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ABSTRACT 

 

An induction generator offers advantages in terms of its low cost, simplicity, 

robust construction, nature protection against short circuits and ease of 

maintenance in today’s renewable energy industry. However, the need for an 

external supply of reactive power (to produce a rotating magnetic flux wave) 

limits the application of an induction machine as a standalone generator. It is 

possible for an induction machine to operate as a Self-excited Induction 

Generator (SEIG) if capacitors are connected to the stator terminals in order to 

supply the necessary reactive power to achieve generating electrical energy in 

remote areas.  

Poor voltage and frequency regulation is the main drawback of a SEIG as the 

system is highly dynamic under variable load conditions. The regulation of 

speed and voltage does not result in a satisfactory level although many studies 

have been focused on this topic in the past. Therefore, the aim of the thesis is 

to provide a better understanding of the behaviour of a smooth airgap, self-

excited, squirrel cage induction generator as a nonlinear dynamic system when 

operating under a variety of load conditions, which would hopefully contribute to 

the development of a better regulated/controlled, viable SEIG system. 

Allowing for the cross-saturation nonlinear effect, a mathematical Simulink, �-� 

axis model of the SEIG system utilising currents as state space variables is 

developed and verified by both the experimental results and numerical analysis. 

The SEIG computer model is constructed and tested using Matlab/Simulink 

R2010b throughout the thesis.  

The self-autonomous system is shown to exhibit a transition from a stable 

periodic orbit to a quasi-periodic orbit (leading to likely chaotic motion) through a 

Neimark bifurcation, as a result of small changes in the values of system 

parameters (such as load resistance, load inductance, rotational speed and 

self-excitation capacitance). This characteristic dynamic behaviour of the SEIG 
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system is firstly identified in this work and is verified experimentally using a 1.1 �� laboratory test rig.  

The stability of the periodic and quasi-periodic orbits exhibited by the SEIG 

system when feeding an inductive load (�	) is numerically analysed and the 

movement of the eigenvalues of the system’s characteristic matrix when 

changing a system parameter is presented to verify the qualitative change in 

system behaviour from a stable period-one orbit to unstable quasi-periodicity. 

Eigenvalue technique is successfully applied to assess the stability of the 

period-one and quasi-periodic orbits of the SEIG when feeding variable load 

conditions. 
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CHAPTER 1  

INTRODUCTION 
 

1.1 GENERAL INTRODUCTION 

Apart from their general use as motors, three-phase induction machines (IMs) 

are also used as generators in electric power systems. The induction generator 

offers advantages for hydro and wind applications in terms of cost and simplicity 

and it plays an important part in the renewable energy industry today [1, 2, 3, 4].  

However, the induction generator has its limitations; it generally needs an 

external power source to provide its excitation. This means that it is difficult to 

employ in remote areas where there is no electrical power supply network.  

The possibility of using a Self-excited Induction Generator (SEIG) where a 

three-phase capacitor bank is connected across the stator terminals to supply 

the reactive power requirement of a load and generator was discovered by 

Basset and Potter in the 1930s [5]. When such an induction machine is driven 

by an external mechanical power source, the residual magnetism in the rotor 

produces an Electromotive Force (EMF) in the stator windings. This EMF is 

applied to the capacitor bank causing current flow in the stator winding and 

establishing a magnetising flux in the machine [6, 7]. An induction machine 

connected and excited in this manner is capable of acting as a standalone 

generator supplying real and reactive power to a load. In this mode of operation, 

the capacitor bank supplies the reactive power requirement of the load and 

generator and the real power demand of the terminal load is supplied by the 

prime mover. 

However, the main drawback of the SEIG system is that the voltage and 

frequency produced by the system is highly dynamic under variable load 

conditions. Although many studies have been focused on regulating the voltage 

and frequency of the SEIG system under variable loads, the regulation of speed 

and voltage does not result in a satisfactory level of performance due to the 

nonlinear behaviour of the machine [8, 9, 10]. 
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In an attempt to better understand the above problem, this thesis is focused on 

studying the steady-state nonlinear behaviour of the SEIG system when feeding 

an inductive load (�	). Computer simulations, laboratory experimental tests and 

numerical analysis reveal a variety of highly nonlinear behaviours of the SEIG 

which have not been reported previously.  

1.2 CONTRIBUTION OF THE THESIS 

Induction machine cross-saturation nonlinear effect has been studied in the past 

two to three decades [6, 11, 12, 13]. However, none of these studies presents a 

complete analysis of the various types of nonlinear behaviours exhibited by the 

SEIG when feeding variable loads. 

This thesis presents:  

• The first complete study of the nonlinear dynamic behaviour of the SEIG 

using a nonlinear model of the machine to simulate the system. 

• The first study in which numerical nonlinear analysis tools are applied to 

investigate the operating characteristics of the SEIG as a nonlinear 

dynamic system.  

• The first examination of the periodic, quasi-periodic and chaotic 

behaviour of the SEIG when supplying a variable inductive load (�	).  

• The results of the SEIG Simulink model are not only compared with 

experimental test results, but also verified by the nonlinear numerical 

analysis tools. 

The aim of the thesis is to provide a better understanding of the behaviour of 

the SEIG that would hopefully contribute to the development of a better 

regulated/controlled, viable SEIG system.  
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1.3 SCOPE OF THE THESIS 

This research thesis contains seven main chapters. 

The First Chapter provides the reader with a brief introduction of the work, the 

contribution of the thesis and the outline of the thesis. 

The Second Chapter presents a brief literature review of the SEIG system and 

an overview of established nonlinear computer models for induction machines.  

The Third Chapter gives an introduction to nonlinear dynamic systems, types of 

nonlinearities, nonlinear analysis tools and stability analysis methods. 

The Fourth Chapter presents the Simulink model used to investigate the 

behaviour of the SEIG system when feeding variable loads. A linear 

conventional IG model is introduced to the reader first as a foundation for the 

development of the nonlinear model of the SEIG system. Magnetic cross-

saturation effects are then incorporated into the induction machine model to 

produce a current based nonlinear IG model. The dynamic model of the system 

is completed by incorporating a capacitor bank connected to the stator terminals 

into the model which is needed to provide reactive power to both the generator 

and the load. The initial self-excitation process of the SEIG obtained from the 

nonlinear model is compared with those obtained from a well-known publication 

[14]. The behaviour of the SEIG model is then examined when feeding a purely 

resistive load connected to the stator terminals. 

A number of laboratory tests are presented in the Fifth Chapter. An SEIG test 

rig (using a 1.1 �� induction machine) is tested when feeding variable loads 

under controlled laboratory conditions. The results from these experimental 

tests are analysed and used to demonstrate the performance of the SEIG 

system. Laboratory results are compared with simulation waveforms showing 

very good agreement and confirming the validity of the model.  

Based on the simulation results obtained from the nonlinear model of the SEIG 

system, the Sixth Chapter presents a study of the dynamic performance of the 

system by employing modern nonlinear numerical analysis tools. The 

performance characteristics of the system (e.g. stability and frequency 

regulation) when supplying an inductive load (�	) are studied by considering the 
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effects of the following three parameters: 1� changing the power factor of the 

load; 2�  changing the rotor speed and 3�  changing the value of the self-

excitation capacitance. Finally, the SEIG performance is analysed using 

nonlinear numerical analysis tools and computer simulations to establish the 

nonlinear characteristics of the system. 

The Seventh Chapter presents the conclusions and discussions of the thesis 

and suggestions for future work. 

1.4 PUBLICATION 

D. D. Ma, B. Zahawi, D. Giaouris, S. Banerjee and V. Pickert, “Nonlinear 

Behaviour of Self-excited Induction Generator Feeding an Inductive Load,” 

PEDES International Conference on Power Electronics, Drives and Energy 

Systems, New Delhi, India, pp. 1-5, December 12-15, 2006. 
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CHAPTER 2  

THE SEIG SYSTEM REVIEW 
 

The ever increasing demand for energy, the depletion of conventional energy 

resources and the degradation of environmental conditions throughout the world 

have led governments/scientists/researchers to explore renewable or 

nonconventional energy sources (e.g. wind, hydro, solar, bio-energy and micro-

generation) in recent two to three decades. Renewable energy is the key to our 

low carbon energy future. In early 2008, European Union (EU) Commission 

aimed to achieve a 2020 target of deriving 20% of the EU’s energy consumption 

from renewable sources, while the UK government proposed to achieving 15% 

renewable target by 2020 [15]. 

The use of an induction machine as a generator is becoming more and more 

popular for renewable energy applications [4, 12, 16, 17]. Squirrel cage 

induction generators with excitation capacitors (known as SEIGs) are popular in 

isolated nonconventional energy systems [3, 4, 18].  

As discussed in the previous chapter, the main limitation of the SEIG system is 

the poor voltage and frequency regulation when supplying variable loads 

connected to the stator terminals. However, the development of static power 

converters has facilitated the control of the output voltage and frequency of the 

induction generator. This chapter presents a literature review of the 

development, the self-excitation phenomena, the performance and the 

operational problems of the SEIG system. This is followed by an historical 

overview of computer modelling techniques of the SEIG based on cross-

saturation effect, the saturation of leakage inductance, the machine H-G 

diagram and the skin effect.  
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2.1 SEIG SYSTEM CONFIGURATION 

The SEIG system is composed of four main items: the prime mover, the 

induction machine, the load and the self-excitation capacitor bank. The general 

layout of the SEIG system is shown in Figure 2.1. 

 

Figure 2.1 Schematic diagram of a standalone self-excited induction generator. 

The hydro/wind turbine is assumed to operate with constant input power 

transferred to the induction generator. The real power required by the load is 

supplied by the induction generator by extracting power from the prime mover 

(turbine). When the speed of the turbine is not regulated, both the speed and 

shaft torque vary with variations in the power demanded by the loads. The self-

excitation capacitors connected at the stator terminals of the induction machine 

must produce sufficient reactive power to supply the needs of the load and the 

induction generator.  

A squirrel cage induction generator (SCIG) is more attractive than a 

conventional synchronous generator in this type of application because of its 

low unit cost, absence of DC excitation source, brushless cage rotor 

construction and lower maintenance requirement [18, 19]. A suitably sized 

three-phase capacitor bank connected at the generator terminals is used as 

variable lagging VAr source to meet the excitation demand of the cage machine 

and the load. The machine operated in this mode is known as a Self-excited 

Induction Generator (SEIG) [12]. However, the main drawback of the 

standalone SEIG is its poor voltage and frequency regulations under variable 

loads. A change in the load impedance directly affects the excitation of the 

machine because the reactive power of the excitation capacitors is shared by 

both the machine and the load. Therefore, the generating voltage drops when 
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the impedance of the load is increased resulting in poor voltage regulation. Poor 

frequency regulation occurs (an increase in the slip of the induction machine) 

when the load is increased.  

2.2 OVERVIEW OF THE SELF-EXCITED INDUCTION GENERATORS 

Owing to increased emphasis on renewable resources (such as small hydro, 

wind, solar, tidal and wave) and their variable speed nature, the performance of 

synchronous generators can be greatly affected. Hence, SEIGs have emerged 

as suitable candidates for isolated power sources to convert power at the shaft 

of wind/hydro turbines into electrical energy [4, 20, 21]. 

2.2.1 OVERVIEW OF THE DEVELOPMENT OF THE SEIG 

Basset and Potter first discovered the possibility of using an induction machine 

as a SEIG during the 1930s. An induction machine operates as a generator if 

an appropriate supply of inductive VArs is available to provide the machine’s 

excitation at a certain rotational speed. Self-excitation can be achieved by the 

connection of suitable capacitors at the machine’s stator terminals. The lagging 

VArs supplied by the capacitors is consumed by the machine’s excitation, 

leakage reactance and the reactance of the inductive load. 

Although the SEIG scheme was discovered more than eighty years ago, a large 

number of research papers are only increasingly focused on the investigation 

and applications of SEIGs in the recent two/three decades [4, 18]. This is due to 

the improving voltage and frequency control techniques and the worldwide vast 

attention on the development of renewable energy sources over the past thirty 

years.  

In 1982, Murthy et al. developed a mathematical model for obtaining the steady-

state performance of a SEIG by using the equivalent circuit (EC) of the 

induction machine [22]. The Newton-Raphson method was used to obtain the 

operating frequency and the magnetising reactance from the nonlinear 

equations of the system. A year later, Quazene et al. developed a nodal 

equation to solve for the operating frequency and then the magnetising 

reactance by using a nodal admittance technique [23]. 
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Tandon et al. presented an alternative approach to the steady-state 

performance analysis of a stand-alone SEIG using balanced terminal capacitors 

in 1984 [24]. The predicted steady-state performance of the SEIG under 

different load conditions by operational ECs matched well with corresponding 

experimental results. 

In 1993, a mathematical model for the EC of a SEIG was used to solve the 

nonlinear equation for the operating frequency by an iterative technique by 

Rajakaruna and Bonert [25]. Two years later, Chan proposed an iterative 

technique to solve for the value of the operating frequency by considering a 

small increment in the operating frequency (an initial value of the operating 

frequency was assumed) [26].   

In order to capture more wind energy under variable wind speed conditions, a 

pole changing method of SEIGs was investigated in [27, 28]. The requirements 

for the excitation capacitor, machine flux density, maximum electromagnetic 

torque, output power and stator terminal voltage under different pole 

configurations were discussed by Chatterjee and Khan [28]. It was observed 

that the stator current was smaller, capacitor requirement was less (around 44%) 

and power output was about 2.5  times larger in a four-pole than the 

corresponding results from a six-pole configuration. Hence, the conclusion 

leaded to the four-pole configuration generated better utilisation of the SEIG 

rating than the six-pole configuration. 

In 1997, Wang et al. predicted the minimum and maximum values of 

capacitance required for the self-excitation of the SEIG by an eigenvalue based 

approach [29]. 

An analysis of the steady-state performance of SEIGs driven by both regulated 

and unregulated turbines was presented in [30, 31]. The steady-state 

performance of a standalone SEIG with a transformer connected to its terminal 

was analysed in [32]. The function of the transformer was to step up the stator 

terminal voltage or to supply a different voltage to the load. At relatively high 

rotational speeds, the saturated transformer was able to absorb reactive power 

and regulate the terminal voltage. However, such a transformer introduced an 

additional nonlinearity into the system, which complicates the analysis process.   
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A general analysis of a three-phase SEIG with asymmetrical connected loads 

and excitation capacitors by adopting the symmetrical components method was 

presented in 2001 [33]. 

In the past few decades, other papers have been focused on the analysis of the 

transient voltage built up of SEIGs [34, 35, 36]. 

By taken into account the magnetic saturation nonlinear effect, the influence of 

the terminal capacitors on the transient behaviour of an induction machine was 

studied by Smith et al. in 1968 [37]. The tests showed that it was not advisable 

to reconnect a capacitor excited induction generator to the busbar, unless the 

interruption is of short period. The results also indicated that the saturation of 

the main flux path does not affect the transient behaviour of the machine 

without self-excited capacitors. 

The self-excitation voltage built up process in a standalone SEIG was analysed 

by Wang et al. in 1999 [38]. They examined the SEIG under unbalanced 

excitation capacitor conditions (by the sudden switching of one excitation 

capacitor or two excitation capacitors). The results showed that the SEIG could 

maintain the self-excitation process and generate the other two phase voltage 

when one phase capacitor was switched off. However, the SEIG voltage 

collapses when two phase capacitors were cut off.  

A year later, Wang et al. presented a comparison study of different shunt 

capacitor configurations of an isolated SEIG feeding an induction motor load 

[39]. Their analysis showed that the short-shunt connection provided better 

voltage regulation, whereas the long-shunt connection might cause unwanted 

oscillations. The eigenvalue technique was employed to examine the unstable 

operating conditions of the SEIG system.  

The dynamic behaviour of the SEIG was experimentally investigated by Levy in 

1997 [40]. However, under variable speed conditions with a fixed capacitor bank 

connected to the stator terminals, testing leaded to voltage collapsing and the 

demagnetisation of the machine.  

The transient performance of a three-phase SEIG under balanced and 

unbalanced fault conditions was studied in [41]. The effects of main and cross 

flux saturation under load perturbation, three-phase or line-to-line short circuit, 
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switching off one or two capacitor(s), opening of single or two phase load 

conditions were considered.  

Due to small hydro and wind generating systems having constraints on the size 

of individual machines, several induction generators were connected in parallel 

by Farret et al. in order to achieve full performances on site [42]. The transient 

behaviour of the parallel connected SEIGs could not be easily modelled by 

conventional models because of its fast transient nature. Therefore, the 

previous work related to transient analysis of SEIGs did not clearly correspond 

to experimental observations. An innovative and automatic numerical solution of 

the steady-state and transient analysis of any number of SEIGs operating in 

parallel was presented in [42]. The nonlinear relationship between airgap 

voltage and magnetising current was described by a fourth order polynomial 

curve fit. It was possible to have a mathematical description of the machine 

models, the self-excitation capacitor bank and the load. The data generated 

from the experimental testing confirmed the accuracy of the proposed 

mathematical model. 

Many of these articles have been focused on analysing the steady-state and 

transient performance of SEIGs from the design and operational point of view. 

This thesis, on the other hand, is focused on studying and analysing the steady-

state, nonlinear behaviour of the SEIG system as a nonlinear dynamic system. 

The presence of the capacitor bank together with the saturated magnetic circuit 

of the induction generator produces a nonlinear dynamic system with the 

possibility of chaos. Qualitative changes in the system dynamics (for example a 

change in system frequency) are called Bifurcations [43]. The behaviour of a 

nonlinear dynamic system can change dramatically with a small change in 

system parameters. SEIG nonlinear phenomenon such as quasi-periodicity, 

chaotic behaviours and bifurcations are studied and analysed in this thesis. 
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2.2.2 THE SELF-EXCITATION PHENOMENON 

The self-excitation phenomenon of an induction machine is still under 

considerable attention although it is known for more than a half century [44, 45, 

46]. When a standalone induction machine is driven by a mechanical prime 

mover, the residual magnetism in the rotor of the machine induces an EMF in 

the stator windings at a frequency proportional to the rotor speed. This EMF is 

applied to the capacitors connected to the stator terminals and causes reactive 

current to flow in the stator windings. Hence a magnetising flux in the machine 

is established. The final value of the stator voltage is limited by the magnetic 

saturation within the machine. The induction machine is then capable of 

operating as a generator in isolated locations without a grid supply. 

Once the machine is self-excited and loaded, the magnitude of the steady-state 

voltage generated by the SEIG is determined by the nonlinearity of the 

magnetising curves, the value of the self-excitation capacitance, speed, 

machine parameters and terminal loads. As the load and speed of the SEIG 

changes, the demand for lagging VArs to maintain a constant AC voltage 

across the machine terminals also changes [47]. Arrillaga and Watson predicted 

the effect of a resistive load on the frequency of the generator where a new 

operating point was obtained by shifting the saturation curve and capacitive 

load in the terminal voltage-current characteristics [48]. The effect of an 

inductive load was also studied and experimentally verified in [47, 48]. 

  



Chapter 2   The SEIG System Review 

12 

School of EEE at Newcastle University 

2.2.3 SEIG SYSTEM PERFORMANCE  

The performance characteristics of the SEIG system depend mainly on the 

following: 

• The parameters of the induction machine 

The machine operating voltage, rated power, power factor, rotor speed 

and operating temperature and the induction machine parameters 

directly affect the performance of the SEIG system. 

• The Self-excitation process 

The connection of a capacitor bank across the induction machine stator 

terminals is necessary in the case of standalone operation of the system. 

The capacitor connection scheme (delta or star) and the use of fixed or 

controlled self-excitation capacitors have a direct impact on the 

performance of a SEIG system. 

• Load parameters 

The power factor, starting/maximum torque and current, generated 

harmonics and load type also affect the performance of the SEIG system 

directly. 

• Type of prime mover 

Whether the primary source is hydro, wind biomass or combinations, the 

performance of the SEIG system is affected. 
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2.2.4 OPERATIONAL PROBLEMS OF THE SEIG SYSTEM 

The main operational problem of the SEIG system is its poor voltage and 

frequency regulation under varying load conditions [49, 50, 51]. A change in the 

load impedance directly affects the machine excitation. This is because the 

reactive power of the excitation capacitors is shared by both the induction 

machine and the load impedance. Therefore, the generator’s voltage drops 

when the load impedance is increased resulting in poor voltage regulation. On 

the other hand, the slip of the induction generator increases with increasing load, 

resulting in a load dependant frequency, even if the speed of the prime mover 

remains constant.  

Many studies have been conducted in the past to regulate the voltage and 

frequency of a SEIG system operating with variable loads [9, 49, 52, 53]. A high 

cost speed governor is generally used as a conventional SEIG controller.  

A strategy of controlling voltage and frequency of a SEIG system was presented 

by Suarez et al. in 1999 [49]. Sliding mode controller was proposed showing 

controlled dynamic response and behaviour of the system upon changes in 

generator parameters and load. However, an accurate transient model of 

representing instantaneous phase angle between stator voltage and external 

inductor current at switching instant is highly recommended in order to achieve 

optimal control. 

Regulating voltage and frequency of a SEIG under varying load conditions by 

an electronic load controller (ELC) was examined by Singh et al. in 2006 [52]. 

The ELC consists of a chop circuit and a rectifier which produces harmonics 

during operation. AC current harmonics generated by ELC during operation and 

their impact on the performance of the SEIG were studied in [52].  

In 2008, Youssef et al. presented a method of voltage and frequency regulation 

of an induction generator under islanding mode [53]. A constant voltage and 

constant frequency PWM converter was used by eliminating the need of an 

auxiliary switch in the DC side, which in turn reduced cost and high frequency 

current components.  The results of the proposed method showed the same 

response as the technique of including the DC side switch. The control 
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technique was proved to work well under sudden changes in load and rotational 

speed. 

In most of these studies, the control of the terminal voltage is generally 

performed by controlling a variable reactive power source and frequency 

regulation is achieved by regulating the speed of the prime mover by utilising a 

mechanical speed governor. However, the regulation of speed and voltage does 

not result in a satisfactory level of performance due to the highly dynamic 

changes in slip of the machine and the difficulties in building a smooth variable 

reactive power source at low costs. 

In order to contribute to a solution of the above operational problems, this thesis 

presents an investigation of the steady-state nonlinear behaviour of the SEIG 

system when feeding variable inductive loads (�	s). The analysis of this highly 

dynamic nonlinear system reveals a variety of unique behaviours which have 

not been previously reported.  
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2.3 MODELLING OF THE SEIG AS A NONLINEAR SYSTEM 

After the self-excitation process in a SEIG is initiated, the final value of the 

stator voltage is limited by magnetic saturation in the machine. The induction 

machine exhibits nonlinear characteristics under saturated condition. Once the 

machine is loaded, the magnitude of the voltage generated is determined by the 

nonlinearity of the magnetising characteristics, the value of capacitance, speed, 

machine parameters and terminal load. Many studies have been carried out in 

the past to model the self-excited induction machine system. It is important to 

model the nonlinearity of the induction machine in order to fully understand the 

behaviours of this highly dynamic system. 

2.3.1 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE CROSS-

SATURATION EFFECT 

Several papers have been published in the past detailing the transient 

equations of smooth airgap induction machines with a focus on the cross-

saturation nonlinear effect [11, 54, 55, 56, 57]. It is generally believed that a 

change in the quadrature axis magnetising current will cause a change of flux 

linkage in the direct axis windings and vice versa. Under core saturation 

conditions, the airgap flux density distribution over one half of the pole-pitch is 

decreased by a greater amount than the increase under the other half of the 

pole-pitch [54]. The mathematics in these papers was focused on the modelling 

of the mutual inductance as a nonlinear function of current. This nonlinear 

modelling approach works well under normal operating conditions.  

Levi investigated the impact of cross-saturation on the accuracy of different 

types of saturated induction machine models [57]. Two transient induction 

machine models (one with induction generator self-excitation and the other with 

motor starting with increased voltage) were analysed in the paper. Poor results 

were generated from the models where the cross-saturation effect was 

neglected. However, the nonlinear models are more complicated, requiring time 

derivative of the inverse of the inductance matrix when considering the cross-

saturation effect. 



Chapter 2   The SEIG System Review 

16 

School of EEE at Newcastle University 

2.3.2 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE SATURATION 

OF LEAKAGE INDUCTANCE EFFECT  

Several researchers/scientists were interested in modelling induction machines 

with a focus on the saturation of leakage inductance nonlinear effect [56, 58, 59]. 

An interesting paper written by Lipo et al. analysed the induction machine by 

considering the saturating leakage reactance, a completely different concept to 

that of the cross-saturation [58]. Large starting currents flowing in the machine 

during acceleration can cause large values of slot leakage flux in both stator 

and rotor. This often leads to the saturation of the teeth of the machine. A key 

step in this approach is to separate stator and rotor leakage inductance into slot 

(teeth) and end winding (core) portions. The teeth are considered to be 

saturated (nonlinear inductance) while the core is considered to be unsaturated 

(constant inductance). The analysis of the induction generator based on 

saturation of leakage inductance effect is focused on teeth saturation whereas 

the cross-saturation nonlinear model considers core saturation. Hence, it was 

concluded that the nonlinear approach of modelling induction generators based 

on saturation of leakage inductance is usually applied to high power industrial 

motor drives under large inrush current conditions [58].  
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2.3.3 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE H-G 

DIAGRAM 

The H-G diagram is another effective nonlinear technique for modelling 

induction machines [60, 61, 62]. The diagram represents one of the most recent 

approaches to induction motor modelling to include temperature and saturation 

effects. The diagram uses only three parameters (such as slip frequency, stator 

inductance and total leakage coefficient) instantaneously determined by plotting 

a circle (H-G diagram) to describe the saturation in the machine. G and H 

represent the real and imaginary part of the induction machine stator winding 

input impedance [60].  

A nonlinear model proposed by Benbouzid et al. for a 0.75 ��  induction 

machine based on H-G diagram showed good results at the starting phase of 

the induction motor or when sufficient load is applied to the machine [61]. It was 

initially believed that the H-G diagram approach could produce the same 

dynamics of the nonlinear system as the cross-saturation method. The torque 

and speed transients obtained from the H-G diagram method were in good 

agreement with those obtained from the cross-saturation model. However, the 

steady-state results generated from the H-G diagram were not as accurate as 

those obtained from the cross-saturation model unless sufficient load was 

applied to the stator terminals.  
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2.3.4 NONLINEAR INDUCTION GENERATOR MODELLING BASED ON THE SKIN EFFECT 

Another nonlinear modelling method was presented through the consideration 

of the skin effect phenomenon in [63, 64, 65]. This approach is focused on 

creating a nonlinear mathematical function of frequency for the system. Skin 

effect occurs when the leakage flux causes the current to crowd towards the top 

of the bar adjacent to the airgap where bar conductors are contained in slots. 

This nonlinear effect has a direct impact on the dynamic behaviour of the 

induction machine. Due to skin effect, the effective cross section of the rotor 

conductor is reduced, which causes a decrease in the leakage inductance and 

in turn increases the amplitude of stator current. Moreover, the copper loss 

becomes greater by an increased rotor resistance. Hence, the analytical 

formula of modelling the skin effect to relate rotor resistance and inductance as 

a function of its rotor bar dimensions and frequency can be solved by adapting 

Maxwell’s equation. Experimental results for a 7.5 C8 induction machine verified 

the accuracy of the proposed nonlinear SEIG model with the consideration of 

skin nonlinear effect in the case of no-load condition [63]. 

Another model presented by Okoro for a 7.5 ��  wind turbine driven squirrel 

cage induction generator with the consideration of skin effect showed that the 

calculated inrush currents and the machine accelerating time were more 

accurate than those obtained from conventional/linear models. However, the 

accuracy level could be further improved by considering the saturation nonlinear 

effect [65]. 

The most widely used induction machine transient state model is the �-� (direct-

quadrature) axis frame of reference representation. The  � - �  axis model 

provides a convenient way for variable solutions of dynamic systems. In this 

thesis the  �-� axis model will be utilised along with the representation of the 

cross-saturation nonlinear effect to emulate the SEIG system due to its 

accuracy and robustness. 
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2.4 SUMMARY 

An overview of the self-excitation phenomenon and the historic development of 

the SEIG was presented in this chapter. The performance characteristics and 

operational problems of SEIG systems together with a review of different 

approaches to the nonlinear modelling of induction machines were also given. 

The prime mover, the induction machine, the load and the self-excitation 

capacitors are the four main items comprising the SEIG system. 

A brief overview of the steady-state and transient analysis of the SEIG system 

as presented in the literature was carried out in this chapter. Most 

researchers/scientists have been focused on analysing the steady-state and 

transient performance of SEIGs from the design and operational point of view. 

However, this thesis is focused on studying and analysing the steady-state 

nonlinear behaviour of the SEIG system as a nonlinear dynamic system. 

The parameters of the induction machine, the self-excitation process, the load 

parameters and type of primary mover are the main factors affecting the 

behaviour of the SEIG system.  

Poor voltage and frequency regulation are two major drawbacks of the SEIG 

system under variable load conditions. This thesis presented an investigation of 

this highly dynamic nonlinear system revealing a variety of unique behaviours in 

order to contribute to the understanding of the above operational problems.  

Various nonlinear modelling techniques of induction machines, such as based 

on cross-saturation effect, saturation on leakage inductance effect, H-G 

diagram and skin effect were considered in this chapter. The cross-saturation 

nonlinear effect technique was shown to have numerous advantages (e.g. most 

accurate and robust) over the other computer modelling techniques mentioned 

above.  

The �-� axis state space mathematical model of the SEIG system feeding a 

variable load, implemented in Matlab/Simulink (version: R2010b), with 

consideration of the cross-saturation effect was used in this investigation and 

the results verified experimentally. 
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CHAPTER 3  

NONLINEAR DYNAMIC SYSTEMS 
 

This chapter presents a brief and general mathematical background and the 

analytical tools required to investigate the SEIG system as a nonlinear dynamic 

system.  

3.1 NONLINEAR DYNAMIC SYSTEMS 

A dynamic system is an object, or a set of objects, that has the ability to change 

its state with respect to time, possibly under external excitations. In other words, 

any system whose status changes with time is a dynamic system. In 

mathematical language, a dynamic system can be expressed in terms of D, E and FG where D is a state space including all possible states of a system 

(state space is also known as phase space), E is a time set, and FG is a family 

of evolution operators [66].  

It is generally known that there are two types of dynamic system equations: 

differential equations and difference equations (also known as iterated maps or 

Poincaré maps). Differential equations describe the evolution of systems in 

continuous-time, whereas iterated maps analyse the evolution of systems in 

discrete-time domain. Difference equations can be useful in reducing the order 

of a dynamic system [66]. In fact, the Poincaré map technique is adopted in this 

thesis to study the dynamics of the SEIG system. 
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3.1.1 DIFFERENTIAL EQUATIONS 

An ordinary differential equation (ODE) of a continuous-time, autonomous 

dynamic system together with its initial condition is defined as an initial value 

problem (IVP) 

HI 
 J�H�,  H�KL� 
 HL        (3.1) 

where HI 
 �H/�M, H�K� N O4 is the state of the system at time M, O4 is called the 

set of all real vectors with P entries or the P-dimensional Euclidean space, J is 

referred to as the vector field and H�KL� 
 HL  is the initial condition of the 

dynamic system. The solution or flow of the IVP (3.1) is often written as QK�H�. 
An autonomous system is defined as the system equations do not have any 

external applied time varying input or other time variations by not containing any 

time dependant term on the right hand side of (3.1) [67]. Therefore, the initial 

time is normally taken as MR 
 0. 

An IVP of a continuous-time, non-autonomous dynamic system is defined as 

HI 
 J�H, M�,  H�KL� 
 HL        (3.2) 

A system with external inputs or forcing functions or time variations is called a 

non-autonomous system [68]. For a non-autonomous system (3.2), the right-

hand side J�H, M� of the equation depends explicitly on time and the initial time MR is not usually set to 0.  

This thesis is focused on autonomous systems as a SEIG system is a time 

independent system.  

3.1.2 DIFFERENCE EQUATIONS 

A discrete-time dynamic system is defined by the following difference equation 

H�S T U� 
 JVH�S�W, � 
 0,1,2X       (3.3)  

where H�S� N O4 is the state vector and J maps the state H�S� to the next state H�S T U�. 
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Discrete-time systems are useful for studying continuous-time systems like the 

SEIG by reducing the order of the system equations. The use of discrete 

equations also avoids the need to solve complicated differential equations.  

3.2 POINCARÉ MAPS 

The Poincaré map technique is a powerful tool in studying continuous-time 

dynamic systems. Using this technique, an PGYorder continuous-time system is 

replaced with an �P Z 1�GY  order discrete-time system. In other words, a 

Poincaré map is a classical technique that transforms a continuous-time system 

to a reduced order discrete-time system. The steady-state behaviour (limit set) 

of a Poincaré map corresponds to steady-state behaviour of the underlying flow 

of a continuous-time system bridging the gap between continuous and discrete-

time systems [69]. 

Consider a general P -dimensional autonomous system HI 
 J�H�  with initial 

condition H�KL� 
 HL and a periodic orbit H[ (Figure 3.1 ). The dimension of the 

state space is P and \4]^ is a �P Z 1� dimensional surface not parallel to the 

trajectory. Point H_ (the fixed point) is the intersection between the limit cycle 

and surface \4]^. A new coordination system ` on  \4]^ is defined to reduce the 

order of the original system. 

 

Figure 3.1 Poincaré map of a periodic autonomous system. 
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Figure 3.2 shows a small perturbation ∆H added onto the trajectory such that 

H�K� 
 H[�K� T ∆H�K�. 

 

Figure 3.2 Poincaré map of a periodic autonomous system with perturbation. 

The intersections can be described by the points: > b c. Therefore, to go from 

point >  to point c , there shall be a map `d 
 e�`f� (continuous function) or 

described in more general terms `SgU 
 e�`S� (discontinuous function). e is the 

relation/formula between vector `f  and `d . This map is referred to as the 

Poincaré map. However, it is sometimes difficult to find an explicit formula for 

such a map.  

If the disturbance approaches the original limit cycle, the orbit is said to be 

stable. If however, the disturbance converges to another steady-state, the limit 

cycle is said to be unstable.   
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3.3 LIMIT SETS 

There are four types of limit sets of continuous-time and discrete-time dynamic 

systems. Moving from the simplest to the most complex these are: equilibrium 

points, periodic solutions, quasi-periodic solutions and chaos.  

The following steady-state behaviour is described from both continuous-time 

and discrete-time dynamic system points of view.  

3.3.1 FIXED POINTS 

A fixed point of a continuous-time autonomous dynamic system (equation (3.1)) 

marked as H_ is defined by J�H_� 
 0 and H_ 
 QK�H_� for all M [69]. 

A fixed point is sometimes called an equilibrium, rest or stationary point. 

The limit set of an equilibrium point is simply the equilibrium point itself. 

3.3.2 PERIODIC SOLUTIONS 

If, for system (3.1), a relation H�K T h� 
 H�K�  exists for all M  where T is a 

constant i 0 , the function H�K�  is called periodic and E  is its period. If the 

neighbourhood of a periodic solution has no other periodic solution, this closed 

curve in the phase plane is called a limit cycle.  

The limit set of a limit cycle is the closed trajectory traced over for one period. 

Whereas the limit set corresponding to a limit cycle on a Poincaré map is a fixed 

point H_(shown in Figure 3.1 ). 

3.3.3 QUASI-PERIODIC SOLUTIONS 

When two or more frequencies appear in an autonomous system and if the ratio 

of frequencies is not a ratio of integers, the signal is quasi-periodic. The number 

of fundamental frequencies is called the degree of quasi-periodicity. 

A degree 2 quasi-periodic trajectory lies on a torus in the phase space. 

Although the trajectory does not pass through every point on the torus surface, 

it repeatedly comes arbitrarily close to every point on the torus. The trajectory 

winds around on the torus surface endlessly, never intersecting or quite closing 

on itself. Thus, the limit set of a degree 2 quasi-period solution is torus shaped.   
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The steady-state of a degree 2 quasi-periodic orbit shown on a Poincaré map is 

an embedded circle as displayed in Figure 3.3. 

 

Figure 3.3 The limit set of the Poincaré map in the case of a degree 2 quasi-

periodic orbit is an embedded circle. 

3.3.4 CHAOTIC BEHAVIOUR 

There is no widely accepted definition for chaos. It is generally agreed that 

chaotic behaviour is not an equilibrium point, not periodic and not quasi-periodic. 

It is however a bounded steady-state behaviour [69]. The chaotic orbit is so 

sensitive to initial conditions that the outcome after time t is totally unpredictable 

despite the fact that the system itself could be completely described by very 

simple mathematical equations with no external influences. 

The limit sets of chaotic motion are not simple points, circles or tori, they are 

complicated strange attractors. 

The limit set on a Poincaré map for chaotic motion is not a simple geometrical 

object but a fine structure. An example of such strange attractor is shown in 

Figure 3.4. 

 

Figure 3.4 The limit set of the Poincaré map for a chaotic system [69]. 
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Table 3.1 summarises the above mentioned steady-state behaviours for 

dynamic systems. 

Table 3.1 Limit sets presented on ODEs and Poincaré maps. 

Limit sets ODEs 
Poincaré 

maps 

Fixed point Fixed point n/a 

Periodic 
solution 

Closed cycle 
traced over 

for one period 
Fixed point 

Quasi-
periodic 
solution 

Torus shape 
Embedded 

circle 

Chaotic 
Complicated 

strange 
attractors 

Fine structure 

 

3.4 STABILITY OF LIMIT SETS 

The study of the stability of limit sets is of great importance in analysing the 

behaviour of a nonlinear dynamic system. 

One popular approach to determine the stability of a limit set is by placing a 

small perturbation to the original nonlinear system. The fixed point is stable if 

the solution converges back to the original fixed point and is unstable otherwise. 

As the Poincaré map technique is utilised in analysing the stability of the SEIG 

nonlinear system (Chapter Six), the following discussions are focused on 

discrete-time dynamic systems. 
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3.4.1 STABILITY OF A FIXED POINT 

Consider the following discrete-time dynamic system 

HjgU 
 J�Hj� 
 kHj         (3.4) 

Firstly, in order to find the fixed point of the system (3.4), the following formula 

needs to be observed 

HjgU 
 Hj 
 H_         (3.5) 

Secondly, the Jacobian matrix k  can be obtained by linearising the system 

locally in a neighbourhood of the fixed point H_. A Jacobian matrix contains all 

first-order partial derivatives of a vector-valued function [67]. 

The local linearisation of the system at the fixed point H_ in state space is given 

by 

l mnmopmqrst 

u
vvw

xysxms   xynxmspxyqxms 

xysxmn  xynxmnpxyqxmn

XXXp   
xysxmqxynxmqpxyqxmqz

{{|
m_

} lmsmnpmqt      (3.6) 

where the Jacobian matrix k (evaluated at H_) is given by 

k 

u
vvw

xysxms    xynxmspxyqxms

xysxmn   xynxmnpxyqxmn

XXXp
   xysxmqxynxmqpxyqxmq z

{{|
m_

        (3.7) 

The eigenvalues of the Jacobian (3.7) can now be calculated, indicating the 

stability of the fixed point H_.  
In a discrete-time system, a fixed point is stable if all the eigenvalues of the 

Jacobian matrix have magnitude(s) less than unity. Equally, a fixed point is 

stable only if all the real parts of the eigenvalues are negative in a continuous-

time dynamic system. 
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3.4.2 STABILITY OF A PERIODIC SOLUTION 

As discussed in Section 3.3.2, the limit set of a periodic solution on a Poincaré 

map is a fixed point. The stability of a periodic solution can therefore, be 

investigated by introducing the Poincaré map technique and calculating the 

eigenvalues of the Jacobian matrix corresponding to the resulting fixed point.  

From a graphical point of view, if the perturbed trajectory approaches the fixed 

point, the fixed point is stable. Whereas, the fixed point is unstable if the 

perturbed trajectory is moving away from the fixed point. 

 

Figure 3.5 Two perturbed trajectories; stable case (top) and unstable case 

(bottom). 

The top graph of Figure 3.5 shows that point � is getting closer to the fixed point H_ . Therefore, it has stable orbits. Whereas the bottom graph leads to 

unstableness as � is moving away from H_. 
Further discussions associated with the stability of the periodic solution for the 

SEIG system are presented in Chapter Six.  
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3.4.3 STABILITY OF A QUASI-PERIODIC SOLUTION 

The stability of a quasi-periodic trajectory is also investigated by introducing the 

Poincaré map technique and evaluating the eigenvalues of the corresponding 

Jacobian matrix. 

As discussed in Section 3.3.3, the limit set of a quasi-periodic waveform on a 

Poincaré map is an embedded circle. The fixed point can be found at the middle 

of the closed loop. Therefore, the problem can be reduced to the stability of the 

fixed point from the corresponding Poincaré section. 

From a graphical point of view (Figure 3.6), if the iterates spiral into the fixed 

point, this fixed point is stable. However, if the iterates spiral out to the closed 

circle on the Poincaré section, the fixed point is unstable [67]. Figure 3.6 shows 

an example of both the stable and unstable cases for a degree 2 quasi-periodic 

system. 

 

Figure 3.6 Phase plane diagrams for a degree 2 quasi-periodic system; the 

fixed point at �0,0� is stable (left), the fixed point at �0,0� is unstable (right) [67]. 

Further discussions associated to the stability of a fixed point on the quasi-

periodic solution for the SEIG system are presented in Chapter Six. 
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3.5 BIFURCATION DIAGRAMS 

A qualitative change that occurs in the dynamics of a system when changing 

one of its parameters is called a bifurcation [67]. A bifurcation diagram is a plot 

that shows the sampled steady-state behaviour of a system over a range of 

parameter values.  

Electrical machines are generally designed to work at certain operating 

conditions that give specific output characteristics. However, in the presence of 

significant nonlinearities, the operating mode can be changed qualitatively when 

input voltage or load changes. Therefore, the study of bifurcation diagrams can 

be of great importance in such systems. 

Two main types of bifurcations take place in nonlinear dynamic systems: 

smooth and non-smooth bifurcations. The former is characterised by a change 

in stability status, whereas the latter is characterised by a change in operation 

as a result of a disturbance of the operating topological sequence [67].  

In general, electrical machines exhibit smooth bifurcations. Therefore, only 

smooth bifurcations are considered in this thesis. 

3.5.1 SMOOTH BIFURCATIONS 

Smooth bifurcations are broadly classified into four types: pitchfork, saddle-

node, period-doubling and Hopf bifurcations. 

A pitchfork bifurcation has the characteristic of symmetry [70]. The stable fixed 

point of a typical pitchfork bifurcation splits into a pair of stable fixed points, 

whereas the original fixed point becomes unstable (Figure 3.7).  

 

Figure 3.7 A typical characteristics of a pitchfork bifurcation,   is the bifurcation 

parameter and ! is the system output. 
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The saddle-node bifurcation has the basic characteristic of the creation and 

destruction of fixed points [70]; i.e. the original fixed point disappears and a pair 

of new fixed points are born (one is stable and the other unstable, Figure 3.8). 

In discrete-time systems, the saddle-node bifurcation is also known as a fold 

bifurcation. 

 

Figure 3.8 A typical characteristics of a saddle-node bifurcation,   is the 

bifurcation parameter and ! is the system output. 

The phenomenon of a period-one �P� orbit transferring to period two �P } 2� 
solution is known as a period doubling bifurcation (Figure 3.9) [67]. In discrete-

time systems, the corresponding bifurcation diagram flips between two points, 

hence the name flip bifurcation.  

 

Figure 3.9 A period doubling bifurcation [71] 

In continuous systems, if a Poincaré map shows a stable fixed point before the 

bifurcation which turns into a closed loop after the bifurcation, a Hopf bifurcation 

is implied. In discrete-time systems, this is called a Neimark bifurcation (Figure 

3.10). A Neimark bifurcation marks a transition from a period-one orbit to a 
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quasi-periodic orbit [67]. Mathematically, a limit cycle is born when a pair of 

complex conjugate eigenvalues passes through the imaginary axis [69]. In this 

thesis, the concept of the Neimark bifurcation is utilised to analyse the 

behaviour of the SEIG system.  

 

Figure 3.10 A Neimark bifurcation, μ is bifurcation parameter and ! is the 

system output [67]. 

3.5.2 NON-SMOOTH BIFURCATIONS 

Non-smooth bifurcations (also called discontinuous bifurcations) imply a change 

in system topology and can be classified as border collision, border-crossing, 

grazing and /-bifurcations. Non-smooth bifurcations are widely applied in the 

analysis of power electronic switching systems and their stability.  
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3.6 SUMMARY 

This chapter provided a brief introduction to nonlinear dynamic systems, 

Poincaré maps, bifurcation diagrams, limit sets and their stability characteristics. 

This serves as a general mathematical background required to analyse and 

study the dynamic behaviour of the SEIG when a variety of load types are 

connected to its stator terminals. 

Differential and difference equations were defined to distinguish the continuous-

time and discrete-time dynamic systems.  

The Poincaré map technique was presented as a powerful tool to be used to 

analyse the dynamic behaviour of the SEIG system when feeding variable loads. 

Four types of limit sets: Fixed point, periodic solution, quasi-periodic solution 

and chaos, together with their stability characteristics were presented in this 

chapter. 

Pitchfork, saddle-node, period-doubling and Hopf bifurcations are the four main 

types of smooth bifurcations and exhibited by electrical machines in general. 

The SEIG system exhibits a Neimark smooth bifurcation which will be analysed 

in detail in Chapter Six.  
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CHAPTER 4  

MATHEMATICAL MODELLING OF THE SEIG 
 

Numerous methods for the modelling of IMs using Matlab/Simulink software 

have been investigated by researchers/scientists over the past few decades [54, 

58, 60, 65, 72, 73]. 

The modelling of an IM as a linear electromagnetic device is a conventional 

method which has been widely used in general applications [74]. The creation 

of a robust linear transient model is a fundamental process in the construction 

of a nonlinear SEIG model. Hence, the standard linear induction generator 

model is introduced in this chapter. This model is composed of four main 

Simulink blocks: the Stator/Rotor 3-Phase AC Supply blocks, the 3-Phase to  �-�  /  � -�  to 3-Phase blocks, the Induction Machine block and the Mechanical 

Dynamics block.  

The rest of the chapter is focused on the development of a nonlinear SEIG 

model using the standard model as a foundation.  

The mutual inductances of an IM are generally considered to be constants in a 

conventional linear model. However, to allow for the effect of saturation (cross-

saturation effect), it is necessary to include magnetic nonlinearities into the 

induction machine model.  

The nonlinear model of the machine utilises state space analysis methods to 

study the dynamic behaviour of the SEIG system. The variable states of the 

system can be the machine’s stator/rotor instantaneous currents or fluxes [14, 

54, 58]. Due to the ease of simulation, the machine model using instantaneous 

currents as state space variables is used in this thesis. This is because the 

changing inductances of a running machine can be easily implemented in the 

Simulink SEIG model as variable functions of current. 
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The three-phase grid power supply of the IM nonlinear model is then replaced 

by an appropriate three-phase capacitor bank connected across the stator 

terminals to complete the SEIG system modelling.   

An IM generally works with values of magnetic flux density near the saturation 

level. Hence, the overall system is highly nonlinear and time varying. The 

dynamic analysis of the system is further complicated by the use of the 

capacitor bank which provides the reactive power to the generator. 

In Chapter Five, the simulation results obtained from the Simulink model 

developed in this chapter will be compared with the corresponding experimental 

results. In Chapter Six, the dynamic behaviour of the SEIG feeding an inductive 

load (�	) will be numerically investigated and analysed in detail also using the 

model developed in this chapter. 
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4.1 STANDARD INDUCTION MACHINE MODEL IGNORING THE CROSS-

SATURATION EFFECT 

The standard model described in this thesis utilises the state space method, 

also known as the time domain approach, which provides a convenient, 

compact and robust way to model and analyse systems with multiple inputs and 

outputs [75]. This state space model is expressed with respect to the stator 

reference frame (SRF), i.e. its coordinate system is stationary with respect to 

the stator and does not rotate [76]. 

Figure 4.1 shows the general layout of the Simulink induction machine model. 

There are four main parts making up the model: the Stator/Rotor 3-Phase 

Supply blocks, the 3-Phase to  � -�  /  � -�  to 3-Phase blocks, the Induction 

Machine block and the Mechanical Dynamics block. 

sAu

sBu

sCu

rau

rbu

rcu

sDu

sQu

rdu

rqu

rω
eT

rqi

rdi

sQi

sDi

M

sAi

sBi

sCi

rai

rci

rbi

 

Figure 4.1 The standard induction machine Simulink model overview with 

multiple inputs and outputs. 

The main component of the model is the Induction Machine block in which 

stator/rotor  �-� axis voltages and rotor shaft speed ~%& , ~%@ , ~=) , ~=Aand <= , 

respectively, are the multiple inputs, and stator/rotor  � -�  axis currents and 

electrical torque $%&, $%@, $=), $=A and E�, respectively, are the multiple outputs of 

the block.  
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Due to the unique structure of a cage induction machine, there are no voltages 

applied to the rotor side. Therefore, the rotor voltage ~=) and ~=A are equated to 

zero.  

4.1.1 THE 3-PHASE AC SUPPLY BLOCK 

The internal view of the Stator/Rotor 3-Phase Supply block with three balanced 

single phase sine waves of amplitude √2 �=-% ��� and frequency J �56� as the 

supply power source to the machine is shown in Appendix A.   

4.1.2 THE 3-PHASE TO  �-� OR �-� TO 3-PHASE TRANSFORMATION BLOCK  

The  �-� axis reference frame representation of the transient state model of the 

induction machine is used throughout this study. The following mathematical 

descriptions are applied 










−=

−−=

sCsBsQ

sCsBsAsD

uuu

uuuu

3

1

3

1

3

1

3

1

3

2

         

(4.1)

 

where sAu , sBu  and sCu  are the three-phase AC voltage supplies to the stator 

terminals, sDu  and 
sQu  are  �-� axis voltages. 

Since the three-phase supply sine wave voltages are given by 















+=

−=

=

)
3

2
2sin(2
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3

2
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)2sin(2

ππ

ππ

π

ftVu

ftVu

ftVu

sC

sB
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         (4.2) 

Substituting equation (4.2) into (4.1), the following equations are derived 







−=

=

)2cos(2

)2sin(2

ftVu

ftVu

sQ

sD

π

π
         (4.3) 

The final derived equation (4.3) shows that ~%& and ~%@  are sine and inverse 

cosine waves with same peak voltage and frequency. 
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A reverse calculation is applied to transform the output signals from  �-� axis to 

three-phase ABC presentation. The 3-phase/  � -�  transformation is shown in 

graphical form in Appendix A. 

4.1.3 THE MAIN INDUCTION MACHINE BLOCK  

The stator voltage equations of an induction machine are given by 












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+=

+=

+=

dt

d
iRu

dt

d
iRu
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d
iRu
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sCssC
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sBssB

sA

sAssA

ψ

ψ

ψ

         (4.4) 

where sAu , sBu , sCu , , sBi , sCi  and sAψ , sBψ , sCψ  are the three-phase stator 

voltages, currents and fluxes, respectively, and sR  is the stator resistance.  

The space vector representation of the three-phase voltages can be derived as 

given below 

)(
3

2 2

sCsBsAs uaauuu ++=          (4.5) 

where ~%  is stator voltage space vector representing the three-phase supply 

voltages and > is equal to ��n�o . By substitution 

=++ )(
3

2 2

sCsBsA uaauu ))()()((
3

2 2

dt

d
iRa

dt

d
iRa

dt

d
iR sC

sCs

sB

sBs

sA

sAs

ψψψ
+++++  (4.6) 

Hence 

)(
3

2
)(

3

2 22

dt

d
a

dt

d
a

dt

d
iaaiiRu sCsBsA

sCsBsAss

ψψψ
+++++=     (4.7) 

The stator current space vector $% is given by 

)(
3

2 2

sCsBsAs iaaiii ++=         (4.8) 

 

sAi
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And 

)(
3

2 2

dt

d
a

dt

d
a

dt

d

dt

d sCsBsAs ψψψψ
++=       (4.9) 

where �% is the stator flux space vector representing the three-phase stator flux 

waveforms.  

By substituting (4.8) and (4.9) into (4.7), the stator voltage space vector 

equation is obtained 

dt

d
iRu s

sss

ψ
+=          (4.10) 

Similarly, the rotor voltage space vector equation is  

 
dt

d
iRu r

rrr

ψ
+=          (4.11) 

The rotor voltage equation can be expressed with respect to the SRF as  

θθθ
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r ej
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d
eeiR
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ed
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⋅
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)(
  (4.12) 

where � is the angle between the SRF and RRF. 

Therefore, the rotor voltage computed in the SRF is given by  

rr
r

rrr j
dt

d
iRu ψω

ψ
−+=                                         (4.13) 

The stator and rotor voltage equations with respect to the SRF can now be 

obtained. equation (4.10) and (4.13) can be expressed in terms of  �-� axis 

quantities as               










+−
+

++=+

+
++=+

)(
)(

)(

)(
)(

rqrdr

rqrd

rqrdrrqrd

sQsD

sQsDssQsD

jj
dt

jd
jiiRjuu

dt

jd
jiiRjuu

ψψω
ψψ

ψψ

               (4.14) 
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where the fluxes sDψ , 
sQψ , rdψ  and 

rqψ  are given by 
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Equation (4.15) can now be substituted into (4.14) to give 
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(4.16) 

The above equations can be rewritten into the following form to give the general 

induction machine  �-� axis equations 
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This equation can be written in matrix form as 
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where the symbol 8 is used to denote differentiation with respect to time. 

The above machine mathematical descriptions are presented as four 

subsystems of the main Simulink ‘Induction Machine’ block in Appendix A.  
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4.1.4 THE MECHANICAL DYNAMICS SYSTEM BLOCK 

The electrical torque expression can be expressed as 

=eT rqrdrdrq ii ψψ −           (4.19) 

For a 3-phase, e-pole machine, the electrical torque with respect to the SRF is 

given by 

=eT
22

3 P
)( rqrdrdrq ii ψψ −            (4.20) 

The electrical torque Simulink block ‘E�� is shown in Appendix A. 

The total mechanical torque developed at the rotor shaft is mathematically 

described as   

dt

d
JTTTT r

FrictionLoade

ω
=−−=        (4.21) 

where E�  is the electrical torque generated by the machine, E(��)  is the load 

torque, E�=�2G��4 is the torque produced by friction, � is the moment of inertia and <= is the rotor speed.  

The Simulink presentation of the mechanical dynamics system is shown 

Appendix A. 
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4.2 INDUCTION MACHINE MODEL INCLUDING THE CROSS-

SATURATION EFFECT 

An analysis of the IM system including a representation of magnetic 

nonlinearities (the cross-saturation phenomena) is presented in this section. 

The cross-saturation effect in an induction machine has been studied by a 

number of researchers in the past few decades [11, 54, 55]. It refers to two 

machine windings with their magnetic axes in space quadrature exhibiting 

specific magnetic interactions, due to saturation of the main flux paths [11].  

The mathematical descriptions of a saturated IM with consideration of the cross-

saturation effect are given in the following subsections. 

4.2.1 MATHEMATICAL REPRESENTATION OF CROSS-SATURATION 

The IM model developed above has four states (the stator and rotor  �-� axis 

currents) and is linear time varying and rotor speed dependent. The general 

matrix equation of an IM expressed in the SRF is given by (4.18), which can be 

rewritten in vector form as 

� 
 �� T �U )�)G T <=�� 

         

(4.22)

          

 

where � and � are the vectors representing the stator and rotor voltages and 

currents, respectively, �  is the resistance matrix, <=  is the rotor speed and �U, �� are inductance matrices given by 
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To model the nonlinearity of the dynamic system, the elements of the 

inductance matrix �U  has to change to become functions of the magnetising 

current instead of being constants. Cross-saturation is allowed for by 

introducing new elements into the inductance matrix  �U of the non-saturated 
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machine model, namely the saturated magnetising inductance and its derivative. 

The linear matrix �U is then transformed into the following nonlinear matrix (���   

�� 

��
��
�

rqdqmqdq

dqrddqmd

mqdqsqdq

dqmddqsd

LLLL
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LLLL

LLLL

��
��
�
 

Note: Only the effect of the main flux saturation is incorporated in the analysis.  

The machine equation combination with consideration to the cross-saturation 

effect can then be written in the form (� 
 �� T �� )�)G T <=��) [11] 
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(4.23) 

where 	- denotes the saturated inductance (magnetising inductance) given by 

mmm iL ψ=  and 	 is the dynamic inductance given by mm iddL ψ= .  

Values of the magnetising and the dynamic inductance for a 1.5 �� machine 

are shown in Figure 4.2 as functions of current [11]. 

 

Figure 4.2 Saturated magnetising inductance 	- and dynamic inductance 	 [11]. 
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The cross-saturation coupling between all axes in space quadrature is 

represented by dqL  (the cross-saturation inductance) given by 

m

m

m

mqmd

dq

id

dL

i

ii
L ×=          (4.24) 

The derivative of the mutual flux mdψ  is given by 

mmmmm LididLd ×+×=ψ         (4.25) 

The above equation can be rewritten as 

m

mm

m

mm

m

m

id

idL

id

Lid

id

d ×
=

×
−

ψ
       (4.26) 

The Dynamic inductance is given by ,

m

m

id

d
L

ψ
= therefore 

mm

m

m

m

m
m LLL

id

d

id

dL
i −=−=

ψ
                                 (4.27) 

This equation can be rewritten as  

m

m

m

m

i

LL

id

dL −
=          (4.28) 

Substituting (4.28) into (4.24), yields the following equation 

m

m

m

mqmd

dq

i

LL

i

ii
L

−
×=          (4.29) 

The direct and quadrature axis magnetising currents are given by 

rqsQmqrdsDmd iiiiii +=+= ;         (4.30) 

The total magnetising current mi  is given by 

 2

1

22
)( mqmdm iii +=          (4.31)          
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The direct and quadrature axis saturated inductances are calculated as 

dq

md

mq

mmqdq

mq

md

mmd L
i

i
LLL

i

i
LL +=+= ;       (4.32) 

When the system is operating under linear magnetic condition with no 

saturation of the flux paths, the machine’s cross-saturation inductance is 

, mmqmd LLL ==
 
and 

mqslsqmdslsd LLLLLL +=+= ;        (4.33) 

mqrlrqmdrlrd LLLLLL +=+= ;        (4.34)           

where, slL  and rlL  are the unsaturated stator and rotor leakage inductances 

(assumed to be constant).  

Because of saturation, rqrdsqsd LLLL == ; and the rotor inductance is 

 mrlr LLL +=           (4.35) 

4.2.2 TORQUE EQUATIONS 

The rotor flux linkages (4.15) are given by 

sDmrdrrdsQmrqrrq iLiLiLiL +=+= ψψ ;       (4.36) 

The above equations can be utilised to re-write the torque equation (4.20) as 

)(
4

3

)(
4

3

rqsDrdsQm

rqsDmrqrdrrdsQmrdrqre

iiiiL
p

iiLiiLiiLiiL
p

T

−=

−−+=

     (4.37) 

Apart from the effects of the main flux saturation of an IM is discussed within 

this chapter, the effects of the saturation of the leakage flux paths are also 

presented to the reader in Appendix B. These are important under certain 

operating conditions such as when large inrush currents occur, but are not 

included in the main analysis of the SEIG steady-state response [58]. 

0=dqL
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4.3 SELF-EXCITED INDUCTION GENERATOR MODEL 

The SEIG operates just like any other induction machine, except for the fact that 

its stator terminals are connected (in parallel) to a three-phase self-excitation 

capacitor bank in the absence of the normal three-phase supply voltages. 

These machines are ideal for electricity generation in standalone variable speed 

hydraulic turbine or wind turbine applications, where there is no available grid 

connection.  

It is possible to create and build a SEIG Simulink model based on the nonlinear 

model created in the previous section. 

4.3.1 THE MATHEMATICAL DESCRIPTIONS 

The grid supply in the previous induction machine model is now replaced with 

three-phase capacitors connected in parallel with the stator windings as shown 

in Figure 4.3, where, sQsDii  and rqrd ii refer to the stator and rotor  � -�  axis 

currents, respectively. The state space nonlinear equations forming the basis of 

the nonlinear model of the machine are modified as follows to represent the 

SEIG.  

 

Figure 4.3 The SEIG  �-� equivalent circuit. 

The equivalent circuit of Figure 4.3 clearly shows that the rotor side state space 

equations are not changed, whereas the stator voltage equations need to be 

changed to represent the dynamics of the capacitor bank connected to the 

stator terminals.  
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Equation (4.23) can be rewritten as [12] 
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The above equation shows that the cross-saturation part (on the right hand side 

of the equation) has not been changed, whereas the  �-� axis stator voltages 

(on the left hand side of the equation) have been changed to allow for the 

connection of the capacitor bank. 

The capacitor bank voltages CDu and CQu will be different depend on the type of 

load the SEIG is feeding. Three types of load conditions are considered in this 

analysis: no-load, a purely resistive load (�) and an inductive load (�	) as 

detailed in the following subsections. 

a) State Equations of the SEIG under No-load Conditions 

The stator direct axis equivalent circuit with no-load is shown in Figure 4.4. 

 

Figure 4.4 Stator direct axis equivalent circuit with self-excitation capacitors 

without load; $%& is the stator direct current. 

The capacitors direct axis voltage equation is 

∫−=−= dti
C

uu sDsDCD

1
                     (4.39) 

And the capacitors quadrature voltage equation is 

CDu
sDi

C
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∫−=−= dti
C

uu sQsQCQ

1
        (4.40) 

b) State Equations of the SEIG Operating with a Resistive Load  

The direct axis equivalent circuit representing the connection of the capacitor 

bank and the resistive load is presented in Figure 4.5. 

C R

sDi

CDi

Ldi

 

Figure 4.5 Stator direct axis equivalent circuit with self-excitation capacitors and 

resistive load �;  $%&, $'& and $() are the stator, capacitor and load direct currents, 

respectively. 

Figure 4.5 is represented by the following mathematical equations 

Riuu LdLdCD −=−=           (4.41) 

The capacitor direct current is given by  

dt

di
RC

dt

du
Ci LdLd

CD −=−=         (4.42) 

Ld
Ld

LdCDsD i
dt

di
RCiii +=+−=         (4.43) 

Using the same methodology, the equation for ,CQu
sQi can also be solved and 

computed.  

Riuu LqLqCQ −=−=
         

(4.44)
 

Lq

Lq

sQ i
dt

di
RCi +=

         
(4.45) 
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c) State Equations of the SEIG Operating with an Inductive Load 

The direct axis equivalent circuit of the SEIG with an inductive load (�	 ) 

connected to the stator terminals is shown in Figure 4.6. 

C

R

sDi

CDi

Ldi

L

 

Figure 4.6 Stator direct axis equivalent circuit with self-excitation capacitors and 

inductive load (�	); $%& , $'& and $() are the stator, capacitor and load direct 

currents, respectively. 

The equations for the above equivalent circuit are as follows 

dt

di
LRiuu Ld

LdLdCD −−=−=         (4.46) 

2

2

dt

id
LC

dt

di
RC

dt

du
Ci LdLdLd

CD −−=−=       (4.47) 

LdCDsD iii +−=          (4.48) 

Ld
LdLd

sD i
dt

id
LC

dt

di
RCi ++=

2

2

       (4.49) 

Therefore, the quadrature voltage and current equations are 

dt

di
LRiuu

Lq

LqLqCQ −−=−=         (4.50) 

Lq

LqLq

sQ i
dt

id
LC

dt

di
RCi ++=

2

2

        (4.51) 
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4.3.2 SIMULATION RESULTS 

The mathematical descriptions of the SEIG system under variable load 

conditions have been studied in the previous section. The voltage equations of 

the SEIG model can now be solved and the simulation results are to be 

presented in detail in this section.  

The parameters of a 1.5 �� , 50 56 , 4-pole, 220/380 �  and 7/4 7  cage 

induction machine with a three-phase self-excitation capacitor bank (135 01 per 

phase) are used in this section to test the SEIG model and verify its accuracy. 

The machine equivalent circuit parameters (referred to the stator) are as follows: 

stator and rotor resistances are 0.6 ; and 0.83 ;, respectively, and the stator 

and rotor leakage reactances are both equal to 1.8 ;. The machine magnetising 

reactance is directly obtained from Figure 4.2. The prime mover of the 

generator is presented by a DC machine rotating at a constant speed of 1500  ��/#$P. The parameters are obtained from a well-known publication, to 

allow for easy comparison and hence the verification of the simulation results 

[14]. 

The following �-axis equivalent circuit is used to model the effects of the various 

loads applied to the IG stator terminals, (a similar equivalent circuit is used for �-axis quantities). 

 

Figure 4.7 Stator direct axis equivalent circuit with various load types. 
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a) The Initial Self-excitation Process of the Induction Machine; No-load 

As the machine is working under no-load, the switch S in Figure 4.7 remains 

open and the  �-� capacitor’s voltages are as shown in Equations (4.39) and 

(4.40). Initial conditions for the capacitor bank voltage and rotor flux must be set 

to appropriately low values to ensure the success of the self-start process. The 

general self-excitation process of the generator during the initial voltage build-

up stage is observed in Figure 4.8 and Figure 4.9. The stator phase voltage 

starts building up slowly and reaches a steady-state value while the 

magnetisation current starts from zero rising to a stable steady-state value. A 

stable output voltage could only be obtained once the machine’s core is 

saturated. Another physical explanation of the starting process of the SEIG is 

that the residual magnetism presented in the core (the rotor) induces a small 

voltage across the stator windings and self-excitation capacitors once the rotor 

is driven by the prime mover. This produces a delayed current which in turn 

produces an increased voltage and consequently an increased capacitor 

current. This phenomenon goes on until saturation of the magnetic flux paths. 

The simulation results shown in Figure 4.8 agree well with experimental results 

presented in [14]. 

 

Figure 4.8 Stator line-to-line voltage builds up at no-load. 
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Figure 4.9 Magnetising current during initial self-excitation at no-load. 

b) The SEIG Operating with a Resistive Load 

Here the SEIG is initially running under no-load condition as previously 

discussed and a resistive load of 27 Ω  per phase is applied to the stator 

terminals at 1 s. It is clear from Figure 4.10 that there is a drop in output voltage 

when the resistive load is applied at 1 s, as the system has to supply power to 

the extra load. 

 

 

Figure 4.10 Computed stator line-to-line voltage (top) and load current (bottom) 

when applying a 27 Ω load at 1 s. 
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It is shown from the above voltage and current waveforms that (regardless of 

the voltage drop) the solution curve in state space is a closed period-one orbit. 

In practical applications, a second capacitor bank connected in series with the 

resistive load may be used to decrease the resulting voltage drop. However, 

from the dynamic point of view, the behaviour of the system remains 

qualitatively the same (i.e. the system exhibits a similar stable period-one orbit). 

Therefore, this configuration is not studied further in this thesis. The voltage and 

current waveforms also agree very well with experimental results shown in [14].  

The characteristic of the magnetising current is plotted in Figure 4.11. Clearly, 

the application of the 27 Ω load greatly reduces the magnetising current and 

hence the magnetising flux of the machine. This reduction in flux is the reason 

for the drop in the SEIG stator terminal voltage. 

 

Figure 4.11 Magnetising current when applying a 27 Ω load at 1 s. 
  

0.9 1.0 1.1 1.2 1.3 1.4

3.5

4.5

5.5

6.5

7.5

Time (s)

C
u
rr

e
n
t 

(A
)



Chapter 4   Mathematical Modelling of the SEIG 

54 

School of EEE at Newcastle University 

4.4 SUMMARY 

The computer modelling of the induction generator as a linear electromagnetic 

device was introduced in this chapter. This standard machine model is the 

foundation for further study and investigation of the nonlinear behaviour of the 

SEIG system. 

A model of the machine with consideration of the cross-saturation nonlinear 

effect was then derived by modifying the standard machine model [11]. A 

current based implementation of the state space model of the machine (with 

currents as state space variables) was used in this thesis because of its ease of 

simulation in Simulink. The SEIG nonlinear model was finally created by taking 

into account the stator and rotor voltages when operating as a standalone 

device feeding different types of load with the self-excitation capacitor 

connection in parallel with the stator terminals. The model was verified by 

comparison with experimental results presented in a well-known publication [14]. 

The SEIG exhibits period-one linear waveforms when operating at no-load and 

when feeding a purely resistive load, as shown in the simulation results 

generated from the proposed nonlinear model. The waveforms also show how 

the magnetising current and flux drop when a resistive load is connected to the 

stator terminals which in turn causes a drop in the stator terminal voltage. 
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CHAPTER 5  

EXPERIMENTAL INVESTIGATION 
 

A number of experimental tests are presented in this chapter using a laboratory 1.1 ��, 220~240 �, 4.4 7, 50 56, 2-pole induction machine operating as a SEIG 

under a variety of load conditions. The purpose of these tests is firstly to 

validate the numerical SEIG model developed earlier in Chapter Four and 

secondly to demonstrate the nonlinear behaviour of the system when feeding a 

variable inductive load, moving from a stable period-one linear orbit to a 

nonlinear orbit as a system parameter is varied.  

The parameters of the equivalent circuit of the induction machine are as follows: 

Stator reactance D%G� 
 ¢7.425 Ω , stator resistance �%G� 
 6.65 Ω , rotor 

reactance D=�G 
 ¢7.425 Ω , rotor resistance �=�G 
 7.64 Ω , magnetising 

reactance D- 
 ¢171.54 Ω  and core resistance �2 
 25.88 Ω. Details of no-load 

and blocked rotor tests carried out to determine the induction machine 

parameters are shown in Appendix C.  

The prime mover in the test apparatus is a 1.5 �� DC machine controlled by a 

Mentor digital DC drive. In all tests, the DC machine is used to rotate the 

induction machine at 3000  8# before the three-phase self-excitation capacitor 

bank is connected to the stator terminals of the machine. The load is then 

switched on after the self-excitation process has been completed. The results 

from these tests are logged and used to demonstrate the performance 

characteristics of the SEIG. The laboratory results are compared to simulation 

results for each test to validate the SEIG Simulink numerical model.  

In this chapter, the SEIG experimental setup is described and the stator current 

waveforms captured from each test are compared with those generated from 

the Simulink model. Tests are performed for the SEIG operating under no-load 

conditions and also when feeding a purely resistive load (�) and an inductive 
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load (�	) conditions. Examples of linear and nonlinear orbits are shown in this 

chapter.  

5.1 TEST SETUP 

The devices used in these tests are listed in detail in Appendix D. An overview 

of the system is given in Figure 5.1. The tests carried out to study the dynamic 

behaviour of the SEIG under the different load conditions are listed in Table 5.1. 

The equipment was mounted on a bench to form the SEIG test rig. Rotational 

devices (e.g. the rotor shaft, the DC rotor and the AC rotor) and any high 

voltage equipment were housed within suitable metal enclosures for safety 

purposes. 

5.1.1 SYSTEM OVERVIEW 

An overview of the SEIG test rig is given in Figure 5.1. The motor drive controls 

the speed of the DC motor which provides the mechanical input to the IG. The 

generator is the key component of the rig. It converts the mechanical input 

power at the rotating shaft to three-phase electrical power at the stator terminals. 

A self-excitation capacitor bank (/) provides the reactive power to both the 

machine and the load during and after the self-excitation process. A variable 

load (purely resistive � or inductive �	) is connected to the stator terminals in 

parallel with the self-excitation capacitors.  

 

Figure 5.1 Outline of the SEIG test rig. 
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The tests carried out by the author are listed in Table 5.1. The tests are 

classified into four groups: magnetising curve test, self-excitation (no-load) tests, 

resistive load (�) tests and inductive load (�	) tests. The values of the resistive 

load, inductive load and the self-excitation capacitance for each test are also 

listed in Table 5.1. 

Table 5.1 List of tests carried out. 

Test Group Test No. 

Load 

Resistance 

(Ω/8C>?�) 

Load 

Inductance 

(#5/8C>?�) 

Self-excitation 

capacitance 

(01/8C>?�) 

Magnetising curve 

(Section 5.2) 
n/a n/a n/a n/a 

Initial self-excitation 

process 

(No-load tests, Section 

5.3) 

Test 1 n/a n/a 45 

Test 2 n/a n/a 60 

Test 3 n/a n/a 90 

Purely resistive load (�) 

(Section 5.4) 

Test 4 60 n/a 45 

Test 5 50 n/a 45 

Test 6 40 n/a 45 

 

Inductive load ��	) 

(Section 5.5) 

Test 7 90 1.7 45 

Test 8 60 60 45 

Test 9 40 11 45 
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5.2 MAGNETISING CURVE TEST 

When the machine runs at its synchronous speed, the rotor and load 

parameters of the equivalent circuit can be ignored as the slip is zero. Therefore, 

the magnetising curve of the machine (measured at 50 56) can be obtained by 

varying the supply voltage and measuring the stator current. The recorded 

magnetising current when varying the supply voltage is shown in Figure 5.2. 

 

Figure 5.2 The 1.1 �� IM magnetising characteristics. 

The measured points on the saturation curve were used to generate a 

continuous curve (shown in Figure 5.2) with a Spline Function curve-fitting 

method from Matlab. The saturation curve is represented by the line voltage as 

a function of the line current (voltage and current are shown in rms values). This 

figure was obtained by comparing the measured voltage and current waveforms 

at a number of points.  

In order to obtain a more accurate representation of the instantaneous 

relationship between current and flux, measured rms values were first 

converted to peak values. This is achieved by multiplying the measured rms 

voltages and currents by √2  in the linear region of the magnetising curve. In the 

saturation region where the current waveforms are no longer sinusoidal, 

measured voltages are multiplied by √2 and measured currents by 2 [77]. 
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The above saturation curve is used to compute the magnetising inductance 

	- 
 |£¤¥||¦§¥| 
 ¨©¥n �¥n⁄ ]«¬n­®y  (where �2  is the core resistance) and the dynamic 

inductance 	 
 )|£¤¥|)|¦§¥| . In Figure 5.3 and Figure 5.4, the inductance L¯ and the 

quantity |ı§̄ | ±²³´²|µ§´|¶ are plotted against the current |ı§̄ |. As discussed in Chapter 

Four, the following equation can be solved |ı§̄ | ± ²³´²|µ§´|¶ 
 ²|·¤´|²|µ§´| Z L¯ 
 L Z L¯ to 

obtain the dynamic inductance curve shown in Figure 5.5 [11].  

 

Figure 5.3 Magnetising inductance versus magnetising current. 

 

Figure 5.4 |$-|�	-/�|$-| versus magnetising current. 
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Figure 5.5 Dynamic inductance versus magnetising current. 

The above magnetising curves are crucial for modelling the nonlinear behaviour 

of the SEIG. The magnetising and the dynamic inductance curves are utilised in 

the nonlinear simulation model of the SEIG with a method of look-up table from 

Matlab. 
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5.3 SEIG NO-LOAD TESTS 

The SEIG is firstly examined under no-load condition when different values of 

self-excitation capacitors are applied to the stator terminals. The results 

recorded from the tests are compared with the results generated from the SEIG 

Simulink model under the same conditions. 

5.3.1 TEST 1; ¸ 
 ¹º »¼ 

The induction generator’s shaft is initially rotated at a steady speed of 3000  8# 

before the three-phase, star connected self-excitation capacitor bank (45 01 per 

phase) is applied to the stator terminals. The speed of rotation is then altered 

until a steady-state rms stator voltage of 240 � (rated voltage) was obtained. 

The tachometer recorded a rotor steady-state shaft speed of 3180  8# at this 

point. Experimental and simulated stator steady-state line current waveforms 

are shown in Figure 5.6 and Figure 5.7, respectively. Both waveforms present a 

stable period-one orbit with a frequency of 53.8 56. 

The test results show that the induction generator is successfully self-started 

when a three-phase capacitor bank (45 01  per phase) are connected to the 

stator terminals. A measured stable current of 2.2 7 (Figure 5.6) matches well 

with the rms value of the waveform (2.25 7) shown in Figure 5.7.  

Small differences exist between the three current waveforms shown in Figure 

5.6, this may be caused by imbalance in three-phase self-excitation capacitors, 

induction machine or power supply. 
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Figure 5.6 Test 1 – Measured stator line current waveforms at no-load with / 
 45 01 per phase – Period-one waveforms. 

 

Figure 5.7 Test 1 – Simulated stator line current waveforms at no-load with / 
 45 01 per phase – Period-one waveforms. 
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5.3.2 TEST 2; ¸ 
 ½L »¼ 

With a self-excitation capacitor bank of 60 01 per phase connected across the 

stator terminals, the recorded rotor steady-state shaft speed of 2994  8# after 

the self-excitation process when the stator voltage reaches rated value at 240 �. 

The measured and simulated steady-state stator current waveforms are shown 

in Figure 5.8 and Figure 5.9, respectively. Both waveforms are period-one orbits 

with a frequency and rms current at round 49.6 56 and 2.5 7. 

 

Figure 5.8 Test 2 – Measured stator line current waveforms at no-load with / 
 60 01 per phase – Period-one waveforms. 

 

Figure 5.9 Test 2 – Simulated stator line current waveforms at no-load with / 
 60 01 per phase – Period-one waveforms. 
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5.3.3 TEST 3; ¸ 
 ¾L »¼ 

The induction generator is rotated at 3000  8# by the DC motor as the prime 

mover, and the self-excitation capacitor bank (90 01 per phase star connected) 

is connected to the stator terminals, the tachometer recorded rotor steady-state 

shaft speed is equal to 2771  8#  after the self-excitation process when the 

stator voltage reaches 240 �. The measured and simulated steady-state stator 

current waveforms are shown in Figure 5.10 and Figure 5.11, respectively. Both 

waveforms again display a stable period-one orbit with a frequency of around 45.9 56. The rms current in both cases is around 3.5 7. 

It is noted from Tests 1-3 that the magnitude of the stator currents is increased 

as the values of the self-excitation capacitor bank are increased. This is 

because at higher values of / , the slope of the load line representing the 

reactance of the self-excitation capacitors (1 </⁄ ) is reduced intercepting the 

magnetising curve (as shown in Figure 5.2) at a higher value of current.  
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Figure 5.10 Test 3 – Measured stator line current waveforms at no-load with / 
 90 01 per phase – Period-one waveforms. 

 

Figure 5.11 Test 3 – Simulated stator line current waveforms at no-load with  / 
 90 01 per phase – Period-one waveforms. 

  

0.5 0.52 0.54 0.56 0.58 0.6

-4

-2

0   

2

4

6

Time (s)

C
u
rr

e
n
t 

(A
)

0.5 0.52 0.54 0.56 0.58 0.6
-6

-4

-2

0

2

4

6

Time (s)

C
u
rr

e
n
t 

(A
)



Chapter 5   Experimental Investigation 

66 

School of EEE at Newcastle University 

5.4 SEIG PURELY RESISTIVE LOAD TESTS 

A variable resistive load is connected across the SEIG stator terminals in 

parallel with the 45 01  self-excitation capacitor bank after the initial self-

excitation process in this group of three tests. Measured test results are again 

compared with the results from the Simulink model of the SEIG. 

5.4.1 TEST 4; ¿ 
 ½L Ω; ¸ 
 ¹º »¼ 

In this test, the SEIG stator terminals are connected to a three-phase resistive 

load of 60 Ω per phase after the self-excitation process had been completed. 

The tachometer recorded a rotor steady-state shaft speed of 3665  8# when 

the stator voltage reaches its rated 240 � value. The corresponding measured 

and simulated steady-state stator current waveforms are shown in Figure 5.12 

and Figure 5.13. Both waveforms are period-one orbits with a frequency of 

around 58.1 56.  The rms value of both measured and simulated currents is 

around 3.2 7.  

It is noticed that the three current waveforms shown in Figure 5.12 are more 

balanced than those recorded from no-load tests, this maybe because of the 

connection of the three-phase resistive load presenting a more balanced 

operating condition to the SEIG. 
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Figure 5.12 Test 4 – Measured stator line current waveforms with � 
 60 Ω and / 
 45 01 per phase – Period-one waveforms. 

 

Figure 5.13 Test 4 – Simulated stator line current waveforms with � 
 60 Ω and / 
 45 01 per phase – Period-one waveforms. 
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5.4.2 TEST 5; ¿ 
 ºL Ω; ¸ 
 ¹º »¼ 

The SEIG is next tested with decreasing the load resistance to 50 Ω per phase 

connected after the self-excitation process had been completed. The 

tachometer recorded a rotor steady-state shaft speed of 3814  8# when the 

stator voltage reaches its rated value of 240 �. The measured and simulated 

steady-state stator current waveforms are shown in Figure 5.14 and Figure 5.15, 

respectively. It is noted that both waveforms are period-one orbits with a 

frequency and rms current of around 60 56 and 3.6 7, respectively.  
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Figure 5.14 Test 5 – Measured stator line current waveforms with � 
 50 Ω and / 
 45 01 per phase – Period-one waveforms. 

 

Figure 5.15 Test 5 – Simulated stator line current waveforms with � 
 50 Ω and / 
 45 01 per phase – Period-one waveforms. 
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5.4.3 TEST 6; ¿ 
 ¹L Ω; ¸ 
 ¹º »¼ 

Finally, a three-phase resistive load of 40 Ω per phase is connected to the SEIG 

stator terminals after the self-excitation process had been completed. The 

tachometer recorded a rotor steady-state shaft speed of 4057  8# when the 

stator voltage reached its rated value of 240 �. The measured and simulated 

steady-state stator current waveforms are shown in Figure 5.16 and Figure 5.17, 

respectively. The waveforms generated from the experimental test confirm the 

accuracy of the proposed Simulink model under the same operational 

conditions. Both are period-one orbits with a frequency and rms current of 

around 64 56 and 4.3 7, respectively. 
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Figure 5.16 Test 6 – Measured stator line current waveforms with � 
 40 Ω and / 
 45 01 per phase – Period-one waveforms. 

 

Figure 5.17 Test 6 – Simulated stator line current waveforms with � 
 40 Ω and / 
 45 01 per phase – Period-one waveforms. 
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5.4.4 PHASE PLANE AND HARMONIC EXAMINATION OF THE PERIOD-ONE LINEAR 

ORBIT 

The stator current waveforms of the SEIG when feeding a resistive load (period-

one orbit) are examined by both phase plane and harmonic spectrum 

presentations in this section. 

Taking the case of the 50 Ω resistive load and 45 01 self-excitation capacitance 

(Test 5) as an example of a period-one operating point, the corresponding 

phase plane diagram of stator line currents $2 versus $3 is shown in Figure 5.18. 

The corresponding Poincaré section of the sampled states of these two line 

currents when $�  is zero (rising edge) is plotted in Figure 5.19. Clearly, the 

phase plane diagram is a closed circle and the Poincaré section is almost a 

single dot demonstrating the characteristic of stable period-one orbit of the 

measured stator current waveforms under this operating condition.  
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Figure 5.18 Stator line current $2 versus $3 phase plane diagram – Period-one. 

 

Figure 5.19 Sampled states of stator line current $24 versus $34 Poincaré section 

– Period-one. 
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With a purely resistive load applied to the stator terminals of the SEIG, the 

waveforms are sinusoidal (period-one orbit) as shown in the Fast Fourier 

Transform (FFT) plot of Figure 5.20 with only one dominating frequency.  
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 Frequency (56) 

Figure 5.20 SEIG current FFT with resistive load (� 
 50 Ω); The frequency and 

amplitude of the dominating signal are approximately 60 56 and 5.1 7.  
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5.5 SEIG INDUCTIVE LOAD TESTS 

A variable inductive load (�	) is connected across the SEIG stator terminals in 

parallel with the 45 01 per phase self-excitation capacitor bank in this group of 

three tests. The nonlinear behaviour of the SEIG feeding an inductive load is 

examined by using the load resistance and inductance as the control 

parameters. Measured test results are again compared with the results from the 

Simulink model of the SEIG. For clarity, only one line current is presented in 

each diagram in this section. 

5.5.1 TEST 7; ¿ 
 ¾L Ω; À 
 U. Á ÂÃ; ¸ 
 ¹º »¼ (BASE CASE) 

When a three-phase inductive load (�	) is applied to the stator terminals of the 

induction generator, system behaviour changes from a period-one linear orbit to 

a nonlinear orbit as load parameters are varied. A stable period-one orbit base 

case is presented first (Test 7) in this section.   

With load resistance � 
 90 Ω, load inductance 	 
 1.7 #5 and self-excitation 

capacitance / 
 45 01 per phase, the tachometer recorded a steady-state shaft 

speed of 3472  8#  at the rated stator voltage of 240 � . Experimental and 

simulated stator steady-state line current waveforms are plotted in Figure 5.21 

and Figure 5.22. Both current waveforms are period-one closed orbits with a 

frequency of around 56 56. The rms value of stator line current in both cases is 

around 2.5 7. 
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Figure 5.21 Test 7 – Measured stator line current waveform with � 
 90 Ω, 	 
 1.7 #5 and / 
 45 01 per phase – Period-one waveform. 

 

Figure 5.22 Test 7 – Simulated stator line current waveforms with � 
 90 Ω, 	 
 1.7 #5 and / 
 45 01 per phase – Period-one waveform. 
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5.5.2 TEST 8; ¿ 
 ½L Ω; À 
 ½L ÂÃ; ¸ 
 ¹º »¼ 

With a value of � 
 60 Ω per phase and 	 
 60 #5 (decreasing the resistive 

and increasing the inductive element of the load when compared with the base 

case), the tachometer recorded a steady-state shaft speed of 3703  8# at the 

rated stator voltage of 240 �. Experimental and simulated stator steady-state 

line current waveforms of 59.6 56 are plotted in Figure 5.23 and Figure 5.24. 

A closer look at these figures reveals that the stator current waveforms are 

highly distorted. More than one frequency component now appears in the plots 

as the response of the system changes from a period-one orbit (base case) to a 

nonlinear orbit.  
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Figure 5.23 Test 8 – Measured stator line current waveform with � 
 60 Ω, 	 
 60 #5 and / 
 45 01 per phase – Distorted waveform. 

 

Figure 5.24 Test 8 – Simulated stator line current waveform with � 
 60 Ω, 	 
 60 #5 and / 
 45 01 per phase – Distorted waveform. 
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5.5.3 TEST 9; ¿ 
 ¹L Ω; À 
 UU ÂÃ; ¸ 
 ¹º »¼ 

With a value of � 
 40 Ω  and 	 
 11 #5  per phase (further decreasing the 

resistive and increasing the inductive element of the load when compared with 

the base case), the tachometer recorded a steady-state shaft speed equal to 4297  8# when the stator voltage reaches its rated value of 240 �. The stator 

steady-state line current waveforms of 69.1 56 acquired from the testing and the 

Simulink model are plotted in Figure 5.25 and Figure 5.26. In both cases, the 

stator currents are distorted and the system is entering the nonlinear region.  

It is clear from the previous two tests that by increasing the load inductance and 

decreasing the load resistance (reducing the power factor of the load), the 

response of the SEIG system is transformed from a linear period-one orbit to a 

nonlinear orbit in agreement with the system’s behaviour which will be further 

analysed numerically in Chapter Six. Although the shape of the waveforms 

recorded from nonlinear Simulink model does not match the measured plot 

completely, the behaviour of the system is the same, moving from a linear 

period-one response to a highly nonlinear response as the load is changed. 
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Figure 5.25 Test 9 – Measured stator line current waveform with 	 
 11 #5, � 
 40 Ω and / 
 45 01 per phase – Distorted waveform. 

 

Figure 5.26 Test 9 – Simulated stator line current waveform with 	 
 11 #5, � 
 40 Ω and / 
 45 01 per phase – Distorted waveform. 
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5.5.4 PHASE PLANE AND HARMONIC EXAMINATION OF THE NONLINEAR ORBIT 

The phase plane diagram and harmonic spectrum of the distorted stator current 

waveform of the SEIG when feeding an inductive (�	) load are examined in this 

section. 

Taking the case of SEIG operation at � 
 40 Ω, 	 
 11 #5 and / 
 45 01 per 

phase (Test 9) as an example of a nonlinear operating point. The phase plane 

diagram and Poincaré section of the stator line current $2/$24  versus $3/$34 

(shown in Figure 5.27 and Figure 5.28, respectively) demonstrate the nonlinear 

behaviour of the system at this operating point as the phase plane diagram is 

not a circle and the Poincaré map is not a single dot any more. Hence, the 

behaviour of the system moves from a linear period-one response to a highly 

nonlinear response at this operating point. 
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Figure 5.27 Stator line current $2 versus $3 phase plane diagram. 

 

Figure 5.28 Sampled states of stator line current $24 versus $34 Poincaré map. 
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The nonlinear nature of the system’s response is further demonstrated by the 

frequency spectrum of the stator current waveform (Figure 5.29) showing the 

presence of other frequency components besides the main fundamental 

component.  
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Figure 5.29 SEIG current FFT with an inductive load (� 
 40 Ω, 	 
 11 #5); The 

frequency and amplitude of the 1st dominating signal are approximately 69 56 

and 5 7. 
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5.6 CHAOTIC WAVEFORMS 

A number of chaotic waveforms generated from the Simulink model when the 

SEIG feeding higher inductive load (�	) are presented in this section.  It was not 

possible to obtain any chaotic waveforms in the laboratory under practical and 

safe operating conditions. For chaos to appear, extremely high rotational 

speeds and/or stator currents/voltages would have been necessary. Therefore, 

no experimental chaotic waveforms were observed under laboratory conditions. 

 

Figure 5.30 Stator three line current waveforms � 
 60 Ω, 	 
 70 #5 and / 
 45 01 per phase and the rotor shaft speed at 4101  8# – Chaotic 

behaviour. 
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Figure 5.31 Stator three line current waveforms � 
 90 Ω, 	 
 90 #5 and / 
 45 01 per phase and the rotor shaft speed at 4126  8# – Chaotic 

behaviour. 

 

 

Figure 5.32 Stator three line current waveforms � 
 60 Ω, 	 
 73 #5 and / 
 45 01 per phase and the rotor shaft speed at 4177  8# – Chaotic 

behaviour. 
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Figure 5.33 Stator three line current waveforms with � 
 60 Ω, 	 
 80 #5 and / 
 45 01 per phase and the rotor shaft speed at 4206  8# – Chaotic 

behaviour. 

 

Figure 5.34 Stator three line current waveforms with � 
 55 Ω, 	 
 91 #5 and / 
 45 01 per phase and the rotor shaft speed at 4356  8# – Chaotic 

behaviour. 

It is noted from the above figures that the machine exhibits chaotic motion by 

increasing the inductive load, the rotor shaft speed and decreasing the resistive 

load. 
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5.7 SUMMARY 

In this chapter, laboratory tests were carried out on the SEIG when feeding no-

load, a purely resistive load (�) and an inductive load (�	) and the results were 

presented to validate the Simulink model developed in Chapter Four.  

The magnetising characteristics of the induction machine were measured with 

the machine running at synchronous speed, as the rotor and load parameters of 

the equivalent circuit could then be ignored (slip ? 
 0) under this operating 

condition. 

The experimental results confirmed the validity of the proposed SEIG Simulink 

model. The experimental and simulated waveforms shown in this chapter 

demonstrated how system’s behaviour changes from a stable period-one orbit 

to a nonlinear orbit as a result of a change in a system parameter such as the 

resistive and/or the inductive element of the SEIG inductive load (�	).  

It was observed that there was only one dominating frequency in the linear 

operating region, whereas a few dominating frequencies were present in the 

nonlinear operating region.  

Only period-one linear responses were obtained with the generator operating at 

no-load or with a purely resistive load conditions. When feeding an inductive 

load (�	), the period-one behaviour of the system was distorted as the value of 

load was varied. A number of chaotic waveforms of the SEIG when feeding an 

inductive load were simulated using the Simulink model under some extreme 

operating conditions (e.g. high rotational speeds, stator currents and voltages). 
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CHAPTER 6  

NUMERICAL ANALYSIS OF THE SEIG 

NONLINEAR BEHAVIOUR 
 

A model of the SEIG with stator and rotor  �-� axis currents as state variables 

was presented in Chapter Four. This model is used in the following sections to 

study the behaviour of the SEIG as a nonlinear dynamic system by using both 

simulation and numerical analysis tools. 

Unfortunately, the behaviour of the 1.1 �� machine used in the experimental 

investigation described in the previous chapter displayed a very narrow quasi-

periodic window, making it extremely difficult to study the transition from stable 

period-one operation to quasi-periodicity. Therefore, it was decided that the 

parameters of the induction machine described in Chapter Four should be used 

in this chapter for further analysis of this characteristic system behaviour. A 

base case is presented first showing stator current waveform for a stable 

operating point (period-one orbit) of the SEIG when feeding an inductive load. 

The behaviour of the SEIG is then examined as one of three parameters of the 

system is changed: 1�  the self-excitation capacitance; 2�  the load resistance 

and 3�  the rotor speed. For each scenario, steady-state stator current time 

domain waveforms, phase plane diagrams, Poincaré maps and bifurcation 

diagrams are presented. The results show how the behaviour of the system 

changes from periodic one to quasi-periodic and then a likely chaotic motion as 

these control parameters are varied. 

The stability characteristics of the period-one and quasi-period orbits are then 

analysed numerically to give an overview of the movement of the eigenvalues of 

the system following the introduction of a small disturbance into the system.  
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6.1 BASE CASE – PERIOD-ONE ORBIT  

A balanced three-phase inductive load (�	) comprising a 30 Ω resistor in series 

with a 15 #5 inductor per phase is connected to the stator terminals in parallel 

with the star connected 135 01 per phase excitation capacitors and the machine 

driven at a constant speed of 1500  8# �314  >�/?�. 
The time domain stator current waveform and phase plane diagram of the stator  �-� axis currents are plotted in Figure 6.1 and Figure 6.2, respectively. The 

response of the system is a period-one closed orbit which indicates that the 

system operates within the desired stable region of operation. Only two 

representative states ( $%@  and $%& ) are plotted in Figure 6.2. All other 

combinations give similar results and are not shown here. 

 

Figure 6.1 Stator line current waveform for / 
 135 01, � 
 30 ; and <= 
314  >�/?. 

 

Figure 6.2 Phase plane diagram for / 
 135 01, � 
 30 ; and <= 
 314  >�/?. 
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6.2 SEIG NONLINEAR BEHAVIOUR  

The nonlinear behaviour of the SEIG system described above is further 

investigated in this section by varying the values of three control parameters: 

the self-excitation capacitance, the load resistance and the rotor speed. It shall 

be noted that only one control parameter is changed at a time while the other 

two are maintained at the same values used in the stable period-one base case. 

6.2.1 CHANGING THE SELF-EXCITATION CAPACITANCE ¸  

Using the self-excitation capacitance as the bifurcation parameter, the 

bifurcation diagram of the system created by sampling the value of the � axis 

stator current when the � axis stator current is zero is shown in Figure 6.3. As 

the value of / increases, it can be seen that the system bifurcates from a stable 

period-one orbit to chaos via a quasi-periodic route. Orbits of periods five, 

seven, nine and eleven also appear for short windows in the bifurcation diagram. 

Due to the space limitation, these waveforms are not presented here. This type 

of steady-state behaviour is referred to as a Neimark bifurcation as described in 

Chapter Three [67]. Figure 6.4 gives a clearer view of the transition to quasi-

periodicity.  
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Figure 6.3 Bifurcation diagram with / as the bifurcation parameter. 
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 Self-excitation Capacitance (1) 

Figure 6.4 Bifurcation diagram with / as the bifurcation parameter (zoom in). 

The system is transferred from a period-one orbit to a quasi-period orbit by 

increasing the self-excitation capacitance. At / 
 152 01 the current waveform 

is clearly distorted as shown in Figure 6.5. The response is quasi-periodic as 

demonstrated in the corresponding phase plane diagram given in Figure 6.6.  
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Figure 6.5 Stator line current waveform for / 
 152 01 – Quasi-periodic 

response. 

 

Figure 6.6 Phase plane diagram for / 
 152 01 – Quasi-periodic response. 

When the control parameter is further increased to / 
 156 01, the response of 

the system does not follow any specific periodic pattern but is instead quasi-

periodic. The resulting stator current waveform and the stator/rotor  �-�  axis 

phase plane diagrams are shown in Figure 6.7 and Figure 6.8, respectively. The 

phase space diagram is plotted using 5000 data points showing that the locus 

of the solution lies on a ‘toroid typed’ manifold. 
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Figure 6.7 Stator line current waveform for / 
 156 01 – Quasi-periodic 

response. 

 

a) $%@ versus $%& phase plane diagram. 

 

b) $=) versus  $%& phase plane diagram. 
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c) $=A versus  $%& phase plane diagram. 

Figure 6.8 Phase plane diagrams for / 
 156 01 (with 5000 data points) - 

Quasi-periodic response. 

Figure 6.9 shows 20,000  data points of the previous tori (Figure 6.8 a) $%@ 

versus $%& phase plane diagram) and is clearly demonstrating that the orbit is 

dense on the torus and providing further verification of the quasi-periodic nature 

of the system’s response. What’s more, by sampling the state vector when the 

current $%& is zero, the Poincaré section of the system can be obtained (Figure 

6.10) showing a closed orbit which again is a characteristic of quasi-periodic 

nonlinear dynamic systems. 

 

Figure 6.9 Dense orbit in the torus ($%@ versus $%& with 20,000 data points). 
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>� $=)4 versus $%@4 Poincaré map. 

 

b) $=A4 versus $=)4Poincaré map. 

 

c) $=A4 versus $%@4 Poincaré map. 

Figure 6.10 Poincaré sections for / 
 156 01 (sample at $%& 
 0). 
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6.2.2 CHANGING THE LOAD RESISTANCE ¿ 

The behaviour of the SEIG feeding an inductive load (�	) when changing the 

control parameter � (load resistance) is examined in this section. Figure 6.11 

shows the bifurcation diagram of the system created by sampling the value of 

the � axis stator current when the � axis stator current is zero, using � as the 

bifurcation parameter and maintaining other parameters at their base values 

(/ 
 135 ;  and <= 
 314  >�/? ). As the load resistance is reduced from its 

base value of 30 Ω, the diagram shows how the system loses its stability at 

about 28.5 Ω  through a Neimark bifurcation before entering a quasi-periodic 

region ultimately leading to chaos. 

S
ta

to
r 
� axi

s
  

C
u
rr

e
n
t 
(7) 

 

 Resistive Load (Ω) 

Figure 6.11 Bifurcation diagram with � as the bifurcation parameter. 

Two points on the diagram will now be examined more closely. The stator 

current waveform and the phase plane diagram (rotor �  axis current versus 

stator � axis current) for � 
 28 Ω are shown in Figure 6.12 and Figure 6.13, 

respectively. System response does not follow any periodic pattern but is 

instead quasi-periodic, in agreement with the bifurcation diagram of Figure 6.11. 

The resulting stator current waveform and the phase plane diagram when � is 

further reduced to 27 ; are shown in Figure 6.14 and Figure 6.15. The figures 

show that the motion of the stator current has no regular pattern indicating that 

the system behaves chaotically. 
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Figure 6.12 Stator line current waveform for � 
 28 ; – Quasi-periodic 

response. 

 

Figure 6.13 Phase plane diagram for � 
 28 ; – Quasi-periodic response. 

 

Figure 6.14 Stator line current waveform for � 
 27 ; – Chaotic response. 
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Figure 6.15 Phase plane diagram for � 
 27 ; – Chaotic response. 

6.2.3 CHANGING THE ROTOR SPEED ÄÅ 
The dynamic behaviour of the system when varying the rotational speed of the 

rotor while maintaining other parameters at their base values (/ 
 135 01 and � 
 30 Ω) is studied in this section.  

The bifurcation diagram of the system with rotor speed as the bifurcation 

parameter (obtained by sampling the � axis stator current when the � axis stator 

current is zero) is shown in Figure 6.16. The diagram captures system’s 

behaviour from the initial base case period-one response to eventual chaotic 

motions via regions of quasi-periodicity, period seven and period eleven orbits. 

Other periodic orbits are also presented but are not highlighted here due to 

space limitations. 
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Figure 6.16 Bifurcation diagram with <= as the bifurcation parameter. 
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The resulting quasi-periodic stator current waveform and phase plane diagram 

for <= 
 334.5  >�/? are shown in Figure 6.17 and Figure 6.18. 

 

Figure 6.17 Stator line current waveform for <= 
 334.5  >�/? – Quasi-periodic 

response. 

 

Figure 6.18 Phase plane diagram for <= 
 334.5  >�/? – Quasi-periodic 

response. 

By further increasing the control parameter <= to 335.1  >�/?, the stator current 

waveform is more distorted and the system retains its quasi-periodic behaviour.  
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Figure 6.19 Stator line current waveform for <= 
 335.1  >�/? – Quasi-periodic 

response. 

 

Figure 6.20 Phase plane diagram for <= 
 335.1  >�/? – Quasi-periodic 

response. 
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6.3 STABILITY ANALYSIS  

The numerical results presented in the above sections show that as a system 

parameter is varied, the SEIG undergoes a Neimark bifurcation characterised 

by the transition from a stable period-one orbit to a quasi-periodic orbit. In this 

section, both orbits are analysed to establish the stability properties of the 

system. 

A discrete-time nonlinear system can be expressed in the following general 

form 

HjgU 
 J�Hj�, P 
 0,1,2X        (6.1) 

As discussed in Chapter Three, three steps are needed to establish the stability 

of the system’s limit sets: locating the fixed points of the system (if HjgU 
 Hj 
H_, then H_ is a fixed point of the above nonlinear expression), locally linearising 

the discrete system in the neighbourhood of the fixed point to obtain the 

Jacobian matrix; and finally calculating the eigenvalues of the Jacobian matrix 

[70]. A fixed point is stable if all the eigenvalues of the Jacobian matrix have 

magnitude(s) less than unity and unstable otherwise.  

As the SEIG system is simulated as a four-dimensional (stator and rotor  �-� 

axis currents respectively) continuous-time system, it is essential to transform 

the fourth order system’s equation to a lower order discrete-time form. This is 

achieved by sampling the state vectors when the stator � axis current ( sDi ) is 

zero. The resulting three-dimensional discrete-time system is derived as follows 

[67] 

ÆjgU 
 ÇÆj          (6.2) 

ÆjgU 
 È$%@4g^$=)4g^$=A4g^É, Ç 
 Ê7^^ 7^­ 7^Ë7­^ 7­­ 7­Ë7Ë^ 7Ë­ 7ËËÌ, Æj 
 È$%@4$=)4$=A4É    (6.3) 

where Ç is the Jacobian matrix and Æj , ÆjgU are stator and rotor current state 

vectors at states P and P T 1, respectively. 
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6.3.1 ANALYSIS OF THE PERIOD-ONE ORBIT 

Taking our base case ( � 
 30 ;, / 
 135 01  and   <= 
 314   >�/? ) as an 

example of a stable period-one operating point, the phase plane diagram of 

stator  �-� axis currents in the continuous-time domain is a limit cycle (as shown 

in Figure 6.2). In discrete time domain, the Poincaré section represented by the 

sampled rotor � axis versus stator � axis current is a single dot (Figure 6.21).  

 

Figure 6.21 Period-one Poincaré section; Base case without disturbance. 

Figure 6.22 shows the phase plane diagram of the system when a pulse 

disturbance is applied to the state vector sDi at 3.303 ?  (when sDi is at its 

maximum positive magnitude). The pulse signal is added to the system while 

operating in steady-state for a duration of less than one period of the stator 

current waveform. The resulting Poincaré section is shown in Figure 6.23. From 

a graphical point of view, Figure 6.23 shows that the fixed point is stable since 

the system dynamics iterates spirally to it.  
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Figure 6.22 Period-one phase plane diagram; Base case with disturbance. 

 

Figure 6.23 Period-one Poincaré section; Base case with disturbance. 

Mathematically, the stability analysis of the above fixed point is carried out by 

sampling the three state variables $%@ , $=)  >P� $=A  when $%& 
 0. Eight sampled 

points are shown in Table 6.1 with a full list of sampled points given in 

Appendix E for further details. 
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Table 6.1 Sampled $%@, $=) and $=A state variables when $%& 
 0. 

 
Sampled Currents when $%& 
 0

 

No. )( AisQ
 )( Aird

 )( Airq
 

1 -8.1589 3.728 3.3504 

2 -7.9206 3.6547 3.0984 

3 -7.8688 3.7182 3.124 

4 -8.0576 3.6797 3.2406 

5 -7.9323 3.6556 3.1225 

6 -7.9322 3.7134 3.1815 

7 -8.0115 3.6753 3.2064 

8 -7.927 3.6649 3.1307 

 

According to equation (6.2) and (6.3), the first Jacobian matrix ÇU  can be 

calculated from the first four sets of sampled data (samples no. 1, 2, 3 and 4). 

Followed by matrix Ç� derived from samples no. 2, 3, 4 and 5, and so on for 

matrices Ç�, Ç¹ and Çº 

ÍÆ� 
 ÇUÆUÆ� 
 ÇUÆ�Æ¹ 
 ÇUÆ� Î            

ÍÆ� 
 Ç�Æ�Æ¹ 
 Ç�Æ�Æº 
 Ç�Æ¹ Î            

p 
ÍÆ½ 
 ÇºÆºÆÁ 
 ÇºÆ½ÆÏ 
 ÇºÆÁ Î           (6.4) 

By substituting the sampled data (shown in Table 6.1) into equation (6.4), 

Jacobian matrices, the eigenvalues of each derived matrix and the magnitude of 

the complex conjugates can be computed as shown in Table 6.2 (more 

Jacobian matrices are shown in Appendix E). 
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Table 6.2 The Jacobian matrix, eigenvalue and magnitude of the complex 

conjugates derived from the sampled state variables under period-one orbit 

condition. 

 Jacobian Matrix Eigenvalue 
Magnitude of the 

complex conjugates 

A1 

-0.2045   -2.9971    0.4729 

-0.6961    0.3722   -1.0185 

0.2770    1.7509   -0.3490 

0.9992 

-0.5902 + j0.5124 

-0.5902 - j0.5124 

0.7816 

A2 

-0.3195   -2.5923   -0.2986 

-0.7269    0.4806   -1.2250 

0.3350    1.5467    0.0403 

0.9993 

-0.3990 + j0.7756 

-0.3990 - j0.7756 

0.8722 

A3 

0.2384   -2.2622    0.7138 

-0.8798    0.3901   -1.5024 

-0.2369    1.2083   -0.9975 

0.9994 

-0.6842 + j0.5998 

-0.6842 - j0.5998 

0.9099 

A4 

0.3086   -2.1547    0.7663 

-0.6682    0.7139   -1.3440 

-0.1319    1.3690   -0.9189 

0.9997 

-0.4480 + j0.6907 

-0.4480 - j0.6907 

0.8233 

A5 

0.3001   -2.2686    0.8779 

-0.6652    0.7537   -1.3830 

-0.1197    1.5314   -1.0781 

0.9999 

-0.5121 + j0.7522 

-0.5121 - j0.7522 

0.91 

 

The elements of the Jacobian matrices shown in the second column of Table 

6.2 are seen to be similar to each other. Within the eigenvalues column, one of 

the eigenvalues is always less than unity and the other two eigenvalues are 

complex conjugates. The magnitude of each complex conjugate is given in the 

last column of Table 6.2 with all values being less than unity. Therefore, the 

system is stable according to the stability criteria discussed in Chapter Three. 

The average values of the three eigenvalues are 0.9995,Z0.5267 T ¢0.6661 and Z0.5267 Z ¢0.6661. 
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6.3.2 ANALYSIS OF THE QUASI-PERIOD ORBIT  

The stability of the quasi-period orbit when operating at � 
 30 ;, / 
 156 01 

and <= 
 314  >�/? (Figure 6.7 to Figure 6.10) is analysed in this section. 

Figure 6.24 shows the phase plane diagram of the system when a pulse 

disturbance is applied to the stator �  axis vector at 3.303 ? . The Poincaré 

section of the quasi-period phase plane diagram with such disturbance is 

plotted in Figure 6.25. From a graphical point of view, the Poincaré section 

iterates spirally away from the fixed point (in the middle of the limit cycle) and 

onto a limit cycle. Therefore, the fixed point is unstable according to the stability 

criteria discussed in Chapter Three. 

 

Figure 6.24 Quasi-period phase plane diagram; / 
 156 01 with disturbance. 

 

Figure 6.25 Quasi-period Poincaré section; / 
 156 01 with disturbance. 

A numerical analysis of the stability of the above fixed point is discussed below. 

Eight sampled sets of state variables (when 0=sDi ) are shown in Table 6.3.  
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Table 6.3 Sampled $%@, $=) and $=A state variables when $%& 
 0. 

 
Sampled Currents when $%& 
 0

 

No. )( AisQ
 )( Aird

 )( Airq
 

1 14.628 0.0897 17.514 

2 16.269 3.3017 12.985 

3 23.939 4.1968 22.695 

4 12.774 2.4027 14.935 

5 22.416 0.9226 16.071 

6 19.141 2.7468 20.822 

7 13.375 3.6334 -13.41 

8 27.486 3.2308 21.173 

 

By substituting the sampled data shown in Table 6.3 into equation (6.4), the 

Jacobian matrices, eigenvalues of each Jacobian matrix and the magnitudes of 

the complex conjugates derived from the sampled state vectors can be 

computed as shown in Table 6.4. A full list of the sampled state variables and 

Jacobian matrices is given in Appendix E. 
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Table 6.4 The Jacobian matrix, eigenvalue and magnitude of the complex 

conjugates derived from the sampled state variables under quasi-periodic orbit 

condition. 

 

The Jacobian matrices shown in the second column of Table 6.4 are clearly 

different from each other and not all the eigenvalues have magnitudes of less 

than unity. The system is clearly unstable according to the stability criteria 

discussed in Chapter Three. The average values of the three eigenvalues are 1.003, Z0.7335 T ¢0.7158  and  Z0.7335 Z ¢0.7158.  

  

 Jacobian Matrix Eigenvalue 
Magnitude of the 

complex conjugates 

A1 

0.6162    2.6382   -0.4008 

-0.8788   -0.5806   -0.9255 

-1.2715   -1.9077   -0.3303 

-0.6511 + j0.7495 

-0.6511 - j0.7495 

1.0074 

0.9928 

A2 

0.1979    2.8269   -0.8769 

-0.8263   -0.6043   -0.8658 

-1.2378   -1.9229   -0.2920 

-0.8532 + j0.7596 

-0.8532 - j0.7596 

1.008 

1.1423 

A3 

-0.0609    2.6776   -1.1222 

-0.5125   -0.4232   -0.5682 

-0.7183   -1.6232    0.2006 

-0.6387 + j0.6589 

-0.6387 - j0.6589 

0.9939 

0.9177 

A4 

-0.0125    2.9295   -1.0403 

-0.5272   -0.5002   -0.5932 

-0.7201   -1.6329    0.1974 

-0.6579 + j0.7845 

-0.6579 - j0.7845 

1.0005 

1.0239 

A5 

-0.2568    3.5431   -1.3458 

-0.3422   -0.9648   -0.3618 

-0.4837   -2.2268    0.4932 

-0.8668 + j0.6264 

-0.8668 - j0.6264 

1.0051 

1.0694 
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6.3.3 AN OVERVIEW OF THE MOVEMENT OF EIGENVALUES WHEN CHANGING A 

CONTROL PARAMETER 

A brief overview of the movement of the eigenvalues of the system when 

changing each of the three control parameters is given in this section. These 

values were calculated in a similar way to that described above for operating at / 
 156 01, � 
 30 ; and <= 
 314  >�/? (Table 6.4). 

a) Changing the Control Parameter / 

Figure 6.26 gives an overview of the magnitudes of the eigenvalues of the 

Jacobian matrices when the self-excitation capacitance is increased from 151 01 (blue square) to 151.7 01 (purple star) and then to 160 01 (green circle) 

per phase (� 
 30 ; and <= 
 314  >�/?). It is noted that the system is stable 

when the value of / is smaller than 151.7 01 (all eigenvalues are within the unit 

circle) and unstable for values of / greater than 151.7 01. In other words, the 

system transforms from period-one to quasi-period orbit when self-excitation 

capacitance is around 151.7 01 per phase. The following eigenvalue movement 

map agrees well with the bifurcation diagram shown in Figure 6.3. 

 

Figure 6.26 Eigenvalue map for changing capacitance. 
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b) Changing the Control Parameter � 

Figure 6.27 gives an overview of the magnitudes of the eigenvalues of the 

Jacobian matrices as the load resistance is reduced from 30 ; (blue square) to 28.8 ;  (purple star) and then 24 ;  (green circle) per phase (/ 
 135 01  and <= 
 314  >�/? ). The system is stable when the value of �  is greater than 28.8 ; (all eigenvalues are within the unit circle) and unstable when � is smaller 

than 28.8 ;. In other words, the system transforms from period-one to quasi-

period orbit when load resistance is around 28.8 ;  per phase. Again, the 

following eigenvalue map agrees well with the bifurcation diagram shown in 

Figure 6.11.  

 

Figure 6.27 Eigenvalue map for changing load resistance. 
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c) Changing the Control Parameter <= 

Figure 6.28 gives an overview of the magnitudes of the eigenvalues of the 

Jacobian matrices as the speed of the rotor is increased from 314  >�/? (blue 

square) to 334.2  >�/?  (purple star) and then to 336  >�/?  (green circle) 

(� 
 30 ;  and / 
 135 01 ). The system is stable when the value of <=  is 

smaller than 334.2  >�/? (all eigenvalues are within the unit circle) and unstable 

when <=  is greater than 334.2  >�/? . In other words, the system transforms 

from period-one to quasi-period orbit when shaft speed is around 334.2  >�/?. 

The stability analysing results (shown in Figure 6.28) agree well with the 

bifurcation diagram shown in Figure 6.16.  

 

Figure 6.28 Eigenvalue map for changing rotor speed. 
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6.4 SUMMARY 

The nonlinear behaviour of the SEIG and its stability characteristic when 

operating under inductive load (�	) conditions was analysed and investigated in 

detail with the aid of computer simulations and relevant numerical analysis tools 

in this chapter.  

The analysis showed how the SEIG autonomous dynamic system loses its 

period-one stability to a quasi-periodic orbit and eventual chaotic behaviour as a 

result of small changes in the system parameters. Three control parameters 

were used to examine the nonlinear behaviour of the machine: the value of the 

self-excitation capacitors, shaft speed and load resistance.  

The stability of the period-one and quasi-period orbits was analysed by both 

graphical and numerical means and an overview of the movement of the 

eigenvalues of the system’s Jacobian matrices was presented showing the 

boundaries between stable and unstable regions of operation. The results of the 

stability analysing match well with the system bifurcation diagrams drawn with 

the self-excitation capacitance, load resistance and rotor speed as bifurcation 

parameters. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 
 

7.1 CONCLUSIONS 

The thesis carried out a detailed review of the nonlinear computer modelling 

techniques of induction machines based on the cross-saturation effect, leakage 

saturation effect, the machine H-G diagram and skin effect. It was proved that 

the cross-saturation nonlinear effect is the most accurate nonlinear modelling 

technique of induction machines. Hence, the dynamic behaviour of the SEIG 

system when feeding variable load conditions is analysed and investigated 

throughout this thesis with the consideration of cross-saturation nonlinear effect. 

The thesis was focused on analysing the steady-state nonlinear behaviour of 

the SEIG as a nonlinear dynamic system, unlike most of the 

researchers/scientists carried out the analysis of the steady-state and transient 

performance of SEIGs from design and operational point of view.  

The features of an induction generator in terms of cost and simplicity offer many 

advantages in today’s renewable energy industry. The limitation of an induction 

generator in needing an external reactive power source to provide the machine 

magnetisation can be overcome by connecting a three-phase capacitor bank to 

its stator terminals. This capacitor bank supplies reactive power to both the 

generator and the load, and the real power demand of the terminal load is 

supplied by the prime mover. 

A brief introduction to nonlinear dynamic systems, Poincaré maps, bifurcation 

diagrams, limit sets and their stability characteristics was also given in this 

thesis. This serves as a general mathematical background of nonlinear systems 

and provides the analytical tools required to investigate the SEIG as a nonlinear 

dynamic system. 
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The modelling of the induction generator as a linear electromagnetic device was 

introduced as the foundation for further study and investigation of the nonlinear 

behaviour of the SEIG. A model of the machine with consideration of the cross-

saturation effect was then derived by modifying the standard machine model. A 

current based implementation of the machine state space model (with currents 

as state space variables) was used in this thesis because of its ease of 

simulation in Simulink.  

A mathematical model of the SEIG when operating as a standalone device was 

then created by including the self-excitation capacitor bank and the load 

impedance, connection in parallel with the stator terminals. The model was 

verified by comparison with experimental results presented in a well-known 

publication and by comparison with laboratory test results obtained for a 1.1 �� 

induction machine feeding various types of load. 

Laboratory testing of the SEIG when feeding no-load, a purely resistive load (�) 

and an inductive load ( �	 ) was carried out to validate the SEIG model 

developed previously. The experimental results showed good agreement with 

those generated from the Simulink model and demonstrated the linear and 

nonlinear types of behaviours of the system when feeding various load types. 

The magnetising inductance and the dynamic inductance curves of the 

induction machine play an important role in modelling the SEIG system and 

allowing for the cross-saturation effect. In this study, these parameters were 

obtained by measuring the magnetisation characteristics of the machine while 

operating at synchronous speed with no-load. 

The nonlinear behaviour of the SEIG when operating under inductive load (�	) 

conditions was then analysed and investigated with the aid of computer 

simulations and relevant numerical analysis tools. The results of the analysis 

show how the SEIG autonomous dynamic system loses its period-one stability 

to a quasi-periodic orbit leading eventually to chaotic behaviour as a result of 

small changes in system parameters. Three control parameters were used to 

examine the nonlinear behaviour of the machine: the value of the self-excitation 

capacitors, shaft speed and load resistance.  
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The stability of the period-one and quasi-period orbits was analysed by using 

both graphical and numerical means and an overview of the movement of the 

eigenvalues of the system’s Jacobian matrices was presented showing the 

boundaries between stable and unstable regions of operation. The stability 

analysis results match well with the numerical simulations and system 

bifurcation diagrams drawn with the self-excitation capacitance, load resistance 

and rotor speed as bifurcation parameters. 

The results showed how the parameter values of the SEIG determine the 

dynamic behaviours of the system. A small quantitative change in one of the 

parameters can directly cause a big qualitative change in system’s behaviour. 

This behaviour is typical of nonlinear dynamic systems. As far as I am aware, 

this thesis presented the first examination of the periodic, quasi-periodic and 

chaotic behaviour of the SEIG when supplying variable load types. Laboratory 

testing and the numerical analysis results confirmed that by changing a 

parameter of the system such as the inductive load, self-excitation capacitance, 

rotor shaft speed or the power factor of the load, the behaviour of the system 

can change dramatically, exhibiting characteristics typical of nonlinear systems. 

Numerical simulations and analytical analysis showed how the SEIG lost its 

stability moving from a stable period-one response, to a quasi-periodic 

response and chaos through a Neimark bifurcation.  

Two induction machines were used in this investigation. A 1.1 ��  machine 

utilised in the experimental rig and a second 1.5 �� machine whose parameters 

were used as the basis for the analytical investigation of system performance. 

Unfortunately, using the 1.1 ��  laboratory machine as the basis for the 

analytical study proved problematic because of the very narrow window of 

quasi-periodic behaviour presented by the machine. This explains why it was 

virtually impossible to capture a clear quasi-periodic response under laboratory 

conditions. It also made the task of demonstrating the transition in system 

behaviour from a stable period-one response to quasi-periodicity and chaos 

through simulation and analysis of the system eigenvalues very difficult. Hence 

a decision was taken to use the parameters of a bigger 1.5 �� machine as the 

basis for the analytical investigation. 
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7.2 FUTURE WORK 

The analysis and explanations presented in this thesis provide a good 

foundation for further research in the area of SEIG systems driven by renewable 

energy source prime movers. Some of the challenging but worthwhile areas in 

which this research can be used and exploited for future work are  

• Implementation of a wind/hydro turbine as the prime mover of the SEIG 

system by replacing the existing DC motor of the experimental 

apparatus. As wind/hydro turbines having constant changing nature, the 

highly dynamic behaviour of the SEIG system shall be further analysed 

and investigated by adding nonlinear elements into the system. 

• Implementation of a parallel connected SEIG system (typical for wind 

farm applications) by both computer simulations and experimental 

testing.  

• Development of nonlinear control strategies as the basis for 

implementing a practical nonlinear controller for the SEIG. The purpose 

of such a controller would be to control the unstable output of the SEIG 

by adopting nonlinear control techniques based on the placement of 

system eigenvalues in order to achieve constant voltage and frequency 

output over a much wider range of parameter values. Such controllers 

have been proposed for other electrical systems with varying degrees of 

success. 
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APPENDICES 

APPENDIX A  

THE SUB-BLOCKS OF THE STANDARD INDUCTION MACHINE MODEL  

 

Figure A.1 Stator/Rotor 3-phase Supply sub-block. 

 

Figure A.2 3-Phase to �-� sub-block. 
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Figure A.3 Induction Machine sub-block. 

 

a) ?Ð Subsystem. 

 

b) ?Ñ Subsystem. 
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c)  � Subsystem. 

 

d)  � Subsystem. 

Figure A.4 Internal view of ?Ð, ?Ñ,  � and  � sub-blocks. 

 

Figure A.5 Internal view of E� sub-block. 
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Figure A.6 Mechanical Dynamics sub-block.
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APPENDIX B  

MODELLING OF LEAKAGE SATURATION EFFECTS 

This section shows to the reader the process of modelling the IM with 

consideration of the leakage saturation effects. Note: This model is only 

applicable to large inrush currents. The model is based on the flux linkages as 

state space variables. 

B.1 Mathematical Equations of Leakage Saturation Effects 

The mathematical equations of a saturable leakage reactance IG are shown as 

follows (referred to SRF) 

Again the general form of IM can be rewritten into equation (B.1)  
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The voltages sdU  and sqU  represent the applied stator voltages in the 

orthogonal coordinate system. The voltages rdU
 
and rqU  are the rotor voltages 

which identically equal to zero when the machine rotor windings are shorted. 
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where lsL , lrL and mL  are leakage stator/rotor inductances and mutual 

inductance, respectively. 
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where lsaL , lraL and lsiL , lriL
 
are stator/rotor air and iron leakage inductance, 

respectively. The stator/rotor leakage inductances are now assumed to be 

comprised of both iron-dependant slot and air-dependant end winding portions. 

The former one is saturable and the latter one is constant.  

The  �-� axis mutual fluxes which link both stator and rotor are given by 
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where ldsaψ , 
lqsaψ , ldraψ  and 

lqraψ  are stator/rotor  �-� axis air dependant leakage 

flux linkages, respectively. 

Substitute equations (B.3), (B.4) and (B.5) into (B.2) and solve for the four 

machine currents, it is possible to write the result as  
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where 
satmd _ψ  and 

satmq _ψ  are saturated  �-� axis mutual flux linkages; 
satldsi _ψ , 

satlqsi _ψ , 
satldri _ψ  and 

satlqri _ψ  are saturated stator/rotor  �-� axis iron dependant 

leakage flux linkages, respectively. 

Substitute equation (B.6) into (B.1) 
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In order to solve these equations completely, independent expressions for the 

saturated values of the magnetising and iron-dependent leakage fluxes must be 

developed. That is to substitute equation (B.6) into (B.4) using the unsaturated 

values of mutual flux linkages, equation (B.8) is derived by 
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where 
unsatmd _ψ

 
and 

unsatmq _ψ
 
are unsaturated  �-� axis mutual flux linkages 
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When unsaturated, the stator/rotor � - �  axis iron-dependant leakage flux 

linkages 
unsatldsi _ψ , 

unsatlqsi _ψ , 
unsatldri _ψ

 
and 

unsatlqri _ψ
 
are 
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By substituting equation (B.6) into (B.10) and using unsaturated values of flux 

linkages, the iron-dependant leakage flux is computed by 
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where, 
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The saturated values of magnetising and iron-dependent leakage flux linkages 

can now be determined by means of saturation factors. 

Note: 
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B.2 Simulation Results of Leakage Saturation Effects 

The machine parameters are: stator and rotor resistance �% 
 0.4122 Ω , �= 
 0.4976 Ω , magnetising reactance D-_Ó4%�G 
 15.7 Ω , stator and rotor air 

dependant leakage reactance DÔ%�, DÔ=� 
 0.15 Ω , stator and rotor iron 

dependant leakage reactance DÔ%�_Ó4%�G, DÔ=�_Ó4%�G 
 0.95 Ω  and Rotor inertia � 
 0.11 ��#­ [58]. 

Block functions defined in the program 
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where lazmz LLa /=
, lsamz LLb /=

, lramz LLc /=
, lsalsz LLd /=

, lsas LRg /=
,

lralrz LLk /=
, lrar LRn /=

, lsaLp /1=
, lraLq /1= , 4/3 ppr =  and Js /1= . 

Note: 88 is pole pair of the machine. 

The leakage saturation induction machine Simulink model uses ‘data store 

write’, ‘data store read’ and ‘data store memory’ blocks to store and transfer 

data. 

The simulation results of the IG when feeding no-load are shown as follows 
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Figure B.1 Induction machine stator current at no-load. 

 

Figure B.2 Induction machine torque response at no-load. 

 

Figure B.3 Induction machine rotor current at no-load. 
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Figure B.4 Induction machine rotor speed at no-load. 

The stator and rotor current waveforms as well as the torque and the rotor 

speed response curves are in good agreement with the general characteristics 

of an induction machine. The leakage saturable technique is only suitable for 

when large inrush current occurs in the machine. The cross-saturation nonlinear 

effect shall be included in this leakage saturation induction machine Simulink 

model if it is necessary to be investigated further for high power machine 

applications.
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APPENDIX C  

THE ELECTRICAL EQUIVALENT CIRCUIT TESTS OF THE INDUCTION 

MACHINE 

The parameters of the EC for the IM are crucial for running the simulation 

models. The most common way to manually determine the IM parameters are 

to use the No-load test and Blocked rotor test. The data gained from these two 

tests are then transformed to EC parameters through a series of mathematical 

equations shown in the following section.   

The induction machine used for testing is an ABB 2-pole, squirrel cage, Class A 

induction machine with 1.1 �� rated power, 220~240/380~420 � rated voltage, 4.4/2.5 7 rated current and 50 56 rated frequency. 

Note: Class A Squirrel-Cage Induction Motor characterised by normal starting 

torque, high starting current, low operating slip, low rotor impedance, good 

operating characteristics at the expense of high starting current, common 

applications include fans, blowers and pumps. 

C.1 No-load Test (50 56) 

No-load test of the IM is introduced to the reader in this section. The No-load 

test is just like the open circuit test of a transformer, it gives information on 

excitation current and rotational losses. The procedures of the No-load test are: 

three-phase balanced supply voltages are firstly applied to the stator terminals 

at the rated frequency with the rotor uncoupled from any mechanical load; then 

the values of current, voltage and power are measured at the machine’s input 

channels,  the machine rotates at almost synchronous speed with slip near zero. 

The measured values are shown in Table C.1. 
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Table C.1 Measured data during No-load test. 

No-load Test 

Õ4Ô  1.39 7 

�4Ô  417.67 � 

e4Ô  150 � 

J%  50 56 

 

C.2 Blocked Rotor Test (12.5 56) 

The blocked rotor test is just like the short circuit test of a transformer. It 

provides information on leakage impedances and the rotor resistance. The 

procedures of the Blocked rotor test are: Firstly, the rotor needs to be blocked to 

prevent rotation; secondly, when the rotor is at the stand still, the balanced 

supply voltages are applied to the stator terminals at a frequency of 25% of the 

rated value at a voltage when the rated current is achieved; finally, the values of 

current, voltage and power are measured at the machine’s input channels. The 

measured values are shown in Table C.2. 

Table C.2 Measured data during Locked rotor test. 

Locked Rotor Test 

Õ3=  2.54 7 

�3= 90.65 � 

e3=  276.67 � 

J%  12.5 56 
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C.3 The Equivalent Circuit Calculation 

From the no-load measurement data Õ4Ô, �4Ô, e4Ô, the value of the core resistance 

is determined. 

The single phase values of the no-load power and voltage 

e4ÔÖ^ 
 e4Ô3 
 1503 
 50 � 

�4ÔÖ×4 
 �4Ô√3 
 417.67√3 
 241.14 � 

The value of the core resistance is 

�2 
 e4ÔÖ^Õ4Ô­ 
 501.39­ 
 25.88 Ω 

The ratio of the no-load phase voltage to current represents the no-load 

impedance, which is 

Ø4Ô 
 �4ÔÖ×4Õ4Ô 
 241.141.39 
 173.48 Ω 

The value of the magnetising reactance can be determined as follows 

D- 
 ¢¨Ø4Ô­ Z �2­ 
 ¢Ù173.48­ Z 25.88­ 
 ¢171.54 Ω 

The following equation is the characteristic of the blocked rotor test 

D3= 
 D%G� T D=�G�3= 
 �%G� T �=�G       

where D%G�, D=�G, �%G�  and �=�G  are stator and rotor reactance and resistance, 

respectively. 

Single phase values of blocked rotor power and voltage are 

e3=Ö^ 
 e3=3 
 276.673 
 92.22 � 

�3=Ö×4 
 �3=√3 
 90.65√3 
 52.34 � 

The blocked rotor resistance and impedance values are 
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�3= 
 e3=Ö^Õ3=­ 
 92.222.54­ 
 14.29 Ω 

Ø3= 
 �3=_×4Õ3= 
 52.342.54 
 20.61 Ω 

The value of the blocked rotor reactance is 

D3= 
 ¢¨Ø3=­ Z �3=­ 
 ¢Ù20.61­ Z 14.29­ 
 ¢14.85 Ω 

Therefore the following equation is applied 

D%G� 
 D3=2 
 ¢ 14.852 
 ¢7.425 Ω 

The rotor reactance is derived by 

D=�G 
 D%G� 
 ¢7.425 Ω 

The stator phase resistance is measured by a simple DC test shown as follows 

�%G� 
 4 �0.3 7 } 2 
 6.65 Ω 

The rotor resistance is 

�=�G 
 �3= Z �%G� 
 14.29 Z 6.65 
 7.64 Ω 

The stator, magnetic and rotor impedances are 

Ø%G� 
 �%G� T ¢D%G� 
 6.65 T ¢7.425 

Ø- 
 �2 T ¢D- 
 25.88 T ¢171.54 

Ø=�G 
 «ÚÛÜ% T ¢D=�G 
 Ý.Þß% T ¢7.425       

The equation of the airgap impedance with regards to the magnetising and rotor 

impedances is shown as follows 

1Ø��=à�á 
 1Ø- T 1Ø=�G 
As it is mentioned in the no-load test, the slip is almost zero, ? b 0 
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Therefore, the rotor impedance tends to infinity 

Ø=�G b ∞ 

The value of the airgap impedance is equal to the magnetising impedance as 

shown by 

Ø��=à�á 
 Ø- 
 25.88 T ¢171.54 

Therefore, the total impedance is 

6G�G�Ô 
 Ø%G� T Ø��=à�á 
 32.53 T ¢178.965 

|ØG�G�Ô| 
 181.9 Ω 

From the above calculation, the stator line current is 

Õ%G� 
 �4Ô_×4|ØG�G�Ô| 
 241.14181.9 
 1.3 7 

Hence, the EC drawing of the IM can be represented as follows 

 

Figure C.1 Equivalent circuit of the induction machine. 

The parameters of the above EC calculated from the No-load test and the 

Blocked rotor test are 

D%G� 
 ¢7.425 Ω; �%G� 
 6.65 Ω; D=�G 
 ¢7.425 Ω; �=�G 
 7.64 Ω; D- 
 ¢171.54 Ω  

and �2 
 25.88 Ω 

The above values of the EC parameters shall be used as the input parameters 

of the SEIG Simulink model. 
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APPENDIX D  

TEST EQUIPMENT 

The following equipment was used in the experimental investigation 

Table D.1 Experimental equipment. 

Item Description Purpose Photo 

Three-phase 

AC sources 

ET system variable 

voltage, variable 

frequency three-phase 

AC power supply, 3 } 2000 �7, 3 }0~270 �, 3 } 15 7 

Type: 

EAC/3P2000/cc/ATI-

10/LT 

Serial No.: 07.13.2389. 

Used when calculating the 

equivalent circuit parameters 

to carry out the locked rotor 

and no-load tests and also for 

the machine magnetic 

characteristics tests. 
 

Capacitor 

bank 

Three-phase self-

excitation capacitor bank 

assembled in-house into 

a metal enclosure 

(440 �, 15 01 capacitors, 10% tolerance). 

Connected to the stator 

terminals of the induction 

generator to supply the 

reactive power of the system. 

Current probe 
HP 1146 7 AC/DC 

current probe. 

Measure and record the 

generator, load and capacitor 

currents. 
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DC Drive 

1.5 �� Mentor II Digital 

DC Drive manufactured 

by Control Techniques. 

Control and rotate the prime 

mover (DC motor). 

 

DC Motor 

3 �� Mawdsley’s DC 

motor, maximum RPM 4000, armature: 240 �, 15 7, fields: 240 �, 0.6/0.16 7. 

To act as the prime mover of 

the induction generator. 

 

Induction 

Machine 

ABB 1.1 ��, �380~420�/�220~240� �, 2.5/4.4 7, 50 56 and 2-pole 

induction machine 

Model No.: M2VA80B-2 

Serial No.: 

3GVA081002-ASB. 

The machine operates as a 

generator during these tests. 

The generator’s current 

waveforms are recorded for 

further analysis and 

investigation.  

Three-phase 

auto-

transformer 

Three-phase auto-

transformer used as a 

variable inductive load, 

maximum winding 

current: 20 7, maximum 

winding voltage: 270 �. 

To provide the generator with 

a three-phase variable 

inductive load. 

Multi-meter Fluke 87 �. 
Measurement of rms currents 

and voltages. 
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Oscilloscope 

Tektronix MSO 4034 

mixed signal 

oscilloscope, 350 ä56, 2.5 å?/?, voltage 110~240 �, frequency 50~60 56, maximum P 

power 250 � 

Serial No. – MSO4034 

C000029. 

To capture data and export to 

an external device for further 

processing. 
 

Photo sensor 

tachometer 

CEN-TECH Photo 

sensor tachometer, 

taking RPM 

measurements detected 

by light beam. 

Measurement of the rotor 

shaft speed. 

 

Variable 

resistive load 

Three Curtis variable 

resistors, 5 7, 300 �, 2 } 60 Ω. 

To provide the generator with 

a three-phase variable 

resistive load. 

 

Voltage probe 
SI-9000 differential 

probe. 

Measurement and recording 

of the generator terminal 

voltages. 

 

Wattmeter 

Weston Wattmeter, 

Model S.67, maximum 

current: 5 7, maximum 

voltage: 300 �. 

Active power and reactive 

power measurements for the 

no-load and locked rotor tests 

carried out to determine the 

machine equivalent circuit 

parameters. 
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APPENDIX E  

MORE SAMPLED STATE VARIABLES AND JACOBIAN MATRICES 

Table E.1 Sampled state variables when $%& 
 0 under period-one orbit. 

 
Sampled Currents when $%& 
 0

 

No. )( AisQ
 )( Aird

 )( Airq
 

1 

(fixed 

point) 

-7.9611 3.6808 3.1752 

2 -8.1589 3.728 3.3504 

3 -7.9206 3.6547 3.0984 

4 -7.8688 3.7182 3.124 

5 -8.0576 3.6797 3.2406 

6 -7.9323 3.6556 3.1225 

7 -7.9322 3.7134 3.1815 

8 -8.0115 3.6753 3.2064 

9 -7.927 3.6649 3.1307 

10 -7.9591 3.7011 3.1925 

11 -7.9915 3.6741 3.1915 

12 -7.9329 3.6744 3.146 

13 -7.9666 3.6928 3.1908 

14 -7.9778 3.6741 3.1808 

15 -7.9421 3.6794 3.1587 

16 -7.9685 3.6877 3.1877 

17 -7.9683 3.6753 3.1748 

18 -7.9494 3.6816 3.1666 

19 -7.9682 3.6844 3.1843 

20 -7.9631 3.6769 3.1726 

21 -7.9547 3.6824 3.1713 

22 -7.9668 3.6823 3.1813 

23 -7.9607 3.6783 3.1722 

24 -7.9583 3.6825 3.174 
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25 -7.9652 3.6813 3.1789 

26 -7.9598 3.6793 3.1726 

27 -7.9602 3.6823 3.1754 

28 -7.964 3.6809 3.1773 

29 -7.9597 3.6799 3.1733 

30 -7.961 3.6818 3.1758 

 

Table E.2 The Jacobian matrix, eigenvalue and magnitude of the complex 

conjugates derived from the sampled state variables under period-one orbit 

condition. 

 Jacobian Matrix Eigenvalue 
Magnitude of the 

complex conjugates 

A1 

-0.2045   -2.9971    0.4729 

-0.6961    0.3722   -1.0185 

0.2770    1.7509   -0.3490 

0.9992 

-0.5902 + j0.5124 

-0.5902 - j0.5124 

0.7816 

A2 

-0.3195   -2.5923   -0.2986 

-0.7269    0.4806   -1.2250 

0.3350    1.5467    0.0403 

0.9993 

-0.3990 + j0.7756 

-0.3990 - j0.7756 

0.8722 

A3 

0.2384   -2.2622    0.7138 

-0.8798    0.3901   -1.5024 

-0.2369    1.2083   -0.9975 

0.9994 

-0.6842 + j0.5998 

-0.6842 - j0.5998 

0.9099 

A4 

0.3086   -2.1547    0.7663 

-0.6682    0.7139   -1.3440 

-0.1319    1.3690   -0.9189 

0.9997 

-0.4480 + j0.6907 

-0.4480 - j0.6907 

0.8233 

A5 

0.3001   -2.2686    0.8779 

-0.6652    0.7537   -1.3830 

-0.1197    1.5314   -1.0781 

0.9999 

-0.5121 + j0.7522 

-0.5121 - j0.7522 

0.91 

A6 

0.4175   -2.2988    1.2059 

-0.6294    0.7445   -1.2831 

-0.1699    1.5443   -1.2181 

0.9999 

-0.5280 + j0.6417 

-0.5280 - j0.6417 

0.831 

A7 

0.2798   -2.4875    1.0781 

-0.5608    0.8386   -1.2194 

0.9999 

-0.4697 + j0.7375 
0.8744 
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0.0028    1.7809   -1.0579 -0.4697 - j0.7375 

A8 

0.2670   -2.5314    1.0973 

-0.5895    0.7398   -1.1764 

-0.0102    1.7359   -1.0383 

0.9999 

-0.5157 + j0.6919 

-0.5157 - j0.6919 

0.8629 

A9 

0.2565   -2.5172    1.0544 

-0.5831    0.7312   -1.1506 

0.0085    1.7107   -0.9624 

1.0000 

-0.4874 + j0.6824 

-0.4874 - j0.6824 

0.8386 

A10 

0.1768   -2.6009    0.9512 

-0.5891    0.7250   -1.1583 

0.0526    1.7570   -0.9053 

1.0000 

-0.5018 + j0.7188 

-0.5018 - j0.7188 

0.8766 

A11 

0.2041   -2.5370    0.9455 

-0.6019    0.6950   -1.1556 

0.0092    1.6556   -0.8963 

1.0000 

-0.4986 + j0.6798 

-0.4986 - j0.6798 

0.843 

A12 

0.2004   -2.5181    0.9144 

-0.6051    0.7113   -1.1824 

0.0087    1.6582   -0.9005 

1.0000 

-0.4944 + j0.7035 

-0.4944 - j0.7035 

0.8599 

A13 

0.1962   -2.5208    0.9070 

-0.6047    0.7115   -1.1817 

-0.0019    1.6514   -0.9192 

1.0000 

-0.5057 + j0.6999 

-0.5057 - j0.6999 

0.8635 

A14 

0.2216   -2.4744    0.9168 

-0.6047    0.7115   -1.1817 

-0.0172    1.6234   -0.9251 

1.0000 

-0.4960 + j0.6916 

-0.4960 - j0.6916 

0.8511 

A15 

0.2222   -2.4669    0.9096 

-0.6044    0.7151   -1.1851 

-0.0161    1.6369   -0.9381 

1.0000 

-0.5004 + j0.7026 

-0.5004 - j0.7026 

0.8626 

A16 

0.2258   -2.4665    0.9182 

-0.5997    0.7156   -1.1739 

-0.0154    1.6370   -0.9363 

1.0000 

-0.4975 + j0.6959 

-0.4975 - j0.6959 

0.8554 

A17 

0.2586   -2.4192    0.9455 

-0.6120    0.6978   -1.1842 

-0.0219    1.6276   -0.9418 

1.0000 

-0.4927 + j0.6999 

-0.4927 - j0.6999 

0.8559 

A18 

0.2665   -2.3875    0.9287 

-0.6222    0.6572   -1.1626 

1.0000 

-0.5093 + j0.7014 
0.8668 
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-0.0217    1.6286   -0.9423 -0.5093 - j0.7014 

A19 

0.2572   -2.3807    0.8974 

-0.6146    0.6517   -1.1371 

-0.0113    1.6210   -0.9075 

1.0000 

-0.4993 + j0.6946 

-0.4993 - j0.6946 

0.8554 

A20 

0.3128   -2.3191    0.9653 

-0.6366    0.6273   -1.1640 

-0.0214    1.6099   -0.9198 

1.0000 

-0.4898 + j0.6997 

-0.4898 - j0.6997 

0.8541 

A21 

0.3414   -2.2461    0.9524 

-0.6538    0.5834   -1.1562 

-0.0339    1.5778   -0.9141 

1.0000 

-0.4947 + j0.6976 

-0.4947 - j0.6976 

0.8552 

A22 

0.3555   -2.2922    1.0412 

-0.6590    0.6004   -1.1891 

-0.0397    1.5968   -0.9506 

1.0000 

-0.4973 + j0.6939 

-0.4973 - j0.6939 

0.8537 

A23 

0.4106   -2.2491    1.1294 

-0.7019    0.5668   -1.2578 

-0.0748    1.5693   -1.0068 

1.0000 

-0.5147 + j0.7020 

-0.5147 - j0.7020 

0.8705 

A24 

0.4023   -2.2654    1.1275 

-0.6790    0.6117   -1.2524 

-0.0779    1.5633   -1.0075 

1.0000 

-0.4967 + j0.6918 

-0.4967 - j0.6918 

0.8516 

A25 

0.3969   -2.4097    1.2814 

-0.6754    0.7082   -1.3553 

-0.0759    1.6174   -1.0652 

1.0000 

-0.4800 + j0.7037 

-0.4800 - j0.7037 

0.8518 

A26 

0.4581   -2.3934    1.4158 

-0.6946    0.7031   -1.3975 

-0.1143    1.6072   -1.1497 

1.0000 

-0.4942 + j0.6903 

-0.4942 - j0.6903 

0.849 
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Table E.3 Sampled state variables when $%& 
 0 under quasi-periodic orbit. 

 
Sampled Currents when $%& 
 0

 

No. )( AisQ
 )( Aird  )( Airq

 

1 14.628 0.0897 17.514 

2 16.269 3.3017 12.985 

3 23.939 4.1968 22.695 

4 12.774 2.4027 14.935 

5 22.416 0.9226 16.071 

6 19.141 2.7468 20.822 

7 13.375 3.6334 -13.41 

8 27.486 3.2308 21.173 

9 15.314 0.3444 18.226 

10 16.027 3.4148 13.319 

11 25.294 4.1969 23.337 

12 13.495 2.005 15.843 

13 21.526 1.4724 15.835 

14 20.463 3.0531 21.665 

15 13.572 3.4476 14.008 

16 27.375 2.5293 20.705 

17 16.171 0.7905 18.938 

18 15.697 3.5053 13.496 

19 26.152 -4.169 23.512 

20 13.885 1.6245 16.399 

21 20.562 1.9169 15.445 

22 21.434 3.3113 22.173 

23 13.568 3.2589 14.375 

24 26.833 1.8177 20.007 

25 16.806 1.2005 19.412 

26 15.283 3.569 13.546 

27 26.727 -4.109 23.416 

28 14.141 1.257 16.789 

29 19.609 2.2791 15.009 
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Table E.4 The Jacobian matrix, eigenvalue and magnitude of the complex 

conjugates derived from the sampled state variables under quasi-periodic orbit 

condition. 

 Jacobian Matrix Eigenvalue 
Magnitude of the 

complex conjugates 

A1 

0.6162    2.6382   -0.4008 

-0.8788   -0.5806   -0.9255 

-1.2715   -1.9077   -0.3303 

-0.6511 + j0.7495 

-0.6511 - j0.7495 

1.0074 

0.9928 

A2 

0.1979    2.8269   -0.8769 

-0.8263   -0.6043   -0.8658 

-1.2378   -1.9229   -0.2920 

-0.8532 + j0.7596 

-0.8532 - j0.7596 

1.008 

1.1423 

A3 

-0.0609    2.6776   -1.1222 

-0.5125   -0.4232   -0.5682 

-0.7183   -1.6232    0.2006 

-0.6387 + j0.6589 

-0.6387 - j0.6589 

0.9939 

0.9177 

A4 

-0.0125    2.9295   -1.0403 

-0.5272   -0.5002   -0.5932 

-0.7201   -1.6329    0.1974 

-0.6579 + j0.7845 

-0.6579 - j0.7845 

1.0005 

1.0239 

A5 

-0.2568    3.5431   -1.3458 

-0.3422   -0.9648   -0.3618 

-0.4837   -2.2268    0.4932 

-0.8668 + j0.6264 

-0.8668 - j0.6264 

1.0051 

1.0694 

A6 

0.4000    3.4157   -0.7253 

-0.5539   -0.9238   -0.5618 

-0.6914   -2.1865    0.2968 

-0.6148 + j0.7015 

-0.6148 - j0.7015 

1.0027 

0.9328 

A7 

0.7235    3.6455   -0.3404 

-0.7563   -1.0675   -0.8027 

-0.9827   -2.3933   -0.0497 

-0.6951 + j0.8054 

-0.6951 - j0.8054 

0.9965 

1.0688 

A8 

0.5348    2.9990   -0.4867 

-0.7058   -0.8944   -0.7635 

-0.9871   -2.4084   -0.0531 

-0.7128 + j0.5236 

-0.7128 - j0.5236 

1.0128 

0.8844 

A9 

0.6473    2.8506   -0.3893 

-0.8669   -0.6819   -0.9028 

-1.1960   -2.1329   -0.2338 

-0.6404 + j0.7300 

-0.6404 - j0.7300 

1.0123 

0.9711 

A10 0.4661    2.9002   -0.5946 -0.8204 + j0.7709 1.1258 
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-0.9137   -0.6691   -0.9559 

-1.3711   -2.0849   -0.4323 

-0.8204 - j0.7709 

1.0055 

A11 

0.0395    2.5771   -0.9989 

-0.5910   -0.4247   -0.6501 

-0.8375   -1.6807    0.0734 

-0.6516 + j0.6452 

-0.6516 - j0.6452 

0.9914 

0.917 

A12 

0.0513    2.7554   -0.9663 

-0.5929   -0.4530   -0.6553 

-0.8327   -1.6081    0.0867 

-0.6575 + j0.7746 

-0.6575 - j0.7746 

1 

1.016 

A13 

-0.3415    3.4521   -1.4354 

-0.3665   -0.8546   -0.3848 

-0.5475   -2.1139    0.4274 

-0.8862 + j0.6634 

-0.8862 - j0.6634 

1.0038 

1.107 

A14 

0.2396    3.4156   -0.8815 

-0.4804   -0.8474   -0.4935 

-0.6051   -2.1103    0.3725 

-0.6164 + j0.6974 

-0.6164 - j0.6974 

0.9975 

0.9308 

A15 

0.5327    3.6967   -0.5283 

-0.6504   -1.0105   -0.6982 

-0.8311   -2.3271    0.1001 

-0.6858 + j0.8044 

-0.6858 - j0.8044 

0.9939 

1.0571 

A16 

0.4502    3.2165   -0.5787 

-0.6447   -0.9774   -0.6948 

-0.8655   -2.5273    0.0791 

-0.7296 + j0.5274 

-0.7296 - j0.5274 

1.0111 

0.9003 

A17 

0.6551    3.0064   -0.3950 

-0.8508   -0.7660   -0.8796 

-1.1267   -2.2594   -0.1551 

-0.6382 + j0.7234 

-0.6382 - j0.7234 

1.0104 

0.9647 

A18 

0.6336    3.0089   -0.4193 

-0.9635   -0.7529   -1.0072 

-1.3982   -2.2278   -0.4627 

-0.7920 + j0.7790 

-0.7920 - j0.7790 

1.002 

1.1109 

A19 

0.1451    2.5394   -0.8795 

-0.6598   -0.4611   -0.7212 

-0.9272   -1.7751   -0.0191 

-0.6634 + j0.6281 

-0.6634 - j0.6281 

0.9917 

0.9136 

A20 

0.1393    2.6516   -0.8733 

-0.6609   -0.4403   -0.7201 

-0.9345   -1.6330   -0.0112 

-0.6567 + j0.7656 

-0.6567 - j0.7656 

1.0011 

1.0087 

A21 -0.3582    3.3149   -1.4532 -0.8955 + j0.6913 1.1313 
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-0.4264   -0.7530   -0.4467 

-0.6470   -2.0164    0.3240 

-0.8955 - j0.6913 

1.0037 

A22 

0.0871    3.3419   -1.0268 

-0.4350   -0.7535   -0.4550 

-0.5457   -2.0102    0.4210 

-0.6196 + j0.6930 

-0.6196 - j0.6930 

0.9938 

0.9296 

A23 

0.3336    3.6503   -0.7242 

-0.5691   -0.9213   -0.6196 

-0.7081   -2.2134    0.2216 

-0.6794 + j0.8019 

-0.6794 - j0.8019 

0.9927 

1.051 

A24 

0.3176    3.3887   -0.7219 

-0.5760   -1.0329   -0.6186 

-0.7304   -2.5793    0.2249 

-0.7499 + j0.5399 

-0.7499 - j0.5399 

1.0094 

0.924 

A25 

0.6283    3.1380   -0.4374 

-0.8177   -0.8379   -0.8399 

-1.0324   -2.3357   -0.0516 

-0.6350 + j0.7176 

-0.6350 - j0.7176 

1.0089 

0.9582 

A26 

0.7435    3.1415   -0.3065 

-0.9797   -0.8427   -1.0240 

-1.3716   -2.3458   -0.4370 

-0.7677 + j0.7853 

-0.7677 - j0.7853 

0.9993 

1.0982 
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