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Abstract 
Folates are essential in the de novo nucleotide biosynthetic pathway, folate receptor alpha 

(FR-α) is a folate transporter which is an attractive target for anticancer drug design due to 

its limited expression in normal tissues. It has great potential to direct therapies toward 

pathologic cells whilst minimizing toxicity in normal tissues. The enzyme folylpolyglutamate 

synthetase (FPGS) polyglutamates folates and folate analogues, trapping them within the 

cell and increasing their affinity as substrates for subsequent enzymatic reactions. 

Expression of folate biochemical pathway components, such as FR-α and FPGS, may be 

indicators of malignancy and also determine response to antifolate chemotherapeutics and 

other folate pathway targeted therapies currently being evaluated. Knowledge of their 

expression in tumours may enable optimal use by identifying responsive subgroups of 

patients. In spite of their importance in the diagnosis and treatment of cancer, the lack of 

monoclonal anti-FR-α and FPGS antibodies suitable for immunohistochemistry (IHC) analysis 

of formalin fixed, paraffin embedded biopsy samples or Western blot analysis has limited 

research in this area.  

The aim of this project was to generate and fully characterize monoclonal antibodies to 

detect specific expression of these proteins in formalin fixed, paraffin embedded tissues for 

use on archival tissue and samples collected prospectively in connection with clinical trials of 

antifolates.  

Novel monoclonal antibodies with specificity for sensitive detection of FR-α and FPGS in 

paraffin-embedded tissues were developed. ELISA and Western blot analysis confirmed 

specific reactivity of both antibodies to the recombinant protein, a single 40kD protein in 

whole cell lysates from cell lines known to express FR-α, and a single 60kD protein from cells 

expressing FPGS. Epitope mapping experiments confirmed specificity restricted to a linear 

epitope present in the protein target sequences. 

IHC analysis of FR-α in a panel of normal tissues demonstrated predominantly membrane 

with cytoplasmic staining limited to some ovarian epithelia (inclusion cysts), placental 

trophoblasts and proximal kidney tubules; FPGS demonstrated a wider pattern of 

expression. FR-α analysis of a panel of malignant and benign tissues demonstrated limited 

expression with variable intensities of staining and patterns of membrane and cytoplasmic 
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reactivity between cases. In the majority of malignant ovarian tumours, including an archival 

tissue microarray (TMA) of 167 tumour samples, membrane staining was observed in 89% of 

cases. FPGS analysis on a panel of benign and malignant tissues demonstrated frequent and 

high cytoplasmic expression in a range of tumours compared to normal adjacent tissue. 

The archival ovarian cancer TMA analysis showed a significant association between high 

expression of FR-α and poor patient survival (p=0.012, Cox regression) indicating a role for 

FR-α as a prognostic marker and potential therapeutic target for ovarian cancer and other 

cancers with expression of FR-α, detectable via the use of our antibody on FFPE tumour 

samples.  
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Hypothesis 
Folate biochemical pathway components such as FR-α and FPGS are predicted to be 

determinants of response to novel antifolate drugs such as pemetrexed and other folate 

receptor targeted cancer therapies. Such drugs are showing promise in current cancer 

chemotherapy trials and knowledge of their level of expression in tumours will enable their 

optimal use by identifying responsive subgroups of patients. This thesis describes the 

development and validation of specific monoclonal antibodies to facilitate this. 

To be practical for the analysis of protein biomarkers in multicentre clinical trials, antibodies 

are required which can be used on FFPE tissue, which is readily processed in local routine 

histology laboratories. To date, FR-α and FPGS antibodies suitable for immunohistochemical 

analysis of FFPE samples are not commercially available. A major aim of this project is to 

rectify this situation by the production of antibodies directed against both proteins. The 

antibodies generated may be of particular use as companion diagnostics to facilitate the 

screening ofpatients to establish the predictive value and significance of FR-α and FPGS 

expression for the therapeutic response to antifolates, in the context of multicentre clinical 

trials. In addition, the antibodies may also be used to predict response of other folate 

receptor targeted drug delivery systems and therapies currently under investigation.  

The antibodies developed in this project were evaluated on cultured tumour cell lines and 

panels of archival FFPE normal tissue and tumour samples, including a tissue microarray of 

167 ovarian tumour samples to ensure the patterns of immunoreactivity were consistent 

with previous published data and to test the hypothesis that FR-α and FPGS may be markers 

of poor prognosis in ovarian tumours with high expression.  

It is also hypothesised that FR-α expression may be altered via changes in extracellular 

conditions or via the action of hormones. The antibody validation experiments were also 

complimented by in vitro studies to determine whether alteration of extracellular folate 

concentration or treatment of breast and ovarian tumour cell lines with anti-oestrogens such 

as tamoxifen increases FR-α expression and potentially sensitises the cells to antifolates such 

as pemetrexed which are hypothesised to be internalized via FR-α.  
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Aims and Expectations 
 To produce monoclonal antibodies directed against FR-α and FPGS, for which 

there is an identifiable market as research tools and potential companion 

diagnostic/ prognostic markers of response in conjunction with the use of 

antifolate cancer chemotherapy agents and other agents currently being 

investigated. 

 Evaluate their ability to detect expression of these proteins by 

immunohistochemical analysis of FFPE tissue samples.  

 Evaluate the suitability of the antibodies for detection of FR-α and FPGS proteins 

by Western blotting of sodium dodecyl sulphate (SDS) polyacrylamide gel 

electrophoresis (SDS-PAGE) separations of tissue protein extracts.  

 Epitope map the antibodies to ensure their specificity for the target. 

 Assess the expression levels of FR-α and FPGS on ovarian cancer patient samples 

and evaluate their utility as prognostic markers. 

 Determine whether extracellular folate concentration changes and antioestrogens 

alter the expression of FR-α. This would have implications for the response to FR-α 

targeted therapies. 

 Evaluate the suitability of the antibodies for application in other techniques such 

as IF and FACS and identify any potential neutralizing properties they may possess.  
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Chapter One                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

1.  General Introduction 

1.1.  The Immune System 

The immune system is the body’s defence system against foreign agents, infectious 

organisms and cancerous cells. It has the capacity to generate an enormous variety of cells 

and molecules which act in synergy to specifically recognise and eliminate countless foreign 

organisms. 

The immune response can be broadly divided into two phases – immune recognition and 

response. Immune recognition is extremely specific and can identify subtle chemical 

differences which distinguish one pathogen from the next. Furthermore, this recognition 

system is able to discriminate between foreign molecules and the body’s own cells and 

proteins.  

Once a pathogen has been recognized, the immune system recruits a variety of cells and 

molecules to generate an effector response. Subsequent exposure to the same pathogen 

evokes immunological memory, characterised by a heightened immune reaction and a more 

rapid response (Goldsby, Kindt, Osborne, & Kiuby, 2003). 

 

1.1.1. Innate Immunity 

Immunity itself can also be segregated into two broad categories; the less specific 

component, innate immunity, provides the first line of defence against infection and 

prevents the penetration and spread of many infectious agents. Innate immunity is 

nonspecific and does not improve with repeated exposure, but does provide broad reactivity 

against various frequently encountered foreign pathogens. 

Components of the innate immune system include a variety of anatomic, physiological, 

biochemical, inflammatory and cellular barriers including skin, mucosa, lysozymes, 

complement and phagocytes (Goldsby et al., 2003). 
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1.1.2. Adaptive Immunity 

Adaptive immunity differs from innate immunity as it is able to recognise and selectively 

eliminate foreign pathogens. Adaptive immune responses differ between individuals as they 

are reactions to specific antigenic challenges.  

The antigenic specificity of the adaptive immune system allows it to distinguish subtle 

differences among antigens and is capable of generating tremendous diversity in its 

recognition molecules. Immunologic memory allows the adaptive immune response to 

confer lifelong immunity to many pathogens after just one initial exposure. 

Adaptive immunity is not independent of innate immunity and both systems work intimately 

together. Immune responses can be divided into cell mediated and humoral responses. Cell 

mediated immunity can be transferred only by the administration of T-lymphocytes from an 

immune individual; in contrast humoral immunity refers to transient immunity that can be 

transferred to a non-immune individual by the administration of serum antibodies from an 

immune individual (Goldsby et al., 2003). As this project is concerned with the humoral 

branch of the immune response this branch only will subsequently be discussed. 

 

1.1.3.  B-Lymphocytes 

B-lymphocytes mature in the bone marrow and each cell expresses a membrane bound 

antibody molecule. As a B-cell matures, random rearrangements of gene segments encoding 

an antibody molecule generate a vast number of B-cells with different antigenic specificities. 

Naive B-cells circulate and, upon first encounter with a pathogen whose antigen matches the 

membrane bound antibody, divide rapidly and differentiate into clones of antigenically 

committed mature B-lymphocyte daughter cells with a single, distinct specificity. Each cell 

clone recognises a discrete, identical site of amino acids (epitope) on an antigen. Epitopes 

can be both linear and conformational in nature. Memory B-cells are identical to the naive 

cell, expressing the same membrane bound antibody but have a longer lifespan. Plasma cells 

are B cells containing no membrane bound antibody but produce antibody in a secreted 

form, and have a finite lifespan of only a few days (Goldsby et al., 2003). 
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1.2. Antibodies 

Antibodies function as the effectors of the humoral immune response by binding to antigen 

and neutralising it or facilitating its elimination. When an antigen is coated with antibody it 

can be eliminated in two ways: 

  It can crosslink several antigens, forming clusters for digestion by phagocytosis; 

this occurs via activation of the complement system and results in lysis of the 

foreign organism. 

  Antibodies can also ‘coat’ (opsonise) an organism, thus neutralising it and 

preventing it from binding to host cells  (Guyton & Hall, 1997) . 

Antibodies (also termed Immunoglobulins, Ig’s) are glycoproteins residing in the serum 

fraction of blood (Tiselius, 1939) and have a common structure of four peptide chains, 

consisting of two identical light chains and two identical heavy chains; these are linked to 

each other by disulphide bonds and various noncovalent linkages to form a heterodimer 

(Figure 1-1). Similar interactions link the two heavy and light chains to form a dimer of 

dimers, forming the basic 4 chain structure of an antibody molecule (Guyton & Hall, 1997). 

Approximately the first 110 amino acids of the amino terminal region of a light or heavy 

chain can show great variation among antibodies and it is this region which is responsible for 

their defined specificity. The light chains contain a constant and a variable domain and are 

classified as either κ or λ, based upon small differences in their polypeptide structure. Each 

antibody contains two light chains which are always identical, but it is the heavy chains 

which determine the antibody subclass (isotype). There are five types of mammalian Ig 

heavy chain: α, δ, ε, γ and μ; these chains are found in IgA, IgD, IgE, IgG and IgM antibodies 

respectively (Jaton & Riesen, 1976). Each heavy chain contains a constant and a variable 

region, the constant region being almost identical in all antibodies of the same class. Each 

isotype differs in its biological properties, function and location. Igs can be further divided 

into sub classes/ isotypes based upon minor differences in the sequences of α and γ heavy 

chains:  α1, α2, γ 1, γ2, γ3 and γ4 giving rise to immunoglobulins IgA1, IgA2, IgG1, IgG2, IgG3 

and IgG4 respectively.  IgG is the major Ig present in the serum and provides the majority of 

antibody based immunity to pathogens (Goldsby et al., 2003). 
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Digestion of an antibody molecule with the enzyme papain produces three antibody 

fragments; two identical with antigen binding activity, denoted Fab fragments with a MW of 

45,000 Da, and one fragment  with no antigen binding activity, denoted the Fc fragment with 

a MW of 50,000 Da (Figure 1-1). 

 

Figure 1-1: Antibody structure. Each heavy and light chain in an Ig molecule contains an amino 

terminal variable (V) region (pale blue, yellow respectively), the remainder of the molecule the 

constant (C) regions (dark blue and purple) exhibit limited variation, defining the two light and five 

heavy chain subclasses. The Fc and Fab/ Fab2 regions are also depicted (Abcam). 

 

 

1.3. Antigens 

Substances which are recognised by the B-cell antibody are termed antigens; the basic 

principle of any immunological technique is that an antibody will combine with its specific 

antigen to give an exclusive complex of Ab/Ag. Classically, an antigen is defined as any 

substance which elicits an immune response in a susceptible animal and is capable of 

binding with the specific antibodies generated. Antigens are usually of a high molecular 
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weight and are commonly proteins or polysaccharides although nucleic acids, lipids and 

peptides have also been reported to function as antigens (Goldsby et al., 2003). 

For an efficient Ag/Ab interaction to occur the epitope must be exposed and available for 

binding, alterations in the conformation of epitopes through tissue processing, fixation, 

reduction and pH changes may affect the binding. It is for this reason antibodies are often 

effective for one particular immunological technique such as immunohistochemistry (IHC) 

but are unsuitable for application in a different technique such as Western blot (WB) or 

immunoprecipitation of native proteins. 

 

1.4. Polyclonal Antibodies 

Prior to 1975, the only antibodies available were polyclonal in nature. Polyclonal antibodies 

refer to antibodies present in the crude serum of an immunised animal, capable of 

recognising a number of different immunogenic epitopes of the administered immunogen. 

These antibodies may be of different subclasses. It will also contain other, sometimes large 

amounts of undesirable immunoglobulins produced via the animals immune response and, 

depending on the immunogenicity of the administered antigen may make up as little as 5% 

of the total immunoglobulin present. The presence of such antibodies increases the risk of 

cross reactivity and anomalous results and variability between batches often leads to 

inconsistencies in results. However, despite the drawbacks these antibodies are often used 

as they are quick and inexpensive to produce, requiring little skill or technical expertise.  

They are particularly useful when amplification of a signal from a target protein with low 

expression is required as they recognise multiple epitopes on one protein. 

 

1.5. Monoclonal Antibodies 

Monoclonal antibodies, in contrast are slow and expensive to produce and require high 

technology and extensive technical skills in order to produce successful antibodies. Large 

quantities of specific antibodies can be produced and their specificity ensures that only one 

epitope is recognised on an antigen, this is extremely useful when observing subtle protein 

alterations and the antibodies are less likely to cross react with other proteins and generally 

produce less background cross reaction. Once a hybridoma is established a constant and 
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renewable antibody source is generated and all batches are identical, eliminating the 

problem of batch variability associated with polyclonal antibodies. Monoclonal antibodies 

are only one subclass, usually IgG, allowing for selection of an appropriate secondary 

antibody for detection. 

Monoclonal antibodies (MAbs) have revolutionised immunology, their ability to discriminate 

between antigens has had a major impact upon numerous research areas including cancer, 

virology and inflammatory diseases. MAbs have several different roles and may be used in all 

stages of cancer therapy from the diagnosis, monitoring and finally also in the treatment of 

the disease. MAbs are produced by a specialised cell fusion technique, the methodology of 

which will be discussed in detail in section 3.1. The resultant antibodies generated are 

derived from stable fusion cells which can be grown in culture secreting genetically identical 

antibodies. 

 Their precise antigen specificity and ability to distinguish fine structural antigenic 

differences between proteins overcome the problems with cross reaction associated with 

polyclonal antisera and make them powerful biochemical tools. In addition to their 

therapeutic potential they are also extremely versatile in molecular biology, with application 

in ELISA, IHC, Western blotting (WB) and immunofluorescence (IF); convenient labelling with 

fluorescent or electron dense particles allow their application in both fluorescence and 

electron microscopy. 

As therapeutic agents, MAbs can be used directly to react with antigens on the surface of 

cancer cells and may enhance the immune response. They can be selected to act against 

growth factor receptors, inhibiting tumour growth. In addition they can be conjugated to 

anticancer drugs, radioisotopes or other toxins; upon binding to their antigen they can then 

selectively target the agent they are carrying to the tumour cells. 

Animal antibodies may elicit an immune response themselves in an individual. Many 

antibody therapies also require humanisation of the antibody before they can be used in 

order to reduce the likelihood of an immune reaction (Schroff, Foon, Beatty, Oldham, & 

Morgan, 1985). 

MAbs have had tremendous success to date, particularly in haematologic malignancies and 

in a number of solid tumours. To date the FDA have approved 21 MAb products, with six of 
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these being approved specifically for their use in cancer. The first MAb to receive FDA 

approval was Rituximab, a humanised MAb directed against CD20, a B-cell antigen expressed 

to a high degree in B cell malignancies, it is indicated for the treatment of low-grade 

lymphomas refractory to conventional therapy (Hainsworth, 2000; Hainsworth et al., 2000). 

Other MAbs include Trastuzumab (Herceptin®), a humanised McAb targeting the HER-2/neu 

antigen expressed in 25-35% of breast cancers and Edrecolomab targeting the 17-1A antigen 

seen in colon and rectal malignancies (Hainsworth et al., 2000; Haller, 2001).  

MAbs also have application outside of cancer therapy, including Palivisumab, used in the 

treatment of respiratory syncitial virus and Infliximab, which targets tumour necrosis factor 

alpha (TNF-α), used in the treatment of Crohns disease and arthritis (Alkan, 2004). 

The ‘magic bullet’ approach to cancers is the ultimate aim in cancer therapies, to selectively 

target the tumour whilst protecting normal tissues from any of the toxic effects.  MAb’s by 

their very nature have the potential to do just this, making them extremely attractive 

current and future tools in the fight against cancers. 

 

1.6.  Metabolism 

Glucose and other food molecules taken in from the diet are catabolised via controlled, 

stepwise oxidation processes, in order to provide chemical energy in the form of ATP and 

NADH.  

The products of glycolysis, the citric acid cycle and oxidative phosphorylation occur in the 

cytosol, mitochondrial matrix and mitochondrial membrane respectively and serve as the 

starting material for each subsequent reaction. 

As well as catabolic reactions, the intermediate products from both glycolysis and the citric 

acid cycle are used to produce small molecules used as raw materials in various biosynthetic 

pathways. One of such pathways is the synthesis of activated precursors, which ultimately 

form new DNA. 

Nucleotides, needed to form both RNA and DNA are synthesized via specialised biosynthetic 

pathways; carbon and nitrogen atoms present in purine and pyrimidine bases are derived 

from amino acids; deoxyribose and ribose sugars are derived from glucose (Alberts et al., 

2002). 
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Nucleotides play a central role in almost all biochemical processes carried out within the 

human body. Not only are they the monomeric components of DNA and RNA, but they also 

drive many free energy requiring reactions, regulate numerous metabolic pathways, 

mediate hormone signals and are essential coenzymes in a number of enzymatic reactions. 

Almost every cell in the human body can synthesize nucleotides de novo and from the 

degradation products of nucleic acids, reflecting their vital importance (Voet & Voet, 2004). 

 

1.7.  Folates  

Folate is derived from the latin word ‘folium’ meaning leaf, it is found in high concentrations 

in green, leafy vegetables and was first isolated from spinach in 1941 (Mitchell, Snell, & 

Williams, 1941). 

Folate is the generic term given to a large family of B vitamins with similar biological activity. 

Folates exist in various oxidation states, the most oxidised and stable of which is folic acid 

(pteroylmonoglutamate, PteGlu, Figure 1-2), used in nutritional supplements and food 

fortification. Naturally occurring folates are also used as pharmaceutical agents in the 

treatment of various cancers and anaemia (Fitzpatrick, 2003). 

Folic acid and its various coenzymes facilitate the transfer of single carbon (C1) fragments 

from donor molecules and are involved in methylation reactions, including purine and 

pyrimidine nucleotide biosynthesis, amino acid conversions such as the conversion of serine 

to glycine, catabolism of histidine to glutamic acid and the conversion of homocysteine to 

methionine (Fitzpatrick, 2003). 

The chemical structure of folate is comprised of a para-amino benzoic acid linked at one end 

to a 2-amino, 4-hydroxy- pteridine ring (pteroic acid)  and at the other end to a variable 

number of glutamic acid moeties, typically 1-9 residues (Figure 1-2). The pteridine ring is the 

component of the molecule which can be altered in its oxidation state at the N5 and N10 

positions. This ring cannot be synthesized endogenously by mammalian cells and must be 

obtained from exogenous sources via the diet or from intestinal microflora (Berg, Tymoczko, 

& Stryer, 2002; Rosenblatt, 1995). 
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Figure 1-2: Diagrammatic representation of the structure of the folic acid molecule. a) P-amino 

benzoic acid is linked at one end to 6 methyl pteridin, forming pteroic acid and at the other end to a variable 

number of glutamic acid moieties, forming the whole folic acid molecule. b) The structure of the polyglutamic 

acid molecule, three residues are represented but up to nine residues can be attached to the folic acid molecule 

(Polonen, 2000). 

 

 

1.7.1.  The Folate Pathway 

Folates taken in from the diet are absorbed through the intestine in the monoglutamyl form, 

primarily as N5-methyl tetrahydrofolate (THF). Transport through the membrane is 

facilitated by both receptor and carrier mediated mechanisms via the folate receptor (FR) 

and reduced folate carrier (RFC) respectively. Once inside the cell monoglutamyl folates are 

polyglutamated via the action of the enzyme folylpolyglutamate synthetase (FPGS, Figure 

1-3). These steps will be discussed in more detail in section 1.9. 

N5-methyl THF is converted into its more versatile cofactor N5,N10-methylene THF via the 

action of the enzyme serine hydroxymethyl transferase (SHMT). Demethylation of 5-methyl 

THF can also occur via the vitamin B12 dependent reaction with methionine synthase (MS), 

yielding THF (Figure 1-3). N5,N10-methylene THF is a key substrate, as its cellular 

concentration is thought to regulate the flux of this substrate into the different branches of 

a 

b 
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the pathway and is a more useful intracellular form of the vitamin that can be used in 

nucleotide biosynthesis (Green, MacKenzie, & Matthews, 1988; Matthews, 1984).  

Once inside the cell THF can be directed into one of three major branches in the pathway 

contributing towards: 

 Methionine synthesis and hence DNA Methylation 

 Purine synthesis 

 Thymidine synthesis 
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Figure 1-3: General overview of the folate metabolic pathway. Folates1 are transported into cells predominantly by the RFC2 and also by the FR3. FPGS4 catalyses the 

polyglutamation of folates. SHMT5 aids in the conversion of 5-methyl THF to 5,10 methylene THF, MS6 also yields THF from the catalysis of homocysteine to methionine. THF can 

aid in purine synthesis via GARFT7 and AICARFT8, yielding THF and thymidine synthesis via the action of TS9, yielding DHF and dTMP, the resultant DHF being recycled back to THF 

via the action of DHFR10. 
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1.8. Folate Transport 

The mechanisms by which folates are transported across cell membranes has been an area of 

research interest for many years. The mechanisms of cellular transport in tumours have been well 

studied and are commonly found to differ in tumours when compared with normal tissue.  

Normal adult tissues have been found to exhibit two major cellular transport mechanisms, each 

with a differential affinity for various oxidation states of folates and folyl coenzymes. These 

transport systems can be distinguished by their preferences for folates as substrates, as well as by 

differences in temperature and pH dependence (Lucock, 2000). 

The folate transport systems may be divided into two separate categories; the membrane 

channels or carriers which vectorialy transport the molecules, and the receptors, endocytic 

vesicles which are internalised. Both bind folates and some antifolate chemotherapy agents with 

high affinity and specificity (Brzczinsca, Winska, & Balinska, 2000). Although these methods are 

distinct from one another and function independently, both systems appear to deliver folate to 

the same intracellular compartment and their role in folate metabolism appear similar (Brzczinsca 

et al., 2000). More recently, the ubiquitously expressed proton coupled folate transporter, a low 

pH, carrier mediated mechanism of folate transport has also been identified. This mechanism was 

initially thought to be related to that of the RFC but recent work has identified it as genetically 

distinct from this mechanism. This transport mechanism may be an additional route of 

folate/antifolate uptake relevant to cells at low pH (Qiu et al., 2006; Zhao & Goldman, 2007).  

 

1.8.1.  The Reduced Folate Carrier 

The RFC is a member of the major facilitator superfamily of transport carriers and is a high 

capacity bi-directional transporter for both natural folate compounds and antifolate 

chemotherapeutics. It is similar in structural homology to the glucose transporter and possesses 

thiol groups vital to its transport function. Transport via the RFC is temperature dependent, 

sodium independent and is characterized by a neutral pH optimum (Brzczinsca et al., 2000). 

A study by Whetstine et al (2002) characterised the RFC gene and found it to be ubiquitously 

expressed in normal tissues. This is the major route of transport of folate into the cell (Whetstine, 

Flatley, & Matherley, 2002). It is located on the plasma membrane and contains twelve 

transmembrane domains with both the C and N terminal regions being located in the cytoplasm 

(Figure 1-4). The transport kinetic properties of the RFC indicate a poor affinity for folic acid (Ki = 
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~200µM) for reduced folate cofactors and methotrexate (MTX) (Antony, 1996; Brzczinsca et al., 

2000; Henderson, 1990). 

Folate metabolism is responsible for the conversion of homocysteine to methionine, important in 

the biosynthesis of S-adenosylmethionine, a methyl donor. Subsequently this is responsible for the 

methylation of CpG islands by DNA methyltransferases. If this biosynthetic pathway is impaired it 

may lead to either hypo- or hypermethylation, this may in turn adversely affect expression of the 

RFC (Odin et al., 2003). 

 

Figure 1-4: Diagrammatic representation of the RFC. Note the twelve transmembrane domains which loop 

between the inner and outer surfaces of the cell membrane, a large cytoplasmic loop inside the cell and cytoplasmic N 

and C terminal regions (Sadlish, Williams, & Flintoff, 2002). 

 

1.8.2. Folate Receptors (FR’s) 

Folate receptors have been an intense area of research, particularly in the last decade due to their 

unique pattern of distribution in normal tissues. The expression of folate receptors may have 

become redundant due to the ubiquitous expression of the high capacity RFC, however, there are 

a small number of normal tissues in which folate receptor expression is present. It is thought such 

tissues may serve to acquire folates from biological fluids where the folate concentration is very 

low (Elnakat & Ratnam, 2004).  Much of the research aimed at folate receptors is concerned with 
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the use of folate receptors as target for cancer treatment including small molecules such as 

antifolates or antibody therapies and the utility of folate receptors as a marker of prognosis or 

companion diagnostic for subgroups of cancers with their expression. 

Folate receptors are glycopolypeptides which are normally attached to the cell membrane via a 

glycophosphatidylinositol (GPI) anchor. GPI anchored proteins are attached to the external surface 

of the cell membrane by glycolipid moeties and are not directly accessible from the cytosolic face 

of the membrane (Figure 1-5).  

This feature makes the receptor inaccessible to circulating folates and antifolates. (Mayor & 

Reizman, 2004).  Also termed folate binding proteins (FBP), they bind a range of folyl coenzymes, 

including folic acid and N5-methyl-THF with a high affinity (Ki = 0.09-0.24nM) (Antony, 1996; 

Elnakat & Ratnam, 2004). 

 

Figure 1-5: GPI anchor structure.  General core structure consists of ethanolamine phosphate in an amide linkage 

to the C-terminus of the protein, three mannose residues (orange), glucosamine (blue) and phosphatidylinositol 

(purple) (Mayor & Reizman, 2004). 

 

FR’s have a mass of approximately 38-40 kDa and are members of the FOLR gene family, consisting 

of FOL1, FOL2 and FOL3 genes which encode the homologous isoforms FR-α, β and γ (Figure 1-6). 

All isoforms share highly conserved sequences in approximately 75% of the gene but differ in the 
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5’ untranslated region. This may account for the difference in tissue expression and biochemical 

properties observed between isoforms (Antony, 1992; Saiwaka, Price, Hance, Chen, & Elwood, 

1995). 

The two membrane associated forms of FR (α and β) are attached to the cell membrane surface 

and are capable of transporting folate into the cell by carrier mediated endocytosis but the 

majority of normal tissues virtually lack its expression (Elwood et al., 1997).  

FR-β has been found to be expressed in placenta and haematopoetic cells but not in other tissues.  

(Ratnam, Marquardt, Duhring, & Freisheim, 1989; Ross et al., 1999). Furthermore, FR-β found to 

be expressed on the surface of haematopoetic progenitor and stem cells has not been found to be 

functional for folate binding, indicating folate transport in such cells is also largely due to the RFC 

(Reddy et al 1999). 

A third member, FR γ, the product of the FOL3 gene is a secretory protein as it lacks the signal 

required for the formation of a GPI anchorage site, it has been found primarily in normal 

haematopoetic and leukaemic cells. As its levels are virtually undetectable in normal human serum 

it may potentially be of use as a serum marker for lymphoid malignancies  (Antony, Kane, Portillo, 

Elwood, & Kolhouse, 1985). These isoforms have now been characterised from several species 

(Antony, 1996).  

More recently a fourth member, FR-δ has been identified through database mining although its 

function and tissue expression has yet to be identified (Elnakat & Ratnam, 2004; Takimoto, 1997). 

The chromosomal location of the FR genes, including FR-δ has been determined to be 11q13.3-

11q14 and the FR’s are thought to be structurally similar to riboflavin binding proteins. From 

comparative cDNA sequences FR’s β and γ are closer in similarity than FR-α, indicating the gene 

encoding FR-α was diverged earlier in evolution (Elnakat & Ratnam, 2004). As this project is 

concerned with the generation of antibodies directed against FR-α, the RFC and other FR isoforms 

will not be discussed further. 
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Figure 1-6: The organisation of human FR genes. The numbers are indicative of the exon lengths in base pairs. P 

indicates the location of the promoter regions, adjacent to which are the Sp1 and ets binding sites which drive the 

basal promoter activity (Elnakat & Ratnam, 2004). 

 

 

 

There is no homology between the RFC and the membrane anchored FR proteins that would 

suggest any structural or functional similarity between the carriers and, although their functional 

role appears to be similar, their transport kinetics and affinity for folate differ significantly (Elnakat 

& Ratnam, 2004). 

Membrane-associated forms of the receptor are fully capable of transporting folate into the cell,  

although the RFC is the primary folate uptake pathway utilized by normal cells (Elnakat & Ratnam, 

2004). A number of theories exist as to the mechanism of folate uptake by FR’s.  

The first reports indicated that FR’s are recycled via a mechanism termed potocytosis (Figure 1 

-7). This mechanism was proposed from the observation that FR-α recycled between an 

intracellular, acid resistant pool to an extracellular, acid-sensitive pool (Kamen, Wang, Streckfuss, 

Peryea, & Anderson, 1988). FR’s are clustered on the cell membrane surface and have been 

reported to be preferentially associated with uncoated vesicular structures known as caveolae 

(membrane invaginations). These are characterised by the presence of caveolin – a marker 

protein. Caveolin 1 binds to cholesterol and is thought to play an essential role in internalisation 

and recycling of the FR, whereby the folate-bound receptor complex is internalised by the 

caveolae. Increased acidification of the closed compartment would dissociate the folate from the 

receptor and transport it into the cytosol with the energy generated from the acidic gradient. The 

closed invagination in the cell membrane would then reopen to expose the receptors for the next 
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cycle (Rothberg, Ying, Kolhouse, Kamen, & Anderson, 1990). Subsequent studies have indicated 

that the caveolar hypothesis may not be necessary for folate transport and have demonstrated 

that GPI-anchored proteins are distributed diffusely across the surface of the cell membrane, 

requiring cross-linking for subsequent clustering into caveolae. They also established that this was 

not achieved by folate binding (Mayor, Rothberg, & Maxfield, 1994). Some studies, however still 

argue that efficient delivery of folate into the cytosol is dependent upon caveolae (Ritter, Fajardo, 

Matsue, Anderson, & Lacey, 1995). 

 

Figure 1-7: Diagrammatic representation of the folate receptor potocytosis mechanism. The lowering of 

intracellular pH releases the anionic folate from the carrier. This lowering is achieved by acidification via an H+ pump 

which then causes the folate to dissociate from the receptor. It is then subsequently released from the vesicle into the 

milieu of the cytosol. The FR is then recycled back up to the plasma membrane, this process has been reported to take 

between 30 minutes and 5 hours (Kamen & Smith, 2004; Rothberg et al., 1990). 

 

 

More recently the lipid-raft endocytosis theory has been proposed as an FR-α transport 

mechanism. This involves membrane domains rich in lipids, GPI anchored proteins and signalling 

proteins clustered into large platforms that are able to segregate various membrane components. 

Lipid rafts are thought to regulate a number of different processes including lipid sorting, protein 

trafficking, cell polarisation and signal transduction (Le Roy & Wrana, 2005; Simons & Ikonen, 

1997). A number of studies have now indicated the role of this transport mechanism in FR 

mediated folate uptake, describing the potocytosis mechanism to be more akin to the PCFT. 

Recently, a number of proteins crucial to the cycling of FR’s have been identified and may provide 

more information on functional regulation of FR’s, although the exact mechanism is still to be 
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elucidated (Elnakat et al., 2009; Le Roy & Wrana, 2005; Mayor, Sabharanjak, & Maxfield, 1998; 

Sabharanjak & Mayor, 2004).  

The proposed transport systems are present in normal tissue, although are largely restricted to 

luminal surfaces and areas not directly accessible to the bloodstream. The mechanisms described 

are relatively inefficient, low-capacity modes of folate transport utilised by normal cells, likely to 

be due to their restricted expression. If FR’s are overexpressed in malignant cells, however, they 

may be an additional relevant transport route of folate, antifolate and other folate targeted 

therapies (Lucock, 2000; Theti & Jackman, 2004) 

The accumulated folate in the cytoplasm is regulated once it is released from the receptor. Slowly 

proliferating cells or folate depleted cells only take up folate until the cytoplasm has accumulated 

physiological levels of the polyglutamates, after which the process is inhibited through FPGH 

modulation, although the receptor remains functional and is not destroyed by the process 

(Brzczinsca et al., 2000). 

1.8.3. Folate Receptor Alpha Expression 

The expression profiles of FR-α described by Weitman et al were obtained by 

immunohistochemical analysis with the use of two murine monoclonal antibodies, mOV18 and 

mOV19, which were generated against an ovarian tumour membrane preparation. The mOV18 

antibody; developed as an ovarian cancer marker and the LK26 antibody, raised against a 

choriocarcinoma cell line were both subsequently discovered to recognise FR-α, however for 

immunohistochemical staining they only work in a limited fashion on freshly frozen tissue sections 

and are unsuitable for use in other applications such as WB, or IHC analysis of paraffin embedded 

tissue (Coney et al., 1991). 

Although there are many limitations with the use of these antibodies they have still been used in 

various studies to provide a large amount of information on the distribution of FR-α in normal and 

malignant tissues. Results from the use of the mOV 18 and 19 antibodies and mRNA studies have 

indicated that FR-α expression is limited to the epithelia of the choroid plexus, proximal kidney 

tubules, fallopian tube, uterus, epididymis, acinar cells of the breast, thyroid and trophoblasts in 

the placenta where they facilitate maternal to foetal transport of folate (Mangiarotti et al., 2001). 

IHC analysis on frozen sections have also indicated expression in bronchial glands, alveolar 

epithelium of lung, oesophagus, stomach, pancreas and thyroid with varying levels of expression 

(Mantovani et al., 1994). Expression in proximal kidney tubules has been reported both in human 
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proximal tubule cell lines and in intact rat kidney used to follow both uptake and trafficking of 

fluorescent conjugates of folic acid. These studies have indicated a role for FR-α in the salvage and 

reabsorption of folates that have escaped into the urine. This study also contra-indicated the fate 

of folate in neoplastic cells where cytosolic release of folates is readily observed (Reddy & Low, 

1998), explaining the absence of toxicity of folate conjugates to the kidney (Morshed, Ross, & 

McMartin, 1997, Sandoval, 2004). In the placenta, folates are proposed to play a role in the 

accumulation of folates in the foetal circulation (Yasuda et al., 2008). In the CSF their role is 

thought to be similar through their expression in the choroid plexus  (Ramaekers & Blau, 2004; 

Wollack et al., 2007).  

Many studies have examined FR-α expression and ability to bind folate in malignant tissues by 

various methods, including microarray analysis and radioligand binding assays. Much attention has 

focused upon ovarian and endometrial cancers as these tumour types express FR-α most 

consistently. Although the receptor has been found to be downregulated in mucinous 

adenocarcinomas of the ovary, FR-α has been found to be consistently expressed in non-mucinous 

adenocarcinomas of the ovary, uterine adenocarcinoma, testicular choriocarcinoma, ependymal 

brain tumours and non functioning pituitary adenoma  (Garin-Chesa et al., 1993; Ross, Chaudhuri, 

& Ratnam, 1994; Weitman et al., 1992a, {Ross, 1994, Garin-Chesa, 1993). It has been reported to 

be expressed in MPM and less frequently in breast, colon and renal carcinomas. As well as 

identification of the presence of FR-α in such tumours, the ability to bind folate has also been 

demonstrated (Elnakat & Ratnam, 2004).  

Wu et al (1999) used a quantitative in situ hybridisation method to examine the expression levels 

of mRNAs for FR-α in paraffin embedded tissue sections of a number of different ovarian, uterine 

and cervical cancers. Different patterns of FR regulation were observed between the different 

tissue types as well as in differentiation and malignancy. Differentiation of the germinal epithelium 

into mucinous tumours was found to be associated with the down regulation of FR-α. However, 

FR-α expression was found to be retained in malignant serous tumours of the ovary (Wu, Gunning, 

& Ratnam, 1999). 

Recently Yang et al (2007) found that FR-α mRNA is frequently overexpressed in osteosarcoma 

samples via the use of the reverse transcriptase polymerase chain reaction (RT-PCR). 75% of the 

tested samples (84/107) were found to contain detectable FR-α mRNA with 29.9% containing 

higher levels than that of the control ovarian cancer cell line SKOV-3 (Yang et al., 2007). 
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1.8.4. Regulation of Folate Receptor Alpha Expression 

In recent years, a number of transcriptional/post-transcriptional mechanisms have been studied as 

potential contributors to the unique tissue specificity patterns of FR genes. The investigation of 

such regulatory mechanisms could potentially be clinically advantageous as selective over 

expression may enhance the efficacy of FR-targeted therapies and the relevance of FR-α as a 

diagnostic marker.  

Several studies have examined the effect of folate concentration on receptor expression and have 

found that variations in the extracellular and hence intracellular folate concentration can 

modulate FR-α expression in a variety of cells. In vitro data has consistently indicated that FR-α 

protein was regulated by folate concentration in culture medium with cells grown in low folate 

conditions having up to a 4 fold increase in FR-α expression compared to cells grown in standard 

culture medium. This increase has also been shown to be reversed by the addition of folic acid or 

reduced folate coenzymes to the medium (Kane et al., 1988; Kelemen, 2006). Modulation of FR-α 

in this way may enhance tumour response to folate targeted therapies taken in by this route. 

Reports that various steroid hormones may alter FR-α expression support the requirement for 

further investigation. This type of regulation would be of value in folate receptor targeted 

treatments as it is hypothesised that the major limitation of this type of treatment is the variability 

of FR-α expression levels in tumours. Any means of specifically increasing FR-α expression would 

be of great potential in enhancement of such therapies and in the enhancement of diagnostic 

imaging. Concomitant use of both antioestrogens and antifolates in oestrogen expressing tumours 

may also have a synergistic effect and potential clinical relevance. 

Kelley et al (2003) reported that folate receptor levels are generally relatively low in oestrogen 

receptor positive ovarian and cervical tumour cell lines and have hypothesized that FR-α 

expression may be regulated by oestrogens. A negative correlation between FR-α expression levels 

and oestrogen receptor status in primary breast cancers has been observed, suggesting FR-α may 

be regulated via this nuclear receptor. The study reported transcriptional repression of FR-α by the 

oestrogens and derepression by antioestrogens such as Tamoxifen (Kelley, Rowan, & Ratnam, 

2003). 

Similarly Tran et al (2005) reported enhancement of FR-α expression via the glucocorticoid 

receptor (GR) agonist Dexamethosone which was inhibited by a GR antagonist. Treatment of HeLa 

(cervical carcinoma) cells with dexamethasone resulted in a progressive increase in expression of 
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both FR-α mRNA detected by real-time PCR and FR-α protein detected by WB using FR-specific 

rabbit antiserum. This enhancement was not, however observed in FR negative cells (Tran, 

Shatnawi, Zheng, Kelley, & Ratnam, 2005). 

Other studies identifying potential modulators of FR expression include retinoic acid dependent 

upregulation of FR-α (Bolton, Wood, Kennedy, Don, & Mattick, 1999), variant hepatocyte nuclear 

factor 1 activation of the FR-α P1 promoter (Tomassetti et al., 2003), caveolin downmodulation 

relating to overexpression of FR-α (Bagnoli et al., 2000), ethanol related upregulation of FR’s 

(Romanoff, Ross, & Mc Martin, 2007) and translational upregulation of FR’s via increased 

intracellular homocysteine concentration (Antony et al., 2004). 

 

1.8.5. Folate Receptor Alpha and Cancer 

FR-α is the most widely studied folate receptor isoform and is also the most highly expressed, 

although, as described previously its expression  is largely restricted to the apical membrane of 

polarised epithelial cells where it is not supplied with folate in the circulation. This is in contrast to 

its constitutive expression in certain specific malignancies where it is accessible via the vascular 

system.  

FR-α protein has been characterised as a marker of ovarian carcinoma, as it is overexpressed in 

more than 90% of non-mucinous ovarian carcinomas (Campbell, Jones, Foulkes, & Trowsdale, 

1991). Its expression is usually absent on normal ovarian epithelial cells but appears to be stable in 

ovarian cancers and has been shown to increase in its expression with disease progression 

(Mangiarotti et al., 2001). As the expression of FR-α appears to be related to malignant 

transformation, it is an active area of research, particularly as its expression in most normal cells is 

restricted, which makes it an attractive candidate for novel, experimental tumour targeted 

therapies.  

Another interesting area of research is the role of FR-α in tumour progression. It has been found 

that tumours with negative expression grow more slowly and that transfection of functional FRα 

can cause cells to grow more rapidly. This may be due to the nanomolar concentrations at which 

FR-α can take up folates, which may be too low for effective uptake via the RFC which takes up 

folates in the micromolar range (Ebel et al., 2007).  

Folate receptor targeted therapies currently being developed cover three broad categories; small 

molecule therapies including the antifolate class of chemotherapeutics, immunotherapies via the 
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use of FR targeted antibodies and TS inhibitors and folate conjugates, including both therapeutic 

agents and carriers. All such therapies require a disgnostic test in order to select for patients who 

may potentially benefit from the therapy, particularly in the case of FR-α which is a key 

determinant of response but its expression is limited.  

As folate plays a major role in the growth and replication of normal cells, its components are 

highly relevant targets for anticancer drug design. The effectiveness and cytotoxicity of these 

drugs are thought to be due to their inhibition of both DNA and RNA synthesis. Antifolates 

(antimetabolites), typically analogues of folates and TS inhibitors are the major classes of drug 

relevant to folate receptor targeted therapies. 

Natural folates and the classical antifolates are known to be taken up primarily via the RFC, 

although FR-α is an additional route relevant to some antifolates, particularly when the 

extracellular folate concentration is low (Theti & Jackman, 2004). The RFC is ubiquitously 

expressed and is the major cause of patient intolerability to such drugs with a lower concentration 

of drug reaching the tumour and causing toxicity in normal tissue. Antifolates specifically directed 

to FR-α would therefore be extremely promising, as the targeted approach would potentially 

deliver a higher concentration of drug to the tumour cells and result in lower toxicity to normal 

tissue (Jackman, Theti, & Gibbs, 2004; Wang, Zhao, & Goldman, 2003). 

Pemetrexed was developed in 1992 and is termed a multitargeted antifolate due to its ability to 

inhibit the folate dependent enzymes TS, DHFR, GARFT and AICARFT (Exinger et al., 2003). 

Pemetrexed has been found to have a high affinity for FR-α indicating this may be an additional, 

relevant route of uptake into the cell which may overcome drug resistance often seen with 

antifolates, although the primary route of uptake is via the RFC (Exinger et al., 2003; Wang et al., 

2003). 

Other antifolates which have shown an affinity for FR-α are the TS inhibitors ZD9331 and 

CB300638 and the GARFT inhibitor lometrexol, particularly CB300638 which is an FR-α targeted TS 

inhibitor (Gibbs et al., 2005; Theti & Jackman, 2004). Such drugs may be of particular relevance to 

tumours overexpressing FR-α and some have even been designed as such, given that RFC 

mediated antifolate drug delivery and its associated toxicities are impossible to avoid with current 

antifolates. 
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Two anti FR-α antibodies are currently being tested in clinical trials, the mOV18 antibody, which 

has shown promise in phase I trials with complete remissions being observed in 5/15 patients, 

with the remission being sustained in 1 patient almost 3 years post follow up and minimal side 

effects (Crippa et al., 1994).  

A humanised MAb, MORAb-003 (farletuzumab) has also been developed and has shown success in 

both phase I and II clinical trials. It was originally derived from the LK26 antibody, also a human 

anti- FR-α antibody suitable for use on frozen tissue and has been tested, both as a monotherapy 

and in combination with chemotherapy with promising results (Armstrong, 2009; Ebel et al., 2007; 

Konner et al., 2010). 

Folate conjugation aims to exploit FR mediated endocytosis by delivering the conjugated agent 

directly to the site of FR-α expressing tumours. A number of chemotherapeutic agents have been 

conjugated to folate with promising results, various types of drug carrier have also been 

conjugated to folates including liposomes, lipid nanoparticles and micelles. They have the 

potential to increase the load of cytotoxic drug to the tumour site and may allow it to be retained 

more readily than simple folate conjugates (Zhao, Li, & Lee, 2008).   

Other relavant therapies currently being investigated are folate conjugated anti T-cell receptor 

antibodies, which have previously been found to specifically target tumour cells for lysis, 

suggesting these conjugates may have value as immunotherapeutic agents (Kranz, Partrick, Brigle, 

Spinella, & Roy, 1995). Recently, dendritic cells transfected with FR-α mRNA have been used for 

the treatment of relapsed metastatic ovarian cancer with promising results (Hernando et al., 

2007). 

 

1.8.5.1. Selection of Patients for Folate Receptor Alpha Targeted Therapies 

There are a number of methods of assessing FR-α expression such as IHC on frozen tissue 

(Campbell et al., 1991) and imaging with folate conjugated radioisotopes (Zhao et al., 2008). It has 

also been suggested a simple blood test may potentially allow for selection of suitable patients 

due to the identification of functional soluble FR-α present in serum being higher in ovarian cancer 

patients than healthy volunteers (Basal et al., 2009; Mantovani et al., 1994).  

However, the standard and most routinely used method of detecting the level of expression of FR 

in tumours would be measuring the levels on FFPE tumour samples collected by biopsies. An 
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antibody suitable for this use would therefore be extremely promising as a potential companion 

disgnostic to all the therapies described.   

 

1.9. Folylpolyglutamate Synthetase 

FPGS catalyses the ATP dependent formation of an amide bond between the γ-carboxyl group of 

naturally occurring folates and the amino group of glutamic acid. The enzyme has both cytosolic 

and mitochondrial forms, differing only by the presence of a 42 residue amino terminal leader 

peptide sequence in the mitochondrial form. Up to seven glutamate residues can be added to 

monoglutamate compounds allowing them to be retained in the cell. This reaction occurs in both 

natural folates and antifolates. This is essential for the survival of all proliferating mammalian cells 

and it plays a central role in the action of antifolates, as polyglutamation increases both 

intracellular drug concentration and affinity for subsequent enzymatic reactions (Freemantle, 

Taylor, Krystal, & Moran, 1995; Odin et al., 2003).  

The FPGS gene spans 12 kilobases in length and the protein itself is approximately 60kDa, the 

cytosolic form differs from the mitochondrial form by a mass of 1 kDa. Both isoforms are derived 

from the same gene and the leader sequence is thought to be required for tracking and 

penetration into the mitochondria. Mitochondrial forms are thought to be involved in 

mitochondrial C1 metabolism whereas cytosolic forms are required for establishment of normal 

cytosolic folate pools (Chen et al., 1996; Sanghani, Sanghani, & Moran, 1999). 

As the action suggests, FPGS is expressed in any cell undergoing sustained proliferation and is also 

expressed in a number of differentiated tissues. Expression of FPGS activity is regulated by a 

proliferation dependent mechanism by which rapidly dividing cells express higher enzymatic 

activity than quiescent cells. Folate binding has also been shown to activate FPGS enzyme activity 

(Barredo & Moran, 1992; Egan et al., 1995; Sun, Cross, Bognar, Baker, & Smith, 2001). In addition, 

the folate binding domain of FPGS has been reported to be strikingly similar to that of DHFR (Sun, 

Bognar, Baker, & Smith, 1998). 

To date there is no known IHC data available on this particular protein, although mRNA gene 

expression studies have been carried out. Often mRNA and protein levels do not correlate and 

similarly a decrease in FPGS activity is not always associated with a decrease in FPGS mRNA, 

indicating that alteration in FPGS expression may occur at the post-transcriptional level (Leclerec 

et al 2001). 
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FPGS mRNA transcript levels have been found to be high in various tumours, in particular B-

lineage leukaemias. High levels of expression have also been observed in normal gut, bone 

marrow stem cells, liver and kidney. In the same study human heart and skeletal muscle were 

found to express very high levels of FPGS specific mRNA. Human brain and, surprisingly, placental 

tissue were found to have a low level of FPGS message. This enzyme, however, has not been found 

to be appreciably expressed in other normal adult tissues (Freemantle & Moran, 1997). These 

findings agree with a study carried out in 2001 by Leclerec et al, who also found high FPGS mRNA 

expression levels in human skeletal muscle, heart, liver and kidney (Leclerec & Barredo, 2001). 

A study by Odin et al (2003) found gene expression levels of FPGS to be significantly higher in 

colorectal tumour biopsies compared with normal adjacent mucosa. They concluded that the level 

of expression is also an independent prognostic marker, as patients with low levels of FPGS had 

shorter tumour specific survival than patients with a high level. They suggested the low level may 

indicate a folate deficient state that could increase aggressiveness of the tumour (Odin et al., 

2003). 

Modulation of FPGS in order to increase sensitivity to antifolates is an interesting area of research, 

although few studies have investigated this. Sohn et al (2004) investigated FPGS modulation on 

chemosensitivity to 5-FU and MTX in colon cancer cells transfected with sense/antisense FPGS 

cDNA. They found FPGS overexpressing cells to confer growth advantage over those cells treated 

with antisense cDNA and significant increase in sensitivity to 5-FU. No difference in 

chemosensitivity was observed with MTX (Sohn et al., 2004). Further studies in this area using 

different cell lines and antifolates would be interesting. 

 As FPGS is paramount in catalysing the activation of antifolate compounds, specific anti-FPGS 

monoclonal antibodies suitable for use on formalin fixed and paraffin embedded samples may 

enable us to predict the degree of response tumours may have to such drugs, enabling more 

informed decisions to be made with regard to the choice of treatment and identification of those 

patients most likely to respond to antifolate chemotherapy. In addition it would greatly aid in 

clarification of FPGS expression profiles which, to date have largely relied on mRNA data which is 

not always representative of the protein expression levels in the same tissue (Leclerec et al 2001). 
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1.10. Summary 

The folate pathway components FR-α and FPGS are highly relevant targets, particularly in ovarian 

cancer and other tumour types with high expression. The dual role of FR-α as both a promising 

target for cancer therapy and its association with poor prognosis makes it particularly interesting. 

Cancer therapies currently being developed aim to offer the ‘magic bullet approach’ to cancer 

therapy, targeting the tumour and minimizing toxicity to normal tissues. A number of therapies 

are currently preclinical and clinical trials.  Potential modulators of FR-α expression have also been 

identified and have the potential to upregulate expression of FR-α in tumour cells, enhancing the 

efficiacy of folate targeted therapies. A number of methods are currently being developed to 

determine the expression of FR-α in tumours, which would aid in the selection of patients who 

may benefit from FR targeted therapies. Antibodies directed against FR-α and FPGS, suitable for 

use on FFPE tumour samples would greatly assist with this highly relevant area of research and 

allow suitable patients to be selected routinely and with ease in hospital pathology labs without 

the need for complex detection methods. It is thus a major aim of this project to generate 

antibodies suitable for this application. 
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1.11. Research Plan 

Year 1: 

Stage 1: Select regions from FR-α and FPGS protein sequences and amplify via PCR from cDNA 

prepared from mRNA derived from cell lines, clone the product into a T-vector. Sequence fidelity 

would then be assessed via automated DNA sequencing from Lark Technologies. The insert would 

then be subcloned into both pET21b and pET41b expression plasmids. pET41b plasmids have been 

shown to increase the solubility of proteins due to the presence of a GST tag, this tag is also highly 

immunogenic and may aid in stimulating the mouse immune response later in the project. Initial 

subcloning would be performed using NovaBlue E.coli, this host lacks T7 polymerase, and this step 

reduces plasmid instability. The plasmid would then be transformed into the inducible T7+ 

lysogenic expression host BL21plysS or Tuner strain. Purification of the resultant recombinant 

protein will be achieved via his-bind chromatography. 

Stage 2: Laboratory female BalbC mice would be immunised with the antigens prepared in stage 1. 

Responding animals would be sacrificed after an immunisation schedule and the primed B-cells 

from the spleen would be fused with NS-1 myeloma cells to establish specific hybridomas. The 

specific reactivity of the secreted antiodbodies will be assessed via ELISA, IHC and Western 

blotting. 

Year 2: Evaluation of antibodies for immunohistochemistry on paraffin and frozen tumour 

samples, Western blotting and ELISA; Epitope mapping of selected antibodies; Analysis of FR-α and 

FPGS expression in tumour biopsy samples, including a large archival collection of ovarian tumour 

samples in tissue microarray form and correlation of expression with clinical and histopathological 

data, including oestrogen receptor expression, and prognostic significance for response and 

survival in univariate and multivariate analysis. 

Year 3: In vitro cell studies on breast and ovarian tumour cell lines to test for the ability to 

modulate the expression of FR-α by oestrogen and anti-oestrogen treatment and the consequence 

for response to folate receptor targeted therapies. Assessment of antibodies for application in 

other techniques such as IF and FACS. Evaluation of any neutralizing properties the antibodies may 

possess.  Preparation of thesis. 
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Chapter Two 

2.  Antigen Design and Preparation 

2.1.  General Introduction 

Prokaryotic host expression systems have been used widely in molecular biology to produce 

recombinant proteins for a wide range of different applications. One such application is the 

immunisation of animals for monoclonal antibody production.  

Both monoclonal and polyclonal antibodies have important clinical applications in the detection, 

diagnosis and treatment of cancers.  They are also important tools for the study of protein 

expression in both normal and tumour tissues. Antibodies can be directed against a wide range of 

different antigens such as recombinant proteins (soluble or refolded), synthetic peptides, nucleic 

acids and carbohydrates.  

The generation of a suitable recombinant protein or synthetic peptide which can be used for the 

induction of an immune response in laboratory animals is the first step in antibody production. 

Both prokaryotic (bacterial) (Rosenberg et al., 1987; Studier & Moffatt, 1986) and eukaryotic 

expression systems (Luckow & Summers, 1988) may be utilized to produce a suitable antigen. 

 

2.2. Recombinant Protein Expression Systems 

 Prokaryotic expression systems are commonly used for the production of recombinant eukaryotic 

proteins and have several advantages, including the ease of cell culture, inducible protein 

expression, rapid cell growth and subsequent protein expression, ability to express large regions of 

the protein of interest and high protein yield. It offers advantage over more complex eukaryotic 

systems when required for antigen generation and subsequent immunisation for antibody 

production. Prokaryotic hosts lack complex post-translational modification processes which can 

often lead to masking of linear epitopes (Baneyx, 1999). This may be of particular value when 

attempting to generate antibodies suitable for both IHC and WB analysis. The fusion proteins 

produced via this method can be purified by affinity chromatography and the antigens produced 

are often successful. If the protein produced is insoluble, simple methods are available to 

solubilise and refold the protein, although this may pose a problem if the protein produced is 

required for functional or enzymatic studies, as recovery of functional proteins from insoluble 
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inclusion bodies is not always possible (Singh & Panda, 2005). The pET prokaryotic expression 

systems using E.coli as a host were selected for use in this project in order to generate 

recombinant FR-α and FPGS for subsequent immunisation, which will be discussed in more detail 

in the following chapter.  

Eukaryotic expression systems include protein expression via yeast, mammalian and insect cells. 

The advantage of eukaryotic expression systems are the high levels of protein expression and ease 

of purification. Some systems even secrete the protein into the media, allowing for continuous 

expression of a protein without lysing the cells. As eukaryotic proteins are being produced by 

eukaryotic cells there are no problems associated with incorrect protein folding and the post 

translational modifications remain intact. These are important for functional protein studies and 

the analysis of protein-protein interactions. The major disadvantage of eukaryotic expression is 

the slow rate of protein production as eukaryotic cells do not grow as rapidly as prokaryotic cells 

(Mattanovich, Gasser, Hohenblum, & Sauer, 2004). 

Synthesis of peptides is another method of generating an antigen for immunisation and is 

particularly useful when a unique sequence is required from proteins with high sequence 

homology They are also useful where a particular epitope target is required for antibody 

production such as an antibody directed against a phosphorylated region of a protein. The 

disadvantages of peptides are their instability and lack of immunogenicity. They often have to be 

conjugated to larger compounds, decreasing the likelihood of an immune response to the peptide 

target. They are also more difficult to use as screening antigens in later stages of antibody 

production, as peptides are more likely to degrade. It often requires many attempts to generate 

an antibody to a peptide, so it is also potentially time consuming. In our experience this has not 

been found to be as successful as generation of antibodies to recombinant protein antigens. For 

this reason the recombinant protein method was used in preference to generation of a peptide 

target.  

 

2.2.1. The pET Expression System 

The pET expression vector system is one of the most commonly used E.coli expression systems, it 

is used for subcloning regions of cDNA and subsequent expression of corresponding recombinant 

protein regions in E.coli host strains (Rosenberg et al., 1987; Studier & Moffatt, 1986). The pET 

system relies on high level inducible expression from the bacteriophage T7 promoter in specialised 
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bacterial hosts in which the production of T7 RNA polymerase is under the control of an inducible 

lac promoter (Figure 2-1). The system also allows convenient tagging of proteins with 6 histidine 

motifs to facilitate purification of proteins by immobilised nickel ion chromatography and the 

production of fusion proteins tagged with sequences that often enhance solubility of the target 

protein. The pET expression system is of particular value when expression of large protein target 

regions and high levels of recombinant protein are required.  

Target DNA is subcloned into pET plasmids, once cloned they are under the control of the 

bacteriophage T7 promoter which controls the transcription and expression of the protein. 

Expression can therefore be induced by transformation into an E.coli host carrying a T7 RNA 

polymerase gene.  Initially the plasmid is transformed into a non-expression host such as 

Novablue, which does not contain the T7 RNA polymerase gene. This step reduces plasmid 

instability caused by potentially toxic protein production in the host and increases the yield of 

recombinant plasmid. After this step the plasmid is then transferred into an expression host 

containing a copy of the T7 RNA polymerase gene (Figure 2-2). 
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Figure 2-1: The control elements of the pET system. A recombinant plasmid is transferred to E.coli containing a copy of the gene encoding T7 RNA polymerase. These hosts 

are also lysogens of bacteriophage DE3, a lambda derivative containing the LacI gene, lac UV5 promoter and the T7 RNA polymerase gene.  Once the DE3 lysogen is formed, the 

only promoter able to direct the transcription of the T7 RNA polymerase gene is the UV5 promoter, inducible by IPTG. Addition of IPTG induces production of T7 RNA polymerase,  

transcribing target DNA in the plasmid (Novagen Catalogue). 
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Figure 2-2: Overview of the recombinant protein production methods used for the generation of recombinant FR-α and FPGS. Suitable target sequences were selected 

using bioinformatics tools to ensure targets were unique, primers were designed and synthesised and DNA was created from mRNA via RTPCR and PCR. The DNA was cloned into a 

non expression vector and propagated in a non-expression host then subcloned into a pET expression vector and expressed in an E.coli expression host. Resultant proteins were 

purified and stored in preparation for immunisation. 
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2.3.  Aims and Objectives 

The aim of this part of the project was to generate suitable recombinant FR-α and FPGS proteins 

which could subsequently be used as immunogens for the production of anti FR-α and FPGS 

antibodies. The schedule in this part of the project was as follows: 

 Identify the known coding sequences for both proteins and perform homology searches, 

selecting target sequences based on the information. 

 Design and generate suitable FR-α and FPGS primers for amplification of cDNA prepared 

from cell lines known to express the proteins and to prepare the insert for cloning. 

 Use pGEM T vectors to clone the insert and check sequence fidelity via automated 

sequencing. 

 Excise the fragment from the T-vector and subclone into pET21b and 41b expression 

plasmids.  

 Expand and purify the pET-fragment constructs in a non expression strain of E.coli and 

transform into a suitable expression host to express his-tagged recombinant FR-α and 

FPGS. 

 Purify the resultant recombinant protein via his-bind (nickel affinity) column 

chromatography. 
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2.4.  Materials and Methods 

2.4.1. Antigen Design 

2.4.1.1.  Homology Searches 

Literature and bioinformatic database searches were performed to elucidate the known full-length 

amino acid and base sequences for each protein of interest (FR-α and FPGS). The sequences were 

found using links and tools on the European Biomatics Institute (EBI) website at 

http://srs.ebi.ac.uk (1997-2003 LION Bioscience AG). FR-α and FPGS were listed under accession 

numbers P15328 and Q05932 respectively. 

Homology tools were then used to identify any similarities between the protein sequences and to 

identify any other homologous sequences. This would reduce the possibility of any potential 

antibody cross reactivity later in the project. 

 

2.4.1.2.  BLAST Searches 

Basic Local Alignment Search Tools (BLAST) (Gish & States, 1993) are similarity search programs 

designed to identify any sequences which show significant alignments. It can detect relationships 

between sequences common to humans and also inter-species relationships.  

The BLAST program was accessed via the National Center for Biotechnology Information (NCBI) 

website at http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi.  

 

2.4.2.  Target Sequence Selection 

The primary aim of target sequence selection was to identify unique regions within the FR-α and 

FPGS sequences for the generation of highly specific antibodies by avoiding regions of homology 

with other proteins using the programs described above. 

In addition, compliance with GMM risk assessment procedures was also necessary. This involved 

avoidance of any key active site residues, anchorage points and other motifs required for 

biological activity. This allowed the project to be performed at containment class I.  

The aim was to select as much of the sequence as possible whilst concomitantly observing the 

above regulations. 
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2.4.3.  Restriction Mapping 

Restriction maps for each cDNA protein coding region were also obtained in order to determine 

the positions of all restriction sites throughout both the FR-α and FPGS sequences. This was 

performed in order to enable appropriate selection of restriction sites to engineer into the 

terminals of the forward and reverse primers which would be used to amplify the regions selected, 

use of a restriction site already present in the target sequence would result in truncation of the 

protein and thus were avoided. The restriction maps were obtained from Harvard education at 

http://pga.mgh.harvard.edu/cgi-bin/map.cgi. The maps obtained also provided information on 

unique restriction sites and restriction sites not found within the protein sequence. This assisted in 

selection of appropriate restriction sites.  

 

2.4.4. Oligonucleotide Primer Design 

Complementary primers were designed, E.coli codon usage was considered at this stage as 

translation may be impaired if the codon usage is found to be low, which may result in failure of 

subsequent steps. Rectification of this may involve alteration of a limited number of bases or 

movement of primers to avoid unfavourable codon usage. The primers were designed to base pair 

with mRNA sequences derived from cell lines known to express the protein, flanking the regions of 

interest. Information on the protein expression in various cell lines was found from the National 

Cancer Institute website at http://dtp.nci.nih.gov/mtweb/.  

Restriction sites were engineered into the 5’ end of each forward and reverse primer to allow for 

subcloning into the polycloning site of pET expression vectors. 

As well as addition of restriction sites the primers had to be designed to ensure the proteins would 

be translated in the correct reading frame, engineering an extra base into the primer sequence is 

often required to ensure this occurs. A guanine residue was also engineered into the 5’ end of the 

restriction site as they are the most efficient residues for acquiring non-template derived adenine 

residues which Taq polymerase commonly adds to the sequence during transcription. This is of 

significance as initial cloning involved placement of the fragment into a T-vector which will be 

discussed in detail in section 2.4.11. 

GC rich areas of the sequence were also avoided if at all possible as they often cause problems 

with self complementation in PCR. 
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The melting temperatures (Tm) of each forward and reverse primer pair were also calculated to 

ensure they were similar, to ensure both primers would anneal under the selected conditions. 

 

Figure 2-3: Primer Tm calculation. Approximate Tm values were estimated according to the following general rule: 

 

4o (G+C) + 2o (A+T) = Tm 

 

2.4.5. Oligonucleotide Primer Synthesis 

Primers were synthesised using an automated synthesiser, (Applied Biosystems) the method used 

to add each base was the phosphoramidite method (Caruthers 1987). Prior to each synthesis the 

machine was prepared according to the manufacturers instructions and various visual safety 

checks performed. The resultant primer solutions were removed from the machine in glass vials 

containing ammonium hydroxide. The solution was transferred into plastic screw cap 1.6ml 

microfuge tubes, sealed and incubated at 56oC overnight to remove protective groups. The 

primers were then placed at -20oC for 15 minutes to reduce the volatile state of ammonia. 400µl 

primer solution was removed and treated with 40µl Sodium acetate (NaAc, 2M, pH 4.0-4.8) to 

remove the ammonium hydroxide. 1.2ml 100% ethanol was then added and the DNA precipitated 

for 15 minutes at -80oC, then centrifuged (Eppendorf 5702, 10 minutes, 14000 RPM) to pellet the 

DNA. The supernatant was removed and the pellet washed in 100µl 70% ethanol, spun down again 

and dried in a 65oC hot block. Once dry the pellet was resuspended in 150µl RNase free water 

treated with 0.1% DEPC. 

 

2.4.5.1.  Oligonucleotide Primer Quantitation 

Primer concentrations were calculated using an automated calculator. 10µl primer was added to 

990µl dH2O to make a 1/100 dilution and placed in a cuvette. The machine was blanked according 

to the manufacturer’s instructions and the absorbance at 260nm measured (Genequant II 

DNA/RNA Calculator, Pharmacia Biotech). The primer concentration was given in pmol/μl (μmol/l). 

For each primer solution measured, a stock solution of 7.5μM was prepared and stored at -20oC. 
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2.4.6. RNA Preparation 

The human ovarian carcinoma cell lines SKOV-3 and IGROV-1 were selected for RNA extraction as, 

from the NCBI data, they were found to have high levels of both FR-α and FPGS mRNA. The cells, 

which grew as a monolayer, were maintained in appropriate culture medium: RPMI 1640 (Sigma, 

UK), 10% foetal bovine serum (Sigma, UK) and 2mM L-glutamine (Sigma, UK) with 5% CO2 in a 37oC 

incubator. Cells were harvested at approximately 75% confluence (~107 cells) via the use of 

trypsin-EDTA (Sigma, UK), washed three times in phosphate buffered saline (PBS) and pelleted via 

centrifugation (Eppendorf 5702, 2000 RPM, 6 mins). The pellet was resuspended in 200µl PBS and 

stored at -20oC prior to RNA extraction. mRNA was extracted from both cell lines using an RNA 

preparation kit (RNeasy, Qiagen) and extraction of total RNA was carried out according to the 

manufacturer’s instructions. The quality of the RNA was assessed by agarose gel electrophoresis 

(see 2.4.9) and spectrophotometry. 

 

2.4.7. Complementary DNA Preparation/RT-PCR 

Reverse transcription of mRNA is necessary as eukaryotic genes cannot be translated directly by 

bacterial cells due to the presence of introns. Eukaryotic organisms have the ability to remove 

non-coding introns after transcription via enzymatic splicing. As bacteria lack these necessary 

enzymes, they are unable to translate eukaryotic genes in their native form.  Amplification of DNA 

segments can be performed by obtaining spliced mRNA transcripts from the eukaryotic cytoplasm 

and converting it back to a DNA copy lacking introns. This is achieved using the enzyme reverse 

transcriptase (RT), also known as RNA dependent DNA polymerase. The resultant complementary 

DNA (cDNA) template can then be used for the polymerase chain reaction. 

cDNA was prepared from SKOV-3 and IGROV-1 mRNA by RT-PCR. 0.5ml microcentrifuge tubes 

were assembled containing the following components: 
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Table 2-1: RT-PCR Components 

Reagent Volume (μl) 

RNA (1-2µg) 3 

Reverse Primer (7.5µM) 4 

MgCl2 ( 25mM Fermentas) 4 

Dimethyl Sulphoxide (DMSO) (Sigma) 1 

10x RT Buffer (100mM Tris pH 8.3, 0.5µM 
KCl, 15mM MgCl2, 0.1% gelatine, 20mM 

DTT) (Promega) 

2 

RNase free H2O 3 

RNasin (10U/µl, Promega) 0.5 

dNTP’s (10mM, Promega) 2 

Reverse Transcriptase (20U/µl, Promega) 0.6 

 

The mixture was overlaid with 40μl mineral oil to avoid evaporation and pulse spun to ensure 

mixing of the components. Reverse transcription was performed in a mini thermal cycler (MS 

Research Mini-Cycler), this machine was programmed for chain extension at 42oC for 30 minutes, 

enzyme denaturation at 95oC for 5 minutes and a 4oC cooling temperature, left for a minimum of 

15 minutes. The cDNA was stored at -20oC until required. 

 

2.4.8. The Polymerase Chain Reaction (PCR) 

PCR is an enzyme based technique used to amplify a segment of DNA which lies between two 

regions of a known base sequence. The cDNA produced via RT-PCR is denatured via heating in the 

presence of two oligonucleotide primers engineered to anneal to the 5’ and 3’ ends of the 

sequence of interest and a pool of the four dNTP’s. The mixture is then cooled to allow the 

primers to anneal and amplification is achieved via the action of Taq DNA polymerase. This cyclic 

mechanism of heat denaturation, annealing and amplification can be repeated many times (Figure 

2-4). Taq polymerase can be added to the PCR mixture before heat denaturation, it can also be 

added once the annealing temperature is achieved; this is known as a ‘hot start’. Taq polymerase 

is purified from the thermophilic bacterium Thermus Aquaticus which resides in hot springs in 

temperatures above 100oC. Its DNA polymerase is thermostable and is not affected by the heat 

denaturation step, it is for this reason it is commonly used in PCR reactions. 
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Figure 2-4: Steps involved in PCR reactions. DNA is denatured to separate the double stranded helical structure 

(step 1), annealing is then achieved by addition of Taq polymerase to the mixture of primers and a pool of dNTP’s and 

cooled (step 2); amplification/ synthesis (step 3) is achieved via a cyclic mechanism of heat denaturation, annealing 

and amplification which may be repeated many times (Britannica encyclopaedia 1998). 

 

 

PCR was performed according to the method of Mullis et al. A sterile 0.5ml centrifuge tube was 

used in the PCR reactions, 10μl of cDNA from both the SKOV-3 and IGROV-1 RT reactions were 

added to the tube along with various other reaction components used to hybridise to the cDNA 

and prime elongation (Mullis et al., 1986). 

 

Table 2-2: PCR Mixture Components 

Reagent Vol (μl) 

cDNA from RT Reaction 10 

Forward Primer (7.5 μm) 2 

MgCl2 (25 mM, Fermentas) 2 

Dimethyl Sulphoxide (DMSO) (Sigma) 4 

10x RT Buffer(100mM Tris pH 8.3, 0.5µM 
KCl, 15mM MgCl2, 0.1% gelatine, 20mM 

DTT) (Promega) 

4 

RNase free H2O 27.5 

Taq Polymerase (1u/μl, Fermentas) 0.5 
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Again the mixture was overlaid with mineral oil to avoid evaporation and pulse spun to ensure all 

reagents were mixed. PCR was performed in a thermal mini-cycler via a programmed reaction. 

(MS Research Mini-Cycler) 

The following program was used in the PCR reaction. 

 

Table 2-3: Standard Conditions used in PCR reactions. 

Step Temperature Time Reason 

1 95oC 1 minute Denaturation of cDNA 

2 55oC 1 minute Primer annealing 

3 72oC 1 minute DNA synthesis 

4 95oC 30 seconds Denaturation 

5 55oC 30 seconds Primer re-annealing 

6 72oC 1 minute DNA synthesis Repeat steps 4-6 30 times 

7 72oC 10 minutes Pick up A’s for T- vector, complete 
synthesis 

8 4oC Overnight  

 

The resultant PCR product was held at 4oC and stored at -20oC. A 7μl sample of both PCR products 

was analysed by agarose gel electrophoresis to observe the result of the reactions. 

 

2.4.9. Agarose Gel Electrophoresis 

Agarose gel electrophoresis is used to separate DNA molecules on the basis of their size and is 

commonly used following PCR reactions to assess the success of the amplification, concentration 

and size of the PCR product generated. The resolution is dependent upon the concentration of 

agarose, the buffering system used, mass charge ratio and relative electrophoretic mobility of the 

fragments when an electric current is applied to the gel. 

 

2.4.9.1.  Preparation of DNA Size Markers 

A stock solution of DNA markers were prepared by addition of 20μl loading buffer (0.35% Orange 

G, 30% glycerol, 10mM EDTA) and 40μl dH2O to 10μl of a 123 base pair ladder (Sigma, UK). 

Markers were stored at -20oC until required. 6μl was loaded on to each gel. 7μl PCR reaction 

mixture was added to 3μl loading buffer and loaded on to the gel. 
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2.4.9.2.  Agarose and Running Buffer Preparation 

1.7% agarose gels were used for separation and detection of PCR fragments.  Gels were prepared 

by melting 1.7g agarose powder (Helena Biosciences) in 100mls Tris-Boric acid-EDTA buffer (TBE 

buffer; 0.09M Tris-Borate, 0.002M EDTA, pH 7.4). The solution was allowed to cool to 56oC before 

addition of 1μl ethidium bromide (EtBr) (125μg/ml, Sigma). 

The gel was poured into a gel casting tray with a comb to form wells for sample loading. Once set 

the gel was submerged in an electrophoresis tank containing TBE buffer, the samples and markers 

were loaded and the gel electrophoresed for approximately 20 minutes at 120 volts.  

The DNA was visualised by staining with EtBr which, was added to both the gel running buffer and 

agarose, EtBr is a DNA intercalating agent and binds to DNA between the bases of the double 

helix. The labelled DNA can then subsequently be visualised via the use of an ultraviolet light 

transillumanator (UV-dual intensity transilluminator, UVP Ltd. UK) as EtBr has fluorescent 

properties under these conditions. 

 

2.4.10. Gel Extraction/ Fragment Preparation 

PCR products were excised from agarose gels via the use of a scalpel and purified using a column 

based method using a QIA quick spin gel extraction kit (Qiagen). Protocols were followed 

according to the manufacturers instructions.  

Once eluted the purified samples were analysed by gel electrophoresis to observe the purity and 

yield of the fragment and then stored at -20oC until required. 

 

2.4.11. Preparation of pGEM T-easy plasmid construct 

Use of cloning vectors is a convenient way to facilitate insertion of PCR fragments into pET 

expression vectors. Adenine residues are commonly added to PCR products by Taq polymerase. 

For this reason T-vectors (Promega pGEM, T Easy), plasmids containing a thymidine residue at 

each end of the cloning site are first used to carry the fragment of interest. They are prepared by 

cutting Promegas pGEM -5zf vector with EcoRV and adding 3’ terminal thymidine residues to both 

ends, this overhanging thymidine base binds more easily to the adenine tail on the PCR product. In 

addition to this pGEM T Easy vectors also possess the β lactamase enzyme gene which causes 

bacterial ampicillin resistance, allowing for selection of E.coli which contain the plasmid only. 

Furthermore the T7 and SP6 RNA polymerase promoters flank the polycloning site which is within 
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the α peptide coding region of the LacZ gene for β galactosidase. Bacterial colonies utilise this 

enzyme to metabolise galactose into lactose and glucose (Figure 2-5). Insertional inactivation of 

this gene allows selection of recombinants via blue/white screening. 

The advantage of cloning into a T-vector before cloning into a pET expression vector is the ease 

with which the fragment can be cloned via AT cloning. An alternative strategy would be to digest 

the PCR product with restriction enzymes and to clone directly into appropriately digested pET 

vectors. However, pET vectors have low copy numbers and it is difficult to produce a DNA 

miniprep of sufficient quantity/quality for DNA sequencing. Cloning the PCR products into the 

higher copy-number pGEM T-easy plasmids is the preferred method as it facilitates the sequencing 

of the amplified DNA from a single miniprep. Universal M13 sequencing primers will anneal to the 

sites flanking the polycloning site of the pGEM T-easy vector, further facilitating sequencing. 

 

Figure 2-5: T-Easy Vector Map. Note the polycloning site, containing a number of different restriction sites within 

the LacZ gene used in blue-white selection. This plasmid also contains the gene for ampicillin resistance (Novagen 

catalogue). 

 

2.4.12. pGEM T-Vector Ligations 

 T-vector ligations were carried out in 1.6ml microfuge tubes. 

To the tube the following components were added; 
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Table 2-4:  Reagents used in T-vector ligations. 

Reagent Volume (µl) 

Vector (Promega pGEM 50ng/µl) 1 

Insert (Fragment Preparation) 1 or 2 depending upon yield 

10x Ligation buffer (400 mM Tris-HCl pH 
7.8, 100 mM MgCl2, 100 mM DTT, 5 mM 

ATP)   (Fermentas) 

1 

RNase free dH2O Vol to make total vol = 10µl 

T4 DNA Ligase (Fermentas 1000u/µl) 1 

 

Samples were overlaid with mineral oil and ligations incubated overnight at 16oC. Samples were 

stored at -20oC until required. 

 

2.5. Protein Expression 

2.5.1. Preparation of Growth Media 

2.5.1.1.  2YT Media 

16g Tryptone Difco (Becton Dickinson), 10g yeast extract (Becton Dickinson) and 5g sodium 

chloride (BDH) were dissolved in 1 litre of distilled water. The media was aliquoted into 200ml 

bottles and sterilised by autoclaving before use. 

 

2.5.1.2.  2YT Agar 

3g Bacto-agar (Becton Dickinson) was added to a 200ml aliquot of 2YT media. The 2YT agar was 

then melted and sterilized via boiling, then allowed to cool. 

 

2.5.2. Overnight E.coli cultures 

Novablue stock cultures are routinely grown in the biological safety laboratory on tetracycline 

plates. Bacterial cell culture was performed in biological safety cabinets employing aseptic 

techniques. 20ml universals containing 5ml 2YT and 10µl tetracycline (15mg/ml, Kramel Biotech) 

were inoculated with a single colony (1µl) stock Novablue E.coli and grown overnight at 37oC in an 

orbital incubator. 
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2.5.3. Novablue E.coli Non-Expression Host 

Novablue E.coli is a K-12 bacterial cloning strain commonly used in general purpose bacterial 

cloning. It has high plasmid transformation efficiency and gives a high yield of good quality plasmid 

DNA from standard minipreps. Wild type E.coli strains possess the LacZ gene encoding the α and β 

subunits of β galactosidase. As described earlier, this enzyme breaks down galactose, it is also able 

to break down a chromogenic analogue of galactose; X-gal (5-bromo-4-chloro-3-indolyl-B-D-

galactoside). When this compound is metabolised it yields a blue compound. Bacterial colonies 

with an intact LacZ gene therefore appear blue in media supplemented with X-gal (Figure 2-6). 

Novablue E.coli are modified to lack the genes encoding the α-subunit if this protein and thus 

cannot synthesize functional β-galactosidase. pGEM vectors carry the gene encoding the α-

subunit, creating an intact gene in Novablue E.coli containing the plasmid, these cells are able to 

synthesize functional β-galactosidase. These cells are therefore able to form blue colonies on X-gal 

supplemented agar plates. The LacZ gene in the pGEM vector has been engineered to contain a 

polycloning site within the gene encoding the α-subunit of β-galactosidase. If the plasmid 

contained an insert the LacZ gene would fail to function correctly. It would be unable to 

metabolise X-gal to the blue product and the colonies would remain white (Figure 2-6). This allows 

identification of E.coli with a plasmid containing an insert from E.coli containing the plasmid which 

has recircularised without an insert. Only a very small proportion of host cells actually take up 

plasmid DNA. In addition, Novablue E.coli possess tetracycline resistance properties, this in 

combination with the ampicillin resistance gene carried by the plasmid allow for continual 

selection and reduce the frequency of false positive white colonies. 

 

Figure 2-6: Photograph of blue-white selection plate. White colonies indicate the plasmid contains an insert as 

the colonies are unable to metabolise X-gal. Blue colonies retain this ability and metabolise X-gal, appearing blue.  
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2.5.4.  Competent E.coli Preparation 

Transformation of plasmids into E.coli is achieved by inducing a transient competent state into the 

host cells, this state enables them to take up exogenous DNA. 

A centrifuge tube containing 50ml pre warmed 2YT medium containing 100µl tetracycline 

(15mg/ml) was inoculated with 500µl overnight culture (see previous section), The culture was 

incubated at 37oC in an orbital incubator and continually monitored until an optical density (OD) of 

0.4 at 550nm was achieved (WPA CO210 Digital Colorimeter). At this point the cells are in mid-log 

phase and are growing exponentially. The centrifuge tube containing the culture was stored on ice 

for 20 minutes to halt cell growth. The cells were then centrifuged at 4oC for 10 minutes at 3000 

RPM (MS Falcon C1300). The supernatant was discarded and and the cells resuspended in 8mls 

pre-chilled transformation buffer (TFB) (3.73g KCl, 4.4g MnCl2, 0.735g CaCl2, 0.4g hexamine cobalt 

chloride, 5ml 1M 2-[N-morpholino] ethanesulfonic acid (MES) pH 6.3, made up to 500ml with 

distilled water). The cells were then centrifuged again at 4oC for 10 minutes at 3000 RPM. The 

supernatant was discarded and the cells resuspended in 2mls TFB and 70µl DMF (Sigma) was 

added. This mixture was stored on ice for 5 minutes after which 70µl 2.25M dithiothreitol (DTT) 

was added and incubated for a further 10 minutes on ice. Finally a further 70µl DMF was added 

and the cells incubated on ice for a minimum of 1 hour before use. After this time the cells were 

competent and ready for transformation. 

 

2.5.5.  Transformation of pGEM T Easy Constructs into Novablue E.coli 

A 10µl volume of ligation mix was added to 200µl competent Novablue E.coli and incubated on ice 

for 45 minutes. The cells were then heat shocked at 42oC for 90 seconds in a water bath, they 

were then transferred to ice for 2 minutes. After the addition of 800µl 2YT to each sample the cells 

were incubated at 37oC for 1 hour in a dry hot block. The cells were centrifuged for 3 minutes at 

2000 RPM (Microfuge, Beckman Coulter), sufficient supernatant was discarded to leave 100µl 

residual volume. The pellet was resuspended in this small volume and spread over the surface of a 

TAXI selection plate. The plates were allowed to dry and were then inverted and incubated 

overnight at 37oC. 
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2.5.6.  Selection Plates 

TAXI plates are used for blue/white selection of transformants, they also contain antibiotics for 

screening out non transformants. 

 T = Tetracycline 

 A = Ampicillin 

 X = X-Gal 

 I = IPTG 

Preparation of TAXI plates 2YT agar was prepared as described in section 2.5.1, a 200ml volume 

was melted and cooled to approximately 56oC before addition of 400µl tetracycline (15mg/ml), 

400µl ampicillin (25mg/ml, Sigma), 1ml X-gal (2%) and 80µl 1M IPTG (isopropylthiogalactoside, Q-

Biogene). The agar was then mixed and poured into approximately 12 petri plates and allowed to 

cool in a biological safety cabinet. Plates were stored inverted at 4oC until required. 

 

2.5.7.  Colony Screening Procedure and Plasmid Isolation 

2.5.7.1.  Plasmid Minipreparations 

12 white colonies were picked from each TAXI selection plate used for transformation and used to 

prepare 5ml overnight cultures (5mls 2YT, 10µl Tetracycline, 10µl Ampicillin). The cultures were 

incubated overnight at 37oC in an orbital incubator. 12 colonies were selected as blue-white 

selection is not always specific and false positives may occur. 

Plasmid DNA was isolated via the use of a Qiagen QIAprepR Miniprep kit. First 1.5ml of each 

overnight culture was transferred into a micro-centrifuge tube and centrifuged for 3 minutes at 

13000 RPM. The supernatant was discarded and protocols were then followed according to the 

manufacturers instructions. The principle of the method is based upon alkaline lysis of the 

bacterial cells, adsorption of plasmid DNA on to silica in the presence of high salt then washing 

and elution of plasmid DNA. Minipreps were stored at -20oC until required.  

 

2.5.8.  Restriction Digestion of Plasmid DNA 

Bacterial restriction endonucleases (RE’s) are commonly used to both prepare and recover DNA 

fragments by ‘cutting’ DNA at specific sequences. (Smith, 1979) The sequences recognised by RE’s 
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are commonly 4-6 bases in length and are highly specific to each particular RE. The nomenclature 

applied to RE’s uses abbreviations, with the first letter being derived from the genus name and the 

second two letters from the species name.  Additional letters and/or numbers are added for 

identification of the specific enzyme (Smith & Nathans, 1973). Cleavage of the DNA strands can 

give rise to either ‘blunt’ ends where both strands terminate in a base pair or ‘sticky’ ends 

(cohesive termini) where cleavage is staggered and results in an overhang of unpaired nucleotides 

(Figure 2-7). The RE’s used in this project were used to excise the fragments of interest from the T-

vector in order to confirm the presence of the DNA insert, the RE’s used also produced sticky ends 

in order for them to be able to form bonds with the complementary region on the plasmid in 

subsequent steps. 

 

Figure 2-7: Common RE’s generating both blunt and sticky ends. AluI and HaeIII (top) generate blunt ends, 

BamHI, HindIII and EcoRI (bottom) generate sticky ends. 

 

In both instances double digests were performed to liberate the cloned insert from the plasmid 

DNA as both sequences were engineered with different RE sites on their forward and reverse 

primers. FR-α contained SacI and XhoI restriction sites and FPGS contained BamHI and HindIII 

restriction sites named RE1 and RE2 as described in Table 2.5. Engineering two different RE sites in 

to the primers allows for directional cloning so the insert is in its desired orientation. The double 

digestion mixture was prepared as described below. The mixture was then incubated in a dry hot 

block at 37oC for 30 minutes. 7µl of each digest was added to 3µl loading buffer and resolved via 
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1.7% agarose gel electrophoresis using 123 bp markers as a reference, 2 combs were placed in 

each agarose gel.  

 

Table 2-5: Reagents used for restriction digests.  

Reagent Volume (µl) 

Miniprep 5 

10X Buffer (Appropriate colour) 

(Red - FPGS 10mM Tris-HCl pH8.5, 10mM 
MgCl2, 100mM KCl, 0.1 mg/ml BSA. 

Yellow –FR-α 33mM Tris-Acetate pH 7.9, 
10mM Mg Acetate, 66mM Potassium 

acetate, 0.1 mg/ml BSA) 

1 

RE1 (10U/µl) 0.5 

RE2 (10U/µl) 0.5 

H2O 3 

 

 

2.5.9. Automated DNA Sequencing 

The previous step allowed confirmation of the presence of the insert, a second step was also 

added in order to confirm the identity of the insert. The sequences of the inserts were fully 

characterised via automated dye-terminator DNA sequencing using the universal M13 forward and 

reverse primers. This was used to ensure the complete target sequence had been cloned into the 

pGEM vector. 20µl samples of miniprep DNA were sent to Lark Technologies (Essex, UK) for 

sequencing. 

 

2.5.10.  Expression of FR-α and FPGS Recombinant Proteins 

2.5.10.1. Subcloning in to pET Expression Vectors 

A wide variety of pET vectors are now available for use with E.coli host expression systems for 

protein production. Production of proteins via the use of both simple pET expression vectors and 

vectors containing water soluble tags were used. Use of vectors containing tags encoding water 

soluble protein sequences such as glutathione s-transferase (GST) and thioredoxin (Tx) assist with 

solubility of potentially insoluble proteins.     
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pET 21 was selected as it is a relatively simple vector, it is an expression vector  under the control 

of T7 RNA polymerase. It contains ampicillin resistance, a polycloning site for cloning the insert 

and a C-terminal His-tag, used for purification (Figure 2-8). The protein produced from this type of 

vector is favoured in mouse immunisation schedules as it does not contain any ‘tag’ (with the 

exception of the His-tag), this allows for easier screening in hybridoma technology stages, which 

will be discussed in more detail in the following chapter. However, experience in this lab has 

shown that proteins produced in such vectors are not always easy to purify, particularly with 

insoluble proteins which may also be cysteine rich. As they do not contain a large tag, the protein 

does not always appear to be immunogenic to the animal, particularly if small regions were 

targeted. Short, untagged sequences are often degraded to nothing in E.coli cells and are 

undetectable via SDS PAGE. For this reason both pET 21, 41 and 32 vectors were selected for 

generation of recombinant proteins as all targets were small and relatively cysteine rich. Water 

soluble tags may aid in the solubility and improve immunogenicity of short sequences as they 

potentially contain motifs which may solicit the help of T-cells. 
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Figure 2-8: pET 21 Vector map (Novagen catalogue). 
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pET 41 vectors were selected as an adjunct to the pET 21 vector. pET41 vectors possess all the 

features of the pET 21 system, although kanamycin resistance replaces ampicillin resistance. In 

addition it has a GST fusion tag, this has been reported to enhance the production and solubility of 

the fusion protein produced. As the proteins we intended to produce were likely to be insoluble 

this was deemed a suitable vector to use. The GST tag may also stimulate the mouse immune 

system due to the large size of the tag. This has inherent advantages and disadvantages as it may 

increase the affinity of the antibody due to a stronger immune response but may also decrease 

the number of antibodies being produced to the protein as they may recognise the GST construct 

in addition to the protein. In addition pET32 vectors were also used, they are similar to pET41 but 

contain a thioredoxin (TX) tag in place of the GST tag and possess ampicillin resistance.  
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Figure 2-9: pET 41 Vector map (Novagen catalogue) 
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Figure 2-10: pET32 Vector map (Novagen catalogue) 
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2.5.10.2.  Preparation of the Insert for Subcloning 

Double restriction digests via the use of the same RE’s detailed in section 2.5.8 were performed in 

order to excise the inserts from the pGEM plasmids using the following reagents. 

 

Table 2-6: Reagents used for restriction digestion in preparation for subcloning 

Reagent Volume (µl) 

Miniprep (4μg) 20 

10X Buffer (Appropriate colour) 3 

RE1 (10U/μl) 1 

RE2 (10U/μl) 1 

H2O Volume to make total = 30 

 

The mixture was incubated at 37oC for 1 hour and samples were analysed via 1.7% agarose gel 

electrophoresis. The whole sample was added to 6µl loading buffer. Following electrophoresis the 

band was extracted from the gel and a fragment preparation made using the Qiagen kit as 

previously described. 

 

2.5.10.3.  Preparation of pET vectors 

The pET vectors used were prepared by digestion of the neat vector with the appropriate 

restriction enzymes in order to produce the appropriate sticky ends required for cloning of the FR-

α and FPGS fragments. 

 

Table 2-7: Reagents used for pET vector digestion 

 Reagent Volume (µl) 

Neat Vector (pET21, 41 or 32) 2 

RE1 (10U/μl) 1 

RE2 (10U/μl) 1 

10X Buffer (appropriate colour) 2 

H2O Volume to make total = 20 

 

Vectors were incubated for one hour then treated with 2µl calf intestine alkaline phosphatase 

(CIAP, Promega 1U/µl) to remove 5’ phosphate groups and prevent the vector recircularising. A 

clean up kit (Novagen) was then used to remove all traces of reagents and other contaminants, 
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following this the entire sample was run on an agarose gel and a fragment preparation performed, 

vectors were stored at -20oC until required.  

 

2.5.10.4.  Ligation of DNA fragments into pET constructs 

Ligations were performed in a similar way to that of pGEM ligations. In both cases the vectors used 

were already prepared and needed no preparation before the ligations were performed. 

 

Table 2-8: Reagents used for ligations 

Reagent Volume (µl) 

dH2O 6 

Fragment Prep 1 

pET 21/41 1 

10 X Ligase buffer (Fermentas, 400mM 
Tris-HCl, 100mM MgCl2, 100mM DTT, 

5mM ATP pH7.8) 

1 

T4 DNA Ligase (Fermentas, 1U/µl) 1 

 

The samples were overlaid with oil to prevent evaporation and incubated at 16oC overnight. 

Overnight Novablue cultures were also prepared as previously described. 

 

2.5.10.5.  Transformation into Novablue E.coli 

The pET constructs were first transformed into the non-expression host Novablue. Novablue cells 

were prepared and transformed as described previously for pGEM transformations. Selection of 

transformants was made following overnight incubation at 37oC on 2YT agar plates. pET 21 and 32 

colonies were grown on agar containing ampicillin (50µg/ml) and pET41 colonies grown on agar 

containing kanamycin (30µg/ml). 

 

2.5.10.6.  Screening Transformant Colonies 

As blue-white selection is not present at this stage, all colonies appear white. 12 colonies from 

each plate were selected and grown overnight in 5ml broth cultures with the appropriate 

antibiotic. The plasmid DNA was subsequently purified from 1.5ml aliquots of each culture using 

the standard Qiagen minipreparation protocol described previously. 
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The plasmid DNA was again double restriction digested as described previously and the 

electrophoretic mobility compared with 123 base pair markers assessed using 1.7% agarose gel 

electrophoresis. This allowed differentiation between plasmid – insert constructs from empty 

vectors which had lost the insert. Orientation of the insert was not performed due to the presence 

of different restriction sites at either end of the insert. 

 

2.5.11. Transformation into an Expression Host 

2.5.11.1.  E.coli BL21 (DE3) plysS and Tuner (DE3) plysS 

Both the above E.coli strains are λDE3 lysogens that carry a chromosomal copy of the T7 RNA 

polymerase gene under the control of the lacUV5 promoter. The addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) brings about production of a T7 RNA polymerase which can then 

transcribe genes cloned downstream of the T7 lac promoter in pET plasmids. Both strains possess 

the pLysS plasmid, which carries a chloramphenicol resistance gene and encodes the gene for T7 

lysozyme. T7 lysozyme inhibits T7 RNA polymerase and the plasmid produces enough of this 

enzyme to inhibit the basal (pre-induction) level of T7 RNA polymerase. This prevents ‘leaky’ 

expression of the target gene.  This enzyme also aids cell lysis following protein expression. 

Furthermore E.coli Tuner strains are lacZY deletion mutants of BL21, the lacY (lac permease) 

mutation causes the IPTG to enter the cells uniformly. This produces a homogenous, 

concentration dependent induction and has been found to be effective in increasing the solubility 

of previously insoluble proteins. This is due to the IPTG entering more slowly, allowing protein 

production to proceed at a slower rate, lowering the possibility of recombinant proteins being 

segregated into insoluble inclusion bodies. These features make these strains of E.coli particularly 

suited to large scale protein expression. 

 

2.5.11.2.  Transformation into E.coli BL21/Tuner 

Both BL21 and Tuner are routinely cultured in 2YT media. Competent cells were prepared and 

transformed as previously described for the Novablue E.coli. 1µl of each plasmid miniprep was 

added to 100µl competent cells and transformed. Following transformation recombinants were 

selected for by culture on plates containing ampicillin for pET 21 constructs and kanamycin for pET 

41 constructs. Transformant colonies were selected for small and large scale protein production. 
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2.5.12. Fusion Protein Expression 

2.5.12.1.  Small Scale Fusion Protein Induction 

Colonies were picked from the transformation plates and cultured at 37oC in an orbital incubator 

in 5mls 2-YT media with the appropriate antibiotic (50µg/ml).  The absorbance at 550nm was 

monitored until it reached 0.4 (mid-log phase). At this point a 1ml sample was removed and 

incubated at 37oC, this was used as the pre-induction sample, a 10µl sample was also removed to 

provide an overnight culture for large scale induction. To the remainder of the culture 10µl 1M 

IPTG was added and incubated for 3 hours at 37oC. Following induction 1ml samples were taken 

and centrifuged, along with the uninduced sample (13000 RPM, 3 minutes). The cell pellets from 

both the pre and post induction cultures were resuspended in 150µl SDS Laemmli sample buffer 

(40% dH2O, 5% 2-mercaptoethanol, 2%SDS, 20% glycerol, 25% Tris 250mM pH 6.8, 0.1% 

bromophenol blue).  

 

2.5.13.  SDS Polyacrylamide Gel Electrophoresis 

The pre and post induction samples in SDS Buffer were boiled in a water bath to denature the 

proteins and 10µl added to each well, they were resolved electrophoretically via the use of 12% 

polyacrylamide gels. The gels were stained with Coomassie blue, the molecular weight of the 

induced protein was confirmed in relation to standard molecular weight markers. Once successful 

induction was confirmed, large scale protein induction could be carried out. 

SDS PAGE was carried out via the use of a Bio-Rad Mini-Protean casting unit, which was assembled 

according to the manufacturers instructions. The gel consisted of a lower 12% resolving gel and an 

upper 4% stacking gel. The stacking gel allows concentration of the loaded sample and improves 

resolution on entry into the lower gel. The 12% resolving gel was prepared as follows; 3mls 30% 

acrylamide mix, 1.85ml dH2O, 5mls 750mM Tris pH 8.8, 50μl 20%SDS. The solution was stored at 

4oC. When required, 100µl 10% w/v ammonium persulfate (APS), and 10µl N,N,’,N’-

tetramethylethylenediamine (1% v/v) (TEMED, Sigma) was added and poured between the glass 

plates of the casting gel, 2cm beneath the top of the glass. It was then overlaid with water to 

ensure there was an even meniscus. Once polymerised the water was decanted and the stacking 

gel was added. (1ml 30% acrylamide mix, 3.89mls dH2O, 5mls 125mM Tris pH 6.8) 50µl APS and 

5µl TEMED were added to activate and the stacking gel loaded on top of the resolving gel. The 

comb was then placed in between the glass plates, ensuring no air was trapped between the 

plates, and the gel was allowed to polymerise. Once polymerised, the comb was removed and the 
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wells washed with distilled water to remove any unpolymerised acrylamide. The gels were then 

placed in the electrophoresis tank and the reservoirs filled with Tris-glycine electrophoresis buffer 

(25mM Tris pH 8.3, 192mM glycine, 0,1% SDS). 

The samples were added along with 6µl markers (Bio-Rad Precision plus dual colour protein 

standards) and electrophoresed for approximately 30 minutes at 240 volts or until the dye front 

had reached the bottom of the gel. After completion gels were removed from the glass plates and 

the stacking gel excised and discarded. Gels were then either stained for visualisation of the 

protein bands or transferred to nitrocellulose filters for Western blots. 

The gels were stained with Coomassie blue and fixed with methanol and glacial acetic acid. This 

was achieved by immersion of the gel in a solution containing 0.25% (w/v) Coomassie blue, 40% 

methanol and 10% glacial acetic acid for a minimum of 1 hour at room temperature with gentle 

agitation. The gels were then destained with a destain solution containing 40% methanol and 10% 

glacial acetic acid to remove excess background staining. The bands were visible and were 

compared with known molecular weight protein standards. The gels were photographed then 

discarded. 

 

2.5.13.1.  Large Scale Fusion Protein Induction 

The purpose of large scale induction is to produce a larger quantity of recombinant protein for 

immunisation. The 10µl sample taken from the small scale induction was grown in a 5ml overnight 

culture with the appropriate antibiotic (50µg/ml). The next day this was added to 500µl pre-

warmed 2-YT media with 1ml appropriate antibiotic (50µg/ml). The culture was incubated for 

approximately 3 hours at 37oC in an orbital incubator until an OD of 0.4 at 550nm was reached. 

The flasks were then induced with 500µl 1M IPTG and incubated for a further 3 hours. The 

cultures were then harvested and separated from the culture medium via centrifugation. 

(3000RPM, 40 minutes) The supernatant was discarded and the pelleted cells resuspended in 

10mls 1X His-bind buffer (5mM imidazole, 500mM NaCl, 20mM Tris-HCl pH 7.9). The suspension 

was transferred into a 25ml universal and a few granules of lysozyme (Sigma) were added to aid in 

disruption of the bacterial cell membranes. The universals were stored at -20oC overnight or until 

required for processing. 
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2.5.14.  Sonication of Large Scale Products 

After overnight storage the bacterial cell walls were disrupted by first thawing the mixture then 

sonicating (MSE Soniprep 150 Sonicator). The cells were sonicated 12 times for 1 minute each time 

with 1 minute intervals on an amplitude setting of 12 microns. The lysate was then centrifuged in 

polycarbonate centrifuge tubes at 4oC for 20 minutes at 27,000G. The supernatant (containing the 

soluble fraction) was decanted into a fresh universal and filtered (0.45µM filters) in preparation 

for column chromatography, this method was employed initially as immunisation with soluble 

proteins has in the past been more successful in obtaining high quality antibodies, which may be 

due to the protein being more immunologically active. The insoluble fraction (pellet) was 

resuspended in 10mls His-Bind Buffer containing 8M urea (5mM imidazole, 500mM NaCl, 20mM 

Tris-HCl pH 7.9, 8M Urea). This was placed on a roller in an attempt to solubilise the pellet. 

 

2.5.15. His-Bind Column Chromatography 

2.5.15.1.  Soluble Columns 

Fusion proteins are designed and consideration is given to purification of the protein at the design 

stage. The strategy commonly employed to facilitate this purification is to fuse the target gene to a 

sequence capable of selectively recognising a matrix bound ligand. In this case pET 21, 41 and 32 

were selected as they encode a hexahistidine tag. This is then translated via the use of E.coli to 

form 6 consecutive histidine residues 

This type of chomatography is dependent upon the hexahistidine tag present on the recombinant 

protein binding to nickel ions on a column. During purification the His-tag sequence binds to 

divalent cations (Ni2+) immobilised on agarose His-bind metal chelation resin (Novagen). The 

unbound proteins are washed away and the protein of interest is eluted using an imidazole elution 

buffer. 

5mls of an even suspension of His-Bind resin (Novagen) were added to a 5ml polypropylene 

column. The resin was left to settle by gravity and once the storage buffer (20% ethanol) had 

washed away, the column was washed with 10mls deionised water and charged with 10mls charge 

buffer (5mM NiSO4). Binding of nickel to the resin was observed via the change of column colour 

from white to blue. The free nickel was washed away and the column equilibrated with 10mls 

binding buffer (5mM imidazole, 500mM NaCl, 20mM Tris-HCl pH 7.9). The column was allowed to 

run until all the solution had reached the top of the column before adding the next solution, 
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continuous flow was ensured and it was never allowed to run dry. At this stage the protein 

fraction was added, either the soluble fraction or solubilised pellet (refolded by dialysis - see 

section 2.5.17) was allowed to flow through, followed by a further 10 mls His-Bind buffer. The 

column was the washed with 10mls wash buffer (60mM imidazole, 500mM NaCl, 20mM Tris-HCl 

pH 7.9). The bound protein was then eluted with 10ml elute buffer (1M imidazole, 500 mM NaCl, 

20 mM Tris-HCl pH 7.9). 0.5ml fractions were collected in 1.5ml microcentrifuge tubes, 12 in total 

were collected for quality and quantitative analysis. After use the nickel was removed from the 

column by adding 10mls 200mM EDTA and then washing with deionised water. As the columns 

could be used more than once, they were stored in the fridge until required. 

 

2.5.15.2.  Insoluble Columns 

The same method as the above method was employed when running an insoluble column, the 

insoluble fraction was centrifuged (15 mins 27,000 G) and the supernatant decanted and filtered 

via the use of a 0.45 µM filter. His-bind buffer was added to reduce the molar concentration of the 

protein solution from 8M to 6M. Following this the protocol was followed as above, however all 

solutions used contained 6M urea in addition to the other components.   

 

2.5.15.3.  Protein Assay 

The concentration of the eluted protein fractions was determined via the use of a Bradford 

protein microassay. 10µl samples from each fraction were added to 790µl dH2O and 200µl 

Bradford dye reagent concentrate (BioRad) compared with a blank containing 200µl Bradford 

reagent and 800µl dH2O, the OD was measured at 590nm at room temperature. The total protein 

concentration in each fraction was determined by comparison with a standard curve of BSA 

standard controls. 

10µl samples were taken from fractions containing significant concentrations of protein (more 

than 0.4mg/ml) and were mixed with an equal volume of SDS sample buffer and analysed via SDS-

PAGE to determine the molecular weight and purity of the protein.  

After this had been confirmed the protein fractions with the highest concentration of protein were 

pooled together and re-assayed to determine the total protein fraction concentration. A freeze 

thaw test was performed on a small sample of the protein and re assayed to ensure the protein 
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was suitable for freezing down. Once confirmed the proteins were split into 200µg aliquots and 

stored at -80oC until required.   

 

2.5.16. Refolding of Insoluble Protein Fractions 

It is common for proteins overexpressed in E.coli host strains to be insoluble and to be segregated 

into insoluble inclusion bodies within the cell. In order to recover immunologically active protein, 

the inclusion bodies need to be solubilised refolded and purified. 

The pellet was solubilised in binding buffer with 8M urea and left on a roller for at least 24 hours 

or longer if necessary. As the pellet was solubilised under denaturing conditions (urea) the 

denaturing agent was then be gradually removed to allow the protein to refold and gain its 

antigenicity, this step was vital as the immunisation of mice relies upon the protein being 

recognised by the murine immune system and mice cannot be injected with urea. Refolding was 

achieved via either successive dialysis, (performed after running the insoluble fraction on an 

insoluble column) reducing the molarity of the denaturant gradually whilst keeping the 

constituents of the dialysis buffer constant or via refolding of the insoluble protein and reducing 

the denaturant concentration whilst bound to the column. 

 

2.5.17.  Refolding by Dialysis 

12cm lengths of 5-24/32 visking tubing (Medicell International) were cut and rinsed in distilled 

water to separate the two layers. Medi clips were used to secure the end of the tubing and the 

insoluble fraction added to the tubing. Another clip was used to secure the end once filled with 

the protein. 500mls of a 4M urea 10mM Tris-HCl solution (pH 8.0) was prepared and the dialysis 

tubing was placed in the solution, which was left for 3 hours at room temperature with constant 

magnetic stirring. Buffer changes were performed, halving the molar concentration of urea each 

time from 4M, 2M, 1M, 0.5M, 0.25M, 0.125M, 60mM, and 30mM, after which the dialysed protein 

was washed twice in a 10mM Tris-HCl solution. Once dialysis was completed the protein was 

recovered from the tubing and the solution was then Bradford assayed to determine the 

concentration of protein present and frozen down if necessary. 
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2.5.18.  Refold Columns 

Another method employed to reduce the urea concentration and attempt to isolate the protein 

was by use of a refold column. The same procedure applied to insoluble columns was followed 

with a number of additional steps. After loading of His-Bind buffer, the insoluble fraction was 

added to the column followed by an additional 10mls His-Bind buffer + 6M urea. A further 10mls 

His-Bind buffer + 4M urea were added to the column, after which 10mls His-Bind buffer and 2M 

urea were added. Finally, 10mls His-Bind buffer, wash buffer and elution buffer, all without urea 

were added successively to the column and the fractions collected as normal.  

 

2.6.  Results - Antigen Design 

2.6.1. Amino Acid and Gene Sequences 

Links on the EMBL-EBI website located FR-α and FPGS base and amino acid sequences, which were 

listed under accession numbers P15328 (257 amino acids, 29819 Da) and Q05932 (587 amino 

acids, 65609 Da) respectively. FPGS was found to have both a mitochondrial and cytosolic from, 

differing only in the presence of a leader peptide sequence in the mitochondrial form, responsible 

for tracking and penetration into mitochondria.  

BLAST searches revealed no significant homology between the sequences, or similarity to any 

other human sequences for either FR-α or FPGS. 

 

2.6.2. Target Sequence Selection 

One target region for FR-α was selected and two targets for FPGS (Figure 2-11 and Figure 2-12). 

The lengths of each sequence were 189 amino acids on FR-α and 228 and 167 amino acids on FPGS 

targets 1 and 2 respectively, the target sequences were selected in accordance with GMM risk 

assessments described in section 2.4.2. The sequences on FR-α avoided a serine residue (S-234), 

known to be involved in the formation of a GPI anchor to the cell membrane, this ensured the 

recombinant protein would be unable to bind lipid membranes. It is well documented that 

sequences with a high number of cysteine residues are incorrectly folded when expressed in E.coli, 

due to disulphide bond scrambling. As the region we were intending to clone contained 13 

cysteine residues we predicted the recombinant form of the protein would be safe.    

Although FPGS is also cysteine rich, its active soluble form has been produced in E.coli . Therefore 

the same risk assessment could not be used for this protein. The sequences selected on FPGS 
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avoided three key active site residues located at the C-terminal domain and the ATP binding site, 

which is critical to enzyme function as it catalyses the conversion of folates to polyglutamate 

derivatives. These measures ensured the recombinant protein would be inactive. 

 

Figure 2-11: FR-α target region. 189 amino acid FR-α target region selected (purple), note avoidance of n-terminal 

signalling sequence (black) and serine 234 (red).  

 

Figure 2-12: FPGS target region. Two FPGS target sequences selected (purple) - one 228 amino acid region 

denoted FPGS2 (left) and one 167 amino acid region denoted FPGS3 (right), note the avoidance of the ATP binding site 

and three key active site residues (red). 

 

 

2.6.3. Primer Design 

Primers were designed, considering the E.coli codon usage and restriction sites were added to the 

ends of the primers. SacI (GAGCTC) and XhoI (CTCGAG) were selected as the restriction sites to be 

added to FR-α forward and reverse primers.  BamHI (GGATCC) and HindIII (AAGCTT) were selected 

for both targets on the FPGS primers respectively (Table 2-9). 

SacI, XhoI and HindIII restriction enzyme sites were selected as they were not present in the target 

sequence, BamHI was present in the FPGS sequence but primers were designed to begin after this 

site for ease with cloning, for this reason the targets on FPGS were termed FPGS2 and FPGS3 as 

FPGS1 was the initial design planned to begin before the BamHI site (Table 2-9). The primers were 

synthesized, concentrations calculated and 7.5µm solutions made. 



Development and Evaluation of Novel Monoclonal Antibodies to FR-α and FPGS 

65 

RNA preparations were made for RT-PCR, the ovarian tumour cell lines SKOV-3 and IGROV-1 were 

used for this purpose.  

 

Table 2-9: FR-α and FPGS forward and reverse primers. 

Primer Sequence 

FR-αF 5’GGAGCTCTGAAAAGCCAGGCCCGGAGGACAAGT3’ 

FR-αR 5’GCTCGAGCATGGCTGCAGCATAGAACCTCGC3’ 

FPGS2 F 5’GGGATCCGCCTGAGCTCTTCACCAAG3’ 

FPGS2R 5’GAACCTTCAGGTACCAGGTACCAGGTGAAGGGGCCC3’ 

 

FPGS3F 5’ GGGATCCGGCGGCCCTGCTGAAGCT3’ 

FPGS3R 5’ GAAGCTTCTGGGACAGTGCGGGCTCCAG3’ 

 

 

2.6.4. Amplification of FPGS2 and FR-α DNA 

RT-PCR was carried out to produce both FR-α and FPGS2 cDNA, initially using the mRNA extracted 

from the ovarian tumour cell line SKOV-3. Both FPGS and FR-α cDNA was then amplified via PCR 

using both forward primers and the product fractionated and visualised via agarose gel 

electrophoresis. In both cases a fluorescent band of DNA was observed between the 492 and 615 

bp marker for FR-α and between the 615 and 738bp marker for FPGS (Figure 2-1), these correlated 

with the approximate sizes of 567 and 684 bases respectively.  
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Figure 2-13: FR-α and FPGS PCR products.  Photographic image of 1.7% agarose gel showing fluorescent bands of 

ethidium bromide bound PCR products prepared from the SKOV-3 cell line when exposed to UV light. The circles show 

the PCR product produced from FR-α (left, 567bp) and FPGS2 (right, 684bp). 

   

    

2.6.5. Amplification of FPGS3 cDNA 

FPGS3 required optimisation of the PCR reaction in order obtain a band. Various strategies were 

performed in order to obtain the required product. The annealing temperature was first increased 

in an attempt to increase specificity of primer-mRNA complementation, this was without success. 

The ovarian tumour cell line IGROV-1 was then tried as the RNA source, again without success. A 

two-stage hemi nested PCR was then performed using the forward primer from FPGS2 and the 

FPGS3 reverse primer in the first round (as this is part of the same protein), the second round was 

a template PCR reaction using the FPGS3 forward and reverse primers and serial dilutions of the 

template. In this case bands were obtained but were the incorrect length. As this sequence is 

relatively GC rich it was inferred that the problem may be due to the primers self complementing 

each other. For this reason it was decided new primers were to be designed outside of the target 

region to carry out a full nested PCR (Table 2-10). In the first round the new primers were used to 
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amplify the target sequence. In the second round the original forward and reverse primers were 

used and this was found to be successful. Both cell lines were used and both were successful, 

however when cloned into the T-vector and sent for sequencing the product amplified from the 

IGROV-1 cell line was found to contain errors which may have been significant, therefore, the 

product amplified from the SKOV-3 cell line was pursued (Figure 2-14). Errors were found in both 

sequences, likely to be due to errors arising from the two-stage PCR reaction, however only one 

was deemed significant. 

 

Table 2-10: FPGS Nested PCR primer sequences. 

Primer Sequence 

FPGS3F Nested 5’ GAGGTTCGAGTCTTGCTCTTCAATG3’ 

FPGS3R Nested 5’ GGAAAGCCAAAAACAAAAGGCACCTA3’ 

 

Figure 2-14: FPGS nested PCR product. Photographic image of 1.7% agarose gel, 2nd Round Nested PCR using 

SKOV-3 cell line as the RNA source. The neat preparation was used as this contains the highest concentration of PCR 

product. Note the band (arrowed) corresponds to the 123bp standards at 500 bases. 

 

2.6.6. Fragment Preparations and Restriction Digests 

Following PCR the bands were excised from the gel, fragment preparations prepared and ligated 

into pGEM T Easy vectors. They were then transformed into Novablue E.coli, grown on TAXI 

selection plates (to select for the presence of the pGEM vector) and plasmid minipreparations 

(minipreps) were prepared.  
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Restriction digests were performed on the plasmid minipreps using the appropriate RE’s for each 

construct. They were then analysed on an agarose gel to differentiate between those vectors 

containing inserts and those only possessing an empty vector (Figure 2-15). 

 

Figure 2-15: FR-α and FPGS restriction digests. Photographic example of 1.7% agarose gel showing restriction 

digests for FR-α (left) and FPGS2 minipreps (right). FR-α vectors were digested with SacI and XhoI restriction 

enzymes, FPGS2 vectors were digested with BamHI and HindII restriction enzymes. Again bands corresponding to 567 

bases (FR-α) and 684 bases (FPGS2) were observed. 

 

 

One positive miniprep was selected from each gel and a sample sent to Lark Technologies (Essex, 

UK) for automated sequencing. Accuracy in this technique is maintained for approximately 380 

bases downstream of primer binding. Bases denoted N were unidentified by the sequencer.  

The following image shows a typical trace obtained (Figure 2-16), approximately 60 bases of the 

initial sequence represents the polycloning region of the pGEM plasmid, after which the added 

bases and restriction sites engineered into the primer, followed by the target sequence. The 

sequences were analysed to ensure they correlated with the published sequences, once complete 

identity and conformity was ensured, the FR-α and FPGS2 fragments were ligated into pET 21 and 

pET 41 expression vectors.  
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Figure 2-16: Typical DNA sequencing chromatogram trace obtained. Each of the four colours represents a signal given by a base, adenine (green); thymine (orange), 

cytosine (blue) and guanine (black). 
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The FPGS2 sequence was analysed and the sequence was found to be correct. The FR-α sequence, 

however contained a base substitution 16 amino acids downstream of the forward primer. The 

substitution resulted in a stop codon, transformation using this miniprep would have resulted in a 

truncated protein. It was inferred that the error may lie in the cell line and all minipreps may 

contain the error. Two methods were developed to rectify this problem. 

A long primer was designed which corrected the stop codon (Denoted FR-α F2). 

A new primer was designed which began after the stop codon (Denoted FR- α F3). 

 

Table 2-11: FR-α primer sequences. 

 

 

2.6.7. pET Cloning 

Once sequences were checked and found to be correct they were ligated into both pET 21 and pET 

41 vectors, which had been pre-cleaved with the appropriate restriction enzymes and transformed 

into Novablue E.coli. Minipreparations were prepared as described earlier, restriction digested and 

screened via 1.7% agarose gel electrophoresis to ensure the selected miniprep contained an 

insert. 

 

2.6.8. Expression of FR-α and FPGS Recombinant Proteins in E.coli 

One positive plasmid miniprep was selected for each target and was used for transformation into 

BL21 (DE3) pLysS or Tuner expression hosts. One colony from each plate was selected and small 

scale inductions were performed as previously described. Both pre and post induction samples 

were resolved via SDS-PAGE and visualised via staining with Coomassie blue (Figures 2-17, 2-18 

Primer Sequence 

FR-α F2 5’GGAGCTCTGAAAAGCCAGGCCCGGAGGACAAGCTGCATGAGCAGTGTCGTCCGTGGC
GTAAGAATGCCTGCTGT3’ 

FR-α F3 5’ GGAGCTCT AAGAATGCCTGCTGTTCTACCAACAC3’ 
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and 2-19). The molecular weights of the FPGS2 protein in pET 21 and pET 41 constructs were 

calculated to be 28 kDa and 58 kDa respectively. 

The molecular weights of FR- α and FR- αF2 in pET 21 and pET 41 constructs were calculated to be 

23.1 kDa and 55 kDa respectively. 

The molecular weights of FPGS3 in pET 21 and pET 41 constructs were calculated to be 21.3 kDa 

and 51.7 kDa respectively. 

The following photographs are examples of some of the small scale inductions carried out. 

 

Figure 2-17: FPGS small scale inductions. 12% (v/v) polyacrylamide gel. FPGS2 pET 21 and 41 small scale 

inductions illustrating pre and post IPTG induction samples. (PI – pre induction, I – post induction) The bands circled 

at approximately 28 and 58 kDa marked with a white circle indicate the induced protein bands. 
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Figure 2-18: FR-α pET21 small scale inductions. 12% (v/v) Polyacrylamide gel. FR-α and FR-α F2 pET 21 BL21 

small scale inductions illustrating pre and post IPTG induction samples. The bands marked with a white circle at 

approximately 23kDa indicate the induced protein band. 

  

 

Figure 2-19: FR-α pET41 small scale inductions. 12% (v/v) Polyacrylamide gel. FR-α and FR-α F2 pET 41 BL21 

small scale inductions illustrating pre and post IPTG induction samples. The bands marked with a white circle at 

approximately 55kDa indicate the induced protein band. 
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2.6.9. Large Scale Recombinant Protein Expression 

Following confirmation from small scale inductions that a protein of the expected approximate 

molecular weight was expressed, large scale inductions were carried out. Typically two large flasks 

(500ml cultures) were used to carry out the large scale induction for each protein. The BL21 strain 

was used to generate FPGS2 recombinant proteins, both BL21 and Tuner strains were used for FR-

α and Tuner alone for FPGS3 (after unsuccessful BL21 purification) in an attempt to increase 

solubility. 

 

2.6.10. Recombinant FR-α and FPGS Protein Purification 

2.6.10.1. FPGS2 

FPGS2 large scale inductions were defrosted, sonicated and separated into soluble and insoluble 

fractions. They were then purified using His-Bind chromatography on a soluble column. The 

quality and quantity of the purified protein were assessed by SDS-PAGE and Bradford Assay. 

Finally the fractions were pooled to create the protein to be used in subsequent immunisations. 

Recombinant FPGS-2 protein was initially purified from the pET 41 soluble fraction, however, in 

the hybridoma generation stage a significant issue with cross reactivity of the soluble protein was 

highlighted which will be discussed in more detail in section 3.5.2.1. This resulted in purification of 

the insoluble pET41 fraction to be purified via insoluble His-bind column chromatography and 

used for immunization (Figure 2-20). In addition, generation of a new FPGS2 pET32b construct was 

subsequently purified and used as a screening antigen in subsequent stages of the project. The 

molecular weight of the new FPGS2 pET32 recombinant protein was calculated as 45kDa. 

The FPGS2 pET21 construct did not yield sufficient protein to be used for immunisation and was 

discontinued. A summary of the FPGS recombinant proteins produced is detailed in Table 2-12. 
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Figure 2-20: FPGS insoluble fractions. 12% (v/v) Polyacrylamide gel. FPGS2 32b BL21 insoluble fractions collected 

via His bind chromatography (lanes 1-9) which were subsequently pooled together to generate one sample, dialysed 

and used both for immunisation and as a screening antigen. 

 

 

 

2.6.10.2. FR-α 

Recombinant FR-α and FR-α F2 large scale protein induction samples were also purified from the 

soluble fraction as described above for FPGS2, in light of the cross reactivity problem associated 

with FPGS and the likelihood of the same occurring with FR-α it was decided that the insoluble 

fractions of FR-α and FR-αF2 would be purified and used for immunisation (Figure 2-21). Despite 

one of the initial plasmid minipreparations containing a stop codon 16 bases into the coding 

sequence, others generated at the same time did not contain the error as first thought, as another 

miniprep was sent to Lark technologies for sequencing and was found to contain no errors. It was 

decided that as both FR-α and FR-αF2 fractions were essentially the same, the only difference 

being the primers used that these fractions could safely be pooled together to generate a large 

stock of recombinant FR-α. In addition to this a pET32 construct was generated as a screening 

antigen, the insoluble fraction was purified via the use of a refold column (Figure2-22). Again this 

was to overcome previous problems with cross reaction which will be discussed in more detail in 

section 3.5.2.1.  The molecular weight of the new FR-α pET32 recombinant protein was calculated 

to be 39.3 kDa. 
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The FR-αF3 primers were not used as this would have only generated a truncated version of the 

successful FR-α and FR-αF2 proteins and protein production via the use of these primers was 

therefore discontinued. 

The FR-α pET21 construct did not yield sufficient protein for immunisation and attempts to 

produce this protein were also stopped. A summary of the FPGS recombinant proteins produced is 

detailed in Table 2-12. 

 

Figure 2-21: FR-α insoluble fractions. 12% (v/v) Polyacrylamide gel. FR-α pET 41 Tuner insoluble fractions (lanes 

1-10) which were subsequently pooled together into one sample, dialysed and used both for immunisation and as a 

screening antigen. 
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Figure 2-22: FR-α refolded fractions. 12% (v/v) Polyacrylamide gel. FR-α pET 32 refolded fractions (lanes 1-8) 

which were refolded via the refold column method (see section 2.5.18). 

 

 

2.6.10.3. FPGS3 

FPGS3 recombinant protein was not identified in the soluble fraction and His-Bind 

chromatography was carried out on an insoluble column in order to purify the protein. The 

fractions were pooled and dialysed, the quality and quantity of the resultant protein was again 

assessed via SDS-PAGE and Bradford assay (Figure 2-23). A summary of the FPGS recombinant 

proteins produced is detailed in Table 2-12. All proteins were stored in 200µg aliquots at -80oC 

until required for immunisation. 
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Figure 2-23: FPGS dialysed protein. 12% (v/v) Polyacrylamide gel. FPGS3 pET 41 recombinant protein, refolded by 

dialysis. 

 

 

Table 2-12: Summary of some of the recombinant proteins generated in this project. 

Protein/ 
Target 

Vector Tag E.coli 
Strain 

Soluble/ 
Insoluble 

Refold 
Method 

Use for protein 

FPGS1 NA NA NA NA NA Abandoned at design 
stage 

FPGS2 pET21 His BL21 Soluble NA Insufficient yield for 
immunisation 

FPGS2 pET41 His, GST BL21 Soluble NA Used for immunisation – 
abandoned after 3rd 

cloning 

FPGS2 pET41 His, GST BL21 Insoluble Dialysis Used for 
immunisation/screening 

FPGS2 pET32 His, Tx BL21 Insoluble Dialysis Used for 
immunisation/screening 

FPGS3 pET41 His, GST Tuner Insoluble Dialysis Used for immunisation – 
subsequently failed 

FR-α pET21 His, Tx BL21 Soluble NA Insufficient yield for 
immunisation 

FR-α pET41 His, GST BL21 Soluble NA Used for immunisation 

FR-α (and F2) pET41 His, GST Tuner Insoluble Dialysis Pooled and used for 
immunisation/screening 

FR-α pET32 His, Tx Tuner Insoluble Refold column Used for screening 

FRα3 NA NA NA NA NA Abandoned as would 
generate truncated 

protein 
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2.7.  Discussion 

2.7.1. Recombinant Protein Production 

Antibodies suitable for immunohistochemical analysis of paraffin embedded tissue samples are 

extremely useful as much of the tissue obtained from tumour samples is readily obtainable for 

storage and transportation in this form. To date, there are no known commercially available FPGS 

antibodies and only one known commercially available antibody capable of recognising FR-α. The 

mOV 18 and 19 antibodies which have been found to recognise FR-α only do so in a limited 

fashion, identify only the native protein conformation and are unsuitable for analysis on paraffin 

embedded samples and Western blotting. In addition, mOV19 is no longer commercially available. 

As they are only suitable for analysis on frozen tissue sections, their application is limited. Thus it 

was one of the aims of this project to rectify this situation and produce a panel of antibodies 

which can be used in wider applications. 

The first step in monoclonal antibody production was to focus upon molecular biology techniques 

to produce a suitable immunogen which could subsequently be used to immunise mice to produce 

monoclonal antibodies, which will be discussed in detail in section 3.1. 

The recombinant protein expression method used is currently the method of choice for the 

production of immunogenic proteins. Using the methods described earlier, we were able to 

successfully produce all three recombinant proteins from target sequences with relatively few 

complications. 

The aims of this particular section of the project were satisfied as all three recombinant proteins 

have been successfully expressed and purified via the use of recombinant protein expression 

techniques. These proteins were subsequently used for immunisation of mice for generation of 

anti FR-α and FPGS antibodies. In addition, recombinant proteins for FR-α and FPGS2 have been 

generated in pET32 vectors which may be used for immunisation or as screening antigens, as the 

protein target sequence remains the same and the sequences differ only in the tagged and vector 

flanking regions. This will avoid any problems relating to antibody cross reaction. The importance 

of this will also be discussed in detail in the following chapter. 

The stop codon in the FR-α sequence was inferred to be an error arising from the cell line used. 

This was the reason for the design of the FR-αF2 and FR-αF3 primers. It was later discovered, 

however, that this was not the case, as one of the other minipreps was sent for sequencing and 

was found to be correct. In hindsight a different miniprep could have been sent earlier for 
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sequencing before design and preparation of new primers was considered. The protein might then 

have been produced more quickly; however valuable experience was gained in the design of 

primers and the methods involved in recombinant protein production. Additionally, valuable PCR 

troubleshooting experience was gained from the problems encountered with the FPGS3 primers. 

The proteins were produced using pET 32 and pET 41 vectors. It would have been useful to have 

purified a protein in the pET 21 construct to observe the difference in antibody yield with and 

without a GST protein present. However all proteins were too insoluble without the presence of 

the tag, the yields in the soluble fractions were negligible and when refolding was attempted the 

proteins precipitated into solution rapidly, both on refold columns and by dialysis. 

All proteins produced had degradation to some degree, which may have been caused by the 

overgrowth of E.coli cultures. This was not deemed to be a disadvantage as it may allow for many 

different protein species to be presented to the murine immune system. Degradation may have 

been reduced by inducing the large scale induction samples at an earlier stage in the growth. This 

was not however deemed necessary as undegraded protein has not, in the past, always been 

required to produce successful antibodies. 

In summary, the aims of this part of the project were achieved, the next stage being dependent 

upon the immune response produced by the mice to the protein. 
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Chapter Three 

3.  Antibody Production 

3.1.  Hybridoma Technology     

Antibodies are commonly produced via the immunisation of laboratory animals, typically mice and 

rats, with an antigen emulsified in an adjuvant solution. Antigens are typically proteins although 

peptides, nucleic acids and carbohydrates have also been used. The two most commonly used 

adjuvants are Freunds complete and incomplete adjuvants. Freunds complete adjuvant contains 

mineral oil and an additional component, the cell walls of mycobacterium which serve as non-

specific stimulators of the murine immune response (Freund, 1956; Freund & Mc Dermott, 1942). 

Adjuvants are used as they strongly enhance the immune response via a number of different 

mechanisms including retention of the immunogen at the site of administration,  stimulation of an 

immune response at the injection site and protection against antigen catabolism, all resulting in 

promotion of subsequent immune reactions.  The animal immune system identifies the antigen as 

‘non-self’ and an immune response is generated, this involves the clonal expansion of B-cells 

which differentiate to form plasma cells, able to secrete antibody of a single defined specificity. 

Plasma cells sequester in secondary lymphoid organs, particularly the spleen where antibodies are 

secreted and circulate in the blood and lymph, serving to recognise and opsonize any foreign 

antigens encountered. If collected, these plasma cells would be an ideal source of antibody; 

however these cells are unable to survive in vitro for any period of time and are unsuitable for use 

as an antibody source. 

 

3.1.1. Cell Fusion Technique 

Many attempts had been made to produce antibodies with single known specificity, however, 

until the development of hybridoma technology all attempts had failed (Berry, 2005). In 1975 

Georges Kohler and Cesar Milstein developed a method of generating monoclonal antibodies by 

successful fusion of antibody secreting B-cells from the spleen of an immunised mouse with a 

mouse B-cell tumour (myeloma) cell line. This was achieved via somatic cell hybridisation, 

resulting in a cell which had the immortal characteristics of a myeloma cell and the genetic 

predisposition to secrete specific antibodies. The resultant cells may be maintained indefinitely in 

vitro and are able to secrete antibodies into the culture supernatant (Kohler, Howe, & Milstein, 
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1976; Kohler & Milstein, 1975, 1976). Initially the Sendai virus was used in an attempt to generate 

hybrid cells with little success. (Harris & Watkins, 1965). Later Polyethyleneglycol (PEG) was found 

to be an effective method of cell fusion due to its ability to partially disrupt cell membranes, 

causing lipid exchange between cells and integration of cell membranes and is now the standard 

fusing agent employed in fusion techniques (Kohler & Milstein, 1976). 

Cell fusion is a random process, creating multinucleate cells amongst which are the few binucleate 

cells (hybridomas) of one myeloma cell and one B-cell. When the hybrid cells divide, the nuclei 

initially form a mononuclear cell with tetraploid chromosomes, the additional two sets of 

chromosomes are then lost, resulting in a diploid hybrid cell. All cells resulting from the fusion are 

cultured in media containing hypoxanthine, aminopterin and thymidine (HAT), which is selective 

for hybrid cells only and depends upon the fact that mammalian cells synthesize their nucleotides 

via two different pathways as shown in Figure 3-1.  

As reviewed in Chapter 1, the de novo pathway requires glutamine and aspartate as substrates for 

purine and pyrimidine nucleotides which are in turn involved in DNA synthesis. Synthesis involves 

the transfer of a methyl of formyl group from an activated form of tetrahydrofolate. The antifolate 

aminopterin blocks this pathway thus inhibiting DNA synthesis via the de novo pathway. The 

cultured cells are forced to utilise the salvage pathway in which nucleotides are synthesized via 

the action of the enzymes hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and 

thymidine kinase (TK), (Figure 3-1). 

The P3-NS-1/1-Ag-1 (NS-1) variant of the mouse myeloma cells are commonly used in the fusion 

process as they only produce a κ light chain, reducing the amount of contaminating antibody 

present. In addition, they are deficient in the enzyme HGPRT, which is used in the nucleotide 

salvage pathway. The aminopterin present in the HAT media blocks the de novo pathway, cultured 

cells such as NS-1 cells and NS-1-NS-1 hybrids which are deficient in this enzyme will not survive. 

Despite possessing an intact HGPRT gene, splenocytes and splenocyte-splenocyte hybrids have a 

finite lifespan of 1-2 weeks in culture and thus cannot survive alone. The only cell type able to 

survive in these conditions are the hybridomas, which are HGPRT positive as they contain a copy 

of the gene from the splenocyte. They are also able to survive in culture due to possessing the 

immortal properties of a myeloma cell line. 
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Figure 3-1: Overview of de novo and nucleotide salvage pathways in mammalian cells. Aminopterin inhibits 

the de novo synthesis of dATP, dGTP, dCTP and dTTP. If this is blocked, the two salvage pathways are activated via 

the action of the enzymes HGPRT and TK. 

 

 

3.1.2. Antibody Screening and Characterisation 

The key aspect of monoclonal antibody generation is the screening protocol which must be 

performed in order to select the specific antibody of choice. A number of different procedures are 

performed in order to screen hybridoma culture supernatants to detect bound monoclonal 

antibody. Taking advantage of the specific nature of the antibodies, fluorescent, enzyme linked or 

otherwise tagged antibodies can be used in order to visualise the results. The most common 

screening techniques used are ELISA, WB and IHC. The major advantage of such assays is the 

speed at which they can be performed, their reliability and accuracy. Initial screening of fusions is 

extremely important as it is on the basis of this result that hybridoma colonies are selected. ELISA 

assays are often selected for initial fusion screening as it is regarded as a rapid, highly sensitive 

assay and allows screening of the large numbers of hybridomas generated by fusions. Qualitative 

results provide a simple positive or negative result for each supernatant sample and the margin 
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between positive and negative samples is determined via the use of positive and negative 

controls. Secondary screening via immunohistochemical analysis on paraffin embedded sections 

and via WB on cell lines and tissue extracts can also be performed to confirm specificity of the 

antibody. 

The hybridomas are then subsequently ‘cloned’ by limiting dilution three times, to eliminate any 

cells which have lost their ability to secrete antibody which may exhibit growth advantage over 

the desired cell population, and to ensure the probability that population of antibody secreting 

cells are derived from one single cell (Figure 3-2). 

After successful generation of antibodies, their specificity can then be assessed by both IHC and 

WB analysis on normal, tumour and cell line panels to ensure they are specific for the target 

protein. 

A number of different cell line pellets including, ovarian, breast, colorectal and MPM malignancies 

were obtained both from Novocastra and Newcastle University. In addition, a panel of leukaemia 

cell lines kindly donated by Dr. Sally Coulthard were also included. As FPGS mRNA has been 

reported to be expressed in a number of cell types, particularly cells of lymphoid origin, it was 

thought that further investigation of FPGS expression in leukaemia cells would be interesting and 

would fully characterise the antibody (Leclerec & Barredo, 2001; Nair & Mc Guire, 2005).  

 

3.1.3. Epitope Mapping 

Epitope mapping is a versatile technique as it can be used for a number of different applications; it 

enables antibody specificity to be defined and may predict the occurrence of cross-reaction. It can 

also be used in development of assays, to define sites of protein modification, to probe protein 

structures, elucidate their functions and may also be used as a model for protein-protein 

interactions. Epitope mapping can be performed by a number of different techniques for different 

applications, each with their own inherent advantages and disadvantages. Mapping methods 

include peptide arrays, phage displays of random peptide libraries, expressed protein fragments 

via molecular biology, partial proteolysis and mass spectrometry. 

The antigen binding site of an antibody is termed the paratope, where the region of an antigen 

that binds to the paratope is termed the epitope, interactions between the antibody and antigen 

are hydrophobic and electrostatic in nature and are noncovalent  (Ramos-Vara, 2005). 
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Eptiope mapping was planned in order to bring closure to this part of work, depending upon the 

time available the method used to perform epitope mapping may have varied. If possible, epitope 

mapping was also planned for the mOV 18 and LK26 antibodies to observe any 

similarities/differences between the epitopes recognised. This would be dependent upon the 

method of epitope mapping selected. Epitope mapping is not routinely carried out to characterise 

antibodies but in this study it was performed as it was necessary to confirm our antibodies 

recognised an epitope present in the target sequence. 
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Figure 3-2: Overview of MAb production. Following immunisation, splenocytes were fused with NS-1 myeloma cells and incubated for 7-10 days and screened by ELISA to 

select for hybridomas secreting antibody. Positive hybridomas were picked and screened via IHC and WB and cloned three times (7-10 days minimum for each round of cloning) to 

ensure they were monoclonal.   
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3.2.  Aims and Objectives 

The aim of this part of the project was to develop specific antibodies to the FR-α and FPGS protein 

targets and fully characterise the antigen specificity of the antibodies via ELISA, WB and IHC. 

 Immunise three sets of five female, Balb C mice with an optimal concentration of 

recombinant protein targets FR-α, FPGS2 and FPGS3 generated previously. 

 Assess the immune response of the mice bleeds via WB and IHC. 

 Perform cell fusions on the splenocytes of the most responsive mice with NS-1 myeloma 

cells to generate hybridomas. 

 Isolate and characterise the specific monoclonal antibodies via ELISA, WB and IHC. 

 Clone positive hybridomas three times, assessing the antibody specificity by ELISA and 

WB at each stage on control tissues and cell lines. 

 Stability testing of positive hybridomas at different temperatures. 

 Weaning of positive hybridomas into non-supplemented media. 

 Full characterisation of the antibodies on panels of normal and tumour tissue 

 Further characterisation of the antibodies via WB analysis on cell line panels derived 

from cell lysates grown in culture. 

 Epitope mapping of the antibodies to identify the region of the target sequence 

recognised. 
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3.3. Materials and Methods 

3.3.1. Mouse Immunisation Schedule 

The immunisation schedule employed in this project was selected according to current guidelines 

already in place at Novocastra Laboratories, as much success has already been seen via the use of 

these methods. Many factors influence a successful immune response, including injection site, 

adjuvant used and chemical nature/solubility of the immunogen.  

For both the FR-α and the FPGS immunogens, five 6-7 week old female Balb/C mice, weighing 20-

40 g, supplied by Charles Rivers, were immunised subcutaneously with a mixture of 150-180µg 

antigen (20µg/mouse plus extra material to account for losses during processing), 400µl PBS and 

approximately 480µl Freunds complete adjuvant.  The mixture was emulsified using a double – 

hub emulsification needle and PBS containing 2% Tween 80 added to make the total volume 1.4 

ml. All five mice were immunised with 200µl solution and the excess discarded. The 5 mice were 

identified by labelling their ears as follows:  

 LN, (Left Notch).  

 RN, (Right Notch).  

 BN, (Both Notch).  

 NN, (No Notch).   

 2RN (2 Right Notch). 

 

On day 14, all 5 mice received a second subcutaneous booster immunisation of 20µg/mouse of 

recombinant protein, in Freund’s incomplete adjuvant.   

On day 28, all 5 mice received an intraperitoneal (IP) immunisation of 20µg/mouse of recombinant 

protein diluted in PBS solution only and on day 35 approximately 0.2 ml of blood was taken from 

the tail vein of each mouse and tested via ELISA to assess the antibody response. This procedure 

was performed at the Comparative Biology Centre, Newcastle University (CBC). Administration of 

the immunogen intraperitoneally generates a strong immune response as it drains directly into the 

thoracic lymphatic system and major veins where they have immediate, direct exposure to the 

immune system, particularly the spleen.  
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On day 42, all 5 mice received a second IP booster immunisation of 20µg/mouse of recombinant 

protein diluted in PBS and on day 49, approximately 0.2 ml of blood was taken from the tail vein of 

each mouse and stored at -20oC. These bleeds were tested for specificity to both FR-α and FPGS 

via WB and IHC. Multiple inoculations were performed and repeated in order to expose the 

animals to a large amount of antigen, whilst concomitantly lowering the risk of hypersensitivity 

reactions which may cause animal death. 

Any mice found to produce specific antibody received an intravenous (IV) booster injection of 

20µg of recombinant protein in PBS solution 5 days prior to fusion. This was performed in order to 

boost blastogenesis in the immune system maximally, the primary site being in the spleen (Table 

3-1). The mice were humanely sacrificed on the day of fusion by dislocation of the neck.  

Immunisations, ELISA screening and sacrifices were carried out by trained staff at the CBC. 

 

Table 3-1: Mouse immunisation schedules employed in this study. 

Injection 
No 

No of 
Mice/Project 

Procedure/ 
Adjuvant 

Site Immunogen 
(µg/mouse) 

Schedule 
Day 

1 5 Freunds Complete 
adjuvant 

Subcutaneous 20 0 

2 5 Freunds Incomplete 
Adjuvant 

Subcutaneous 20 14 

3 5 PBS Tween Intraperitoneal 20 28 

4 5 PBS Tween Intraperitoneal 20 42 

5 5 PBS Intravenous 20 5 days before fusion 

 

3.3.2. Growth of Cell Lines 

Frozen aliquots of cell lines were kindly donated by Dr. Sally Coulthard, Dr. Joyce Nutt and Dr. Jane 

Margetts at Newcastle University in addition to the use of various cell lines already stored and 

prepared at Novocastra Laboratories. The following cell lines were used in the characterisation of 

the expression of the FR-α and FPGS antibodies. The cell lines, origin and culture conditions are 

shown in Table 3-2. 
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Table 3-2: Human cell lines used for characterisation of FR-α and FPGS antibodies. Cell lines, types and 

designations used in further WB studies using FR-α and FPGS antibodies. 

Cell Line Type Culture Conditions 

(2mM L-glutamine, 10% FBS, 
5% CO2, 37

o
C) 

IGROV-1 Human ovarian epithelial 
carcinoma 

RPMI-1640 monolayer 

OVCAR-3 Human ovarian epithelial 
carcinoma 

RPMI-1640 

Bovine Insulin (0.01 mg/ml) 

SKOV-3 Human ovarian carcinoma RPMI-1640 monolayer 

SW626 Human ovarian 
adenocarcinoma 

RPMI-1640 monolayer 

PA-1 Human ovarian 
teratocarcinoma 

RPMI-1640 monolayer 

HeLa Human cervical carcinoma RPMI-1640 monolayer 

BT20 Human breast ductal carcinoma RPMI-1640 monolayer 

HBL100 Human normal breast epithelia RPMI-1640 monolayer 

MCF7 Human breast adenocarcinoma RPMI-1640 monolayer 

MSTO-211H Human lung mesothelioma RPMI-1640 monolayer 

NCI-H28 Human lung mesothelioma RPMI-1640 monolayer 

NCI-H226a Human lung mesothelioma RPMI-1640 monolayer 

A549 Human lung alveolar basal 
epithelial cell carcinoma 

Dulbeccos Modified Eagles media 
monolayer 

HT29/219 Human colon epithelial 
carcinoma 

RPMI-1640 monolayer 

CaCo2 Human colon epithelial 
adenocarcinoma 

Dulbeccos Modified Eagles media 
monolayer 

HCT116 Human colon epithelial 
carcinoma 

Dulbeccos Modified Eagles media 
monolayer 

Bristol 8 Human B-lymphoblastoid line RPMI 1640 suspension 

A375 Human epithelial malignant 
melanoma 

RPMI-1640 monolayer 

SJSA Human osteosarcoma RPMI 1640 suspension 

SHSY5Y Human neuroblastoma Dulbeccos Modified Eagles media 
monolayer 

Jurkat Human T-cell acute 
lymphoblastic leukaemia (ALL) 

RPMI-1640 suspension 

Molt 4 Human T-cell ALL RPMI-1640 suspension 

CCRF-CEM Human T-cell ALL RPMI-1640 suspension 

TK6 Human lymphoblastoid 
thymidine kinase heterozygote 

RPMI 1640 suspension 

PFI-285 Human T-cell lymphoma RPMI 1640 suspension 

Pre-B Human pre-B cells RPMI 1640 suspension 

ECR-293 Human embryonic kidney Dulbeccos Modified Eagles medium 
monolayer 

 

3.3.3. Protein Estimation 

Cell lines were cultured as described in Table 3-2. All protein lysates were prepared from the 

different cell lines in exactly the same way. The protein concentration present in each sample was 

estimated by an automated analyser. 

A confluent monolayer or suspension of each cell line was grown in a 75cm2 flask (approx 8x105 

cells/ml) and the media removed by decanting. The cells were washed in Dulbeccos PBS (Sigma) to 
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remove any non adherent cells/cell debri, non cell associated proteins and contaminant from the 

cell monolayer/suspension. The adherent cells were then incubated for 15 minutes in 15ml non-

enzymatic cell dissociation solution (0.2M EDTA, Sigma) and washed off with a 10ml pipette and 

PBS. Trypsin was not used as it may have sheared the receptors from the cell surface. Cell 

suspensions were centrifuged for 5 minutes at 300G, the supernatant discarded and washed in a 

further 10ml PBS and centrifuged again. 100µl cell lysis buffer/107 cells (62.5 mM tris pH 6.8, 10% 

glycerol, 2% (w/v) SDS) was added to each cell pellet to lyse the cells. Samples were then 

sonicated to break the cells down further and boiled at 100oC for 10 minutes prior to protein 

estimation.  

Protein estimation was performed in a 96 well microtitre plate and was carried out using a Pierce 

protein assay kit (Pierce, Rockford IL) according to the manufacturers instructions. The unknown 

protein concentrations of the cell lysates were compared to that of known albumin protein 

standards and the results read via the use of a Spectromax 250 Microplate spectrophotometer 

system (Molecular Devices Corporation) according to the standard operating procedures.  The 

unknown protein concentrations were determined and the volume of lysate to ensure all samples 

were loaded with equal amounts of protein calculated. The samples were stored at -20oC until 

required. 

 

3.3.4.  Western Blotting (WB) 

WB allows the identification of proteins recognised by specific antibodies which recognise linear, 

rather then conformational epitopes as WB is typically performed under denaturing conditions.   

The target recombinant proteins and appropriate cell lysates are first electrophoretically 

separated via SDS-PAGE and then transferred onto a nitrocellulose membrane. This is then probed 

with the antibody of interest to assess the specificity of binding to the required epitope present in 

the antigen, corresponding to the correct molecular weight, as determined by known molecular 

weight markers (see section 2.5.13 for SDS-PAGE method). 

A number of detection methods are commonly used in WB, including colourimetric, 

chemiluminescence, radioactive and fluorescent detection. Two techniques were utilised in this 

study. The colourimetric alkaline phosphatase (AP) method and the horse radish peroxidise (HRP) 

enhanced chemiluminescence (ECL) method. AP is conjugated to the secondary antibody and upon 

reaction with a suitable substrate an insoluble dye is precipitated onto the membrane, staining it. 
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This technique is simple to perform, although is regarded as less sensitive than other methods. ECL 

is considered to be one of the most sensitive detection methods, relying on a substrate which 

luminesces when exposed to the reporter conjugated to the secondary antibody (HRP in this case). 

The light is captured on photographic film; this does not degrade with time so a permanent record 

can be kept.   

 

3.3.5. Assessment of Bleeds via Western Blot 

12% SDS polyacrylamide (PA) gels were prepared, recombinant proteins and cell line extracts at a 

concentration between 0.2-0.5 µg/µl were electrophoresed for 45 minutes at a constant voltage 

(170V), together with suitable molecular weight markers (Bio-Rad precision plus dual colour 

protein standards). Satisfactory separation was judged by the visualisation of the bromophenol 

blue dye and viewing the progress of the pre-stained standards reaching the base of the PA gel.   

The gels were then equilibrated in ice-cold transfer buffer (0.025M Tris, 20% methanol, 0.1% SDS, 

pH 8.6) for five minutes.  Six sheets of blotting paper and one piece of nitrocellulose paper 

(Hybond-C, Amersham) were cut into rectangles, slightly larger than the gel and soaked in transfer 

buffer.  Three sheets of blotting paper were placed in the semi-dry blotter (Hoeffer TE70) stacked 

on top of each other, a sheet of nitrocellulose paper was added and then the gel.  A further three 

sheets of blotting paper were placed on top of the stack, taking care to exclude any air bubbles.  

The semi-dry blotter was then run at a constant current of 60 mA for 30 minutes for one gel (or 

120 ma for 2 gels), as shown in Figure 3-3. 

. 
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Figure 3-3: Semi-dry blotting apparatus. The nitrocellulose gel underlaid with blotting paper was sandwiched 

between blotting paper and placed in a semi dry blotter to facilitate transfer of the protein bands to the membrane. 

 

The transferred proteins were visualised by incubation with Ponceau S red reversible stain (Sigma) 

for 2 minutes, followed by destaining in distilled water.  The protein tracks were cut into strips, 

washed in PBS-tween (PBSt) rinse buffer and labelled NN, LN, RN, 2RN and BN.  The strips were 

placed in blocking solution (10% (w/v) skimmed milk in PBSt) to block free binding sites and reduce 

non specific binding and incubated at room temperature for 1 hour or overnight at 4oC.   

Each individual strip was then incubated at room temperature for 1 hour with the appropriate 

bleed, diluted 1/250 in 10% foetal calf serum (FCS) (Sigma) in PBSt. The pre-immune bleeds were 

used as a negative control. The AP detection method was considered to be the most suitable 

detection method for WB of bleeds as ECL results are difficult to interpret due to excessive 

background.  

The strips were washed in several changes of PBSt rinse buffer and placed in rabbit anti-mouse 

alkaline phosphatase (RAMAP) secondary antibody (Amersham), diluted 1/500 in 10% foetal calf 

serum, for 1 hour at room temperature.  The strips were washed again in several changes of PBS 

rinse buffer, and then washed twice in alkaline phosphatase buffer (100mM NaCl, 5mM MgCl2, 

100mM diethanolamine, pH 9.5).  The antigen-antibody-antibody complex on the nitrocellulose 

paper was then visualised by placing the strips in developer solution (10ml AP buffer, 33µl 

nitrobluetetrazolium (NBT, 100mg/ml), 66µl 5-bromo4-chloro3-indolyl phosphate (BCIP, 50mg/ml) 

(Sigma), until the bands could be visualised. The chromagen cleavage reaction was terminated by 
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briefly placing the strips in 10% acetic acid prior to air drying. The membrane was then scanned to 

generate an electronic image and stored, protected from the light. 

 

3.3.6.  Immunohistochemistry 

Immunohistochemistry is used to identify tissue components via the use of both polyclonal and 

monoclonal antibodies. This technique has a long history, the first concepts of which were 

described in 1941 via the use of an antibody containing a fluorescent group (Coons, Creech, & 

Jones, 1941). The technique was used throughout the 1970’s, gaining application in the 

identification of proteins on formalin fixed paraffin embedded tissue samples, although at this 

time the applications were limited as not all proteins in samples were identified. This is largely due 

to masking of epitopes caused by tissue processing. In 1991, Shi and colleagues identified a high 

temperature unmasking method to expose target epitopes in fixed tissues; this revolutionised 

immunohistochemistry as the sensitivity of the technique was greatly increased and many 

antibodies previously regarded as being of little use in fixed tissue were found to be of much 

greater value (Shi, Key, & Kalra, 1991). 

It has been hypothesized that heating tissue sections to temperatures in excess of 100OC causes 

disruption of cross links formed between formalin and the proteins tertiary or quaternary 

structure. These cross links are considered to be responsible for the masking of epitopes 

commonly seen. It may also restore antigens altered via acetylation or methylation. Dependent 

upon the degree of cross linkage, epitope retrieval solutions with differing pH may be used in 

order to optimise this technique. 

IHC is extremely useful as it is able to provide information upon protein expression levels in tissues 

and cellular localisation. In addition, it can be used to confirm the presence or absence of cellular 

markers and based upon their location within the cell can often aid in the elucidation of the 

function of particular proteins. IHC is able to detect relatively low levels of protein in tissues, 

although it is not as sensitive as ELISA or WB analysis.  

Various detections may be used in IHC, the techniques used in this study are the indirect 

streptavidin-biotin (ABC) technique as described in Figure 3-4 and the newer, more sensitive 

Novolink™ bench polymer kit (Novocastra laboratories, Figure 3-5). The basic methodology and 

detection method used in both methods are similar, although a polymer replaces the secondary 

antibody and avidin-biotin complex in the Novolink™ method. The advantages of the polymer kit 



Development and Evaluation of Novel Monoclonal Antibodies to FR-α and FPGS 

95 

are the ease and efficiency of the steps involved and the increased sensitivity of a polymer based 

detection kit.  

 

Figure 3-4: Indirect ABC technique immunohistochemistry. The primary antibody binds to the target (step 1) 

and a secondary biotinylated conjugate antibody binds to the complex (step 2). Biotin molecules are recognised by 

streptavidin, which is conjugated to a horseradish peroxidise (HRP) enzyme. Each streptavidin binds four biotin 

molecules and a macromolecule complex is formed (step 3). Addition of a chromogenic substrate such as 3’3- 

diaminobenzidine tetrahydrochloride (DAB) causes the HRP to cleave it into an insoluble brown product which is 

precipitated at the site of formation.  
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3.3.6.1. Indirect Avidin-Biotin (ABC) Technique Immunohistochemistry 

IHC was carried out according to the method described by Hsu and colleagues (1981). 5 µm 

sections of paraffin embedded tissue were cut using a microtome (Leica Biosystems) and placed 

onto 3-aminopropyltriethoxysaline (APES) coated slides.  Sections were incubated at 37OC 

overnight, then baked at 60OC for 60 minutes, then deparaffinized in xylene and rehydrated 

through graded alcohols (100%, 90% and 70% ethanol in dH2O).  Endogenous peroxidase activity 

was neutralised by incubating in a mixture of 3% H2O2 in methanol at room temperature for 10 

minutes.  The sections were washed in running tap water pre-treated with the appropriate 

reagent at a given pH in a pressure cooker for 1 minute at maximum pressure in order to expose 

antigenic epitopes.  The sections were once again washed in tap water and placed in tris-buffered 

saline (TBS) buffer, (140mM NaCl, 50mM Tris-HCl pH 7.6) for 5 minutes.  In order to block any non-

specific tissue binding sites, the sections were incubated with 10% normal rabbit serum (NRS) in 

TBS buffer for 10 minutes at RT.  Excess blocking serum was removed and replaced with the 

appropriate dilution of bleed/primary antibody and the sections were incubated at 25°C for 60 

minutes.  Following incubation, sections were washed in TBS for 5 minutes and covered with 

biotinylated rabbit anti-mouse secondary antibody (Novocastra Laboratories), diluted 1/500 with 

10% NRS in TBS buffer and the sections were incubated at 25°C for 30 minutes.  Following 

incubation sections were washed in TBS buffer for 5 minutes and then covered with peroxidase-

conjugated ABC complex (Novocastra Laboratories) diluted in TBS buffer and incubated again at 

25°C for 30 minutes.  After a final wash in TBS buffer, bound peroxidase was visualised using 3’3-

diaminobenzidine tetrachloride (DAB) chromogen.  The sections were washed in tap water, 

counterstained with haematoxylin, dehydrated through graded alcohols, cleared and mounted in a 

mixture of Distyrene, Plasticizer and Xylene (DPX) (Sigma), (Figure 3-4).  
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3.3.6.2. Novolink™ Polymer Immunohistochemistry 
Figure 3-5: Novolink™ polymer methodology. Steps and methodology employed via the use of the Novolink™ 

polymer kit. N.B. Antigen retrieval was performed in a pressure cooker as previously described prior to the blocking 

steps. 

 

3.3.6.3. Bleed Assessment via Immunohistochemistry 

All 5 bleeds, diluted 1:400 with 10% NRS in TBS, were tested on ovarian and colon 

adenocarcinoma, normal colon and placental FFPE samples obtained from Novocastra archives 

using IHC with the indirect ABC IHC technique and the Novolink polymer testing kit. The pre-

treatments used were high temperature citrate (200mM citric acid, 500mM NaOH, pH 6.0) and 

Tris/EDTA (10mM Tris, 1mM EDTA, pH 9.0) unmasking in a pressure cooker at high pressure for 1 

minute and the enzyme based proteinase-K bench unmasking technique. The unmasking solution 
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that gave the most specific staining was chosen and used in subsequent experiments. Mice with 

positively responding sera were selected for the final IV injection and subsequent fusion. 

 

3.3.7. NS-1 Myeloma Cell Culture 

As described earlier, NS-1 cells are immortal cancer cell line variants of mouse cell myelomas 

which have lost the ability to both synthesize and secrete immunoglobulin (Ig) heavy chains. They 

are therefore ideal candidates for hybridoma development as they do not produce contaminating 

antibody.  

Cell culture was performed in a Class II tissue culture hood using aseptic techniques, typical culture 

medium for myeloma cells is RPMI 1640 (Sigma), 20% (v/v) FCS (Sigma), 2mM L-glutamine (Sigma), 

2.5ml penicillin/streptomycin (500 µg/ml) (Sigma), also known as R20 medium. The media was 

stored at 4oC when not in use and from the date of production it had a shelf life of one month. 

Media was pre-warmed to 37oC in a water bath prior to use.  

Five days prior to cell fusion, a cryovial containing 1 x 106, P3-NS-1/1-Ag-1 azaguanine selected 

myeloma cells, was removed from liquid nitrogen and thawed rapidly in a 37OC water bath.  The 

cells were re-suspended in 10 ml R20 medium and centrifuged for 5 minutes at 125g.  Following 

centrifugation, the supernatant was discarded and the cells were re-suspended in 10 mls R20 

medium and transferred to a 162cm² flask, where a further 30 ml of R20 was added. The cells 

were stored in a 37OC incubator with 5% CO2.  Cell growth was monitored daily by microscopic 

examination until approximately 80% cell density was achieved. Upon reaching this density 

(typically 2-3 days) the NS-1 cells were counted using a haemocytometer and trypan blue (Sigma) 

was used to measure cell viability. A minimum of 2X107 cells with a viability greater then 90% was 

required in order to proceed with the cell fusion.   

Typically, cells were fed once every 2-3 days by subculturing 1ml of the cell suspension into 

approximately 30mls R20 media and expanded up to approximately 80mls two to three days prior 

to cell fusion. 
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3.3.8. Cell Fusion Procedure 

3.3.8.1.  Fusion Preparation 

One week after selection for IV, the positively responding mouse, as determined by WB and 

immunohistochemical bleed assessment was sacrificed at the CBC and collected approximately 30 

minutes before commencement of fusion. Prior to fusion, 5ml of HAT medium (Sigma), and 10% 

(v/v) BM-Condimed H1 (Boehringer-Mannheim, UK) and 15% Foetal Calf Serum (Sigma), was 

added to 190 ml of R20 medium (fusion medium) in a 75cm2 flask and warmed to 37OC in a water 

bath. Condimed contains a mixture of growth factors and cytokines, including Interleukin-7 (IL-7) 

which markedly stimulates growth of hybridoma cells in culture and aids in the production of 

hybrids secreting antibody.  A vial containing 4 ml of 50% PEG 1500 in 75 mM Hepes (Sigma) and a 

universal containing 50 ml of R20 medium was also placed in the water bath. 

 

3.3.8.2.  Splenocyte Preparation 

The mouse was drenched in 70% alcohol before being placed into the sterile hood. The mouse was 

laid on its right side and using sterile scissors, the fur and skin was cut along the abdomen and the 

spleen excised. All bound fat and additional tissue was removed and the spleen was washed in a 

petri dish containing approximately 10mls warm, sterile R20 medium. The spleen was then 

transferred to a further petri dish containing approximately 10 ml of R20 medium. Using sterile 

forceps and a seeking tool, splenocytes were gently teased out of the splenic capsule and into the 

medium, taking care not to disrupt the capsule itself. Once the majority of the splenocytes were 

removed the splenic capsule and mouse were discarded. The cell suspension was slowly passed up 

and down several times through a large 18 gauge needle.  This large needle was then exchanged 

for a smaller 25 gauge needle and the process was repeated in order to produce a single cell 

suspension whilst avoiding rupture of the splenocytes. 

 

3.3.8.3.  NS-1 Myeloma Cells 

Before preparing the cell suspension, an appropriate volume of NS-1 cells were calculated, in 

order to provide 2x107 cells necessary for the fusion, using a haemocytometer. The volume of 

media, containing 2x107 NS-1 cells was transferred into a 50 ml universal and centrifuged for 5 

minutes at 125G. The supernatant was discarded and the cell pellet gently tapped to dislodge the 

cells. 
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3.3.8.4.  Fusion in PEG 

The splenocyte single cell suspension prepared in the syringe was slowly added to the universal 

containing the NS-1 cells and the mixture of both cells (NS-1:Spleen cells approx 1:8) was 

centrifuged again at 125 G. The supernatant was discarded and the cell pellet gently tapped to 

resuspend both types of cell into the residual medium. The cells were placed into a small 37OC 

water bath where they remained throughout the fusion procedure. The universal was continually 

rotated and 2ml of PEG 1500  (Sigma) was added to the cell mixture over 1 minute taking care not 

to immerse the pipette tip into the cell suspension. 1ml of R20 media was then added over 1 

minute with the tip of the pipette placed firmly against the bottom of the universal.  Subsequently, 

2x 10 mls R20 medium were added over 4 minutes with the tip placed just under the meniscus. 

The cell mixture was decanted into the 75cm2 flask containing the fusion medium prepared 

earlier. The suspension was plated out at 200 μl/well into twelve 96 well sterile culture plates, 

leaving the final column on the 12th plate free for controls, and incubated at 37oC, 5% CO2 for 7 

days.  After approximately 7 days the plates were examined microscopically to identify hybridoma 

colonies.  

 

3.3.9.  Enzyme Linked Immunosorbent Assay (ELISA) 

ELISA is a solid phase binding assay used in a variety of applications, including determination of the 

antigenic constituent of hybridoma supernatants by antigen-antibody interactions between the 

recombinant protein used for immunisation and the antibodies generated resulting from fusions. 

A secondary antibody is typically conjugated to an enzyme. In this case AP was conjugated to the 

secondary antibody which cleaved a colourless P-nitrophenyl phosphate substrate to the yellow 

cleavage product monophosphonitrophenol, the absorbance of which could then be measured by 

a spectrophotometer (450nm). 

 

3.3.9.1. Screening for Specific Hybridoma Colonies via ELISA 

After approximately 7 days, the 12 fusion plates were screened by ELISA to detect any specific 

anti-FR-α and FPGS antibodies. 100µl of the appropriate recombinant protein, at a concentration 

of 1 µg/ml in coating buffer (15mM Na2CO3, 35mM NaHCO3, pH 9.6) were added to each well of 

twelve 96 well ELISA plates and incubated either at 37OC for 2.5 hours or overnight at 4OC. The 

plates were washed three times with PBSt, pH 7.2 to remove any unbound antigen, using a hand 

operated plate washer (Dynatech Laboratories, UK).  50µl PBSt with 1% NRS was added to each 
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well to reduce any background resulting from pH variability between wells. 50μl of primary 

supernatant from the fusion plates was then added to the corresponding ELISA plate via the use of 

a 96 channel pipette transplater with sterile 96 tip transplate cartridge (Transtar, UK).  A positive 

control, using the corresponding positive bleed, diluted 1:1000 and 1:5000 in PBSt and a negative 

control of PBSt only, was also added to the final column on the 12th plate and the plates were 

incubated at 37oC for 1.5 hours.  

After washing to remove any unbound antibody, the plates were incubated at 37oC for 1.5 hours 

with 100μl/ well AP conjugated rabbit anti-mouse IgG (Sigma) diluted 1/2000 in PBSt. After the 

final washing step to remove any unbound secondary antibody the plates were incubated with 

100μl/well AP tablets (Sigma) dissolved in AP buffer (100mM diethanolamine, 100mM NaCl, 5mM 

MgCl2, pH 9.5) at a concentration of 1 mg/ml for 15 minutes or until the colour developed (Figure 

3-6). 50µl of 3M NaOH was added to each well to stop the reaction and the optical density of the 

plates were then read on an MRX plate reader (Dynex Technologies) at 450 nm. Positive wells 

were identified, using the positive controls as a guide and hybridomas in the corresponding wells 

from the original fusion plates were picked off using a 10 μl pipette and transferred to a new 96 

well ELISA plate. A positive response was determined by an optical density (OD) above the OD of 

the control at 1/5000. The positive hybridomas were then supplemented with R20/condimed 

medium and left to grow overnight at 37OC. 

 

Figure 3-6: Positive ELISA plate.  Photograph of an ELISA plate showing positive wells (yellow). 
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3.3.9.2.  ELISA Screening of Hybridomas against Fusion Protein Tags  

As the amino acid sequences of FR-α and FPGS were cloned into pET32a-Tx and pET41b-GST 

tagged vectors respectively, the ELISA positive hybridomas were screened against both TX and GST 

proteins by ELISA as previously described to ensure any hybridomas secreting antibodies 

recognising either protein were identified and discarded. Any cells recognising the ‘tag’ were 

located to the corresponding wells on the culture plate were removed. All remaining positive 

hybridomas were supplemented with R20/condimed medium and left to grow overnight at 37OC. 

 

3.3.10. Screening ELISA Positive Hybridomas via IHC 

ELISA positive hybridoma supernatants were screened by IHC on FFPE tissue sections obtained 

from the Novocastra archives, using the standard indirect ABC technique and Novolink Polymer kit 

as described in section 3.3.6. The unmasking methods, as determined from the bleed assessment 

were citrate pH 6 for FR-α and Tris EDTA pH9 for FPGS hybridomas. 

At this stage the sections were scored as either negative, 1+ (weak), 2+ (moderate) or 3+ (strong) 

using a light microscope and specific hybridomas were transferred to a 24 well plate and given the 

appropriate volume of R20/condimed medium and left to grow 

 

3.3.11. Cloning Hybridomas via Limiting Dilution 

The ELISA and IHC positive hybridomas were cloned to ensure that the antibody secreting 

hybridomas were from single parent cells and thus monoclonal in origin. This also ensured the 

antibody secreting cells were not contaminated with more rapidly growing non-secreting cells 

which often exhibit growth advantage over cells secreting antibody.   

Two 96 well plates were prepared for each positive hybridoma by addition of 200 μl 

R20/condimed medium to each well and pre-warming at 37oC. The calculated volume containing 

1000 cells from each positive hybridoma was then diluted in 4mls R20/condimed medium and 

100µl of cell suspension was then seeded into the first 2 columns of each 96 well plate. It was then 

serially diluted across the plates by transferring 100 µl of cell suspension from rows 1 and 2 to 

rows 3 and 4 respectively, continuing across to the end of the plate. Excess cell suspension was 

discarded and the plates were incubated at 37OC until sufficient growth had been achieved, 

typically 7-10 days; the hybridomas were then screened by ELISA. 
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Positive wells towards the right of the plate (typically one or two hybridomas per cloning plate) 

were selected to be grown for IHC analysis to ensure the antibody gave specific tissue staining.   

In order to produce a monoclonal antibody, this cycle of screening via ELISA and IHC and cloning 

procedures needed to be repeated a minimum of three times to ensure the hybridoma clones 

were statistically 99.99% monoclonal. The cells were also frozen down before cloning at each 

stage to ensure a stock of hybridoma was available to return to if necessary in case of failure of 

cloning or contamination.  

 

3.3.11.1. Assessment of 1st and 3rd Clones via Western Blot Analysis 

ECL WB was used to assess 1st and 3rd clones in addition to IHC analysis to confirm specific 

reactivity with both the recombinant protein and cell lines known to express the protein. The 

methods were performed as described in section 3.3.4. The more sensitive ECL detection method 

was used to assess clones. 

After addition of the primary antibody and washing steps, an HRP labelled anti-mouse IgG 

secondary antibody (Amersham) at a dilution of 1/2000 in PBSt/ 10% foetal calf serum was added 

to the membrane and incubated for 1 hour at room temperature. After several washes in rinse 

buffer the antibody reaction was revealed using a chemiluminescence ECL detection kit 

(Amersham) according to the manufacturer’s instructions. After addition of the appropriate 

volume of reagents the membranes were wrapped in cling film (Saran wrap) and placed in an x-ray 

film cassette with a sheet of autoradiography film (Kodak) in a dark room and exposed for the 

appropriate length of time. The exposed film was then developed in an automatic x-ray film 

processor (XOgraph X4, Xograph Imaging Systems Ltd, Gloucestershire).  

 

3.3.12. Freezing Down Cells 

Before and after each cloning procedure, cell samples were frozen down and stored in liquid 

nitrogen. 1ml of cell solution was placed into a centrifuge tube and centrifuged for 5 minutes at 

125G.  The supernatant was discarded and 0.5 ml of freeze mix (90% FCS, 10% dimethyl sulphoxide 

(DMSO, Sigma) was added to the cell pellet. The mixture was then transferred to a freezing vial, 

labelled and placed in a cryo-freezing container at -80oC  for no longer than one week prior to 

being transferred to liquid nitrogen.  
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3.3.13. Weaning into R20 Medium 

Positively responding clones were transferred into 6 well plates and weaned into R20 medium by 

slowly decreasing the percentage of R20/condimed medium.  Throughout the weaning process, a 

well containing cells in R20/condimed medium was grown in the event that the weaned cells could 

not survive in the lower concentrations of condimed medium. The weaning process duration can 

range from 2 weeks to a few months depending upon the hybridomas response to the reduction in 

condimed.  Once the cells were successfully weaned into R20, approximately 50 ml of cell 

suspension was grown in a 75 cm2 tissue culture flask, frozen down and stored in liquid nitrogen, 

and approximately 70 ml of cell suspension was grown in a 162cm2 tissue culture flask as a pre-

production batch and left to overgrow for further testing.  

 

3.4.  Antibody Validation and Characterisation 

3.4.1. Characterisation of Weaned Clones via Immunohistochemistry 

Once the clones had been weaned into basic R20 media, they were tested via IHC using the 

Novolink polymer kit on large panels of formalin fixed, paraffin embedded normal and tumour 

tissues in order to fully assess the expression of the proteins on a wide variety of tissues. A panel 

of normal and tumour samples were obtained from Novocastra archives. In addition, any tumour 

samples stored in the Novocastra tissue archives thought to be of interest were also added to the 

panel. Archival ovarian adenocarcinoma samples collected in connection with clinical trials of 

pemetrexed which had appropriate ethical approval for use in this study were also added to the 

panel as ovarian cancer is the main focus in this study. The results of these panels could then be 

compared with literature on known expression of the proteins to assess the specificity of the 

antibody.  

 

3.4.2. Characterisation of Weaned clones via Western Blot Analysis 

WB was performed on an extended panel of both positive and negative cell lines to further 

characterise the antibodies and support the IHC studies as described in section 3.3.4. A large cell 

line panel was used to assess the FPGS antibody as there was no IHC data to compare it to and 

thus it relied heavily on the data obtained from WB analysis for characterisation. 
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3.4.3. Further Characterisation 

In addition to IHC and WB analysis, the FR-α and FPGS antibodies were also assessed for their 

suitability for use with no pre-treatment and alternative pH pretreatments to ensure the selected 

pretreatment was still the most suitable. They were assessed for use with PBS buffer as this is 

commonly used in America and in addition they were assessed for use on the automated Bond IHC 

system.  Most of these tests were performed to ensure the antibody was suitable as a marketable 

product both in the UK and worldwide. Once all criteria had been satisfied the antibodies were 

isotyped (Isostrip Mouse Isotyping Kit) according to the manufacturers instructions and sent for 

review by both the managing director and Dr. Gary Hoffman, a consultant pathologist who 

analysed the staining on the sections and the appropriate literature. Once satisfied the antibody 

was specific for the target it was signed off and transferred to the production department where 

additional stability tests would be performed in preparation for mass production. 

 

3.4.4. Epitope Mapping 

Finally, epitope mapping via the use of a peptide array was used to fully characterize the 

antibodies and identify the epitope present on the target sequence.  It was decided to use the 

Cancer Research UK (CRUK) resource to generate the peptide array immobilised on a cellulose 

membrane to map the FR-α and FPGS antibody epitopes. This technique used a multipeptide 

synthesiser (Intavis) on which arrays of up to 600 peptides could be generated. The FR-α and FPGS 

target sequences were sent to CRUK and overlapping peptides of 12 amino acids in length, 

overlapping by one residue each time were generated and immobilised on to the membranes.  

The advantage of use of this resource is the ease of the methods used, applying a simple WB 

based technique for detection of positive peptides, it is also extremely fast and highly accurate 

results are obtained. The disadvantages of this method are that peptide array generation is costly 

and the coding sequence must be known. It was decided to use this technique primarily due to 

time limitations as other techniques may take as long as 6 months to complete and the results of 

this experiment would be valuable for completion and conclusion of this part of the work. 

Two FPGS membranes were received and three FR-α membranes, suitable for use with five 

different antibodies in total. It was decided to use one of the membranes to map the mOV 18 

antibody in addition to the FR-α antibody to observe the similarities/differences between the 

epitope recognition sites. The additional membrane was used to map the LK26 antibody.  
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The membranes were treated in the same way to the techniques used in WB as described in 

section 3.3.4, beginning with the blocking step. 

After treatment and development the membranes were stained with Ponceau S, an anionic 

sodium salt of a diazo dye which binds to the basic amino groups of proteins in an acid solution. It 

binds to primarily histidine, arginine and to a lesser extent lysine residues. Not all peptides react 

with the dye as not all sequences contain these amino acids, however it was possible to accurately 

infer the position of the other peptide spots based upon the positions of the visible peptides 

(Thompson-Hayner, Driscoll, Ferayorni, Spies-Karotkin, & Jauregui, 1982). 
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3.5.  Results – Hybridoma Technology 

3.5.1. Mouse Immunisation and Polyclonal Assessment 

3.5.1.1.  FPGS Immunisations/Polyclonal Assessment  

Five mice were successfully immunised with soluble FPGS2 pET41 protein, as this was the initial 

project it was decided that all mice should be fused as a training exercise. However, further 

studies highlighted a problem and all immunised mice subsequently failed, this will be discussed in 

detail later in this chapter. The initial five mice appeared to have responded well, LN appearing to 

have the best response via WB. The best responding mouse was then assessed via IHC on ovarian 

and colon adenocarcinomas, term placenta and normal colon to assess the polyclonal response, 

using Tris-EDTA for antigen retrieval. The staining observed was cytoplasmic and punctuate and 

was inferred to be correct as there was no IHC data to compare it to. For this antibody WB results 

were heavily relied upon as confirmation that the staining seen was correct. The staining was 

thought to be correct as it was in the correct compartment within the cell and punctuate staining 

was indicative of the type of staining expected from a cytoplasmic/mitochondrial enzyme (Figure 

3-8). A single band was observed via WB at 60 kDa so it was thought that the positive staining 

confirmed by a band at the correct molecular weight was confirmation of antibody specificity 

(Figure3-7). Fusions were performed on all five mice, two clones reached the third and final 

cloning stage before a cross reactivity issue and a gap in the screening procedure were identified, 

this is discussed in detail in section 3.5.2.1. The following figures show the staining and WB 

immunoreactivity observed, however, these clones were discarded at the final stage. 
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Figure 3-7: AP WB of FPGS polyclonal bleed. FPGS2 pET 41 polyclonal bleed. Note the band at the expected MW 

of FPGS at 60 kDa and absence of band in the pre immune bleed. (-C - negative control lane, LN – Left Notch bleed). 

 

Figure 3-8: Polyclonal and monoclonal comparison. IHC photographs of a paraffin embedded ovarian 

adenocarcinoma sample stained with FPGS2 pET 41 LN bleed and third clone. Note the cytoplasmic punctuate staining 

seen which was the expected FPGS staining pattern. 

 

 

A further five mice were successfully immunised with FPGS3 pET 41 refolded protein, all five mice 

were found to show a very weak response via both IHC and WB.  
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Given the problems highlighted above, five mice were also immunised with FPGS2 pET 32 refolded 

protein, as it was found that immunisation with refolded rather than soluble proteins appeared to 

eliminate the cross reaction problem described in section 3.5.2.1. All mice appeared to have 

responded via WB and IHC, 2RN giving the strongest and most specific response. All mice were 

selected for fusion. 

In total 15 mice were immunised for the FPGS project and 15 fusions were performed. 

 

3.5.2.  FR-α Immunisations/Polyclonal Assessment 

 Initially five mice were successfully immunised with FR-α pET41 soluble protein, the polyclonal 

assessment indicated only one strongly positively responding mouse (BN) so a further five were 

immunised with FR-αF2 soluble protein. This was performed before the FPGS cross reactivity 

problem was observed. Upon the bleed assessment for FR-αF2 it was observed that a single band 

at 60 kDa appeared to be present on these WB’s. As the expected molecular weight for FR-α is 40 

kDa this was the first indication that there may be a problem with the antibodies and initiated an 

investigation into determination of the specificity of the antibodies via WB studies, described in 

the following section. At first it was thought the proteins may have somehow become mixed up, 

however subsequent tests ruled this out.  In light of this problem highlighted with the FPGS 

protein/antibodies and the possibility that it may also be affecting the FR-α samples,  a further five 

mice were immunised with the FR-α pET 32 refolded construct as this was thought to prevent 

previous cross reaction problems. Again, in total 15 mice were immunised and 15 fusions 

performed for the FR-α project. In the FR-α pET 41 immunisations, bleed BN was selected for 

further IHC analysis, citrate buffer (pH6) was found to be the most suitable antigen retrieval 

solution and IHC analysis on normal colon and ovarian adenocarcinoma showed 

membrane/cytoplasmic punctuate staining (Figure 3-9). On further analysis this staining pattern 

was seen to be strikingly similar to that of the staining observed for the FPGS2 bleeds. 
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Figure 3-9: FR-α polyclonal bleed. IHC photograph of FR-α pET 41 NN polyclonal bleed on normal colon (top) and 

ovarian adenocarcinoma (bottom) x20. Note the membrane/cytoplasmic punctuate staining and the similarity in 

staining with the FPGS LN bleed previously shown. 
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3.5.2.1. Western Blot Studies to Identify the Cause of Cross-Reactivity 

The first indication of a cross reactivity problem was the assessment of the FR-αF2 bleeds which all 

appeared to have single band reactivity with a 60 kDa protein. As the expected size of FR-α was 40 

kDa and each bleed was producing a specific single band it appeared there may be a problem. It is 

unusual for a bleed to give a single band under normal circumstances as many bands are usually 

present due to the polyclonal nature of the serum. The first time this occurred with the FPGS 

protein it was considered to be fortunate, however, concerns were raised when it also occurred 

when the FR-α bleeds were assessed.  

This had not been highlighted earlier due to the fact that the correct molecular weight for FPGS is, 

in fact 60 kDa. It was decided that the FPGS antibodies, which by this stage were 3rd clones, 

should be tested via WB studies to ensure they were recognising the correct protein.  

At this stage it was thought that the immunoreactivity of both proteins may be due to either an 

error in molecular biology where the proteins may have become mixed up, this may have occurred 

at Novocastra or at the CBC during immunisation. Another hypothesis was cross reaction due to 

the same polylinker region being present in both protein constructs. 

The first step in investigation of this was to test this hypothesis and collect recombinant protein 

samples in different constructs previously developed at Novocastra. 

 

Proteins generated in the following constructs were collected; 

 pET 41 (GST) 

 pET 21 (Simple vector with no tag) 

 pET 32 (Tx) 

 pET 41s (GST with different flanking regions) 

 pET 32s (Tx with different flanking regions) 

 

A simple ELISA was initially performed, coating an ELISA plate with each of the above proteins and 

adding the FPGS2 BN 3rd clone. This was inconclusive as reactivity was observed with the both the 

FPGS2 pET41 and FR-α pET 41 soluble proteins but only weak reactivity with the other protein 
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constructs. This may have indicated that the proteins were mixed up but further studies were 

required. 

WB was then performed using the same proteins; AP gave a very weak signal so it was decided to 

use ECL. The result was surprising as it appeared that a single, 60 kDa band of immunoreactivity 

was present in all the protein samples tested to varying degrees. As the target sequences were 

different, the vector flanking regions of each construct were aligned to determine whether there 

were similarities. Again, this proved inconclusive as the flanking regions differed significantly. The 

most similar flanking region was in the pET 32 construct tested, however the signal did not appear 

to be any stronger with this protein. As this band was in other proteins which could not have been 

mixed up, the possibility of the proteins contaminating one another was not explainable in light of 

this result, although the strongest reactivity was still seen with both the FR-α and FPGS pET41 

soluble constructs. In fact, strongest reactivity was observed between the FR-α pET41 soluble 

protein and the FPGS antibody. Similarly when another BLAST search was performed, aligning the 

FR-α and FPGS sequences, no regions of homology were identified. It was then hypothesized that 

the antibodies may just have a very high affinity for ‘sticky proteins’, ovalbumin and bovine serum 

albumin are known to be extremely ‘sticky’ and had not been produced using vectors so they were 

tested but no signal was observed for either protein. 

Recombinant enterokinase enzyme was used to cleave the proteins into two fragments to identify 

which region of the proteins the cross reaction occurred, as it cleaved the proteins before the tag, 

it could be determined whether the epitope being recognised by the FPGS antibody is from the 

vector sequence alone or part of the protein and vector sequence. Bands were observed 

throughout the whole sequence, although it wasn’t clear how well the enterokinase enzyme kit 

had worked as the protein was degraded. An anti GST antibody was used and gave a signal in the 

cleaved protein where there was no signal using the FPGS antibody at the corresponding 

molecular weight so it could be concluded the cross reaction was not due to the tagged region. 

Another theory may have been that this was a WB artefact so two methods were applied to test 

this theory. Both the FR-α and FPGS soluble pET41 proteins were tested against dilutions of 

antibody to determine whether one signal reduced as the dilution of antibody increased, however 

both signals stayed as strong as each other so the artefact theory was rejected.  

The possibility of the positive signal being an artefact caused by the presence of SDS was also 

examined. A ‘dot blot’ WB was performed with no SDS present and the proteins in their native 
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conformation. Again, all protein samples were tested but a signal was only observed 

corresponding to the FR-α and FPGS soluble pET41 proteins. 

While the blotting studies were being performed, it had been decided that new recombinant 

proteins prepared in different vectors should be generated as screening antigens, as this cross 

reaction problem had highlighted a gap in the screening protocol not previously observed. FR-α 

and FPGS pET 32 constructs were successfully generated although this time they could not be 

produced in their soluble form and required refolding.  

Once these proteins were prepared they were tested with the FPGS clone and surprisingly, neither 

protein showed any immunoreactivity with the FPGS antibody. As the target region was the same 

it was concluded that all projects should be discarded as the results obtained could not be 

considered accurate. Although not tested, it is now hypothesized that as both proteins are 

cysteine rich, the E.coli may have produced soluble stress proteins, possibly a heat shock protein 

which contaminated the soluble protein fractions in both the FR-α and FPGS pET41 soluble 

recombinant proteins. The protein produced is likely to be microbial heat shock protein 60 

(HSP60), similar to the human equivalent, produced in response to stress (Chen et al., 1998; 

Kaufmann et al., 1991). Although not previously reported, this theory would also explain the 

reason for signals being observed at varying levels in other protein samples, possibly dependent 

upon the number of cysteine residues and relating to the level of stress placed upon the cells to 

produce the proteins. As the main focus of the project was the generation of antibodies this was 

not investigated any further and focus was placed upon new immunisation schedules, using the 

new recombinant proteins with the target regions only for screening as this would ensure only the 

target region was in common. This may also be supported by the absence of signal in the GST 

protein as this is a water soluble protein which is not cysteine rich and would not have caused the 

E.coli cells as much stress to produce.  

Similar problems have been seen at Novocastra previously, although the reason for the 

observations were unknown, a 27 kDa protein thought to be Heat shock protein 27 (HSP27) had 

been found to commonly contaminate soluble protein samples and was taken into consideration 

when producing recombinant proteins of 27kDa. It is unfortunate that in this case the contaminant 

happened to be the same molecular weight as the target which misled us to believe the results 

observed were correct. 
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The new constructs were found to be successful, this may be due to the fact that they required 

refolding, as the new proteins were produced in an insoluble form, soluble stress proteins would 

not have contaminated the samples.  

 

3.5.3.  Production of Anti FR-α and FPGS Antibodies 

3.5.3.1. Anti FPGS Antibody Generation 

An antibody to FPGS2, clone NN3.2 was successfully generated resulting from fusion of mouse BN 

with refolded recombinant FPGS2 pET32 protein. Unfortunately an antibody to the second target 

was not generated successfully. All five mice showed a weak response and subsequently the 

hybridomas generated failed as the response was proven to be too weak, although fusions were 

performed using all five mice. 

The ELISA screening of the fusion was performed using the FPGS2 pET 41b refolded protein sample 

which had previously been generated and purified. This approach safeguards against producing 

cross reactive or artefactual antibodies in two ways: Firstly, the only region in common to both the 

immunising and screening fusion proteins is the target region. Reactivity with the fusion partner 

(GST or Tx) or with flanking vector sequences will therefore be automatically screened out. 

Secondly, the use of refolded, insoluble material circumvents the problem that may be caused by 

any highly immunogenic soluble contaminants such as the postulated soluble 60kDa shock 

response protein. Following the successful BN fusion, 15 hybridomas were identified which 

reacted in ELISA with recombinant FPGS pET 41 refolded antigen. From these, subsets were 

selected producing characteristic patterns of heterogeneous cytoplasmic immunostaining on 

sections of paraffin wax embedded ovarian adenocarcinoma and colon carcinoma (Figure 3-10). 
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Figure 3-10: FPGS polyclonal bleed. IHC photograph of FPGS pET 32 NN polyclonal bleed on normal colon (top) 

and ovarian adenocarcinoma (bottom) x20. Note the cytoplasmic staining and the difference between the staining 

seen with this bleed compared with the cross reactive bleed shown previously (Figure 3-8). 

     

 

3.5.4.  FPGS Expression via Western Blot Analysis 

The selected FPGS antibodies were tested for their ability to react specifically with the human 

FPGS protein in a large panel of various different cell lines by WB as shown in section 3.5.4. The 

FPGS antibody produced from clone BN3.2 detected a single band of approximately 60 kDa in the 

majority of cell lines tested with varying levels of expression observed. An antibody to β-actin was 

used to correct for variations in loading between samples. 
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3.5.4.1. FPGS Extended Panel 
Figure 3-11: FPGS extended panel WB. Representative WB (n=3) showing detection of FPGS WT protein on a 

panel of cell lines via use of the generated FPGS NN3.2 antibody.  An antibody to β-actin (42kDa) was used as a 

loading control to correct for variations in loading between samples.  

 

 

 

Moderate expression was observed in all samples tested with the exception of the A-549 lung 

carcinoma and MCF7 breast cancer cell lines which displayed weaker expression of FPGS relative 

to the other samples. Slightly higher expression of FPGS was seen in the mesothelioma samples 

tested, although loading of these samples also appeared to be slightly higher.  
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Figure 3-12: FPGS extended panel (2) WB. Representative WB (n=3) showing detection of FPGS WT protein by 

WB on a panel of cell lines via use of the generated FPGS NN3.2 antibody. An antibody to β-actin was used as a 

loading control to correct for variations in loading between samples. 

 

 

 

Weak expression was observed in the A-375 melanoma and SJSA osteosarcoma samples tested, 

moderate expression was seen in the colon adenocarcinoma, B-cell lymphoma and neuroblastoma 

samples tested.
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3.5.4.2.  FPGS Leukaemia Panel 
Figure 3-13: FPGS leukaemia panel WB. Representative WB (n=3) showing detection of FPGS WT protein by WB 

on a panel of cell lines via use of the generated FPGS NN3.2 antibody. An antibody to β-actin (42kDa) was used as a 

loading control to correct for variations in loading between samples. 

 

 

 

Expression was observed in all samples tested, moderate expression was observed in leukaemia 

cell lines Jurkat, CCRF-CEM, TK6, PFI-285, embryonic kidney ECR-293 (Figure 3-13) and the ovarian 

carcinoma IGROV-1 positive control. Stronger expression was seen in Pre-B and Molt 4 cells. 

 

3.5.5.  FPGS Expression in Normal and Inflamed Tissues 

Immunoreactivity with the NN3.2 FPGS MAb was detected in a wide range of normal and inflamed 

human tissues. Positively staining samples included colon, kidney, liver, myocardium, tonsil, bone 

marrow and stomach. Negative samples included cerebellum and spinal cord (Figure 3-14). 

The reactivity of FPGS antibody, clone NN3.2, on a panel of normal and inflamed tissues is 

summarised in Table 3-3. 
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Table 3-3: Immunostaining for wild-type FPGS NN 3.2 on normal and inflamed tissues. 

Tissue Morphological Features FPGS cytoplasmic staining 
intensity 

Adrenal  Medulla 

Cortex 

Zona Granulosa 

Strong 

Weak 

Negative 

Inflamed appendix Lamina Propria/Crypts 

Submucosa 

Moderate 

Weak-Negative 

Bowel, large Brush Border/Crypts 

Smooth Muscle 

Moderate-Strong 

Moderate 

Bowel, small Villi/Crypts 

Smooth Muscle 

Moderate 

Weak-Negative 

Brain, cerebellum All elements Negative 

Cervix Epithelium.Glands 

Endothelium 

Weak-Negative 

Weak 

Gall bladder Submucosa 

Muscle Layers 

Moderate-Weak 

Weak 

Kidney Glomeruli 

Convoluted tubules 

Kidney vasculature 

Negative 

Weak 

Negative 

Kidney Glomeruli 

Convoluted tubules 

Kidney vasculature 

Weak-Negative 

Moderate 

Weak 

Liver Hepatocytes/Parenchynal Cells 

Endothelium 

Moderate-Weak 

 

Weak 

Inflamed lung, peripheral Alveolar Macrophages 

All elements 

Moderate-Weak 

Negative 

Muscle, skeletal All elements Negative 

Myocardium Muscle 

Endothelium 

Strong-Moderate 

Weak 

Ovary Stroma/connective tissue 

Ovary vasculature 

Weak 

Weak-Negative 

Placenta (term) Syncito/Cytotrophoblasts 

Mesenchymal cells 

Placental vasculature 

Moderate-Strong 

Moderate 

Moderate 

Inflamed skin All elements Moderate-Weak 

Spinal cord All elements Negative 

Testis Seminiferous tubules 

Sertoli/Leydig Cells 

Negative 

Weak 

Inflamed tonsil Follicles 

Epithelia 

Strong 

Moderate-Weak 

Ulcerative colitis All elements Moderate 

Umbilical cord All elements Weak-Negative 

Uterus (endometrium) All elements Moderate 
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Figure 3-14: FPGS normal panel. Cytoplasmic immunohistochemical staining for FPGS using clone NN 3.2 in 

paraffin embedded normal tissues: a) adrenal gland; strong reactivity in the medulla, weaker reactivity in the cortex 

and negativity in the zona granulosa (x20); b) gall bladder; moderate- weak reactivity in the submucosa and weak 

reactivity in the muscle layers (x10); c) kidney; moderate reactivity in the tubules, weak/negative reactivity in the 

glomeruli and weak reactivity in the vascular structures  (x10); d) liver; moderate-weak reactivity in hepatocytes, 

parencymal cells and endothelium (x10); (e) myocardium; strong-moderate reactivity in muscle and weak reactivity in 

endothelium (x20); f) placenta; moderate-strong reactivity in trophoblast layers, moderate reactivity in vasculature 

and mesenchymal cells (x40); g) ileum; moderate reactivity in villi/crypts, weak reactivity in smooth muscle layers 

(x20); h) colon; moderate-strong reactivity in brush border/crypts, moderate reactivity in smooth muscle layers (x40). 
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3.5.6.  FPGS Expression in Benign and Malignant Tissues 

The reactivity of the FPGS antibody, clone NN3.2, on a panel of formalin-fixed and paraffin-

embedded tumour tissues samples is described in Table 3-4, this panel included tumour tissue 

microarrays (TMA’s). The staining pattern of FPGS cytoplasmic positivity within each case was also 

heterogeneous. Strongly positive cytoplasmic staining for FPGS in tumour cells was noted in the 

majority of samples tested; lower staining intensity was also observed in adjacent normal tissue 

and mixed germ cell choriocarcinoma, fibrothecoma, gangliobeuroma and solitary fibrous tumour 

omentum (Figure 3-15).  
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Table 3-4: Immunostaining for FPGS on a range of benign and malignant tissues 

Tissue FPGS cytoplasmic staining intensity 

Bone Marrow Moderate 

Bone Marrow Moderate-Weak 

GIST Weak-Negative 

Hairy Cell Leukaemia Negative 

B-cell Lymphoma Moderate (cell aggregates)- Weak 

B-cell Lymphoma Strong (cell aggregates) 

Liver Moderate-Weak 

Breast carcinoma Moderate-Weak 

Melanoma Strong-Weak 

Melanoma Weak 

Mesothelioma Strong-Moderate (n=2) 

Mesothelioma Moderate 

Mesothelioma Weak-Negative 

Breast Carcinoma Moderate-Weak 

Breast Carcinoma Strong-Weak 

Ovary Serous carcinoma Weak-Negative (n=3) 

Ovary Serous carcinoma Weak-Moderate 

Ovary Serous carcinoma Moderate-Negative (n=2) 

Ovary Adenocarcinoma Weak-Negative 

Ovary Adenocarcinoma Moderate-Weak (n=2) 

Ovary Adenocarcinoma Moderate 

Ovary Adenocarcinoma Strong (n=2) 

Ovary Adenocarcinoma Strong-Moderate (n=2) 

Colon Adenocarcinoma Strong-Moderate 

Colon Adenocarcinoma Weak-Negative 

Cholangiocarcinoma Strong-Moderate 

Placenta A (term) Weak-Negative 

Placenta B (mid-term) Weak-Negative 

Placenta Moderate 

Hepatoma Strong-Moderate 

Fibrothecoma Negative 

Ovary Clear cell Strong-Weak 

Ovary thecoma Moderate 

Ovary granulosa Weak-Negative 

Gangliobeuroma Negative 

Squamous Carcinoma of Cervix Strong 

Bladder transitional cell carcinoma Strong 

Bladder Transitional Cell Carcinoma Weak-Negative 

Pancreatic Adenocarcinoma Negative 

Gastric adenocarcinoma Weak 

Renal cell carcinoma Negative 

Renal cell carcinoma Weak-Negative 

Prostate adenocarcinoma Moderate-Weak 

Prostate adenocarcinoma Strong-Moderate 

Thyroid papillary carcinoma Strong-Moderate 

Thyroid follicular adenocarcinoma Moderate 

Liver cell adenocarcinoma Moderate-Weak 

Adrenal Oncocytoma Moderate 

Desmoplastic SRCT Strong-Moderate 

Ewings Sarcoma Weak-Negative 

Basal Cell carcinoma Strong 
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Figure 3-15: FPGS tumour panel. Cytoplasmic immunohistochemical staining for FPGS using clone NN3.2 in a 

selection of paraffin embedded benign and tumour tissues) a) Colon adenocarcinoma; strong reactivity in tumour 

(x20); b) colon adenocarcinoma; strong reactivity in tumour (x40) c) B-cell lymphoma; moderate reactivity in tumour 

cell aggregates (x20); d) Bone marrow; moderate reactivity in cell aggregates (x20); e) breast carcinoma; moderate-

weak reactivity in tumour (x10); f) mesothelioma; strong-moderate reactivity in tumour (x10); g) ovarian 

adenocarcinoma moderate reactivity in tumnour islands (x10); h) ovarian adenocarcinoma; strong-moderate reactivity 

in tumour islands (x10). 
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3.5.7.  FPGS Further Characterisation 

The FPGS antibody was found to be suitable for use with both TBS and PBS buffers, it was also 

found to be suitable for use with both the ABC, Novolink™ polymer kit and a Bond Max™ 

automated immunostainer (Leica Biosystems, UK). Tris-EDTA was confirmed to be the best 

method of unmasking as Citrate produced too little unmasking, as did proteinase K.  No unmasking 

was found to produce no staining at all (Figure 3-16). The antibody isotype was determined to be 

Ig G1 κ.  

 

Figure 3-16: FPGS pre-treatment evaluation. Immunohistochemical staining for FPGS using clone NN3.2 in a 

selection of paraffin embedded ovarian adenocarcimoma samples with different pretreatments. Citrate (Cit) a,d&g; 

Tris EDTA (TE) b,e&h; No pre-treatment (NP) c,f&i. Note the lack of staining in the NP samples, weak staining in the 

CIT samples and optimal staining seen in the TE treated samples. 
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3.5.8. FPGS Epitope Mapping 

 

Figure 3-17: FPGS epitope mapping. FPGS membrane (top) and the same membrane stained with Ponceau-S 

(bottom) to observe the location on the peptide array recognised by clone NN 3.2. 

 

 

 

Seven peptides reacted with the NN 3.2 antibody, corresponding to the following peptides on the 

array as determined from the data sheet provided with the membranes. One peptide was positive 

(N29), followed by two negative peptides (N30, O1), the final six peptides showing reactivity were 

consecutive (O2-O8) (Figure 3-18).  
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Figure 3-18: FPGS epitope. Peptide sequences corresponding to the spots showing reactivity with the FPGS NN 3.2 

antibody. Positive sequences are shown in blue and negative adjacent peptides in red. Most likely epitope is shown in 

green. 

N29  E-K-I-A-W-Q-K-G-G-I-F-K 

N30  K-I-A-W-Q-K-G-G-I-F-K-Q 

O 1  I-A-W-Q-K-G-G-I-F-K-Q-G 

O 2  A-W-Q-K-G-G-I-F-K-Q-G-V 

O 3  W-Q-K-G-G-I-F-K-Q-G-V-P 

O 4  Q-K-G-G-I-F-K-Q-G-V-P-A 

O 5  K-G-G-I-F-K-Q-G-V-P-A-F 

O 6  G-G-I-F-K-Q-G-V-P-A-F-T 

O 7  G-I-F-K-Q-G-V-P-A-F-T-V 

O 8  I-F-K-Q-G-V-P-A-F-T-V-L 

O 9  F-K-Q-G-V-P-A-F-T-V-L-Q 

 

3.5.8.1. Anti FR-α Antibody Generation 

An antibody to FR-α was successfully generated from mouse BN 3.2, surprisingly resulting from the 

FR-α pET 41 soluble recombinant protein construct which was found to contain large amounts of 

contaminating 60kDa protein. All 14 other fusions resulted in a weak response or the antibodies 

generated were found to be cross reactive. The initial five fusions generated a large number of 

positive hybridomas, however they were screened using protein containing the contaminant and it 

is likely that all hybridomas were recognising this rather than the target. Later fusions resulted in 

few positive wells when screened with the new FR-α pET32 refolded protein, despite the 

polyclonal bleeds appearing to recognise a band at 40 kDa when blotted. The FR-α 3 mice fusions 

were also unsuccessful with few positives resulting from fusions. The fusion which generated the 

successful antibody was the last of the FR-α pET41 soluble fusions performed and screened using 

the FR-α pET32 refolded protein, as at this stage the new protein had been generated. This fusion 

resulted in only one positive hybridoma from beginning to end. This is highly unusual as, typically 

fusions result in 50-100 positive hybridomas at fusion screen. Attempts to generate other positive 

clones were made, however no more surviving positive clones could be generated. Characteristic 

patterns of heterogeneous cytoplasmic and membrane immunostaining on sections of paraffin 
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wax embedded ovarian adenocarcinoma were observed during the development process (Figure 

3-19).  

 

Figure 3-19: FR-α bleed evaluation. Photograph of FR-α pET 41 NN polyclonal bleed on normal colon (top) and 

ovarian adenocarcinoma (bottom) x20. Note the membrane/ cytoplasmic staining and the difference between the 

staining seen with this bleed compared with the cross reactive bleed shown previously (Figure 3-8). 
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3.5.8.2.  FR-α Expression via Western Blot  Analysis 

The selected FR-α antibodies were tested for their ability to react specifically with the human FR-α 

protein in a large panel of various different cell lines by WB as shown in figures 3-20, 3-21 and 3-

22. The FR-α antibody produced from clone NN3.2 detected a single band of approximately 40 kDa 

in a limited number of cell lines tested (n=28) with varying levels of expression observed. An 

antibody to α -tubulin was used to correct for variations in loading between samples. 

 

3.5.8.3. FR-α Extended Panel 

 

Figure 3-20: FR-α extended panel WB. Representative WB (n=3) showing detection of FR-α WT protein by WB on a 

panel of cell lines via use of the generated FR-α BN3.2 antibody. An antibody to α-tubulin (56kDa) was used as a 

loading control to correct for variations in loading between samples. 

  

 

 

Varied expression was observed in the ovarian tumour samples ranging from strong (IGROV-1) to 

weak (SW626, PA-1). Strong expression was also observed in the cervical carcinoma cell line HeLa. 

No expression was observed in any of the breast carcinoma, mesothelioma or lung carcinoma 

samples tested. This image shows the overexposure as the SW626 and PA1 lanes were not 

demonstrated with lower exposures. 
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Figure 3-21: FR-α extended panel (2) WB. Representative WB (n=3) showing detection of FR-α WT protein by WB 

on a panel of cell lines via use of the generated FR-α BN3.2 antibody. An antibody to α-tubulin (56kDa) was used as a 

loading control to correct for variations in loading between samples. 

 

 

 

Expression was observed in one colon carcinoma cell line (CaCo2), and the ovarian carcinoma 

positive control IGROV-1. No expression was observed in two other ovarian adenocarcinoma 

samples, B-cell lymphoma, melanoma, osteosarcoma or neuroblastoma samples tested. 
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3.5.8.4.  FR-α Leukaemia Panel 

 

Figure 3-22: FR-α leukaemia panel WB. Representative WB (n=3) showing detection of FR-α WT protein by WB on 

a panel of cell lines via use of the generated FR-α BN3.2 antibody. An antibody to α-tubulin (56kDa) was used as a 

loading control to correct for variations in loading between samples. 

 

 

 

Expression was observed only in the ovarian carcinoma IGROV-1 positive control and ECR-293 

embryonic kidney sample. No FR-α expression was seen in any of the leukaemia samples tested. 

Again the overexposure is shown to illustrate the reactivity seen in the ECR 293 which is not visible 

in lower exposures. 

 

3.5.9.  FR-α Expression in Normal and Inflamed Tissues 

Immunoreactivity with the BN3.2 FR-α MAb was detected in a limited number of normal and 

inflamed human tissues. Syncitial trophoblasts of the placenta, the single layer of epithelium lining 

the ovary follicle and proximal kidney tubules were positive and the remaining samples were 

negative (Figure 3-23). The reactivity of FR-α antibody, clone BN 3.2, on a panel of normal and 

inflamed tissues is summarised below.  
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Table 3-5: Immunostaining for wild-type FR-α BN 3.2 on normal and inflamed tissues. 

Tissue Morphological Features FR-α 
membrane/cytoplasmic 

staining intensity 

Adrenal All elements Negative 

Inflamed appendix All elements Negative 

Bowel, large All elements Negative 

Bowel, small All elements Negative 

Brain, cerebellum All elements Negative 

Cervix All elements Negative 

Gall bladder All elements Negative 

Kidney Glomeruli 

Convoluted tubules 

Kidney vasculature 

Negative 

Weak 

Negative 

Kidney Glomeruli 

Convoluted tubules 

Kidney vasculature 

Negative 

Moderate 

Negative 

Liver All elements Negative 

Inflamed lung, peripheral All elements Negative 

Muscle, skeletal All elements Negative 

Myocardium All elements Negative 

Ovary Stroma/connective tissue 

Inner follicular epithelia 

Peritoneal surface epithelia 

Ovary vasculature 

Negative 

Moderate-Strong 

Negative 

Negative 

Placenta (term) Syncito/Cytotrophoblasts 

Mesenchymal cells 

Placental vasculature 

Moderate-Strong 

Negative 

Negative 

Inflamed skin All elements Negative 

Spinal cord All elements Negative 

Testis All elements Negative 

Inflamed tonsil All elements Negative 

Ulcerative colitis All elements Negative 

Umbilical cord All elements Negative 

Uterus (endometrium) All elements Negative 
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Figure 3-23: FR-α normal panel. Membrane immunohistochemical staining for FR-α using clone BN 3.2 in paraffin 

embedded normal tissues: a) ovary (inclusion cyst); strong reactivity in debri contained within cyst and epithelia lining 

it (x4); b) strong reactivity in epithelia lining ovarian inclusion cyst (x10); c) kidney; weak reactivity in tubules (x20); 

d) placenta; strong reactivity in trophoblast layers (x20). 

 

 

3.5.10. FR-α Expression in Benign and Malignant Tissues 

The reactivity of the FR-α antibody, clone BN3.2, on a panel of formalin-fixed and paraffin-

embedded tumour tissues samples is detailed in Table 3-5. The staining pattern of FR-α 

cytoplasmic/membrane positivity within each case was also heterogeneous. Strongly positive 

membrane/cytoplasmic staining for FR-α in tumour cells was noted in the majority of ovarian 

adenocarcinomas; low staining intensity was observed in endometrial adenocarcinoma, lung 

carcinoma, cholangiocarcinoma, thyroid papillary carcinoma, ovarian thecoma and granulosa and, 

less frequently in breast carcinomas (Figure 3-24).  
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Table 3-6: Immunostaining for FR-α on a range of benign and malignant tissues 

 

 

 

 

Tissue FR-α membrane/cytoplasmic staining 
intensity 

Malignant melanoma Negative (n=4) 

Endometrial adenocarcinoma Weak (tumour cells) 

Pancreatic adenocarcinoma Weak (normal ducts) 

Lung carcinoma Weak-Moderate (dysplastic epithelia/tumour) 

Lung Squamous cell carcinoma Weak (tumour) 

Mesothelioma Negative (n=6) 

Breast sarcoma Negative 

Leiomyosarcoma Negative 

Ewings sarcoma Negative 

Rhabdomyosarcoma Negative 

Granulocytic sarcoma Negative 

Anaplastic lymphoma Negative 

Hodgkins lmphoma Negative 

Breast Carcinoma Weak (tumour) 

Breast Carcinoma Negative (n=6) 

Breast Carcinoma Weak (tumour) 

Ovary Serous carcinoma Strong 

Ovary Serous carcinoma Moderate-Strong (n=4) 

Ovary Serous carcinoma Weak 

Ovary Adenocarcinoma Strong (n=4) 

Ovary Adenocarcinoma Weak 

Ovary Adenocarcinoma Weak-Moderate 

Ovary Adenocarcinoma Moderate 

Ovary Adenocarcinoma Moderate/strong 

Ovary Clear cell Negative 

Ovary thecoma Weak (tumour) 

Ovary granulosa Strong (tumour) 

Cholangiocarcinoma Weak (tumour) 

GIST Negative 

Gastric adenocarcinoma Negative 

Bladder transitional cell carcinoma Negative 

Renal cell carcinoma Negative (n=2) 

Thyroid papillary carcinoma Weak (inner luminal surfaces) 

Thyroid follicular adenocarcinoma Negative 

Hepatoma Negative 

Liver cell adenocarcinoma Negative 

Prostate adenocarcinoma Negative (n=2) 
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Figure 3-24: FR-α tumour panel (1). Membrane immunohistochemical staining for FR-α using clone BN 3.2 in 

paraffin embedded ovarian tumour tissues: a) adenocarcinoma of ovary 3c; strong membrane/cytoplasmic expression 

in tumour and absence of expression in adjacent normal stroma (x40); b) poorly differentiated adenocarcinoma of the 

ovary 3c (x20); c) serous carcinoma of ovary 3b; increased FR-alpha expression on inner luminal surfaces (x20); d) 

serous carcinoma of ovary 3c; strong membrane/cytoplasmic expression in tumour and no expression in normal 

surrounding stroma (x20); (e) poorly differentiated adenocarcinoma of ovary 3c (x20); f) serous carcinoma of ovary 

3c (x40); g) poorly differentiated adenocarcinoma of the ovary 3c (x40); h) poorly differentiated adenocarcinoma of 

ovary 3c (x40).  The majority of other tumours showed weak expression, thus ovarian adenocarcinomas were selected 

for use in the tumour panel. 
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3.5.11.  FR-α Further Characterisation 

The FR-α antibody was found to suitable for use with both TBS and PBS buffers, it was also found 

to be suitable for use with both the ABC, Novolink™ polymer kit and the Bond Max 

immunostainer. Citrate was confirmed to be the best method of unmasking as although very 

similar in terms of staining intensity, Tris-EDTA gave cross reaction in areas of cell necrosis, 

however, both methods could be deemed suitable. Proteinase K failed to produce a signal. No 

unmasking was found to produce no signal in ovarian adenocarcinomas previously positive (Figure 

3-25). The antibody isotype was determined to be Ig G1 κ (see 3.4.3 for method).  

 

Figure 3-25: FR-α pre-treatment selection. Immunohistochemical staining for FR-α using clone BN3.2 in a 

selection of paraffin embedded ovarian adenocarcimoma samples with different pretreatments. Citrate (Cit) a,d&g 

(x40); Tris EDTA (TE) b,e&h; No pre-treatment (NP) c,f&i. Note the lack of staining in the NP samples, optimal 

staining in the CIT samples and staining seen in the TE treated samples with increased background. 
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3.5.12. FR-α Epitope Mapping 

 

Figure 3-26: FR-α epitope mapping. FR-α membrane (top) and the same membrane stained with ponceau-S 

(bottom) to observe the location on the peptide array recognised by clone BN 3.2. 

 

 

 

Seven peptides in total were highlighted by the BN 3.2 antibody, one peptide (A6) showed 

weak reactivity, followed by one negative peptide (A7), followed by six consecutive positive 

peptides (A8-A13) (Figure 3-27).  
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Figure 3-27: FR-α epitope. Peptide sequences corresponding to the spots showing reactivity with the FR-α BN 

3.2 antibody. Positive sequences are shown in blue and negative adjacent peptides in red, epitope region is 

shown in green. Most likely epitope is shown in green. 

 

A 5  P-E-D-K-L-H-E-Q-C-R-P-W 

A 6  E-D-K-L-H-E-Q-C-R-P-W-R 

A 7  D-K-L-H-E-Q-C-R-P-W-R-K 

A 8  K-L-H-E-Q-C-R-P-W-R-K-N 

A 9  L-H-E-Q-C-R-P-W-R-K-N-A 

A10  H-E-Q-C-R-P-W-R-K-N-A-C 

A11  E-Q-C-R-P-W-R-K-N-A-C-C 

A12  Q-C-R-P-W-R-K-N-A-C-C-S 

A13  C-R-P-W-R-K-N-A-C-C-S-T 

A14  R-P-W-R-K-N-A-C-C-S-T-N 

 

3.5.13. mOV 18 Epitope Mapping 

 

Figure 3-28: mOV18 epitope mapping. FR-α membrane (top) and the same membrane stained with 

ponceau-S (bottom) to observe the location on the peptide array recognised by mOV18. This was performed to 

compare epitope recognition between the BN3.2 antibody and the other commercially available antibodies 

suitable for use on frozen tissue. 
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Only two peptides showed any reactivity with the mOV18 antibody (I3 & I4), these were 

consecutive (Figure 3-29). 

Figure 3-29: mOV18 epitope. Peptide sequences corresponding to the spots showing reactivity with the 

mOV18 antibody. Positive sequences are shown in blue and negative adjacent peptides in red. 

 

I 2  K-D-V-S-Y-L-Y-R-F-N-W-N 

I 3  D-V-S-Y-L-Y-R-F-N-W-N-H 

I 4  V-S-Y-L-Y-R-F-N-W-N-H-C 

I 5  S-Y-L-Y-R-F-N-W-N-H-C-G 

 

3.5.14. LK26 Epitope mapping 

 

Figure 3-30: LK26 epitope mapping. FR-α membrane (top) and the same membrane stained with ponceau-

S (bottom) to observe the location on the peptide array recognised by LK26. 

 

 

 

 

No peptides in the FR-α target sequence selected were found to react with the LK26 

antibody. 
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3.6.  Discussion 

3.6.1. FPGS Antibody Development 

A monoclonal antibody for the detection of FPGS in formalin-fixed, paraffin embedded 

tissues has been developed using established hybridoma technology techniques at 

Novocastra laboratories. Clone NN3.2 can also be used routinely in IHC using both ABC and 

the more sensitive Novolink Polymer kit. In addition it is also suitable for use in WB and 

ELISA. Its application for use on paraffin embedded samples enables expression profiles of 

various tissues to be evaluated with ease. It has also been characterised via WB analysis on a 

large panel of cell lysates from various tumour types. A large panel of cell lines (n=27) was 

used in order to fully characterise the expression of this protein and to determine specificity 

as there was little available data to compare it to. A single, 60kDa band was observed in the 

samples tested. 

 

3.6.1.1. FPGS WB Analysis  

The FPGS antibody was found to be highly specific and was found to produce a single, 60 kDa 

band on the extended panel. 27 cell lysates in total were tested and all samples showed 

some degree of positivity, ranging from strong to very weak. 

FPGS mRNA expression in the ovarian cancer cell lines OVCAR3, SKOV 3 and IGROV-1, the 

mesothelioma cell line NCI-H226a, breast cancer cell line MCF-7 (Figure 3-11), the colon 

cancer cell lines HCT116 and HT29 (Figure 3-12) and the human T-cell ALL cell lines CCRF-

CEM and MOLT-4 (Figure 3-13) have been previously reported and are consistent with the 

data seen in this study (Ross et al., 2000). Similarly, low mRNA expression in the lung 

carcinoma cell line A-549 has also been reported which is also consistent with the results 

seen as this cell line contained a low level of FPGS expression relative to the other cell lines 

tested (Ross et al., 2000). 

Strongest expression was observed in the three MPM (Figure 3-11), colon adenocarcinoma 

(Figure 3-12), leukaemia and B-cell lymphoma samples tested (Figure 3-13).  The findings for 

the leukaemia samples are supported by the observation that mRNA transcript levels have 

been found to be high in B-lineage leukaemias (Freemantle & Moran, 1997). A polyclonal 

antibody has also been used to detect the presence of FPGS in CCRF-CEM leukaemia cells 

and was found to specifically recognise distinct immunoreactive bands at 60 kDa via WB 
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analysis, further supporting the data seen in these validation experiments (Mc Guire, Russell, 

& Balinska, 2000). Stronger expression in Pre-B cells and lower expression in CCRF-CEM cells 

(Figure 3-13) was also observed and this finding is consistent with two studies assessing 

FPGS expression via gene reporter assays in B and T lineage leukaemia cells (Galpin et al., 

1997; Leclerec, Leclerec, Kinser, & Barredo, 2006). Knowledge of lineage specific expression 

may assist in the predictive value of the antibodies as determinants of response to 

antifolates, particularly MTX which is commonly used in leukaemia patients. This may also be 

of value for pemetrexed as recent studies have indicated that this drug may be an effective 

antimyeloma agent (Ramirez, Ocio, San Miguel, & Pandiella, 2007).  Studies have also noted 

high FPGS gene expression levels in colorectal tumour biopsies which supports the results 

seen by these WB studies, high FPGS expression in such tumours may explain the activity of 

raltitrexed in colorectal malignancies (Odin et al., 2003). The high expression of FPGS in the 

MPM samples tested (Figure 3-11) may explain the reason for the effectiveness of 

Pemetrexed in MPM, given that no detectable FR-α has yet been observed. This may offer a 

potential alternative determinant of response to pemetrexed, although only three samples 

were tested which is insufficient to draw any conclusion; further WB testing to assess FPGS 

expression in MPM may be valuable. Increased expression of FPGS activity in model cells has 

been found to lead to increased sensitivity to antifolate drugs whereas decreased FPGS 

activity has been shown to be a mechanism of resistance to such drugs in both model cells 

and clinical specimens (Chen et al., 1996). Mc Guire et al assessed FPGS expression in 

antifolate sensitive and resistant cell lines via the use of a rabbit polyclonal antibody, FPGS 

levels were found to be lower in the resistant cell lines, concluding that decreased FPGS 

activity is a mechanism of resistance to antifolates, particularly MTX (Mc Guire & Russell, 

1998). FPGS expression may be key in the determination of response to some antifolates, 

particularly raltitrexed and pemetrexed; the route of entry of the drug into the cell has not 

been found to affect the rate of polyglutamation. Rates of polyglutamation, particularly MTX 

have not been found to be significantly different whether cells entered via the RFC or FR-α 

(Spinella, Brigle, Freemantle, Sierra, & Goldman, 1996).  
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3.6.1.2. FPGS IHC Analysis 

From the available mRNA data the IHC results appear to be comparable with expression seen 

in a wide range of normal and inflamed tissues tested including colon, liver, kidney, tonsil, 

heart, skeletal muscle and bone marrow (Table 3-3, Figure 3-14) . These findings were 

consistent with previous published mRNA data (Freemantle & Moran, 1997; Leclerec & 

Barredo, 2001). Negative tissues included brain and spinal cord (Table 3-3). Again, this was 

as expected based on previous data (Leclerec & Barredo, 2001). Weak staining was observed 

in placental samples, consistent with the finding of a low level of placental mRNA 

(Freemantle et al., 1995). 19/22 normal samples tested showed some positivity, ranging 

from weak to strong staining and upon further testing via the use of a normal tissue panel 

microarray, 71/78 samples were found to display some positivity (Data not shown). Negative 

samples included cerebrum and cerebellum (Table 3-3). 

Positivity was also observed in the majority of malignancies tested from the tumour panels, 

200/206 samples tested showed some positivity, ranging from weak to strong staining (Table 

3-4). Negative tumour samples included mixed germ cell choriocarcinoma, fibrothecoma, 

ganglioneuroma and solitary fibrous tumour omentum. Expression in these tumour 

subgroups has not been previously reported. Further studies would be required to validate 

these results fully as there was only a small area of tissue tested for each type which is not 

fully representative of this tumour subgroup.  

Of particular note was staining in ovarian adenocarcinoma islands which appeared to be 

stronger than adjacent normal stromal tissue (Figure 3-15). This has been previously 

reported in bowel tumour biopsies with higher levels of FPGS mRNA than adjacent 

submucosa  (Odin et al., 2003). Strong expression was also observed in one B-cell lymphoma 

sample tested, which again is consistent with previous data which reported high levels of 

FPGS mRNA in B-lineage leukaemias, but more WB and IHC studies are required to confirm 

this (Freemantle & Moran, 1997). 

 

3.6.1.3. FPGS Epitope Mapping 

Peptide array epitope mapping analysis has demonstrated specific reactivity of FPGS clone 

NN 3.2 with a linear target present within the FPGS sequence, confirming its monoclonal 

nature and single defined specificity. The epitope recognised has been determined to be 
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between the regions of amino acids 237-258 as elucidated from the peptide array data 

sheet; this region spans twenty one amino acids. Upon further analysis it was elucidated that 

the epitope was most likely to be in the region of amino acids 246-251, protein sequence 

IFKQGV as this is the region containing the most hydrophobic amino acids in sequence and 

reactivity appears to be lost when the C terminal hydrophobic isoleucine residue is lost from 

the peptide, indicating this is an important amino acid involved in antibody binding (Figure 3-

18).  The two adjacent negative peptides in the middle of the positive sequences may be due 

to a masking effect as the flanking amino acid is glutamine which is polar in nature and this 

may have blocked binding of the antibody.  Conformational changes bridging one or more 

adjacent peptides together may also have affected the antibody binding as the peptides are 

attached to the membrane at one end only with the remaining peptides free to attach to 

each other; this may have masked the epitope causing negative results in between the 

positive spots (Figures 3-17, 3-18). Knowledge of the precise region within the FPGS 

sequence recognised by clone NN3.2 may be extremely valuable in future work as a recent 

study identified 34 single nucleotide polymorphisms in the FPGS gene, suggesting that these 

genetic variations in FPGS may alter the efficiacy of antifolate therapies (Leil et al., 2007). 

It can be concluded that clone NN 3.2 is a sensitive tool for the detection of FPGS in paraffin 

embedded samples, the detection of a single band via WB together with the cytoplasmic IHC 

staining pattern are consistent with the known biology of FPGS and are evidence of the 

specific affinity of NN3.2 to FPGS. The information provided from these validation 

experiments may be useful as preliminary data in future IHC studies to assess FPGS 

expression as an indicator of response to antifolates, as FPGS is known to be key in the 

action of these drugs. 

 

3.6.2. FR-α Antibody Development 

A monoclonal antibody for the detection of FR-α in formalin-fixed, paraffin embedded 

tissues has been successfully developed. Clone BN3.2 can also be used routinely in IHC via 

both ABC and Novolink as described previously. In addition it is also suitable for use in WB 

and ELISA. Its application for use on paraffin embedded samples overcomes previous 

problems encountered with the mOV18 and 19 antibodies, which are only suitable for 
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immunohistochemical use on frozen tissue and its specificity has been further validated via 

WB analysis, an application for which mOV 18 and 19 are also unsuitable.  

Clone BN 3.2 was raised to a 189 amino acid region of the FR-α protein containing sequences 

unique to the α isoform of the protein. 

3.6.2.1. FR-α WB Analysis 

The FR-α antibody was found to be highly specific and in the positive cell lysates produced a 

single, 40 kDa band on an extended panel. 27 cell lysates in total were tested and 8 samples 

showed some positivity, ranging from strong to weak. 5/5 ovarian cell lines showed some 

positivity, including one ovarian teratocarcinoma sample, with the strongest expression in 

the IGROV-1 cell line (Figure 3-20). Moderate expression was seen in the SKOV-3 and 

OVCAR-3 cell lines and weaker expression in the SW626 and PA-1 cell lines. Strong 

expression was also seen in the HeLa cervical carcinoma cell line (Figure 3-20) and the CaCo2 

colon adenocarcinoma cell line (Figure 3-21). Expression via IHC in these tumours has been 

previously reported via the use of the LK26 antibody (Rettig et al., 1985). Weak expression 

was seen in the embryonic kidney cell line ECR-293 (Figure 3-22). No expression was seen in 

any of the remaining cell lines tested. FR-α mRNA expression has been previously reported 

in the ovarian cancer cell lines IGROV-1, SKOV-3 and OVCAR-3 (Ross et al., 2000) which is 

consistent with the results seen in this study, the relative levels of expression are also 

consistent with this study with IGROV-1 showing the highest FR-α expression, followed by 

SKOV-3 and OVCAR-3 (Figure 3-20). These results support the general observation that FR-α 

expression is extremely restricted, particularly to ovarian cancers which are known to 

express the protein most consistently (Toffoli et al., 1997), although the number of cell lines 

displaying positivity is still extremely limited. Negative expression has been previously 

reported in the CCRF-CEM leukaemia cell line, mesothelioma cell line NCI-H226a, lung 

adenocarcinoma cell line A549, colon adenocarcinoma cell line HCT116 and the breast 

cancer cell line MCF-7 (Ross et al., 2000). All cell lines were also found to be negative in our 

study which is consistent with this data (Figures 3-20, 3-21, 3-22) . Expression in embryonic 

kidney has not been previously reported, however normal human kidney is known to 

express FR-α (Mangiarotti et al., 2001). Of particular note is the lack of expression in the 

three malignant pleural mesothelioma cell lines and one lung carcinoma cell line tested 

(Figure 3-20). Although negative expression in the NCI-H226a and A-549 cells has been 
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previously reported there are no reports on the levels of expression in MSTO-211H and NCI-

H28 cells. This data alone is insufficient to draw an accurate conclusion on the expression of 

FR-α in MPM as FR-α tissue expression patterns and mRNA transcripts have been extensively 

studied and it has been found that in many cases the FR expression patterns in cell lines do 

not reflect expression profiles in vivo. FR expression is commonly absent in cell lines derived 

from malignant tissue known to be consistently FR positive (Elnakat & Ratnam, 2004). In 

contrast to this a study by Tomassetti et al identified and purified both the soluble and 

membrane bound forms in the ovarian adenocarcinoma cell line IGROV-1, suggesting that 

some cell lines do express the protein in vitro. This study also supports the strong FR-α 

expression seen in the IGROV-1 cell line with clone BN 3.2 (Figure 3-20) (Tomassetti et al., 

1993; Tomassetti et al., 2003). Expression of FR-α has also been reported in the colon 

adenocarcinoma cell line HT29 and the leukaemic cell line MOLT-4. Neither of these cells 

appeared to display FR-α expression in this study, although the colon adenocarcinoma cell 

line CaCo2 was found to be positive (Figure 3-21). This has not been previously reported. A 

potential problem with interpretation of these results may also be the culture conditions 

used to grow the cells, the majority of the cell lysates obtained were kindly donated and 

were cultured in commercial media. Standard RPMI contains supra-physiological 

concentrations of folic acid which is thought to downregulate the expression of FR-α in some 

cell lines and may be one of the reasons for the inconsistency of expression in cell lines often 

observed (Miotti et al., 1995). A more suitable media to use would have been folate free 

RPMI and dialysed FBS, supplemented with 20nM folinic acid which would have given folate 

levels approximating physiological concentrations in humans (Miotti et al., 1995). As it is 

time consuming to adapt cells to this type of media, this was not possible to perform within 

the time frame and cells cultured in standard media were used. This should be considered 

when interpreting these results as the level of FR-α expression may have been affected by 

this, although it has been previously reported that the extracellular folate concentration 

does not have an adverse effect on the expression of IGROV-1, OVCAR-3 and SW626 cells so 

this may also apply to other cell lines (Miotti et al., 1995). It may be that the HT29 and 

MOLT4 cell lines used in this study are, in fact positive but their expression has been 

downregulated via use of supra physiological concentrations of folate in the media.  
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 The FR-α antibody produced from clone BN3.2 also detected a single band of approximately 

40kDa in the ovarian adenocarcinoma cell extracts IGROV-1, OVCAR-3 and SKOV-3, which is 

consistent with previous published studies examining FR-α expression via mRNA, IHC on 

frozen tissue and radioligand binding assay (Figure 3-20) (Parker et al., 2005; Toffoli et al., 

1997; Weitman et al., 1992b). 

 

3.6.2.2. FRα IHC Analysis 

Immunohistochemical studies using clone BN3.2 on formalin-fixed paraffin-embedded tissue 

sections have shown that the expression of FR-α is low-negative in the majority of normal 

and inflamed tissues, but its expression is seen to a varying degree and frequency in a range 

of different tumour types, in a manner consistent with previous published data (Campbell et 

al., 1991; Parker et al., 2005; Ross et al., 1994; Veggian et al., 1989). 3/22 normal samples 

tested were found to show positive staining. 5/6 placental samples showed positive staining 

upon further testing (Table 3-5, Figure 3-23). 

 Of particular interest is the strikingly high expression observed in the majority of ovarian 

malignancies tested. The detection of a single band via WB of cell and tissue extracts, 

together with the striking strong membrane and cytoplasmic staining are consistent with the 

known biology of FR-α and evidence of the specific affinity of the BN3.2 antibody to FR-α. 

Positive malignancies observed from the tumour panel (78 sections tested in total) included 

very strong staining in various ovarian adenocarcinoma samples, with 14/15 sections tested 

showing positivity. Less frequently, weaker staining was observed in endometrial 

adenocarcinomas (1/1), lung carcinomas (1/1) and breast carcinomas (2/8) (Table 3-5).   

Moderate to weak staining was observed in endometrial adenocarcinoma, lung carcinoma, 

thyroid papillary carcinoma, ovarian thecoma and granulosa. Expression in these tissues has 

been previously reported (Evans et al., 2001; Ross et al., 1994; Wu et al., 1999). One recent 

study found 69% of frozen uterine serous carcinoma samples tested to express FR-α protein. 

As only 1 sample was assessed in this study, further analysis of FR-α expression in these 

tumours would be of interest (Dainty et al., 2007). 

Weak expression in cholangiocarcinoma was also noted, which has not been previously 

reported. However, the result obtained was from one case on a tissue microarray and 
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further testing would need to be performed to validate this observation and assess the 

frequency of expression in this tumour type.  

Also of interest was the lack of expression in both mesothelioma cell lines and paraffin 

embedded mesothelioma tissue (n=6 tumour samples), This result was surprising, as high 

expression in mesothelioma has been previously reported and cited as a possible 

explanation for the responsiveness of mesothelioma to the novel antifolate pemetrexed  

(Bueno, Appasani, Mercer, Lester, & Sugarbaker, 2001). However, other reports have cast 

doubt on both the expression of FR-α in mesothelioma and on the importance of FR-α as an 

uptake mechanism and determinant of response to pemetrexed (Chattopadhyay, Wang, 

Zhao, & Goldman, 2004).  More samples would be required to investigate this further. 

 

3.6.2.3. FR-α Epitope Mapping 

Peptide array epitope mapping analysis has demonstrated specific reactivity of FR-α clone 

NN3.2 with a linear target present in the FR-α target sequence, which began at amino acid 

45 and ended at amino acid 233. The epitope was found to map to amino acids 57-62 and is 

hypothesised to be contain the following amino acids; CRPWRK. Reactivity was found to be 

lost when the cysteine residue was lost from the peptide sequence, indicating the presence 

of this hydrophobic amino acid being significant for immunoreactivity to the peptide (Figure 

3-27).  

The epitope recognised contained a cysteine residue, when the protein is in its native 

conformation this cysteine is likely to be involved in a disulphide bridge, requiring breakage 

to expose the epitope, such as the antigen retrieval step required to expose this epitope in 

paraffin embedded tissues. This is supported by the lack of staining observed when no pre-

treatment was assessed for antibody validation (Figure 3-25). However, the presence of this 

cysteine residue also led to the proposal that use of reducing agents such as DTT may break 

the bridges and allow the antibody to be used in applications such as IF and frozen IHC. The 

cysteine may also contribute to the negative adjacent peptide (A7, Figure 3-27) causing 

variable intensity of reactivity between peptide spots, this region of the sequence is 

relatively cysteine rich and the cysteine residues present in adjacent peptides may have 

formed disulphide bridges, linking the adjacent peptides and masking the epitope present in 

this part of the sequence. Another possible explanation for the variation in reactivity is the 
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location of the epitope towards the outer amino acids of the peptide; reactivity may not be 

as strong when the antibody binds to an epitope further from the site of attachment. 

The mOV 18 epitope mapping experiment also supported this theory and demonstrated the 

opposite action occurring, only two peptides were found to display positive 

immunoreactivity, indicating that the epitope is likely to be conformational rather than 

linear in nature, the location of the epitope was also different to that of clone BN 3.2. For 

this reason it is not possible to determine the precise epitope sequence for mOV18 (Figures 

3-28, 3-29). This also explains the reason for the epitope being destroyed by treatment with 

a reducing agent as the disulphide bridges would be broken, shearing the epitope and 

causing loss of binding affinity. Both the N-terminal and C terminal hydrophobic 

transmembrane alpha helices were missing from this target and it is likely that the 

conformational epitope bridges some of the target and one of the alpha helices missing from 

the peptide array. 

No reactivity was observed on the peptide array treated with LK26 antibody, indicating that 

the epitope recognised by this antibody is different from that of the BN 3.2 clone and mOV 

18 antibody and is likely to be located in a region not targeted by the peptide array, it can 

not be determined whether the epitope recognised is conformational or linear in nature as 

the peptide array does not cover the full sequence (Figures 3-30, 3-31). Although the 

staining was found to be comparable caution should be taken when using this antibody in 

IHC as it is a relatively insensitive method of interpreting protein expression when not 

supported by another application for confirmation. As learned previously from the cross 

reaction encountered it is advantageous for the antibody to be suitable for a number of 

applications to confirm its specificity. Despite this it has been reported that the LK26 

antibody has been successfully humanised (MORAb-003) and in preclinical evaluation it has 

been found to possess novel, growth inhibitory properties both in vitro and in vivo and as a 

result has recently been advanced to clinical trials involving ovarian cancer patients (Ebel et 

al., 2007). 

 This antibody may be more suited to applications where the protein is present in its native 

conformation and this is supported by the results from this mapping experiment as there is 

no evidence to suggest that it recognises a linear target, unless it is in a region not covered 

by our target. It may also bridge one of the transmembrane alpha helices missing from the 
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target or the epitope may span a number of folded regions, fragmenting the epitope so it is 

not detected at all on a linear seqiuence. 

It can be concluded that clone BN 3.2 is a sensitive tool for the detection of FR-α in paraffin 

embedded tissues and that this validation data supports its use in immunohistochemical 

studies to determine the role of FR-α as a tumour prognostic marker, potential predictive 

biomarker for response to antifolates and possible therapeutic target. This would be 

particularly useful in clinical trials of antifolates which are targeted to  FR-α and may help to 

identify responsive subgroups of patients to whom such agents would be of particular 

benefit (Jackman et al., 2004).  
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Chapter Four 

4. Ovarian Tissue Microarray Analyses 
Ovarian cancer is the major focus of this study largely due to its strikingly high frequency and 

level of expression of FR-α compared with other tumour types and other normal tissues. This 

offers an exciting target both for further studies assessing the frequency of expression in 

such tumours and also its relationships to survival and as a predictor of response to folate 

targeted therapies. 

Few studies have investigated the relationship between tumour levels of FR-α and survival, 

largely due to limitations with the other commercially available antibodies, discussed in 

detail in section 1.8.3. However, due to the nature of FR-α and its role in folate transport and 

metabolism it is thought that high expression levels of FR-α are associated with poor 

prognosis and tumour progression (Toffoli et al., 1998). Similarly, its potential role in 

antifolate transport, coupled with its role in folate receptor targeted therapies may also 

indicate a role for FR-α in tumour targeted drug delivery as discussed in section 1.8.5.   As 

indicated by the mOV18 and 19 antibodies by IHC on frozen tissue, ovarian cancer appears 

to be the major tumour type associated with overexpression of FR-α. It was thus the aim to 

obtain a TMA containing ovarian cancer cases to assess FR-α expression on a large scale in 

these samples. The data could then also be analysed in relation to FPGS expression. In 

addition, relationships between expression and survival could also be analysed to assess 

whether FR-α and FPGS expression may be independent prognostic markers for both overall 

and relapse free survival. The results observed were primarily part of the antibody validation 

process, to ensure the data generated from this larger study were consistent with previous 

published data in relation to both frequency of expression in ovarian cancer and its role as a 

marker of poor prognosis. 
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4.1. Ovarian TMA Study Aims and Objectives 
 

 Obtain ovarian TMA slides, perform IHC using the Novolink polymer detection kit 

and accurately score based on intensity and % tumour cells stained by two 

independent observers. 

 Obtain some statistical data via univariate and multivariate analysis on the TMA’s 

to assess the relationship between the expression of FR-α, FPGS and other known 

prognostic markers in ovarian cancer. 

 Identify whether FR-α and FPGS are independent markers of prognosis in ovarian 

cancer patients. 

 Correlate the results obtained with previous published work to further confirm 

the validity of the antibodies. 

 

4.2. Ovarian TMA Study Materials and Methods 

A total of 167 ovarian cancer samples were collected over a period of five years, differing in 

stage, grade and tumour type. All samples used in the archival TMA had appropriate ethical 

approval and known patient clinical data collected from hospital records. Cell cores were 

taken from tumour–rich areas and assembled into a TMA, each core was duplicated to 

account for loss of tissue during processing. There were a total of four TMA’s (designated 

OVCA 1, 2, 3 and 4), each containing ovarian carcinoma samples only with the exception of 

mouse liver cell cores placed on different edges of the slides used as markers to differentiate 

one TMA from another and a small panel of normal and tumour tissues on TMA four, which 

included breast, thyroid, liver, lung, colon, and kidney.  

The TMA’s were collected and prepared by Dr. Ann Fisher, Dr. Richard Edmondson and Dr. 

Ali Kucukmetin at Newcastle University. 

IHC staining using the Novolink polymer kit was performed on the samples with the FR-α and 

FPGS antibodies employing the techniques described in section 3.3.6.  
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4.2.1.  Assessment of TMA IHC Staining- Scoring System Used 

The IHC staining of tissues was scored according to the proportion of tumour cells staining 

and the staining intensity. Reactivity was also determined to be cytoplasmic (C), nuclear (N), 

membrane (M) or any combination of the three. This gave a numerical result and was carried 

out by two observers independently. Tissues were visualised under a light microscope, the 

proportion and intensity of cytoplasmic/membrane staining for FR-α and cytoplasmic 

staining for FPGS were estimated, no nuclear reactivity was observed for either antibody. 

Inter scorer variablility was assessed by scoring independently, once scores were recorded 

they were then analysed together and in the event of a discrepancy an agreed score was 

decided upon further inspection of the core.  

 

Intensity was assessed on a four point scale as follows: 

0 = Negative 

1= Weak 

2 = Intermediate 

3 = Strong 

 

Concurrently the percentage of tumour cells stained was assessed on a four point scale as 

follows: 

1 = 0-25% 

2 = 25-50% 

3= 50-75% 

4= 75-100% 

 

The scores for intensity and proportion were then multiplied to give a score intensity rating 

of between 0 and 12. Where staining was heterogeneous different intensity and proportion 

scores were multiplied, ensuring the total percentage of tumour cells equaled 100% (or four 

scale points)  to give a score intensity, the different scores were then added together to give 
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an overall score. E.g. weak staining in 25% of tumour, intermediate staining in 50% of 

tumour and strong staining in the remaining 25% of tumour would be calculated as (1x1) + 

(2x2) + (3X1) = a total score of 8 (note the total percentage of tumour cells stained equaled 4 

score points as 100% of the tumour was immunoreactive). As there were two cores 

representing one tumour per TMA an average score from both duplicate cores was also 

recorded.  

 

4.2.2. Statistical Analysis 

Statistical analysis was carried out by Mr M. Cole, NICR, Newcastle using Stata 10 software.  

Survival and time to recurrence were analysed by the construction of Kaplan Meier curves 

for patient overall survival, stage, grade, histology, CA125, residual disease, chemotherapy 

before surgery, FR-α and FPGS expression. Cox’s proportional hazards model was used to 

compare survival curves to identify any statistically significant differences and was also used 

in a forward stepwise approach to perform multivariate analysis of the variables which on 

univariate analysis were significantly associated with clinical outcome to determine their 

utility as independent prognostic variables. In addition one way Anova and Bartletts tests 

were used to ensure equal variance across groups and to look for evidence of statistically 

significant relationships between FR-α and FPGS expression and some of the other variables 

including grade, histology and CA125 values. 

 

4.2.2.1.  Kaplan-Meier Survival Plots and Log-Rank Test 

The relationship to survival was tested via the use of Kaplan-Meier survival plots and the the 

log-rank test to examine the significance of any differences in the rate of survival between 

patient subgroups defined by the variables under consideration taking into account the 

follow up time of the patients. Kaplan- Meier survival graphs are generated by estimation of 

conditional probabilities of events occurring at each time point when an event (such as 

death, relapse or loss of follow up) occurs and estimating the rate of survival at each time 

point taking this into consideration.  The log-rank test employs logarithms of the ranks of the 

data to compare the survival curves and computes a p-value to indicate whether the overall 

differences between survival curves are statistically significant or if they could have been 

due to chance. 
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4.3. Ovarian TMA Study - Results 

4.3.1.  FR-α and FPGS Images and Scoring 

Photographic images were taken from the TMA slides using the Aperio Scan Scope CS 

automated scanning and scoring system (Aperio Technologies Inc., Figure 4-1). 

For FR-α, patterns of membrane/cytoplasmic heterogeneous staining were observed on all 

four TMA slides tested (Figure 4-2 and Figure 4-3). For FPGS, patterns of cytoplasmic 

heterogeneous staining were observed on all four TMA slides tested (Figure 4-5 and Figure 

4-6). Staining for FR-α was predominantly membrane (Figure 4-8) and staining for FPGS was 

predominantly cytoplasmic (Figure 4-9). For both FR-α and FPGS the majority of samples 

were found to show some positivity ranging from strong (Figure 4-4 and Figure 4-7) to 

moderate/weak expression.  Scores were recorded on a spreadsheet and statistical analysis 

performed to assess the relationship between expression of FR-α or FPGS and patient 

survival. Of 167 samples tested, 63 cases (38%) were found to have low FR-α expression 

(score 0.5-4), 46 (28%) were found to moderately express FR-α (score 4.5-8) and 57 (34%) 

were found to have high expression (8.5-12). Of 167 cases 30 (18%) were found to have low 

FPGS expression 70 (42%) were found to have moderate expression and 67 (40%) were 

found to have high FPGS expression. 

 

Figure 4-1: Photograph of the OVCA TMA slides. Complete set of ovarian TMA’s -OVCA1, 2, 3 and 4 

stained with FR-α to illustrate the layout of the slides. 
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Figure 4-2: Photograph of OVCA1 stained with FR-α. Each core was assigned an identifier and linked to the corresponding patient data on an excel spreadsheet. 

Illustrates the layout of the TMA. Each TMA contains two cores taken from the same patient. FR-α gave variable intensity staining which was predominantly membrane and 

cytoplasmic.  
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Figure 4-3: Photograph of twelve TMA cell cores (x1) stained with FR-α. Note the difference in staining intensity between cores Strong (3+) reactivity is represented 

by cores b, g, h and l,. Moderate (2+) reactivity is represented by cores c, d, e, f and j, weak (1+) reactivity is represented by cores a, i and k. 
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Figure 4-4: Photograph of eight TMA cores (x4) stained with FR-α.  a,b and d represent four strongly 

reactive cores in 100% of the tumour, such cores would be given a score of 12 based on the scoring system 

used (3+ staining (3) x proportion of tumour cells stained 75-100% (4) = a score of12). C would be given a 

score of 10 (3+ in 50% of tumour 2+ in the remaining 50% of tumour = (3x2) + (2x2) = 10).  f and h are 

moderately immunoreactive and would be given a score of 8 (2+ staining in 100% of tumour; 2x4 = 8). G is 

moderate-weakly immunoreactive and would be given a score of 6 (2+ staining in 25% of tumour, 1+ staining 

in 50% of tumour, remaining 25% negative;( 2x1) + (2x2) = 6) e is weakly immunoreactive and would be 

given a score of 3; 1+ staining in 50-75% of tumour (1x3=3). 
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Figure 4-5: Photograph of OVCA1 stained with FPGS. Each core was assigned an identifier and linked to the corresponding patient data on an excel spreadsheet. 

Illustrates the layout of the TMA. Each TMA contains two cores taken from the same patient. FPGS gave variable intensity staining which was predominantly cytoplasmic.  
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Figure 4-6: Twelve TMA cell cores (x1) stained with FPGS. Note the difference in staining intensity between cores Strong (3+) reactivity is represented by cores a,g,h 

and k. Moderate (2+) reactivity is represented by cores b,d,i,j and l,weak (1+) reactivity is represented by cores c,e, and f. 
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Figure 4-7: Photograph of eight TMA cores (x4) stained with FPGS. a,b and d represent four strongly 

reactive cores in 100% of the tumour, such cores would be given a score of 12 based on the scoring system 

used (3+ staining (3) x proportion of tumour cells stained 75-100% (4) = a score of12). C would be given a 

score of 10 (3+ in 50% of tumour 2+ in the remaining 50% of tumour = (3x2) + (2x2) = 10).  f and h are 

moderately immunoreactive and would be given a score of 8 (2+ staining in 100% of tumour; 2x4 = 8). e is 

moderate-weakly immunoreactive and would be given a score of 6 (2+ staining in 25% of tumour, 1+ staining 

in 50% of tumour, remaining 25% negative;( 2x1) + (2x2) = 6) g is moderate- weakly immunoreactive and 

would be given a score of 4; 2+ staining in 25% of tumour ,1+ staining in 50% of tumour, remaining 25% 

negative ((2x1) + (1x2) = 4)) . 
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Figure 4-8: FR-α membrane staining. Image demonstrating strong membrane and cytoplasmic 

immunoreactivity of FR-α on one of the ovarian cancer cores (x20). Note the strong staining in tumour  

(brown)compared with adjacent stromal tissue (blue). 

 

Figure 4-9: FPGS cytoplasmic staining. Image demonstrating moderate-strong cytoplasmic 

immunoreactivity of FPGS on one of the ovarian cancer cores (x20). Note the staining in tumour islands 

(brown) weaker reactivity in stromal tissue and negativity in lymphoid aggregates (blue). 
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4.3.2. Statistical Analysis of Overall Survival 

Statistical analysis of overall survival was performed to assess the association between all 

the variables and survival to ensure the data from this cohort of patients followed similar 

trends to those seen in patients with ovarian cancer. 

For survival, no significant associations were found for age, chemotherapy before surgery or 

FPGS score. Statistically significant associations were found for stage, grade, histology, Log10 

CA125, residual disease and FR-α IHC scores. (Table 4-1)  
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Table 4-1: Summary of statistical analysis of overall survival  

Variable Events (Total 

number) i.e. death 

P value (Cox 

regression) 

Hazard Ratio (HR) 95% CI 

Age at operation     

<60 No 66 (108) 0.9359 1.00 0.98-1.01 

<60 Yes 36 (58)    

     

Stage     

1 5 (27)    

2 6 (14) 0.180 2.25 0.69-7.38 

3 67 (91) < 0.000 6.99 2.80-17.44 

4 17 (18) < 0.000 22.41 8.04-62.44 

     

Grade Well diff vs rest 0.004 2.39 1.33-4.28 

Poorly differentiated 56 (80) 0.003 0.40 0.22-0.73 

Moderately differentiated 33 (45) 0.503 0.86 0.56-1.33 

Well differentiated 13 (42)    

     

Histology Endo vs rest 0.006 0.53 0.34-0.84 

Adenocarcinoma 3 (3) omitted omitted omitted 

Endometrioid 25 (51)    

Papillary Serous 27 (41) 0.624 0.74 0.22-2.45 

Clear Cell 12 (16) 0.930 0.94 0.27-3.36 

Mucinous 7 (18) 0.206 0.42 0.11-1.62 

Serous 28 (38) 0.796 0.85 0.26-2.82 

     

CA125      

<480 No 50 (70) 0.157 1.00 0.99-1.00 

<480 Yes 39 (70)    

Log10 CA125  0.040 1.36 1.01-1.83 

     

Residual Disease     

Suboptimal cytoreduction 58 (64) < 0.000 0.14 0.77-0.67 

Optimal cytoreduction 18 (30) 0.001 0.39 0.76-0.24 

Complete cytoreduction 18 (54)    

     

Chemo before surgery     

No 88 (138)    

Yes 4 (7) 0.522 1.39 0.51-3.80 

     

FR-α 1     

Below median 36    

Above Median 63 0.044 0.655 0.43-0.98 

Continuous variable 148 0.013 1.06 1.01-1.11 

FR-α 2     

Below median 39    

Above median 59 0.030 0.64 0.424-0.958 

Continuous variable 146 0.006 1.066 1.02-1.12 

FR-α Mean     

Below median 39    

Above median 63 0.052 0.672 0.45-1.00 

Continuous variable 152 0.009 1.06 1.02-1.12 

     

FPGS 1     

Below median 28    

Above median 69 0.832 0.95 0.61-1.48 

Continuous variable 145 0.81 1.00 0.95-1.08 

FPGS 2     

Below median 30    

Above median 67 0.976 0.99 0.65-1.53 

Continuous variable 143 0.802 1.01 0.94-1.07 

FPGS Mean     

Below median 78    

Above median 24 0.713 0.91 0.58-1.45 

Continuous variable 152 0.845 1.00 0.94-1.08 
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4.3.2.1. Overall  Survival and FR-α Score 1, 2 and Mean 

The FR-α analysis was performed three times, once for each individual score and also on the 

average score. FR-α was categorised into two groups based upon the median value. FR-α 

was also analysed when treated as a continuous variable.  When categorised, scores 1 and 2 

were found to have a statistically significant association with survival (p= 0.0419, 0.0288 

respectively, Log-rank test, Figures 4-10, 4-11). The mean was found to be borderline 

significant (p=0.0502 Log-rank test, Figure 4-12). This indicated that high expression of FR-α 

is associated with shorter survival than low expression. When treated as a continuous 

variable all three scores were found to have a statistically significant association with 

survival (p= 0.013, 0.006, 0.009 respectively, Cox regression). All three scores were found to 

have a hazard ratio of 1.06 (95% CI 1.301-1.11), indicating a 1.6 fold increase in risk of death 

from the tumour for every score point increase. 

 

Figure 4-10: FR-α Kaplan-Meier analysis (1). Demonstrating a significant difference in duration of survival 

between patient groups with tumours showing above and below median FR-α score 1 expression.  Blue = high 

FR- α expression, Red = Low FR-α expression (p=0.0419, Log-rank test). 

 

 

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

S
u

rv
iv

in
g

 p
ro

p
o

rt
io

n

0 50 100 150
Overall survival (months)

fralpha_s1_lo = No fralpha_s1_lo = Yes

Kaplan-Meier survival estimates



Development and Evaluation of Novel Monoclonal Antibodies to FR-α and FPGS 

165 

Figure 4-11: FR-α Kaplan-Meier analysis (2). Demonstrating a significant difference in duration of survival 

between patient groups with tumours showing above and below median FR-α score 2 expression.  Blue = high 

FR- α expression, Red = Low FR-α expression (p=0.0288, Log rank test). 

 

Figure 4-12: FR-α  Kaplan-Meier analysis (3). Demonstrating a borderline significant difference in duration 

of survival between patient groups with tumours showing above and below median FR-α mean score 

expression. Blue = high FR- α expression, Red = Low FR-α expression (p=0.0502, Log-rank test). 
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4.3.2.2.  Overall Survival and FPGS Score 1, 2 and Mean 

The FPGS analysis was also performed three times and categorised by the median value and 

treated as a continuous variable. When categorised, none of the three scores were found to 

have a significant association with survival. (p=0.8318, 0.9761 and 0.7124 respectively, Log-

rank test (Figure 4-13). Treating FPGS as a continuous variable did not generate any 

difference with no significant association with survival (p= 0.013, 0.006, 0.009 respectively, 

Cox regression).  

 

Figure 4-13: FPGS Kaplan-Meier analysis (1). Demonstrating no significant difference in duration of 

survival between patient groups with tumours showing above and below median FPGS score 1 expression.  Blue 

= high FPGS expression, Red = Low FPGS expression. (p=0.08318, Log-rank test) Similar patterns were 

observed for score 2 and mean score (data not shown). 
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4.3.3.  Statistical Analysis of Time to Relapse 

For relapse free survival, no significant associations were found for age, chemotherapy 

before surgery or FPGS score. Statistically significant associations were found for stage, 

grade, histology, log10 CA125, residual disease and FR-α IHC scores. (Table 4-2)  Results 

observed followed a similar pattern to that of the overall survival analysis and are consistent 

with previous published data on ovarian cancer survival (Yancik, 1993). 
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Table 4-2: Summary of statistical analysis of time to relapse 

Variable Events (Total 

number) i.e. death 

P value HR 95% CI 

Age at operation     

<60 No 76 (119) 0.807 1.00 0.98-1.01 

<60 Yes 38 (40)    

     

Stage     

1 5 (27)    

2 6 (14) 0.186 2.22 0.69-7.30 

3 79(91) < 0.00 9.18 3.68-22.83 

4 18(18) < 0.00 23.91 8.66-66.04 

     

Grade     

Poorly Differentiated 65 (80) 0.132 0.72 0.47-1.10 

Moderately Differentiated 33 (45) < 0.000 0.361 0.20-0.64 

Well Differentiated 16 (42)    

     

Histology Endo vs rest 0.0087 0.57 0.37-0.87 

Adenocarcinoma 3 (3) 0.993 1.00 0.61-1.65 

Endometrioid 12 (51) 0.070 0.47 0.20-1.07 

Papillary Serous 30 (41) 0.961 1.01 0.52-1.99 

Clear Cell 8 (16) 0.993 1.00 0.61-1.65 

Mucinous 31 (18) 0.013 0.53 0.32-0.88 

Serous 30 (38)    

     

CA125      

<480 No 58 (70) 0.144 1.00 0.99-1.00 

<480 Yes 43 (70)    

Log 10 CA125  0.011 1.44 1.09-1.90 

     

Residual Disease     

Suboptimal cytoreduction 60 (64) < 0.000 0.15 0.86-0.25 

Optimal cytoreduction 25 (30) 0.029 0.59 0.37-0.95 

Complete cytoreduction 22 (54)    

     

Chemo before surgery     

No 99 (138)    

Yes 6 (7) 0.268 1.60 0.70-3.65 

     

FR alpha 1     

Below median 40    

Above Median 71 0.013 0.61 0.41-0.90 

Continuous variable 111 0.003 1.06 1.02-1.11 

FR alpha 2     

Below median 46    

Above median 63 0.053 0.68 0.46-1.00 

Continuous variable 109 0.002 1.07 1.03-1.12 

Mean Fr alpha     

Below median 44    

Above median 70 0.020 0.64 0.43-0.93 

Continuous variable 114 0.003 1.07 1.02-1.12 

     

FPGS 1     

Below median 29    

Above median 80 0.588 0.89 0.58-1.36 

Continuous variable 109 0.62 1.01 0.96-1.08 

FPGS 2     

Below median 31    

Above median 77 0.663 0.9121 0.60-1.38 

Continuous variable 108 0.396 1.03 0.97-1.09 

Mean FPGS     

Below median 26    

Above median 88 0.592 0.89 0.57-1.38 

Continuous variable 114 0.524 1.02 0.96-1.09 
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4.3.3.1. Relapse Free Survival and FR-α Score 1, 2 and Mean 

As for overall survival, FR-α analysis was performed for the three scores and also treated as a 

continuous variable. When categorised, scores 1 and mean were found to have a statistically 

significant association with survival (p= 0.0116, 0.0190 respectively, Log-rank test, Figures 4-

14, 4-16). Score 2 was found to be borderline significant (p=0.0509 Log-rank test, Figure 

4-15). This indicated that high expression of FR-α is associated with shorter survival than low 

expression.   When treated as a continuous variable all three scores were found to have a 

statistically significant association with survival (p= 0.03, 0.002, 0.003 respectively, Cox 

regression). All three scores were found to have a hazard ratio of 1.07 (95% CI 1.02-1.12), 

indicating a 1.7 fold increase in risk of death from the tumour for every score point increase. 

 

Figure 4-14: FR-α Kaplan-Meier analysis (4). Demonstrating a significant difference in duration of survival 

between patient groups with tumours showing above and below median FR-α score 1 expression.  Blue = high 

FR- α expression, Red = Low FR-α expression (p=0.0116, Log-rank test). 
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Figure 4-15: FR-α Kaplan-Meier analysis (5). Demonstrating a borderline significant difference in duration 

of survival between patient groups with tumours showing above and below median FR-α score 2 expression. 

Blue = high FR- α expression, Red = Low FR-α expression (p=0.0509, Log rank test). 

 

Figure 4-16: FR-α Kaplan-Meier analysis (6). Demonstrating a significant difference in duration of survival 

between patient groups with tumours showing above and below median FR-α mean score expression. Blue = 

high FR- α expression, Red = Low FR-α expression (p=0.0190, Log-rank test). 
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4.3.3.2. Relapse Free Survival and FPGS Score 1, 2 and Mean 

The FPGS analysis was also performed three times and categorised by the median value and 

treated as a continuous variable. When categorised, none of the three scores were found to 

have a significant association with survival. (p=0.5879, 0.6629 and 0.5916 respectively, Log-

rank test, Figure 4-17). Treating FPGS as a continuous variable did not generate any 

difference with no significant association with survival (p= 0.620, 0.396, 0.524 respectively, 

Cox regression).  

 

Figure 4-17: FPGS Kaplan-Meier analysis (2). Demonstrating no significant difference in duration of 

survival between patient groups with tumours showing above and below median FPGS score 1 expression. 

(p=0.5879, Log-rank test) Blue = high FPGS expression, Red = Low FPGS expression. Similar patterns were 

observed for score 2 and mean score (data not shown). 
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the analysis (p=0.441, 0.303, Cox regression). Both significant FPGS scores were also 

analysed (p=0.506, 0.911, Cox regression). 

 

4.3.4.1. Correlations between FR-α, FPGS and Other Prognostic Variables   

In addition to the univariate and multivariate analyses, FR-α and FPGS scores were analysed 

to identify and correlation between them and the other prognostic variables using Bartletts 

test for equal variances. Significant correlations were found between FR-α and grade 

(p=0.0242), histology (p=0.0000), residual disease (p=0.0046), age (p=0.0205) and borderline 

significant association with CA125 (0.0549), no association was observed between FR-α and 

chemotherapy before surgery (p=0.2268) (Figure 4-18). The highest mean FR-α scores were 

observed in poorly differentiated tumours (7.12) of serous/papillary serous origin (7.16, 7.93 

respectively). Patients over the age of 60, with suboptimal cytoreduction and CA125 levels of 

above 480 were also associated with a higher mean FR-α score (6.82, 7.82, 6.83 

respectively). Significant correlations were found between FPGS and histology (p=0.0001), 

with the highest mean FPGS scores being observed in papillary serous tumours (8.74) (Figure 

4-19). No significant associations were observed between FPGS and grade (p=0.8207), 

residual disease (p=0.0755), chemotherapy before surgery (p=0.7304), CA125 (p=0.1244) or 

age (0.2454). 
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Table 4-3: Summary of the correlations between FR-α/FPGS and the other prognostic variables. 

Variable Frequ
ency 

FR-α P 
value 
(one 
way 

Anova) 

Mean 
FR-α 
Score 

Std 
Dev 

FPGS P 
value 
(one 
way 

Anova) 

Mean 
FPGS 
Score 

Std 
Dev 

Grade  0.0242    

0.8207 

  

Poorly 

Differentiated 
77  7.12 4.06  7.68 3.10 

Moderately 

Differentiated 
45  6.09 4.32  7.32 3.36 

Well Differentiated 41  4.88 4.42  7.67 3.22 

        

Histology  < 0.0000   0.0001   

Adenocarcinoma 2  6.50 7.78  6.00 2.83 

Endometrioid 49  6.33 4.46  7.63 3.10 

Papillary Serous 41  7.93 3.66  8.74 2.98 

Clear Cell 16  4.75 3.17  4.18 1.94 

Mucinous 17  1.53 3.00  7.47 3.00 

Serous 38  7.16 3.99  7.92 3.16 

        

Residual Disease  0.0046   0.0755   

Suboptimal 

cytoreduction 
62  7.28 4.30  7.92 3.26 

Optimal 

cytoreduction 
30  6.63 3.92  7.96 3.03 

Complete 

cytoreduction 
52  4.69 4.18  6.65 3.17 

        

Chemo before 

surgery 

 0.2268   0.7304   

No 134  6.12 4.31  7.43 3.25 

Yes 7  8.14 4.10  7.00 3.00 

        

CA125  0.0549   0.1244   

<480 No 69  6.83 4.08  7.83 3.10 

<480 Yes 67  5.40 4.49  6.99 3.18 

        

Age at operation  0.0205   0.2454   

<60 No 106  6.82 4.10  7.80 3.15 

<60 Yes 56  5.18 4.51  7.18 3.26 
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Figure 4-18: Statistical analysis of the relationship between FR-alpha IHC score 1 and the other prognostic variables. (p= 0.0242 grade; 0.000 histology; 

0.0046 residual disease; 0.227 chemo before surgery, 0.0549 CA125 less than 480;  0.0205 age less than 60, Bartletts test).  

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

P oorly differentiated Moderately differenti ated W ell differentiated

Grade

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

A denocarcinoma Clear cell E ndometrioid Mucinous P apillary  serous S erous

Histology

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

S ubopitmal cy toreduction Optimal cytoreduction Complete cytoreduc tion

Residual disease

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

No Y es

Chemotherapy before surgery

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

No Y es

CA125 less than 480

0
5

1
0

1
5

F
R

 a
lp

h
a

 I
H

C
 S

co
r
e

 1

No Y es

Age less than 60

FR Alpha IHS score 1



Development and Evaluation of Novel Monoclonal Antibodies to FR-α and FPGS 

175 

Figure 4-19: Statistical analysis of the relationship between FPGS IHC score 2 and the other prognostic variables. (p=0.821 grade; 0.001 histology; 0.076 

residual disease; 0.730 chemo before surgery, 0.124 CA125 less than 480; 0.245 age less than 60, Bartletts test).  
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4.4. Discussion                                                                                                                                                                                                                                                                                   

The results of our study found FR-α expression in 89% of 167 ovarian cancer cases tested. 

This is in concordance with previous published data using LK26 and mOV18 antibodies on 

frozen tissue (Garin-Chesa et al., 1993; Miotti et al., 1987).   

Significant correlation between FR-α expression and survival was observed, this is consistent 

with previous work, indicating a role for FR-α as a prognostic marker and potential 

therapeutic target for ovarian cancer  (Toffoli et al., 1997). FR-α was found to be significantly 

associated with both overall survival (Figures 4-10 to 4-12) and relapse free survival (Figures 

4-14 to 4-16), with patients with above median expression of FR-α having a significantly 

worse outcome than those with high expression. This indicates the role for high FR-α 

expression as an indicator of poor survival. Despite showing promising results in univariate 

analysis it did not, however retain its significance as a marker of prognosis independent of 

the other significant prognostic markers. When analysed in combination with grade, 

histology, residual disease, age and CA125 values it did retain its significance (Figure 4-18). 

Toffoli et al (1997) found high expression of FR- α in 122 out of 136 (90%) ovarian tumour 

samples in a univariate analysis using the mOV18 monoclonal antibody and cytofluorometric 

analysis. FR-α was found to be overexpressed to a higher degree in ovarian neoplasms with a 

high histologic grade, advanced stage, serous histology and in a high percentage of cells in 

the S-phase (Toffoli et al., 1997). Our results support the results of this study as the 

frequency of expression is similar and the highest mean FR-α scores were observed in the 

serous and papillary serous histological subtypes. Strong FR-α expression was also associated 

with higher grade tumours with the poorly differentiated tumour group having the highest 

mean FR-α score. The lowest expression was observed in the mucinous tumour group, again 

this is consistent with previous published data suggesting non mucinous tumours have the 

lowest expression of FR-α (Elnakat & Ratnam, 2004; Mangiarotti et al., 2001). 

More recently FR-α has been analysed in other tumour types including breast, colorectal and 

endometrial neoplasms with similar results (Brown Jones et al., 2008; Hartmann et al., 2007; 

Shia et al., 2008). All three of these studies were performed via the use of an antibody 

(mab343) developed by Wilbur Franklin and Philip Low, this antibody has not been 

previously described in the literature. It has recently been reported to be suitable for use on 

paraffin embedded tissue but is not commercially available. Shia et al tested mab343 on a 
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tissue microarray containing 152 normal colorectal mucosa samples, 42 adenomas, 152 

primary and 52 metastatic colorectal carcinomas. Positive immunoreactivity was observed in 

7% normal mucosa samples, 7% adenomas, 33% primary and 38% metastatic tumours. 

Positive expression was found to be significantly associated with age (<65 years, p=0.08) and 

presence of distant metastases (p=0.43), in addition univariate, but not multivariate analysis 

identified FR-α as a marker of poor 5 year disease specific survival (p=0.04) (Shia et al., 

2008). Correlation between poor survival and high FR-α expression is consistent with the 

results observed in our study, however there is a contrast between age and survival with the 

highest expression observed in patients over the age of 60 in our study. The frequency of 

expression in colorectal cancer also appears to be higher than the results seen with the LK26 

antibody where 6/27 (22%) cases were found to be positive, however this is inconclusive as 

our clone has not been tested on a cohort of this magnitude and it may be that FR-α 

expression is observed more frequently in colorectal carcinomas. Further work assessing the 

frequency of FR-α expression in colorectal carcinomas would be interesting. 

Hartmann et al (2007) analysed FR-α expression using mab343 in breast cancer, a total of 

sixty three invasive breast cancer patient samples were analysed with divergent outcomes, 

thirty three had poor outcome with a median time to recurrence of 1.9 years. Thirty women 

comprised the good outcome group and were free of recurrence a minimum of seven years 

post diagnosis. High FR-α expression was found to be strongly associated with outcome 

(p=0.001). Staining was divided into two groups, strong (n=21) or weak (n=42). In the strong 

staining group 17 of 21 (81%) women had recurred compared with 16 of 42 women (38%) in 

the weak staining group (Hartmann et al., 2007). Again, the results of this study are 

consistent with the results observed in our study with the exception of the frequency of 

staining observed in breast cancer samples being significantly higher than our observations. 

33% of breast cancer cases tested were found to display strong FR-α immunoreactivity, this 

is also in contrast to the results observed via the use of the LK26 antibody which reported 

strong FR-α immunoreactivity in 2/53 (3.4%) breast cancer samples tested with patchy 

staining observed in a further nine samples. This is more consistent with our results from our 

breast cancer case study where 2/49 (5%) of samples were found to be positive.  

Finally, mab 343 was analysed on a TMA containing 310 evaluable cases of endometrial 

adenocarcinoma. Forty one percent were found to stain moderate/strongly. In addition to a 
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correlation with poor outcome this group were also found to  be significantly associated with 

other poor prognostic factors such as advanced stage (p=0.028), nonendometreoid histology 

(p=0.001) and high grade (p=0.001). An association was also observed between 

moderate/strong staining and recurrence (p=0.0014) (Brown Jones et al., 2008). The results 

observed in this study were similar to the results observed in our study, with significant 

associations between FR-α being observed in relation to the same poor prognostic factors 

such as grade, stage and nonendometreoid histology. Similarly, in multivariate analysis, FR-α 

failed to retain its significance as an independent prognostic marker in both studies. 

The results of these studies appear to correlate in the most part with the results observed in 

our study, despite this promise, studies using mab343 should be analysed with caution until 

more information is recorded, as the frequency of expression in all three tumour types 

analysed do not appear to be completely consistent with previous studies using mOV18 and 

LK26 antibodies on frozen tissues, nor are they completely consistent with the analysis 

performed using our antibody. There have also been reports of primarily cytoplasmic rather 

than membrane immunoreactivity and nuclear cross reaction with the use of mab343 which 

is inconsistent with the results of our study which clearly displays primarily membrane 

staining. It may be that mab343 is slightly cross reactive which may be the reason for the 

increased frequency of expression. This does not, however, appear to affect the survival 

results which appear to correlate well with the results of our study. 

No significant associations were observed for FPGS expression and survival in either 

univariate or multivariate analysis (Figures 4-13, 4-17) and studies analysing this have not 

been previously reported. Despite this the expression of FPGS did follow similar trends to 

that of FR-α with the highest mean FPGS expression being observed in tumours of serous 

histology and lowest FPGS levels being observed in patients under the age of 60 with 

complete cytoreduction and CA125 values below 480 (Figure 4-19). The constitutive 

expression of FPGS in normal as well as tumour tissue may be the reason the correlations 

with survival are less obvious. Although a differential can be observed, with stronger 

immunoreactivity in tumour tissue than adjacent normal tissue the results may have been 

affected by this effect. 

Age independently was not found to be a significant factor in prediction of survival in this 

cohort, although age is usually an important prognostic factor it may not be the most 
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important factor in ovarian cancer as the majority of women diagnosed are over the age of 

40. Other factors may dominate in this disease such as stage and grade of tumour as often it 

is not diagnosed until later stages when disease has already advanced and spread beyond 

pelvic cavity. However when age is analysed in combination with FR-α scores it may be of 

more prognostic significance as patients over the age of 60 with high FR-α scores may be at a 

higher risk of death from the tumour than those patients with lower scores. 

The results seen from this and the other studies described clearly indicate a role for high FR-

α expression as an indicator of poor response and shorter survival when analysed taking into 

consideration the other significant prognostic variables. The reason for this is probably due 

to the cells conferring a growth advantage over other adjacent cells as the high affinity FR-α 

has for folic acid would allow maximal amounts of folate to be transported into the cell and 

used for the cells formation of new DNA and ultimately proliferation. Although this initially 

appears to be a negative attribute it may also be of great value in the determination of 

response of these patients to antifolates such as pemetrexed and additional studies using 

the antibody in combination with clinical data assessing response to pemetrexed would be 

extremely useful. As antifolates are not a first line therapy for the treatment of ovarian 

cancer the results of this study certainly warrant further analysis and investigation into the 

use of antifolates in this area and also in other tumours such as breast and colorectal 

cancers.  

The Aperio Scan Scope CS system used for the generation of images can also be used for 

score analyses, producing computer generated scores. It would have been extremely 

interesting to use this software and use the results to compare the effectiveness of the 

automated system with manual scoring. Unfortunately, as this equipment was only recently 

purchased this was not possible and is beyond scope of this study, whose primary aim was 

not to test the effectiveness of a new technique, however this would be useful in future 

work. 

In conclusion, FR-α but not FPGS shows great promise as both a prognostic marker of poor 

outcome and a potential determinant of response to both folate receptor targeted therapies 

and some antifolates such as pemetrexed which have a high affinity for FR-α, cells with high 

expression may take up the drug more readily, increasing the drug concentration in 

pathologic cells and reducing toxicity in normal tissue. Ovarian cancer was the main focus of 
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this study as it appears to express FR-α most consistently but use of our antibody to 

investigate expression in other tumour types would also be of great value, particularly as 

antifolates are already routinely used in various other solid tumours. 
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  Chapter Five 

5.  Cell Studies 
After successful generation, characterisation and validation of anti-FR-α and FPGS MAbs at 

Novocastra laboratories via the methods described in chapters 2 and 3, it was the aim to exploit 

the novel antibodies via the generation of as much preliminary data as possible before the 

antibodies became commercially available. There were a number of different study ideas and 

paths to follow to generate interesting preliminary information to assess the potential of the 

antibodies for a number of different applications. Once the antibodies were submitted for 

approval by the consultant pathologist Dr. Hoffman and transferred to the production department 

at Novocastra all subsequent studies were carried out at the Northern Institute for Cancer 

Research (NICR) at Newcastle University. 

As expression of both FR-α and FPGS may be important in the determination of response to 

antifolates and folate targeted therapies this was another area in which generation of data may be 

significant. A number of studies have identified potential modulators of FR-α expression including 

oestrogen regulation and extracellular folate concentration as reviewed in section 1.8.4, which 

would potentially increase the efficiacy of folate targeted therapies by selectively upregulating its 

expression  (Kane et al., 1988; Kelemen, 2006; Kelley et al., 2003). Based on previous studies it is 

hypothesised that cells maintained in low folate conditions would express more FR-α than cells in 

high folate conditions (Kelley et al., 2003), detectable by WB using clone BN 3.2.  

It is also hypothesised that cells treated with oestrogens may downregulate FR-α expression as 

oestrogen is thought to have a negative correlation with FR-α expression  (Kane et al., 1988). The 

relationship between folate concentration, oestrogen regulation and FPGS were also investigated 

as an adjunct to the FR-α studies.  

Comparative studies using the FR-α antibody generated in this project and the mOV18 antibody 

were also planned in order to determine whether the FR-α antibody was suitable for use on frozen 

tissue and to compare the staining with the only commercially available product. 

During the work another antibody directed against FR-α was identified, known as the LK26 

antibody. It was generated in 1985 to an antigen termed LK26 which was subsequently found to 

be FR-α (Garin-Chesa et al., 1993). Like the mOV 18 antibody this antibody is unsuitable for use on 
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paraffin embedded samples or for WB. It was decided that, where possible this antibody would 

also be used to generate extra data although not all samples could be tested due to limitations 

with tissue availability. Some IHC on frozen tissue was planned to observe any similarities or 

differences between the staining using all three antibodies. Like mOV18 and the data generated 

from initial FR-α experiments on paraffin embedded tissue panels, LK26 expression has been 

reported to be highly restricted in normal tissues with the exception of placenta and a subset of 

simple epithelia. Ovarian adenocarcinomas were also found to have high expression which is 

consistent with the data generated in this project and previous published data using mOV18. LK26 

expression was not seen in normal adult ovary with the exception of the epithelial lining of some 

benign ovarian cysts (Garin-Chesa et al., 1993). This is consistent with the expression observed 

with the FR-α antibody clone BN 3.2. Mesothelioma samples were found to express little LK26, 

again this is consistent with the FR-α data generated from the BN3.2 antibody. 

Low/heterogeneous levels of expression were observed in endometrial, breast, lung and renal cell 

carcinomas, again this was consistent with the results seen with the BN3.2 antibody which is 

extremely encouraging (Garin-Chesa et al., 1993). 

Assessment of the antibodies for other applications such as immunofluorescence (IF) and 

fluorescence activated cell sorting (FACS) may also be useful, it was planned to carry out 

preliminary studies to test the suitability of the antibodies for these applications. If successful it is 

likely that the antibody may have potential neutralising properties and it was planned to perform 

growth assays on cells known to express FR-α for any such properties it may possess, as the 

antibody alone may have direct therapeutic potential. In order to achieve this some FR-α antibody 

was purified in preparation for growth assays. This was achieved by column chromatography on a 

protein A sepharose (Prosep A, Millipore) column. The resultant purified antibody was stored in 

PBS in preparation for use in growth assays. This ensured that any growth factors present in the 

neat media would not have any effect on the cell growth and the effects observed would be due 

to the antibody alone. 

As FR-α is already known to be highly expressed in the majority of ovarian tumours, these patients 

may all be selected for folate targeted therapies automatically without the need for a prior 

screening IHC test. It is hypothesised that use of the BN 3.2 antibody as a companion diagnostic 

may be more relevant in tumours overexpressing FR-α at a lower frequency in other tumour types. 

Breast cancer samples, collected in conjunction with clinical trials of the antifolate pemetrexed 
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were also analysed to observe the frequency of expression in these tumours as it may have a role 

in the prediction of response to pemetrexed where its expression is high. 

 

5.1. Cell Studies - Aims and Objectives 

 Generate some preliminary data on the potential applications of the antibodies 

generated. 

 Investigate the effect of oestrogen modulation on expression of FR-α and FPGS proteins.  

 Investigate the effect of folate modulation on expression of FR-α and FPGS protein. 

 Assess suitability of FR-α antibody for IHC on frozen tissue and comparative studies with 

the commercially available mOV18 antibody. 

 Assess expression of FR-α on a breast tumour panel provided by Eli-Lilly collected in 

conjunction with clinical trials of pemetrexed. 

 Assessment of suitability of the FR-α antibody for application in IF and FACS. 

 If IF and FACS successful perform cell growth assays for identification of any potential 

neutralising properties the FR-α antibody may possess. 
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5.2. Oestrogen Regulation Study – Materials and Methods 

5.2.1.  Culture and Treatment of Cells 

The human ovarian cell lines OSEC2 (normal human ovarian surface epithelium), OVCAR-3 (human 

ovarian adenocarcinoma) and MDAH 2774 (human ovarian adenocarcinoma) were kindly grown 

and provided by Dr. Ann Fisher for use in this study. Cells were cultured in 96 well sterile culture 

plates in RPMI 1640 (Sigma) overnight, washed and grown for 72 hours in oestrogen depleted 

conditions in phenol red free (PRF) RPMI with dextran coated charcoal (DCC), the purpose of the 

DCC was to remove any steroid hormones from the media. Cells were then treated in PRF-RPMI-

DCC for 48 hours.  

Treatments were either; 

 No treatment 

 Vehicle (ethanol) 

 Oestrogen (oestraidol) 10-6, 10-8, 10-9, 10-12 M doses. 

Cell pellets were then obtained and prepared for WB according to the methods previously 

described (section 3.3.4) to determine the effect of oestrogen treatment on the level of expression 

of FR-α. It is hypothesised that oestrogen treatment may downregulate the expression of FR-α. 

(Kelley et al., 2003; Rochman, Selhub, & Karrison, 1985, Kelley, 2003 #37)  As the point at which 

FR-α expression is first initiated between normal and tumour cells and the mechanism by which 

this occurs is still unknown, normal human ovarian surface epithelial cells were also used in this 

study to observe any changes in expression which oestrogen treatment may cause in these cells.  
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5.3. Oestrogen Regulation Study - Results 
Figure 5-1: FR-α oestrogen regulation WB. Detection of FR-α WT protein by WB on three cell lines; OVCAR-3; 

OSEC2 and MDAH treated with oestrogen via use of the generated FR-α BN3.2 antibody. 0= no treatment, V= vehicle. 

An antibody to α-tubulin (55kDa) was used as a loading control to correct for variations in loading between samples. 

 

             

 

No FR-α expression was observed in the OSEC-2 or MDAH cell lines. Expression was observed in 

the OVCAR-3 cell line although this did not appear to alter with oestrogen treatment (Figure 5-1). 
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5.4. Oestrogen Regulation Study – Discussion 

The results generated from the oestrogen regulation study were limited as only one cell line 

(OVCAR-3) showed any reactivity to FR-α and the expression did not appear to decrease with 

oestrogen treatment (Figure 5-1), as hypothesised and as has been previously reported in the 

literature (Kelley et al., 2003). It was planned to carry out an additional control experiment to 

ensure the system was working and to show that oestrogen treatment did have an effect by 

probing the membranes with a known oestrogen regulated protein. Western blotting to detect 

oestrogen receptor expression was initially planned as the control experiment, using an oestrogen 

receptor antibody (Novocastra Laboratories), however no specific reactivity was observed via WB 

in any of the cell lines used. A number of different antibodies to other oestrogen regulated 

proteins were also tested until availability of sample limited further tests, progesterone receptors 

A and B, PS2, cathepsin B and D, heat shock protein (HSP) 27 and C Myc were identified as 

oestrogen regulated proteins (Langdon et al., 1995; Nakopolou et al., 1995; Rochefort, 1995). 

Antibodies were located and tested via WB analysis, however, none of the antibodies tested 

appeared to show any reactivity with any of the cell lines. It may be that the cell lines selected for 

use in this work are not the optimal selection of cell lines to use for the control proteins tested, 

and the results of these studies cannot be relied on without a valid control antibody known to 

react with a protein regulated by oestrogen.  

Unfortunately, due to time limitations it was not possible to culture these cells specifically for this 

experiment. The cells used were kindly donated by Dr. Ann Fisher and were unfortunately not 

optimal for use in this experiment.  Additional experiments would need to be performed using 

different cell lines to clarify this result as these results are, at present inconclusive as FR-α does 

not appear to alter upon treatment with oestrogen. With the failure to generate any data at all in 

2/3 cell lines and the absence of a valid control it is not possible to determine whether the results 

of this experiment are accurate and reproducible. To draw a conclusion different cell lines such as 

IGROV-1 ovarian cancer and HeLa cervical cancer cell lines should have been used as these are the 

cells reported to respond to oestrogen treatment in the literature and are both known to express 

high levels of FR-α (Kelley et al., 2003). In addition, these experiments were performed in media 

containing supra physiological levels of folate which may also have had an effect on FR-α 

expression. The media used in these experiments may have downregulated FR-α expression 

therefore even if there had been an effect on the expression it would not have been possible to 

determine if this was due to the oestrogen or the effect of the use of supra physiological levels of 
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folate in the media. Treatment of the cells with an antioestrogen such as Tamoxifen may have also 

been tested in addition to oestrogen treatment as this would have potentially upregulated FR-α 

and would be a useful additional experiment. Unfortunately as there was insufficient time 

available to carry out these experiments independently it had to be concluded at this point with a 

view to re-investigating this as future work, despite this the fact the experiment was performed 

was worth mentioning as there is much possibility for expansion and further investigation. Despite 

this the potential still remains to selectively upregulate FR-α expression to increase the efficiacy 

and frequency of tumours for folate receptor targeted therapies. 

 

5.5. Extracellular Folate Concentration Study – Materials and Methods 

Extracellular folate concentration is hypothesised to affect the level of expression of FR-α; as the 

requirement for folate is altered the expression of the receptor is thought to alter to reflect this 

change, with upregulation in folate depleted conditions and downregulation in high folate 

conditions where there is lesser need for a high intracellular folate concentration. In vitro studies 

have also demonstrated that this is the case (Kane, Elwood et al. 1988; Doucette and Stevens 

2001). 

The human ovarian carcinoma cell lines IGROV-1, SKOV-3 and SW626 and the cervical carcinoma 

cell line HeLa were selected for use in this study due to their known, varied levels of expression of 

FR-α as seen from previous WB data and as these cells have been used previously in the literature 

to investigate the effect of folate concentration on FR-α expression (Miotti et al., 1995). 

Cell lines were cultured in normal conditions (2mM L-glutamine, 5% CO2, 37 oC) using standard 

aseptic tissue culture techniques. The different culture conditions were as follows: 

 

 High folate (HF) media – 500 mls RPMI 1640 (Sigma), 50 mls FBS, 5 mls 

penicillin/streptomycin. This media contains supra physiological concentrations of folate 

but the precise level of folate cannot be measured. 

 Normal folate (NF) media – 500 mls folate free RPMI 1640 (Gibco cytogenetics), 50 mls 

dialysed FBS, 20μM folinic acid, 5mls penicillin/streptomycin. This media also contains 
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supra physiological concentrations of folate but the concentration can be more 

accurately determined via the use of folate free media. 

 Low folate (LF) media – 500 mls folate free RPMI, 50 mls dialysed FBS, 20 nM folinic 

acid, 5mls penicillin/streptomycin. Although termed low-folate this media actually 

contains a concentration of folate approximating physiological levels in humans, for the 

purpsose of this study it was termed low folate media. 

Once adapted to low folate media the cells were maintained for a period of one month before 

collection of cell pellets for subsequent protein estimation and WB using the methods described in 

section 3.3.4. All four cell lines were tested by WB for HF, NF and LF media to observe the effect of 

alteration of extracellular folate concentration on both FR-α and FPGS expression. 

 

5.6. Extracellular Folate Concentration Study – Results 

5.6.1.  FPGS 
Figure 5-2: FPGS extracellular folate concentration WB. Representative WB (n=3) showing detection of FPGS WT 

protein by WB on four cell lines (IGROV-1, SKOV-3, SW626 and HeLa) grown in LF, NF and HF media via use of the 

generated FPGS NN3.2 antibody. An antibody to β-actin was used as a loading control to correct for variations in 

loading between samples. 

 

 

 

Slightly lower FPGS expression was observed in the IGROV-1 LF cell line relative to the NF and HF 

conditions. Similar expression was observed in all three of the SKOV-3 and SW626 cell lines. 

Similar expression was also observed in HeLa cells, although a little less sample was loaded in the 
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HF sample which may indicate that FPGS expression in the HF condition was slightly lower than in 

the NF and LF conditions (Figure5-2). 

 

5.6.2.  FR-α 
Figure 5-3: FR-α extracellular folate concentration WB. Representative WB (n=3) showing detection of FR-α WT 

protein by WB on four cell lines grown in LF, NF and HF media via use of the generated FR-α BN3.2 antibody. An 

antibody to α-tubulin was used as a loading control to correct for variations in loading between samples. 

 

 

     

Slightly lower expression was observed in the IGROV-1 LF cell line. Lower expression was observed 

in the SKOV-3 HF and LF cells and higher expression in the NF cells. High expression was seen in 

the SW626 HF cells and lower expression in the NF and LF cells. Slightly lower expression was 

observed in the HeLa LF cells relative to the NF and HF cells (Figure5-3). 

 

5.7. Extracellular Folate Concentration Study – Discussion 

The results of this preliminary study indicate there was no significant correlation between folate 

concentration and FPGS expression, this is not consistent with the results from a previous study 

indicating that folate restriction significantly increases FPGS activity (Gates, Worzalla, Shih, 

Grindley, & Mendelsohn, 1996). In the IGROV-1 cells, a subtle difference was observed with lower 

FPGS expression in the LF cells in relation to HF and NF (Figure 5-2). This contradicts the results 

observed in this study as the LF condition appeared to have reduced the expression of FPGS. Little 

fluctuation between FPGS expression was observed in the SKOV-3 and SW626 cells, indicating 
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extracellular folate concentration does not affect FPGS expression in these cells. The result 

obtained from the HeLa cells, although very subtle also indicated that FPGS expression was slightly 

higher in cells grown HF media, although in this HF condition the exact level of folate present in 

the media is not measurable (Figure 5-2). Again these results appear to contradict the results seen 

in previous studies (Gates et al., 1996). 

For FR-α expression both the IGROV-1 and HeLa LF cells appeared to have slightly lower expression 

compared to the HF and NF condition, again this is in contrast to the hypothesis (Figure 5-3). 

SKOV-3 NF was found to have significantly higher expression than the HF and LF conditions, again 

this does not support the hypothesis that FR-α is upregulated in response to lower concentrations 

of folate. For the SW626 cells the HF condition was found to have the highest FR-α expression. 

(Figure 5-3) None of the results from this preliminary study appear to support the hypothesis that 

low folate concentration increases FR-α expression, despite previous reports indicating that folate 

receptor function is regulated in response to altered folate concentration in culture (Doucette & 

Stevens, 2001; Kane et al., 1988; Kelemen, 2006). This may have been due to fluctuations in 

concentration of folate in the dFCS, although the same batch was used in all experiments. 

Although denoted LF, the lowest folate condition actually contained a concentration of folate 

(20nM) approximating physiological levels in humans. Future work may be focused upon repeating 

this experiment with a true low folate condition, i.e. containing 10nM folinic acid or below to 

observe any differences restricted folate has upon FR-α expression.  As for the results observed in 

the oestrogen regulation experiment this is a useful initial experiment which is worthy of further 

investigations, although due to time limitations expansion was not possible in this project.  

 

5.8. mOV18 Comparative Study –Materials and Methods 

IHC on frozen placenta and normal, primary and metastatic ovarian tumour tissue sections, kindly 

donated by Dr. Jane Margetts was performed to generate results to satisfy two aims; 

 To assess the suitability of the FR-α antibody for application on frozen tissue – if specific 

staining was observed it may have been likely that the antibody recognises the native 

conformation of the protein and may possess neutralising properties. 

 To directly compare the expression and staining between FR-α and the commercially 

available mOV18 antibody to observe any correlation in the staining between them. As 
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no other known antibodies suitable for use on paraffin embedded tissue exist, much of 

the information on FR-α tissue expression had been elucidated by the use of the mOV18 

antibody on frozen tissue. It would be expected that the staining would be similar in 

both intenstity, proportion of tumour stained and cellular localisation. 

A total of 39 samples were available for testing, although there were limitations upon the amount 

of tissue which could be used. In addition to placenta and normal ovary, samples from 10 ovarian 

cancer patients were available for use, primary tumour samples and metastases from the same 

patient were collected. Each patient sample was numbered 1-10 and metastases were numbered 

with the patient number and M1,2 3 etc to identify metastases from each patient. The FR-α 

antibody only was used in this study. 

Frozen sections were air dried under a fan for 1 hour prior to fixation. Initially a pilot test was 

performed to determine the optimal fixation method, no fixation, methanol, acetone and formalin 

were used and the sections were incubated for 10 minutes and air dried for 10 minutes post 

fixation. The remaining IHC was carried out using the same Novolink polymer method as used 

throughout the project and sections were treated in the same way as paraffin embedded samples, 

differing only in the initial steps and omitting the antigen retrieval step. 

 

5.9. mOV18 Comparative Study - Results 

Initial tests on ovarian sections showed little/ no correlation between the staining using the 

mOV18 antibody and the BN 3.2 antibody. As this study was not conclusive it was decided to 

discontinue this study as accurate comparisons could not be drawn from the data generated. The 

FR-α staining was not similar to the mOV 18 staining in intensity or pattern, although there was 

some staining seen it was weak and heterogeneous. It was decided that unless corresponding 

frozen and paraffin samples could be collected that accurate comparisons could not be made 

between the antibodies and that the generated BN 3.2 antibody was not suitable for use on frozen 

tissue. As it was the significance of the comparative study which was most important the data 

generated from use of the mOV18 antibody was not thought to be significant alone. As the BN 3.2 

antibody was found to be unsuitable for use on frozen tissue it was also unlikely that it would have 

any neutralising properties and recognise the protein in its native conformation via growth assays, 
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although it was decided to assess the suitability for use in IF before deciding whether to proceed 

with growth assay experiments. 

It was not until epitope mapping the BN 3.2 antibody that a significant development was observed 

which may enable the antibodies to be compared on frozen tissue, it was at this point that this 

experiment was revisited. Epitope mapping and the analysis is described in section 3.5.12. It was 

hypothesised that addition of a reducing agent to the tissue may denature the sample and expose 

a linear epitope recognised by the BN 3.2 antibody. The sections were treated with 5% DTT in 

protein block for 10 minutes prior to addition of the primary antibody. This additional step had not 

been previously reported as an IHC technique as it was thought this may destroy the antibody 

conformation; however the step appeared to restore the epitope recognised by the BN 3.2 

antibody, allowing it to bind to the tissue in a similar manner to that of both the mOV18 and LK26 

antibodies. Similarly treatment with DTT was also seen to destroy the epitope recognised by the 

mOV18 antibody causing a reduction in staining. In this study five sections only were used for each 

antibody and treatment due to limited supplies of tissue. 
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Figure 5-4: FR-α mOV18 comparative study. Immunohistochemical staining for FR-α using clone BN 3.2, mOV18 

and LK26 antibodies on sections of freshly frozen placenta, normal ovary and ovarian adenocarcinoma primary and 

metastases. Note the similarities in staining between the mOV 18, LK 26 non reduced and the BN 3.2 reduced 

samples. Also of particular note is the atypical staining in the BN 3.2 non-reduced samples and reduction in staining in 

the mOV18 reduced samples. 
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5.10. mOV18 Comparative Study – Discussion 

When compared with the mOV18 antibody on frozen ovarian tumour tissue the staining did not 

appear to be comparable, BN3.2 did not stain any of the tissues as strongly as mOV18. The FR-α 

antibody may not be as effective in detection of the native conformation of the protein although it 

does, however appear to recognise an epitope linear in nature as it is suitable for WB. It is likely 

that the mOV18 antibody recognises a conformational epitope as it is unsuitable for WB analysis. 

Treatment of the tissue with DTT and IHC with mOV18 causes a reduction in staining, indicating 

that the epitope is destroyed by reduction, again supporting the theory that mOV18 recognises a 

conformational epitope (Figure 5-4). This was not performed on LK26 due to tissue limitations. 

The data generated from this study has shown that treatment of frozen tissue with a reducing 

agent exposes the epitope recognised by BN 3.2, allowing more accurate comparisons between 

the staining seen from clone BN 3.2 compared with the other antibodies on the market, LK26 and 

mOV18. Although more studies were not carried out due to time limitations this would be an 

interesting experiment to perform and tissue may be easier to obtain than attempting to find 

corresponding frozen and paraffin embedded samples from the same patient.  The technique of 

reducing samples before performing IHC is not commonly used, possibly due to the assumption 

that reduction of a sample may destroy the antibody structure. One report of use of reducing 

agents was found where paraffin embedded samples were treated with DTT and 2-

mercaptoethanol before performing IHC, although in this case no effect was observed (Costa, 

Jacobsson, Collins, & Biberfeld, 1986). The results seen were comparable to that of the non-

reduced LK26 and mOV18 samples, however, there were insufficient samples to score and 

perform statistical correlative analysis. A study using a larger number of samples and statistical 

analysis may be of value, although may not be necessary as sufficient data has been generated to 

fully validate the BN 3.2 antibody and to ascertain that is it specific for its target. 

 

5.11. Breast Cancer Case Study – Materials and Methods 

Samples of breast cancer cases collected in conjunction with clinical trials of Pemetrexed were 

provided by Eli Lilly to observe the frequency of expression of FR-α in breast cancer. Clinical data 

was not available so analysis of response could not be performed. Forty nine samples in total were 

provided and IHC was performed using the Novolink polymer kit as previously described in section 

3.3.6.2. 
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5.12. Breast Cancer Case Study – Results 

Of thirty eight evaluable cases only two (5.3%) displayed strong immunoreactivity, one section 

(2.6%) displayed moderate reactivity, ten (26%) displayed weak reactivity and the remaining 

twenty five samples (66%) were negative. 

 

Figure 5-5: FR-α Breast cancer IHC case study. Immunohistochemical staining for FR-α on six breast cancer case 

studies using clone BN3.2. Negative/very weak staining was observed in the majority of samples (a,b,c),  moderate 

staining (1+-2+) was observed in one sample (d) and strong staining (3+) observed in two samples tested. (e,f).  
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5.13. Breast Cancer Case Study - Discussion 

Few samples showed FR-α expression, out of thirty eight evaluable samples tested only two (5.3%) 

displayed strong FR-α expression (Figure 5-5). These samples were collected in connection with 

clinical trials of Pemetrexed and it was inferred that this would be the key in determination of 

response, however this has not been found to be the case and unfortunately the clinical data has 

not been made available so no precise conclusions can be drawn from this study. Although only a 

small number of cases were found to be positive this may still be of significance as it may indicate 

a subset of breast cancer patients with tumours which may respond well to folate receptor 

targeted therapies. The striking difference between the weak and strongly immunoreactive 

samples would allow for a distinguishable positive or negative result. Unfortunately it is not known 

whether these tumours are primary or metastatic tumours.  It would be interesting to observe the 

clinical information as it may be that the strong subset of tumours are oestrogen regulated or may 

even be be ovarian metastases. Such patients may benefit from other therapies aimed at 

modulating FR-α expression to increase the potential efficiacy of folate targeted therapies. 

Despite the lack of clinical data this study has been useful as the results obtained are concomitant 

with the results previously seen via the use of the LK26 antibody on frozen breast cancer tissue, of 

fifty evaluable cases only two (4%) showed homogeneous LK26 expression with a further nine 

(18%) cases displaying weak, patchy expression. 

Additional studies assessing the frequency of expression of FPGS may also be useful although in 

this study there were only sufficient samples to test FR-α. 

Future testing on larger cohorts of breast cancer samples to further test the frequency of FR-α 

expression in breast cancers would be extremely interesting and this is a useful preliminary 

experiment demonstrating that investigation of FR-α expression in breast cancer is worthy of 

further investigation. 

 

5.14. Immunofluorescence Studies – Materials and Methods 

The suitability of the FR-α antibody for application in IF was assessed, if successful it was 

hypothesized that clone BN 3.2 may also possess potential neutralising properties as, like frozen 

tissue, the cells are in their native conformation. mOV 18 was also tested for comparison. 
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Multiple 8 well glass culture chamber slides (Nunc) were used for IF. The IGROV-1 ovarian 

carcinoma cell line was used in all IF studies as it has been found to express a high level of FR-α 

protein in previous studies. Initially a pilot study to determine the optimal cell seeding density, 

antibody concentration and cell fixation method was performed. 100, 1000, 2000 and 5000 cells 

were added to the first 4 wells of the 8-well chambers and repeated until a total of 10 chambers 

had been seeded. The cells were incubated for 48 hours at 37oC to allow the cells to adhere and 

multiply, spreading over the surface of the slide. The chambers were then washed in ice cold PBS 

and fixed with either ice cold methanol at -20oC or 10% formalin for 10 minutes. The 

methanol/formalin was aspirated and cells were rehydrated in PBS for 5 minutes then washed 

twice in PBS prior to blocking for 1 hour at RT or 4oC overnight in blocking solution. (KCM buffer- 

[120mM KCl, 20 mM NaCl, 10 mM Tris/HCl pH 8, 1 mM EDTA] + 0.1% Triton-x-100 (Sigma) , 2% 

BSA, 10% dried milk powder). After incubation the blocking solution was removed and FR-α, FPGS 

and mOV 18 antibodies at 1/10, 1/20, 1/50 and 1/100 dilutions in blocking solution were added to 

the wells and incubated for 1-2 hours at RT or overnight at 4oC. The cells were then washed three 

times for 15 minutes each time in washing solution (KCM buffer + 0.1% Triton-x-100) on a platform 

shaker. A fluorescent labelled antibody, Alexa fluor 594 (red) labeled goat-anti mouse IgG, 

(Invitrogen, Molecular Probes) at a dilution of 1/200 in blocking solution was then added to the 

cells and incubated in the dark for 1-2 hours at RT or 4oC overnight. The cells were again washed 

three times in PBS, protected from the light, allowed to dry and mounted using hard set 

Vectashield mounting medium with DAPI to allow visualisation of the nucleus. The cells were 

analysed by fluorescence microscopy.  

 

5.15. Immunofluorescence Studies - Results 

The initial pilot studies were unsuccessful, fluorescence was observed via use of the mOV18 

control antibody although no specific fluorescence could be seen with the FR-α antibody. 

This experiment was discontinued but following epitope mapping it was decided to revisit the IF 

studies, discussed in detail in section 3.5.12. It was decided that another study would be 

performed as with the frozen study, this time reducing the samples with 5% DTT during the 

blocking step to observe the effect this may have on fluorescence. 
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The reducing agent appeared to alter the protein structure, allowing the FR-α antibody to bind to 

the membranes. The opposite effect occurred with the mOV18 antibody and after treatment with 

DTT the fluorescent signal was reduced (Figure 5-6).
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Figure 5-6: IF comparative study WB. IF photographs comparing fluorescence between the mOV 18 antibody and 

the BN3.2 antibody. Blue reactivity illustrates the cell nuclei and red reactivity illustrates the reactivity of the antibody. 

A merged image was also taken to illustrate the location of the antibody reactivity in relation to the cell. Note the 

membrane fluorescence (red) in the mOV 18 non-reduced photographs and reduction in fluorescence when the cells 

are reduced. Also note the opposite occurring in the NN 3.2 antibody treated cells. 
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5.16. Immunofluorescence Studies - Discussion 

The results seen for the IF studies are similar to that of the frozen studies as it was treatment 

with a reducing agent which allowed for comparison of fluorescence between the BN3.2 and 

mOV18 antibodies. The fluorescence observed with the reduced FR-α sample was similar to 

that of the non-reduced mOV18 control fixed in methanol. The fixation method used did not 

appear to have a significant effect on the epitope recognised by the BN 3.2 antibody, however, 

methanol was the only fixation method suitable for the mOV18 antibody (Figure 5-6). This 

suggests that the mOV 18 epitope is quite unstable and treatment of the cells easily destroys 

the epitope, this also supports the fact mOV 18 is unsuitable for use on FFPE samples.  

Although these studies have provided interesting information on the applications of the BN 3.2 

antibody the main focus of these studies has been proven to be unsuccessful. It was hoped that 

the BN 3.2 antibody, if suitable for use on frozen tissue and by IF may have potential 

neutralising properties, however these results have indicated that the epitope recognised, 

although linear is not exposed on the surface of cells in their native conformation. Although 

treatment with reducing agents caused epitope retrieval, this would be unsuitable for 

treatment of cells via growth assays in vitro and subsequent in vivo studies due to the toxic 

effects of reducing agents. For this reason it was decided not to perform FACS or growth assays 

as both these methods are dependent upon the antibody being able to recognize the protein in 

its native conformation. 

It can be concluded that, although possible our antibody is not suited to IF, antibodies such as 

mOV18 and LK26 may have greater utility in this area as they detect the protein in its native 

conformation. This is not entirely bad news as there are already two antibodies potentially 

suitable for this application and the major aim was to generate something novel; these 

antibodies are also currently in trials as immunotherapeutic agents so the fact our antibody is 

unlikely to be suitable for this too is neither surprising or disappointing as there is still a gap in 

the market for antibodies suitable for use on FFPE samples. 
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Chapter Six 

6. Concluding Remarks and Future Direction 
The major aim of this study, which was primarily to generate two monoclonal antibodies with 

specific reactivity for FR-α and FPGS, suitable for use on paraffin embedded samples, has been 

successfully achieved. In addition, both antibodies are suitable for use in WB analysis. Prior 

attempts to generate a specific antibody to FR-α suitable for this application have been 

unsuccessful. Valuable knowledge has been gained in overcoming problems associated with the 

generation of antibodies to difficult targets, including comprehensive screening protocols which 

could also be applied to other difficult targets.  

In addition to successful generation of the antibodies,  the ovarian TMA study and subsequent 

statistical analysis found a significant association between high FR-α expression and poor 

survival, which indicates a role for FR-α as a valuable prognostic marker of survival in ovarian 

cancer patients in combination with other independent markers of prognosis. Future studies 

using the FR-α antibody on paraffin embedded tissue may be extremely significant in the 

diagnosis, treatment and prognostic outcome of patients with ovarian cancer.  

It was hypothesized that BN3.2 may also be of potential use in trials using pemetrexed as an 

indicator of response to this drug. It was disappointing to subsequently find no association 

between expression of FR-α and pemetrexed activity in MPM. Although this may not be the 

case for pemetrexed, there are now a number of small molecule therapies currently being 

evaluated which have been shown to have high affinity for FR-α over the RFC. BN3.2 may have 

a role to play as a companion disgnostic for these compounds if they are found to be effective 

antitumour agents. 

Future work to carry out additional testing using FR-α on panels of tumours other than ovarian 

cancers or MPM such as colon carcinomas, breast, endometrial cancer and other solid tumour 

samples may also be of value. Although these tumours may not express FR- α as consistently, 

identification of subgroups of patients likely to respond to FR-α targeted therapies would also 

indicate a role for our antibody, again as a companion diagnostic. 
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A study assessing the expression of FPGS and response to pemetrexed in various tumours, 

particularly MPM would be extremely interesting as this protein may also be of importance in 

the determination of response since antifolates are polyglutamated. Although the FPGS 

statistical analysis did not find it to be a significant marker of prognosis it did follow a very 

similar trend to that of FR-α and use of the FPGS antibody as a predictor of response cannot be 

ruled out. This may not be restricted to ovarian cancer, particularly as it has a much wider 

pattern of expression than FR-α. Although it is constitutively expressed in the majority of 

proliferating cells its expression is higher in tumours and the difference in intensity can be 

easily observed via IHC analysis.  

The cell studies discussed in this project provide useful preliminary data, investigation of the 

effect of oestrogen regulation, extracellular folate concentration and the expression of FR-α in 

breast cancer are worthy of further investigation and the results of our studies support this as 

there is much to learn in these areas.  

The initial aim was to generate a panel of antibodies suitable for a number of different 

applications, however the problems encountered during molecular biology limited this and 

eventually only one successful antibody was generated for each protein. This is likely to be due 

to the extensive additional antibody screening protocol designed to ensure the antibodies 

generated were specific for the target alone which significantly reduced the number of clones 

handled at each stage. This was necessary to ensure there were no soluble stress proteins 

contaminating the samples to which antibodies could be generated. Despite this, the antibodies 

generated have now been proven to be highly specific for their targets and are suitable for use 

both on paraffin sections and via Western blot. Their specificity has been further confirmed by 

epitope mapping analysis which confirmed that both antibodies recognised a linear epitope 

present in their target sequence. The problems encountered in molecular biology may also 

explain the reason for previous unsuccessful attempts to generate an antibody to FR-α suitable 

for use on paraffin sections.  

The frozen and IF studies have been able to provide valuable insight into the potential uses of 

the FR-α antibody, indicating uses not only for FFPE IHC and WB but, with modification of 

existing techniques, potential application in both IF and Frozen IHC. It is unlikely it will routinely 
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be utilised for such techniques when antibodies suitable for use in these applications are 

already commercially available and have been for a significant time. 

It is disappointing that the application of BN3.2 in FACS and growth assays were found to be 

limited, however, it is not surprising as this antibody was specifically designed for use on FFPE 

sections. It is highly unlikely that one antibody be suitable for applications where the protein is 

both fixed and in its native conformation, as demonstrated previously by the mOV 18 and LK26 

antibodies which carry unstable, conformational epitopes and are only suitable for IHC on 

frozen tissue. As these antibodies are unsuitable for routine applications it makes the work 

performed in this project novel, it also indicates a role for BN3.2 as a companion diagnostic to 

be used in combination with potential neutralizing antibodies as well as small molecule 

therapies. BN3.2 was not found to have any potential as a neutralising antibody, this is likely to 

be due to both the avoidance of key residues required for protein activity in order to comply 

with GMAG regulations and the cysteine rich sequence causing extensive folding of the protein. 

Neutralising antibodies are likely to recognise active residues and recognise epitopes in their 

native, conformational form. As these antibodies were specifically designed for use on paraffin 

sections, in hindsight, this is probably not the most appropriate method to use for neutralising 

antibody design. Generation of an antibody suitable for use on paraffin is probably of more 

value in this instance as there are already two potential neutralising antibodies on the market 

which are both undergoing trials.  

The results of the oestrogen regulation study could also be expanded upon by repeating this 

experiment, assessing other potential modulators of FR-α expression such as caveolin 1 

(Bagnoli et al., 2000; Sanna et al., 2007), the glucocorticoid receptor (Tran et al., 2005) or 

retinoic acid receptor would also be an interesting area of investigation, unfortunately in this 

particular study time limited further investigations in this area (Bolton et al., 1999). This is a 

particularly important area of research as modulation to selectively overexpress FR-α in 

malignant cells would be extremely advantageous in enhancing antifolates uptake by 

pathologic cells and reduction of toxicity in normal tissue. This ‘magic bullet’ approach is the 

major aim in the research of all types of cancer and the antibodies generated in this project will 

greatly assist such future studies. 
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Useful information on the antibody epitope recognition sites has also been elucidated, allowing 

future work to be directed appropriately. Both antibodies are also commercially available, filling 

the gap in the market and increasing the potential for further, large scale studies to be carried 

out.   

In conclusion, both antibodies will be valuable tools for assessment of FR-α and FPGS 

expression in a variety of tumours, I confident that now they are commercially available they 

are an important tool and will play an extremely valuable role in both the diagnosis and 

treatment of not only ovarian malignancies but also subsets of other human cancers with high 

FR-α expression. Perhaps they may be even more important as companion diagnostics for 

tumours other than ovarian malignancies where the expression is less consistent and as 

determinants of response for all future FR-α directed therapies. 
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