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ABSTRACT

An induction generator offers advantages in terms of its low cost, simplicity,
robust construction, nature protection against short circuits and ease of
maintenance in today’s renewable energy industry. However, the need for an
external supply of reactive power (to produce a rotating magnetic flux wave)
limits the application of an induction machine as a standalone generator. It is
possible for an induction machine to operate as a Self-excited Induction
Generator (SEIG) if capacitors are connected to the stator terminals in order to
supply the necessary reactive power to achieve generating electrical energy in

remote areas.

Poor voltage and frequency regulation is the main drawback of a SEIG as the
system is highly dynamic under variable load conditions. The regulation of
speed and voltage does not result in a satisfactory level although many studies
have been focused on this topic in the past. Therefore, the aim of the thesis is
to provide a better understanding of the behaviour of a smooth airgap, self-
excited, squirrel cage induction generator as a nonlinear dynamic system when
operating under a variety of load conditions, which would hopefully contribute to

the development of a better regulated/controlled, viable SEIG system.

Allowing for the cross-saturation nonlinear effect, a mathematical Simulink, d-q
axis model of the SEIG system utilising currents as state space variables is
developed and verified by both the experimental results and numerical analysis.
The SEIG computer model is constructed and tested using Matlab/Simulink
R2010b throughout the thesis.

The self-autonomous system is shown to exhibit a transition from a stable
periodic orbit to a quasi-periodic orbit (leading to likely chaotic motion) through a
Neimark bifurcation, as a result of small changes in the values of system
parameters (such as load resistance, load inductance, rotational speed and
self-excitation capacitance). This characteristic dynamic behaviour of the SEIG



system is firstly identified in this work and is verified experimentally using a
1.1 kW laboratory test rig.

The stability of the periodic and quasi-periodic orbits exhibited by the SEIG
system when feeding an inductive load (RL) is numerically analysed and the
movement of the eigenvalues of the system’s characteristic matrix when
changing a system parameter is presented to verify the qualitative change in
system behaviour from a stable period-one orbit to unstable quasi-periodicity.
Eigenvalue technique is successfully applied to assess the stability of the
period-one and quasi-periodic orbits of the SEIG when feeding variable load

conditions.
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Chapter 1 Introduction

CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Apart from their general use as motors, three-phase induction machines (IMs)
are also used as generators in electric power systems. The induction generator
offers advantages for hydro and wind applications in terms of cost and simplicity
and it plays an important part in the renewable energy industry today [1, 2, 3, 4].

However, the induction generator has its limitations; it generally needs an
external power source to provide its excitation. This means that it is difficult to
employ in remote areas where there is no electrical power supply network.

The possibility of using a Self-excited Induction Generator (SEIG) where a
three-phase capacitor bank is connected across the stator terminals to supply
the reactive power requirement of a load and generator was discovered by
Basset and Potter in the 1930s [5]. When such an induction machine is driven
by an external mechanical power source, the residual magnetism in the rotor
produces an Electromotive Force (EMF) in the stator windings. This EMF is
applied to the capacitor bank causing current flow in the stator winding and
establishing a magnetising flux in the machine [6, 7]. An induction machine
connected and excited in this manner is capable of acting as a standalone
generator supplying real and reactive power to a load. In this mode of operation,
the capacitor bank supplies the reactive power requirement of the load and
generator and the real power demand of the terminal load is supplied by the

prime mover.

However, the main drawback of the SEIG system is that the voltage and
frequency produced by the system is highly dynamic under variable load
conditions. Although many studies have been focused on regulating the voltage
and frequency of the SEIG system under variable loads, the regulation of speed
and voltage does not result in a satisfactory level of performance due to the

nonlinear behaviour of the machine [8, 9, 10].

1
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Chapter 1 Introduction

In an attempt to better understand the above problem, this thesis is focused on
studying the steady-state nonlinear behaviour of the SEIG system when feeding
an inductive load (RL). Computer simulations, laboratory experimental tests and
numerical analysis reveal a variety of highly nonlinear behaviours of the SEIG

which have not been reported previously.

1.2 CONTRIBUTION OF THE THESIS

Induction machine cross-saturation nonlinear effect has been studied in the past
two to three decades [6, 11, 12, 13]. However, none of these studies presents a
complete analysis of the various types of nonlinear behaviours exhibited by the

SEIG when feeding variable loads.
This thesis presents:

e The first complete study of the nonlinear dynamic behaviour of the SEIG
using a nonlinear model of the machine to simulate the system.

e The first study in which numerical nonlinear analysis tools are applied to
investigate the operating characteristics of the SEIG as a nonlinear
dynamic system.

e The first examination of the periodic, quasi-periodic and chaotic
behaviour of the SEIG when supplying a variable inductive load (RL).

e The results of the SEIG Simulink model are not only compared with
experimental test results, but also verified by the nonlinear numerical

analysis tools.

The aim of the thesis is to provide a better understanding of the behaviour of
the SEIG that would hopefully contribute to the development of a better
regulated/controlled, viable SEIG system.

2
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Chapter 1 Introduction

1.3 SCOPE OF THE THESIS

This research thesis contains seven main chapters.

The First Chapter provides the reader with a brief introduction of the work, the
contribution of the thesis and the outline of the thesis.

The Second Chapter presents a brief literature review of the SEIG system and

an overview of established nonlinear computer models for induction machines.

The Third Chapter gives an introduction to nonlinear dynamic systems, types of

nonlinearities, nonlinear analysis tools and stability analysis methods.

The Fourth Chapter presents the Simulink model used to investigate the
behaviour of the SEIG system when feeding variable loads. A linear
conventional IG model is introduced to the reader first as a foundation for the
development of the nonlinear model of the SEIG system. Magnetic cross-
saturation effects are then incorporated into the induction machine model to
produce a current based nonlinear IG model. The dynamic model of the system
is completed by incorporating a capacitor bank connected to the stator terminals
into the model which is needed to provide reactive power to both the generator
and the load. The initial self-excitation process of the SEIG obtained from the
nonlinear model is compared with those obtained from a well-known publication
[14]. The behaviour of the SEIG model is then examined when feeding a purely

resistive load connected to the stator terminals.

A number of laboratory tests are presented in the Fifth Chapter. An SEIG test
rig (using a 1.1 kW induction machine) is tested when feeding variable loads
under controlled laboratory conditions. The results from these experimental
tests are analysed and used to demonstrate the performance of the SEIG
system. Laboratory results are compared with simulation waveforms showing

very good agreement and confirming the validity of the model.

Based on the simulation results obtained from the nonlinear model of the SEIG
system, the Sixth Chapter presents a study of the dynamic performance of the
system by employing modern nonlinear numerical analysis tools. The
performance characteristics of the system (e.g. stability and frequency
regulation) when supplying an inductive load (RL) are studied by considering the

3
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Chapter 1 Introduction

effects of the following three parameters: 1) changing the power factor of the
load; 2) changing the rotor speed and 3) changing the value of the self-
excitation capacitance. Finally, the SEIG performance is analysed using
nonlinear numerical analysis tools and computer simulations to establish the

nonlinear characteristics of the system.

The Seventh Chapter presents the conclusions and discussions of the thesis
and suggestions for future work.

1.4 PUBLICATION

D. D. Ma, B. Zahawi, D. Giaouris, S. Banerjee and V. Pickert, “Nonlinear
Behaviour of Self-excited Induction Generator Feeding an Inductive Load,”
PEDES International Conference on Power Electronics, Drives and Energy
Systems, New Delhi, India, pp. 1-5, December 12-15, 2006.

4
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Chapter 2 The SEIG System Review

CHAPTER 2

THE SEIG SYSTEM REVIEW

The ever increasing demand for energy, the depletion of conventional energy
resources and the degradation of environmental conditions throughout the world
have led governments/scientists/researchers to explore renewable or
nonconventional energy sources (e.g. wind, hydro, solar, bio-energy and micro-
generation) in recent two to three decades. Renewable energy is the key to our
low carbon energy future. In early 2008, European Union (EU) Commission
aimed to achieve a 2020 target of deriving 20% of the EU’s energy consumption
from renewable sources, while the UK government proposed to achieving 15%
renewable target by 2020 [15].

The use of an induction machine as a generator is becoming more and more
popular for renewable energy applications [4, 12, 16, 17]. Squirrel cage
induction generators with excitation capacitors (known as SEIGs) are popular in

isolated nonconventional energy systems [3, 4, 18].

As discussed in the previous chapter, the main limitation of the SEIG system is
the poor voltage and frequency regulation when supplying variable loads
connected to the stator terminals. However, the development of static power
converters has facilitated the control of the output voltage and frequency of the
induction generator. This chapter presents a literature review of the
development, the self-excitation phenomena, the performance and the
operational problems of the SEIG system. This is followed by an historical
overview of computer modelling techniques of the SEIG based on cross-
saturation effect, the saturation of leakage inductance, the machine H-G

diagram and the skin effect.

5
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Chapter 2 The SEIG System Review

2.1 SEIG SYSTEM CONFIGURATION

The SEIG system is composed of four main items: the prime mover, the
induction machine, the load and the self-excitation capacitor bank. The general
layout of the SEIG system is shown in Figure 2.1.

—( )

Hydr Induction | __L
Tuﬁbiﬁe Generator m Loads

Capacitor

Barl

Figure 2.1 Schematic diagram of a standalone self-excited induction generator.

The hydro/wind turbine is assumed to operate with constant input power
transferred to the induction generator. The real power required by the load is
supplied by the induction generator by extracting power from the prime mover
(turbine). When the speed of the turbine is not regulated, both the speed and
shaft torque vary with variations in the power demanded by the loads. The self-
excitation capacitors connected at the stator terminals of the induction machine
must produce sufficient reactive power to supply the needs of the load and the

induction generator.

A squirrel cage induction generator (SCIG) is more attractive than a
conventional synchronous generator in this type of application because of its
low unit cost, absence of DC excitation source, brushless cage rotor
construction and lower maintenance requirement [18, 19]. A suitably sized
three-phase capacitor bank connected at the generator terminals is used as
variable lagging VAr source to meet the excitation demand of the cage machine
and the load. The machine operated in this mode is known as a Self-excited
Induction Generator (SEIG) [12]. However, the main drawback of the
standalone SEIG is its poor voltage and frequency regulations under variable
loads. A change in the load impedance directly affects the excitation of the
machine because the reactive power of the excitation capacitors is shared by

both the machine and the load. Therefore, the generating voltage drops when
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the impedance of the load is increased resulting in poor voltage regulation. Poor
frequency regulation occurs (an increase in the slip of the induction machine)

when the load is increased.

2.2 OVERVIEW OF THE SELF-EXCITED INDUCTION GENERATORS

Owing to increased emphasis on renewable resources (such as small hydro,
wind, solar, tidal and wave) and their variable speed nature, the performance of
synchronous generators can be greatly affected. Hence, SEIGs have emerged
as suitable candidates for isolated power sources to convert power at the shaft
of wind/hydro turbines into electrical energy [4, 20, 21].

2.2.1 OVERVIEW OF THE DEVELOPMENT OF THE SEIG

Basset and Potter first discovered the possibility of using an induction machine
as a SEIG during the 1930s. An induction machine operates as a generator if
an appropriate supply of inductive VArs is available to provide the machine’s
excitation at a certain rotational speed. Self-excitation can be achieved by the
connection of suitable capacitors at the machine’s stator terminals. The lagging
VArs supplied by the capacitors is consumed by the machine’s excitation,
leakage reactance and the reactance of the inductive load.

Although the SEIG scheme was discovered more than eighty years ago, a large
number of research papers are only increasingly focused on the investigation
and applications of SEIGs in the recent two/three decades [4, 18]. This is due to
the improving voltage and frequency control techniques and the worldwide vast
attention on the development of renewable energy sources over the past thirty
years.

In 1982, Murthy et al. developed a mathematical model for obtaining the steady-
state performance of a SEIG by using the equivalent circuit (EC) of the
induction machine [22]. The Newton-Raphson method was used to obtain the
operating frequency and the magnetising reactance from the nonlinear
equations of the system. A year later, Quazene et al. developed a nodal
equation to solve for the operating frequency and then the magnetising

reactance by using a nodal admittance technique [23].
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Tandon et al. presented an alternative approach to the steady-state
performance analysis of a stand-alone SEIG using balanced terminal capacitors
in 1984 [24]. The predicted steady-state performance of the SEIG under
different load conditions by operational ECs matched well with corresponding

experimental results.

In 1993, a mathematical model for the EC of a SEIG was used to solve the
nonlinear equation for the operating frequency by an iterative technique by
Rajakaruna and Bonert [25]. Two years later, Chan proposed an iterative
technique to solve for the value of the operating frequency by considering a
small increment in the operating frequency (an initial value of the operating

frequency was assumed) [26].

In order to capture more wind energy under variable wind speed conditions, a
pole changing method of SEIGs was investigated in [27, 28]. The requirements
for the excitation capacitor, machine flux density, maximum electromagnetic
torque, output power and stator terminal voltage under different pole
configurations were discussed by Chatterjee and Khan [28]. It was observed
that the stator current was smaller, capacitor requirement was less (around 44%)
and power output was about 2.5 times larger in a four-pole than the
corresponding results from a six-pole configuration. Hence, the conclusion
leaded to the four-pole configuration generated better utilisation of the SEIG

rating than the six-pole configuration.

In 1997, Wang et al. predicted the minimum and maximum values of
capacitance required for the self-excitation of the SEIG by an eigenvalue based
approach [29].

An analysis of the steady-state performance of SEIGs driven by both regulated
and unregulated turbines was presented in [30, 31]. The steady-state
performance of a standalone SEIG with a transformer connected to its terminal
was analysed in [32]. The function of the transformer was to step up the stator
terminal voltage or to supply a different voltage to the load. At relatively high
rotational speeds, the saturated transformer was able to absorb reactive power
and regulate the terminal voltage. However, such a transformer introduced an

additional nonlinearity into the system, which complicates the analysis process.
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A general analysis of a three-phase SEIG with asymmetrical connected loads
and excitation capacitors by adopting the symmetrical components method was
presented in 2001 [33].

In the past few decades, other papers have been focused on the analysis of the
transient voltage built up of SEIGs [34, 35, 36].

By taken into account the magnetic saturation nonlinear effect, the influence of
the terminal capacitors on the transient behaviour of an induction machine was
studied by Smith et al. in 1968 [37]. The tests showed that it was not advisable
to reconnect a capacitor excited induction generator to the busbar, unless the
interruption is of short period. The results also indicated that the saturation of
the main flux path does not affect the transient behaviour of the machine

without self-excited capacitors.

The self-excitation voltage built up process in a standalone SEIG was analysed
by Wang et al. in 1999 [38]. They examined the SEIG under unbalanced
excitation capacitor conditions (by the sudden switching of one excitation
capacitor or two excitation capacitors). The results showed that the SEIG could
maintain the self-excitation process and generate the other two phase voltage
when one phase capacitor was switched off. However, the SEIG voltage

collapses when two phase capacitors were cut off.

A year later, Wang et al. presented a comparison study of different shunt
capacitor configurations of an isolated SEIG feeding an induction motor load
[39]. Their analysis showed that the short-shunt connection provided better
voltage regulation, whereas the long-shunt connection might cause unwanted
oscillations. The eigenvalue technique was employed to examine the unstable
operating conditions of the SEIG system.

The dynamic behaviour of the SEIG was experimentally investigated by Levy in
1997 [40]. However, under variable speed conditions with a fixed capacitor bank
connected to the stator terminals, testing leaded to voltage collapsing and the
demagnetisation of the machine.

The transient performance of a three-phase SEIG under balanced and
unbalanced fault conditions was studied in [41]. The effects of main and cross

flux saturation under load perturbation, three-phase or line-to-line short circuit,
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switching off one or two capacitor(s), opening of single or two phase load

conditions were considered.

Due to small hydro and wind generating systems having constraints on the size
of individual machines, several induction generators were connected in parallel
by Farret et al. in order to achieve full performances on site [42]. The transient
behaviour of the parallel connected SEIGs could not be easily modelled by
conventional models because of its fast transient nature. Therefore, the
previous work related to transient analysis of SEIGs did not clearly correspond
to experimental observations. An innovative and automatic numerical solution of
the steady-state and transient analysis of any number of SEIGs operating in
parallel was presented in [42]. The nonlinear relationship between airgap
voltage and magnetising current was described by a fourth order polynomial
curve fit. It was possible to have a mathematical description of the machine
models, the self-excitation capacitor bank and the load. The data generated
from the experimental testing confirmed the accuracy of the proposed

mathematical model.

Many of these articles have been focused on analysing the steady-state and
transient performance of SEIGs from the design and operational point of view.
This thesis, on the other hand, is focused on studying and analysing the steady-
state, nonlinear behaviour of the SEIG system as a nonlinear dynamic system.
The presence of the capacitor bank together with the saturated magnetic circuit
of the induction generator produces a nonlinear dynamic system with the
possibility of chaos. Qualitative changes in the system dynamics (for example a
change in system frequency) are called Bifurcations [43]. The behaviour of a
nonlinear dynamic system can change dramatically with a small change in
system parameters. SEIG nonlinear phenomenon such as quasi-periodicity,
chaotic behaviours and bifurcations are studied and analysed in this thesis.

10
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2.2.2 THE SELF-EXCITATION PHENOMENON

The self-excitation phenomenon of an induction machine is still under
considerable attention although it is known for more than a half century [44, 45,
46]. When a standalone induction machine is driven by a mechanical prime
mover, the residual magnetism in the rotor of the machine induces an EMF in
the stator windings at a frequency proportional to the rotor speed. This EMF is
applied to the capacitors connected to the stator terminals and causes reactive
current to flow in the stator windings. Hence a magnetising flux in the machine
is established. The final value of the stator voltage is limited by the magnetic
saturation within the machine. The induction machine is then capable of
operating as a generator in isolated locations without a grid supply.

Once the machine is self-excited and loaded, the magnitude of the steady-state
voltage generated by the SEIG is determined by the nonlinearity of the
magnetising curves, the value of the self-excitation capacitance, speed,
machine parameters and terminal loads. As the load and speed of the SEIG
changes, the demand for lagging VArs to maintain a constant AC voltage
across the machine terminals also changes [47]. Arrillaga and Watson predicted
the effect of a resistive load on the frequency of the generator where a new
operating point was obtained by shifting the saturation curve and capacitive
load in the terminal voltage-current characteristics [48]. The effect of an

inductive load was also studied and experimentally verified in [47, 48].
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2.2.3 SEIG SYSTEM PERFORMANCE

The performance characteristics of the SEIG system depend mainly on the
following:

e The parameters of the induction machine
The machine operating voltage, rated power, power factor, rotor speed
and operating temperature and the induction machine parameters
directly affect the performance of the SEIG system.

e The Self-excitation process
The connection of a capacitor bank across the induction machine stator
terminals is necessary in the case of standalone operation of the system.
The capacitor connection scheme (delta or star) and the use of fixed or
controlled self-excitation capacitors have a direct impact on the
performance of a SEIG system.

e |oad parameters
The power factor, starting/maximum torque and current, generated
harmonics and load type also affect the performance of the SEIG system
directly.

e Type of prime mover
Whether the primary source is hydro, wind biomass or combinations, the
performance of the SEIG system is affected.

12
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2.2.4 OPERATIONAL PROBLEMS OF THE SEIG SYSTEM

The main operational problem of the SEIG system is its poor voltage and
frequency regulation under varying load conditions [49, 50, 51]. A change in the
load impedance directly affects the machine excitation. This is because the
reactive power of the excitation capacitors is shared by both the induction
machine and the load impedance. Therefore, the generator’s voltage drops
when the load impedance is increased resulting in poor voltage regulation. On
the other hand, the slip of the induction generator increases with increasing load,
resulting in a load dependant frequency, even if the speed of the prime mover

remains constant.

Many studies have been conducted in the past to regulate the voltage and
frequency of a SEIG system operating with variable loads [9, 49, 52, 53]. A high
cost speed governor is generally used as a conventional SEIG controller.

A strategy of controlling voltage and frequency of a SEIG system was presented
by Suarez et al. in 1999 [49]. Sliding mode controller was proposed showing
controlled dynamic response and behaviour of the system upon changes in
generator parameters and load. However, an accurate transient model of
representing instantaneous phase angle between stator voltage and external
inductor current at switching instant is highly recommended in order to achieve
optimal control.

Regulating voltage and frequency of a SEIG under varying load conditions by
an electronic load controller (ELC) was examined by Singh et al. in 2006 [52].
The ELC consists of a chop circuit and a rectifier which produces harmonics
during operation. AC current harmonics generated by ELC during operation and
their impact on the performance of the SEIG were studied in [52].

In 2008, Youssef et al. presented a method of voltage and frequency regulation
of an induction generator under islanding mode [53]. A constant voltage and
constant frequency PWM converter was used by eliminating the need of an
auxiliary switch in the DC side, which in turn reduced cost and high frequency
current components. The results of the proposed method showed the same
response as the technique of including the DC side switch. The control
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technique was proved to work well under sudden changes in load and rotational
speed.

In most of these studies, the control of the terminal voltage is generally
performed by controlling a variable reactive power source and frequency
regulation is achieved by regulating the speed of the prime mover by utilising a
mechanical speed governor. However, the regulation of speed and voltage does
not result in a satisfactory level of performance due to the highly dynamic
changes in slip of the machine and the difficulties in building a smooth variable

reactive power source at low costs.

In order to contribute to a solution of the above operational problems, this thesis
presents an investigation of the steady-state nonlinear behaviour of the SEIG
system when feeding variable inductive loads (RLs). The analysis of this highly
dynamic nonlinear system reveals a variety of unique behaviours which have

not been previously reported.
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2.3 MODELLING OF THE SEIG AS A NONLINEAR SYSTEM

After the self-excitation process in a SEIG is initiated, the final value of the
stator voltage is limited by magnetic saturation in the machine. The induction
machine exhibits nonlinear characteristics under saturated condition. Once the
machine is loaded, the magnitude of the voltage generated is determined by the
nonlinearity of the magnetising characteristics, the value of capacitance, speed,
machine parameters and terminal load. Many studies have been carried out in
the past to model the self-excited induction machine system. It is important to
model the nonlinearity of the induction machine in order to fully understand the
behaviours of this highly dynamic system.

2.3.1 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE CROSS-
SATURATION EFFECT

Several papers have been published in the past detailing the transient
equations of smooth airgap induction machines with a focus on the cross-
saturation nonlinear effect [11, 54, 55, 56, 57]. It is generally believed that a
change in the quadrature axis magnetising current will cause a change of flux
linkage in the direct axis windings and vice versa. Under core saturation
conditions, the airgap flux density distribution over one half of the pole-pitch is
decreased by a greater amount than the increase under the other half of the
pole-pitch [54]. The mathematics in these papers was focused on the modelling
of the mutual inductance as a nonlinear function of current. This nonlinear

modelling approach works well under normal operating conditions.

Levi investigated the impact of cross-saturation on the accuracy of different
types of saturated induction machine models [57]. Two transient induction
machine models (one with induction generator self-excitation and the other with
motor starting with increased voltage) were analysed in the paper. Poor results
were generated from the models where the cross-saturation effect was
neglected. However, the nonlinear models are more complicated, requiring time
derivative of the inverse of the inductance matrix when considering the cross-

saturation effect.

15

School of EEE at Newcastle University



Chapter 2 The SEIG System Review

2.3.2 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE SATURATION
OF LEAKAGE INDUCTANCE EFFECT

Several researchers/scientists were interested in modelling induction machines
with a focus on the saturation of leakage inductance nonlinear effect [56, 58, 59].
An interesting paper written by Lipo et al. analysed the induction machine by
considering the saturating leakage reactance, a completely different concept to
that of the cross-saturation [58]. Large starting currents flowing in the machine
during acceleration can cause large values of slot leakage flux in both stator
and rotor. This often leads to the saturation of the teeth of the machine. A key
step in this approach is to separate stator and rotor leakage inductance into slot
(teeth) and end winding (core) portions. The teeth are considered to be
saturated (nonlinear inductance) while the core is considered to be unsaturated
(constant inductance). The analysis of the induction generator based on
saturation of leakage inductance effect is focused on teeth saturation whereas
the cross-saturation nonlinear model considers core saturation. Hence, it was
concluded that the nonlinear approach of modelling induction generators based
on saturation of leakage inductance is usually applied to high power industrial

motor drives under large inrush current conditions [58].
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2.3.3 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE H-G
DIAGRAM

The H-G diagram is another effective nonlinear technique for modelling
induction machines [60, 61, 62]. The diagram represents one of the most recent
approaches to induction motor modelling to include temperature and saturation
effects. The diagram uses only three parameters (such as slip frequency, stator
inductance and total leakage coefficient) instantaneously determined by plotting
a circle (H-G diagram) to describe the saturation in the machine. G and H
represent the real and imaginary part of the induction machine stator winding
input impedance [60].

A nonlinear model proposed by Benbouzid et al. for a 0.75 kW induction
machine based on H-G diagram showed good results at the starting phase of
the induction motor or when sufficient load is applied to the machine [61]. It was
initially believed that the H-G diagram approach could produce the same
dynamics of the nonlinear system as the cross-saturation method. The torque
and speed transients obtained from the H-G diagram method were in good
agreement with those obtained from the cross-saturation model. However, the
steady-state results generated from the H-G diagram were not as accurate as
those obtained from the cross-saturation model unless sufficient load was
applied to the stator terminals.
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2.3.4 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE SKIN EFFECT

Another nonlinear modelling method was presented through the consideration
of the skin effect phenomenon in [63, 64, 65]. This approach is focused on
creating a nonlinear mathematical function of frequency for the system. Skin
effect occurs when the leakage flux causes the current to crowd towards the top
of the bar adjacent to the airgap where bar conductors are contained in slots.
This nonlinear effect has a direct impact on the dynamic behaviour of the
induction machine. Due to skin effect, the effective cross section of the rotor
conductor is reduced, which causes a decrease in the leakage inductance and
in turn increases the amplitude of stator current. Moreover, the copper loss
becomes greater by an increased rotor resistance. Hence, the analytical
formula of modelling the skin effect to relate rotor resistance and inductance as
a function of its rotor bar dimensions and frequency can be solved by adapting
Maxwell’'s equation. Experimental results for a 7.5 hp induction machine verified
the accuracy of the proposed nonlinear SEIG model with the consideration of
skin nonlinear effect in the case of no-load condition [63].

Another model presented by Okoro for a 7.5 kW wind turbine driven squirrel
cage induction generator with the consideration of skin effect showed that the
calculated inrush currents and the machine accelerating time were more
accurate than those obtained from conventional/linear models. However, the
accuracy level could be further improved by considering the saturation nonlinear
effect [65].

The most widely used induction machine transient state model is the d-q (direct-
quadrature) axis frame of reference representation. The d-q axis model
provides a convenient way for variable solutions of dynamic systems. In this
thesis the d-q axis model will be utilised along with the representation of the
cross-saturation nonlinear effect to emulate the SEIG system due to its
accuracy and robustness.
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2.4 SUMMARY

An overview of the self-excitation phenomenon and the historic development of
the SEIG was presented in this chapter. The performance characteristics and
operational problems of SEIG systems together with a review of different

approaches to the nonlinear modelling of induction machines were also given.

The prime mover, the induction machine, the load and the self-excitation
capacitors are the four main items comprising the SEIG system.

A brief overview of the steady-state and transient analysis of the SEIG system
as presented in the literature was carried out in this chapter. Most
researchers/scientists have been focused on analysing the steady-state and
transient performance of SEIGs from the design and operational point of view.
However, this thesis is focused on studying and analysing the steady-state
nonlinear behaviour of the SEIG system as a nonlinear dynamic system.

The parameters of the induction machine, the self-excitation process, the load
parameters and type of primary mover are the main factors affecting the
behaviour of the SEIG system.

Poor voltage and frequency regulation are two major drawbacks of the SEIG
system under variable load conditions. This thesis presented an investigation of
this highly dynamic nonlinear system revealing a variety of unique behaviours in

order to contribute to the understanding of the above operational problems.

Various nonlinear modelling techniques of induction machines, such as based
on cross-saturation effect, saturation on leakage inductance effect, H-G
diagram and skin effect were considered in this chapter. The cross-saturation
nonlinear effect technique was shown to have numerous advantages (e.g. most
accurate and robust) over the other computer modelling techniques mentioned
above.

The d-q axis state space mathematical model of the SEIG system feeding a
variable load, implemented in Matlab/Simulink (version: R2010b), with
consideration of the cross-saturation effect was used in this investigation and
the results verified experimentally.
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CHAPTER 3

NONLINEAR DYNAMIC SYSTEMS

This chapter presents a brief and general mathematical background and the
analytical tools required to investigate the SEIG system as a nonlinear dynamic

system.

3.1 NONLINEAR DYNAMIC SYSTEMS

A dynamic system is an object, or a set of objects, that has the ability to change
its state with respect to time, possibly under external excitations. In other words,
any system whose status changes with time is a dynamic system. In
mathematical language, a dynamic system can be expressed in terms of
X, T and @' where X is a state space including all possible states of a system
(state space is also known as phase space), T is a time set, and ¢! is a family

of evolution operators [66].

It is generally known that there are two types of dynamic system equations:
differential equations and difference equations (also known as iterated maps or
Poincaré maps). Differential equations describe the evolution of systems in
continuous-time, whereas iterated maps analyse the evolution of systems in
discrete-time domain. Difference equations can be useful in reducing the order
of a dynamic system [66]. In fact, the Poincaré map technique is adopted in this
thesis to study the dynamics of the SEIG system.
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3.1.1 DIFFERENTIAL EQUATIONS

An ordinary differential equation (ODE) of a continuous-time, autonomous
dynamic system together with its initial condition is defined as an initial value
problem (IVP)

x=f(x), x(tp) =xo (3.1)

where x = dx/dt, x(t) € R" is the state of the system at time ¢, R" is called the
set of all real vectors with n entries or the n-dimensional Euclidean space, f is
referred to as the vector field and x(ty) = x4 is the initial condition of the

dynamic system. The solution or flow of the IVP (3.1) is often written as ¢.(x).

An autonomous system is defined as the system equations do not have any
external applied time varying input or other time variations by not containing any
time dependant term on the right hand side of (3.1) [67]. Therefore, the initial

time is normally taken as t, = 0.
An IVP of a continuous-time, non-autonomous dynamic system is defined as
x=fxt), x(ty) = xo (3.2)

A system with external inputs or forcing functions or time variations is called a
non-autonomous system [68]. For a non-autonomous system (3.2), the right-
hand side f(x,t) of the equation depends explicitly on time and the initial time

to is not usually set to 0.

This thesis is focused on autonomous systems as a SEIG system is a time

independent system.

3.1.2 DIFFERENCE EQUATIONS

A discrete-time dynamic system is defined by the following difference equation
x(k+1) = f(x(k)), k=012 (3.3)

where x(k) € R" is the state vector and f maps the state x(k) to the next state
x(k+1).
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Discrete-time systems are useful for studying continuous-time systems like the
SEIG by reducing the order of the system equations. The use of discrete

equations also avoids the need to solve complicated differential equations.

3.2 POINCARE MAPS

The Poincaré map technique is a powerful tool in studying continuous-time
dynamic systems. Using this technique, an n*order continuous-time system is
replaced with an (n— 1)'* order discrete-time system. In other words, a
Poincaré map is a classical technique that transforms a continuous-time system
to a reduced order discrete-time system. The steady-state behaviour (limit set)
of a Poincaré map corresponds to steady-state behaviour of the underlying flow
of a continuous-time system bridging the gap between continuous and discrete-

time systems [69].

Consider a general n-dimensional autonomous system x = f(x) with initial
condition x(ty) = xo and a periodic orbit x, (Figure 3.1 ). The dimension of the
state space is n and S,,_; is a (n — 1) dimensional surface not parallel to the
trajectory. Point x* (the fixed point) is the intersection between the limit cycle
and surface S,,_;. A new coordination system V on S,,_; is defined to reduce the

order of the original system.

Figure 3.1 Poincaré map of a periodic autonomous system.
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Figure 3.2 shows a small perturbation Ax added onto the trajectory such that
x(t) = x,(t) + Ax(t).

Perturbation

Figure 3.2 Poincaré map of a periodic autonomous system with perturbation.

The intersections can be described by the points: a — b. Therefore, to go from
point a to point b, there shall be a map V, = P(V,) (continuous function) or
described in more general terms V., = P(V}) (discontinuous function). P is the
relation/formula between vector V, and V. This map is referred to as the
Poincaré map. However, it is sometimes difficult to find an explicit formula for
such a map.

If the disturbance approaches the original limit cycle, the orbit is said to be
stable. If however, the disturbance converges to another steady-state, the limit
cycle is said to be unstable.

23

School of EEE at Newcastle University



Chapter 3 Nonlinear Dynamic Systems

3.3 LIMIT SETS

There are four types of limit sets of continuous-time and discrete-time dynamic
systems. Moving from the simplest to the most complex these are: equilibrium
points, periodic solutions, quasi-periodic solutions and chaos.

The following steady-state behaviour is described from both continuous-time

and discrete-time dynamic system points of view.

3.3.1 FIXeD POINTS

A fixed point of a continuous-time autonomous dynamic system (equation (3.1))

marked as x" is defined by f(x*) = 0 and x* = ¢,(x") for all t [69].
A fixed point is sometimes called an equilibrium, rest or stationary point.

The limit set of an equilibrium point is simply the equilibrium point itself.

3.3.2 PERIODIC SOLUTIONS

If, for system (3.1), a relation x(t + T) = x(t) exists for all t where T is a
constant > 0, the function x(t) is called periodic and T is its period. If the
neighbourhood of a periodic solution has no other periodic solution, this closed

curve in the phase plane is called a limit cycle.

The limit set of a limit cycle is the closed trajectory traced over for one period.
Whereas the limit set corresponding to a limit cycle on a Poincaré map is a fixed

point x*(shown in Figure 3.1).

3.3.3 QUASI-PERIODIC SOLUTIONS

When two or more frequencies appear in an autonomous system and if the ratio
of frequencies is not a ratio of integers, the signal is quasi-periodic. The number
of fundamental frequencies is called the degree of quasi-periodicity.

A degree 2 quasi-periodic trajectory lies on a torus in the phase space.
Although the trajectory does not pass through every point on the torus surface,
it repeatedly comes arbitrarily close to every point on the torus. The trajectory
winds around on the torus surface endlessly, never intersecting or quite closing

on itself. Thus, the limit set of a degree 2 quasi-period solution is torus shaped.
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The steady-state of a degree 2 quasi-periodic orbit shown on a Poincaré map is
an embedded circle as displayed in Figure 3.3.

Figure 3.3 The limit set of the Poincaré map in the case of a degree 2 quasi-

periodic orbit is an embedded circle.

3.3.4 CHAoOTIC BEHAVIOUR

There is no widely accepted definition for chaos. It is generally agreed that
chaotic behaviour is not an equilibrium point, not periodic and not quasi-periodic.
It is however a bounded steady-state behaviour [69]. The chaotic orbit is so
sensitive to initial conditions that the outcome after time tis totally unpredictable
despite the fact that the system itself could be completely described by very

simple mathematical equations with no external influences.

The limit sets of chaotic motion are not simple points, circles or tori, they are

complicated strange attractors.

The limit set on a Poincaré map for chaotic motion is not a simple geometrical
object but a fine structure. An example of such strange attractor is shown in
Figure 3.4.
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Figure 3.4 The limit set of the Poincaré map for a chaotic system [69].
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Table 3.1 summarises the above mentioned steady-state behaviours for
dynamic systems.

Table 3.1 Limit sets presented on ODEs and Poincaré maps.

Limit sets ODEs Poincaré
maps
Fixed point Fixed point n/a
Periodic Closed cycle . '
solution traced over Fixed point
for one period
Quasi-
periodic Torus shape Emc?ﬁ;?ged
solution
Complicated
Chaotic strange Fine structure
attractors

3.4 STABILITY OF LIMIT SETS

The study of the stability of limit sets is of great importance in analysing the

behaviour of a nonlinear dynamic system.

One popular approach to determine the stability of a limit set is by placing a
small perturbation to the original nonlinear system. The fixed point is stable if
the solution converges back to the original fixed point and is unstable otherwise.

As the Poincaré map technique is utilised in analysing the stability of the SEIG
nonlinear system (Chapter Six), the following discussions are focused on
discrete-time dynamic systems.
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3.4.1 STABILITY OF A FIXED POINT

Consider the following discrete-time dynamic system
Xn+1 = f(xn) = Axn (34)

Firstly, in order to find the fixed point of the system (3.4), the following formula
needs to be observed

Xn+1 = Xn = x* (35)

Secondly, the Jacobian matrix A can be obtained by linearising the system
locally in a neighbourhood of the fixed point x*. A Jacobian matrix contains all
first-order partial derivatives of a vector-valued function [67].

The local linearisation of the system at the fixed point x* in state space is given
by

0h Oh 9K

0xq O0xp ... Oxp
X2 f2 3f2 ... Of2 X1
< x:3 > = 0x1 0x;  Oxp X <x2> (36)
Xnt1 : P, Xn

0xq 0x3 Oxn x*

where the Jacobian matrix A (evaluated at x*) is given by

on on on
0xqy 0xy ... Oxp
oz 9fr .. 0fz
A=| dx1 Oxp  Oxq (3.7)

\% O * Ofn /
0x, 0x; 0xn x*

The eigenvalues of the Jacobian (3.7) can now be calculated, indicating the
stability of the fixed point x*.

In a discrete-time system, a fixed point is stable if all the eigenvalues of the
Jacobian matrix have magnitude(s) less than unity. Equally, a fixed point is
stable only if all the real parts of the eigenvalues are negative in a continuous-
time dynamic system.
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3.4.2 STABILITY OF A PERIODIC SOLUTION

As discussed in Section 3.3.2, the limit set of a periodic solution on a Poincaré
map is a fixed point. The stability of a periodic solution can therefore, be
investigated by introducing the Poincaré map technique and calculating the
eigenvalues of the Jacobian matrix corresponding to the resulting fixed point.

From a graphical point of view, if the perturbed trajectory approaches the fixed
point, the fixed point is stable. Whereas, the fixed point is unstable if the

perturbed trajectory is moving away from the fixed point.

n-1

“n-1

Figure 3.5 Two perturbed trajectories; stable case (top) and unstable case
(bottom).

The top graph of Figure 3.5 shows that point d is getting closer to the fixed point

*

x* . Therefore, it has stable orbits. Whereas the bottom graph leads to

unstableness as d is moving away from x*.

Further discussions associated with the stability of the periodic solution for the
SEIG system are presented in Chapter Six.
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3.4.3 STABILITY OF A QUASI-PERIODIC SOLUTION

The stability of a quasi-periodic trajectory is also investigated by introducing the
Poincaré map technique and evaluating the eigenvalues of the corresponding
Jacobian matrix.

As discussed in Section 3.3.3, the limit set of a quasi-periodic waveform on a
Poincaré map is an embedded circle. The fixed point can be found at the middle
of the closed loop. Therefore, the problem can be reduced to the stability of the
fixed point from the corresponding Poincaré section.

From a graphical point of view (Figure 3.6), if the iterates spiral into the fixed
point, this fixed point is stable. However, if the iterates spiral out to the closed
circle on the Poincaré section, the fixed point is unstable [67]. Figure 3.6 shows
an example of both the stable and unstable cases for a degree 2 quasi-periodic
system.

Figure 3.6 Phase plane diagrams for a degree 2 quasi-periodic system; the
fixed point at (0,0) is stable (left), the fixed point at (0,0) is unstable (right) [67].

Further discussions associated to the stability of a fixed point on the quasi-

periodic solution for the SEIG system are presented in Chapter Six.
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3.5 BIFURCATION DIAGRAMS

A qualitative change that occurs in the dynamics of a system when changing
one of its parameters is called a bifurcation [67]. A bifurcation diagram is a plot
that shows the sampled steady-state behaviour of a system over a range of

parameter values.

Electrical machines are generally designed to work at certain operating
conditions that give specific output characteristics. However, in the presence of
significant nonlinearities, the operating mode can be changed qualitatively when
input voltage or load changes. Therefore, the study of bifurcation diagrams can
be of great importance in such systems.

Two main types of bifurcations take place in nonlinear dynamic systems:
smooth and non-smooth bifurcations. The former is characterised by a change
in stability status, whereas the latter is characterised by a change in operation

as a result of a disturbance of the operating topological sequence [67].

In general, electrical machines exhibit smooth bifurcations. Therefore, only
smooth bifurcations are considered in this thesis.

3.5.1 SMOOTH BIFURCATIONS

Smooth bifurcations are broadly classified into four types: pitchfork, saddle-
node, period-doubling and Hopf bifurcations.

A pitchfork bifurcation has the characteristic of symmetry [70]. The stable fixed
point of a typical pitchfork bifurcation splits into a pair of stable fixed points,
whereas the original fixed point becomes unstable (Figure 3.7).

stable

_________ unstable

stable

Figure 3.7 A typical characteristics of a pitchfork bifurcation, r is the bifurcation

parameter and x is the system output.
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The saddle-node bifurcation has the basic characteristic of the creation and
destruction of fixed points [70]; i.e. the original fixed point disappears and a pair
of new fixed points are born (one is stable and the other unstable, Figure 3.8).

In discrete-time systems, the saddle-node bifurcation is also known as a fold
bifurcation.

unstable ~ . _

stable

Figure 3.8 A typical characteristics of a saddle-node bifurcation, r is the

bifurcation parameter and x is the system output.

The phenomenon of a period-one (n) orbit transferring to period two (n x 2)
solution is known as a period doubling bifurcation (Figure 3.9) [67]. In discrete-

time systems, the corresponding bifurcation diagram flips between two points,
hence the name flip bifurcation.

i z Eel B2 By 1e2AT

R By Dy 1.2+47
Figure 3.9 A period doubling bifurcation [71]

In continuous systems, if a Poincaré map shows a stable fixed point before the
bifurcation which turns into a closed loop after the bifurcation, a Hopf bifurcation
is implied. In discrete-time systems, this is called a Neimark bifurcation (Figure

3.10). A Neimark bifurcation marks a transition from a period-one orbit to a
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quasi-periodic orbit [67]. Mathematically, a limit cycle is born when a pair of

complex conjugate eigenvalues passes through the imaginary axis [69]. In this
thesis, the concept of the Neimark bifurcation is utilised to analyse the
behaviour of the SEIG system.

0.10

0.05 | Y
AR

x 000} by

=0.05 l-

=10 !
=0.002 0.000 0.002 0.004 0.006
I

Figure 3.10 A Neimark bifurcation, p is bifurcation parameter and x is the

system output [67].

3.5.2 NON-SMOOTH BIFURCATIONS

Non-smooth bifurcations (also called discontinuous bifurcations) imply a change
in system topology and can be classified as border collision, border-crossing,
grazing and C-bifurcations. Non-smooth bifurcations are widely applied in the

analysis of power electronic switching systems and their stability.
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3.6 SUMMARY

This chapter provided a brief introduction to nonlinear dynamic systems,
Poincaré maps, bifurcation diagrams, limit sets and their stability characteristics.
This serves as a general mathematical background required to analyse and
study the dynamic behaviour of the SEIG when a variety of load types are
connected to its stator terminals.

Differential and difference equations were defined to distinguish the continuous-
time and discrete-time dynamic systems.

The Poincaré map technique was presented as a powerful tool to be used to

analyse the dynamic behaviour of the SEIG system when feeding variable loads.

Four types of limit sets: Fixed point, periodic solution, quasi-periodic solution
and chaos, together with their stability characteristics were presented in this
chapter.

Pitchfork, saddle-node, period-doubling and Hopf bifurcations are the four main
types of smooth bifurcations and exhibited by electrical machines in general.
The SEIG system exhibits a Neimark smooth bifurcation which will be analysed
in detail in Chapter Six.
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CHAPTER 4

MATHEMATICAL MODELLING OF THE SEIG

Numerous methods for the modelling of IMs using Matlab/Simulink software
have been investigated by researchers/scientists over the past few decades [54,
58, 60, 65, 72, 73].

The modelling of an IM as a linear electromagnetic device is a conventional
method which has been widely used in general applications [74]. The creation
of a robust linear transient model is a fundamental process in the construction
of a nonlinear SEIG model. Hence, the standard linear induction generator
model is introduced in this chapter. This model is composed of four main
Simulink blocks: the Stator/Rotor 3-Phase AC Supply blocks, the 3-Phase to d-
q / d-q to 3-Phase blocks, the Induction Machine block and the Mechanical

Dynamics block.

The rest of the chapter is focused on the development of a nonlinear SEIG

model using the standard model as a foundation.

The mutual inductances of an IM are generally considered to be constants in a
conventional linear model. However, to allow for the effect of saturation (cross-
saturation effect), it is necessary to include magnetic nonlinearities into the

induction machine model.

The nonlinear model of the machine utilises state space analysis methods to
study the dynamic behaviour of the SEIG system. The variable states of the
system can be the machine’s stator/rotor instantaneous currents or fluxes [14,
54, 58]. Due to the ease of simulation, the machine model using instantaneous
currents as state space variables is used in this thesis. This is because the
changing inductances of a running machine can be easily implemented in the

Simulink SEIG model as variable functions of current.
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The three-phase grid power supply of the IM nonlinear model is then replaced
by an appropriate three-phase capacitor bank connected across the stator
terminals to complete the SEIG system modelling.

An IM generally works with values of magnetic flux density near the saturation
level. Hence, the overall system is highly nonlinear and time varying. The
dynamic analysis of the system is further complicated by the use of the

capacitor bank which provides the reactive power to the generator.

In Chapter Five, the simulation results obtained from the Simulink model
developed in this chapter will be compared with the corresponding experimental
results. In Chapter Six, the dynamic behaviour of the SEIG feeding an inductive
load (RL) will be numerically investigated and analysed in detail also using the

model developed in this chapter.
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4.1 STANDARD INDUCTION MACHINE MODEL IGNORING THE CROSS-
SATURATION EFFECT

The standard model described in this thesis utilises the state space method,
also known as the time domain approach, which provides a convenient,
compact and robust way to model and analyse systems with multiple inputs and
outputs [75]. This state space model is expressed with respect to the stator
reference frame (SRF), i.e. its coordinate system is stationary with respect to

the stator and does not rotate [76].

Figure 4.1 shows the general layout of the Simulink induction machine model.
There are four main parts making up the model: the Stator/Rotor 3-Phase
Supply blocks, the 3-Phase to d-q / d-q to 3-Phase blocks, the Induction
Machine block and the Mechanical Dynamics block.

M‘YA‘ . lSA
Stator 3- Usp | 3-Phase MJD' o > dqto3 Ip
S, = . = - s,
Phase ™ tod-q ”xQ‘ lSQ ~ | Phase E—
Supply Uy L
Ll 4>
ra X i . ra
Rotor 3 " > U,; | Induction Machine | %4 I
- b | 3-Phase » —® d-qto 3- Ly
Phase > tod-q urq qu | Phase —»
Supply u,. - L.
- . >
o T,
Mechanical |

Dynamics

Figure 4.1 The standard induction machine Simulink model overview with

multiple inputs and outputs.

The main component of the model is the Induction Machine block in which
stator/rotor d-q axis voltages and rotor shaft speed up, usg, Urq, Urgand w;,
respectively, are the multiple inputs, and stator/rotor d-q axis currents and
electrical torque isp, isg, irq, irqg @nd T,, respectively, are the multiple outputs of
the block.
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Due to the unique structure of a cage induction machine, there are no voltages

applied to the rotor side. Therefore, the rotor voltage u,4 and u,, are equated to

zZero.

4.1.1 THE 3-PHASE AC SuPPLY BLOCK
The internal view of the Stator/Rotor 3-Phase Supply block with three balanced

single phase sine waves of amplitude v2 V., (V) and frequency f (Hz) as the

supply power source to the machine is shown in Appendix A.

4.1.2 THE 3-PHASE TO d-q OR d-q TO 3-PHASE TRANSFORMATION BLOCK

The d-q axis reference frame representation of the transient state model of the
induction machine is used throughout this study. The following mathematical

descriptions are applied

2 1 1
Usp = JUpA —JUB —JUsC

31 3 1 3 (4.1)
Uso :fusB _fusc

where u , ,u, and u . are the three-phase AC voltage supplies to the stator

terminals, u ,, and « , are d-q axis voltages.

Since the three-phase supply sine wave voltages are given by

u_, =2 Vsin(27f)
u, =2V sin(2aft —%7[) (4.2)

U =~2Vsin(Q2ft +§7z')
Substituting equation (4.2) into (4.1), the following equations are derived

{um =2V sin(27ft) (4.3)

Uy = —2v cos(27ft)

The final derived equation (4.3) shows that us, and u,, are sine and inverse

cosine waves with same peak voltage and frequency.
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A reverse calculation is applied to transform the output signals from d-q axis to
three-phase ABC presentation. The 3-phase/ d-q transformation is shown in
graphical form in Appendix A.

4.1.3 THE MAIN INDUCTION MACHINE BLOCK

The stator voltage equations of an induction machine are given by

., A4y,
usA = RslsA +7A
dy,
Uy =R, +% (4.4)
usC = RsisC +d‘;—;c

whereu , ,u, u ., i, iz, i and y,,v,,y . are the three-phase stator

voltages, currents and fluxes, respectively, and R, is the stator resistance.

The space vector representation of the three-phase voltages can be derived as
given below

u, = % (u, +au,+ azusc) (4.5)

where u; is stator voltage space vector representing the three-phase supply

L2TC
voltages and a is equal to e’ . By substitution

d d

%(um tau,+au,) = %((Rsim + Yoy L aRri, +d2’—f8) +a*(Ri .+
1 1

yjsC
4 ) (4.6)

d

Hence

2 . . 2. 2 dl// A dl// B 2 dl/l c
==R (i, +ai,+ +=(—=+ =2+ : 4.7
ux 3 s (le ale a lsC) 3( dt a dl a dl’ ) ( )
The stator current space vector i is given by
.2, : ).
i, = g(lm +ai,+a’i,) (4.8)
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And

dl//x zg(dl/jsA +adl//xB +a2 dl//xC) (49)
dt 3 dt dt dt

where 1), is the stator flux space vector representing the three-phase stator flux

waveforms.
By substituting (4.8) and (4.9) into (4.7), the stator voltage space vector
equation is obtained

u =R+ (4.10)
R

Similarly, the rotor voltage space vector equation is

w =R+ (4.11)
dt

The rotor voltage equation can be expressed with respect to the SRF as

.el? _ _ .
e’ =Ri - +%:Rrir e’ +e"9%—ja),z//, e’? (4.12)
t

where 6 is the angle between the SRF and RRF.

Therefore, the rotor voltage computed in the SRF is given by

u, =R, + oy, (4.13)
dt

The stator and rotor voltage equations with respect to the SRF can now be

obtained. equation (4.10) and (4.13) can be expressed in terms of d-q axis

quantities as

d(l//sD + .]'//sQ)

dat (4.14)

dy., +jv,) . :
#_]wr(')yrd +.]l//rq)

u, + juSQ =R, (@, + jiSQ) +

Uy +ju, =R.(>G,+ji, )+
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where the fluxes v, v, and y, are given by

l//sQ ’

V,=Li,+L,

'm” rd
=Li,+L,i,
Vi ! (4.15)
v,=Li, +L,,
l//rq = Lrl + LmlsQ
Equation (4.15) can now be substituted into (4.14) to give
U+ jity=Ri,+ L 5”+ d;Q+
sD s"sD s vQ d n dt (41 6)
Uy + i, =R i, +L, dc; +L, “‘;’ +ay (L, +Lio)+jRi, +L, 'q+ i, +Lip)

The above equations can be rewritten into the following form to give the general
induction machine d-q axis equations

R . + L di.;D + L dird
U, =11
sD s"sD s dt m dt
ho=Riig+1, 2 s, L 417
dt dt (4.17)
u;d Rrird +Lr di"d ‘m dl rUr +LmiSQ)
dt dt !
di
— rq |
I/l,q Rr l)q + Lr dt +L4, d T LWZJ‘D))

This equation can be written in matrix form as

U, R +L.p 0 L,p 0 i
U | _ 0 R +Lp 0 L,p l'xQ (4.18)
Uy me a)r Lm Rr + Lrp a)r Lr L
l/qu - a)er me - a)rLr Rr + Lrp irq

where the symbol p is used to denote differentiation with respect to time.

The above machine mathematical descriptions are presented as four
subsystems of the main Simulink ‘Induction Machine’ block in Appendix A.
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4.1.4 THE MECHANICAL DYNAMICS SYSTEM BLOCK

The electrical torque expression can be expressed as

Te = quird _l//rdirq (41 9)
For a 3-phase, P-pole machine, the electrical torque with respect to the SRF is
given by

3P . :
Te = 53 (y/rqlrd _Wrdqu) (420)

The electrical torque Simulink block ‘T," is shown in Appendix A.

The total mechanical torque developed at the rotor shaft is mathematically
described as
dw

T = T’ _T 0 _T riction = ‘] - 421
e Load F dl' ( )

where T, is the electrical torque generated by the machine, T;,.4 is the load
torque, Trriction IS the torque produced by friction, J is the moment of inertia and
w, is the rotor speed.

The Simulink presentation of the mechanical dynamics system is shown
Appendix A.
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4.2 INDUCTION MACHINE MODEL |INCLUDING THE CROSS-
SATURATION EFFECT

An analysis of the IM system including a representation of magnetic
nonlinearities (the cross-saturation phenomena) is presented in this section.
The cross-saturation effect in an induction machine has been studied by a
number of researchers in the past few decades [11, 54, 55]. It refers to two
machine windings with their magnetic axes in space quadrature exhibiting

specific magnetic interactions, due to saturation of the main flux paths [11].

The mathematical descriptions of a saturated IM with consideration of the cross-

saturation effect are given in the following subsections.

4.2.1 MATHEMATICAL REPRESENTATION OF CROSS-SATURATION

The IM model developed above has four states (the stator and rotor d-q axis
currents) and is linear time varying and rotor speed dependent. The general
matrix equation of an IM expressed in the SRF is given by (4.18), which can be
rewritten in vector form as

U=RI+Ly S+l (4.22)

where U and I are the vectors representing the stator and rotor voltages and
currents, respectively, R is the resistance matrix, w, is the rotor speed and

L4, L, are inductance matrices given by

T .o T ;
U= [usD Usq@ Ura urq] , I= [lsD lsQ lrd qu] , R =diag(Rs, Rs, Ry, Ry),

[, o L, o] [0 0o 0o o]

| 0 L 0 L, | 0 0 0 o|
Ll = ’ LZ =

L, 0 L O 0 L, 0 L

KRR B W S

To model the nonlinearity of the dynamic system, the elements of the
inductance matrix L; has to change to become functions of the magnetising
current instead of being constants. Cross-saturation is allowed for by

introducing new elements into the inductance matrix L, of the non-saturated
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machine model, namely the saturated magnetising inductance and its derivative.

The linear matrix L, is then transformed into the following nonlinear matrix (L3)

[ L, qu L, qu
L; = | qu qu qu Lmq |
L, qu L, qu
[ qu Lmq qu qu J

Note: Only the effect of the main flux saturation is incorporated in the analysis.

The machine equation combination with consideration to the cross-saturation

effect can then be written in the form (U = RI + L3 % + w,Ly) [11]

up| [R0 0 0Tip] [Lu Ly Lu Ly | 0 0 0 0ip
g | |0 R0 0ig +qu L, L, L,li, o 0 0 0 0]ig| (4.23)
Uy 0 0 R O0)iu| |[Lu Ly L, L, i:d 10 L, 0 Lj|iy
u,| L0 0 0 RJi,| |L, L, L, L,| i:,, -L, 0 -L 0]i,

where L,, denotes the saturated inductance (magnetising inductance) given by
/ /d

Values of the magnetising and the dynamic inductance for a 1.5 kW machine
are shown in Figure 4.2 as functions of current [11].

Lm = ‘//m Im Im|,

%I)‘l

and L is the dynamic inductance given by L=d

H)

(
o
o
=

Inductance
o
o
e

2 4 6 8 10
Magnetizing Current, im (A)

Figure 4.2 Saturated magnetising inductance L,, and dynamic inductance L [11].

43

School of EEE at Newcastle University



Chapter 4 Mathematical Modelling of the SEIG

The cross-saturation coupling between all axes in space quadrature is

represented by L, (the cross-saturation inductance) given by

lmdlmq % dL
i, d

_ m
L, =

q

im

The derivative of the mutual flux d|y_/m| is given by
d|l/_/m| =dL,, ><|fm|+ d|fm|><Lm
The above equation can be rewritten as

in

in

dy,| d

xL, 6 dL X
4

d\im\ d‘im‘

Im

i
The Dynamic inductance is given by 1= |y/’”|,therefore

d|2m|

dy,,
dlf—”’=L—Lm:L—Lm
d d

Im

im im

This equation can be rewritten as

The direct and quadrature axis magnetising currents are given by
imd = isD + ird; imq = isQ + irq

The total magnetising current i, is given by

1
. .2 2 o
iy = (g +1mq)2

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)
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The direct and quadrature axis saturated inductances are calculated as

j i
Lmd = Lm + l.md qu; Lmq = Lm + .mq qu (432)
1

mq md

When the system is operating under linear magnetic condition with no

saturation of the flux paths, the machine’s cross-saturation inductance is

qu = 0’ Lmd = Lmq = Lm and
Lsd = le + Lmd’ qu = le + Lmq (433)
er = Lrl + Lmd; qu = Lrl + Lmq (434)

where, L, and L, are the unsaturated stator and rotor leakage inductances

(assumed to be constant).

Because of saturation, L,, =L,,; L,; =L,,and the rotor inductance is

q;
L =L,+L, (4.35)

4.2.2 TORQUE EQUATIONS

The rotor flux linkages (4.15) are given by
l//rq = Lrirq + LmisQ; l//rd = Lrird + LmisD (436)

The above equations can be utilised to re-write the torque equation (4.20) as

rrq”rd m

Te = %(L i i,+L is-Qird - Lrl‘rdl.,q - anis-Dirq)
3 (4.37)
=2Pp (i,

4 sQ ‘rd _ile.rq)
Apart from the effects of the main flux saturation of an IM is discussed within
this chapter, the effects of the saturation of the leakage flux paths are also
presented to the reader in Appendix B. These are important under certain
operating conditions such as when large inrush currents occur, but are not

included in the main analysis of the SEIG steady-state response [58].
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4.3 SELF-EXCITED INDUCTION GENERATOR MODEL

The SEIG operates just like any other induction machine, except for the fact that
its stator terminals are connected (in parallel) to a three-phase self-excitation
capacitor bank in the absence of the normal three-phase supply voltages.
These machines are ideal for electricity generation in standalone variable speed
hydraulic turbine or wind turbine applications, where there is no available grid

connection.

It is possible to create and build a SEIG Simulink model based on the nonlinear

model created in the previous section.

4.3.1 THE MATHEMATICAL DESCRIPTIONS

The grid supply in the previous induction machine model is now replaced with
three-phase capacitors connected in parallel with the stator windings as shown

in Figure 4.3, where, i,i, and i,i, refer to the stator and rotor d-q axis

currents, respectively. The state space nonlinear equations forming the basis of
the nonlinear model of the machine are modified as follows to represent the
SEIG.

Figure 4.3 The SEIG d-q equivalent circuit.

The equivalent circuit of Figure 4.3 clearly shows that the rotor side state space
equations are not changed, whereas the stator voltage equations need to be
changed to represent the dynamics of the capacitor bank connected to the

stator terminals.
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Equation (4.23) can be rewritten as [12]

ucp] [Re 0 0 0Tip| [Lu Lig Lwa Lag|'sP 0 0 0 0ip
0 R, 0 0| L L, L L ] 0 0 0 0 | i
Uco |_ s Q|| g Tsq Tdg mg s to, 0 (4.38)
0 0 0 R 0lin| \Lma Lag L Lyg | ° 0 L, 0 L |iy
0 0 0 0 R Jig]| [Lag Lmg Lig Lrg| v L, 0 —L 0]y
qu

The above equation shows that the cross-saturation part (on the right hand side
of the equation) has not been changed, whereas the d-q axis stator voltages
(on the left hand side of the equation) have been changed to allow for the

connection of the capacitor bank.

The capacitor bank voltages uc,and uqowill be different depend on the type of

load the SEIG is feeding. Three types of load conditions are considered in this
analysis: no-load, a purely resistive load (R) and an inductive load (RL) as
detailed in the following subsections.

a) State Equations of the SEIG under No-load Conditions

The stator direct axis equivalent circuit with no-load is shown in Figure 4.4.

C

Ayl

/1

u
lvDT‘ cD °
A

Figure 4.4 Stator direct axis equivalent circuit with self-excitation capacitors

without load; i, is the stator direct current.

The capacitors direct axis voltage equation is
1¢.
Uep =—Ugp = _E [pdt (4.39)

And the capacitors quadrature voltage equation is

47

School of EEE at Newcastle University



Chapter 4 Mathematical Modelling of the SEIG

Uy =~k = —% [i o (4.40)

b) State Equations of the SEIG Operating with a Resistive Load

The direct axis equivalent circuit representing the connection of the capacitor
bank and the resistive load is presented in Figure 4.5.

Figure 4.5 Stator direct axis equivalent circuit with self-excitation capacitors and
resistive load R; ip,icp and i, are the stator, capacitor and load direct currents,

respectively.
Figure 4.5 is represented by the following mathematical equations
Uep =—U;; =—I,R (4.41)

The capacitor direct current is given by

du di
i =M __pcfl 4.42
lep di di ( )
i) =iy iy, = Rcdclz_Ltd iy, (4.43)

Using the same methodology, the equation for u,, i, can also be solved and

computed.
Uep =—Uy, =—i R (4.44)
‘ Rcdi“f +i (4.45)
l,= 1 .
sQ dt Lq
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c) State Equations of the SEIG Operating with an Inductive Load

The direct axis equivalent circuit of the SEIG with an inductive load (RL)

connected to the stator terminals is shown in Figure 4.6.

sD la

¢ TiCD

Figure 4.6 Stator direct axis equivalent circuit with self-excitation capacitors and
inductive load (RL); isp, icp and i 4 are the stator, capacitor and load direct

currents, respectively.

The equations for the above equivalent circuit are as follows

. di

Uep = Uy = —Riy, — TLtd (4.46)
du di d’i
jop =—C—1 = _RC—L — [C——Ld 4.47
fen dt dt dr’ (4.47)
iy =—lep+iy, (4.48)
. di d’i,, .
iy :RCTLZ"+LCdT§d+zLd (4.49)
Therefore, the quadrature voltage and current equations are
di

ey =y, =—Ri,, — L L’;f (4.50)
_ diy, d%,,
io=RC—+LC—"+i, (4.51)

dt dt*
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4.3.2 SIMULATION RESULTS

The mathematical descriptions of the SEIG system under variable load
conditions have been studied in the previous section. The voltage equations of
the SEIG model can now be solved and the simulation results are to be
presented in detail in this section.

The parameters of a 1.5kW , 50 Hz, 4-pole, 220/380V and 7/4 A cage
induction machine with a three-phase self-excitation capacitor bank (135 uF per
phase) are used in this section to test the SEIG model and verify its accuracy.
The machine equivalent circuit parameters (referred to the stator) are as follows:
stator and rotor resistances are 0.6 2 and 0.83 2, respectively, and the stator
and rotor leakage reactances are both equal to 1.8 2. The machine magnetising
reactance is directly obtained from Figure 4.2. The prime mover of the
generator is presented by a DC machine rotating at a constant speed of
1500 rev/min. The parameters are obtained from a well-known publication, to
allow for easy comparison and hence the verification of the simulation results
[14].

The following d-axis equivalent circuit is used to model the effects of the various
loads applied to the IG stator terminals, (a similar equivalent circuit is used for

q-axis quantities).

Load

Figure 4.7 Stator direct axis equivalent circuit with various load types.
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a) The Initial Self-excitation Process of the Induction Machine; No-load

As the machine is working under no-load, the switch S in Figure 4.7 remains
open and the d-q capacitor’s voltages are as shown in Equations (4.39) and
(4.40). Initial conditions for the capacitor bank voltage and rotor flux must be set
to appropriately low values to ensure the success of the self-start process. The
general self-excitation process of the generator during the initial voltage build-
up stage is observed in Figure 4.8 and Figure 4.9. The stator phase voltage
starts building up slowly and reaches a steady-state value while the
magnetisation current starts from zero rising to a stable steady-state value. A
stable output voltage could only be obtained once the machine’s core is
saturated. Another physical explanation of the starting process of the SEIG is
that the residual magnetism presented in the core (the rotor) induces a small
voltage across the stator windings and self-excitation capacitors once the rotor
is driven by the prime mover. This produces a delayed current which in turn
produces an increased voltage and consequently an increased capacitor
current. This phenomenon goes on until saturation of the magnetic flux paths.
The simulation results shown in Figure 4.8 agree well with experimental results

presented in [14].

400

200r

Voltage (V)

-200r L
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Figure 4.8 Stator line-to-line voltage builds up at no-load.
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o

0 02 04, 0.6 0.8 1
Time (s)

Figure 4.9 Magnetising current during initial self-excitation at no-load.

b) The SEIG Operating with a Resistive Load

Here the SEIG is initially running under no-load condition as previously
discussed and a resistive load of 27 Q per phase is applied to the stator
terminals at 1 s. It is clear from Figure 4.10 that there is a drop in output voltage
when the resistive load is applied at 1 s, as the system has to supply power to

the extra load.
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Figure 4.10 Computed stator line-to-line voltage (top) and load current (bottom)

when applying a 27 Q load at 1 s.
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It is shown from the above voltage and current waveforms that (regardless of
the voltage drop) the solution curve in state space is a closed period-one orbit.
In practical applications, a second capacitor bank connected in series with the
resistive load may be used to decrease the resulting voltage drop. However,
from the dynamic point of view, the behaviour of the system remains
qualitatively the same (i.e. the system exhibits a similar stable period-one orbit).
Therefore, this configuration is not studied further in this thesis. The voltage and

current waveforms also agree very well with experimental results shown in [14].

The characteristic of the magnetising current is plotted in Figure 4.11. Clearly,
the application of the 27 Q load greatly reduces the magnetising current and
hence the magnetising flux of the machine. This reduction in flux is the reason
for the drop in the SEIG stator terminal voltage.

o
A

_

08 10 14 12 13 14
Time (s)

Current (A)
(6]
[6)]
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@
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Figure 4.11 Magnetising current when applying a 27 Q1 load at 1 s.
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4.4 SUMMARY

The computer modelling of the induction generator as a linear electromagnetic
device was introduced in this chapter. This standard machine model is the
foundation for further study and investigation of the nonlinear behaviour of the
SEIG system.

A model of the machine with consideration of the cross-saturation nonlinear
effect was then derived by modifying the standard machine model [11]. A
current based implementation of the state space model of the machine (with
currents as state space variables) was used in this thesis because of its ease of
simulation in Simulink. The SEIG nonlinear model was finally created by taking
into account the stator and rotor voltages when operating as a standalone
device feeding different types of load with the self-excitation capacitor
connection in parallel with the stator terminals. The model was verified by

comparison with experimental results presented in a well-known publication [14].

The SEIG exhibits period-one linear waveforms when operating at no-load and
when feeding a purely resistive load, as shown in the simulation results
generated from the proposed nonlinear model. The waveforms also show how
the magnetising current and flux drop when a resistive load is connected to the

stator terminals which in turn causes a drop in the stator terminal voltage.
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CHAPTER 5

EXPERIMENTAL INVESTIGATION

A number of experimental tests are presented in this chapter using a laboratory
1.1 kW, 220~240V, 4.4 A, 50 Hz, 2-pole induction machine operating as a SEIG
under a variety of load conditions. The purpose of these tests is firstly to
validate the numerical SEIG model developed earlier in Chapter Four and
secondly to demonstrate the nonlinear behaviour of the system when feeding a
variable inductive load, moving from a stable period-one linear orbit to a

nonlinear orbit as a system parameter is varied.

The parameters of the equivalent circuit of the induction machine are as follows:
Stator reactance X, =j7.425Q , stator resistance Ry, = 6.65Q , rotor
reactance X, =j7.425Q , rotor resistance R,,, =7.64Q , magnetising
reactance X,, = j171.54 Q and core resistance R, = 25.88 (. Details of no-load
and blocked rotor tests carried out to determine the induction machine
parameters are shown in Appendix C.

The prime mover in the test apparatus is a 1.5 kW DC machine controlled by a
Mentor digital DC drive. In all tests, the DC machine is used to rotate the
induction machine at 3000 rpm before the three-phase self-excitation capacitor
bank is connected to the stator terminals of the machine. The load is then
switched on after the self-excitation process has been completed. The results
from these tests are logged and used to demonstrate the performance
characteristics of the SEIG. The laboratory results are compared to simulation
results for each test to validate the SEIG Simulink numerical model.

In this chapter, the SEIG experimental setup is described and the stator current
waveforms captured from each test are compared with those generated from
the Simulink model. Tests are performed for the SEIG operating under no-load

conditions and also when feeding a purely resistive load (R) and an inductive
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load (RL) conditions. Examples of linear and nonlinear orbits are shown in this

chapter.

5.1 TEST SETUP

The devices used in these tests are listed in detail in Appendix D. An overview
of the system is given in Figure 5.1. The tests carried out to study the dynamic
behaviour of the SEIG under the different load conditions are listed in Table 5.1.
The equipment was mounted on a bench to form the SEIG test rig. Rotational
devices (e.g. the rotor shaft, the DC rotor and the AC rotor) and any high
voltage equipment were housed within suitable metal enclosures for safety
purposes.

5.1.1 SYSTEM OVERVIEW

An overview of the SEIG test rig is given in Figure 5.1. The motor drive controls
the speed of the DC motor which provides the mechanical input to the IG. The
generator is the key component of the rig. It converts the mechanical input
power at the rotating shaft to three-phase electrical power at the stator terminals.
A self-excitation capacitor bank (C) provides the reactive power to both the
machine and the load during and after the self-excitation process. A variable
load (purely resistive R or inductive RL) is connected to the stator terminals in
parallel with the self-excitation capacitors.

Motor DC
Drive Motor

Figure 5.1 Outline of the SEIG test rig.
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The tests carried out by the author are listed in Table 5.1. The tests are

classified into four groups: magnetising curve test, self-excitation (no-load) tests,

resistive load (R) tests and inductive load (RL) tests. The values of the resistive

load, inductive load and the self-excitation capacitance for each test are also

listed in Table 5.1.

Table 5.1 List of tests carried out.

Load Load Self-excitation
Test Group Test No. Resistance | Inductance capacitance
(Q/phase) | (mH/phase) (uF /phase)
Magnetising curve
n/a n/a n/a n/a
(Section 5.2)
Initial self-excitation Test 1 n/a n/a 45
process Test 2 n/a n/a 60
(No-load tests, Section
5.3) Test 3 n/a n/a 90
Test 4 60 n/a 45
Purely resistive load (R)
Test 5 50 n/a 45
(Section 5.4)
Test 6 40 n/a 45
Test 7 90 1.7 45
Inductive load (RL) Test 8 60 60 45
(Section 5.5) Test9 40 11 45

School of EEE at Newcastle University
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5.2 MAGNETISING CURVE TEST

When the machine runs at its synchronous speed, the rotor and load
parameters of the equivalent circuit can be ignored as the slip is zero. Therefore,
the magnetising curve of the machine (measured at 50 Hz) can be obtained by
varying the supply voltage and measuring the stator current. The recorded

magnetising current when varying the supply voltage is shown in Figure 5.2.
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Figure 5.2 The 1.1 kW IM magnetising characteristics.

The measured points on the saturation curve were used to generate a
continuous curve (shown in Figure 5.2) with a Spline Function curve-fitting
method from Matlab. The saturation curve is represented by the line voltage as
a function of the line current (voltage and current are shown in rms values). This
figure was obtained by comparing the measured voltage and current waveforms
at a number of points.

In order to obtain a more accurate representation of the instantaneous
relationship between current and flux, measured rms values were first
converted to peak values. This is achieved by multiplying the measured rms
voltages and currents by v2 in the linear region of the magnetising curve. In the
saturation region where the current waveforms are no longer sinusoidal,

measured voltages are multiplied by V2 and measured currents by 2 [77].
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The above saturation curve is used to compute the magnetising inductance

[Pl Via/ i —RE : ; :
Ly = = onr (where R, is the core resistance) and the dynamic

Tl
inductance L = %. In Figure 5.3 and Figure 5.4, the inductance L,, and the
dLm

an I) are plotted against the current [1,,|. As discussed in Chapter

quantity |1, | (

Four, the following equation can be solved |1,]| (%) = % —L,=L—-Lyto

obtain the dynamic inductance curve shown in Figure 5.5 [11].

Saturated Magnetising Inductance, L (H)
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Figure 5.4 |i,,|dL,,/d|i,,| versus magnetising current.
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Figure 5.5 Dynamic inductance versus magnetising current.

The above magnetising curves are crucial for modelling the nonlinear behaviour
of the SEIG. The magnetising and the dynamic inductance curves are utilised in

the nonlinear simulation model of the SEIG with a method of look-up table from
Matlab.
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5.3 SEIG NO-LOAD TESTS

The SEIG is firstly examined under no-load condition when different values of
self-excitation capacitors are applied to the stator terminals. The results
recorded from the tests are compared with the results generated from the SEIG

Simulink model under the same conditions.

5.3.1 TEeST1;C = 45 uF

The induction generator’s shaft is initially rotated at a steady speed of 3000 rpm
before the three-phase, star connected self-excitation capacitor bank (45 uF per
phase) is applied to the stator terminals. The speed of rotation is then altered
until a steady-state rms stator voltage of 240 V (rated voltage) was obtained.
The tachometer recorded a rotor steady-state shaft speed of 3180 rpm at this
point. Experimental and simulated stator steady-state line current waveforms
are shown in Figure 5.6 and Figure 5.7, respectively. Both waveforms present a
stable period-one orbit with a frequency of 53.8 Hz.

The test results show that the induction generator is successfully self-started
when a three-phase capacitor bank (45 uF per phase) are connected to the
stator terminals. A measured stable current of 2.2 A (Figure 5.6) matches well

with the rms value of the waveform (2.25 A) shown in Figure 5.7.

Small differences exist between the three current waveforms shown in Figure
5.6, this may be caused by imbalance in three-phase self-excitation capacitors,

induction machine or power supply.
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Figure 5.6 Test 1 — Measured stator line current waveforms at no-load with

C = 45 uF per phase — Period-one waveforms.

Current (A)

45 0.52

Figure 5.7 Test 1 — Simulated stator line current waveforms at no-load with

C = 45 uF per phase — Period-one waveforms.
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5.3.2 TEST2;C = 60 uF

With a self-excitation capacitor bank of 60 uF per phase connected across the
stator terminals, the recorded rotor steady-state shaft speed of 2994 rpm after
the self-excitation process when the stator voltage reaches rated value at 240 V.
The measured and simulated steady-state stator current waveforms are shown
in Figure 5.8 and Figure 5.9, respectively. Both waveforms are period-one orbits
with a frequency and rms current at round 49.6 Hz and 2.5 A.

4

Current (A)
o
T——
e

Figure 5.8 Test 2 — Measured stator line current waveforms at no-load with

C = 60 uF per phase — Period-one waveforms.

85 052 o054 056 058 06
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Figure 5.9 Test 2 — Simulated stator line current waveforms at no-load with

C = 60 uF per phase — Period-one waveforms.
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5.3.3 TEST3;C =90 uF

The induction generator is rotated at 3000 rpm by the DC motor as the prime
mover, and the self-excitation capacitor bank (90 uF per phase star connected)
is connected to the stator terminals, the tachometer recorded rotor steady-state
shaft speed is equal to 2771 rpm after the self-excitation process when the
stator voltage reaches 240 V. The measured and simulated steady-state stator
current waveforms are shown in Figure 5.10 and Figure 5.11, respectively. Both
waveforms again display a stable period-one orbit with a frequency of around
45.9 Hz. The rms current in both cases is around 3.5 A.

It is noted from Tests 1-3 that the magnitude of the stator currents is increased
as the values of the self-excitation capacitor bank are increased. This is
because at higher values of C, the slope of the load line representing the
reactance of the self-excitation capacitors (1/wC) is reduced intercepting the

magnetising curve (as shown in Figure 5.2) at a higher value of current.
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Figure 5.10 Test 3 — Measured stator line current waveforms at no-load with

C = 90 uF per phase — Period-one waveforms.

Current (A)

Figure 5.11 Test 3 — Simulated stator line current waveforms at no-load with
C = 90 uF per phase — Period-one waveforms.
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5.4 SEIG PURELY RESISTIVE LOAD TESTS

A variable resistive load is connected across the SEIG stator terminals in
parallel with the 45 uF self-excitation capacitor bank after the initial self-
excitation process in this group of three tests. Measured test results are again
compared with the results from the Simulink model of the SEIG.

541 TeEST4;R=60Q;C =45 uF

In this test, the SEIG stator terminals are connected to a three-phase resistive
load of 60 Q per phase after the self-excitation process had been completed.
The tachometer recorded a rotor steady-state shaft speed of 3665 rpm when
the stator voltage reaches its rated 240 VV value. The corresponding measured
and simulated steady-state stator current waveforms are shown in Figure 5.12
and Figure 5.13. Both waveforms are period-one orbits with a frequency of
around 58.1 Hz. The rms value of both measured and simulated currents is
around 3.2 A.

It is noticed that the three current waveforms shown in Figure 5.12 are more
balanced than those recorded from no-load tests, this maybe because of the
connection of the three-phase resistive load presenting a more balanced
operating condition to the SEIG.
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Figure 5.12 Test 4 — Measured stator line current waveforms with R = 60 Q and

C = 45 uF per phase — Period-one waveforms.
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Figure 5.13 Test 4 — Simulated stator line current waveforms with R = 60 Q and

C = 45 uF per phase — Period-one waveforms.
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54.2 TESTS5;R=50Q;C =45 uF

The SEIG is next tested with decreasing the load resistance to 50 Q per phase
connected after the self-excitation process had been completed. The
tachometer recorded a rotor steady-state shaft speed of 3814 rpm when the
stator voltage reaches its rated value of 240 V. The measured and simulated
steady-state stator current waveforms are shown in Figure 5.14 and Figure 5.15,
respectively. It is noted that both waveforms are period-one orbits with a

frequency and rms current of around 60 Hz and 3.6 A, respectively.
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Figure 5.14 Test 5 — Measured stator line current waveforms with R = 50 Q and

C = 45 uF per phase — Period-one waveforms.
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Figure 5.15 Test 5 — Simulated stator line current waveforms with R = 50 Q and

C = 45 uF per phase — Period-one waveforms.
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5.4.3 TEST6;R=40Q;C =45 uF

Finally, a three-phase resistive load of 40 Q per phase is connected to the SEIG
stator terminals after the self-excitation process had been completed. The
tachometer recorded a rotor steady-state shaft speed of 4057 rpm when the
stator voltage reached its rated value of 240 V. The measured and simulated
steady-state stator current waveforms are shown in Figure 5.16 and Figure 5.17,
respectively. The waveforms generated from the experimental test confirm the
accuracy of the proposed Simulink model under the same operational
conditions. Both are period-one orbits with a frequency and rms current of
around 64 Hz and 4.3 A, respectively.
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Figure 5.16 Test 6 — Measured stator line current waveforms with R = 40 Q and

C = 45 uF per phase — Period-one waveforms.
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Figure 5.17 Test 6 — Simulated stator line current waveforms with R = 40 Q and

C = 45 uF per phase — Period-one waveforms.
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5.4.4 PHASE PLANE AND HARMONIC EXAMINATION OF THE PERIOD-ONE LINEAR
ORBIT

The stator current waveforms of the SEIG when feeding a resistive load (period-
one orbit) are examined by both phase plane and harmonic spectrum
presentations in this section.

Taking the case of the 50 Q resistive load and 45 uF self-excitation capacitance
(Test 5) as an example of a period-one operating point, the corresponding
phase plane diagram of stator line currents i, versus i, is shown in Figure 5.18.
The corresponding Poincaré section of the sampled states of these two line
currents when i, is zero (rising edge) is plotted in Figure 5.19. Clearly, the
phase plane diagram is a closed circle and the Poincaré section is almost a
single dot demonstrating the characteristic of stable period-one orbit of the

measured stator current waveforms under this operating condition.
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Figure 5.18 Stator line current i, versus i, phase plane diagram — Period-one.
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Figure 5.19 Sampled states of stator line current i, versus i, Poincaré section
— Period-one.
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With a purely resistive load applied to the stator terminals of the SEIG, the
waveforms are sinusoidal (period-one orbit) as shown in the Fast Fourier
Transform (FFT) plot of Figure 5.20 with only one dominating frequency.
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Figure 5.20 SEIG current FFT with resistive load (R = 50 Q); The frequency and

amplitude of the dominating signal are approximately 60 Hz and 5.1 A.
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5.5 SEIG INDUCTIVE LOAD TESTS

A variable inductive load (RL) is connected across the SEIG stator terminals in
parallel with the 45 uF per phase self-excitation capacitor bank in this group of
three tests. The nonlinear behaviour of the SEIG feeding an inductive load is
examined by using the load resistance and inductance as the control
parameters. Measured test results are again compared with the results from the
Simulink model of the SEIG. For clarity, only one line current is presented in
each diagram in this section.

5.5.1 TEST7;R=90Q;L =1.7mH; C = 45 uF (BASE CASE)

When a three-phase inductive load (RL) is applied to the stator terminals of the
induction generator, system behaviour changes from a period-one linear orbit to
a nonlinear orbit as load parameters are varied. A stable period-one orbit base

case is presented first (Test 7) in this section.

With load resistance R = 90 Q, load inductance L = 1.7 mH and self-excitation
capacitance C = 45 uF per phase, the tachometer recorded a steady-state shaft
speed of 3472 rpm at the rated stator voltage of 240 V. Experimental and
simulated stator steady-state line current waveforms are plotted in Figure 5.21
and Figure 5.22. Both current waveforms are period-one closed orbits with a
frequency of around 56 Hz. The rms value of stator line current in both cases is
around 2.5 A.
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Figure 5.21 Test 7 — Measured stator line current waveform with R = 90 Q,
L =1.7mH and C = 45 uF per phase — Period-one waveform.
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Figure 5.22 Test 7 — Simulated stator line current waveforms with R = 90 Q,
L =1.7mH and C = 45 uF per phase — Period-one waveform.
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55.2 TEST8;R=60Q;L=60mH; C =45 uF

With a value of R = 60 Q per phase and L = 60 mH (decreasing the resistive
and increasing the inductive element of the load when compared with the base
case), the tachometer recorded a steady-state shaft speed of 3703 rpm at the
rated stator voltage of 240 V. Experimental and simulated stator steady-state
line current waveforms of 59.6 Hz are plotted in Figure 5.23 and Figure 5.24.

A closer look at these figures reveals that the stator current waveforms are
highly distorted. More than one frequency component now appears in the plots
as the response of the system changes from a period-one orbit (base case) to a

nonlinear orbit.
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Figure 5.23 Test 8 — Measured stator line current waveform with R = 60 Q,

L =60 mH and C = 45 uF per phase — Distorted waveform.
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Figure 5.24 Test 8 — Simulated stator line current waveform with R = 60 Q,

L = 60 mH and C = 45 uF per phase — Distorted waveform.
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553 TEST9;R=40Q;L=11mH; C = 45 uF

With a value of R =40Q and L = 11 mH per phase (further decreasing the
resistive and increasing the inductive element of the load when compared with
the base case), the tachometer recorded a steady-state shaft speed equal to
4297 rpm when the stator voltage reaches its rated value of 240 V. The stator
steady-state line current waveforms of 69.1 Hz acquired from the testing and the
Simulink model are plotted in Figure 5.25 and Figure 5.26. In both cases, the
stator currents are distorted and the system is entering the nonlinear region.

It is clear from the previous two tests that by increasing the load inductance and
decreasing the load resistance (reducing the power factor of the load), the
response of the SEIG system is transformed from a linear period-one orbit to a
nonlinear orbit in agreement with the system’s behaviour which will be further
analysed numerically in Chapter Six. Although the shape of the waveforms
recorded from nonlinear Simulink model does not match the measured plot
completely, the behaviour of the system is the same, moving from a linear
period-one response to a highly nonlinear response as the load is changed.
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5 052 054 056 058 06
Time (s)

Figure 5.25 Test 9 — Measured stator line current waveform with L = 11 mH,

R =40 Q and C = 45 uF per phase — Distorted waveform.

0.5 0.52 0.54 0.56 0.58 0.6
Time (s)

Figure 5.26 Test 9 — Simulated stator line current waveform with L = 11 mH,

R =40 Q and C = 45 pF per phase — Distorted waveform.
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5.5.4 PHASE PLANE AND HARMONIC EXAMINATION OF THE NONLINEAR ORBIT

The phase plane diagram and harmonic spectrum of the distorted stator current
waveform of the SEIG when feeding an inductive (RL) load are examined in this

section.

Taking the case of SEIG operation at R =40Q, L =11 mH and C = 45 uF per
phase (Test 9) as an example of a nonlinear operating point. The phase plane
diagram and Poincaré section of the stator line current i./i., versus i,/ip,
(shown in Figure 5.27 and Figure 5.28, respectively) demonstrate the nonlinear
behaviour of the system at this operating point as the phase plane diagram is
not a circle and the Poincaré map is not a single dot any more. Hence, the
behaviour of the system moves from a linear period-one response to a highly
nonlinear response at this operating point.

81

School of EEE at Newcastle University



Chapter 5

Experimental Investigation

c

Stator Line Current, i, (A)
o

% 6 4 2 0 2 4
Stator Line Current, ib (A)

Figure 5.27 Stator line current i. versus i, phase plane diagram.
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Figure 5.28 Sampled states of stator line current i, versus i, Poincaré map.

82

School of EEE at Newcastle University



Chapter 5 Experimental Investigation

The nonlinear nature of the system’s response is further demonstrated by the

frequency spectrum of the stator current waveform (Figure 5.29) showing the

presence of other frequency components besides the main fundamental

component.

1St

Dominating
frequency

Amplitude (A4)

Frequency (Hz)

Figure 5.29 SEIG current FFT with an inductive load (R = 40 Q,L = 11 mH); The
frequency and amplitude of the 1 dominating signal are approximately 69 Hz
and 5 A.
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5.6 CHAOTIC WAVEFORMS

A number of chaotic waveforms generated from the Simulink model when the
SEIG feeding higher inductive load (RL) are presented in this section. It was not
possible to obtain any chaotic waveforms in the laboratory under practical and
safe operating conditions. For chaos to appear, extremely high rotational
speeds and/or stator currents/voltages would have been necessary. Therefore,

no experimental chaotic waveforms were observed under laboratory conditions.

Current [A]
o

09 092 094 09 098 1
Time [s]
Figure 5.30 Stator three line current waveforms R = 60 Q, L = 70 mH and
C = 45 uF per phase and the rotor shaft speed at 4101 rpm — Chaotic

behaviour.
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Current [A]

0.9 0.92 094 096 0.98 1
Time [s]
Figure 5.31 Stator three line current waveforms R = 90 Q, L = 90 mH and
C = 45 uF per phase and the rotor shaft speed at 4126 rpm — Chaotic
behaviour.

Current [A]

0.9 0.92 094 09 0.98 1
Time [s]
Figure 5.32 Stator three line current waveforms R = 60 Q, L = 73 mH and
C = 45 uF per phase and the rotor shaft speed at 4177 rpm — Chaotic
behaviour.
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Current [A]
Q

09 092 094 09 098 1
Time [s]
Figure 5.33 Stator three line current waveforms with R = 60 Q, L = 80 mH and
C = 45 uF per phase and the rotor shaft speed at 4206 rpm — Chaotic
behaviour.

Current [A]

0.9 ‘ 0.52 ‘ 0.54 ‘ 0.56 ‘ 0.58 ‘ 1
Time [s]
Figure 5.34 Stator three line current waveforms with R = 55 Q, L = 91 mH and
C = 45 uF per phase and the rotor shaft speed at 4356 rpm — Chaotic

behaviour.

It is noted from the above figures that the machine exhibits chaotic motion by

increasing the inductive load, the rotor shaft speed and decreasing the resistive
load.
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5.7 SUMMARY

In this chapter, laboratory tests were carried out on the SEIG when feeding no-
load, a purely resistive load (R) and an inductive load (RL) and the results were

presented to validate the Simulink model developed in Chapter Four.

The magnetising characteristics of the induction machine were measured with
the machine running at synchronous speed, as the rotor and load parameters of
the equivalent circuit could then be ignored (slip s = 0) under this operating

condition.

The experimental results confirmed the validity of the proposed SEIG Simulink
model. The experimental and simulated waveforms shown in this chapter
demonstrated how system’s behaviour changes from a stable period-one orbit
to a nonlinear orbit as a result of a change in a system parameter such as the
resistive and/or the inductive element of the SEIG inductive load (RL).

It was observed that there was only one dominating frequency in the linear
operating region, whereas a few dominating frequencies were present in the

nonlinear operating region.

Only period-one linear responses were obtained with the generator operating at
no-load or with a purely resistive load conditions. When feeding an inductive
load (RL), the period-one behaviour of the system was distorted as the value of
load was varied. A number of chaotic waveforms of the SEIG when feeding an
inductive load were simulated using the Simulink model under some extreme

operating conditions (e.g. high rotational speeds, stator currents and voltages).
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CHAPTER 6

NUMERICAL ANALYSIS OF THE SEIG
NONLINEAR BEHAVIOUR

A model of the SEIG with stator and rotor d-q axis currents as state variables
was presented in Chapter Four. This model is used in the following sections to
study the behaviour of the SEIG as a nonlinear dynamic system by using both

simulation and numerical analysis tools.

Unfortunately, the behaviour of the 1.1 kW machine used in the experimental
investigation described in the previous chapter displayed a very narrow quasi-
periodic window, making it extremely difficult to study the transition from stable
period-one operation to quasi-periodicity. Therefore, it was decided that the
parameters of the induction machine described in Chapter Four should be used
in this chapter for further analysis of this characteristic system behaviour. A
base case is presented first showing stator current waveform for a stable
operating point (period-one orbit) of the SEIG when feeding an inductive load.
The behaviour of the SEIG is then examined as one of three parameters of the
system is changed: 1) the self-excitation capacitance; 2) the load resistance
and 3) the rotor speed. For each scenario, steady-state stator current time
domain waveforms, phase plane diagrams, Poincaré maps and bifurcation
diagrams are presented. The results show how the behaviour of the system
changes from periodic one to quasi-periodic and then a likely chaotic motion as

these control parameters are varied.

The stability characteristics of the period-one and quasi-period orbits are then
analysed numerically to give an overview of the movement of the eigenvalues of

the system following the introduction of a small disturbance into the system.

88

School of EEE at Newcastle University



Chapter 6 Numerical Analysis of the SEIG Nonlinear Behaviour

6.1 BASE CASE - PERIOD-ONE ORBIT

A balanced three-phase inductive load (RL) comprising a 30 Q resistor in series
with a 15 mH inductor per phase is connected to the stator terminals in parallel
with the star connected 135 uF per phase excitation capacitors and the machine

driven at a constant speed of 1500 rpm (314 rad/s).

The time domain stator current waveform and phase plane diagram of the stator
d-q axis currents are plotted in Figure 6.1 and Figure 6.2, respectively. The
response of the system is a period-one closed orbit which indicates that the
system operates within the desired stable region of operation. Only two
representative states ( iy, and i;, ) are plotted in Figure 6.2. All other

combinations give similar results and are not shown here.

Current (A)

5 41 . 615 82 102.5 123
Time (ms)

Figure 6.1 Stator line current waveform for € = 135 uF,R =302 and w, =
314 rad/s.

Current, iSQ (A)

o »H A N o N A O
o H R E

S S
Current, isp (A)

Figure 6.2 Phase plane diagram for C = 135 uF,R = 30 2 and w, = 314 rad/s.
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6.2 SEIG NONLINEAR BEHAVIOUR

The nonlinear behaviour of the SEIG system described above is further
investigated in this section by varying the values of three control parameters:
the self-excitation capacitance, the load resistance and the rotor speed. It shall
be noted that only one control parameter is changed at a time while the other
two are maintained at the same values used in the stable period-one base case.

6.2.1 CHANGING THE SELF-EXCITATION CAPACITANCE C

Using the self-excitation capacitance as the bifurcation parameter, the
bifurcation diagram of the system created by sampling the value of the q axis
stator current when the d axis stator current is zero is shown in Figure 6.3. As
the value of C increases, it can be seen that the system bifurcates from a stable
period-one orbit to chaos via a quasi-periodic route. Orbits of periods five,
seven, nine and eleven also appear for short windows in the bifurcation diagram.
Due to the space limitation, these waveforms are not presented here. This type
of steady-state behaviour is referred to as a Neimark bifurcation as described in
Chapter Three [67]. Figure 6.4 gives a clearer view of the transition to quasi-

periodicity.
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Stator g axis Current (4)

1 I 1 1 1 1 1 1
161 152 153 1484 1585 186 157 1483 1589 16 161

Self-excitation Capacitance (F)
Figure 6.3 Bifurcation diagram with C as the bifurcation parameter.
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Self-excitation Capacitance (F)
Figure 6.4 Bifurcation diagram with C as the bifurcation parameter (zoom in).

The system is transferred from a period-one orbit to a quasi-period orbit by
increasing the self-excitation capacitance. At C = 152 uF the current waveform
is clearly distorted as shown in Figure 6.5. The response is quasi-periodic as

demonstrated in the corresponding phase plane diagram given in Figure 6.6.
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Current (A)

1
0 102.6 205.2
Time (ms)

Figure 6.5 Stator line current waveform for C = 152 uF — Quasi-periodic

response.

Current, ird (A)

s w0
Current, ip (A)

Figure 6.6 Phase plane diagram for C = 152 uF — Quasi-periodic response.

When the control parameter is further increased to € = 156 uF, the response of
the system does not follow any specific periodic pattern but is instead quasi-
periodic. The resulting stator current waveform and the stator/rotor d-q axis
phase plane diagrams are shown in Figure 6.7 and Figure 6.8, respectively. The
phase space diagram is plotted using 5000 data points showing that the locus
of the solution lies on a ‘toroid typed’ manifold.
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Current (A)

|
1
1 1
0 143.7 287.4
Time (ms)

Figure 6.7 Stator line current waveform for C = 156 uF — Quasi-periodic

response.
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a) izo versus isp phase plane diagram.

Current, ird (A)

0 5 0
Current, S (A)

b) i,.q versus igp phase plane diagram.
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&

Current, i (A)
rq

&

C) irq Versus iyp phase plane diagram.

Figure 6.8 Phase plane diagrams for C = 156 uF (with 5000 data points) -

Quasi-periodic response.

Figure 6.9 shows 20,000 data points of the previous tori (Figure 6.8 a) i,

versus iy, phase plane diagram) and is clearly demonstrating that the orbit is
dense on the torus and providing further verification of the quasi-periodic nature
of the system’s response. What’s more, by sampling the state vector when the
current iy is zero, the Poincaré section of the system can be obtained (Figure
6.10) showing a closed orbit which again is a characteristic of quasi-periodic
nonlinear dynamic systems.

Current, isQ (A)

Figure 6.9 Dense orbit in the torus (is, versus isp, with 20,000 data points).
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Figure 6.10 Poincaré sections for C = 156 uF (sample at i, = 0).
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6.2.2 CHANGING THE LOAD RESISTANCE R

The behaviour of the SEIG feeding an inductive load (RL) when changing the
control parameter R (load resistance) is examined in this section. Figure 6.11
shows the bifurcation diagram of the system created by sampling the value of
the q axis stator current when the d axis stator current is zero, using R as the
bifurcation parameter and maintaining other parameters at their base values
(C =1350 and w, = 314 rad/s). As the load resistance is reduced from its
base value of 30 Q, the diagram shows how the system loses its stability at
about 28.5 Q through a Neimark bifurcation before entering a quasi-periodic
region ultimately leading to chaos.

13

Stator g axis Current (4)

T 75 % %5 » 295
Resistive Load (Q)
Figure 6.11 Bifurcation diagram with R as the bifurcation parameter.

Two points on the diagram will now be examined more closely. The stator
current waveform and the phase plane diagram (rotor d axis current versus
stator d axis current) for R = 28 ) are shown in Figure 6.12 and Figure 6.13,
respectively. System response does not follow any periodic pattern but is

instead quasi-periodic, in agreement with the bifurcation diagram of Figure 6.11.

The resulting stator current waveform and the phase plane diagram when R is
further reduced to 27 2 are shown in Figure 6.14 and Figure 6.15. The figures
show that the motion of the stator current has no regular pattern indicating that
the system behaves chaotically.
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Figure 6.14 Stator line current waveform for R = 27 2 — Chaotic response.
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Figure 6.15 Phase plane diagram for R = 27 2 — Chaotic response.

6.2.3 CHANGING THE ROTOR SPEED w,

The dynamic behaviour of the system when varying the rotational speed of the

rotor while maintaining other parameters at their base values (C = 135 uF and

R =30 Q) is studied in this section.

The bifurcation diagram of the system with rotor speed as the bifurcation

parameter (obtained by sampling the q axis stator current when the d axis stator

current is zero) is shown in Figure 6.16. The diagram captures system’s

behaviour from the initial base case period-one response to eventual chaotic

motions via regions of quasi-periodicity, period seven and period eleven orbits.

Other periodic orbits are also presented but are not highlighted here due to

space limitations.

Stator g Axis Current (A)

B8

Fhr

AN

333

I
35615

I
334

1 I
3348 335 555

Rotor Speed (rad/s)

Figure 6.16 Bifurcation diagram with w, as the bifurcation parameter.
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The resulting quasi-periodic stator current waveform and phase plane diagram
for w, = 334.5 rad /s are shown in Figure 6.17 and Figure 6.18.
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Figure 6.17 Stator line current waveform for w,, = 334.5 rad /s — Quasi-periodic

response.

N

Current, ird (A)

s

0 4
Current, S (A)

Figure 6.18 Phase plane diagram for w, = 334.5 rad /s — Quasi-periodic

response.

By further increasing the control parameter w, to 335.1 rad/s, the stator current

waveform is more distorted and the system retains its quasi-periodic behaviour.
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(¥) weuno
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Figure 6.19 Stator line current waveform for w,, = 335.1 rad /s — Quasi-periodic

response.
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Figure 6.20 Phase plane diagram for w, = 335.1 rad /s — Quasi-periodic

response.
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6.3 STABILITY ANALYSIS

The numerical results presented in the above sections show that as a system
parameter is varied, the SEIG undergoes a Neimark bifurcation characterised
by the transition from a stable period-one orbit to a quasi-periodic orbit. In this
section, both orbits are analysed to establish the stability properties of the
system.

A discrete-time nonlinear system can be expressed in the following general
form

xn+1 = f(xn)! n= 01112 o (61)

As discussed in Chapter Three, three steps are needed to establish the stability
of the system’s limit sets: locating the fixed points of the system (if x,,1 = x, =
x*, then x™ is a fixed point of the above nonlinear expression), locally linearising
the discrete system in the neighbourhood of the fixed point to obtain the
Jacobian matrix; and finally calculating the eigenvalues of the Jacobian matrix
[70]. A fixed point is stable if all the eigenvalues of the Jacobian matrix have

magnitude(s) less than unity and unstable otherwise.

As the SEIG system is simulated as a four-dimensional (stator and rotor d-q
axis currents respectively) continuous-time system, it is essential to transform
the fourth order system’s equation to a lower order discrete-time form. This is

achieved by sampling the state vectors when the stator d axis current (i) is

zero. The resulting three-dimensional discrete-time system is derived as follows
[67]

Ih1 = Al (6.2)
Isgn+1 Ay; Arp Agg tson

Iy = l:rdn+1 yA= 1421 Ay Apz|, In = |iran (6.3)
lrgn+1 31 Azx Asz lrgn

where A is the Jacobian matrix and I,,, I,,,4 are stator and rotor current state

vectors at states n and n + 1, respectively.
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6.3.1 ANALYSIS OF THE PERIOD-ONE ORBIT

Taking our base case (R=300,C =135uF and w, =314 rad/s) as an
example of a stable period-one operating point, the phase plane diagram of
stator d-q axis currents in the continuous-time domain is a limit cycle (as shown
in Figure 6.2). In discrete time domain, the Poincaré section represented by the

sampled rotor d axis versus stator g axis current is a single dot (Figure 6.21).

3.76
3.74r
2 3.72r
c . .
B 37 — Fixed Point"
£ 368t ° 1
o
S 3.66-
O
3.64r
3.62-
-8.05 -8 7.95 7.9 7.85
Current,i _ (A)
sQn

Figure 6.21 Period-one Poincaré section; Base case without disturbance.

Figure 6.22 shows the phase plane diagram of the system when a pulse

disturbance is applied to the state vector i, at 3.303s (wheni,is at its

maximum positive magnitude). The pulse signal is added to the system while
operating in steady-state for a duration of less than one period of the stator
current waveform. The resulting Poincaré section is shown in Figure 6.23. From
a graphical point of view, Figure 6.23 shows that the fixed point is stable since
the system dynamics iterates spirally to it.
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Figure 6.22 Period-one phase plane diagram; Base case with disturbance.
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Figure 6.23 Period-one Poincaré section; Base case with disturbance.

Mathematically, the stability analysis of the above fixed point is carried out by
sampling the three state variables iy, i and i, When ig, = 0. Eight sampled

points are shown in Table 6.1 with a full list of sampled points given in
Appendix E for further detalils.
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Table 6.1 Sampled iy, i,4 and i, state variables when i;, = 0.

isp =0

Sampled Currents when

pd
°

i,o (A)

ira’ (A)

i (A)

-8.1589

3.728

3.3504

-7.9206

3.6547

3.0984

-7.8688

3.7182

3.124

-8.0576

3.6797

3.2406

-7.9323

3.6556

3.1225

-7.9322

3.7134

3.1815

-8.0115

3.6753

3.2064

O N O O | W N =

-7.927

3.6649

3.1307

According to equation (6.2) and (6.3), the first Jacobian matrix A; can be

calculated from the first four sets of sampled data (samples no. 1, 2, 3 and 4).

Followed by matrix A, derived from samples no. 2, 3, 4 and 5, and so on for

matrices As, A, and Ag

Iz :Alll
I3 = Aq1,
Iy = Aq13
I3 = A1,
14 =A213
Is = Az1,
Ig = Asls
I; = Aslg
Ig = Asl,

(6.4)

By substituting the sampled data (shown in Table 6.1) into equation (6.4),

Jacobian matrices, the eigenvalues of each derived matrix and the magnitude of

the complex conjugates can be computed as shown in Table 6.2 (more

Jacobian matrices are shown in Appendix E).
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Table 6.2 The Jacobian matrix, eigenvalue and magnitude of the complex
conjugates derived from the sampled state variables under period-one orbit

condition.
Jacobian Matrix Eigenvalue Magnitude of the
complex conjugates
-0.2045 -2.9971 0.4729 0.9992
A;|-0.6961 0.3722 -1.0185|-0.5902 + j0.5124 0.7816
0.2770 1.7509 -0.3490 | -0.5902 - j0.5124
-0.3195 -2.5923 -0.2986 0.9993
Az |-0.7269 0.4806 -1.2250 |-0.3990 +j0.7756 0.8722
0.3350 1.5467 0.0403 | -0.3990 - j0.7756
0.2384 -2.2622 0.7138 0.9994
Az | -0.8798 0.3901 -1.5024 | -0.6842 + j0.5998 0.9099
-0.2369 1.2083 -0.9975 | -0.6842 - j0.5998
0.3086 -2.1547 0.7663 0.9997
A; | -0.6682 0.7139 -1.3440 | -0.4480 + j0.6907 0.8233
-0.1319 1.3690 -0.9189 | -0.4480 - j0.6907
0.3001 -2.2686 0.8779 0.9999
As | -0.6652 0.7537 -1.3830 | -0.5121 +j0.7522 0.91
-0.1197 1.5314 -1.0781 | -0.5121 - j0.7522

The elements of the Jacobian matrices shown in the second column of Table
6.2 are seen to be similar to each other. Within the eigenvalues column, one of
the eigenvalues is always less than unity and the other two eigenvalues are
complex conjugates. The magnitude of each complex conjugate is given in the
last column of Table 6.2 with all values being less than unity. Therefore, the
system is stable according to the stability criteria discussed in Chapter Three.
The average values of the three eigenvalues are 0.9995,—-0.5267 + j0.6661 and
—0.5267 — j0.6661.
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6.3.2 ANALYSIS OF THE QUASI-PERIOD ORBIT

The stability of the quasi-period orbit when operating at R = 30 2, C = 156 uF
and w, = 314 rad/s (Figure 6.7 to Figure 6.10) is analysed in this section.

Figure 6.24 shows the phase plane diagram of the system when a pulse
disturbance is applied to the stator d axis vector at 3.303s. The Poincaré
section of the quasi-period phase plane diagram with such disturbance is
plotted in Figure 6.25. From a graphical point of view, the Poincaré section
iterates spirally away from the fixed point (in the middle of the limit cycle) and
onto a limit cycle. Therefore, the fixed point is unstable according to the stability
criteria discussed in Chapter Three.

Current, iSQ (A)

Figure 6.24 Quasi-period phase plane diagram; C = 156 uF with disturbance.
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Figure 6.25 Quasi-period Poincaré section; C = 156 uF with disturbance.

A numerical analysis of the stability of the above fixed point is discussed below.

Eight sampled sets of state variables (when i, =0) are shown in Table 6.3.
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Table 6.3 Sampled iy, i,4 and i., state variables when iz, = 0.

Sampled Currents when
isp =0
No. | i, (A) | i, (A) | i, (A)
14.628 | 0.0897 | 17.514
16.269 | 3.3017 | 12.985
23.939 | 4.1968 | 22.695
12.774 | 2.4027 | 14.935
22.416 | 0.9226 | 16.071
19.141 | 2.7468 | 20.822
13.375 | 3.6334 | -13.41
27.486 | 3.2308 | 21.173

[y

0| N O o | W D

By substituting the sampled data shown in Table 6.3 into equation (6.4), the
Jacobian matrices, eigenvalues of each Jacobian matrix and the magnitudes of
the complex conjugates derived from the sampled state vectors can be
computed as shown in Table 6.4. A full list of the sampled state variables and
Jacobian matrices is given in Appendix E.
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Table 6.4 The Jacobian matrix, eigenvalue and magnitude of the complex
conjugates derived from the sampled state variables under quasi-periodic orbit

condition.

: . , Magnitude of the
Jacobian Matrix Eigenvalue .
complex conjugates

0.6162 2.6382 -0.4008 | -0.6511 +j0.7495
A;|-0.8788 -0.5806 -0.9255 | -0.6511 -j0.7495 0.9928
-1.2715 -1.9077 -0.3303 1.0074

0.1979 2.8269 -0.8769 | -0.8532 +j0.7596
A, | -0.8263 -0.6043 -0.8658 | -0.8532 - j0.7596 1.1423
-1.2378 -1.9229 -0.2920 1.008

-0.0609 2.6776 -1.1222 | -0.6387 + j0.6589
As | -0.5125 -0.4232 -0.5682 | -0.6387 - j0.6589 0.9177
-0.7183 -1.6232 0.2006 0.9939

-0.0125 2.9295 -1.0403 | -0.6579 +j0.7845
A, | -0.5272 -0.5002 -0.5932 | -0.6579 - j0.7845 1.0239
-0.7201 -1.6329 0.1974 1.0005

-0.2568 3.5431 -1.3458 | -0.8668 + j0.6264
As | -0.3422 -0.9648 -0.3618 | -0.8668 - j0.6264 1.0694
-0.4837 -2.2268 0.4932 1.0051

The Jacobian matrices shown in the second column of Table 6.4 are clearly
different from each other and not all the eigenvalues have magnitudes of less
than unity. The system is clearly unstable according to the stability criteria
discussed in Chapter Three. The average values of the three eigenvalues are
1.003, —0.7335 +j0.7158 and —0.7335 —;0.7158.
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6.3.3 AN OVERVIEW OF THE MOVEMENT OF EIGENVALUES WHEN CHANGING A
CONTROL PARAMETER

A brief overview of the movement of the eigenvalues of the system when
changing each of the three control parameters is given in this section. These
values were calculated in a similar way to that described above for operating at
C =156 uF,R = 30 2 and w, = 314 rad/s (Table 6.4).

a) Changing the Control Parameter C

Figure 6.26 gives an overview of the magnitudes of the eigenvalues of the
Jacobian matrices when the self-excitation capacitance is increased from
151 uF (blue square) to 151.7 uF (purple star) and then to 160 uF (green circle)
per phase (R = 302 and w,, = 314 rad/s). It is noted that the system is stable
when the value of C is smaller than 151.7 uF (all eigenvalues are within the unit
circle) and unstable for values of C greater than 151.7 uF. In other words, the
system transforms from period-one to quasi-period orbit when self-excitation
capacitance is around 151.7 uF per phase. The following eigenvalue movement

map agrees well with the bifurcation diagram shown in Figure 6.3.

Unstable Region

% o
:‘2 *
C 1 * *
(@] o . o
g o ° o o
o o
o o,
Stable Region 5 G151
° * C=151.7
© C=160

T 2 3 4 5 6 7 8 9 10
Number

Figure 6.26 Eigenvalue map for changing capacitance.
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b) Changing the Control Parameter R

Figure 6.27 gives an overview of the magnitudes of the eigenvalues of the
Jacobian matrices as the load resistance is reduced from 30 2 (blue square) to
28.8 12 (purple star) and then 24 0 (green circle) per phase (C = 135 uF and
w, = 314 rad/s). The system is stable when the value of R is greater than
28.8 2 (all eigenvalues are within the unit circle) and unstable when R is smaller
than 28.8 2. In other words, the system transforms from period-one to quasi-
period orbit when load resistance is around 28.8.2 per phase. Again, the
following eigenvalue map agrees well with the bifurcation diagram shown in
Figure 6.11.

Unstable Region
[e]

*

*

o
o

o g o o

o o

Magnitude

Stable Region

ST 2 3 4 5 6 7 8 9 10
Number

Figure 6.27 Eigenvalue map for changing load resistance.
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c) Changing the Control Parameter w,

Figure 6.28 gives an overview of the magnitudes of the eigenvalues of the
Jacobian matrices as the speed of the rotor is increased from 314 rad/s (blue
square) to 334.2rad/s (purple star) and then to 336rad/s (green circle)
(R=300 and C =135 uF). The system is stable when the value of w, is
smaller than 334.2 rad/s (all eigenvalues are within the unit circle) and unstable
when w, is greater than 334.2 rad/s. In other words, the system transforms
from period-one to quasi-period orbit when shaft speed is around 334.2 rad/s.
The stability analysing results (shown in Figure 6.28) agree well with the

bifurcation diagram shown in Figure 6.16.

o Wr=314
[e]
« w=334.2
Unstable Region W
o w =336
o) ° :
©
2 . o
= *
% ® ° 8 * *
> o, -
Stable Region
5 L L L L L L
0-5 2 3 4 5 6 7 8 9 10
Number

Figure 6.28 Eigenvalue map for changing rotor speed.
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6.4 SUMMARY

The nonlinear behaviour of the SEIG and its stability characteristic when
operating under inductive load (RL) conditions was analysed and investigated in
detail with the aid of computer simulations and relevant numerical analysis tools
in this chapter.

The analysis showed how the SEIG autonomous dynamic system loses its
period-one stability to a quasi-periodic orbit and eventual chaotic behaviour as a
result of small changes in the system parameters. Three control parameters
were used to examine the nonlinear behaviour of the machine: the value of the

self-excitation capacitors, shaft speed and load resistance.

The stability of the period-one and quasi-period orbits was analysed by both
graphical and numerical means and an overview of the movement of the
eigenvalues of the system’s Jacobian matrices was presented showing the
boundaries between stable and unstable regions of operation. The results of the
stability analysing match well with the system bifurcation diagrams drawn with
the self-excitation capacitance, load resistance and rotor speed as bifurcation

parameters.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

The thesis carried out a detailed review of the nonlinear computer modelling
techniques of induction machines based on the cross-saturation effect, leakage
saturation effect, the machine H-G diagram and skin effect. It was proved that
the cross-saturation nonlinear effect is the most accurate nonlinear modelling
technique of induction machines. Hence, the dynamic behaviour of the SEIG
system when feeding variable load conditions is analysed and investigated

throughout this thesis with the consideration of cross-saturation nonlinear effect.

The thesis was focused on analysing the steady-state nonlinear behaviour of
the SEIG as a nonlinear dynamic system, unlike most of the
researchers/scientists carried out the analysis of the steady-state and transient
performance of SEIGs from design and operational point of view.

The features of an induction generator in terms of cost and simplicity offer many
advantages in today’s renewable energy industry. The limitation of an induction
generator in needing an external reactive power source to provide the machine
magnetisation can be overcome by connecting a three-phase capacitor bank to
its stator terminals. This capacitor bank supplies reactive power to both the
generator and the load, and the real power demand of the terminal load is
supplied by the prime mover.

A brief introduction to nonlinear dynamic systems, Poincaré maps, bifurcation
diagrams, limit sets and their stability characteristics was also given in this
thesis. This serves as a general mathematical background of nonlinear systems
and provides the analytical tools required to investigate the SEIG as a nonlinear
dynamic system.
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The modelling of the induction generator as a linear electromagnetic device was
introduced as the foundation for further study and investigation of the nonlinear
behaviour of the SEIG. A model of the machine with consideration of the cross-
saturation effect was then derived by modifying the standard machine model. A
current based implementation of the machine state space model (with currents
as state space variables) was used in this thesis because of its ease of

simulation in Simulink.

A mathematical model of the SEIG when operating as a standalone device was
then created by including the self-excitation capacitor bank and the load
impedance, connection in parallel with the stator terminals. The model was
verified by comparison with experimental results presented in a well-known
publication and by comparison with laboratory test results obtained for a 1.1 kW

induction machine feeding various types of load.

Laboratory testing of the SEIG when feeding no-load, a purely resistive load (R)
and an inductive load (RL) was carried out to validate the SEIG model
developed previously. The experimental results showed good agreement with
those generated from the Simulink model and demonstrated the linear and

nonlinear types of behaviours of the system when feeding various load types.

The magnetising inductance and the dynamic inductance curves of the
induction machine play an important role in modelling the SEIG system and
allowing for the cross-saturation effect. In this study, these parameters were
obtained by measuring the magnetisation characteristics of the machine while

operating at synchronous speed with no-load.

The nonlinear behaviour of the SEIG when operating under inductive load (RL)
conditions was then analysed and investigated with the aid of computer
simulations and relevant numerical analysis tools. The results of the analysis
show how the SEIG autonomous dynamic system loses its period-one stability
to a quasi-periodic orbit leading eventually to chaotic behaviour as a result of
small changes in system parameters. Three control parameters were used to
examine the nonlinear behaviour of the machine: the value of the self-excitation

capacitors, shaft speed and load resistance.
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The stability of the period-one and quasi-period orbits was analysed by using
both graphical and numerical means and an overview of the movement of the
eigenvalues of the system’s Jacobian matrices was presented showing the
boundaries between stable and unstable regions of operation. The stability
analysis results match well with the numerical simulations and system
bifurcation diagrams drawn with the self-excitation capacitance, load resistance
and rotor speed as bifurcation parameters.

The results showed how the parameter values of the SEIG determine the
dynamic behaviours of the system. A small quantitative change in one of the
parameters can directly cause a big qualitative change in system’s behaviour.
This behaviour is typical of nonlinear dynamic systems. As far as | am aware,
this thesis presented the first examination of the periodic, quasi-periodic and
chaotic behaviour of the SEIG when supplying variable load types. Laboratory
testing and the numerical analysis results confirmed that by changing a
parameter of the system such as the inductive load, self-excitation capacitance,
rotor shaft speed or the power factor of the load, the behaviour of the system

can change dramatically, exhibiting characteristics typical of nonlinear systems.

Numerical simulations and analytical analysis showed how the SEIG lost its
stability moving from a stable period-one response, to a quasi-periodic

response and chaos through a Neimark bifurcation.

Two induction machines were used in this investigation. A 1.1 kW machine
utilised in the experimental rig and a second 1.5 kW machine whose parameters
were used as the basis for the analytical investigation of system performance.
Unfortunately, using the 1.1 kW laboratory machine as the basis for the
analytical study proved problematic because of the very narrow window of
quasi-periodic behaviour presented by the machine. This explains why it was
virtually impossible to capture a clear quasi-periodic response under laboratory
conditions. It also made the task of demonstrating the transition in system
behaviour from a stable period-one response to quasi-periodicity and chaos
through simulation and analysis of the system eigenvalues very difficult. Hence
a decision was taken to use the parameters of a bigger 1.5 kW machine as the

basis for the analytical investigation.
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7.2 FUTURE WORK

The analysis and explanations presented in this thesis provide a good
foundation for further research in the area of SEIG systems driven by renewable
energy source prime movers. Some of the challenging but worthwhile areas in

which this research can be used and exploited for future work are

e Implementation of a wind/hydro turbine as the prime mover of the SEIG
system by replacing the existing DC motor of the experimental
apparatus. As wind/hydro turbines having constant changing nature, the
highly dynamic behaviour of the SEIG system shall be further analysed
and investigated by adding nonlinear elements into the system.

e Implementation of a parallel connected SEIG system (typical for wind
farm applications) by both computer simulations and experimental
testing.

e Development of nonlinear control strategies as the basis for
implementing a practical nonlinear controller for the SEIG. The purpose
of such a controller would be to control the unstable output of the SEIG
by adopting nonlinear control techniques based on the placement of
system eigenvalues in order to achieve constant voltage and frequency
output over a much wider range of parameter values. Such controllers
have been proposed for other electrical systems with varying degrees of

Success.
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APPENDICES

APPENDIX A

THE SUB-BLOCKS OF THE STANDARD INDUCTION MACHINE MODEL

(D P

out_1 Sine W ave
out_2 Sine Waveq
(3 fas
out_3 Sine Wiawe?

Figure A.1 Stator/Rotor 3-phase Supply sub-block.

Figure A.2 3-Phase to d-q sub-block.
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Figure A.6 Mechanical Dynamics sub-block.

120

School of EEE at Newcastle University



Appendix B Modelling of Leakage Saturation Effects

APPENDIX B

MODELLING OF LEAKAGE SATURATION EFFECTS

This section shows to the reader the process of modelling the IM with
consideration of the leakage saturation effects. Note: This model is only
applicable to large inrush currents. The model is based on the flux linkages as

state space variables.

B.1 Mathematical Equations of Leakage Saturation Effects

The mathematical equations of a saturable leakage reactance IG are shown as

follows (referred to SRF)

Again the general form of IM can be rewritten into equation (B.1)

d
Usd = Rsisd + l//fd
dt
. dy
U, =Ri, e (B.1)
dy,
U,=Ri,+—*+o,
rd rord dl r'//rq
dy,
Urq = errq Tq_wr'//rd

The voltages U, and U, represent the applied stator voltages in the
orthogonal coordinate system. The voltagesU,, and U,, are the rotor voltages

which identically equal to zero when the machine rotor windings are shorted.

l//sd = Lsisd + Lmird = Llsisd + Lm (isd + ird)

V= Lsi.sq + Lmi.m = L,Si‘sq +L, (i:w + ifq) (B.2)
l//rd = Lrlrd + L La = Llrlrd + Lm (lsd +lrd)

m"sd

l//rq = Lrirq + Lmisq = Llrirq + Lm (isq + irq)

where L, , L, and L, are leakage stator/rotor inductances and mutual

inductance, respectively.

Isa Isi (BS)
L =L, +L

Ira Iri

{LlszL +L

121

School of EEE at Newcastle University



Appendix B Modelling of Leakage Saturation Effects

where L., L _and L, L

Isa Ira Isi ?

are stator/rotor air and iron leakage inductance,

Iri
respectively. The stator/rotor leakage inductances are now assumed to be
comprised of both iron-dependant slot and air-dependant end winding portions.
The former one is saturable and the latter one is constant.

The d-q axis mutual fluxes which link both stator and rotor are given by

a =L@y 1)
Y na . d . d (B.4)
l//mq = Lm (lsq + qu)
Since
l//ldsa = Llsa isd
a — L vais
WIqs Isa”sq (BS)

l//ldra = Llralrd
y/lqra = Llraqu

where v,..., V... » Y. @nd v, are stator/rotor d-q axis air dependant leakage

flux linkages, respectively.

Substitute equations (B.3), (B.4) and (B.5) into (B.2) and solve for the four

machine currents, it is possible to write the result as

iy =Wy —V md _sat l//ldsi_sut)/ Ly,
isq = (qu - qu_sut - qusi_saz)/Llsa
by =W — Vind _sat ~VYiari_sar )/ L,
irq = (l//rq Vo sat — l//lqn',sat)/le

where y and are saturated d-q axis mutual flux linkages; v, ...

md _ sat mq _ sat

Visi sas Y o @nd w, . ., are saturated stator/rotor d-q axis iron dependant

leakage flux linkages, respectively.

Substitute equation (B.6) into (B.1)
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d WT RY

dtld =U, - ng‘a Wt Vi st = Viasi_sar)
d l//ﬂi Rs

dt - Usq - Lba (‘//Sq - ‘//md _sat l/llq.rif.mz ) (B?)
dy, R,
TV T T W Vi W) O,

1 Ira

d WV Rr

” ~=U, - L Wy Vi sa Vi _sa) T OV

In order to solve these equations completely, independent expressions for the
saturated values of the magnetising and iron-dependent leakage fluxes must be
developed. That is to substitute equation (B.6) into (B.4) using the unsaturated

values of mutual flux linkages, equation (B.8) is derived by

" . « 1 1 - -
Vind _unsar = Ly,/L,+Ly,/L,+L,( + Ay, —L, Viasi_sa /Ly, - Lm‘//ur;,sm /L,
L (B.8)

Isa lra

| 1 .
= L l// /L + Lm l//rq /Llra + L (T + 7)A l//mq - Lm l//h/si _ sat /lea - Lm l//h/ri,xat /Llra

y/mq _unsat m7T sq Isa m

Isa Ira

where v, .. and v, .. areunsaturated d-q axis mutual flux linkages

L = B.9
" [1/Lm7unmr + I/L + I/le] ( )

Isa

When unsaturated, the stator/rotor d - q axis iron-dependant leakage flux

|Inkag eS l//ldsi _unsat l//lqsi _unsat l//ldri _unsat and l//lqri _unsat are

l//ldsi _unsat = L[si _unsatlsd

l//lqsi unsat Llsi unsatisq
B o (B.10)
l/lldrifunsat = Llrifunsatlrd

quri_ unsat ~ L[ri_ unsatqu

By substituting equation (B.6) into (B.10) and using unsaturated values of flux

linkages, the iron-dependant leakage flux is computed by
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L*
l//ldsi _ unsat = L L [‘[/sd + A l//ldxi _ sat - l//md _ sat ]
Isa
L,
yjlqsi _ unsat = i [qu + A y/lqsi _sat l//mq _ sat ] (B1 1 )
L,
l/lldri _ unsat = Ll [l//rd + A l//hlri _ sat - l//md _ sat ]
Ira
L,
l//lqri _ unsat = Lil [l//rq + A l//lqri _sat l//mq _ sat ]
Ira
. 1
Is
[1 Lva +1 Lvi unsa ]
where, /L. i i s (B.12)

L =
"L, +VL

ri _ unsat ]

The saturated values of magnetising and iron-dependent leakage flux linkages

can now be determined by means of saturation factors.

Note:

2

_ 2
'//m7 unsat — \/'//md _unsat + '//mq _unsat

Al/’m?sat =K

m l//m _unsat

A l//md _sat = K m l//md _unsat
A l//mq _sat = Km l//mq_ unsat
l//md _sat = l/jmd _ unsat - A l/jmd _sat

l//mq _sat = l/jmq _unsat A l/jmq _sat

_ 2 2
'//lsifunsat - \/'//lqsifunsat + Wldsifunsat
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B.2 Simulation Results of Leakage Saturation Effects

The machine parameters are: stator and rotor resistance R = 0.4122 (),
R, = 0.4976 Q, magnetising reactance X, ,nsq¢ = 15.7 Q, stator and rotor air
dependant leakage reactance Xy, Xiq =0.15Q , stator and rotor iron
dependant leakage reactance X5 ynsat» Xiri unsat = 0.95 Q and Rotor inertia
J = 0.11 kgm? [58].

Block functions defined in the program

1

Irz lra
b

L= B.13
" 1/ Lmiunsat + 1/ Llsu + 1/ Llra ( )

L o-—— 1 (B.14)
- 1/ Llsu + 1/ le

L - ! (B.15)
- [I/Llsa + l/Llsi_unsal]

L, = ! (B.16)

[I/le + I/Llriiunsut]
Where a= Lmz /Llaz b = Lmz /Llsa c= Lmz /Llra d = Llsz /Llsa g = Rs /Llsa
k=L, /L, n=R /L, p=1/L, q=1/L,, r=3pp/4 and s=1/J

lra
)

Note: pp is pole pair of the machine.

The leakage saturation induction machine Simulink model uses ‘data store
write’, ‘data store read’ and ‘data store memory’ blocks to store and transfer
data.

The simulation results of the |G when feeding no-load are shown as follows
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Figure B.1

Stator Current [A]

"Time [s]

Induction machine stator current at no-load.

Torque [Nm]

~0 05

"Timé [s] *
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Figure B.2 Induction machine torque response at no-load.

Rotor Current [A]

"Time [s]

Figure B.3 Induction machine rotor current at no-load.
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Figure B.4 Induction machine rotor speed at no-load.

The stator and rotor current waveforms as well as the torque and the rotor
speed response curves are in good agreement with the general characteristics
of an induction machine. The leakage saturable technique is only suitable for
when large inrush current occurs in the machine. The cross-saturation nonlinear
effect shall be included in this leakage saturation induction machine Simulink
model if it is necessary to be investigated further for high power machine
applications.
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APPENDIX C

THE ELECTRICAL EQUIVALENT CIRCUIT TESTS OF THE INDUCTION
MACHINE

The parameters of the EC for the IM are crucial for running the simulation
models. The most common way to manually determine the IM parameters are
to use the No-load test and Blocked rotor test. The data gained from these two
tests are then transformed to EC parameters through a series of mathematical

equations shown in the following section.

The induction machine used for testing is an ABB 2-pole, squirrel cage, Class A
induction machine with 1.1 kW rated power, 220~240/380~420 V rated voltage,
4.4/2.5 A rated current and 50 Hz rated frequency.

Note: Class A Squirrel-Cage Induction Motor characterised by normal starting
torque, high starting current, low operating slip, low rotor impedance, good
operating characteristics at the expense of high starting current, common

applications include fans, blowers and pumps.

C.1 No-load Test (50 Hz)

No-load test of the IM is introduced to the reader in this section. The No-load
test is just like the open circuit test of a transformer, it gives information on
excitation current and rotational losses. The procedures of the No-load test are:
three-phase balanced supply voltages are firstly applied to the stator terminals
at the rated frequency with the rotor uncoupled from any mechanical load; then
the values of current, voltage and power are measured at the machine’s input
channels, the machine rotates at almost synchronous speed with slip near zero.
The measured values are shown in Table C.1.
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Table C.1 Measured data during No-load test.

No-load Test
Ly, 1394
Vo 417.67V
P, 150 W
fs 50Hz

C.2 Blocked Rotor Test (12.5 Hz)

The blocked rotor test is just like the short circuit test of a transformer. It
provides information on leakage impedances and the rotor resistance. The
procedures of the Blocked rotor test are: Firstly, the rotor needs to be blocked to
prevent rotation; secondly, when the rotor is at the stand still, the balanced
supply voltages are applied to the stator terminals at a frequency of 25% of the
rated value at a voltage when the rated current is achieved; finally, the values of
current, voltage and power are measured at the machine’s input channels. The

measured values are shown in Table C.2.

Table C.2 Measured data during Locked rotor test.

Locked Rotor Test

L, 254 A

|/ 90.65 V

Py, 276.67 W

fi 12.5 Hz
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C.3 The Equivalent Circuit Calculation

From the no-load measurement data I,,;, V,,;, P, the value of the core resistance

is determined.

The single phase values of the no-load power and voltage

P, 150
Pui=— =—3 =50W

V,, 417.67
Viiiin = 5 F 241.14V

The value of the core resistance is

P
R, =—2-1= = 25.88 Q

12, 1392

The ratio of the no-load phase voltage to current represents the no-load

impedance, which is

Vo m  241.14
7 = = = 173.48 Q
I 1.39

The value of the magnetising reactance can be determined as follows

X =J /anz — R =j/173.482 — 25882 = j171.54 Q

The following equation is the characteristic of the blocked rotor test

Xpr = Xsta + XrotRor = Rsta + Ryot

where Xgq, Xrot» Rsta @nd R,,; are stator and rotor reactance and resistance,
respectively.

Single phase values of blocked rotor power and voltage are

P,, 276.67
Pbr_l = T = 3 = 9222 w
Vyr 90.65
Vbr_In = E = W =5234V

The blocked rotor resistance and impedance values are
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o Pwa_9222_ o0
br = = = .
T2 2547
Vor m  52.34
Zyy = —= =" =20610
br = .~ 254

The value of the blocked rotor reactance is

Xpr = j /zbrz — Ry 2 = j/20.612 — 14.292 = j14.85 Q

Therefore the following equation is applied

Xor _ 1485
A

Xsta =
The rotor reactance is derived by
Xeot = Xsea = j7.425 Q

The stator phase resistance is measured by a simple DC test shown as follows

Ry, =———=6.650
St 0.3 A% 2

The rotor resistance is

Ryor = Ryy — Ry = 14.29 — 6.65 = 7.64 Q

The stator, magnetic and rotor impedances are
Zsta = Rstq + jXstq = 6.65 + j7.425

Zm =R, + jX;m = 25.88 + j171.54

Zrot ="+ jKpor = 0+ j7.425

N

The equation of the airgap impedance with regards to the magnetising and rotor

impedances is shown as follows

1 1 1
=—+
Zairgap Zm Zrot

As it is mentioned in the no-load test, the slip is almost zero, s - 0
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Therefore, the rotor impedance tends to infinity
Zyot = @

The value of the airgap impedance is equal to the magnetising impedance as
shown by

Zgirgap = Zm = 25.88 + j171.54
Therefore, the total impedance is

Ztotar = Zsta + Zairgap = 32.53 + j178.965
1Ztotarl = 181.9 Q

From the above calculation, the stator line current is

Vam 24114

I, = = =134
T  Zota] 1819

Hence, the EC drawing of the IM can be represented as follows

jXsta Rsta jXrot Rrot

Vsup_In Rrot(1-s)/s

Figure C.1 Equivalent circuit of the induction machine.

The parameters of the above EC calculated from the No-load test and the
Blocked rotor test are

Xetq = j7425 Q; Ryq = 6.65Q; Xpor = j7.425 Q; Rypy = 7.64 Q; X, = j171.54 Q
and R, = 25.88 Q)

The above values of the EC parameters shall be used as the input parameters
of the SEIG Simulink model.
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APPENDIX D

TEST EQUIPMENT

The following equipment was used in the experimental investigation

ltem

Table D.1 Experimental equipment.

Description

Purpose

Photo

Three-phase

AC sources

ET system variable
voltage, variable
frequency three-phase
AC power supply,
3x2000V4, 3x
0~270V,3x154
Type:
EAC/3P2000/cc/ATI-
10/LT

Serial No.: 07.13.2389.

Used when calculating the
equivalent circuit parameters

to carry out the locked rotor

and no-load tests and also for

the machine magnetic

characteristics tests.

Capacitor
bank

Three-phase self-
excitation capacitor bank
assembled in-house into
a metal enclosure

(440 V, 15 uF capacitors,

10% tolerance).

reactive power of the system.

Connected to the stator
terminals of the induction

generator to supply the

Current probe

HP 1146 A AC/DC

current probe.

generator, load and capacitor

Measure and record the

currents.

133

School of EEE at Newcastle University



Appendix D Test Equipment
1.5 kW Mentor |l Digital )
_ ) Control and rotate the prime
DC Drive DC Drive manufactured
) mover (DC motor).
by Control Techniques.
3 kW Mawdsley’s DC
motor, maximum RPM _
To act as the prime mover of
DC Motor 4000, armature: 240 V, ] .
. the induction generator.
15 A, fields: 240V,
0.6/0.16 A.
ABB 1.1 kW,
(380~420)/ The machine operates as a
(220~240) V, 2.5/44 A, | generator during these tests.
Induction 50 Hz and 2-pole The generator’s current
Machine induction machine waveforms are recorded for

Model No.: M2VA80B-2

Serial No.:
3GVA081002-ASB.

further analysis and

investigation.

Three-phase

Three-phase auto-
transformer used as a

variable inductive load,

To provide the generator with

auto- ) o a three-phase variable
maximum winding _ _
transformer ) inductive load.
current: 20 4, maximum
winding voltage: 270 V.
. Measurement of rms currents
Multi-meter Fluke 87 V.

and voltages.
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Oscilloscope

Tektronix MSO 4034
mixed signal
oscilloscope, 350 MHz,
2.5 Gs/s, voltage
110~240 V, frequency

50~60 Hz, maximum P
power 250 W

Serial No. — MS04034
C000029.

To capture data and export to
an external device for further

processing.

Photo sensor

CEN-TECH Photo
sensor tachometer,
taking RPM

Measurement of the rotor

tachometer shaft speed.
measurements detected
by light beam.
. Three Curtis variable | To provide the generator with
Variable

resistive load

resistors, 5 4, 300V,
2 X 60 Q.

a three-phase variable

resistive load.

Voltage probe

SI1-9000 differential
probe.

Measurement and recording
of the generator terminal

voltages.

Wattmeter

Weston Wattmeter,
Model S.67, maximum
current: 5 A, maximum

voltage: 300 V.

Active power and reactive
power measurements for the
no-load and locked rotor tests
carried out to determine the

machine equivalent circuit

parameters.
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APPENDIX E

MORE SAMPLED STATE VARIABLES AND JACOBIAN MATRICES

Table E.1 Sampled state variables when ig, = 0 under period-one orbit.

Sampled Currents when
isp =10

No. | i, (A) | i, (A) | i, (A)

(fixed | -7.9611 | 3.6808 | 3.1752
point)

2 -8.1589 | 3.728 | 3.3504
-7.9206 | 3.6547 | 3.0984
-7.8688 | 3.7182 | 3.124
-8.0576 | 3.6797 | 3.2406
-7.9323 | 3.6556 | 3.1225
-7.9322 | 3.7134 | 3.1815
-8.0115 | 3.6753 | 3.2064
-7.927 | 3.6649 | 3.1307
10 -7.9591 | 3.7011 | 3.1925
11 -7.9915 | 3.6741 | 3.1915
12 -7.9329 | 3.6744 | 3.146
13 -7.9666 | 3.6928 | 3.1908
14 -7.9778 | 3.6741 | 3.1808
15 -7.9421 | 3.6794 | 3.1587
16 -7.9685 | 3.6877 | 3.1877
17 -7.9683 | 3.6753 | 3.1748
18 -7.9494 | 3.6816 | 3.1666
19 -7.9682 | 3.6844 | 3.1843
20 -7.9631 | 3.6769 | 3.1726
21 -7.9547 | 3.6824 | 3.1713
22 -7.9668 | 3.6823 | 3.1813
23 -7.9607 | 3.6783 | 3.1722
24 -7.9583 | 3.6825 | 3.174

Ol 0| N O o | W
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25 | -7.9652 | 3.6813 | 3.1789
26 | -7.9598 | 3.6793 | 3.1726
27 | -7.9602 | 3.6823 | 3.1754
28 -7.964 | 3.6809 | 3.1773
29 | -7.9597 | 3.6799 | 3.1733
30 -7.961 | 3.6818 | 3.1758

Table E.2 The Jacobian matrix, eigenvalue and magnitude of the complex
conjugates derived from the sampled state variables under period-one orbit

condition.

, , , Magnitude of the
Jacobian Matrix Eigenvalue _
complex conjugates

-0.2045 -2.9971 0.4729 0.9992
A; | -0.6961 0.3722 -1.0185 | -0.5902 + j0.5124 0.7816
0.2770 1.7509 -0.3490 | -0.5902 - j0.5124
-0.3195 -2.5923 -0.2986 0.9993
Az | -0.7269 0.4806 -1.2250 |-0.3990 + j0.7756 0.8722
0.3350 1.5467 0.0403 | -0.3990 - j0.7756
0.2384 -2.2622 0.7138 0.9994
Az | -0.8798 0.3901 -1.5024 | -0.6842 + j0.5998 0.9099
-0.2369 1.2083 -0.9975 | -0.6842 - j0.5998
0.3086 -2.1547 0.7663 0.9997
A4 | -0.6682 0.7139 -1.3440 | -0.4480 + j0.6907 0.8233
-0.1319 1.3690 -0.9189 | -0.4480 - j0.6907
0.3001 -2.2686 0.8779 0.9999
As | -0.6652 0.7537 -1.3830 | -0.5121 +j0.7522 0.91
-0.1197 1.5314 -1.0781 | -0.5121 - j0.7522
0.4175 -2.2988 1.2059 0.9999
Ag | -0.6294 0.7445 -1.2831 | -0.5280 + j0.6417 0.831
-0.1699 1.5443 -1.2181 | -0.5280 - j0.6417
0.2798 -2.4875 1.0781 0.9999

A; _ 0.8744
-0.5608 0.8386 -1.2194 | -0.4697 + j0.7375
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0.0028 1.7809 -1.0579 | -0.4697 -j0.7375
0.2670 -2.5314 1.0973 0.9999

Ag | -0.5895 0.7398 -1.1764 | -0.5157 +j0.6919 0.8629
-0.0102 1.7359 -1.0383 | -0.5157 - j0.6919
0.2565 -2.5172 1.0544 1.0000

Ag | -0.5831 0.7312 -1.1506 | -0.4874 + j0.6824 0.8386
0.0085 1.7107 -0.9624 | -0.4874 - j0.6824
0.1768 -2.6009 0.9512 1.0000

Ay | -0.5891 0.7250 -1.1583 | -0.5018 +j0.7188 0.8766
0.0526 1.7570 -0.9053 | -0.5018 - j0.7188
0.2041 -2.5370 0.9455 1.0000

A41|-0.6019 0.6950 -1.1556 | -0.4986 + j0.6798 0.843
0.0092 1.6556 -0.8963 | -0.4986 - j0.6798
0.2004 -2.5181 0.9144 1.0000

A2 | -0.6051 0.7113 -1.1824 | -0.4944 + j0.7035 0.8599
0.0087 1.6582 -0.9005 | -0.4944 -j0.7035
0.1962 -2.5208 0.9070 1.0000

A3 | -0.6047 0.7115 -1.1817 | -0.5057 + j0.6999 0.8635
-0.0019 1.6514 -0.9192 | -0.5057 - j0.6999
0.2216 -2.4744 0.9168 1.0000

A4 | -0.6047 0.7115 -1.1817 | -0.4960 + j0.6916 0.8511
-0.0172 1.6234 -0.9251 | -0.4960 - j0.6916
0.2222 -2.4669 0.9096 1.0000

A5 | -0.6044 0.7151 -1.1851 | -0.5004 + j0.7026 0.8626
-0.0161 1.6369 -0.9381 | -0.5004 - j0.7026
0.2258 -2.4665 0.9182 1.0000

A4 | -0.5997 0.7156 -1.1739 | -0.4975 +j0.6959 0.8554
-0.0154 1.6370 -0.9363 | -0.4975 - j0.6959
0.2586 -2.4192 0.9455 1.0000

A7 |-0.6120 0.6978 -1.1842 | -0.4927 +j0.6999 0.8559
-0.0219 1.6276 -0.9418 | -0.4927 - j0.6999

A 0.2665 -2.3875 0.9287 1 .OO(?O 0.8668
-0.6222 0.6572 -1.1626 | -0.5093 + j0.7014
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-0.0217 1.6286 -0.9423 | -0.5093 - j0.7014
0.2572 -2.3807 0.8974 1.0000
A9 | -0.6146 0.6517 -1.1371 | -0.4993 + j0.6946 0.8554
-0.0113 1.6210 -0.9075 | -0.4993 - j0.6946
0.3128 -2.3191 0.9653 1.0000
Az | -0.6366 0.6273 -1.1640 | -0.4898 + j0.6997 0.8541
-0.0214 1.6099 -0.9198 | -0.4898 - j0.6997
0.3414 -2.2461 0.9524 1.0000
Az | -0.6538 0.5834 -1.1562 | -0.4947 +j0.6976 0.8552
-0.0339 1.5778 -0.9141 | -0.4947 - j0.6976
0.3555 -2.2922 1.0412 1.0000
Az | -0.6590 0.6004 -1.1891 | -0.4973 +j0.6939 0.8537
-0.0397 1.5968 -0.9506 | -0.4973 - j0.6939
0.4106 -2.2491 1.1294 1.0000
A3 | -0.7019 0.5668 -1.2578 | -0.5147 +j0.7020 0.8705
-0.0748 1.5693 -1.0068 | -0.5147 - j0.7020
0.4023 -2.2654 1.1275 1.0000
Azs | -0.6790 0.6117 -1.2524 | -0.4967 + j0.6918 0.8516
-0.0779 1.5633 -1.0075 | -0.4967 - j0.6918
0.3969 -2.4097 1.2814 1.0000
Axs | -0.6754 0.7082 -1.3553 | -0.4800 + j0.7037 0.8518
-0.0759 1.6174 -1.0652 | -0.4800 - j0.7037
0.4581 -2.3934 1.4158 1.0000
Az | -0.6946 0.7031 -1.3975 | -0.4942 + j0.6903 0.849
-0.1143 1.6072 -1.1497 | -0.4942 - j0.6903
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Table E.3 Sampled state variables when i, = 0 under quasi-periodic orbit.

Sampled Currents when
isp =0

No. | ip (A) | i, (A) | i, (A
1 14.628 | 0.0897 | 17.514

2 16.269 | 3.3017 | 12.985

3 23.939 | 4.1968 | 22.695

4 12.774 | 2.4027 | 14.935

5 22.416 | 0.9226 | 16.071

6 19.141 | 2.7468 | 20.822

7 13.375 | 3.6334 | -13.41

8 27.486 | 3.2308 | 21.173

9 15.314 | 0.3444 | 18.226

10 16.027 | 3.4148 | 13.319
11 25.294 | 4.1969 | 23.337
12 13.495 | 2.005 | 15.843
13 21.526 | 1.4724 | 15.835
14 | 20.463 | 3.0531 | 21.665
15 13.572 | 3.4476 | 14.008
16 27.375 | 2.5293 | 20.705
17 16.171 | 0.7905 | 18.938
18 15.697 | 3.5053 | 13.496
19 26.152 | -4.169 | 23.512
20 13.885 | 1.6245 | 16.399
21 20.562 | 1.9169 | 15.445
22 21.434 | 3.3113 | 22.173
23 13.568 | 3.2589 | 14.375
24 26.833 | 1.8177 | 20.007
25 16.806 | 1.2005 | 19.412
26 15.283 | 3.569 | 13.546
27 26.727 | -4.109 | 23.416
28 14.141 | 1.257 | 16.789
29 19.609 | 2.2791 | 15.009
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Table E.4 The Jacobian matrix, eigenvalue and magnitude of the complex
conjugates derived from the sampled state variables under quasi-periodic orbit

condition.

. . , Magnitude of the
Jacobian Matrix Eigenvalue _
complex conjugates

0.6162 2.6382 -0.4008 | -0.6511 +j0.7495
A; | -0.8788 -0.5806 -0.9255 | -0.6511 -j0.7495 0.9928
-1.2715 -1.9077 -0.3303 1.0074

0.1979 2.8269 -0.8769 | -0.8532 +j0.7596
A, | -0.8263 -0.6043 -0.8658 | -0.8532 - j0.7596 1.1423
-1.2378 -1.9229 -0.2920 1.008

-0.0609 2.6776 -1.1222 | -0.6387 + j0.6589
Az | -0.5125 -0.4232 -0.5682 | -0.6387 - j0.6589 0.9177
-0.7183 -1.6232 0.2006 0.9939

-0.0125 2.9295 -1.0403 | -0.6579 +j0.7845
A, | -0.5272 -0.5002 -0.5932 | -0.6579 -j0.7845 1.0239
-0.7201 -1.6329 0.1974 1.0005

-0.2568 3.5431 -1.3458 | -0.8668 + j0.6264
As | -0.3422 -0.9648 -0.3618 | -0.8668 - j0.6264 1.0694
-0.4837 -2.2268 0.4932 1.0051

0.4000 3.4157 -0.7253 | -0.6148 +j0.7015
Ag | -0.5539 -0.9238 -0.5618 | -0.6148 - j0.7015 0.9328
-0.6914 -2.1865 0.2968 1.0027

0.7235 3.6455 -0.3404 | -0.6951 +j0.8054
A; | -0.7563 -1.0675 -0.8027 | -0.6951 - j0.8054 1.0688
-0.9827 -2.3933 -0.0497 0.9965

0.5348 2.9990 -0.4867 | -0.7128 +j0.5236
Ag | -0.7058 -0.8944 -0.7635 | -0.7128 - j0.5236 0.8844
-0.9871 -2.4084 -0.0531 1.0128

0.6473 2.8506 -0.3893 | -0.6404 +j0.7300
Ag | -0.8669 -0.6819 -0.9028 | -0.6404 - j0.7300 0.9711
-1.1960 -2.1329 -0.2338 1.0123
Ay | 0.4661 2.9002 -0.5946 | -0.8204 +j0.7709 1.1258
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-0.9137 -0.6691 -0.9559 | -0.8204 - j0.7709
-1.3711 -2.0849 -0.4323 1.0055
0.0395 2.5771 -0.9989 | -0.6516 + j0.6452
A1 | -0.5910 -0.4247 -0.6501 | -0.6516 - j0.6452 0.917
-0.8375 -1.6807 0.0734 0.9914
0.0513 2.7554 -0.9663 | -0.6575 +j0.7746
As2 | -0.5929 -0.4530 -0.6553 | -0.6575 - j0.7746 1.016
-0.8327 -1.6081 0.0867 1

-0.3415 3.4521 -1.4354 | -0.8862 + j0.6634
Ay3 | -0.3665 -0.8546 -0.3848 | -0.8862 - j0.6634 1.107
-0.5475 -2.1139 0.4274 1.0038
0.2396 3.4156 -0.8815 | -0.6164 +j0.6974
Ay4|-0.4804 -0.8474 -0.4935 | -0.6164 - j0.6974 0.9308
-0.6051 -2.1103 0.3725 0.9975
0.5327 3.6967 -0.5283 | -0.6858 + j0.8044
Ais | -0.6504 -1.0105 -0.6982 | -0.6858 - j0.8044 1.0571
-0.8311 -2.3271 0.1001 0.9939
0.4502 3.2165 -0.5787 | -0.7296 +j0.5274
Aig | -0.6447 -0.9774 -0.6948 | -0.7296 - j0.5274 0.9003
-0.8655 -2.5273 0.0791 1.0111
0.6551 3.0064 -0.3950 | -0.6382 +j0.7234
A7 | -0.8508 -0.7660 -0.8796 | -0.6382 - j0.7234 0.9647
-1.1267 -2.2594 -0.1551 1.0104
0.6336 3.0089 -0.4193 | -0.7920 + j0.7790
Asg | -0.9635 -0.7529 -1.0072 | -0.7920 - j0.7790 1.1109
-1.3982 -2.2278 -0.4627 1.002
0.1451 2.5394 -0.8795 | -0.6634 + j0.6281
A1 | -0.6598 -0.4611 -0.7212 | -0.6634 - j0.6281 0.9136
-0.9272 -1.7751 -0.0191 0.9917
0.1393 2.6516 -0.8733 | -0.6567 + j0.7656
Az | -0.6609 -0.4403 -0.7201 | -0.6567 - j0.7656 1.0087
-0.9345 -1.6330 -0.0112 1.0011
Az | -0.3582 3.3149 -1.4532 | -0.8955 +j0.6913 1.1313
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-0.4264 -0.7530 -0.4467 | -0.8955 -j0.6913
-0.6470 -2.0164 0.3240 1.0037

0.0871 3.3419 -1.0268 | -0.6196 + j0.6930
Az | -0.4350 -0.7535 -0.4550 | -0.6196 - j0.6930 0.9296
-0.5457 -2.0102 0.4210 0.9938

0.3336 3.6503 -0.7242 | -0.6794 +j0.8019
Axz | -0.5691 -0.9213 -0.6196 | -0.6794 - j0.8019 1.051
-0.7081 -2.2134 0.2216 0.9927

0.3176 3.3887 -0.7219 | -0.7499 +j0.5399
Az | -0.5760 -1.0329 -0.6186 | -0.7499 - j0.5399 0.924
-0.7304 -2.5793 0.2249 1.0094

0.6283 3.1380 -0.4374 | -0.6350 +j0.7176
Aos | -0.8177 -0.8379 -0.8399 | -0.6350 - j0.7176 0.9582
-1.0324 -2.3357 -0.0516 1.0089

0.7435 3.1415 -0.3065 | -0.7677 +j0.7853
Az | -0.9797 -0.8427 -1.0240 | -0.7677 - j0.7853 1.0982
-1.3716 -2.3458 -0.4370 0.9993
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