io - 
{1Ri) 

- iwc1J}X-io. (11.47) 

The solution of these equations is required to obey the boundary conditions 

W_11 = B_11 = DX_11 = T_11 =0 on z=0, (ß. 48a) 

W_11+z 1=B_11=DX_11 =T_11=0 on z=vc. (B. 486) 

Form the inner product of (B. 46) with the adjoint vector XA11. This yields the 

equation 

XAli, C-iX-ii >=< XAi1, F-ii >" (B. 49) 

Equation (B. 49) is the required solvability condition for (B. 46). 

Using (B. 37), together with the boundary conditions obeyed by XA11 and 
X_11, the left hand side of (B. 49) yields 

XAii, G-iX-i1 >=< GA1XA11, X-ii >+ 

I [W_11T il + terms that vanish at z=0,7r10' 

Now, using the equation satisfied by XA11, i"e. 

£AiXA11 = 0, 

together with the definition of T 1j in (B. 45), this becomes 

21+ k2 + igwco) 
cos zll <X4>= 

[W_ii{ _2(1 
Am2 

i )J1o' 
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which together with the boundary conditions satisfied by W_11 yields 

,q 
i(1 + k2 + igwco) 

X_ii)L_, X-11 >= - aAm 
U1. (B. 50) 

It is a straightforward (but tedious) task to form the inner product of F_11 with 
XA11. Using the definitions of X±10, and performing the relevant integrations, the 

right hand side of (B. 49) yields 

_g 2( Z) Is XA, I) F-ii >= 
{ji2Rci 

+ Xiwci}A-io +[1+ k2 + iqwco 

2 4(1 + k2 + igwco) Am2(1 + k2)1 l 
+m2 

{k2l2 
+lmli 

} 
-im{ Am2 +1+ k2 + z4wco 

1 
4J Ul' 

(B. 51) 

where 

X_ 
2(1+k2+igw, o) + 

Am2(1+k2) 
AmZ 2(1-l- k2 -I- igwo) 

_ 
Am2q(1 + k2)(1-ß k2 + iwco) 2q(1 + k2 + iwCo) (B. 52) 

2(1 + k2 + igwco)2 
+ Am2 

and 

13 a=-f Boo sin(z)dz, (ß. 53a) 
ao 

1 7r 
oo sin(z)dz. (13.53b) 14 =- 

fo T 

Equating (B. 50) and (B. 51), the following equation is obtained 

a3Ul - ßA-lo p, (13.54) 

where it and a3 are complex constants defined by 
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µ= 
ýk2Rc1 

- Xi",,, 

and 

(B. 55) 

_ -gAm2(1 + k2)I* 
+ 

2q {k2l* 
+ IMI* } -imf 

4(1 + k2 + igwco) 
a3 1+k2+igwco 3 m2 2iJ Amt 

Am2(1 + k2) 1* i(1 + k2 + igwco) 
1+ k2 + igwco J 

I4 + 
irAm 

(B. 56) 

Now, consider the inhomogeneous equations 

, 
ClXll = 

{D1(Ro) 

- iw,, oJ}Xii =F il, (B. 57) 

where 

Fii = u1iro - 
{I31(n1) 

- iweiJIXio" (B. 58) 

The solution of these equations is required to obey the boundary conditions 

Wil = Bll = DX11 = Tll =0 on z=0, (B. 59a) 

Wll -Z1= Bll = DX11 = T11 =0 on z= ir. (B. 59b) 
2 

To find the solvability condition for (B. 57), the inner product of (D. 57) with Xi 
is formed. This yields the equation 

< Xii,, C1Xli >=< Xli, Fli >. (B. 60) 

Repeating the analysis carried out on equation (B. 49), (B. 60) yields the equation 

d4U1- µAlo = 0, 
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where it is given by (B. 55) and a4 is another complex constant defined by 

a4= 1+k2+li w2)13+m2{kZIZ-lmll1+im{4(1+Ä±i4cýco) 9 c0 ` 

Am2(1 + k2) i(1 + k2 + igwco) 14_ B. 62 
1+ k2 -F igwco 

I 
iAm 

() 

Finally, the solvability conditions for equations (B. 31) take the form 

a4U1 - pAlo = 0, (B. 63a) 

a3U1 - ILA-10 = 0. (ß. 63b) 

Recalling that 

Ui = a1Aio + a2A-io, 

equations (B. 63) can be written in matrix notation as 

CA = µA, (B. 64) 

where C is a2x2 complex matrix defined by 

ala4 a2a4 (B. 65) C= , alai a2ag 

and A is a2x1 complex vector defined by 

A . 
[Aio]. (11.66) 
A-io 

Hence, R. 1 and w, l are obtained from the eigenvalues of C, while Ajo and A-10 

are obtained from the eigenvectors of C. 
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The two eigensolutions of (B. 64) are given by 

{z=0, A= -a2(B. 67) 
L al 

and 

a41 
Ii = a2a3 + ala4i A= 

a3 J. 
(B. 68) 

Just as in the n=0 case, where two possible values for Rio and woo existed so that 

the n=0 equations had a solution, so here two possible values for R1 and wi 

exist (obtained from the two possible values of µ) at which the n=1 equations 
have a solution. These two cases will be discussed seperately. 

B. 4.3 The Eigensolution (B. 67) 

The first eigensolution is given by (B. 67). Using the definitions of µ and A, 

(B. 67) yields 

1 
k2R� - XZwi = 0, (B. 69a) 

[A10 a2 (B. 69b) 
A-10] _[al 

Now, provided that l and m are non zero, then k2 and x are also non zero, whence 
the real and imaginary parts of (B. 69a) yield 

R, 1 = 0, wa = 0, 

respectively. Similarly, (B. 69b) yields 

Aio = -a2, A-io = al. 

(13.70) 

(2.71) 

These values may be used in equation (B. 24) for Zl1, to obtain 
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U1 = al(-a2) + a2(a1) = 0. (B. 72) 

Having obtained Rcl, wcl and U1, equations (B. 22a, b, c) can now be solved. Sub- 

stituting (B. 70) and (B. 72) into (B. 22a, b, c) gives 

Do(R, o)Xoi = 0, (B. 73a) 

{D# 
1(R o) - iwoJ}X-ii = 0, (B. 73b) 

{DI(Rco) 
- iwcoJ}Xii = 0, (B. 73c) 

while the boundary conditions (B. 23) become 

Woi = Boi = DXoi = Toi =0 on z=0 and z=n, (ß. 74a) 

W_11=B_11=DX_I1=T_11=0 on z=0 and z=7r, (B. 74b) 

W11=B1i=DX11=Tit=0 on z=0 and z=ir. (B. 74c) 

A particular integral of (B. 73) and (B. 74) is 

Xoi(z) = 0, X_ii (z) ==0, Xll (z) = 0, (B. 75) 

and this is the solution of the n=1 equations for this case. 

In fact, examination of equations (B. 10) and (B. 11) reveals that by choosing 
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X, n(z) =0 (n = 2,3,... ), (ß. 76a) 

14 =0 (n. =2,3,... ), (ß. 76b) 

Rcn=0 (n=2,3,... ), (B. 76c) 

wc. =0 (n=2,3,... ), (ß. 76d) 

an exact, analytic solution of (B. 8) and (B. 7) may be obtained! This analytic 

solution is given by 

Xo(z) = Xoo(Z), (B. 77a) 

X-i(z) = aIX-iRS(z)s (B. 77b) 

X, = --a2XlRS(z), 
(ß. 77c) 

u=o, (ß. 77d) 

where Xpo is defined by (B. 21), al and a2 are defined by (B. 25), and X±i are 
the Roberts and Stewartson (±) oblique roll solutions defined in chapter 3. This 

solution is discussed further in chapter 5. 

13.4.4 The Eigensolution (B. 68) 

Attention is now turned to the second eigensolution of (B. 64), which is (8.68). 

To compare with the numerics, only the case 

A=4, 
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will be considered, for which 

Rio=6/, wco=0,12=2- 
2, 

m2= 
2. 

At these values, al and a2 are given by (5.46), while a3 and a4 become 

a3 = -2V"3qI3 + q(212* + drall) + im(2 - 4ýI4 ), (ß. 78a) 

q(2I2 -1mI1) - im(2 - 4-�73-14). (B. 78b) a4 = -2-. 
/3-gI3 

-- 73 

Now, because the basic state satisfies the condition (4.21), the integrals IJ must 
satisfy 

=I4. Ii=-II, 12=-12,23=-I3,14 

For the parameter values being considered, this fact implies that the a1 satisfy the 

conditions 

al = -ai, a2 = -az, a3 = -a*, aq = -a4, 

and hence, that Ei satisfies 

µ- µ*. (8.86) 

Therefore, the imaginary part of it vanishes, and so 

2ý73-wc1 =0 wcl = 0. (. 1.79) 

The real part of µ gives 

Rcl = ala4 + a2a3. (B. 80) 
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Using (B. 68) together with the definition of A yields 

Alo ja4l 
= Aio = a4, A-io = a3. (B. 81) 

A-io 

]=[ 

a3 J 

Using this result in equation (B. 24) for U1 gives 

U1 = ala4 + a2a3. (B. 82) 

Hence, a second set of values for R, 1, wj and U1 have been found to ensure 
that the n=1 equations have a solution. These values may be substituted into 
(B. 24a, b, c) and the relevant particular integral found. Denote the solution of 
(B. 24a, b, c) with these values of Ri, wi and U1 by 

XOi(z), X-10(z), Xio(z). 

The actual form taken by the XT1 is very complicated, and is not very enlightening. 
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