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Abstract 
 

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of liver 

conditions ranging from hepatic steatosis through steatohepatitis to cirrhosis. Its 

prevalence has been estimated at between one-in-five and one-in-three of the 

adult population depending on country and diagnostic criteria used. Prevalence 

increases with degree of obesity, and is very common in those with Type 2 

diabetes (T2DM). Rising prevalence of obesity and T2DM, particularly in 

younger people, will ensure that NAFLD remains a growing clinical concern for 

the future. 

 

Lifestyle modification, which encompasses diet, weight loss, physical activity, 

and/or exercise related behaviours, is the primary recommended therapy for 

NAFLD, especially in the absence of approved pharmaceutical agents. Despite 

lifestyle modifications being central to the management of NAFLD, the evidence 

base upon which these guidelines are based is lacking, and this is particularly 

true for physical activity and exercise.  

 

The focus of this thesis is on defining, exploring and developing the evidence 

for physical activity and exercise in NAFLD with a view to improving clinical 

care. The work contained within this thesis demonstrates that low levels of 

physical activity are prominent in people with NAFLD and that targeting this with 

resistance exercise therapy confers benefits to both liver lipid and the factors 

promoting its accumulation. It also highlights alterations in cardiac structure and 

function in people with NAFLD in the absence of overt cardiac disease, which 

may provide a therapeutic avenue in which to decrease cardiac disease risk in 

people with fatty liver. Over the duration of the work described in this thesis, the 

number of studies reporting on exercise and liver fat in people with NAFLD has 

increased markedly. The new information contained within this thesis 

contributes to this body of knowledge and, over time, will improve the 

management of a condition that is an increasing burden to the people of the 

Western world.  
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Chapter 1: Introduction and Literature Review 

 

1.1 General Introduction 

 

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of liver 

conditions ranging from hepatic steatosis through steatohepatitis to cirrhosis 

(Day, 2006). Its prevalence has been estimated at between one-in-five and one-

in-three of the adult population depending on country and diagnostic criteria 

used (Barshop et al., 2008). Prevalence increases with degree of obesity 

(Harrison and Day, 2007; Fabbrini et al., 2010), and is very common in those 

with Type 2 diabetes (T2DM) (Kotronen et al., 2008). Rising prevalence of 

obesity and T2DM, particularly in younger people, will ensure that NAFLD 

remains a growing clinical concern for the future. 

 

Accumulation of excess liver fat is the first step in the development of NAFLD 

(Day, 2006). NAFLD has been linked to insulin resistance (IR)(Angelico et al., 

2005), and is an independent risk factor for T2DM (Sattar et al., 2007), and 

cardiovascular disease (Targher et al., 2010). Lifestyle modification, which 

encompasses diet, weight loss, physical activity, and/or exercise related 

behaviours, is the primary recommended therapy for NAFLD (Loria et al., 2010), 

especially in the absence of approved pharmaceutical agents. Despite lifestyle 

modifications being central to the management of NAFLD, the evidence base 

upon which these guidelines are based is lacking, and this is particularly true for 

physical activity and exercise. The focus of this thesis is on defining, exploring 

and developing this evidence with a view to improving the clinical care of people 

with NAFLD.  

 

This literature review begins by describing normal metabolic control and the 

pathophysiology of metabolic disorders. It then focusses on NAFLD and its 

pathogenesis. The role of physical activity and exercise in maintaining 

metabolic health is outlined, and the links between these and the development 

of NAFLD are discussed. The review also includes information on cardiac 

function in metabolic disease and NAFLD.  



18 
 

1.2 Metabolic Control 

 

Metabolism can be defined as the chemical processes occurring within a cell or 

organism that are necessary for the maintenance of life. In metabolism some 

substances are broken down to provide energy for vital processes while others, 

necessary for life, are synthesized (Frayn, 2003). Tight regulation of these 

processes by different organs and systems, allows the body to achieve 

metabolic control. In contrast, even minor deviations in metabolic control can 

result in the development of metabolic disease, with a significant influence on 

lifelong health and wellbeing. This section of the literature review will introduce 

the major metabolic tissues. It will then describe the role of these tissues in 

metabolic regulation, with a focus on postprandial storage of lipid and 

carbohydrate, two of the major mediators of metabolic disease.  

 

Given the dependence of the body on lipids for function, it is interesting that at 

any one time, the total amount of triglyceride in the circulation is around 3g. 

However, a Western diet contains approximately 100g of fat per day and a 

typical meal contains 30g of fat. After eating this, the amount of fat found in the 

circulation could increase dramatically but this is prevented by mechanisms 

within the body that “buffer” the influx of triglyceride into the circulation and 

prevent the exposure of tissues to excessive fatty changes (Frayn, 2002). The 

fine regulation of circulatory lipids is important in order to maintain homeostasis 

and to direct the lipids to where they are needed. In the human body the major 

depots for lipid are the liver, skeletal muscle and adipose tissue and are, as 

such, central to the regulation of circulatory lipids.  

 

Although much larger than the level of circulatory lipids, the amount of free 

glucose in the body is relatively small - around 12g in the circulation and 

extravascular space. After eating a typical meal containing 100g of 

carbohydrate, the influx of glucose could potentially increase the plasma 

glucose concentration eightfold. This is prevented because coordinated 

mechanisms come into play to enhance the disposal of glucose from the 
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plasma and to suppress entry into the circulation of endogenous glucose 

(Frayn, 2002). After eating a meal high in carbohydrates, the beta-cells of the 

pancreas increase insulin secretion. Insulin stimulates removal of glucose from 

blood into skeletal muscle, liver and adipose tissue, and suppresses the entry of 

glucose from the liver into the blood. The result is that excursions in blood 

glucose are dampened (Wasserman, 2009). As major depots for the storage 

and metabolism of carbohydrates, the liver, skeletal muscle and adipose tissue 

are central to the regulation of circulatory glucose levels. 

 

It is clear that the liver, skeletal muscle and adipose tissue are integral to the 

maintenance of metabolic homeostasis in the human body. In light of this the 

independent and coordinated responses of the liver, muscle and adipose tissue, 

to the postprandial storage of carbohydrate and lipid, their function will now be 

reviewed.  

 

1.2.1 Metabolic Tissues 

The role of the liver in postprandial metabolism 

The liver is the first organ to be exposed to the nutrients which enter the body 

from the intestine after a meal and has a major role in energy storage in the 

postprandial state. The portal vein is the liver’s major blood supply and carries 

blood which has passed through and around the intestinal tract.  

 

Carbohydrate metabolism in the liver 

After a meal, glucose is absorbed from the intestine into the portal vein, 

exposing hepatocytes to a high concentration of glucose during the absorptive 

phase. Hepatocytes have mainly GLUT2 glucose transporters which do not 

respond to insulin, and have a relatively high affinity for glucose so that they 

normally operate well below saturation. Because there are so many 

transporters, there is high transport of glucose into the liver. Therefore the rate 

and direction of movement of glucose across hepatocytes’ membrane is 

determined by the relative glucose concentration in/outside the cell. 
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When glucose concentration outside the hepatocyte increases, glucose will 

rapidly be taken into the liver cells and phosphorylated to form glucose 6-

phosphate by the enzyme glucokinase. This enzyme has a high affinity for 

glucose and is not inhibited by its product (glucose 6-phosphate) at a 

physiological concentration. Like the GLUT2 transporter it has a high capacity 

and is unaffected, in the short term, by insulin. The presence of the high affinity 

glucose transporter and the high affinity glucokinase would not alone enable the 

hepatocytes to take up unlimited quantities of glucose, as glucose 6-phosphate 

would accumulate in the cell until glucose phosphorylation ceased. Thus there 

are specific mechanisms for stimulating the disposal of glucose 6-phosphate via 

glycogen synthesis or glycolysis.  

 

Insulin and glucose both activate the storage of glucose as glycogen. They 

activate the main regulatory enzyme of glycogen synthesis (glycogen synthase) 

and inhibit glycogen breakdown (by glycogen phosphorylase). Because insulin 

reaches the liver directly, and because glucose from the small intestine arrives 

in the portal vein, the liver can bring about precise control of the system.  

 

Another important function of the liver in glucose metabolism is the synthesis of 

glucose from other precursors (gluconeogenesis). The substrates for 

gluconeogenesis are small molecules such as lactate, alanine and glycerol. 

Gluconeogenesis is stimulated by glucagon and inhibited by insulin. Hepatic 

gluconeogenesis can be also be stimulated by an increase in the supply of 

substrate from other tissues. For example, after exercise there are elevated 

levels of lactate in the blood, some of which will be reconverted to glucose in 

the liver. During starvation, an increased level of blood glycerol arising from 

adipose tissue lipolysis will have the same effect. After a meal, hormonal factors 

will tend to suppress gluconeogenesis whilst substrate supply increases it. This 

phenomenon is known as the glucose paradox. 
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Lipid metabolism in the liver 

The liver can both oxidise and synthesise fatty acids. Hepatocytes are normally 

rich in mitochondria and each hepatocyte contains about 800 mitochondria 

occupying about 18% of the entire liver cell volume (Wei et al., 2008). 

Mitochondria play an important role in the hepatocytes’ metabolism, being the 

primary site for the oxidation of fatty acids and oxidative phosphorylation. 

 

The liver can oxidise fatty acids by the mitochondrial β-oxidation pathway to 

produce energy for its many metabolic activities. Fatty acid synthesis and 

diversion of fatty acids away from oxidation is favoured by high insulin levels. In 

“fed” conditions, when insulin is elevated, malonyl-CoA levels will be high and 

fatty acid oxidation will be inhibited (malonyl-CoA inhibits fatty acid entry into the 

mitochondrion for oxidation). Fatty acids will be diverted into esterification with 

glycerol 3-phosphate, a process which is stimulated by insulin. Thus in the “fed” 

state, the liver tends to store fatty acids as triglyceride rather than oxidise them. 

The hepatic triglyceride pool is not a major energy store for the rest of the body 

but appears to be a local store for hepatic needs. The stored triglyceride acts as 

the substrate for hepatic secretion of fat into the bloodstream in the form of 

vLDL. 

 

In the presence of hyperinsulinemia, the liver converts excess carbohydrate to 

fat to control blood glucose and prevent hyperglycaemia. Increasing triglyceride 

concentrations would, in turn, exacerbate IR and set up a vicious cycle. On the 

whole, enhanced de novo lipogenesis (DNL) appears to be a major abnormality 

of hepatic fat metabolism in subjects with NAFLD (Lavoie and Gauthier, 2006). 

In healthy human subjects, the contribution of DNL in the liver to IHL in the 

fasted state is less than 5%. In patients with IR or NAFLD, DNL in the liver is 

elevated  by up to 26% (Tamura et al., 2005). In healthy subjects, DNL is 

elevated following meals, which can be accounted for by elevation in the 

circulating levels of lipogenesis precursors. However, in people with NAFLD, 

DNL is constantly elevated. 
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Insulin activates the membrane-bound transcription factor sterol-regulatory- 

element binding protein-1c (SREBP-1c), which transcriptionally activates most 

genes required for lipogenesis. Lipogenesis is also regulated by glucose: 

glucose activates the carbohydrate response element binding-protein 

(ChREBP), which induces expression of liver-type pyruvate kinase, a key 

regulatory enzyme in glycolysis; this enzyme in turn provides the precursors for 

lipogenesis. ChREBP also stimulates gene expression of most enzymes 

involved in lipogenesis (Tamura et al., 2005; Lavoie and Gauthier, 2006; 

Harrison and Day, 2007). Hyperinsulinemia and hyperglycaemia may also 

induce these transcriptional factors in humans. 

 

Leptin and adiponectin, the two major fat-derived hormones, have been shown 

to improve insulin sensitivity and concomitantly reduce IHL (probably by 

promoting fatty acid oxidation). In the absence of leptin action, lipogenesis is 

increased and fatty acid oxidation is reduced accounting for the steatosis that 

occurs in such circumstances. One pathway by which leptin achieves its anti-

lipogenic effect in the liver is by lowering expression of SREBP-1c, thus up-

regulating genes promoting fatty acid oxidation and down-regulating those 

involved in lipogenesis (Lavoie and Gauthier, 2006). 

 

The role of skeletal muscle in postprandial metabolism 

Skeletal muscle is made up of numerous fibres, and within each fibre there are 

many myofibrils, themselves highly organised bundles of the proteins actin and 

myosin. Muscle contraction is brought about through head-groups of myosin 

filaments binding to the actin filaments. The head-groups can “rock” to move the 

myosin relative to the actin, detach, and rebind further along the actin. This 

process requires energy (ATP) which is hydrolysed to release ADP+P and is 

regulated by calcium binding to a protein known as troponin-C that is 

associated with the actin filaments.  

 

There are two major types of muscle fibre, referred to by either their contractile 

properties or colour: 
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Type 1/Red/Slow twitch fibres: These oxidative fibres have a high concentration 

of myoglobin, a pigment related to haemoglobin, which assists the diffusion of 

oxygen into the muscle. They have a high density of capillaries perfusing them 

and many mitochondria within each cell. These muscle fibres use substrates, 

largely from the blood, and oxidise them to yield energy. The oxidation of 

substrates from the blood requires time for diffusion of the substrate to the cell, 

diffusion of oxygen to the cell, and diffusion out of the cell of carbon dioxide. 

Therefore contraction of this type of fibre is relatively slow. These fibres are 

important for sustained, relatively low intensity exercise. 

 

Type 2/White/Fast twitch fibres: These fibres lack myoglobin and are therefore 

white. They have fewer mitochondria and are more equipped for anaerobic 

glycolysis than oxidative metabolism. The main substrate for glycolysis is 

glucose 6-phosphate produced by the breakdown of glycogen stored within the 

same cells. The sequence of glycogen breakdown and generation of energy by 

glycolysis can be extremely rapid since everything is “on site”. Their role is to 

produce energy quickly, but because they are largely dependent upon stored 

substrate, they cannot maintain this for long. These fibres are important in the 

rapid generation of energy over short periods. 

 

Skeletal muscle uses both stored fuel (glycogen and triglyceride) and substrates 

(glucose and fatty acids) taken up from the blood. Glucose uptake is mainly 

mediated by the insulin-sensitive glucose transporter GLUT4. (GLUT1 is also in 

skeletal muscle and may play a role in the uptake of glucose at a basal rate). 

Glucose uptake by GLUT4 has certain characteristics: 

 The maximal rate of uptake for GLUT4 is within the physiological range 

of plasma glucose concentrations. 

 In the presence of low concentration of insulin, the maximum activity of 

glucose uptake is low. 

 Increasing insulin concentration brings more transporters into action at 

the cell membrane and increases glucose uptake.  

The glucose may be used for glycogen synthesis or metabolism via glycolysis. 

Insulin stimulates the enzyme glycogen synthase in muscle and inhibits the 

enzyme glycogen phosphorylase (Savage et al., 2007). Thus when plasma 
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insulin is high after a meal, glucose will be stored as glycogen in skeletal 

muscle. 

 

Free fatty acids, or non-esterified fatty acids (NEFA), are also taken up by 

skeletal muscle, particularly in the oxidative, slow twitch fibres. Under resting 

conditions the rate of fatty acid uptake is closely related to the concentration of 

NEFA in the plasma. Within the cell, fatty acids are oxidised in accordance with 

their rate of uptake. During exercise, increased blood flow through the muscle 

increases the delivery of NEFA for oxidation. During the period after a meal, 

when glucose and insulin levels are high, fatty acid oxidation is restricted and 

NEFA are diverted into triglyceride synthesis for storage. 

 

The role of adipose tissue in postprandial metabolism 

There are two types of adipose tissue, defined essentially in the way that they 

store triglycerides. Brown adipose tissue gets its colour from large numbers of 

mitochondria in the cytoplasm and stores lipid in multiple droplets. White 

adipose tissue stores lipid as one droplet which typically fills most of the cell; the 

cytoplasm, mitochondria and nucleus are confined to a thin “crust” around the 

outside. Both types of adipocyte store energy in the form of triglyceride and may 

release fatty acids when needed by other tissues. The difference is brown 

adipocytes have a much higher oxidative capacity, and may oxidise a large 

proportion of the fatty acids released from storage. Brown adipose tissue’s main 

role is to generate heat. It is highly vascularised and the blood carries heat 

produced during oxidation to the rest of the body. Humans do not have a 

significant amount of brown adipose tissue. In the adult human, virtually all 

adipose tissue is white. Its major role is in the control of the storage and release 

of fat on a minute by minute basis.  

 

Lipid fuels are not water-soluble and their presence in the plasma is dependent 

on specialised transport mechanisms. Excess concentrations of fat in the 

plasma can have adverse consequences (such as atherosclerosis). Therefore 
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the regulatory role of white adipose tissue is essential to normal health as well 

as to the coordination of fat metabolism in everyday life, responding to meals 

and overnight fasting. Fat is stored via two major pathways: 1. uptake of the 

triglyceride from the plasma; 2. de novo lipogenesis (the synthesis of lipid from 

other sources). On a typical Western diet, high in fatty acids, route one is the 

most important (Savage et al., 2007). 

 

Fat in the plasma is present in lipoprotein particles. The largest of these 

particles (chylomicrons) are too big to escape from the capillaries into the 

intestinal fluid; therefore the adipocytes cannot take them up directly. 

Adipocytes produce the enzyme lipoprotein lipase (LPL) which hydrolyses the 

triglyceride in lipoprotein particles to release NEFA, which can then diffuse into 

the interstitial space and so reach the adipocytes (Frayn et al., 1994). Since 

LPL must act in the capillaries, it is exported from the adipocytes to the 

endothelial cells lining the capillaries of the adipose tissue. LPL can thus come 

into contact with, and act upon, passing chylomicrons thus hydrolysing their 

triglyceride and releasing NEFA (Sniderman et al., 1998). Activity of LPL in 

adipose tissue is stimulated by insulin, secreted in response to an increase in 

blood glucose levels. After a typical meal containing fats and carbohydrates, the 

uptake of fat into adipose tissue will be stimulated. The role of LPL will be 

discussed again in Section 1.5.1 with respect to physical inactivity. 

 

The rate at which LPL can hydrolyse lipoprotein triglycerides is determined by 

the number of active LPL molecules in contact with that particle. It is also 

influenced by the speed at which NEFA that are produced can be removed from 

the capillary microenvironment. If fatty acids are not removed, capillary 

concentrations will rise abnormally, LPL activity will be inhibited (by its product), 

and lipolysis will be reduced (Sniderman et al., 1998). Under normal 

circumstances, approximately half of the fatty acids released from the 

chylomicrons are trapped immediately in the adipocytes, and half enter the 

general circulation (Sniderman et al., 1998). Once inside the cell, the fatty acids 

are esterified to form triglyceride which joins the lipid droplet for storage. 
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The mobilisation of fat involves the hydrolysis of stored lipid and is also called 

lipolysis (the breakdown of triglyceride to fatty acids). This is catalysed by 

hormone-sensitive lipase (HSL). Insulin helps to control the action of HSL by 

promoting fat storage and restraining fat mobilisation as necessary (Frayn et al., 

1994). In the fasting state, when the intracellular enzyme HSL is active, there is 

a large net outflow of fatty acids from adipocytes into the plasma, and the 

concentration gradient will not favour fatty acid uptake. In the postprandial state, 

HSL is suppressed by insulin and the pathway of fatty acid esterification is 

stimulated (Frayn et al., 1994; Frayn, 2002). 

 

Adipocytes take up excess fatty acids in the short term. Normally the uptake of 

fatty acids after a meal will be balanced by fat mobilisation in the post-

absorptive state (e.g. during the night-time fast) and during exercise, so that in 

most people the size of fat stores remains relatively constant. If there is a long-

term positive energy balance, adipocytes increase in size and number to 

increase fat storage, and overall fat mass increases, resulting in weight gain. 
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1.3  Pathophysiology of Metabolic Disorders 

 

Although circulating levels of carbohydrates and lipids are generally well 

maintained, a loss of control results in the development of metabolic disease. 

This section will now review the relative roles of carbohydrate and lipid in the 

development of metabolic disease and with this, describe the contributions of 

the liver, skeletal muscle and adipose tissues.   

 

1.3.1 Type 2 Diabetes, Insulin Resistance and Obesity 

Insulin is released from the beta-cells of the pancreas in response to increases 

in blood sugar. This stimulates glucose uptake and storage in muscle and 

adipose tissue while at the same time suppressing the production of glucose in 

the liver (Gulve, 2008). When blood sugar falls below normal levels, the alpha-

cells of the pancreas secrete glucagon (the opposing hormone of insulin) to 

normalise blood sugar concentration. Glucagon increases blood glucose 

concentration by stimulating the liver’s glycogenolytic and gluconeogenic 

pathways. 

 

Insulin resistance (IR) is the condition in which normal amounts of insulin are 

inadequate to produce a normal insulin response from fat, muscle and liver cells 

(Goodpaster and Wolf, 2004). IR in muscle cells decreases glucose uptake and 

so decreases local storage of glucose as glycogen. It is also accompanied by 

an increase in intramuscular lipid. IR is arguably the earliest detectable and 

dominant metabolic defect in patients developing Type 2 diabetes (T2DM) and 

NAFLD. 

 

T2DM is a condition characterised by high blood glucose levels caused by 

relative insulin deficiency or the body’s inability to use insulin efficiently (i.e. their 

body has become insulin resistant). It generally occurs in those who are obese, 

sedentary and over 45 years of age. Humans with T2DM exhibit the classic triad 

of hyperinsulinemia, hyperglycaemia and hypertriglyceridemia (Toledo et al., 
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2006; Brown and Goldstein, 2008). High blood glucose levels in the face of high 

levels of insulin are attributed to IR. The prevalence of diabetes worldwide was 

estimated to be 2.8% in 2000 and predicted to be 4.4% in 2030. The total 

number of people with diabetes is projected to rise from 171 million in 2000 to 

366 million in 2030 (Wild et al., 2004). 

 

People with IR or T2DM are limited in their capacity to dispose of glucose to 

storage depots in the postprandial phase. Although overall tissue glucose 

uptake is essentially “normal” in a quantitative sense, postprandial plasma 

glucose levels are higher in people with IR or T2DM (Woerle et al., 2006). The 

amount of glycogen accumulation in the liver and skeletal muscles of these 

patients was found to be lower, despite the “normal” overall tissue glucose 

uptake, suggesting that glucose might be taken up excessively by tissues that 

are not normally major sites of postprandial glucose disposal (Woerle et al., 

2006). 

 

IR and T2DM have been closely linked to obesity. Obesity is a medical 

condition in which excess body fat has accumulated to the extent that it may 

have an adverse effect on health, leading to reduced life expectancy and/or 

increased health problems. Body mass index (BMI), a measurement which 

compares weight and height, defines people as overweight (pre-obese) if their 

BMI is between 25 and 30 kg/m2, and obese when it is greater than 30 kg/m2. 

Worldwide, 1.1 billion adults and 10% of children are classified as overweight or 

obese (Haslam and James, 2005).  

 

In obesity, IR is induced by fat deposited intracellularly in muscle, liver and 

adipose tissue, and by the excretory products of the expanded adipocyte mass. 

These products include inflammatory markers, including tumour necrosis factor-

α (TNF-α), which suppresses the secretion of adiponectin. Adiponectin is a 

powerful insulin sensitiser, which is secreted less as the adipocyte mass 

expands. As adipose tissue becomes “full” and unable to store increasing 

circulatory fatty acids, fat infiltrates other organs. In the pancreas, this excess 

http://en.wikipedia.org/wiki/Medical_condition
http://en.wikipedia.org/wiki/Medical_condition
http://en.wikipedia.org/wiki/Body_fat
http://en.wikipedia.org/wiki/Life_expectancy
http://en.wikipedia.org/wiki/Body_mass_index
http://en.wikipedia.org/wiki/Human_weight
http://en.wikipedia.org/wiki/Overweight
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fat can damage the beta cells, and reduces the islets’ capacity to maintain the 

increased insulin output demanded by IR, so glucose intolerance and 

premature T2DM readily develop (Haslam and James, 2005). Ectopic fat is also 

deposited in the liver resulting in a predisposition to NAFLD (Tamura et al., 

2005). 

 

Metabolic abnormalities which are usually associated with obesity, do not, 

however, affect all obese people. Approximately 10-25% of obese people and a 

fraction of morbidly obese individuals are not affected by metabolic 

disturbances. These metabolically “healthy-obese” subjects are insulin 

sensitive, have normal blood pressure, a favourable lipid profile, a lower 

proportion of visceral fat, less liver fat and a normal glucose metabolism despite 

having an excessive amount of body fat (Pajunen et al., 2011). However, 

despite awareness of the healthy-obese phenotype, there currently exist no 

established criteria by which to define these individuals. The defining 

characteristics of the metabolically healthy-obese phenotype, in contrast to 

obese individuals with metabolic risk, include limited abdominal, particularly 

visceral fat accumulation, an earlier onset of obesity (<20 years) and high levels 

of physical activity.  

 

1.3.2  The role of skeletal muscle 

Skeletal muscle represents the primary site of insulin-mediated glucose 

disposal and most glucose that is cleared from the blood in response to insulin 

is stored as glycogen in skeletal muscle (Gulve, 2008). When insulin-stimulated 

glucose transport into skeletal muscle is decreased (as it is in people with IR 

and T2DM) the result is an inability to keep blood glucose concentrations within 

normal limits. Thus skeletal muscle plays a primary role in the maintenance of 

normal blood glucose concentrations (Turcotte and Fisher, 2008).   

 

Skeletal muscle has large numbers of mitochondria and is heavily reliant on 

oxidative phosphorylation for generating ATP from carbohydrates (mainly 
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glucose and glycogen) and fat based fuels. Mitochondrial oxidative 

phosphorylation provides up to 90% of cellular ATP. A mismatch between 

mitochondrial oxidative capacity and the capacity for glycolysis may be an 

important factor in the development of IR. Mitochondrial content, mitochondrial 

function and oxidative capacity are decreased in people with IR and T2DM 

(Petersen et al., 2004; Hawley and Lessard, 2007) and can lead to a decrease 

in fatty acid oxidation within the cells. Impairments in muscle oxidative capacity 

could arise from a defect in mitochondrial function and/or a decrease in the 

number of mitochondria.  

 

Fatty acid uptake capacity may be inherently high in IR muscle. Fatty acid flux 

across the plasma membrane occurs through a highly regulated, protein-

mediated process that involves one or several fatty acid transporter proteins 

(e.g. FABPpm, CD36). High rates of fatty acid uptake in people with IR are 

associated with an increased total protein content of FABPpm and with a 

permanent relocation of CD36 to the plasma membrane. Thus a higher plasma 

membrane content of FABPpm, CD36, or both may provide a cellular 

mechanism through which rates of fatty acid uptake are increased in IR muscle 

(Turcotte and Fisher, 2008). Low CD36 content in mitochondrial membranes, 

defects in the ability of muscle to translocate CD36 to mitochondrial membranes 

or both are important factors regulating low fatty acid oxidative capacity 

associated with IR. Therefore, in people with IR, there is increased uptake of 

fatty acids within the muscle, but an inability to transfer these fatty acids into the 

mitochondria for oxidation and thus there is an accumulation of fatty acids within 

the muscle (Turcotte and Fisher, 2008). Measurements of intramuscular lipid 

(IML) correlate more closely with IR than any other commonly measured indices 

(Savage et al., 2007). IR in muscle was accompanied by an increase of 

approximately 80% in IML content in the IR subjects, compared with insulin-

sensitive controls (Petersen et al., 2004). Increases in IML could occur as a 

result of the increased delivery of fatty acids from lipolysis and/or decreased 

rates of mitochondrial oxidative phosphorylation. 
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Mitochondrial rates of ATP production were reduced by approximately 30% in 

the muscle of the IR subjects, compared with insulin-sensitive controls 

(Petersen et al., 2004). IR skeletal muscle is characterised by lower oxidative 

capacity and lower post-absorptive rates of fatty acid oxidation (Goodpaster et 

al., 2001). This raises the possibility that the association between lipid 

accumulation within muscle and IR is influenced by a lower capacity for the 

oxidation of lipid as an energy substrate. Studies have identified increases in 

plasma fatty acid concentrations and IML content in the IR offspring of patients 

with T2DM, suggesting that dysregulation of fatty acid metabolism may mediate 

the IR in these people. IR in the offspring of patients with T2DM is due to 

dysregulation of intramyocellular fatty acid metabolism, which may be caused 

by an inherited defect in mitochondrial oxidative phosphorylation. Such a defect 

might be due to a reduction in mitochondrial content, which in turn might be 

attributable to a reduced ratio of type 1 to type 2 muscle fibres (Petersen et al., 

2004). Since mitochondria have a critical role in mediating glucose-induced 

insulin secretion, the presence of similar inherited defects in beta-cell 

mitochondrial function or content, in the setting of peripheral IR, might explain 

the increased incidence of diabetes in the IR offspring of patients with T2DM.  

 

1.3.3  The role of adipose tissue  

Adipose tissue is the largest endocrine organ in the body and does more than 

just store excess energy. Adipocytes release numerous hormones and other 

signalling factors that travel throughout the body sending messages to the 

musculoskeletal system, pancreas, liver, heart, adrenal glands and central 

nervous system. In people with excess body fat, adipocytes release abnormal 

factors that can cause or amplify metabolic disorders. Thus, adipose tissue itself 

plays a role in causing diseases such as T2DM and cardiovascular disease 

(CVD) (Stehno-Bittel, 2008). 

 

Impairments in adipose tissue function will lead to less effective buffering of 

fatty acid fluxes in the circulation and thus an increase in postprandial NEFA 

and triglyceride concentrations. Loss of adipose tissue’s ability to buffer the 
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incoming flux of fatty acids will inevitably lead to increased exposure of other 

tissues to this increased flux (Frayn, 2002). A larger adipose tissue mass 

delivers more NEFA to the systemic circulation as the ability of insulin to 

suppress fatty acid release is impaired (Frayn, 2002). These “extra” fatty acids 

compete for substrate utilisation in skeletal muscle, which in turn decreases 

glucose utilisation. This increases blood glucose concentration and provides the 

stimulus for increased insulin secretion and hyperinsulinaemia is a key feature 

of the IR syndrome (Karpe and Tan, 2005). 

 

However, there is significant evidence to suggest that adipose tissue is insulin 

sensitive and hyperinsulinaemia may therefore lead to a constant lipolytic 

inhibition in adipose tissue. Consequently, the main function of adipose tissue, 

to rapidly switch between fat uptake and fat release, will be hampered (Frayn, 

2002). Adipose tissue blood flow is the conveyor of signals and substrates to 

and from the adipose tissue. In healthy people, adipose tissue blood flow is 

increased markedly by food intake, whereas in IR subjects this response is 

blunted. This is another facet of the unresponsiveness of adipose tissue in the 

IR syndrome. 

 

Different fat compartments are associated with different metabolic risks. 

Abdominal fat carries the greatest health risk, however visceral fat is the most 

important predictor of metabolic disorders. Visceral adipose tissue (VAT) is a 

stronger correlate of CVD risk than BMI, waist circumference, or subcutaneous 

adipose tissue (SAT). Central obesity, in which fat mass is predominantly intra-

abdominal, is more strongly associated with IR, dyslipidemia and 

atherosclerosis than is peripheral obesity, in which fat is predominantly 

gluteofemoral (Porter et al., 2009).  

 

Multiple small studies have demonstrated that the visceral fat compartment is 

metabolically active, secreting such vasoactive substances as inflammatory 

markers, adipocytokines, markers of haemostasis and fibrinolysis, and growth 

factors, which may contribute to its role in cardiometabolic risk factor 
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manifestation (Fox et al., 2007). Weight loss through diet and exercise, which 

results in reductions in visceral fat, is associated with improvements in IR, blood 

pressure, serum lipids and inflammatory markers. 

 

In contrast to the detrimental effects of VAT, studies have a highlighted a 

possible protective role for SAT. In humans, increased subcutaneous leg fat is 

associated with a reduced risk of disturbed glucose metabolism and 

dyslipidemia, independent of abdominal fat (Porter et al., 2009). 

Thiazolidinedione treatment, which increases total fat mass, mostly in 

subcutaneous fat stores, improves insulin sensitivity (Ravikumar et al., 2008). 

Surgical removal of VAT results in decreased glucose and insulin levels in 

humans, while removal of SAT by liposuction does not always result in 

improvements in glucose metabolism or lipid levels. Transplantation of 

subcutaneous fat into visceral compartments in mice produces decreases in 

body weight and total fat mass and improved glucose metabolism, suggesting 

that subcutaneous fat may be intrinsically different from visceral fat in ways that 

are beneficial (Porter et al., 2009). 

 

Inter-muscular adipose tissue is visible adipose tissue beneath the muscle 

fascia and between muscle groups. It is associated with a decrease in insulin 

sensitivity in individuals with T2DM, suggesting that these individuals benefit 

from minimal inter-muscular adipose tissue. Regional adiposity has an adverse 

effect on the function of the insulin receptors within the muscle and is negatively 

associated with insulin sensitivity through cytokine mediated pathways (Hilton et 

al., 2008).  

 

One possible explanation for obesity-related cardiometabolic disease is the 

portal vein hypothesis, which proposes that increased visceral fat leads to 

higher NEFA concentrations in the portal vein, increased systemic fatty acid 

flux, and increased hepatic lipase activity, which removes lipids from LDL and 

HDL, and may lead to dyslipidemia (Porter et al., 2009). The ectopic fat 

hypothesis suggests that a characteristic of obesity is fat deposition in liver, 
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skeletal muscle, and pancreatic beta-cells resulting from insufficient adipocytes 

growth and differentiation in the setting of nutritional excess. Such ectopic fat 

stores are theorized to impact tissue and organ function by physical 

compression, the secretion of various locally acting substances, and cell 

dysfunction or cell death of non-adipose cells a phenomenon known as 

lipotoxicity. In line with this theory, SAT represents a proper expansion of non-

pathogenic adipocytes and therefore may be considered a protective fat depot. 

Improvements in insulin sensitivity with thiazolidinedione treatment, which 

increases subcutaneous fat stores, are suggestive of a protective effect of SAT 

(Porter et al., 2009). 

 

Obesity is the consequence of both an enlargement of adipocytes and an 

increase in the number of adipocytes. Larger fat cells are less sensitive to 

insulin and exert a higher basal rate of lipolysis than small fat cells (Frayn, 

2002; Stehno-Bittel, 2008). As adipocytes enlarge to store excess fat, their 

efficiency as “buffers” decreases. Excess adipose tissue initiates several 

cellular pathways which lead to chronic inflammation. The larger number of 

adipocytes associated with obesity causes a local oxygen shortage triggering a 

state of chronic hypoxia and local inflammation in the surrounding cells. 

Adipocytes themselves can stimulate inflammatory responses. Locally secreted 

adipokines attract proinflammatory macrophages into adipose tissue, where 

they encircle dying adipocytes. The macrophages release their own factors that 

further stimulate the inflammatory process. Obesity is often accompanied by 

increased levels of NEFA which could activate proinflammatory responses in 

blood vessels, fat cells and immune cells (Stehno-Bittel, 2008). 

 

If excessive adipose tissue leads to inflammation, how does the inflammation in 

fat cells lead to IR? The inflammatory process is first activated by macrophages 

within adipose tissue. Those signals spread in a paracrine fashion, activating 

inflammation in nearby tissue and resulting in IR in those tissues. NEFA are 

subsequently released from stimulated adipocytes, leading to secondary IR at 

distant sites such as skeletal muscle (Stehno-Bittel, 2008). Adipocytes are 

important in maintaining the level of oxidative stress in the body. Oxidative 



35 
 

stress is caused by free oxygen radicals, which are super-reactive oxygen 

molecules. Normally low levels of free oxygen radicals are a necessary part of 

cellular respiration and are balanced by dietary antioxidants. In obesity, the 

balance is lost and excess free oxygen radicals accumulate in the tissues. 

Oxidative stress hastens complications of obesity, including IR and T2DM 

(Stehno-Bittel, 2008). 

 

1.3.4  The role of the liver 

The liver stores glucose after food ingestion, and releases glucose to the 

circulation between meals in order to maintain appropriate plasma glucose 

levels (Gulve, 2008). In T2DM, excessive hepatic glucose output contributes to 

fasting hyperglycaemia, with increased gluconeogenesis being the predominant 

mechanism. Excess glycogen accumulation in the liver is seen in 80% of 

diabetics and hepatic fat accumulation affects 40-70% (Levinthal and Tavill, 

1999). Fat is stored as triglyceride and may be a manifestation of increased fat 

transport to the liver, enhanced hepatic synthesis and decreased oxidation or 

removal of fat from the liver. 

 

Metabolic dyslipidemia is characterised by high circulating triglycerides and low 

HDL levels and is frequently accompanied by hepatic steatosis (Toledo et al., 

2006). Increased hepatic lipogenesis contributes to both of these problems. 

Because insulin fails to suppress gluconeogenesis but continues to stimulate 

lipogenesis in both obese and lipodystrophic IR mice, it has been proposed that 

a selective post-receptor defect in hepatic insulin action is central to the 

pathogenesis of fatty liver and hypertriglyceridemia in these mice (Semple et al., 

2009). In humans, IR subjects had a marked defect in muscle glycogen 

synthesis and diverted much more of their ingested energy into hepatic de novo 

lipogenesis, resulting in increased plasma triglycerides, decreased HDL and 

increased triglyceride synthesis. vLDL production was also seen to increase 

(Petersen et al., 2007). These factors may predispose these individuals to 

NAFLD and CVD. 
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Under normal conditions, dietary glucose stimulates insulin secretion from the 

pancreas. The insulin travels directly to the liver via the portal vein, where it 

elicits two key actions at the level of gene transcription. Firstly, insulin 

stimulates the phosphorylation of Fox01, a transcription factor that activates 

gluconeogenesis. Insulin-stimulated phosphorylation prevents Fox01 from 

entering the nucleus, and hence it down regulates genes required for 

gluconeogenesis, most prominently phosphoenolpyruvate carboxykinase 

(PEPCK) and glucose 6-phosphatease (G6Pase). The result is a decrease in 

hepatic glucose output which helps to keep blood glucose low. Secondly, insulin 

activates the transcription factor SREBP-1c which enhances transcription of 

genes required for fatty acid and triglyceride biosynthesis, most prominently 

acetyl-coenzyme A carboxylase (ACC) and fatty acid synthase (FAS) (Brown 

and Goldstein, 2008). The newly produced triglycerides are secreted in vLDL, 

which delivers triglycerides to adipose tissue for storage and to muscle for 

combustion. Uptake of vLDL-derived fatty acids in adipose tissue is facilitated 

by insulin, which increases the amount of LPL on the surface of endothelial 

cells (Brown and Goldstein, 2008).  

 

In people with T2DM, IR or obesity these pathways can become impaired. In 

the liver, the Fox01 pathway becomes IR. Despite extremely high insulin levels, 

the mRNAs for PEPCK and G6Pase remain high and gluconeogenesis 

continues. Despite IR in the Fox01 pathway, insulin sensitivity is maintained in 

the SREBP-1c pathway. Thus, nuclear SREBP-1c levels are extremely high, 

fatty acid synthesis is increased, and high levels of triglycerides accumulate in 

the liver. Excess triglycerides are secreted in vLDL, raising plasma triglyceride 

levels (Brown and Goldstein, 2008; Semple et al., 2009). Fatty acids derived 

from these triglycerides worsen the IR state in muscle and adipose tissue. The 

net result is the classic T2DM triad of hyperglycaemia, hyperinsulinaemia and 

hypertriglyceridemia. Excess triglycerides accumulating in the liver can lead to 

NAFLD. Some of the excess triglycerides also deposit in the beta-cells of the 

pancreas, where they contribute to the eventual beta-cell failure that leads to 

frank diabetes (Brown and Goldstein, 2008). 
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1.4  Non-alcoholic fatty liver disease 

 

The liver plays a central role in both glucose and lipid regulation and as a result 

is influential in the development of metabolic disease. Consequently, metabolic 

deregulation in the liver has significant clinical implications. This section will 

define the commonest liver complication, non-alcoholic fatty liver disease, 

review the literature on prevalence and also the clinical presentations.  

 

1.4.1  Defining non-alcoholic fatty liver disease 

Non-alcoholic fatty liver disease (NAFLD) occurs in developed and developing 

countries and is present across a full range of ethnicities, such that it is now 

considered to be the most common liver condition in the world (Smith and 

Adams, 2011). NAFLD represents a spectrum that spans from asymptomatic 

steatosis to potentially life-threatening non-alcoholic steatohepatitis (NASH). 

NASH is distinguished from simple steatosis by the presence of hepatocyte 

injury, inflammation and fibrosis (Church et al., 2006) and although simple 

steatosis is a relatively benign condition, NASH can progress to cirrhosis, liver 

cancer and liver failure. Once cirrhosis develops, patients are at high risk of 

developing hepatic decompensation and of dying from a liver-related cause. 

NAFLD has become an increasingly common indication for liver transplant 

(Erickson, 2008). 

 

When intrahepatic lipid (IHL) content exceeds 5% of the liver’s total weight, it is 

clinically defined as having excess lipid. The 5% liver fat cut-off used to define 

NAFLD was established from a study in the general population using proton 

magnetic resonance spectroscopy to determine the “upper limit of normal” of 

liver fat (Szczepaniak et al., 2005). If IHL increases above 10%, small globules 

of fat begin to appear in many of the hepatocytes - when IHL exceeds 30%, 

virtually all the hepatocytes are affected and contain a large droplet of fat (Ueno 

et al., 1997). Excess IHL is caused by a failure of normal hepatic fat 

metabolism. This is due to an imbalance between fat arriving at the liver and fat 

being exported from or oxidised by the liver. 
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1.4.2  Epidemiology 

The prevalence of NAFLD in Western countries is estimated to be around 20-

30% (Harrison and Day, 2007) but most patients remain asymptomatic and 

undiagnosed, making precise predictions about disease prevalence difficult. In 

people with T2DM, this figure increases to 70-75% (Targher et al., 2007). In 

morbidly obese patients undergoing bariatric surgery, approximately 90% have 

NAFLD and 36-37% have NASH (Harrison and Day, 2007).  

 

1.4.3  Clinical Presentations 

The majority of patients with NAFLD are asymptomatic, although some 

complain of non-specific fatigue and weakness, and others have described 

vague right-sided abdominal pain. The diagnosis of NAFLD, anywhere on the 

spectrum, rests upon three key features (James and Day, 1998): 

1. Histopathological features, of which the presence of fat and of alcohol-

like liver damage are essential. 

2. Rigorous exclusion of alcohol as a cause for the disease. 

3. Appropriate investigations to exclude other forms of chronic liver disease. 

Most patients are diagnosed after liver function tests are performed for another 

medical reason, and results demonstrate an abnormality in liver enzymes. 

People with NAFLD usually display persistently raised liver enzymes, although 

the level of elevation does not indicate the underlying disease severity (Mofrad 

et al., 2003; Szczepaniak et al., 2005; Fracanzani et al., 2008). NAFLD is by far 

the most likely histological diagnosis in the increasing number of patients 

presenting to liver clinics with persistently abnormal liver function tests (Day, 

2002) and it has been reported that over two-thirds of patients presenting with 

unexplained abnormal liver function tests will have NAFLD (Day, 2006). Risk 

factors for developing NAFLD include increasing age, being overweight/obese, 

a sedentary lifestyle, T2DM or IR, hyperlipidemia, diet and family history. 

 

Ultrasonography, computer tomography and magnetic resonance imaging are 

accepted modalities for detecting moderate to severe (>30%) hepatic steatosis. 

The major limitation of these imaging modalities are that they cannot 
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differentiate between the histological subtypes of simple steatosis or NASH, nor 

can they stage the degree of fibrosis (Saadeh et al., 2002). Modern techniques, 

such as proton magnetic resonance spectroscopy (1P-MRS), quantify IHL 

accurately and non-invasively but its use is currently limited to research settings 

due to cost (Smith and Adams, 2011). 

 

The gold standard for diagnosing NAFLD is a liver biopsy, however, it is 

impractical to subject all patients with mild elevations of liver enzymes to liver 

biopsy due to its associated morbidity and mortality and also the lack of current 

treatment strategies. The main purpose for performing a liver biopsy is to 

determine the stage of the disease (Day, 2006) – see Figure 1. Biopsies can be 

staged using a number of scales. A five-stage scale was developed by Brunt et 

al (1999) which incorporates all degrees of liver damage: stage 0 - absence of 

fibrosis; stage 1 - perisinusoidal or portal fibrosis; stage 2 - perisinusoidal and 

portal/periportal fibrosis; stage 3 - septal or bridging fibrosis; stage 4 – cirrhosis 

(Brunt et al., 1999). The NAFLD Activity Score (NAS) specifically includes only 

features of active injury that are potentially reversible in the short term. The 

score is defined as the unweighted sum of the scores for steatosis (0-3), lobular 

inflammation (0-3), and ballooning (0-2); thus ranging from 0 to 8. Fibrosis, 

which is both less reversible and generally thought to be a result of disease 

activity, is not included as a component of the activity score (Kleiner et al., 

2005). The separation of fibrosis from other features of activity is an accepted 

paradigm for staging and grading for both NASH and chronic hepatitis. This 

score may be useful in intervention studies, as it is more likely to demonstrate 

subtle changes in histology as a result of therapy. 

 

Most hepatology clinics restrict liver biopsy to patients with some of the 

following: alanine aminotransferase (ALT) greater than twice the normal; 

aspartate aminotransferase (AST) greater than ALT; moderate “central” obesity; 

T2DM or impaired glucose tolerance; and hyperlipidemia (Day, 2002). 

Histopathologically, NAFLD presents in exactly the same way as alcoholic liver 

disease and it is the strict assessment of alcoholic intake which determines 

which category a patient is placed in. To help distinguish between NAFLD and 

alcoholic liver disease, the ratio of ALT to AST is almost always greater than 1 
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in NAFLD (where ALT exceeds AST) and almost always less than 1 in alcoholic 

liver disease. However, as hepatic fibrosis progresses in NAFLD this ratio can 

be altered as ALT levels may fall so interpretation of this ratio must be taken 

with care. 

 

Figure 1: Liver biopsies showing (from left-right) normal liver, fatty liver and liver 
fibrosis 

 

 

Long-term prognosis depends on the histological stage of disease at 

presentation. Patients with simple steatosis have a relatively benign “liver” 

prognosis; their risk of developing clinical evidence of cirrhosis over 15-20 years 

is 1-2%. Patients with NASH and fibrosis can progress to cirrhosis with a risk 

varying from 0% at 5 years to 12% over 8 years (Day, 2006). Once cirrhosis 

develops, patients are at a high risk of developing hepatic decompensation and 

of dying from a liver-related cause, including liver cancer.  

 

1.4.4  The Pathogenesis of NAFLD  

It is now recognised that hepatic steatosis (the initial stage of NAFLD) should be 

targeted early to prevent complications associated with the progression of this 

condition. However, disease progression appears to vary considerably across 

the NAFLD population and some people with fatty liver may never go on to 

develop NASH, while some show a rapid deterioration in liver health. A two-hit 

hypothesis has been proposed (Day and James, 1998) to explain this 

inconsistent progression of NAFLD to NASH in humans. Hepatic steatosis 
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represents the initial insult, or “first hit” that causes the first stage of NAFLD. 

These “fatty” hepatocytes then become vulnerable to added insults, or “second 

hits” that increase hepatic oxidative stress, which may lead to the progression 

from steatosis to NASH. Possible second hits may include bacterial infections, 

toxins or hormonal changes.  

 

The primary event of NAFLD is the accumulation of fat in the hepatocytes. This 

fat comes from several possible sources (see Figure 2): 

- increased fatty acid delivery to the liver as a result of high dietary fat intake 

- increased lipolysis within IR adipose tissue releasing more fatty acids into the 

portal vein for uptake by the liver  

- increased hepatic de novo lipogenesis (DNL) 

- decreased free fatty acid oxidation 

- decreased export of triglyceride from the liver 

 

Figure 2: The primary event in NAFLD is the accumulation of fat in 
hepatocytes 

 

An increased circulating plasma NEFA pool seems to be a major determinant in 

the pathogenesis of NAFLD and accounts for approximately 60% of the IHL in 
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NAFLD patients (Lavoie and Gauthier, 2006). In IR states, insulin does not fully 

suppress the activity of HSL in adipose tissue, which results in enhanced 

lipolysis and release of fatty acids into the circulation. Uptake of fatty acids by 

the liver is not regulated and, as a result, plasma NEFA concentration is directly 

related to the influx of fatty acids to the liver. Thus, the overproduction of fatty 

acids by adipose tissue that flows to the liver via the NEFA pool is the most 

likely explanation for excess triglyceride accumulation in NAFLD (Tamura et al., 

2005). This would be in line with the concept that the liver acts as a buffer for 

the influx of fatty acids. Mobilised fatty acids produced from the lipolysis of VAT 

are directly trafficked through the liver via portal circulation making it no surprise 

that increased visceral adiposity is strongly correlated to fatty liver (Church et 

al., 2006). 

 

High levels of circulatory insulin and glucose up-regulate SREBP-1c and 

ChREBP expression in the liver respectively (Tamura et al., 2005; Lavoie and 

Gauthier, 2006). These proteins transcriptionally activate most genes required 

for lipogenesis. In healthy human subjects, hepatic DNL contributes 

approximately 5% of IHL in the fasted state and 18-23% after a meal (Timlin 

and Parks, 2005). In those with NAFLD, DNL is constantly elevated, 

contributing approximately 26% of IHL irrespective of feeding state (Donnelly 

and Smith, 2005). Elevated circulating triglycerides exacerbate this problem by 

impeding insulin stimulated glucose uptake (Ferrannini et al., 1983). Thus 

creating a vicious cycle where elevated IHL levels impede hepatic insulin action, 

causing increased portal insulin levels and further increasing IHL (Taylor, 2008). 

 

Two major fat-derived hormones, leptin and adiponectin, have been shown to 

improve insulin sensitivity and reduce IHL, probably by promoting fatty acid 

oxidation (Lavoie and Gauthier, 2006). Leptin is an adipokine originating mainly 

from white adipose tissue that plays an important role in regulating food intake, 

energy expenditure and adiposity. Despite its role in centrally regulating 

appetite, leptin also acts peripherally on several target tissues, including liver, 

and protects them against fat accumulation by enhancing fat oxidation (Yasari 

et al., 2009). In the absence of leptin action, lipogenesis is increased and fatty 
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acid oxidation is reduced resulting in steatosis. One pathway by which leptin 

achieves its anti-lipogenic effect in the liver is by lowering expression of 

SREBP-1c, thus up-regulating genes promoting fatty acid oxidation and down-

regulating those involved in lipogenesis (Lavoie and Gauthier, 2006). 

 

In summary, lipid accumulates in the liver as a result of increased uptake from 

dietary fat and increased lipolysis releasing fatty acids from an enlarged 

adipose tissue store; DNL increases liver fat by manufacturing lipid from non-

lipid precursors. Net lipid output is decreased due to decreased NEFA oxidation 

and decreased export of triglycerides into the circulation. In combination, the 

changes in circulatory substrates have a profound impact upon liver 

metabolism, promoting the accumulation of lipid in the liver and sustained 

glucose output. These changes in metabolic control create a vicious circle that 

elevates circulatory glucose and insulin, results in a sustained elevation in 

circulatory lipids, and in turn, promotes further accumulation of lipid in the liver. 

If sustained these changes will have a significant impact upon the development 

of metabolic complications such as T2DM, cardiovascular disease and even the 

advancement of liver disease itself.  

 

Differences in prevalence, clinical profile, histological severity and outcome of 

NAFLD in different ethnic groups suggests a genetic contribution accompanying 

the clear environmental role. This has prompted investigation of polymorphisms 

of several genes, including those involved in lipid handling (lipolysis, triglyceride 

synthesis), insulin signaling, oxidative stress and hepatic fibrosis. A genetic 

variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) has 

been identified as a strong predictor of hepatic fat content (Romeo et al., 2008). 

PNPLA3 is associated with the endoplasmic reticulum and with lipid droplets in 

hepatoctyes, however, its function remains unknown. In a large (n=9,229), 

multiethnic population study, the PNPLA3 allele was most common in Hispanic 

people, the group most susceptible to NAFLD (Romeo et al., 2008). 

Furthermore, IHL content was over two times higher in PNPLA3 homozygotes 

than in non-carriers (Romeo et al., 2008). As such, it is clear that environmental 

and lifestyle influences play a significant role in the development and 
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progression of NAFLD, however, genetic factors may also be important in 

determining the susceptibility to NAFLD and its progression to cirrhosis. 

Importantly, the gene-environment interactions in this area are yet to be 

determined. 
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1.5 Physical Activity, Exercise and Metabolic Health 

 

Although much attention has historically been given to the role of nutrition in the 

management of obesity and NAFLD, emerging evidence suggests that energy 

expenditure also plays an integral role in adequate metabolic control. Our 

everyday lives consist of activities which, without us paying conscious effort, 

have a profound impact upon our health and wellbeing. Typically the activities 

of the day can be broken into four distinct categories; 1) inactivity or sedentary 

behaviour, 2) physical activity, 3) exercise, and 4) sleep. These categories will 

now be discussed before the impact of them upon metabolic health is reviewed.  

 

The definition of being physically inactive or sedentary is controversial. Some 

groups define inactivity as expending less than 1.5 kcal/kg/day in leisure 

physical activities (National Population Health Survey of Canada: www.hc-

sc.gc.ca/fn-an/surveill/nutrition/population/index-eng.php), while the UK 

National Obesity Forum indicates that 3000-6000 steps/day is sedentary or 

inactive (www.national obesityforum.org.uk). In the US National Health 

Interview Survey, adults were classified as inactive if they did not report any 

sessions of light to moderate or vigorous leisure-time physical activity of at least 

10 minutes a day (www.cdc.gov/nchs/nhis). Sedentary behaviour is not simply a 

lack of physical activity but is a cluster of individual behaviours where sitting or 

lying is the dominant mode of posture and energy expenditure is very low. 

Sedentary behaviours are multi-faceted and might include behaviours at work or 

school, at home, during transport and in leisure-time. Typically, key sedentary 

behaviours include screen-time (TV viewing, computer use), motorised 

transport and sitting.  

 

Physical activity is defined as “any bodily movement produced by contraction of 

skeletal muscles and resulting in energy expenditure above the basal level” 

(Wittink et al., 2011) and constitutes many of the activities carried out as part of 

the daily routine. The term "physical activity" should not be confused with 

"exercise". Exercise is a subcategory of physical activity in which planned, 

http://www.cdc.gov/nchs/data/series/sr_10/sr10_242.pdf
http://www.cdc.gov/nchs/data/series/sr_10/sr10_242.pdf
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structured and repetitive bodily movements are performed to maintain or 

improve physical fitness. Physical activity includes exercise as well as other 

activities which involve bodily movement and are done as part of playing, 

working, active transportation, house chores and recreational activities.  

 

A physical activity can be defined in terms of its metabolic equivalent (MET) 

level, a physiological measure expressing the energy cost of the task. It is 

defined as the ratio of metabolic rate (and therefore the rate of energy 

consumption) during a specific physical activity to a reference metabolic rate, 

set by convention to 3.5 ml O2·kg−1·min−1 or equivalently 1 kcal·kg−1 h−1 or 

4.184 kJ·kg−1 h−1 (Ainsworth et al., 2000). 1 MET is considered as the resting 

metabolic rate (RMR) measured during quiet sitting.  Activities of less than 3 

METs are classed as “light” (e.g. desk work, watching television, slow walking), 

3-6 METs as “moderate” (e.g. walking at 3-4mph, cycling less than 10mph), and 

over 6 METs as “vigorous” (e.g. running, circuit training).  

 

With sleep playing an important role in physiological and cognitive wellbeing, 

alongside the large proportion of our lives which is spent asleep, it is not 

surprising that variations in sleep, whether duration or pattern, influence 

metabolic and mental health. Cross sectional and prospective cohorts reveal 

that self-reported sleep duration of less than seven hours is associated with an 

excess risk of cardiovascular (CV) disease (up to 33%), Type 2 diabetes 

(T2DM) and all-cause mortality (Ayas et al., 2003; Tamakoshi et al., 2004). 

However, as the objective of the present work is on physical inactivity, physical 

activity and exercise, this review will focus on these.  

 

This literature review will now explore the links between physical inactivity, 

physical activity, exercise and metabolic control, and will consider different 

methods of assessing physical activity levels. 

 

http://en.wikipedia.org/wiki/Physiological
http://en.wikipedia.org/wiki/Resting_metabolic_rate
http://en.wikipedia.org/wiki/Resting_metabolic_rate
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1.5.1  Physical Inactivity and Metabolic Control 

Subtle changes in sedentary behaviour may contribute to obesity and metabolic 

disorders, potentially as much as lack of moderate-vigorous physical activity. 

Physical inactivity has been identified as the fourth leading risk factor for global 

mortality (6% of deaths globally) (WHO, 2003) and physical inactivity alone was 

estimated to cost the NHS £1.06billion in 2002 (Allender et al., 2007). Even if 

adults meet the public health guideline for leisure-time physical activity, they 

may have a high risk of becoming overweight or developing metabolic disorders 

if they spend a large amount of time in sedentary behaviours during the rest of 

the day (Sugiyama et al., 2008). 

 

Increasing sedentary behaviour is becoming a growing problem in the general 

population (Blair, 2009) and low levels of physical activity are compounded by 

an increase in physical inactivity. One of the seminal studies linking everyday 

physical inactivity with adverse health showed that people with jobs that involve 

a lot of sitting (e.g. bus drivers) had double the incidence of CV disease as 

those whose jobs include more standing and walking activities (e.g. bus 

conductors) (Morris et al., 1953). The most direct effect of sitting still is that the 

work performed by the large skeletal muscles in the legs, back and trunk 

required for upright movement decreases. Sitting for prolonged periods also 

causes the loss of opportunity for cumulative energy expenditure resulting from 

the thousands of intermittent muscular contractions throughout the day 

(Hamilton et al., 2007). Sedentary behaviours involving sitting or lying down are 

characterised by a low MET value of less than 2, and lower mean daily MET 

levels are related adversely to metabolic biomarkers and to poorer health 

outcomes (Sugiyama et al., 2008). 

 

Classically, there are three components of human daily energy expenditure 

(Figure 3): basal metabolic rate (BMR), the thermic effect of food and activity 

thermogenesis. BMR is the energy required for the core bodily functions and is 

measured at complete rest while fasted. It accounts for about 60% of daily 

energy expenditure in a sedentary person. Nearly all of its variability is 

accounted for by body size, or more precisely lean body mass, with bigger 
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people having a higher BMR. The thermic effect of food is the energy expended 

in response to a meal and is that associated with digestion, absorption and fuel 

storage. This accounts for about 10% of daily energy needs and does not vary 

greatly between people. The remaining component, activity thermogenesis can 

be subdivided into exercise and non-exercise activity thermogenesis (NEAT) 

which incorporates general, everyday activity. NEAT is the most variable 

component of human expenditure, and may be the easiest to manipulate for 

health benefits. NEAT varies between two people of similar size by 2000 

kcal/day because of people’s different occupations and leisure-time activities 

(Levine, 2007). Occupations that involve physical labour, such as farming, 

confer higher NEAT values than those that involve more sedentary work. 

Variability in leisure also affects NEAT – those people that choose to sit in the 

evening watching the television exhibit lower NEAT than those that are out 

walking the dog. Obesity is associated with low NEAT; obese individuals stand 

and ambulate for 2½ hours/day less than lean sedentary controls (Levine et al., 

2005). If we can attempt to address this, either at an individual level by 

encouraging the person to move more, or at an environmental/societal level by 

ensuring there are more opportunities to stand/walk throughout the day, then 

we may have a positive impact on obesity levels and metabolic control.  

 

The links between sedentary behaviour and metabolic health extend beyond 

the total amount of time spent inactive. Healy et al., (2008a) report that more 

interruptions in sedentary time were associated with a decrease in metabolic 

risk factors. This suggests that it is not only the amount of sedentary time that is 

important, but also the manner in which it is accumulated. As sedentary time 

comprises a large proportion of waking hours (over 50% for most people - 

(Hamilton et al., 2007)), small changes regarding the interruption of this with 

regular, short breaks of light-intensity activity could be incorporated across 

numerous settings and workplaces, increasing NEAT, resulting in beneficial 

metabolic effects (Levine, 2007). Regular participation in moderate-vigorous 

intensity exercise should still be promoted as the predominant physical activity 

message. However, encouraging a reduction in sedentary time through 

increasing light-intensity day-to-day activity may be another important public 
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health message for reducing obesity and overall metabolic risk (Levine, 2007; 

Healy et al., 2008).  

Figure 3: Components of total daily energy expenditure (Levine, 2007) 

 

There is a growing body of evidence reporting that the majority of people at risk 

of developing the metabolic syndrome, obesity and T2DM, spend excessive 

amounts of time inactive and have low levels of NEAT (Dunstan et al., 2004; 

Dunstan et al., 2005; Levine et al., 2005; Healy et al., 2008). These results are 

real and applicable to our everyday lives, with one study reporting that with 

every one hour increase of television viewing per day that there was a 26% 

increase in the prevalence of metabolic syndrome in women (Dunstan et al., 

2005). The magnitude of the negative effect of television watching was about 

the same as the positive health benefit derived from the 30 minutes of extra 

physical activity/exercise recommended to improve health. Given the balance 

between the negative health consequences of physical inactivity and the 

modest positive effects of exercise in comparison, it is important to identify both 

activity and inactivity in developing clinically meaningful interventions. 
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The majority of the general population are unaware of the potential insidious 

dangers of sitting too much or the possible benefits of at least maintaining daily 

low-intensity intermittent non-exercise activity throughout the day. Often, these 

non-exercise activities occur subconsciously. A study using objective and 

sensitive measures of movement (accelerometry) estimated that sedentary 

young adults moved  their body an equivalent of walking 9 miles per day 

(Hamilton et al., 2007). Energy expenditure of “standing workers” (e.g. shop 

assistants) was approximately 1400kcal/day, for work involving some manual 

labour around 2300kcal/day, whereas seated workers burned only around 700 

kcal/day. More than 90% of the calories burned during all forms of physical 

activity were due to this pattern of standing and non-exercise ambulatory 

movements (Hamilton et al., 2007). The frequency and cumulative duration of 

non-exercise activity throughout the day is extremely high. People perform 

intermittent bouts of non-exercise activity throughout most of the day, 

7days/week, 365days/year. In contrast, the frequency of exercise is more 

limited, generally to less than 150min/week. Given the broader opportunities 

and implications for daily low-intensity activity, it is possible that maintaining this 

level of activity has greater implications for health and well-being than 

moderate-vigorous physical activity for those who do not prefer more structured 

exercise. 

 

Researchers hypothesise that signals harming the body during high levels of 

physical inactivity are different from those that boost health above normal after 

exercising regularly (Hamilton et al., 1998; Bey and Hamilton, 2003). 

Lipoprotein lipase (LPL) is the first protein directly interacting with and 

regulating lipoproteins to be studied at the cellular level during physical 

inactivity. Physical inactivity has a powerful effect on suppressing LPL activity in 

skeletal muscle, the rate-limiting enzyme for the hydrolysis of triglyceride rich 

lipoproteins (Zderic and Hamilton, 2006). Local contractile activity and/or 

inactivity is the major physiological variable regulating LPL function within the 

skeletal muscle and a localised reduction in contractile activity is a potent 

physiological factor reducing LPL activity. Low LPL function has been linked 
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with blunted triglyceride uptake in skeletal muscle and reduced plasma HDL 

cholesterol levels.   

 

Increased skeletal muscle LPL has been reported following short-term exercise 

training (Hamilton et al., 1998). LPL activity was measured in 6 muscles after 

intensive training for 2 weeks. Exercise increased LPL activity 2- to 2.5-fold in 

the least oxidative regions of the leg muscle (fast-twitch white fibres), whereas, 

the most oxidative (slow-twitch red fibres) postural leg muscles that already had 

high LPL due to non-exercise activity, did not display any further increase in 

LPL after training (Hamilton et al., 2007). LPL activity is generally much greater 

in the red oxidative muscle types than in the white glycolytic muscles. By 

removing the normally high level of postural support by oxidative muscles, this 

abolished the difference of LPL activity between muscle fibre types. This 

suggests that the difference in LPL activity between fibre types is primarily due 

to the level of recruitment in normal daily activity (Bey and Hamilton, 2003)  and 

thus, local changes in metabolism during even light-moderate contractions are 

the most important physiological stimulus for LPL regulation in skeletal muscle. 
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Figure 4:  A schematic representation of the links between physical inactivity 

with Type 2 diabetes and metabolic disease (Booth et al., 2008) 

 

 

1.5.2  Physical Inactivity and NAFLD 

Increases in sedentary time, could play a potential role in the development of 

NAFLD and, in turn, provide a potential avenue for therapy. Current physical 

inactivity physiology would suggest that a reduction in LPL activity, as a result of 

fewer cumulative muscle contractions throughout the day, could predispose to 

NAFLD through the resultant circulatory hyperlipidemia. An increase in 

circulating fatty acids, with fewer being hydrolysed as lipoproteins, will lead to 

an increased delivery of circulating fatty acids to the liver and hence 

predisposition to or progression of NAFLD. Increasing circulating fatty acids 

also exacerbates IR (Taylor, 2008) and hyperinsulinemia which could 

subsequently increase de novo lipogenesis within the liver. 
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Decreasing overall sedentary time and increasing breaks throughout the day 

could be a useful therapeutic message to relay to people with NAFLD, and may 

be perceived as being more achievable by patients initially than increasing 

physical activity levels. Any means of increasing NEAT, whether it be at work or 

during leisure time, may exert positive metabolic benefits. To date, no studies 

have reported sedentary time or NEAT in NAFLD so any relationships remain 

purely speculative at present.  

 

1.5.3  Physical Activity and Metabolic Control 

Public health guidelines promote at least 150min/week of moderate-vigorous 

leisure-time physical activity to aim at decreasing the risks for metabolic 

diseases (ACSM, 2009; Department of Health, 2011). However, the majority of 

people in the general population do not follow this prescription for enough 

moderate-vigorous exercise and this may be contributing to the rising numbers 

of people being affected by obesity and T2DM.  

 

Evidence for the benefit of physical activity comes from studies showing that 

individuals who exercise and maintain a physically active lifestyle are less likely 

to develop IR, impaired glucose tolerance, or T2DM (Boule et al., 2001; 

Snowling and Hopkins, 2006; Thomas et al., 2006; Colberg et al., 2010). 

Physical activity appears to result in insulin-receptor up-regulation in muscle 

tissue increasing delivery of glucose and insulin to the muscles, and 

translocation of GLUT4 to the muscle cell membrane, enhancing non-insulin 

dependent glucose uptake (Hayashi et al., 1997; Zelber-Sagi et al., 2008; 

Agosti et al., 2009). Exercise also has a beneficial effect on NEFA metabolism 

by enhancing whole-body lipid oxidation (Trenell et al., 2008; Hallsworth et al., 

2011) and favourably affects overall lipid profile (Agosti et al., 2009; Kadoglou 

et al., 2010), reducing the risk of CV disease. Physical activity, including 

exercise, has been shown to improve mitochondrial number and density in 

skeletal muscle (Toledo et al., 2007). This results in an increase in oxidative 

capacity which enhances fat oxidation. Physical activity offers an insulin 

independent way of aiding glucose homeostasis in the face of IR and promotes 
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fat oxidation, thus reducing hyperlipidemia, all of which is key in the prevention 

and management of metabolic disorders. 

 

1.5.4  Physical Activity and NAFLD 

Physical activity levels are reported to be lower in people with NAFLD than their 

“healthy” counterparts. A cross-sectional study of Japanese men showed that 

the prevalence of NAFLD (as assessed by echocardiography) was inversely 

related to the frequency of self-reported exercise (Hsieh et al., 1998). Those 

people that exercised for more than 30 minutes a day on at least 3 days per 

week were half as likely to have NAFLD as their sedentary counterparts, 

despite a similar BMI. In a subsequent cross sectional report, these 

observations were expanded to state that people without fatty liver engaged in 

nearly 3 times more resistance activity than people with NAFLD (Zelber-Sagi et 

al., 2008). Among the NAFLD group, those that engaged in physical activity of 

any kind or duration had lower fasting serum insulin levels and a lower rate of 

abdominal obesity even though they had a similar BMI to their inactive 

counterparts. However, in both of these studies, physical activity levels were 

obtained from self-reported, non-validated, physical activity questionnaires 

developed for the purpose of the research, rather than being objectively 

measured. Perseghin et al. (2007) demonstrated that a higher level of habitual 

physical activity is associated with a lower level of intrahepatic lipid (IHL) and 

suggested that this relationship may be due to the effect of exercise per se 

(n=191). In this study, IHL was assessed via MRS and physical activity via 

questionnaire (Perseghin et al., 2007a). Again, this study relied upon self-

reporting of physical activity levels rather than using an objective measure, but 

did use a questionnaire validated for use in the general population. Increasing 

physical activity levels in people with NAFLD is likely to be of benefit, not only to 

liver health, but the overall metabolic profile, and should be encouraged in a bid 

to prevent NAFLD progression, the development of T2DM or CV disease. 
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1.5.5  Physical Activity Measurement 

In order to utilise physical activity as a treatment strategy in the management of 

NAFLD, researchers need a means to accurately measure levels of physical 

inactivity, physical activity and exercise. These sensitive and specific tools are 

necessary to best characterise the habitual patterns in these clinical groups and 

also monitor the effectiveness of interventions. These tools may also assist 

clinicians in providing accurate feedback to the patient as to their current activity 

levels, and enable individual activity targets to be set, monitored and worked 

towards as part of the patient’s treatment package. Several different 

methodologies exist for the measurement and assessment of physical activity 

and energy expenditure (EE). These methodologies range from expensive and 

objective laboratory measures such as doubly labelled water to subjective 

measures such as self-reported physical activity questionnaires. All of these 

tools have benefits and limitations, and their appropriate use depends on 

multiple factors which will now be introduced and discussed. 

 

Doubly labelled water: Doubly labelled water (DLW) is the gold standard for 

measuring total EE during free-living (Bluck, 2008). This method is based on the 

principle that in a loading dose of 2H2
18O, 18O is eliminated as carbon dioxide 

and water, while deuterium is eliminated from the body only as water (Lifson et 

al., 1955). The rate of carbon dioxide production, and thus EE, is calculated 

from the difference of the two elimination rates. Using the DLW method, 

subjects are free to carry out their normal day-to-day activities, and EE can be 

accurately measured over a period of up to 14 days gleaning a good insight into 

the person’s general overall activity levels. Although effective in determining EE 

over broad periods of time, the DLW technique does not monitor patterns of 

activity, nor the frequency, duration or intensity of activities. The DLW technique 

is also expensive to implement, requires specialist equipment and technical 

expertise limiting its use to specialist centres and small numbers.  

 

Indirect-calorimetry: Indirect-calorimetry measures the oxygen and carbon 

dioxide that a person inhales and exhales, and from this, indirectly computes 
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the calories burned during the period of assessment (Frayn, 1983). This method 

is normally carried out under laboratory conditions and is considered a good 

estimate of EE, with an error rate of 3-10% compared to DLW (Wells and Fuller, 

1998). Disadvantages of this method are the expensive and bulky equipment, 

and the use of the mask for gas analysis which limits the type of activities that 

can be studied and the duration of measurement.  

 

Physical activity questionnaires: There are a large number of self-recall physical 

activity questionnaires. The most frequently used are the Baecke and IPAQ. 

These demonstrate reasonably good agreement with DLW in determining 

energy expenditure (Philippaerts et al., 1999; Hagströmer et al., 2006; 

Maddison et al., 2007). Self-reported physical activity is valid (Craig et al., 2003; 

Hagströmer et al., 2006; Bull et al., 2009) and useful in understanding broad 

differences in physical activity in large cross-sectional studies. However, these 

techniques are not sensitive to monitor changes in activity patterns or allow 

accurate determination of EE and are subject to recall error (Warren et al., 

2010). Differences between self-report and DLW may be as high as 30% (Irwin 

et al., 2001).  

 

Heart rate monitors: Heart rate monitors are routinely used to measure physical 

activity in both research and recreation, with an increase in heart rate used as a 

surrogate marker for an increase in physical exertion. However, heart rate 

monitors are only accurate in measuring moderate-vigorous activities, as in 

lower intensity activities, confounding factors, such as stress, emotions, illness 

and  caffeine intake, have a significant impact on results (Crouter et al., 2004). 

Heart rate monitors may therefore be deemed an inappropriate technique, when 

used in isolation, for measuring day-to-day activity which is generally of low-

moderate intensity.  

 

Pedometers: Pedometers are simple devices, which use up and down motions 

as estimates of steps. Pedometers provide a low cost means of crudely 
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measuring physical activity. The major drawback to this method is that 

pedometers measure footfalls, and thus any activity undertaken which doesn’t 

involve ambulation (e.g. weight lifting, biking, swimming), is inaccurately 

recorded. Pedometers also fail to capture intensity, frequency or duration of 

activity. In most cases, pedometers prove accurate in counting steps, however, 

they are much less accurate in predicting EE, with error rates of ±30% (Crouter 

et al., 2003).  

 

Accelerometry: An accelerometer is an electromechanical device that will 

measure acceleration forces. Basic, uniaxial accelerometers measure 

acceleration of the body or body parts in one plane and take into account the 

speed, direction and duration of movements and convert these to movement 

counts to allow for estimation of EE. Biaxial or triaxial accelerometers provide 

information about movement in multiple directions, and show a better 

relationship to physical activity EE than uniaxial units (Plasqui and Westerterp, 

2007).  All accelerometers are subject to motion artefacts, and cannot 

distinguish movement from activities such as driving a car, from actual 

“physical” activity. Error rate for accelerometry ranges from 14-30% against 

laboratory measures (Fehling et al., 1999; Chen et al., 2003) with uniaxial units 

prone to the greatest recording error due to their relative insensitivity to whole 

body movement.  

 

Multi-sensor array: Multi-sensor systems, or multi-sensor arrays, combine 

measures such as heart rate, accelerometry and body temperature to provide 

an overall more accurate picture of physical activity patterns. Multi-sensor 

arrays utilise pattern detection algorithms (typically determined by the 

respective manufacturer) to combine physiological signals detected from the 

different sensors to first identify the wearer’s context, and then apply an 

appropriate formula to estimate EE from the sensor values (Welk et al., 2000). 

These monitors are generally easy and comfortable to use and have an 

average error rate of 8-10% when compared to laboratory measures (Welk et 

al., 2000; St-Onge et al., 2007). 
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1.5.6  Exercise and Metabolic Disease 

Exercise alone (see Section 1.5 for definition), in the absence of any change in 

body weight or composition, may enhance insulin sensitivity and glucose 

homeostasis. Exercise, or muscle contraction per se, provides an insulin 

independent way of stimulating glucose uptake from the circulation into skeletal 

muscle. As the muscle contracts, GLUT4 transporters translocate to the muscle 

cell wall increasing the capacity for glucose uptake (Zelber-Sagi et al., 2008). A 

larger mass of skeletal muscle, as a consequence of exercise, increases overall 

glucose storage capacity. Exercise also enhances fatty acid metabolism by 

enhancing whole-body lipid oxidation (Trenell et al., 2008; Hallsworth et al., 

2011). Thus, in people who are IR or have T2DM, exercise provides a way of 

improving glycaemic control. 

 

A meta-analysis looking at the effects of different modes of exercise training on 

glucose control concluded that aerobic, resistance, and combined exercise 

have small to moderate beneficial effects on glucose control in patients with 

T2DM. The reduction in HbA1c achieved with exercise was similar to that with 

long-term drug or insulin therapy (Snowling and Hopkins, 2006). The effect of 

duration of the exercise programme on HbA1c was consistent with the turnover 

time for haemoglobin and red blood cells (i.e. greater than 8 weeks), but 

otherwise, the effect of total exercise time on HbA1c was not linked. This finding 

is consistent with most patients reaching a stable state in their exercise 

programmes and gaining no extra benefit from more exercise. The meta-

analysis also found that there may be little difference in the effectiveness of 

programmes differing in intensity. This meta-analysis included 27 controlled 

trials using supervised exercise training programmes of patients with T2DM. 

 

Another meta-analysis looked at the effects of exercise on glycaemic control in 

patients with T2DM (Boule et al., 2001). They included 14 controlled clinical 

trials that had an exercise component which lasted for at least 8 weeks. They 

found that when the post-intervention results were pooled, HbA1c was 

significantly lower in the exercise groups compared with the control groups. 

Exercise training was found to reduce HbA1c by approximately 0.66%, an 
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amount that would be expected to reduce the risk of diabetic complications 

significantly. However, the analysis included some trials where diet was used as 

a co-intervention with exercise in the intervention group, making it difficult to 

measure the effects of exercise independently. Further subgroup analysis 

comparing aerobic or resistance training groups revealed no significant 

difference. Exercise intensity and volume were not associated with the post-

intervention difference in HbA1c.  

 

A recent Cochrane Review (Thomas et al., 2006) looking at exercise as an 

intervention for T2DM, found that exercise significantly improved glycaemic 

control and reduced VAT and plasma triglycerides in people with T2DM, even 

without weight loss. Fourteen controlled clinical trials were included in the 

review comparing exercise to no exercise in patients with T2DM. HbA1c was 

reduced by 0.6% with exercise and this decrease was found to be more 

pronounced in the shorter studies (studies of 3 months or less). This probably 

reflects both the higher intensity of exercise in some of the shorter trials, as well 

as the difficulties of maintaining compliance with exercise programmes in longer 

term studies. The mean reduction in HbA1c compares well with reported 

reductions achieved through diabetes medications such as metformin 

(Johansen, 1999).  

 

In patients with T2DM, skeletal muscle mitochondria are reduced in size, and 

there is reduced activity of the electron transport chain (Petersen et al., 2004). 

Mitochondria are normally adaptable organelles and in skeletal muscle in 

healthy individuals there is considerable plasticity in terms of mitochondrial 

content, allowing the muscle to adapt to match energy demands of physical 

activity (Toledo et al., 2007). Endurance training increases fat oxidation during 

submaximal exercise. Mild or moderate intensity exercise (25-65% of VO2max) 

is associated with a 5-10 fold increase in fat oxidation above resting amounts 

because of increased energy requirements of muscle and enhanced fatty acid 

availability (Horowitz and Klein, 2000). Several factors contribute to this 

adaptive response: increased density of the mitochondria in the skeletal 

muscles, which increases the capacity for fat oxidation; a proliferation of 
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capillaries within skeletal muscle, which enhances fatty acid delivery to muscle; 

an increase in carnitine transferase , which facilitates fatty acid transport across 

the mitochondrial membrane; and an increase in fatty acid binding proteins, 

which regulate myocyte fatty acid transport (Horowitz and Klein, 2000; 

Goodpaster et al., 2003). In people with T2DM, mitochondria were found to 

increase both in size and density after a 4-month lifestyle intervention of daily 

moderate-intensity exercise with moderate weight loss (Toledo et al., 2007). 

Increased fatty acid oxidation during endurance exercise permits sustained 

physical activity and delays the onset of glycogen depletion and hypoglycaemia.  

 

Compared with untrained persons exercising at the same absolute intensity, 

people who have undergone endurance training have greater fat oxidation 

during exercise without increased lipolysis. Available evidence suggests that 

the training-induced increase in fat oxidation is due primarily to increased 

oxidation of non-plasma-derived fatty acids, perhaps from intramuscular 

triglyceride stores (Horowitz and Klein, 2000). Several studies suggest that 

intramuscular triglycerides represent a considerable portion of the total fat used 

during endurance exercise and may provide over 50% of the total fat oxidised 

during exercise (Horowitz and Klein, 2000). A decrease in intramuscular fat 

stores would improve insulin sensitivity of the muscles and enhance overall 

glycaemic control. 

 

1.5.7  Resistance Exercise and Metabolism 

Resistance exercise, often known as strength or weight training, works the 

muscles against a load. Resistance exercise provides an alternative to aerobic 

exercise; it  improves muscular strength, muscle mass and metabolic control, 

safely and effectively, in vulnerable populations independent of weight loss 

(Larose et al., 2010). It places less of a demand on the cardio-respiratory 

system and may therefore be accessible to more patients (Gordon et al., 2009).   

 

Evidence that resistance exercise can improve body composition is increasing 

and it is now recommended by the American College of Sports Medicine and 
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the American Heart Association as an integral component to any exercise 

programme (Ormsbee et al., 2007; Ormsbee et al., 2009). A meta-analysis 

comparing aerobic training with weight training concluded that weight training 

resulted in greater increases in fat-free mass (Ballor and Keesey, 1991). An 

increase in muscle mass may improve insulin sensitivity by increasing the 

available glucose storage area, thereby reducing the amount of insulin required 

to maintain a normal glucose tolerance. An increased muscle mass may also 

improve fat oxidation due to an increase in the number of mitochondria. 

 

Resistance exercise has been shown to decrease respiratory exchange ratio 

(RER) after exercise, indicating elevated fat oxidation (Ormsbee et al., 2009). 

This reduction in RER has been reported to last hours after a single bout of 

resistance exercise (Melby et al., 1993; Ormsbee et al., 2007). This represents 

a shift toward greater fat relative to carbohydrate oxidation during the post-

exercise period. Enhanced fat oxidation, observed as an acute response to 

resistance exercise, is due to glucose sparing for the purpose of glycogen 

replenishment, thus resulting in fatty acids being the primary substrate for 

energy provision after resistance exercise.  

 

Strenuous resistance exercise could be beneficial in weight control, not only 

because of the direct caloric cost of the activity and the residual elevation of the 

post-exercise VO2 but also because of the greater post-exercise fat oxidation. 

Energy expenditure has been found to be elevated for as long as 38 hours after 

an acute bout of heavy resistance exercise (Schuenke et al., 2002). Results 

suggest that the energy required to recover from resistance training may be of 

significant use to a weight control/loss programme. For the first 24 hour period 

following exercise, metabolism was increased by 21.2% and over a further 24 

hours by 19.3%. These differences could equate to 404kcal and 369kcal 

increases per day, respectively for average build individuals (Schuenke et al., 

2002). 
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After exercise, oxygen uptake remains elevated above resting levels for a 

period of time. This sustained post-exercise elevation in oxygen uptake has 

been referred to as excess post-exercise oxygen consumption (EPOC), 

previously known as the oxygen debt. In the case of resistance exercise, it 

appears that the intensity of the exercise is very influential in determining the 

duration of EPOC (Schuenke et al., 2002). Data suggests that exercise intensity 

has a greater impact on the magnitude of EPOC than does exercise duration. 

High intensity resistance exercise of longer duration may result in a prolonged 

recovery period, contributing to significant post-exercise caloric expenditure 

(Melby et al., 1993) but may not be achievable by the majority of the general 

population. Studies have found that there is no sustained elevation of metabolic 

rate after exercise of intensities <55% VO2max and <3h duration (Borsheim et 

al., 1998). Thus the low- to moderate-intensity exercise, capable of being 

performed by the general public, produces little excess energy expenditure 

during recovery and would appear to have little impact on weight control. The 

benefit of such exercise in terms of caloric expenditure is limited almost entirely 

to the exercise period itself. 

 

The lipolytic response in adipocytes is a function of the interplay between the 

opposing effects of the stimulatory β-adrenergic receptors (β-ARs) and the 

inhibitory α-adrenergic receptors (α-ARs) that are expressed in human fat cells. 

Catecholamines (adrenalin, noradrenalin and dopamine) are the only hormones 

with a marked lipolytic effect on the fat cells of humans and regulate lipolysis in 

adipose tissue by interacting with both the α-ARs and β-ARs. Catecholamines 

stimulate lipolysis through β-ARs. Studies using isolated human adipocytes 

show that β-adrenergic stimulation of lipolysis is weakened by activation of α-

ARs by adrenalin and noradrenalin. α-adrenergic inhibiting effects have been 

found to modulate lipolysis at rest, while β-adrenergic stimulating effects are 

important to modulate lipolysis during exercise (Arner et al., 1990; Borsheim et 

al., 1998). 

 

The anti-lipolytic α-ARs predominate in subcutaneous abdominal adipose tissue 

and adrenalin has a higher affinity for α-ARs than β-ARs. Adrenalin and 
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noradrenalin levels were found to be significantly increased immediately after 

exercise and a rise in catecholamines likely contributed to the increased 

lipolysis (Ormsbee et al., 2007). Resistance exercise can also lower 

intramuscular lipids in skeletal muscle presumably by activating lipolysis. Like 

lipolysis in subcutaneous adipose tissue, catecholamines can activate lipolysis 

in the intramuscular lipid stores. Dynamic strength training over a 3-month 

period was able to increase lipolysis in obese men by more efficiently 

stimulating β-ARs. Therefore, chronic or acute resistance exercise may help to 

prevent weight gain and improve body composition through the mechanisms of 

increasing energy expenditure, abdominal subcutaneous lipolysis and whole 

body fat oxidation (Ormsbee et al., 2007). Pharmacologically blocking α-ARs 

with phentolamine has been reported to elevate aerobic exercise-induced 

lipolysis, especially in obese subjects (Ormsbee et al., 2009). Blocking β-ARs 

with propranolol after exercise was found to reduce EPOC (Borsheim et al., 

1998). 

 

Catecholamines are much more lipolytic in the abdominal than in the 

gluteal/femoral fat depots indicating that lipids are mobilised more readily from 

the abdominal region during exercise (Arner et al., 1990). Encouraging 

exercise, may help to increase lipolysis in the more pathogenic abdominal fat 

stores resulting in added health benefits. 

 

1.5.8  Exercise and NAFLD 

In NAFLD, increased physical activity and exercise are widely recommended in 

disease management, however, the independent effect of exercise on IHL and 

liver enzymes is hard to determine as most studies have used combined 

exercise and diet interventions with and without weight loss. Weight loss 

remains the most common therapy promoted for reducing IHL in NAFLD, 

although diet-only induced weight loss is often not sustainable and current 

research is looking to determine the effects of exercise as an independent 

treatment modality (Johnson et al., 2009; Hallsworth et al., 2011). People with 

NAFLD are encouraged to increase their physical activity and exercise levels, 
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because studies in people without this condition have found that exercise may 

reduce hyperglycaemia and body fat and improve protection against developing 

CV complications. Even though exercise is recommended as part of treatment 

for NAFLD, there have been no large-scale studies with adequate statistical 

power to guide health practitioners in prescribing exercise programmes for the 

management of these patients. The optimal type, frequency, intensity and 

duration of exercise for achieving therapeutic goals in NAFLD are unknown. 

 

Table 1: Summary of exercise only intervention studies in adults with NAFLD 

Reference Design Sample 
Size  

Clinical 
Group 

Age 
(yrs) 

BMI 
(kg/m

2
) 

Intervention Duration 
(weeks) 

Outcome 
Measures  

Results 

(Hallsworth 
et al., 2011) 

CT 11 INT 
 
 
 
 
 
8 CON 

NAFLD 52±4 
 
 
 
 
 
62±3 

32±2 
 
 
 
 
 
32±2 

INT: 3 
unsupervised 
resistance 
training 
sessions/wk 
 
CON: Standard 
care (no exercise) 

8 
 
 
 
 
 
8 

IHL, 
fsOGTT, 
HOMA-IR, 
fat 
oxidation 

IHL↓13%, 
12%↑in 
insulin 
sensitivity, ↑ 
fat oxidation 
during 
exercise, 
↓HOMA-IR in 
INT group; 
no changes 
in CON 
group 
 

(Johnson et 
al., 2009) 

RCT 
 

12 INT 
 
 
 
 
7 CON 

NAFLD 
 
 

47±4 
 
 
 
 
49±2 

31±1 
 
 
 
 
32±2 

INT: 3 supervised 
cycle ergometer 
sessions/wk 
 
 
CON: 3 home-
based whole body 
stretching 
sessions/wk 

4 
 

IHL, ALT, 
HOMA 

IHL↓21% in 
INT group; 
no change in 
ALT. 
No change in 
HOMA, 
fasting 
glucose or 
insulin within 
or between 
groups 

(Sreenivasa 
Baba et al., 
2006) 

UCT 16  Elevated 
ALT 

37±2 23±0 45mins/6 d/wk. 
Unsupervised. 
Exercise included 
walking, jogging 
and rhythmic 
aerobic exercises 

12 ALT and 
AST 

From 
baseline: 
ALT↓47%, 
AST↓48% 

CT, controlled trial; RCT, randomised controlled trial; UCT, uncontrolled trial; INT, intervention; CON, 

control 

The effect of aerobic exercise on IHL, independent of weight loss, has not been 

clarified. Johnson et al. (2009) found that four weeks of aerobic exercise, three 

times per week, significantly reduced VAT by 12% and IHL by 21%. In absolute 

terms, IHL decreased from 8.6 to 6.8%. This was associated with a 14% 

reduction in plasma NEFA. Exercise training did not alter body weight, vastus 

lateralis intra-myocellular triglyceride concentration, abdominal SAT or 

homeostasis model assessment of insulin resistance (HOMA-IR) (Johnson et 
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al., 2009). This may have been due to the short duration of the exercise 

intervention. This study concluded that regular aerobic exercise reduces IHL in 

obesity even in the absence of body weight reduction and thus that aerobic 

exercise should be promoted for the management of NAFLD. However, the 

authors did not investigate what happened after the four-week exercise period, 

and how long these benefits were sustained with/without continuation of the 

regular exercise programme. A further study using a 12-week (four times per 

week) aerobic exercise programme without weight loss, was found to reduce 

accumulation of IHL by 37% in a group of 15 obese adolescents (van der 

Heijden et al., 2009). In absolute terms, IHL decreased from 8.9 to 5.6%. IR 

also improved and VAT was reduced although subcutaneous and intra-

myocellular fat content remained unchanged. Results from this study cannot be 

generalised to adults with NAFLD as the mechanisms responsible for the 

changes may prove to be different in adolescents. 

 

Devries et al. (2008) looked at the effect of endurance exercise training on IHL 

and liver enzymes in men and women without weight loss. Subjects underwent 

a 3-month aerobic training programme 2-3 times per week at a moderate 

intensity. They found that there was no effect of endurance training on IHL or 

IR. They also found that there was no positive influence of endurance exercise 

on hepatic liver enzymes. This could be related to the relatively short duration of 

the study or the fact that the patients had baseline liver enzymes (ALT and 

GGT) levels within normal physiological ranges. This study was also designed 

to prevent weight loss and exercise-induced weight reduction appears to be 

more strongly linked to improvements in liver fat and liver enzymes (Devries et 

al., 2008). The study did show that a 12-week endurance training programme 

did have positive effects on abdominal obesity and aerobic capacity. 

 

Krasnoff et al., (2008) found that increasing NAFLD severity was linked to 

decreasing cardiorespiratory fitness. They also found that irrespective of the 

severity of NAFLD, patients had suboptimal cardiorespiratory fitness, muscle 

strength, body composition, and physical activity participation. In their study, 

less than 20% of the patients with NAFLD reported participating in regular 
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physical activity or exercise and approximately 20% reported participating in 

absolutely no leisure-time physical activity at all (Krasnoff et al., 2008). A further 

study found that there was a lower prevalence of NAFLD in people with higher 

levels of cardiorespiratory fitness and a higher level of NAFLD in people with a 

higher BMI and waist circumference, and lower fitness (Church et al., 2006). 

Patients with a higher fitness level at baseline, prior to engaging in a lifestyle 

intervention, have been shown to achieve greater improvements in IHL and 

even a resolution of NAFLD (Kantartzis et al., 2008). This study suggests that 

measurement of fitness could be useful in identifying patients with NAFLD who 

are more likely to respond to an exercise intervention in isolation, or those who 

may require supplementary input in terms of either diet or drug therapy. 

 

St. George et al. (2009) investigated the effects of changes in physical activity 

on the metabolic profile of patients with NAFLD. They assessed the impact of a 

behaviour change-based lifestyle intervention after 3-months in this patient 

group and found that those patients increasing or maintaining their physical 

activity to at least 150 minutes/week, and those that increased their objective 

levels of fitness had the greatest improvements in liver enzymes and other 

metabolic indices compared with those that were least active. This effect was 

independent of weight loss and was corroborated by an objective measure of 

fitness. The study also found that there was no dose-response effect on liver 

enzymes with incremental increases in physical activity above 60 minutes/week 

(St. George et al., 2009). Among patients with NAFLD, small increases in 

regular physical activity, even in the absence of weight loss, can contribute to 

improvements in liver enzymes and thus small gains in fitness may have 

significant health benefits for patients with NAFLD.  

 

Systemically, exercise improves whole-body fat oxidation in adipose, intra-

myocellular (Ormsbee et al., 2007), and possibly hepatic tissues leading to a 

decrease in circulating fatty acids. It also leads to a proliferation of capillaries 

within skeletal muscles thus delivering fatty acids to the muscle cells more 

efficiently. Within the muscle cells there is an increased density of mitochondria, 

and an increased transfer of fatty acids into the mitochondria. An exercise-
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induced increase in mitochondrial enzyme content and higher numbers of fatty 

acid binding proteins enhance the oxidation of fatty acids. There is a significant 

increase during and after exercise in vLDL secretion and vLDL clearance by 

skeletal muscle, which may accelerate the clearance of fatty acids derived in 

the liver. Exercise also helps to reduce abdominal and visceral fat which are 

both main sources of the fatty acids that are released into the plasma which 

then become available for uptake by the liver.  

 

VAT is currently believed to be the key depot linked with obesity-related 

systemic metabolic disturbances. Mobilised fatty acids produced from the 

lipolysis of VAT are directly trafficked through the liver via portal circulation 

making it no surprise that increased visceral adiposity is strongly correlated to 

fatty liver (Church et al., 2006). VAT becomes inflamed during adipose tissue 

hypertrophy due to an influx of macrophages that secrete proinflammatory 

cytokines, including TNFα. Reducing inflammation in VAT beneficially modifies 

these metabolic disturbances and decreases disease risk, even in the absence 

of obesity reduction. Exercise training has been shown to decrease general 

chronic low-level systemic inflammation in humans as well as improve IR and 

hepatic steatosis (Vieira et al., 2009). Unfortunately, the direct effects of 

exercise, with or without dietary changes, on VAT inflammation has not been 

adequately assessed in humans. However, animal models have shown that 

exercise training lowers VAT inflammation in the viscera of non-obese animals 

suggesting that exercise may be a useful therapy (Vieira et al., 2009).  

 

Vieira et al (2009) looked at the effects of exercise and low-fat diet on adipose 

tissue inflammation and metabolic complications in obese mice. They found that 

moderate exercise, low fat diet, or their combination resulted in decreases in 

systemic and VAT inflammation. These effects were stronger after 12 weeks 

than 6 weeks. Combining the exercise with dietary modification had more of an 

effect than either intervention on its own. Whilst the low fat diet induced an 

initial greater amount of weight loss, exercise was more effective at preventing 

adipose tissue accumulation in the viscera. Both treatments were found to 

reduce hepatic steatosis at 6 weeks, but only exercise did so by 12 weeks. 
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Previous studies have shown that weight loss and exercise reduce hepatic 

steatosis, whereas high-carbohydrate diets (such as the low fat diet used in this 

study, which was 70% sucrose) may increase hepatic steatosis by promoting de 

novo lipogenesis. Importantly, Vieira et al (2009) showed that exercise, 

regardless of diet, is an effective means to prevent hepatic steatosis. 

 

The finding that exercise has unique anti-inflammatory effects is novel and likely 

will have important implications, given the strong independent relationship 

between VAT inflammation and obesity-related comorbidities and the lack of 

long-term success of dietary interventions without exercise. Mechanisms by 

which exercise reduces VAT inflammation may involve improvements in the 

“health” of the VAT, including reduced adipose size, increased blood flow, 

increased mitochondrial function and facilitated fatty acid oxidation, decreased 

cellular stress, and/or improved resistance to cell stress (Vieira et al., 2009). 

Recent studies have implicated hypoxia as a cause of adipose tissue 

inflammation in obesity – an exercise-related increase in VAT blood flow may 

mediate its anti-inflammatory effects on VAT. 

1.5.9  Lifestyle Interventions (Diet plus Exercise) and NAFLD 

IR and obesity (particularly abdominal obesity) represent the most important risk 

factors for the development of NAFLD. Because lifestyle modification, including 

weight reduction and physical activity, has been shown to reduce many of the 

risk factors for NAFLD, it has become the primary treatment modality (Zelber-

Sagi et al., 2008). Furthermore, lack of exercise, which can have a profound 

effect on skeletal muscle lipid turnover, is indicated in this lipid-induced IR. 

 

Although it is known that caloric restriction, weight loss, and exercise training 

improve insulin sensitivity, the extent to which these interventions influence IHL 

accumulation has not been adequately explored. One study (Larson-Meyer et 

al., 2008) found that caloric restriction, with or without exercise, is an effective 

lifestyle modification that simultaneously reduces IHL and improves the 

metabolic profile. Another study (Ueno et al., 1997) used a 3-month restricted 

diet and exercise intervention in a group of obese patients with NAFLD (15 
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intervention; 10 control) and found this to have beneficial effects on BMI, liver 

enzymes, total cholesterol, glucose and the degree of hepatic steatosis.  

 

Shah et al. (2009) compared a 6-month diet (D) only and a diet and exercise 

(D+E) intervention in a group of obese older (65-82 years) adults to look at IHL 

and insulin sensitivity. They found that weight loss caused by D or D+E was 

equally effective in reducing IHL (by ~50%) and improving insulin sensitivity (by 

~60%). This 6-month intervention produced a marked reduction (by ~70%) in 

the prevalence of NAFLD in both groups. This study found that exercise training 

did not have an additive effect on diet-induced weight loss in reducing IHL. The 

authors suggested that exercise is a possible preventative approach to NAFLD 

management but may not be an effective treatment without weight loss (Shah et 

al., 2009).  

 

Weight loss through caloric restriction is known to improve and even reverse IR 

and adding an endurance exercise training programme to a calorie restricted 

diet has been proposed to enhance improvements in insulin sensitivity (Schenk 

et al., 2009). However, differentiating the effects of exercise training from the 

effects of weight loss is very difficult. Weight loss (i.e. a reduction in fat mass) 

can reduce systemic fatty acid mobilisation, which itself can improve insulin 

sensitivity. Exercise training increases fatty acid oxidation, although exercise 

training without weight loss fails to improve insulin sensitivity. This may be 

explained by the fact that exercise training without weight loss does not reduce 

fatty acid mobilisation and uptake. 

 

Schenk et al. (2009) compared a weight loss programme with weight loss plus 

exercise. They found that fatty acid mobilisation and uptake were more than 

30% lower in both groups after weight loss. However, consistent with an 

increase in maximal oxidative capacity, resting whole-body fatty acid oxidation 

was 20% higher after weight loss plus exercise. This increase was due to a 

greater contribution of fatty acids to total energy expenditure (i.e. decreased 

RER). Another study found that a 10-week diet plus exercise and an exercise-
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only intervention both improved anthropometric measures, insulin sensitivity, 

liver ultrasound findings and physical fitness in patients with NAFLD. However, 

improvements were greatest in the diet plus exercise group (Chen et al., 2008). 

 

Behaviour therapy has been designed to provide patients with a set of 

principles and techniques to modify their eating and activity habits. Appropriate 

counselling programmes have been found to be of benefit in patients with 

NAFLD/NASH although these need to be delivered by individuals trained to 

carry out lifestyle modification interventions (Bellentani et al., 2008). Although 

most physicians are well aware of the healthy dietary and exercise guidelines to 

be suggested, few receive adequate training to establish effective 

communication to promote lifestyle change. Bellentani et al. (2008) 

recommended that by increasing diet structure and limiting food choices, 

adherence could be improved. However, the less structure the physical activity 

component had the better. Self-monitoring improved compliance with both diet 

and physical activity and favoured weight loss. 

 

A study in Japan evaluated a 6-month home-based lifestyle modification 

intervention in 67 patients with NAFLD, however, only 22 of these completed 

the study (the majority of people withdrew due to work commitments). The aim 

of this intervention was a weight loss of 5% of the initial body weight within the 6 

month period. This was achieved via a combination of nutritional counselling 

and exercise therapy, with all patients continuing in a free-living environment. 

The intervention resulted in clinically relevant improvements in body weight, 

VAT, IHL, ALT levels and IR (Oza et al., 2009) but the high drop-out rate of 

participants must be taken into consideration. 
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1.6  Cardiac Function in Metabolic Disease 

 

Inadequate metabolic control has a profound impact upon cardiovascular (CV) 

health. People with T2DM are up to 5 times (Garcia et al., 1974) and people 

with NAFLD twice (Ekstedt et al., 2006) as likely to have CV disease than 

people with good metabolic control. A number of studies have described 

structural and functional alterations in the hearts of people with T2DM and 

insulin resistance. These adaptations are particularly important as CV disease 

is the leading cause of death in people with T2DM (Chopra and Peter, 2012). 

Diabetic cardiomyopathy, defined as cardiac dysfunction in the absence of CV 

disease (Aneja et al., 2008), is frequently under-diagnosed and may in part 

account for the high prevalence of cardiac related mortality. The aetiology of the 

disease includes altered myocardial metabolism and a potential metabolic 

inflexibility linked to hyperglycaemia and hyperlipidemia (Larsen and Aasum, 

2008). Alterations in cardiac metabolism appear to be fundamental to these 

changes and contributes to cardiac diastolic dysfunction and occasionally 

progresses to systolic dysfunction leading to heart failure. In the Framingham 

Heart Study, women with T2DM were found to have higher left ventricular (LV) 

mass corrected for height and thicker LV walls; women with impaired glucose 

tolerance showed similar less marked changes. Men with T2DM exhibited a 

decrease in longitudinal shortening but not change in LV mass or wall 

thicknesses (Galderisi et al., 1991). Echocardiography demonstrated higher LV 

mass, increased wall thicknesses, and lower LV longitudinal shortening in 1810 

people with T2DM, compared with 944 healthy controls (Devereux et al., 2000). 

However, this study was undertaken in American Indians so results may not be 

generalisable to other ethnic groups.  

 

In light of the close links between obesity and NAFLD, early observations in 

obesity began to highlight cardiac function as a possible therapeutic target. One 

of the first reports associating obesity with cardiac dysfunction arose from the 

Framingham Heart Study. This report identified that LV mass was correlated 

with body mass index (BMI) (p<0.01) in nearly 4000 people without a clinical 

diagnosis of CV disease (Lauer et al., 1991). The relationship between LV mass 
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and BMI was corroborated in a larger cohort (n=5,098) also including 

participants free of overt CV disease (Turkbey et al., 2010). Interestingly, 

ejection fraction, a marker of systolic function, was not associated with BMI 

(p=0.80). The increase in LV mass was attributed to increases in LV wall 

thickness and LV internal dimension. Similar findings were made in other 

studies of otherwise healthy, overweight subjects, data demonstrating a 

correlation between BMI, LV mass and wall thickness, whereas ejection fraction 

remained normal (Peterson et al., 2004; Wong et al., 2004; Powell et al., 2006). 

A number of studies have now reported diastolic dysfunction in people that are 

overweight or obese. A higher BMI was found to be associated with impaired LV 

relaxation and elevated LV diastolic filling pressures in a study of obese 

patients without coronary artery disease (Powell et al., 2006). Another study of 

hypertensive patients, found that those with high blood pressure and ultrasound 

diagnosed NAFLD had a higher prevalence of LV diastolic dysfunction than 

those with hypertension without fatty liver (62.5 vs. 21.1%; p<0.001) (Fallo et 

al., 2009). LV mass was bigger in those with fatty livers than those without 

(196.9 ± 75.2 vs. 170.8 ± 62.1g; p=0.07), but this only reached significance in 

those with more severe liver disease. Measures of cardiac structure and 

function were made using echocardiography. Since the broad associations 

between BMI and cardiac function have been reported, attention has been paid 

to which elements of obesity result in these cardiac adaptations, with a 

considerable focus on metabolic health.  

 

As NAFLD is closely related to both BMI and metabolic control, it is not 

surprising that liver health has been included in these studies. An early study of 

cardiac health in people with NAFLD reported alterations in cardiac morphology 

and energetics in young men with newly-diagnosed NAFLD using magnetic 

resonance techniques (Perseghin et al., 2008). Cardiac morphology was not 

different in those with NAFLD compared to those without fatty liver, however, 

cardiac metabolism (assessed using 31P-magnetic resonance spectroscopy) 

was significantly different in the NAFLD group, demonstrated by a decrease in 

PCr to ATP ratio. The authors suggested that in NAFLD, abnormalities in 

cardiac metabolism might precede the development of functional and structural 
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re-modelling of the heart. However, it is difficult to generalise the results of this 

study to the usual NAFLD population as this only included young (mean age 

35), normotensive, non-obese (mean BMI 27.5) males and excluded people 

who had other endocrine/metabolic disease. A retrospective review of patient 

records for the presence of significant CV disease (stroke, angina, myocardial 

infarction, congestive heart failure or the need for revascularisation) was 

conducted in 219 patients with biopsy-confirmed NAFLD, including NASH and 

non-NASH fatty liver (Domanski et al., 2012). The overall prevalence of CV 

disease was 7% and, after controlling for confounders, there was no increased 

risk of CV disease in those patients with NASH compared with non-NASH fatty 

liver. However, it should be noted that these sample sizes are small and large 

prospective studies are lacking in this field. Irrespective of this, given the central 

role of the liver in metabolic control, it is not surprising that the key mediating 

effects of the liver upon cardiac health appears to be through its influence in 

metabolic control, although the independent influence of NAFLD upon CV 

disease remains an area of discussion.   

 

The heart consumes more energy than any other organ and works continuously 

to pump blood around the body. To acquire the energy that is needed to carry 

out this function, the heart converts chemical energy stored in fatty acids and 

glucose into the mechanical energy utilised by the muscle fibres to make the 

heart contract. A healthy heart is a metabolically flexible organ, using whatever 

substrate is freely available as fuel. Normally, NEFA, glucose, and lactate are 

metabolized for ATP production in the myocardial mitochondria with fatty acids 

being the preferred substrate, supplying up to 70% of ATP. Generally, NEFA 

are the primary fuel for the heart in the fasting state and glucose in the 

postprandial period. The persistent hyperlipidemia seen in T2DM, alters the 

substrate available to the heart and affects its metabolism. In patients with 

T2DM, the contribution of glucose oxidation to cardiac energetics is less than 

normal and the reliance on fatty acid oxidation is increased as high 

concentrations of NEFA inhibit glucose utilization (Larsen and Aasum, 2008). 

As a result of this decrease in glucose uptake, cardiomyocytes are faced with a 

decreased glucose oxidation rate and a marked increase in fatty acid oxidation 
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– up to 100% of ATP production. This increases the oxygen requirement per 

ATP molecule produced  and reduces cardiac efficiency, rendering the heart 

more susceptible to energy depletion under conditions of reduced oxygen 

delivery or increased workload (Scheuermann-Freestone et al., 2003; Carley 

and Severson, 2005). Although magnetic resonance techniques provide useful 

information about cardiac morphology and metabolic efficiency, they are limited 

in their ability to characterise dynamic uptake of substrates, which ultimately 

underpin some of these adaptations. 

 

The alterations in cardiac metabolism result in impairments in cardiac metabolic 

efficiency. 31P-magnetic resonance spectroscopy (31P-MRS) permits evaluation 

of myocardial bioenergetics, and hence metabolic efficiency, by calculation of 

the PCr/ATP ratio (Crilley et al., 2003). This is calculated from the ratio of the 

PCr signal peak area to the γ-ATP signal peak area – see Figure 5. The 

PCr/ATP ratio is reduced in systolic dysfunction and in hypertrophic 

cardiomyopathy (HCM) with normal systolic function (Neubauer et al., 1992). 

Cardiac energetics have been shown to be significantly impaired in cardiac 

muscle in people with T2DM who had apparently normal cardiac morphology 

and function (Diamant et al., 2003; Scheuermann-Freestone et al., 2003). A 

31P-MRS study of patients with dilated cardiomyopathy has shown a low 

PCr/ATP ratio to be a strong predictor of total and CV mortality, superior to the 

measurement of ejection fraction (Neubauer et al., 1997). Scheuermann-

Freestone et al (2003) found that the myocardial PCr/ATP ratio was 35% lower 

in people with T2DM, who had normal cardiac function, than in healthy control 

subjects. The PCr/ATP ratio correlated negatively with the plasma NEFA 

concentrations in all subjects and positively with fasting glucose concentrations 

in diabetic patients. Abnormal cardiac metabolism has also been demonstrated 

in obese men, without any other changes in cardiac structure or function 

(Perseghin et al., 2007b), where BMI correlated negatively with the PCr/ATP 

ratio.  
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Figure 5: Sample cardiac phosphorus spectra from (a) a young subject (with 

PCr/ATP = 1.95) and an older subject (with PCr/ATP = 1.55). A difference in PCr 

concentration is seen. The spectra are presented as acquired before correction 

for saturation due to heart rate, flip angle experienced at the cardiac tissue and 

blood content. 

 

Positron emission tomography (PET) has been used to demonstrate that 

myocardial glucose uptake is inversely associated with NEFA concentration in 

both healthy and insulin resistant individuals (Lautamaki et al., 2006). Glucose 

uptake is essential for glycolytic ATP production in the myocardium when the 

heart is stressed- low glucose uptake can lead to ischemic injury to the heart. 

Scheuermann-Freestone et al (2003) report that the lower cardiac PCr/ATP 

ratios in patients who had lower circulating plasma glucose concentrations 

suggested that the decreased glucose availability may have limited glucose 

uptake in the heart. PET–measured myocardial glucose uptake was found to be 

inversely correlated with liver fat (r= -0.413;p =0.001) in people with T2DM 

(Rijzewijk et al., 2008) indicating a relationship between fatty liver and cardiac 

metabolism. In their study of 61 males with T2DM, patients were divided into 

groups depending on their level of liver fat; low <5.56%, high>5.56% (Rijzewijk 

et al., 2008). Those with high liver fat levels were found to have significantly 

lower PCr/ATP and reduced myocardial glucose metabolism when compared to 

the group with low liver fat. However, there was no change in cardiac structure 
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or function in either group. The high liver fat group had a mean age of 56 ± 1 

years and BMI 30.1 ± 0.6, and the low liver fat a mean age of 57 ± 1 years and 

BMI 27.1 ± 0.6. Thus the difference between the groups in PCr/ATP and 

glucose metabolism could be due to a difference in BMI. Another study in 

patients with T2DM found that those with higher liver fat (>8%) exhibited 

decreased myocardial glucose uptake and extraction (Lautamaki et al., 2006). 

The heart may also suffer metabolic alterations in people with NAFLD, as this 

condition is also linked to increased blood glucose and high levels of circulating 

NEFA. Although disturbances in glucose control are key symptoms of both 

NAFLD and T2DM, it is the changes in lipid availability and oxidation which 

appear to impact directly on cardiac health.  

 

The rate of myocardial lipid uptake, unlike that of glucose into myocytes, is not 

regulated by a hormone and therefore increasing circulating lipids increases 

uptake. The mechanism(s) by which fatty acids contribute to cardiac pathology 

are not completely understood. In patients with T2DM, obesity and NAFLD, 

NEFA are circulating in abundance. Fatty acid uptake by cardiac myocytes 

likely exceeds mitochondrial oxidative capacity and results in lipid overstorage 

(Carley and Severson, 2005) (i.e. cardiac steatosis or “fatty heart”). This 

produces lipotoxic intermediates, such as ceramide, that increase production of 

reactive oxygen species which, if sustained, can lead to apoptosis. BMI has 

been shown to correlate positively with myocardial triglyceride content in people 

without diabetes (Szczepaniak et al., 2003). However, the relationship between 

BMI and myocardial triglyceride content is exaggerated in patients with impaired 

glucose tolerance, even before the development of T2DM (McGavock et al., 

2007) suggesting that lipid accumulation in the heart is an early manifestation in 

the pathogenesis of T2DM. These adaptations to myocardial triglyceride content 

were also accompanied by impaired diastolic function in both the pre-diabetes 

and diabetes groups. This relationship extends into T2DM, with levels of 

myocardial triglyceride and  LV diastolic dysfunction higher than healthy 

controls matched for BMI and age (Rijzewijk et al., 2008).  
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More recent imaging techniques have built upon the cardiac morphological and 

metabolic changes to demonstrate that the dynamic function of the heart can be 

used to characterise the early stresses on the heart. Magnetic resonance 

imaging (MRI) is considered the reference standard for non-invasive 

assessment of cardiac structure and provides robust measures of systolic and 

diastolic function in fine detail.  

 

The E/A ratio is a first generation test for diastolic performance of the heart. The 

E/A ratio is the ratio between early (E) and late (atrial - A) ventricular filling 

velocity.  In a young and compliant heart, early ventricular filling accounts for 

~80% of ventricular end diastolic volume (with atrial systole pushing the last 

~20% of blood into the ventricle). Thus, the 'E' component of the ratio is greater 

than the 'A' component. In an ageing, less compliant heart, a greater proportion 

of this blood is pushed into the ventricles during atrial systole. In this scenario, 

the emphasis of ventricular filling during late diastole increases the 'A' 

component of the E/A ratio causing a reversal of the ratio. The reversal of the 

E/A ratio is widely accepted as a clinical marker of diastolic heart failure and 

can be assessed using MRI techniques (Jones et al., 2010). 

 

Cardiac tagging (see Figure 6), a technique which allows the special 

determination of cardiac wall motion and strain in two dimensions, has allowed 

for the first time the measurement of the development and release of left 

ventricular torsion (Lumens et al., 2006). Cardiac tagging enables detection of 

early defects in myocardial deformation by analysis of circumferential strain and 

torsion. In the healthy heart, torsion occurs such that there is homogeneity of 

fibre shortening across the myocardial wall and is a marker of the dominance of 

epicardial fibres over endocardial fibres as a consequence of the greater radius 

in the epicardium. Torsion describes the twisting motion of the heart due to 

opposite rotation of base and apex, and occurs as a result of equilibrium of 

strain across the myocardial wall, between the contraction of myofibres in the 

subepicardium and subendocardium. The ratio of LV torsion to endocardial 
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circumferential shortening (torsion-to-shortening ratio; TSR) during systole 

reflects the transmural distribution of contractile myofibre function. This is a 

sensitive marker of altered epicardial-endocardial interactions, which is constant 

among healthy individuals of the same age but increases with normal ageing 

and disease (Lumens et al., 2006; Cheng et al., 2009) and is thought to 

represent early myocardial dysfunction. With impairment of subendocardial 

contractile function, counteraction of torsion by contraction of subepicardial 

myofibres is less effective, causing net torsion to increase. Thus TSR increases 

with impairment of contractile function in the subendocardial layers relative to 

the subepicardial layers (Lumens et al., 2006), suggesting there is an 

associated loss of local contractile myofibre function in the subendocardium 

relative to the subepicardium potentially caused by subclinical pathological 

incidents. Myocardial strains have been assessed and found to be altered in 

people with T2DM (Fonseca et al., 2004), T1DM (Chung et al., 2006) and 

hypertrophic cardiomyopathy (Young et al., 1994) using tagging techniques, but 

have not yet been investigated in people with NAFLD. 

Figure 6:  a) Cardiac cine-imaging (top) and cardiac tagging (bottom) at diastole (left) and 

systole (right), showing how a rectangular grid of nulled signal applied at diastole 

remains with the tissue through the cardiac cycle, allowing calculation of strain and 

torsion. (b) Tagging in two parallel sections allows the calculation of the torsion (the 

longitudinal-circumferential shear angle ) between two short axis planes a distance d 

apart with radius r where one short axis plane rotates through Δ relative to the other.  = 

tan
-1

[(2r sin(Δ/2))/d]. 
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1.7  Summary of Literature Review 

 

Metabolic control is achieved via a highly responsive, finely regulated system 

integrating multiple organs, particularly the liver, skeletal muscle and adipose 

tissue, which allows the body to respond quickly to fluctuating demands and 

conditions. If this system becomes disrupted at any level, then metabolic 

disorders can develop resulting in physiological changes at muscle, liver and 

heart level. Levels of obesity, T2DM and NAFLD continue to rise and will place 

increasing pressure on health services in the future, especially since these 

conditions are being diagnosed in people at a younger age. Current lifestyle 

habits in Western countries promote metabolic disarray, with the energy 

balance being tipped in favour of too little energy expenditure. This balance 

needs redressing if metabolic disorders are to be managed effectively in the 

long-term, and innovative ways of empowering people to move more and sit 

less need to be devised.   
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Chapter 2: Methodology 
 

2.1 Recruitment Strategy 

 

Patients with non-alcoholic fatty liver disease (NAFLD) were recruited from 

hepatology clinics within the Newcastle upon Tyne Hospitals NHS Foundation 

Trust or through advertisements in local newspapers. Healthy controls were 

recruited from advertisements posted throughout Newcastle University and from 

the Magnetic Resonance Centre database. 

 

2.2 Informed Consent Process 

 

Potential recruits were given the relevant patient information sheet and study 

synopsis prior to attending for their screening visit. This gave them time to 

digest the information and to formulate any questions to ask at their initial 

appointment. During the screening visit, details of the study were explained, 

and any potential risks discussed. The researcher also answered any questions 

regarding participation in the study at this visit. If the volunteer was happy to 

proceed with taking part in the study and met the inclusion criteria, they were 

asked to sign a consent form (see Appendix 1). At this point, the NAFLD 

patients were made aware that their GP would be informed about their 

participation in the study and also that they may withdraw at any point, without 

detriment to their future healthcare. 

 

2.3 Screening Visit / Progressive Exercise Test 

 

This visit was undertaken at the Clinical Research Facility, Royal Victoria 

Infirmary, Newcastle upon Tyne.  



83 
 

 

2.3.1 Physical Examination   

All volunteers underwent a physical examination comprising: auscultation of the 

heart and lungs, evaluation of the abdomen for any abnormalities, inspection of 

the lower extremities for oedema and arterial pulses, an inspection of the skin 

(paying particular attention to the lower extremities in people with diabetes) and 

an assessment of reflexes.  

 

Body weight (kg) was measured to the nearest 10g with an electronic scale 

(SECA 799, Birmingham, UK), and standing height (cm) measured to the 

nearest 0.1cm with a stadiometer (SECA 220 address as above). Both 

measurements were performed using standard techniques while the subject 

was shoeless. Body mass index (BMI) was calculated as body weight 

(kg)/height2(m). Waist and hip circumference were measured to the nearest 

0.5cm using a non-stretch tape measure. Waist circumference was measured at 

the mid-point between the lower costal margin and the level of the anterior 

superior iliac crests. Hip circumference was measured at the level of the greater 

trochanters. 

 

Volunteers underwent a resting 12-lead electrocardiogram (ECG; Custo med 

GmbH, Ottobrunn, Germany) and blood pressure check (Suntech Tango+, 

Suntech Medical Ltd, Oxford, UK) in a seated position, to determine normal 

cardiac function. 

 

Anyone found to have contraindications to exercise or exercise testing (Trenell, 

2009) was excluded at this point and a letter written to their GP containing the 

relevant findings. 
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2.3.2 Progressive Exercise Test  

Peak oxygen consumption was determined using an electronically braked 

recumbent cycle ergometer (Corival Lode BV, Groningen, The Netherlands). 

Following a 5 minute warm up at 25W, resistance was increased by 1W per 8 

seconds until the participant could no longer maintain a cadence of 60rpm, 

chose to stop, or continuing was contraindicated (Trenell, 2009). The ECG was 

used to continuously monitor heart rhythm, and blood pressure measured every 

2 minutes during the exercise test. These were monitored for at least 5 minutes 

after the exercise test had been terminated. Expired gases were collected using 

a Hans Rudolf breathing mask and analysed online for oxygen consumption, 

carbon dioxide elimination and ventilation (CORTEX Biophysik, Leipzig, 

Germany).  The Metalyzer device was calibrated daily for gas volume and 

composition, and ambient air pressure. 

 

This test provided measures of maximum workload (W), VO2peak, anaerobic 

threshold (AT) and maximum respiratory exchange ratio (RER). 

 

2.4 Questionnaires  

 

2.4.1 Physical Activity Readiness Questionnaire (PARQ)  

The PARQ, endorsed by the American College of Sports Medicine (ACSM), 

encompasses medical history, medication, current activity levels, and whether 

the volunteer feels there are any barriers that may prevent them from 

exercising. This allows the stratification of participants based on medical 

history/current “fitness” levels into one of three risk categories: high, moderate, 

and low. The PARQ allowed the team to identify volunteers for whom the 

intervention was inappropriate (see Appendix 2 for the full PARQ). 
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2.4.2 MRI Screening Questionnaire 

 Volunteers were asked to fill out a questionnaire to establish if magnetic 

resonance scanning was contraindicated, e.g. due to metal implants (see 

Appendix 2 for the full questionnaire). 

 

2.4.3 International Physical Activity Questionnaire (IPAQ) 

 Volunteers completed the IPAQ (see Appendix 2) which asks them to recall 

their physical activity over the previous seven days. The IPAQ includes four 

activity domains:  job-related physical activity, transportation, housework 

(including house maintenance and caring for the family), recreation and leisure 

time activity. It also reports time spent sitting. The questionnaire was 

administered when the volunteer returned their Sensewear monitor (see Section 

2.5).  

 

2.5 Physical Activity  

 

Physical activity and energy expenditure were assessed objectively using a 

validated (St-Onge et al., 2007) multi-sensor array (SenseWear Pro3, 

Bodymedia Inc, Pennsylvania, USA). Volunteers were asked to wear the arm 

band on their right upper arm (at the mid-humerus point of the triceps) for seven 

days. The armband produced the following data as units per day: total energy 

expenditure; active energy expenditure; average metabolic equivalents (METs); 

sedentary time (≤ 2.9 METs); duration of physical activity (> 3.0 METs); duration 

of moderate physical activity (3.0-5.9 METs); duration of vigorous activity (6.0-

9.0 METs); duration of very vigorous activity (≥ 9.0 METs); number of steps; 

sleep duration; and duration armband worn.  

 

The portable armband uses a biaxial accelerometer, a heat flux sensor, a 

galvanic skin response sensor, and a near-body ambient temperature sensor to 
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capture data. These data as well as the volunteer’s date of birth, height, body 

weight, sex, hand dominance  and smoking status (smoker or non-smoker) 

were used to calculate energy expenditure . 

 

All subjects were instructed to remove the armband only for bathing/showering 

purposes or any water activity. 

Figure 7: Physical activity and energy expenditure were assessed objectively 
using a validated multi-sensor array 

 

2.6 Whole Body Composition  

 

Whole body composition was determined using air displacement 

plethysmography using a BodPod (Life Measurement Inc., Concord, CA, USA). 

This was calibrated before each measurement using a known calibration 

standard. The technique has been validated against the reference standard of 

hydrostatic weighing, dual-energy X-ray absorptiometry and bioelectrical 

impedance in healthy and overweight/obese adults (Sardinha et al., 1998; 

Biaggi et al., 1999; Fields et al., 2005). All patients had their body composition 

measured whilst fasted and were asked to wear tight fitting underwear and don 

a lycra cap (provided by the manufacturer) to minimise the effects of 

hydration/recent food intake and air trapping respectively. The manufacturers 

indicate that the general error range of the Bodpod is 1-2% (the same as 

hydrostatic weighing). 
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Figure 8: Body composition of patients was measured using a BodPod 

 

 

2.7 Magnetic Resonance Imaging and Spectroscopy 

 

Imaging was undertaken at the Magnetic Resonance Centre at Newcastle 

University’s Campus for Ageing and Vitality, Newcastle upon Tyne. Magnetic 

resonance studies were performed using a 3.0 Tesla Philips Achieva scanner 

(Philips Medical Systems, Best, The Netherlands) - see Figure 9. 

 

2.7.1 Liver Fat Measurement 

Following an 8 hour fast, intrahepatic lipid (IHL) was measured by localised 

proton magnetic resonance spectroscopy (1H-MRS) placing one "large" voxel 

(compared to a biopsy) in the inferior right lobe of the liver, well away from the 

liver surface and large intrahepatic vessels (to avoid weighting the spectrum 

artificially by "water") (PRESS, TR/TR = 3000 ms/35 ms, 3 x 3 x 3cm voxel, 

SENSE torso array, 6 signal averages). Using one large voxel, as opposed to 2-

3 smaller ones, improves the signal to noise ratio and minimises patient time in 

the magnet (Szczepaniak et al., 2005). Blinded quantification of the spectra 

(water and CH2 resonances) was performed using the java-based magnetic 
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resonance user interface (jMRUI version 3.0) (Naressi et al., 2001a; Naressi et 

al., 2001b). Following manual phase correction, spectra were analysed using a 

non-linear least squares algorithm (AMARES) (Vanhamme et al., 1999). IHL 

was expressed as a percentage of liver volume, corrected for proton density of 

water and lipid (Longo et al., 1995) using the following equation: 

Vf = Vw (Dw/Df) [FTSA / (Nv – FTSA)] 

where Vf  and Vw  are the volumes of the fat and water phases, respectively, and 

Df and Dw are the proton-density values of the fat and water phases, 

respectively. A value for Df of 110mol/L was used and for Dw 111mol/L. FTSA is 

the ratio of the detectable fat signal peak area to the total signal peak area and 

Nv is the ratio between the signal integrals in the two spectral regions containing 

lipids and was found to be 0.85 (Longo et al., 1995). 

 

2.7.2 Abdominal Fat Measurement  

Subcutaneous and visceral fat content was performed by acquiring images at 

the L4/L5 junction using a 3-point Dixon sequence (TR/TE/number of 

averages/flip angle = 50ms/3.45, 4.60, 5.75ms/1/30º, matrix 160x109, median 

FOV 440mm, range 400-480mm to suit subject size with 70% phase FOV). The 

slice was acquired during a breath-hold and with slice thickness 10mm 

(Donnelly et al., 2003; Shen et al., 2004). Fat and water were separated, and 

binary gating applied to produce a map of structures containing more than 50% 

fat, identified as the subcutaneous and visceral fat. A watershed algorithm was 

used to divide the binary image into distinct areas and allowed easy separation 

of the subcutaneous and visceral fat. ImageJ (Abramoff et al., 2004) was used 

to subtract the two areas to produce the area of visceral fat.   

 

All images were analysed by the same investigator who was blinded as to the 

participants’ identification. 
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Figure 9: Magnetic resonance studies were performed using a 3.0 Tesla 
scanner 

 

 

2.8 Glucose Control 

 

Following an 8 hour overnight fast a cannula was inserted into a forearm vein. A 

75g glucose load (Lucozade Original; GlaxoSmithKline, Brentford, UK) was 

consumed within five minutes. Blood samples were taken at time 0, 5, 10, 15, 

20, 30, 40, 50, 60, 75, 90 and 120 minutes. Samples were analysed 

immediately for whole blood glucose (YSI 2300 Stat Plus-D; Yellow Springs 

Instruments, Yellow Springs, Ohio, USA). Blood samples for NEFA and insulin 

were spun in a centrifuge (Harrier 18/80R; MSE Ltd, London, UK) for 10 

minutes at 3000rpm at 4ºC. Plasma was then pipetted off each sample and 

stored in a freezer (Sanyo Biomedical freezer; Loughborough, UK) at -40ºC. 

Samples were batch analysed (to increase intra-rater reliability and decrease 

inter-rater variability) when all samples had been collected. Plasma NEFA 

(NEFA-HA; Wako Ltd, Osaka, Japan), and insulin (Coat-A-Count Insulin RIA kit, 

Diagnostic Products Corporation, California, USA) were analysed in Newcastle 

University’s accredited laboratory.  
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Area under the curve (AUC) for the resulting glucose response profile was 

calculated using the trapezoidal rule (Le Floch et al., 1990) and insulin 

resistance determined using the homeostasis model assessment of IR (HOMA-

IR) which is a mathematical model for determining IR from fasting glucose and 

insulin concentrations which has been validated by the euglycemic-

hyperinsulinemic clamp (Bloomgarden, 2006): 

HOMA-IR= ((fasting glucose x fasting insulin)mmol/L)/22.5) 

NEFA suppression (NEFA-S) was assessed during the fsOGTT and the 0-

30min change used as a measure of NEFA-S (Patel et al., 2005). 

 

Fasting samples were also analysed in a Clinical Pathology Accredited 

laboratory (Newcastle Upon Tyne Hospital NHS Foundation Trust, Department 

of Clinical Biochemistry) for: liver enzymes (ALT, AST, GGT), lipid profile (total 

cholesterol, HDL-cholesterol, LDL-cholesterol), triglycerides and HbA1c.  Serum 

samples were collected in silica clot activator polymer gel containing 

vacutainers (BD Diagnostics, Plymouth, England) - total cholesterol, 

triglycerides,  and liver enzymes were measured using a Roche Modular P and 

test kits (Roche Diagnostics Ltd, Burgess Hill, UK). HbA1c was measured using 

a TOSOH HLC-723G7 (Tosoh Corporation, Tokyo, Japan).  

 

2.9 Resting and Exercise Stimulated Lipid Oxidation  

 

Following an overnight fast (≥ 8 hours with no food or beverages), a cannula 

was inserted into a forearm vein for blood draws. Resting substrate oxidation 

was determined by expired gas analysis (CORTEX Biophysik , Leipzig, 

Germany) using a Hans Rudolf breathing mask while participants lay supine for 

30 minutes in a quiet room, without speaking or sleeping and with minimal 

movements.  The first 15 minutes were an acclimatization period and the 

second 15 minutes were used to determine resting substrate oxidation. The 

calorimeter gas analysers were calibrated before every measurement for gas 
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volume and composition, and ambient air pressure. A resting blood sample was 

taken and analysed for glucose, NEFA and insulin levels.  

 

Exercise stimulated lipid oxidation was measured in the fasted state during a 60 

minute cycle. Participants were asked to perform a 5 minute warm up on the 

recumbent cycle ergometer at 25W. The resistance on the ergometer was then 

increased to 50% of the maximum workload achieved during their maximal 

exercise test (performed at the screening visit). The participant then cycled at 

this resistance for 60 minutes (60-70rpm). Expired air was collected every 15 

minutes. Respiratory quotient (RQ) was calculated from VO2 / VCO2.  

 

Venous blood was collected every 15 minutes during exercise. After the 60 

minutes, the participant completed a 5 minute cool down at 25W. A further 

blood sample was taken one hour after the exercise had been completed (the 

participant remained fasted during this time). 

 

Substrate oxidation rates and energy expenditure were calculated from oxygen 

consumption and carbon dioxide production values using stoichiometric 

equations (Frayn, 1983). Calculation of substrate oxidation during normal 

circumstances: 

VO2 (l/min) = 0.746c + 2.03f + 6.04n 

VCO2 (l/min) = 0.746c + 1.43f + 4.89n 

where c is grams of carbohydrate (as glucose) oxidised per minute, f grams of 

fat per minute and n is grams of urinary nitrogen excreted per minute.  Nitrogen 

can be estimated as excretion of 1mol of urea (28g N) is equivalent to synthesis 

of 1mol of glucose and use of 1mol CO2. 

 

Whole blood glucose was measured immediately after sampling (as detailed 

previously in Section 2.8); all other blood samples (NEFA and insulin) were 
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centrifuged, plasma removed then frozen and stored to await batch-analysis. 

Insulin and NEFA were processed as previously described. 
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Chapter 3: Measuring energy expenditure in adults with non-

alcoholic fatty liver disease: evaluation of a portable device 

 

3.1  Introduction 

 

Obesity and lifestyle-related disease levels are rising dramatically, and the 

assessment of energy expenditure (EE) as a tool in the regulation of body 

weight is of critical importance. In 2008, almost 25% of adults in England were 

classified as obese (NHS, 2010), and in 2004 in the US, obesity affected up to 

one-third of adults (Ogden et al., 2006). Lifestyle interventions focusing on 

weight loss remain the cornerstone of non-alcoholic fatty liver disease (NAFLD) 

management (Day, 2006; Harrison and Day, 2007). However, weight loss is 

difficult to achieve and sustain by dietary means (Tamura et al., 2005; 

Bellentani et al., 2008; Oza et al., 2009) and other therapeutic avenues are 

necessary. It must be considered that physical activity could potentially assist in 

reducing liver fat independent of weight loss. Cross-sectional studies report that 

low levels of physical activity are associated with higher levels of liver fat 

(Perseghin et al., 2007a; Zelber-Sagi et al., 2008; St. George et al., 2009). 

However, understanding of the role of physical activity and EE in moderating 

liver fat, and hence its use as a therapeutic intervention, is limited by the ability 

to accurately measure physical activity and EE. To date, there are no validated 

systems for the assessment of physical activity and EE specifically for NAFLD.  

 

Self-reported physical activity is valid (Craig et al., 2003; Hagströmer et al., 

2006; Bull et al., 2009) but its imprecision limits it to understanding broad 

differences in physical activity in cross-sectional studies. These techniques are 

limited in their ability to observe changes in activity patterns or allow accurate 

determination of EE. The gold standard method for the assessment of EE in 

free-living individuals is doubly labelled water (DLW).  

 

The DLW method determines EE from the proportional breakdown of ingested 

stable isotope labelled oxygen and hydrogen. This method measures carbon 
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dioxide production by comparing the rates of turnover of oxygen and hydrogen 

of the ingested water. The underlying principle is that hydrogen, ingested in 

water, is lost from the body only in the water form as urine and as water vapour 

released during exhalation, but that the oxygen is lost both in the same way and 

also in expired carbon dioxide. Therefore, the difference in the elimination rate 

can be used to determine carbon dioxide production, which in turn can be 

related to EE. The ultimate goal of the DLW method is to provide estimates for 

total EE. Although accurate in determining EE, this method does not provide 

information about patterns of activity and also requires serial urine sample 

collection, limiting the ability to deploy the technique in large numbers of people. 

Indirect-calorimetry methods can accurately assess EE in laboratory conditions, 

although  these methods cannot be used to assess free-living energy 

expenditure because of the technical restrictions of wearing the gas analysers 

(Bluck, 2008).  

 

As a result of the limitations of using the reference techniques, portable activity 

monitors are being increasingly used to objectively monitor physical activity 

levels and EE in healthy people and chronic disease populations. Pedometers 

are simple devices, which use up and down motions as estimates of steps, but 

fail to capture intensity, frequency or duration of activity or those activities that 

do not involve stepping. Basic, uniaxial accelerometers measure acceleration of 

the body or body parts in one plane and take into account the speed, direction 

and duration of movements and convert these to movement counts to allow for 

estimation of EE. Biaxial or triaxial accelerometers provide information about 

movement in multiple planes, allowing an improved estimate of physical activity 

EE than uniaxial units (Plasqui and Westerterp, 2007). Numerous multi-sensor 

arrays have recently been developed. These devices may hold benefits over 

accelerometry alone by determining EE from a mixture of movement via biaxial 

accelerometer, temperature and galvanic skin responses which are more 

sensitive to changes in movement efficiency and combining these with data 

about the wearer, including age, height and weight (Liden et al., 2002). A multi-

sensor array consisting of a biaxial accelerometer, skin temperature, air 

temperature and galvanic skin response sensors, has been validated against 
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DLW for use in the general adult population (St-Onge et al., 2007), but not in 

people with NAFLD. EE may be different in people with NAFLD, as people tend 

to be overweight or obese, and generally carry out less activity than their 

healthy counterparts (Zelber-Sagi et al., 2008). 

 

The primary aim of this study was to evaluate a portable multi-sensor array for 

measuring daily and physical activity EE compared with DLW in free-living 

adults with NAFLD. 
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3.2 Subjects and Methods 

 

Daily total energy expenditure (TEE) was measured in 10 subjects with NAFLD 

over a 10-day period simultaneously with a portable multi-sensor array and 

DLW. Subjects were recruited from hepatology clinics within the Newcastle 

upon Tyne Hospitals NHS Foundation Trust or through advertisements in local 

newspapers. NAFLD was defined as >5% liver fat on 1H-MRS. Baseline 

characteristics of the group can be found in Table 2. Exclusion criteria included: 

heart or kidney disease; implanted ferrous metal; insulin sensitising treatment or 

dietary change (for people with Type 2 diabetes, diet and metformin were 

acceptable for inclusion if stable for six months); and alcohol intake above 21 

units for men or 14 units for women. The study protocol was approved by 

Newcastle & North Tyneside 1 Research Ethics Committee. All subjects 

provided written informed consent. 

 

Body weight (kg) and height (cm) were measured as described in Section 2.3.1. 

The subject then provided a urine sample to act as the pre-dose sample which 

allowed us to determine the background level of isotope enrichment in the 

environment. 

 

Doses for the DLW were calculated relative to body weight from weighted 

aliquots of ²H₂O and H₂18O. The dose given was 70mg/kg of ²H₂O and 

174mg/kg of H₂18O. This dosing regimen allowed for accurate measurement of 

the isotopes at the end of the sampling period, when as little as 10% of the 

isotope remains in the body water. Using this dosing regimen, total EE can be 

measured with a coefficient of variation of <5% (Bluck, 2008). The portable 

multi-sensor array (SenseWear Pro3, Bodymedia Inc, Pennsylvania, USA) was 

fitted to the subject’s right upper arm after DLW administration. 

 

The subject was required to collect a urine sample at approximately the same 

time each morning for the next 10 days (preferably the second void of the day) 
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and refrigerate these at home. Subjects were asked to wear the portable multi-

sensor array continuously over this 10-day period (Plasqui and Westerterp, 

2007) and were instructed to remove the monitor only for bathing/showering 

purposes or any water-based activity. A subject’s Sensewear data was deemed 

acceptable for analysis if overall wear time was ≥85% of the total time that they 

had the monitor in situ (Mackey et al., 2011). 

 

DLW analysis was carried out using isotope ratio mass spectrometry as 

described previously (Hoffman et al., 2000) at the MRC Human Nutrition Centre 

in Cambridge, UK . 

 

Physical activity energy expenditure (PAEE) was calculated using the formula:  

PAEE = 0.9 x TEE – BMR 

which removes the energy expenditure due to the thermic effect of meals 

(assumed to be 10% of TEE) and energy expenditure devoted to basal 

metabolic rate (BMR). BMR was not assessed directly by the multi-sensor array 

so BMR was calculated using Harris-Benedict equations (Harris and Benedict, 

1919):    

BMR (men) = 66.5 + (5.0 x H) + (13.8 x W) – (6.8 x A) 

BMR (women) = 655.1 + (1.9 x H) + (9.6 x W) – (4.7 x A) 

where H is height in cm, W is weight in kg, and A is age in years. 

 

3.2.1 Statistical Analysis 

All analyses were performed using SPSS version 19 (SPSS Inc, Chicago,US). 

Bland-Altman analyses were used (Bland and Altman, 1986) to examine 

differences between DLW and the portable multi-sensor array. Specifically, 

individual comparisons between DLW and the portable multi-sensor array were 

completed by examining a plot of differences in total EE by the DLW and the 

armband versus mean total EE determined by both methods. From these data, 

limits of agreement between DLW and the armband were calculated, defined as 

the mean difference between the two methods ± 2SD of the difference. Paired t-
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tests were performed to determine differences between mean values for total 

EE and physical activity EE for the portable multi-sensor array and DLW.  To 

examine the strength of association between the portable multi-sensor array 

and DLW estimates, Pearson correlation coefficients were calculated. 

Regression analyses were conducted between daily total EE measured by the 

portable multi-sensor array and DLW, and physical activity EE measured by the 

two techniques. Statistical significance was set at p<0.05. Data are presented 

as mean ± SD. 
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3.3 Results 

 

Baseline characteristics are presented in Table 2. Data are presented from nine 

patients as one of the portable multi-sensor arrays failed to record any data 

during the monitoring period. Average wear time for the monitor was good (95 ± 

5%).  

Table 2: Baseline characteristics; values are given as means (SD) 

 n=9 

Age (years) 56 (15) 

Weight (kg) 91 (10) 

Height (cm) 165 (8) 

BMI (kg/m²) 33 (5) 

Liver fat, % 14 (6) 

Daily average TEE from DLW (kcal) 2849 (474) 

Daily average TEE from Sensewear (kcal) 2432 (417) 

Mean difference daily average TEE                          
(DLW - Sensewear; kcal) 

416 (210) 

 

There was a positive correlation between DLW and the multi-sensor array when 

measuring daily total EE (r = 0.896; p <0.01 - see Figure 10). Regression 

analysis showed a high level of agreement between the multi-sensor array and 

DLW measurements of daily total EE (r2=0.80; p<0.01).  

 

The multi-sensor array recorded significantly lower daily physical activity EE 

than the DLW method (530 ± 225 vs. 920 ± 284: p<0.01).  
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Figure 10: Relationship between DLW and the multi-sensor array methods for 

measuring daily total EE (n=9; p<0.01) 

 

The Bland-Altman plot for total EE is shown in Figure 11. In adults with NAFLD, 

the portable multi-sensor array consistently underestimated daily total EE by an 

average 416kcal/day when compared with DLW (2432 ± 417 vs. 2849 ± 

474kcal/day; p<0.01). Using our pre-defined limits of agreement (mean ± 2SD), 

all subjects fell within these limits. However, this represents a large range in 

estimates of total EE (-4 to 836kcal/day) which would be clinically unacceptable. 

When taking into account potential analytic and biological variation, within 

subject measures of DLW can vary by approximately 200kcal/day and when 

comparing two methods, it has been suggested that an additional 100kcal/day 

be added to create a 300kcal/day limit of agreement (St-Onge et al., 2007). 

Using this limit of agreement between the 2 methods, only 2 out of 9 subjects 

(22%) fell under this cut-off within our study. 
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Figure 11: Bland-Altman plot between DLW and the multi-sensor array methods for 

measuring daily energy expenditure (n=9). The broken horizontal lines represent the 

limits of agreement corresponding to mean ± 2SD. 

 

There was no significant correlation between total EE and the size of error 

between the two measures (see Figure 12). This suggests that the multi-sensor 

array underestimated calorie turn over at all activity levels seen within this 

cohort. 

Figure 12: Difference in daily total energy expenditure (EE) between the two methods 

plotted against the reference method for measuring daily total EE (n=9; p>0.05) 
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3.4 Discussion 

 

This is the first study to evaluate a portable multi-sensor array simultaneously 

against DLW in obese adults with clinically defined NAFLD. These data 

demonstrate that the multi-sensor array systematically underestimated energy 

expenditure in this patient group. However, the monitor may still be a useful tool 

for promoting physical activity as part of a lifestyle intervention in the clinical 

setting. 

 

Despite the important role of EE in metabolic control and weight maintenance, 

little is known about the role of EE in NAFLD. Physical activity levels in NAFLD 

have, to date, only been measured using self-report questionnaires (Perseghin 

et al., 2007a; Zelber-Sagi et al., 2008; St. George et al., 2009). These studies 

report that low levels of physical activity are associated with higher levels of 

liver fat. However, although questionnaires provide a useful description of what 

people are doing, studies comparing estimates of EE from validated 

questionnaires against DLW describe a systematic underestimation of EE 

(Gardner and Poehlman, 1998; Conway et al., 2002; Maddison et al., 2007; 

Ishikawa-Takata et al., 2011). These differences have been attributed to 

physical activity questionnaires not including key activities related to active EE 

(such as climbing stairs, personal care and sedentary activities), differences in 

data sampling between questionnaires and DLW, and inaccurate assignment of 

metabolic equivalents to self-reported activities (Neilson et al., 2008). These 

subjective methods are also subject to reporting error, linked to recall and social 

desirability bias, and are inaccurate in determining frequency, duration and 

intensity of physical activity (Warren et al., 2010). As such, studies focussing on 

subjective reports should be taken with caution and more accurate means of 

determining EE are needed.  

 

The portable multi-sensor array offers an accessible objective means of 

determining both levels of physical activity and EE. However, the present study 

demonstrates that the portable multi-sensor array detected a mean 416kcal/day 
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(14.4%) underestimation of total EE when compared with DLW in this group of 

patients with clinically identified NAFLD. A previous study using the same multi-

sensor array and DLW reported a mean 117kcal/day underestimation by the 

multi-sensor array in adults with normal BMI (24 ± 4kg/m2) (St-Onge et al., 

2007). This study also appeared to show a progressive underestimation of EE 

as BMI increased. In line with this, the multi-sensor array has been reported to 

underestimate resting EE by 8.8% when compared with indirect-calorimetry in 

obese adults (BMI 42 ±7) (Papazoglou et al., 2006). Combined, these data 

suggest that these portable multi-sensor arrays are prone to underestimation of 

TEE and resting EE and that this inaccuracy is augmented in people that are 

obese. This underestimation in obese adults may be due to the changes in body 

temperature and galvanic skin response with increased fat mass which, in turn, 

affect the accuracy of the data being fed into the algorithms within the sensor. 

Irrespective of the reasons why the algorithms underestimate EE, these data 

suggest that caution should be given to using these sensors in obese people to 

determine EE.  

 

Physical activity EE is the most variable component of  total EE (Warren et al., 

2010). Daily physical activity EE was underestimated by 390kcal/day (42.4%) 

by the portable multi-sensor array when compared to DLW. As the portable 

multi-sensor array does not provide a direct estimate of physical activity EE, this 

was determined using the same methods used in the DLW studies (Harris-

Benedict estimates of BMR). The underestimation of both BMR and total EE 

combine to produce a magnified inaccuracy in estimating physical activity EE 

over and above the inaccuracies in total EE. Other studies using Sensewear 

monitors against DLW have also found underestimations of physical activity EE 

in the general adult population (St-Onge et al 2007:218kcal/day) and in older 

adults (Mackey et al 2011: 156kcal/day using Sensewear 6.1; 108kcal/day 

using Sensewear 5.1). Combined with the inaccuracies in estimating total EE, 

the specific and magnified underestimation of physical activity EE further 

reduces the applicability of the devices in determining EE in overweight people 

with NAFLD.  

 



  

106 
 

The portable multi-sensor array was easy to use by the subjects, provided 

minimal discomfort, and very little interference with daily activity. However, 

these monitors are not waterproof, so needed to be removed for 

bathing/showering and any water-based activity. This means that the calorie 

turn over for these activities is not captured by the multi-sensor array, although 

the monitors do estimate EE for off-body time using pre-programmed 

proprietary algorithms developed by the manufacturer that take into account 

data from the sensor and characteristics of the wearer.  

 

A clear limitation of this study is the small sample size. This was restricted as 

the study was of an exploratory nature and studies with larger patient numbers 

are needed to ascertain the accuracy of the multi-sensor array definitively in 

people with NAFLD. Generally, the use of DLW is dictated by the prohibitive 

monetary costs of using the technique. In an obese patient group, larger 

quantities of the ²H₂O and H₂18O were needed to dose the heavier people. Urine 

samples were analysed for each day of the 10-day period to determine daily 

loss of each isotope. This increases the accuracy of the results rather than 

relying on before- and 10 day-after-dose samples (Bluck, 2008), but obviously 

resulted in increased costs of sample analysis. The decision to “scale-down” 

this validation study in terms of sample size, makes it difficult to generalise 

results to the wider population but does provide preliminary data on how 

accurate the monitors are in measuring EE in people with NAFLD. 

 

In conclusion, the Sensewear portable multi-sensor array was an easy-to-use 

method of objectively measuring activity levels in free-living adults. However, 

the results show that the portable multi-sensor array significantly 

underestimated measures of total and active energy expenditure in obese 

people with NAFLD. If the portable multi-sensor arrays are to be used in obese 

subjects, it is necessary to incorporate new, obesity-specific algorithms in the 

device’s software. The portable devices may prove useful tools in engaging 

obese people with NAFLD in physical activity within lifestyle interventions and 

aid in positive behaviour change. However, the interpretation of results in obese 
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individuals needs to be undertaken with caution as the devices are prone to 

significant underestimation in total EE and physical activity EE. Thus, the multi-

sensor arrays may be a good motivational tool to use with patients within the 

clinical setting, but may not be an accurate research tool. 
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Chapter 4: Physical activity levels in adults with non-alcoholic 

fatty liver disease 

 

4.1 Introduction 

 

Physical activity is a key determinant of metabolic control and is commonly 

recommended for people with non-alcoholic fatty liver disease (NAFLD), usually 

alongside weight loss and dietary change (Harrison and Day, 2007). Even 

though physical activity and exercise are recommended as part of treatment for 

NAFLD, there have been no large-scale studies with adequate statistical power 

to guide health practitioners in prescribing exercise programmes or for 

generating physical activity guidelines for the management of these patients. 

Evidence for the benefit of physical activity comes from prospective studies 

showing that individuals who maintain a physically active lifestyle are less likely 

to develop insulin resistance (IR), impaired glucose tolerance, or T2DM (Boule 

et al., 2001; Snowling and Hopkins, 2006; Thomas et al., 2006; Colberg et al., 

2010). Cross-sectional studies also suggest that people with NAFLD have lower 

levels of physical activity that those without (Hsieh et al., 1998; Perseghin et al., 

2007a; Zelber-Sagi et al., 2008).  

 

Self-reported physical activity levels have been shown to be lower in people 

with NAFLD than their “healthy” counterparts (Hsieh et al., 1998; Perseghin et 

al., 2007a; Zelber-Sagi et al., 2008) and links have been made between low 

cardiorespiratory fitness and NAFLD severity (Church et al., 2006; Krasnoff et 

al., 2008). However, these subjective methods in determining physical activity 

are also subject to reporting error, linked to recall and social desirability bias, 

and are inaccurate in determining frequency, duration and intensity of physical 

activity (Warren et al., 2010). 

 

Increasing physical inactivity is becoming a growing problem in the general 

population (Blair, 2009) and low levels of physical activity are compounded by 
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an increase in physical inactivity.  Physical inactivity, including activities such as 

sitting, is reported to be higher in people predisposed to the metabolic 

syndrome, excessive adiposity and T2DM (Dunstan et al., 2004; Dunstan et al., 

2005; Levine et al., 2005; Healy et al., 2008). Consequently, increases in 

sedentary time could play a potential role in the development of or 

predisposition towards NAFLD independent of physical activity / exercise and 

needs to be considered when introducing lifestyle interventions. 

 

To date, no studies have reported the relationship between objectively 

measured physical activity levels, IHL and metabolic control in people with 

NAFLD. This study determined the level of objectively measured physical 

activity and sedentary time, in people with NAFLD and investigated links 

between physical activity, IHL, glucose control and body composition. 
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4.2 Subjects and Methods 

Thirty-three sedentary (60 minutes of vigorous activity per week) adults with 

clinically defined NAFLD were recruited to the study from hepatology clinics 

within the Newcastle upon Tyne Hospitals NHS Foundation Trust or through 

advertisements in local newspapers. NAFLD was defined as >5% IHL on 1H-

MRS (see Section 2.7.1). General descriptions can be found in Table 3. 

Exclusion criteria included: heart or kidney disease; implanted ferrous metal; 

insulin sensitising treatment or dietary change (for people with T2DM, diet and 

metformin were acceptable for inclusion if stable for six months); and alcohol 

intake above 21 units for men or 14 units for women. An age- and sex-matched 

healthy control group were recruited through advertisements at the University. 

 

The study protocol was approved by County Durham and Tees Valley 2 

Research Ethics Committee. All participants provided written informed consent. 

Visits were undertaken at the Clinical Research Facility, Royal Victoria 

Infirmary, or the Magnetic Resonance Centre, both in Newcastle upon Tyne, 

UK. 

 

Physical activity: Physical activity and energy expenditure were assessed 

objectively using a multi-sensor array (SenseWear Pro3, Bodymedia Inc, PA, 

USA – see Section 2.5 for further details) previously validated in healthy adults 

(St-Onge et al., 2007). Volunteers were asked to wear the armband on their 

right upper arm (at the mid-humerus point of the triceps) for seven days. All 

subjects were instructed to remove the armband only for bathing/showering 

purposes or any water-based activity. A subject’s multi-sensor array data were 

acceptable for analysis if overall wear-time was ≥95% of the total time that they 

had the monitor in situ (St-Onge et al., 2007) 

 

The following matrices of physical activity were derived from the multi-sensor 

array as units per day: total energy expenditure (TEE); active energy 

expenditure (AEE); average metabolic equivalents (METs – see Section 1.5 for 
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definition); sedentary time (≤ 2.9 METs); duration of physical activity (> 3.0 

METs); duration of moderate physical activity (3.0-5.9 METs); duration of 

vigorous activity (6.0-9.0 METs); duration of very vigorous activity (≥ 9.0 METs); 

number of steps; sleep duration; and duration monitor worn.  

 

Volunteers completed the validated (Hagströmer et al., 2006) International 

Physical Activity Questionnaire (IPAQ; see Appendix 2) to determine levels of 

physical activity and sitting time. The IPAQ includes four activity domains:  job-

related physical activity, transportation, housework (including house 

maintenance and caring for the family), recreation and leisure time activity. The 

questionnaire was administered when the volunteer returned their multi-sensor 

array so activity recorded on both should cover the same time period. The IPAQ 

was scored using the guidelines produced by The IPAQ Group 

(www.ipaq.ki.se/scoring.pdf). 

 

Anthropometry: Body weight (kg) and standing height (cm) were measured as 

described in Section 2.3.1. In the NAFLD group, body composition was 

measured using air displacement plethysmography (BodPod, Life Measurement 

Inc., CA, USA) – see Section 2.6 for further details (Sardinha et al., 1998; 

Biaggi et al., 1999; Fields et al., 2005).  

 

Glucose Control and Liver Enzymes: In the NAFLD group, a blood sample was 

taken from a forearm vein following a >8 hour overnight fast. Whole blood 

glucose was measured immediately (YSI 2300 Stat Plus-D, Yellow Springs 

Instruments, Yellow Springs, OH). HbA1c was measured using a TOSOH HLC-

723G7 (Tosoh Corporation, Tokyo, Japan) and ALT using a Roche Modular P 

and test kits (Roche Diagnostics Ltd, Burgess Hill, UK) in a Clinical Pathology 

Accredited laboratory (Newcastle Upon Tyne Hospital NHS Foundation Trust, 

Department of Clinical Biochemistry).  

 

http://www.ipaq.ki.se/scoring.pdf
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4.2.1 Statistical Analysis 

Statistical analysis was performed using SPSS version 19 (SPSS Inc, Chicago, 

US). Between group differences were evaluated using a paired t-test and 

Pearson’s correlation was used to investigate associations between variables. 

Statistical significance was set at p<0.01 to allow for multiple comparisons. Data 

are mean ± SD unless otherwise stated. 
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4.3 Results 

 

Seven data sets were excluded as the volunteers wore the monitor for less than 

95% of the 7-day period. Therefore, 26 data sets were analysed in each group. 

 

The groups were well matched for age (54 ± 13 vs. 54 ± 13years; p=0.088) and 

sex (p=1.000). Weight and BMI were significantly higher in the NAFLD group 

when compared with controls - general descriptions can be found in Table 3. 

Table 3: Subject characteristics (activity data from multi-sensor array); values are given 

as means (SD) 

 NAFLD       

(n=26) 

Control 

(n=26) 

p-value 

Age (years) 54 (13) 54 (13) 0.088 

Weight (kg) 93 (12) 86 (15) 0.007 

Height (cm) 171 (9) 175 (10) 0.021 

Body Mass Index (kg/m
2
) 32 (5) 28 (5) 0.001 

Intrahepatic lipid (%) 13.7 (7.5) - - 

ALT (U.L
-1

) 53 (33) - - 

Fasting Glucose 5.7 (1.8) - - 

HbA1c 6.2 (0.9) - - 

Body Fat (%) 38.6 (9.0) - - 

    (ALT, alanine aminotransferase) 

 

Average daily MET levels were significantly lower in the NAFLD group when 

compared to controls (1.2 ± 0.2 vs. 1.4 ± 0.2 METs; p<0.01) as was active 

energy expenditure (classed as activity of >3.0 METs: 453 ± 293 vs. 713 ± 

315kcal; p<0.01). People with NAFLD spent less time performing physical 

activity of any intensity (76 ± 51 vs. 121 ± 48mins/day; p<0.01) than the 

controls, and a significant difference was also observed between the groups 

when the physical activity was divided up into intensity levels – see Table 4 for 

more details. Sedentary time, classed as activities up to 3.0 METs, was 
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significantly higher in the NAFLD group (1337 ± 51 vs. 1294 ± 55mins/day; 

p<0.01). 

Table 4: Physical activity data recorded by multi-sensor array (data reported as 

daily means (SD)) 

 Control (n=26) NAFLD (n=26) p-value 

Duration on body (min) 1413 (17) 1412 (15) 0.812 

Lying (min) 480 (96) 495 (60) 0.522 

Sleep (min) 374 (81) 398 (63) 0.211 

TEE (kcal) 2853 (485) 2692 (453) 0.060 

Steps 9987 (3513) 8281 (3243) 0.061 

Average METs 1.4 (0.2) 1.2 (0.2) 0.001 

Sedentary time (min) 1294 (55) 1337 (51) 0.004 

AEE (kcal) 713 (315) 453 (293) 0.001 

Physical activity duration (min) 121 (48) 76 (51) 0.001 

Moderate activity (min) 109 (41) 74 (49) 0.003 

Vigorous activity (min) 6 (8) 2 (4) 0.010 

Very vigorous activity (min) 4 (9) 0 (0) 0.050 

(TEE, total energy expenditure; METs, metabolic equivalents; AEE, active energy expenditure) 

 

Using the self-reported IPAQ, people with NAFLD reported lower levels of 

physical activity and more time spent sitting than their healthy counterparts (see 

Table 5). There was no correlation between the daily TEE recorded by the 

multi-sensor array and physical activity levels reported in the IPAQ across the 

whole group (r= -0.192; p=0.216 – see Figure 13). Sedentary time measured by 

the multi-sensor array was not associated with sitting time reported in the IPAQ 

(r= 0.278; p=0.071).  

Table 5: Physical activity data reported using the IPAQ 

 Control (n=18) NAFLD (n=18) p-value 

Mean daily MET-minutes 8783 (8968) 5806 (5635) 0.267 

Mean daily sitting time (mins) 277 (107) 364 (182) 0.131 
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Figure 13: Association between self-reported physical activity using the IPAQ, and 
objectively measured physical activity using the multi-sensor array 

 

BMI was negatively correlated with average METs (r= -0.535; p<0.01) and 

physical activity duration (r= -0.494; p< 0.01) in NAFLD. BMI was positively 

associated with sedentary time but this did not reach statistical significance (r= 

0.435; p=0.026). Body fat percentage showed negative correlations with TEE 

(r= -0.549; p<0.01), steps (r= -0.536; p< 0.01), average METs (r= -0.699; 

p<0.01), AEE (r= -0.609; p<0.01) and physical activity duration (r= -0.611; 

p<0.01). There was a positive association between body fat percentage and 

sedentary time (r= 0.536; p<0.01). There was no correlation between IHL, 

fasting glucose, HbA1c and ALT with any of the physical activity parameters 

measured by the multi-sensor array within the NAFLD group. 
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4.4 Discussion 

This is the first study to objectively measure physical activity levels and 

sedentary time in adults with clinically defined NAFLD, and to use this data to 

investigate the relationship between physical activity, IHL and metabolic control. 

The data reveals that people with NAFLD spend more time physically inactive 

and achieved lower levels of physical activity than people without NAFLD. 

Levels of physical inactivity or physical activity were not associated with the 

severity of liver fat or glucose control in this small well-characterised group.  

 

Sedentary behaviour or physical inactivity is a growing health problem, silently 

putting people at heightened risk from a host of chronic diseases (WHO, 2003; 

Blair, 2009). Adults with NAFLD spend more time pursuing sedentary 

behaviours than those without fatty liver and these patterns of inactivity can be 

clearly observed using the activity traces produced by the Sensewear monitors 

(see Figures 14a and 14b). This increase in physical inactivity may compound 

the detrimental health effects caused by lack of physical activity. In the present 

study, adults with NAFLD accumulated 22.5 hours per day of sedentary activity. 

Sedentary behaviours involving sitting or lying down are characterised by a low 

MET value of less than 3, and are related adversely to metabolic biomarkers 

and to poorer health outcomes (Sugiyama et al., 2008). Sitting for prolonged 

periods reduces the opportunity for cumulative energy expenditure produced by 

muscle contractions as we move around throughout the day (Hamilton et al., 

2007), and impairs the exercise/muscle contraction stimulated uptake of 

glucose from the circulation and lipoprotein lipase activity thus hampering fat 

handling. High levels of overall physical inactivity may contribute to obesity and 

metabolic disorders, potentially as much as lack of moderate-vigorous physical 

activity. Even if adults meet the public health guideline for leisure-time physical 

activity, they may have a high risk of becoming overweight or developing 

metabolic disorders if they spend a large amount of time in sedentary 

behaviours during the rest of the day (Levine et al., 2005; Sugiyama et al., 

2008). Combined, these results demonstrate for the first time that physical 

inactivity is prominent in NAFLD. Targeting these periods of inactivity may 

constitute an effective means of improving liver lipid.  
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Figure 14a: Activity trace (derived from Sensewear) for a 63 year old female without 

NAFLD (Red lines demonstrate EE; green lines represent steps) 

 

Figure 14b: Activity trace (derived from Sensewear) for a 63 year old female with 
NAFLD 
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The present data also highlights that people with NAFLD undertake less daily 

physical activity than their healthy counterparts. This is demonstrated by lower 

levels of total calories expended, lower levels of active EE and less steps taken 

compared with the healthy controls. Physical activity levels in NAFLD have to 

date only been measured using self-report questionnaires (Perseghin et al., 

2007a; Zelber-Sagi et al., 2008; St. George et al., 2009). These observations 

consistently report that low levels of self-reported physical activity are 

associated with higher levels of liver lipid. However, these subjective methods 

have significant limitations and are subject to recall and social desirability bias 

and are inaccurate in determining frequency, duration and intensity of physical 

activity (Warren et al., 2010). The poor associations between objective and 

subjective reports of physical activity (IPAQ) in the present study highlight the 

importance of objectively assessing physical activity. The link between physical 

activity and liver lipid highlights the positive effects of a physically active lifestyle 

upon IR, impaired glucose tolerance and T2DM (Eriksson and Lindgärde, 1991; 

Helmrich et al., 1991). Physical activity should, theoretically, aid the prevention 

and/or progression of NAFLD through its reciprocal relationship with glucose 

control. Despite the disparity between objective and subjective reports of 

physical activity, the same message remains, low levels of physical activity are 

associated with higher levels of liver lipid.  

 

People with NAFLD not only carry out a lower average level of physical activity, 

but also undertake less moderate and vigorous activity than people without 

NAFLD. The lower levels of these higher intensity activities may have 

implications as the intensity of the activity may also play a key role in improving 

metabolic control. However, the reports demonstrating that higher intensity 

activities / exercises are linked to improvements in metabolic control are not 

unequivocal. One meta-analysis found exercise intensity was not associated 

with a difference in HbA1c in people with T2DM (Boule et al., 2001). However, 

when using resistance training independently, moderate-high intensities were 

associated with greater improvements in muscle bulk and overall glucose 

control (Gordon et al., 2009) and high‐intensity interval training was shown to 

improve hyperglycemia in patients with T2DM (Gillen et al., 2012). Harrison and 
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Day (2007) speculated that moderate exercise, performed 3-4 times per week, 

expending about 400kcal each time seemed adequate to augment improvement 

in the metabolic profiles of patients with NAFLD. However, although useful 

clinical guidelines, the evidence underlying these suggestions is lacking. We 

might hypothesise that by increasing EE throughout the day, and decreasing 

sedentary time, if patients can accumulate an extra 400kcal of non-exercise 

activity thermogenesis (NEAT) they may achieve similar metabolic benefits. 

Examples of calorific expenditure for a person of 68kg performing the activities 

for one hour are light gardening 330Kcal; walking at 3.5mph 280Kcal; general 

housework 270Kcal; shopping for groceries 180Kcal 

(www.nutribase.com/exercala.htm). This may be a useful guide when 

prescribing physical activity within the clinic setting. There is no clear evidence 

on which exercise approach is best in improving metabolic control. However, 

the pragmatic approach is likely the successful one. Reducing sedentary 

behaviour, increasing NEAT and increasing moderate intensity exercise are all 

good for metabolic control. The one which is most successful is the one which 

the patient is most likely to achieve.  

 

In patients with NAFLD, BMI and body fat percentage were negatively 

correlated with objectively measured markers of increasing physical activity and 

positively associated with sedentary time. In obesity, studies have shown similar 

findings (Williamson et al., 1993; Di Pietro, 1999; Jiménez-Pavón et al., 2010), 

whereby the more overweight/obese people are, the less physical activity they 

undertake, which drives the vicious cycle of increasing weight gain. Currently, 

there is no evidence to suggest whether the initial weight gain drives the 

physical inactivity or vice versa. 

 

A major limitation of using the Sensewear multi-sensor array was that it 

consistently underestimated energy expenditure in people with NAFLD when 

compared with DLW (see Chapter 3). The energy expenditure data is used to 

generate the results for all the other activity parameters, apart from steps, and 

thus the results must be received with caution. The error margin is such that it 

http://www.nutribase.com/exercala.htm
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could reduce the overall differences observed within the groups. Using the 

multi-sensor array clinically with an individual looking to change their activity 

habits as part of a lifestyle intervention, should provide comparable data for the 

same person at different time-points, thus showing the effects of behaviour 

change on a 1:1 basis. These results should not diminish the importance and 

quality of the physical inactivity data. 

 

The mechanisms by which a physically active lifestyle may moderate liver fat 

relate predominantly to metabolic regulation. Changes in circulatory metabolites 

and hormones, such as glucose, lipids and insulin have a direct impact upon 

IHL. Insulin and physical activity/exercise are the two most physiologically 

important stimulators of skeletal muscle glucose transport. Both increase 

skeletal muscle glucose uptake by encouraging translocation of GLUT4 to the 

muscle cell wall (Hayashi et al., 1997; Röckl et al., 2008). GLUT4 expression 

and recruitment to the plasma membrane increase in response to exercise 

training, thus facilitating glucose uptake into the trained muscle (Hayashi et al., 

1997). Reduced muscle perfusion and mass as a result of physical inactivity 

reduces peripheral glucose uptake and may precede IR and T2DM (Wang et 

al., 2009). However, these changes in muscle can be reversed with a general 

increase in activity levels enhancing glucose storage. Enhanced glucose uptake 

and storage, through muscle contraction and increased storage capacity, 

reduces the levels of circulating insulin required to maintain glucose 

homeostasis. A decrease in insulin levels reduces de novo lipogenesis in the 

liver, thus reducing hepatic steatosis (Tamura et al., 2005; Lavoie and Gauthier, 

2006).  

 

Physical activity has also been shown to improve IR through positive changes in 

fat oxidation in muscle, which cannot be achieved by energy restriction alone 

(St. George et al., 2009). Mitochondria are the main organelles involved in fat 

oxidation within the cells, and their content and functional capacity has been 

shown to be improved by lifestyle interventions (Toledo et al., 2007). Mild-

moderate intensity exercise (25-65% of VO2max) is associated with a 5-10 fold 
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increase in fat oxidation above resting amounts because of increased energy 

requirements of muscle, enhanced fatty acid availability and increased 

mitochondrial capacity (Horowitz and Klein, 2000). This intensity of exercise 

coincides with numerous day-to-day activities, thus it may be reasonable to 

suppose that increasing daily NEAT may hold the same physiological benefits 

for increasing fat oxidation. An increase in whole-body fat oxidation will 

decrease circulatory NEFA and thus reduce the delivery of fatty acids to the 

liver via the portal vein, thus decreasing fat storage within the liver. 

 

Although our results from the DLW validation study show a propensity for the 

multi-sensor array to significantly underestimate daily energy expenditure in 

NAFLD, these monitors are still a useful tool to glean insights into free-living 

daily activity patterns in these people (see Figure 14). The movement counts 

provided by the multi-sensor array provide an alternative measure for physical 

activity than kcals, and the activity-traces allow us to informally look at periods 

of sedentary behaviour and breaks within this. The MET levels provided also act 

as a guide as to the intensity of activity undertaken which allows clinicians to 

tailor advice to this. Volunteers found the monitors easy to use and unobtrusive, 

with little impact on daily activity. Limitations of these monitors are that they are 

not waterproof and thus need to be removed for any water-based activity, and 

occasionally people developed mild skin irritations to the straps after wearing 

them for a prolonged time. 

 

The use of physical activity monitors in the clinical environment may provide 

clinicians with a way to engage patients in discussion about activity/exercise. 

Data recorded can be used as a baseline measure from which to tailor 

subsequent physical activity counselling and build appropriate exercise 

programmes. Their use offers the opportunity to provide immediate feedback to 

patients when they return to clinic, by providing a short report or a more in-

depth daily analysis of activity, from which discussions about lifestyle change 

and weight loss can materialise. Since the visual data being presented by the 

clinician represents the patient’s actual day-to-day life, this may act as a 
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valuable tool to aid in improving adherence, patient motivation and improve 

clinical outcomes. 

 

In conclusion, people with NAFLD spent more time physically inactive and less 

time physically active on a daily basis than people without fatty liver. The use of 

portable multi-sensor arrays within the clinical setting may improve physical 

activity participation. Often patients are not aware how much physical activity 

they actually engage in, so an objective measure will provide this feedback, and 

thus allow personal activity goals to be established in order to achieve their 

individual health targets. Low levels of physical activity represent a therapeutic 

target which may improve metabolism and prevent a progression of metabolic 

conditions in people with NAFLD. 
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Chapter 5: Cardiac structure, function and energetics in adults 

with non-alcoholic fatty liver disease 

 

5.1 Introduction 

 

The clinical impact of non-alcoholic fatty liver disease (NAFLD) clearly extends 

beyond the liver. People with NAFLD are exposed to double the risk of 

cardiovascular (CV) disease compared to people without NAFLD (Ekstedt et al., 

2006). Even people with raised alanine aminotransferase (ALT), without a clear 

clinical diagnosis of NAFLD, are exposed to an increase in the 10-year risk of 

CV disease (Schindhelm et al., 2007) with age- and sex-adjusted hazard ratios 

for CV events  and coronary heart disease of 1.40 (1.09-1.81) and 2.04 (1.35-

3.10) respectively in the upper tertile of ALT. Furthermore, an 18 year 

prospective study of 132 patients with biopsy-proven NAFLD, demonstrated that 

CV deaths were the second most common cause of death in NAFLD patients, 

with rates equalling those of liver-related deaths and trailing only cancer-related 

deaths (Matteoni et al., 1999 ). As such, cardiac health is of as high importance 

to people with liver disease and their care teams as liver health itself.  

 

Despite the importance of cardiac health in NAFLD, to date, there has been 

very little research into the cardiac status of people with NAFLD. An early study 

of cardiac health in people with NAFLD reported alterations in cardiac 

morphology and energetics in young men with newly-diagnosed NAFLD using 

magnetic resonance techniques (Perseghin et al., 2008). Cardiac morphology 

was not different in those with NAFLD compared to those without fatty liver, 

however, cardiac metabolism (assessed using 31P-magnetic resonance 

spectroscopy) was significantly different in the NAFLD group, demonstrated by 

a decrease in PCr/ATP ratio. The authors suggested that in NAFLD, 

abnormalities in cardiac metabolism may precede the development of functional 

and structural re-modelling of the heart. However, it is difficult to generalise the 

results of this study to the usual NAFLD population as this only included young 

(mean age 35), normotensive, non-obese (mean BMI 27.5) males and excluded 

people who had other endocrine/metabolic disease. Given the central role of the 
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liver in metabolic control, it is not surprising that the key mediating effects of the 

liver upon cardiac health appears to be through its influence in metabolic 

control.  

 

Magnetic resonance imaging (MRI) is considered the reference standard for 

non-invasive assessment of cardiac structure and provides robust measures of 

systolic and diastolic function in fine detail. Cardiac tagging allows the special 

determination of movement and stresses in two dimensions, and has permitted 

the torsional power generation of the heart to be examined for the first time 

(Lumens et al., 2006). 31P-magnetic resonance spectroscopy (31P-MRS) permits 

evaluation of myocardial bioenergetics, and hence metabolic efficiency, by 

calculation of the PCr/ATP ratio (Crilley et al., 2003). These techniques used in 

combination, provide us with a unique way of non-invasively investigating the 

intricacies of cardiac structure and function in people with NAFLD, and of 

potentially highlighting therapeutic targets on which to base future interventions. 

 

The purpose of this study was to investigate whether people with non-advanced 

clinically defined NAFLD demonstrate alterations in cardiac structure, function 

and energetics using cardiac cine imaging, tagging and 31P-MRS compared with 

healthy controls. 
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5.2 Subjects and Methods 

 

Twenty three adults (12 male; 11 female) with NAFLD were recruited from 

hepatology clinics within the Newcastle upon Tyne Hospitals NHS Foundation 

Trust or through advertisements in local newspapers. NAFLD was defined as 

>5% IHL on 1H-MRS (see Section 2.7.1). General descriptions can be found in 

Table 6. Exclusion criteria included: heart or kidney disease; implanted ferrous 

metal; insulin sensitising treatment or dietary change (for people with T2DM, 

diet and metformin were acceptable for inclusion if stable for six months); and 

alcohol intake above 21 units for men or 14 units for women. Subjects were 

individually age- and gender- matched with controls without clinically identified 

metabolic disease. The study protocol was approved by Newcastle & North 

Tyneside 1 Research Ethics Committee. All participants provided written 

informed consent. 

 

All subjects had no previous history of cardiac disease and were screened with 

a 12-lead ECG (Custo med GmbH, Ottobrunn, Germany) and resting blood 

pressure measurements (Suntech Tango+, Suntech Medical Ltd, Oxford). 

Bodyweight and height were measured using an electronic scale and 

stadiometer respectively (SECA, Birmingham, UK). Subjects underwent an MR 

protocol of MR cine imaging, cardiac tagging and phosphorus cardiac 

spectroscopy, performed at a single session. All evaluations were completed at 

the Clinical Research Facility, Royal Victoria Infirmary, Newcastle upon Tyne or 

at the Newcastle Magnetic Resonance Centre, Newcastle upon Tyne. 

 

5.2.1 Cardiac Magnetic Resonance Imaging 

Cardiac examinations were performed using a 3T Philips Intera Achieva 

scanner (Best, Netherlands). A dedicated 6-channel cardiac coil (Philips, Best, 

Netherlands) was used with the subjects in a supine position and ECG gating. 

Short axis balanced steady-state free precession images were acquired 

covering the left ventricle (FOV = 350mm,TR/TE = 3.7/1.9ms, acceleration 
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factor 17, flip angle 40o, slice thickness 8mm, 0mm gap, 14 slices, 25 phases, 

resolution 1.37mm).  

 

Image analysis was performed using the cardiac analysis package of the 

ViewForum workstation (Philips, Best, Netherlands). Manual tracing of the 

epicardial and endocardial borders was performed on the short axis slices at 

end-systole and end-diastole (Figure 6a). The basal slice was selected for end-

diastole and for end-systole for the left ventricle when at least 50% of the blood 

volume was surrounded by myocardium. The apical slice was defined as the 

last slice showing inter-cavity blood pool. Papillary muscles were included in the 

mass and excluded from the volume calculations. The inter-ventricular septum 

was included as part of the left ventricle (Hudsmith et al., 2005). Details of the 

algorithm for contour selection and calculating left ventricular mass, systolic and 

diastolic parameters have been previously published (Jones et al., 2010). The 

eccentricity ratio of the LV mass to the end-diastolic volume was calculated as 

this parameter is a measure of concentric remodelling.  

 

5.2.2 Cardiac Spectroscopy 

Cardiac high-energy phosphate metabolism was assessed using 31P-MRS. 

Data were collected using the same 3T Intera Achieva scanner with a 10cm 

diameter 31P surface coil (Pulseteq, UK) for transmission/reception of signal. 

Subjects were placed in a prone position and moved into the magnet so their 

heart was at magnet isocentre. Localising images were collected using the in-

built body coil to confirm location of the heart. Shimming was performed using a 

cardiac triggered, breath-held field map (Schar et al., 2004). A slice-selective, 

cardiac gated 1-dimensional chemical shift imaging (1D-CSI) sequence was 

used with a 7cm slice selective pulse applied foot head to eliminate 

contamination from the liver, with spatial pre-saturation of lateral skeletal 

muscle to avoid spectral contamination. 16 coronal phase-encoding steps were 

used, yielding spectra from 10mm slices (TR = heart rate, 192 averages at the 

centre of k-space with cosine-squared acquisition weighting, approx. 20 mins 

acquisition time). Spectral locations were overlaid onto an anatomical image 

and the first spectrum arising entirely beyond the chest wall was selected. 

Quantification of PCr, the  resonance of ATP and 2, 3-diphosphoglycerate 
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(DPG) was performed using the AMARES time domain fit routine in the jMRUI 

processing software. After fitting, the ATP peak area was corrected for blood 

contamination by 1/6 of the amplitude of the combined 2,3-DPG peak (Conway 

et al., 1998), and the PCr/ATP ratios were calculated and corrected for 

saturation, with T1 values of cardiac PCr and ATP taken from the literature 

(Tyler et al., 2008). Flip angle correction was made using a gadolinium-doped 

20mM phenyl phosphonic acid phantom at the centre of the coil and a 

calibration dataset (Haase et al., 1984; Buchli and Boesiger, 1993). 

 

5.2.3 Cardiac Tagging 

Tagged short axis images were acquired. Cardiac tagging works by applying 

radiofrequency pulses to cancel MR signal from the myocardium in diastole in a 

rectangular grid pattern and tracking the deformation of these tags through the 

rest of the cardiac cycle (Figure 6b).  A turbo-field echo sequence with 

acceleration factor 9 was used (TR/TE/FA/NEX = 4.9/3.1/10o/1, SENSE factor 

2, FOV 350x350mm, voxel size 1.37x 1.37mm, tag spacing of 7mm). Two 

adjacent short-axis slices of 10mm thickness were acquired at mid-ventricle 

with a 2mm gap. The Cardiac Image Modelling package (University of 

Auckland) was used to analyse the tagging data by aligning a mesh on the tags 

between the endo- and epi-cardial contours. Circumferential strain and the 

rotation of the two planes were calculated throughout the cardiac cycle. 

Circumferential strain is quoted for both the whole myocardial wall and the 

endocardial third of the wall thickness. The epicardial torsion between the two 

planes (taken as the circumferential-longitudinal shear angle defined on the 

epicardial surface) was calculated (Buchalter et al., 1990). The recoil of torsion 

in diastole occurs rapidly in early diastole and has been shown to correlate 

closely with the time constant of isovolumic relaxation derived from the left 

ventricular pressure waveform (Dong et al., 2001). This was expressed as 

maximum torsion gradient in diastole (deg/ms, defined as the maximum slope of 

the torsion curve in diastole), the torsion recoil rate (which is normalised for 

peak torsion, %/ms), and the residual torsion at 150% of the end-systolic time.   

 

Longitudinal shortening was determined from cine-MRI in the 4-chamber view 

by determining the perpendicular distance from the plane of the mitral valve to 
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the apex in systole and diastole. The myocardial wall thickness at systole and 

diastole were determined at the same level as the cardiac tagging, and radial 

thickening was calculated. 

 

5.2.4 Statistical Analysis 

Between group differences were evaluated using unpaired t-tests and 

Pearson’s correlations used to investigate associations between variables. 

Statistical testing was performed using SPSS version 19 (SPSS Inc, Chicago, 

US). Statistical significance was assumed at p<0.01 to allow for multiple 

comparisons. Data are presented as mean ± SD.  Based on changes reported 

from a previous study in NAFLD (Perseghin et al., 2008), the study was 

powered at 90% to detect at least a 10% difference between groups in PCr/ATP 

ratio, ejection fraction, E/A ratio and end-diastolic wall mass.  
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5.3 Results 

 

The groups were well matched for age (54 ± 15 vs. 54 ± 15years; p=0.921) and 

sex (p=1.000). Physical and metabolic characteristics can be found in Table 6. 

There was a significant difference in systolic (130 ± 12 vs. 146 ± 16mmHg; 

p<0.01) and diastolic (80 ± 9 vs. 90 ± 12mmHg; p<0.01) blood pressure 

between the groups however, there was no correlation between blood pressure 

and other cardiac parameters, in particular LV mass and LV index. There was 

no significant difference in weight, BMI or body surface area between the 

groups (BSA - the parameter used for indexing throughout the study).  

Table 6: Subject characteristics; values are given as means (SD) 

Parameter Controls (n=23) NAFLD (n=23) p-value 

Age (years) 54 (15) 54(15) 0.921 

SBP (mmHg) 130 (12) 146 (16) 0.001 

DBP (mmHg) 80 (9) 90 (12) 0.002 

Height (cm) 169 (11) 168 (9) 0.690 

Weight (kg) 76 (11) 84 (14) 0.030 

Body mass index (kg∙m
-2

)
                       

 27 (4) 30 (4) 0.037 

Body surface area (m²) 1.8 (0.2) 1.9 (0.2) 0.052 

Glucose (mmol.L
-1

) 5.1 (0.4) 5.0 (0.8) 0.739 

Triglycerides (mmol.L
-1

) 1.6 (0.9) 1.7 (1.0) 0.923 

Total cholesterol (mmol.L
-1

) 5.4 (0.8) 5.2 (1.3) 0.692 

ALT (U.L
-1

) 23 (12) 51 (36) 0.004 

Intrahepatic lipid (%)  2.4 (1.1)  10.1 (4.9) 0.001 
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Cardiac structure and function (see Table 7) 

People with NAFLD had a significantly lower stroke volume index (32 ± 5 vs. 39 

± 10ml/m²; p<0.01) than healthy controls. There were no significant differences 

in ejection fraction, stroke volume, resting heart rate, and cardiac output 

between the two groups.  

 

People with NAFLD had significantly thicker LV walls at systole (14 ± 3 vs. 12 ± 

2mm; p<0.01) and diastole (8 ± 1 vs. 7 ± 1mm; p<0.01) than those without fatty 

liver and showed decreased longitudinal shortening (14 ± 3 vs. 17 ± 3%; 

p<0.01). The eccentricity ratio was significantly higher in the NAFLD group (1.2 

± 0.2 vs. 0.9 ± 0.2g/ml; p<0.01) indicating concentric remodelling. LV mass 

(sum of wall mass and papillary muscles) was similar in both groups. Wall mass 

(excluding papillary muscles) was no different between the groups, however, 

the NAFLD group had a significantly higher mass of papillary muscles (11 ± 6 

vs. 6 ± 3g; p<0.01). Within the patient group, no significant linear correlations 

were shown between systolic or diastolic blood pressure and any markers of LV 

mass and wall thickness. Longitudinal shortening was negatively associated 

with wall thickness at systole (r= -0.520; p<0.01), the eccentricity ratio (r= -

0.603; p<0.01) and peak circumferential strain (r= -0.571; p<0.01) in the NAFLD 

group but not in the control. 

 

Neither end-diastolic volume (EDV), nor end-systolic volume (ESV) were 

significantly different between the groups. When these values were indexed to 

take into account the individuals’ BSA, both EDV index and ESV index were 

significantly lower in the NAFLD group (p<0.01 for both parameters – see Table 

6). 
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Table 7: Cardiac structure and function; values are given as means (SD) 

Parameter Controls 
(n=23) 

NAFLD 
(n=23) 

p-value 

Ejection fraction (%) 60 (6) 64 (7) 0.060 

Heart rate (bpm) 58 (9) 63 (10) 0.102 

Stroke volume (ml) 71 (19) 62 (13) 0.060 

Stroke volume index (ml/m²) 39 (10) 32 (5) 0.005 

Cardiac output (l/min) 4.1 (0.8) 3.8 (0.7) 0.339 

End diastolic volume (ml) 120 (35) 100 (31) 0.045 

End systolic volume (ml) 49 (18) 38 (20) 0.056 

Wall mass (g) 96 (27) 102 (28) 0.445 

Papillary muscle (g) 7 (3) 11 (6) 0.004 

LV mass (g) 103 (28) 113 (32) 0.248 

LV mass indexed (g/m²) 56 (13) 58 (12) 0.575 

EDV indexed (ml/m²) 65 (18) 51 (14) 0.004 

ESV indexed (ml/m²) 26 (9) 19 (9) 0.011 

Wall thickness systole (mm) 12 (2) 14 (3) 0.001 

Wall thickness diastole (mm) 7 (1) 8 (1) 0.002 

Radial wall thickening (%) 63 (20) 72 (32) 0.260 

Longitudinal shortening (%) 17 (3) 14 (3) 0.005 

Eccentricity ratio (g/ml) 0.9 (0.2) 1.2 (0.2) 0.001 

Early filling percentage (%) 70 (11) 63 (14) 0.057 

E/A ratio 2.0 (1.4) 1.5 (2.4) 0.203 

Early diastolic filling rate 
(ml/s) 

312 (111) 260 (90) 0.083 

Late diastolic filling rate 
(ml/s) 

192 (73) 221 (82) 0.211 
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Diastolic function, represented by the E/A ratio and early filling percentage, was 

not statistically significant between the groups however did exhibit a tendency to 

be lower in NAFLD. The lower the E/A ratio, the higher the torsion-to-shortening 

ratio (TSR) (r= -0.406; p=0.05) and peak torsion (r= -0.418; p=0.05) in NAFLD 

and controls (TSR: r= -0.468; p=0.04; peak torsion: r= -0.451; p=0.05). Reduced 

longitudinal shortening was associated with reduced early filling percentage (r= 

0.462; p=0.03) in NAFLD but not in controls. Markers of diastolic function did 

not correlate to PCr/ATP ratio in either group, nor did baseline measures of 

BMI, fasting glucose, triglycerides and total cholesterol.  

 

Cardiac torsion and strain (see Table 8) 

Peak whole wall strain was higher in the NAFLD group (20 ± 3 vs. 17 ± 3%; 

p<0.01), as was peak endocardial strain (28 ± 4 vs. 23 ± 5%; p<0.01) when 

compared with controls. TSR was not significantly different between the groups. 

Circumferential systolic rate was higher in the NAFLD group when compared to 

controls (0.10 ± 0.02 vs. 0.08 ± 0.02; p<0.01) but there was no difference no 

difference in the rate that torsion was released. 

 

Cardiac 31P-MR spectroscopy 

PCr/ATP ratio was not significantly reduced in NAFLD when compared with 

controls (1.75 ± 0.31 vs. 1.89 ± 0.28; p=0.133). 

 

Correlations between modalities 

There were no correlations between liver fat %, triglyceride levels or glucose 

with cardiac structure or function in the NAFLD group.  
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Table 8: Cardiac torsion and strain; values are given as means (SD) 

Parameter Controls 
(n=23) 

NAFLD 
(n=23) 

p-value 

Peak endocardial 
circumferential strain (%) 

23 (5) 28 (4) 0.001 

Peak whole wall circumferential 
strain (%) 

17 (3) 20 (3) 0.013 

Torsion to shortening ratio (rad) 0.53 (0.20) 0.43 (0.20) 0.052 

Peak torsion (deg) 6.6 (1.8) 7.0 (2.1) 0.547 

Rate of systolic torsion  0.03 (0.01) 0.02 (0.01) 0.476 

Torsion recoil rate (%/ms) 0.4 (0.1) 0.4 (0.2) 0.581 

Rate of torsion release 0.02 (0.01) 0.01 (0.01) 0.045 

Circumferential systolic rate 0.08 (0.02) 0.10 (0.02) 0.001 

Circumferential diastolic rate 0.05 (0.01) 0.05 (0.02) 0.458 

 

Secondary analysis 

In order to examine whether the differences shown were due to NAFLD per se 

and not due to associated obesity, the groups were retrospectively matched for 

BMI by removing outliers (n=20 NAFLD, n= 23 control: BMI 29 ± 3 vs. 27 ± 4 

kg∙m-2 ; p=0.170). Between group differences in cardiac structure and function 

were the same as prior to group manipulation. Matching the groups for BP was 

not possible as 20/23 people with NAFLD had above the mean systolic BP for 

the controls, and 11/23 had above the diastolic average. 
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5.4 Discussion 

 

This is the first study to examine cardiac status in a clinical group of NAFLD 

patients using the combined techniques at 3.0T of phosphorous spectroscopy, 

cardiac tagging and cine MRI to measure cardiac energetics, torsion and 

circumferential strain, and morphology. The major findings in NAFLD patients 

compared to age- and gender-matched controls are: 1) there was no significant 

difference in cardiac energetics; 2) there was thickening of the cardiac wall, 

independent of changes in LV mass; 3) altered myocardial strains occur without 

a change in torsion or TSR; 4) concentric remodeling is apparent; and 5) there 

was evidence of early diastolic dysfunction. All of these changes were observed 

in the absence of overt cardiac disease. 

 

This study demonstrated alterations in morphology before there was evidence 

of any changes in cardiac metabolism. There was no significant difference in 

PCr/ATP ratio between the NAFLD and control groups, although the NAFLD 

group showed a decrease of 7% compared to controls. This may be due to the 

heterogeneous nature of our NAFLD and control groups in terms of age and 

BMI. A previous study in young men with newly-diagnosed NAFLD (Perseghin 

et al., 2008), found a significant decrease of 12% in the NAFLD group 

compared with controls (1.84 ± 0.34 vs. 2.11 ± 0.32; p= 0.016). It has been 

postulated that changes in cardiac metabolism occur as a result of high levels of 

circulating NEFA (Scheuermann-Freestone et al., 2003; Lautamaki et al., 2006; 

Larsen and Aasum, 2008) and that these fatty acids are preferentially utilised by 

the heart as a fuel  decreasing the PCr/ATP ratio. We did not see a significant 

difference between the groups in the PCr/ATP ratio within the present study, 

however, given that there were no variations in the levels of triglycerides or total 

cholesterol (surrogate biomarkers for NEFA) between the NAFLD and control 

groups the lack of difference in metabolic efficiency may not be surprising. 

Interestingly, both groups had relatively high baseline levels of both markers 

which may have resulted in an overall lowering of PCr/ATP in both groups when 

compared to the other study in NAFLD (Perseghin et al., 2008). The lack of 

correlation between liver fat, PCr/ATP ratio and other cardiac parameters 
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suggests there may not be a linear association between liver and cardiac 

metabolism in vivo in humans and that other non-liver mediators are present.  

 

Structurally, the present results demonstrate a general thickening of the LV wall 

in NAFLD, independent of changes in LV mass. Increased wall thickness was 

associated with reduced longitudinal shortening which is consistent with findings 

in other clinical groups (Young et al., 1994; Fonseca et al., 2004; Hollingsworth 

et al., 2011). Total wall mass was greater in the NAFLD group, although not 

significantly, but a larger proportion of this was represented by papillary muscle. 

This thickening of the wall may be due to the increased strains seen in NAFLD, 

both affecting the endocardium and entire wall. The small, but significant, 

absolute increase in papillary muscle mass in the NAFLD group is likely some 

statistical aberration as opposed to any physiological phenomenon. In NAFLD, 

the reduction in end- systolic and end-diastolic blood pool volumes, alongside 

an elevated eccentricity ratio is indicative of concentric remodelling with greater 

wall thickness and normal chamber size. These findings are supported in obese 

subjects without known fatty liver (Peterson et al., 2004; Wong et al., 2004).  

  

Studies investigating cardiac morphology in obesity have found increased LV 

mass and wall thickness, both positively associated with an increase in BMI 

(Lauer et al., 1991; Peterson et al., 2004; Wong et al., 2004; Powell et al., 2006; 

Turkbey et al., 2010). The present data reports moderate positive correlations 

between BMI and wall thickness at systole (r= 0.299; p<0.05) and radial wall 

thickening percentage (r= 0.346; p<0.05) but not LV mass. The extent of 

cardiac remodelling in obesity increases with its severity and duration, and is 

exacerbated by concomitant hypertension and the plasma volume expansion 

seen with increasing body size (Vasan, 2003; Abel et al., 2008). Diastolic 

dysfunction was also a common finding (Iacobellis et al., 2002; Peterson et al., 

2004; Wong et al., 2004; Powell et al., 2006) in obesity, however systolic 

function seemed to be preserved (Vasan, 2003; Wong et al., 2004; Powell et al., 

2006; Turkbey et al., 2010). Cardiac structure and diastolic function are altered 

in obesity, however, in the early stages, systolic function is not affected. These 

changes appear to be mirrored in people with NAFLD. 
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There have been no previous studies looking at myocardial strains in people 

with NAFLD. In healthy ageing, hypertrophic cardiomyopathy and in patients 

with T2DM, reduced longitudinal shortening is associated with a decrease in 

circumferential strain and, for the most part, an increase in torsion (Fonseca et 

al., 2004; Lumens et al., 2006; Cheng et al., 2009; Hollingsworth et al., 2011). In 

this study, we observed a different pattern: there is evidence of concentric 

remodelling and reduced longitudinal shortening but endocardial and whole wall 

circumferential strains were significantly increased and developed faster, 

without a change in torsion or TSR. The lack of change in torsion is likely due to 

the fact that endocardial and epicardial strains increased in unison, thus having 

no effect on the overall level of torsion generated across the myocardial wall. In 

NAFLD, there appears to be concentric remodelling but without preferential 

endocardial damage (found in T2DM and ageing), maintaining a normal level of 

torsion in the myocardium. This means that the inside of the heart wall is able to 

generate its normal strain levels, and furthermore, the myocardium can cope 

with the greater strains associated with thicker walls. If subendocardial 

contractile function is impaired, counteraction of torsion by contraction of 

subepicardial myofibres is less effective, causing net torsion to increase. Thus 

TSR increases with impairment of contractile function in the subendocardial 

layers relative to the subepicardial layers in healthy ageing (Lumens et al., 

2006). Although there are changes in cardiac strains in NAFLD and evidence of 

concentric remodelling, this does not appear to affect the actual ability of the 

myocardium to generate the necessary contractile forces. 

 

The E/A ratio, a marker of diastolic function, failed to reach statistical 

significance between the groups and this could represent a type 2 statistical 

error. However, the NAFLD group demonstrated a 25% decrease compared to 

controls, with 17/23 NAFLD patients exhibiting values below the mean – 1SEM 

of the control group. This may be clinically significant and highlights a 

propensity towards diastolic dysfunction which has also been observed in T2DM 

and obesity. Early filling percentage, another marker of diastolic dysfunction, 

was also 10% lower in the NAFLD group and has greater signal to noise than 

E/A as this was measured directly in our subjects, whereas E/A is determined 

indirectly from other indices. 
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There was no significant change in global systolic function in the present patient 

group, which supports studies looking at cardiac function in obesity and T2DM 

(Diamant et al., 2003; Scheuermann-Freestone et al., 2003; Vasan, 2003; 

Wong et al., 2004; Powell et al., 2006; Turkbey et al., 2010). However, the 

decrease in longitudinal shortening in the NAFLD group is an indicator that the 

heart’s normal movement mechanisms have been disrupted and may eventually 

lead to a reduction in cardiac output and stroke volume. The reduced shortening 

ability of the myocardium may have resulted in the increased strains observed 

as the heart attempted to generate enough mechanical stress to pump as 

efficiently as possible. EDV was lower in the NAFLD group compared with 

controls. An increase in EDV increases the preload on the heart and, through 

the Frank-Starling mechanism (Mangano et al., 1980) of the heart, increases 

the amount of blood ejected from the ventricle during systole and has a 

beneficial effect on stroke volume. The decrease in EDV seen in NAFLD may 

contribute to the lower stroke volume and cardiac outputs observed in our 

patients, and may have increased the myocardial strain. It may also be an 

indicator of early stage heart failure. 

 

A retrospective analysis conducted to examine whether the differences shown 

were due to NAFLD per se and not due to associated obesity, indicates that the 

cardiac parameters which differ between NAFLD and control are not different 

merely because the NAFLD group were heavier. It is difficult to ascertain the 

true impact of NAFLD on cardiac structure and function compared to the effect 

of blood pressure as  the patient group had significantly higher BP, which can 

lead to LV hypertrophy (Abel et al., 2008). However, BP did not show any 

significant correlation with the cardiac parameters in the NAFLD group. Use of 

multivariate statistical analysis could help address concern over hypertension 

as a potential confounder. Further work should aim to look at comparing 

patients with NAFLD with BMI matched healthy controls, although this may 

prove difficult, as increasing obesity levels in the “healthy” population are linked 

to increasing prevalence of undiagnosed NAFLD (Harrison and Day, 2007). 

Both the NAFLD group and control group had relatively high fasting glucose 

levels which could be an indicator of insulin resistance and poor glucose 

http://en.wikipedia.org/wiki/Frank%E2%80%93Starling_law_of_the_heart
http://en.wikipedia.org/wiki/Stroke_volume
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control. We may then speculate that some of the cardiac changes seen in 

NAFLD may be attributable to pre-diabetic changes. 

 

In conclusion, significant changes in cardiac structure and function are evident 

in adults with NAFLD in the apparent absence of cardiac metabolic changes or 

overt cardiac disease. An important challenge is to identify the earliest 

manifestations of heart disease with the use of objective surrogate markers of 

cardiac dysfunction and ultimately aim to prevent overt CVD by initiating earlier 

therapy. Clinicians should now explore therapies to improve cardiac function as 

a means to modify the excess risk of CVD associated with NAFLD. 
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Chapter 6: Resistance exercise reduces liver fat and its 

mediators in non-alcoholic fatty liver disease independent of 

weight loss 

 

6.1 Introduction 

 

Non-alcoholic fatty liver disease (NAFLD) represents a spectrum from 

asymptomatic steatosis to potentially life-threatening non-alcoholic 

steatohepatitis (NASH) with an overall prevalence of NAFLD in Western 

countries of 20-30% (Harrison and Day, 2007). Patients with simple steatosis 

have a relatively benign “liver” prognosis with a 1-2% risk of developing clinical 

evidence of cirrhosis over 15-20 years. Patients with NASH and fibrosis can 

progress to cirrhosis at a rate of around 12% over 8 years (Day, 2006). Once 

cirrhosis develops, patients are at a high risk of developing hepatic 

decompensation and of dying from a liver-related cause. NAFLD has become a 

common indication for liver transplant (Erickson, 2008) and is also associated 

with an increased risk of developing cardiovascular disease and Type 2 

diabetes (T2DM) (Targher et al., 2010).  

 

To date there are no proven therapies for treatment of NAFLD other than weight 

loss, and lifestyle interventions remain the cornerstone of management (Day, 

2006; Harrison and Day, 2007). Such interventions have been shown to reduce 

markers of liver lipid and metabolic control (Kantartzis et al., 2008; St. George 

et al., 2009; Promrat et al., 2010) in addition to reducing intrahepatic lipid (IHL) 

(Goodpaster et al., 2003; Oza et al., 2009; Shah et al., 2009; Finucane et al., 

2010). Despite this, the weight losses achieved in research trials are not easily 

replicated in the clinic and are even more difficult to sustain. Consequently there 

is an urgent need for therapies for the management of NAFLD independent of 

weight loss.   

 

 Physical activity and exercise in NAFLD management could potentially be 

effective in decreasing IHL. Cross-sectional studies have shown that higher 

levels of physical activity are associated with lower levels of IHL (Perseghin et 

al., 2007a; Zelber-Sagi et al., 2008; St. George et al., 2009). Use of aerobic 
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exercise may not be optimal as, to date, only  two studies have reported a 

beneficial effect of aerobic exercise regimes upon IHL, independent of weight 

loss (Sreenivasa Baba et al., 2006; Johnson et al., 2009).  Population based 

studies (Zelber-Sagi et al., 2008) suggest that resistance exercise  is associated 

with lower levels of IHL . There have been no previous studies of the direct 

effect of resistance exercise upon IHL and metabolism, even though it has clear 

advantages in terms of acceptability and sustainability (Gordon et al., 2009; 

Larose et al., 2010). Cross-sectional studies (Zelber-Sagi et al., 2008) also 

suggest that resistance exercise holds the strongest relationship with liver lipid, 

with higher levels of resistance exercise associated with lower levels of IHL.  

 

The primary aim of this study was to determine the effect of resistance exercise 

without weight loss, on IHL in adults with NAFLD. The secondary aims were to 

determine the effect of resistance exercise on mediators of IHL; glucose 

tolerance and insulin sensitivity, fat oxidation, abdominal adiposity and body 

composition. 
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6.2 Subjects and Methods  

 

34 people with NAFLD were invited to be screened for this study. They were 

recruited from hepatology clinics within the Newcastle upon Tyne Hospitals 

NHS Foundation Trust or through advertisements in local newspapers. Six of 

these people subsequently declined taking part, and seven were excluded after 

screening (two transpired to be taking insulin for their diabetes; one was 

excluded due to an abdominal hernia; four due to <5% IHL on baseline MRI). 

 

Twenty-one sedentary (60 minutes vigorous activity per week) adults with 

clinically defined non-advanced NAFLD were randomly assigned to either 

exercise (n=11) or standard care (n=10). Non-advanced NAFLD was defined as 

>5% IHL and a score of less than -1.445 on the NAFLD Fibrosis Scoring 

System (Angulo et al., 2007) which indicates a lower percentage chance of 

having stage 3/4 fibrosis. The study was powered to detect a 2.02% absolute 

change (delta) in intra-hepatic lipid between the treatment and control groups 

(SD 2.8%, α 5% and β 50%), based on changes reported from an aerobic 

exercise study in NAFLD (Johnson et al., 2009). General descriptions can be 

found in Table 9. Exclusion criteria included: heart or kidney disease; implanted 

ferrous metal; pre-existing medical conditions preventing participation in the 

exercise programme; insulin sensitising treatment or dietary change (for people 

with T2DM, diet and metformin were acceptable for inclusion if stable for six 

months); and alcohol intake above 21 units for men or 14 units for women. 

Subjects would be excluded from analysis if body weight changed >2.5% from 

baseline during the study as this could have an independent effect on IHL. The 

study protocol was approved by County Durham and Tees Valley 2 Research 

Ethics Committee. All participants provided written informed consent. Following 

an initial screening visit, glucose control, lipid oxidation, abdominal lipid depots, 

and liver lipid were measured at baseline and after the 8-week intervention.  
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Progressive Exercise Test / Screening Visit: At baseline, a medical history, full 

physical examination, and progressive exercise test were used to screen for 

undiagnosed cardiac disease (see Section 2.3 for details).  

 

Physical Activity: Physical activity and energy expenditure were assessed 

objectively using a validated (St-Onge et al., 2007) multi-sensor array 

(SenseWear Pro3, Bodymedia Inc, PA, USA) worn on the right upper arm for 

seven days prior to randomisation, and for the final seven days of the 

intervention. The armband provided estimates of: daily energy expenditure; 

average metabolic equivalents (METs); sedentary time; duration and intensity of 

physical activity; number of steps; sleep duration; and duration armband worn 

(see Section 2.5). 

 

Anthropometry: Bodyweight and body composition were measured using an 

electronic scale and air displacement plethysmography (BodPod, Life 

Measurement Inc., CA, USA) as described in Section 2.6 (Sardinha et al., 1998; 

Biaggi et al., 1999; Fields et al., 2005). Height, waist and hip circumference 

were measured as described in Section 2.3.1. 

 

Liver and Abdominal Fat Measurement: Imaging was undertaken at the 

Magnetic Resonance Centre at Newcastle University’s Campus for Ageing and 

Vitality, Newcastle upon Tyne. Magnetic resonance studies were performed 

using a 3.0 Tesla Philips Achieva scanner (Philips Medical Systems, Best, The 

Netherlands) – see Section 2.7 for details.   

 

Glucose Control: Following an 8 hour overnight fast a cannula was inserted into 

a forearm vein. A 75g glucose load (Lucozade Original, GlaxoSmithKline, 

Brentford, UK) was consumed within five minutes. Blood samples were taken at 

time 0, 5, 10, 15, 20, 30, 40, 50, 60, 75, 90 and 120 minutes. Samples were 

analysed as described in Section 2.8 for glucose, insulin and NEFA levels.  

 

Area under the curve (AUC) for the resulting glucose response profile was 

calculated using the trapezoidal rule (Le Floch et al., 1990) and insulin 
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resistance determined using the HOMA-IR (see Section 2.8). NEFA 

suppression (NEFA-S) was assessed during the fsOGTT and the 0-30min 

change used as a measure of NEFA-S (Patel et al., 2005). 

 

Fasting samples were also analysed in a Clinical Pathology Accredited 

laboratory (Newcastle Upon Tyne Hospital NHS Foundation Trust, Department 

of Clinical Biochemistry) for: ALT, total cholesterol, triglycerides and HbA1c - 

see Section 2.8.   

 

Lipid Oxidation at Rest and Submaximal Exercise:  Resting substrate oxidation 

was determined by expired gas analysis using a Hans Rudolf breathing mask 

while participants lay supine for 30 minutes in a quiet room. Participants then 

undertook 60 minutes of submaximal exercise on the recumbent cycle 

ergometer (details can be found in Section 2.9). Expired air was collected every 

15 minutes and respiratory quotient (RQ) was calculated from VO2 / VCO2. 

Substrate oxidation rates and energy expenditure were calculated from oxygen 

consumption and carbon dioxide production values using stoichiometric 

equations (Frayn, 1983). Venous blood was collected every 15 minutes during 

exercise. A further blood sample was taken one hour after the exercise had 

been completed (the participant remained fasted during this time). 

 

 

Whole blood glucose was measured immediately after sampling (as detailed in 

Section 2.8). All other blood samples (NEFA and insulin) were centrifuged, 

plasma removed then frozen and stored to await batch-analysis. Insulin and 

NEFA were processed as previously described in Section 2.8. 

 

6.2.1 Study Intervention 

Resistance exercise was performed three times per week on non-consecutive 

days for eight weeks. The programme comprised of eight exercises: biceps curl; 

calf raise; triceps press; chest press; seated hamstrings curl; shoulder press; 

leg extension; and lateral pull down (Precor, Woodinville, USA). Each session 

lasted between 45-60 minutes and consisted of a 10 minute warm-up at 

approximately 60% maximum heart rate on a cycle ergometer followed by 
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resistance exercise done as a circuit, ending with a repeat of the warm-up 

described. The 1 repetition maximum (1RM) was measured (ACSM, 2006) at 

baseline (which was used to guide the individuals’ exercise prescription) and 

following the intervention. Initially participants did two circuits using 50% of their 

1RM, progressing to three circuits, using a minimum 70% of their 1RM, by week 

7 (see Appendix 3 for full programme). Participants were encouraged to 

increase the resistance used each week where possible. Bi-weekly supervised 

sessions were used to encourage adherence and progression, and to resolve 

any problems. Heart rate was recorded during each session (Polar RS400, 

Polar Electro Oy, Finland) and was used alongside exercise logs to assess 

adherence.  

 

The non-exercising control group continued with standard care and were given 

the opportunity to receive an exercise prescription at the end of the study. 

 

6.2.2 Statistical Analysis 

Following tests for normal distribution, between group differences were 

evaluated using an unpaired t-test and within group differences using a paired t-

test (two-way). Treatment group x time interactions were assessed using a two-

way ANOVA. Analyses were performed using Minitab version 15 (Minitab Inc., 

State College, Pennsylvania). Statistical significance was set at p<0.05. Data 

are mean ± SD unless otherwise stated. 
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6.3 Results 

 

No subjects withdrew during the trial and all subjects allocated to the exercise 

group completed all 24 sessions of resistance exercise training. Two subjects 

(controls) were excluded from analysis (one individual lost >5% of his body 

weight during the 8 week period and one had a change in his diabetic 

medication).19 subjects (eight control; 11 exercise) completed the study.  

The groups were well matched for weight, BMI and waist/hip circumference 

(Table 9). The exercise group were younger (52 ± 4.0; range 33-72 years) 

compared with the control group (62 ± 2.6; range 52-71 years; p=0.05). There 

was no correlation between age and change in IHL (p>0.05).  

 

Anthropometry and Body Composition 

BMI remained constant in both groups during the study (32 ± 1.5 to 32 ± 1.4 vs. 

32 ± 1.7 to 32 ± 1.5kg.m2 in exercise and control). There were no significant 

changes in weight, waist or hip circumference, waist to hip ratio, body 

composition, visceral or subcutaneous fat in either group (see Tables 9 and 10). 

 

Intrahepatic Lipid 

Resistance exercise elicited a 13% relative reduction in IHL with no change in 

the control (p<0.01; Table 10, Figure 15A). There was a significant time by 

treatment interaction for resistance exercise (p<0.05; Table 10, Figure 15A). 

Three of the participants in the exercise group moved from having clinically 

significant NAFLD to being within normal limits (<5% IHL). No control subject 

moved into the normal liver fat range. 

 

Blood Lipids and Liver Enzymes 

There were no significant changes in blood lipids or ALT in either group (Table 

9). 
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Table 9: Subject Characteristics; values are given as means (SD) 

 

 Control (n= 8) Exercise (n=11) 

 Baseline Post-
Treatment 

Baseline Post-
Treatment 

Anthropometry 
 

    

BMI (kg∙m
-2

)
                        

 
32.3 (1.7) 32.5 (1.5) 32.3 (1.5) 32.3 (1.4) 

Weight (kg) 
 

94.0 (4.2) 94.6 (3.8) 96.1 (3.3) 96.1 (3.2) 

Waist circumference (cm) 
 

108 (3) 110 (3) 105 (4) 109 (4) 

Hip circumference (cm) 
 

110 (2) 115 (3) 110 (3) 111 (3) 

Waist : Hip ratio 
 

0.99 (0.01) 0.96 (0.01) 0.96 (0.01) 0.98 (0.01) 

VO2PEAK  
(mL.kg

-1
.min

-1
) 

18.5 (1.8) - 21.8 (1.2) - 

Metabolic 
 

    

ALT (U.L
-1

) 
 

61.6 (14.6) 61.4(15.6) 59.6 (11.7) 59.6 (11.8) 

Total cholesterol  
(mmol.L

-1
) 

4.5 (0.4) 4.6(0.3) 5.1 (0.5) 5.0 (0.5) 

Triglycerides  
(mmol.L

-1
) 

1.46 (0.2) 1.50 (0.3) 1.79 (0.2) 1.62 (0.2) 

HbA1c 
 

6.5 (0.4) 6.8 (0.7) 6.1 (0.2) 6.0 (0.2) 

     BMI, body mass index; VO2peak, aerobic capacity; ALT, alanine aminotransferase.  

 
  

Glucose Control 

The exercise group demonstrated improved glucose control after 8 weeks as 

indicated by a decrease in glucose area under the curve during the fsOGTT 

compared with control  (p<0.01; Figure 15B; Table 10). Fasting glucose levels 

were reduced in the exercise group after the intervention compared with the 

control but this was not statistically significant (6.0 ± 0.6 to 5.2 ± 0.3 vs. 5.9 ± 

0.8 to 6.4 ± 1.0mmol/l; p=0.086). Time by treatment interaction for resistance 

exercise and change in fasting glucose was just outside statistical significance 

(p=0.06). HbA1c remained relatively unchanged in both groups (Table 9). 

 

The exercise group showed a significant improvement in insulin sensitivity after 

8 weeks as demonstrated by a decrease in HOMA-IR (5.9 ± 1.8 to 4.6 ± 1.4 vs. 

4.7 ± 2.7 to 5.1 ± 1.8; p<0.05; Table 10), although time by treatment interaction 

for resistance exercise and IR failed to show significance (p=0.055). Fasting 

insulin levels remained relatively unchanged in both groups (Table 10). 



  

153 
 

 

Table 10:  Intrahepatic lipid concentration, subcutaneous and visceral adipose 
tissue, body composition, glucose control, insulin sensitivity (HOMA-IR), NEFA 
suppression index, and substrate oxidation during submaximal exercise (RQ). 
Values are given as means (SD) 

 
 Control (n=8) Exercise (n=11) 

 Baseline Post-
Treatment 

Baseline Post-
Treatment 

Intrahepatic lipid (%) 

 

11.2 (3.0) 11.5 (2.6) 14.0 (2.8) 12.2 (2.7) * ‡‡ 

Visceral adipose 

tissue (cm²) 

2558 (253) 2445 (228) 2098 (244) 2165 (246) 

Subcutaneous 

adipose tissue (cm²) 

3512 (343) 3574 (331) 3275 (351) 3221 (356) 

Fat mass  

(% body mass) 

41 (2) 41 (3) 38 (3) 36 (2) 

Fasting glucose 

 (mmol.L
-1

) 

5.9 (0.8) 6.4 (1.2) 6.0 (0.6) 5.2 (0.3) 

Fasting insulin  

(p.mol.L
-1

) 

18.14 (6.41) 18.97 (6.71) 20.55 (6.20) 18.64 (5.62) 

Fasting NEFA  

(µmol.L
-1

) 

0.48 (0.17) 0.50 (0.18) 0.44 (0.13) 0.43 (0.13) 

HOMA-IR 

 

4.7 (1.7) 5.1 (1.8) 5.9 (1.8) 4.6 (1.4)‡ 

fsOGTT, AUC  

 

839 (106) 940 (149) 885 (81) 777 (56) ** ‡‡ 

NEFA-S (0-30 min of  

fsOGTT) 

0.07 (0.02) -0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 

Resting RQ 

 

0.86 (0.03) 0.86 (0.02) 0.86 (0.01) 0.86 (0.02) 

Sub-maximal 

exercise RQ 

0.90 (0.01) 0.89 (0.01) 0.93 (0.01) 0.91 (0.01) * ‡ 

 
HOMA-IR, homeostasis model of insulin resistance; fsOGTT, frequently sampled oral  
glucose tolerance test; AUC, area under the curve; NEFA-S, non-esterified fatty acid  
suppression index; RQ, respiratory quotient. 

 
*significant difference treatment x time interaction (p<0.05); **significant difference 
treatment x time interaction (p<0.01). 
‡significant difference Baseline vs. Post-Treatment (p<0.05); ‡‡significant difference 
Baseline vs. Post-Treatment (p<0.01). 
 

 

NEFA Suppression 

Fasting plasma NEFA remained unchanged by the intervention. Similarly, the 

extent of NEFA suppression during the fsOGTT remained constant in both 

groups (Table 10). 
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Fat Oxidation 

Resistance exercise brought about an increase in fat oxidation during the 

submaximal exercise test (RQ 0.93 ± 0.0 to 0.90 ± 0.0 vs. 0.90 ± 0.0 to 0.89 ± 

0.0, p<0.05; p<0.05 time by treatment interaction; Table 10; Figure 15C). 

Resting fat oxidation remained constant in both groups (Table 10). 

 

Physical Activity 

There was a wide range of habitual daily activity (number of steps taken daily 

measured via Sensewear) in both groups at baseline (range 5046 to 12479 

exercise, mean = 8492; range 2781 to 9159 control, mean = 5682). The total 

number of steps taken on a daily basis was significantly higher in the exercise 

group post intervention when compared with the controls (9848 ± 1113 vs. 5883 

± 1162; p=0.028). The change in IHL with both groups combined was weakly 

associated with the change in number of steps walked per day (r2 = 0.28, 

p<0.05), but not with active energy expenditure (r2 = 0.06, p>0.05)
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Figure 15: Effect of 8 weeks resistance exercise training (Exercise) or continued 

standard care (Control) on intrahepatic lipid (A), glucose control from the frequently 

sampled oral glucose tolerance test (B), and respiratory quotient during submaximal 

exercise (C); values are means ± SE.  * = significantly different from control (p<0.05). ** 

= significantly different from control (p<0.01).  
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6.4 Discussion 

 

This is the first study to examine the effects of resistance exercise on IHL and 

its mediators in adults with NAFLD. An 8-week resistance exercise programme 

brought about a ~13% reduction in liver fat. This was accompanied by a ~12% 

increase in insulin sensitivity, and increased fat oxidation during submaximal 

exercise in the absence of any change in bodyweight. 

 

Although lifestyle modification combining dietary change and exercise produces 

a robust reduction in IHL (Harrison and Day, 2007), the data on exercise alone 

is less definitive. This study demonstrates that resistance exercise is effective in 

reducing IHL in people with NAFLD. Resistance exercise provides an 

alternative to aerobic exercise and improves muscular strength, muscle mass 

and metabolic control safely and effectively in vulnerable populations 

independent of weight loss (Larose et al., 2010). It places less of a demand on 

the cardio-respiratory system and may therefore be accessible to more patients 

(Gordon et al., 2009). Knowledge about the effect of resistance exercise upon 

IHL and metabolic control, independent of weight loss, will assist clinical care 

teams in their advice for people with NAFLD.  All participants completed the 8-

week programme, showing good adherence and tolerance.  

 

To date, only two studies have reported the effect of exercise alone on liver 

health in adults with NAFLD, both having used aerobic exercise but only one 

reports a direct measure of IHL. A 4-week aerobic exercise intervention showed 

a similar absolute reduction in IHL (1H-MRS) as seen during the present study. 

The aerobic exercise brought about a reduction in IHL from 8.6 to 6.8% 

(Johnson et al., 2009). A 12-week intervention reported a 47% (47 U/L) and 

48% (30 U/L) reduction in ALT and AST respectively (Sreenivasa Baba et al., 

2006). However, these biomarkers can be elevated in the absence of excess 

liver fat and within the normal in ranges in the presence of elevated liver fat 

making them poor indicators for actual liver fat (Mofrad et al., 2003; 

Szczepaniak et al., 2005; Fracanzani et al., 2008).  Although the changes in 
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liver lipid following exercise therapy are significant, the absolute change (~2% 

IHL) was modest compared to the ~10% reduction reported after an 8kg weight 

loss from caloric restriction (Petersen et al., 2005). It should also be considered 

that in this study, the exercise group had higher IHL at baseline (14%) than the 

control group (12%) and whether this may influence subsequent IHL response 

to exercise (i.e. the more liver fat there is at baseline, the more there is to lose). 

Therefore, the clinical value of exercise appears likely to be as an adjunct to 

caloric restriction. 

 

The observed improvement in glucose control is consistent with findings in 

populations with impaired glucose control or T2DM (Strasser et al., 2010; 

Zanuso et al., 2010). The aerobic exercise studies in NAFLD have either 

reported no change (Johnson et al., 2009) or not reported measures of glucose 

control (Sreenivasa Baba et al., 2006). Most studies in impaired glucose control 

or T2DM have used liver function tests, particularly ALT and AST levels, or 

blood lipid levels as surrogate markers for IHL (Sigal et al., 2007; Gordon et al., 

2009) again making extrapolation to IHL difficult.  

 

We observed a pure exercise effect on IHL which did not involve any change in 

visceral fat in the patients. There is increasing evidence that the two depots are 

not mechanistically linked but both tend to reflect adiposity (Ravikumar et al., 

2008). Recent findings from the Framingham Heart Study (Speliotes et al., 

2010), and a much smaller cohort (Hoenig et al., 2010), show IHL to be 

associated with dyslipidemia and dysglycaemia independently of visceral fat. 

Our observation of decreased IHL in the absence of any observable change in 

visceral or subcutaneous fat provides further information on the separate 

regulation of IHL and visceral fat. 

 

The mechanisms underlying the change in IHL following exercise are likely to 

reflect changes in energy balance, circulatory lipids, and insulin sensitivity. 

Insulin sensitivity plays a significant role in liver lipid homeostasis. High levels of 

circulatory insulin up-regulate SREBP-1c and ChREBP expression in the liver 

(Tamura et al., 2005; Lavoie and Gauthier, 2006), stimulating de-novo 
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lipogenesis and increasing IHL. In healthy normoglycaemic humans, hepatic de 

novo lipogenesis contributes approximately 5% and 18-23% of IHL in the fasted 

and postprandial states, respectively (Timlin and Parks, 2005). Whereas de 

novo lipogenesis is constantly elevated in those with NAFLD contributing 

approximately 26% of IHL irrespective of feeding state (Donnelly and Smith, 

2005). Elevated circulating triglycerides exacerbate this problem by impeding 

insulin stimulated glucose uptake (Ferrannini et al., 1983). Thus creating a 

vicious cycle where elevated IHL levels impede hepatic insulin action, causing 

increased portal insulin levels and  further increasing IHL (Taylor, 2008).  

 

The findings suggest that the introduction of resistance exercise breaks this 

cycle by improving glucose control and fat oxidation. Our observations would 

support other reports that resistance exercise increases whole-body glucose 

disposal (Ferrara et al., 2006) at least partly due to increases in skeletal muscle 

GLUT4, glycogen synthase expression and activity, insulin receptor, and 

glycogen storage (Holten et al., 2004). Thus skeletal muscle in the resistance 

exercising individual can act to safely sequester circulating fatty acids and 

glucose, reducing the impact of insulin stimulated de novo lipogenesis in the 

liver. Aerobic exercise has been shown to increase intra-myocellular triglyceride 

synthesis (Pruchnic et al., 2004; Dube et al., 2008), while decreasing 

accumulation of fatty acid metabolites and suppressing the proinflammatory 

state associated with insulin resistance (Schenk and Horowitz, 2007). It remains 

to be determined whether exercise has any direct transcriptional effects on the 

liver.  

 

In conclusion, well-tolerated resistance exercise reduced IHL, increased insulin 

sensitivity, and improved metabolic flexibility in NAFLD independent of weight 

loss. The absolute effect of resistance exercise studied in isolation was modest 

but similar to that of aerobic exercise. The benefits of resistance exercise 

combined with caloric restriction in the clinical management of NAFLD will 

depend upon long-term maintenance and sustainability of exercise - this now 

needs to be investigated. 
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Chapter 7: General Discussion 

 

Metabolic disease remains a growing problem in Western countries, with 

epidemic turning into pandemic. Yet despite this, we are continuing to live 

longer, exposing individuals, their immediate support and society in general to 

the burden of managing chronic disease. There is a close relationship between 

energy expenditure and metabolic control and this plays the most significant 

role in the development of metabolic disease. When an imbalance occurs 

between the energy taken in, in terms of diet, and the energy out, in terms of 

physical activity or exercise, the liver, heart, muscle, and adipose tissue are all 

affected. The impact of low levels of physical activity and lack of exercise 

affects all of these organs and also cross-organ communication, creating a 

vicious cycle. For example, a decrease in energy expenditure, as a result of 

inactivity or lack of physical activity or exercise, can result in weight gain, and in 

particular an increase in adipose tissue mass. Physical inactivity also has a 

direct impact on muscle, reducing its capacity to oxidise fat and store glucose. 

The enlarged mass of adipose tissue and reduced ability to oxidise fat results in 

greater levels of circulatory fatty acids which arrive at the liver via the portal vein 

or the heart via the vena cava. This increase in fat delivery can lead to ectopic 

fat storage in both organs, resulting in NAFLD and cardiac steatosis 

respectively. The present data also extends to demonstrate changes in cardiac 

function in people with NAFLD in the absence of overt cardiac disease. Since 

CVD is the second biggest cause of mortality in people with NAFLD, if the 

changes can be managed and/or reversed in this early stage, some of the later 

cardiac complications may be prevented. 

 

Exercise and physical activity break this cycle by reducing adipose tissue and 

improving the ability of muscle to oxidise fat. This increase in fatty acid oxidation 

lowers circulating fatty acids, reducing the exposure of other organs to excess 

fat. As a result, physical activity and exercise not only improve the metabolic 

and functional capacity of individual tissues, but also have a combined effect on 

the system as a whole; conferring a sustained benefit beyond the immediate 

exercise or movement stimulus.  
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Current clinical practice recommends the use of lifestyle interventions in the 

treatment of NAFLD (Harrison and Day, 2007). These interventions incorporate 

weight loss, diet and physical activity, however the optimal “dose” of each 

component is unknown, and clinicians often place the emphasis on weight loss 

and dietary change, rather than challenging physical activity habits. However, 

the evidence upon which these guidelines were based is limited and need 

improving in order to provide informed guidance and options to people with 

NAFLD. This is particularly important as, although weight loss remains the 

mainstay of clinical management of NAFLD, it is exceptionally difficult to 

achieve and even more difficult to sustain in the free-living environment. As a 

result, the use of exercise / physical activity may provide additional therapeutic 

avenues to people where weight loss is unachievable. The research within this 

thesis begins to provide the evidence upon which physical activity and exercise 

can be used effectively in the clinical care of people with NAFLD.  

 

This research shows that there is a general decrease in physical activity levels 

in people with NAFLD, coupled with an increase in inactivity. These alterations 

in activity habits, in part, reflect that of the general population as people 

worldwide, particularly in Western countries, are undertaking less physical 

activity and becoming more sedentary (Blair, 2009). The growing levels of 

physical inactivity are playing a major role in the increasing prevalence of 

obesity, T2DM and NAFLD. Finding ways to target the consequences of 

physical inactivity are one of the greatest challenges of our generation. 

Historically, aerobic exercise interventions have been applied to understand the 

effect of exercise upon metabolic health and wellbeing. Although these studies 

provided a useful insight into the use of exercise as a therapy, aerobic exercise 

is, in general, poorly tolerated by patients who as a group have low levels of 

physical fitness. Other approaches and options are necessary. This thesis 

challenged this by demonstrating that resistance exercise therapy was 

successful in reducing liver fat and conferred positive benefits on the mediators 

of liver fat. The resistance exercise was well tolerated by the patients involved 

and may prove to be a popular alternative to aerobic exercise with some of our 
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patient group that have other comorbidities. However, the results of this study 

should be taken in perspective. Compared to weight loss studies (Kirk et al., 

2009; Promrat et al., 2010), the absolute change in liver fat was moderate, but 

comparable to that achieved with aerobic exercise alone (Johnson et al., 2009; 

van der Heijden et al., 2009).  

 

Clinically, lifestyle interventions should still be the main over-arching therapy for 

patients with uncomplicated NAFLD, however more emphasis should be placed 

on increasing day-to-day activity levels and decreasing sedentary time. Even 

without weight loss or dietary change, small, achievable changes in activity 

habits could hold benefits for overall metabolic control, and more specifically 

liver and cardiac health. Programmes that encourage objective self-monitoring 

of activity levels may improve patient motivation and promote long-term 

behaviour change. In NAFLD physical activity guidelines are limited, but it 

seems that the more we can encourage people with NAFLD to move and the 

less time to spend sitting, the more positive impact there is on metabolic health. 

For added health benefits, exercise should also be incorporated as a regular 

part of the weekly routine. Further large scale studies are needed to ascertain 

the optimal type, frequency, duration and intensity of exercise that would be of 

most benefit to prevent NAFLD or to stop disease progression.  

 

One factor that may help stem the NAFLD epidemic is an increased public 

awareness of the condition. Most people in the general population have not 

heard of NAFLD and many link liver diseases to excess alcohol consumption, 

with its associated stigmas. Highlighting NAFLD as a lifestyle related disease, 

which in most cases is reversible if tackled early enough, may improve 

treatment outcomes. Many patients with NAFLD remain asymptomatic, unaware 

of their diagnosis and as such are oblivious to the ramifications excess liver fat 

may have on long-term health. This lack of understanding of the risks 

associated with NAFLD, and how it can be potentially treated, minimises the 

incentive for the individual to make any lifestyle changes. Most of the patients 

with NAFLD are managed within Primary Care by general practitioners and 
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practice nurses. The results of studies looking at NAFLD management and 

treatment, including those from this report, need to be filtered through to the 

healthcare practitioners looking after these people on a day-to-day basis. 

Exercise on Referral schemes should be considered to offer these patients 

guidance on exercise and how to get started, in a safe and controlled 

environment. The equivalent of cardiac rehabilitation classes could be 

introduced to target people with NAFLD at an early stage, to get them moving 

and hopefully prevent disease complications such as T2DM and CV disease. 

Currently, these services are limited within the UK and are not necessarily at 

the forefront of the doctors’ minds when seeing these people in clinic. Managing 

people at an early stage, empowering them to take control of their own lifestyle 

and offering ways of helping them to achieve these changes in the long-term 

will have lasting health benefits for the individual, but will also save the NHS 

vast amounts of money in future healthcare costs. 

 

7.1  Future directions 

 

Although the data contained within this thesis provides a robust base upon 

which recommendations around physical activity, exercise, and NAFLD can 

begin to be made, there remain a large number of unanswered questions. 

There are two main physiological questions that need to be answered: 1) what 

is the interaction between weight loss, exercise and liver fat? and 2) what is the 

dose response relationship of different forms of exercise with liver fat? It is clear 

that weight loss produces very significant and rapid changes in liver fat. The 

impact of exercise, in turn, is modest. However, the benefits of weight loss are 

temporary with most people regaining weight after that initial loss. Exercise 

therapy helps prevent weight regain. As a result, the most clinically effective 

position for exercise therapy may indeed be following weight loss and in 

preventing weight regain. An understanding of the ‘dose’ of exercise therapy 

required to effectively change liver fat and its mediators will assist patients and 

clinical care teams understand what the minimal and optimal amount of 

exercise required to improve liver health. Furthermore, over the past two 

decades, our knowledge about the molecular adaptations of skeletal muscle to 
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exercise has driven the use of exercise as a clinical therapy in conditions such 

as T2DM. Studies which begin to characterise the changes in liver signalling 

with exercise hold the potential to drive the use of exercise as an effective 

therapy in liver disease.  

 

7.2  Conclusion 

 

The work contained within this thesis demonstrates that low levels of physical 

activity are prominent in people with NAFLD and that targeting this with 

resistance exercise therapy confers benefits to both liver lipid and the factors 

promoting its accumulation. Over the duration of the work described in this 

thesis, the number of studies reporting on exercise and liver fat in people with 

NAFLD has increased markedly. The new information contained within this 

thesis contributes to this body of knowledge and, over time, will improve the 

management of a condition that is an increasing burden to the people of the 

Western world.  
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Appendix 1: Consent Forms 

Consent Form for Healthy Volunteers for the Physical Activity Study 

Newcastle Magnetic Resonance Centre 
      Campus for Ageing and Vitality 

Newcastle General Hospital 
Westgate Road 

      Newcastle upon Tyne 
      NE4 6BE 

T: +44 (0)191 256 3691 

 
 
 
Identification number for this trial:  
 
 

CONSENT FORM 
 
Title of Project: Evaluation of everyday metabolism and energy expenditure in healthy 
people. 
 
Name of researchers:  Miss Kate Hallsworth and Dr Michael Trenell 
 

Please initial box 
 
 
 
1. I confirm that I have read and understand the information sheet dated May 2009 

(version 1-2) for the above study and have had the opportunity to ask questions.  
 
 

2. I understand that my participation is voluntary and that I am free to withdraw at 
any time, without giving any reason, without my medical care or legal rights being 
affected.  
 
 

3. I agree to take part in the above study.  
 
 
 
 
 
 
 
 
 
Name of patient    Date  Signature 
 
 
 
Name of person taking consent  Date  Signature 
(if different from researcher) 
 
 
Researcher    Date  Signature 
 
1 for patient; 1 for researcher 
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Consent Form for the DLW and Cardiac Studies 

 
      Institute of Cellular Medicine 

      William Leech Building 
Newcastle University 

Framlington Place 
      Newcastle upon Tyne 

      NE2 4HH 
T: +44 (0)191 222 5851 

 
 
Patient Identification number for this trial:  
 

CONSENT FORM 
 
Title of Project: Exercise and non-alcoholic fatty liver disease 
 
 
Name of researchers: Dr M Trenell, Dr K Hollingsworth, Professor R Taylor, Professor C Day. 
 

Please initial box 
 
 
 
4. I confirm that I have read and understand the information sheet dated January 

2011 (version 4) for the above study and have had the opportunity to ask 
questions.  
 
 

5. I understand that my participant is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being 
affected.  
 
 

6. I agree to my GP being informed of my participation in the study 
 
 

7. I agree to take part in the above study.  
 

 
5.   I agree to take part in the Sensewear validation sub-study 
 
 
 
 
 
Name of patient    Date  Signature 
 
 
 
Name of person taking consent  Date  Signature 
(if different from researcher) 
 
 
Researcher    Date  Signature 
 
1 for patient; 1 for researcher; 1 to be kept with hospital notes 
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Consent Form for the Resistance Exercise Study 

 

                 MRC Muscle Performance and Training 
Laboratory 

                Campus for Ageing and Vitality 
           Newcastle General Hospital 

                                                                            Westgate Road 
                Newcastle upon Tyne 

                NE4 6BE 
                                                                            T: +44 (0)191 248 1150 

 

Patient Identification number for this trial:  
 
CONSENT FORM 
 
Title of Project: Resistance exercise and non-alcoholic fatty liver disease 
 
Name of researchers: Dr M Trenell, Kate Hallsworth, Dr K Hollingsworth, Professor R Taylor, 
Professor C Day. 

 
     Please initial box 

 
1. I confirm that I have read and understand the information sheet dated March 2009 
(version 1-1) for the above study and have had the opportunity to ask questions.  
 
2. I understand that my participant is voluntary and that I am free to withdraw at any time, 
without giving any reason, without my medical care or legal rights being affected.  
 
3. I agree to my GP being informed of my participation in the study 
 
 
4.   I agree to take part in the above study.  
 
 
 
 
 
 
 
Name of patient    Date  Signature 
 
 
 
Name of person taking consent  Date  Signature 
(if different from researcher) 
 
 
Researcher    Date  Signature 
 
1 for patient; 1 for researcher; 1 to be kept with hospital notes 
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Appendix 2: Questionnaires 

Physical Activity Readiness Questionnaire (PARQ) 

 

Name:  ____________________ Date of Birth: ____________________ 

  Please 
choose 

1 Has your doctor ever said that you have a heart condition 
and that you should only do physical activity 
recommended by a doctor? 
 

YES NO 

2 Do you ever feel pain in your chest when you do physical 
activity? 
 

YES NO 

3 Have you ever had chest pain when you are not doing 
physical activity? 
 

YES NO 

4 Do you ever feel faint or have spells of dizziness? 
 

YES NO 

5 Do you have a joint problem (also back problem) that 
could be made worse by exercise? 
 

YES NO 

6 Have you ever been told that you have high blood 
pressure? 
 

YES NO 

7 Are you currently taking any medication? 
If so, what? __________________ Reason _______ 
 

YES NO 

8 Are you pregnant, have you had a baby in the last 6 
months, or do you plan to have a baby this year? 
 

YES NO 

9 Has your mother or father had any heart problems? YES NO 
 

10 How many times a week do you exercise? 
 

  

11 Is there any other reason why you should not participate 
in physical activity? 
If so, what? __________________________________ 
 

YES NO 

 
Signed by (staff):____________________Print:___________________ 
 
Date: ___________________ 
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ALL metal worn or carried on your person is to be removed. 

Pens, Spectacles, Keys, Money, Jewellery, Watches, Hairgrips, Dentures, Scissors, Credit Cards, 
Hearing Aids, Bra, Belt, Surgical Supports, etc. 

Magnetic Resonance Patient Safety Screening Questionnaire 

 
Patient name:      Date of birth  ___ /  _ _ / ____     
 
Please check the following carefully.  These items can interfere with MR examinations, and 
some may be hazardous to your safety. 
 
 Any queries contact the Radiographers on 0191 2563691 Ext. 21105     

Have you had any operations on your HEAD?    Yes No 

Have you had any operations on your SPINE?   Yes No 

Have you had any operations on your CHEST or HEART?   Yes No 

Have you had any operations involving the use of METALLIC CLIPS, PINS or PLATES? Yes No 

   

Do you have a Cardiac Pacemaker? Yes No 

Do you have an Aneurysm Clip? Yes No 

Do you have a Cochlear implant? Yes No 

   

Have you ever worked with metal? Yes No 

Is there any possibility that you could have metal in your eye? Yes No 

Have you ever had a shrapnel or bullet injury? Yes No 

   

Are you wearing?   

Dentures with metal  Yes No 

A hearing aid Yes No 

An artificial limb Yes No 

Body piercing/jewelry Yes No 

A CARDIAC / HRT / NICOTINE Patch Yes No 

   

Do you have any tattoos? Yes No 

Have you ever had a fit or blackout?  Yes No 

Do you have epilepsy or diabetes? Yes No 

   

   

FOR WOMEN OF CHILDBEARING AGE:  Could you be pregnant? Yes No 

 
Do not sign this form yet. A member of the Centre staff will go through the form with you and 
explain the MRI scan procedure. 
I understand the procedure of a MRI examination. I also understand the above questions. 
 
Patient’s Signature: ___________________________________ Date: ____________ 
 
Staff Signature: _______________________________________Date: ____________ 
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International Physical Activity Questionnaire (IPAQ) 

 

We are interested in finding out about the kinds of physical activities that people do as part of 
their everyday lives. The questions will ask you about the time you spent being physically active 
in the last 7 days. Please answer each question even if you do not consider yourself to be an 
active person. Please think about the activities you do at work, as part of your house and yard 
work, to get from place to place, and in your spare time for recreation, exercise or sport. 
 
Think about all the vigorous and moderate activities that you did in the last 7 days. Vigorous 
physical activities refer to activities that take hard physical effort and make you breathe much 
harder than normal. Moderate activities refer to activities that take moderate physical effort and 
make you breathe somewhat harder than normal. 
 

PART 1: JOB-RELATED PHYSICAL ACTIVITY 
 

The first section is about your work. This includes paid jobs, farming, volunteer work, course work, and any 
other unpaid work that you did outside your home. Do not include unpaid work you might do around your 
home, like housework, yard work, general maintenance, and caring for your family. These are asked in 
Part 3. 

 

1. Do you currently have a job or do any unpaid work outside your home? 

Yes 

No  Skip to PART 2: TRANSPORTATION 

The next questions are about all the physical activity you did in the last 7 days as part of your 
paid or unpaid work. This does not include traveling to and from work. 
 

2. During the last 7 days, on how many days did you do vigorous physical activities like heavy 
lifting, digging, heavy construction, or climbing up stairs as part of your work? Think about only 

those physical activities that you did for at least 10 minutes at a time. 

 
_____ days per week 

No vigorous job-related physical activity  Skip to question 4 

 

3. How much time did you usually spend on one of those days doing vigorous physical activities as 

part of your work? 

 
_____ hours per day 

_____ minutes per day 

4. Again, think about only those physical activities that you did for at least 10 minutes at a time. 
During the last 7 days, on how many days did you do moderate physical activities like carrying 
light loads as part of your work? Please do not include walking. 

 

_____ days per week 

No moderate job-related physical activity            Skip to question 6 

 

 



  

174 
 

5. How much time did you usually spend on one of those days doing moderate physical activities as 

part of your work? 
 

_____ hours per day 

_____ minutes per day 

6. During the last 7 days, on how many days did you walk for at least 10 minutes at a time as part 
of your work? Please do not count any walking you did to travel to or from work. 

 

_____ days per week 

No job-related walking  Skip to PART 2: TRANSPORTATION 

 

7. How much time did you usually spend on one of those days walking as part of your work? 

_____ hours per day 

_____ minutes per day 

 

PART 2: TRANSPORTATION PHYSICAL ACTIVITY 

 

These questions are about how you traveled from place to place, including to places like work, stores, 
movies, and so on. 
 
8. During the last 7 days, on how many days did you travel in a motor vehicle like a train, bus, 

car, or tram? 
 
_____ days per week 
 
 No traveling in a motor vehicle  Skip to question 10 
 
 
9. How much time did you usually spend on one of those days traveling in a train, bus, car, tram, or 

other kind of motor vehicle? 
 
_____ hours per day 
 
_____ minutes per day 
 
 
Now think only about the bicycling and walking you might have done to travel to and from work, to do 

errands, or to go from place to place. 
 
10. During the last 7 days, on how many days did you bicycle for at least 10 minutes at a time to go 

from place to place? 

 
_____ days per week 
 
 No bicycling from place to place  Skip to question 12 
 
 
11. How much time did you usually spend on one of those days to bicycle from place to place? 

 
_____ hours per day 
 
_____ minutes per day 
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12. During the last 7 days, on how many days did you walk for at least 10 minutes at a time to go 
from place to place? 

 
_____ days per week 
 

No walking from place to place Skip to PART 3: HOUSEWORK, HOUSE 
MAINTENANCE, AND CARING FOR FAMILY 

 

 
13. How much time did you usually spend on one of those days walking from place to place? 

 
_____ hours per day 
 
_____ minutes per day 
 
 
PART 3: HOUSEWORK, HOUSE MAINTENANCE, AND CARING FOR FAMILY 

 
This section is about some of the physical activities you might have done in the last 7 days in and around 

your home, like housework, gardening, yard work, general maintenance work, and caring for your family. 
 
14. Think about only those physical activities that you did for at least 10 minutes at a time. During the 

last 7 days, on how many days did you do vigorous physical activities like heavy lifting, 
chopping wood, shoveling snow, or digging in the garden or yard? 

 
_____ days per week 
 
 No vigorous activity in garden or yard  Skip to question 16 
 
 
 
15. How much time did you usually spend on one of those days doing vigorous physical activities in 

the garden or yard? 
 
_____ hours per day 
 
_____ minutes per day 
 
 
16. Again, think about only those physical activities that you did for at least 10 minutes at a time. 

During the last 7 days, on how many days did you do moderate activities like carrying light 
loads, sweeping, washing windows, and raking in the garden or yard? 

 
_____ days per week 
 
 No moderate activity in garden or yard  Skip to question 18 

 
 
17. How much time did you usually spend on one of those days doing moderate physical activities in 

the garden or yard? 
 
_____ hours per day 
 
_____ minutes per day 
 
 
18. Once again, think about only those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do moderate activities like carrying light 
loads, washing windows, scrubbing floors and sweeping inside your home? 

 
_____ days per week 
 

No moderate activity inside home                 Skip to PART 4: RECREATION,SPORT AND 
LEISURE-TIME PHYSICAL ACTIVITY 
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19. How much time did you usually spend on one of those days doing moderate physical activities 

inside your home? 
 
_____ hours per day 
 
_____ minutes per day 
 
 
 
PART 4: RECREATION, SPORT, AND LEISURE-TIME PHYSICAL ACTIVITY 

 
This section is about all the physical activities that you did in the last 7 days solely for recreation, sport, 

exercise or leisure. Please do not include any activities you have already mentioned. 
 
20. Not counting any walking you have already mentioned, during the last 7 days, on how many 

days did you walk for at least 10 minutes at a time in your leisure time? 

 
_____ days per week 
 
 No walking in leisure time                   Skip to question 22 
 

 
21. How much time did you usually spend on one of those days walking in your leisure time? 

 
_____ hours per day 
 
_____ minutes per day 
 
 
22. Think about only those physical activities that you did for at least 10 minutes at a time. During the 

last 7 days, on how many days did you do vigorous physical activities like aerobics, running, 
fast bicycling, or fast swimming in your leisure time? 

 
_____ days per week 
 
   No vigorous activity in leisure time                Skip to question 24 
 
 
23. How much time did you usually spend on one of those days doing vigorous physical activities in 

your leisure time? 
 
_____ hours per day 
 
_____ minutes per day 
 
 
24. Again, think about only those physical activities that you did for at least 10 minutes at a time. 

During the last 7 days, on how many days did you do moderate physical activities like bicycling 
at a regular pace, swimming at a regular pace, and doubles tennis in your leisure time? 

 
_____ days per week 
 
 No moderate activity in leisure time                 Skip to PART 5: TIME SPENT SITTING 
 

 
25. How much time did you usually spend on one of those days doing moderate physical activities in 

your leisure time? 
 
_____ hours per day 
 
_____ minutes per day 
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PART 5: TIME SPENT SITTING 

 
The last questions are about the time you spend sitting while at work, at home, while doing course work 
and during leisure time. This may include time spent sitting at a desk, visiting friends, reading or sitting or 
lying down to watch television. Do not include any time spent sitting in a motor vehicle that you have 
already told me about. 
 
26. During the last 7 days, how much time did you usually spend sitting on a weekday? 

 
_____ hours per day 
 
_____ minutes per day 
 
27. During the last 7 days, how much time did you usually spend sitting on a weekend day? 

 
_____ hours per day 
 
_____ minutes per day 
 
 
This is the end of the questionnaire, thank you for participating. 
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Appendix 3: Resistance Exercise Programme 

 

Induction 

 

Volunteer’s Name:         Date: 

 

 

Swipe card provided    

 

Orientation to the building 

 

Emergency procedures 

 

Provide University induction booklet and opening times 

 

Teach warm up/down 

 

Explain re: breathing techniques, speed of movement 

 

Work out 1RM (kg) for each exercise  1. Biceps    

(Check technique on each exercise)   

2.  Calf Raise               

       

3. Triceps    

       

4. Chest Press    

       

5. Hamstrings     

       

6. Shoulder Press    

       

7. Quadriceps    

       

8. Lat. Pull Down   

 

Comments: 
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Week 1 – 50% of 1RM; 2 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  8   

2. Calf Raise  8   

3. Triceps  8   

4. Chest Press  8   

5. Hamstrings  8   

6. Shoulder Press  8   

7. Quadriceps  8   

8. Lat. Pull Down  8   

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  10   

2. Calf Raise  10   

3. Triceps  10   

4. Chest Press  10   

5. Hamstrings  10   

6. Shoulder Press  10   

7. Quadriceps  10   

8. Lat. Pull Down  10   

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  12   

2. Calf Raise  12   

3. Triceps  12   

4. Chest Press  12   

5. Hamstrings  12   

6. Shoulder Press  12   

7. Quadriceps  12   

8. Lat. Pull Down  12   

Any comments about the session? 
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Week 2 – 50% of 1RM; 2 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  8   

2. Calf Raise  8   

3. Triceps  8   

4. Chest Press  8   

5. Hamstrings  8   

6. Shoulder Press  8   

7. Quadriceps  8   

8. Lat. Pull Down  8   

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  10   

2. Calf Raise  10   

3. Triceps  10   

4. Chest Press  10   

5. Hamstrings  10   

6. Shoulder Press  10   

7. Quadriceps  10   

8. Lat. Pull Down  10   

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  12   

2. Calf Raise  12   

3. Triceps  12   

4. Chest Press  12   

5. Hamstrings  12   

6. Shoulder Press  12   

7. Quadriceps  12   

8. Lat. Pull Down  12   

Any comments about the session? 

 



  

181 
 

Week 3– 60% of 1RM; 2 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  8   

2. Calf Raise  8   

3. Triceps  8   

4. Chest Press  8   

5. Hamstrings  8   

6. Shoulder Press  8   

7. Quadriceps  8   

8. Lat. Pull Down  8   

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  10   

2. Calf Raise  10   

3. Triceps  10   

4. Chest Press  10   

5. Hamstrings  10   

6. Shoulder Press  10   

7. Quadriceps  10   

8. Lat. Pull Down  10   

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  12   

2. Calf Raise  12   

3. Triceps  12   

4. Chest Press  12   

5. Hamstrings  12   

6. Shoulder Press  12   

7. Quadriceps  12   

8. Lat. Pull Down  12   

Any comments about the session? 
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Week 4 – 60% of 1RM; 2 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  8   

2. Calf Raise  8   

3. Triceps  8   

4. Chest Press  8   

5. Hamstrings  8   

6. Shoulder Press  8   

7. Quadriceps  8   

8. Lat. Pull Down  8   

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  10   

2. Calf Raise  10   

3. Triceps  10   

4. Chest Press  10   

5. Hamstrings  10   

6. Shoulder Press  10   

7. Quadriceps  10   

8. Lat. Pull Down  10   

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number of 

Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

1. Biceps  12   

2. Calf Raise  12   

3. Triceps  12   

4. Chest Press  12   

5. Hamstrings  12   

6. Shoulder Press  12   

7. Quadriceps  12   

8. Lat. Pull Down  12   

Any comments about the session? 
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Week 5 – 60% of 1RM; 3 Circuits     Weight (kg): 

Session 1- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  8    

2. Calf Raise  8    

3. Triceps  8    

4. Chest Press  8    

5. Hamstrings  8    

6. Shoulder Press  8    

7. Quadriceps  8    

8. Lat. Pull Down  8    

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  10    

2. Calf Raise  10    

3. Triceps  10    

4. Chest Press  10    

5. Hamstrings  10    

6. Shoulder Press  10    

7. Quadriceps  10    

8. Lat. Pull Down  10    

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  12    

2. Calf Raise  12    

3. Triceps  12    

4. Chest Press  12    

5. Hamstrings  12    

6. Shoulder Press  12    

7. Quadriceps  12    

8. Lat. Pull Down  12    

Any comments about the session? 
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Week 6– 60% of 1RM; 3 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  8    

2. Calf Raise  8    

3. Triceps  8    

4. Chest Press  8    

5. Hamstrings  8    

6. Shoulder Press  8    

7. Quadriceps  8    

8. Lat. Pull Down  8    

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  10    

2. Calf Raise  10    

3. Triceps  10    

4. Chest Press  10    

5. Hamstrings  10    

6. Shoulder Press  10    

7. Quadriceps  10    

8. Lat. Pull Down  10    

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  12    

2. Calf Raise  12    

3. Triceps  12    

4. Chest Press  12    

5. Hamstrings  12    

6. Shoulder Press  12    

7. Quadriceps  12    

8. Lat. Pull Down  12    

Any comments about the session? 
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Week 7 – 70% of 1RM; 3 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  8    

2. Calf Raise  8    

3. Triceps  8    

4. Chest Press  8    

5. Hamstrings  8    

6. Shoulder Press  8    

7. Quadriceps  8    

8. Lat. Pull Down  8    

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  10    

2. Calf Raise  10    

3. Triceps  10    

4. Chest Press  10    

5. Hamstrings  10    

6. Shoulder Press  10    

7. Quadriceps  10    

8. Lat. Pull Down  10    

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  12    

2. Calf Raise  12    

3. Triceps  12    

4. Chest Press  12    

5. Hamstrings  12    

6. Shoulder Press  12    

7. Quadriceps  12    

8. Lat. Pull Down  12    

Any comments about the session? 
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Week 8– 70% of 1RM; 3 Circuits     Body Weight (kg): 

Session 1- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  8    

2. Calf Raise  8    

3. Triceps  8    

4. Chest Press  8    

5. Hamstrings  8    

6. Shoulder Press  8    

7. Quadriceps  8    

8. Lat. Pull Down  8    

Any comments about the session? 

 

Session 2- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  10    

2. Calf Raise  10    

3. Triceps  10    

4. Chest Press  10    

5. Hamstrings  10    

6. Shoulder Press  10    

7. Quadriceps  10    

8. Lat. Pull Down  10    

Any comments about the session? 

 

Session 3- Date: 

Exercise Weight Number 

of Reps. 

Number Completed 

Circuit 1 

Number Completed 

Circuit 2 

Number 

Completed Circuit 3 

1. Biceps  12    

2. Calf Raise  12    

3. Triceps  12    

4. Chest Press  12    

5. Hamstrings  12    

6. Shoulder Press  12    

7. Quadriceps  12    

8. Lat. Pull Down  12    

Any comments about the session? 
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