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Abstract 

Ovarian cancer is the 5
th

 most common cancer in females and the UK has one of the highest incident rates 

in Europe. In the UK only 36% of patients will live for at least 5 years after diagnosis. The number of 

prognostic markers, treatments and the sequences of treatments in ovarian cancer are rising. Therefore, it 

is getting more difficult for the human brain to perform clinical decision making. There is a need for an 

expert computer system (e.g. Artificial Intelligence (AI)), which is capable of investigating the possible 

outcomes for each marker, treatment and sequence of treatment. Such expert systems may provide a tool 

which could help clinicians to analyse and predict outcome using different treatment pathways. 

 Whilst prediction of overall survival of a patient is difficult there may be some benefits, as this not only 

is useful information for the patient but may also determine treatment modality.  

In this project a dataset was constructed of 352 patients who had been treated at a single centre. Clinical 

data were extracted from the health records. Expert systems were then investigated to determine the 

optimum model to predict overall survival of a patient. The five year survival period (a standard survival 

outcome measure in cancer research) was investigated; in addition, the system was developed with the 

flexibility to predict patient survival rates for many other categories. Comparisons with currently used 

prognostic models in ovarian cancer demonstrated a significant improvement in performance for the AI 

model (Area under the Curve (AUC) of 0.72 for AI and AUC of 0.62 for the statistical model). Using 

various methods, the most important variables in this prediction were identified as: FIGO stage, outcome 

of the surgery and CA125. This research investigated the effects of increasing the number of cases in 

prediction models. Results indicated that by increasing the number of cases, the prediction performance 

improved. Categorization of continuous data did not improve the prediction performance. 

The project next investigated the possibility of predicting surgical outcomes in ovarian cancer using AI, 

based on the variables that are available for clinicians prior to the surgery. Such a tool could have direct 

clinical relevance. Diverse models that can predict the outcome of the surgery were investigated and 

developed. The developed AI models were also compared against the standard statistical prediction 

model, which demonstrated that the AI model outperformed the statistical prediction model: the 

prediction of all outcomes (complete or optimal or suboptimal) (AUC of AI: 0.71 and AUC of statistical 

model: 0.51), the prediction of complete or optimal cytoreduction versus suboptimal cytoreduction (AUC 

of AI: 0.73 and AUC of statistical model: 0.50) and finally the prediction of complete cytoreduction 

versus optimal or suboptimal cytoreduction (AUC of AI: 0.79 and AUC of statistical model: 0.47). The 

most important variables for this prediction were identified as: FIGO stage, tumour grade and histology.  

The application of transcriptomic analysis to cancer research raises the question of which genes are 

significantly involved in a particular cancer and which genes can accurately predict survival outcomes in 

a given cancer. Therefore, AI techniques were employed to identify the most important genes for the 

prediction of Homologous Recombination (HR), an important DNA repair pathway in ovarian cancer, 

identifying LIG1 and POLD3 as novel prognostic biomarkers.  Finally, AI models were used to predict 

the HR status for any given patient (AUC: 0.87).  

This project has demonstrated that AI may have an important role in ovarian cancer.  AI systems may 

provide tools to help clinicians and research in ovarian cancer and may allow more informed decisions 

resulting in better management of this cancer. 
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1.1 Introduction  

This chapter of the thesis introduces ovarian cancer. The disease is briefly described  

along with a discussion of the current understanding of the disease. Furthermore, the 

standard management of this cancer is introduced and the process of clinical decision 

making process is discussed. Finally, current challenges in ovarian cancer are 

highlighted.  

The second section of this chapter then discusses artificial intelligence, specifically, 

machine learning and feature selection techniques. The relative merits of different 

methods are outlined. 

Finally this chapter draws these two areas into a series of research questions.  

1.2 Ovarian cancer 

According to Cancer Research UK (2008a), 190,000 new cases of ovarian cancer are 

reported each year worldwide; representing about 4% of all cancers diagnosed in 

women.  In the past 30 years there has been an 18% increase in ovarian cancer patients 

reported in the UK (Cancer Research UK, 2008a). Ovarian cancer is the 5th most 

common cancer in females in UK, with 6,800 cases each year, the UK has one of the 

highest incident rates in Europe (Cancer Research UK, 2008b). Although there has been 

a modest improvement in ovarian cancer treatments in the past 20 years, the long term 

survival rates have changed very little. In the UK only 36% of the patients will live for 

at least 5 years after diagnosis (Cancer Research UK, 2008c), although this rate varies 

for different stages of the cancer and the survival rate is around 90% in early stages 

compared to 15% at the late stages (Ghaemmghami, Orton and Soutter, 2003).  The cost 

of ovarian cancer treatment in the UK and other European countries is unclear; however 

as an example, the Australian government estimates a lifetime treatment cost per case of 

$19,677 in 2000-01 (AIHW, 2006).  

1.2.1 Current understanding 

This section of the thesis investigates the current understanding of ovarian cancer. The 

different characteristics of the cancer and the standard management of this cancer are 

included in the following sections.  

1.2.1.1 Stage 

Ovarian cancer has been divided into four categories based on anatomical distribution of 

the disease, called stages by the ‘International Federation of Gynecology and Obstetrics’ 

(FIGO) (Chi and Hoskins, 2000). These stages are expressed in Roman numerals from 
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stage I (the least advanced stage) to stage IV (the most advanced stage). Stage is a 

useful classification as it dictates not only prognosis but is used to determine treatment 

Leitao and Barakat (2009).  

Table 1-1 summarizes the characteristics of different stages of ovarian cancer (Chi and 

Hoskins, 2000).    
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Stage Characteristics 

I Growth limited to the ovaries 

A Growth limited to one ovary; no ascites; no tumour on the external surface; 

capsule intact 

B Growth limited to both ovaries; no ascites; no tumour on the external 

surfaces; capsule intact.  

C Tumour either Stage I A or I B. but with tumour on the external surface of 

one or both ovaries; or with capsule ruptured; or with malignant cells in 

ascites or peritoneal washings.  

II Growth involving one or both ovaries with pelvic extension. 

A Extension and/or metastases to the uterus and/or tubes 

B Extension to other pelvic tissues 

C Tumour either stage II A or II B, but with tumour on the surface of one or 

both ovaries; or capsule ruptured; or with malignant cells in ascites or 

peritoneal washings.  

III  Tumour involving one or both ovaries with peritoneal implants outside the 

pelvis and/or positive retroperitoneal or inguinal lymph nodes. Superficial 

liver metastasis equals stage III. Tumour is limited to the true pelvis but with 

histologically verified malignant extension small bowel or omentum. 

A Tumour grossly limited to the true pelvis but with histologically confirmed 

microscopic of abdominal peritoneal surfaces  

B Tumour involving one or both ovaries with histologically confirmed 

implants of abdominal peritoneal surfaces, none exceeding 2 cm in diameter. 

Nodes are negative.  

C Abdominal implants greater than 2 cm in diameter and/or positive 

retroperitoneal or inguinal nodes. 

IV Growth involving one or both ovaries with distant metastases. If pleural 

effusion is present there must be positive cytology to allot a case to stage IV. 

Parenchymal liver metastases equals stage IV. 

 

Table 1-1 International Federation of Gynecology and Obstetrics (FIGO) staging system for 

Ovarian cancer  

(Chi and Hoskins, 2000) 
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The majority of cases present at high (FIGO III/IV) stage, Simon (2005). The 5 year 

survival rate varies for different stages of the cancer. Patients with early stage (I) 

ovarian cancer have 80-90% chance of five year survival (Table 1-2).  

 

Table 1-2 summarizes the five year survival chance for different stages of ovarian 

cancer (Chi and Hoskins, 2000).  

Stage Five year survival 

I 80-90% 

II 80% 

III 15-40% 

IV 5-20% 

Table 1-2 Five year survival rate for different stages of Ovarian cancer  

(Chi and Hoskins, 2000) 

1.2.1.2 Grade  

Grade is an important prognostic factor for ovarian cancer and refers to how abnormal 

the cancer cells look when viewed through a microscope (Larma and Gardner, 2006). 

Normal cells grow and develop into mature cells capable of undertaking their 

physiological role. This process is referred to as differentiation (Smith et al., 2009). 

Cancer cells may look similar to normal cells (or well differentiated) or underdeveloped 

(or poorly differentiated). Grade generally correlates with outcome, poorly 

differentiated tumours being associated with a worse outcome than well differentiated 

tumours (Smith et al., 2009). Based on ovarian cancer grade categories, the higher the 

grade, the more likely it is that cancer will spread (Larma and Gardner, 2006).  

Table 1-3 summarizes the characteristics of different grades of ovarian cancer (Larma 

and Gardner, 2006). 
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Grade 1 

               (Well differentiated) 

looks similar to normal ovarian tissue 

Grade 2  

               (Moderately differentiated) 

looks less like ovarian tissue 

Grade 3  

               (Poorly differentiated) 

does not look like ovarian tissue 

Table 1-3 Grading of ovarian cancer 

(Larma and Gardner, 2006) 

1.2.1.3 CA125 Biomarker 

CA125 is a serum tumour marker. Tumour markers are generally used for four main 

purposes, to screen for the disease, to diagnose the disease, to monitor the response to 

treatment, and to diagnose recurrence. 

As a tumour marker CA125 has a relatively high sensitivity but a poor specificity 

meaning that its role as a screening and diagnostic test has limitations (Hogdall et al., 

2008).  

Research (Seltzer, 1999) suggested that CA125 levels are elevated in 80% of women 

with epithelial ovarian cancer.  The normal level of CA125 is 30-35 U/mL (unit per 

millilitre)(Helzlsouer et al., 1993). Zurawski et al. (1988) described an increase of 

CA125 level prior to clinical detection of ovarian cancer.  

Although overall CA125 has a high sensitivity this is not the case for early stage disease 

where CA125 is often unhelpful (Helzlsouer et al., 1993). Another concern is that 

CA125 levels are often increased slightly as a result of other conditions including 

ovulation, menstruation, fibroids and endometriosis (Muyldermans et al, 1995), 

meaning that this test is really only applicable to postmenopausal women. On the other 

hand, most of the ovarian cancer cases are postmenopausal women (Cancer Research 

UK, 2008b).  As a result CA125 remains the most widely used biomarker in the 

management of ovarian cancer. 

Zurawski et al. (1990) and Skates et al. (1995) tried to improve the sensitivity of the 

marker by using the levels of CA125. They concluded many women with initially 
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elevated CA125 levels have stable CA125 levels over time, in comparison with ovarian 

cancer patients where CA125 levels were steeply rising during the study.  

There are other methods available for improving the sensitivity of CA125, including 

decreasing the standard level of CA125 to 20 U/mL (Bourne et al., 1994) or using 

CA125 along with other biomarkers (Zhang et al. 2004, Hogdall et al. 2008 and Su et al. 

2007).    

 

1.2.1.4 Tumour Histology 

The histology of the tumour affects the treatment of ovarian cancer (Farley and Birrer, 

2010). Among all ovarian cancer tumour histology, 50-60% is reported as serous. The 

less common histology subtypes include endometrioid (25%), mucinous (4%) and clear 

cell (4%) (Seidman and Kurman, 2003). Clear cell and mucinous subtypes tend to 

present at limited sites (one or both ovaries) (Kikkawa et al, 2006), on the other hand 

serous and endometrioid tend to present at advanced  stages of the cancer in many sites 

of the abdomen and pelvis (Seidman and Kurman, 2003).   

 

1.2.1.5 Radiography 

Imaging of the pelvic mass is regarded as one of the most important diagnostic tool for 

investigating ovarian cancer (Simon, 2005). There are many methods that are used to 

image ovarian cancer such as Computed tomography (CT) scan, Ultrasound and 

Magnetic Resonance Imaging (MRI). 

CT scan is widely used for the primary diagnosis of ovarian cancer (Williams et al., 

2010). CT utilises a series of x rays taken in a 360
o
 sweep, each of which estimates 

tissue density in a 1D plane. These estimates then undergo tomography using the Radon 

transformation to reconstruct a 2D or 3D image.  

CT gives a quick and accurate measurement of disease within the abdominal cavity and 

provides hard images which can be used to give serial measurements to assess treatment 

response by comparison with post treatment images, unlike ultrasound. 

The imaging of the pelvis and abdomen remains an important factor for staging and 

diagnosis of this cancer.  
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Table 1-4 summarizes the radiographic characteristics of Anexel masses (Simon, 2005). 

This table compares the size, consistency, septation and other characteristics of benign 

and malignant masses.  

 

 

 Benign Malignant 

Size <8 cm >8 cm 

Consistency Cystic Solid or cystic and solid 

Septation Unilocular Multilocular 

Bilateral/Unilateral Unilateral Bilateral 

Other Calcification 

(especially teeth) 
Ascites 

Table 1-4 Radiographic characteristics of Adnexel masses 

(Simon, 2005) 

 

 

 

 

 

 

1.2.1.6 Age 

Ovarian cancer is rare among girls and young women (under the age of 30); however it 

increases with age (Elmasry and Gayther, 2007).   

Figure 1-1 illustrates the association between age and incidence of ovarian cancer. The 

risk of ovarian cancer under the age of 30 is low. From the age of 30 to 50 the incidence 

increases slowly. Peak incidence is 60.5 per 100,000 at the age of 75 to 79.  
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Figure 1-1 Age associated incidence of ovarian cancer  

(Elmasry and Gayther, 2007) 

Ovarian cancer is rare for ages under 30. For the age group of 75 to 79 it reaches the 

maximum value of 60.5 per 100,000. 

 

 

 

 

 

 

 

1.2.1.7 Physical examination 

Ovarian cancer has been called ‘the silent killer’ as 70% of cases are diagnosed at an 

advanced stage of the cancer (Edmondson and Todd, 2008). Patients may present with 

weight loss or vague lower abdominal pain and abdominal enlargement (Simon 2005), 

therefore physical examination can play an important role in first line diagnosis of the 

disease. Patient will be tested for mobility, consistency, bilateral and cul-de-sac 

involvement of the pelvic mass. 

Table 1-5Error! Reference source not found. summarizes the characteristics of Pelvic 

ass on physical examination (Simon, 2005). This table compares these characteristics 

for benign and malignant masses.  
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 Benign Malignant 

Mobility Mobile Fixed 

Consistency Cystic Solid or firm 

Bilateral/Unilateral Unilateral Bilateral 

Cul-de-sac Smooth Nodular 

Table 1-5 Characteristics of Pelvic mass on physical examination  

(Simon, 2005) 

 

 

 

 

 

 

 

 

 

 

 

1.2.1.8 Surgery 

The detection of the pelvic mass as discussed in previous sections (1.2.5 and 1.2.7) is 

relatively easy, however characterization of that mass as benign or malignant has 

remained a challenge. Based on the author’s observation in the operating theatre and 

literature (Edmondson and Todd, 2008; Balega and Shepherd, 2007; Sood and 

Gershenson, 2005), surgery is the most important part of the detection and diagnosis 

process which leads to an appropriate multimodal treatment approach. According to 

Sood and Gershenson (2005) “Although surgery alone is curative in only a small 
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number of patients, it remains the most important modality of treatment in an individual 

with a suspicious pelvic mass found to be ovarian cancer”.  

The proper staging of the disease which was discussed in the previous section (1.2.1.) is 

performed at surgery. In many cases surgery results in upstaging the cancer as the 

tumour was more spread than the initial examination revealed (Sood and Gershenson, 

2005).  

The main goal of the surgery is to accurately define the stage of the disease and remove 

as much tumour as possible (Edmondson and Todd, 2008). However, as discussed 

previously (1.2.7) most patients present at  stages of the cancer and as a result tumour is 

spread to other sites. Therefore the complete removal (complete cytoreduction) is not 

achievable. Complete cytoreduction is achieved when there is no macroscopic residual 

tumour left during surgery. The other possible outcomes of  surgery are optimal 

cytoreduction (residual disease less than 1-2cm in diameter) and sub-optimal 

cytoreduction (residual disease more than 1-2cm in diameter) (Edmondson and Todd, 

2008).  

Table 1-6 summarizes the association between the residual disease and outcomes of the 

surgery. The role of the surgery will be discussed in more details in chapter five of this 

thesis. 

At this stage, it is important to distinguish between two key words that play an 

important role in this investigation: Prognostic and Predictive Factors. According to 

Cianfranco and Goldstein (2004) prognostic factors are any measurements available 

before surgery that determines the overall survival rate before any treatment or therapy. 

In contrast, any measurement that calculates the response to a therapy is called 

predictive factor. 
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Outcome of the surgery Residual disease  

Complete cytoreduction  no macroscopic residual tumour 

Optimal cytoreduction less than 1-2cm in diameter 

Sub-optimal cytoreduction more than 1-2cm in diameter 

Table 1-6 Outcomes of the surgery 

 

 

 

 

 

 

 

 

 

1.2.1.9 Other possible contributors  

There are other possible risk factors to be considered in investigations, diagnosis and 

determining the survival rate in ovarian cancer, such as: combination of biomarkers 

(Zhang et al., 2004, Hogdall et al., 2008; Su et al., 2007), race, diet, viral and familial 

factors (Chu and Rubin, 2005). These risk factors can be employed in the proposed 

model if appropriate.  

1.2.1.10 Standard management  

The first line management of ovarian cancer is surgery. Surgery as discussed previously 

is the main factor in determining the stage of the disease. According to Simon (2005), 

“patients with early stages of the cancer (stage one and two) with well or moderately 

differentiated tumours require no additional therapy after surgery”. Surgery is carried 

out to remove as much of the tumour as possible and may include removing one or both 

ovaries and if the disease is in its advance stages, removing fallopian tubes and uterus.  

In most advanced cases a second line surgery is required (Thackery, 2005).  
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After surgery, chemotherapy will be used to target cells that have spread to other 

organs. Chemotherapy is given usually in a day centre, one day every 21 days for six 

cycles. Blood tests are taken to ensure bone marrow recovery before each cycle (Le et 

al., 2006). Chemotherapy is usually employed after surgery when bowel function has 

recovered. There are no advantages in delaying chemotherapy because of wound 

healing (Rothenberg et al., 2003). Research (Rothenberg et al., 2003) also suggested 

that there are no further advantages in continuing the chemotherapy after six cycles. 

During the chemotherapy process, bone marrow function and the level of CA125 will 

be investigated.  

Vasey et al. (2004) suggested that chemotherapy should continue for a maximum of six 

cycles if the levels of CA125 continue to fall. Following surgery chemotherapy is the 

recommended treatment for ovarian cancer, however in research (Rodriguez, 1992) it is 

suggested that in some cases radiation therapy has been useful. 

 

1.2.1.11 Outcomes of the management  

There is a need to measure the success and failure of a treatment for a cancer patient. 

Maurizi et al. (1999) suggested the possible measurable outcomes of the disease 

management.  

Table 1-7 describes the possible outcomes of the management (Maurizi et al., 1999). 

Defining these outcomes is important as the success of a treatment is measured using 

these measurable end points.  
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Outcomes Description 

Tumour response rate The number of patients whose tumours responded to 

treatment. 

Death from disease Number of patients that died because of the disease. 

Disease free survival Period of time that no cancer was detected after specific 

treatment. 

Progression free survival Period of time that disease stopped spreading.  

Overall survival rate The patients who are alive for a certain period of time 

after treatment. 

Table 1-7 Outcomes of the management 

(Maurizi et al., 1999) 

 

 

 

 

 

 

 

 

1.2.2 Clinical decision making 

Thompson and Dowding (2002) defined clinical decision making as choosing between 

alternatives. There are different types of models available in the clinical decision 

making literature; The Information Processing Model (Joseph and Patel, 1990), The 

Intuitive-Humanist Model (Benner, 1982; Benner, 1984; Young, 1987) and O’Neill’s 

Clinical Decision-Making Model (O’Neill et al., 2005). The investigation of these 

techniques is out of the scope of this research, however the first model (The Information 

Processing Model) is used in this research as this method is the best fitted to the purpose 

of this research. This model is widely used for clinical decision making (Banning, 

2008). 
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 This model uses decision trees to numerically assess the potential outcome of each 

decision or situation. For each tree the potential outcome will be calculated and based 

on that the decision will be made. Decision making in cancer needs a specialist team to 

evaluate and suggest possible treatments for the disease, this team is called an MDT 

(multi-disciplinary team). MDT members may vary depending on the case, and may 

include surgeons, clinical and medical oncologists, Radiologists, Pathologists, Palliative 

care specialists and MDT coordinator and secretarial support (Blazeby et al., 2006).    

For ovarian cancer treatment, the similar MDT reviews the referral patients and based 

on the markers (that have been discussed previously) the possible treatment for the 

patient will be suggested (surgery, chemotherapy or no action). After surgery each case 

is also discussed at MDT meetings and possible further treatments are considered for 

each patient.  

1.2.3 Future paths 

In previous sections (1.2.1 and 1.2.2) the current understanding and standard 

management of ovarian cancer were discussed. This investigation highlights some 

possible issues in the field of ovarian cancer. Some of these issues are as follows:  

 As the number of markers, treatments and the sequences of treatments are rising 

(such as new chemotherapy agents), it is getting more complex for the human 

brain to perform clinical decision making. There is the potential need for an 

expert computer system (eg. Artificial Intelligence) capable of investigating the 

possible outcome for each marker, treatment and sequence of the treatment 

(Friedman, 2009). 

 The prediction of overall survival of an individual patient is a very difficult task. 

There may be some benefits in predicting the overall survival as this prediction 

may change the path of treatment as well as inform the patient about likely 

prognosis. Therefore a system that can predict the overall survival of a patient is 

required (Teramukai et al., 2007; Chi et al., 2008; Gerestein et al., 2009). 

 As discussed previously (section 1.2.1.8), there are three different outcomes of 

surgery. The goal of the surgery is to remove as much tumour as possible. 

Therefore there are many benefits mentioned or suggested for a system that can 

predict the outcome of the surgery (Allen (2010); Leitao and Barakat, 2009).  
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1.3 Computing approaches 

Current improvements in biological sciences research, especially in the related fields of 

genetics, genomics; transcriptomics and proteomics are  producing large amounts of 

data. Bioinformatics is the science of developing and applying computational systems 

and methods for investigating and analyzing this data (Baldi and Brunak, 2001) and also 

it can be defined as “The science of informatics as applied to biological research” 

(Bioinformatics, 2008).  

Artificial Intelligence (AI) introduces many powerful methods for solving important 

problems in bioinformatics. AI techniques can help researchers to achieve the goal of 

extracting useful information from the available data by building high performance and 

suitable models.  

According to Narayanan, et al. (2002), most bioinformatics problems are seeking better 

solutions than currently available rather than finding the absolutely best or correct 

solution. AI techniques provide the methods to fit the nature of bioinformatics problems 

and try to find better solutions.  

As discussed in previous sections, there is a need for an expert (AI) system to evaluate, 

analyse and suggest the outcome of each treatment path or the importance of each 

marker for predicting the outcome of the treatment path. Abbod, et al. (2007) compared 

traditional regression statistics to AI methods in the area of cancer research and 

suggested that AI methods are more accurate and explorative for analysing such data. 

They concluded that AI methods can allow researchers to individually predict disease 

behaviour. AI methods are already widely used for different aspects of cancer research: 

Radiotherapy (Cancer Research UK, 2007), control of cancer cells (Nicolini, et al., 

1989), Detection (Petricoin et al., 2002), Diagnosis(Setiono, 1996) and DNA microarray 

classification and analysis (Mukherjee et al., 1999, Greer and Khan, 2004). AI has also 

been used for different types of cancer: Oral cancer (Speight et al., 1995), Lung cancer 

(Zhou et al., 2002), Prostate cancer (Adam et al., 2002), Breast cancer (Pena-Reyes and 

Sipper, 2000) and Bladder cancer (Catto et al., 2003).  AI systems are also used for 

different aspects of ovarian cancer such as: Early detection and serum analysis 

(Petricoin et al. 2002, Wulfkuhle, et al., 2003), Diagnosis (Vlahou et al., 2003) and 

Screening (Lewis and Menon, 2003). 

AI systems differ from standard computer algorithms in that they incorporate Machine 

Learning. Machine learning can be defined as the following “A computer program is 
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said to learn from experience E with respect to some class of tasks T and performance 

measure P, if its performance at tasks in T, as measured by P, improves with experience 

E” (Alpaydin, 2004). Machine learning systems tend to learn from existing data and 

adjust themselves for new data entries; also it is possible for them to fix existing errors 

in their design to achieve the required outcome. As discussed in the first section, clinical 

decision making for ovarian cancer consists of learning from past cases together with 

possible new approaches to suggest the possible treatment plan for the patient. It is 

understandable that clinical decision making perfectly fits into the machine learning 

concept.   

1.3.1 Machine learning (ML) 

Machine learning methods are the computer programs that improve their performance 

according to experiences (Alpaydin, 2004). The strengths of machine learning are as 

follows (Alpaydin, 2004): 

 In some cases the only way to define a task is by example. It may be possible for 

researchers to provide the input and output but unable to define the relation 

between them. In such cases machine learning can help to explore the data and 

define the rules and relations. 

 In large datasets it is possible to miss an important relation or rule between the data. 

Machine learning approaches can analyse most of the relations and help to find the 

hidden rules.  

 It is impossible for human minds to analyse the vast amount of data generated in the 

current research environment. 

 Environments change over time. Machines that can adapt to a changing environment 

reduce the need for constant redesign (self-adaptive AI).  

 

In one view ML methods can be divided into two categories: Unsupervised Learning 

(e.g. clustering) and Supervised Learning (e.g. classification). We may be given a set of 

observations with the aim of establishing the existence of classes or clusters in the data 

(Unsupervised Learning) and in general this is called clustering. Or we may know for 

certain that there are so many classes, and the aim is to establish a rule so we can 

classify a new observation into one of the existing classes (Supervised Learning). In 

other words according to Coppin (2004), in supervised learning, the goal is to learn the 

route from input data to an output which is correctly provided (by a supervisor). On the 

other hand, in unsupervised learning, the only available data is input data and the aim is 
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to find rules in input data to generally find out what happens and what does not (i.e. find 

patterns and trends in the data). The definition of these two types of learning is essential 

at this point. In ovarian cancer decision making involves some markers that will lead to 

an outcome (supervised learning) and there is uncertainty involved in prediction of the 

outcome of new markers or treatment paths (unsupervised learning). 

There are two distinctive terms in Machine Learning: Deductive and Inductive systems. 

Munakata (1998) suggests that in deductive systems, experts will provide the rules and 

the outcome will be determined by applying those rules to the input data; in contrast, 

inductive systems are the systems where there is no need for any experts and rules will 

be discovered by the system itself. In other words in deductive systems general rules 

will be introduced, the system will be trained using some examples and the trained 

system will be put in practice. On the other hand, in inductive systems, by using 

examples systems discover the rules in data and the discovered rules will be put into 

practice. The following sections of this chapter investigate some of the well-known ML 

methods.  

1.3.1.1 Nearest Neighbour approach (Decision tree) 

This section, firstly, introduces the nearest neighbour as a classifier. Later on, using this 

approach, the decision tree method is discussed.  

The k-nearest neighbour (KNN) mechanism is very simple. An object (e.g. a patient) is 

classified by the majority vote of its neighbours, with the object being assigned to the 

class most common amongst its k nearest neighbours. Enas and Choi (1986) described 

KNN algorithm as the following: 

(1) Determine parameter k = number of nearest neighbours  

The choice of k is the most critical aspect of this method. A small number for this 

variable may increase the influence of the noise on the results. On the other hand, 

a  large value for k, increases the computation time and also violates the 

philosophy of this method (the close instances may belong to the same class) 

(Duda et al., 2000). 

(2) Calculate the distance between the query-instance and all the training samples. Sort 

the distance and determine nearest neighbours based on the k-th minimum distance  

(3)Gather the category of the nearest neighbours  
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(4)Use simple majority of the category of nearest neighbours as the prediction value of 

the query instance  

Selection of k as an odd number helps to find the majority of the category. In this 

research the prediction value can be the survival rate of the patient or the outcome 

of the surgery.  

KNN mechanism is very simple to perform and according to Efron (1983) it is effective 

for a large training set, however the determination of the number of nearest neighbours 

is hard (Enas and Choi, 1986). The computation cost is quite high as we need to 

compute the distance of each query instance to all training samples.  

Figure 1-2 illustrates a very simple example of KNN method on an artificial dataset.   
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Figure 1-2 KNN method example (artificial dataset) 

 

This example is trying to classify new data (triangle) into ‘big star’ or ‘small star’ 

classes. In the KNN mechanism, if we assume that the k=3 then new data will be 

classified as big star class (2 big stars and 1 small star as nearest neighbours) and if we 

consider k=7 then new data will be classified as small star class (3 big Stars and 4 

small stars as nearest neighbours). This simple artificial example highlights the 

importance of k selection in this method. 

 

 

 

 

The above approach introduces a simple KNN; however in clinical decision making 

there are many attributes to be considered. In order to use KNN for multiple features 

(attributes) in an efficient way, it is essential to introduce the term “decision trees”. In 

the past the decision tree approach was considered as the most successful machine 

learning technique in practical applications (Munakata, 1998). According to Alpaydin 

(2004), a decision tree is a classifier in the form of a tree, which has nodes and a root. 

Each node is either a leaf node (indicates the value of outcome) or decision node (which 

performs some tests to be carried out on a single attribute with a branch or sub-tree for 

each outcome). The process starts from the root node of the tree and moves through 

decision nodes and branches until reaching the leaf node (outcome). 

K=7

K=3
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Above algorithm uses “Entropy” and “Information Gain” to construct the tree (Rokach 

and Maimon, 2008). 

2

1

( ) log
c

i i

i

E S p p


   

Equation 1-1 Entropy using the frequency table of one variable  

(Rokach and Maimon, 2008) 

S is the variable, c is the number of classes, p is the probability of the occurrence of the 

class number i 

( , ) ( ) ( )
c X

E T X P c E c


  

Equation 1-2 Entropy using frequency table of two variables  

(Rokach and Maimon, 2008) 

T is the target class, X variable, c value(s) of variable X, P(c) probability of the c, E(c) 

entropy of c 

 

( , ) ( ) ( , )G T X E T E T X   

Equation 1-3 Information Gain of variable X  

(Rokach and Maimon, 2008) 

T is the target class, E is the entropy 

 

To clarify the construction of the tree processes consider the following well known 

dataset (Quinlan, 1986) (Table 1-8). 
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Outlook Temp Humidity Windy Play Golf 

Rainy Hot High False No 

Rainy Hot High True No 

Overcast Hot High False Yes 

Sunny Mild High False Yes 

Sunny Cool Normal False Yes 

Sunny Cool Normal True No 

Overcast Cool Normal True Yes 

Rainy Mild High False No 

Rainy Cool Normal False Yes 

Sunny Mild Normal False Yes 

Rainy Mild Normal True Yes 

Overcast Mild High True Yes 

Overcast Hot Normal False Yes 

Sunny Mild High True No 

Table 1-8 Play Golf dataset 

(Quinlan, 1986) 
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In order to construct the tree following steps have to be performed: 

Step 1: Calculate the Entropy of target class (Play Golf). 

            E(Play Golf)= 0.94 

Step 2: Calculate Information Gain of each variable. 

G(Outlook)= 0.247, G(Temp)=0.029, G(Humidity)=0.152, G(Windy)=0.048 

Step 3: Use the variable with largest value of ‘Gain’ as root node. 

Outlook holds the largest value of ‘Gain’. 

Step 4: Split the branches: 

4a: A branch with ‘Entropy’ more than 0 needs more splitting 

4b: A branch with ‘Entropy’ 0 is a ‘Leaf’ node. 

Step 5: Continue splitting process on none-‘Leaf’ branches to classify all the data. 

Finally above steps leads us to the decision Tree (Figure 1-3). 
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Figure 1-3 Decision Tree example  

(Quinlan, 1986) 
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Decision trees and nearest neighbour are widely used in the field of cancer research 

(Adam et al.,2002; Mangasarian et al., 1995; Vlahou et al., 2003; Liu et al. , 2011).   

According to Munakata (1998) decision trees are able to introduce understandable rules 

and identify the most important fields for prediction. Meanwhile, this method is easily 

understandable for every user, the important variables can be easily identified and well 

fitted to clinical decision making process. However according to Alpaydin (2004) 

decision trees can be computationally expensive to train, they are less appropriate for 

predicting continuous variables and are very sensitive to errors for prediction process of 

small data sets. Therefore, it is essential to prepare as much data as possible for this 

research, and making sure the continuous variables are categorized prior to prediction.  

In summary, the KNN and decision trees are widely used in the field of cancer research. 

These methods of prediction are easy to understand for a non-professional user. This 

method is also well fitted to the clinical decision making process.  

 

 

1.3.1.2 Neural networks 

Neural networks (NN) are a very abstract computer representation of the human brain. 

In other words “NNs are parallel information processing structures that attempt to 

emulate certain performance characteristics of the biological neural system” (Naguib 

and Sherbet, 2001). The part of the brain considered to be the fundamental functional 

source of intelligence is called a neuron (Fausett, 1994), similarly neural networks 

consist of artificial neurons. Although the term neural network is widely used in 

literature of some other authors, to distinguish from the natural brain neural networks, 

researchers use the term Artificial Neural Networks (ANN).  

The biological neuron, as the basic part of the brain, consists of three components:  

dendrites, soma and axon (Fausett, 1994). Dendrites are responsible for receiving 

signals from other neurons via axon, soma receives the inputs and when enough inputs 

are received and the needed operation performed, produces an output which will be sent 

to other neurons via output axon. Figure 1-4 illustrates a biological neuron (Fausett, 

1994). 
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Similarly in the mathematical model, dendrites are represented by different input values

mxxx ,...,, 21 . Each input has a corresponding weight and the product ii wx
 will be fed 

into the neuron (Figure 1-5).  

 

mxxx ,...,, 21 are inputs, y is output, w represents the weight, Σ the value of the net, T is 

the transfer function 

Then the neuron calculates the net by adding up all the products for i=1…m, so the net 

value can be calculated using Equation 1-4.  

mmwxwxnet  ...11  

Equation 1-4 The value of the net (artificial neuron) 

x is input, w is weight 

The calculation of the net is the same as the calculation of the scalar (dot) product of 

vectors x and w. Finally the output value ‘Out’ will be calculated (Equation 1-5).  

( )Out f net  

Equation 1-5 The output of the net 

 

This function is called a transfer (activation) function, that may be a threshold function 

(only passes the information), or it may be a continuous function of the combined input 

(Naguib and Sherbet, 2001). 
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Figure 1-4 Biological neuron 

(Fausett, 1994) 

Dendrites are responsible for receiving the signal, soma processes the signal and axon 

transfer the appropriate signal to other neurons 

 

 

Figure 1-5 Artificial model of a neuron 

(Fausett, 1994) 

∑ is the value of the net (Equation 1-5) and T is the threshold  of the neuron 

 

 

 

 

 

 

 

T Σ 
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This model of ANN is called a ‘Feed forward’ model as the process only moves in one 

direction from inputs to outputs. There are no connection between outputs and inputs 

(Lee, 2008).  It contains ‘Input Layer’, ‘Output Layer’. The model may contain none, 

one or more than one ‘Hidden Layer(s)’. The ‘Feed forward’ ANN is the simplest and 

most used model of ANN (Wang et al., 2010; Lee, 2008). There are other forms of 

ANN such as: Recurrent Neural Network (RNN). RNN forms a ‘directed cycle’ 

between the connections in the network (Lee, 2008). This research uses the Feed 

forward ANN based on its simplicity for implementation and popularity.  

Figure 1-6 illustrates a Feed forward ANN model. This model consists of one hidden 

layer.There are number of input neurons ( iN ), hidden neurons ( hN ) and output neurons 

( oN ) according to the problem in hand. Each input neuron is connected to all hidden 

neurons and respectively each hidden neurons are connected to all output neurons. All 

connections carry a weight that normally will be assigned as a random number in a 

specific range. After setting up the network is ready to learn (ready to be trained). This 

model of NN is a supervised learning process and according to Fausett (1994) “A neural 

network learns patterns by adjusting its weights.”  

‘Back Propagation’ is the best known and most often used, as the learning method of 

multi layered feed forward ANN (Sekino and Nitta, 2007; Adali and Haykin, 

2010).  The goal of the learning method is to adjust the weights of the network in such a 

way that it minimises the ‘Sum of Squared Error (SSE)’ (Adali and Haykin, 2010). The 

SEE can be calculated using Equation 1-6. 

2

1

( )
n

i i

i

SSE A P


   

Equation 1-6 Sum of Squared Error (SSE) 

 (Adali and Haykin, 2010) 

n is the number of instances for training, A is the actual value, P is the predicted value. 
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Figure 1-6 Feed Forward ANN model 

(Fausett, 1994) 

This model moves only in one direction (from inputs x, to outputs y).  

 

 

 

 

The learning process of the network can be defined in the following steps (Adali and 

Haykin, 2010; Fausett, 1994):  

Step 1: Randomly initial the weights of the network 

Step 2: Calculate the output. Given a set of inputs (I), calculate the predicted value 

(P).  

Step 3: Calculate the ‘error’. The error for output neurons is calculated as A-P (The 

difference between actual value and predicted value). The error of hidden or input 

neuron can be calculated using. : 

1

n

i i

i

B b w


   

Equation 1-7 Calculating the error of the neuron 

(Adali and Haykin, 2010) 

n is the number of neuron(s) connected to a given neuron, b is the error of target 

neuron, w is the weight of connection between given and target neuron. 



30 

 

Step 4: Adjust the weights. The new weights can be calculated using Equation 1-8. 

 

, , ( )i j i j j j j iw w r b f I o      

Equation 1-8 Adjusting the weights 

,i jw is the weight of connection between neuron i, j. r is the learning rate (user defined 

value of how much the weights can be modified),  
jb is the error of neuron j, ( )j jf I is 

the value of activation function of neuron j for the input 
jI , io is the output of neuron I 

during the first step. 

 

 

 

To clarify the process, the following simple example, demonstrates the process of the 

above method. Consider the ‘AND’ function. This function gets two possible binary 

inputs (x and y) and generates an output based on the input values. Table 1-9 

summarizes the all possible inputs and outputs of AND function.  

The goal is to generate an ANN model to satisfy all the possible answers to AND 

function (Table 1-9). It is understandable that this network can be constructed using a 

neuron (Figure 1-7 a). After creating the network, network has to be trained to identify 

the values of w1 and w2 and also the threshold value of the function. There are 

infinitive possible answers to this problem; however one possible network is illustrated 

in Figure 1-7 b. 
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x y output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 1-9 AND function truth table 

 

 

 

Figure 1-7 Neural network for AND function 

(a) the initial generated model, (b) trained and ready to use network 

 

 

 

Let’s say that x=1 and y=0 as input values. The output values have to be 0 as ‘1 AND 

0=0’. So we have  which is less than the 0.5 threshold value so the 

output is 0. For x=1 and y=2 the value 0.6 is greater than 0.5 so the output is 1. The 

network produces the correct outcome for all possible inputs so it is trained and ready to 

predict new values. 

 

 

ANN is widely used in different fields of cancer research and for many different 

cancers: Wilding et al. (1994), Fogel et al. (1995), Zhou et al. (1997), Maclin and 

a b

3.03.003.01 
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Dempsey (1991), Maclin and Dempsey (1992), Burke et al. (2001) Djavan et al. (2002), 

Kawakami et al. (2008), Stephan et al. (2008); Hoyt et al. (2010) and Ayer et al., 2010. 

Similar to all methods NN has its strengths and weaknesses. NN are robust and can 

work if the training data contain errors (Burke et al., 2001) and also in most cases, the 

prediction accuracy is high (Fausett, 1994). NN provides a great power to predict the 

outcome on an individual basis (Naguib and Sherbet, 2001). According to McLaren et 

al. (2009) NN can capture non-linear relationships in the dataset. 

On the other hand, NN training time can be considerably high (Burke et al., 2001) and 

there is no guarantee that the network is trainable (Fausett, 1994). According to Naguib 

and Sherbet (2001) in most cases it is hard to understand the weights used in the 

network.  

 

In summary, NN as a prediction model is widely used in the field of cancer research. 

The prediction accuracy of this model is high and also it can handle errors in the dataset. 

The generated model can be adopted in such a way that it can handle new treatments 

and biomarkers. Considering that the most important goal for this research is prediction 

accuracy, the training time is not an issue and there is not necessity for the user to 

understand the weights of the network.   

 

1.3.1.3 Bayesian Networks 

“A Bayesian network is a graphical model for probabilistic relationships among a set of 

variables” (Neapolitan, 2004). There is a massive improvement in all branches of 

science, however in many cases there are still some uncertainties (Baldi and Brunak, 

2001). For example in cancer research the researchers are uncertain about the outcome 

of the new treatment or influences of a new biomarker. Bayesian networks can be the 

solution to many of these problems for the following reasons: 

Bayesian networks can handle incomplete data (Neapolitan, 2004). Most of the 

modelling approaches can effectively model and investigate the input data if a complete 

dataset is provided, however if one of the main input objects is not provided those 

models can not sufficiently model the data. On the other hand, when using Bayesian 

network it is possible to solve the problem. This advantage is very important especially 

in medical research as the input or outcome of some variables may not be complete at 

the start of the research.   
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“Bayesian networks allow one to learn about causal relationships” (Jensen, 2001). 

Understanding the casual relation will help us to fully understand the problem domain 

as well as making predictions about the activities even if they didn’t perform yet.  

Bayesian networks provide facilities that make the modelling of the prior knowledge 

straightforward (Baldi and Brunak, 2001). The modelling of the current knowledge 

about the data is facilitated in this method. This makes it a very powerful method as the 

prior knowledge about the data in connection with the relations that will be discovered 

using this method can fully model, understand and analyse the data.  

 

Before describing the structure of the Bayesian network it is essential to describe 

Bayesian approach to probability. According to Leonard and Hsu (1999) “Bayesian 

probability of an event is the person’s degree of belief in that event”, in contrast the 

classical probability of an event which is the physical property of that event. For 

example, classical probability considers the probability that a coin will land heads and 

Bayesian probability is interested in the degree of our belief that the coin will land 

heads. In other words, in Bayesian probability, “a probability will always depend on the 

state of the knowledge of the person who provides the probability” (Gelman et al., 

1995). For example in a normal situation a person predicts that the probability of a coin 

showing heads on the next toss is 0.5, however if we convince that person that the coin 

is weighted in favour of heads, he would assign the a higher probability to the event.  

There are some criticisms and solutions to those problems of the Bayesian approach to 

probability which is outside the scope of this thesis.  

First we are going to introduce the Bayesian theory. According to Neapolitan (2004), 

for two events E and F (the probability of E and F are not equal to zero) Bayesian 

theory is the probability of F given E, multiply by the ‘prior’ probability of E, divided 

by the ‘prior’ probability of F (Equation 1-9). Prior probability of E means the 

probability that E happens regardless of any other event.  

)(

)()|(
)|(

FP

EPEFP
FEP   

Equation 1-9 Bayesian theory 

( | )P F E  the probability of F given E, P(E) and P(F) are prior probability of events E 

and F. 
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In general according to Neapolitan (2004) a Bayesian network for a set of variables 

},...,{ 1 nXXX    consists of a network structure S that interprets a set of conditions 

about variables in X and a set of P of probabilities associated with each variables. These 

sets together define the joint probability distribution of X.  Bolstad (2004) describes the 

joint probability distribution as: The function f(x,y) which gives the probability for a 

given probability of x and y within the range of values of x, y. In Bayesian networks 

variables are depicted as nodes, connections represent the probabilistic dependence 

between variables and conditional probabilities encode the strength of the dependencies. 

To construct a Bayesian Network we simply draw connections for a given set of 

variables from the cause variables to their effects and finally we determine the local 

probability distributions. In other words according to Neapolitan (2004) the algorithm is 

as following: 

• 1. Choose an ordering of variables X1, … ,Xn 

• 2. For i = 1 to n 

– add Xi to the network 

– select parents from X1, … ,Xi-1 such that  

 P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)  

It is possible to have three types of connections in the network (Koski and Noble, 

2009):  

 Linear connection: The two end variables are usually dependent on each other. 

The middle variable renders them independent (Figure 1-8 a). 

 Converging connection: The two end variables are usually independent on each 

other. The middle variable renders them dependent (Figure 1-8 b). 

 Divergent connection: The two end variables are usually dependent on each 

other. The middle variable renders them independent (Figure 1-8 c). 
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Figure 1-8 Connections in Bayesian network 

a: linear connection, b: converging connection, c: diverging connection 

 

In order to clarify the process consider a well know example of “Given a situation 

where it might rain today, and might rain tomorrow, what is the probability that it will 

rain on both days?” (Niedermayer, 1998).  

It is possible to assume that raining on two consecutive days are not independent as if it 

is raining today it is more likely that it will rain tomorrow. Let’s assume that P(rain 

today)=0.20 and P(rain tomorrow given that it rains today)=0.70. We are going to 

calculate all the joint probabilities using the Bayesian theory (Equation 1-9). Table 1-10 

summarizes these probabilities.   

Suppose that P(A) is the probability of raining today and P(!A) the probability of not 

raining today. Similarly P(B) is the probability of raining tomorrow and P(!B) the 

probability of not raining tomorrow. Therefore, a Bayesian network can be constructed.  
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 Raining 

tomorrow 

Not Raining 

Tomorrow 

Marginal 

(Rain today) 

Raining today 0.14 0.06 0.20 

Not Raining today 0.16 0.64 0.80 

Marginal(Rain Tomorrow) 0.30 0.70  

Table 1-10 Joint probability results using Bayesian theory 

 

 

 

 

 

Figure 1-9 Bayesian network of probability of raining today and tomorrow 

P(A) probability of raining today, P(!A) probability of not raining today 

P(B) probability of raining tomorrow, P(!B) probability of not raining tomorrow 
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As mentioned earlier, because of the nature of this approach, many cancer researchers 

used this method for different aspects of cancer research such as: Kahn et al. (1997), 

Bulashevska et al. (2004), Wang et al. (1999), Jansen et al. (2003), Lacave and Diez 

(2003),  Van der Gaag et al. (2002), Burnside , et al. (2004), Gevaert et al. (2006).  

At the start of the section the potential benefits of this method have been mentioned 

however the initial knowledge of the probabilities (prior probabilities) are very 

important in this method and in some cases it is not possible to completely predict such 

probabilities (Niedermayer, 1998). It is common to miss the probability of an important 

event. It is possible that an event which plays an important role unanticipated in the 

network (Neapolitan, 2004).  Also the potential computing cost is high (Neapolitan, 

2004). 

 

In summary Bayesian network provides a powerful realistic prediction method for 

predicting the outcome. Many researchers applied this method to cancer research 

studies. The other benefit that makes this method a powerful prediction method is that it 

can handle incomplete data. Therefore, based on the strong facilities that this method 

provides and the fact that number of researchers applied this method to cancer research, 

this method was selected to include in for this research.  

 

1.3.2 Feature Selection 

The following sections of the report investigate some of the well-known feature 

selection techniques in two categories: Multivariate and Univariate Techniques.  

The next sections of the chapter investigate two most common and powerful Univariate 

feature selection techniques: Principal Component Analysis (PCA) and Information 

Gain (IG). The reason that these two techniques have been selected is that they are the 

most effective methods for univariate feature selection (Kantardzic (2002), Beer et al. 

(2002), Yeung, et al. (2001), Gabrilovich and Markovitch (2004), Changjing and Shen 

(2005), Cho and Ryu (2002), Ben-Dor et al. (2000), Blum and Langley (1997), Brazma 

and Vilo (2000) and Jensen and Shen (2004). 

Later on this section investigates the multivariate techniques. Saeys et al. (2007) 

described multivariate techniques as: methods that consider subsets of variables 

(features) together and assess the dataset based on the subset of selected features. Two 
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techniques have been selected for investigation in this research: Targeted Projection 

Pursuit (TPP) and Genetic algorithm (GA). TPP is proven to be one of the most 

effective feature selection techniques (Enshaie and Faith, 2009) and literature review 

revealed that GA is one of the high performance feature selection techniques. For each 

technique the algorithm is discussed by using mathematical demonstrations of the 

technique and the process is clarified by using an example. The limitations of each 

technique have been discussed and applications to gene expression data have been 

identified.  

 

1.3.2.1 Principal Component Analysis (PCA) 

The most popular method for dimensionality reduction of a large dataset is Principal 

Component Analysis (PCA) (Kantardzic, 2002). The idea of PCA is to reduce the 

dimensionality of a data set which includes a large number of interrelated variables, 

while collecting as much variation as possible that is present in the data set. PCA 

transforms original datasets into a new set of variables called the principal components 

(PCs). These components are uncorrelated, and they are sorted so that the first few keep 

most of the variation present in all of the original variables (Jolliffe, 2002). In other 

words PCA explains the correlation structure of a set of interpreter variables using a 

smaller set of linear combinations of these variables. These linear combinations are 

called components (Larose, 2006). 

Figure 1-10 (Scholz, 2006) is the transformation of a gene expression dataset using 

PCA. This technique reduces a large number of variables to a lower number of new 

variables known as principal components (PCs). Three-dimensional gene expression 

samples are projected onto a two dimensional component space that maintains the 

largest variance in the data. These two-dimensional visualisations of the samples allow 

us to make qualitative conclusions about the separation of the classes in the dataset.  
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Figure 1-10 Transformation of dataset using PCA 

Scholz (2006) 

Chart on the left is a representation of a 3 dimensional gene expression dataset. Using 

PCA three dimensional dataset is transformed to a two dimensional dataset, which uses 

two principal component (PC1, PC2), to be plotted. 
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Process and example 

Jolliffe (2002) introduced an informal process for applying PCA on a dataset; this 

section follows these steps and applies them to an artificial dataset (Table 1-11). This 

dataset consists of only two dimensions which made it possible for the author to 

demonstrate and visualize each step.   

Step 1: Data 

As mentioned above the dataset that has been used in this section is an own-made 

dataset (Table 1-11) which contains two variables.  

 

 

X 2.5 0.5 2.2 1.9 3.1 2.3 2 1 1.5 1.1 

Y 2.4 0.7 2.9 2.2 3 2.7 1.6 1.1 1.6 0.9 

Table 1-11 Artificial dataset for explaining PCA process 

 

Step 2: Normalization 

For PCA to work properly, we have to normalize the dataset by subtracting the mean 

from each of the data dimensions. The mean subtracted is the average across each 

dimension, therefore all the x values have X  (the mean of the x values of all the data 

points) subtracted from them, and all the y values have Y  subtracted from them. This 

produces a data set that its mean is zero. This procedure is known as “zero mean” 

(Kantardzic, 2002). Table 1-12, demonstrates the original dataset (Table 1-11) after 

normalization. 

 

 

X .69 -1.31 .39 .09 1.29 .49 .19 -.81 -.31 -.71 

Y .49 -1.21 .99 .29 1.09 .79 -.31 -.81 -.31 -1.01 

Table 1-12 Normalized artificial dataset for explaining PCA process 

 

Step 3: Calculate the covariance matrix 



41 

Covariance provides a measure of the strength of the correlation between two or more 

sets of random variates (Spiegel, 1992). The covariance for two random variates X and 

Y, each with sample size N, is defined in Equation 1-10.   

 

1

( )( )
cov( , )

N
i i

i

x x y y
X Y

N

 
  

Equation 1-10 Covariance of X and Y 

N is the sample size of X and Y, x is the mean value of X, y  is the mean value of Y. 

 

If we have a data set with more than 2 dimensions, there is more than one covariance 

measurement that can be calculated. For example, from a 3 dimensional data set 

(dimensions x, y, z) we could calculate cov(x, y), cov(x, z) and cov(y, z). In fact, for an 

n -dimensional data set, you can calculate 
!

( 2)! 2

n

n  
 different covariance values 

(Spiegel, 1992). A useful way to get all the possible covariance values between all the 

different dimensions is to calculate them all and put them in a matrix (Spiegel, 1992) 

(Equation 1-11).  

,( cov( , ))mxn

i j i jC c Dim Dim               

cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

cov( , ) cov( , ) cov( , )

x x x y x z

C y x y y y z

z x z y z z

 
 

  
 
 

 

Equation 1-11 Covariance matrix 

The equation on left represents a covariance matrix for the sample size m and equation 

on the right is a generated covariance matrix for sample size 3. 

 

Keeping these in mind (Equation 1-11) we calculate the covariance matrix for our 

dataset: 

cov= 
.61 .61

.61 .71

 
 
 

 

Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix 
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Let A be a n ×n matrix. The  is an eigenvalue of A if there exists a non-zero vector v 

such that Av = v. In this case, vector v is called an eigenvector of A corresponding to 

. For each eigenvalue , the set of all vectors v satisfying Av = v is called the 

eigenspace of A corresponding to  (Press et al., 1992) 

The method of calculating these values is described by Press et al. (1992) and after 

applying those calculations on our covariance matrix we have the following: 

eigenvalues= 
.49

1.28

 
 
 

 

eigenvectors= 
.73 .67

.67 .73

  
 

 
 

 

Step 5: Choosing components and select features 

In general, once eigenvectors are found from the covariance matrix, the next step is to 

order them by eigenvalue, highest to lowest. This gives us the components in order of 

significance (Jolliffe, 2002). At this stage we can decide to ignore the components of 

lesser significance. By doing this we may lose some information, but if the eigenvalues 

are small the lost information is not significant. If we leave out some components, the 

final data set will have fewer dimensions than the original. Later we can pick the largest 

component(s) as chosen features. 

PCA relies upon on some assumptions which result in some limitations for this 

powerful technique. These assumptions are: 

 Linearity assumption: In PCA we assumed the observed dataset to be linear 

combinations of certain basis (Jolliffe, 2002). Some new methods such as kernel-

PCA (Scholkopf et al., 1998) overcome this limitation by considering non-linearity 

of the data.  

 Importance of mean and covariance assumption: As suggested above, PCA is based 

on the importance of the means of the (or) a dataset and accordingly the covariance 

of the values, which in some recent situations may mislead the method (Jackson, 

2003).  

 Sotoca, et al. (2007) investigated PCA for classification and observed that 

limitations of PCA arises from the fact that, in general, a principal component (for 
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the whole sample set) does not have to provide a high deviation rate and so therefore 

a good classification ability. 

 Bishop (1996) also discussed some major limitations for PCA such as: PCA need a 

large number of samples to perform well. In PCA we have to determine how many 

factors to retain and in some cases it is possible to get negative values for reduced 

data by PCA which in some cases (such as chemical components) it cannot clearly 

be connected to the sources. 

 The main problem mentioned (Banks et al., 2004) is that PCA can detect the linear 

structures in the data; however it is difficult to detect non-linear structures with 

PCA.  

 

PCA as one of the most powerful feature selection techniques is widely used to analyse 

and process gene expression data. Bicciato, et al. (2002) applied PCA on gene 

expression data and their results demonstrate that the employed procedure allows the 

identification of specific phenotype markers and can classify previously unseen 

instances in the presence of multiple classes of cancer. Beer et al. (2002) used PCA to 

classify lung cancer data and they concluded that this technique successfully classifies 

the data. 

However Yeung, et al. (2001) used PCA for clustering the ovarian cancer patient’s data 

and they recommended against using PCA to reduce dimensionality of the data before 

applying clustering algorithms because they observed that the quality of clustering 

results on the data after PCA is not necessarily higher than that on of the original data, 

sometimes lower, unless external information is available. 

PCA is used by cancer researchers to analyse and investigate the data for different 

aspects of cancer research: Bicciato et al. (2002), Beer et al. (2002), Skala et al. (2007), 

Rodríguez-Piñeiro et al. (2007), Yao et al. (2008), Kamath and Mahato (2009) and Hsu 

et al. (2009) 

In summary, PCA is widely used by many researchers for solving dimensionality 

reduction problems and in most cases this technique is very successful. Most 

researchers indicate that this technique is one of the most effective techniques in feature 

selection. 
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1.3.2.2 Information Gain (IG) 

Information gain is one of the most efficient measures of feature ranking in feature 

selection (Gabrilovich and Markovitch, 2004). IG estimates feature weights (importance 

of the features) determining for each feature how much information it contributes to the 

knowledge of the classes of the training data items. 

Yang and Pedersen (1997) compared five different feature selection scores on two 

datasets and showed that Information Gain is amongst the two most effective. The 

method which we use to assign weights to the features is called Gain Ratio, a 

normalized variant of information gain (Daelemans, et al., 1999). 

 

Let P and N be two classes and S a dataset with p-elements and n-elements. The amount 

of information needed to decide if a given example data belongs to P or N can be 

defined using Equation 1-12 (Larose, 2006).  

2 2( , ) log log
p p n n

I p n
p n p n p n p n

  
   

 

Equation 1-12 Amount of information required to assign an object to class P or N 

(Larose, 2006) 

P and N are two classes of dataset S, with p-elements and n-elements 

 

Let sets {S1, S2 , …, Sv} form a partition of the set S, when using the attribute A and 

each Si contain pi examples of P and ni examples of N. The entropy (the expected 

information) needed to classify objects in all the subsets Si is defined by Equation 1-13 

(Larose, 2006). 
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Equation 1-13 the entropy needed to classify objects in Si subsets 

(Larose, 2006) 

v number of subsets, pi and ni the examples of p and n in Si  
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Therefore, the information that would be gained by dividing on attribute A can be 

calculated using Equation 1-14. 

( ) ( , ) ( )Gain A I p n E A   

Equation 1-14 Information gained by dividing on attribute A 

( , )I p n is calculated using Equation 1-12, E(A) is calculated using Equation 1-13 

 

Process and example 

To clarify the IG process, the example (Quinlan, 1993) that was previously used 

(section 1.3.1.1) will be discussed. The dataset (Table 1-8) consists of four variables and 

an outcome class.  

Using Equation 1-12, the amount of information required to assign objects to each class 

for variable ‘Outlook’ is calculated. Table 1-13, summarizes the results of this 

calculation. 

 

 

Outlook p i  n i  I(p i , n i ) 

Sunny 2 3 0.971 

Overcast 4 0 0 

Rain 3 2 0.971 

Table 1-13 The amount of information required to assign objects to each class for variable 

‘Outlook’ 
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Therefore, using Equation 1-13, Entropy of variable ‘Outlook’ can be calculated as the 

following: 

 
5 4 5

E outlook  (2,3) (4,0) (3,2) 0.694
14 14 14

I I I     

The information gain can be calculated as the following: (Equation 1-14)  

Gain(outlook)= I(9,5)- E(outlook)= 0.246 

 

Similarly: 

Gain (temperature) = 0.029 and Gain (humidity) = 0.151 and Gain (windy) =0.048 

According to the IG mechanism attribute ‘Outlook’ holds most of the information by 

itself and therefore after sorting attributes in order of importance we have: 

Attributes selection using IG: 1) Outlook 2) Humidity 3) Windy 4) Temperature 

 

The following two problems with IG’s will have a negative influence on the 

classification accuracy, in particular when there are many features available. 

In IG if features are dependent, this will generally not be reflected in their weights 

(Hintz, 1991). For example a feature that contains some information about the 

classification class on its own, but none when another more informative feature is 

present will receive a non-zero weight. Features which contain little information about 

the classification class will receive a small weight but a large number of them may still 

overrule more important features (Chang et al., 2005).  

 

IG is considered to be one of the most effective algorithms for feature selection on gene 

expression data. Changjing and Shen (2005) concluded that in general, IG attribute 

selection is beneficial for improving the performance of the common learning 

algorithms on gene expression data. Cho and Ryu (2002) used IG for feature section and 

classification of gene expression data of cancer and observed that IG is a powerful and 

successful method for these types of feature selections. Ben-Dor et al. (2000), Blum and 

Langley (1997), Brazma and Vilo (2000) and Jensen and Shen (2004) also investigated 
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IG mechanism in their research and observed that this method successfully selected the 

appropriate features.  

IG is also used by researchers’ (Andrew et al., 2006; Ashraf et al., 2010) to identify the 

most important factors for outcome prediction in cancer research.  

IG is widely used for feature selection and research indicates the high performance of 

this technique. In gene expression data analysis literature, IG is treated as one of the 

most effective approaches for feature selection. 

 

 

 

 

1.3.2.3 Targeted Projection Pursuit (TPP) 

One of the major problems with linear methods such as PCA is that they are not able to 

detect non-linear structures in data. To overcome this problem projection pursuit 

method has been introduced which is widely viewed as an effective method which can 

find interesting structures, both linear and non-linear, in complex data (Banks et al., 

2004). In projection pursuit, it is assumed that interesting structure is different from 

normal distribution (All normal distributions are symmetric and have bell-shaped 

density curves with a single peak (Gaten, 2000)). The reason that normal distribution is 

uninteresting is that for most multi-dimensional data sets, almost all low dimensional 

projections are normal (Diaconis and Freeman, 1984). However this assumption is not 

always valid as the purpose of the research determines the importance of the features 

(Banks et al., 2004). Sometimes we would like to find interesting features in a dataset as 

compared to another dataset, and it may be possible that our later dataset does not 

follow a normal distribution (Hyvarinen, 2001). 

Normal projection searches the space of all possible projections to find out which 

maximises an index that measures the quality of each resulting view (Lee et al, 2005). 

In other words according to Friedman and Tukey (1974) projection pursuit searches for 

projection vectors that maximize projection indices which highlight deviations from the 

normal distribution. 
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There are some alternative approaches developed for normal projection pursuit such as: 

Relative Projection Pursuit (RPP) (Hiro, et al., 2002) and Targeted Projection Pursuit 

(TPP) (Faith, et al., 2006). The investigation of RPP is out of scope of this research 

however TPP method is going to be investigated in this research. 

According to Faith, et al.  (2006) “Targeted projection pursuit proceeds by 

hypothesizing an ideal view of the data, then finding a projection that best approximates 

that view.” This approach could be very useful as analysing all possible views for high 

dimensional data is almost impossible. In this approach the appropriate target view of 

the data is defined as the view that clearly shows the separation between known classes 

in the dataset.  

Figure 1-11, describes the overall process of TPP in which p is the number of features in 

the dataset and k is the new dimension which has to follow the rule k<p: 

 

 

Figure 1-11 The TPP process 

(Faith, Mintram and Angelova, 2006) 

p is the number of variables in the original dataset 

Feature Selection using TPP is achieved by finding a view that separates the class in 

question from all other samples, and then inspecting the resulting projection to see 

which genes are most significant. 

Process and example 

Suppose we have a n × f matrix which demonstrates the dataset S (n number of samples 

and f number of features in the dataset) and a target view T, a n × 2 (n number of 

samples) matrix that describes a two dimensional view of the dataset. Therefore, a 

projection P (p × 2 matrix) that minimizes the difference between the resulting of the 

projection and the desired view is required (Equation 1-15). 
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min || ||T SP  

Equation 1-15 definition of projection p in TPP 

 (Faith, 2007) 

T the target view, P the projection and S dataset 

||  || denotes Euclidean norm (Equation 1-16) 

Suppose a ij is the thi row and thj  column of matrix A. Euclidean norm can be defined 

as Equation 1-16. 

2

ij

ij

EN a   

Equation 1-16 Euclidean norm 

(Barni et al., 2000) 

A solution to Equation 1-15 may be found by “training a single layer perception with p 

input units and two linear output units” (Faith, 2007). In other words, for each element 

in the dataset, compute the corresponding row in P. 

As mentioned above, TPP tends to find the views in the data. In the field of feature 

selection, the interesting view of the data is the view in that separation in classes in the 

data set is clear. By selecting this view of the dataset (view in which all classes are 

separated), TPP calculates and sorts the importance of each feature in the view. This 

process identifies the most important features and they can be used as selected features.  

The process starts by loading a dataset to TPP. Figure 1-12 illustrates the original 

visualization of SRBCT dataset (Khan et al, 2001) (This dataset contains micro-array 

data of four cancers) using TPP.  

After loading the dataset, by selecting the “Separate class” option, TPP introduces the 

view of the data in which classes in the dataset are separated. Figure 1-13 illustrates the 

secreted class view of SRBCT dataset using TPP. At this stage TPP calculates the 

significance of each feature in this view and highlights the most important features. By 

sorting this table, the most important features can be selected. Figure 1-14 illustrates the 

significance table provided by TPP. For each variable the significance of the variable 

was calculated. 
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Figure 1-12 original view of SRBCT dataset using TPP 

 

 

Figure 1-13 separated class view of SRBCT dataset using TPP 

 

 

Figure 1-14 Significant variables in SRBCT discovered using TPP 
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TPP provides a beneficial significance in case of feature selection, as this technique 

visualizes the dataset and makes it more understandable for researchers. Considering the 

benefits of visualization of the dataset, generating views for large datasets can be a very 

time consuming process. At this stage of the research there is no other research 

available to clarify the possible limitations of this technique.  

Faith, et al. (2006) investigated TPP performance on 3 datasets and they are as follows:  

 LEUK: This dataset is the result of a study of gene expression in two types of 

acute leukaemia: acute lymphoblastic leukaemia (ALL) and acute myeloid 

leukaemia (AML) (Golub et al, 1999) 

 SRBCT: This dataset comprises cDNA microarray analysis (Khan et al, 2001). 

 NCI: This dataset records the variation in gene expression among the 60 cell 

lines from the National Cancer Institute’s anticancer drug screen (Scherf et al, 

2000) 

Results of investigations on the above datasets indicate that TPP performed better than 

the investigated methods. 

Another research (Haddow et al., 2008) analysed the relationship between the primary 

structure of proteins, and their functional properties using TPP. Researchers concluded 

that in the case of the kinase proteins, TPP offers useful analytical results and more 

importantly TPP identified regions that are known to be important in differentiating 

functional classes.  

In summary TPP techniques demonstrate a successful new method in dimensionality 

reduction. The views of the dataset that generated using TPP, help researchers have a 

better understanding of the dataset in hand. The investigated ion on the three datasets 

concluded a high performance for this technique. However further investigation is 

required to compare the performance of this technique with some other dimensionality 

reduction techniques in particular for feature selection. 

 

 

1.3.2.4 Genetic algorithm (GA) 

Genetic Algoritm (GA) was first used by John Holland and his students in 1975. 

Usually Genetic Algorithms are used in optimization (finding the optimum of a 

function).  Traditional optimization techniques like gradient descent are local in scope 
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(Butz et al., 2005). This means that the optima they seek are the best in a neighbourhood 

of the current point. This causes problems, if the function has many local optima or, 

even worse, if the gradient is not computable. Enumerative search methods (e.g. the A*-

algorithm) on the other hand are only applicable, if the search space is discrete and not 

too large (Russel and Norvig, 1995). The advantages of Genetic Algorithms are that 

there is no need to have much information about the function to optimize and GA is 

applicable even if the search space is very large.  

Genetic Algorithms are using random choice as a tool to guide a highly exploitative 

search through a discrete coding of the search space. That means the transition from one 

state in search space to another is probabilistic, not deterministic. According to Dechter 

and Mateescu (2004), deterministic matching systems use a combination of algorithms 

and business rules to determine when two or more records match. On the other hand, 

Probabilistic matching uses likelihood ratio theory to assign comparison outcomes to 

the correct or more likely decision. Another characteristic of Genetic Algorithms is that 

they don’t search from a single point, but from a population of points at the same time. 

That means Genetic Algorithms are a global search procedure, because they explore the 

search space from many points in parallel. This way they can avoid local optima. 

However, it should be mentioned that Genetic Algorithms are not always the best 

choice. Depending on the problem in hand, a traditional gradient descent may actually 

be much faster than a computationally expensive Genetic Algorithm (Lin and He, 

2005). 

The first step in the implementation of genetic algorithms is to identify and model 

(generate) the initial population. In normal genetic algorithm each member of this 

population will be a binary string of length N and it will be referred to as a 

“chromosome” (Reeves and Rowe, 2003). The most common and easiest way to 

achieve this is a binary code. Consider we want to find the maximum of the objective 

function    K: }128,..,0{  2, x x .  

 

Each point }128,..,0{x can be coded as a 7 bit binary number. By putting these points 

together we get a population of chromosomes as:  

}1,0{),,...,( 71 ibbb  
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Then each chromosome is evaluated by using a fitness function, which measures the 

quality of its corresponding solution. According to Reeves and Rowe (2003) the fitness 

function maps the outputs of the evaluation function for the different individuals in the 

population to the fitness value of one single individual. That means the fitness is defined 

with respect to other members of the population. Fitness function should always 

produce a positive value for the fitness and is defined as the following (Reeves and 

Rowe, 2003):  

:f x   

In the normal Genetic Algorithm the fitness is defined as i


  , where i   is the 

evaluation associated with individual and    is the average evaluation of all individuals 

of the population (Reeves and Rowe, 2003).The fitness value can also be assigned based 

on the ranking of the individuals (Goldberg, 1989). 

At each generation (step) the fittest (the best) chromosome will be kept, and as the 

process continues only the fittest chromosomes will remain (the best solution for the 

problem after last generation). For creating this new generation GA uses crossover and 

mutation operators (they are exchanging parts of their genetic information).  In GA 

roulette wheel parent selection is used to pick parents for the new population, where 

each individual is represented on the wheel by a space that is proportional to its fitness. 

The roulette wheel is rotated and an individual is chosen until the intermediate 

population is filled up.  

In broader usage of the term, a genetic algorithm is any population based model that 

uses selection and recombination operators to generate new sample points in the search 

space (Reeves and Rowe, 2003). 

In order to clarify the GA algorithm we are going to explain the crossover and mutation 

operators.  

Crossover: After selecting the parents we need to combine them to create new 

generation, this process is known as crossover. In other words crossover is a matter of 

replacing some of the properties in one parent by properties of the corresponding genes 

of the other (Reeves and Rowe, 2003). According to Reeves and Rowe (2003) there are 

different kinds of crossover operators used in GA such as: one point crossover, m point 



54 

crossover, non-linear crossover and generalized n point crossover. Imagine we have two 

strings of  

1 2 3 4 5( , , , , )b b a a a  And 1 2 3 4 5( , , , , )b b b b b  

one point crossover randomly selects crossover point (in this case between 1… 5) and 

new solution produced by combining the pieces of the original parents as follows 

(crossover point=2): 

1 2 3 4 5( , , , , )a a b b b  And 1 2 3 4 5( , , , , )b b a a a  

Mutation: The purpose of mutation in GA is preventing the population of 

chromosomes from becoming too similar to each other, thus slowing or even stopping 

evolution (Reeves and Rowe, 2003). Mutation simply means complementing the chosen 

bit(s). For example, the string 10001011 with mutation applied at genes 3 and 5, 

becomes 10100011. 

The following is a simple GA algorithm (Jones, 1998): 

1. A population of m random individuals is initialized. 

2. Fitness scores are assigned to each individual. 

3. Using roulette wheel parent selection m/2 pairs of parents are chosen from the 

current population to form a new population. 

4. With probability Pc, children are formed by performing crossover on the m/2 

pairs of parents. The children replace the parents in the new population. 

5. With probability Pm, mutation is performed on the new population. 

6. The new population becomes the current population. 

7. If the termination conditions are satisfied exit, otherwise go to step 3. 

Figure 1-15, illustrates the simple GA algorithm.  
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Figure 1-15 GA process 

(Mitchell, 1998) 

 

To clarify the process, consider the following artificial example (Table 1-14). The 

fitness values are generated based on an artificial scenario. 

 

 

ID  Chromosome Fitness 

1 11000 0.80 

2 00111 0.20 

3 10101 0.60 

4 11011 0.70 

Table 1-14 Artificial dataset as an example for GA process 

  

 

 

At this point GA will select the fittest chromosomes according to their fitness values. In 

this case chromosomes number one (f(1)=0.80) , chromosomes number four (f(4)=0.70) 

and chromosomes number three (f(3)=0.60) will be selected. 
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After selection chromosomes crossover and mutate. The first chromosome gets last bit 

mutated and second and third chromosome crossover to produce two new ones. After 

these transformations population at time 1nt   is 11001, 10001, and 10111. 

Figure 1-16 illustrates the process of the above example. 

 

 

Figure 1-16 GA process example 

 

 

Although genetic algorithms have proven to be an efficient and powerful problem-

solving strategy, on the other hand GA has certain limitations. However, it will be 

shown that all of these can be overcome and none of them “bear on the validity of 

biological evolution” (Mitchell, 1998). 

 Lack a convergence proof: It means that GA may not know when it is done (Jackson 

and Norgard, 2008). One possible solution to this problem is to examine some 

possible generations and if no improvement is observed, terminate the process. 

 Premature convergence: If a chromosome that is fitter than most of its competitors 

emerges early in the process of the algorithm, it may drives down the population's 

diversity too soon, leading the algorithm to unite on the local optimum that the 

individual represents rather than finding the global optimum (Forrest 1993, Mitchell 

1996). In other words according to Jackson and Norgard (2008) GA has the problem 

of “climbing local hills in the solution space”. One possible solution to this problem 

is to control the strength of the selection (Mitchell, 1998). 

 Time and computational effort: several researchers (Holland 1992; Forrest 1993; 

Haupt and Haupt 2004) advise against using genetic algorithms on analytically 

solvable problems. This doesn’t mean that GA cannot find the optimum solution for 

11000  00111 10101

11011  ……...  …….

11000  11011  10101

…….    …… …….

11001  10001  10111

……..   …….    …….

Tim: Tn Tim: Tn+1

Selection

Mutation

Crossover
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the problem, but the traditional analytic methods take much less time and 

computational effort than GA.  

 Suitable fitness function and operators: as mentioned in the previous section GA 

needs a high performance fitness function and suitable crossover and mutation 

operators to perform well. Failing to design and implement such properties for GA 

will lead algorithm to failure.  

 

As mentioned previously (section 1.3.2) feature selection is a search problem and on 

large datasets such as gene expression datasets, this search is proven to be more 

difficult. As described in this section GA is a high performance search process which is 

widely applied on gene expression data sets. Chakraborty and Maka (2005) investigated 

GA on gene expression data and compared some other methods (such as chi squared) 

and concluded that GA outperformed other algorithms. Karzynski et al. (2003) claims 

that GA is a 100% successful method in context of diagnostic applications of DNA 

micro-arrays. Many other researchers(Weinberg et al. 2001, Zhu et al. 2007, Hruschka 

et al. 2004, Liu et al. 2004, Gesu et al. 2005, Gesu et al. 2005 and Ma et al. 2003  ) 

employed GA for feature selection or clustering the gene expression datasets and 

claimed that this technique is very powerful and accurate compared to other methods.  

Considering efficiency and accuracy of GA, many researchers used GA on gene 

expression data and concluded that this technique is very effective and powerful. 

Although GA has some limitations, they can be resolved if they are carefully addressed 

during the implementation.  
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1.4 Research outline 

The following section demonstrates the outline of the present research. The statement of 

the problem is introduced and the research questions are introduced. Later on, the 

structure of the thesis is clarified.  

1.4.1 Statement of the problem 

Previously (Section 1.2) the current understanding of ovarian cancer was discussed. The 

standard management of ovarian cancer highlights some problems and possible 

improvement for management of ovarian cancer. The following sections address these 

problems. 

1.4.1.1 Complexity of the ovarian cancer management 

The number of markers, treatments and the sequences of treatments are rising. 

Therefore it is getting more complex for human brain to perform clinical decision 

making. There is a need for an expert computer system (e.g. Artificial Intelligence) 

which is capable of investigating the possible outcome for each marker, treatment and 

sequence of the treatment (Friedman, 2009).  

These expert systems provide a tool that may help clinicians to analyze and predict 

different treatment pathways. These models can act as a tool for predicting the outcome 

of each treatment pathway.  

The other possible benefits of using such systems are that they can learn from 

experience and improve their prediction accuracy.  

1.4.1.2 Prediction of survival 

The prediction of the overall survival of a patient is a very difficult task. There may be 

some benefits in predicting the overall survival as this prediction may change the path 

of treatment. The prediction of survival may change the method of recruitment in 

randomised studies. Understanding the possible survival duration of the patient may 

also be beneficial for the patient.   

Recently there were some attempts in predicting the overall survival (Gerstein et al., 

2009). Although the introduced models could predict the overall survival, the accuracy 

of the prediction is not high (c statistic of 0.67). The introduced system is a static model 

that cannot improve its prediction accuracy as the number of new cases emerges.  

Therefore a system that can predict the overall survival of the patient is needed 

(Teramukai et al., 2007; Chi et al., 2008; Gerestein et al., 2009). 
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1.4.1.3 Surgical prediction 

As discussed previously (section 1.2.1.8), there are three different outcomes of surgery. 

The current management of ovarian cancer is the surgery after discovering abnormality 

during the physical examination, rises in CA125 biomarker and abnormality on CT 

scans. Only in small number of cases, due to health issues, the patient is referred for 

other treatment pathways rather than surgery. As discussed (section 1.2.1.8) the goal of 

the surgery is to remove as much tumour as possible. Based on the author’s observation 

in theatre room and ovarian cancer literature, in some cases it is impossible to remove 

the entire tumour during surgery. Such patients (that complete cytoreduction surgery is 

not achievable) could be referred to another treatment pathway rather than primary 

surgery.  

In the past (Bristow et al., 2000; Funt et al, 2004) there were some attempts to predict 

the outcome of the surgery based on CT scan results. None of these attempts could 

successfully introduce a reliable model. At present there is an essential need for such 

system that can predict the outcome of the surgery (Allen, 2010). 

Therefore there are many benefits mentioned for a system that can predict the outcome 

of the surgery (Allen (2010); Leitao and Barakat, 2009). 

 

1.4.2 Research questions 

The research questions are derived from the problems identified in existing literature. 

Thus, two of this research’s questions are as follows: 

1. Can Artificial intelligence and Machine learning methods accurately predict the 

survival rate of ovarian cancer patients?  

Accuracy in this question refers to better prediction results compared to the 

current available models.  

2. Can Artificial intelligence and Machine learning methods predict the outcome of 

the surgery using the variables available for clinicians prior to surgery? 

 

1.4.3 Structure of the thesis 

The thesis consists of seven chapters.Chapter 1: This chapter investigates the current 

understanding of ovarian cancer. The current management of ovarian cancer and clinical 

decision making regarding ovarian cancer is investigated in this chapter. The Artificial 

intelligence, Machine learning methods and feature selection techniques are introduced 
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in this chapter. Based on the identified problems in current management of ovarian 

cancer and the potential benefits of computational methods the research questions are 

identified.  

Chapter 2: Introduces the dataset that will be used in this research. This chapter 

investigates the data pre-processing processes.  

Chapter 3: Investigates the process definition of this research. This chapter also 

introduces the estimates of prediction performance and prediction performance 

measurements.  In this chapter, the possible problems during the process are identified 

and addressed.  

Chapter 4: Investigates the possibility of prediction of survival rates. The most 

important variables for this prediction are identified. The results of the present model 

are compared against the previously developed model and conventional statistical 

models. 

Chapter 5: Investigates the prediction of the outcome of the surgery. The most 

important factors for this prediction are identified. The results of the prediction are also 

compared against the results of prediction using statistical models.  

Chapter 6: In this chapter, using feature selection and Artificial inelegance models, a 

gene analysis for discovering most important genes for prediction of chemotherapy 

response is introduced.  

Chapter 7: Finally this chapter summarizes the thesis and introduces the possible future 

work that can be completed.   
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Chapter 2 Data and Data handling 
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2.1 Introduction 

This chapter of the thesis introduces the datasets that will be used in this research. Each 

dataset is briefly described and the characteristics of each dataset are presented. These 

characteristics include the number of data and the percentage of the data which is 

available for all the variables. The number of data for the complete dataset (the dataset 

with no missing values) and the entire collected data is made available.   

Each dataset needed to be pre-processed prior to any analysis; therefore the pre-

processing phase including the normalization of the data, handling missing values, 

identifying outliers and coding the input values are briefly described. 

After the pre-processing phase, the datasets were merged and the initial comparison of 

the two datasets is described.  

2.2 Datasets 

To discover the hidden relations between the data, the appropriate datasets are required. 

The machine learning section in chapter one (section 1.3.1) describes the need for 

datasets to train and evaluate the created models. This section introduces the datasets 

that will be used to extract information from the data to build, train and evaluate the 

models. 

2.2.1 Newcastle ovarian cancer tissue micro array 2000 (OV_TMA_2000) 

The Newcastle ovarian cancer tissue micro array (OV_TMA_2000) (Wilkinson et al., 

2008) is used as a primary dataset. Briefly, the OV_TMA_2000 comprises 167 cases of 

epithelial ovarian cancer. All tissue samples were taken from sequential patients who 

underwent primary surgery between 1995 and 2000 at the Northern Gynaecological 

Oncology Centre, Gateshead, UK, with appropriate ethical approval.  All patients 

underwent maximal effort primary cytoreductive surgery followed by platinum based 

chemotherapy either with or without paclitaxel. For each tumour sample all histology 

reports, H&E stained slides and formalin fixed paraffin embedded blocks were retrieved 

and the diagnosis of epithelial ovarian cancer confirmed. 1mm cores were then taken 

from these areas and added to the OV_TMA_2000. Data were simultaneously extracted 

from the patient record to include age, FIGO stage, grade, histological subtype, 

preoperative CA125 and outcome of surgery. These data are available to a clinician 

immediately after staging surgery. The overall survival was also recorded. 

41/167 cases had more than two data items missing and were therefore excluded from 

further analysis giving a total of 126 cases within the dataset, summarised in table 2.1.  
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 All 

available 

cases 

Complete 

data 

1 or 2 

missing 

values 

Useable 

data 

Unusable 

data 

Number 

of cases 
167 70 56 126 41 

Table 2-1 OV_TMA_2000 

The available data in OV_TMA_2000 dataset 

 

 Age: The age of the patient in years or missing. (Table 2-2) 

 FIGO stage: The value is recorded as one of the following: 1a, 1b, 1c, 2a, 2b, 2c, 

3a, 3b, 3c, 4 or missing. (Table 2-3) 

 Grade: The possible values are: poorly differentiated, moderately differentiated, 

well differentiated or missing. (Table 2-4) 

 Histological subtype: The possible subtypes (section 1.2.1.4) are: serous, 

papillary serous, mucinous, clear cell, endometrioid or missing. (Table 2-5) 

 CA125: Continuous data greater than one. (Table 2-6) 

 Outcome of the surgery (section 1.2.1.8): complete cytoreduction, optimal 

cytoreduction, sub-optimal cytoreduction or missing. (Table 2-7)  
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 Number of available cases (#) Percentage of the data (%) 

Age All data Complete data All data Complete data 

20-30 2 1 1.20 1.43 

30-40 3 1 1.80 1.43 

40-50 12 6 7.19 8.57 

50-60 36 13 21.56 18.57 

60-70 54 27 32.34 38.57 

70-80 39 16 23.35 22.86 

80-90 12 5 7.19 7.14 

90-100 1 0 0.60 0 

100+ 2 1 1.20 1.43 

Missing 6 0 3.59 0 

Total 167 70 100% 100% 

Table 2-2 OV_TMA_2000 Age 

Breakdown of available data for Age 

 Number of available cases (#) Percentage of the data (%) 

FIGO stage All data Complete data All data Complete data 

1a 15 4 8.98 5.71 

1b 1 1 0.60 1.43 

1c 11 5 6.59 7.14 

2a 1 1 0.60 1.43 

2b 3 1 1.80 1.43 

2c 10 4 5.99 5.71 

3a 6 5 3.59 7.14 

3b 9 2 5.35 2.86 

3c 76 40 45.51 57.14 

4 18 7 10.78 10.00 

Missing 17 0 10.18 0 

Total 167 70 100% 100% 

Table 2-3 OV_TMA_2000 FIGO stage 

Breakdown of available data for FIGO stage 
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 Number of available cases (#) Percentage of the data (%) 

Grade All data Complete data All data Complete data 

Poorly 

differentiated 
80 39 47.90 55.71 

Moderately 

differentiated 
45 21 26.95 30.00 

Well 

differentiated 
42 10 25.15 14.29 

Missing 0 0 0 0 

Total 167 70 100% 100% 

Table 2-4 OV_TMA_2000 Grade 

Breakdown of available data for Grade 

 

 

 Number of available cases (#) Percentage of the data (%) 

Histological 

subtype 
All data Complete data All data Complete data 

Serous 38 15 22.75 21.43 

Papillary 

serous 
41 18 24.55 25.71 

Mucinous 18 5 10.78 7.14 

Clear cell 16 4 9.58 5.71 

Endometrioid 54 28 32.34 40.00 

Missing 0 0 0 0 

Total 167 70 100% 100% 

Table 2-5 OV_TMA_2000 Histological subtype 

Breakdown of available data for Histological subtype 
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 Number of available cases (#) Percentage of the data (%) 

CA125 All data Complete data All data Complete data 

1-35 9 1 5.39 1.43 

35-100 15 8 8.98 11.43 

100-500 46 28 27.54 40.00 

500-1000 25 12 14.97 17.14 

1000-3000 26 12 15.57 17.14 

3000+ 19 9 11.38 12.86 

Missing 27 0 16.17 0 

Total 167 70 100% 100% 

Table 2-6 OV_TMA_2000 CA125 

Breakdown of available data for CA125 

 

 Number of available cases (#) Percentage of the data (%) 

Outcome of 

the surgery 
All data Complete data All data Complete data 

Complete 

cytoreduction 
54 22 32.34 31.43 

Optimal 

cytoreduction 
30 18 17.96 25.71 

Sub-optimal 

cytoreduction 
64 30 38.32 42.86 

Missing 19 0 11.38 0 

Total 167 70 100% 100% 

Table 2-7 OV_TMA_2000 Outcome of the surgery 

Breakdown of available data for Outcome of the surgery 
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2.2.2 Newcastle ovarian cancer tissue micro array 2005 (OV_TMA_2005) 

The original dataset (OV_TMA_2000) was discussed in the previous section (section 

2.2.1). However according to Marzban (2009) and Lee (2010) availability of more data 

can significantly improve the performance of the models. Therefore in order to improve 

the models, a further dataset was required. Subsequently, with appropriate ethical 

approval, the patient’s files which were admitted to the Northern Gynaecological 

Oncology Centre, Gateshead, UK, between 2000 and 2005 were analysed and 

appropriately recorded. The number of patient files that are available for analysis in the 

period of 2000-2005 is 1057. In order to capture all required data for each patient, it was 

essential to read and record the following for each patient: 

 MDT meeting reports.  

 Operation notes. 

 The letters sent to each patient. 

 

The following table (Table 2-8) summarizes the number of MDT meeting reports, 

operation notes and the letters sent to each patient during the 2000-2005 period that 

were analyzed and recorded during the collection of OV_TMA_2005 dataset. Most of 

this information was paper based, therefore making the analysis and the recording 

process very difficult and time consuming.    

 

 

Number of 

patients 

MDT 

reports 

Patients’ 

letters 

Operation 

notes 

1057 3300 28300 4310 

Table 2-8 Analysed data for collection of OV_TMA_2005 dataset 

The amount of analysed patient files for collection of the OV_TMA_2005 dataset 
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The data was divided into similar categories as the previous section.  

 All 

available 

cases 

Complete 

data 

1 or 2 

missing 

values 

Useable 

data 

Unusable 

data 

Number 

of cases 
501 248 34 282 219 

Table 2-9 OV_TMA_2005 

The available data in OV_TMA_2005 dataset 

 

 

 

Similar to the OV_TMA_2000 dataset, each variable can hold different possible values: 

 Age: (Table 2-10) 

 FIGO stage: (Table 2-11) 

 Grade: (Table 2-12) 

 Histological subtype: (Table 2-13) 

 CA125: (Table 2-14) 

 Outcome of the surgery: (Table 2-15) 
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 Number of available cases (#) Percentage of the data (%) 

Age All data Complete data All data Complete data 

20-30 2 0 0.40 0.00 

30-40 10 3 2.00 1.21 

40-50 48 20 9.58 8.06 

50-60 98 42 19.56 16.94 

60-70 153 79 30.54 31.85 

70-80 116 54 23.15 21.77 

80-90 69 46 13.77 18.55 

90-100 5 4 1.00 1.61 

100+ 0 0 0.00 0.00 

Missing 0 0 0.00 0 

Total 501 248 100% 100% 

Table 2-10 OV_TMA_2005 Age 

Breakdown of available data for Age 

 Number of available cases (#) Percentage of the data (%) 

FIGO stage All data Complete data All data Complete data 

1a 68 33 13.57 13.31 

1b 5 2 1.00 0.81 

1c 70 31 13.97 12.50 

2a 3 1 0.60 0.40 

2b 2 1 0.40 0.40 

2c 20 10 3.99 4.03 

3a 14 9 2.79 3.63 

3b 19 11 3.79 4.44 

3c 230 128 45.91 51.61 

4 46 22 9.18 8.87 

Missing 24 0 4.79 0 

Total 501 248 100% 100% 

Table 2-11 OV_TMA_2005 FIGO stage 

Breakdown of available data for FIGO stage 
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 Number of available cases (#) Percentage of the data (%) 

Grade All data Complete data All data Complete data 

Poorly 

differentiated 
225 172 47.90 44.91 

Moderately 

differentiated 
49 29 26.95 9.78 

Well 

differentiated 
63 47 25.15 12.57 

Missing 164 0 0 32.73 

Total 501 248 100% 100% 

Table 2-12 OV_TMA_2005 Grade 

Breakdown of available data for Grade 

 

 Number of available cases (#) Percentage of the data (%) 

Histological 

subtype 
All data Complete data All data Complete data 

Serous 19 19 3.79 7.66 

Papillary 

serous 100 64 19.96 25.81 

Mucinous 44 30 8.78 12.10 

Clear cell 30 14 5.99 5.65 

Endometrioid 206 121 41.12 48.79 

Missing 102 0 20.36 0 

Total 501 248 100% 100% 

Table 2-13 OV_TMA_2005 Histological subtype 

Breakdown of available data for Histological subtype 
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 Number of available cases (#) Percentage of the data (%) 

CA125 All data Complete data All data Complete data 

0-35 22 14 4.39 5.65 

35-100 62 34 12.38 13.71 

100-500 131 88 26.15 35.48 

500-1000 56 31 11.18 12.50 

1000-3000 71 43 14.17 17.34 

3000+ 46 38 9.18 15.32 

Missing 113 0 22.55 0 

Total 501 248 100% 100% 

Table 2-14 OV_TMA_2005 CA125 

Breakdown of available data for CA125 

 

 

 Number of available cases (#) Percentage of the data (%) 

Outcome of 

the surgery 
All data Complete data All data Complete data 

Complete 

cytoreduction 207 120 41.32 48.39 

Optimal 

cytoreduction 134 80 26.75 32.26 

Sub-optimal 

cytoreduction 72 48 14.37 19.35 

Missing 88 0 17.56 0 

Total 501 248 100% 100% 

Table 2-15 OV_TMA_2005 Outcome of the surgery 

Breakdown of available data for Outcome of the surgery 
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2.3 Data pre-processing  

The quality of a machine learning model or a classifier is highly dependent on many 

factors. Probably the most important factor is the quality and representation of the 

available data (Kotsiantis et al., 2006; Asyali et al., 2006). This is an important part of 

the research as the models such as ANN are very sensitive to the quality of the data and 

consequently, the predictive results can be highly affected. Therefore, the identification 

of undesirable data in the dataset and the removal of such data can ensure the better 

performance of the models. This section investigates the essential parts of data pre-

processing. 

 

2.3.1 Handling missing values 

It is common for real world datasets to contain missing values (Kotsiantis et al., 2006). 

On some occasions due to technical issues it is impossible to calculate the value of a 

feature for a given instance or occasionally the data is lost based on how the data is 

recorded. There are many methods suggested for handling the missing values in the 

dataset. One of the most common methods is to remove the instances that have missing 

value(s) (Engelbrecht, 2007). Removal of the instances in case of missing value may 

resolve the problem of missing values. However as the number of cases is limited in 

most real world datasets, the available data for analysis will be reduced. Also by 

removing such cases , vital information about the data may be lost (Engelbrecht, 2007). 

The other method is to replace the missing value with the average value of the 

remaining available cases in case of continues data, or replacing the missing value with 

the most occurring value in case of nominal data (Kotsiantis et al., 2006). 

It is also possible to estimate the missing value using KNN method (section 1.3.1.1). As 

discussed previously, KNN can estimate the missing value based on the likelihood of its 

similar data in the dataset. Research (Kim et al., 2005; Dudoit et al., 2002; Troyanskaya 

et al., 2001) suggested that KNN may be the most reliable method for estimation of the 

missing value.  

2.3.2 Outliers 

In statistical terms, outliers are defined as the data that significantly differs from other 

data in the dataset (Barnett and Lewis, 1994). Engelbrecht (2007) highlighted the issues 

of outliers in the data and suggested as the values of outliers are significantly different 

to the rest of data, it affects the function (or model) that fits to the data and they tend to 
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pull the resulted function (or model) towards themselves (Figure 2-1). As a result they 

play an important role in reducing the accuracy of the model.  

The problem of outliers can be addressed using different methods. The most common 

and straightforward approach is to completely remove such data from the data set. It is 

argued (Engelbrecht, 2007) that removing the outliers from dataset resolves the issues 

surrounding outliers in the dataset; however it is possible to lose vital information about 

the data. There are many approaches developed based on removing the outliers. Gedeon 

et al. (1995) and Slade and Gedeon (1993), developed the approach of removing the 

outliers during training the model based on the distribution of the data.  

Some other researchers (Huber, 1981), suggest that it is possible to build the robust 

model or function that is not influenced by outliers.  

Outliers were included but data were always cross checked between paper and 

electronic formats and cases with discrepancies discarded. In this research, the removal 

approach for handling the outliers will be employed. This is because of the nature of the 

present data for this research, as many of the outliers may have been caused by human 

error during the entering and recording of the data into paper based files.  

 

 

Figure 2-1The issue of outliers in the dataset 

(Engelbrecht, 2007) 

Outliers tend to distance the desired function (or model) to be closer to them and as a 

result significantly affect the accuracy of the model. 
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2.3.3 Coding the input values 

Some classifiers and machine learning models such as ANN, can only handle numeric 

values. Therefore, it is essential to convert nominal values into numeric values before 

analysis. The solution for the variables that only hold two nominal values such as ‘Sex’ 

is straightforward, one of the values for example male can be coded to ‘1’ and the other 

(female) to ‘0’. It is possible to apply the same approach for other variables and map 

each nominal value to a unique numeric value, however as Engelbrecht (2007) argues, 

the model may assume that this set of numbers represents a continuous dataset which 

will cause the model to lose the original characteristic of such data. The possible 

solution is to use binary labelling for converting the nominal data (Huang and Ng, 

2003). The nominal data with n different values can be coded into n different variables 

where the corresponding variable’s value is set to ‘1’ and the rest of variables are set to 

‘0’ (Engelbrecht, 2007). In the other words, the n entry values for a nominal variable 

will be converted to n different variables that each variable is set to one of the entry 

values. For each case the new converted variable is set to ‘1’ if and only if it 

corresponds to the entered value for the nominal variable. 

 

2.3.4. Normalization and scaling 

Data normalization and scaling is a common practice which is used for most of the 

research that involves some sort of data and modelling (Cheng and Li, 2008). It is 

essential to note that in this thesis, normalization refers to the process of scaling down 

the values to a specific range, rather than scaling it up. Most of the classifiers and 

models normalize data before processing. Normalization may ensure higher 

performance for models and classifiers as this technique preserves the relation between 

features in the dataset and it simplifies the computing process (Han et al., 2006). It has 

been argued that the normalization process is an essential part of data pre-processing as 

it prevents the feature with a large range dominating the other features in the dataset 

with relatively smaller ranges (Han et al., 2006; Engelbrecht, 2007; Kotsiantis et al., 

2006). 

There are many methods developed for normalizing the data. One of the most 

commonly used techniques is to consider the mean and the standard deviation of a 

feature and normalizing each value of the feature. This method is commonly known as 

zero-mean normalization. According to Han et al. (2006), consider v is one of the values 
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of feature X and the standard deviation of X is calculated as X  and the mean value of X 

is X . Therefore the nv  normalized value of v can be calculated as: 

n

X

v X
v




  

Equation 2-1 zero-mean normalization 

Where V is one of the values of feature X and X is the standard deviation of X and X

is the mean value of X. 

Max-min normalization is another method that is widely used. Assume max X and min X  

are the maximum and minimum values of feature X and v one of the values of feature X. 

nv the normalized value of v can be calculated as (Han et al., 2006):  

min

max min

x
n

x x

v
v





 

Equation 2-2 max-min normalization 

Where v is a value of X, max X and min X  are the maximum and minimum values of 

feature X and nv the normalized value of v 

 

There are many other methods developed for data normalization. However the 

differences between methods are not very noticeable (Han et al., 2006) and due to the 

simplicity of the zero-mean method, this method is selected for this research.  

Although the data normalization is common practice in most research and datasets 

(Cheng and Li, 2008), we have to keep in mind that in some cases it is essential to 

consider that some data may show some domination in the data by their nature (such as 

gene analysis data). Consequently, scaling down the gene expression data may equalise 

the expression of genes. Therefore, it is essential to consider the data and type of 

analysis in hand before performing the data normalization. 

2.4 Comparison of datasets 

In section 2.2 datasets OV_TMA_2000 and OV_TMA_2005 were discussed. Prior to 

merging the two datasets, they were compared to ensure no significant differences 

existed between the two. In order to achieve this, a paired sample T test using 

Wilcoxon, Sign, McNemar and Marginal Homogenity is performed. These tests are 
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used to compare groups that are related in some way. The results of these tests indicate 

the similarity or differences between the values of the features in each dataset 

(Riffenburgh, 2005). 

There is no statistical difference between Age, FIGO, Histology, CA125 and Grade 

variables in the two datasets. However there was a statistical difference between 

outcome of the surgery and survival rates.  

The comparison of survival and outcome of surgery (Figure 2-2 and Figure 2-3), 

indicates an increase in the number of complete cytoreduction from 2000-2005 

(OV_TMA_2005) compared to 1995-2000 (OV_TMA_2000). Also it shows a decrease 

in the number of sub-optimal cytoreduction from 1995-2000 compared to 2000-2005. 

Meanwhile the survival rates increased from 1995-2000 compared to 2000-2005.  

In the absence of significant differences between other variables in the datasets, this 

analysis suggests, a strong correlation between the outcome of surgery and the survival 

rates of the patients. This may draw a significant conclusion that the attempts to remove 

as much tumour as possible from the patients significantly increase their survival rate. 

On the other hand it may be that these days the only patients that considered for surgery 

are better patients (patients with good physical and mental conditions). 
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Figure 2-2 Two datasets comparison 

The statistical comparison of OV_TMA_2000 and OV_TMA_2005 concluded that there 

is a statistical significant difference between the outcome of surgery (p value of .006) 

and survival (p value of .006) in the two datasets. 

 

 

Figure 2-3 Survival vs. Outcome of surgery 2000-2005 

Correlation between outcome of surgery and survival rates from 2000-2005. 
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2.5 Summary of chapter  

This chapter of the thesis introduced the datasets that will be used in this research. Each 

dataset was briefly described and the process of collection was highlighted. 

Furthermore, the process of pre-processing of the datasets including the data 

normalization, handling the missing values and identifying the outliers was described. 

Following the validation process, the initial comparisons of the two available datasets 

were presented. This initial comparison highlighted an important conclusion, which is 

the strong relation between the outcome of the surgery and the survival rate of the 

patients.  
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Chapter 3 Experimental methodology 
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3.1 Introduction 

This chapter introduces the methods and metrics used for measuring the performance of 

the models, which will enable comparison and selection of the best model. There are 

many estimates and metrics available; however the most popular methods were selected 

and are briefly described in this chapter. This chapter also introduces the design of 

algorithms which demonstrates the analysis part of this research. Finally, the tools that 

were used in this research will be introduced and briefly described.  

3.2 Estimates of prediction performance 

Machine learning and some of its techniques were discussed previously (section 1.3).  

Briefly, a typical task in data mining, machine learning or statistics is to train a model 

using available data, the training data, and then apply the trained model to new data, 

referred to as evaluation data. As discussed previously (section 1.3) , there are many 

different algorithms available in this field. Ideally the true risk (performance of all 

related data) of the model would select the better algorithm. Unfortunately, in real 

applications only a finite number of data are available, therefore, estimates have to be 

made (Chapelle et al., 2002). In order to assess the performance of the model, it is 

essential that the model is not assessed using the data with which it was trained. The 

model should make appropriate predictions of the evaluation data, (Fujikoshi et al., 

2010). The following approaches were proposed to overcome the above issue. 

3.2.1 Resubstitution Validation  

This approach uses all available data for training the model and evaluates the model 

using the same data (Braga-Neto et al., 2004). In other words, in this approach data has 

been used twice, once for training the model and then for evaluation.   

The Resubstitution Validation, uses the same data for training and evaluation, and will 

therefore underestimate the true error rate (Dubitzky et al., 2006). This validation 

process is widely used in statistics where the number of data instances is relatively 

larger than the number of parameters (factors) in the dataset, because of its simplicity 

(Dubitzky et al., 2006). On the other hand, where the number of parameters (factors) in 

the dataset is large, this estimate tends to be insignificant and misleading (Dubitzky et 

al., 2006). Simon et al. (2003) argue that to measure the prediction ability of a model 

the data for training and evaluation should be separate.  Figure 3-1 demonstrates the 

amount of data that is used for training and evaluation of the model. 
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Figure 3-1 Resubstitution Validation 

This method uses the entire dataset for training and evaluation. 

 

 

3.2.2 Hold-out validation  

To overcome the problem of the Resubstitution validation method Hold-out validation 

was introduced. This approach of validation randomly splits the data in to two separate 

sections, one for training the model and one for evaluation (Lee, 2010). Typically less 

than one third of the data is selected as the evaluation set (Lee, 2010). In other words 

the evaluation set part of the dataset is held out and not used during the training process 

(Figure 3-2). Hold out validation, uses separate data for training and validation, 

therefore this approach leads us to a more accurate estimate for prediction performance 

of the model (Lee, 2010).   

In this approach, the results of training and validation are highly dependent on the split 

in the data set (Marzban, 2009). Since this method uses a single training and evaluation 

over the data set, it may result in an easy or hard section of the data for training and 

validation and leads to “unfortunate” splits (Marzban, 2009). These problems can be 

partially addressed by repeating the process multiple times and using the average 

performance as the final prediction performance. However, as there is no system 

defined for this process, some of the data may be included in the training set multiple 

times, while the others are not included at all. It is also possible that some data may 

always fall into the training set and never have a chance to take part in the evaluation set 

(Marzban, 2009). 
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Figure 3-2 Hold-out Validation 

Hold-out validation splits the data set into two separate sets for training and validation. 

 

3.2.3 K-Fold Cross-Validation 

This method partitions the data into k equally (or nearly equal) sized partition or folds 

(Figure 3-3). For each of k experiment, the ‘k-1’ folds will be used for training the 

model and the remaining one for testing (Lee, 2010). In order to make sure that each 

fold is a good representative of the whole data set, at the start of the process data is 

“stratified” (Dziuda, 2010). The main disadvantage of this technique is that the training 

and evaluation have to be repeated k times; therefore it takes k times longer than the two 

previously described methods. However the training and validation sets are always 

separate to each other and the whole dataset is covered. 

Therefore the true error is estimated as an average error rate on the test sets. Equation 

3-1, illustrates the calculation of the true error rate, where k is the number of folds, and 

iE
 is the error rate for each test.  

1

1 k

i

i

E E
k 

   

Equation 3-1 True error rate of k-fold cross-validation 

Where k is the number of folds, and iE is the error test for each test. 
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Figure 3-3  4-fold Cross-Validation 

4-fold cross-validation splits the dataset into training and evaluation sets. Each time 

3(4-1) folds will be used for training and the remaining for evaluation. This process will 

be repeated 4 (k) times. 

 

 

 

Most researchers tend to use k=10 for cross-validation (Dziuda, 2010). Lee (2010) 

argues that the number of folds may depend on the size of the available data set. A 

larger number of folds increase the accuracy of the estimator, on the other hand the 

variance of the estimator will be large and the computational time will be high due to 

many experiments. The small number of folds reduces the computational time and the 

variance of the estimator will be small, however the estimator will be less accurate (Lee, 

2010).  

3.2.4 Leave-One-Out Cross-Validation (LOOCV) 

LOOCV is a special case of k-fold cross-validation, where k is equal to the number of 

data items in the dataset (Dubitzky et al., 2006). In other words, for a dataset with k 

number of data, k tests will be performed, where k-1 examples will be used for training 

the model and the remaining 1 example will be used for evaluation (Figure 3-4). 

LOOCV is widely used especially where the number of available data is very small 
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(Dziuda, 2010).The running time in this method is higher than k-fold cross-validation 

due to increase in number of folds. 

The true error rate in this case is calculated similarly to the k-fold cross validation 

(Equation 3-1).  

 

 

Figure 3-4 Leave-One-Out Cross-Validation 

Each time N-1 number of data will be used for training and the remaining data for 

evaluation. 

 

3.2.5 Repeated k-fold Cross-Validation 

This method has a similar concept to k-fold cross-validation (Section 3.2.3), and it 

repeats the process multiple times (Lee, 2010). At the start of each round data is 

reshuffled. 

This method increases the computational time, however Dziuda (2010) argues as the 

number of estimators’ increases it may lead to a higher accuracy.  

3.2.6 Evaluation of the estimates 

Previously (section 3.2.1-3.2.5) some of the different prediction performance estimators 

were discussed. There have been many attempts in the past to understand the advantages 

and drawbacks of each method and conclude which method performances are the best. 
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Although this conclusion is very dependent to the available data set, it is possible to 

select one of these methods for estimation of the prediction performance in this 

research. Kohavi (1995), Salzberg (1997) and Dietterich (1998) compared several 

methods to estimate accuracy and concluded that 10-fold cross-validation is the best 

selection method. More recently, Molinaro et al. (2005) compared several methods of 

estimation on very wide range of datasets and concluded that 10-fold cross-validation 

performs the best compared to the other methods. 

Furthermore many researchers such as Patnaik et al. (2010), Boutros et al. (2009), 

Hartmann et al. (2009), Dragonieri et al. (2009), Barnett et al. (2010) and Crijns et al. 

(2009) used one type of cross-validation for their research.  

Therefore the 10-fold cross-validation has been selected to estimate the prediction 

performance in this research. 

3.3 Prediction performance measurements 

The criteria for evaluating the performance of a model or a classifier are an important 

part of its design and the research. Using defined criteria allows estimates of the actions 

of a model or a classifier on unseen data to be calculated and also it can be used to 

compare the performance of generated models or classifiers. This will help to decide if 

the model or classifier is good enough for the purpose or to enable the researcher to 

improve it or replace it with another procedure. Several criteria have been used to 

evaluate the performance of classifiers or models. This section, introduces some of these 

criteria. 

3.3.1 Possible outcomes of a model 

There is a need for measurements to identify which of the used models or classifiers 

performed better. In order to introduce such measurements, it is essential to define the 

types of outcomes that a model can produce. Consider a dataset with two classes 1 

(“yes”) and 0 (“no”). The following are four possible outcomes of the prediction: 

False positive (FP): the outcome incorrectly classified “yes” (or 1 or positive) when the 

actual class is “no” (or 0 or negative). 

False negative (FN): the outcome incorrectly classified as “no”, when the actual class is 

“yes”. 

True positive (TP): the outcome correctly classified as “yes”, when the actual class is 

“yes”’ 
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True negative (TN): the outcome correctly classified as “no”, when the actual value is 

“no”. 

Figure 3-5 summarizes the above predictions: 

 

 

Figure 3-5 The possible outcomes of prediction 

 

The true negative rate is the proportion of class 1 (“yes”) items which are correctly 

classified as class 1 (“yes”) and it is denoted as tn (Krzanowski and Hand, 2009).  

1tn FP   

Equation 3-2 True Negative Rate 

 

The false negative rate is the proportion of class 0 (“no”) items, which are incorrectly 

classified as class 1 (“yes”) and is denoted as fn (Krzanowski and Hand, 2009).  

1fn TP   

Equation 3-3 False Negative Rate 

 

3.3.2 Accuracy 

It is possible to measure the performance of a model by counting the correctly classified 

instances and incorrectly classified instances. Furthermore Dobbin et al. (2008) 

considered the accuracy of a model as number of correctly classified instances in the 

dataset (Equation 3-4). 
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number of correctly classifed instance

number of instances

TP TN
Accuracy

TP TN FP FN


 

  
 

Equation 3-4 Accuracy 

Where TP: true positive, TN: true negative, FP: false positive, FN: false negative  

 

However accuracy on its own will not provide the complete information about the 

performance of a model. Olson and Delen (2008) suggested that the domination of a 

category (class) in a dataset affects the value of accuracy and also accuracy returns 

small information about the performance of the model (for example is 90% accuracy 

good or bad?). Furthermore Provost et al. (1998) argues that accuracy assumes the equal 

costs of false positive and false negative; regardless of the fact that in the real world one 

type of error can be more costly than the other.  Therefore Olson and Delen (2008) 

suggested the following metrics to measure the ‘effectiveness’ of a model or a classifier. 

 

3.3.3 Recall 

One of the metrics that is widely used is recall. Recall is the percentage of the correctly 

identified instances among all instances in the dataset that actually belongs to the given 

class (Olson and Delen, 2008). Recall is also known as sensitivity or true positive rate 

of a model. Recall of a given class ‘a’, can be measured as the number of correctly 

classified instances of that given class over number of instances in that class (a). 

 

tan ( )
( )

tan ( )

number of correctly classified ins ces of a givenclass s TP
recall a

number of ins ces inclass a TP FN
 


 

Equation 3-5 Recall of given class a 

Where ‘a’ is the given class, TP: true positive, FN: false negative 

 

3.3.4 Precision 

This metric is the percentage of the correctly identified instances among instances that 

the model considered to belong to that class (Olson and Delen, 2008). This can be 

measured as number of correctly classified instances of given class ‘a’ over number of 

instances model classified as class ‘a’. 
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number of correctly classified instances of a given class (a)
( )= 

number of instances model classified as class (a)

TP
precision a

TP FP



 

Equation 3-6 Precision of given class a 

Where ‘a’ is the given class, TP: true positive, FP: false positive 

 

When comparing the models, the model with higher value of precision is the better 

model. 

3.3.5 Mean Absolute Error (MAE) 

In data mining, mean absolute error, is a metric that shows how the prediction of the 

model is close to the actual values. Mean absolute error “is the average of the 

differences between predicted and actual value in all test cases” (Patil et al. , 2010).  

Patil et al. (2010) introduces MAE as shown below (Equation 3-7): 

| | ... | |i i n np a p a
MAE

n

   
  

Equation 3-7 Mean Absolute Error 

Where ‘p’ is the predicted value by the model, ‘a’ the actual value, n is the total number 

of instances. 

MAE is an error rate; therefore the model with the lower value of MAE is the better 

model. 

3.3.6 Root Mean Squared Error (RMSE) 

RMSE is one of the most widely used metrics to calculate the performance of a model 

(Caipeng et al., 2010). RMSE, like MAE, measures the performance of the model by 

calculating the difference from the predicted value and the actual value. However as the 

name suggests the errors are squared, therefore it gives a higher value to large errors. 

This metric is very useful where large errors are undesirable. According to Patil et al. 

(2010), RMSE can be measured as below (Equation 3-8): 
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2 2( ) ... ( )i i n np a p a
RMSE

n

   
  

Equation 3-8 Root Mean Squared Error 

Where ‘p’ is the predicted value by the model, ‘a’ the actual value, ‘n’ is the total 

number of instances. 

Similar to MAE, RMSE is an error rate; therefore the model with the lower value of 

RMSE is the better model. 

3.3.7 Receiver Operating Characteristic (ROC) 

This method was developed in the 1940s to evaluate the performance of signal detection 

systems (Zaknich, 2003). More recently the ROC has also been used to analyse the 

performance of models and classifiers. Previous sections have described the metrics that 

can be used to measure the performance of the model, and one can use the metric which 

is suited for the condition. However it is difficult to identify a metric that works in all 

circumstances and can be used in similar situations in the future.  Therefore it is useful 

to have a method to display and summarise the performance over a wide range of 

situations. The ROC curve exactly does that (Krzanowski and Hand, 2009). 

ROC graph is a plot with true positive rate on the Y axis and false positive rate on the X 

axis as the classification threshold t varies (Krzanowski and Hand, 2009) (Figure 3-6).  

 

Figure 3-6 Receiver operating characteristic (ROC) 

ROC curve plots the true positive rate against the false positive rate and is widely used 

for the performance analysis of a given model. 
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In most classifiers or models there is a parameter that can be adjusted to increase the 

true positive at the cost of a decrease in the false positive or vice versa, this parameter is 

called the classification threshold or ‘t’. Each value of t provides a (FP, TP) pair that can 

be plotted on the graph.  Justifiably the point (0, 1) represents the perfect model or 

classifier as it shows that the false positive rate is 0 (or none) and the true positive rate 

is 1 (or all). The point (0, 0) on the graph represents the model (or classifier) that 

predicts all instances to be negative, while point (1, 1) corresponds to the model (or 

classifier) that predicts every instance to be positive.  

The areas under the ROC curve which is commonly denoted as AUC is the most widely 

used summary index (Krzanowski and Hand, 2009). 

1

0
( )AUC y x dx   

Equation 3-9 Area under ROC curve (AUC) 

 

Accordingly the AUC value of 1 represents the perfect test and the value of 0.5 a 

worthless test. Table 3-1 summarizes the interpretation of AUC values (Krzanowski and 

Hand, 2009). 

AUC Results 

0.90-1.00 Excellent 

0.80-0.90 Very Good 

0.70-0.80 Good 

0.60-0.70 Fair 

0.50-0.60 Poor 

Table 3-1 AUC results interpretation 

(Krzanowski and Hand, 2009) 

3.4 Over fitting 

Over fitting which is also known as poor generalisation, is a major problem for learning 

methods and can reduce the accuracy of the algorithm by 10-25% (Mitra and Acharya, 

2003).  In most cases over fitting occurs where the training data does not adequately 

represent the entire dataset or there is noise in the dataset (Coppin, 2004). The problem 

of over fitting may also occur when the number of available data is not enough for a 

complex model to learn from the data. The number of training data along with the 

amount of training process is an important factor for a learning model so it can cope 

with the unseen data. However as Marsland (2009) claims there should be a balance for 
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the training process, if the model is trained for too long we may over fit the data, as the 

model should learn about noise in the data and this makes the model more complex. If 

the model is trained for a short time it may lose its accuracy for predicting the unseen 

data.   

In most situations, an over fitted model will perform well on the training data, but the 

performance decreases on evaluation data. In other words model T is over fitted where 

there is another model M that gives a higher error on the training data, while giving less 

error on evaluation data (Mitra and Acharya, 2003).  

However over fitting can be used as a tool to discover when the training process has to 

end. The most obvious option is to set the N number of repetitions and stop the training 

when the number N is reached. However in this case the model may not learn 

sufficiently from the data or conversely the model has already become over fitted by 

then. The other solution is to continue the training until the model reaches a threshold 

error rate. This solution also has its draw backs as the model may never reach the 

defined error rate or over fits. 

The possible solution is to somehow combine the two above approaches together.  

Marsland (2009) suggested that the error rate during the training phase along with the 

validation error rate during the validation phase may provide us with such a tool.  

If we plot the error rates during the training phase (which will be reduced over the 

training period until it reaches a local minimum) along with the validation performance 

it gives us an indication on when to stop training. Validation error decreases, until a 

point when it escalates again (Figure 3-7). This point is the over fitting point, as the 

model starts to include noise in the model.  
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Figure 3-7 Stop training time 

Marsland (2009) 

The plot of error rate during the training phase and the error rate during the validation 

phase provides us with a stopping point for training. 

 

 

 

3.5 Process definition 

A defined process definition is needed for assessing the discussed machine learning 

(section 1.3.1) and datasets (section 2.2) to discover the highest performance method for 

constructing the final model. The following diagram (Figure 3-8) explains the process 

of assessing the models which is generated during this research: 
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Figure 3-8 Process definition 

 At the start of the process the dataset is randomized. The initial training and 

evaluation of the model starts with 190 cases randomly selected from the dataset 

(a). Each time 18 new cases are added to the dataset (k) until all 352 available 

cases are added to the dataset (j). This process will also enables investigation of 

the model’s performance by increasing the number of data and will help us 

discover when to stop training the model (as discussed in section 3.4).  

 To discover the best suited machine learning method for this research, different 

methods will be assessed (b).  

 In order to predict survival models improved to categorize the survival rate for 

different categories (c). The highest survival rate in the mentioned dataset was 

116 months. At the start the system calculates the median point for the survival 

in the particular dataset and predicts the survival rate as less/more than median 

(variable C). Then each category will be divided into half and the prediction 

performance calculated and recorded (g) and the process will be continued until 

the survival rate is divided in 64 categories (f).  

 In order to find the best feature set which maximises the performance of the 

classifiers, all possible combinations and permutations of the features were 

investigated (d). The process starts by creating the datasets that only contain 

one feature (variable N) and it continues to create all permutations of the 

features (e). Each time a new feature will be added to the dataset (i), until all 6 

available features were assessed (h). It is possible to predict this feature set 

using algorithms that was discussed in chapter 1 ( section 1.3.2 ), however as 

the size of the dataset is relatively small and the computing power is available, 

this assessment may provide us with a bench mark for comparing the 

performance of feature selection techniques.  

 Each interval of the process contains a training (m) and evaluation (l) process. 

The 10-fold cross validation (as discussed in section 3.2.3) is used to estimate 

the performance prediction (n). 
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3.6 Summary of the chapter  

This chapter introduced the estimates of the prediction performance of a model. These 

estimates are an essential part of the research as each one introduces a view point for 

building a frame work for measuring the performance of the model. Based on the 

evidence discussed, it was decided to use the k-fold cross validation. 

This chapter also introduced the prediction performance measurements. These are the 

metrics that made possible a comparison of the models and selection of the best possible 

one. All the metrics that were briefly discussed in this chapter will be used to measure 

the performance of the models. Although ROC analysis is one of the most popular and 

powerful methods, all of the other metrics also provide us with essential information. 

The design and a brief description of the analysis process for this research are included 

in this chapter. 
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Chapter 4 Prognostic Data 
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4.1 Introduction 

This chapter investigates the possibility of predicting the survival rate of an ovarian 

cancer patient. The most important features in the dataset will be introduced and the 

optimum feature set size will be discovered. The survival rates will be divided into 

many categories and the prediction performance for each survival category will be 

analysed. The effects of increasing the number of data items on prediction performance 

will be discussed and analysed. Furthermore the best possible model for this research 

will be discovered. The prediction results of the best model will be compared to the 

prediction results of a conventional statistical model. Finally, previously developed 

methods will be briefly described and the prediction performance of such models will 

be compared to the best developed model in this research.   

4.2 Finding the best feature set 

The process of finding the best feature set has been discussed previously ( section 3.5). 

Briefly, this process enabled the model to investigate all the possible combinations and 

permutations of the features. This analysis highlights the most important feature and 

feature sets amongst all other feature and feature sets. As standard practice, to perform 

this analysis, feature selection techniques are used. However, the relatively small dataset 

and the available computer power for this research provided us with the possibility to 

establish a bench mark for comparison of the feature selection techniques ability. A total 

number of 7,668 analyses were performed. This investigation may answer two 

important questions. Firstly, what is the optimum size (less than six) feature set that can 

be used? Secondly, what are the most important features in the dataset?    

4.2.1 The optimum feature set size 

As discussed previously, all possible permutations of the features were analysed.  

Figure 4-1 illustrates the percentage that each feature set achieved the highest accuracy 

(based on all the perfumed analysis). The combination of two features in most cases 

(33.93% of all analyses) achieved the highest accuracy.  The combination of three 

features is in second place (29.46% of all analyses), and in third place is the one feature 

sets (20.09% of all analyses).  

Figure 4-2 illustrates the percentage of total number of analysis that each feature set 

achieved the lowest value of MAE. The combination of three features in most cases 

(31.74% of all analyses) achieved the lowest value of MAE. The combination of four 
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features in second place (25.22% of all analyses) and in third place the combination of 

two features (22.94% of all analyses) achieved the lowest value of MAE. 

Figure 4-3 illustrates the percentage of total number of analysis that each feature set 

achieved the lowest value of RMSE. The combination of three features achieved the 

lowest value of RMSE (37.94% of all analyses). The combination of two features in 

second place (36.05% of all analyses) and in third place one feature sets (18.32% of all 

analyses) achieved the lowest value of RMSE. 

 The combination of two features achieved the highest number of accuracy among all 

analyses (33.93% of cases) (Figure 4-1). However the results of MAE (22.94% of total 

analyses) and RMSE (36.05% of all analyses) put the combination of two features in 

second place (Figure 4-2 and Figure 4-3), while the combination of three features was in 

second place in terms of accuracy (29.46% of all analyses) and the best results of MAE 

(31.74% of all analyses) and RMSE (37.94% of all analyses). 

Considering the results of accuracy (Figure 4-1) and the results of MAE (Figure 4-2) 

and RMSE (Figure 4-3), it can be concluded that the optimum feature set size is the 

combination of three features, in this dataset. 
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Figure 4-1 the optimum feature set size (Accuracy) 

The percentage of total number of analysis that each feature set achieved the highest 

accuracy. 

 

Figure 4-2 the optimum feature set size (MAE) 

The percentage of total number of analysis that each feature set achieved the lowest 

value of MAE. 

 

Figure 4-3 the optimum feature set size (RMSE) 

The percentage of total number of analysis that each feature set achieved the lowest 

value of RMSE. 
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4.2.2 The most important features in the dataset 

In order to discover the most important features in the dataset, all features set sizes were 

investigated. The combination of features that in most number of analyses acheived the 

highest value of accuracy and lowest values of MAE and RMSE were recorded. In some 

analysis more than one feature set achieved the same highest performance results (or 

lower values of MAE and RMSE). Therefore, it was essential to present the values in 

terms of numbers to address this situation.  

Based on the number of times a feature set achieved the highest values of prediction 

performance and lowest values of MAE and RMSE the best feature set is selected. 

The results of these investigations are as follows: 

4.2.2.1 One feature sets  

Figure 4-4 a: In most number of cases Age and Histology achieved the highest 

performance (129 times). In third place the outcome of the surgery (123 times) and in 

fourth place FIGO (107 times).  

Figure 4-4 b: Grade achieved the lowest MAE in most cases (134 times). In second 

place outcome of the surgery (126 times) and in third place CA125 (101 times). 

Figure 4-4 c: Grade in most number of cases achieved the lowest RMSE (130 times). In 

second place outcome of the surgery (124 times) and in third place CA125, Age and 

FIGO (96 times).  

Age in most number of analyses ranked number one in terms of accuracy. However Age 

achieved the lowest number of times that MAE is the lowest and fourth place in terms 

of lowest values of RMSE. Meanwhile Outcome of the surgery was second place in 

terms of accuracy, MAE and RMSE.  

Based on the results it can be concluded that the Outcome of the surgery is the most 

important feature if a single feature dataset was selected. 
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Figure 4-4 one feature sets performance results 

a: Accuracy, b: MAE, c: RMSE 

A: Age, F: FIGO, G: Grade, H: Histology, O: Outcome of surgery and C: CA125 

Y Axes: The number of times each set achieved the highest values of accuracy or lowest 

values of MAE or RMSE. 
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4.4.2.2 Two features sets 

Figure 4-5 a: The combination of Outcome of the surgery and CA125 achieved the 

highest accuracy in most number of cases (196 times). The combination of Grade and 

Histology in second place (182 times) and in third place the combination of Histology 

and Outcome of the surgery (154 times). 

Figure 4-5 b: The combination of Grade and Outcome of the surgery in most number of 

cases (130 times) achieved the lowest values of MAE. In second place the combination 

of Outcome of the surgery and CA125 (126 times) and in third place the combination of 

Age and Grade (122 times). 

Figure 4-5 c: The combination of Grade and CA125 as well as Grade and Outcome of 

the surgery in most number of cases (131 times) achieved the lowest values of MAE. In 

second place the combination of Outcome of the surgery and CA125 (127 times) and in 

third place the combination of Age and Grade (118 times).  

The combination of Outcome of the surgery and CA125 performed the best in terms of 

accuracy. This combination was also in second place in terms of the lowest values of 

MAE and RMSE. The combination of Grade and Histology performed reasonable in 

terms of accuracy; however this combination did not achieve good scores in terms of 

MAE and RMSE. 

Based on the results it can be concluded that the combination of Outcome of the surgery 

and CA125 is the most important feature set, if a two features dataset was selected. 
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Figure 4-5 two features sets performance results 

a: Accuracy, b: MAE, c: RMSE 

A: Age, F: FIGO, G: Grade, H: Histology, O: Outcome of surgery and C: CA125 

Y Axes: The number of times each set achieved the highest values of accuracy or lowest 

values of MAE or RMSE. 
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4.4.2.3 Three features sets 

Figure 4-6 a: The combination of FIGO, Outcome of the surgery and CA125 in most 

number of cases (193 times) achieved the highest values of accuracy. In second place 

the combination of Grade, Outcome of the surgery and CA125 (176 times) as well as 

the combination of Grade, Histology and CA125 (176 times). In third place the 

combination of Histology, Outcome of the surgery and CA125 (140 times). 

Figure 4-6 b: The combination of FIGO, Outcome of the surgery and CA125 in most 

number of cases (130 times) achieved the lowest values of MAE. In second place the 

combination of Grade, Outcome of the surgery and CA125 (126 times).  

Figure 4-6 c: The combination of Grade, Outcome of the surgery and CA125 in most 

number of cases (140 times) achieved the lowest values of RMSE. In second place the 

combination of FIGO, Outcome of the surgery and CA125 (123 times) and in third 

place the combination of Age, Grade and CA125 (119 times). 

The combination of FIGO, Outcome of the surgery and CA125 achieved the best results 

in terms of the accuracy and MAE values. This combination scored second in terms of 

RMSE values. The combination of Grade, Outcome of the surgery and CA125 was 

closely behind and scored second place overlay. 

Based on the results it can be concluded that the combination of FIGO, Outcome of the 

surgery and CA125 is the most important feature set, if a three features dataset was 

selected. 
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Figure 4-6 three features sets performance results 

a: Accuracy, b: MAE, c: RMSE 

A: Age, F: FIGO, G: Grade, H: Histology, O: Outcome of surgery and C: CA125 

Y Axes: The number of times each set achieved the highest values of accuracy or lowest 

values of MAE or RMSE. 
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4.4.2.4 Four features sets 

Figure 4-7 a: The combination of Age, Grade, Histology and CA125 in most number of 

cases (336 times) achieved the highest results of accuracy. In second place the 

combination of FIGO, Grade, Histology and CA125 (240 times) and the combination of 

Age, Grade, Outcome of the surgery and CA125 (240 times). 

Figure 4-7 b: The combination of Age, Grade, Histology and Outcome of the surgery in 

most number of cases (197 times) and the combination of FIGO, Histology, Outcome of 

the surgery and CA125 achieved the lowest values of MAE. In second place the 

combination of Age, Grade, Outcome of the surgery and CA125 (190 times).  

Figure 4-7 c: The combination of FIGO, Grade, Outcome of the surgery and CA125 in 

most number of cases (306 times) achieved the lowest values of RMSE. In second place 

the combination of Age, Grade, Outcome of the surgery and CA125 (293 times). 

The combination of Age, Grade, Outcome of the surgery and CA125 is in second place 

in terms of the values of accuracy, MAE and RMSE. All the other combinations failed 

to achieve the high values of accuracy and low values of MAE and RMSE.  

Based on the results it can be concluded that the combination of Age, Grade, Outcome 

of the surgery and CA125 is the most important feature set, if a four features dataset 

was selected. 
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Figure 4-7 four features sets performance results 

a: Accuracy, b: MAE, c: RMSE 

A: Age, F: FIGO, G: Grade, H: Histology, O: Outcome of surgery and C: CA125 

Y Axes: The number of times each set achieved the highest values of accuracy or lowest 

values of MAE or RMSE. 
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4.4.2.5 Five features sets  

Figure 4-8 a: The combination of Age, FIGO, Grade, Histology and CA125 in most 

number of cases (202 times) achieved the highest accuracy. In second place the 

combination of Age, Grade, Histology, Outcome of the surgery and CA125 (187 times) 

and in third place the combination of FIGO, Grade, Histology, Outcome of the surgery 

and CA125 (101 times). 

Figure 4-8 b: The combination of Age, Grade, Histology, Outcome of the surgery and 

CA125 in most cases (118 times) achieved the lowest values of MAE. In second place 

the combination of Age, FIGO, Grade, Histology and outcome of the surgery (114 

times) and in third place the combination of Age, FIGO, Histology, Outcome of the 

surgery and CA125 (109 times). 

Figure 4-8 c: The combination of Age, FIGO, Histology, Outcome of the surgery and 

CA125 in most number of cases (123 times) achieved the lowest values of RMSE. In 

second place the combination of Age, FIGI, Grade, Outcome of the surgery and CA125 

(119 times) and the combination of Age, Grade, Histology, Outcome of the surgery and 

CA125 (119 times). 

The combination of Age, Grade, Histology, Outcome of the surgery and CA125 was in 

second place in terms of accuracy, number one in terms of MAE and number two in 

terms of RMSE. The combination of Age, FIGO, Grade, Histology and CA125 

achieved the highest score of accuracy and third place in terms of MAE and RMSE 

values.  

Based on the results it can be concluded that the combination of Age, Grade, Histology, 

Outcome of the surgery and CA125 is the most important feature set, if a five features 

dataset was selected. 
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Figure 4-8 five features sets performance results 

a: Accuracy, b: MAE, c: RMSE 

A: Age, F: FIGO, G: Grade, H: Histology, O: Outcome of surgery and C: CA125 

Y Axes: The number of times each set achieved the highest values of accuracy or lowest 

values of MAE or RMSE. 
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4.4.3 Discovering best features using feature selection techniques 

The feature selection techniques were discussed previously (section 1.3.2). Briefly, the 

role of these techniques is to identify the most important features (factors) in the dataset. 

The most important factors were discovered and discussed previously. These results can 

be compared against the results of feature selection techniques. This comparison can 

identify the best feature selection technique among the discussed techniques.  

Table 4-1 summarizes the results of using feature selection techniques for identification 

of the most important features. TPP identified Age, FIGO and Outcome of the surgery 

as the most important features. IG discovered Grade, FIGO and Age as the most 

important features. Grade, Histology and CA125 selected by PCA and GA highlighted 

the importance of FIGO, Age and Outcome of the surgery.  

Earlier in this section the most important features were identified as FIGO, Outcome of 

the surgery and CA125. Based on the results of using feature selection techniques 

(Table 4-1), none of the techniques completely discovered the best possible feature set. 

However TPP and GA generated the same results.  

All of the techniques failed to discover the optimum feature set; however GA and TPP 

performed better compared to two other techniques.  

 

 

 

 

Technique Selected feature 

TPP Age, FIGO, Outcome of surgery 

IG Grade, FIGO, Age 

PCA Grade, Histology, CA125 

GA FIGO, Age, Outcome of surgery 

Table 4-1 Important features using feature selection techniques 

TPP: Targeted projection pursuit, IG: Information Gain, PCA: Principal Components 

Analysis, GA: Genetic Search 
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4.3 Prediction of survival for many categories 

Later on (section 4.4), the potential problems and benefits of categorization of 

continuous data are discussed. However in real world applications it may be beneficial 

to compromise accuracy to achieve better response. In this research, it is more 

convenient for a clinician to predict the survival of patients in categories instead of the 

actual survival value. This will enable the relevant person to predict the domain (or 

category) of the survival. 

In all analyses, the tolerable level is the accuracy level as close as possible to 100% and 

also the AUC more than 0.70. The error rate also has to be no more than 0.25. 

4.3.1 Analysis of 64 survival categories 

In order to predict survival of each case, models were generated to categorize the 

survival data in categories. The highest survival rate in months in the mentioned dataset 

was 116 months. The system at the start calculates the median point for the survival 

numbers in the particular dataset and predicts the survival rate as less/more than median. 

Then each category will be divided in half and the prediction performance calculated 

and the process will be continued until the survival rate is divided in 64 categories. 

Based on the survival categories model the prediction categories are as following: 

2 categories: 1- 58 months and 58 to 116 months. 

4 categories: 1-29 months, 29-58 months, 58-87 months and 87-116 months. 

8 categories: 1-14.5 months, 14.5-29 months … 87-101.5 months and 101.5- 116 

months. 

16 categories: 1-7 months, 7-14.5 months … 101.5-109 months and 109-116 months. 

32 categories: 1-3.5 months, 3.5-7 months … 109-112.5 months and 112.5-116 months. 

64 categories: 1-2 months, 2-4 months … 112-114 months and 114-116 months. 

Figure 4-9 demonstrates the prediction performance results for 64 survival categories. 

Figure 4-9 a, illustrates the prediction accuracy for 64 survival categories. According to 

these results the prediction accuracy for two survival categories (less or more than 

median) was around 90%. As expected, as the number of categories increased, the 

accuracy decreased. These results also demonstrated that the prediction accuracy for 64 

survival categories was around 10%. Figure 4-9 b, illustrates the MAE results. The 

MAE value for two survival categories was around 0.18 and for 64 survival categories 
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was around 0.03. The MAE value decreased as the number of categories increased in 

most cases (the only exception was for four categories). Figure 4-9 c, illustrates the 

results of RMSE. The RMSE value for two survival categories was around 0.31 and for 

64 survival categories was around 0.12. The RMSE value decreased as the number of 

categories increased in most cases (the only exception was for four categories). 

Table 4-2 summarizes the prediction performance accuracy for 64 survival categories. 

These results were collected and recorded for all the analyses that performed on the 

dataset. According to these results, model could predict the survival categories of less or 

more than median with 93.64% of accuracy. As expected the accuracy decreased as the 

number of categories increased. As a result the prediction accuracy for 64 survival 

categories recorded as 9.21%. 
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Figure 4-9 Prediction performance results for 64 categories of survival 

(a): Accuracy,(b): MAE and (c): RMSE 

X axes: number of survival categories 

 

 

Number of 

categories 
2 4 8 16 32 64 

Minimum 87.09 45.99 30.20 16.83 9.84 3.65 

Median 88.34 48.39 35.39 17.77 11.30 6.54 

Maximum 93.64 52.37 42.55 21.21 19.95 9.21 

Table 4-2 Prediction performance results for 64 survival categories (Accuracy) 

 

a

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64

Ac
cu

ra
cy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 4 8 16 32 64

M
A

E

b c

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 8 16 32 64

R
M

S
E



113 

Figure 4-10 illustrates the ROC curves for the best model when the number of 

categories was two. Figure 4-10 a, is the ROC curve for survival prediction less than the 

median value. The AUC for this curve was 0.72. Figure 4-10 b, is the ROC curve for 

survival prediction more than the median value. The AUC for this curve was 0.72. 

Figure 4-11 illustrates the ROC curves for the best model when the number of 

categories was four. Figure 4-11 a, is the ROC curve for the survival prediction when 

the survival was between 0 and 29 months. The AUC for this curve was 0.63. Figure 4-

11 b, is the ROC curve for the survival prediction when the survival was between 29 

and 58 months. The AUC for this curve was 0.60. Figure 4-11 c, is the ROC curve for 

survival prediction when the survival was between 59 and 87 months. The AUC for this 

curve was 0.60. Figure 4-11 d, is the ROC curve for survival prediction when the 

survival was between 87 and 116 months. The AUC for this curve was 0.61.  

The model could predict the survival rates for many survival categories. The accuracy 

of prediction for two survival categories (less or more than median) was around 90%. 

The final model predicted the survival categories by 93.64% accuracy where the 

prediction was based on less or more than the median value. These perditions recorded 

relatively small MAE and RMSE values. As expected the accuracy of the model 

decreased as the number of categories increased. As the result the accuracy of the 

prediction recorded as 9.21% for 64 survival categories.  
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Figure 4-10 ROC curves: 2 survival categories 

(a): survival is less than the median value. (b): survival is more than the median value 

 

Figure 4-11 ROC curves: 4 survival categories 

(a): survival between 0 and 29 months; (b): survival between 29 and 58 months; 

(c): survival between 58 and 87 months ;(d): survival between 87 and 116 months. 
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4.3.2 Analysis of Overall Survival (OS)  

Previous section (section 4.3.1) analysed and discussed the prediction of survival for 64 

categories. As mentioned the highest survival in months in dataset was 116 months. The 

first analysis divided dataset into two categories: survival less or more than 58 (median 

value).  However, as standard practice most researchers are interested about Overall 

Survival (OS) of five years (or 60 months). Therefore to perform the survival prediction 

in a standard manner and also to make comparison with other methods easier, the model 

was also adjusted to predict the five year survival.  

Table 4-3 summarizes the results of OS prediction performance for the best model. The 

accuracy of the prediction is 92.7 %. The error rate values are relatively small: MAE: 

0.16 and RMSE: 0.30. The recall values for both categories (less/more than 5 years) are 

0.25 and 0.30 respectively. The precision values for both categories are high, 0.89 for 

less than 5 years and 0.82 for more than five years. The area under the ROC curve 

(AUC) indicated that the model performed very good. The AUC values for less/more 

than 5 years were 0.74.    

Figure 4-12 illustrates the ROC curves for OS prediction. Figure 4-12 a, is the ROC 

curve for less than five years category. The AUC for this curve was 0.74. Figure 4-12 b, 

is the ROC curve for more than five years category. The AUC for this curve was 0.74. 

The produced model can predict the OS by 92.07% accuracy. The error rates of this 

model were small and the AUC results were 0.74 for both categories.  
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Measurement Result 

 
Accuracy 92.07% 

Mean absolute error 0.16 

Root mean squared error 0.30 

Outcome Recall Precision AUC 

Less than 5 years 0.25 0.89 0.74 

More than 5 years 0.30 0.82 0.74 

Table 4-3 OS prediction performance 

 

 

 

Figure 4-12 OS prediction performance: ROC curves 

a: less than five years; b: more than five years 
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4.4 Categorization of the continues data 

There are some benefits considered for the categorization of continues data (Liu et al, 

2002; Krzysztof et al., 2007). Some of the data mining methods can only handle 

categorized data. Furthermore if the number of continuous values of variables (features) 

is large, it is hard or inefficient to build a model for such data (Krzysztof et al., 2007). 

On the other hand, it has been argued that categorization leads the model to loss of 

power, precision and accuracy (Royston et al., 2006; Fedorov et al., 2009). Therefore, in 

order to assess the optimal method for analysing continuous data, the two parameters 

with continuous data were chosen: CA125 level and Age. Based on author’s supervisor 

experience and suggestions, CA125 parameter was then categorised into five categories: 

Less than 35, Between 35 and 200, Between 200 and 600, Between 600 and 1200 and 

More than 1200. Age parameter was categorized into four categories based upon its 

quartiles.  The dataset was then analysed twice, firstly using all categorised data, 

secondly using all four parameters as continuous data. Table 4-4 summarizes the 

prediction performance for categorized and continuous data for six different survival 

categories. 

The prediction performance results for both models are similar. However, accuracy of 

the model when using continuous data is higher than the model that uses categorized 

data (Table 4-4). The MAE and RMSE values for the model that uses continuous data is 

lower compared to the model that uses categorized data (table 4-4).  

The possible problems and benefits of categorizing continuous data were discussed at 

the start of this section. On the other hand, all the models that were used in this research 

can handle continuous data and the values of continuous variables (age and CA125) are 

relatively small. Furthermore, the accuracy and the power of the models are the most 

important factors for this research. The prediction performance results for the model 

that uses continuous data are better, compared to the model that uses categorized data. 

Keeping these in mind, the performance of the models were optimal with all two 

parameters analysed as continuous data.  
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 Categorized data Continuous data 

Number of survival 

categories 
Accuracy MAE RMSE Accuracy MAE RMSE 

2 91.03 0.21 0.32 93.64 0.18 0.24 

4 50.16 0.28 0.41 52.37 0.22 0.31 

8 40.15 0.18 0.33 42.55 0.13 0.27 

16 19.94 0.1 0.26 21.21 0.05 0.26 

32 14.32 0.05 0.19 19.95 0.05 0.19 

64 4.98 0.03 0.13 9.21 0.03 0.13 

Table 4-4 Prediction performance: Categorized data versus Continuous data 
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4.5 Model analysis by increasing the number of data 

The process of data analysis in this research was discussed previously (section3.5). 

Briefly at the start of the process 190 cases were randomly selected and initial analyses 

were performed. In each interval 18 new cases were added to the dataset and the 

prediction performances were recorded. These processes were continued until all cases 

were added and analyzed. According to Marzban (2009) and Lee (2010), the increase in 

number of data can improve the performance of the models. Therefore the increases in 

the performance of the models were expected.  

Figure 4-13 illustrates the effects of increasing the number of cases on the accuracy of 

the model for all survival categories. As discussed, at the start of the process 190 cases 

were randomly selected. At each interval 18 new cases were added to the dataset and the 

performance of the model was analyzed and recorded. As expected for all survival 

categories the accuracy of the model slightly improved as the number of cases 

increased. The only exception was when the number of cases reached 280. At this point 

the accuracy of the model was slightly reduced compared to the previous dataset (262 

cases). This reduction in accuracy may cause by completely new values that the latest 

number of cases were held.   

As expected the performance of the model improved as the number of cases increased. 

The performance of the model continued to increase until all available cases were added 

to the dataset. Therefore it is impossible to discover the training stop point (as discussed 

in section 3.4). As a result, adding new cases to the dataset may improve the 

performance of the models. 
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Figure 4-13 Effects of increasing number of cases on accuracy of the model 

190 cases randomly selected at the start of the process. At each interval 18 new cases 

were added to the dataset and the performance of the model was analysed and 

recorded. 

 

4.6 The best model 

Previously (section 1.3.1) three different methods were introduced for creating models. 

These models are Artificial Neural Network (ANN), Bayesian Network (BN) and 

Decision Tree (DT). These three models were assessed to discover the best method for 

this research.  

Figure 4-14 illustrates the comparison results of ANN, NB and DT methods. Figure 4-

14 a, demonstrates the accuracy of predictions of the above methods. ANN in 78% of 

all analyses achieved the higher accuracy compared to two other methods. DT gained 

better accuracy results of 13% compared to BN of 9%. Figure 4-14 b, demonstrates the 

MAE results for the above models. In 96% of all analyses ANN achieved the lower 

values of MAE. DT placed in second (3%) and BN in last place (1%). Figure 4-14 c, 

demonstrates the RMSE results. In 87% of all analyses, ANN achieved lower RMSE 

results. DT was in second place (8%) and BN came last (5%). These results demonstrate 

that ANN is the optimum prediction method which is well suited to the dataset available 

for this research. 
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In order to achieve better comparison, the ROC curve for all the above were produced 

(for survival less/more than median value). Figure 4-15 illustrates the ROC curves for 

ANN, DT and BN where the number of survival categories was two. Figure 4-15 a, was 

produced using the ROC analysis for survival less than the median value. This analysis 

indicated that ANN (0.72) performed better than the other two methods (DT: 0.57; BN: 

0.51).The area under ROC curve produced by ANN was more than the areas produced 

by the other two methods. Figure 4-15 b, demonstrates the results of ROC analysis 

when the survival rate was more than the median value. The area under ROC curve for 

ANN results (0.72) was more than the areas produced by the other two methods (DT: 

0.60; BN: 0.55). 

In most cases ANN achieved the highest accuracy results (78% of all analyses). ANN 

also in most number of cases (96% of all analyses) gained the lower value of MAE. In 

87% of all analyses ANN scored the lower values of RMSE. The results of ROC 

analysis (when the number of survival categories was two), indicated that the area under 

ROC curve that produced by ANN was more than the areas produced by other two 

methods. 

Based on the results of accuracy, of MAE and RMSE (Figure 4-14), it can be concluded 

that the best was ANN. 
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Figure 4-14 Prediction performance comparison (ANN, DT and BN) 

a: Accuracy, b: MAE and c: RMSE 

 

 

Figure 4-15 Model comparison using ROC curve 

(a): survival is less than median value. (b): survival is more than median value 
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4.7 Comparison with conventional statistics 

In order to have a complete comparison between models, Logistic Regression models as 

standard conventional statistical prediction models were developed. The results of 

Logistic Regression Models were then compared against the ANN results.  

Figure 4-16 compares the prediction performance results of ANN and Logistic 

Regression. Figure 4-16 a, indicate that in 75% of all analysis ANN achieved higher 

accuracy results compared to Logistic Regression (25%). Figure 4-16 b, demonstrate the 

results of MAE for ANN and Logistic Regression. In 98% of all analyses, ANN 

produced lower values of MAE compared to Logistic Regression (2%). Figure 4-16 c, 

demonstrate the results of RMSE for ANN and Logistic Regression. In 92% of all 

analyses ANN scored lower values of RMSE compared to Logistic Regression (8%). 

Figure 4-17 compares the results of ROC analysis of ANN and LR when the number of 

survival categories was two. Figure 4-17 a, represents the results of ROC analysis when 

the survival was less than the median. These results indicated that the area under the 

ROC curve for ANN (0.72) was more than the area under the ROC curve for LR (0.62). 

Figure 4-17 b, represents the results of ROC analysis when the survival was more than 

the median. These results indicated that the area under the ROC curve for ANN (0.72) 

was more than the area under the ROC curve for LR (0.62). 

Based on total of analyses performed, in 75% of the cases ANN achieved higher results 

of accuracy. Meanwhile, ANN in most number of analyses (98%) achieved the lower 

values of MAE and in 92% of all analyses scored lower values of RMSE. Also the area 

under the ROC curve when the number of survival categories was two, for ANN was 

0.72 and for LR was 0.62.  

Based on the results of Accuracy, MAE and RMSE, it can be concluded that ANN 

outperforms Logistic Regression.  
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Figure 4-16 ANN vs. Logistic Regression 

a: Accuracy, b: MAE and c: RMSE 

 

 

 

Figure 4-17 ANN vs. Logistic Regression (ROC curves) 

(a): survival is less than the median value. (b): survival is more than the median value 

  

ANN, 75%

LR, 25%

ANN, 98%

LR, 2%

LR, 8%

ANN, 92%

a

b

c

0

0.5

1

0 0.5 1

1- specificity

s
e
n

s
it

iv
it

y

0

0.5

1

0 0.5 1

1- specificity

s
e
n

s
it

iv
it

y

ANN

LR

a b



125 

4.8 Comparison with pervious work 

Recently there were some attempts to predict the overall survival of an ovarian cancer 

patient (Teramukai et al., 2007; Chi et al., 2008; Gerestein et al., 2009). Gerestein et al. 

(2009) developed a ‘Nomogram’ which predicts five year survival rates of patient based 

on five parameters. This Nomogram calculates the five year survival rate to a 

percentage probability. This research had c statistic of 0.67. 

As discussed previously (Section 3.3.2) using ANN, a model was developed to predict 

the five year survival of an ovarian cancer patient. ANN produced a good prediction 

model with an accuracy of 92.7%. The MAE of this model was 0.16 and RMSE was 

0.30. The AUC for this model was 0.74. Based on the AUC (which is same as c 

statistic), it can be concluded that the model that developed using ANN, outperformed 

the previously developed model. The prediction range of the present model (2, 4, 8, 16, 

32 and 64 categories) is much wider than the previously developed model (2 

categories). 

The other possible advantage of the current model is that as discussed previously 

(Section 4.5), the prediction results can be improved by increasing the number of 

available data.  

It also can be argued the present model is more user friendly. The user only needs to 

enter available variables and the system would show the prediction results.  

4.9 Summary of the chapter 

The analyses were performed to discover the optimum size of the feature set that 

maximizes the prediction accuracy. Based on the results of accuracy, of MAE and 

RMSE, it can be concluded that the combination of three features was the optimum 

feature set. Later on, all possible permutations and combinations of the features were 

discussed and for all possible feature set sizes the best possible combination(s) was 

analyzed. Briefly, Outcome of the surgery is the most important feature if a single 

feature dataset was selected. The combination of Outcome of the surgery and CA125 is 

the most important feature set, if a two features dataset was selected. The combination 

of FIGO, Outcome of the surgery and CA125 is the most important feature set, if a three 

features dataset was selected. The combination of Age, Grade, Outcome of the surgery 

and CA125 is the most important feature set, if a four features dataset was selected. The 

combination of Age, Grade, Histology, Outcome of the surgery and CA125 is the most 

important feature set, if a five features dataset was selected. The above results were also 
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compared against the results of the most important features that were identified using 

feature selection techniques. All of the techniques failed to discover the optimum 

feature set; however GA and TPP performed better compared to two other techniques. 

The survival was divided into 64 categories based on the median value available in the 

dataset. The prediction performance for all categories were recorded and analyzed. In 

summary the prediction performance of the model decreased as the number of 

categories increased. The prediction accuracy when the number of categories was two 

(less or more than median) was around 90%. The best model for this number of 

categories produced 93.64% of prediction accuracy. The prediction recorded as 9.21% 

for 64 survival categories. The AUC for the prediction of two survival categories was 

0.72. The AUC for prediction of four survival categories was around 0.61. 

The potential advantages and disadvantages of categorization of continuous data were 

discussed. The Age and CA125 as two continuous features were categorized and the 

prediction performance results were compared to the prediction performance results of 

uncategorized features. Based on the results of accuracy, of MAE, RMSE and ROC 

values, this research concluded that analysis using continuous data was superior to 

categorical data. The five year survival rate (OS) of the patients was also analysed in 

this chapter. In summary ANN produced a good prediction model by accuracy of 

92.7%. The MAE of this model was 0.16 and RMSE was 0.30. The AUC for this model 

was 0.74.  

The effects of increasing number of cases were also analysed and discussed. In 

summary, by increasing the number of cases the prediction performance of the models 

were improved.  

Considering all the performed analyses, this research concluded that ANN was the best 

analysed model. In summary, these results were based on number of times ANN 

achieved the higher values of Accuracy and lower values of MAE and RMSE. ANN in 

78% of all analyses achieved the higher values of accuracy. ANN also in 96% of all 

analyses achieved the lower values of MAE. ANN in 87% of all analyses produced the 

lower values of RMSE. The AUC produced by ANN for two survival categories was 

0.72 compared to DT of 0.60 and BN of 0.55.  

The prediction performance results of ANN as the best analysed model was compared 

to the prediction performance results of Linear Regression. This research concluded that 

ANN outperformed Linear Regression. In summary in 75% of all analyses ANN 
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achieved higher accuracy results. ANN also in 98% of all analyses scored lower values 

of MAE. Furthermore, ANN in 92% of all analyses scored lower values of RMSE. The 

AUC produced by ANN for two survival categories was 0.72 compared to LR of 0.62.  

The previous survival prediction models that had been produced by other researchers 

were briefly discussed. The results of other methods were discussed and compared to 

the present model. In summary, the present model performed better in comparison to the 

previously developed models, it may be easier to use and the prediction results can be 

improved as the number of cases increases.  
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Chapter 5 Surgical Prediction 
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5.1 Introduction 

This chapter investigates the potential benefits of predicting the outcome of surgery. 

The possibility of developing models for such a prediction was investigated and 

analysed. Artificial intelligence and statistical models were developed for this 

investigation. The complete comparison of these two techniques is made available in 

this chapter. This chapter also investigates and introduces the most important variables 

(factors) in the dataset for predicting the outcome of the surgery.  

5.2 Statement of the problem 

The benefits of primary surgery for ovarian cancer patients were discussed previously 

(section 1.2.1.8). Despite aggressive attempts at optimal cytoreduction, many patients 

are left with sub-optimal disease after surgery. As discussed previously (section 

1.2.1.10), the current treatment of ovarian cancer is chemotherapy after surgery, 

however research (Vergote et al., 2005) indicates that the outcome for patients left with 

sub-optimal disease after surgery is worse than that of optimally debulked patients. In 

fact a consistent finding is that residual bulk of disease following surgery is the greatest 

prognostic factor in ovarian cancer (Edmondson et al., 2008). Indeed it has now been 

suggested (Stack and Fishman, 2009) that the aim of surgery should be to remove the 

entire cancer from the patient. A pre-operative assessment tool, capable of predicting 

surgical outcome is therefore needed to identify cases where complete cytoreduction is 

achievable or cases with early stages of cancer.  

In recent years a new possible treatment is recommended for cases where complete or 

optimal cytoreduction appears unlikely. The recommended treatment is chemotherapy 

prior to surgery (Neoadjuvant chemotherapy).  Neoadjuvant chemotherapy seems to be 

the best solution for some patients as it may reduce the size of the tumour and boost the 

possibility of the complete/optimal cytoreduction during surgery (Stack and Fishman, 

2009). Neoadjuvant chemotherapy appears to be beneficial in the following situations 

(Stack and Fishman, 2009):  

 Where complete or optimal cytoreduction appears unlikely due to the position of 

the tumour.  

 Where the patient is too weak for surgery. These types of patients may benefit 

from chemotherapy as the size of the tumour will reduce with relief of 

symptoms after few cycles of chemotherapy.  
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 Where the patient suffers from poor nutritional status. Neoadjuvant 

chemotherapy may reduce the symptoms of cancer and allow the patient to 

improve their nutritional status. Poor nutritional intake is related to poor 

outcome after surgery including delayed wound healing (Windsor et al., 1998),  

 Where the patient suffers from depression. A study on cervical cancer patients 

(Plante et al., 2006), considered depression as one of the factors causing more 

difficulty for patients to be mobile and more active. Neoadjuvant chemotherapy 

may reduce the effects of the disease on patients, improve their mood and help 

them to recover faster.  

 Where the patient lives in a country where the surgery admission process takes a 

long time. The long waiting lists for surgery may decrease the chances of 

survival for patients, as most cases of ovarian cancer present in the late stages of 

the cancer (section 1.2.1.1).  

The other possible benefit of neoadjuvant chemotherapy is that it gives an early 

indication of tumour response to chemotherapy (Stack and Fishman, 2009). If the 

tumour did not respond to neoadjuvant chemotherapy, the chemotherapy can be 

changed for further treatment.   

At present, there is no strong evidence to support the role of neoadjuvant chemotherapy 

(Stack and Fishman, 2009). However, research (Vergote et al., 2005) suggests higher 

rates of optimal cytoreduction after neoadjuvant chemotherapy. On the other hand, the 

same study concluded similar outcomes for patients with primary surgery and 

neoadjuvant chemotherapy. Other research (Bristow and Chi, 2006) suggested that the 

overall survival rates of patients did not improve using the neoadjuvant approach; on the 

other hand this method was recommended for patients with difficulties as discussed 

previously. More recently, research (Vergote et al., 2010) did not conclude the 

replacement of Neoadjuvant treatment by primary surgery. The complete results of two 

large randomised studies, the Chemotherapy or Upfront Surgery (CHORUS) and 

European Organization for Research and Treatment of Cancer (EORTC) 55971, are not 

published yet. These two large studies may resolve the issues surrounding the 

neoadjuvant treatment.  

As discussed, the prediction of the outcome of the surgery may be very beneficial to the 

patients. This prediction may help clinicians to suggest Neoadjuvant treatment for 

patients with possible outcome of sub-optimal cytoreduction after surgery. Allen (2010) 

argues that a clinical model that can predict which patients will undergo optimal 
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cytoreduction would be very useful and he emphasizes that “at present, no such model 

exists”. In the past, Bristow et al. (2000) and Funt et al. (2004) developed the models 

for predicting outcome of the surgery using the findings on CT scans. These models 

were either very complex to assess or they did not conclude any significant results.  

5.3 Residual prediction 

As there is no model available to assist clinicians with such predictions we considered 

the potential of Machine learning and artificial intelligence models (section 1.3.1). This 

section investigates the opportunities of employing such models for predicting the 

outcome of surgery. The factors in the datasets available for this investigation (section 

2.2), can all be collected prior to surgery. Therefore using the available datasets (section 

2.2), and employing machine learning and artificial intelligence model, this section 

investigates the performance of prediction of such models. 

Prior to this investigation it is essential to make some adjustments in the dataset as 

stated below: 

 The prediction goal (class) has to be changed from the survival rates to outcome 

of the surgery. In the main datasets, the survival rates of the patients are set as 

the prediction goal of the models, as we are going to predict the outcome of the 

surgery the prediction goal has to be changed to outcome of the surgery.  

 The survival rate has to be omitted from the dataset. Prior to the surgery the 

survival rates of the patients are not known, therefore it cannot be used as a 

prediction factor.  

 The CA125 is a continuous data (section 2.2), categorization of these values will 

be performed to investigate the categorization of the performance of the models. 

Then the results will be compared with the performance of the models using 

actual values of CA125. The categorization criteria are as stated below: 

1. CA125 greater than 0 and less than 35. 

2. CA125 greater than 35 and less than 200. 

3. CA125 greater than 200 and less than 600. 

4. CA125 greater than 600 and less than 1200. 

5. CA125 greater than 1200. 

 The possible outcomes of the prediction are: complete, optimal and sub-optimal 

cytoreduction (section 1.2.1.8). However as discussed previously (section 5.2) it 
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would be beneficial to distinguish between the following categories in 

cytoreduction outcome:  

1. The possibility of complete cytoreduction versus optimal and sub-optimal 

cytoreduction. 

2. The possibility of complete and optimal cytoreduction versus sub-optimal 

cytoreduction. 

3. The possibility of complete cytoreduction versus optimal cytoreduction 

versus sub-optimal cytoreduction. 

 

In order to make a comparison with conventional statistical methods, regression models 

were built using SPSS and the prediction performances of these models are made 

available.  

5.3.1 Residual prediction: Complete/Optimal/Sub-optimal cytoreduction  

Using ANN (section 1.3.1.2) the possibility of predicting the outcome of surgery for all 

possible outputs will be investigated. First the model was trained and evaluated using 

the actual values of CA125, then CA125 is categorized to the mentioned categories and 

the model was trained and evaluated. The evaluation process is similar to the process 

that defined previously (section 3.5) and 10 fold cross validation (section 3.2.3) is 

employed. 

Table 5-1 summarizes the results of the prediction performance for actual values (no 

categorization) of CA125 for the best model produced using ANN. The accuracy of the 

model was 59.75% and the MAE value was 0.34 and RMSE value was 0.42. The AUC 

for complete cytoreduction curve was 0.75. The AUC for optimal cytoreduction was 

0.66 and the AUC for suboptimal cytoreduction was 0.71. 

Table 5-2 summarizes the results of the prediction performance for actual values (no 

categorization) of CA125 for the best model produced using Logistic Regression. The 

MAE value for this model was 0.61 and RMSE value was 0.75. The AUC for complete 

cytoreduction was 0.24. The AUC for optimal cytoreduction was 0.70 and for sub-

optimal was 0.60.  

Figure 5-1 illustrates the ROC curves for actual values (no categorization) of CA125 

for the best model produced using ANN (complete cytoreduction: 0.75. optimal 

cytoreduction: 0.66 and suboptimal cytoreduction: 0.71). 
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Figure 5-2 illustrates the ROC curves for actual values (no categorization) of CA125 

for the best model produced using Logistic Regression (complete cytoreduction: 0.24. 

optimal cytoreduction: 0.70 and sub-optimal: 0.60). 

ANN produced two good models based on the curve analysis (Figure 5-1) for complete 

cytoreduction (0.7587) and suboptimal cytoreduction (0.7123), however the results for 

optimal cytoreduction (0.6609) prediction is fair. These results are much higher than the 

prediction performance produced by logistic regression (Figure 5-2). The error rates of 

prediction using ANN (Table 5-1) are much lower than logistic regression (Table 5-2).  
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Measurement Result 

 
Accuracy 59.75% 

Mean absolute error 0.34 

Root mean squared error 0.42 

Outcome Recall Precision AUC 

Complete 0.636 0.8 0.7587 

Optimal 0.691 0.428 0.6609 

Sub-optimal 0.28 0.477 0.7123 

Table 5-1 Prediction performance of results for complete/optimal/sub-optimal cytoreduction when 

CA125 is not categorized using ANN 

 

 

 

Measurement Result 

Mean absolute error 0.61 

Root mean squared error 0.75 

Outcome AUC 

Complete 0.2440 

Optimal 0.7060 

Suboptimal 0.6000 

Table 5-2 Prediction performance results for complete/optimal/suboptimal cytoreduction when 

CA125 is not categorized using Logistic Regression 
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Figure 5-1 ROC curve (ANN): Complete / Optimal /Sub-optimal cytoreduction (CA125 not 

categorized) 

(a) complete cytoreduction(0.75);(b) optimal cytoreduction(0.66); (c) sub-optimal 

cytoreduction(0.71) 

 

 

 

 

Figure 5-2 ROC Curve (Logistic Regression): Complete / Optimal /Suboptimal cytoreduction 

(CA125 not categorized) 

(a) complete cytoreduction(0.24);(b) optimal cytoreduction(0.70); (c) suboptimal 

cytoreduction(0.60) 
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Table 5-3 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using ANN. The accuracy of this model was 

53.15%. The MAE value was 0.35 and the RMSE value was 0.43. The AUC for 

complete cytoreduction was 0.7253. The AUC for optimal cytoreduction was 0.6416 

and AUC for sub-optimal cytoreduction was 0.7174.  

Table 5-4 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using Logistic Regression. The MAE value for 

this model was 0.61 and RMSE value was 0.75. The AUC for complete cytoreduction 

was 0.23. The AUC for optimal cytoreduction was 0.72 and AUC for sub-optimal 

cytoreduction was 0.59. 

Figure 5-3 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using ANN (complete cytoreduction: 0.7253. optimal cytoreduction: 

0.6416 sub-optimal cytoreduction: 0.7174). 

Figure 5-4 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using Logistic Regression (complete cytoreduction: 0.23. optimal 

cytoreduction: 0.72 sub-optimal cytoreduction: 0.59). 

ANN produced two good models based on the curve analysis (Figure 5-3) for complete 

cytoreduction (0.7253) and suboptimal cytoreduction (0.7174), however the results for 

optimal cytoreduction (0.6416) prediction is fair. These results are much higher than the 

prediction performance produced by logistic regression (Figure 5-4). The error rates of 

prediction using ANN (Table 5-3) are much lower than logistic regression (Table 5-4).   

Discussion: ANN produced the same accuracy and error rates for actual values of 

CA125 compared to categorized values of CA125.  Also there are no noticeable 

differences in recall, precision and AUC values. Logistic regression also produced the 

same results when using actual values of CA125 compared to categorized values of 

CA125.  

 Conclusion: Considering the prediction performance results produced by ANN (Table 

5-1 and Table 5-3) and the prediction performance results of Logistic Regression (Table 

5-2 and Table 5-4), it can be concluded that ANN outperforms Logistic Regression.  

Also it can be concluded that the categorization of CA125 did not improve the 

prediction performance results.   
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Measurement Result 

 
Accuracy 53.15% 

Mean absolute error 0.35 

Root mean squared error 0.43 

Outcome Recall Precision AUC 

Complete 0.659 0.784 0.7253 

Optimal 0.681 0.438 0.6416 

Sub-optimal 0.253 0.432 0.7174 

Table 5-3 Prediction performance results for complete/optimal/sub-optimal cytoreduction when 

CA125 is categorized using ANN 

 

 

Measurement Result 

Mean absolute error 0.61 

Root mean squared error 0.75 

Outcome AUC 

Complete 0.2320 

Optimal 0.7220 

Sub-optimal 0.5980 

Table 5-4 Prediction performance results for complete/optimal/sub-optimal cytoreduction when 

CA125 is categorized using Logistic Regression 
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Figure 5-3 ROC curve (ANN): Complete / Optimal /Suboptimal cytoreduction (CA125 categorized) 

(a) complete cytoreduction(0.72);(b) optimal cytoreduction(0.64); (c) suboptimal 

cytoreduction(0.71) 

 

 

 

 

Figure 5-4 ROC Curve (Logistic Regression): Complete / Optimal /Suboptimal cytoreduction 

(CA125 categorized) 

 

(a) complete cytoreduction(0.23);(b) optimal cytoreduction(0.72); (c) suboptimal 

cytoreduction(0.59) 
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5.3.2 Residual prediction: Complete and Optimal versus Suboptimal cytoreduction 

At the start of this process, the dataset was redefined, so the outcome of the surgery is 

changed to either ‘complete or optimal’ or ‘suboptimal’. Similar to previous analysis 

(Section 5.3.1), first the model is trained and evaluated using categorized values of 

CA125, then the investigation is repeated using the actual values of CA125. Similar to 

the process of previous section, the 10 fold cross validation is used for the evaluation 

process.   

Table 5-5 summarizes the results of the prediction performance for actual values (no 

categorization) of CA125 for the best model produced using ANN. The accuracy of this 

model was 77.75%. The MAE value was 0.29 and the RMSE value was 0.38. The AUC 

for complete or optimal cytoreduction was 0.7310 and the AUC for sub-optimal 

cytoreduction was 0.7310. 

Table 5.6 summarizes the results of the prediction performance for actual values (no 

categorization) of CA125 for the best model produced using Logistic Regression. The 

MAE for this model was 0.37 and the RMSE was 0.43. The AUC for the complete or 

optimal cytoreduction was 0.3970 and AUC for sub-optimal cytoreduction was 0.6330. 

Figure 5-5 illustrates the ROC curves for actual values (no categorization) of CA125 

for the best model produced using ANN (complete or optimal cytoreduction: 0.73, sub-

optimal cytoreduction: 0.73) 

Figure 5-6 illustrates the ROC curves for actual values (no categorization) of CA125 

for the best model produced using Logistic Regression (complete or optimal 

cytoreduction: 0.39, sub-optimal cytoreduction: 0.63) 

ANN produced two good models based on the AUC values (Table 5-5). The AUC 

results for complete or optimal cytoreduction (0.7310) and for suboptimal cytoreduction 

(0.7310) indicate a very good prediction performance. The error rates are relatively 

small and the accuracy (77.40 %) is good. On the other hand the AUC results of 

Logistic Regression model are 0.3970 for complete or optimal cytoreduction and 0.6330 

for suboptimal cytoreduction (Table 5-6).  The error rates produced by Logistic 

Regression are higher compared to ANN.  
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Measurement Result 

 
Accuracy 77.75 % 

Mean absolute error 0.29 

Root mean squared error 0.38 

Outcome Recall Precision AUC 

Complete or 

Optimal 
0.359 0.775 0.7310 

Sub-optimal 0.147 0.647 0.7310 

Table 5-5 Prediction performance results for (complete or optimal) cytoreduction versus sub-

optimal cytoreduction when CA125 is not categorized using ANN 

 

 

 

 

 

Measurement Result 

Mean absolute error 0.37 

Root mean squared error 0.43 

Outcome AUC 

Complete or Optimal 0.3970 

Sub-optimal 0.6030 

Table 5-6 Prediction performance results for (complete or optimal) cytoreduction versus sub-

optimal cytoreduction when CA125 is not categorized using Logistic Regression 
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Figure 5-5 ROC curve (ANN): (Complete or Optimal) cytoreduction versus Sub-optimal 

cytoreduction (CA125 not categorized) 

(a) complete or optimal cytoreduction(0.73);(b) sub-optimal cytoreduction(0.73); 

 

 

 

 

 

 

Figure 5-6 ROC curve (Logistic Regression): (Complete or Optimal) cytoreduction versus Sub-

optimal cytoreduction (CA125 not categorized) 

 

(a) complete or optimal cytoreduction(0.39);(b) sub-optimal cytoreduction(0.60); 
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Table 5-7 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using ANN. The accuracy of this model was 

75.75%. The MAE value was 0.34 and the RMSE value was 0.31. The AUC for 

complete or optimal cytoreduction was 0.6290 and the AUC for sub-optimal 

cytoreduction was 0.6290. 

Table 5-8 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using Logistic Regression. The MAE value for 

this model was 0.37 and RMSE value was 0.43. The AUC for complete or optimal 

cytoreduction was 0.39. The AUC for sub-optimal cytoreduction was 0.60. 

Figure 5-7 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using ANN (complete or optimal cytoreduction: 0.62, optimal 

cytoreduction: 0.62). 

Figure 5-8 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using Logistic Regression (complete or optimal cytoreduction: 0.39, 

sub-optimal cytoreduction: 0.60). 

Based on the prediction performance results of ANN (Table 5-7) two good prediction 

models were developed. The error rates are small and the accuracy is high (75.75 %). 

On the other hand the prediction performance results of Logistic Regression are very 

poor (Table 5-8) and the error rates are higher than ANN. 

 

Discussion: The prediction performance results that were produced using ANN (Table 

5-7and Figure 5-7) and Logistic Regression (Table 5-8 and Figure 5-8) for actual values 

of CA125 are similar to the results that were produced using categorized values of 

CA125. 

 Conclusion: ANN managed to create two good prediction models for the prediction of 

complete or optimal cytoreduction versus suboptimal cytoreduction. ANN by far 

outperforms Logistic Regression in this analysis. Also there are no noticeable 

differences of the results when CA125 is categorized.  

 

 



143 

 

 

Measurement Result 

 
Accuracy 75.75 % 

Mean absolute error 0.34 

Root mean squared error 0.31 

Outcome Recall Precision AUC 

Complete or 

Optimal 
0.773 0.751 0.6290 

Sub-optimal 0.027 0.250 0.6290 

Table 5-7 Prediction performance results for (complete or optimal) cytoreduction versus sub-

optimal cytoreduction when CA125 is categorized using ANN 

 

 

 

 

Measurement Result 

Mean absolute error 0.37 

Root mean squared error 0.43 

Outcome AUC 

Complete or Optimal 0.3970 

Sub-optimal 0.6020 

Table 5-8 Prediction performance results for (complete or optimal) cytoreduction versus 

suboptimal cytoreduction when CA125 is categorized using Logistic Regression 
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Figure 5-7 ROC curve (ANN): (Complete or Optimal) cytoreduction versus Sub-optimal 

cytoreduction (CA125 categorized) 

 

(a) complete or optimal cytoreduction(0.62);(b) suboptimal cytoreduction(0.62); 

 

 

 

 

 

Figure 5-8 ROC curve (Logistic Regression): (Complete or Optimal) cytoreduction versus Sub-

optimal cytoreduction (CA125 not categorized) 

(a) complete or optimal cytoreduction(0.39);(b) sub-optimal cytoreduction(0.60); 
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5.3.3 Residual prediction: Complete versus Optimal or Sub-optimal cytoreduction 

For this analysis the dataset was redefined in such a way that the outcome of the surgery 

is either ‘complete cytoreduction’ or ‘optimal or sub-optimal cytoreduction’. The 

analysis is similar to the previous sections (Section 5.3.1 and Section 5.3.2). 

Table 5-9 summarizes the results of the prediction performance for actual values (no 

categorization) of CA125 for the best model produced using ANN. The accuracy of this 

model was 77.74%. The MAE value was 0.32 and the RMSE value was 0.42. The AUC 

for complete cytoreduction was 0.79 and the AUC for optimal or sub-optimal 

cytoreduction was 0.80. 

Table 5-10 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using Logistic Regression. The MAE value for 

this model was 0.39 and RMSE value was 0.44. The AUC for complete cytoreduction 

was 0.24 and the AUC for optimal or sub-optimal cytoreduction was 0.69. 

Figure 5-9 illustrates the ROC curves for actual values (no categorization) of CA125 

for the best model produced using ANN (complete cytoreduction: 0.79, optimal or sub-

optimal cytoreduction: 0.80). 

Figure 5-10 illustrates the ROC curves for actual values of CA125 for the best model 

produced using Logistic Regression (complete cytoreduction: 0.24, optimal or sub-

optimal cytoreduction: 0.69). 

ANN managed to produce a very good (AUC: 0.80) and a good (AUC: 0.79) prediction 

models based on the AUC results (Table 5-9). The Logistic Regression did not manage 

to produce any worthy models (Table 5-10).  Based on the results ANN outperformed 

Logistic Regression.  
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Measurement Result 

 
Accuracy 77.74 % 

Mean absolute error 0.32 

Root mean squared error 0.42 

Outcome Recall Precision AUC 

Complete 0.621 0.75 0.79 

Optimal or Sub-

optimal 
0.213 0.76 0.80 

Table 5-9 Prediction performance results for complete cytoreduction versus (optimal or sub-

optimal) cytoreduction when CA125 is not categorized using ANN 

 

 

 

 

 

 

Measurement Result 

Mean absolute error 0.39 

Root mean squared error 0.44 

 

Outcome AUC 

Complete  0.2490 

Optimal or Sub-optimal 0.6910 

Table 5-10 Prediction performance results for complete cytoreduction versus (optimal or sub-

optimal) cytoreduction when CA125 is not categorized using Logistic Regression 
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Figure 5-9 ROC curve (ANN): Complete cytoreduction versus (Optimal or Sub-optimal) 

cytoreduction (CA125 not categorized) 

(a) complete cytoreduction(0.79);(b) optimal or sub-optimal cytoreduction(0.80); 

 

 

 

 

 

Figure 5-10 ROC curve (Logistic Regression): Complete cytoreduction versus (Optimal or Sub-

optimal) cytoreduction (CA125 not categorized) 

(a) complete cytoreduction(0.24);(b) optimal or suboptimal cytoreduction(0.69); 
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Table 5-11 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using ANN. The accuracy of this model was 

73.75%. The MAE value was 0.34 and the RMSE value was 0.42. The AUC for 

complete cytoreduction was 0.7710 and the AUC for sub-optimal cytoreduction was 

0.7710. 

Table 5-12 summarizes the results of the prediction performance for categorized values 

of CA125 for the best model produced using Logistic Regression. The MAE value for 

this model was 0.39 and RMSE value was 0.44. The AUC for complete cytoreduction 

was 0.24. The AUC for optimal or sub-optimal cytoreduction was 0.76. 

Figure 5-11 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using ANN (complete cytoreduction: 0.77, optimal or sub-optimal 

cytoreduction: 0.77). 

Figure 5-12 illustrates the ROC curves for categorized values of CA125 for the best 

model produced using Logistic Regression (complete cytoreduction: 0.24, optimal or 

sub-optimal cytoreduction: 0.75). 

The prediction performance results of ANN (Table 5-11) indicate two average 

predictors. However ANN did not manage to produce a worthy model. Similarly 

Logistic regression only managed to produce one worthy predictor (Table 5-12). The 

error rates are similar, however on average ANN outperforms Logistic Regression 

(based on AUC values). 

 

Discussion: Based on the performance prediction results produced by ANN (Table 5-11 

and Figure 5-11) and the performance prediction results by Logistic Regression (Table 

5-12 and Figure 5-12), categorization of CA125 did not improve the prediction results.  

Conclusion: ANN performed better than Logistic Regression. On average, ANN 

performed better than Logistic Regression. It also can be concluded that categorization 

of CA125 did not improve the prediction results.  
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 Measurement Result  

Accuracy 73.75 % 

Mean absolute error 0.34 

Root mean squared error 0.42 

Outcome Recall Precision ROC 

Complete  0.644 0.794 0.7710 

Optimal or Sub-

optimal 

0.57 0.758 0.7710 

Table 5-11 Prediction performance results for complete cytoreduction versus (optimal or sub-

optimal) cytoreduction when CA125 is categorized using ANN 

 

 

 

Measurement Result 

Mean absolute error 0.39 

Root mean squared error 0.44 

Outcome AUC 

Complete 0.2420 

Optimal or Sub-optimal 0.7580 

Table 5-12 Prediction performance results for complete cytoreduction versus (optimal or sub-

optimal) cytoreduction when CA125 is categorized using Logistic Regression 
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Figure 5-11 ROC curve (ANN): Complete cytoreduction versus (Optimal or Sub-optimal) 

cytoreduction (CA125 categorized) 

(a) complete cytoreduction(0.77);(b) optimal or suboptimal cytoreduction(0.77); 

 

 

 

 

 

 

Figure 5-12  ROC curve (Logistic Regression): Complete cytoreduction versus (Optimal or Sub-

optimal) cytoreduction (CA125 categorized) 

(a) complete cytoreduction(0.24);(b) optimal or sub-optimal cytoreduction(0.75); 
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5.4 Discovering important factors 

The available dataset was discussed previously. The dataset includes five variables: 

CA125, Age, Histology type, Grade and FIGO stage and the target variable is the 

outcome of the surgery. In order to identify the most important factors (variables) the 

methods of feature selection (section 1.3.2) are deployed. The following table (Table 5-

13) summarizes the results of this investigation. 

 
All three 

outcomes 

Complete vs. Optimal 

or suboptimal 

Complete or Optimal vs. 

Suboptimal 

TPP G, H, F F, G F, H, G 

IG F, G F, G, H F, G 

GA F F, G F 

PCA F, H, G F, G F, G 

Table 5-13 The most important variable identified using feature selection methods 

(G): Grade, (H): Histology type, (F): FIGO stage 

Discussion: The results of using feature selection techniques indicated that the most 

important factor in the dataset for predicting the outcome of surgery is FIGO stage. 

Grade of the tumour and Histology are other important factors.  

 

5.5 Summary of the chapter  

The benefits of predicting the outcome of the surgery were investigated in this chapter. 

As discussed, currently there is no such system for predicting the outcome of the 

surgery. Prediction of the outcome of the surgery has many potential benefits for the 

patients. Clinicians may offer new treatment pathways (e.g. neoadjuvant chemotherapy) 

for a patient with high chance of suboptimal cytoreduction. The potential benefits of 

neoadjuvant chemotherapy were also investigated in this chapter. ANN and Logistic 

Regression predicting models were developed to predict the outcome of the surgery. 

Three major investigations were deployed: the prediction of all outcomes (complete or 

optimal or suboptimal), the prediction of complete or optimal cytoreduction versus 

suboptimal cytoreduction and finally the prediction of complete cytoreduction versus 

optimal or suboptimal cytoreduction. CA125 as the only continuous variable in the 

dataset was categorized. The models that can distinguish between complete or optimal 

cytoreduction versus suboptimal cytoreduction had the best performance compared to 

the other two categories. The most important variables (factors) for predicting the 
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outcome of the surgery were identified. These important variables are: FIGO stage, 

Grade and Histology. 

Based on the results, it can be concluded that ANN outperforms Logistic Regression. 

Furthermore, categorization of CA125 did not improve the prediction results. 
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Chapter 6 Gene analysis for classification of 

Homologous recombination  
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6.1 Introduction  

An increasing understanding of the biology of cancer coupled with the availability of 

high throughput techniques provides new challenges in cancer research. These 

techniques allow the generation of large datasets. These datasets may comprise data 

describing DNA (mutations or epigenetic information), RNA or protein. The 

interrogation of these datasets is challenging, in part because of the size of the datasets 

but also because of the signal to noise problems. This chapter introduces the concept of 

a new treatment for ovarian cancer, the PARP inhibitors, and a DNA repair pathway, 

homologous recombination (HR) which may be used to stratify therapy. Following this 

is a description of a dataset generated to investigate this area followed by experiments 

using the model to investigate the role of artificial intelligence in developing predictive 

biomarkers. This analysis combined with the models that developed in previous 

chapters, may introduce the suitable treatment pathway for the management of the 

patients.  

6.2 statement of the problem  

DNA is damaged many times during each cell cycle, and this damaged DNA has to be 

repaired (Karp, 2009). This damage is repaired by DNA repair pathways. One of the 

DNA repair pathways is homologous recombination (HR) and two of the important 

proteins in this pathway are BRCA1 and BRCA2 (Yap et al., 2010).There is strong 

evidence that patients with germline mutations in BRCA1 and BRCA2 have a high risk 

of ovarian cancer (Woosetr and Weber, 2003). Poly (ADP-ribose) polymerase (PARP) 

is an important protein in another DNA repair pathway, called base excision repair. 

Inhibiting PARP results in deficient base excision repair and if this occurs in a cell 

which already has defective HR, as a result of a BRCA mutation, then the combination 

of the two effects is lethal to the cell (Yap et al., 2010). PARPi are thus effective in 

cancers with mutated BRCA1 and BRCA2 genes (Audeh et al., 2010; Ledermann et al., 

2011). This is a process known as synthetic lethality: the drugs block one DNA repair 

pathway whilst the BRCA mutation has already silenced another pathway (Dedes et al., 

2011). A cell can survive with one pathway blocked but when both are affected the cell 

dies as there are many genes involved in this process. 

Drugs may also be useful in other ovarian cancer patients, essentially those with 

tumours which are HR defective by other mechanisms. Recent work by our group 

(Mukhopadhyay et al., 2010) has suggested that up to 50% of ovarian cancers could be 

deficient in HR. 
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A simple test that would identify tumours with defective HR would therefore identify a 

group of patients who would likely respond to a PARP inhibitor. 

 

Figure 6-1 Selective cytotoxity of PARP inhibitors 

One pathway is silenced by using PARPi drug (top pathway). If a BRCA mutation or 

other genetic event silences the other pathway (bottom pathway) the cell dies. 
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6.3 Dataset 

The dataset available for this analysis (Table 6-1) was developed by Gynaecological 

Oncology team at Queen Elizabeth hospital in Gateshead and NICR based in Newcastle 

University (Mukhopadhyay et al., 2010). 

To collect the above dataset, ascities was collected at surgery from patients undergoing 

primary surgery for ovarian cancer. Primary cultures were generated to investigate the 

sensitivity to PARPi and collect DNA, mRNA and Protein.  A functional assay was 

developed to measure HR (Mukhopadhyay et al., 2010) although this process works 

perfectly, it is very time consuming. Therefore it was decided that an investigation of 

the expression of relevant genes in this process may provide a simpler test, more 

suitable for clinical practice.  

cDNA analysis became a widely used tool to study gene expression patterns in human 

cancer. In ovarian cancer this tool has been employed extensively to understand the 

different aspects of this cancer (Resnick et al., 2009; Gunawardana et al., 2009; 

Kulasingam et al., 2010). 

For this study, eight primary cultures were selected for analysis. These had already been 

classified as HR competent (n=4) and HR deficient (n=4), using the functional assay 

described above. mRNA was extracted from unstimulated cells, converted into cDNA 

and analysed using the SA Biosciences DNA repair microarray chip which contains 

probes for 84 DNA repair genes. Data were normalised to housekeeping genes 

contained within the chip.  
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 AVG ΔCt 

Gene  HR+ HR+ HR+ HR+ HR- HR- HR- HR- 

 PCO 

44 

PCO9

5 

PCO9

6 

PCO8

1 

PCO9

0 

PCO100 PC

O93 

PCO 

106 

APEX1 2.61 2.72 2.93 2.35 2.97 3.28 1.99 3.88 

APEX2 8.1 8.85 8.43 8.33 9.53 8.74 8.18 10.05 

ATM 8.8 8.45 8.55 8.69 9.18 7.62 7.35 8.63 

ATR 6.98 6.83 6.81 7.38 7.42 7.25 6.03 8.02 

ATXN3 7.3 8.38 7.77 7.29 8.28 7.24 6.89 8.05 

BRCA1 7.86 6.46 8.44 8.77 7.74 8.92 11.9

5 

8.53 

BRCA2 9.67 6.64 9.12 9.67 9.59 12.76 9.9 9.43 

BRIP1 6.17 6.68 7.38 7.33 6.27 6.98 6.85 7.99 

CCNH 5.23 4.78 4.07 4.67 4.71 4.52 3.08 5.05 

CCNO 10.1

7 

10.74 11.13 10.84 10.84 11.34 8.54 11.64 

CDK7 4.59 5.89 4.68 4.96 5.05 5.08 3.9 5.37 

DDB1 3.31 3.4 2.84 2.82 3.95 2.4 2.16 4.29 

DDB2 4.74 5.09 5.04 5.67 5.01 5.04 4.59 6.13 

DMC1 11.0

5 

11.87 11.18 12.36 11.68 14.48 13.6

3 

12.91 

ERCC1 5.86 5.76 5.09 5.55 7.94 5.78 5.07 6.52 

ERCC2 5 5.09 4.1 5.12 5.6 3.93 4.09 5.46 

ERCC3 6.52 6.52 6.09 6.47 6.84 5.96 5.35 7.59 

ERCC4 7.33 7.26 6.8 6.29 7.32 6 5.33 8.38 

ERCC5 4.08 4.72 3.96 4.49 4.04 4.04 3.35 4.84 

ERCC6 8.19 8.27 7.84 8.25 8.36 7.09 6.31 8.62 

ERCC8 7.78 7.72 7.04 7.25 7.49 6.62 6.56 7.52 

EXO1 6.82 7.14 7.24 8.01 7.48 9.64 9.98 8.6 

FEN1 4.97 5.07 4.73 5.51 6.47 6.36 5.23 7.3 

LIG1 6.97 6.92 6.91 7.81 8.28 9.32 8.34 8.93 

LIG3 6.65 7.33 6.28 6.26 7.69 5.74 5.87 7.95 

LIG4 9.2 8.03 8.08 10.07 8.38 7.94 8.03 8.29 

MGMT 4.19 4.71 3.55 3.81 4.5 4.05 3.59 4.09 

MLH1 5.25 5.63 5.25 7.08 5.34 6.2 5.61 5.72 
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MLH3 7.23 7.45 6.94 7.28 7.72 6.9 5.79 6.83 

MMS19 5.03 5.38 5.11 4.85 5.16 4.63 4.34 5.31 

MPG 3.81 3.95 4.17 3.21 3.85 4.34 2.98 4.48 

MRE11

A 

10.2

4 

9.92 9.41 10.23 10.26 10.43 9.23 11.3 

MSH2 5.25 5.37 5.56 6.59 5.68 7.45 6.17 6.7 

MSH3 6.54 6.95 6.26 6.37 6.94 6.74 5.86 7.39 

MSH4 12.6

8 

15.36 14.09 15.88 14.25 13.74 14.6

2 

13.37 

MSH5 8.46 9.29 8.25 8.8 10.05 8.9 7.84 9.74 

MSH6 4.52 4.8 4.51 5.12 4.94 4.63 4.6 5.13 

MUTYH 7.98 8.68 8.7 8.47 9.9 8.94 8.22 9.65 

NEIL1 9 10.65 9.23 10.45 11.18 9.26 8.75 10.1 

NEIL2 7.84 7.75 6.6 7.52 8.47 7.01 6.6 8.72 

NEIL3 9.55 9.06 9.39 11.65 8.64 11.67 12.5

7 

10.38 

NTHL1 6.99 7.87 6.71 7.18 7.3 7.55 6.33 7.84 

OGG1 7.16 7.06 6.75 6.83 7.51 6.59 6.29 7.7 

PARP1 4.35 4.86 5.6 4.81 5.17 5.61 5.36 7.48 

PARP2 5.47 6.45 6.04 6.36 6.16 7.13 5.59 6.66 

PARP3 5.49 6.07 5.6 5.67 6.58 6 5.48 6.33 

PMS1 6.5 7.27 6.74 7.1 7.27 6.8 6.16 7.48 

PMS2 5.87 6.28 6.11 5.56 6.98 5.53 5.2 6.66 

PNKP 6.21 6.37 5.55 6.13 7.56 5.73 4.99 7.55 

POLB 5.96 6.09 5.85 6.4 5.88 6.28 5.15 6.35 

POLD3 6.62 6.99 7.2 7.19 7.64 7.44 7.58 7.55 

POLL 6.95 7.83 7.43 7.27 7.42 6.52 6.22 6.82 

PRKDC 4.27 4.11 3.82 3.44 4.46 3.81 3.38 5.12 

RAD18 6.11 6.74 5.63 6.33 6.11 6.52 5.28 7.14 

RAD21 2.75 3.73 3.61 3.43 3.39 3.05 3.31 4.4 

RAD23

A 

4.33 4.87 4.26 4.07 4.98 3.7 3.44 4.77 

RAD23

B 

2.37 2.74 2.37 2.12 2.8 2.08 1.83 3.47 

RAD50 6.99 7.61 7.09 8.03 8.28 7.19 6.84 8.32 
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RAD51 10.5

5 

10.94 11.7 11.59 11.6 13.09 14.2

6 

11.83 

RAD51

C 

6.56 8.06 6.98 7.78 7.25 8.06 7.09 8.48 

RAD51

L1 

8.05 8.32 7.94 8.03 8.67 7.99 7.1 8.82 

RAD51

L3 

9.13 8.44 8.29 9.43 9.37 8.78 9.36 9.52 

RAD52 8.83 9.22 8.82 9.41 9.29 9.03 7.85 9.4 

RAD54

L 

7.37 7.99 8.34 9.69 8.2 10.06 9.26 8.63 

RFC1 5.71 6.38 6.01 6.77 5.64 5.78 5.84 6.26 

RPA1 4.04 3.85 3.75 3.77 4.24 4.06 3.35 4.88 

RPA3 4.57 5.45 4.85 5.24 5.25 5.75 5.47 5.68 

SLK 3.78 4.12 4.71 3.67 3.62 3.25 2.93 5.42 

SMUG1 6.52 7.04 6.38 7.06 6.84 6.79 6.28 7.57 

TDG 5.63 5.71 5.81 6.18 5.7 5.99 5.47 6.39 

TOP3A 7.7 7.85 8.02 7.84 8.94 8.31 7.16 8.95 

TOP3B 6.96 7.77 6.78 7.27 8.63 6.74 5.53 8.86 

TREX1 6.15 6.67 7.18 7.08 7.72 7.1 6.81 6.88 

UNG 4.82 5.85 5.07 5.55 5 5.36 4.81 5.73 

XAB2 4.85 5.75 5.07 5.31 5.33 4.97 4.14 5.34 

XPA 6.47 6.59 6.53 7.07 6.14 6.7 6.21 6.49 

XPC 4.61 5.43 4.99 5.67 4.75 4.91 4.84 5 

XRCC1 5.3 5.58 5.39 6 5.95 5.93 5.38 5.97 

XRCC2 9.76 8.6 9.23 10.68 9.45 11.32 11.0

9 

10.17 

XRCC3 11.0

2 

11.67 9.84 11.64 13.75 10.55 9.59 13.28 

XRCC4 6.55 6.6 5.75 6.42 6.25 3.74 4 6.56 

XRCC5 2.12 2.15 1.88 1.89 1.9 1.75 1.3 2.97 

XRCC6 3.02 3.82 2.99 3.36 3.07 3.67 2.93 3.94 

XRCC6

BP1 

7.56 8.4 8.27 7.83 7.87 7.97 7.73 7.76 

Table 6-1 Gene analysis dataset 
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6.4 Most important Genes  

Previously it has been explained that the prediction of HR can play an important role in 

future treatment path of ovarian cancer. Using feature selection techniques (section 

1.3.2), the analysis was performed to identify the most important genes for this 

prediction.  

TPP (section 1.3.2.3)was used to analyse the dataset to compare the gene expression 

between HR competent and HR deficient tumours. This showed a clear separation 

between the two sets, Figure 6-2 illustrates the first view of the dataset produced using 

TPP. At first glance there is a separation between HR and HR  cases. HR cases 

clustered together in the middle of the dataset and HR  cases produced two separated 

clusters at the top and left of HR  cases. In order to discover the most important genes, 

TPP was further employed to generate the separated class view of the data.  

Figure 6-3 illustrates the separated class view of the dataset using TPP. The HR and 

HR  cases are clearly separated from each other. HR  cases clustered together at the 

top of the figure and HR  cases clustered together at the bottom of the figure. 

In parallel with above analysis other feature selection techniques such as IG and GA 

(section 1.3.2) were employed for identification of the most important genes. The 

algorithms were used to identify the top 12 differentially regulated genes between the 4 

HR competent and the 4 HR deficient tumours (Table 6-1). All three methods (TPP, GA 

and IG) identified LIG1 and POLD3 as the most important genes.  

 

Discussion: Based on the TPP analysis there is a clear separation between HR+ and 

HR- cases. All three techniques identified LIG1 and POLD3 as the most important 

genes. The other genes that identified by all three techniques were FEN1 and EX01. The 

results of TPP and GA have more similarities (10 of 12 important genes) compared to 

the results of IG.  
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Figure 6-2 First view of dataset using TPP 

 The dots are displayed as a 2D projection of the 84 dimension analysis. HR
cases 

clustered in the middle whilst two HR
cases clustered  at the top and other two HR

 at 

the bottom left. 

 

Figure 6-3 Separated class view of the dataset using TPP 

This separated class’s view of the dataset was produced using TPP and demonstrates 

that HR
and HR

are clearly separated.  

 

 

Method Identified Genes 

TPP 
LIG1, POLD3, XPA, FEN1, EX01, XRCC4, LIG4, PARP3, 

RFC1, RPA3, POLL, RAD51 

GA 
LIG1, POLD3, XPA, EX01, PARP3, POLL, RFC1, FEN1, 

RPA3, RAD51, ERCC1, DMC1 

IG 
LIG1, POLD3, MLH3, MLH1, MMS19, MPG, FEN1, EX01, 

MGMT, LIG3, LIG4, MUTYH 

Table 6-2 12 most differentially regulated genes identified between 4 HR competent and 4 HR 

deficient tumours using three methods 

 

HR

HR

HR

HR

HR
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6.5 HR prediction models 

The models used in previous sections (ANN, DT and BN) were then employed to 

develop prediction models of HR.  

Table 6-2 summarizes the ANN results of prediction performance of HR. The accuracy 

of this model was 75%. The MAE value was 0.27 and RMSE value was 0.42. ANN 

managed to produce a very good model (AUC: 0.8750). 

Figure 6-4 illustrates the ROC curves produces by ANN for prediction of HR. The AUC 

for both of the curves was 0.8750.  

 

 

 

 

Measurement Result 

 
Accuracy 75.00% 

Mean absolute error 0.27 

Root mean squared error 0.42 

Outcome Recall Precision AUC 

HR+ 1.00 0.667 0.8750 

HR- 0.750 1.00 0.8750 

Table 6-3 ANN prediction performance results (HR) 

 

 

Figure 6-4 HR prediction ROC curves using ANN 

a: HR+ and b: HR- 
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Table 6-3 summarizes the BN results of prediction performance of HR. The accuracy of 

this model was 62.50%. The MAE value was 0.46 and RMSE value 0.63. BN did not 

manage to produce any worthy model (AUC: 0.3750). 

Figure 6-5 illustrates the ROC curves produced by BN for the prediction of HR. BN 

failed to produce any worthy model (AUC: 0.3750) 

 

 

 

Measurement Result 

 
Accuracy 62.50% 

Mean absolute error 0.46 

Root mean squared error 0.63 

Outcome Recall Precision AUC 

HR+ 0.750 0.600 0.3750 

HR- 0.500 0.633 0.3750 

Table 6-4 BN prediction performance results (HR) 

 

 

Figure 6-5 HR prediction ROC curves using BN 

a: HR+ and b: HR- 
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Table 6-4 summarizes the DT results of prediction performance of HR. The accuracy of 

this model was 62.50%. The MAE value was 0.37 and RMSE value 0.61. DT managed 

to produce an average model (AUC: 0.6250). 

Figure 6-6 illustrates the ROC curves produced by DT for the prediction of HR. DT 

managed to produce an average model (AUC: 0.6250). 

 

 

 

 

Measurement Result 

 
Accuracy 62.50% 

Mean absolute error 0.37 

Root mean squared error 0.61 

Outcome Recall Precision AUC 

HR+ 0.750 0.600 0.6250 

HR- 0.625 0.633 0.6250 

Table 6-5 DT prediction performance results (HR) 

 

 

 

Figure 6-6 HR prediction ROC curves using DT 

a: HR+ and b: HR- 
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Discussion: Based on the results ANN managed to develop a very good model (AUC: 

0.8750).  The accuracy of this model was 75%. The MAE value was 0.27 and RMSE 

value was 0.42. ANN managed to produce a very good model. The other models failed 

to introduce any good results. However DT performed better than BN. 

 

6.6 Summary of the chapter 

DNA is damaged many times during each cell cycle and these damages are repaired 

using DNA repair pathways. One of these repair pathways is HR and the two of the 

most important genes in these pathways are BRCA1 and BRCA2. The other DNA 

repair pathway is called base excision and PARP is an important protein in this 

pathway. A combination of defective HR and inhabited PARP is lethal to the cell. 

Therefor PARPi are effective in cancers with mutated BRCA1 and BRCA2 genes. As a 

result, a simple test that would identify tumours with defective HR would therefore 

identify a group of patients who would likely respond to a PARP inhibitor.  

For this analysis a dataset which was developed by Gynaecological Oncology team at 

Queen Elizabeth Hospital in Gateshead and NICR based in Newcastle University is 

used. Briefly this dataset consist of eight primary cultures that had already been 

classified as HR competent (n=4) and HR deficient (n=4). 

The feature selection techniques: TPP, IG and GA were employed for identification of 

the most important genes. The algorithms were used to identify the top 12 differently 

regulated genes between 84 available genes. The most important genes identified as 

LIG1 and POLD3. 

Furthermore, ANN, BN and DT models were employed to predict the HR based on the 

available dataset that described previously. ANN outperformed other methods 

(Accuracy: 75%, AUC: 0.8750). 

This analysis was performed using a small dataset and more cases are needed for 

analysis. Identified genes (LIG1 and POLD3) have to be prospectively validated using 

other conventional methods.  

On the other hand, this analysis highlights that the test done on RNA is easier to roll out 

into clinical practice than the current gold standard HR test.  
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Chapter 7 Conclusion and Future Works 
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7.1 Introduction 

This chapter draws conclusions on the work reported in this thesis. A brief summary of 

major contributions of this research is provided and suggestions for possible further 

studies are made.  

7.2 Conclusions of the Thesis 

This thesis presents an effective approach via machine learning and artificial 

intelligence to predict survival outcome in patients with ovarian cancer. The approach 

taken is novel in the field of ovarian cancer research. The main conclusions drawn from 

this thesis to answer the research questions are as follows: 

 AI and ML models can effectively predict overall survival rates of ovarian cancer 

patients.  

 Using AI and ML models made it possible to predict the outcome of the surgery. 

 Feature selection techniques can identify the most important factors to predict 

survival rates and outcome of the surgery. 

Some important conclusions derived from this study are as follows: 

AI and ML models in most cases outperform conventional statistical models. ANN 

demonstrated the optimal performance of all the investigated models. The prediction 

performance of the models may improve by increasing the available data for analysis.   

7.3 Summary of main contributions 

The main goal of this research was to investigate and employ AI and ML models in 

order to provide more effective tools for clinicians managing patients with ovarian 

cancer. This goal leads to two major contributions, which are reviewed in related 

literature and the solution for the prediction. 

7.3.1 The review of related problems 

The review of the literature was divided into two sections: computing and medicine 

literature. The existing ovarian cancer literature shows that the dominant types of 

prediction models are statistical models. The AI and ML models were used to predict 

different aspects in other cancers; however the dominant prediction models in the field 

of ovarian cancer have all been statistical models until now.  
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The review of the computing literature indicates that three types of models are used for 

prediction. The ANN models as AI models, the BN as probabilistic models and DT as 

ML models are widely used.  

The existing literature identifies several problems as follows: 

 There is no effective way available for clinicians to measure the survival rates of the 

patients in an accurate way. 

 Prediction of the outcome of the surgery remains an unsolved question and there is 

an essential need for this prediction.  

 There is a need for an expert computer system to analyse the new biomarkers and 

treatment pathways. 

 The developed models have to be easy to use.  

 As the number of patient data increases the model has to cope with the new data and 

improve itself.  

7.3.2 The solution for prediction 

Developing a solution for predicting the survival rates and outcome of the surgery are 

the most important contribution of this research, as the prediction of these outcomes 

may have a significant effect on the quality of life of the patients. Accurate prediction of 

survival would allow patients to make informed treatment option decisions, faced with a 

poor prognosis patients may be more prone to opt for palliation, whereas patients with a 

good overall prognosis would be more likely to tolerate invasive and toxic treatment 

knowing that this will result in a survival benefit. Such accurate tools have not been 

available to date, although prognostic tools are available which can be applied to 

populations they are not accurate enough to allow use in individual cases.  In this 

research the computation power of AI and ML models were demonstrated. Four main 

steps were used for the prediction: (a) collection of the relevant data; (b) development of 

variety of AI, ML and LR models; (c) analysis of the models by increasing the number 

of available data; (d) Identification of the most important variable for each prediction 

using all permutations search and feature selection methods;  

The main capabilities of developed models for survival prediction are as follows: 

The best developed model can predict the five year survival of the patient by 92.07% 

accuracy. The AUC of this model was 0.74. The accuracy of 92.07% is a very high 
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accuracy, however the AUC value is categorized as a good model and the model has to 

be improved to become an accurate enough model. 

The model can predict the survival rate for 64 categories (section 4.3.1). Although the 

prediction accuracy for 64 categories is very low (based on the available data), by 

improving number of cases, this prediction may provide clinicians useful information. 

The prediction accuracy of the model increased as the number of cases improved. 

 

The developed model outperforms the conventional statistical models. The prediction 

results of developed model are higher than currently available models in the field of 

ovarian cancer. The currently available model can only predict the five year survival 

however the developed model in this research can predict the survival for many 

categories. 

 

Prediction is still not accurate enough for use on an individual patient but the 

encouraging thing is that the systems improve with data entry so this may develop into 

an accurate enough model eventually. 

 

The main capabilities of developed models for outcome of the surgery prediction are as 

follows: 

 The model can predict the outcome of the surgery for three main categories: (a) 

complete or optimal or sub-optimal cytoreduction; (b) complete or optimal 

cytoreduction versus sub-optimal cytoreduction; (c) complete cytoreduction versus 

optimal or sub-optimal cytoreduction. 

 The developed model is a unique model for such prediction in the field of cancer 

research. 

7.3.3 The prototype implementation and evaluation 

The prototype of the models has been implemented using Java programming language 

in Windows environment (however it can be used on other platforms or web based). 

This prototype validates the approach used in this research and can be employed by 

clinicians for further use.  The prototype provided a fundamental basis for conducting 

the experimental study of this research. 

The developed prototype serves the following purposes: 

 The easy to use graphical interface which is useable for any researcher. 
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 The capability of showing the survival rate and the prediction of the outcome of the 

surgery in discussed categories. 

 The capability of adding and analysing new data to the dataset. 

 The ability of the prototype to record newly added data. 

7.4 Further work 

There are some areas to explore in further details as follows: 

 Analysis of other feature sets 

The datasets that were used in this research were taken from sequential patients 

who underwent primary surgery between 1995 and 2005 at the Northern 

Gynaecological Oncology Centre, Gateshead, UK, with appropriate ethical 

approval. For further work the suggestion is to expand the date range of the data 

that collected from this centre to include the data from 2005-2010.The gene 

analysis chapter (chapter 6) of thesis was based on a dataset that included 8 

patients. The complexity of the micro array datasets requires the collection of new 

such data for further analysis. Furthermore, for complete validation of this research 

the datasets that collected from other centres around the world and UK has to be 

included. The reason is that other centres have different surgical approaches and so 

data from one centre may not reflect findings in another (would future models have 

to cope with this, the treating centre may be a very important feature in its own 

right) this will need exploring and validating in future work. 

 Including the missing values 

As discussed previously (chapter 2) the datasets included a number of missing 

values. The original analysis was performed and the missing values were excluded 

from the datasets. For further research, it is suggested that such data be handled and 

included in the dataset. Semi supervised methods can be employed for handling the 

missing values.   

 Connection with DNA microarray dataset 

The analysis of DNA micro array data discovered potential genes involved in 

abrogation of an important DNA repair pathway in ovarian cancer. It can be 

suggested for the next step of this research to explore the connection(s) between 

discovered genes and the OS and outcome of the surgery of the patients.  

 Exploration of other models 
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This research included different models of ML and AI. There is a potential to 

expand these models to include further developed models in this (such as 

bootstrapping). The number of available new or improved models and packages 

(such as R) are growing, the investigation of new models are suggested. 

 Completion of the prototype 

The prototype may help clinicians to have a more clear idea of which treatment 

pathway to choose for a particular patient. Therefore, the completion of the 

prototype will be the next plan. This prototype (as discussed previously) may 

improve the quality of the life of the patients and a completed prototype may be 

employed by hospitals and clinicians for better management of ovarian cancer. It 

will also result in the generation of larger datasets which could be used for 

validating and further developing the models. Although the prototype has been 

made as easy to use as possible there will be a real challenge in encouraging busy 

clinicians to enter data in real time. As the validity of the prototype is demonstrated 

and the quality of the output data improve with time the hope is that the prototype 

becomes a clinically useful tool which clinicians will want to use. The hope is that 

the prototype act similar to ‘adjuvant online’, which is used all the time by breast 

cancer oncologists which doesn’t have the capability to capture any new data. 

Furthermore, the issues regarding the instituting this prototype in many centres such 

as security of data transfer and ethical considerations has to be investigated in future 

work. 

 Investigation of other survival data 

Cancer research scientists are investigating Event-free survival (EFS) and Relapse-

free survival (RFS) for cancer patients. These factors were not included in the 

present analysis as the data were not available for this analysis and also the priority 

that was set for this research was to investigate the overall survival. It would be very 

beneficial to generate, analyse and include RFS and EFS into this analysis. 

7.5 The overall achievement of the thesis 

The overall achievements of this research can be summarized as follows: 

The main achievement of this research is the presentation of a solution to predict the 

outcome in ovarian cancer. There are different models compared in this research and the 

most successful models were identified. Development of an AI system to predict the 

outcome of the surgery which has never been conducted before in the field of ovarian 
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cancer. Identification of the most important genes using TPP as a multivariate feature 

selection technique for the first time. Other achievement which is arguably novel, that 

is, developed model is able to predict the survival rates of the patients for 64 categories 

based on the median maximum survival value in the dataset. By improving the number 

of cases available in the dataset this model can effectively predict the survival rates in 

the range of a month. Lastly, this research presents a new pathway of using AI systems 

for helping clinicians to explore different treatment options for a patient.  

 

Overall, present research makes advances in the clinical decisions making area in the 

medicine. The developed models make a strong argument that such models can be 

employed by health care teams to explore different treatments for a patient. 

Furthermore, this approach has also demonstrated its efficiency in dealing with large 

amounts of clinical data and finding the associations between the different markers to 

predict outcomes in ovarian cancer. We believe that the findings presented in this thesis 

will draw more attention to the area and attract more research in this field. 
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Appendices 

Appendix 1 Prototype snapshot 

Following is the snap shot of the main page of the developed prototype in this research.  

1- User enters the data into the prototype 

2- User selects survival/surgery for the prediction of the survival/surgery. 

3- After the analysis user has the option to include this new data into the dataset. 

4- By using analysis option user can produce different results (ROC curves, LR 

prediction, other modelling results, …) 
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Appendix 2 class diagrams 

Following are some of the class diagrams for the (weka) codes that used in this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GeneticSearch (weka) 

-m_starting : int[]  
-m_startRange : Range  

-m_hasClass : boolean  

-m_classIndex : int  
-m_numAttribs : int  

-m_popSize : int  

-m_bestFeatureCount : int 
 -m_lookupTableSize : int 

 -m_lookupTable : Hashtable 

 -m_random : Random 
 -m_seed : int  

-m_pCrossover : double  
-m_pMutation : double  

-m_sumFitness : double  

-m_maxFitness : double  
-m_minFitness : double  

-m_avgFitness : double  

-m_maxGenerations : int  
-m_reportFrequency : int  

-m_generationReports: StringBuffer  

-m_population : GABitSet[]  
-m_best : GABitSet 

 

+listOptions() : Enumeration 
+setOptions(options : String []) : void 
 +getOptions() : String [] 
+startSetTipText() : String 
+setStartSet(startSet : String) : void  
+getStartSet() : String +seedTipText() 
: String +setSeed(s : int) : void 
+getSeed() : int 
+reportFrequencyTipText() : String  
+setReportFrequency(f : int) : void 
 +getReportFrequency() : int 
+mutationProbTipText() : String  
+setMutationProb(m : double) : void  
+getMutationProb() : double 
+crossoverProbTipText() : String 
+setCrossoverProb(c : double) : void 
+getCrossoverProb() : double 
+maxGenerationsTipText() : String  
+setMaxGenerations(m : int) : void 
+getMaxGenerations() : int  
+populationSizeTipText() : String 
+setPopulationSize(p : int) : void 
+getPopulationSize() : int 
+globalInfo() : String 
+GeneticSearch() -startSetToString() : 
String +toString() : String 
+search(ASEval : ASEvaluation, data : 
Instances) : int [] -attributeList(group 
: BitSet) : int [] -checkBest() : boolean 
-countFeatures(featureSet : BitSet) : 
int -generation() : void -select() : int -
evaluatePopulation(ASEvaluator : 
SubsetEvaluator) : void -
initPopulation() : void -
populationStatistics() : void -
scalePopulation() : void -
populationReport(genNum : 
int) : String -
printPopMember(temp : BitSet) 
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InfoGain (weka) 

 
-m_missing_merge : Boolean 
-m_Binarize : boolean  
-m_InfoGains : double[] 
 

+globalInfo() : String 

+InfoGainAttributeEval() 
+listOptions() : Enumeration 

+setOptions(options : String []) : void 

+getOptions() : String [] 
+binarizeNumericAttributesTipText() 

: String 

+setBinarizeNumericAttributes(b : 
boolean) : void 

+getBinarizeNumericAttributes() : 

boolean 

+missingMergeTipText() : String 

+setMissingMerge(b : boolean) : void 

+getMissingMerge() : boolean 
+buildEvaluator(data : Instances) : 

void 

#resetOptions() : void 
+evaluateAttribute(attribute : int) : 

double 

+toString() : String 

NaiveBayes(weka) 

 
#m_Distributions : Estimator[][] 

#m_ClassDistribution : Estimator 

#m_UseKernelEstimator : boolean = 
false 

#m_UseDiscretization : boolean = 

false 
#m_NumClasses : int 

#m_Instances : Instances 

#DEFAULT_NUM_PRECISION : 

double = 0.01 

#m_Disc : Discretize = null 

 
 

+buildClassifier(instances : Instances) 

: void 
+updateClassifier(instance : Instance) 

: void 

+distributionForInstance(instance : 
Instance) : double [] 

+listOptions() : Enumeration 

+setOptions(options : String []) : void 
+getOptions() : String [] 

+toString() : String 

+getUseKernelEstimator() : boolean 
+setUseKernelEstimator(v : boolean) 

: void 

+getUseSupervisedDiscretization() : 

boolean 

+setUseSupervisedDiscretization(new

blah : boolean) : void 
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PCA (weka) 

 

m_trainInstances : Instances 

-m_trainCopy : Instances 
-m_transformedFormat : Instances 

-m_originalSpaceFormat : Instances 

-m_hasClass : boolean 
-m_classIndex : int 

-m_numAttribs : int 

-m_numInstances : int 
-m_correlation : double[][] 

-m_eigenvectors : double[][] 

-m_eigenvalues : double[] = null 
-m_sortedEigens : int[] 

-m_sumOfEigenValues : double = 0.0 

-m_replaceMissingFilter : 
ReplaceMissingValues 

-m_normalizeFilter : Normalize 

-m_nominalToBinFilter : 
NominalToBinary 

-m_attributeFilter : Remove 

-m_attribFilter : Remove 
-m_outputNumAtts : int = -1 

-m_normalize : boolean = true 

-m_coverVariance : double = 0.95 
-m_transBackToOriginal : boolean = 

false 
-m_eTranspose : double[][] 

 

 
+globalInfo() : String 

+listOptions() : Enumeration 

+setOptions(options : String []) : void 
-resetOptions() : void 

+normalizeTipText() : String 

+setNormalize(n : boolean) : void 

+getNormalize() : boolean 

+varianceCoveredTipText() : String 

+setVarianceCovered(vc : double) : 
void 

+getVarianceCovered() : double 

+transformBackToOriginalTipText() 
: String 

+setTransformBackToOriginal(b : 

boolean) : void 
+getTransformBackToOriginal() : 

boolean 

+getOptions() : String [] 
+buildEvaluator(data : Instances) : 

void 

-buildAttributeConstructor(data : 
Instances) : void 

+transformedHeader() : Instances 

+transformedData() : Instances 

+evaluateAttribute(att : int) : double 

-fillCorrelation() : void 

-principalComponentsSummary() : 
String 

+toString() : String 

-matrixToString(matrix : double [][]) 
: String 

-convertInstanceToOriginal(inst : 

Instance) : Instance 
+convertInstance(instance : Instance) 

: Instance 

-setOutputFormatOriginal() : 
Instances 

-setOutputFormat() : Instances 
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ANN (weka) 

 
-m_instances : Instances 

-m_currentInstance : Instan 

-m_numeric : boolean 
-m_attributeRanges : doub 

-m_attributeBases : double 

-m_numClasses : int = 0 
-m_numAttributes : int = 0 

-m_nextId : int 

-m_selected : FastVector 
-m_graphers : FastVector 

-m_numEpochs : int 

-m_stopIt : boolean 
-m_stopped : boolean 

-m_accepted : boolean 

-m_win : JFrame 

-m_autoBuild : boolean 

-m_gui : boolean 

-m_valSize : int 
-m_driftThreshold : int 

-m_randomSeed : long 

-m_random : Random 
-m_nominalToBinaryFilter : 

-m_hiddenLayers : String 

-m_normalizeAttributes : bo 
-m_decay : boolean 

-m_learningRate : double 

-m_momentum : double 
-m_epoch : int 

-m_error : double 

-m_reset : boolean 
-m_normalizeClass : boole 

-m_outputs : NeuralEnd[] 

-m_inputs : NeuralEnd[] 

-m_neuralNodes : NeuralC 

-m_nodePanel : NodePane 

-m_controlPanel : ControlP 
-m_sigmoidUnit : SigmoidU 

-m_linearUnit : LinearUnit 
 

+NeuralNetwork() 

+setDecay(d : boolean) : void 
+getDecay() : boolean 

+setReset(r : boolean) : void 

+getReset() : boolean 
+setNormalizeNumericClass(c : 

boolean) : void 

+getNormalizeNumericClass() : 
boolean 

+setNormalizeAttributes(a : boolean) 

: void 
+getNormalizeAttributes() : boolean 

+setNominalToBinaryFilter(f : 

boolean) : void 
+getNominalToBinaryFilter() : 

boolean 

+setRandomSeed(l : long) : void 
+getRandomSeed() : long 

+setValidationThreshold(t : int) : void 

+getValidationThreshold() : int 
+setLearningRate(l : double) : void 

+getLearningRate() : double 

+setMomentum(m : double) : void 
+getMomentum() : double 

+setAutoBuild(a : boolean) : void 

+getAutoBuild() : boolean 
+setHiddenLayers(h : String) : void 

+getHiddenLayers() : String 

+setGUI(a : boolean) : void 
+getGUI() : boolean 

+setValidationSetSize(a : int) : void 

+getValidationSetSize() : int 
+setTrainingTime(n : int) : void 

+getTrainingTime() : int 

-addNode(n : NeuralConnection) : 
void 
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