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Abstract 
 
The requirement for anticoagulant therapy in children is increasing and warfarin 

remains the long-term anticoagulant agent of choice. However, little is known 

about the factors that influence inter-individual variability in response to warfarin 

among children. The aim of this MD was to gain a greater understanding of the 

factors that affect warfarin anticoagulant control and response in children. A 

retrospective study of a cohort of anticoagulated children identified factors 

contributing to poor anticoagulant control. It also highlighted the importance of 

the way in which anticoagulant control is assessed in children, with the study 

results showing that the use of a linear interpolation method may be more 

appropriate than the proportion of INRs within target range during intermittent 

periods of instability when INR measurements are carried out more frequently. 

A multi-centre, cross-sectional study of 120 children with stable anticoagulation 

with warfarin showed that 72% of the inter-individual variability in warfarin 

maintenance dose is accounted for by height, VKORC1 and CYP2C9 genotype, 

and indication for warfarin. The study results were used to develop a 

pharmacogenetics-based warfarin-dosing algorithm. The latter was 

demonstrated to have the power to accurately predict maintenance warfarin 

dose in an unrelated cohort of 23 children. Analysis of data for a subgroup of 51 

children showed that VKORC1 and CYP2C9 genotype influence outcome 

variables during initiation of warfarin therapy, including peak INR response 

during week 1 and the proportion of supratherapeutic INRs during month 1 of 

therapy. The above findings have provided us with an insight into the factors 

influencing anticoagulant control and variability in response to warfarin in 

children. Application of a pharmacogenetics-based approach to initiation and 

maintenance warfarin therapy in children has the potential to improve efficacy 

and safety of warfarin therapy in this challenging patient population. 
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Chapter 1. General Introduction 

  

1.1 Oral anticoagulant therapy 

Oral anticoagulant agents are used to treat thrombosis or to prevent thrombosis 

in individuals who are at risk. Indications for oral anticoagulant therapy include 

the treatment of deep vein thrombosis (DVT), pulmonary embolism (PE), and 

thrombosis occurring in more unusual sites such as the cerebral venous 

sinuses, hepatic or renal veins. Oral anticoagulant therapy may also be 

indicated in the management of arterial thrombotic events, such as peripheral 

vascular occlusion, myocardial infarction and stroke, which have failed to 

respond to anti-platelet therapy. The use of oral anticoagulants for primary 

prevention of systemic embolism includes stroke prevention in individuals with 

atrial fibrillation, a prosthetic heart valve or cardiomyopathy. 

 

The most frequently prescribed class of oral anticoagulants are the vitamin K 

antagonists (VKAs). Many of these agents are derived from coumarin and 

include warfarin, dicoumarol, acenocoumarol and phenprocoumon. Other 

vitamin K antagonists that are not derived from coumarin include fluindione and 

phenindione. 

 

1.2 Warfarin 

Warfarin is the most widely prescribed oral anticoagulant agent in the UK and 

North America and is the agent for which there is the most published data of its’ 

use in childhood.  

 

1.2.1 History of Warfarin 

The name ‘warfarin’ is derived from the group at the University of Wisconsin 

who discovered it, the Warfarin Alumni Research Foundation (WARF), with the 

ending of ‘-arin’ indicating its’ link to coumarin. Coumarin is a chemical that is 

found in sweetclover hay. Coumarin does not affect the coagulation system but 

is converted to dicoumarol, which is a powerful anticoagulant, in spoiled animal 

feeds. This had led to the death of many cattle due to internal haemorrhage 

during a particularly warm year in the 1920’s. Warfarin is a synthetic derivative 

of dicoumarol which was developed in 1948 as a rodenticide and in the 1950s 
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was found to be effective in the prevention of thrombosis. It has been used as 

an anticoagulant in clinical practice since 1954. 

 

1.2.2 Mechanism of action  

VKAs produce an anticoagulant effect by interfering with the cyclic conversion 

of vitamin K to its reduced form (vitamin K hydroquinone) (Figure 1-1). Warfarin 

inhibits the regeneration of vitamin K hydroquinone from vitamin K epoxide by 

inhibiting the vitamin K epoxide reductase (VKOR) enzyme in the vitamin K 

cycle. Vitamin K hydroquinone is an essential co-factor for the post-ribosomal 

activation (-carboxylation) of coagulation factors II, VII, IX and X without which 

they are unable to bind calcium and become active in the coagulation cascade. 

 

1.2.3 Pharmacokinetics 

Warfarin is given orally and is rapidly absorbed from the gastrointestinal tract. 

Although the maximum plasma concentration of warfarin is reached within 90 

minutes in adults the anticoagulant effect takes several days to develop. This is 

due to the time taken for the circulating -carboxylated coagulation factors to 

undergo degradation, the onset of action of warfarin therefore being dependant 

on the half lives of the relevant coagulation factors. The half-life of warfarin is 

approximately 40 hours and its anticoagulant effect lasts for 4-5 days. Warfarin 

is given as a once daily dose, usually during the evening. 

 

Warfarin is 97% bound to albumin and is therefore distributed in the plasma 

compartment. It is only the remaining 3% of unbound warfarin that is 

pharmacologically active and can be eliminated. Changes in the unbound 

fraction of warfarin, which may occur due to competition for protein binding sites 

with other drugs, has a major effect on its’ elimination and on warfarin dose 

requirements. 

 

Commercially available warfarin is a 50:50 racemic mixture of R- and S-

enantiomers, with the S-enantiomer being three times more potent than the R-

enantiomer in its inhibitory effect on the VKOR enzyme.  

 

There are several different cytochrome P450 enzymes that contribute to the 

metabolism of warfarin. The main enzyme responsible for the metabolism of the 
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S-enantiomer of warfarin is cytochrome P450 CYP2C9. The R-enantiomer of 

warfarin is metabolised primarily by CYP1A2, with CYP3A4 and CYP2C19 

providing a lesser contribution (Figure 1-2). 

 

Other VKAs differ to warfarin in terms of their half-life, acenocoumarol having a 

shorter half-life and phenprocoumon a longer half-life compared to warfarin. 

Dosing of these agents differs and the stability of the anticoagulation achieved 

can differ, those agents with a longer half-life resulting in a greater stability. 
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Figure 1-1. The action of warfarin on the vitamin K cycle. VKOR, vitamin K epoxide 

reductase. 

 

 

 

Figure 1-2. The metabolism of the S- and R-enantiomers of warfarin by 

cytochrome P450 enzymes (Taken from Kaminsky & Zhang (Kaminsky and 

Zhang, 1997)). The major metabolic pathways are shown by the thicker arrows. 
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1.2.4 Monitoring of anticoagulant response 

The anticoagulant effect of the VKAs is monitored using the prothrombin time, 

which is a measure of the time taken for citrated blood to clot after the addition 

of calcium and thromboplastin (a reagent composed of tissue factor and 

phospholipids). The prothrombin time becomes prolonged when the levels of 

active coagulation factors II, VII and X fall and the degree of prolongation is 

proportional to the degree of anticoagulant effect. When used for monitoring 

therapy with a VKA, the prothrombin time is expressed as the International 

Normalised Ratio (INR), which is a means of standardising results obtained 

from different laboratories that may use different thromboplastin reagents and 

equipment. The INR is maintained within a desired therapeutic range, that is 

dependent upon the clinical indication for anticoagulation, by regular monitoring 

and adjustment of the dose of VKA (Keeling et al., 2011).  

 

The majority of patients receiving warfarin regularly attend an anticoagulant 

clinic, in the hospital or their general practice surgery, for monitoring of their 

INR. Warfarin dose is adjusted if necessary by a trained healthcare 

professional, usually a pharmacist or an anticoagulant nurse practitioner.  

Portable coagulometers, such as the CoaguChek®XS, provide some patients 

with the opportunity of self-testing or self-management of their anticoagulant 

therapy (Fitzmaurice et al., 2005). For those who self-test, the INR is reported to 

a healthcare professional who then makes a warfarin dose adjustment if 

necessary. Those who self-manage make decisions about their own warfarin 

dosing with the aid of a protocol written by the responsible clinical team. This 

point-of-care (POC) management of warfarin anticoagulation is suitable for 

motivated, compliant individuals who are unable to attend an anticoagulant 

clinic for reasons such as employment. It is also suitable for selected patients 

with poor stability of anticoagulant control, including children, who require 

frequent INR testing (Fitzmaurice et al., 2005). 

 

1.2.5 Adverse effects and reversal 

Warfarin has a narrow therapeutic window and a deviation from the desired 

target INR range can result in a reduction in efficacy or an adverse event. 

Under-anticoagulation, as detected by an INR that is below the target range, 

carries a risk of thromboembolism whereas over-anticoagulation, with an INR 
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above target range, can result in haemorrhage. Under-anticoagulation is 

managed by increasing the dose of prescribed warfarin with the addition of an 

alternative form of anticoagulant therapy, such as heparin, if the perceived risk 

of thromboembolism is sufficiently high. The management of over-

anticoagulation depends upon the degree of elevation of INR, the presence or 

absence of bleeding symptoms and the indication for anticoagulant therapy. If 

necessary, in addition to withholding further warfarin doses, the anticoagulant 

effect of warfarin can be reversed by the administration of vitamin K (either 

orally or intravenously, depending on the speed of reversal required) and/or 

fresh frozen plasma or prothrombin complex concentrate which replenishes the 

absent coagulation factors (Keeling et al., 2011, Hanley, 2004). 

 

1.3 Warfarin anticoagulation in children 

1.3.1 Indications for anticoagulation in children 

Due to significant advances in paediatric medical care previously fatal 

conditions of childhood, such as congenital cardiac defects, prematurity and 

malignancy, are now being successfully managed. This has been at the 

expense of a rising incidence of thromboembolic complications (Stein et al., 

2004). The requirement for anticoagulation to treat thrombotic events, as well as 

for prophylaxis in at risk patients, is therefore increasing (Monagle et al., 2008). 

 

Table 1-1 shows the most frequent indications for anticoagulant therapy in 

children. The majority of long-term anticoagulant therapy is for those with 

cardiac defects. 

 

Although the use of the low molecular weight heparins is increasing for short-

term anticoagulation in children, warfarin remains the most common 

anticoagulant agent for long-term anticoagulant therapy in this patient group. 
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Table 1-1. Indications for anticoagulant therapy in children 

Treatment of thrombotic events 

- Venous thrombosis, including 

 Central venous line-related thrombosis 

 Deep vein thrombosis 

 Pulmonary embolism 

 Thrombosis at unusual sites: Cerebral venous sinus thrombosis; Renal vein 

thrombosis; Portal vein thrombosis 

- Thrombotic stroke 

- Intra-cardiac thrombus 

- Arterial thrombosis, including 

 Ischaemic limb 

 Aortic thrombosis 

Prevention of thrombotic events 

- Surgery for congenital heart disease (e.g. Fontan procedure) 

- Heart valve replacement 

- Severe cardiomyopathy 

- Giant coronary aneurysm 

- Idiopathic pulmonary hypertension 

- Ventricular assist device 

- Long-term central venous access for total parenteral nutrition 
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1.3.2 Anticoagulation control in children receiving warfarin 

1.3.2.1 Difficulties in anticoagulation control in children. Oral anticoagulant 

therapy in children is complicated by numerous factors that make control of 

anticoagulant therapy difficult, including: variable age-related dose-response 

rates; complex underlying health problems; multiple intercurrent viral illnesses; 

polypharmacy; and, variation in diet (Table 1-2). Monitoring of anticoagulant 

therapy is also problematic in children due to the difficulties of obtaining blood 

by venepuncture. In infants, additional problems include the challenge of 

accurate dosing (warfarin is only available in tablet form, with 0.5mg tablet 

being the smallest dose commercially available), increased sensitivity due to 

physiologically low levels of vitamin K-dependant clotting factors (Andrew et al., 

1987), and differing amounts of dietary intake of vitamin K (formula feeds 

containing varying amounts and breast milk containing very little vitamin K 

(Bonduel, 2006)). 

 

Previous studies of children anticoagulated with warfarin have reported that 

around 50% of INR values are within target therapeutic range (TTR) (Newall et 

al., 2004, Bradbury et al., 2008, Newall et al., 2006, Bhat et al., 2010) and that 

the mean time interval between INR tests is less than one week (Streif et al., 

1999). This compares poorly to adult studies which show achievement of TTR in 

60-80% of tests and a longer time interval between INR tests (Palareti et al., 

1996), thus confirming that control of oral anticoagulant therapy is difficult in 

children. 
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Table 1-2. Factors contributing to poor control of oral anticoagulant therapy in 

children 

Patient-related factors 

- Variable age-related dose-response 

- Physiological reduction in levels of vitamin K-dependant factors¶ 

- Poor compliance, particularly in adolescents 

- Adolescent alcohol/recreational drug use 

- Difficulty in venepuncture 

Disease-related factors 

- Underlying health problems 

- Frequent intercurrent viral illness 

Dietary factors 

- Variable vitamin K content of diet 

- Vitamin K-containing enteral feeds/formula feeds 

External factors 

- Polypharmacy 

- Frequent intermittent antibiotic therapy 

Social factors 

- Missed school days for INR monitoring (work days for parent/carer) 

- Restrictions placed on physical activities 

Other 

- Difficulty in accurate dosing due to lack of suspension/liquid formulation 

¶Relevant to children <1 year of age 
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1.3.2.2 Assessment of quality of anticoagulation control in children. 

Anticoagulation control in children is usually reported as the ‘percentage of INR 

measurements within therapeutic range’ (%ITTR). However the advent of point-

of-care testing devices, which has allowed INR testing to occur more frequently 

during periods of instability, means that this measure could potentially 

underestimate the quality of anticoagulation control in this patient group in 

whom longer periods of stable control are often interspersed with shorter 

periods of poor stability. An alternative method, described by Rosendaal et al 

(Rosendaal et al., 1993), measures ‘percentage time within therapeutic range’ 

(%TIR). This method uses linear interpolation to allocate an INR value to each 

day, including days between INR tests. This is likely to minimise the impact of 

multiple (‘out of range’) INR values over a short period of time and places more 

emphasis on the longer periods of stability during which INR tests are less 

frequently performed. It should be noted, however, that the TIR method was not 

developed as a means of assessing quality of anticoagulation control but rather 

to determine the optimal intensity of anticoagulant therapy (Rosendaal et al., 

1993). Cross-section-of-the-files is a further method using which a percentage 

is obtained by selecting a single time-point and calculating the fraction of 

patients whose INR value is in range divided by the total number of INRs 

measured in the patient population at that point in time (Loelinger, 1985). The 

best measure of quality of anticoagulation control would be one that correlates 

closely with clinical outcomes in terms of efficacy and safety (Schmitt et al., 

2003) and this has not been examined in a paediatric population.  

 

1.3.3 Factors contributing to inter- and intra-individual differences in 

response to warfarin in children 

1.3.3.1 Age. Age is a major factor determining dose response in infants and 

children. The largest cohort study of children anticoagulated with warfarin 

showed that younger patients required higher weight-adjusted doses to achieve 

an equivalent anticoagulant effect with infants requiring a mean daily dose of 

0.32 mg/kg and teenagers 0.09 mg/kg warfarin to maintain a target INR of 2.0 to 

3.0 (Streif et al., 1999). This is in comparison to adult doses that are in the 

range of 0.04 to 0.08 mg/kg/day for a similar level of anticoagulation (Hirsh, 

1991). The influence of age on warfarin dose requirement in children is so great 

that it negates the effects of differing target INR ranges, concurrent 
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medications, underlying disorder and diet (Streif et al., 1999). The higher dose 

requirement by younger children suggests that they may have reduced or 

underdeveloped activity of the enzymes that mediate the disposition and 

pharmacological activity of warfarin compared to older children. 

 

1.3.3.2 Diet. Breast-fed infants are more sensitive to the anticoagulant effect of 

warfarin than formula-fed infants and this is likely to be due to the relatively low 

concentration of vitamin K (see Section 1.3 ‘Dietary vitamin K status and 

response to warfarin’) in breast milk compared to vitamin K-supplemented 

formula feed (Haroon et al., 1982). Children receiving enteral feeding by 

nasogastric or gastrostomy tube have also been shown to require higher 

warfarin doses which is again likely to be due to vitamin K supplementation of 

the enteral feed (Streif et al., 1999). However, a direct association between 

vitamin K in enteral feed and warfarin dose requirement could not be 

established as plasma vitamin K concentrations were not determined and this 

effect may be, at least in part, due to reduced absorption of warfarin as a result 

of the underlying condition. 

 

1.3.3.3 Indication for anticoagulant therapy. The indication for warfarin 

therapy in a child has an effect on warfarin dose requirement that is 

independent from the target INR range. Children who are anticoagulated 

following a Fontan procedure (which is a form of palliative heart surgery for a 

severe congenital heart defect) have a significantly lower warfarin dose 

requirement than those who are anticoagulated for other cardiac indications 

(Streif et al., 1999). The mechanism for this has not been explored but may be 

related to liver dysfunction and cholestasis both of which reduce the availability 

of the vitamin K-dependant coagulation factors (Kaulitz et al., 1997). 

 

1.3.3.4 Medication. Medications that are known to alter the anticoagulant 

response to warfarin in adults affect the warfarin dose requirement in children in 

a similar way (Hirsh, 1991). The effects of corticosteroids, phenobarbital, 

carbamazepine and antibiotics have been specifically confirmed by cohort 

studies in children anticoagulated with warfarin. Corticosteroids and most of the 

commonly used antibiotics reduce warfarin dose requirement and raise INR 

while phenobarbital and carbamazepine increase dose requirement and lower 



 12 

INR (Streif et al., 1999, Johnson et al., 2005, Ruud et al., 2008). The 

pharmacokinetic and pharmacodynamic mechanisms for these interactions 

have been extensively described in adults (Wells et al., 1994). 

 

1.3.3.5 Genetic polymorphisms. There have been three small cohort studies 

evaluating the influence of polymorphisms in the genes that mediate the 

pharmacological action and disposition of warfarin on dose requirement in 

children and these are described in Section 1.4.5 ‘Polymorphisms in the genes 

for CYP2C9 and VKORC1 in children’ below. 

 

1.4 Dietary vitamin K status and response to warfarin 

The role of vitamin K in determining the anticoagulant response to warfarin is 

shown in Section 1.1.1 ‘Mechanism of action’ and Figure 1-1 above. The 

anticoagulant effect of warfarin, and the other coumarin derivatives, can be 

antagonised by vitamin K. The administration of supra-physiological doses of 

vitamin K, either orally, intramuscularly or intravenously is common practice in 

the reversal of over-anticoagulation with warfarin (Hanley, 2004). 

 

In adults, several studies have confirmed the impact of dietary vitamin K on 

warfarin dose requirement and the stability of anticoagulant control. These 

studies have confirmed an inverse relationship between warfarin maintenance 

dose requirement and dietary vitamin K intake (Khan et al., 2004, Franco et al., 

2004), the contribution of low dietary vitamin K intake to poor stability of 

anticoagulant control (Sconce et al., 2005a) and the positive impact of dietary 

supplementation with daily low dose vitamin K on the stability of anticoagulant 

control in previously unstable adult patients (Sconce et al., 2007). None of these 

studies have been repeated in a paediatric population. 

 

1.5 Pharmacogenetic factors and response to warfarin 

In adults genetic polymorphisms in the genes that mediate the pharmacological 

action and disposition of warfarin have been demonstrated to make significant 

contributions to warfarin dose requirement. 
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1.5.1 Polymorphisms in the gene for CYP2C9 

The cytochrome P450 2C9 (CYP2C9) is a liver enzyme required for the 

oxidative metabolism of the S-enantiomer of warfarin. A number of genetic 

polymorphisms have been described within the CYP2C9 locus (Lee et al., 

2002). 

 

The two most common variants are CYP2C9*2 (R144C) and CYP2C9*3 (I359L) 

and approximately 35% of Caucasians carry at least one of these variant 

alleles, although they occur less frequently in some of the other ethnic groups 

(Sullivan-Klose et al., 1996, Rettie et al., 1994). These variant alleles encode 

enzymes that have 12% (CYP2C9*2) and 5% (CYP2C9*3) of the activity of the 

wild-type genotype CYP2C9*1 (Crespi and Miller, 1997, Takanashi et al., 2000). 

The presence of one or both of these alleles results in impaired hydroxylation of 

S-warfarin in vitro (Sullivan-Klose et al., 1996, Lee et al., 2002, Rettie et al., 

1994) resulting in increased sensitivity to warfarin within the individual. 

 

The influence of CYP2C9 polymorphisms on warfarin dose requirement and the 

risk of adverse events has been extensively studied.  In one of the earliest of 

these studies, Aithal et al investigated a cohort of anticoagulated patients with a 

low warfarin dose requirement and found that their odds ratio of having one of 

the variant CYP2C9 alleles compared to the general population was 6.21 (95% 

confidence interval (CI) 2.48-15.6). In addition, they were more likely to have 

had an INR > 4.0 during induction therapy and they were four times more likely 

to have had major bleeding complications than an unselected cohort of 

anticoagulated patients (Aithal et al., 1999). A study of 121 patients 

anticoagulated with warfarin showed that warfarin dose requirements were 

highest in those individuals who were homozygous wild-type for CYP2C9 

(*1/*1), lower for those who were heterozygous *1/*2, and were lowest for those 

who were heterozygous *1/*3. This study showed that individuals with variant 

alleles had a significantly reduced clearance of S-warfarin, but not of R-warfarin, 

therefore identifying the in vivo mechanism of this effect (Kamali et al., 2004).  

 

Several further studies, in a range of ethnic groups, have confirmed that 

patients with variant alleles of CYP2C9 have a lower warfarin dose requirement 

(Ogg et al., 1999, Margaglione et al., 2000, Taube et al., 2000, Higashi et al., 
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2002, Scordo et al., 2002, Gage et al., 2004, Joffe et al., 2004, Peyvandi et al., 

2004, Wadelius et al., 2004) and have a greater risk of supratherapeutic INR 

(Taube et al., 2000, Higashi et al., 2002, Joffe et al., 2004, Peyvandi et al., 

2004) and bleeding (Ogg et al., 1999, Margaglione et al., 2000, Higashi et al., 

2002) during the initiation phase of therapy.  

 

1.5.2 Polymorphisms in the gene for VKORC1 

The gene encoding vitamin K epoxide reductase (VKOR), the target enzyme for 

the coumarins, was identified on human chromosome 16 in 2004 (Li et al., 

2004). The anticoagulant effect of warfarin and the other coumarins is due to 

inhibition of this enzyme which results in a failure to regenerate the reduced 

form of vitamin K (vitamin K hydroquinone) from vitamin K 2,3-epoxide in the 

vitamin K cycle (see Section 1.1.1 ‘Mechanism of action’ and Figure 1-1). 

Vitamin K hydroquinone is an essential co-factor for the post-ribosomal 

activation (-carboxylation) of the vitamin K-dependent coagulation factors (II, 

VII, IX and X) without which they are unable to bind calcium and become active 

in the coagulation cascade. 

 

The vitamin K epoxide reductase complex subunit 1 (VKORC1) gene is one 

component of the VKOR complex which encodes a small trans-membrane 

protein of the endoplasmic reticulum. Missense mutations within the VKORC1 

gene resulting in increased activity of VKOR have been shown to be associated 

with warfarin resistance and rarer mutations are associated with inherited 

deficiencies of the vitamin K-dependent coagulation factors (Rost et al., 2004, 

Bodin et al., 2008). More recently, a number of common polymorphisms in non-

coding sequences of the VKORC1 gene have been identified. One of these, 

C1173T in intron 1 (shown to be in complete linkage disequilibrium with -1639G 

> A within the 3’ untranslated region of the gene), is associated with a lower 

warfarin dose requirement. This was first described by D’Andrea et al (D'Andrea 

et al., 2005) and confirmed in several subsequent studies as accounting for 15-

30% of variance in warfarin dose between individuals (Bodin et al., 2005, 

Wadelius et al., 2005, Rieder et al., 2005).  
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1.5.3 Polymorphisms in other genes 

Cytochrome P450 4F2 (CYP4F2) is a vitamin K1 (VK1) oxidase enzyme. 

Carriers of the V433M polymorphism (rs2108622:C>T nucleotide substitution) 

have lower hepatic concentrations of the enzyme, resulting in a reduced 

capacity to metabolise VK1. Elevated hepatic levels VK1 are thought to render 

these individuals less sensitive to the anticoagulant effects of warfarin 

(McDonald et al., 2009). This effect was first described by Caldwell et al 

(Caldwell et al., 2008) who identified an association between warfarin dose and 

presence of the CYP4F2 variant allele (V433M: rs2108622) in 3 independent 

cohorts (total n=1051) of White patients. The presence of a variant allele 

resulted in a significantly higher warfarin dose requirement, patients who were 

homozygous TT requiring 1mg/day more warfarin than those with genotype CC, 

the heterozygous patients having an intermediate dose requirement (equating 

to a 4-12% increase in warfarin dose per T allele). This effect was consistent 

when VKORC1 and CYP2C9 genotypes were accounted for (Caldwell et al., 

2008). Frequency of the CYP4F2 variant allele varies between ethnic groups 

explaining why these findings have been replicated in studies of White and 

Asian populations in whom 30% carry a variant allele (Cen et al., 2010, Singh et 

al., 2011, Carlquist et al., 2010, Perez-Andreu et al., 2009, Borgiani et al., 2009) 

but not confirmed in African-Americans in whom only 7% carry a variant allele 

(Scott et al., 2010, Perini et al., 2010). 

 

Apolipoprotein E (APOE) mediates the uptake of vitamin K-rich lipoproteins 

from the circulation into liver cells. There are six APOE variants, encoded by the 

alleles ε2, ε3 and ε4. The ε2, ε3 and ε4 alleles differ according to their amino 

acid sequence at two sites, which are cysteine/cysteine, cysteine/arginine, and 

arginine/arginine, respectively (Weisgraber et al., 1982). Individuals who carry 

the APOE ε4 allele clear the vitamin K-rich lipoproteins from the circulation more 

efficiently than those who do not and the increased availability of vitamin K in 

the liver is thought to result in a relative resistance to the anticoagulant effect of 

warfarin (Kohlmeier et al., 1996). A few studies have shown that APOE 

genotype influences warfarin dose requirement, adults carrying one or more ε4 

alleles requiring a higher warfarin maintenance dose than those without 

(Kimmel et al., 2008, Kohnke et al., 2005). However, APOE genotype was 

shown to have a relatively minor contribution to variability in warfarin dose (6%) 
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(Kohnke et al., 2005) and its effect has not been demonstrated in populations 

that have a low frequency of ε4 allele (Lal et al., 2008). 

 

Three additional cytochrome P450 enzymes, CYP1A2, CYP3A4 and CYP2C19, 

are responsible for the metabolism of the R-enantiomer of warfarin. A SNP in 

intron 1 of CYP1A2 (C163A; rs762551) has been identified and has been 

associated with increased enzyme activity (Sachse et al., 1999), although this 

high inducibility has only been demonstrated amongst tobacco smokers and its 

effect on warfarin dose requirement has not been examined. CYP3A4 is a major 

contributor to R-warfarin metabolism. There is significant inter-individual 

variability in enzyme levels and several polymorphisms of the gene have been 

identified. Heterozygotes for the CYP3A4*1G polymorphism (rs2242480) have a 

higher clearance of R-warfarin in vitro (Lane et al., 2011) but neither the effect 

of this polymorphism, nor any of the others, on warfarin dose requirement has 

been examined. CYP3A5 is an enzyme that has similar substrate specificities to 

CYP3A4. Various polymorphisms encode active and inactive CYP3A5 enzyme. 

The CYP3A5*3 allele (A6986G; rs776746) is the commonest cause of low 

CYP3A5 activity in Caucasians but has not been shown to influence warfarin 

dosing. This may be related to the low frequency of variant alleles in the 

population (Wadelius et al., 2004).  

 

There are a number of other genes that express mediators involved in the 

vitamin K cycle and the metabolism of warfarin, including calumenin (CALU) 

(Gonzalez-Conejero et al., 2007, Hatch et al., 2007), microsomal epoxide 

hydrolase (EPHX1) (Vecsler et al., 2006, Hatch et al., 2007), gamma-glutamyl 

carboxylase (GGCX) (Rieder et al., 2007) and protein C (PROC) (Hatch et al.). 

Allelic variants in these genes have been shown to make minimal or no 

contribution to warfarin dose requirement in adult populations (Jorgensen et al., 

2009). Genome-wide association studies have also failed to identify genetic 

factors of significant importance other than polymorphisms in the CYP2C9, 

VKORC1 and CYP4F2 genes (Cooper et al., 2008, Takeuchi et al., 2009). 

However, the effect of polymorphisms in these other genes on warfarin dose in 

the paediatric population may differ. 
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1.5.4 Warfarin-dosing algorithms 

Further studies, both retrospective and prospective, have shown that patient 

genotype for the genes encoding CYP2C9 and VKORC1, age and height 

collectively account for 55-60% of the variability in warfarin dose requirement in 

adults. This has informed the development of personalised warfarin-dosing 

algorithms for estimating maintenance dose (Sconce et al., 2005b, Wadelius et 

al., 2009, Millican et al., 2007). There are substantial interethnic differences 

between CYP2C9 and VKORC1 genotype frequencies and more recently the 

International Warfarin Pharmacogenetics Consortium (IWPC) has addressed 

this by developing an algorithm for estimating warfarin dose based on clinical 

and genetic data from a total of 4043 patients from 21 centres on four 

continents (Asia, Europe, North America and South America) (International 

Warfarin Pharmacogenetics Consortium, 2009). In a validation cohort of 1009 

patients the pharmacogenetics-based algorithm was more accurate in 

identifying those individuals who required low or high doses of warfarin to 

achieve target INR than an existing clinical algorithm (International Warfarin 

Pharmacogenetics Consortium, 2009).  

 

Since commercial platforms for rapid genotyping of the polymorphisms relevant 

to warfarin dosing have been made available (King et al., 2008) it has been 

feasible to study prospectively the role of pharmacogenetics-based warfarin-

dosing algorithms in patients undergoing initiation of warfarin therapy. An early 

study evaluated an algorithm that incorporated CYP2C9 genotype in 48 

orthopaedic patients. Although patients with a CYP2C9 variant achieved stable 

warfarin dosing without excessive delay, they continued to be at increased risk 

of over-anticoagulation (INR > 4.0) (Voora et al., 2005). A further study by 

Caraco et al examined whether prior knowledge of CYP2C9 genotype improved 

outcomes of warfarin therapy in 191 patients. Those treated according to a 

CYP2C9 genotype-adjusted algorithm reached therapeutic INR and stable 

warfarin dosing earlier, spent more time in therapeutic range and experienced 

less minor bleeding than those treated according to an empirical algorithm 

(Caraco et al., 2008). The addition of VKORC1 genotype to a warfarin-dosing 

model at initiation of warfarin therapy in 187 elderly inpatients showed that, 

although VKORC1 genotype was the best predictor of warfarin maintenance 

dose, the contribution of VKORC1 and CYP2C9 to prediction of induction doses 
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was negligible compared to INR responses measured during the first week of 

treatment (Moreau et al., 2011). A further randomised controlled trial of a dosing 

algorithm that incorporated CYP2C9, VKORC1 and CYP4F2 genotypes in 230 

patients showed that genotype-informed dosing improved prediction of 

therapeutic dose but did not improve time in therapeutic range. Incidence of INR 

> 4.0 and adverse events were similar for both of the study arms (Burmester et 

al., 2011). Recent evaluation of a pharmacogenetics-based initiation protocol 

that incorporated doses based on VKORC1/CYP2C9 genotype, clinical 

variables and response in 167 patients during the first 90 days of warfarin 

therapy resulted in a negligible influence of genotype on risk of over-

anticoagulation, time to stable anticoagulation and time spent within therapeutic 

range (Gong et al., 2011). More recently, the CoumaGen-II study showed that 

pharmacogenetic-based warfarin-dosing resulted in fewer INRs that were out of 

range and an earlier achievement of therapeutic INR when compared with a 

standard empiric dosing protocol (Anderson et al., 2012). 

 

These studies confirm that a pharmacogenetics-guided approach to warfarin 

initiation is feasible and safe but do not clearly demonstrate a benefit in terms of 

improvement in anticoagulation control or a reduction in adverse events, an 

issue that is being addressed by ongoing trials (van Schie et al., 2009, French 

et al., 2010). 

 

1.5.5 Polymorphisms in the genes for CYP2C9 and VKORC1 in children 

There have been three small studies to investigate the influence of genetic 

polymorphisms on warfarin dose requirement in children. A study of 29 children 

with cancer, treated with low dose warfarin therapy (target INR range: 1.3-1.9), 

showed that those with a variant CYP2C9*2 or *3 allele (n=8) achieved target 

INR sooner and were more likely to have a supratherapeutic INR than children 

with wild-type CYP2C9*1 (n=21). Warfarin dose requirements did not differ 

significantly between children who were heterozygous for CYP2C9*2 or *3 as 

compared to those without a variant allele but was significantly lower in the one 

child who was compound heterozygous for both alleles. There was no 

adjustment for variables such as age and the number of evaluated patients was 

small (Ruud et al., 2008). 
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A later study of 60 children anticoagulated with oral vitamin K antagonists, 34 

who were anticoagulated with warfarin and 26 with phenprocoumon, examined 

the effect of polymorphisms in the CYP2C9 and VKORC1 genes on warfarin 

dose requirement. Carriers of VKORC1 AA (1639G>A) genotype required 

significantly lower daily doses than GG or GA genotypes but there was no 

association between warfarin dose requirement and any mutation in the 

CYP2C9 gene. Age was found to be a greater determinant than either of the 

genetic factors (Nowak-Göttl et al., 2009). The analysis did not consider the 

difference in dosing between warfarin and phenprocoumon, phenprocoumon 

doses generally being 2.4 times higher than warfarin doses to achieve the same 

anticoagulant effect (Van Leeuwen et al., 2008). 

 

A further study identified age and VKORC1 genotype as the major factors 

influencing warfarin dose requirement in 48 Japanese children anticoagulated 

with warfarin. Children with VKORC1 -1173TT genotype had a 28% lower 

warfarin dose requirement that those with -1173CT or -1173CC genotype, a 

difference which was statistically significant. It was not possible to evaluate the 

effect of CYP2C9 genotype as only one child possessed a variant CYP2C9 

allele (Kato et al., 2011). 

 

The influence of polymorphisms in other genes has not been studied in a 

paediatric population and a pharmacogenetics-based warfarin-dosing algorithm 

has not previously been developed or validated. 
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1.6 Aims of the research 

The aim of this MD is to gain a greater understanding of the factors that affect 

warfarin anticoagulant control and response in children. 

 

This includes the following studies: 

1. A study of anticoagulation control in a cohort of children on chronic 

anticoagulant therapy with warfarin; 

2. A study of the clinical and pharmacogenetic factors affecting inter-

individual variability in response to warfarin in children, with particular 

focus on: 

- The impact of polymorphisms in key genes mediating sensitivity to 

and metabolism of warfarin on maintenance warfarin dose and 

outcomes during warfarin initiation; 

- The ability to predict maintenance warfarin dose in children using 

a dosing algorithm based on clinical and pharmacogenetic factors. 
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Chapter 2. Anticoagulation control in a cohort of children on 

chronic therapy with warfarin 

 

2.1 Introduction 

Anticoagulant therapy is becoming increasingly used in childhood and warfarin 

remains the most frequent agent for long-term anticoagulation in this patient 

group. 

 

Maintenance of anticoagulation with warfarin within the target therapeutic range 

(TTR) is essential in order to prevent the haemorrhagic complications of over-

anticoagulation and the reduction in efficacy seen with under-anticoagulation. 

 

Historically, children have had poor anticoagulant control (Streif et al., 1999) 

although there has been some improvement with the use of point-of-care (POC) 

testing devices and patient/parent education programmes (Newall et al., 2004, 

Bradbury et al., 2008, Newall et al., 2006, Bhat et al., 2010). 

 

Anticoagulation control in children is usually reported as the ‘percentage of INR 

measurements within therapeutic range’ (%ITTR). However, with the increasing 

use of POC testing devices, allowing INR testing to occur more frequently 

during periods of instability, %ITTR may not accurately reflect the quality of 

anticoagulation control. 

         

2.2 Aims          

The aims of this study were to: 

1. Examine anticoagulation control in a cohort of children on chronic 

therapy with warfarin, monitored at home using a point-of-care device; 

2. Identify the factors that are responsible for deviations from target 

therapeutic range; 

3. Compare two measures of quality of anticoagulation control, ‘percentage 

of INR measurements within therapeutic range’ (%ITTR) and ‘percentage 

time within therapeutic INR range’ (%TIR). 
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2.3 Methods 

2.3.1 Patient selection and data collection      

Children who had been anticoagulated with warfarin under the care of paediatric 

cardiology services at Freeman Hospital, Newcastle upon Tyne were identified 

using a hospital registry. Anticoagulant records and hospital notes for these 

children were examined. Data were collected from 3 months after the start of 

anticoagulant therapy. Data collected included: age; gender; weight; indication 

for anticoagulant therapy; target INR range; warfarin dose; INR values; 

frequency of INR tests; frequency of warfarin dose changes; deviation from 

target INR range; factors contributing to deviation from target INR range; 

management of over- and under-anticoagulation events; and, occurrence of 

haemorrhagic and thrombotic events. An over-anticoagulation event was 

defined as an INR > 4.0 and an under-anticoagulation event was defined as an 

INR > 0.5 below target INR range. A major haemorrhagic event was defined as; 

(i) fatal bleeding, and/or; (ii) symptomatic bleeding in a critical area or organ, 

such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or 

pericardial, or intramuscular with compartment syndrome, and/or; (iii) bleeding 

causing a fall in haemoglobin level of 2g/dL or more, or leading to transfusion of 

two or more units of whole blood or red cells (Schulman and Kearon, 2005). All 

other haemorrhagic events were defined as minor.   

 

2.3.2 Calculation of ‘percentage time within therapeutic INR range’ 

Data were inputted into 4S Dawn Clinical Software in order to calculate %TIR 

using the linear interpolation methodology described previously by Rosendaal et 

al (Rosendaal et al., 1993). The average %ITTR and %TIR was determined for 

each patient for the duration of their anticoagulant monitoring. 

 

2.3.3 Statistical analysis 

Advice from a statistician was taken prior to data analysis. Children were 

divided into two subgroups according to target INR range: 2.0-3.0; and 2.5-3.5, 

and three subgroups according to the indication for anticoagulant therapy: 

Fontan circulation; other cardiac indication; and non-cardiac indication. Data 

from each patient were divided according to their age (in years) at the time of 

the INR measurement.  These data were then combined into age cohorts: ≤ 1 

year; 2-5 years; 6-12 years; and 13-17 years, prior to statistical analysis. 
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Treatment outcome variables were compared between children with different 

target INR range, different indication for anticoagulant therapy, and between 

children within each age group. The percent of INR measurements that were 

within, above and below TTR were compared using t-test or one-way analysis 

of variance (ANOVA) as the data were approximately normally distributed within 

groups. Warfarin dose per kg body weight and mean number of dose changes 

per month were compared following logarithmic transformation to achieve 

approximate normality within groups. Mean number of INR measurements per 

month were compared using Mann-Whitney test or Kruskall-Wallis test. 

Correction for age was done using regression analysis. Correlation of variables 

with actual age was studied using Pearson correlation coefficient. %ITTR was 

compared to %TIR using a paired t-test and the differences between %ITTR 

and %TIR were compared between subgroups. Advice from a statistician was 

taken prior to data analysis. Statistical analysis was performed using Minitab 

version 15.0 (Coventry, UK). P values < 0.05 were considered significant. 

 

2.4 Results          

2.4.1 Patient characteristics       

Anticoagulation records for 38 consecutive children (21 males) anticoagulated 

with warfarin between January 1996 and April 2009 were reviewed (Table 2-1). 

All children were monitored using a point-of-care device (CoaguChek®S or 

CoaguChek®XS) and their warfarin therapy managed by two paediatric 

cardiology nurse specialists who were contacted with the INR results by the 

parent/carer by telephone. The INR test frequency was directed by the nurse 

specialists although some parents/carers carried out additional tests if they 

were concerned, e.g. during episodes of illness. Median age was 8.3 years 

(range: 1.1-17.2 years). The most frequent indications for anticoagulant therapy 

were: Fontan procedure, 16 patients; prosthetic mitral valve replacement, 8 

patients; and, primary pulmonary hypertension, 4 patients (Table 2-1). 29 

patients had target INR range 2.0-3.0 and 9 patients had target INR range 2.5-

3.5. Median duration of anticoagulant therapy was 29 months (range: 2-115 

months) and data were collected for a total of 112 patient years of anticoagulant 

therapy with warfarin. 
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Table 2-1. Patient characteristics 

Total number of children 38 

Age¶: median (range), yrs 8.3 (1.1-17.2) 

Sex, no. of children 

- Male 

- Female 

 

21 

17 

Indication for warfarin therapy, no. of children 

- Fontan procedure 

- Prosthetic mitral valve replacement 

- Primary pulmonary hypertension 

- Prosthetic aortic valve replacement 

- Cardiomyopathy 

- Other§ 

 

16 

8 

4 

4 

3 

3 

Target INR range, no. of children 

- 2.0-3.0 

- 2.5-3.5 

 

29 

9 

Duration of warfarin therapy: median (range), months 29 (2-115) 

¶at start of data collection period 
§giant coronary aneurysm, 1; thrombotic stroke, 1; truncus arteriosus repair, 1
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Table 2-2. Treatment outcome variables according to age, target INR range and indication in children anticoagulated with warfarin 

 INR 
measurements 
within TTR,  
mean % (range) 

INR 
measurements 
below TTR,  
mean % (range) 

INR measurements 
above TTR,  
mean % (range) 

Dose to maintain 
TTR, mg/kg/day 
(range) 

Mean number of 
tests per month 
(range) 

Mean number of 
dose changes per 
month (range) 

Age 
- ≤1 year  
        (n=2) 
- 2-5 years       

(n=23) 
- 6-12 years 

(n=71) 
- 13-17 years 

(n=47) 
P value 

 
63.4 (43.5,83.3) 

 
60.6 (30.3-100) 

 
61.1 (28.6-100) 

 
56.2 (0-100) 

 
0.645¶ 

 
7.6 (0,15.2) 

 
28.5 (0-66.7) 

 
28.1 (0-71.4) 

 
30.2 (0-100) 

 
0.441¶ 

 
27.8 (0,41.3) 

 
10.9 (0-38.5) 

 
10.1 (0-50) 

 
13.5 (0-57.1) 

 
0.108¶ 

 
0.24 (0.19,0.296) 

 
0.15 (0.07-0.30) 

 
0.11 (0.03-0.22) 

 
0.089 (0.03-0.18) 

 
<0.001¶ 

 
7.6 (5.1, 10) 

 
4.4 (1- 15.3) 

 
2.6 (0.5-16) 

 
2.8 (0.9-15.7) 

 
0.009§ 

 
2.4 (0.5-4.3) 

 
2.5 (0-11.7) 

 
0.6 (0-4) 

 
1.4 (0-9.7) 

 
0.082¶ 

Target range 
- 2.0-3.0 

(n=29) 
- 2.5-3.5 

(n=9) 
P value 

 
59.1 (30.3-81.3) 

 
51.7 (37.5-63.6) 

 
0.052† 

 
29 (0-66.7) 

 
32.2 (18.2-46.7) 

 
0.554† 

 
12.3 (0-34.5) 

 
16.1 (0-27.3) 

 
0.30† 

 
0.12 (0.05-0.3) 

 
0.14 (0.07-0.22) 

 
0.419† 

 
3.5 (1-10) 

 
4.4 (1.7-13) 

 
0.264‡ 

 
1.5 (0.1-9.7) 

 
2.4 (0.6-9.6) 

 
0.175† 

Indication 
- Fontan 

procedure 
(n=16) 

- Other cardiac 
(n=17) 

- Non-cardiac 
(n=5) 

P value 

 
56.7 (30.3-81.3) 

 
 

55.2 (36.4-72.2) 
 

66.6 (54.3-85.7) 
 

0.212¶ 

 
34.5 (6.3-66.7) 

 
 

27 (9.5-46.7) 
 

17.6 (0-40) 
 

0.182¶ 

 
9 (0-24.3) 

 
 

17.7 (0-34.5) 
 

11.1 (0-17.4) 
 

0.023¶ 

 
0.13 (0.05-0.21) 

 
 

0.12 (0.05-0.22) 
 

0.13 (0.06-0.30) 
 

0.871¶ 

 
2.8 (1.6-6.6) 

 
 

4.5 (1.6-15.7) 
 

4.3 (1-10) 
 

0.289§ 

 
1.3 (0.1-5.2) 

 
 

2.4 (0.4-9.7) 
 

0.9 (0.4-1.9) 
 

0.150¶ 

All patients 57.4 (30.3-85.7) 29.7 (0-66.7) 13.2 (0-34.5) 0.126 (0.03-0.30) 3.8 (0.5-16) 1.7 (0-11.7) 

¶one-way ANOVA; §Kruskall-Wallis test; †t-test; ‡Mann-Whitney test 
The following variables were logarithmically transformed prior to analysis using one-way ANOVA: dose to maintain TTR, mg/kg/day; mean number of dose changes 
per month 
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2.4.2 Treatment outcome variables      

Table 2-2 shows treatment outcome variables according to age, target INR 

range and indication for anticoagulation. A mean of 57.4% of INR 

measurements were within TTR, 29.7% were below and 13.2% were above it. 

INR measurements were more likely to be below TTR than above TTR (P < 

0.0001, t test). Mean warfarin maintenance dose requirement was 0.13 

mg/kg/day (range: 0.03-0.30 mg/kg/day). The mean number of INR tests per 

month was 3.8 (range: 0.5-16) and the mean number of warfarin dose changes 

per month was 1.7 (range: 0-11.7). 

 

2.4.2.1 The effect of age on treatment outcome variables. There was no 

difference in the % of INR measurements that were within TTR between the 

different age groups (Table 2-2). Children ≤ 1 year of age tended to be more 

likely to have an INR above TTR than below TTR than older children but the 

numbers were small. The mean warfarin maintenance dose requirement varied 

according to age and was highest in the youngest age groups, P < 0.001, one-

way ANOVA (Table 2-2). Figure 2-1 shows the effect of age on mean warfarin 

maintenance dose.  

 

Children ≤ 1 year of age had a higher number of INR tests per month (mean: 

7.6) than children 2-5 years of age (mean: 4.4) and older children/adolescents 

(6-12 years, mean: 2.6; 13-17 years, mean: 2.8), P = 0.009, Kruskall-Wallis test. 

Younger children also had a higher number of warfarin dose changes per 

month (≤1 year, mean: 2.4; 2-5 years, mean: 2.5) than older 

children/adolescents (6-12 years, mean: 0.6; 13-17 years, mean: 1.4), P = 0.03, 

Pearson correlation test. 
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Figure 2-1. The effect of age on mean warfarin dose in children anticoagulated 

with warfarin 

Markers indicate the mean values. Vertical lines above and below the markers 
represent the standard deviations.  
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2.4.2.2 The effect of target INR range on treatment outcome variables. 

Children with target INR range 2.0-3.0 had a higher proportion of INRs within 

TTR than children with target INR range 2.5-3.5 (59.1% vs. 51.7%, 

respectively). INR values were more likely to be below TTR than above TTR 

within both groups. There was a difference in age-adjusted warfarin dose 

requirement between children with target INR 2.0-3.0 and those with target INR 

2.5-3.5 (0.14mg/kg vs. 0.17mg/kg, P < 0.0001, one-way ANOVA). Children with 

target INR 2.5-3.5 had a greater number of INR tests per month (mean: 4.4 vs. 

3.5) and more warfarin dose changes per month (mean: 2.4 vs. 1.5) than 

children with target INR 2.0-3.0 (Table 2-2). 

 

2.4.2.3 The effect of indication for anticoagulation on treatment outcome 

variables. Children anticoagulated with warfarin for non-cardiac reasons (n=5: 

primary pulmonary hypertension, 4; thrombotic stroke, 1) had a greater 

proportion of INR values within TTR (mean: 66.6%) than children 

anticoagulated with warfarin for Fontan procedure (n=16, mean: 56.7%) or other 

cardiac reasons (n=17, mean: 55.2%). INR values were more likely to be below 

TTR than above TTR for all groups, particularly for those anticoagulated for 

Fontan procedure, P = 0.059, one-way ANOVA. Children who were 

anticoagulated for other cardiac reasons were more likely to have an INR that 

was above TTR (mean: 17.7%) than children who were anticoagulated for 

Fontan procedure (mean: 9%) or for non-cardiac reasons (mean: 11.1%), P = 

0.023, one-way ANOVA. There was no difference in mean warfarin 

maintenance dose requirement between children who were anticoagulated for 

Fontan procedure (0.13 mg/kg/day), other cardiac reasons (0.12 mg/kg/day) or 

non-cardiac reasons (0.13 mg/kg/day), even when adjusted for the effect of 

age. Children who were anticoagulated for Fontan procedure had fewer INR 

tests per month (mean: 2.8) than those with other cardiac indications (mean: 

4.5) or a non-cardiac indication (mean: 4.3) (Table 2-2).   

  

2.4.3 Episodes of over-anticoagulation 

INR > 4.0 occurred 99 times in 73.7% of children (Table 2-3), i.e. at a rate of 

0.88 episodes per patient year of warfarin therapy. Over-anticoagulation with 

INR > 4.0 was most frequent in children anticoagulated for stroke, truncus 

arteriosus repair or prosthetic mitral valve replacement and in children 
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anticoagulated with target INR range 2.5-3.5. INR > 4.0 occurred most 

frequently in younger children (≤ 5 years of age). The most frequent action 

taken was to reduce the dose of warfarin (51.5% of events). Vitamin K was 

administered in 2/99 events, warfarin was omitted in 37/99 events and 9 had no 

change made to their therapy. INR was tested the following day in the majority 

of cases (52/99; 52.5% of events) and INR was within TTR after 1-2 days in 

42.4% of cases, and within one week in 67.7% of cases. The most frequently 

reported reasons for over-anticoagulation were antibiotic therapy, illness 

(diarrhoea/vomiting or fever) and change in regular medication. There were no 

haemorrhagic events in relation to episodes of over-anticoagulation with INR > 

4.0. 
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Table 2-3. Episodes of over-anticoagulation (INR > 4.0) in children anticoagulated 

with warfarin 

 Number of 
events 
 

Number of 
events/Total number 
of measurements (%) 
 

Total number of over-anticoagulation 
episodes 
 

99 99/2685 (3.7%) 
 

Indication for anticoagulation 

- Prosthetic mitral valve replacement (n=7) 
- Fontan procedure (n=9) 
- Stroke (n=2) 
- Truncus arteriosus repair (n=1) 
- Cardiomyopathy (n=3) 
- Primary pulmonary hypertension (n=3) 
- Prosthetic aortic valve replacement (n=3) 

 
63 
9 
6 
6 
6 
4 
1 

 
63/1168 (5.4%) 
9/800 (1.1%) 
6/35 (17.1%) 
6/79 (7.6%) 
6/232 (2.6%) 
4/179 (2.2%) 
1/153 (0.7%) 

Age 

- ≤ 1 year 
- 2-5 years 
- 6-12 years 
- 13-17 years 

 
4 
39 
27 
29 

 
4/82 (4.9%) 

39/767 (5.1%) 
27/990 (2.7%) 
29/846 (3.4%) 

Target INR range 

- 2.0-3.0 (n=14) 
- 2.5-3.5 (n=7) 

 
35 
64 

 
35/1506 (2.3%) 
64/1179 (5.4%) 

Action taken 

- No change made 
- Dose of warfarin reduced 
- Warfarin omitted 
- Oral vitamin K given 

 
9 
51 
37 
2 

 

Time to next INR 

- 1 day 
- 2 days 
- 3-7 days 
- >7 days 

 
22 
20 
25 
32 

 

Time to next INR within TTR 
- 1 day 
- 2 days 
- 3-7 days 
- >7 days 
- Not available 

 
22 
20 
25 
23 
9 

 

Cause of high INR 

- Antibiotic therapy 
- Illness¶ 
- Change in regular medication 
- Took higher dose by mistake 
- Alcohol 
- Not available 

 
9 
4 
3 
1 
1 
81 

 

¶Diarrhoea and vomiting, 2; fever, 2 
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2.4.4 Episodes of under-anticoagulation 

INR was > 0.5 unit below target range 125 times in 71.1% of children (Table 2-

4), i.e. at a rate of 1.04 episodes per patient year of therapy. This accounted for 

4.7% of the total of 2685 INR measurements carried out during the intervening 

13 years. Under-anticoagulation occurred most frequently in children 

anticoagulated for primary pulmonary hypertension or a prosthetic mitral valve 

replacement and in children anticoagulated with target INR range 2.5-3.5. The 

frequency of under-anticoagulation events did not vary with age. The most 

frequent action taken was increasing the dose of warfarin (73/125; 58.4% of 

events). Low molecular weight heparin was administered in 9/125 events 

(prosthetic mitral valve replacement, 7; prosthetic aortic valve replacement, 1; 

stroke, 1). INR was tested within 7 days in 77.7% of cases and INR was within 

TTR in that time period in 50.9% of cases. The most frequently reported causes 

of under-anticoagulation were doses missed by mistake, rebound after dose 

omission/reduction for over-anticoagulation and doses missed for a planned 

procedure. There were no thrombotic events in relation to episodes of under-

anticoagulation with INR >0.5 unit below target range. 
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Table 2-4. Episodes of under-anticoagulation (INR >0.5 unit below lower limit of 

target INR range) in children anticoagulated with warfarin 

 Number of 
events 
 

Number of 
events/Total 
number of 
measurements (%) 
 

Total number of under-anticoagulation 
episodes 
 

125 
 

125/2685 (4.7%) 
 

Indication for anticoagulation 

- Prosthetic mitral valve replacement (n=8) 
- Fontan procedure (n=9) 
- Primary pulmonary hypertension (n=4) 
- Prosthetic aortic valve replacement (n=2) 
- Cardiomyopathy (n=1) 
- Stroke (n=1) 
- Coronary aneurysm (n=1) 
- Truncus arteriosus repair (n=1) 

 
70 
24 
15 
8 
3 
2 
2 
1 

 
70/1168 (6.0%) 
24/800 (3.0%) 
15/179 (8.4%) 
8/153 (5.2%) 
3/232 (1.3%) 
2/35 (5.7%) 
2/39 (5.1%) 
1/79 (1.3%) 

Age 
- ≤ 1 year 
- 2-5 years 
- 6-12 years 
- 13-17 years 

 
0 

33 
52 
40 

 
0/82 (0%) 

33/767 (4.3%) 
52/990 (5.3%) 
40/846 (4.7%) 

Target INR range 

- 2.0-3.0 (n=18) 
- 2.5-3.5 (n=9) 

 
49 
76 

 
49/1506 (3.3%) 
76/1179 (6.4%) 

Action taken 
- No change made 
- Dose of warfarin increased 
- Low molecular weight heparin given 

 
43 
73 
9 

 

Time to next INR 

- 1 day 
- 2 days 
- 3-7 days 
- >7 days 
- Not available 

 
39 
15 
40 
27 
4 

 

Time to next INR within TTR 

- 1 day 
- 2 days 
- 3-7 days 
- >7 days 
- Not available 

 
6 

10 
42 
56 
11 

 

Cause of low INR 
- Missed dose by mistake 
- Rebound after high INR 
- Warfarin omitted for planned procedure 
- Change in regular medication 
- Antibiotic therapy 
- Illness¶ 
- Not available 

 
13 
10 
8 
6 
2 
1 

85 

 

¶Nature of illness not stated 
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2.4.5 Adverse events        

2.4.5.1 Haemorrhagic events. There were no major haemorrhagic events. 

There were 7 reported minor haemorrhagic events in 6 children: epistaxis, 4; 

menorrhagia, 1; calf haematoma, 1; haematemesis, 1 (Table 2-5). INR value at 

the time of haemorrhage was within TTR in 4 cases, below TTR in 2 cases, and 

above TTR in 1 case. No action was taken in 4 cases, warfarin was omitted in 

1, warfarin dose was reduced in 1 and the child with menorrhagia was referred 

to a family planning clinic and commenced on a progesterone-only 

contraceptive pill. There was no difference between children who had a 

haemorrhagic event and those who did not in terms of the percentage of INR 

measurements that were within, above or below TTR. Haemorrhagic events 

occurred at a rate of 0.060%, 0.062% and 0.068% per patient year for INRs 

below, within and above TTR, respectively. There were no episodes of 

haemorrhage that required admission to hospital and there were no episodes of 

intracranial haemorrhage. 

 

2.4.5.2 Thrombotic events. There was one reported possible thrombotic event. 

This occurred in a 15-year-old child who was anticoagulated with a target INR 

range of 2.5-3.5 for a prosthetic mitral valve replacement. INR was within range 

(3.5) at the time of presentation with a suspected transient ischaemic attack 

(TIA). Computed tomography (CT) scan of the head showed evidence of 

multiple previous ischaemic strokes but the timing of these events could not be 

determined. No further action was taken. 
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Table 2-5. Haemorrhagic events reported in children anticoagulated with warfarin 

Indication for 

anticoagulation 

Target 

INR 

range 

Number of 

haemorrhagic 

events 

Nature of 

haemorrhagic 

event(s) 

Age at 

time of 

event 

(years) 

INR at 

time of 

event 

Action 

Primary pulmonary 

hypertension 

2.0-3.0 1 Epistaxis 7 2.8 None 

Fontan circulation 2.0-3.0 1 Epistaxis 5 1.8 None 

Prosthetic aortic valve 

replacement 

2.0-3.0 1 Epistaxis 13 3.2 Dose omitted 

Prosthetic mitral valve 

replacement 

2.5-3.5 2 Epistaxis 

Calf haematoma 

10 

15 

3.2 

3.2 

Dose reduced 

None 

Fontan circulation 2.0-3.0 1 Haematemesis 15 1.8 None 

Cardiomyopathy 2.0-3.0 1 Menorrhagia 13 2.1 Referred to family 

planning clinic- 

medical therapy 
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2.4.6 Comparison of two methods to assess quality of anticoagulation 

control 

The results of the comparison between two methods of assessing quality of 

anticoagulation control are shown in Table 2-6 and Figure 2-2. P values 

correspond to the differences between %ITTR and %TIR for the entire cohort 

and for each of the subgroups. For the entire cohort mean %TIR was higher 

than the mean %ITTR (63.8% vs. 57.4%; P = 0.002). %TIR was higher than 

%ITTR for each of the two target INR ranges, indication and age cohorts. There 

were larger differences between %TIR and %ITTR in children with target INR 

2.5-3.5 and in those who were anticoagulated for cardiac reasons other than 

Fontan procedure, the majority of whom had artificial heart valves. These 

groups of children also had a greater frequency of INR tests and warfarin dose 

changes per month (Table 2-2) but there was no correlation between the 

degree of difference between %ITTR and %TIR and the frequency of testing (r 

= -0.1, P > 0.5, Pearson correlation coefficient). A difference between %ITTR 

and %TIR was seen in the older age groups (≥6 years) but not in the younger 

age groups (<6 years) which may have been due to the smaller numbers of 

patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 36 

Table 2-6. Comparison of percentage of INR measurements within therapeutic range (%ITTR) with percentage time within therapeutic INR 

range (%TIR) in children anticoagulated with warfarin 

 

TIR, Time in therapeutic Range; TTR, target therapeutic range 
¶Paired t-test; §t-test on percentage TIR minus percentage of INR values within TTR; †One-way ANOVA on percentage TIR minus percentage of INR 
values within TTR

 No. of 

patients 

Duration of monitoring, median 

number of months (range) 

Percentage of INR values within TTR 

(%ITTR), mean (range) 

Percentage time in range 

(%TIR), mean (range) 

P value 

Target range 

    2.0-3.0 

    2.5-3.5 

 

29 

9 

 

22 (3.5-90) 

43 (2-115) 

 

59.1 (30.3-81.3) 

51.7 (37.5-63.6) 

 

63.7 (12-95.3) 

64.4 (43.8-94.6) 

 

0.041¶ 

0.022¶ 

Indication 

    Fontan circulation 

    Other cardiac 

    Non-cardiac 

 

16 

17 

5 

 

24.5 (5-90) 

30 (2-115) 

24 (3.5-74) 

 

56.7 (30.3-81.3) 

55.2 (36.4-72.2) 

66.6 (54.3-85.7) 

 

58.3 (12-87.2) 

66.7 (43.8-94.6) 

70.8 (38.3-95.3) 

 

0.512¶ 

0.001¶ 

0.584¶ 

Age 

    ≤1 year 

    2-5 years 

    6-12 years 

   13-17 years 

 

2 

23 

71 

47 

 

6.3 (9, 3.5) 

8.3 (0.5-12) 

 8 (0.3-12) 

10 (1-12) 

 

63.4 (43.5,83.3) 

60.6 (33.3-100) 

61.1 (28.6-100) 

56.2 (0-100) 

 

79.5 (68.6, 90.3) 

63.8 (12-100) 

67.0 (25.2-100) 

65.7 (19.6-100) 

 

0.327¶ 

0.076¶ 

< 0.001¶ 

< 0.001¶ 

All patients 38 29 (2-115) 57.4 (30.3-85.7) 63.8 (12-100) 0.002¶ 
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Figure 2-2. Comparison of percentage of INR measurements within therapeutic 

range (%ITTR) with percentage time within therapeutic INR range (%TIR) 

according to: A, Target range; B, Indication; C, Age. 

Markers indicate the mean values. Horizontal lines to either side of the markers 
represent the standard deviations.  

 

 

 



 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

2.5 Discussion 

There are a number of factors that contribute to the poor control of oral 

anticoagulant therapy in children (see Section 1.2.2.1 ‘Difficulties in 

anticoagulation control in children’ and Table 1-2). 

 

The largest published study of anticoagulated children included 319 children, 

aged between 1 month and 18 years, followed in a Canadian centre (Streif et 

al., 1999). Twenty-eight of these children were tested using a POC device at 

home, the remainder were monitored by attending hospital or outpatient 

laboratories. The majority of children had underlying cardiac disease. The 

percentage of INR measurements within target range varied according to age: 

1 year, 37%; 1-5 years, 45%; 6-12 years, 54%; and, 13-18 years, 53%. INR 

measurements on average were below target range 32-46% of the time and 

above target range 13-16% of the time. However, subgroup analysis of the 

children using a POC device at home showed that 68% of measured INR 

values were within target range, supporting improved anticoagulant control 

using this method of monitoring (Streif et al., 1999). 

 

More recent studies in anticoagulated children show that target INR is achieved 

in 40-75% of measurements (Newall et al., 2004, Bradbury et al., 2008, Newall 

et al., 2006, Bhat et al., 2010) and that consistently a greater proportion of INR 

values are below TTR than above TTR (Newall et al., 2004). The overall 

improvement in control of anticoagulant therapy in children seems to relate to 

an increasing use of POC testing devices, e.g. CoaguChek®S, which allows 

testing to occur at a higher frequency during unstable phases of anticoagulant 

therapy such as might be due to intercurrent illness, antibiotic therapy or a 

change in regular medication. Further benefits to the patient/parent include 

reduced trauma of venepuncture, minimal loss of school and workdays, and 

portability of the device. Comparative studies have shown that there is a good 

correlation between the INR obtained from using a whole blood testing point-of-

care device and that obtained from analysis of citrated blood samples in the 

laboratory (Marzinotto et al., 2000, Greenway et al., 2009). Recent studies 

describing the combined use of point-of-care testing and educational programs 

about warfarin therapy in small cohorts of children and their caregivers show 

improvements in time in therapeutic range (up to 81.7%) in addition to improved 
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knowledge about factors affecting warfarin therapy (Newall et al., 2006, 

Bauman et al., 2009). This is particularly the case for a child-focused 

educational programme (Bauman et al., 2009). 

 

Our study, which captured data relating to 112 patient years of anticoagulant 

therapy in children whose anticoagulation was monitored using a point-of-care 

device, showed that overall only 57.4% of INR values were within TTR, with a 

greater proportion being below TTR (29.7%) than above it (13.2%). This is likely 

to reflect a tendency of the physician to have greater concerns about 

haemorrhagic than thrombotic complications, particularly in children 

anticoagulated for Fontan procedure who are perceived to be at a relatively low 

risk of thromboembolism and in whom haemorrhagic complications may be 

considered less acceptable (Kaulitz et al., 2005). In contrast to the Streif et al 

study (Streif et al., 1999), which demonstrated that younger children had poorer 

control than older ones, we found no difference in %TTR in the younger 

children when compared to the older children and adolescents, which may be 

due to the greater frequency of testing and dose changes carried out in the 

younger children leading to improved anticoagulant control. The children with 

INR target 2.5-3.5 tended to have a lower %TTR than those with INR target 2.0-

3.0 despite having a greater number of INR tests and more warfarin dose 

changes per month. This may be attributed to excessive tinkering with warfarin 

dose when target INR is close to target INR range. It would therefore be prudent 

to reserve dose changes only in patients whose INR deviates by 0.3-0.5 units 

outside the therapeutic range. 

 

Children with a higher target INR range, usually those with artificial heart valves, 

are likely to be monitored more closely due to a perceived higher risk of 

thromboembolism. The finding that children anticoagulated for cardiac reasons, 

other than Fontan circulation, were more likely to have an INR value that was 

above target range is again likely to relate to the perceived risk of 

thromboembolism and the tendency that sub-therapeutic INR is avoided in 

children with artificial heart valves, who accounted for 12 of the 17 children in 

this group. There were no differences in the warfarin maintenance dose 

between children with Fontan circulation and those anticoagulated for other 

reasons, even when allowing for the effect of age. This is in contrast to the 
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Streif et al study which showed that children with a Fontan circulation had a 

lower warfarin dose requirement than that in children with other indications 

(Streif et al., 1999). 

 

It should be noted that treatment outcome variables were compared between 

the different subgroups using statistical tests and P values (Table 2-2). The 

magnitude of the differences between the groups may have been better 

represented by stating confidence intervals.  

 

Over-anticoagulation, with an INR > 4.0, occurred at a rate of 0.88 episodes per 

patient year of warfarin therapy. Over-anticoagulation occurred more frequently 

in younger children, particularly those with stroke, truncus arteriosus repair or a 

prosthetic mitral valve replacement, and those with a higher target INR range 

(2.5-3.5). The risk of bleeding, including intracranial bleeding is significantly 

increased at INR > 4.0 in anticoagulated adults (Hylek EM, 1994). The routine 

approach of omitting one or more doses of warfarin or reducing the warfarin 

dose appears to be a safe and effective way of restoring INR to within the target 

range: there were no recorded haemorrhagic events as a result of over-

anticoagulation and INR was returned to target range within 7 days for the 

majority of the children. Oral vitamin K was only administered on 3 occasions to 

reverse high INR. A recent report also showed that management of high INR (≥ 

5.0) in non-haemorrhagic children by omission of warfarin, without the 

administration of vitamin K, was safe and resulted in INR returning to within 

TTR in 49% after 1 day (Black et al., 2009). 

 

Under-anticoagulation, with an INR < 0.5 below the target INR range, occurred 

at a rate of 1.04 episodes per patient year of warfarin therapy. This occurred 

most frequently in children with a prosthetic mitral valve replacement and those 

anticoagulated with a higher target INR range (2.5-3.5). The routine approach of 

increasing warfarin dose did not lead to the occurrence of thromboembolic 

events in our cohort although it took ≥ 3 days for the INR to return to TTR in the 

majority of children. Low molecular weight heparin was administered to under-

anticoagulated children with either a prosthetic heart valve or prior history of 

stroke. 
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Serious bleeding has been reported to occur at a frequency ranging from 

0.005%- 12.2% per patient year in children receiving warfarin (Massicotte et al., 

2003, Newall et al., 2005). There were no major haemorrhagic events seen in 

our study that reported on 112 patient years of anticoagulant therapy. A 

gastrointestinal haemorrhage would normally be considered as a major 

haemorrhagic event. However, the child had only a single episode of 

haematemesis at home with no evidence of cardiovascular compromise or 

reduction in haemoglobin level and it was suspected that the reporting of the 

haematemesis was inaccurate. Minor bleeding occurred at a frequency of 

0.063% per patient year but no events were significant enough to require 

reversal of the anticoagulant effect of warfarin: the bleeding had either stopped 

by the time of presentation or the INR was not significantly elevated (See 

Section 1.1.4 ‘Adverse effects and reversal’). 

 

Thromboembolic events in children on warfarin have been reported to occur at 

a rate of 1.3% per patient year, around half of which are during an episode of 

under-anticoagulation (Massicotte et al., 2003, Newall et al., 2005). A possible 

TIA was the only report of a thrombotic event in our study and this occurred at a 

time when the INR was therapeutic. We can only speculate that the high 

frequency of under-anticoagulation in children on warfarin may relate to 

suboptimal dosing due to the responsible physician’s concern about the risk of 

serious bleeding but this practice does place these children at potential risk of 

thrombotic events. 

 

This study highlights the existent discrepancy between two methods currently 

used for assessing chronic anticoagulation control in children, the apparent 

quality of anticoagulation control being significantly better when measured using 

a linear interpolation method (Rosendaal et al., 1993) than the standard 

approach of %ITTR. The %TIR method allocates an INR value to each day, 

including days between INR tests, and is therefore likely to minimise the 

disproportionate effect of temporary frequent INR testing on the assessment of 

long-term anticoagulant control. It is likely that %ITTR is a poor measure of 

control unless INR measurements are taken at regular, predetermined intervals, 

which is generally not the case for anticoagulated children monitored using a 

POC testing device. Use of a linear interpolation method reduces the impact of 
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multiple INR values over a short period of time which are ‘out of range’ and 

places more emphasis on the longer periods of stability during which the INR is 

tested less frequently (Schmitt et al., 2003).  

 

Measurement of %TIR, and therefore the actual number of days during which 

TTR is achieved, may correlate better with adverse clinical events as it would 

be expected to provide a more accurate indication of the proportion of time that 

a patient has supra-therapeutic or sub-therapeutic INR and is therefore at risk of 

haemorrhagic or thromboembolic events. Due to the very low frequency of 

adverse events in this cohort of children we were unable to evaluate this 

although a previous study published by Barbui et al found no difference in 

quality of anticoagulant control as measured by %ITTR or %TIR in a cohort of 

adult patients who had experienced adverse events (Barbui et al., 1995). 

 

Linear interpolation methodology has some limitations. It can be biased by 

individual INR values that are far outside of TTR and it assumes that the 

change in INR over time is linear between each time-point which may not be 

true. Small departures from target range are considered identical to large 

departures which may not be correct as a larger deviation from target range is 

more likely to result in an adverse clinical event. In addition, a more complex 

calculation is required to determine %TIR whereas the %ITTR is a simple 

measure of the proportion of the total number of INR values that are within TTR 

(Samsa and Matchar, 2000). 

 

The cross-section-of-the-files method (Leolinger, 1985) could not be evaluated 

in this cohort as anticoagulant therapy was recorded over a prolonged period of 

time,13 years, during which there were no time-points when all of the children 

were anticoagulated. The use of this method has not yet been evaluated in a 

paediatric population. 

 

In conclusion, maintenance of anticoagulant control within TTR remains poor in 

children despite the availability of home monitoring with a point-of-care device 

and support for warfarin dosing. INR values in children are more likely to be 

below TTR than above TTR. Age has a major influence on warfarin dose 

requirement. Despite the frequent occurrence of over- and under-
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anticoagulation (in around 5% of INR measurements), haemorrhage related to 

warfarin occurred infrequently and there were no confirmed thrombotic events. 

It may be safe to manage over-anticoagulation by omission of warfarin doses. 

The %ITTR method may underestimate the quality of anticoagulant control in 

children and the %TIR method may be more appropriate for this patient group. 

Methods of assessing anticoagulant control in children should be compared in 

larger numbers of children and should be correlated with adverse clinical 

outcomes in terms of haemorrhagic and thromboembolic events. Further 

prospective studies of larger numbers of anticoagulated children are needed in 

order to confirm these findings. 
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Chapter 3. Inter-individual variability in response to warfarin in 

children: Analysis of pharmacogenetic factors 

 

3.1 Introduction 

Whilst significant advances have been made in identifying pharmacogenetic 

factors that contribute to the inter-individual variability in warfarin dose 

requirement in the adult population, little work has been done in paediatrics. 

The findings in adults cannot be extrapolated to children because: 

1. There are stark physiological and developmental differences between 

adults and children; 

2. There is little or no information available about the activity of the 

enzymes that mediate the pharmacological activity of warfarin in children 

and how they compare to adults, and; 

3. It is not known whether the activity of each of the enzymes changes, and 

if so the extent of this change, with increasing age among the paediatric 

population. 

 

3.2 Aims          

This cross-sectional design, multi-centre study in children with stable 

anticoagulation with warfarin aimed to: 

1. Investigate the way in which warfarin dose requirement in children is 

influenced by polymorphisms in key genes mediating sensitivity to and 

metabolism of warfarin; 

2. Use knowledge of the contribution of these genetic factors to warfarin 

dose requirement, in addition to demographic factors, to develop a 

personalised warfarin-dosing algorithm for prediction of maintenance 

dose in children; 

3. Validate the warfarin-dosing algorithm in predicting maintenance dose in 

a distinct cohort of children established on warfarin therapy. 
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3.3 Methods  

3.3.1 Study set-up 

Children were recruited from 4 UK sites (Birmingham Children’s Hospital; Royal 

Manchester Children’s Hospital; The Newcastle Hospitals NHS Trust; Royal 

Hospital for Sick Children, Glasgow) and The Hospital for Sick Children, 

Toronto, Canada. The study was approved by the Regional Ethics Committee, 

the Medicines and Healthcare products Regulatory Agency and the Institutional 

review boards at each of the study sites.  

 

3.3.2 Study protocol 

3.3.2.1 Inclusion and exclusion criteria. The study recruited children, aged 18 

years or under, who were anticoagulated for at least 3 months after warfarin 

initiation and whose target INR range was either 2.0-3.0 or 2.5-3.5. Stability 

criterion for inclusion was that no change in warfarin dose had been made for at 

least the previous 3 consecutive INR measurements over a minimum period of 

4 weeks. An additional cohort of children and young adults who had received 

warfarin when aged 18 years or under, and for whom historical data regarding 

warfarin dose requirement and INR were available, were recruited from one of 

the participating UK centres. 

 

Children affected by intercurrent illness or temporarily taking a medication 

known to affect sensitivity to warfarin, e.g. an antibiotic, were temporarily 

excluded. These children were eligible for recruitment at a later date following 

recovery from the illness and completion of antibiotic therapy. Children on 

chronic therapy with medication(s) known to alter response to warfarin were 

eligible for recruitment but details of their concurrent medication(s) were 

recorded. 

   

3.3.2.2 Data collection and blood sampling. Written informed consent to take 

part in the study was obtained from patients aged 16 years or over and from 

parents/carers of children aged <16 years. Details of diet, indication for 

anticoagulation with warfarin, target INR range, current warfarin dose and other 

medication(s) were obtained by questionnaire and review of patients’ medical 

records (see ‘Data collection proforma’, Appendices A and B). Height, weight 

and gender were recorded. Ethnicity was reported by the patient or their 
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parent/carer, according to categories defined by the investigators. For the 

cohort of children and young adults who had previously been treated with 

warfarin during childhood, the above details were collected by review of 

patients’ medical records and warfarin-dosing records at a time-point when the 

child had been stable on warfarin according to the aforementioned criterion. 

Initiation data, i.e. warfarin doses and INR values during the first 3 months of 

warfarin therapy, were collected for children for whom they were available. Body 

surface area was calculated using the Mosteller formula (Mosteller, 1987): Body 

surface area (m2) = ([Height (cm) x Weight (kg)]/3600). Body mass index was 

calculated using the formula: Body mass index = Weight (kg)/ Height (m)2. A 

venous blood sample (4-8mL) was collected from each patient and stored in 

ethylenediaminetetraacetic acid (EDTA) tubes at -800C for later genetic 

analysis. 

 

3.3.3 Genetic analysis 

3.3.3.1 DNA extraction from whole blood. Genomic DNA was extracted from 

whole blood samples according to an established method (Daly et al., 1996). 

350µl blood was added to 1150µl cell lysis buffer (10mM Tris-HCL, 320mM 

Sucrose, 5mM MgCl2, 1% Triton X, pH8), mixed gently, and then centrifuged for 

20s at 14,000rpm. The supernatant was discarded and the remaining pellet re-

suspended in 200µl nuclear lysis buffer (400mM Tris-HCL, 60mM EDTA, 

150mM MgCl2, 1% Sodium Lauryl Sulphate, pH8). For de-proteinisation, 50µl 

sodium perchlorate was added and the resulting suspension was rotary mixed 

for 10 minutes and then incubated at 600C for 15 minutes. 400µl chloroform 

was added and the solution mixed by inverting by hand and then centrifuged for 

1 minute at 14,000rpm. The top layer, containing the DNA, was transferred to a 

fresh tube and twice the volume of ethanol was added. The solution was 

inverted by hand until the DNA was visible as a white precipitate. Following 

centrifugation for 2 minutes at 14,000rpm, the remaining liquid was discarded 

and the tube inverted and placed onto tissue paper to drain. The DNA was 

allowed to dry by incubating the open tube at 600C for 10 minutes, and then re-

suspended in 50µl sterile water. The DNA samples were stored at 40C until 

analysis. 
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3.3.3.2 Genotyping using StepOneTM Real-Time Polymerase Chain 

Reaction System. Genotyping for VKORC1 (-1639G>A; rs9923231), 

CYP2C9*2 allele (R144C; rs1799853) and CYP2C9*3 allele (I359L; 

rs1057910), CYP4F2 (V433M; rs2108622), APOE (R158C; rs7412, and C112R; 

rs429358) and CYP1A2 (C163A; rs762551) was performed using the 

StepOneTM Real-Time polymerase chain reaction (PCR) System with Taqman® 

SNP Genotyping Assays, Applied BiosystemsTM. This system enables allelic 

discrimination at a SNP site by using two primer/probe pairs in each reaction. 

The two primers are able to genotype the two possible variants at the SNP site 

and the two fluorescent dye detectors target the SNP site, one that is a perfect 

match to allele 1 and the other that is a perfect match to allele 2. Detection of 

both fluorescence signals indicates individuals who are heterozygous at the 

SNP site. Examples of the allelic discrimination plots and their interpretation are 

shown in Figures 3-1 to 3-7.  

 

The VKORC1, CYP2C9 and APOE genotype results were validated using 

control samples that had been genotyped as part of a previous study (Sconce 

et al., 2005b, Sconce et al., 2006). CYP4F2 genotypes were validated by re-

genotyping 26 samples in duplicate by PCR-RFLP analysis as described below 

(Section 3.3.3.4 ‘Genotyping using Polymerase Chain Reaction- Restriction 

Fragment Length Polymorphism’). The CYP1A2 genotypes were run with in-

house control samples that had been previously genotyped using a PCR-

restriction fragment length polymorphism (RFLP) method that was itself 

validated by DNA sequencing.  
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Figure 3-1. Allelic discrimination plot for VKORC1 (-1639G>A; rs9923231) 

genotype using StepOneTM Real-Time Polymerase Chain Reaction system 

 

Figure 3-2. Allelic discrimination plot for CYP2C9*2 (R144C; rs1799853) genotype 

using StepOneTM Real-Time Polymerase Chain Reaction system 
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Figure 3-3. Allelic discrimination plot for CYP2C9*3 (I359L; rs1057910) genotype 

using StepOneTM Real-Time Polymerase Chain Reaction system 

 

Figure 3-4. Allelic discrimination plot for CYP4F2 (V433M; rs2108622) genotype 

using StepOneTM Real-Time Polymerase Chain Reaction system 

 



 51 

Figure 3-5. Allelic discrimination plot for APOE (R158C; rs7412) genotype using 

StepOneTM Real-Time Polymerase Chain Reaction system 

 

Figure 3-6. Allelic discrimination plot for APOE (C112R; rs429358) genotype 

using StepOneTM Real-Time Polymerase Chain Reaction system 
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Figure 3-7. Allelic discrimination plot for CYP1A2 (C163A; rs762551) genotype 

using StepOneTM Real-Time Polymerase Chain Reaction system 
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3.3.3.3 Multiplex genotyping using Sequenom® iPLEXTM GOLD assay. 

Multiplex genotyping was performed at the Bioscience Building, International 

Centre for Life, Newcastle upon Tyne. SNP Genotyping PCR and extension 

primers were designed by the Sequenom® software for five 26-plex, one 24-

plex, one 19-plex and one single-plex assays with the aim of determining 

genotype for 174 SNPs in 29 genes as described by Jorgensen et al 

(Jorgensen et al., 2009). SNP typing was performed using the MassARRAY® 

platform (Sequenom, Hamburg, Germany). PCR, primer extension and sample 

clean-up were performed according to a local standard operating procedure. An 

Autoflex Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-

TOF) mass spectrometer (Bruker Daltonics) was used to identify the genotypes 

as described by Whittaker et al (Whittaker et al., 2005). Due to technical 

problems this method was not successful in identifying genotype in our cohort 

for the majority of SNPs. Only the genotyping for CYP3A5*3 allele (A6986G; 

rs776746) is reported and this was performed in duplicate for verification. 

 

3.3.3.4 Genotyping using Polymerase Chain Reaction- Restriction 

Fragment Length Polymorphism. CYP4F2 genotypes were determined using 

the PCR-RFLP method described by Cen et al (Cen et al., 2010). PCR was 

performed using the following final concentrations: 0.5 units Taq DNA 

polymerase (New England BioLabs); 0.1mM deoxynucleotide triphosphate 

(dNTP) (New England BioLabs); 0.25µM forward and reverse primers (Sigma); 

1.5mM MgCl2; 1x Taq DNA polymerase reaction supplied buffer (New England 

BioLabs). 20µl of reaction mixture was aliquoted into 0.2ml eppendorf tubes and 

1µl of genomic DNA (concentration in excess of 50ng/µl) was added. PCR 

conditions consisted of the first step being held at 940C for 5 minutes, followed 

by 35 cycles at 940C for 30 seconds to denature the DNA, 600C for 30 seconds 

to anneal the primers, and 720C for 1 minute to extend the PCR fragment. A 

further 7 minutes at 720C allowed final extension. PCR was performed using an 

Applied Biosystems 2720 Thermal Cycler. Successful amplification was 

confirmed by agarose gel electrophoresis (detailed below). The PCR product 

was digested by the addition of 2units of PvuII (New England BioLabs) to 20µl 

product followed by incubation in PCR buffer at 370C for 3 hours. 
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Visualisation of the PCR-RFLP product was performed using agarose gel 

electrophoresis. 2% agarose gels were prepared containing ethidium bromide 

(0.4µg/ml) for visualisation and 1x TBE (Tris-base, boric acid, EDTA; pH8) as a 

running buffer. 3µl of loading buffer was added to 10µl of PCR product or 

digested PCR product. A 100bp DNA ladder (0.1-1.5kb) (New England BioLabs) 

was run on the gel as a molecular marker. Electrophoresis was for 

approximately 45 minutes at 75V (Figure 3-8). Fluorescence imaging was done 

using the GENi gel documentation system (Syngene). 
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Figure 3-8. PCR-RFLP analysis for CPY4F2 (V433M; rs2108622) using the 

restriction enzyme PVUII and 2% agarose gel electrophoresis to visualise 

Lanes 1, 3, 4 and 7 contain samples homozygous for the wild-type allele (CC). Lanes 
5, 6 and 9 contain heterozygous samples. Lanes 2 and 8 contain samples homozygous 
for the mutant allele (TT). Lane 10 contains a negative control sample and lane 11 
contains a 100bp DNA ladder. The arrow indicates the (denser) band that represents 
500bp size. 
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3.3.4 Statistical analysis 

3.3.4.1 Sample size. Due to the absence of data on the impact of genetic 

polymorphisms on warfarin dose in the paediatric population, a power 

calculation was based on comparable adult data. To detect a difference of 

approximately 1mg in mean warfarin daily dose between the CYP2C9 

polymorphisms, with significance at the 0.05 level and a power of 80%, it was 

estimated that a sample size of 120 patients would be required. As the 

frequency of each of the VKORC1 genotypes is greater than that of the 

CYP2C9 mutant alleles and the effect of VKORC1 on warfarin dose 

requirement in the adult population is larger than that of CYP2C9, a sample size 

of 120 was deemed adequate for detecting the effect of VKORC1 genotype and 

other significant variables.  

 

3.3.4.2 Data analysis. Advice from a statistician was taken prior to data 

analysis. Statistical analyses were performed using MiniTab v15.0 (Coventry, 

UK). Mean warfarin daily dose was transformed by taking the square root of 

each value to obtain a normal distribution, allowing parametric tests to be 

performed. Associations between warfarin dose and height, weight, body 

surface area, body mass index and age were evaluated using Pearson 

correlation test. The effect of genotype, indication for warfarin, target INR range 

and ethnicity were evaluated using unpaired t-test or ANOVA. Stepwise 

regression analysis was used to identify factors contributing to the transformed 

warfarin dose followed by linear regression to model the relationships of dose 

with other variables measured. Pearson’s correlation analysis was used to 

compare daily warfarin maintenance doses predicted by the IWPC warfarin-

dosing algorithm to the actual daily warfarin doses. Pearson’s correlation 

analysis was used to compare the predicted daily warfarin maintenance doses 

to the actual daily doses of the validation cohort (see Section 3.3.5 ‘Recruitment 

of validation cohort’). Associations between VKORC1 and CYP2C9 genotypes 

and outcome variables during the initiation phase of warfarin therapy were 

evaluated. The association between the square root of peak INR during the first 

week of therapy and genotype was examined using linear regression analysis 

for VKORC1 genotype and t-test for CYP2C9 genotype. The association 

between the incidence of supra-therapeutic INR during warfarin initiation and 

VKORC1 genotype was evaluated using regression analysis and CYP2C9 
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genotype using a Mann-Whitney U-test. Results are presented as mean ± SD 

unless stated otherwise. A P value of < 0.05 was taken as statistically 

significant.  

 

3.3.5 Recruitment of validation cohort 

For the purposes of a paediatric kinetic pharmacodynamic modelling study, 

children were recruited from four tertiary care centres in Sweden: Queen Silvia 

Children’s Hospital, Gothenburg; Skane University Hospital, Lund; Uppsala 

University Children’s Hospital, Uppsala; and Astrid Lindgren Children’s Hospital, 

Stockholm. The study was approved by The Regional Ethical Review Board, 

Uppsala University, Uppsala, Sweden. The study recruited children, aged 18 

years or under, who were currently receiving warfarin, and children who had 

previously received warfarin at the age of 0-18 years provided that historical 

data regarding warfarin dose requirement and INR were available. Written 

consent was obtained from patients aged 18 years or over and from 

parents/guardians of children <18 years. All children provided written or verbal 

assent. Details of warfarin doses and INR measurements were collected. 

Patient age, height, weight and warfarin dose were recorded at a time-point 

when the child was stable on warfarin according to the stability criteria of our 

previous study (i.e. there had been no change in warfarin dose for at least the 

previous 3 consecutive INR measurements over a minimum period of 4 

weeks.). Indication for warfarin anticoagulation was recorded. 3mls of venous 

blood or 0.5mls of capillary blood were taken into ethylenediaminetetraacetic 

acid (EDTA) and stored at -200C until analysis. Analysis was performed at the 

Department of Medical Sciences, Clinical Pharmacology, Uppsala University, 

Sweden. DNA was extracted using the Qiagen blood mini kit. Genotyping was 

performed using the 7500 Fast Real-Time PCR System with Taqman® SNP 

Genotyping Assays, Applied BiosystemsTM and verified using internal control 

samples. 

 

 

 

 

 

 



 58 

3.4 Results  

3.4.1 Patient characteristics 

Recruitment occurred between April 2009 and December 2010. 120 children 

with a median age of 11.4 years (range: 1-18 years), a median height of 

143.5cm (range: 79.0- 195.5cm) and a median duration of warfarin therapy of 

49 months (range: 3-199 months) were recruited, including 8 subjects who were 

recruited retrospectively using historical data. The patients’ demographics, 

indication for anticoagulation and target INR range are shown in Table 3-1. 

Median warfarin daily dose was 3.4 mg (range: 0.5-12.5mg). 

 

3.4.2 Genotyping 

Genotype frequencies for VKORC1 (-1639G>A; rs9923231), CYP2C9*2 allele 

(R144C; rs1799853) and CYP2C9*3 allele (I359L; rs1057910), CYP4F2 

(V433M; rs2108622), APOE (C158T; rs7412, and T112C; rs429358), CYP3A5 

(A6986G; rs776746) and CYP1A2 (C163A; rs762551) for the study population 

are shown in Table 3-2. All genotypes were in Hardy-Weinberg equilibrium. 
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Table 3-1. Patient Characteristics 

 Number of children (%) 

Gender 

- Male 

- Female 

 

82 (68.3) 

38 (31.7) 

Age group 

- 0-3 years 

- 4-6 years 

- 7-9 years 

- 10-12 years 

- 13-15 years 

- 16-18 years 

 

7 (5.8) 

20 (16.7) 

20 (16.7) 

21 (17.5) 

29 (24.2) 

23 (19.2) 

Ethnic origin 

- White Caucasian 

- Indian/Pakistani 

- Chinese 

- Black Caribbean 

- Black African 

- South-East Asian/Filipino 

- Other¶ 

 

91 (75.8) 

10 (8.3) 

4 (3.3) 

3 (2.5) 

3 (2.5) 

2 (1.7) 

7 (5.8) 

Indication for anticoagulation with warfarin 

- Fontan procedure 

- Prosthetic heart valve 

- Coronary aneurysm 

- Dilated cardiomyopathy 

- Deep vein thrombosis/Pulmonary embolism 

- Pulmonary hypertension 

- Stroke 

- Other§ 

 

64 (53.3) 

18 (15.0) 

11 (9.2) 

6 (5.0) 

6 (5.0) 

5 (4.2) 

2 (1.7) 

8 (6.7) 

Target INR range 

- 2.0-3.0 

- 2.5-3.5 

 

101 (84.2) 

19 (15.8) 

Total number of children 120 (100) 

¶Mixed race, 5; Canadian Aboriginal, 1; Middle Eastern, 1 
§1 patient each with arrhythmia, Bi-directional Glenn procedure, cerebral sinovenous 
thrombosis, left coronary artery to right ventricular fistula, recurrent transient ischaemic attack, 
transposition of the great arteries, truncal valve replacement, ventricular assist device 
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Table 3-2. Genetic Characteristics of Study Population 

 Number of children (%) 

VKORC1 Genotype 

- GG 

- GA 

- AA 

 

43 (35.8) 

55 (45.8) 

22 (18.3) 

CYP2C9 Genotype 

- *1/*1 

- *1/*2 

- *1/*3 

- *2/*2 

- *2/*3 

- *3/*3 

 

84 (70.0) 

17 (14.2) 

17 (14.2) 

1 (0.8) 

1 (0.8) 

0 (0.0) 

CYP4F2 Genotype 

- CC 

- CT 

- TT 

 

61 (50.8) 

49 (40.8) 

10 (8.3) 

APOE Genotype 

- ε2ε2 

- ε2ε3 

- ε3ε3 

- ε3ε4 

- ε4ε4 

- ε2ε4 

 

0 (0.0) 

15 (12.5) 

79 (65.8) 

22 (18.3) 

1 (0.8) 

3 (2.5) 

CYP3A5 Genotype 

- GG 

- GA 

- AA 

- Not available 

 

107 (89.2) 

3 (2.5) 

1 (0.8) 

9 (7.5) 

CYP1A2 Genotype 

- AA 

- AC 

- CC 

 

46 (38.3) 

62 (51.7) 

12 (10) 
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3.4.3 Association of demographic variables with maintenance warfarin 

dose 

3.4.3.1 Age. The square root of warfarin daily dose was highly significantly 

correlated with age (r = 0.53, P < 0.001, Pearson correlation coefficient). Figure 

3-9A shows the relationship between warfarin daily dose in mg and age and 

Figure 3-9B shows the relationship between warfarin daily dose in mg/kg body 

weight and age. 

 

3.4.3.2 Body size. The square root of warfarin daily dose was highly 

significantly correlated with body surface area (r = 0.56, P < 0.001, Pearson 

correlation coefficient), height (r = 0.55, P < 0.001) and weight (r = 0.53, P < 

0.001) with body surface area and height being the most accurate predictors of 

warfarin dose requirement. Body mass index correlated less closely with 

warfarin daily dose (r = 0.32, P < 0.001). 

 

3.4.3.3 Indication for anticoagulant therapy. Children who were 

anticoagulated following a Fontan procedure had a significantly lower mean 

warfarin daily dose (3.4 ± 1.6mg) than those who were anticoagulated for other 

indications (4.4 ± 2.5mg), P = 0.02, unpaired t-test (Figure 3-10). 
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Figure 3-9. Relationship between age and: (A) Daily warfarin dose in mg; (B) 

Daily warfarin dose in mg/kg body weight 
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Figure 3-10. Scatter plot showing the relationship between indication for warfarin 

and warfarin dose  

Indicated values are median warfarin doses. FP, Fontan procedure; O, Other. 
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3.4.3.4 Ethnicity. Children of Indian/Pakistani origin (n = 10) had a higher mean 

warfarin daily dose requirement (5.1 ± 2.6mg) than children of different ethnic 

origin (3.8 ± 2.1mg); this was accounted for by the higher frequency of VKORC1 

(-1639) GG genotype in this ethnic group, 8/10 (80%) vs. 35/110 (31.8%) for the 

rest of the cohort (see Section 3.4.4.1 ‘VKORC1 genotype’). However, the 

difference was not statistically significant (P = 0.15, unpaired t-test). There were 

too few children for other ethnic groups to permit further sub-group analysis. 

 

3.4.3.5 Medication. 83/120 (69.2%) children were taking additional prescribed 

drug(s). Of these children, 16 (13.3%) were taking one or more drugs known or 

suspected to have an effect on warfarin metabolism. These included: 

trimethoprim/co-trimoxazole, 6 patients; omeprazole, 4; 

erythromycin/azithromycin, 2; amiodarone, 1; imatinib, 1; prednisolone, 1; 

iloprost, 1; amitryptiline, 1; sodium valproate, 1; carbamazepine, 1. Children 

receiving trimethoprim or co-trimoxazole required a slightly lower mean warfarin 

dose than those who were not (3.0 ± 1.6mg vs. 3.9 ± 2.2mg) but this difference 

was not statistically significant (P = 0.25, unpaired t test). There were 

insufficient numbers of children prescribed other additional medications to 

permit further subgroup analysis. 

 

3.4.3.6 Gender. The mean warfarin dose requirement in females was slightly 

higher than in males (female, 4.0 ± 2.3mg vs. male, 3.8 ± 2.1mg) although this 

difference was not statistically significant (P = 0.59, unpaired t-test). 

 

3.4.3.7 Target range. Although children with a higher target INR range required 

a higher mean warfarin daily dose than those with a lower target INR range the 

effect of target INR range on warfarin dose requirement was not significant (2.5-

3.5, 4.5 ± 2.6mg vs. 2.0-3.0, 3.8 ± 2.0mg, P = 0.23, unpaired t test).  

 

3.4.3.8 Diet. 117/120 (97.5%) of the children reported a normal diet, meaning 

that they were not vegetarian or vegan or receiving enteral, parenteral or infant 

formula feeds. Of the remainder, one child (4 years old) was receiving enteral 

feeding, one (14 years old) was vegetarian and one (2 years old) was receiving 

infant formula feed. When the factors in the regression equation were 

accounted for (see Section 3.4.5 ‘Development of a personalised algorithm for 
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warfarin dosing in children’), none of these children had a warfarin daily dose 

that was outside of the expected range. 

 

3.4.4 Association of genotype with maintenance warfarin dose   

3.4.4.1 VKORC1 genotype. The mean warfarin daily dose requirement in 

children with the VKORC1 (-1639) GG genotype (5.0 ± 2.2mg) was significantly 

higher than in those with GA (3.7 ± 1.9) or AA (2.2 ± 1.1) genotype, P < 0.001, 

ANOVA. This is shown in Figure 3-11. 

 

3.4.4.2 CYP2C9 genotype. The mean warfarin daily dose requirement in 

children with homozygous wild-type CYP2C9 genotype (4.3 ± 2.1mg) was 

significantly higher than in those with *1/*3 genotype (2.2 ± 1.1mg, P < 0.001). 

Children with *1/*2 genotype also had a lower mean warfarin dose requirement 

(3.7 ± 2.1mg) than children with homozygous wild-type CYP2C9 genotype but 

this difference was not statistically significant (P  = 0.28). The children with *2/*2 

genotype (1.3mg, n = 1) and *2/*3 genotype (1.6mg, n = 1) had low warfarin 

doses but the numbers were too small to permit statistical analysis. This is 

shown in Figure 3-12. 

 

3.4.4.3 CYP4F2 genotype. The mean warfarin daily dose requirement was 5.1 

± 2.8mg in children with CYP4F2 (rs2108633) TT genotype and was higher than 

in those with CT (4.0 ± 2.3mg) or CC (3.6 ± 1.8mg) genotype, but the 

differences were not statistically significant, P = 0.12. This is shown in Figure 3-

13. 

 

3.4.4.4 APOE genotype. To assess the impact of APOE genotype children 

were classified according to their number of ε4 alleles. Mean warfarin daily dose 

did not vary with number of ε4 alleles, P = 0.87. Only one child had APOE 

genotype ε4ε4 and this child had a relatively high warfarin maintenance dose of 

5mg daily (Figure 3-14). 
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Figure 3-11. Scatter plot showing the relationship between VKORC1 genotype 

and warfarin dose 

 

 

Figure 3-12. Scatter plot showing the relationship between CYP2C9 genotype 

and warfarin dose 
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Figure 3-13. Scatter plot showing the relationship between CYP4F2 genotype and 

warfarin dose 

 

 

Figure 3-14. Scatter plot showing the relationship between APOE genotype and 

warfarin dose 
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3.4.4.5 CYP3A5 genotype. Data were available for CYP3A5 (rs776746) 

genotype for 111 of the 120 children. Children with CYP3A5 (rs776746) 

genotype AG had a lower warfarin dose requirement than those with genotype 

GG, 1.9 ± 0.9mg vs. 4.0 ± 2.2mg, respectively, but this was not statistically 

significant (P = 0.07, unpaired t test) (Figure 3-15). Using stepwise regression 

analysis CYP3A5 genotype had a P value of 0.04. However, only 3 children had 

genotype AG and only one had genotype AA so CYP3A5 genotype was not 

included in the final regression equation (see Section 3.4.5 ‘Development of a 

personalised algorithm for warfarin dosing in children’). 

 

3.4.4.6 CYP1A2 genotype. There was no significant relationship between 

CYP1A2 genotype and warfarin dose requirement, children with CYP1A2 

(rs762551) genotype CC, CA and AA having a mean warfarin dose requirement 

of 3.6 ± 2.8mg, 4.0 ± 2.0mg and 3.8 ± 2.1mg, respectively. 
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Figure 3-15. Scatter plot showing the relationship between CYP3A5 genotype 

and warfarin dose 
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3.4.5 Development of a personalised algorithm for warfarin dosing in 

children 

According to the regression model, height, indication and VKORC1 and 

CYP2C9 genotypes made a significant contribution to warfarin dose 

requirement and together explained 72.4% of the inter-individual variability in 

warfarin dose (Figure 3-16). The individual contributions of each of these 

variables are shown in Table 3-3.  Both height and body surface area were 

found to be good predictors of the square root of dose but in a model where the 

genetic parameters were included height was found to be the superior predictor 

and, once height was included, body surface area did not improve the fit of the 

model. The regression equation is: √dose= -0.009 + 0.011 (height) + 0.357 

(VKORC1) – 0.478 (CYP2C9*3) – 0.277 (CYP2C9*2) + 0.186 (Indication) using 

the following key: input height in centimetres; VKORC1 genotype: input 0 for 

AA, 1 for AG, and 2 for GG; CYP2C9*3 genotype: input 0, 1, or 2 for the 

number of *3 alleles; CYP2C9*2 genotype: input 0, 1 or 2 for the number of *2 

alleles; Indication: input 0 for Fontan procedure, 1 for other indications. The 

95% confidence intervals for the coefficients are shown in Table 3-3. The 

regression equation allows for the determination of the square root of the 

predicted dose which is then squared to provide the actual predicted warfarin 

dose in mg/day. 

 

Subgroup analysis using two age groups (children <10 years of age and 

children >/=10 years of age) showed that neither the contribution of each 

individual factor nor the dosing algorithm differed significantly between children 

of differing age. 
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Figure 3-16. Box plots showing the influence of VKORC1 and CYP2C9 

genotypes, and indication for warfarin, on warfarin dose  

Boxes indicate the median and interquartile ranges. Vertical lines above and below 
boxes show the minimum and maximum values. Indicated values are mean warfarin 
doses. FP, Fontan procedure; O, Other. 
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Table 3-3. Contribution of height, VKORC1, CYP2C9*2 and *3 genotypes, and indication for warfarin to regression equation for modelling 

warfarin daily dose requirements in children 

 

Predictor 

 

Coefficient 95% Confidence 

Intervals 

P value Contribution to model, 

R
2
/% 

Intercept -0.009 -0.313, 0.294 - - 

Height, cm 0.011 0.009, 0.013 < 0.001 29.8 

Number of VKORC1 (-1639) 

G alleles 

0.357 0.284, 0.425 < 0.001 26.6 

Number of CYP2C9*3 

variant alleles 

-0.478 -0.335, -0.621 < 0.001 12.8 

Number of CYP2C9*2 

variant alleles 

-0.277 -0.148, -0.407 < 0.001 

Indication: Other than 

Fontan procedure 

0.186 0.085, 0.29 < 0.001 3.2 

Height, VKORC1, 

CYP2C9*2/*3, Indication 

- - <0.001 72.4 

 
Regression equation: √dose= -0.009 + 0.011 (height) + 0.357 (VKORC1) – 0.478 (CYP2C9*3) – 0.277 (CYP2C9*2) + 0.186 (Indication). 
Height: input height in centimetres 
VKORC1 genotype: input 0 for AA, 1 for AG, and 2 for GG 
CYP2C9*2/*3 genotype: input 0, 1, or 2 for the number of *2/*3 alleles 
Indication: input 0 for Fontan procedure, 1 for other indication. 
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3.4.6 Predictive value of IWPC algorithm 

There was a close and highly significant correlation between the actual warfarin 

maintenance dose and the predicted maintenance dose according to the 

International Warfarin Pharmacogenetics Consortium (IWPC) algorithm (r = 

0.76, P  <0.001) (International Warfarin Pharmacogenetics Consortium, 2009). 

However, the algorithm consistently over-estimated warfarin dose in our cohort 

of children by, on average, 1.5mg/day (± 1.4mg/day) (Figure 3-17). 
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Figure 3-17. Relationship between predicted warfarin dose using IWPC algorithm 

(mg/day) and actual warfarin dose (mg/day) 

IWPC (International Warfarin Pharmacogenetics Consortium, 2009) 
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3.4.7 Validation of a personalised algorithm for warfarin dosing in children 

The warfarin-dosing algorithm was assessed in an unrelated population of 49 

children (see Section 3.3.5 ‘Recruitment of validation cohort’). Median age was 

7.2 years (range: 0- 17 years) and height 117.0cm (range: 58.0- 182.0cm). A 

summary of the demographics, indication for treatment, target INR range and 

genotypes for VKORC1 and CYP2C9 for the validation cohort is shown in Table 

3-4. 

 

The predicted mean (SD) daily warfarin dose was 3.3 ± 1.8mg (range: 0.2- 

8.1mg) and the actual mean daily warfarin dose was 3.3 ± 2.0mg (range: 0.6- 

9.1mg). Pearson’s correlation analysis showed a close and highly significant 

relationship between the square root of the actual warfarin dose and the square 

root of the predicted dose (r = 0.833, P <0.001) with regression equation: 

√actual warfarin dose (mg) = 0.329 + 0.825 √predicted warfarin dose (mg). The 

square roots of the doses provide a better statistical correlation (as this 

transformation stabilises the variance and gives an approximately Normal 

distribution). However to aid data interpretation Figure 3-18 shows the 

relationship between the absolute values of predicted warfarin dose and actual 

dose. 
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Table 3-4. Demographic and Genetic Characteristics of the Validation Cohort 

 Number of children (%) 

Gender 

- Male 

- Female 

 

26 (53.1) 

23 (46.9) 

Ethnic origin 

- White Caucasian 

- Asian 

- Other 

 

40 (81.6) 

6 (12.2) 

3 (6.1) 

Indication for anticoagulation with warfarin 

- Fontan procedure 

- Prosthetic heart valve 

- Cardiomyopathy 

- Other 

 

13 (26.5) 

21 (42.9) 

7 (14.3) 

8 (16.3) 

Target INR range 

- 1.8- 2.5 

- 2.0- 3.0 

- 2.5- 3.5 

- 3.0- 4.0 

 

2 (4.1) 

29 (59.2) 

16 (32.7) 

2 (4.1) 

VKORC1 genotype 

- GG 

- GA 

- AA 

 

19 (38.8) 

23 (46.9) 

7 (14.3) 

CYP2C9 genotype 

- *1/*1 

- *1/*2 

- *1/*3 

- *2/*2 

- *2/*3 

- *3/*3 

 

34 (69.4) 

7 (14.3) 

6 (12.2) 

1 (2.0) 

1 (2.0) 

0 (0) 
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Figure 3-18. Relationship between predicted warfarin dose (mg/day) and actual 

warfarin dose (mg/day) for the validation cohort 
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3.4.8 Association of genotype with initiation of warfarin in children  

Initiation data were collected from 51 patients. There were 39 males and 12 

females, median age at initiation of warfarin therapy 4 years (range: 1- 17 

years). VKORC1 and CYP2C9 genotypes for this subgroup are shown in Table 

3-5. 

 

Data were available for patient weight at the time of initiation of warfarin therapy 

for 48 patients. Warfarin initiation was based on the recommended dose of 

0.2mg/kg warfarin (to a maximum of 5mg) (Monagle et al., 2008). Mean dose 

given on days 1 and 2 of initiation of warfarin therapy was 0.14 mg/kg ( 0.06). 

 

There was a significant correlation between VKORC1 genotype and square root 

of peak INR during the first week of warfarin therapy, those with VKORC1 (-

1639) AA genotype having a higher peak INR (mean 5.1 ± 2.2) than those with 

GA (3.5 ± 1.4) or GG (3.0 ± 1.3) genotype, P = 0.01, regression analysis on the 

number of A alleles, as shown in Figure 3-19. Peak INR during the first week of 

warfarin therapy was also dependent on CYP2C9 genotype, children with one 

variant CYP2C9 allele having a higher peak INR than those with wild-type 

CYP2C9, mean 4.1 ± 1.7 vs. 3.2 ± 1.4, respectively. The child with CYP2C9 

*2/*3 genotype had a peak INR in week 1 of 5.5 (Figure 3-20). The relationship 

between CYP2C9 genotype and peak INR by regression analysis was not 

established because there was only one child who had two mutant alleles. A 

more conservative analysis, comparing square root of peak INR in children with 

wild-type CYP2C9 to those with one or more variant alleles established a 

significant difference between the two groups (Student’s t-test, P = 0.04). 
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Table 3-5. Genetic Characteristics of the subgroup with available initiation data 

 Number of children (%) 

VKORC1 Genotype 

- GG 

- GA 

- AA 

 

19 (37) 

26 (51) 

6 (12) 

CYP2C9 Genotype 

- Wild-type 

- Variant¶ 

 

35 (69) 

16 (31) 

¶CYP2C9 genotype; *1/*2, 6 children; *1/*3, 9 children; *2/*3, 1 child 
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Figure 3-19. Box plot showing the relationship between VKORC1 genotype and 

peak INR during the first week of warfarin therapy 

Boxes indicate the median and interquartile ranges. Vertical lines above and below 
boxes show the minimum and maximum values. Mean values are indicated. 
 

 

 

 

Figure 3-20. Box plot showing the relationship between CYP2C9 genotype and 

peak INR during the first week of warfarin therapy 

Boxes indicate the median and interquartile ranges. Vertical lines above and below 
boxes show the minimum and maximum values. Mean values are indicated. 
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Children with a variant CYP2C9 allele had a greater proportion of INR values 

above target range during the first month of warfarin therapy, those with one 

variant allele having 19.3% vs. 15.9% for those who were wild-type for CYP2C9 

(the single child with two variant CYP2C9 alleles had 63.1% of the INR values 

above target range during the first month) as shown in Figure 3-20. There was a 

marginal effect of CYP2C9 genotype on the incidence of supra-therapeutic INR 

during the first month of warfarin therapy (P =  0.08, Mann-Whitney U test). 

Children with VKORC1 (-1639) AA genotype had a greater proportion of INR 

values above target range during the first month of warfarin (21.5%) than those 

with GA (17.6%) or GG (17.2%) genotype but this was not statistically 

significant.  

 

There was no association between CYP2C9 and VKORC1 genotype and time 

to first supra-therapeutic INR, time to first therapeutic INR, number of high INRs 

(>4.0) during initiation therapy, time to stable warfarin dosing (as defined in 

Section 3.3.2.1 ‘Inclusion and exclusion criteria’) or number of warfarin dose 

changes. 

 

No haemorrhagic or thrombotic events occurred during the initiation of warfarin 

therapy in this cohort. 
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Figure 3-21. Box plot showing the relationship between CYP2C9 genotype and 

proportion of INRs above target range during the first month of warfarin therapy 

Boxes indicate the median and interquartile ranges. Vertical lines above and below 
boxes show the minimum and maximum values. Mean values are indicated. 
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3.5 Discussion 

This study is the largest cross-sectional study of the effect of genetic, clinical 

and demographic factors on warfarin dose requirement in children reported to 

date. The results show that a major proportion (72.4%) of the inter-individual 

variability in warfarin dose requirement in children is attributed to by VKORC1, 

CYP2C9, height and indication for warfarin therapy. 

 

The recent study published by Nowak-Göttl et al identified only a minor effect of 

VKORC1 (-1639G>A) and CYP2C9 (*2, *3) polymorphisms on maintenance 

warfarin dose in children, 3.7% and 0.4% respectively (Nowak-Göttl et al., 

2010). However, only 59 children were included in the analysis, not all were 

anticoagulated with the same oral coumarin derivative (26 were anticoagulated 

with phenprocoumon), there were few children identified as having CYP2C9 *2 

and *3 alleles and a less robust criterion was used to establish stable 

anticoagulation status (requiring only three consecutive days of stable warfarin 

dose prior to subject study participation) (Nowak-Göttl et al., 2010) than that 

adopted for our study. A further study by Kato et al in 48 children of Japanese 

origin identified a 28% lower warfarin dose requirement in children with 

VKORC1 -1173TT genotype when compared to those with -1173CT or -

1173CC genotype (Kato et al., 2011). The investigators were unable to assess 

the impact of CYP2C9 genotype on warfarin dose requirement as they found 

only one child to be of CYP2C9*3 genotype. This study was also limited by a 

small sample size. Neither Nowak-Göttl et al (Nowak-Göttl et al., 2010) nor Kato 

et al (Kato et al., 2011) evaluated the effect of CYP4F2 polymorphism on 

paediatric warfarin dose requirement. 

 

In keeping with the studies by Nowak-Göttl et al (Nowak-Göttl et al., 2010) and 

Kato et al (Kato et al., 2011) body size, in this case measured by height, is the 

primary determinant of warfarin dose requirement in a paediatric cohort, 

contributing 29.8% to inter-individual variability. Age and weight were highly 

correlated with height but there was a closer correlation between height and 

warfarin dose. This may be explained by the presence of a positive correlation 

between liver size and height, resulting in greater warfarin dose requirement 

due to increased warfarin hepatic clearance (Murry et al., 1995, Takahashi et 

al., 2000) and possibly greater hepatic availability of coagulation proteins and 
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stored vitamin K with increasing height. The positive correlation of dose with 

height overrides the smaller effect of younger children requiring a higher 

warfarin dose per kg body weight than older children and adolescents, shown 

by this (Figure 3-9) and previous studies (Streif et al., 1999, Bonduel et al., 

2003). Figure 3-9 suggests that there may be an exponential effect rather than 

a linear relationship between age and dose or dose per kg body weight. 

 

Studies in adults anticoagulated with warfarin have shown that carriers of the 

common allelic variants (*2 or *3) of the CYP2C9 gene are associated with a 

lower warfarin dose requirement accompanied by a greater tendency to 

experience haemorrhagic complications during warfarin initiation (Aithal et al., 

1999, Higashi et al., 2002). Studies have shown that the CYP2C9 

polymorphism accounts for 5.7-17.5% of inter-individual variability in warfarin 

dose requirement in adults (Sconce et al., 2005b, Wadelius et al., 2009, Kamali 

et al., 2004). The influence of CYP2C9 on maintenance warfarin dose 

requirement was similar in our paediatric cohort (in which it accounted for 

12.8% of variability) to adults. Our findings are more in keeping with the adult 

literature than either those of Nowak-Göttl et al (Nowak-Göttl et al., 2010) or of 

an earlier study by Ruud et al (Ruud et al., 2008) who found no association 

between CYP2C9 genotype and warfarin dose in 29 anticoagulated children 

although the latter noted that children with a CYP2C9 variant allele reached 

target INR sooner and were more likely to be over-anticoagulated than those 

without (Ruud et al., 2008). In the Ruud et al study warfarin doses were not 

corrected for either body size or age (Ruud et al., 2008). 

 

Vitamin K epoxide reductase (target enzyme for warfarin) is responsible for the 

recycling of vitamin K and is encoded by the vitamin K epoxide reductase 

subunit complex (VKORC1). Adults with VKORC1 (-1639) GG genotype require 

higher warfarin doses than those with GA or AA genotype (Rieder et al., 2005, 

D'Andrea et al., 2005). VKORC1 genotype accounts for 15-30% of inter-

individual variability in warfarin dose requirement in adults (Rieder et al., 2005, 

Sconce et al., 2005b, Wadelius et al., 2009), consistent with that seen in our 

paediatric population in which it accounted for 26.6%.  
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Indication for warfarin (Fontan procedure) contributed to 3.2% of inter-individual 

variability in warfarin dose requirement. A lower warfarin dose requirement in 

children following a Fontan procedure was previously reported by Streif et al; 

showing a 25% reduction in dose when compared to patients with the same 

target INR range (Streif et al., 1999). The mechanism for the lower dose 

requirement may be related to abnormal liver function in children after Fontan 

procedure resulting in reduced warfarin metabolism (Kaulitz et al., 1997). 

Although all of the children in our cohort who had a Fontan procedure were 

anticoagulated with the lower target INR range of 2.0-3.0, target INR range was 

not an independent variable in terms of its’ effect on warfarin dose requirement. 

The necessity for long-term anticoagulation of children after Fontan procedure 

is controversial and many physicians prefer to anticoagulate with warfarin for a 

defined period of time only (e.g. 6-12 months) or to use anti-platelet therapy as 

an alternative to warfarin (Monagle et al., 2011). This variation in practice may 

lead to a tendency to anticoagulate these children at the lower end of the target 

INR range as they are perceived to be at a lesser risk of thromboembolism, 

therefore resulting in a lower maintenance warfarin dose requirement. 

 

Recent studies have identified that the rs2108622 SNP in CYP4F2 accounts for 

2-7% of inter-individual variability in warfarin dose requirements in adults 

(Caldwell et al., 2008, Takeuchi et al., 2009). Although there appears to be no 

direct role for CYP4F2 in warfarin metabolism, it has been suggested that it 

influences vitamin K oxidase activity and therefore hepatic levels of vitamin K 

(McDonald et al., 2009). The lack of effect of CYP4F2 on warfarin dose in our 

cohort of children may relate to differences in dietary vitamin K intake when 

compared to their adult counterparts. This requires further study of the impact of 

vitamin K status on warfarin dose requirement in children. 

 

Previous studies have shown that APOE genotype influences warfarin dose 

requirement, adults carrying one or more ε4 alleles requiring a lower warfarin 

maintenance dose than those without, although this contribution accounted for 

only 6% of variability (Kohnke et al., 2005). APOE mediates the uptake of 

vitamin K-rich lipoproteins into the cells, increasing hepatic availability of vitamin 

K which may result in a relative resistance to the anticoagulant effect of warfarin 

(Kohlmeier et al., 1996). Our study did not confirm these findings, children with 
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one ε4 allele having a warfarin dose that did not differ from those without. As for 

CYP4F2 genotype, the lack of evidence for an effect of APOE genotype on 

warfarin dose requirement in our cohort may relate to a difference in dietary 

vitamin K intake in children. Again, the role of dietary vitamin K intake in 

determining warfarin dose requirement in children requires further study. 

 

Analysis of the polymorphisms influencing metabolism of the R-enantiomer of 

warfarin showed that children who had CYP3A5*3 genotype AG had a lower 

warfarin maintenance dose than those who had genotype GG. The difference 

was not statistically significant and was likely to have been limited by the small 

number of children who had one or more variant alleles (n = 4). 

There was no correlation between the presence of CYP1A2 allele and 

maintenance warfarin dose requirement. The smoking history of patients and 

their co-habitants was not assessed in this cohort. 

 

The influence of each of the genotypes on warfarin dose was evaluated using 

analysis of variance (ANOVA). This does not take into account the direction of 

change in dose. Linear regression analysis on the number of variant alleles 

present may have identified a greater impact of some of these genotypes on 

stable warfarin dose.  

 

In this study we found that children of Indian/Pakistan origin tended to require a 

higher daily warfarin dose than other ethnic groups which was accounted for by 

the higher frequency of VKORC1 (-1639) GG genotype in this ethnic subgroup. 

This is consistent with data previously reported in adults (Limdi et al., 2010). 

Our study was not designed to explore the effect of ethnicity on warfarin dose 

requirement which should be evaluated in a larger population. 

 

A significant number of our cohort (16 patients: 13.3%) were taking additional 

medications that are known or suspected to have an effect on warfarin 

metabolism. In the interests of obtaining an adequate sample size it was not 

possible to exclude these children from recruitment to the study. Children who 

were taking additional medications did not have a warfarin dose that differed to 

children who were not. Children who were taking trimethoprim or co-trimoxazole 

(trimethoprim-sulphamethoxazole) required a lower warfarin dose than those 
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who were not, although this difference was not statistically significant. The 

augmentation of the anticoagulant effect of warfarin by trimethoprim-containing 

compounds is well documented and it is suggested that this is due to 

competitive protein binding with displacement of warfarin from albumin binding 

sites (O'Reilly and Motley, 1979). Concomitant steroids have previously been 

shown to lower the warfarin dose requirement in children (Streif et al., 1999, 

Ruud et al., 2008) but this could not be confirmed in our cohort as only one 

child was prescribed an oral steroid. 

 

The effects of dietary vitamin K intake on warfarin dose requirement and 

stability of anticoagulant control are well established in adult patient 

populations, a lower vitamin K intake being associated with increased sensitivity 

to the anticoagulant effect of warfarin (Khan et al., 2004, Franco et al., 2004) 

and poorer stability of anticoagulant control (Sconce et al., 2007). Vitamin K 

supplementation in children, in the form of infant formula feed or 

enteral/parenteral feeding, has been shown to increase warfarin dose 

requirement (Streif et al., 1999) but this effect could not be examined in our 

cohort with only one formula-fed infant and one child receiving enteral feeds.  

 

Based on the study data a pharmacogenetics-based algorithm was developed 

for predicting warfarin maintenance dose (Table 3-3). This incorporates the four 

clinical and genetic factors that had the greatest influence on maintenance 

warfarin dose in our cohort; height; VKORC1 genotype; CYP2C9 genotype; 

indication for warfarin. Using a validation cohort of 49 children, recruited to a 

separate study, the algorithm was able to accurately predict maintenance 

warfarin dose, showing a close and highly significant correlation between actual 

and predicted warfarin doses (Figure 3-17). The derivation and validation 

cohorts showed some differences, the validation cohort being younger (median 

age, 7.2 vs. 11.4 years) and having a greater proportion of children with a 

higher target INR range (range > 2.5, 36.8% vs. 15.8%) when compared to the 

derivation cohort. However, the two cohorts were similar in ethnic background 

and this is reflected in the lack of major differences in the distribution of 

genotypes. The paediatric pharmacogenetics-based warfarin dosing equation 

performed better in the validation cohort than an adult equation, the IWPC 

algorithm (International Warfarin Pharmacogenetics Consortium, 2009), 
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performed in the derivation cohort. Despite a good correlation between the 

actual and predicted warfarin doses the IWPC algorithm consistently over-

estimated warfarin dose by, on average, 1.5mg/day (Figure 3-17). The over-

estimation of warfarin dose by the IWPC algorithm was explained by a greater 

influence of age on the variability in warfarin dose requirement in children than 

in adults. This indicates that pharmacogenetic-based dosing algorithms for use 

in children should be developed from data on paediatric populations. 

 

The role of genetic polymorphisms in determining response to warfarin during 

the initiation phase of therapy is well established in adult patient populations in 

which studies have shown that individuals with CYP2C9 variant alleles have a 

higher incidence of high INR (>4.0) (Higashi et al., 2002, Aithal et al., 1999, 

Joffe et al., 2004, Meckley et al., 2008) and a higher rate of serious bleeding 

events (Higashi et al., 2002, Aithal et al., 1999) during the first 3 months of 

warfarin therapy in addition to taking longer to reach a stable warfarin dose 

(Higashi et al., 2002, Meckley et al., 2008). A small study of 29 children showed 

that children who were heterozygous for a variant CYP2C9 gene achieved 

target INR sooner and more frequently had an INR above the target level than 

those who were not (Ruud et al., 2008). In adults, VKORC1 (-1639) genotype 

AA has been shown to be associated with a higher incidence of INR >5.0 during 

warfarin initiation when compared to GA or GG genotypes (Meckley et al., 

2008). Our study showed a significant association between VKORC1 (-1639) 

genotype and peak INR during the first week of warfarin therapy, children with 

AA genotype having a higher peak INR than those with GA or GG genotype. 

Also significant was the finding that children with one or more variant CYP2C9 

allele had a higher peak INR in week 1 compared to those with wild-type 

CYP2C9 genotype. Children with a variant CYP2C9 genotype tended to have a 

greater proportion of INR values above target range during the first month of 

warfarin therapy as did those with VKORC1 (-1639) AA genotype. There was no 

correlation between genotype and the other initiation outcome measures 

including time to first therapeutic INR, time to first supra-therapeutic INR, 

number of high INRs (>4.0), time to stable warfarin dosing and number of 

warfarin dose changes. There was also no correlation between CYP2C9 and 

VKORC1 genotype and the proportion of INR values above target range 

beyond the first month of therapy suggesting that adjustment of warfarin doses 
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prior to months two and three of initiation therapy had counteracted the 

influence of genotype. The finding that VKORC1 and CYP2C9 genotypes were 

associated with the peak INR in week 1 and the proportion of INRs above range 

during the first month of warfarin therapy is in keeping with the results of 

previous studies in adult populations. However, my study was limited by the 

small patient cohort (n = 51), the lack of standardisation of data collection and 

the lack of a consistent approach to warfarin dosing during initiation. Most of the 

recruitment centres from which the study subjects were recruited have a 

warfarin-dosing protocol which is based on the recommended dose of 0.2mg/kg 

warfarin (maximum 5mg) on day 1 (Monagle et al., 2008) but the recorded 

warfarin doses suggested that this recommendation was not always adhered to 

and that doses were adjusted for reasons such as nutritional status and 

concomitant medications. There were no haemorrhagic events during initiation 

therapy despite a peak INR of >5.0 in 10 patients. The effect of CYP2C9 and 

VKORC1 genotype during warfarin initiation therapy in children requires further, 

prospective study in a larger cohort of children. 

 

In conclusion, this study has shown that the majority (72.4%) of the inter-

individual variability in warfarin dose requirement in children is attributed to by 

height, VKORC1 and CYP2C9 genotype and indication for warfarin therapy. 

Knowledge of the relative contributions of each of these factors has informed 

the development of a paediatric pharmacogenetics-guided warfarin-dosing 

algorithm which was shown to accurately predict maintenance warfarin dose 

when validated using an unrelated cohort of children. Before being used in 

clinical practice, this algorithm requires prospective evaluation in a large 

number of children undergoing initiation of anticoagulant therapy with warfarin. 

This would involve randomisation of children to a pharmacogenetics-guided 

warfarin-dosing algorithm or to standard empirical dosing. Due to the relatively 

small numbers of warfarinised children available for study this would likely 

require an international, multi-centre effort. In addition, this study has 

demonstrated that VKORC1 and CYP2C9 genotype have a modest effect on 

initiation therapy with warfarin and again this requires further study in a larger 

cohort of children. 
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Chapter 4. General Discussion 

 

The anticoagulant response to warfarin is difficult to predict and there is 

considerable variation in dose requirement between individuals. Warfarin has a 

narrow therapeutic window and maintaining an INR within the appropriate target 

therapeutic range (TTR) is essential to optimise efficacy and safety of warfarin 

therapy. Deviations from TTR render the individual at risk of complications; 

thromboembolism when the INR is sub therapeutic and haemorrhage when the 

INR is supratherapeutic. Maintenance of INR within TTR is particularly difficult 

in anticoagulated children as there are many factors that contribute to poor 

stability of anticoagulant control in this patient group. The consequences for 

these children, the majority of whom have congenital cardiac disease and are 

anticoagulated long-term for the prevention of stroke, can be severe with 

deviations from TTR resulting in significant morbidity and mortality. In addition, 

the need for frequent blood sampling for INR monitoring is a significant burden 

for children and their carers. 

 

The aim of this thesis was to identify the factors that influence anticoagulation 

outcomes in children and the potential for personalised warfarin therapy in this 

challenging patient population. 

 

Our retrospective study of a cohort of children anticoagulated with warfarin 

showed that 57.4% of INR measurements were within target INR range. This 

finding is in keeping with the results of previous studies (Streif et al., 1999, 

Newall et al., 2004, Bradbury et al., 2008, Bhat et al., 2010) and highlights the 

poor stability of warfarin control that occurs in childhood even when INR 

monitoring occurs frequently with the aid of a home monitoring device. Some 

studies have shown an improvement in anticoagulation control using point-of-

care (POC) monitoring combined with an education programme for parents and 

carers (Newall et al., 2006, Bauman et al., 2009). Quality control of the home 

monitoring device is also necessary, usually performed by duplicate testing of 

blood samples using either a machine that is quality controlled by the laboratory 

or the laboratory analyser (Fitzmaurice et al., 2005). This should occur at least 

once per year. However, this was not done routinely for our cohort of children, 

which may have influenced the INR results. Despite 42.6% of INR 
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measurements being outside of the TTR, more likely to be below than above 

target range, adverse events occurred infrequently. However, these findings 

were limited by the retrospective nature of data collection making it difficult to 

rule out incomplete and/or inaccurate reporting of adverse clinical events. The 

conservative management of a high INR (> 4.0), by omission of warfarin or a 

reduction in dose, ensured a prompt fall in INR in the majority of the cases with 

no reported haemorrhagic events. However, for the reasons explained above, 

these findings require verification in a larger cohort of prospectively-studied 

children. 

 

In recent years there has been substantial progress in the identification of 

genetic polymorphisms that contribute to warfarin sensitivity in adults. My work, 

based on data derived from the largest cohort of anticoagulated children (n = 

120) studied to date, has shown that 72% of the inter-individual variability in 

response to warfarin in children can be accounted for by height, VKORC1 and 

CYP2C9 genotype and the indication for warfarin therapy. The study results 

were used to develop a pharmacogenetics-based dosing algorithm. A study in 

an unrelated cohort (n = 23) of children further validated the algorithm for 

accurately predicting warfarin maintenance dose. The influence of 

polymorphisms in the genes for VKORC1 and CYP2C9 in children was shown 

to be consistent with studies in adults and the extent of the contribution to inter-

individual variability in maintenance warfarin dose requirements was similar 

between adults and children (Wadelius et al., 2009, D'Andrea et al., 2005). 

Height, as an indicator of body size, made the most significant contribution to 

warfarin dose. The indication for warfarin therapy made a smaller contribution to 

warfarin dose requirement which was explained by a lower warfarin dose 

requirement in children who were anticoagulated following a Fontan procedure, 

a phenomenon that has been described previously (Streif et al., 1999). A 

greater proportion of variance in warfarin dose requirement could be explained 

in this paediatric population than has previously been explained in adult 

populations. This may in part relate to the observed effect of alcohol on warfarin 

anticoagulation response and the variation in alcohol intake that is seen 

amongst adults. An additional factor that is known to influence warfarin 

response and stability of anticoagulation control is adherence to warfarin 

therapy which has not been studied in children. 
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Analysis of data from a subgroup of the studied children (n = 51) showed that 

VKORC1 and CYP2C9 genotype influence outcome variables during initiation 

of warfarin therapy. These variables include peak INR response during week 1 

and the proportion of supratherapeutic INRs during the first month of therapy. 

These data were limited by the retrospective nature of collection (which 

prevented the collection of reliable data on haemorrhagic complications that 

occurred during initiation of warfarin therapy) and a lack of conformity of 

approach between different centres in terms of the doses prescribed during 

warfarin loading. However, the results suggest that patient genotype can affect 

warfarin dose requirement during the initiation of therapy. Therefore information 

on VKORC1 and CYP2C9 genotype in individual patients could enable the 

identification of those who could be at risk of over-anticoagulation and 

haemorrhage during initiation of therapy and who may thus benefit from a 

pharmacogenetics-based personalised approach to warfarin dosing. 

 

Prior to using a pharmacogenetics-based warfarin-dosing algorithm routinely in 

paediatric practice it will be necessary to prospectively validate such an 

algorithm in a large cohort of children and to compare efficacy and safety of this 

approach to that of standard warfarin dosing regimes. Due to variations in 

distribution of genotypes between different racial groups more data from 

populations of different ethnic backgrounds is required.  

 

My study results showed that 27.4% of the inter-individual variability in warfarin 

dose requirement remains unexplained. This may partly be explained by 

differences in dietary vitamin K intake between children. The effect of vitamin K 

status on warfarin anticoagulation in adults is well established; a lower dietary 

vitamin K intake contributing to an increased sensitivity to warfarin (Khan et al., 

2004, Franco et al., 2004) and poorer stability of anticoagulation control 

(Sconce et al., 2005a). To date no studies have looked at the effect of dietary 

vitamin K on warfarin dose requirement in a paediatric population. However, 

there is evidence that supplementation of a child’s diet with (vitamin K-

containing) infant formula or enteral feeds results in a reduced sensitivity to 

warfarin and a higher warfarin dose being required for the same level of 

anticoagulant effect (Streif et al., 1999). Variability in dietary vitamin K intake in 
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children is possible for a number of other reasons. The majority of children 

receiving warfarin have an underlying cardiac defect and may have a degree of 

malabsorption of vitamin K resulting from gut congestion due to right-sided 

cardiac failure (Kaulitz et al., 1997). Some also have ‘cardiac cachexia’, a 

reduced dietary intake due to breathlessness and fatigue. Warfarinised children 

also suffer from frequent intercurrent illnesses such as gastrointestinal infection 

which can have an immediate effect on dietary vitamin K intake and absorption 

and can quickly result in an over-anticoagulated state. Many children are ‘fussy’ 

eaters and eat only a limited range of foods. Vitamin K is found in high 

quantities in only a small number of foodstuffs, predominantly green leafy 

vegetables such as broccoli, cabbage, lettuce, spinach and Brussels sprouts. 

Milk and dairy products, cereals, fruit, eggs and potatoes also contain vitamin K 

but in much lower quantities. Foods that have been prepared with 

phylloquinone-rich oils, such as cakes, biscuits, potato chips and crisps, also 

contain a small amount of vitamin K (Shearer et al., 1996). A recent 

collaborative work with the Human Nutrition Research Centre, Newcastle 

University, suggests that these foods may contribute to the majority of the 

vitamin K content of a child’s diet as they are consumed more frequently by 

children. Using dietary questionnaires in a cohort of healthy children it was also 

seen that dietary vitamin K intake was low, particularly in younger children, and 

showed significant inter-individual variability [unpublished data]. Additional 

fasting blood samples were taken from the children recruited to the 

Pharmacogenetics study (as described in Chapter 3) for the estimation of serum 

vitamin K levels at a later date. The results of these analyses will allow us to 

determine whether a relationship exists between vitamin K status and warfarin 

maintenance dose and stability in children anticoagulated with warfarin. 

 

There are now several alternative oral anticoagulant agents that are available 

for use in adult patients. These include the direct thrombin inhibitors, such as 

dabigatran, and the direct factor Xa inhibitors, such as rivaroxaban. These have 

a predictable dose-response relationship in adults, when dosed according to 

body weight, have few drug interactions, and do not require monitoring 

(Connolly et al., 2009, Eriksson et al., 2008, Lassen et al., 2008). However, as 

regard to interaction with diet, there is now firm evidence to show that dietary 

vitamin K affects anticoagulation response to these novel agents despite having 
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a different target to warfarin. These agents are an attractive alternative to 

warfarin in adults. National Institute for Health and Clinical Excellence (NICE) 

has approved dabigatran for extended thromboprophylaxis following hip or knee 

replacement surgery and for the prevention of stroke in adults with atrial 

fibrillation and additional risk factors. There are no dosing, efficacy or safety 

data available for the use of these oral agents in paediatric practice. Trials are 

being planned but they are likely to be limited by the small numbers of 

anticoagulated children who are available for study and licensing of these 

agents in children is likely to take several years or more (Young, 2011). Over 

recent years there has been an increasing tendency to substitute warfarin with 

low molecular weight heparins (LMWH) for the short-term treatment of 

thrombotic events occurring in childhood (Monagle et al., 2008). There are 

many advantages to this approach. LMWHs are administered subcutaneously, 

ensuring compliance and bioavailability, and tend to be monitored only monthly 

once a therapeutic level of activity has been confirmed (Payne, 2010). Dose 

requirements are more predictable (on a per kg dosing regime) than for 

warfarin. Anticoagulation response to LMWHs is not affected by intercurrent 

illness or variations in diet and LMWHs do not interact with other medications. 

However, warfarin remains the preferred approach for long-term anticoagulant 

therapy in the majority of children as injection sites become problematic and 

LMWHs are significantly more expensive than warfarin. For the reasons 

explained above it is likely that warfarin will remain the preferred option for long-

term anticoagulant therapy in children for many years to come. 

 

In summary, this research has provided an increased understanding of the 

factors that influence the variability in response to warfarin in children. The 

research led to the development and validation of a pharmacogenetics-based 

dosing algorithm for use in children. Before being used in clinical practice this 

algorithm requires prospective evaluation in a large number of children 

undergoing initiation therapy with warfarin in order to examine its’ potential 

benefits in terms of a reduction in adverse events, reduced frequency of INR 

monitoring, improved quality of life and a reduction in healthcare-associated 

costs in this challenging patient population. A study of this nature is likely to 

require an international, multi-centre collaborative approach in order to have 

adequate power. 
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Appendix A. Data collection proforma (UK) 

  Version 2.0- (UK) Date: 28
th

 June 2009 

 
DATA COLLECTION PROFORMA  

 

Inter-individual variability in response to warfarin in children: Analysis 
of environmental and pharmacogenetic factors 
 
Date: _________________  
 

Centre Number: _________  Patient Identification Number: _________ 
 

Age: _________  Date of birth (dd/mm/yy): _______________ 
 

Gender:  Male    Female    

 
Height: ________cm   Weight: ________kg 

 
Ethnicity: (please indicate overleaf) 

 

Current diet: 
               Normal    Vegetarian    Vegan    Infant formula    Breastfed    Enteral nutrition     

 
Parenteral nutrition   (please mark all that apply) 

 
For infant formula, enteral and parenteral nutrition please indicate brand, daily volume received  

and vitamin K content (e.g. X mcg/100 mls) ___________________________________________ 

 
Indication(s) for treatment with warfarin: _____________________________________________________ 

 
Other medical problems: _________________________________________________________________ 

_____________________________________________________________________________________ 

 
Start date of warfarin: _______________ 

 
Desired INR range: _______________     

 
Other medication(s): ____________________________________________________________________ 

_____________________________________________________________________________________ 

 
Current warfarin dose: ________________________ 

No change in warfarin dose for the last 3 INR measurements AND at least the last one month 
 

Most recent INR value: _______________  Date of result (dd/mm/yy): _______________ 

 
Please give details of any previous thrombotic or haemorrhagic events occurring whilst receiving treatment  

with warfarin (include date; other precipitating factors; INR at time of event; management of event;  
outcome): ____________________________________________________________________________ 

_____________________________________________________________________________________
_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 
DETAILS OF SAMPLES PROVIDED: 

 
Date of blood sample: _______________  Time of blood sample: _______________   

 

Fasting: Y   N   If No, Time last ate: _______________ Details of last food eaten: _________________ 
_____________________________________________________________________________________   
 

Has the warfarin been stopped, e.g. for a procedure? : Y   N   If Yes, Date of last dose: ____________  

 

1. Genotyping- 8mls in EDTA (minimum 4mls):    
 
2. Vitamin K/ Warfarin levels- 4mls in Lithium heparin (minimum 2mls):    
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  Version 2.0- (UK) Date: 28
th

 June 2009 

 
 
DATA COLLECTION PROFORMA  

 
Ethnicity: (please select from the list below) 

 
 

White British      
 

White Irish     

 
 

Indian        
 
Pakistani     
 

Bangladeshi     

 
Other Asian     

 
 

Black Caribbean    

 
Black African     

 
Black Other     

 
 

Chinese     

 
 

Other ethnic group (please state)  ___________________________ 
 

 

Mixed White and Black Caribbean  
 

Mixed White and Black African   
 

Mixed White and Asian    
 

Other Mixed background (please state)  ___________________________ 
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Appendix B. Data collection proforma (Canada) 

  Version 2.0- (Canada) Date: 11
th

 January 2010 

 
DATA COLLECTION PROFORMA  

 

Inter-individual variability in response to warfarin in children: Analysis 
of environmental and pharmacogenetic factors 
 
Date: _________________  
 

Centre Number: _________  Patient Identification Number: _________ 
 

Age: _________  Date of birth (dd/mm/yy): _______________ 
 

Gender:  Male    Female    

 
Height: ________cm   Weight: ________kg 

 
Ethnicity: (please indicate overleaf) 

 

Current diet: 
               Normal    Vegetarian    Vegan    Infant formula    Breastfed    Enteral nutrition     

 
Parenteral nutrition   (please mark all that apply) 

 
For infant formula, enteral and parenteral nutrition please indicate brand, daily volume received  

and vitamin K content (e.g. X mcg/100 mls) ___________________________________________ 

 
Indication(s) for treatment with coumadin: ____________________________________________________ 

 
Other medical problems: _________________________________________________________________ 

_____________________________________________________________________________________ 

 
Start date of coumadin: _______________ 

 
Desired INR range: _______________     

 
Other medication(s): ____________________________________________________________________ 

_____________________________________________________________________________________ 

 
Current coumadin dose: ________________________ 

No change in coumadin dose for the last 3 INR measurements AND at least the last one month 
 

Most recent INR value: _______________  Date of result (dd/mm/yy): _______________ 

 
Please give details of any previous thrombotic or haemorrhagic events occurring whilst receiving treatment  

with coumadin (include date; other precipitating factors; INR at time of event; management of event;  
outcome): ____________________________________________________________________________ 

_____________________________________________________________________________________
_____________________________________________________________________________________ 

_____________________________________________________________________________________ 

 
DETAILS OF SAMPLES PROVIDED: 

 
Date of blood sample: _______________  Time of blood sample: _______________   

 

Fasting: Y   N   If No, Time last ate: _______________ Details of last food eaten: _________________ 
_____________________________________________________________________________________   
 

Has the coumadin been stopped, e.g. for a procedure? : Y   N   If Yes, Date of last dose: ___________  

 

1. Genotyping- 8mls in EDTA (minimum 4mls):    
 
2. Vitamin K/ coumadin levels- 4mls in Lithium heparin (minimum 2mls):    
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  Version 2.0- (Canada) Date: 11
th

 January 2010 

 

 
 
DATA COLLECTION PROFORMA  

 
Ethnicity: (please select from the list below) 
 

 
An aboriginal person  

(eg. North American Indian, Metis, Inuit, Eskimo)   

 
White        

 
Chinese       
 
South Asian 

(eg. East Indian, Pakistani, Sri Lankan, etc.)   

 
Black        

 
Filipino        

 

Latin American       
 

Southeast Asian 
(eg. Cambodian, Indonesian, Laotian, Vietnamese, etc.)  

 
Arab        

 

West Asian 
(eg. Afghan, Iranian, etc.)     

 
Japanese       

 

Korean        
 

Other (please specify)      _________________________ 
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Appendix C. Oral presentation at British Society for Haematology 52nd 

Annual Scientific Meeting, Glasgow, April 2012 

 

Warfarin dose prediction in children using pharmacogenetics information 

 

Tina T. Biss
1
, Anna-Karin Hamberg

2
, Peter J. Avery

3
, Mia Wadelius

2
, Farhad 

Kamali
1 

 

1
Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; 

2
Department of 

Medical Sciences, Clinical Pharmacology, Uppsala University Hospital, Uppsala, Sweden; 
3
School of 

Mathematics & Statistics, Newcastle University, Newcastle upon Tyne, UK. 

 

We recently reported the development of the first pharmacogenetics-based algorithm 

for predicting warfarin dose in children, with dose prediction based on height, 

VKORC1 and CYP2C9 genotype and indication for warfarin therapy. This study 

aimed to validate the algorithm in an unrelated cohort of anticoagulated children. 23 

children with a stable warfarin dose were studied, 13 females, median age 7.9 years 

(range: 10 months- 16 years). Children were genotyped for VKORC1 (-1639G>A; 

rs9923231) and CYP2C9 *2 (R144C; rs1799853) and *3 (I359L; rs1057910) alleles 

and their clinical and demographic features were recorded. Although younger (median 

age 7.9 years vs. 11.4 years) and with a higher proportion of children anticoagulated 

to a higher target therapeutic range (43.4% vs. 15.8% INR >2.5) this patient cohort 

compared well to the derivation cohort in terms of ethnicity and genotype distribution. 

VKORC1 (-1639G>A) genotype was GG in six children, GA in 13 and AA in four. 

Fifteen children had wild-type CYP2C9, three each were heterozygote for *2 or *3 

allele, one was homozygous *2/*2 and one was double heterozygote *2/*3. Predicted 

warfarin dose was compared with the actual warfarin dose using Pearson’s correlation 

analysis. The actual mean daily warfarin dose was 3.0mg (range: 0.9- 5.4mg; SD ± 

1.4) which compared well to the mean predicted daily warfarin dose of 2.9mg (range: 

0.1- 5.3mg; SD ± 1.6). There was a close and highly significant relationship between 

the square root of the actual and the predicted warfarin dose (r = 0.874, P <0.001). 

Our pharmacogenetics-based warfarin-dosing algorithm is able to accurately predict 

maintenance warfarin dose in children. Further prospective studies in children are 

required in order to evaluate the utility of the pharmacogenetics-based algorithm and 

its potential benefits in terms of improvements in safety and efficacy of warfarin. 
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Appendix D. Poster presented at British Society for Haematology 52nd 

Annual Scientific Meeting, Glasgow, April 2012 

 

VKORC1 and CYP2C9 genotype is associated with over-anticoagulation during 

initiation of warfarin therapy in children 

 

Tina T. Biss
1
, Peter J. Avery

2
, Michael D. Williams

3
, Leonardo R. Brandao

4
, John D. 

Grainger
5
, Julian B.S. Leathart

1
, Farhad Kamali

1 

 

1
Institute of Cellular Medicine; 

2
School of Mathematics & Statistics, Newcastle University, Newcastle 

upon Tyne, UK; 
3
Department of Haematology, Birmingham Children’s Hospital, Birmingham, UK; 

4
Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Canada; 

5
Department of 

Haematology, Royal Manchester Children’s Hospital, Manchester, UK 

 

The role of genetic polymorphism in determining response to warfarin during 

initiation therapy is well established in adult patient populations. Data in warfarinised 

children is lacking. Retrospective data on INR and warfarin dose for the first 3 

months of therapy were collected for 51 children; 39 males, median age at initiation 

of warfarin therapy 4 years (range: 1- 17 years). All children were genotyped for 

VKORC1 (-1639G>A; rs9923231) and CYP2C9*2 (R144C; rs1799853) and *3 

(I359L; rs1057910) alleles. Associations between genotype and outcome variables 

during initiation therapy were examined using regression analysis. Children with 

VKORC1 (-1639G>A) genotype AA (n = 6) had a higher peak INR during the first 

week of therapy (mean 5.1 ± 2.2) than those with GA (3.5 ± 1.4, n = 26) or GG (3.0 ± 

1.3, n = 19) genotype, P = 0.008. Children with a single variant CYP2C9 allele (*2, 6 

children; *3, 9 children) had a higher peak INR (mean 4.1 ± 1.7) than those with wild-

type CYP2C9 (3.2 ± 1.4, n = 35), P = 0.03. One child with CYP2C9 *2/*3 genotype 

had a peak INR in week 1 of 5.5. Children with a variant CYP2C9 allele had a greater 

proportion of INR values above target therapeutic range during the first month of 

warfarin than those with wild-type for CYP2C9 (14.3% vs. 8.7%, respectively, P = 

0.007). Children with VKORC1 (-1639) AA genotype had a greater proportion of 

INRs above target range during the first month of warfarin therapy (12.8%) than those 

with GA (10.3%) or GG (10.8%) genotype but this was not statistically significant. 

Knowledge of VKORC1 and CYP2C9 genotype may identify children who are at risk 

of over-anticoagulation during initiation of warfarin therapy and who may benefit 

from pharmacogenetics-based warfarin dosing in order to prevent early 

complications. 
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Appendix E. Oral presentation at XXIIIrd Congress of the International 

Society on Thrombosis & Haemostasis, Japan, July 2011 

 

Inter-individual variability in warfarin dose requirement in children can be explained by 

VKORC1 and CYP2C9 genotype and patient characteristics 

Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, Leathart JBS, Hanley JP, 

Daly AK, Kamali F 

 

Warfarin dose requirements vary among children. The aim of this study was to evaluate the impact of 

genetic polymorphism, in the enzymes that mediate the pharmacology and disposition of warfarin, and 

patient characteristics on maintenance warfarin dose requirement in a large cohort of children. 

Children with stable warfarin dose requirement were genotyped for VKORC1 (-1639G>A 

polymorphism), CYP2C9 (*2 and *3 alleles), CYP4F2 (rs2108622;V433M;C>T polymorphism) and 

APOE ε2, ε3 and ε4 variants. 

120 children with median age of 11 years (range: 1-18 years) took part in the study. There were 82 

males (68.3%), 91 White Caucasians (75.8%), 101 children with target INR range 2.0-3.0 (84.2%) and 

64 anticoagulated following a Fontan procedure (53.3%). Daily warfarin dose significantly correlated 

with height, weight and age, height being the best predictor of dose (r = 0.55, P < 0.001). Mean daily 

warfarin dose was higher in children with VKORC1 GG genotype (5.01 ± 2.17mg) than in those with 

GA (3.65 ± 1.92mg) or AA (2.23 ± 1.06mg) genotype, P <0.001, and higher in children who were 

CYP2C9 homozygous wild-type (4.30 ± 2.13mg) than in those with a *2 (3.68 ± 2.13mg) or *3 (2.22 ± 

1.08mg) allele, P <0.001. Children anticoagulated following a Fontan procedure required a lower 

warfarin dose than those anticoagulated for other reasons (3.43 ± 1.62mg vs. 4.38 ± 2.51, P = 0.02). 

Asian children required a higher warfarin dose due to the greater frequency of VKORC1 GG genotype. 

Gender, CYP4F2 and APOE genotype had no significant impact on warfarin dose requirement. In a 

multivariate regression analysis the variables of height, VKORC1 and CYP2C9 genotype and 

indication for warfarin explained 72.4% of inter-individual variability in maintenance warfarin dose 

requirement. 

A pharmacogenomic approach to warfarin dosing has the potential to improve the efficacy and safety 

of oral anticoagulation in this challenging patient population. 
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Appendix F. Poster presented at the British Society for Haemostasis & 

Thrombosis, Newcastle upon Tyne, October 2009 

ANTICOAGULATION CONTROL IN A COHORT OF 
CHILDREN ON CHRONIC THERAPY WITH 

WARFARIN 

T.Biss, P.Walsh*, F.Kamali. Institute of Cellular Medicine, 

Newcastle University, *Department of Paediatric 

Cardiology, Freeman Hospital, Newcastle, UK 

 

Children on warfarin therapy generally have poor 

anticoagulant control although it has been suggested that 

the use of home monitoring devices can improve it. This 

study examined anticoagulation control in a cohort of 

children on chronic therapy with warfarin in Newcastle 

upon Tyne, monitored at home using a point-of-care 
device, and identified the factors that were attributed to the 

deviations from target therapeutic range (TTR). Clinical 
records on children who were anticoagulated with warfarin 

for at least 3 months between January 1996 and April 2009 
were examined retrospectively. Data on 37 children (20 

males) with a median age of 8.3 (range: 1-17) years at start 
of therapy, for a total of 62 patient-years of warfarin 

therapy were included in the final analysis. All were 

monitored by home testing using a Coaguchekâ S device 

and dosed by a cardiology nurse specialist who was 

contacted by the parent/carer by telephone. Indications for 

anticoagulant therapy included Fontan circulation (16 

patients), prosthetic mitral valve (8) and primary 

pulmonary hypertension (4). TTR was 2.0-3.0 in 29 and 

2.5-3.5 in 8. Following initiation of warfarin therapy, data 

was collected from the time that INR values were 

therapeutic on two consecutive measurements. A mean of 

56.1% (range: 30.3-85.7%) of tests were within TTR, 

28.9% (range: 8.7-54.5%) were below, and 14.9% (range: 

0-37.1%) were above. The most frequent reasons for INR 
being above TTR were antibiotic therapy, intercurrent 

illness and medication changes. The most frequent reasons 
for INR being below TTR were poor compliance, doses 

omitted for a planned procedure and antibiotic therapy. 
Children with TTR 2.5-3.5 had fewer INR values within 

TTR (53.4% vs. 58.1%) and more INR values below TTR 
(33.6% vs. 28.6%) when compared to children with TTR 

2.0-3.0. Maintenance of anticoagulant control within TTR 
remains poor in children despite the availability of home 

monitoring and support for warfarin dosing. Further studies 

should assess the consequences of under- and over-

anticoagulation in children in terms of thrombotic and 

haemorrhagic events. 
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Anticoagulation control in a cohort of children on chronic 

therapy with warfarin  

T. Biss, P. Walsh* & F. Kamali 
Institute of Cellular Medicine, Newcastle University; *Department of Paediatric 

Cardiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, UK 

STUDY AIMS 

RESULTS INTRODUCTION 

METHODS & PATIENTS 

§ There is an increasing need for chronic 

anticoagulant therapy in childhood 

§ Oral anticoagulation is difficult to manage in 

children because of  age-related differences in 

dose response rates, chronic health conditions, 

frequent intercurrent illness and concomitant 

medications 

§ International Normalised Ratio (INR) results 

obtained with a point-of-care device in children 

are comparable with venous measurements 

§ Home monitoring with a point-of-care device 

may allow closer monitoring and therefore 

improve anticoagulant control in addition to 

improving quality of life for the child and their 

parent or carer 

 Table 2: Mean % INR values within, below and  

above target therapeutic range 

§ To examine anticoagulation control in a cohort 

of children on chronic therapy with warfarin, 

monitored at home using a point-of-care device; 

§ To identify the factors that are responsible for 

deviations from target therapeutic range (TTR) 

§ All children (< 18 years of age) who were 

anticoagulated with warfarin for at least 3 

months between January 1996 and April 2009 

were eligible for study inclusion 

§ All were monitored at home using a point-of-

care device (Coaguchek®S or Coagucheck®XS) 

§ All had their warfarin dosed by a Cardiology 

Nurse Specialist who was contacted with the 

INR results by the parent/carer by telephone 

§ Records of INR and warfarin dose were 

examined retrospectively 

§ Following initiation therapy data were collected 

from the time that INR values were therapeutic 

on two consecutive measurements 

§ Maintenance of anticoagulant control within 

TTR remains poor in children despite the 

availability of home monitoring with a point-

of-care device and support for warfarin 

dosing 

§ INR values in children are more likely to be 

below TTR than above TTR, increasing their 

risk of thrombotic events 

§ Children with a higher TTR (2.5-3.5) are less 

likely than those with a lower TTR (2.0-3.0) 

to have an INR within TTR and more likely 

to have an INR below TTR 

§ The most frequent reasons for a 

subtherapeutic INR are missed doses, 

cessation of warfarin for a planned procedure 

and antibiotic therapy 

§ The most frequent reasons for a 

supratherapeutic INR are antibiotic therapy, 

illness and a change in regular medication 

§ Further studies should assess the 

consequences of under- and over-

anticoagulation in children in terms of 

thrombotic and haemorrhagic events 

CONCLUSIONS  

Table 1: Patient characteristics 

*at start of warfarin therapy 

**giant coronary aneurysm, 1; thrombotic stroke, 1; truncus arteriosus repair, 1  
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Antibiotic therapy 

Change in regular medication 

Illness 

Took wrong dose 

Diarrhoea & vomiting 

Vaccination 

Dose reduced due to bleeding 
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Figure 1: Mean % of INR values for all 

children (a), those with target range 2.0-3.0 (b) 

and those with target range 2.5-3.5 (c) 
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Appendix G. VKORC1 and CYP2C9 genotype and patient characteristics 

explain a large proportion of the variability in warfarin dose requirement 

among children. Paper published in Blood 

 

 

 

 

 

 


