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Abstract

Aspects of thermal convection in the Earth’s fluid core in the presence of a
strong azimuthal magnetic field may be understood by considering a horizontal
plane layer, rotating about the vertical z axis, with gravity acting downwards and
containing an applied magnetic field aligned in the y (azimuthal) direction. Since
the CMB is not smooth, the effects of adding bumps (with axes perpendicular to
the applied magnetic field) to the top boundary of the layer are investigated in the
magnetogeostrophic limit. The arbitrary geostrophic flow that arises under this

limit is evaluated using a modified Taylor constraint.

The bumps distort the isotherms so that they are not aligned with equipotential
surfaces, leading to an imperfect configuration. This means that a hydrostatic
balance is not possible, and motion ensues. This motion takes the form of a steady
transverse convection roll, with axis parallel to the bumps. The roll exists for
all values of the Rayleigh number, except that value for which the corresponding
homogeneous problem in the standard plane layer has a solution. The roll obeys

Taylor’s constraint, and has no associated geostrophic flow.

The stability of this roll to perturbation by oblique rolls (which are preferred
for O(1) values of the Elsasser number) is considered. It is found that the most
unstable linear mode consists of a pair of these oblique rolls, aligned so that no
geostrophic flow is accelerated by their interaction with the basic state. Hence,
the stability results obtained here are identical to those found by perturbing the

hydrostatic conduction solution with oblique rolls in the standard layer.

Finally, the nonlinear evolution through the Ekman regime of these linear in-
stabilities 1s considered. It is found that the nonlinear convection behaves similarly
to mean field dynamo models which incorporate a geostrophic nonlinearity. Vari-

ous types of Ekman solution are found, and evolution to Taylor states is observed.
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Chapter I

Introduction

1.1 Convection In The Core

Paleomagnetic data indicate that the Earth’s magnetic field has been in exis-
tance for in excess of three billion years. Since this exceeds by several orders of
magnitude the Ohmic decay time of the Earth (which is on the order of fourteen
thousand years), it follows that there must be some regenerative mechanisms op-
erative within the Earth, which maintain the magnetic field against Ohmic losses.
These dynamo mechanisms are thought to be linked to the motion of the electri-
cally conducting fluid in the outer core of the Earth. Trapped between the solid
inner core and the solid mantle, this fiuid is driven into motion by two mecha-
nisms: thermal and compositional convection. Compositional convection occurs
when the heavy iron part of the fluid freezes onto the inner core, releasing a lighter
component. This lighter component contributes to a buoyancy force, which forces
motion in the outer core. In addition, the temperature at the inner core boundary
is hotter than the temperature at the core mantle boundary. This sets up an ad-

verse temperature gradient across the outer core, which contributes to a thermal

buoyancy force, which also forces motion in the outer core.

The fluid flow in the core is characterised by various dimensionless parameters.
These parameters are defined using measures of the flow in the core. Let U be
a measure of the fluid velocity in the core, Bp a measure of the magnetic field
strength, {) a measure of the rotation of the Earth, D a measure of the dimensions

of the core, v a measure of the viscosity, g a measure of gravity and 8 a measure

of the adverse temperature gradient. Then the Rayleigh number, defined by

)2
R = gagf : (1.1a)

measures the strength of the adverse temperature gradient in the core 8, to thermal

diffusion in the core, k. The constant « is the coefficient of volume expansion in

the core. Similarly, the Elsasser number, defined by

O



o
Quopon’

A= (1.13)

measures how strong the Lorentz force (which is the force caused by the magnetic
field) is compared to the Coriolis force (which is the force caused by the Earth’s
rotation). The constants po, po and 7 represent the magnetic permeability, density

and magnetic diffusivity in the core. The Roberts number,

K
g = ;?", (116)

measures the relative strength of the thermal diffusivity and the magnetic diffu-

sivity. The Prantl number, defined by

P=- (1.1d)
K

measures how strong the viscosity of the core is compared to the thermal diffusion
of the core. The Ekman number, defined by

v
= QDZ’ (lled)
measures how strong the viscous force is compared to the Coriolis force. Finally,

the Rossby number, defined by

Ro = — (1.1f)

measures how strong the inertial force is compared to the Coriolis force. Not all

of these parameters arise is this work.

The simplest way to model the motion is by the thermal convection of a rotating
spherical shell of Boussinesq fluid. Studies of the non-magnetic case by Roberts
(1965, 1968), Busse (1970) and more recently by Zhang (1991) have shown that at
the onset of instability, the motion consists of convection rolls parallel to the axis
of rotation. These rolls propogate azimuthally due to the effects of inertia and
the curvature of the boundaries, and are called thermal Rossby waves. They are

confined to a thin annular region of the core (the thickness of this annular region

6



1.2

being dependent upon the value taken by the Prantl number P), where the effects
of the rapid rotation of the Earth through the Taylor-Proudman theorem (which
constrains the fluid motions to be two dimensional, independent of the coordinate
parallel to the axis of rotation) are relaxed by a balance between the viscous and
buoyancy forces. The lengthscale of the convection in the azimuthal direction is
very short, and 1s given by E-3. Asthe thermal driving is increased, the convective

motions become stronger, and fill the entire spherical shell.

When the effects of a magnetic field are included, the situation is different.
Provided the magnetic field strength is sufficiently large, the constraints of the
Taylor-Proudman theorem may be broken by the Lorentz force, and the convection
can initially take place on a much larger lengthscale, that of outer core itself (see
for example Eltayeb and Kumar 1977; Fearn 1979a,b). The magnetic case will be

considered in this work, albeit in a simpler geometry.

The Dynamo Problem

Discovering if (and how) such fluid motion can support a magnetic field against
Ohmic decay is called the dynamo problem. For the Earth, the dynamo problem 1s
difficult to solve for three main reasons. The first is that the equations to be solved
constitute a highly nonlinear, coupled set of partial differential equations for the
fluid velocity and magnetic field. These equations must be solved in a spherical
shell geometry subject fo appropriate boundary conditions. The second difficulty
is that the dynamo problem 1s inherently three dimensional. This is a consequence
of Cowling’s theorem (Cowling 1934), which states that an axisymmetric magnetic
field cannot be supported against Ohmic decay by dynamo action. To break the
constraints of this theorem, each unknown (e.g. fluid velocity U, magnetic field B
etc.) is regarded as being composed of two parts: a large axisymmetric or mean
part, and a smaller asymmetric part, which is added to break the constraints of
Cowling’s theorem. In the core, these asymmetries are thought to be planetary

waves which ride upon the underlying axisymmetric state (Braginsky 1967). It is
the presence of the asymmetries that makes the problem three dimensional.

The mean magnetic field 1s then supported by two mechanisms. The poloidal
part of the mean magnetic field is bowed out by the differential rotation of the
fluid to form the toroidal part. This is called the w-effect. To complete the regera-

tive process, the asymmetries combine to produce an a-effect, which creates the

7



1.3

poloidal part of the mean magnetic field from the toroidal part (and to a lesser ex-
tent, it also creates toroidal magnetic field from poloidal magnetic field). If there
are no asymmetries present, the a-effect is absent, and the poloidal part of the
mean magnetic field would decay due to Ohmic losses. With no poloidal mean
field to create toroidal mean field, the toroidal part is subject to a similar Ohmic
decay. Through the a-effect, the asymmetries regenerate the mean magnetic field.
To solve the governing equations for both the mean and asymmetric parts of the
solution together is beyond the power of even the most powerful computers today.

Usually, the problem 1s split into two simpler components.

The first component involves solving the equations for the larger mean part of
the solution, having prescribed the asymmetries in the form of an a-effect. This
is the mean field dynamo problem. Several types of mean field dynamo can occur,
depending on what processes are used to sustain the field. In an a® dynamo, the
a-effect is used to create both the toroidal and poloidal parts of the mean magnetic
field. In an aw dynamo, the w-effect is used to create the toroidal part of the mean
magnetic field, and the a-effect is used to create the poloidal part. Finally, in an
a?w dynamo, both the a-effect and w-effect create the toroidal part of the mean
magnetic field, while the a-effect is also responsible for creating the poloidal part.
Examples of all three types of mean field dynamo may be found in Fearn, Roberts

and Soward (1988).

The second component of the problem involves solving the equations for the
smaller asymmetric part of the solution having prescribed the mean part. This is
called the magnetoconvection problem. This problem provides valuable informa-
tion on the small scale processes that take place to generate the a and w-effects of

the mean field problem. Several types of magnetoconvection problem are described
by Chandrasekhar (1961).

The Magnetogeostrophic Approximation

The third difficulty in solving the dynamo problem in the Earth arises because
of the nature of the primary force balance in the outer core, which consists of a
balance between the Coriolis, pressure, Lorentz (and buoyancy) forces. This force

balance occurs for the following reasons.

The inertial terms are neglected because the Rossby number Ro is O(10~%) in

8



the outer core. This small value indicates that the inertial force is insignificant
compared to the Coriolis force. Neglecting the inertial terms filters out inertial
waves, whose timescales (on the order of a day) are too short to be of interest to
the dynamo problem. Mathematically, neglecting these terms changes the equation
of motion from a predictive equation to a diagnostic equation, that is, a condition
that must be satisfied by the fluid velocity U for all time.

Comparing the size of the viscous force with the Coriolis force yields the afore-
mentioned Ekman number, E. In the core, E is O(107!®), which indicates that the
viscous force 1s also insignificant compared to the Coriolis force. Hence, neglecting
viscous and inertial terms from the momentum equation (this is the magneto-
geostrophic approximation which gives rise to the primary force balance in the

outer core) yields the magnetogeostrophic equation

P 1 P
2ANU =-V(—)+ —(VAB)AB + —g. 1.2
(Po) ﬂoﬂo( ) Pog (1.2)

By considering the curl of this equation, it can be shown that the velocity U can

not be determined uniquely from the magnetogeostrophic equation. It can only be

determined up to an arbitrary geostrophic flow,

Y, = Vy(s)3, (1.3)

where cylindrical coordinates with z axis parallel to the axis of rotation are em-
ployed (see Fearn 1994). This arbitrariness can be traced to the neglect of the
viscous term, which has the effect of lowering the order of the momentum equation
by two. This situation, where a small parameter (in this case v, the viscosity)
multiplies the highest derivative of an equation, is quite common 1n singular per-
turbation theory. That theory suggests that although viscosity is unimportant

over the bulk of the core (in which region (1.2) applies), viscosity is important in
thin viscous Ekman layers close to the core mantle boundary. The question of how

important these Ekman layers are in determining the dynamics of the outer core

15 of key importance in determining the geostrophic flow.

Taylor (1963) argued that the Ekman layers do not affect the dynamics. In

this situation, the solutions of (1.2) can be shown to satisfy the Taylor constraint

9



M=f/;‘(a) [(VAB)/\BLdS:O Vs, (1.4)

where C(s) is a cylinder of radius s coaxial with the axis of rotation, called a
geostrophic cylinder. Physically, the Taylor constraint says that there can be no
mean torque exerted on geostrophic cylinders by the Lorentz force. Mathemati-
cally, the existence of a homogeneous solution V, of the magnetogeostrophic equa-
tion necessitates a solvability condition (i.e. the Taylor constraint) in order to find
inhomogeneous solutions (see Fearn and Proctor 1992). Taylor argued that even if
the Taylor constraint was not initially satisfied by the magnetic field, the resulting
torque on the geostrophic cylinders would set up a torsional oscillation, that is,
an oscillation of the geostrophic cylinders, which would ultimately decay in time
to leave the Taylor constraint satisfied. In Taylor’s prescription, the geostrophic
flow is determined implicitly by the requirement that its’ effect on the magnetic
field (through the w-effect) should be precisely that needed to ensure that Taylor’s

constraint is satisfied. A solution which obeys Taylor’s constraint 1s said to be in

a Taylor state.

On the other hand, it can be argued that the viscous Ekman layers do influence
the dynamics of the outer core through the effects of Ekman suction, where fluid
is drawn into the Ekman layers at the poles, and then ejected through the Ekman
layers towards the equator. The resulting mass flux through the Ekman layers
can be related to the arbitrary geostrophic flow (see Fearn 1994), leading to an

alternative form of (1.4), given by

2PD[C?S"9]%V = f fc " ;_}E[(V AB) A BhdS. (1.5)

This 1s called the modified Taylor constraint, and provides an explicit equation for
the arbitrary geostrophic flow. The term on the left hand side of (1.5) represents

the mass flux through the Ekman layers caused by the Ekman suction effect.

Braginsky (1975) proposed an alternative to the Taylor model. It consists of

an aw dynamo, in which the effects of the viscous Ekman layers are retained, and

where the radial component of the mean magnetic field is assumed to satisfy

B, < 1. (1.6)
10



This assumption implies that there is weak coupling between adjacent geostrophic
cylinders. Consequently, the torsional oscillations that are driven by the failure of
the magnetic field to satisfy the Taylor constraint are not damped to zero (since the
damping mechanism relies on B, being O(1), so there is strong coupling between
the geostrophic cylinders). Hence, although the Taylor integral is always small, it
never vanishes, and must always be balanced by the Ekman suction term. The
model is characterised by the shape of the poloidal part of it’s mean magnetic
field, which 1s aligned with the rotation axis. This led Braginsky to call it Model
Z. Braginsky was able to show that in the limit v — 0, Taylor’s constraint remained

unsatisfied, showing that the model always depends upon the value of the viscosity.

1.4 The Taylor Problem

The question of whether or not viscous effects are important in the dynamics
of the outer core has received a lot of attention. Specifically, the question asked
1s whether or not Taylor’s constraint can be satisfied in the outer core, and if so,
how is it brought about? The failure of Braginsky’s Model Z to ever satisfy the
Taylor constraint has prompted a more cautious approach. Most authors retain the
effect of Ekman suction (through the modified Taylor constraint) and ask whether

the magnetic field and geostrophic flow can evolve in such a way that Taylor’s

constraint can be eventually satisfied.

One possible evolution for a? dynamos in a sphere was described by Malkus
and Proctor (1975). They show that there is a critical value of a, denoted by a.,
below which the dynamo does not work because the effects of Ohmic dissipation
are too strong. Just above a¢, the a-effect is strong enough to overcome the Ohmic
dissipation, and the magnetic field strength begins to grow. However, at this point,
the magnetic field strength is small, of O(V"If). As a result, the most important
nonlinearity is that generated by the geostrophic flow and the modified Taylor

constraint, all the other nonlinearities being small enough to ignore. Hence, 1t is
the viscosity that limits the field growth through the modified Taylor’s constraint.
This regime is therefore called the Ekman regime. However, by increasing a,
Malkus and Proctor find a second critical value of a, denoted aq, at which Taylor’s
constraint becomes satisfied. As a is increased to ar, the magnetic field and
geostrophic flow adjust so that Taylor’s constraint becomes satisfied. The Taylor
state 1s characterised by a rapid growth in the strength of the magnetic field,

11



which goes from O(V%) to O(1), becoming independent of viscosity in the Taylor
state. Above ar, the other nonlinearities of the problem become important, and
control the magnetic field strength. This is called the Taylor regime, since Taylor’s
constraint is satisfied for @ > ap. In the Taylor regime, the geostrophic flow is

determined implicitly using the method prescribed by Taylor (1963).

This scenario has come to be known as the Malkus-Proctor scenario, and has
been verified for a? dynamos in various geometries. For instance, the plane layer
model of Soward and Jones (1983), the spherical models of Ierley (1985), Hollerbach
and lerley (1991), Barenghi and Jones (1991) and Barenghi (1992a) all exhibit this
evolution to a Taylor state. This is not the only behaviour possible, however. A
second type of solution occurs where the Taylor states lie on a higher amplitude
branch of the solution, which i1s not connected to the initial bifurcation of the small
amplitude Ekman regime. This type of solution has been observed by Soward and
Jones (1983), Barenghi and Jones (1991) and Hollerbach and Ierley (1991).

By contrast, the behaviour of aw dynamos is not so straightforward. Although
the infinite plane layer aw dynamo of Abdel-Aziz and Jones (1987) does show the
smooth transition to a Taylor regime envisaged by Malkus and Proctor, similar

models in confined geometries (e.g. a duct or a sphere) do not show such a well

defined transition to a Taylor state.

The difference between a? and aw dynamos is twofold. Firstly, aw dynamos
tend to be oscillatory, while a® dynamos are usually steady. Secondly, aw dynamos
are prone to secondary bifurcations which lead to more and more complicated
temporal behaviour in the solution. For instance, the aw dynamo of Wallace and
Jones (1992) in a duct geometry has secondary bifurcations which take the initial
solution from oscillatory to vascillatory, frequency locked, chaotic and back to
oscillatory again, all in the Ekman regime! These secondary bifurcations do not
seem to occur in a® dynamos. Because of this complicated bifurcation structure,
the transition to a Taylor state is hard to establish. Typically, the solution comes to
an end at a subcritical Hopf bifurcation, at which a second frequency is introduced.
In some cases (e.g. Barenghi and Jones 1991 in a sphere) an oscillatory Taylor
state does become established. However, in the models of Hollerbach, Barenghi
and Jones (1991) in a sphere, and Wallace and Jones (1992) in a duct, the solution
becomes chaotic after this point, and the dependence of the solution upon the
viscosity is hard to establish. Quite why this behaviour occurs is still an open

question, and is the subject of ongoing research.

12



The question of whether or not Taylor’s constraint can be satisfied has also
arisen in models of magnetoconvection. Just as in the mean field case, it is found
that when the amplitude of the magnetoconvection is small, the geostrophic nonlin-
earity is the most important nonlinearity in the problem, and becomes responsible
for equilibrating the amplitude of the solutions. However, the mechanism by which
the amplitude is controlled differs from the mean field case, where viscous damping
was resposible for controlling the amplitude. In magnetoconvection, the shear gen-
crated by the geostrophic flow is responsible for controlling the amplitude of the
solutions (see Fearn 1994). The Taylor problem in magnetoconvection has been
investigated in various geometries: an infinite plane layer (Roberts and Stewart-
son 1974, 1975; Soward 1980), a duct (Soward 1986; Jones and Roberts 1990), a
cylindrical annulus (Skinner and Soward 1988, 1990) and a sphere (Fearn, Proctor
and Sellar 1994).

The Roberts and Stewartson model consists of a horizontal plane layer, which
rotates about the vertical axis, with gravity acting downwards. The layer is as-
sumed to contain a horizontal applied mean magnetic field, and the bottom bound-
ary is made hotter than the top to facilitate thermal convection. Roberts and
Stewartson find that once the Rayleigh number (which is a dimensionless measure
of the adverse temperature gradient) is made large enough to overcome the effects
of thermal diffusion, then convection in the form of rolls ensues. For weak applied
mean magnetic field strengths, a single convection roll whose axis is perpendicular
to the applied mean magnetic field is the preferred mode of convection, Increasing
the strength of the applied mean magnetic field however, they find that a pair of
oblique convection rolls, aligned at equal but opposite angles to the applied mean
magnetic field, become preferred. These rolls can go unstable either singly (called

a single oblique roll solution) or in a pair (called a double oblique roll solution).

The single oblique roll solutions obey Taylor’s constraint, and constitute the
Taylor states that arise in the plane layer. Their nonlinear evolution is investigated
in Roberts and Stewartson (1974). Of more interest, however, is the double oblique
roll solution, since a pair of oblique rolls taken together do not satisfy the Taylor
constraint. To investigate this solution, Roberts and Stewartson (1975) regard one
of the oblique rolls in the double roll solution as being very small, and treat it as a
perturbation to its’ companion. The resulting linear stability problem investigates
where the Taylor solutions (i.e. the single oblique roll solutions) are unstable.
In the regions where instability occurs, Taylor’s constraint is not satisfied, and

there is a complicated nonlinear interaction between the two oblique rolls and
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the concomitant geostrophic flow accelerated by the interaction of the two rolls
through the Taylor integral. Soward (1980) investigates the subsequent nonlinear

evolution of this instability.

However, the double oblique roll solution found in the plane layer is degenerate,
and arises as a consequence of the infinite geometry. It does not occur in bounded
geometries. For instance in a sphere, a single mode which does not satisfy Taylor’s
constraint typically onsets at criticality. To remedy this, Soward (1986) bounded
the infinite plane layer to form a duct. The simplicty of the model enabled him to
look for Taylor solutions directly, using the method of Taylor (1963). Soward finds
the critical Rayleigh numbers at which Taylor’s constraint can be met in the duct
model, and investigates the nature of the Taylor states that arise. In Skinner and
Soward (1988, 1990) the case of a cylindrical geometry is investigated. Using the
modified Taylor’s constraint to evaluate the arbitrary geostrophic flow, Skinner
and Soward again find that the solution evolves to a Taylor state provided the

Rayleigh number is made sufficiently large.

This evolution to a Taylor state does not always occur. Jones and Roberts
(1990) modified the duct model of Soward so that the rotation is perpendicular to
both gravity and the applied mean magnetic field. They were able to show that
(provided the applied mean magnetic field is made strong enough) the solution
does not evolve to a Taylor state, no matter how large the Rayleigh number 1s
made. Similarly, in a spherical model of magnetoconvection, Fearn, Proctor and
Sellar (1993) were also unable to find Taylor solutions. As the Rayleigh number is
increased, the solution becomes more and more complicated temporally, but does
not settle down to a Taylor state. These results strike a cautionary note, and

indicate that the question of whether a Taylor state will always exist in a given

system is far from settled.

1.5 Inhomogeneities On The CMB

A common fact which links all of the models discussed thus far is that in
each model, the bounding surfaces are assumed to be homogeneous. However,
there is ample evidence to suggest that at least one of the boundaries, the core-
mantle boundary, may have inhomogeneities in the form of topography, lateral

temperature variations, compositional variations and variations in conductivity.
Hide (1967) first pointed out that the presence of these inhomogeneities on the
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core-mantle boundary could have a profound effect upon the dynamics of the outer

COIE.

The first indication the the core-mantle boundary is not homogeneous comes
from the fact that the length of day on the Earth is not constant: it varies on
the order of several milliseconds per decade. This so called decadal variation
in the length of day can be traced to changes in the rotation rate of the Earth
due to angular momentum exchanges between the core and mantle (Hide 1969).
There are three main mechanisms by which the core and mantle exchange angular

momentum: viscous coupling, electromagnetic coupling and topographic coupling.

Viscous coupling, caused by friction between the core and the mantle, is uni-
versally believed to be too small to account for the decadal variation, due to the
small value of the viscosity in the outer core. Electromagnetic coupling, caused
by the leakage of currents from the outer core into the mantle, is also not strong
enough to account for the observed variations. There are also doubts as to whether
the timescale of variations in the magnetic field is the correct one on which the
variation in the length of day occurs (see Roberts 1988; Voorhies 1991). This leaves
topographic coupling, which is now thought to be the main mechanism responsible
for the length of day variations. The mechanisms by which the core and mantle
exchange angular momentum through topographic coupling are described in detail
by Hide (1989) and Jault and Le Moeul (1989).

Hide (1969) argued that bumps of only 1km height on the core-mantle bound-
ary would produce the torque required to account for the observed length of day
variations. By observing that bumps of this height should distort the magnetic
field and gravitational potential on the core-mantle boundary, and by then showing
that variations in the gravitational potential and magnetic field are correlated on
the core-mantle boundary, Hide and Malin (1970) inferred the existance of bumps
of height 1km on the core mantle boundary. Several theoretical calculations (see
for example Moffat 1978; Bloxham and Gubbins 1993) have confirmed that the

topographic torque is large enough to account for the observed length of day vari-

ations.

Further evidence of inhomogeneities on the core mantle boundary comes from
maps of the radial magnetic field on the core-mantle boundary, produced by down-
wards extrapolation of the observed poloidal field at the Earths surface. The work
of Gubbins and Bloxham (1987) shows the existance of four or five fixed flux

lobes at the core-mantle boundary, which have remained static, fixed in one spot
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throughout the period 1715-1980. Bloxham and Gubbins (1987) explained these
fixed features by saying that the convection rolls in the outer core (which cre-
ate the flux lobes by sweeping flux up towards the core-mantle boundary) have
become locked onto hot and cold spots on the core-mantle boundary, instead of
propogating azimuthally as usual. By correlating variations in seismic velocity
(which depends on the temperature of the mantle) with variations in the radial
magnetic field at the core mantle boundary, Bloxham and Gubbins were able to
show that the fixed features of the radial field were indeed located at hot and cold

spots on the core-mantle boundary.

Theoretical support for this comes from models of convection in a spherical
shell, which is cooled inhomgeneously at the core-mantle boundary. With these
temperature variations on the core-mantle boundary, the isotherms no longer line
up with surfaces of constant gravitational potential, and so small scale motion is
always forced in the shell - this is known as an imperfect configuration. Zhang and
Gubbins (1992, 1993) showed that the subsequent convection forced by thermal
instability (through an “imperfect” bifurcation) did indeed lock onto the hot and
cold spots imposed on the core-mantle boundary. A subsequent investigation by
Sun, Schubert and Glatzmaier (1994), which examined this boundary forced con-
vection far into the nonlinear regime (Rayleigh number five times critical) found

that the temperature perturbations were locked to the boundary, but deep inside

the shell the convection was columner 1n structure.

However, Gubbins and Richards (1986) have argued that the topography of
the core- mantle boundary could also be responsible for locking these convection
rolls into place. Using a model of the viscosity in the mantle, together with seismic
data, Gubbins and Richards construct a model of the “dynamic” topography on
the core-mantle boundary, and find correlation between this topography and the
variations in the radial magnetic field at the core mantle boundary. Gubbins and

Richards concluded that the topography was just as likely to be responsible as

lateral temperature variations for locking the convection rolls into place.

Support for this viewpoint has come from the models of Bell (1993) and Bell
and Soward (1995), who use a modified form of Busse’s annulus model to examine
the effects of topography upon convection. Bell and Soward find several new types
of convection mode driven by the bumps, the most interesting being a boundary

locked mode, which becomes preferred once the height of the bumps is sufficiently

large.

16



That thermal inhomogeneities and bumps produce similar effects should not
be surprising, since the two inhomogeneities are linked in a fundamental way. Hot
spots on the core-mantle boundary produce upwelling in the mantle. Similarly, cold
spots will produce downwellings in the mantle. Hence, where there are temperature
variations, there will also be bumps. Gubbins and Richards stress the need for

further work to examine the effects of flow over topography.

1.6 Motivation For The Problem

The results of the previous section indicate that the inhomogeneities on the
core-mantle boundary can have a profound effect upon the dynamics of the outer
core. The distortion of the 1sotherms from the equipotential surfaces by the in-
homogeneities produces an imperfect configuration, where small scale motion is
always forced. This has implications when computing the basic state in such a
system. The inhomogeneities produce new effects, such as the locking of convec-
tion onto the inhomogeneities, found in the models of Zhang and Gubbins (1992)
and Bell and Soward (1995). However, most of the models decribed in the previous
section have not included the strong toroidal magnetic field that is thought to be
present in the outer core. To remedy this, a model that examines the effects of
boundary inhomgeneities on convection in the presence of a strong toroidal mag-
netic field should be considered. That is the motivation for the problem studied
in this work. Due to the similar effects of thermal inhomgeneities and bumps,

the inhomogeneity will be assumed to take the form of bumps on the core-mantle

boundary.

The plane layer model of Roberts and Stewartson (1974) described earlier,
captures all the essential aspects of thermal convection in a spherical shell, but in
a much simpler geometry. For this reason, and to isolate the key effects associated
with magnetoconvection in the presence of topography, the plane layer model is
modified to include the effects of topography. Since the exact details of the topog-
raphy are not important, the bumps are assumed to take the form of a sinusoidal
undulation which varies in the y direction. The bumps will be assumed to be small.
In a model such as this, which is to be applied to the core, the magnetogeostrophic
approximation must be made, and the arbitrary geostrophic flow evaluated. With
regard to the remarks of section 1.3, the arbitrary geostrophic flow will be evalu-
ated by a modified Taylor condition, in the hope that the solutions of the problem

17



will evolve to a Taylor state as the Rayleigh number is increased (or decreased).

The model is decribed in detail in chapter 2, and the equations and boundary
conditions for the topographical convection forced by the bumps are there derived.
The linear results of Roberts and Stewartson are reviewed in chapter 3. The dis-
tortion of the isotherms by the bumps leads to an imperfect configuration problem.
Specifically, a hydrostatic balance is no longer possible in a layer with bumps. The
exact basic state must therefore be calculated from the governing equations and
boundary conditions, and this is done in chapter 4. Since oblique rolls are the pre-
ferred mode of convection in a plane layer when there is a strong toroidal magnetic
field, the stability of the basic state to perturbation by these rolls, together with
the concomitant geostrophic flow accelerated by the interaction of these rolls with
the basic state through the Taylor integral, is considered in chapter 5 (see also
Appendix B). Finally, the nonlinear evolution of the resulting instabilities through
the Ekman regime is considered in chapter 6. In chapter 7, the conclusions of the

research will be presented.
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Chapter II

Description Of The Model

2.1 The Modified Plane Layer

The outer core is modelled by a plane layer containing an electrically conduct-
ing fluid. The layer i1s of infinite extent in the horizontal # and y directions, but
1s bounded in the vertical z direction. The finite geometry of the core is mimicked
by seeking solutions which are periodic in the z and y directions, with periods 2}"-

and 3—:& respectively, where [ and m are real constants. The layer is bounded below

by

z = 0. (2.1)

This represents the boundary between the solid inner core and liquid outer core.
This boundary is assumed flat for simplicity. To model the bumps which occur
on the core-mantle boundary, the traditional plane layer model is modified so that

the top boundary lies at

z = d + v cos(my), (2.2)

where < is a real constant. The size of 4 governs the size of the bumps, while m
governs how they vary laterally; v and m are assumed to be known a priori. Thus,
the periodicity in the y direction is fixed by the bumps. The bumps on the core
mantle boundary extend a distance of about 1km into the core (Hide and Malin
1970). Since this is a small figure compared with the dimensions of the outer core,

it 1s assumed that

7L L (2.3)

The layer rotates about the vertical with constant angular velocity, and gravity

acts downwards, so
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Figure 2.1: The configuration of the model
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=0z g=—gi, (2.4)

where ) and g are real constants. This orientation of £ and g corresponds to the
north polar region of the outer core, but the qualitative behaviour of the system

is not altered by choosing arbitrary orientations (Chandrasekhar 1961).

Convection in the outer core i1s driven by a combination of thermal and com-
positional effects. As thermal convection is better understood and easier to model,
all compositional effects will be ignored. In a thermally driven system, the bottom
boundary i1s maintained at a constant temperature Tp and the top boundary is

maintained at a constant temperature T;. By choosing

To > Td,

the bottom boundary is made hotter than the top, and an adverse temperature

gradient

ﬂ__:To';Td >0,

is set up across the layer. This arrangement is unstable since hot, light fluid les

beneath cold, heavy fluid. Convection ensues to restore the thermal equilibrium,

once the adverse temperature gradient becomes large enough.

The fluid in the layer is assumed to be Boussinesq - that is, temperature and

pressure variations across the layer are assumed to be sufficiently small that the
density may be treated as a constant pg everywhere, except where it appears with

the buoyancy force. There, it takes the value

p = po(l — o(T — Tp)). (2.5)

The constant a is the coefficient of volume expansion, T is the temperature and
To is the temperature at the bottom boundary. The fluid has kinematic viscosity
v, thermal conductivity x, magnetic permeability ug, electrical permitivity ¢y and
electrical conductivity o. For simplicity, all these quantities are assumed to be

constants. Note that in the core
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v = 0(107%),

so the effects of viscosity will be neglected over the bulk of the layer. Viscosity
1s only important in thin, viscous Ekman layers that lie close to the bounding

surfaces.

2.2 The Boundary Conditions

It is assumed that the bounding surfaces are rigid, isothermal and perfectly
electrically conducting. Now, these boundary conditions do not reflect the true
physics of the core. More accurate boundary conditions would reflect the fact that
the lower mantle is (to a high approximation) electrically insulating, and not per-
fectly electrically conducting. Similarly, a condition on the heat flux through the
boundaries would be more realistic than arbitrarily imposing isothermal bound-
aries. However, of primary concern is isolating the mechanisms by which bumps
on the core-mantle boundary affect convection in the outer core. For this reason,
these simpler, artificial boundary conditions are adopted to make the problem more
tractable, in the hope that they retain all the essential physics of the problem.

These boundary conditions lead to conditions that the velocity U, temperature
T, magnetic field B and electric field E must satisfy at the boundaries. To obtain

these conditions, the normals to the boundaries are required. They are given by

on z =0,
z +ymsin(my)y on z = d + v cos(my).

N

They are obtained by writing the boundaries in the form of a level surface

¢ = constant,

so that the normals are given by

n=vVv~o.

22



2.2.1 The Boundary Conditions On The Velocity

At a nigid boundary, the velocity U satisfies

U.n = 0. (2.7)

This 1s the no penetration condition, which says that the fluid in the layer cannot
penetrate into the regions outside of the layer. Using (2.6), the conditions at the

bounding surfaces are, therefore

U;=0 on z=0, (2.8a)

U, + ymsin(my)U, =0 on =z=d+ vcos(my). (2.8b)

Because viscosity has been neglected, the no-slip boundary condition on the veloc-

ity (namely n A U = 0) does not have to be satisfied.

2.2.2 The Boundary Conditions On The Temperature

At an isothermal boundary, the temperature T satisfies

T = constant,

which says that the boundary is maintained at a constant temperature. Recalling

that the bottom boundary is kept at a temperature T}, while the top boundary is
kept at a temperature Ty, it follows that T must satisfy

I'=Tp on z=0, (2.9a)

T'=Tq on z=d++cos(my). (2.95)

Note that Tp > T3, which sets up the adverse temperature gradient necessary to

drive convection in the layer.
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2.2.3 Electromagnetic Boundary Conditions

The regions outside the layer are perfectly electrically conducting. Hence

oc=00 in z2<0, z2>d+~cos(my).

However, the fluid in the layer has a finite electrical conductivity, so ¢ is finite in
the layer. This leads to a discontinuity in & at the boundanes. At a boundary

where o is discontinous, the magnetic field B and the electric field E must satisfy

(B.n]=0, [nAE]=0,

where the square brackets denote the jump in value across the boundary (see
Gubbins and Roberts in Jacobs 1987). Ignoring any electromagnetic fields outside
the layer, B and E must satisfy

Bn=0, nAE=0 on 2=0 and 2z =d -+ vcos(my). (2.10)

Now, using Ohm’s law, the boundary condition on E can be replaced by an

equivalent condition on the electric current, J = -;%(V A B). Ohm’s law is

Ly aB4UAB

Taking the cross product with n and using a standard vector identity, this becomes

“nAJ=nAE+(nB)U~ (n.U)B. (2.11)

Using (2.7) and (2.10) this says that

nAJ=0 on z=0 and z=d+ vcos(my). (2.12)

Therefore, an equivalent set of boundary conditions is
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Bn=0, nAJ=0 on z=0 and 2z=d+ vcos(my). (2.13)

Using (2.6) these become

B,=0 on z=0, (2.14a)
- B; + ymsin(my)B, =0 on =z =d+ vcos(my), (2.14b)
and
J: =0, Jy=0 on 2z=0, (2.15a)
Je =0, Jy,=7msin(my)J, on z=d+ vcos(my). (2.15b)

Now, J satisfies the pre-Maxwell equation

VJ=0.

This, together with (2.15), implies that

0J,

s 0 on z=0, (2.16a)

0J,
0z

0 _ , 0J,
+ @(7m sin(my)Jz) + ym sm(my)—a—; =0

(1 — 4*m? sin?(my))
on 2z =d+ vycos(my). (2.16b)

The boundary conditions (2.16) are equivalent to (2.15), and will be used instead
of (2.15).
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2.2.4 Taylor Expansion Of The Boundary Conditions

The boundary conditions on the surface z = d + 7 cos(my) are very difficult
to apply. However, 1t 1s possible to obtain a simpler set of boundary conditions,
which (hopefully) retain all the essential features, but which are applied on z = d.
This 1s done by Taylor expanding the full set of boundary conditions in -, using the
fact that v < 1, retaining only O(1) and O(v) terms. This yields the conditions

U, =0
B,=0
87 on z=0, (2.17a)
9z =
T = To

U, + v cos(my)%—[;‘- = —ym sin(my)U,
B, + v cos(my)22x = —ymsin(my)B,

2 - : 7 on z=d.
%‘L" + 4 cos(my) ‘?92‘7 = --3%(71?3 sin(my)J;) — ym sm(my)%}l
T+ cos(my)%z—‘- = Ty
(2.17b)

This idealised set of boundary conditions will be applied instead of the full set.

However, any effects caused by their imposition will be attributed to the bumps.

2.3 The Equations

The equations that the system must obey are derived from the various phys-
ical laws that govern a rotating, Boussinesq fluid in the presence of a magnetic

field. The first law is Newton’s law of motion, which is used to derive the mo-
mentum equation. Now, to model motion in the core, the magnetogeostrophic

approximation is made, and the magnetogeostrophic equation is obtained
P
20 AU = —V(=) + ——(B.V)B + Lg, (2.184)
po’  popo po

where
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p = po(l — (T —To)), (2.18b)

— 1 2 1 2

are the density and modified pressure respectively. The left hand side of (2.18)
represents the Coriolis force, while the right hand side represents the pressure
force, the Lorentz force and the buoyancy force respectively. Recall from chapter
1 that the fluid velocity U cannot be determined uniquely from (2.18). It can only
be determined up to an arbitrary flow, V(z)y called the geostrophic flow. This
arbitrariness arises as a consequence of the magnetogeostrophic approximation.

To determine V, and hence find the flow velocity uniquely, the following equation

must be solved

1 OM

1
AWV = — 2% 2.19a
(Siv) ore O3 ( )
where
m e d
M= /0 /0 B, B,dzdy, (2.198)

1s the mean Maxwell stress in the y direction (see Soward 1980; Soward and Jones

1983; Abdel-Aziz and Jones 1987). Equation (2.19) represents conservation of

mass in the ¢ direction, but includes contributions from the viscous Ekman layers
that lie at the boundaries. (This is the only place in the model where the effects of

viscosity are important). The second law is conservation of mass. This is embodied

in the continuity equation,

V.U = 0. (2.20)
The first law of thermodynamics yields the heat equation

%—f + (U.V)T = sV?T. (2.21)
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The left hand side of (2.21) represents advection of heat by the fluid, while the
right hand side represents the removal of heat by thermal diffusion. The laws
of electrodynamics (namely Faraday’s law, Ohm’s law and Ampere’s law) can be

combined to give a single equation for the magnetic field. This is the induction

equation, which is given by

%?. +(U.V)B = (B.V)U +7V?B, (2.22)

where

is the magnetic diffusivity. The left hand side of (2.22) represents advection of the
field by the flow, while the right hand side represents stretching of the field lines
by the motion of the fluid, and destruction of field by Ohmic diffusion. Finally, B

satisfies a solonoidal condition

V.B =0. (2.23)

This equation arises because magnetic monopoles do not exist in nature. Hence,

the flux of B through any closed surface must be zero.

2.4 The Formulation Of The Problem

The equations are nondimensionalised by adopting the following scalings

x = Dx*, t=Tt", (2.24a,d)
% 1 %
7=D7", m=_om’ (2.24¢,d)
1 %



where the starred quantities are nondimensional, and

D= y T=_"'a

d D?
T K

have been adopted as length and time scales repectively. As is common in convec-
tion problems, time has been scaled on the basis of the thermal diffusion timescale.

The velocity, magnetic field and temperature scale as follows

U= =(V*(2)y +7"5"), (2.25a)
B = Bo(¥ + 7*qb*), (2.25b)
T = 8D(Tg — z* ++*6*), (2.25¢)

where q 1s the Roberts number.

The flow V*(z)y is the geostrophic flow that arises as a consequence of the
magnetogeostrophic approximation, but it is corrected by a flow y*u*, which 1s
determined to ensure that the geostrophic flow fits into a layer with a bumpy top
boundary. The form of the geostrophic flow arises for the following reason. The
true geostrophic flow in the bumpy layer takes the form U*(z,y, z)j. Consider the
mass flux across the plane y = 7, at which the layer has height =. It is given by

F = WU*(z,g,'zr).

This mass flux F must be the same as the mass flux across any arbitrary plane

¥y = yo, at which the layer has height z0 = 7 + v* cos(m*yo). Hence,

F = e, o) = - o )00

Defining V*(z) = U*(z, 7, 7) the following relation is obtained
29



* Vi(z)
U'(z,y,2) = ———5F—r.
(z,v,2) TF T cos(my)

Taylor expanding this in 4* and retaining terms of O(4*) alone, we get

U'(z,y,2) = V*(z)+ O(7").

The O(4*) correction is absorbed into the flow {i* forced by the bumps, and the

above relation 1s obtained.

Similarly, the magnetic field ¥ represents the strong azimuthal magnetic field
thought to be present in the outer core. It is corrected by a field gy*b* to ensure
that it also fits into a bumpy layer. Finally, the linear temperature profile set
up by the adverse temperature gradient 3 is corrected by ¥*6* to account for the
presence of the bumps. Each of these corrections is topographically forced, i.e.
they are forced by the presence of the bumps. As 4* < 1, these corrections will be

small. Therefore, substituting (2.25) into the governing equations and boundary
conditions, all terms of O(7*?) or smaller can be neglected, to obtain the following

non-dimensional equations

db

2 A= ~VP+ Az + Ri, (2.260)
2V = Thgo-{ T / [ (beby)dedy), (2.265)
q(%—? + V-g—s-) g; + gb C;Zy + V*Db, (2.26¢)

gf V'g"f; = u, + V2, (2.26d)
V.u =0, (2.26¢)
V.b =0, (2.261)
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(where the stars have been dropped). The boundary conditions become

09
u, = b, = 3Jz =0=0 on 2z=0, (2.27a)
u,+mV sin(my) = bz+—q—sm(my) =5, = f—cos(my)=0 on z=m, (2.27b)
where
j=VAD, (2.28)

is the electric current forced in the layer by the bumps.

The parameters that arise under this non-dimensionalisation are the Roberts

number g, the Elsasser number A, the Rayleigh number R, and a modified bump
parameter, I', defined by

~2 D07 3 i
o 1)

2.29
=1 (2.29)

I' =

where F is the Ekman number. Now, under the magnetogeostrophic approxima-

tion,

E<]1,

since the viscous force is neglible compared to the Coriolis force. But, in the limit

of small bumps, - satisfies

v L 1,

and so it is expected that I' will be a finite parameter, which ensures that a finite
geostrophic flow is obtained. Hence, equations (2.26) and (2.27) are valid in the

asymptotic limit
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y<1, T finite. (2.30)

The Rayleigh number is the driving parameter of the system. Any increase or
decrease in R corresponds to an increase or decrease in the amount of excess heat

put in at the bottom boundary, and hence to the thermal forcing on the layer.

Now, define

w=1uz b=0b;,( =(VAu),, € =(VAb), =73.. (2.31)

Then a system of equations for the unknown vector

XT = [9 w b ¢ ( b, b, u, uy], (2.32a)

(which is a function of x, y, z and t), and the geostrophic flow

V = V(z), (2.32b)

can be derived from (2.26). This is done by applying the operators z.curl and
z.curl?® to the momentum equation, and the operators %. and %.curl to the induc-

tion equation. Using standard vector identities and (2.31), the following system of

equations is obtained
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where

(5 +

0¢
Bt

0¢
Oy

) =

Ow
‘5 1
29 _ 2
0z By

O (m fm [~

0¢

Oy

=0,

V?b) — RV%46 =0,

(6t+v:9;) 3y+Vb 0
8¢ ., d’V  dV (/8b,
8y+vg+q( *de?  dz \ 8y

o/, a6 ]
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1s the horizontal Laplacian operator. (Note that the solenoidal conditions on u
and b have been used together with the definitions of ¢ and ¢ to derive the last
four equations of (2.33)). Using (2.31) the boundary conditions become

o¢
w.—-b-—--a—z-—é-—o on z=0, (2.34a)
. m o€
w + mV sin(my) = b+ 7 sin(my) = 5, = 0 —cos(my)=0 on =z=mx. (2.34b)

Equations (2.33) will be solved subject to (2.34) in the subsequent chapters.

2.5 A Note On The Choice Of ¢ And m

At various points in this work, it will be necessary to make choices for the
values of the parameters ¢ and m. In the core, the value of q is thought to be

O(107°). This is an extremely small value, and as the work of Soward (1986) and
Skinner and Soward (1988, 1990) shows, the behaviour of solutions of the mag-
netoconvection problem is extremely complicated in the small ¢ limit. However,
since this work is chiefly concerned with isolating the effects of the topography
upon the magnetoconvection, it 1s necessary to isolate those effects from any that
might arise as a result of the smallness of q. Hence, this work will not consider

small values of g.

Now, the value of m for the core is not known, and therefore it would be
advisable to solve the problem over a range of values of m. However, the results of
Kelly and Pal (1977) indicate that the critical values of m that arise in the standard

plane layer model give rise to the most interesting behaviour in the bumpy layer,

since the possibility of resonance between the bumps and the convection in the
layer then arises (see also chapter 4 for more details). Therefore, as a matter of
expediency, the values of m will be chosen to be the critical values of m that arise
in the standard layer, since these appear to give the most interesting behaviour
in the bumpy layer. However, the observation that these are but one out of a

continuum of values of m should be borne in mind when considering the results of

this work.
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Chapter III

The No Bump Case

3.1 The No Bump System

Before proceeding to solve the full system, it is enlightening to consider the
no bump case, where the top boundary is flat, and given by z = d. This is the
standard plane layer model of magnetoconvection. The problem involves solving

the magneto-geostrophic equations

2Q A (U + V(z)§) = --V( ) + (B V)B + —-g, (3.1a)
PO Hopo
1 0 w1l
_ 1b
(Qv) V= TRy 3::{27rd 0 -/0 BxBdedy}’ (3.18)
V.(U + V(z)y) =0, (3.1c)
6T or .
OB (UVB+VIE = (BV)U+B, Y549V,  (3.le)
Ot 0y dz
V.B =0, (3.1f)

(where p and P, defined by (2.18b,c), are the density and modified pressure respec-
tively). The boundary conditions are as before, namely that the boundaries are

rigid, perfectly electrically conducting and isothermal. They lead to the conditions
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Uz::Bz:azmT-—To:O on 2z =0, (3.2a)
Uz==Bz==%iz=T-Td=0 on =z =d. (3.2b)

In the no bump case, these boundary conditions are exact.

3.2 The Equilibrium Solution

A steady solution of (3.1) subject to (3.2) is

U =0, (3.3a)

V =0, (3.3b)

B = By, (3.3c)
T =Ty — p=. (3.3d)

This is the hydrostatic conduction solution, so called because the fluid in the layer
remains at rest, and excess heat at the bottom boundary is carried across the layer
by thermal diffusion (Chandrasekhar 1961). Such a motionless solution is possible

because the equation of hydrostatic equilibrium is satisfied,

VP + pgi = VP + po(1 — oT — Tp))gz = 0.

Taking the curl of this equation yields

VI Az =0, (3.4)
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which says that the surfaces of constant temperature (isotherms) are horizontal.
This 1s the condition that ensures that a hydrostatic balance is possible in a plane

layer.

3.3 The Perturbation Equations

To see how motion develops from the hydrostatic basic state, the stability of
(3.3) must be considered. This is done by adding small perturbations to U, B
and T and asking whether the perturbations grow or decay with time. If the
perturbations decay, then motion does not become established in the layer, and
the basic state (3.3) is said to be stable. If, however, the perturbations grow in
time, then motion does become established in the layer and (3.3) is said to be
unstable. Denoting the perturbations by u, b and 8, the velocity, magnetic field

and temperature take the the following form in the perturbed state

U = ig-(0 + du?), (3.5a)
D
B = By(y + 8gb*), (3.5b)
T =BD(Ty - 2" + 66%), (3.5¢)

where g is the Roberts number (defined by (1.1)), § < 1 is a small parameter mea-

suring the size of the perturbations, and the starred quantities are nondimensional.

The unknowns have been nondimensionalised by adopting

ot
T

2

s
N

as length and time scales, respectively. Substituting (3.5) into (3.1) and (3.2), and

neglecting all terms of O(6%) or smaller, the nondimensional equations governing

departures from hydrostatic equilibrium are obtained. These are given by
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2Z Au=-VP+ AEE + ROz, (3.6a)
V.u=0, (3.60)

-g_f = u, + V2, (3.6¢)

%':- = —g—;’- + Vb, (3.64)

V.b =0, (3.6e)

where here and below the stars are dropped. As well as the Roberts number g, the
other parameters of the problem are A, the Elsasser number and R, the Rayleigh

number. Note that

beby, = O(6%),

so no Maxwell stress is generated at O(6), and hence, no geostrophic flow is ac-
celerated by the perturbations. The boundary conditions on the perturbations

al€

U, =b,=—=—=0=0 on z=0,~,

where ] = V A b is the perturbation electric current. Define

w=1u,b=b,,(=(VAu), {=(VADb), =7..

Then, exactly as in chapter 2, a system of equations for the vector

xT=[e w b ¢ ¢ by by u u,,],
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may be derived from (3.6). They are

2%;3 +- % = (, (3.7a)

23—5 _ A%(Vzb) _RV%0 =0, (3.7b)
q% ~ % - V=0, (3.7¢)

q-g-f- — %— - V¥ =0, (3.7d)

g—g —w -V =0, (3.7€)
Vi = -2 - (3.75)

Vb, = - 00 & (3.70)

25 ™ " 8ydz ' bz’

0w ¢
2 h— L S A
02w 8¢
2 e — S ——— .
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where V% is the horizontal Laplacian. The boundary conditions become

w=b=?—£-=6=0 on 2=0 and 2z=m. (3.8)

0z

3.4 Solutions Of The Perturbation Equations

The solutions of (3.7) and (3.8) must be periodic in x and y, with periods 3,"3
and 2X respectively. To satisfy this condition, a solution of (3.7) and (3.8) is sought

of the form

X = Xi(z)exp(ilz + imy + At) + c.c., (3.9)

where

XT(s) = () Wa(z) Ba(z) Xu(s) Za(2)

Ba(s) Bu(z) Ua(2) Un(2), (310

represents the z-structure of (3.9) and c.c. stands for complex conjugate. (The

reason for including a subscript 1 will be made clear later). A is a complex number

defined by

A =38+ 1w, (3.11)

where s is the growth rate and w is the frequency of the perturbations. (3.9)

represents a convection roll, whose axis is perpendicular to the vector defined by

k = (I,m,0).

Two distinct types of roll can arise, depending on their orientation with the applied
magnetic field (which is in the y direction). A solution which has ! # 0 is called an
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oblique roll, since it’s axis makes an angle less than 5 with the applied magnetic
field, and a solution which has I = 0 is called a transverse roll, because it’s axis
i1s perpendicular to the applied magnetic field. Although the transverse roll is a
special case of the oblique roll, it has different stability characteristics, and will be

discussed 1n 1solation.

Substituting (3.9) into (3.7) the equations for the z-structure of the roll are

obtained. These are given by

2DW; + AimX; = 0, (3.12a)

2DZ; — Aim(D? — k*)By + Rk*Ty =0, (3.125)
(D* — k* — gA)B; + imW; = 0, (3.12¢)
(D? — k% — gA) X1 +imZ; = 0, (3.124)
(D® = k* = ATy + W1 =0, (3.12¢)
k’Bzy —ilDB; —imX; = 0, (3.12f)
¥*B,; —imDB; +ilXy =0, (3.12g)
k2Uz1 — ilDWy — imZ; = 0, (3.12h)
k*Uy —imDW, +ilZ; =0, (3.121)

where here and below

41



k2 =12 +m?.

Substituting (3.9) into (3.8) the boundary conditions become

Wi=B1=DXy=T1=0 on 2=0 and 2=m.

The most general solution of (3.12) and (3.13) is given by

X1(2) = A1Xirs(2),

where A; is a complex constant and

Tirs(z)

Wirs(z)

Birs(z)

X1ns(2)

X1rs(z) = | Zirs(2)
B:1rs(z)

By1rs(z)

Uz1rs(2)

Uy1rs(2)

sin(2)

(1+ k% + A) sin(z2)
iﬂl(_ﬁ-,ik_:—;\a sin(z)
_(le=' 1+I::+A cos(z)

2(1+k’+ﬁn)g1+k’+,\2 cos(z)

(rresadry — mar)(L + &% + A) cos(2)

|

(m -} A_fg-r;)(]' <+ k2 + A) COS(Z)

P

i( g + Z2UEE o)y 1 4 k2 4 ) cos(z2)
2

i(5 — 2O 480 (1 + k2 4 ) cos(2)

This solution exists if and only if the following relation is satisfied
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4gA + 1+ k2P (A + 14+ k) + A2m*(\ + 1 4+ E2)(1 + £2)

—k*Am2(gA + 1+ k*)R = 0. (3.16)

(3.16) is called the dispersion relation. The real and imaginary parts of (3.16) give
two equations for the two unknowns s and w. For fixed values of A and g, the

solution of these two equations takes the form

s = s(R,1>,m?%), w=uw(R,I? m?).

The stability of the basic state (3.3) depends upon the sign of s. If at given values
of R,land m

s(R,1?,m?) <0,

then the perturbations will decay exponentially in time to leave the basic state as

it was. Hence, (3.3) is stable. However, if

s(R,1*,m?) >0,

then the perturbations will grow exponentially in time, and the basic state will
lose stability to the convection roll defined by (3.9). Hence, (3.3) is unstable. The
point at which the basic state loses stability for given A and ¢ is defined by

s(R,1%,m?) =0. (3.17)

Now, this defines a relation of the form

R = R(1%,m?), (3.18)

1.e., for given values of [ and m it defines the Rayleigh number at which the basic

state (3.3) goes unstable to perturbations of the form (3.9). To find where this
first occurs, (3.18) must be minimised with respect to I* and m?. This is done by

solving the simultaneous equations
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OR OR

-

o = Bmz ¥

These yield the critical wavenumbers I, and m, for which R defined by (3.18) is a
minimum. This is the critical Rayleigh number, and is defined by

R, = R(I2,m?).

The basic state is stable to the perturbations for R < R, but loses stability to
the perturbations at R = R.. The frequency of the perturbations at criticality is

given by

we = w(R,, 12, m?).

For the transverse rolls, the above procedure is repeated, but with I set to zero.

3.5 Linear Stability Results

The stability results quoted below were first derived by Roberts and Stewartson
(1974). Now, R, and w, can be found directly from (3.16) by setting

s =0,

in (3.16). This yields

Agiw + 1 + k*)(iw + 1 4+ k%) + A°m*(iw + 1 + K2)(1 + &%)

—k*Am*(qiw + 1+ k)R = 0. (3.19)

The real part of (3.19) is

(1 + k*)[4g(q + 2)w? — {4(1 + k)% + A’mi(1 + k?) - K’Am?R}] =0, (3.20)
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while the imaginary part is

widg?w?® — {4(2¢ + 1)(1 + k%) + A’m*(1 + K?) — K2Am?qR}] = 0. (3.21)

These provide two equations for the two unknowns R and w, from which R, and

we can be found.

3.5.1 The Exchange Of Stabilities

The simplest solution of (3.21) is

w2 = (). (322)

This means that the basic state loses stability to steady perturbations, which is
called losing stability through the exchange of stabilities (Chandrasekhar 1961).
Substituting (3.22) into (3.20) gives

(1 + k%)

R Am?(1 + k?)
 Am2k?

A (3.23)

..I_

The critical wavenumbers . and m. are found from the simultaneous equations

OR _ OR _ 0
oIz m?2
The solution of these equations 1s given by
- 3? m? = 3{3 (3.24)

Evaluating (3.23) on these values yield the critical Rayleigh number for an oblique
roll

R. = 6v/3. (3.25)
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Thus, as R is increased from zero, the basic state first loses stability to an oblique

roll (whose wavenumbers are given by (3.24)) through the exchange of stabilities

once R equals R.. This result depends upon the value of A: if

A < /3,

then

2 <0,

which cannot happen, since [ is real. Therefore, the oblique roll can only go

unstable for sufficiently strong magnetic fields, those which satisfy

A >3, (3.26)
Setting ! = 0 in (3.20) yields R for the transverse roll

41+ m?)?

—— + A1+ m’). (3.27)

R

The critical wavenumber m, for this roll is defined by the solution of

OR
Bm? =~
that 1s, as the solution of
A’m® — 8(1 + m?) = 0. (3.28)

(3.28) is regarded as a cubic equation for m?, and m? is chosen to be it’s positive
root. Evaluating (3.27) on m yields the critical Rayleigh number for the transverse
roll

41+ m?)?
- Amé

46
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10

Figure 3.1: Stability boundaries in the (g,A) plane for
the exchange of stabilities. The oblique roll is preferred in region I,
and the transverse roll is preferred in region II.
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which after simplifying using (3.28) becomes

R, = %(2 +m?2)(1 + m?). (3.29)

Thus, as R is increased from zero, the basic state first loses stability to a transverse

roll (whose wavenumber is given by m.) through the exchange of stabilities when

R equals R.. This occurs for all values of A.

Now, when A > +/3, the basic state can lose stability to either a transverse roll
or an oblique roll. It actually loses stability to only one - the one with the lowest
critical Rayleigh number. This roll is then said to be preferred for A > /3. Since
64/3 is the minimum of

po M1HE? AmA(14 k)
= T AmZk? k2

over all [ and m, including the case [ = 0, it follows that the oblique roll has a
lower critical Rayleigh number that the transverse roll, and is the preferred mode

of convection for A > 3.

Hence, for weak magnetic fields, i.e. those satisfying

A < /3,

the basic state loses stability to a transverse roll through the exchange of stabilities.
But, once the magnetic field strength (as measured by A) increases beyond /3,
the oblique roll becomes preferred, and the basic state loses stability to an oblique
roll through the exchange of stabilities. This is shown in figure 3.1.

3.5.2 Overstability

The second solution of (3.21) is

212 2, 4 2Y L2 A2
2 _ 420+ 1)(1+K) +t'r;z(1+k) k?AmigR (3.30)
q

Now, w 1s real, so
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wZZO.

When this holds (and conditions will be found to ensure that it does) the basic
state loses stability to perurbations that oscillate with frequency w. This 1s called
losing stability through the mechanism of overstability (Chandasekhar 1961). Sub-
stituting (3.30) into (3.20) and simplifying yields

e o— mﬁ + e [ | 1
Where

1+q

is a modified Elsasser number. Substituting (3.31) into (3.30) and simplifying
yields

y _ (@ - DAmA(1 4 #?) — 41+ #*)?

i (3.33)

€
[

The critical wavenumbers minimising R are found from the simultaneous equations

0R _ 0R _
ol2  Om?z
The solution of these equations is given by
2=2-2B014g, m=2Ba.y) (3.34)

Evaluating (3.31) and (3.33) on these values yields the critical Rayleigh number
and the frequency of the oblique roll, which are given by

124/3
)

q
49
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2 _ e =2) (3.36)

w
c 2
q

Therefore, as R 1s increased from zero, the basic state first loses stability to an
oblique roll (whose wavenumbers are given by (3.34)) through overstability once R
equals R.. The frequency of the perturbations at criticality is given by w.. Notice
that w, 1s real only when

g > V2.

Similarly, I; is real only when

A > Ai(g) = V3(L +9).

Thus, an overstable oblique roll is only possible in the region of the (g, A) plane
defined by

g>v2, A>A(g), (8.37)

since only in this region are both w, and [, real.

Setting ! = 0in (3.31) and (3.33) yields the Rayleigh number and the frequency

associated with the transverse roll

212
R = E(M—L + A(1 + mz)), (3.38)
q Am?

y _ (@ = DA?mA(1 +m?) — 4(1 + m?)?

1 (3-39)

&/

The critical wavenumber minimising R is found from the solution of

1.e. from the solution of
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A’m® —8(1+ ¢)%(1 + m?) =0. (3.40)

This is again regarded as a cubic im m?%, and m? is chosen to be it’s positive root.
Evaluating (3.38) and (3.39) on m. and simplifying using (3.40) yields the critical

Rayleigh number and frequency associated with the transverse roll

A
Re= "7 q)(1+m3)(2+m§), (3.41)
2 2 o .2
w? = --—_.-_—-—--—_-(”mc)(zf —2-m) (3.42)
g1,

Thus as R is increased from zero, the basic state first loses stability to a transverse

roll (whose wavenumber is given by m.) through overstability once R equals A..
The frequency of the transverse roll is given by w.. This solution exists provided

the w, is real. The region of the (g,A) plane where this is true has a boundary
defined by

From (3.42), this occurs when

m? = 2(¢® - 1). (3.43)

Substituting (3.43) into (3.40) and simplifying yields

(¢ —1)°A% - (1 + q)*(2¢* - 1) = 0.

Define

_ (1 T Q)(2q2 - 1)5 _ (3_44)
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J,
q=2
|
8
A=A1
6
II1 i
4
2 A=A,

Figure 3.2: Stability boundaries in the (g, A) plane
in the overstable case. The oblique roll is preferred in region I,
while the transverse roll is preferred in region II. Oscillatory

solutions are not possible in region III.
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Examination of (3.44) reveals that Ao(q) is real only if ¢ > 1. Therefore, an
overstable transverse roll is only possible in the region of the (g, A) plane defined

by

g>1, A2 Ao(q), (3.45)

since w, is real only in this region.

Now, for ¢ and A in the region

q 2 \/53 A 2 AI(Q):

the basic state can lose stability to either the oblique roll or the transverse roll

through overstability. However, repeating the argument given in the exchange of
stabilities case, it can be shown that the oblique roll has a lower critical Rayleigh

number than the transverse roll, and hence is preferred in this region. The trans-

verse roll is preferred in the region defined by

1<g<v?2, A>Ag),

g> V2, Ao(g) <A < Aiq)

This is illustrated in figure 3.2.

3.5.3 Steady Or Oscillatory?

The basic state can lose stability to the perturbations through two mechanisms

- the exchange of stabilities or overstability. To find the regions of the (g, A) plane

where each mechanism is preferred, define

613 for A > /3,
R. = (3.46)
2(1+m2)(2+m?) for A <3,

where m? is the positive root of
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A°m® —8m? -8 =0.

Re 1s the critical Rayleigh number associated with the exchange of stabilities.

Similarly, define

12q 3 forg>2,A> AI(CI):

e 3.47
(L +md)(2+ml) for 1<g<vZ A>Ag), (3.47)

and ¢ > V2, Ao(g) < A < Ax(q),

where m?2 is the positive root of

Alm® —8(1 +¢)2(1 + m?) = 0.

R, is the critical Rayleigh number associated with overstability. Now, if for given
A and q, R. < R,, then the exchange of stabilities is the preferred mechanism;
however, if R, > R,, then overstability is the preferred mechanism of instabil-

ity. The line in the (g, A) plane separating the regions where each mechanism 1s

preferred is given by

&
I
&

This defines the boundary curve

A= AE(q):

between the two regions. This curve must be calculated numerically using (3.46)
amd (3.47). The graph of Ag against q is shown in figure 3.3. The exchange of
stabilities is preferred to the left of the curve, while overstability is preferred to

the right.

Using this curve together with the stability results obtained earlier, the (g, A)
plane may be divided into four regions, in which each of the four possible types of
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Figure 3.3: The curve A = Ag(g) which separates the
(¢, A) plane into regions where the exchange of stabilities or
overstability is preferred. Overstability is preferred in region I,

while the exchange of stabilities is preferred in region II.
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q=2
111
8 A=A1
6 I IV
A
4
L1
% A=3"
It A=l
T A=A,

Figure 3.4: The regions of the (¢, A) plane where each of the
four possible types of convection roll are preferred. Region I: Steady oblique roll.
Region II: Steady transverse roll. Region III: Overstable oblique roll.

Region IV: Overstable transverse roll.
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roll (viz. steady oblique, steady transverse, overstable oblique, overstable trans-
verse) are preferred. This is shown in figure 3.4, and represents the complete

stability diagram for the basic state (3.3).

3.6 Degeneracy Of The Solution

The angle made between the oblique roll solution (3.9) and the applied mag-
netic field is determined so that the Coriolis force in the layer is best balanced by
the Lorentz force (see Roberts and Stewartson 1974). It transpires that this angle

is fixed in magnitude but not in sign. That is, there is another solution of the

perturbation equations which may be obtained from (3.9) and (3.15) by mapping

m — —Mm.

This reverses the angle made by the oblique roll solution (3.9) with the applied
magnetic field. The new roll is defined by

X = X_1(2)exp(ilz — imy + At) + c.c.. (3.48)

where the z-structure of this roll is given by

X_1(z) = A1X_1Rrs(2),

where A_1 1s a complex constant and

Y



T_1ps(z) sin(z)
W_1rs(2) (1 + k% + X)sin(z2)

| —im(1+k342) .
B_1rs(2) | =l sin(2)

A y 2
X_1rs(2) 2 42) cos(2)
2 2
2(1+k +Kz:n!!:1+k +/\! COS(Z)

X_1rs(z) = | Z-1rs(z)

B,_1rs(2) (errmrrerany — me2)(1+ K% + X) cos(2)

2
B,_1ns(z) (Frrreray — meem)(L + 2 + ) cos(2)

: m 2
Up-1rs(z) | | i( — 2202 FaA)) (1 4 k2 4 X) cos(z)

2
Uy-lRS(z)J i( 57 - - k:: :ﬂ )(1+ k* + X) cos(2) (3.49)

This oblique roll has identical stability characteristics to the roll defined by (3.9)
and (3.15). The difference between the two solutions is that the axis of (3.9) makes
an angle ¢ with the applied magnetic field, while the axis of (3.48) makes an angle
—¢ with the applied magnetic field. Therefore, the two rolls are aligned at equal

but opposite angles to the applied magnetic field. The roll (3.9) is called a (+)-roll,
while (3.48) is called a (-)-roll. Linearly, there is no way to destinguish between

the two rolls.

This means that there are two types of oblique roll solution to the perturbation

equations. Either a single (4+) or (-)-roll goes unstable at criticality, so either

X = A1 X rs(2) exp(ilz 4+ imy + twct) + c.c.,

or

X =A_1X_1ns(2) exp(ilz — imy + ww.t) + c.c.,
o8



at criticality. These are called single roll solutions. The alternative is that a linear

combination of a (+)-roll and a (-)-roll goes unstable at criticality, so

X = A1 X_1p5(z) exp(ilz — imy + tw t)+

A1 X1 ps(z) exp(ilz + imy + 1w.t) + c.c.,

at criticality. This is a double roll solution. The existance of two distinct types
of oblique roll solution means that the problem is degenerate. The nonlinear
evolution of single roll solutions was examined by Roberts and Stewartson (1974),
while Roberts and Stewartson (1975), and Soward (1980), examined the evolution

of the double roll solution.
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Chapter IV

The Basic State That Arises In A Layer With Bumps

4.1 An Imperfect Configuration

Recall that a hydrostatic balance can only be maintained in a plane layer
provided that the isotherms line up with surfaces of constant gravitational potential
(see chapter 3). Since the top boundary of the modified layer, z = 7+ cos(my), is
maintained at a constant temperature Ty, it is an isotherm. However, the surfaces

of constant gravitational potential are planes parallel to the bottom boundary, 1.e.

the planes

z = constant,

just as in the standard layer. The nonalignment of the isotherms near the top
boundary with the surfaces of constant gravitational potential leads to an unbals-
anced buoyancy torque, which forces small scale motion in the layer. This forcing
is independent of the thermal forcing on the bottom boundary, and so motion will
be forced irrespective of how strong the adverse temperature gradient is. This
situation differs from what occurs in the standard plane layer model. There, mo-
tion could only occur when the hydrostatic basic state lost stability to convection
rolls once the adverse temperature gradient (as measured by the Rayleigh number)

exceeded a certain critical value.

Configurations such as this are called imperfect, and have been studied in
various geometries with different types of forcing (e.g. Kuang and Bloxham 1993,
in a plane layer with bumps, Bell and Soward 1995, in an annulus with bumps,
Sun et al 1994, in a sphere with thermal inhomogeneities). The work most relevant
to this problem is described in Kelly and Pal (1977), who consider convection in a

layer with bumpy top and bottom boundaries in the absence of a magnetic field.
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4.2 The Equilibrium Solution

To find what form is taken by the motion forced by bumps, a solution of the

following equations is required

3w 0¢
33 T Oy 9
¢ 0 o2 2 g _
282 — c,)y(V b) — RVyb =0,

d[m o [T
2V = Thay (g |7 ) etz

0b Ow

2
By 8y+Vb

qV —

ag O o2 ( vV d_V(aby
5;_3y+V£+q “dz?  dz \ Oy
V-C?—g =w + V20,
Oy
0*b  O¢
2 — ———
Virbs 0z0z Oy’
V25 — 6%b _c?_f_
By Oyldz Oz
Q2w  O¢
2 b — — —
Vs = 020z Oy’
2
2 .. _ 0w 3C
Vity = 3y3z Oz’

These are to be solved subject to the boundary conditions
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(4.1a)

(4.1b)

(4.1¢c)

(4.1d)

(4.1h)

(4.15)

(4.15)



w=b=§§=9=0 on z =0, (4.2a)

w + mV sin(my) = b+ %sin(my) = gé =0 —cos(my)=0 on z=x. (4.2b)

The solution of (4.1) subject to (4.2) will represent the basic state that arises in a
plane layer with a bumpy top boundary.

The boundary conditions suggest the following ansatz for the solution of (4.1)
and (4.2),

X = Xo(z) exp(tmy) + c.c., (4.3)

where c.c. stands for complex conjugate and

X3(2) = |To(z) Wolz) Bo(z) Xo(2) Zo(2)
Buolz) Buo(z) Uso(s) U2, (44)

represents the z-structure of the solution. (4.3) is a steady, transverse convec-
tion roll whose axis is parallel to that of the bumps, and perpendicular to the
applied magnetic field. The wavenumber m of this convection roll is equal to the

wavenumber of the bumps, and is assumed to be given.

Now, (4.3) gives

buﬁby - BzD(Z)ByO(Z)Bzimy + BzO(Z).B;O(x) + C.C.,

(where the star denotes complex conjugate). Using this, the Maxwell stress M

generated by the transverse roll is given by

2%
m f[m [7 1 7 . B
M _/; /0 (bpby)dzdy = ;r-./o B:o(z)Byo(2)dz + c.c. = const.

~ 22

Hence, the transverse roll forced by the bumps satisfies Taylor’s constraint
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oM _ i[ iy - /;(bzby)dzdy] = 0,

8z Oz |2m?

and no geostrophic flow is accelerated, so

V =0.

(4.5)

Substituting (4.3) into (4.1) using (4.5), the equations for the z-structure of the

roll are obtained

2DWo + AvmXo = 0,

2D 2o — Z\‘zﬂ.":'rz.(l)2 — mz)Bo + Rm?Ty = 0,

(D?* —m?*)By +imWp = 0,

(D2 — mz)To + Wo = 0,

(D? —m?)Xp +imZy = 0,

méB,o = im DB,

szmo — imZO,
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(4.6a)

(4.6)

(4.6¢)

(4.6d)

(4.6¢)

(4.61)

(4.69)

(4.6h)

(4.61)



where D = £. The boundary conditions (4.2) are satisfied by (4.3) provided that

W0=B0=DXO =T0=‘-0 on Z:O, (4.76)
WoﬁBo—%=DXO'—=T0-%=O on 2 =T7T. (476)

The solution of (4.6) subject to (4.7) is given by

To(2) Eg=1 Aon exp(An 2)

Wo(2) S _1(m? — A2) gy exp(Anz)

By(2) o 1 im Ao exp(Anz) + 2%?;,%('%);5 sinh(mz)

Xo(2) KZ% 2?::1 An(m? — /\i)Aon exp(Anz)
Xo(z) = | Zo(2) | = 7\%7 En=1An(m? — A2)? Aon exp(An2) , (4.8)
Bo(2) A;ﬂfg' fi=1 Ai,,_(m2 — Ai)AOn exp(An2z)

Byo(2) — Eg=1 AnAon exp(Anz) + M—%;&?%j cosh(mz)

Uzo(2) K%:;s mel z\,,,(m2 - Ai)2Agn exp(An2)
Uyo(2) L 38 1 An(m? — A2) Agp exp(Anz)

where the Ag, are complex constants and the A, are the zeros of the polynomial

4

Amz)ﬁ()n2 —m?)? + Am?(A? = m?) + Rm? = 0. (4.9)

To determine the Agp, the boundary conditions must be applied. These yield
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Y- Aon =0, (4.10a)

6
2 Aonexp(dnm) = 51-, (4.103)
n=1
E Aoa(m?® —A2) =0, (4.10c)
n=1
Z Aon(m? — X2) exp(An7) = 0, (4.10d)
n=1
ki i AonAi(m? — A2) =0 (4.10¢e)
Am " ’
21 : A AZ 2 2
-A—ﬂ’b_ ;1 On n(m — An)CXP(AJ‘ﬂ') = 0 (410f)

(4.10) provides six linear equations for the six unknowns Ap,. They can be written

in matrix form as

LA =R, (4.11)

where

RT==[0 - 0 0 0 0],

and the rows of the 6 x 6 complex matrix L are defined by
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Lin =1, (4.122)

Ly, = exp(A,T), (4.12b)

L3, =m? — «\i, (4.12¢)

Lyn = (m? — A2)exp(Anr), (4.12d)
Lsn = f—;—;ki(mé — A2), (4.12¢)

Lgn = %Aﬁ(mz - Af,jexp(xjw). (4.12f)

Once (4.11) has been solved to give the Agn, the solution of (4.1) and (4.2) will be
complete, and given by (4.3) and (4.8).

4.3 Parameter Values And Numerical Methods

Completing the solution of (4.1) and (4.2) depends on being able to solve (4.9)
for the A, and (4.11) for the Agn. To accomplish this, values must be assigned to
A, q, T, m and R, and then numerical methods must be found to solve (4.9) and

(4.11).

The value of A in the core is thought to be O(1), indicating the presence of a

strong azimuthal magnetic field. We choose

A = 4.0, (4.13)

since this is a geophysically plausible value. Three values of g are chosen, namely
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g=01, ¢=10, gq=10.0, (4.14)

to ensure that a large range of values of g is covered.

The vanishing of the geostrophic flow V means that the solution is independent

of the value of I', since I' only appears in the equation for V.

The qualitative behaviour of the convection is not dependent upon the value of

m - it merely defines the lengthscale on which the bumps vary and the convection
takes place. For this reason, m is chosen to be the critical wavenumber associated
with a steady transverse convection roll in a standard plane layer, as defined in

chapter 3. That is, m? is chosen to be the positive root of the polynomial

A*m® —8m? — 8 =0, (4.15)

which is cubic in m?%. This choice is also made in Kelly and Pal (1977). (4.15) is
solved numerically using N.A.G. routine C02AFF. This routine uses a variant of

Laguerre’s method to find all the zeros of a complex polynomial.

Finally, a range of values of R is chosen. For each value of R in this range,
(4.9) is set up, and then solved numerically using N.A.G. routine CO2AFF. This
yields the A,. Using these, the matrix L is set up, and equations (4.11) are solved
using N.A.G. routine FO4ADF. This routine uses an LU decomposition of L to

solve (4.11) for Ay.

In this way, the A, and Ag, are found for each relevant value of the Rayleigh
number R. These define Xo(2), and hence the solution of (4.1) and (4.2) for each

value of R.

4.4 The Results

Unlike the hydrostatic basic state that arises in a standard plane layer, the
basic state that arises in a layer with a bumpy boundary depends upon the value
taken by the Rayleigh number R. To show this dependence, the amplitude of the
solution is plotted against R. A convenient measure of the amplitude of the solution
was found to be the meansquare heatflux generated at the bottom boundary by
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the solution, denoted by H. This measure is used instead of the usual Nusselt
number throughout this work. H is defined as follows. The temperature of the

roll 1s given by

6
0 = { E Aon eJcp(/\nz)} exp(imy) + c.c..
n=1

The heatflux is then given by

08 0 :
Fly,z) = 5o = { Y AnAon exp(Anz)} exp(imy) + c.c..

n=1

Then, define

It transpires that

(4.16)

(Note that H is independent of g, since the equations that define the A, and Ag,
are independent of q). Figure 4.1 shows a plot of H against R.

The graph of H shows that the convection exists for all values of R (confirming
the argument given in section 4.1) except that it is singular at one value of R, which

shall be denoted by R,. The convection can be separated into two regimes. The
first 1s

R<LR, or R>»R,,

and is called the quasi-conduction regime. Here, the convection is of finite ampli-

tude. The second regime is

R~ R,,
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and is called the critical regime. Here, the amplitude of the convection becomes
unbounded. R, is called the critical Rayleigh number, but the phrase is used in
a different context to it’s use in chapter 3, where it referred to the value of R at
which the hydrostatic basic state lost stability to perturbations and convection
could take place. Instead, the critical Rayleigh number is used here to define the
value of R at which H, and hence the basic state, has a singluarity.

It tranpires that the value of R at which the singularity lies can be calculated
analytically. In fact,

where R, is the value of the Rayleigh number at which steady, transverse convection

rolls go unstable in a standard plane layer. To see this, note that

2\2
R = ﬂl{—n-;?—)— + A(L +m?), (4.17a)

where m? is the positive root of the following cubic equation in m?,

A*m® — 8(1 + m?) = 0. (4.17b)
But, at R, (4.9) gives

4(—2% + m?)%(=)2
He = —-(-—“—Zgzq)—-("—"——)' + A(=A? + m?), (4.18a)

where A, denotes the values of the A, at R, and where, again, m? is the positive

root of the following cubic equation in m?,

A’m® —8(14+m?) =0, (4.18b)

Subtracting (4.18a) from (4.17a) yields

(A24+1)P(\.)=0 at R=R,,
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20

15

H 10

Figure 4.1: The meansquare heatflux at the bottom boundary H, plotted
against the Rayleigh number R, for the case A = 4.0. This

quantity 1s independent of gq.
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where P(A) 1s a fourth order polynomial in A. Hence, choosing

Acl =1, A2 = —1, (4.19)

and substituting (4.19) into (4.12), it turns out that the first two columns of LL are

1dentical when

Therefore,

detL=0 when R=R., (4.20)

and the system of equations defined by (4.11) has no solution. Hence

Rg —_ Rc.

Mathematically, the singularity arises because K, is the eigenvalue of the ma-
trix L at which the corresponding homogeneous problem that arises in a standard
plane layer has a solution. The forced, inhomogeneous problem considered here
will not in general have a solution at the points where the homogeneous problem
has a solution. (This is known as the Fredholm Alternative). Physically, the sin-

gularity arises as a result of resonance - the wavelength of the bumps forcing the
motion (namely 2X) is the same as the wavelength of the free mode of convec-
tion at R,, the free mode of convection being a steady, transverse convection roll
in the standard plane layer. Kelly and Pal (1977) call this resonant wavelength

excitation.

In practice, the amplitude of the convection does not become unbounded at
R,. Close to R, the solution is outside the asymptotic limit in which the governing
equations (4.1) are valid, and the nonlinear terms neglected in this limit become
important. These nonlinearities prevent the amplitude of the convection from
becoming infinite (see Kelly and Pal 1977).

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 show plots of Ty(2), Uzo(2), Uya(2), Wo(2),
Bzo(z), Byo(z), Bo(z), Xo(z) and Zy(z) against the quantity
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Figure 4.2 .
.2: Plots '
of (a) To(z), (b) Uzo(2) , against ‘= 2
P ot

.3

for the cas
e A =4.0
U g =
Rmu%l. The values of R shown are:
0(--.),and R =13.0 (.....} “ f=300)
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Figure 4.3: As in figure 4.2, but showing (a) Uye(2), (b} Wo(z).
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Figure 4.4: As in figure 4.2, but showing (a) Bro(2), (b) Byofz).
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Figure 4.5: As in figure 4.2, but showing (a) Bo(z), (b) Xo(z2).
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Figure 4.6: As in figure 4.2, but showing Zo(2).
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r 22—
z = :
W

(which is chosen so that the layer lies on the interval [—1, 1]) for various values of

R. The unknowns were found to obey the following conditions

Ty = T2,
Uzgo = — :0:
UyO — ;0:
Wo = Wy,
Bzo = By, (4.21)
ByO —~ ;0:
By = — 5:
XO == = 5:
Zo = 51

so only the relevant real or imaginary part of each unknown is plotted. Only
B,o and By depend upon the value taken by g, and these are shown for ¢ = 0.1.
The plots show that the transverse roll forced in the layer by the bumps has

a more complicated z-structure than the free transverse roll that arises in the

(K



standard plane layer. This is because the inhomogeneities on Tg and By forbid the
solution from adopting a simple sinusoidal z-structure. The plots also show that

the convection reverses direction above R,, since the solutions change sign once

the Rayleigh number exceeds R,.
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Chapter V

The Stability Of The Basic State

5.1 The Perturbation Equations

Having computed the basic state that arises in a layer with a bumpy top bound-
ary, the next step is to examine the stability of that basic state. This is done by
adding small perturbations to the basic state, and asking whether the perturba-
tions grow or decay in time, for given parameter values. If the perturbations grow
in time, then the basic state is unstable to the perturbations. But if the pertur-
bations decay in time, then the basic state is stable to the perturbations. Of key
importance will be locating the point at which the basic state first loses stability to
the perturbations, and what form the onset of instability takes, i.e. does the basic

state lose stability through the exchange of stabilities or through overstability?

Recall, the basic state has the form

X = Jt(y, z), V=0. (5.1)

Denote the perturbations by X, and V;, and set

X = i(y,z) + 6XP($:y3 <) t): (5'20')

V =0+ §Vy(z), (5.2b)

where § < 1 is a small parameter governing the size of the perturbations. Sub-
stituting (5.2) into the governing equations (2.35), subtracting off the equations
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