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Abstract 

Extreme climate responses such as floods or droughts pose multi-dimensional hazards 

to critical infrastructure and the most vulnerable sectors of society; these hazards may 

increase under climate change. The extreme rainfall events driving these responses may arrive 

non-uniformly in time, clustering on intra- and inter-annual scales; yet the dependent 

relationship between events is often ignored. 

This thesis examines extreme daily rainfall within year clustering to determine 

whether changes in their temporal pattern are apparent in observational records. It then 

identifies the key atmospheric variables which drive event frequency and intensity, before 

testing hypotheses related to clustering.  

Extreme rainfall regions were developed from the station maxima of a comprehensive 

new set of 223 daily rainfall observations, spanning the period 1856-2009. The observations are 

contained within 14 regions which represent the distinctive seasonal clustering, orographic and 

atmospheric variations in UK extreme rainfall. 

Significant increases in annual maxima and associated return frequencies over the 

period 1961-2009 were observed from a Generalized Extreme Value (GEV) analysis. Increases 

in spring, autumn and winter maxima and their estimated return frequencies were also found. 

Estimates from summer maxima were variable across the country but indicated an increase in 

the highest intensity events. 

Extreme rainfall seasonal clustering and the dependence on sea surface temperatures 

(SST), air temperature range and the North Atlantic Oscillation (NAO) were represented in 

flexible GEV and Poisson parameter estimates using Vector Generalized Additive Models. 

There is a strong negative correlation with air temperature range, reflecting heightened 

event intensity and probability when the diurnal temperature range is at its lowest. Event 

frequency is positively correlated with SST for all regions; event magnitude is dependent on 

either SST or NAO with a north-south divide. While the timing of events has not changed 

substantially, event probability has increased - resulting in greater within-year clustering. 

Climate projections indicate increasing SST and decreasing temperature range; this extreme 

rainfall model corroborates projected increases in event intensity and frequency. 
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Glossary 

   Gamma shape parameter 

   Gamma scale parameter 

   Gamma function 

   Linear functions of parameters of a Generalized Additive Model 

   Extremal index,  is the degree of clustering or dispersion coefficient 

  Temperature covariate 

   GAM/VGAM smoothing parameter 

  Poisson rate parameter 

   GEV location parameter; or mean of the distribution  

   GPD and GEV scale parameter 

   GPD shape parameter  

   GEV shape parameter  

  Nominal parameter or covariate 

AIC  Akaike Information Criterion 

AMAX  Annual Maxima 

ASC  Adaptation Sub-Committee of the Committee on Climate Change (UK) 

BADC  British Atmospheric Data Centre 

BIC  Bayesian Information Criterion 

C-C  Clausius-Clapeyron constraint on atmospheric moisture holding capacity 

CEE  Central and Eastern England (HadUKP) 

CET  Central England Temperature 

CH  Central Highlands (Extreme regions) 

DJF  December-January-February 

EA  East Anglia (Extreme regions)  

edf  Effective degrees of freedom  

ENSO  El Niño Southern Oscillation 

EOF  Empirical orthogonal functions 

ES  East Scotland (HadUKP, Extreme regions) 

EVD  Extreme Value Distribution 

EVT  Extreme value theory 

EWP  England and Wales Precipitation series 

FEH  Flood Estimation Handbook 
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FOR  Forth (Extreme regions) 

FSR  Flood Studies Report 

GAM  Generalized Additive Model 

GCM  Global Circulation Model 

GEV  Generalized Extreme Value 

GHG  Greenhouse Gases 

GLM  Generalized Linear Model 

GPD  Generalized Pareto Distribution 

HadUKP  Hadley Centre UK Precipitation Regions 

HU  Humber (Extreme regions) 

ICOADS  International Comprehensive Ocean-Atmosphere Data Set 

IID  Independent and identically distributed 

IOD  Indian Ocean Dipole 

IRLS  Iteratively reweighted least squares 

IPCC  Intergovernmental Panel on Climate Change 

ITCZ  Inter-Tropical Convergence Zone 

JJA  June-July-August 

LRD  Long-range dependence 

LTP  Long term persistence 

MAM  March-April-May 

MIDAS  Met Office Land Observation Network 

MJO  Madden-Julian Oscillation 

MLE  Maximum Likelihood Estimates 

MW  Mid Wales (Extreme regions) 

MSLP  Mean sea level pressure 

NAO  North Atlantic Oscillation 

NAM  Northern Annular Mode 

NEE  North East England (HadUKP) 

NCAR  National Center for Atmospheric Research 

NCEP  National Centers for Environmental Prediction 

NI  Northern Ireland (HadUKP, Extreme regions) 

NHI  North Highlands and Islands (Extreme regions) 

NO  Northumbria (Extreme regions) 

NOAA  National Oceanic and Atmospheric Administration 
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NS  North Scotland (HadUKP) 

NWE  North West England (HadUKP, Extreme regions) 

PCA  Principal component analysis 

PDO  Pacific Decadal Oscillation 

PNA  Pacific North American 

POT  Peaks-over-threshold, a series of data exceeding a specific threshold 

PWM  Probability weighted moments  

Q95  95th Quantile of the wet day distribution (“very heavy”) 

Q99  99th Quantile of the wet day distribution (“extremely heavy”) 

RBAR  Mean annual maximum rainfall (Flood Studies Report, 1975) 

RCM  Regional Climate Model 

RFA  Regional Frequency Analysis 

RMED  Median annual maximum rainfall 

SAM  Southern Annular Mode 

SE  Southern England (Extreme regions) 

SEE  South East England (HadUKP) 

SH  South Highlands (Extreme regions) 

SLP  Sea level pressure 

SOI  Southern Oscillation Index 

SOL  Solway (Extreme regions) 

SON  September-October-November 

SMED  Median seasonal maximum rainfall 

SS  South Scotland (HadUKP) 

SST  Sea surface temperature 

SW  South West (Extreme regions) 

SWE  South West England (HadUKP) 

UBRE  Unbiased risk estimator 

VGAM  Vector Generalized Additive Model 

VGLM  Vector Generalized Linear Model 

WC  West Country (Extreme regions) 
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Chapter One Introduction 

“Climate Change is the Janus faced challenge of our time. It is simultaneously 

the significant environmental challenge of our time and future generations, and it is 

the issue that is leading us into sustainability.” 

Cynthia Rosenzweig NASA GISS (2011) 

Climatic extremes such as flood, drought, windstorm and heat wave pose 

multi-dimensional hazards to critical infrastructure and the most vulnerable sectors 

of society and are expected to become worse with global warming (IPCC, 2011). The 

UK has been identified as most sensitive, in terms of spatial impacts, to pluvial and 

fluvial flooding, and hence to extreme rainfall (Stern, 2007; Krebs et al., 2010; Met 

Office, 2011b). While other extreme climatic events also have considerable societal 

impacts, this thesis is focussed only on extreme rainfall. Research programmes in 

engineering have only recently started to address the issue of adaptation planning 

for these complex hazards even though it has been identified as an urgent 

requirement (IPCC, 2007b; Krebs et al., 2010; Rosenzweig et al., 2011). However, 

appropriate risk and hazard management strategies cannot be devised without a 

proper understanding of the potential impacts and vulnerability of infrastructure and 

society to extreme rainfall under current climatic conditions. While it is not possible 

to attribute any single event to climate change, there appear to be increased 

incidences of heat waves, droughts and floods and climate projections indicate that 

these will increase in the future (Murphy et al., 2009). Detection and attribution of 

the enhanced probability of extreme events occurring as a result of climate change is 

rapidly gaining importance on the research agenda (Pall et al., 2011; Trenberth, 

2011).  

Climate change is a continuous process, arising from atmospheric responses to 

internal perturbations and external forcing whether natural (e.g. volcanic activity 

(Stenchikov et al., 2002; Mosley-Thompson et al., 2005), solar variability (Solanki et 

al., 2004; Usoskin et al., 2004)) or anthropogenic. However, these atmospheric 

responses are changing more rapidly than previously experienced as a consequence 

of the post-industrial anthropogenic forcing (Trenberth et al., 2007). The primary 

consequences of increased mean global temperature are well understood - such as 
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increased drought periods, rapid melting of icecaps and glaciers, and an enhanced 

hydrological cycle. However, establishing the point at which the primary responses 

differ from natural climate variability and display irrefutable evidence of a change in 

climate is a subject of much recent research (Hegerl et al., 2007). 

There will always be a new extreme event which breaks previous records, and 

which may not be foreseeable (Benestad, 2003; Taleb, 2011) and, as with any 

stochastic distribution, there is a tendency for extremes to cluster together (von 

Storch and Zwiers, 1999); thus, it is difficult to discern the difference between natural 

climatic variability and long term changes in behaviour (Hegerl et al., 2004). While 

Extreme Value Analysis  applied to very rare, highly damaging, events (Ghil et al., 

2011) is limited by the paucity of records, it does serve to “domesticate” some of the 

unforeseen extremes, known as “black swan” events (Taleb, 2011) and identify the 

likely return frequency for use in practical applications such as flood defence design 

(Mandelbrot and Wallis, 1968). However, in addition to the ambiguity of risk analysis 

in the current climate, stationarity assumptions which were appropriate for use in 

shorter term calculations (<50 years) no longer hold true (Milly et al., 2008), and 

extreme events are occurring more frequently than can reasonably be expected 

(Trenberth, 2011). 

To understand the probability of an extreme rainfall event, it is first necessary to 

understand the governing weather systems which generate these extremes. Heavy 

and extreme rainfall can arise from two different scales of rain bearing systems: 

synoptic, operating over 100-1000’s km2; and meso-scale in the order of 1-10km2. 

Synoptic scale systems include: 

• The inter-tropical convergence zone (ITCZ), a region of thunder and rain 

around the equator which shifts north and south seasonally and is driven by the 

coriolis force;  

• Monsoon systems, a seasonal reversal of surface winds and rain, arising 

from differential heating between the ocean and land masses in tropical and 

subtropical regions; 

• Tropical Cyclones, from depressions and storms to hurricanes, typhoons or 

cyclones (dependent on the oceanic basin of origin); 
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• Mid-latitude frontal depressions, which frequently affect the UK and are 

most common in winter. Frontal depressions are usually generated over the 

North Atlantic, are often very large and can be fast travelling. Frontal depressions 

which occur during the summer often contain embedded convection cells which 

generate intense areas of localised rainfall and exacerbate flooding. 

Meso-scale systems by contrast are more frequent in the summer or where 

high temperature differentials occur, such as in highly mountainous areas: 

• Thunderstorms or convective cloud systems, are the most common cause of 

summer storms in the UK and are often short lived and very small in area making 

them particularly hard to reproduce in weather prediction or climate models 

without parameterising the processes. These systems produce some of the 

highest rainfall rates in northwest Europe. 

• Lee Lows are intense depressions formed on the downward slope of 

mountains. 

Different air masses have particular characteristics related to stability, air 

pressure and humidity which drive different weather conditions. While the extremes 

of wind and rain do not often occur at the same time, extreme rainfall events are 

governed by storm scale circulations, where the cyclonic winds draw additional 

precipitation into the water column from a radius of 3 to 5 times greater than the 

precipitating region (Trenberth, 2011). Extreme rainfall is, therefore, often 

associated with strong winds. A simple process diagram relating atmospheric drivers 

to the consequences of extreme rainfall is shown in Figure 1-1. 

 

Figure 1-1 : Consequences of atmospheric instability 

There is a widely held perception that flooding incidents have increased over 

the last decade; anthropogenic influence on catchments may be in part responsible 

for this perception, through increased development on flood plains. However, recent 
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studies of flood events in the UK (Wilby et al., 2008) and Europe (Blöschl and 

Montanari, 2010) do point towards an increase in flooding (refer to Figure 1-2) 

compared with a similar event count for the previous decades. Similarly, many flood 

“hot spots” around the world have experienced several devastating floods in the 

most recent decade (Figure 1-3), more than would be expected from natural 

variability alone (Min et al., 2011). Each of the events had enormous social and 

financial consequences (Maynard, 2006); projections of future climate responses 

indicate that this is likely to become worse (Zhang et al., 2011). 

 

Figure 1-2 : Extent of annual flood events in Europe between 1985 and 2011 (based on data from 

Dartmouth Flood Observatory) 

 

 Figure 1-3 : Recurrence of Global large flood events 2000- 2011 identifiable from news, 

government, instrument, and remote sensing sources (Brackenridge, 2011) 
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Many organisations and governments worldwide are endeavouring to 

understand the true impacts, both current and future, of climate change. The UK 

Committee on Climate Change is one such organisation aiming to identify the 

observable impacts in different sectors (e.g. health, agriculture), their secondary 

impacts on other sectors, and their likely future evolution, using the UK Climate 

Change Projections (Murphy et al., 2009). The first phase of a similar exercise has 

recently been completed in New York, addressing the specific concerns of their 

urban environment (Rosenzweig et al., 2011), and similar risk assessments are taking 

place in  many other countries (Moncel et al., 2011 and references therein). The 

difficulty with implementing these assessments is that changes in mean climate 

behaviour are better understood than changes in the extremes, yet the damage 

caused by the latter will have the greatest impact on society (Tebaldi et al., 2006). 

Furthermore, it is likely that climate change will enhance natural climate variability, 

exacerbating the magnitude of extreme events and the resultant collective risk 

(IPCC, 2011). 

Recent years are notable for exceptionally strong La Niña and El Niño conditions, 

(refer to Section 2.1.2) which are associated with extreme weather conditions in 

different parts of the world (World Meteorological Organization, 2011), as well as 

particularly strong North Atlantic sea level pressure differentials described by the 

North Atlantic Oscillation index (NAO; refer to Section 2.1.2). These atmospheric-

ocean coupling dynamics, known collectively as teleconnections, are often held to be 

the cause of severe and extreme storm conditions (Della-Marta et al., 2007); although 

they are one of several explanatory variables in a highly complex system. The UK 

Adaptation Sub-Committee recently identified a lack of acknowledgement of climate 

related risks in major strategic decisions in the UK (Krebs et al., 2011), even though 

flexible adaptation actions which are implemented now will limit future potential 

damages and may also bring short term benefits. In order to understand the likely 

risks from extreme rainfall and their future evolution, it is necessary to understand the 

dependence of these extreme events on atmospheric processes and their relationship 

with other meteorological conditions and teleconnections. 
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Given the non-stationarity of the climate, including diurnal heating and cooling 

or seasonal variations, it is important to use observations which are long enough to 

distinguish natural trends and variability from other divergent behaviour. 

Furthermore, the quality of the data used is of paramount importance to support the 

conclusions (Alexander et al., 2009). While the observational records provide 

fundamental atmospheric knowledge which will assist in assessing the likely future 

behaviour of extreme rainfall, the complexity of the climate system means that a 

simple extrapolation of observed trends into the future is not judicious. However, 

these observations can validate the output from physically based models, such as 

global circulation or regional climate models (GCM, RCM), which have been 

subjected to different forcing scenarios to project future behaviour. Improved 

characterisation of the driving mechanisms for extreme rainfall may also improve the 

composition of these models. 

GCMs are effective at reproducing the large scale atmosphere-ocean responses 

for the recent and past climate, giving confidence in probabilistic future projections 

(Meehl et al., 2007; Murphy et al., 2009). Computational costs limit GCMs to a grid 

resolution of around 1000km2, resulting in powerful representation of global scale 

circulation responses and continental precipitation or temperature patterns, but less 

effective regional descriptors (Rummukainen, 2010). Figure 1-4 illustrates the 

differences in representation of regional mean precipitation between different model 

scales and gridded observations. 
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Figure 1-4 : Comparison of Mean Wet Day Precipitation Patterns (mm) outputs from (a) GCM with 

300km
2
 grid; (b) RCM with 50km

2
 grid; (c) RCM with 25km

2
 grid and (d) observations at 5km

2
 grids 

(Courtesy Met Office) 

RCMs employ boundary conditions derived from the downscaled outputs of 

GCMs to run atmospheric responses on a smaller scale. However, the resultant 

models cannot always reproduce the different scaled atmospheric processes within 

the model layers, due to interactions between large-scale flow and the topographical 

features which are not included in GCMs. Furthermore, meso-scale weather features 

such as extreme convective rainfall, occur over much smaller areas than the 

resolution of most RCMs. 

The influence of higher temporal and spatial resolution to improve the outputs 

from RCMs, as employed for numerical weather predictions, is being investigated at 

present with some success in reproducing observed extreme rainfall patterns 

(Kendon et al., 2012). Information on these extreme events is urgently required by 

those planning for climate change adaptation, but is not currently available. 

Enhancing climate projections for use in planning and decision making requires a 

combination of higher resolution climate models, together with greater 

understanding of the processes driving extreme weather events. By characterising 

mm mm 

c 

b a 

d 



~ 8 ~ 

the drivers, it will be possible to improve their physical representation within the 

models and consequently, it is hoped, the projections of future extreme weather. 

A commonly cited reason for not planning adaptive actions to contend with a 

changing climate, and particularly enhanced extreme events, is the level of 

uncertainty in future estimates based on climate projections (Overpeck, 2000), and 

imbalance between the outlay costs and potential benefits of the actions (Wilby and 

Dessai, 2010). Detection of real changes in climate responses is therefore essential 

to facilitate appropriate adaptation action to be taken by decision makers; however, 

detection of changes in the extremes may not be possible in the desired timescale 

for action (Fowler et al., 2010). Similarly, those involved with implementing 

adaptation plans often require well defined design parameters rather than large 

uncertainty envelopes. It is hoped that by understanding current mechanisms and 

risks the uncertainty surrounding future projections can be reduced (Tebaldi et al., 

2006), providing a realistic decision framework for designers and planners. 

This thesis aims to identify several key target variables which try to “explain” 

the behaviour of extreme rainfall. This will be achieved by examining different 

metrics of extreme rainfall to discover those most sensitive to changes in the climate 

system, before analysing the large scale atmospheric and oceanic drivers and 

correlated responses (temporal and spatial). By understanding more fully which 

extreme events interact, and how they in turn respond to larger atmospheric 

circulation patterns, it should be possible to comprehend the current behaviour and 

permit the insurance industry and policy planners inter alia to respond more 

effectively in planning adaptive actions. Improvements in characterising the drivers 

of extreme rainfall, should also lead to better identification of the likely frequency 

and intensity of future extremes, through use as a statistical downscaling tool from 

regional or global climate models. 

1.1 Aim and Objectives 

This thesis aims to identify several key target variables which, collectively, will 

contribute to an extreme rainfall model with which to identify and quantify climatic 

changes which have occurred to date, and having particular utility in hydrology, 

climatology and related industries. 



~ 9 ~ 

1.1.1 Objectives 

1. To develop a comprehensive data set of UK daily rainfall records to the present 

day, from existing data sets, with which to explore the frequency and magnitude 

of extreme and very heavy rainfall. 

2. To explore metrics of extreme daily rainfall and identify the most appropriate for 

use in examining changes in the frequency and magnitude of extreme events. 

3. To update existing analyses of trends in UK annual and seasonal daily rainfall 

maxima to the present day. 

4. To develop a new set of rainfall regions for the UK which are more appropriate 

for use with extreme rainfall than the existing Hadley UK Precipitation regions. 

5. To identify key atmospheric and oceanic drivers, with long historic records which 

may influence the frequency or magnitude of extreme and very heavy daily 

rainfall. 

6. To use statistical models, premised on the dependence of extreme daily rainfall 

on atmospheric and oceanic drivers, to characterise the spatial and temporal 

differences in extreme rainfall behaviour. 

7. To explore the sources of non-stationarity in observed extreme and very heavy 

daily rainfall and better characterise the physical processes governing event 

frequency and magnitude. 

1.2 Project limitations 

To keep the project to a manageable size, it has been necessary to consider 

only extreme and very heavy daily rainfall and their corresponding driving 

mechanisms, such as temperature or atmospheric oscillations; the behaviour and 

evolution of the drivers over time will not be explored in detail. Responses to 

extreme rainfall – both direct such as flooding, or indirect such as agricultural 

responses – will also not be examined. 

1.3 Thesis outline 

The remainder of this thesis will adopt the following structure: Chapter 2 

synthesises the current understanding of observed changes in the global climate 

system, the inter-relationships and drivers of hydrometeorology, and extant 

research on extreme rainfall. Chapter 3 describes the statistical tools and methods 
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which will be employed throughout the project, Chapter 4 summarises the data sets, 

while Chapter 5 provides a comprehensive over view of the exploratory data 

analyses. Examination of the selected metrics of extreme rainfall, the relationship 

with driving atmospheric and oceanic processes, and temporal evolutions in extreme 

rainfall frequency (such as clustering) are covered in Chapters 6 to 8. The results are 

then summarised and conclusions drawn in Chapter 9, together with a brief 

exploration of possible future directions. 
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Chapter Two Climate Variability and Change Relating to Extremes 

“But what is the difference between literature and journalism? ...Journalism is 

unreadable and literature is not read. That is all.” 

Oscar Wilde, The Critic As Artist 

This chapter reviews the current state of research on extreme events, with 

particular emphasis on extreme rainfall. It focusses on the potential sources of 

climate variability, prior to exploring the oceanic-atmospheric interactions which 

cause extremes, concluding with the observed and projected changes in extreme 

rainfall. The methods used by others, and those selected for use in this project will 

be summarised in Chapter 3. 

Detection of climate change is “the process of demonstrating that climate has 

changed in some defined statistical sense, without providing a reason for that 

change” (Baede, 2007). To detect climate change within a particular measure or 

variable, it is essential to demonstrate that the change is greater than that expected 

from natural variability alone (Koutsoyiannis, 2003). In the context of this project, it 

is important to discern which patterns represent some form of climate variability 

from those which constitute a longer term change in behaviour. Within this thesis, it 

is not intended to attribute the causes of the long term variations in extreme and 

very heavy rainfall, rather to characterise the responses relating to atmospheric 

patterns and thence to assess anticipated future climatic extremes. 

Trend detection has a high demand for long duration spatially distributed 

climate observations to characterise fully the short and long term fluctuations 

against which to test the reliability of any possible trends (Kundzewicz and Robson, 

2000). This demand is further enhanced when examining extreme events which, by 

definition, are rare (Allamano et al., 2011). Furthermore, even discounting 

increasingly unusual extremes anticipated as a result of climate change, the 

probability of such events does not remain constant as a direct consequence of 

natural variability (Cohn and Lins, 2005).  

2.1 Sources of Climate Variability 

The climate system is complex and interactive, with stochastic responses to a 
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variety of influences. ‘Internal’ responses are those arising from the dynamic 

relationship between the atmosphere and ocean; external forcing such as solar 

radiation, volcanic eruptions or anthropogenic pollution all affect the atmospheric 

responses (Le Treut et al., 2007). Atmospheric observations taken to understand 

these processes are also subject to human error and, hence, further sources of 

uncertainty. The focus of this project is on the response of very heavy and extreme 

rainfall to atmospheric processes, rather than external forcing, while making suitable 

allowance for abrupt and gradual changes.  

2.1.1 Abrupt and gradually varying changes 

The presence of abrupt or gradually varying changes in the data, arising from 

anthropogenic influences or gauge drift, can be suggestive of a significant trend or 

autocorrelation where none exists (Villarini et al., 2009). Changes may include gauge 

station relocation or alterations to the hydrological cycle through upstream housing 

development or dam construction. Many tests to determine change points in the 

distribution focus solely on the mean of the data in question (e.g. occurrence 

frequency of extreme events) and are less reliable when examining the variance of 

the data (Pettitt, 1979; Perreault et al., 2000b; Villarini et al., 2009). However, it is 

equally important to understand the changes in the variance of the distribution, 

which is more sensitive to increases in global mean temperature (Katz, 1999; 

Trenberth and Shea, 2005; Zolina et al., 2010). 

Many studies assess whether any trends are present in the data prior to 

establishing whether change points occur. However, this directly contradicts the aim 

of detecting a true trend within the data; particularly given the sensitivity of trend 

detection within short time series (Frei and Schar, 2001), fluctuating data 

(Kundzewicz and Robson, 2000; Kottegoda et al., 2008), or comparisons against 

different base periods (Zhang et al., 2005). It is more robust to assess the presence 

of abrupt changes prior to establishing whether other variability is present in the 

data, then testing for trends (Villarini et al., 2009). 

Trends may be observed in many metrics of a data series, from mean 

occurrences to the variability in frequency and magnitude of the extremes; 

determining whether a data series is non-stationary requires the assessor to account 
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for diurnal and annual cycles (Robson, 2002), as well as identifying sudden changes 

in the distribution which may show up as trends (Serinaldi, 2009). Pezzulli et al. 

(2005) suggest that while normalising monthly data may remove non-stationarity 

introduced by annual cycles, these techniques introduce greater sensitivity and may 

result in false trend detection. Furthermore, the inherent noisiness in hydrological 

data means that it may not be possible to distinguish non-stationarity from long-

term persistence, as a stationary process with long term persistence may appear to 

be very similar to a non-stationary process with a trend (Lins and Cohn, 2011). Paleo-

hydrological records indicate that small changes in the mean result in far larger 

changes in the extremes (Knox, 2000). As argued by Matalas (1997), in the absence 

of physical proof, caution should be exercised with trend analysis that variability is 

greater than that expected from a stochastic process. Similarly, Cohn and Lins (2005) 

considered that the assumption of stationarity is important in order to assess 

effectively whether long term departures in observed data can be attributed to 

ordinary process dynamics or whether they are symptomatic of a greater change.  

The more recent focus on trend analyses within a changing climate has revived 

interest in distinguishing climatic variability from “real” changes (Koutsoyiannis, 

2003; Sakalauskiene, 2003; Ammann et al., 2007). Scientists critical of a tendency to 

exaggerate the impacts of climate change have also reiterated the need to account 

for persistence (Alexander et al., 2006). As Cohn and Lins (2005) observed “It is easy 

to imagine that long term persistence could be mistaken for trend”, as fractional 

noises often display multiple ‘features’ including trends and cycles (Mandelbrot and 

Wallis, 1968). Similarly, different forms of non-stationarity are not always evident as 

climatic variability may account for apparent trends in ordinarily “long duration” 

series (Beran, 2002; Robson, 2002; Koutsoyiannis, 2003). Long established 

hydrological practice assumes that for the purposes of design, observational series 

are stationary (Matalas, 1997; Lins and Cohn, 2011); however this may no longer be 

appropriate for extreme hydrology if stationarity cannot be assumed over the 

engineering design life (Milly et al., 2008). 

All hydrological series exhibit variability on at least a seasonal scale; effective 

trend detection requires quantification of the scale of the variability and removal of 
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the seasonal signal, e.g.  Allamano et al. (2011). Cyclic variability on a multi-annual to 

decadal scale has been the subject of observation since the Egyptians’ control of Nile 

flood waters, as reviewed by Hurst (1951) in relation to modern flows in the River 

Nile. Hurst identified that hydrologic series tend to cluster such that high flow and 

low flow years tend to occur together; also known as the ‘Noah and Joseph effect’ of 

operational hydrology (Mandelbrot and Wallis, 1968). Recent analyses of historical 

stream flow observations, circa 150 years, indicate that the UK experiences 

sequences of greater or fewer floods and is entering a “flood rich” period of the 

record (Yates, 2008). The question is how much can be determined from a stationary 

historic record where the most extreme events under current climate conditions 

may not have occurred (Taleb, 2011).  

Hurst (1951) formally identified that severe hydrological events follow a decaying 

power law relationship. The Hurst exponent, H, describes the decaying power law 

between severe hydrological events and may take a value between 0 and 1, where 

H>0.5 signifies a data series with long range dependence (LRD). The greater the value of 

H, the greater the degree of persistence within the data series. As the length of the 

series tends to infinity, H tends to a value of 0.5 and independence. For most real-world 

applications, H tends to adopt a value of around 0.7 with a standard deviation of 0.09, 

and therefore demonstrates some natural degree of event clustering (Hurst, 1951). 

Klemes (1974) summarised previous attempts to quantify the Hurst Exponent, 

identifying the potential use of fractional Gaussian noise processes for simulation 

and prediction. However, he cautioned that “an ability to simulate, and even 

successfully predict a specific phenomenon does not necessarily imply an ability to 

explain it correctly”. The aim of this project is not to determine the controls on the 

phenomenon (here, extreme and very heavy rainfall), whether infinite memory, non-

stationarity of the mean, long-term dependence or persistence, but to distinguish 

any trends from these fluctuations. The importance of LRD can be reduced through 

the use of regional pooling (Fowler and Kilsby, 2003b), which both improves trend 

detectability (Westra and Sisson, 2011) and improves convergence to the GEV 

distribution in the presence of LRD (Rust, 2009); or through using a spatial smoother 

to analyse spatially correlated data (Maraun et al., 2008). Following other analyses 
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to identify changes in individual gauged records, regional pooling will be used in this 

thesis for all analyses to minimise the importance of any single event or trend 

(Hosking and Wallis, 1988). 

2.1.2 Atmospheric influences 

Internal climatic variability responds to interactive processes on several 

different timescales. Shorter, daily, cycles include water vapour and temperature 

fluctuations; medium-term reactions relate to seasonal and annual fluctuations and 

troposphere-stratosphere exchanges; while the oceanic thermohaline currents drive 

variability on scales of several decades to hundreds of years. The interactions 

between these responses introduces a degree of complexity to the climatic response 

system, which is further enhanced by coupled interactions between the atmosphere 

and ocean (Goosse et al., 2009).  

Teleconnections refer to the connectivity between climatic variations across a 

large spatial scale (often ≥1000km), which arise from large-scale wave motions and 

energy transfers (Baede, 2007). Atmospheric circulation patterns are zonally averaged 

motions which follow multi-annual cycles. The most influential of these patterns are 

described as “spatial patterns with varying amplitude” (Trenberth et al., 2007), 

quantified by a set of linear transformations derived from station or gridded 

measurements of mean sea level pressure (MSLP), temperature, or geostrophic 

pressure. The climatic responses of different regions to the atmospheric circulation 

patterns are often diametrically opposed as storm track and strength are modulated 

by the atmospheric oscillation (Goosse et al., 2009). Table 2-1 describes the 

teleconnection patterns which have the most global influence; they are also 

represented diagrammatically, indicating the approximate region of measurement, in 

Figure 2-1. The teleconnections which are most relevant to UK climatology are the 

North Atlantic Oscillation (Hurrell et al., 2001; Jones et al., 2003), which is the only 

teleconnection prominent throughout the year in the Northern Hemisphere (Barnston 

and Livezey, 1987), and the El Niño Southern Oscillation (Zanchettin et al., 2008). 

These are each discussed in more detail below. 
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Teleconnection Measured / Zone of Operation Approximate 

Periodicity 

Series Developer 

Southern 

Oscillation Index 

(SOI) 

MSLP difference between Tahiti 

and Darwin, normalised by the 

long-term mean and standard 

deviation 

~ monthly, 

with annual 

phases 

Troup (1965); 

Können et al. (1998) 

North Atlantic 

Oscillation Index 

(NAO) 

Difference of normalised MSLP 

between Lisbon and 

Stykkishólmur or Gibraltar and 

Reykjavík 

3-4 days with 

annual to 

multiannual 

persistence 

Hurrell (1995); Jones 

et al. (1997) 

Northern Annular 

Mode (NAM) 

or Arctic 

Oscillation (AO) 

Leading Empirical Orthogonal 

Function (EOF) pattern of winter 

monthly mean Northern 

Hemisphere MSLP anomalies 

pole-ward of 20°N 

~10 days Thompson and 

Wallace (1998); 

(2000); Thompson et 

al. (2000) 

Southern Annular 

Mode (SAM) 

or Antarctic 

Oscillation (AAO) 

or High Latitude 

Mode 

Leading EOF pattern of winter 

monthly mean Southern 

Hemisphere MSLP anomalies 

pole-ward of 20°S 
 

Or the difference in long term 

mean MSLP between 45°S and 

65°S 

~10 days Thompson and 

Wallace (2000); 

Thompson et al. 

(2000) 
 

Gong and Wang 

(1999); Marshall 

(2003) 

Pacific North 

American (PNA) 

The mean of normalised 500hPa 

height anomalies at 20°N, 

160°W and 55°N, 115°W minus 

45°N, 165°W and 30°N and 

85°W 

daily with 

monthly 

phases 

Wallace and Gutzler 

(1981) 

Pacific Decadal 

Oscillation (PDO) 

The first EOF of SST over the 

North Pacific north of 20°N; 

known as Inter-decadal Pacific 

Oscillation when covering the 

whole Pacific basin 

Multi-annual Mantua et al. (1997) 

 

Madden Julian 

Oscillation (MJO) 

Coupled ocean-atmosphere 

continuous wave like motion 

measured at 200mb and 850mb 

affecting region between 30°N-

30°S and 60°-180°E 

30-60 days Madden and Julian 

(1971, 1972, 1994) 

El Niño – 

Southern 

Oscillation (ENSO) 

The coupled ocean-atmosphere 

process measured via the SOI 

and SST in the central and 

eastern equatorial Pacific (150°-

90°W, 5°N-5°S)  

3-4 days with 

strong 

seasonal 

component 

Trenberth (1976; 

1997) 

Indian Ocean 

Dipole (IOD) 

Normalised difference of SST 

anomalies between 50°-70°E, 

10°N-10°S and 90°-110°, 0°-10°S 

~10 days Saji et al. (1999) 

Table 2-1 : Principal Teleconnection Patterns and related indices 

(from IPCC AR4 Box 3.4;  Trenberth et al., 2007) 
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Each oscillation pattern induces complementary wind motions in conjunction 

with the pattern of sea level pressures, generating global temperature and 

precipitation responses. The most notable are situated around the equator and are 

particularly related to El Niño and the Madden Julian Oscillation (Madden and Julian, 

1994). 

 

Figure 2-1 : Location of Principal Teleconnection Patterns. Red arrows indicate normalised Sea Level 

Pressures; Blue arrows indicate a composite analysis of one or more measurements. 

The North Atlantic Oscillation and Northern Annular Mode 

The principal actor in the Northern Hemisphere, and in particular European, 

weather patterns throughout the year, is the North Atlantic Oscillation. This is a 

dipole of sea level pressures between Iceland and the southern tip of the Iberian 

Peninsula, measured either between Stykkishólmur and the Azores (Hurrell and 

Deser, 2009, and references therein) or Reykjavík and Gibraltar (Jones et al., 1997). 

Positive (negative) phases represent enhanced (diminished) Icelandic Low and 

Iberian High pressure fields. Although not a major influence on global precipitations, 

the NAO explains ~8% of the annual variability in Northern Hemisphere precipitation 

(New et al., 2001). 

The most profound effects of the NAO are displayed through winter time 

surface temperatures, storminess and precipitation across much of the Northern 

Hemisphere. In its positive phase, warm moist air from enhanced westerly flows 
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move across Europe to generate dry conditions over southern Europe and North 

Africa and influence drought persistence (Della-Marta et al., 2007). In contrast, 

reduced North Atlantic temperatures and enhanced northerly winds over Greenland 

and north-eastern Canada create wet conditions in northern Europe. Positive phase 

winters are associated with a north-eastward motion of the storm track (path from 

storm genesis to its completion point), with enhanced activity in north Europe and 

decreased activity in the south (Mailier et al., 2006). Considerable research has 

established the influence of the NAO on UK (Fowler and Kilsby, 2003b; Allan et al., 

2009), and European (Moberg and Jones, 2005; Bartolini et al., 2009) weather 

systems. When the NAO is negative, westerly winds tend to be weaker leading to 

lower rainfall totals in northern Europe. Research has also determined a significant 

correlation between flora and fauna responses and the preceding winter NAO phase 

(Kettlewell et al., 2006; Atkinson et al., 2008; Gouveia et al., 2008). While less 

strongly correlated to precipitation and temperature anomalies, summertime (JJA) 

NAO indices also have an impact on European weather (Linderholm et al., 2009). 

Seasonal correlation between the NAO phase and precipitation anomalies over 

Europe are illustrated in Figure 2-2. 

 
Figure 2-2 : Percentage degree of correlation between NAO index and European precipitation 

seasonal departures from the 1961-1990 mean conditions between 1950-2000 (NOAA, 2005)  

% 
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Recent work has correlated inter-decadal variability in storm patterns with 

fluctuations in large scale teleconnection patterns, finding the NAO to have a strong 

influence on UK storm activity (Allan et al., 2009). The winter NAO index for the 

period from 1961-1990 was positive for several consecutive years interspersed with 

solitary negative winters, with few years experiencing particularly high or low index 

values. In contrast, the most recent two decades have experienced several 

exceptionally high and several exceptionally low NAO years. While the impact of 

increasing global temperatures on the NAO signal is not fully understood, the most 

negative winter NAO indices on record for both 2009 and 2010, accompanied by 

record high global mean temperatures, also appear to have led to exceptionally 

heavy UK rainfall in the summer and autumn. 

Wilby et al. (2002) examined several drivers of rainfall around the UK, 

confirming that different variables have influence at different locations or times of 

the year on the probability of wet days. The research confirmed a strong positive 

correlation between winter and spring NAO indices and the corresponding 

probability of rain in Atlantic bordering stations; with negative correlations during 

the summer for southeast stations. Negative correlations between area averaged 

SST anomalies over the Atlantic region and wet day probability were also apparent, 

strongest during the autumn and in central England and the southeast. 

The NAO index is highly variable, demonstrating sustained periods of positive 

or negative values over past centuries (Jones et al., 2003). During the late 1960s the 

NAO index values were negative, reversing toward the mid-1990s to a strongly 

positive index. Following the peak of the mid-1990s, the NAO index fluctuated 

throughout the early 2000s before falling to the most negative indices recorded 

since 1823 during the winters of 2009 and 2010. The IPCC Fourth Assessment Report 

IPCC (2007a) found evidence to suggest that inter-decadal NAO variability, which is 

influenced by tropical ocean currents and temperature forcing, is increasing (Forster 

et al., 2007). Thermohaline circulations may influence a multi-decadal oscillation 

within the index (Zanchettin et al., 2008) in addition to other global oscillations such 

as ENSO (Brönnimann, 2007). The influence of the NAO can also be detected at a 

considerable distance from the primary source. For example, Archer and Fowler 
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(1999) found that there are significant links between the Indian monsoon and both 

ENSO and the NAO. Similarly, Gong and Wang (1999) noted signatures of the NAO 

within Antarctic ice sheets and the Southern Annular Mode evolution. 

El Niño-Southern Oscillation 

The El Niño and Southern Oscillation teleconnection pattern is a coupled 

ocean-atmosphere response originating in the Eastern Pacific, leading to changes in 

the trade winds, precipitation patterns and global circulation. El Niño refers to the 

upwelling of warm water near Eastern Australia and eastwards propagation, 

weakening the sea surface temperature (SST) gradient across the Pacific and bringing 

warmer conditions to the west coast of South America. These events occur every 3 

to 7 years, alternating with a counterpart (La Niña) or neutral conditions (Trenberth 

et al., 2007), although weather patterns continue to be influenced by the preceding 

El Niño conditions for up to around three months after the end of an event 

(Trenberth, 1997). El Niño events are classified as occurring when the continuous 

five month running SST anomaly in the central Pacific remains above 0.4°C over a 

period of six months (Trenberth, 1976). 

The combined effect of the El Niño-Southern Oscillation (ENSO) has global 

impacts, particularly manifest during the period from November to March. El 

Niño/La Niña events enhance the general global hydrological response, such as the 

Australian drought of 2003 (Trenberth et al., 2007), or the 2011 floods in North 

America (World Meteorological Organization, 2011) and Australia. The extreme 

global mean temperatures and SST anomalies of 1998 and 2005 were both 

associated with very strong El Niños (Hansen et al., 2002; Bindoff et al., 2007). 

Recent research has identified that the ENSO signature can have a 

considerable influence on extreme European weather patterns (Trenberth et al., 

2002; Sapiano et al., 2006; Seierstad et al., 2007; Zanchettin et al., 2008; Vitolo et al., 

2009), although modulated by very positive NAO winters. Van Oldenborgh et al. 

(2000) identified a strong correlation between spring precipitation in Europe and the 

phase of El Niño. The impacts are indirect as they arise from the effects of a strong 

ENSO signal elsewhere, however El Niños appear to be accompanied by negative 

phase NAO as a result of the pole-ward shift in MSLP anomalies (Brönnimann et al., 
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2007; Zanchettin et al., 2008). While Allan et al. (2009) and Zanchettin et al. (2008) 

found that ENSO has a modulating influence on severe storms in the British Isles 

during particularly warm years; in contrast, particularly strong NAO years can mask 

the ENSO response in mainland Europe (Zanchettin et al., 2008).  

2.2 Observed Responses and Projected Changes 

2.2.1 Ocean-atmosphere 

Circulation at the ocean surface is driven by the trade winds at mid-latitudes 

and atmospheric westerly winds at higher latitudes, with the strongest atmospheric-

ocean coupling driven by the Ekmann transport along the equator and the 

surrounding Inter-tropical convergence zone (ITCZ). The atmospheric winds control 

moisture convergence zones and storm genesis as enhanced sea surface 

temperatures lead to increased baroclinic instability enhancing tropical storm 

magnitude (Bengtsson et al., 2009). Deeper ocean responses are dependent on the 

relative density and salinity of the water, these processes respond over decades to 

centuries, exacerbating the difficulty in discerning changes (Held, 1993; Goosse et 

al., 2009). 

The most significant and probable atmospheric-ocean responses to increased 

global temperature will be changes to thermohaline circulation patterns and deep 

water formation, increased sea level caused by melting ice bodies and thermal 

expansion, and resultant changes in sea level pressure (Lenton et al., 2008). The 

primary source of future changes in thermohaline circulation will arise from a 

freshening of the Atlantic Ocean, resulting from ice melt and increased storm genesis 

(Held, 1993). In the long term, significant dilution would lead to a shutoff of the 

Deep Water formation and eventual halting of the cross global thermohaline 

circulation (Lenton et al., 2008); it is likely that existing oceanic circulation patterns 

would remain, although within reduced extents. Current projections show that this is 

unlikely to occur within the next 100 years, even under the most aggressive 

emissions scenario (Lowe et al., 2009). The consequences of changes in atmospheric-

oceanic interactions would be devastating on the global hydrological cycle as an 

increased temperature differential between the north and south hemisphere would 

displace monsoonal rains and cause expansion of the Sahel region (Held, 1993). 
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Research suggests that sea surface temperatures (SST) are a strong driver of 

southwest England mean daily rainfall (Phillips and McGregor, 2002); however, the 

dominant centre of influence varies throughout the year from an area in the east 

Atlantic during winter to the North Sea during the spring (Van Oldenborgh et al., 

2000). Phillips and McGregor (2002) concluded that monthly SST measurements are 

more strongly correlated with mean daily rainfall characteristics, with lower SST 

corresponding with increased intensity, while seasonal measurements are more 

reflective of atmospheric circulation. In contrast, Wilby et al. (2004) examined this 

further in southeast England finding that most predictors offered only a low 

explanation of the variance in summer low flow anomalies. The research supported 

the use of several different variables, both local and equatorial, for summer rainfall 

predictions, although finding that all variables performed considerably better for dry 

conditions than wet. 

2.2.2 Temperature 

Increases in post-industrialisation global mean temperatures are well 

established, with the first decade of the new millennium featuring the 12 warmest 

years since 1856 (Jones, 2011). Some of the direct consequences of increasing global 

temperature are immediately evident such as: reduced land and sea ice; increased 

heat wave frequency; increases in frost-free days and increased growing season 

length. The potential societal and ecological impacts are of great interest to 

governing bodies when determining future action plans for adaptation (Dessai et al., 

2009), and may have enormous repercussions on the hydrological cycle through 

feedback mechanisms (Burt and Shahgedanova, 1998; Zaitchik et al., 2006; IPCC, 

2007a; Prasad et al., 2008; Prudhomme and Genevier, 2011). 

Alexander et al. (2006) built on previous studies (Karl and Knight, 1998; 

Peterson et al., 2001; Frich et al., 2002), using a series of international workshops to 

obtain data and to define a set of temperature and precipitation characteristics 

(indices) which can be monitored for signs of changes in a warming climate. Over 

70% of the examined land area had experienced increased mean and maximum 

temperatures since 1951. The success of the initial workshops was repeated, as a 

reliable method of obtaining climate data from politically sensitive regions, with 
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similar results and higher confidence through the increased spatial coverage (Choi et 

al., 2009; Caesar et al., 2011; Vincent et al., 2011). Indices which are expected to 

decrease with an increase in global mean temperature, such as the number of frost 

days, will also bring increases in parasites or vector borne diseases either through 

range shifts or reduced periods of dormancy (Zhou et al., 2008; Logan et al., 2010; 

Mills et al., 2010). While the expected increase in other indices, e.g. growing season 

length, may bring some positive impacts in the short-term in very northern latitudes, 

most impacts are anticipated to become negative beyond 2050 (Jenkins et al., 2010). 

Temperature increases are expected to be greatest in the Northern 

Hemisphere, where the larger land mass contributes to a higher heat capacity; 

slower oceanic responses, as a result of mixing and heat sink, will also enhance the 

impacts over land (Held, 1993; Goosse et al., 2009). Direct consequences, such as 

summer ice loss and increases in the duration of ice free passages through Arctic sea 

ice, retreating glaciers, and reduction in areal coverage of Antarctic, and Greenland 

ice-sheets, will have significant secondary impacts on the global hydrological cycle 

(Fowler and Archer, 2006; Lenton et al., 2008). 

2.2.3 Rainfall 

The Clausius-Clapeyron (C-C) equation (Hess, 1959) defines the relationship 

between the temperature gradient and water vapour pressure as  

   

Equation 2-1  

where: 

• es = saturation water vapour pressure  

• T = temperature (°K) 

• Lv = latent heat of evaporation  

• Rv = water vapour gas constant.  

As atmospheric water vapour content is dependent on temperature, it follows 

that increases in global mean temperature (both at the surface and in the 

atmosphere) will lead to an increase in the amount of water vapour held in the 

atmosphere of approximately 7%/°K (Trenberth, 2005b). However, as the 
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hydrological cycle is not solely controlled by the availability of moisture, but also by 

the available energy budget, increases in precipitation will be smaller in mid-

latitudes and nearer to the equator than in northern latitudes (Allen et al., 2002). In 

particular, increases in extreme rainfall will vary with latitude and are unlikely to 

equal the rate of increase in atmospheric moisture (O'Gorman and Schneider, 2009).  

Observed decreases in snow cover in many areas are attributable to reduced 

snowfall and decreases in cloud cover, minimising surface melt, as a result of the 

decreasing diurnal temperature range (DTR; Bolch et al., 2008). Some regions have 

experienced increases in snowfall such as that experienced across many parts of the 

northern hemisphere during the winters of 2009 and 2010 (Met Office, 2010b), 

although these specific events may have arisen from natural climatic variability. At 

very low temperatures air conditions tend to be very dry and not conducive to 

precipitation; as the air temperature approaches 0°C, precipitation is more likely to 

lead to larger flakes and heavier snowfall (Trenberth, 2011). Similarly, some 

increases in glacier mass have been reported in the western Himalayas, arising from 

increased snowfall over a longer proportion of the cold season, in addition to an 

increased summer DTR which enhances cloud formation and thus decreases air 

temperatures and snow melt (Yadav et al., 2004; Fowler and Archer, 2006). 

2.3 Extreme Events 

Seldom does a day go by without reports of extreme events or climate records 

being broken in some part of the world. The impression of an increasing frequency of 

“record breakers” is hard to ignore, despite oft quoted caveats regarding event 

attribution, and may be heightened in some small part by media availability, 

although it is not a new development (Chandler, 1952). It is understandable, as the 

potentially devastating consequences of extreme events enhance our awareness of 

their incidence far more than the occurrence of lower magnitude events.  

There are two problems: one of assessing the probability of an extreme event 

occurring and the other of determining the likely future behaviour of these extreme 

events and their resultant impact on society. Emil Gumbel, noted that “Il est 

impossible que l’improbable n’arrive jamais” [it is impossible that an unlikely event 

will never happen]; engineering design has long made use of Gumbel’s theories on 
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the extreme value distribution and subsequent developments to quantify the 

realistic probability of an event. This leads to the second problem of identifying the 

symptoms of the changing frequency of extreme events and whether future 

behaviour will continue in the same manner for which there is an increasing body of 

literature and software available (World Meteorological Organization, 2009; 

Gilleland and Katz, 2011). 

Making allowance for extreme event data scarcity, it is very likely that daily 

temperature extremes are increasing, with a commensurate reduction in the 

frequency of very cold days and nights and an increase in heat wave frequency and 

duration (IPCC, 2011). While it is likely that extra tropical cyclone tracks have shifted 

pole-ward, increasing heavy precipitation in higher latitudes, there is also low 

confidence in the extent of changes. Confidence in projected changes is also low, 

although it is virtually certain that temperature extremes will continue to increase 

and that increases in heavy precipitation are likely to continue (IPCC, 2011). Refer to 

Appendix C for definitions of confidence and probability.  

Brown et al. (2008) identified significant increases in extreme daily maximum 

and minimum temperatures since 1950, particularly in Canada and Eurasia, using 

extreme value analyses. Using similar techniques, increases in daily maximum and 

minimum temperatures have also been demonstrated in Spain (Cebrián and 

Abaurrea, 2006), North America and continental Europe (Gershunov and Douville, 

2008; Furrer et al., 2010), identifying a dependency between severity of the change 

and the driving atmospheric circulation patterns. Extensions to these analyses, 

making allowance for the annual cycle or atmospheric conditions demonstrated 

improvements in the trend coherence derived from extreme value models fitted to 

temperature maxima in Greece (Katsoulis and Hatzianastassiou, 2005). 

Meteorological drought is often coupled with heat waves, as the anti-cyclonic 

circulation patterns which produce heat waves also preclude precipitation 

(Gershunov and Douville, 2008). Dry summers leading to drought conditions show 

evidence of year to year clustering, as well as an increase in spatial extent since 1750 

(Briffa et al., 2009). Burt and Horton (2007) found a sequence of periods of drought 

followed by heavy rainfall in the Durham observation series. Extensive drought 
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conditions often also correspond with enhanced rainfall occurrence in proximate 

regions, showing a tendency to increases in longevity and/or spatial extent in recent 

decades (Dai et al., 1998; Groisman and Knight, 2008).  

An increase in pressure gradients, arising from increases in SST, has led to an 

increase in frontal systems and more frequent and severe extra-tropical cyclones 

(Mailier et al., 2006; Allan and Soden, 2008; Ulbrich et al., 2009; Vitolo et al., 2009) 

and possibly more frequent UK tornadoes. Apparent increases in UK tornado 

frequency may not be statistically significant, given improvements in observational 

capability over recent decades which artificially inflates the event record (TORRO, 

2009). There is little agreement regarding the development of future wind storm 

activity, although most anticipate more frequent and intense extreme wind storms 

(Seierstad et al., 2007; Ulbrich et al., 2009; Vitolo et al., 2009), with potentially more 

frequent high category storms as energy budgets constrain cyclone re-genesis 

(Trenberth, 2005a). As atmospheric winds, particularly storm life and intensity, are 

strongly correlated with sea surface temperature (SST) they are considered highly 

likely to increase in the future (IPCC, 2011). 

2.4 Observed Extreme Rainfall Changes 

The perception that extreme rainfall events have become both more frequent 

and intense in the most recent decade is reinforced by some particularly persistent 

events in the UK. The precipitation record for autumn-winter 2000-2001 was 

identified at the time as the wettest in the UK (Marsh and Dale, 2002); however, 

extreme events, both in terms of duration and intensity, have since surpassed this 

(Hanna et al., 2008; Marsh, 2008). June 2007 was recorded as the wettest month for 

over 140 years in Yorkshire (Hanna et al., 2008), September 2008 witnessed the 5th 

highest 3-day rainfall total since 1897 in Albemarle (Northumberland), and the UK 

record 24-hour total of 316.4mm was recorded in Seathwaite, Cumbria in November 

2009 causing widespread devastation (Sibley, 2010).  

While the probability of a new record breaker increases with the length of the 

record (Benestad, 2003) and the difficulty of detecting changes in precipitation 

behaviour, particularly extremes, are both acknowledged (Milly et al., 2008), it is also 

apparent that rainfall patterns are changing in many regions (Trenberth et al., 2007), 
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particularly in the extremes (Della-Marta et al., 2007; Maraun et al., 2008; Portmann 

et al., 2009; Trenberth, 2011). Recent work has identified an increase in precipitation 

extremes, although not spatially coherent across the globe (Alexander et al., 2009; 

Bocheva et al., 2009). However, apparent differences in reported changes in extreme 

rainfall may also be apparent due to inconsistencies in the definition of “extreme” 

(Pryor et al., 2009), or in the duration of events under comparison (Liu et al., 2009). 

While detection, as defined by the IPCC (Baede, 2007), is not a focus of this 

thesis, it is acknowledged that formal detection studies are required to determine 

whether apparent changes are part of natural climatic variability or a response to 

anthropogenic forcing (Hegerl et al., 2004). Premised on projected increases in 

intensity of 7%/°K, in line with C-C constraints, and a global increase in temperature 

of 0.74°C, detection tests need only be sensitive to a change of 5% over 100 years of 

observed extreme rainfall (Westra and Sisson, 2011); however, this is also 

dependent on the unlikely occurrence of no changes to vertical atmospheric 

circulation patterns (Lenderink and van Meijgaard, 2008). A number of different 

studies of extreme rainfall have determined that although changes are not yet 

detectable at a regional level, they are likely to become more apparent during the 

coming decades (Frei et al., 2006; Min et al., 2009; Fowler et al., 2010; Fowler and 

Wilby, 2010). For instance, increases in 10-day winter rainfall in the north of the UK 

could become important as early as 2030 (Fowler and Wilby, 2010). 

2.4.1 Defining “extreme” rain 

Different approaches have been used to assess extreme precipitation, with 

considerable discrepancies between the definitions of “extreme”, e.g. annual 

maximum, upper 95% of the total annual rainfall (Burauskaite-Harju et al., 2012) or 

wettest 5 days of the year (Liu et al., 2011), and between the apparent changes (Liu 

et al., 2009). Thus, selection of the “extreme” metric is very important as some 

metrics are more sensitive to changes than others, while changes in seasonal mean 

values are differ greatly from changes in extreme values (Hegerl et al., 2004).  

Approaches to identify changes in rainfall impacts have also differed between 

those focussed on specific event frequency (Karl and Knight, 1998) or intensity 

(Osborn and Hulme, 2002), to the probability of events with a specific magnitude 
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(Fowler and Kilsby, 2003b; Maraun et al., 2009). Peak-over-threshold analyses, prior 

to applying an extreme value distribution, are also subject to the selection of a 

suitably high threshold. Different techniques include parameter stability estimates 

(Coles, 2001), high quantiles of the wet day distribution (Beguería, 2005) or a value 

exceeding a certain proportion of the mean wet day total (Fowler and Kilsby, 2003a). 

Although fixed thresholds of heavy and very heavy rain have been used (Villarini et 

al., 2011b), it is not advisable where there are considerable differences in event 

magnitude between stations (Frei and Schar, 2001). Extreme value analysis to 

estimate the likely magnitude of events with a specific probability is popular as it has 

practical application in engineering design, policy making or water resource 

management (Villarini et al., 2011a).  

The various merits of these different approaches have been explored (Pryor et 

al., 2009), concluding that quantile based tests are more sensitive to reporting biases 

arising from gauge metrification and that results from several methods should be 

compared. An alternative approach would be to consider “record breakers”, 

whereby the first event in a chronological series automatically breaks the record, 

then each subsequent maximum is added to the series (Beran, 2002). As the time 

series from which maxima are extracted increases, so also does the number of 

record breakers and the probability that the current maximum will be exceeded 

(Taleb, 2011). Benestad (2003) explored chronological (‘forward’) and reverse 

chronological (‘backward’) record breakers and their relative influence on trend 

analyses. He observed that the same series analyses in both directions can reveal 

trends of different direction and significance, neither of which may necessarily be 

true. 

Alexander et al. (2006) defined a set of ten indicators to facilitate comparison 

of extreme rainfall in different regions, indicated in Table 2-2. The sensitivity of a 

selection of these measures, and those identified above, will be explored in Chapter 

5 to identify the most appropriate for use in later analyses. 



~ 29 ~ 

Indicator Name Definition 

RX1day Maximum 1-day precipitation Maximum daily total per year or season 

RX5day Maximum 5-day precipitation Maximum 5-day total per year or season 

SDII Simple daily intensity Mean precipitation on wet days ≥1mm 

R10 Heavy precipitation days Number of days per year ≥10mm 

R20 Very heavy precipitation days Number of days per year ≥20mm 

CDD Consecutive dry days Longest dry spell per year 

CWD Consecutive wet days Longest wet spell per year 

PRCPTOT Annual total precipitation  

R95p 

(or Q95) 

Very wet days Days ≥ 95% of 1961-90 mean wet day 

distribution  

R99p 

(or Q99) 

Extremely wet days Days ≥ 99% of 1961-90 mean wet day 

distribution  

Table 2-2 : Indicators of extreme rainfall from Alexander et al. (2006)  

2.4.2 Changes in intensity 

Regardless of the definition of extremity, however, there appears to be a 

consensus of an upward trend in the magnitude of extreme rainfall events in 

conjunction with the changing climate (Groisman et al., 2001; Kunkel et al., 2003; 

Alexander et al., 2006; Gallant et al., 2007; Liu et al., 2011). Increases in event 

magnitude are particularly apparent in the longer duration events, e.g. 5- and 10-days 

(Fowler and Kilsby, 2003b; Bocheva et al., 2009) in high northern latitudes; and in sub-

daily rainfall in regions such as Eastern Australia (Westra and Sisson, 2011).  

The reported increases in the frequency and vigour of extra-tropical cyclones 

(Ulbrich et al., 2009; Vitolo et al., 2009) correlate well with the observed changes in 

extreme rainfall, as increases in moist static energy and gross moist instability have led 

to changes in winds, drawing storm tracks pole-wards and enhancing moisture 

convergence at higher latitudes. This also corresponds with recent work 

demonstrating that increases in atmospheric moisture content are most likely to 

exacerbate extreme rather than mean rainfall (Allan and Soden, 2008; Trenberth, 

2011). 

Liu et al. (2011) concluded that extreme rainfall, estimated from the wettest 

days of the year, is increasing in China. Comparing their findings with a comparable 

study in the USA, they observed that trends estimated using a fixed number of maxima 

per year are sensitive to the chosen number of events; trends may be insignificant if 
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non-extreme wet days are included in the analyses (Michaels et al., 2004) although the 

contrary is also true (Pryor et al., 2009). Comparing trends in more extreme events 

(97.5th and 99th quantiles; Suppiah and Hennessy, 1998) with those in the mean or 

median established that the former are more readily detected, as imputed by 

observed increases in rainfall variability (Hegerl et al., 2007). 

Prompted by the severe flooding which occurred in the UK during 2001-2002, 

Fowler and Kilsby (2003b) examined multi-day annual maxima (AMAX) from 1961-

2000, finding an increase in the magnitude of longer events in northern and western 

regions over the period of study, while equivalent events had decreased in the south. 

A downward trend in the estimated magnitude of summer events, particularly for 1-

day events in Southeast England, and the median seasonal maximum event (SMED) 

was also found (Fowler and Kilsby, 2003a), in common with UK observations for 

southern regions (Maraun et al., 2008; Jenkins et al., 2010). In contrast, increases were 

found in summer maxima in northern England (Burt and Ferranti, 2010) and Scotland 

(Perry, 2006). Increasing trends in winter maxima are also apparent with the greatest 

increases in Scotland (Fowler and Kilsby, 2003a) and other parts of the UK, although 

with conflicting confidence in the estimated increases (Osborn and Hulme, 2002; 

Perry, 2006; Burt and Ferranti, 2010).  

Assessing only the monthly England and Wales Precipitation series, between 

1766 to 2002, Mills (2005) identified increasing trends in winter rainfall and decreasing 

trends in the summer. While the metrics under consideration differed, these findings 

were corroborated by Rodda et al. (2010)’s exploration of intense UK daily rainfall 

between 1911 to 2006 and Burt and Ferranti (2010)’s regional examination of intense 

rainfall in northwest England. The latter associated the observed decreases in extreme 

summer rainfall with cyclonic weather systems (Lamb, 1972), and increased extreme 

winter rainfall with enhanced westerly flow.  

Maraun et al. (2009) examined UK monthly maxima between 1900 to 2006, 

confirming well known correlations between seasonal variability in event magnitude 

and orography. A statistical model premised on these results (Rust et al., 2009) 

confirmed that improved return level estimates could be obtained for different 

magnitude events, by allowing for the annual cycle within estimated Generalized 
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Extreme Value distribution parameters. Further analysis demonstrated strong 

correlations between airflow strength, direction and vorticity, used as proxies for 

atmospheric circulation patterns, in addition to seasonality (Maraun et al., 2011). 

Hand et al. (2004) compared extreme UK rainfall events between 1900 to 2000, 

finding similar correlations between seasonality and event classification, defined by 

Lamb (1972) circulation types. Similarly, using several different measures of winter 

rainfall extremity, Haylock et al. (2008) also found that the main drivers of inter-annual 

variability in the north of Europe are atmospheric pressure indices, such as the NAO 

index, temperature, humidity and sea surface temperature. 

Changes in extreme UK rainfall are discussed in greater detail in relation to the 

analyses of seasonal and annual maxima in Chapter 6; while specific correlations found 

between rainfall maxima and atmospheric or meteorological drivers are outlined in 

Chapter 7. 

2.4.3 Changes in frequency 

Buishand (1977) established, from observations in the Netherlands, that there is 

no correlation between the rainfall total on the first day after a dry spell and the 

duration of the subsequent wet period; the beginning and end of any spell have the 

lowest mean total compared to other wet days; and there is some dependence 

between successive wet day totals, which is enhanced during the winter period. Again 

not specifically examining extreme rainfall, Cowpertwait (2001) determined that there 

is a distinct seasonality in the inter-arrival times of all wet spells caused by cyclonic or 

anti-cyclonic weather. The probability of two wet spells being generated by the same 

weather system was higher for summer storms than winter, while the frequency and 

size of clusters was larger during winter. However, these approaches have not been 

widely applied to extreme rainfall. Assessments of temporal variability in extreme 

precipitation mostly concentrate on the likely return frequency of seasonal or annual 

maxima (Rust et al., 2009; Villarini et al., 2011b), with little attention paid to the time 

elapsed between individual maxima (Li et al., 2011). Since precipitation is a direct 

cause of flooding, characterising the behaviour of rainfall extremes would be a first 

step toward linking meteorological research to flood management.  
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The variability of events within a year can also be assessed through the 

dispersion of the annual count of events exceeding a high threshold (Villarini et al., 

2010). Long range dependence is particularly evidenced by ‘clusters’ of years 

(referred to as overdispersion) with high and low frequencies of floods or heavy 

rainfall (Villarini et al., 2009). The count of extreme events per year is known to 

approximate a Poisson process (Hsing, 1988); the natural sequence of these extreme 

events will display some irregularity, which may appear within a reasonably short 

series to be overdispersion but on closer inspection the data will be found to 

approximate an exponential distribution (Shinohara et al., 2010). 

However, it is the occurrence of several periods of heavy rainfall in quick 

succession which may generate flood conditions. Zolina et al. (2010) examined 

trends in the longevity of wet spells over the period 1950-2008 in mainland Europe, 

finding an increase in wet period duration although the total number of wet days per 

year had not changed. As with other literature on wet spell duration (Underwood, 

2009; Li et al., 2011), or event frequency, the authors acknowledge the importance 

of several events occurring in succession but did not specifically assess whether the 

spells were occurring closer together in time.  

As outlined above, event clustering within the literature appears to refer to 

three different attributes of extreme meteorological events: year to year clusters or 

sequences of wet years followed by dry years (Villarini et al., 2011a); in-year 

dispersion (or clustering) of events (Mailier et al., 2006; Vitolo et al., 2009); and 

events which span a “cluster” of several days e.g. a hot spell (Ferro and Segers, 

2003). For clarity, this thesis will make reference to: 

1. Long range dependence resulting in some sequences of similar years. 

2. In year event clustering. 

3. Spells of extreme wet events (EWE). 

There is strong evidence that rainfall events cluster in time, driven by a 

seasonal non-homogenous Poisson Process (Tramblay et al., 2011); this process can 

also be simulated with other statistical models such as the Cox Regression model to 

represent randomly varying rates of occurrence (Villarini et al., 2012). Although the 

relationship between these dependent events is often ignored in order to conform 
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with extreme value theory (Revfeim, 1983; Fawcett and Walshaw, 2008) by selecting 

only the maximum of a sequence (Furrer et al., 2010) or increasing the threshold 

(Davison and Smith, 1990). The focus of this research project is on extreme rainfall 

event clustering, that is the annual inter-arrival times of daily rainfall maxima, 

addressing this omission regarding inter-arrival dependency. 

2.4.4 Hydrological impacts 

The hydrological impacts of changes in extreme rainfall can be observed at 

both ends of the spectrum through changes in drought and flood frequency. 

Heightened variability in the hydrological cycle (Hegerl et al., 2007) coupled with 

changes in rainfall frequency have had an impact on both with varying impacts 

dependent on the location or region of study. Within the UK, drought frequency is 

high variable yet, despite the current drought conditions (Environment Agency, 

2012), significant changes are not yet observable (Burt and Horton, 2007; Hannaford 

and Marsh, 2008). In contrast, droughts in southern Mediterranean regions and 

parts of Australia are demonstrably increasing in rigour and frequency (Pnevmatikos 

and Katsoulis, 2006; Gallant et al., 2007; Costa and Soares, 2008; Jakob et al., 2011). 

This largely arises from the feedback loop created by reduced evaporation potential, 

in the absence of rainfall, which serves to enhance temperatures and thus droughts 

while exacerbating heavy rainfall elsewhere (Gershunov and Douville, 2008). 

Understanding the true nature of changes in flood frequency is difficult due to 

abrupt changes in catchments such as dam construction (Villarini et al., 2011c) or 

more gradual impacts from urbanisation (Hannaford and Marsh, 2008; Prudhomme 

and Genevier, 2011) or agriculture and forestry practice (Stahl et al., 2010). Results 

mirror those for droughts, with increases in stream flow found in the higher latitudes 

of Europe and North America (Bocheva et al., 2009; Fowler et al., 2010; Villarini et 

al., 2011c) and decreases towards the Mediterranean (Stahl et al., 2010; Hannaford 

et al., 2011).  

2.5 Projected Changes in Extreme Rain 

The likely changes in precipitation patterns are less well understood than likely 

temperature changes, although climate models have been used (Fowler and Ekström, 

2009; Portmann et al., 2009) to demonstrate that the influence of increased global 
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mean temperature on the hydrological cycle will be an enhancement of variability 

affecting the extremes more than mean rainfall (Hegerl et al., 2004; 2007). As wind 

and rain storms are strongly associated through storm-scale enhancements of 

moisture convergence (Trenberth, 1998; Trenberth et al., 2003), increases in wind 

storms will lead to increased extreme rainfall (Trenberth, 2011). However, the global 

distribution of changes in rainfall intensity will not be uniform across the globe and is 

likely to mimic the changes in surface temperature, with the largest relative increases 

in projected extremes likely to occur in the higher latitudes, as a result of the pole-

ward shift of storm tracks (Meehl et al., 2005). Lenderink and van Meijgaard (2008) 

caution that while projected changes in rainfall intensity are likely to be dominated by 

thermodynamically driven processes, the future dependency on temperature may not 

continue in the same manner as under current climate conditions. 

At higher latitudes, where the moisture-adiabatic lapse rate is less important 

(Pall et al., 2007), changes will be governed by the C-C relationship. However, the 

increase in moisture holding capacity may not in itself lead to an increase in 

precipitation, which would require an increase in the rate of evaporation or in 

atmospheric water; so resultant impacts on rainfall will be location dependent 

(Benestad, 2006). Atmospheric moisture condensation only increases at a rate of 

2.9%/°K (O'Gorman and Schneider, 2009) as a result of the rate of decrease of 

temperature in rising air. O'Gorman and Schneider (2009) also noted that extreme 

precipitation responses to warm anomalies, such as ENSO, are likely to differ 

considerably from the responses to more gradual increases in global mean 

temperature. 

Increases in sub-daily extreme rainfall intensity may increase at a higher rate 

than the constraining C-C relationship, with no increase in frequency (Lenderink and 

van Meijgaard, 2008). It is more likely that extreme rainfall intensity will be governed 

by moisture availability, and hence seasonal moisture patterns (Berg et al., 2009), 

with the majority of Global Circulation and Regional Climate Model simulations 

indicating increases in extreme events at the expense of lighter rainfall (Wilson and 

Toumi, 2005; Wentz et al., 2007; Min et al., 2009). 
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Anticipated responses to increasing global mean temperature can be 

summarised as (Allen et al., 2002): 

• In high-latitudes where evaporation potential is high, moisture convergence 

is also high and energy budgets are less important, precipitation will increase at a 

rate of at least 7%/°K 

• In mid-latitudes and at the equator where there is a high evaporation 

potential, precipitation will increase with increased warming at a rate of around 

3%/°K. 

• In arid regions where the evaporation rate is constrained, the hydrological 

cycle will decrease with increased warming. 

A further effect of the C-C relationship is that, where evaporation rates allow, 

increasing temperatures will lead to a concomitant rise in cloud formation. This may 

have a limiting effect as the resultant decrease in solar irradiance will in turn reduce 

the local temperature and atmospheric moisture capacity. Thus, areas of the UK such 

as North Scotland are likely to be more overcast in future climatic conditions, 

although not necessarily wetter (Murphy et al., 2009). 

Anticipated changes in hydrological responses are toward increased drought 

occurrence and severity (IPCC, 2011; Bladé et al., 2012) as well as increased flood 

frequency (Christensen and Christensen, 2004; Beniston et al., 2007; Fowler and 

Wilby, 2010; IPCC, 2011; Trenberth, 2011) as the natural variability of the 

hydrological cycle is enhanced. As a result of interconnections between atmospheric 

circulation patterns and moisture budget movements, large scale droughts in one 

region accompanied by severe flooding in an adjacent location are also likely to 

increase in severity through enhanced feedback (Trenberth, 2011). While the pole-

ward transportation of atmospheric moisture via Atmospheric Rivers may also 

considerably enhance rainfall intensity in regions such as North America and the UK 

which lie in the path of these systems (Lavers et al., 2011). 

A responsibility lies with scientists to ensure that advances in climate change 

research, particularly in sensitive areas such as extremes of the hydrological cycle, 

are reflected properly in policy development. Some argue that we require better 



~ 36 ~ 

predictions of these extremes in order to adapt effectively to the changing climate 

(Dessai et al., 2009) while others believe that a better understanding of exposure risk 

from the environment to the development in question is required in order to adapt 

effectively (McEvoy et al., 2010). Others still seek ways of employing complex 

mathematical tools to quantify the risks (Schertzer et al., 2010; Taleb, 2011). 

With the recent release of the Adaptation Sub-Committee (ASC) of the 

Committee on Climate Change’s report (Krebs et al., 2010) assessing the UK’s state 

of preparedness for climate change, there has been a shift in focus from whether 

climate change is occurring to determining the likely consequences. The first release 

of the UK Climate Change Risk Assessment (DEFRA, 2012), in combination with the 

forthcoming Adaptation Action Plans for Scotland, Wales, Northern Ireland and 

many regions of England, will further enhance this focus and derive a greater need to 

understand extreme weather patterns. In particular, the ASC identified that in order 

to avoid maladaptation (that is adaptive actions which have a negative impact 

elsewhere, or at a later point in time), there is a need to quantify the UK’s 

vulnerability to climate change. Nelson (2011) highlights that both individual and 

governance risk and decision frameworks are hampered by the lack of clarity and 

limited predictive power for future changes in extreme events. The authors of a 

recent assessment of the potential for cities to adapt to climate change concur with 

this, and demonstrate that those who are more capable of taking action are 

generally at a lower level of governance (Rosenzweig et al., 2011).  

2.6 Summary 

This chapter synthesised the research underpinning this project, outlining the 

sources of variability which may arise in meteorological observations in general 

terms. The ocean-atmosphere relationships which govern weather systems in 

general, and extreme weather in particular, were summarised. Resultant changes in 

extremes identified within the literature, both in general and with particular 

attention to daily rainfall, and the consequences which are being experienced at 

present were summarised. Further detail on the observed changes in extreme and 

very heavy UK daily rainfall is included in later chapters, particularly within Chapter 6 

which deals with annual and seasonal maxima. Some anticipated changes in the 
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hydrological cycle, again focussed on rainfall, were also explored. Methods 

associated with the previously cited research were not described here, rather those 

methods which will be used in this thesis are outlined in Chapter 3. 

The overarching aim of this project is to examine within year clustering of 

extreme daily rainfall and the key atmospheric or meteorological variables driving 

event frequency and intensity. Therefore, the thesis will initially focus on the sources 

of variability in extreme and very heavy daily rainfall, repeating approaches used in 

other parts of the world specifically for the UK. Metrics of extreme rainfall which 

have been used to effect by others will be explored for their applicability to this 

project. Atmospheric relationships established from the literature will then be 

examined in relation to extreme rainfall. Where appropriate, such as in the 

exploratory data analysis in Chapter 5, results which were briefly outlined in this 

chapter will be explained in greater detail.  
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Chapter Three Statistical Tools 

"He uses statistics as a drunken man uses lamp posts  

- for support rather than illumination." 

Andrew Lang 

Rigorous statistical analysis is required to distinguish seasonal and other short 

term climate fluctuations from longer-term variability and external forcing affecting 

climate dynamics, to identify changes (von Storch and Zwiers, 1999) and to avoid 

drawing spurious conclusions. The objective is to demonstrate that any apparent 

changes are significantly different from those which would be expected given natural 

climate variability (Koutsoyiannis, 2003; Trenberth et al., 2007). This is a notable 

challenge given the complexity of the climate system and natural variability, but is 

considerably enhanced when accounting for anthropogenic influences (Milly et al., 

2008). 

Following the development of a comprehensive set of rainfall observations, 

outlined in Chapter 4, the data will need testing for homogeneity and discontinuities 

arising from the quality control process or external influences such as gauge 

relocation. Apparent trends in the data must then be distinguished from cyclic 

variability and randomly occurring processes. In order to identify an appropriate 

metric of extremity, an appreciation of the representative statistical distributions is 

required. Finally, as the aim of this project is to determine the relationship between 

extreme daily rainfall and atmospheric covariates, tools are required to incorporate 

this spatial and temporal information and to test the model validity in representing 

the data. 

While Chapter 2 explored the results which have been published previously, 

this chapter briefly summarises the published methods and  identifies those to be 

used in this project. The structure of this chapter is similar to the overall thesis. It 

examines: abrupt and gradually varying changes; statistical distributions for 

extremes; methods to incorporate multiple variables in the distributions; and model 

testing approaches. 
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3.1 Abrupt and Gradually Varying Change 

Hydrological records are highly volatile and dominated by climate variability to 

a greater extent than temperature records (Zhang et al., 2011), so it is more difficult 

to capture abrupt and gradual changes as the data may simply be exhibiting normal 

temporal perturbations (Lins and Cohn, 2011). While the data to be used in this 

research have been subjected to quality control and homogeneity checks at source, 

assessing gradual or abrupt changes will help to identify any remaining sources of 

error. These tests will also ensure that the influence of any repeated variability (e.g. 

seasonal oscillations) is incorporated within later statistical analyses. 

3.1.1 Abrupt change points 

Trends may appear to exist in data where none is truly present, arising from 

abrupt changes in the data (change points) or from cyclic variability (Chen and 

Grasby, 2009). Tests for change points in the data may focus on single or multiple 

points, dependent on the eventual purpose of the application (Reeves et al., 2007). 

For instance, in producing a homogenous observation record, multiple change point 

detection tests such as the minimum description length or the Rodionov test 

(Rodionov, 2004) are recommended. However, these methods require a priori 

knowledge of likely change points and can be computationally expensive (Rodionov, 

2005). Furthermore, identifying too many change points in a data series will over-

fragment the data and can potentially enhance any apparent trends (Chen and 

Grasby, 2009). 

The cumulative sums test (Page, 1957) is the simplest test for a single change 

point, but has been shown to be very sensitive to highly variable series (Villarini et 

al., 2009) such as rainfall maxima. As a result, the non-parametric Pettitt test (Pettitt, 

1979) will be used in this thesis. The test statistic, , premised on the Mann-

Whitney two sample test for population similarity, compares the sample mean and 

variance calculated from two portions of a time series, X, for increasing sequences: 

 

Equation 3-1 
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with a critical value, , calculated from (Gao et al., 2010):  

 

Equation 3-2 

3.1.2 Gradual changes - long range dependence 

Prior to testing for trends within the data, it is necessary to establish the 

influence of any other type of variability, such as seasonal or longer cycles, on 

apparent changes in the data. Some authors have argued that (fractional) auto-

regressive moving average (ARMA, FARIMA) models are potential explanatory 

variables for the Hurst Phenomenon, or other long-term memory processes (e.g. 

Allan et al., 2009). Methods to quantify the Hurst Exponent, , include comparison 

with white noise series, fractional Gaussian noise or fraction Brownian motion 

(Serinaldi, 2010). Koutsoyiannis (2002) also developed a linear estimator from a 

simple scaling signal (Klemes, 1974) of the non-stationary process. However, the 

estimation of variance has standard errors proportional to the inverse of the data 

series duration; e.g. for n=100 years, s.e.= σ/2.5 rather than σ/10.  

The aggregated variance method is the most commonly adopted method for 

estimation of H (Taqqu et al., 1995), with the differenced variance method being 

more effective when significant change points or trends exist in the data (Perreault 

et al., 2000a). In this method, the time series Xi are divided into m-sized blocks and 

the aggregated average calculated for successive values of m: 

 
Equation 3-3 

for which the sample variance can then be estimated, . 

When plotted on a logarithmic scale, the gradient of the sample variance estimates 

form a straight line with gradient . Significance of the 

estimate of H is established by destroying the memory of the process through 

resampling. 
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3.1.3 Gradual changes - monotonic linear trends 

The most widely used technique for examining gradually varying changes is 

that of ordinary least squares regression (OLS); although it is reliant on homogenous, 

independent and identically distributed (i.i.d.) data, and normally distributed 

departures from the regression line (Kundzewicz and Robson, 2000). This is not 

appropriate for serially dependent data (Hess, 1959; Alexander et al., 2006) and 

represents un-transformed hydrological data trends poorly (Yue and Pilon, 2004; 

Pryor et al., 2009), often reporting a trend where one is not present (Cohn and Lins, 

2005). However, where data are independent and can be transformed to fit a normal 

distribution, OLS regression is a powerful tool and often more satisfactory in 

describing a whole data series than more complicated regression analyses (von 

Storch and Zwiers, 1999). Traditional linear regression models focus on the median 

of the data, potentially ignoring changes in other quantiles of the highly complex and 

variable annual maxima series. By contrast, quantile regression characterises the 

relationship over time by assessing OLS trends at different levels of the response 

variable (Cade and Noon, 2003); a combination of both techniques will be employed 

in the exploratory data analysis. 

Testing for the significance of such trends can vary from simple data 

manipulation techniques to formal distribution tests. Data permutation and 

bootstrapping are considered effective in establishing trend realism, (Davis and 

Mikosch, 2008), while simplifying the data with a simple running median or more 

sophisticated locally weighted scatter plot smoother to remove some natural 

variability (Kundzewicz and Robson, 2000), or ranking data can also be powerful 

tools (Moberg and Jones, 2005).  

Bootstrapping is an enhancement of the Jack-Knife approach making better 

use of the available data through resampling (Efron, 1979), outlined in Appendix 1. 

While less powerful than permutation approaches, it is more flexible in its 

application (Kundzewicz and Robson, 2000), with its success lying in its simplicity and 

lack of distributional dependence (von Storch and Zwiers, 1999). A simple adaptation 

to this process to allow for short-term dependence within a series is the moving 
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block bootstrap (Yue and Pilon, 2004), wherein groups of l consecutive observations, 

rather than individual observations, are sampled. 

The most robust significance tests commonly employed with OLS are both non-

parametric: the Mann-Kendall test statistic and Spearman’s rank correlation test. 

While the latter is simple and efficient in removing the effects of seasonality, it is not 

considered to be as robust in trend estimates for censored, non-normal data as the 

Kendall correlation coefficient ( ) (Yue et al., 2002). In contrast, Kendall’s  is robust 

to the presence of extreme values (Hamed and Ramachandra Rao, 1998), a 

noteworthy consideration for this application. Chen and Grasby (2009) recommend 

commencing the trend test at different points within a data series to obviate the 

Mann-Kendall sensitivity to diurnal and seasonal cycles. 

The Mann-Kendall test statistic, S, which will be used in the thesis, is estimated 

by ranking n pairs of concordant and discordant data, then estimating the variance 

given the presence of tied data pairs and calculation of the test statistic with a critical 

value :  

 
Equation 3-4 

3.1.4 Sequences of events 

The distributions described later assume that extreme events are i.i.d., 

although this is rarely completely true (Katz et al., 2002) as threshold maxima are 

often generated by the same weather system and so tend to occur in clusters (Smith 

and Weissman, 1985). Independent sequences of peak-over-threshold (POT) events 

can be identified using a declustering algorithm, accepting only the maximum of 

several clustered events. The concept of clustering at high levels was explored by 

Leadbetter (1983) who defined an ‘extremal index’  related to the cluster size 

composed from a sequence of events. If   is a measure of the data 

tendency to cluster at high levels, then  as the degree of clustering decreases. 
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Hsing (1988) showed that clusters of exceedances are independent at the upper limit 

of their distribution.  

A parameter stability exercise can be used to determine the minimum duration 

between each cluster (Coles, 2001) or simply prior knowledge of the typical 

climatology (Abaurrea et al., 2007). More complex models exist to assimilate all of 

the data relating to the maxima, conditioning subsequent excesses of a cluster on 

the first in a sequence (Furrer et al., 2010). Alternatively, the combined properties of 

the extremal index and the Poisson process, with a de-cluster interval of   is 

appropriate to identify independent event clusters (Ferro and Segers, 2003) and will 

be used here. 

The theory of runs assumes that events occur randomly in sequences of similar 

nature, exhibiting some apparent clustering (Rubin et al., 1990) and can be used to 

approximate the arrival times of POT events. The efficacy of the declustering 

algorithm can be assessed by reviewing the frequency of spells with rainfall below 

the threshold, or randomness of the events (Englehart and Douglas, 2006).  

The Wald-Wolfowitz runs test (Wald and Wolfowitz, 1940) is a powerful tool to 

assess the randomness of a sequence of events (McWilliams, 1990). While 

enhancements have been proposed to remove the sensitivity of the data to the 

selected distribution and assess the confidence level (Wendy Lou, 1996), the original 

test will be adequate for exploratory analyses in this thesis. Consider POT events as a 

positive occurrence, denoted by 1, and events below the threshold denoted by 0. A 

run, , is the number of successes in any sequence. Then, indicating the number of 

positive successes by , and zero occurrences as : 

 

Equation 3-5 

which may then be tested at a suitable confidence level against the statistic 

 

Equation 3-6 
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3.2 Probability Distributions  

Three basic forms of statistical distribution are appropriate for extreme rainfall 

analysis: discrete describing the frequency; continuous relating to the magnitude of 

less heavy rain; and extreme values governing the tail properties. These will be 

described briefly below, with the underlying theory included in Appendix B. 

3.2.1 Discrete distributions 

Consider the probability of extremely heavy rain occurring on a given day as a 

Bernoulli trial, with success 1 and failure 0. A number, , of these events occurring 

over a fixed interval of time or space is described by the Poisson distribution with 

arrival rate, . Events are assumed to be i.i.d. over the spatial and temporal frame 

with arrival rate equal to the mean and the variance of the series, that is equally 

dispersed with a coefficient of dispersion , equivalent to the cluster index. 

Even following data declustering, strict independence is often hard to prove 

(Wilks, 2005), particularly with respect to extreme events derived from one synoptic 

scale weather system, or driven by seasonal processes. When , the sequence is 

under dispersed, events arrive at a rate which is more regular or uniform than 

expected from a Poisson process. By contrast,  relates to an over-dispersed (or 

clustered) sequence of events, often demonstrated by hydrological extremes 

through sequences of wet and dry years (Mandelbrot and Wallis, 1968). A visual 

representation of over-, under- and regularly dispersed series is illustrated from the 

frequency of rainfall maxima per year over a 30 year period in Figure 3-1.  

As the stationarity assumption is invalid in the presence of substantial seasonal 

cycles, the negative binomial distribution is often considered more representative,  

describing the frequency of failures before the th success (Anselmo et al., 1996). 

While the negative binomial can be a good approximation for wet spell durations, it 

over-represents their frequency (Wilks, 1999), recommending the use of an 

alternative representation of non-homogeneity within the Poisson distribution. 
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Figure 3-1 : Dispersion of number of peak-over-threshold rainfall events per year (top) over-

dispersed ( ); (middle) regular ( ), (bottom) under-dispersed ( ) from three UK gauge 

stations. Point size represents the event count. 

3.2.2 Gamma distribution 

Atmospheric data, such as daily rainfall totals, which are distinctly skewed to 

the right and bounded to the left by zero, are well approximated by the gamma 

distribution (Thom, 1958; Groisman et al., 1999; Husak et al., 2007; Wang et al., 

2008). The distribution is controlled by the dimensionless shape parameter, , and 

the scale parameter, , which takes the dimensions of the data distribution. 

3.2.3 Extreme Value distributions 

Block Maxima 

It is well established that a collection of maxima, , over a series of  blocks, 

such as annual maxima follow the Generalized Extreme Value (GEV) distribution: 

 

Equation 3-7 

with parameters location , scale  and shape  

(Coles, 2001). Three limiting forms of the GEV exist for  (Gumbel, light tail); 

 (Fréchet, heavy tail); and  (Weibull, bounded distribution). Quantile 

estimates of the distribution are often used to estimate the probable return 

frequency of rainfall maxima (Faulkner, 1999; Fowler and Kilsby, 2003b). 

Parameters for the GEV are best estimated by the L-moments method for 

small samples (Hosking, 1990), while Maximum Likelihood Estimates are more 

appropriate in the presence of external influences such as a changing climate or 

covariate data (Smith, 1987; Katz et al., 2002; Zhang et al., 2004); refer also to 

Section 3.4. As parameter estimation can be affected by long range dependence, 

Eskdalemuir

Oxford

Rothamsted
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which increases uncertainty (Rust, 2009), parameter uncertainties are best 

estimated with a bootstrap by replacement method (Efron, 1979). 

The model can be expanded to include the r largest events per block by 

defining th largest of , assuming that the parameters 

correspond with those of the AMAX limiting GEV distribution (Smith, 1986). 

However, the series are no longer independent as the outcome of each subsequent 

event is dependent on the magnitude and occurrence of the previous value (Coles, 

2001). Although parameter estimates are generally improved, compared with using 

the annual maxima alone, increases in the data set must be balanced against the 

increased bias towards less extreme rainfall (Robinson and Tawn, 1997; Coles, 2001). 

Peak-over-threshold (POT) Maxima 

Analysing only the annual maximum value disregards useful information during 

particularly wet years; the extension to the r-largest statistical model is an 

improvement but can also omit maxima within a predefined block (Coles, 2001). The 

alternative is to derive a partial duration series from excesses over a high threshold, 

, or peaks-over-threshold. While care must be taken with the threshold selection 

(Zhang et al., 2005; Kenyon and Hegerl, 2008), this approach offers considerable 

advantages by only incorporating extreme data, without limiting the analysis set. The 

POT maxima follow the Generalized Pareto Distribution (GPD), shape  and scale 

parameters (Coles, 2001). 

 
Equation 3-8 

The three limiting forms are dependent on the shape parameter:  

(exponential, light tail);  (Pareto, heavy tail); and  (beta, bounded 

distribution). 

Approximating the frequency of POT events with a Poisson distribution, the 

frequency and magnitude of the maxima are often analysed using a Point Process 

relationship (Lana et al., 2006; Abaurrea et al., 2007; Furrer et al., 2010). This 

combines the GPD with the Poisson distribution by linking the occurrence rate, scale 

and shape parameters through those of the GEV. The point process is convoluted to 
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fit, but facilitates interpretation of results and calculation of error terms (Davison 

and Smith, 1990). Alternatively, an orthogonal process, where the two models are 

fitted independently, is simpler to apply but introduces greater difficulty in 

interpretation of the model parameters. 

3.3 Generalized Additive Models 

While Generalized Linear Models (GLM; refer to Appendix B.3) are effective in 

modelling daily rainfall event occurrence, and their dependence on atmospheric 

circulation patterns (Sapiano et al., 2006), they can over-simplify data or processes 

which are known to be highly random from year to year (Chavez-Demoulin and 

Davison, 2005). As GLMs relate the mean of a set of random response variables to a 

collection of explanatory variables, they are not appropriate for direct 

transformation to extreme value distributions (Yee and Stephenson, 2007). Yee and 

Wild (1996) formally introduced the concept of Vector Generalized Linear Models 

(VGLM), allowing statistical models to be data driven rather than model driven. 

Although care must be taken in the application of this approach to extreme value 

distributions, which by definition are model driven as the asymptotes of the 

distribution are extrapolated, nesting the two methods has been shown to be very 

powerful (Stephenson and Gilleland, 2006). 

An enhancement to the GLM is that of Generalized Additive Models (GAM, 

Hastie and Tibshirani, 1990) where the linear predictor term is replaced by the sum 

of smooth non-linear functions of the covariates. The GAM has been widely adopted 

as an effective model for strongly seasonal or forced responses (Wood, 2006; 

Villarini et al., 2011b), as well as examining longer term changes in behaviour in 

temporally variable data (Morton and Henderson, 2008; Mestre and Hallegatte, 

2009; Underwood, 2009), and is considered particularly appropriate for use in this 

project. GAMs allow much greater flexibility in the model specification and simplify 

complex linear relationships through a model specification based on ‘smoothness’. 

Hastie and Tibshirani (1990) recommend the use of a combination of several 

polynomials or p-splines to model the smoother; this shifts the focus to a model 

driven representation, focussing on a model which is flexible without over- or under-

smoothing the response. Wood (2006) concurs, emphasising that while this is not 
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the only approach, other solutions are theoretically over-complicated and 

computationally intensive.  

Vector Generalized Additive Models (VGAM) are an enhancement of VGLMs 

and applicable to a wide range of non-exponential family models, including Extreme 

Value Distributions (Yee and Wild, 1996). As the focus of this project is on extreme 

value distributions, the R software package (R Development Core Team, 2011) which 

will be employed is VGAM (Yee, 2011) in which the smoothers are chosen by default. 

Faraway (2006) finds this approach to be advantageous, in removing the subjectivity 

required to choose the degree of smoothness. The software’s enhanced flexibility 

and functionality permits direct estimation of parameters, e.g. for the GEV:  

 
Equation 3-9 

The shape parameter, , is fit by default as an intercept only term as it is 

numerically difficult to estimate (Katz et al., 2002; Yee and Stephenson, 2007).  

3.4 Multivariate Distributions in Time and Space 

Extreme value distributions premised on stationarity are invalid in the 

presence of a strong seasonal pattern, atmospheric circulation patterns or 

anthropogenic changes. A pragmatic approach introduces a linear model term into 

the distribution parameters. For instance a monotonic trend over the observation 

period can be incorporated into the GEV parameters as: 

 
Equation 3-10 

More complex terms can also be built up to express change points in the data 

(Coles et al., 1999) or dependence on different processes. Increased covariate 

complexity and flexibility leads the parameter terms to represent GLM and GAM 

definitions as explored above (Dobson, 2002; Chavez-Demoulin and Davison, 2005; 

Wood, 2006). Furthermore, linear temporal trends are often too specific for use with 
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climatic variables, necessitating the greater flexibility of GAMs or VGAMs (Ghil et al., 

2011). 

Trends in individual station extremes do not necessarily reflect a larger spatial 

pattern or response to larger scale changes, and may only represent the 5% error 

which would be expected at any 95% test of significance (Kanji, 1999). Similarly, 

direct comparison of the same properties at several proximate locations may not be 

appropriate as the observed events will not necessarily be independent without 

allowance for extremal dependence (Davison and Smith, 1990).  

An effective method for spatial comparison of temporal changes uses 

regionally pooled data, weighted in some manner to reflect differences between 

station longevity or elevation. Spatial weightings have been used to effect in studies 

of individual metrics (Perry, 2006; Maraun et al., 2008), a major drawback is that 

only one climate signal may be compared at a time. Other techniques which have 

been used to assess spatial variability include kriging (Haylock et al., 2008) and 

Principal Component Analysis (PCA, Hurrell and Deser, 2009). The former is overly 

complex when assessing more than one variable (Carreau et al., 2009) and has no 

allowance for parameter uncertainty. Similarly, PCA is inappropriate for direct 

application to extreme value analyses as the components tend to be derived from 

distributional means (Cooley and Sain, 2010). Regional Frequency Analysis (RFA, 

Hosking and Wallis, 1997) is another well-established method  which is efficient and 

robust in estimating hydrological return periods where data are insufficient (Robson, 

1999). 

While multivariate spatial extreme models, centred on the marginal 

relationship of two extreme distributions (Cooley et al., 2007; Naveau et al., 2009) 

could be used to assess spatial maxima, application of the theory is complex and 

unreliable (Carreau et al., 2009). An alternative is to incorporate spatial 

characteristics into individual station model estimates of the extreme value 

parameters, achieving spatial comparison indirectly (Cooley et al., 2007). This 

technique was also applied to effect in South Africa by Sang and Gelfand (2009) and 

provides a considerable improvement over RFA in regions which are heavily 

dominated by orographic effects (Cooley and Sain, 2010). Despite the ease of 
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application, and improvements in model fits, there is a dependence on suitably long 

and complete observations to estimate the initial model distributions which will not 

be achieved with the data available. As a result, preference will be given to an RFA 

pooling approach, in combination with atmospheric covariates to assess spatial and 

temporal variability within the data. 

3.5 Parameter Estimation 

Maximum Likelihood Estimates (MLE) are asymptotically normally distributed, 

the variance is asymptotically minimal and they are asymptotically unbiased (Coles, 

2001). However, the asymptotic properties are a draw-back when the sample size is 

small or when a combination of records (e.g. pooled flood maxima) are analysed 

(Hosking, 1990). MLEs may also not be appropriate for establishing confidence 

intervals in data where the distribution is known to be changing (Benestad, 2006; 

Rust, 2009). Where there are no prior constraints on the estimator, the MLE will 

occur at a point where the first derivative of the log-likelihood function equals zero; 

this first differential also determines the sensitivity of the log-likelihood function to 

changes in its parameters. 

L-moments are a special case of the method of moments for estimating 

parameters of a distribution, in particular those of meteorological series (Hosking, 

1995a). They exist where a series has a finite mean and are considered most 

appropriate for parameter fitting in skewed or small sample distributions (Hosking 

and Wallis, 1997). L-moment ratio measures of skewness and kurtosis are 

particularly useful in describing distribution shape and approximating distribution 

parameters (Robson, 1999). 

When dealing with small samples, say <50, parameter estimates are best 

approximated by the L-moments method (Hosking, 1990); this method is also widely 

adopted in the UK for parameter estimates of rainfall and river flood flow frequency 

applied to pooled extreme value data. However, in the presence of an external 

influence such as changing climate or covariate data, MLE have been shown to be 

more appropriate (Zhang et al., 2005; White et al., 2008). A further advantage of 

MLE is that standard error estimates are inherently calculated, whereas L-moment 

ratios require further manipulation to determine the confidence limits. Furthermore, 
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MLE are more readily adapted to include covariates such as a trend term (Wilks, 

2005), which is important where the data may display non-stationarity as a result of 

climate change (Katz et al., 2002). A comparison of the GEV parameters estimated 

through MLE and L-moment ratios confirmed that differences between the methods 

two are minor, and both will be used as appropriate.  

3.6 Significance Testing 

3.6.1 Null hypothesis testing 

Having established hypotheses from extreme metrics, whose sensitivity to 

different forms of variability has been minimised, and developed appropriate 

models, significance testing still requires caution. It is important to recognise that 

rejecting the null hypothesis (H0) is only a failure to reject the hypothesis, and not a 

confirmation that the alternative hypothesis (H1) is true (Nicholls, 2001). Failing to 

reject H0 can arise from an absence of evidence to the contrary; e.g. the upwards 

trend since 1985 in the Central England Temperature series was only recently 

determined to be significant when additional data became available (Jones et al., 

2011). 

The power of a significance test lies in the probability of detecting a genuine 

trend, that is to reject H0 when it is indeed false (Kanji, 1999); where the probability 

of a Type II error, rejecting H0 when it is true, is given by 1 minus the power of the 

test (Yue and Pilon, 2004). In addition to the tests mentioned in Section 3.1 and 

below, a parametric test for significance which will be used is the Student’s t-test, 

applied to normalised data (Wilks, 2005). 

3.6.2 Model fit 

The one-sample Kolmogorov-Smirnov test is a distribution free test of 

goodness of fit tests for continuous data distributions and considered to be a robust 

technique in combination with MLE for establishing the goodness of fit (Ghil et al., 

2011). Wilks (2005) cautions that where parameters for the fitted distribution are 

estimated from the same sample as that used for comparative testing, the strength 

of the test is weakened and that the critical test values should be obtained through 

repeated simulation. 
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Statistical models derived from multiple criteria should respect the laws of 

parsimony and be only as complex as required to explain the variable being 

modelled. The simplest qualitative test of model suitability is the deviance statistic, 

or likelihood ratio test, which compares the ratio of the likelihood functions for each 

fitted model (Wilks, 2005). An enhancement is to include the number of model 

components, as the deviance statistic always favours higher dimension models and 

can lead to unnecessary complexity (AIC, Akaike, 1974). However, when used for 

large sample data, the AIC also favours higher dimensional models as it ignores 

asymptotic optionality; this can be avoided by incorporating an additional log term 

for the number of estimators (BIC, Schwarz, 1978). The Generalized Cross Validation 

score (Hastie and Tibshirani, 1990), and the unbiased risk estimator (Wood, 2006) 

which are flexible re-scalings of the deviance statistic and AIC, respectively, are 

recommended for use with GAMs. 

All model testing criterion can penalise models unnecessarily, despite evident 

improvements in model fit with additional parameters, suggesting that several 

should be used in addition to subjective testing (Villarini et al., 2009). These tools will 

be used in combination with more quantitative tests such as Quantile-Quantile plots, 

visual assessment of model fit or absolute model indices such as the mean errors of 

estimated variables.  

3.7 Conclusion 

Methods for exploratory data analysis, such as the Pettit test for abrupt and 

gradually varying changes,  Wolf-Waldowitz test for data randomness, or aggregated 

variance test for Long Range Dependence, will be applied to daily rainfall 

observations in Chapter 5. The return frequencies of annual maximum rainfall 

magnitudes will be estimated, using maximum likelihood estimates to obtain 

regionally pooled GEV distributions in Chapter 6. Chapter 7 will extend the extreme 

value data set, examining daily excesses over a high threshold with an orthogonal 

Poisson and GPD model. The chapter will also make use of multivariate statistics and 

Principal Component Analysis to define coherent regions of UK extreme rainfall. 

Finally, Chapter 8 will draw these analyses together with VGAMs to identify the 
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principal mechanisms driving very heavy rainfall events and their influence on 

within-year event clustering, and to examine any changes in behaviour.  
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Chapter Four Data 

“No good model ever accounted for all the facts, since some data was bound to 

be misleading if not plain wrong.” 

James Dewey Watson, Some Mad Pursuit 

This chapter identifies the data sets which have been selected to examine the 

temporal and spatial behavioural characteristics of extreme rainfall. The data 

described here include UK daily precipitation observations, daily and monthly 

temperature observations, and measures of atmospheric processes such as the 

North Atlantic Oscillation (NAO) Index. The chapter also describes the method 

followed to ensure that the rainfall observations were homogenous and did not 

include erroneous readings. 

4.1 Precipitation 

This project will concentrate on the frequency and magnitude of extreme and 

very heavy rainfall totals and will not refine on the type of precipitation, because hail 

and snow form a small proportion of the observed precipitation falling on UK wet 

days (≥1mm) as shown in Figure 4-1 (Met Office, 2011c). Furthermore, their liquid 

equivalent is reported in daily observation totals (Met Office, 2011a). It will also be 

shown in later chapters that the heaviest daily totals tend to have a distinct seasonal 

pattern centred around the summer months. 

 

Figure 4-1 : Comparison of days of snow fall and wet days (Met Office, 2011c) 
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Various gridded or regionally averaged daily rainfall data sets are available, 

such as the Hadley Centre UK Precipitation (HadUKP) series (Alexander and Jones, 

2000), the England and Wales Precipitation series (Manley, 1974) each developed 

from ≥7 stations per region, or a 5km gridded set covering 1961-2009 (Perry et al., 

2009). Gridded and pooled data series benefit from their lack of reliance on 

individual station data; however, the area averaged data may miss localised intense 

storms and underestimate specific point maxima. The underestimation can be 

considerable for small radius convective storms, making gridded data unsuitable for 

an examination of extreme events. As a result, this project will employ individual 

station observations for assessing extreme events. 

No observation station has a continuous, homogenous, uninterrupted rainfall 

record. While longer observation series may appear to be preferable, to distinguish 

natural climatic variability from long term behavioural changes or trends, strict 

statistical analyses cannot be carried out if there are inhomogeneities in the data 

series arising from changes in instrumentation or gauge drift (Klein Tank et al., 2002). 

There is no specific “minimum” duration record length; various studies have adopted 

different criteria dependent on the reliability of data used. However, Chen and 

Grasby (2009) recommend records of ≥60 years to remove the influence of “quasi-

cycles” in the order of 40-60 years, while Kundzewicz and Robson (2004) suggest 

that at least 50 years of observations are required. Fowler and Kilsby (2003b) defined 

a minimum observation period as 40 years of records with fewer than 5 years 

missing; Wigley and Jones (1987) compared two portions of a 110 year rainfall 

record with an overlap period of 55 years to determine the homogeneity of regional 

pools.  

Other analyses of individual daily rainfall records within the UK have been 

carried out using spatially extensive data sets (Osborn and Hulme, 2002; Fowler and 

Kilsby, 2003b; Maraun et al., 2008). To avoid duplication and minimise data 

preparation, updating to 2010 a spatially distributed subset of the most recent data 

set (M2008; Maraun et al., 2008) appeared to be an ideal approach. M2008’s set 

comprises 689 stations, of varying duration from 1853 to 2006, around a third of 

which were previously utilised by Osborn and Hulme (2002; OH2002), shown in 
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Figure 4-2(a). The subset would focus on maintaining Fowler and Kilsby (2003b)’s 

spread of stations across each of the homogenous rainfall regions (Wigley et al., 

1984) to preserve independence between stations and minimise event duplication 

(Dales and Reed, 1989). 

4.1.1 Issues with alternative data 

A comprehensive review of M2008’s data revealed that stations were selected 

on the basis of record duration with little regard for spatial representation. A 

disproportionate number of operational UK stations lie in central and southeast 

England, with the density of the network reducing further afield. In selecting stations 

on the basis of longevity, M2008 biased the sample toward central and southeast 

England, as illustrated by Figure 4-1(b). Although each record was weighted with 

respect to duration and de-correlation length, it could be argued that spatial 

analyses are unreliable as a result of the effective repetition of extreme data (Dales 

and Reed, 1989; Smith, 2009). 

By comparison, Fowler and Kilsby (2003b; FK2003), used only 204 stations 

located in Figure 4-2(c), equally distributed among the nine UK rainfall regions 

(Wigley et al., 1984) which are described in greater detail in Section 4.1.4. Although 

this led to a reduction in data availability and some omission of extreme events, the 

records used were of continuous duration with enhanced confidence in the analyses. 

The dependence between single day extreme rainfall totals reduces both with 

increasing distance between the stations and reduced event frequency (Buishand, 

1984; Dales and Reed, 1989). Buishand (1984) concluded that rainfall maxima within 

the Netherlands can be considered to be independent at 30km separation; while 

orography has an influence, this distance has been largely corroborated within the 

UK (Salter, 1921; Dales and Reed, 1989; Smith, 2009). Separation distance was an 

important factor when identifying stations to replace those which no longer operate; 

it was also significant in determining the suitability of a station to supplement an 

incomplete record. 
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Figure 4-2 : Rainfall gauges used in studies by (a) OH2002, (b) M2008, (c) FK2003 

b ca
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The set of gauges analysed by M2008 were a combination of updates to the records 

developed by FK2003 and OH2002, both forward and backward in time, and supplementary 

stations to increase the spatial coverage. For the purposes of this thesis, the decision was 

made to maintain the coherent spatial structure established in FK2003 and to extend to 

2010 only those 204 station records where data was available or a suitable replacement 

station could be identified. This ensured that all analyses would cover at least a period of 50 

years, as well as minimising duplicate extremes. 

The annexe to M2008’s assessment of trends in daily rainfall illustrates trends in mean 

daily rainfall around the UK; the trends found at several locations, are suspiciously large. To 

verify these trends and to determine the homogeneity of all selected records, a random 

sample of the records supplied by M2008 including the suspect locations were assessed to 

identify major flaws or discontinuities. This process identified that many records, both for 

the updated period (2001-2006) and the full records of newly added stations, frequently 

included unreasonably large maxima with comparison to neighbouring stations and the 

station median annual maximum value (RMED). These observations were instead omitted 

within the analysis (Pers. Com. Maraun, 2009). However, records for several extremely large 

observations, which occurred either within or after missing data, were annotated as single 

day counts and so led to spurious trend calculations by M2008. Further personal 

communication confirmed that an allowance had not been made for these errors within the 

analysis program. Edinburgh Blackford Hill is a clear example, reproduced in Figure 4-3, 

which accounts for the highly significant positive trend in mean rainfall reported by M2008. 

Daily rainfall data were obtained from the British Atmospheric Data Centre (BADC, 

http://www.badc.rl.ac.uk) for the period 2000-2010, for all recording stations in the UK. 

Further records were also obtained from Durham University, the Met Office and the 

Rothamsted Research Archive to supplement data which were unavailable through the 

BADC repository. A more rigorous analysis of the overlap periods between data from 

M2008, FK2003 and BADC identified that where repeated daily observations are present in 

the raw BADC data files, different values were selected by M2008 from those chosen using 

the predefined Met Office quality codes. Similarly, data cross-checked against earlier 

records (i.e. prior to 2000) do not always match; exact totals may differ as a result of 

differing selections of replacement gauges, but differences ≥10mm are concerning. 
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Figure 4-3 : Trend of mean rainfall relative to 1961-1990 mean, for (a) DJF; and (b) SON reproduced from 

Maraun et al. (2008) “Supplementary Details Figure 2”. Blue circles denote increasing trends, yellow circles 

decreasing trends; the magnitude of the trend is signified by circle size. 

Table 4-1 shows an extract of the record for Lerwick from 1999, indicating the 

difference between FK2003 and M2008, errors which been included as a result of missing 

observations are highlighted in bold italic. Finally, the analysis revealed large daily totals 

(>0.5RMED, where RMED is the median annual maximum) had not been cross-checked 

against others in the near vicinity of the station, leaving some questionable daily totals. 

Year Month Day Rainfall Total (mm) 

from FK2003 

Rainfall Total (mm) 

from M2008 

1999 11 14 0.4 0.3 

1999 11 15 5.3 1 

1999 11 16 9.6 12.3 

1999 11 17 3.4 NA 

1999 11 18 1.5 3.6 

1999 11 19 0.1 0.8 

1999 11 20 7.9 1.5 

1999 11 21 3.5 8.3 

1999 11 22 2 2.6 

1999 11 23 5.8 6.5 

1999 11 24 6.7 5.1 

1999 11 25 9.3 9.8 

1999 11 26 6.9 5.3 

1999 11 27 11.2 NA 

1999 11 28 12.8 20.9 

1999 11 29 1.3 1.6 

Table 4-1 : Comparison of observed daily rainfall totals for Lerwick between M2008 and FK2003 

a b 
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The data rejection criteria adopted by Maraun et al. (2008) were less strict than other 

studies of a similar nature (Onof and Wheater, 1994; Moberg and Jones, 2005; Overeem et 

al., 2008), rejecting a season only if more than 50% of the seasonal observations were 

missing. No evidence exists in the article to confirm whether stations were removed from 

the final complement of 689 if an excessive portion of the record was missing. Finally, the 

records for some stations known to be still operating, e.g. Durham, were only included to 

the limit of the BADC record - 2000. Although this is not an error in itself, the records were 

easily obtained by direct contact with the station operatives and have been included within 

the new data set described below. 

It was, therefore, concluded that updated daily rainfall observations from 2000 to 

2010 should be obtained directly from BADC or appropriate alternative sources. The records 

produced by OH2002 supplement those used by FK2003 and, where possible, extend the 

records backwards in time. 

4.1.2 The UK Rainfall Recording Network 

Approximately 16600 meteorological stations, observing land surface measurements 

of rain, wind and temperature inter alia, are currently operational at locations throughout 

the British Isles reporting on timescales from sub-hourly to monthly. The daily rainfall 

records vary in duration from 1 to >150 years, as illustrated in Figure 4-4. Respecting the 

project minimum criteria of record length ≥45 years, ending in the present decade, further 

restricts the set to around 600 stations, many of which are co-located or have poor data 

quality. There is a balance to be achieved between the use of data records which allow the 

identification of recurrent patterns from long term behavioural changes, but which do not 

introduce further uncertainty as a result of data inhomogeneities.  

There are many sources of inhomogeneity in meteorological observation series 

including: instrument replacement or relocation; instrument failure; changes in calculation 

methods or reading times; changes in the surrounding area; human error; gauge under-

catch in less sheltered locations. All of which can lead to abrupt or gradual biases in 

observations (Peterson et al., 1998). George Symons, founder of the British Rainfall 

publications, chastised observers for their laxity during heavy events when buckets 

overflowed (Pedgley, 2010) and frequently corrected readings he considered to be 

anomalous; a practice continued by his successors. This is now achieved through algorithms 
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run by the Met Office to homogenise the records, removing the influence of station 

relocation or changes in equipment. Operational gauges are subject to careful quality 

control procedures, and occasional re-estimation of readings, prior to their incorporation 

within the BADC database (Alexander and Jones, 2000). However, errors can remain within 

the records such as duplicate readings, or multiple day accumulations which have been 

incorrectly recorded as a single day. Considerable work was still required to validate the 

annual maxima for each record when compiling this set of daily rainfall records. 

 

Figure 4-4 : Distribution of observation stations with respect to record length, based on BADC records 

 

 

Figure 4-5 : Number of stations producing valid Annual Maxima per year, based on BADC records 
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4.1.3 Quality control measures 

Quality control measures and rejection criteria for observation records vary 

considerably, dependent on the proposed application of the data. Dales and Reed (1989) 

found that where at least six months of daily rainfall data exist, a reasonably accurate 

estimate of the annual maximum value can be estimated and verified against annals such as 

British Rainfall. In contrast, such limited data would be very unreliable for estimates of 

higher frequency events; Overeem et al. (2008) rejected any station with >5 days missing 

per year, retaining only 12 stations with at least 29 complete years of data. Similarly, 

Moberg and Jones (2005) permitted only 2 days missing per month and fewer than three 

years missing in any 20 year period. However, applying such stringent criteria to the record 

updates (2000-2010) severely limited the analysis set because approximately 140 stations 

with records >40 years have ceased to operate since 2000, and a further 20 only report 

monthly. Faulkner (1999) reported that the daily recording rainfall gauge network peaked in 

the late 1970s, and since then has experienced decline as sub-daily stations were 

established in their stead and longer term stations either moved or discontinued, as shown 

in Figure 4-5. This decline appears to have continued, with the greatest losses among the 

most remote stations, leading to reduced coverage in the north Scotland region. 

Monthly records were rejected due to the errors introduced through disaggregation to 

equivalent daily totals using neighbouring gauges as a proxy. Similarly, 24 hour accumulations 

may under-estimate the daily total due to factors such as evaporation losses or poor accuracy 

during high intensity storms. While a generic scaling factor to account for these losses can be 

used (Institute of Hydrology, 1999), this does not account for individual station characteristics 

and so it is preferable to avoid the problem by using only measured daily rainfall totals. 

The influence of metrification is significant in early records (Smith, 2009) 

demonstrated by the heavy weighting of even valued observations. No data were corrected 

for metrification biases, as the procedures adopted by the Met Office account for both 

these and errors related to instrument relocation or replacement. Most extreme events 

were verifiable against neighbouring stations, while errors in smaller totals have a limited 

influence on the subset of extreme measurements. 

The correlation between stations experiencing the same extreme rainfall event drops 

off rapidly beyond a radius of ~25km2 (Buishand, 1984), represented by the areal reduction 
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factor for point rainfall in the Flood Estimation Handbook (Faulkner, 1999; Smith, 2009). A 

minimum of three gauges located within this radius are recommended for validation checks 

to avoid mistakenly identifying storm patterns (Upton, 2002). For the purposes of data 

validation for this thesis, it was assumed that the spatial variation of daily rainfall totals is 

approximately normally distributed (Upton and Rahimi, 2003), allowing for up to 25% 

variance between verification stations to accommodate factors such as localised storms, 

gauge aspect and elevation (Salter, 1921). 

A less onerous set of criteria was adopted in this project to retain sufficient stations 

from the original analyses to facilitate comparisons, while minimising errors arising from the 

use of incomplete records. Daily records were deemed insufficient where >3 days were 

missing in a month or >10 days over the whole year; in either case the whole year was 

rejected. A station was rejected from the set where more than three years were missing 

within the decade 2000-2010. Wherever possible missing periods of record were replaced 

from an appropriate neighbouring source identified from the following constraints: 

• No data missing for >14 days prior to, or after, the replacement period 

• Replacement gauge located within 5km 

• Replacement gauge elevation within 100m 

• Correlation between the mean (1961-1990) daily rainfall observations ≥ 90% 

• Correlation of maxima (>0.5RMED for the station) ≥ 95% 

Where the neighbouring source extended a terminated gauge record, a minimum 

overlap duration of ten years was required to ascertain the suitability. Of the gauges used by 

FK2003, those which had more than three years missing within the update period (once 

replacement gauges had been identified) or which had terminated prior to 2008 were 

rejected. Unfortunately, 52 of the FK2003 gauge set were deemed inappropriate for 

extension. 

Data for all stations were corrected for duplicate entries and multiple day 

accumulations prior to quality assessment of the totals exceeding the 95th wet day quantile. 

Where duplicate observations were available from different reporting sources, observations 

measured over 24 hours were selected in preference to those derived from sub-daily 

accumulations (Met Office, 2011a). Subsequently, the gauges were scrutinised to check the 
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validity of recorded maxima (values >0.5RMED61-90). Maxima were cross checked against 

gauges located within a radius of 25km2. In locations where the gauge network is sparse, 

such as North Scotland, the verification distance was extended to 50km and 100m elevation. 

Manual checks for significant outliers were carried out using data provided on the Met 

Office Climate Statistics page, from the Weather Report (e.g. Met Office, 2010b) or the Royal 

Meteorological Society’s monthly Weather Log.  

The final selection of gauges, extended both forward to 2010 and backward in time as 

appropriate, are illustrated in Figure 4-6. Additional gauges were selected from OH2002 

partly to supplement data which would otherwise be lost, and partly to ensure a minimum 

number of stations within each of the UK precipitation regions (Wigley et al., 1984); the 

following section outlines in greater detail the rationale behind selecting the number of 

gauges per region and the relevance of the precipitation regions. 

 

Figure 4-6 : Final selection of 223 rainfall gauging stations updated to 2010, in relation to the Hadley UK 

Precipitation regions. ● 52 original stations used by FK2003 covering 1961-2000; 

 ● 116 original stations used by FK2003 covering 1961-2010; ● 36 stations used by both FK2003 and OH2002 

covering at least 1961-2010; ● 19 stations used by OH2002 covering at least 1961-2010 
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4.1.4 Regionalisation 

Gregory (1975) examined different regions of rainfall behaviour throughout England, 

Wales and Scotland on the basis of fluctuations in total annual rainfall volumes. Introducing 

their definition of 12 homogenous regions, Dales and Reed (1989) provided a useful 

summary of alternatives which have been applied, before adopting a selection based on 

generalized extreme value parameters. Wigley et al. (1984) defined five homogenous 

regions of mean rainfall in England and Wales from principal component analyses of 

monthly, seasonal and annual means and maxima. The regions approximately replicate 

orographic influences on westerly flow such as over the Scottish Highlands or Pennines in 

northwest England. Gregory et al. (1991) later extended the precipitation regions to 

incorporate Northern Ireland and three Scottish regions; the nine regions were digitised to 

produce the HadUKP series (Alexander and Jones, 2000). Hosking and Wallis (1988) also 

discussed methods to pool groups of similar catchments affected by the same widespread 

rainfall events, which can then be studied in relation to external drivers or weather types 

(Lamb, 1972) for the selected series of extremes. 

It could be argued that the use of regions defined from mean annual characteristics is 

not appropriate for use in a study of extreme rainfall. However, alternative regional 

definitions based on water company jurisdictions, or governance regions, such as those used 

within the UK Climate Projections (Murphy et al., 2009), do not necessarily relate directly to 

climatic responses. Another approach is to examine all extremes on an individual point 

basis, before applying spatial clustering at a later stage to identify geographical regions 

which display similar behaviour (Maraun et al., 2008). The digitised HadUKP regions are 

used in this project for the purposes of comparison with FK2003, although an alternative 

grouping consistent with extreme behaviour will also be explored in Chapter 7 based on the 

regions defined by Dales and Reed (1989). The regional allocation, ensures consistency in 

observation station selection and reduces the concentration of observations within any 

particular area of the UK. Some gauges used by FK2003 have been reallocated to different 

regions through use of the new digitally defined boundaries. 

The analyses described in Chapter 6 adopt a Regional Frequency Analysis (RFA) 

methodology, where return period estimates are obtained from a Generalized Extreme 

Value analysis of the pooled regional maxima. Regional pools are established from time 
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series of individual gauge maxima within each region by standardising each station by the 

individual station median to remove orographic or exposure effects prior to pooling. 

Regional mean seasonal and annual medians (SMED and RMED, respectively) are calculated 

from the weighted mean of all gauges in the region, where individual station weighting is 

based on the effective record length to reflect the reliability of the relevant set of 

observations (Hosking and Wallis, 1988): 

 
Equation 4-1 

where  is the effective record length at the th station,  the number of stations in the 

pooling group and  represents the number of station years. 

Changes in the pooling group, as a result of gauge termination, may have an impact on 

the regional curve, particularly if the omitted or included station had experienced several 

notable storms, and hence on any comparison made with FK2003. Faulkner and 

Prudhomme (1997) found that for single site analysis the effect of including incomplete 

years on estimates of the AMAX is small as generally the abstracted maxima are correct. 

Those instances where AMAX were underestimated tended to draw the estimated RMED 

value down, with a compensatory increase in calculated growth rates and thus a neutralised 

estimate of return levels. Regional frequency analysis removes inhomogeneities such as 

repeated event records, ensuring that no individual gauge unduly influences the results, so 

missing extremes will not affect the global analysis. Although the return period estimate 

may be unaffected, confidence in the results will reduce for a smaller regional pool, thus it is 

important to analyse the influence of the group size on confidence estimates.  

A replacement bootstrap (Efron, 1979) analysis was carried out to compute the 

relative levels of confidence in regionally pooled statistics for pools of different sizes, to 

identify the minimum target number, m, of stations to include in each region. Refer to 

Appendix B.2. for the method. Two regions were selected for the analysis, North Scotland 

(NS) and Southeast England (SEE), to represent the disparity between both regional rainfall 

regimes and the differing densities of stations in the observation network. Two test statistics 

were examined using the pool of gauges compiled by FK2003, using the maximum number 

of stations in the original regional pools, M=23, and AMAX from 1961-2000. 
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The first test statistic fitted regional generalised extreme value (GEV) growth curves; 

the second calculated the ten year running mean of the pooled annual maxima. The 

procedure entailed: 

1. Estimate the test statistic for a complete regional pooling group from 1961-2000. 

2. Re-sample 1000 times with replacement, and re-estimate the test statistic. 

3. Repeat the process with sample sizes of m = 5, 10 or 15. 

 

Figure 4-7 : Regional running mean calculated for North Scotland using different sample sizes 

A comparison of the calculated running means from different sample sizes and the full 

NS regional pool demonstrates that the results all lie very close together (Figure 4-7); a 

similar result was obtained for SEE. Figure 4-8 represents the distribution of all 

bootstrapped results for the calculated ten year running mean for 1991, obtained from a 

sample size m=5, and indicates the breadth of the 95% confidence interval from the 

bootstrap analyses. The regional mean was calculated directly from the data without 

applying any standardisation to remove location bias such as orography or aspect. The width 

of the confidence bands for NS compared with SEE (Figure 4-9) reflects the greater spatial 

heterogeneity in NS, which is dominated by westerly flow over the mountains and so 

exhibits greater dissimilarities in its station maxima. The minimal decreases in the 

confidence regions beyond m=15 concurs with Hosking and Wallis (1988) who observed that 

increases in the number of gauges in a pool beyond this number yields little improvement to 

errors in the estimated value. 
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Figure 4-8 : Distribution of re-sampled estimates of running mean for 1991 for m=5 

 

Figure 4-9 : Comparison of 10 year running mean for North Scotland and Southeast England with confidence 

intervals for sample size m. Regional mean (brown), m=5 (dark grey), m=10 (light blue), m=15 (aquamarine), 

m=20 (dark yellow) 

A similar exercise was carried out for the regionally pooled GEV growth curves, fitted 

to standardised 1-day maxima for both regions (Figure 4-10) indicating a similar increase in 

standard error relative to decreases in . Interestingly, the estimates of the test statistics 

were consistent for all sample sizes. Although it would ideally be preferable to increase the 

sample size to at least 20, these results indicate that, where necessary, reasonable 

confidence can still be obtained from a minimum regional pool size of 15 for the updated 

results. To ensure fair comparison of results with FK2003, all long term analyses were 
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carried out with a composite group of the 152 stations updated to 2010 and the 71 used by 

FK2003 which end in 2000. 

 

Figure 4-10 : Comparison of fitted GEV distribution for North Scotland and Southeast England with 

confidence intervals for sample size n. Standardised growth curve (brown), n=5 (dark grey), n=10 (light 

blue), n=15 (aquamarine), n=20 (dark yellow) 

4.2 Temperature 

This project is focussed on the response of extreme daily rainfall to atmospheric 

variables or other meteorological conditions which may initiate events. The research 

synthesised in Chapter 2 suggested that air and sea surface temperatures, mean sea level 

pressure and atmospheric teleconnections are the most important data to include in any 

correlation analyses. 

As the moisture holding capacity of the atmosphere is governed by temperature, 

described by the Clausius-Clapeyron equation, and recent warming trends are associated 

with enhanced water vapour (Gershunov and Douville, 2008) it seems obvious to investigate 

the relationship between air temperature and extreme rainfall.  

The Central England Temperature (CET) series (Parker et al., 1992) comprises mean 

daily temperatures from 1772 and minima/maxima from 1878, for a region approximately 

bounded by Lancashire, London and Bristol, and has been recently corrected for urban 

development and early instrumentation errors (Parker, 2010). Complementary series were 

also produced for Scotland and Northern Ireland (Jones and Lister, 2004), but are not 

publicly available; no data were produced explicitly for Wales. Rather than limit the analysis 

of the relationship between air temperature and extreme rainfall events to those gauges 

located within central England, the alternative options are to use individual station data or 

gridded data. Temperature does not vary as rapidly over the spatial domain, so errors 
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associated with gridded temperature observations are far less than those for rainfall, 

making these an acceptable alternative to station data. Gridded observations provide a 

homogenous series, with fewer missing values, and publicly available data sets have been 

fully quality controlled and peer-reviewed; whereas individual station records may retain 

some errors or have longer periods missing.  

Global monthly air surface temperature high resolution gridded data sets (1901-2005) 

for minimum, maximum and mean temperature (Mitchell and Jones, 2005) updated to 2009 

(Jones and Harris, 2008) were selected for use in this project. The updated data set 

improves previous gridded products in its increased spatial and temporal resolution, 

through the incorporation of many additional observation stations. The gridded data are 

supplied on a resolution of either 25km or 50km up to the current month. For simplicity, 

and to correspond with other data sets such as sea surface temperature, grid box averaged 

air temperatures were extracted over 5° x 5° grid boxes. While daily temperatures may 

better represent atmospheric fluctuations than monthly measurements, they also introduce 

an unnecessary level of complexity through the enhanced noise. 

Several authors have linked temperature extremes and the development of heat 

waves to anomalous sea surface temperatures (SST) (Della-Marta et al., 2007; Gershunov et 

al., 2009; Vincent et al., 2011). Increases in the North Atlantic SST (Wang and Dong, 2010) 

would enhance the hydrological cycle, leading to positive moisture anomalies in the hot air 

masses moving over the UK and Western Europe. Colman (1997) found a positive 

correlation between January and February North Atlantic SST anomalies and the following 

summer CET, and a minor correlation with the England and Wales Precipitation (EWP) 

series. The lack of significance was not surprising as the averaged regional rainfall series is 

not fully representative of extreme events, or the smaller scale rainfall responses to SST. 

Hydrological responses to SST, including drought evolution (Dai, 2011; Vincent et al., 2011) 

and extreme rainfall (Karnauskas and Busalacchi, 2009; Muza et al., 2009), have been 

demonstrated in several different regions. Lagged North Atlantic SST is one of several strong 

predictors of summer flows in the River Thames (Wilby et al., 2004); a positive correlation 

exists between the North Atlantic SST and southwest England rainfall anomalies (Phillips and 

McGregor, 2002) and for summer rainfall in east England (Neal and Phillips, 2009). 
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The sea surface temperature data set supplied by the Met Office Hadley Centre, 

HadSST2, is a monthly global gridded (5° x 5° boxes) set of SST values from 1850 to present. 

The majority of the database was constructed from the International Comprehensive 

Ocean-Atmosphere Data Set (ICOADS) from 1850-1997 which collated measurements taken 

from shipping routes; from the 1970s onwards these measurements were supplemented by 

moored and drifting buoys. Corrections for spurious trends caused by changes in 

measurement practices and uncertainties due to data scarcity (e.g. during the World Wars) 

are summarised by the compilers of the most up to date data set (Rayner et al., 2005). 

Figures of data availability for different decades (Rayner et al., 2005) indicate that 

greatest confidence in the SST database surrounds the major shipping routes from western 

Europe to the eastern USA and the southern hemisphere. Similarly, regions surrounded by 

coastal waters, such as the UK and the Netherlands, contributed the highest proportion of 

data to the ICOADS and are less plagued by data scarcity during the two global conflicts. 

4.3 Mean Sea Level Pressure 

Connections between mean sea level pressure (MSLP) and temperature and rainfall 

patterns are well established, either through the use of a composite such as the North 

Atlantic Oscillation Index (Jones et al., 2003) or through direct comparison (Della-Marta et 

al., 2007). Meteorological correlations with both the lagged and concurrent MSLP include 

glacier mass balance (Nordli et al., 2005), extremes of rainfall (Meehl et al., 2005; Rodríguez-

Puebla and Nieto, 2010) and wind storms (Allan et al., 2009; Jiménez et al., 2009). The 

concurrence of wind storms and extreme rainfall was described in Chapter 2, indicating that 

where a clear correlation between MSLP and wind exists (Allan et al., 2009) there is likely to 

be a similar relationship with rainfall. 

The Met Office Hadley Centre's MSLP data set, HadSLP2r, is an update from 1850 to 

the present day of HadSLP2 (Allan and Ansell, 2006) which is constructed from monthly 

NCEP/NCAR reanalysis fields for 2005 onwards. The authors suggest that this series 

represents one of the best available for any historical investigation of the influences of 

large-scale circulation patterns. The homogenous data set (HadSLP2) is a combination of 

land and marine pressure observations, derived from the ICOADS and blended terrestrial 

observations series for a 5° x 5° global grid. As for HadSST2, the oceanic observations are 
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less spatially extensive away from major shipping lines, and have larger measurement and 

sampling errors in the North Atlantic during times of global conflict. 

Correlation analyses between the NCEP/NCAR reanalysis data used for updates and 

HadSLP2 indicate that considerable differences exist between the two series in high altitude 

regions of the Northern Hemisphere (Allan and Ansell, 2006); the compatibility of the two 

series is much more reliable in the Southern Hemisphere. The data have been adjusted to 

account for differences in climatological averages between the different data products, 

resulting in a series which is homogenous in the mean, but with a higher variance post 2005. 

As the errors are highest in altitudinous regions, such as the Himalaya where there are also 

few observation stations, the use of the extended series for the UK is considered to be 

acceptable. 

4.4 North Atlantic Oscillation Index 

Chapter 2 discussed the influence of the North Atlantic Oscillation (NAO) on northern 

hemisphere weather, particularly in locations abutting the North Atlantic. The two indices 

commonly used are the normalised MSLP difference between Iceland (Stykkishólmur or 

Reykjavík) and one of the southern stations (Azores or Gibraltar), starting in 1821, (Hurrell, 

1995; Rogers, 1997; Jones et al., 2003) or a principal component derived index from 1899, 

which is less sensitive to modal displacements (Hurrell, 1995; NOAA, 2011). While the 

individual station based indices are useful for extended analyses prior to 1899, they may not 

be fully representative of the most influential weather patterns (Allan and Ansell, 2006). The 

centre of NAO action shifts over time, with the result that the principal component analyses 

of the index may be more reliable (Casty et al., 2005; Allan and Ansell, 2006). As only 14 of 

the daily rainfall observations described in Section 4.1 commenced before 1899, the 

longevity of the NAO series will not be a deciding factor in selecting the best index. 

Traditionally the wintertime composite (December to March, or October to March) is 

adopted for analyses; however, the effect of the summertime NAO on European 

temperatures may also influence rainfall and storm tracks on a smaller scale (Hurrell, 2003). 

The influence of the summer NAO has also been correlated with droughts in the eastern 

Atlantic, Mediterranean and Sahel regions (Linderholm et al., 2009).  
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Sub-seasonal NAO indices may be more descriptive of the coincident sea level 

pressure, and hence the immediate weather, rather than an atmospheric pattern describing 

the climate (Hurrell and Deser, 2009). In particular, monthly values are more effective in 

explaining the occurrence of extreme weather patterns than their seasonal counterparts 

(Scaife et al., 2008; Hurrell and Deser, 2009; Villarini et al., 2011b). While the winter NAO, 

calculated as the mean value between December and the following March, is well known to 

correlate with winter storms (Allan et al., 2009) or European summer droughts (Della-Marta 

et al., 2007), it is not well correlated with summer rainfall maxima, which have a greater 

correlation with the June-July index (Folland et al., 2009). Anti-correlations between the 

summer NAO and UK summer rainfall are strong in the UK for all periods of the record, 

mirroring the decrease in SE England rainfall in the 60s and 70s (Baines and Folland, 2007), 

and therefore recommending the use of the seasonal aggregate. 

The NAO index considered to be the most reliable descriptor of year to year storm 

tracks will be adopted in this project. The monthly time series derived from the leading EOF 

of monthly MSLP anomalies over the Atlantic sector (20-80N, 90W-40E) was, therefore, 

obtained from the Climate Analysis Section, NCAR, Boulder (Hurrell, 1995), from which 

seasonal aggregates can also be calculated. 

4.5 El Niño-Southern Oscillation (ENSO) 

The ENSO signal has been shown by several studies to have a considerable influence on 

extreme European weather patterns, as described in Chapter 2 (Zanchettin et al., 2008). 

Traditionally, Nino 3.4 is used as a measure of ENSO strength, but this index alone explicitly 

omits atmospheric processes which are reflected through SST anomalies. The BEST index 

(Smith and Sardshmukh, 2000) is a combination of the atmospheric component of the ENSO 

(the Southern Oscillation Index) and the Niño 3.4 SST (averaged over the region 5°N-5°S, 

170°W-120°W). Monthly mean climatologies were removed from all data prior to monthly 

standardisation and application of a 3-month running mean to the averaged SST and SOI 

series. The composite series covers the period from 1871 to the present day, courtesy of 

recent work to extend the ENSO index and remove anomalies in the data (Wolter and 

Timlin, 2011). Monthly data were obtained from the Earth System Research Laboratory, 

NOAA. 
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4.6 Summary 

This chapter identified the daily rainfall data sets which were available for the UK, the 

rationale for selecting the stations to be updated, and the quality control procedures 

employed in their update. The HadUKP regions were summarised, together with their 

importance in selecting spatially distributed rainfall stations for later analyses. Other 

observation data, such as sea surface temperature, which will be used in later extreme 

rainfall models and analyses and teleconnection indices were also described. 
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Chapter Five Exploratory Analysis 

“Far better an approximate answer to the right question, which is often vague, than the 

exact answer to the wrong question, which can always be made precise.” 

John W. Tukey (1962) 

5.1 Data Homogeneity Checks 

The quality control undertaken on daily rainfall observations, described in Chapter 4, 

was an iterative procedure. Once major errors had been removed, the exploratory trend 

and variability analyses outlined in this section identified remaining inhomogeneities which 

may have been introduced while updating stations. For instance, abrupt changes in the data 

where series were appended to create the updated record are identifiable with tests for 

change points. Apparent regularity in event dispersion may arise from excessive missing 

data, identified with tests for randomness. This section summarises the tests carried out 

both to remove these erroneous points and to identify long-term changes and variability. A 

summary of the relevant equations from Chapter 3 are provided in Appendix B. 

5.1.1 Abrupt changes 

Much attention is focussed on long-term changes in rainfall statistics, yet there may 

be apparent trends as a result of abrupt changes or natural variability where no true trend 

exists. Abrupt changes may arise from sudden changes in climatic behaviour, e.g. changes of 

mode in the NAO (Rodionov, 2004), or anthropogenic influence such as station relocation 

(Villarini et al., 2009). It is unlikely that the former will be distinguishable from other sources 

of variability within daily rainfall data; non-homogeneity arising from anthropogenic 

influences will be more obvious and could impact later analyses. 

Several change points may exist within the daily rainfall series as a result of instrument 

relocation or replacement, although the quality control algorithms applied by the Met Office 

minimise their influence (Met Office, 2011a). All station records were examined for abrupt 

changes in the mean and variance of the annual maxima using the Pettitt test (Pettitt, 1979) 

for a single change point to ensure that that no residual errors remained; these changes are 

most likely to occur where updated records were obtained from a neighbouring station and 

blended with the original record. A single change point test was adopted to identify the 

maximum change in the series and its influence on the record, rather than to decompose 

the series into multiple short sections. Later analyses, in Chapters 6 to 8, will incorporate 
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significant change points and subsequent trend information, or discard unreliable stations 

identified from multiple subsequent change points after rectifying any data errors. 

 

Figure 5-1 : Change point analyses using the Pettitt Test for changes in the mean and variance of daily 

rainfall maxima at Oxford (black line) and the critical threshold for a change point (red dashed line) 

A typical example of change points found in the running mean and variance of a time 

series of annual maxima is shown in Figure 5-1 for Oxford (black line) with the critical test 

threshold (red dashed line). The variability in the running mean results indicates that several 

change points may have occurred over the period of record; station metadata corroborates 

the maximum change in the mean in 1912 which coincided with the relocation of the 

station. The most significant change in the variance occurs in 1927, coinciding with another, 

less significant, change point in the mean of the series. 

 
Figure 5-2 : Significance of change points in the mean and variance of daily rainfall maxima using the Pettitt 

test, identifying the decade where the change occurs 
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A two-tailed test was adopted in the absence of a priori knowledge about the 

direction of change, testing against a 5% critical value, Uk. Figure 5-2 shows the Pettitt test 

results for all 223 stations, indicating whether a significant change point existed in the mean 

or variance of the series and the relevant decade of change. Of these stations, 84 did not 

have a significant change point in the data; a further 6 had significant change points prior to 

1950, allowing the analysis period to start after the change point. No stations updated from 

neighbouring records had a significant change point in the blended portion of the series. 

5.1.2 Monotonic changes 

Monotonic linear trends in the mean and variance were then tested at each station 

using the Mann-Kendall test for significance (Kendall, 1962) and permutation. Trend 

magnitudes and significance were compared for the whole time series as well pre- and post- 

change point (where a significant change point was found). While linear regression may not 

be the most appropriate tool for analyses of highly variable extreme data, it is adequate for 

exploratory analyses (Zhang et al., 2004). There are some discrepancies between the 

significance of results found by the two tests (Figure 5-3), highlighting the importance of 

using several different methods (Kundzewicz and Robson, 2004). Trends, where significant, 

were generally ≤1mm over the period of record, or effectively null; the only significant 

trends >5mm were for 15 years of record post-change point, and so not representative of 

changes in the rainfall distribution (Robson, 2002). Furthermore, it is anticipated that about 

5% of stations, for a 5% significance level test, will display a significant trend (Kanji, 1999). 

As daily rainfall maxima are irregular, they are unlikely to demonstrate any clear 

signals in linear regressions based on the series median. Testing other parts of the series 

through quantile regression analysis (Cade and Noon, 2003) can, however, help to identify 

whether there is enhanced variability in the more extreme quantiles of the AMAX 

distribution. The only significant trends found in the quantile regression analysis had 

magnitudes ≤5mm over the whole period of record. The number of stations with a 

significant trend is not conclusive: decomposition of the data series into several quantiles 

results in insufficient data used for a statistically robust trend analysis. However, the results 

suggest that the extremes are more sensitive to changes than other quantiles of the 

distribution. The significance of trends and the direction of change are shown for four 

quantiles in Figure 5-4, while the distribution of significant trends by number of gauges and 
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quantile are shown in Figure 5-5. The proportion of stations indicating a significant trend is 

approximately equal to the significance of the trend tests, suggesting the detection of a 

trend where none is present (Hess et al., 2001). These results also highlight that there are 

insufficient data to include specific trend components in later analyses (Ghil et al., 2011). 

 
Figure 5-3 : Significant trends in the mean annual maximum series tested using Kendall's τ (left panel) and 

data permutation (right panel) for the whole station record with no, or assuming no, change point (upper 

row); before the change point (middle row); and after the change point (bottom row) 
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Figure 5-4 : Significant trends in four quantiles ( =0.05, 0.1, 0.9, 0.95) of the station specific distribution of 

Annual Maxima rainfall calculated using linear quantile regression 

 

Figure 5-5 : Histogram of gauges with significant increasing and decreasing trends in Annual Maxima per 

quantile of the station distribution calculated using linear quantile regression 

5.1.3 Long range dependence 

Estimators of the Hurst exponent (H; Hurst, 1951) were also calculated to determine 

whether long range dependence (LRD) is an important factor in the data variability, that is 
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whether a cyclic pattern occurring over a period of years or decades is present in the 

observations. A secondary aim, if LRD was not significant in most observations, was to filter 

the stations used in subsequent analyses to use only those with minimal errors or missing 

data. H>0.5 is generally indicative of an LRD process (Koutsoyiannis, 2006), with most 

hydrological series exhibiting a value in the order of 0.7 (Hurst, 1951). All observations were 

tested for the full record duration as trend and change point analyses were only significant 

for very short portions of the observed record, or equated to a null trend over the whole 

record. Hurst exponent values were calculated by aggregated variance, tested for 

significance using a bootstrap of 5000 repetitions (Efron and Tibshirani, 1993), and are 

shown in Figure 5-6. 

Of the 99 stations with H>0.5, only nine were shown to have significant LRD. Two of 

these comprised only 40 maxima each which is insufficient for reliable estimation (Serinaldi, 

2010). The remaining 7 station records all had between one and several intermittent years 

missing from the record which may have affected estimates of H; all stations with missing 

sequences >5 years in duration were, therefore, removed from subsequent analyses. It is 

considered reasonable to apply statistical models which do not explicitly account for 

monotonic trends, change points or long range dependence to the remaining 199 stations, 

modelling effects such as seasonality or inter-year variability with interactive parameters. 

 

Figure 5-6 : (a) Values of Hurst Exponent calculated with aggregated variance; (b) Significance of Hurst 

Exponent tested with a bootstrap procedure 
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5.1.4 Event dispersion 

It is assumed that the frequency of events above a high threshold is Poisson i.i.d. 

While parameter stability tests for the suitability of Poisson and extreme value distributions 

can be used to identify the most appropriate high threshold (Coles, 2001), the tests favour 

lower thresholds which increase the data used for estimation and reduce the standard 

error. However, events exceeding a relatively low threshold do not always conform to a 

Poisson distribution or may contain a mix of heavy and extreme events which are 

dependent on different governing variables.  

A selection of different thresholds was explored to select the most appropriate 

thresholds for excess models: several fixed values at levels considered to be high (from 

Alexander et al., 2006) and a station specific threshold defined by (Fowler and Kilsby, 

2003a). The influence of threshold choice is explored further in Section 5.2, together with a 

formal selection of the thresholds to be used in this project. The thresholds are: 

• 20mm, 25mm, 35mm, 40mm 

• Mean wet day total + 2 x variance in wet day total (μ + 2σ2) 

The suitability of a homogenous Poisson process to represent the data was first 

examined through the dispersion of event counts per year over the period of record. Figure 

5-7 illustrates the mean and variance in the number of peak over threshold (POT) events per 

year exceeding a station specific threshold μ + 2σ2, and shows a clear demarcation of 

stations in western regions experiencing more frequent “very wet days”. By contrast, the 

dispersion coefficient (mean event count/variance) for these stations is <1, denoting a more 

regular distribution of events than expected from a Poisson process (Hsing, 1988); this 

suggests that the selected threshold for very wet days is too low. Event counts which are 

over-dispersed also do not conform to the requirements of a homogenous Poisson process, 

suggesting that different regimes are in operation across several years, possibly arising from 

an external influence such as the North Atlantic Oscillation. 

A primary cause for apparent under dispersion in the POT maxima series is missing 

data, thus assessing the suitability of the Poisson distribution was part of the iterative 

procedure used to derive homogenous data series. Secondly, understanding whether the 

data are homogenously dispersed, or correlate with an external influence, will assist in the 

identification of suitable covariates for use in later statistical analyses.  
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Figure 5-7 : POT Events per year exceeding a station specific threshold of wet day mean + twice the station wet day variance (a) Mean event count; (b) variance in event 

count; (c) Dispersion Coefficient 
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Dispersion coefficients obtained from the fixed threshold excesses are illustrated in 

Figure 5-8, confirming that higher selection thresholds are required to remove mean 

behaviour from the analysis; the lower threshold includes too many non-extreme events, 

artificially reducing the dispersion coefficient below 0.9 (Shinohara et al., 2010). It is also 

clear that a fixed threshold for all stations is not appropriate and that a station specific 

threshold based on the wet day distribution should be used instead, as outlined in Section 

5.2.2. 

  
Figure 5-8 : Coefficient of dispersion calculated from all events per year exceeding thresholds of 

(a) 20mm; (b) 25mm; (c) 35mm; (d) 40mm 

The dispersion coefficient is representative of Hurst variability giving sequences of 

similar years, rather than a measure of within-year event clustering. Within-year clustering 

is well represented by an exponential distribution with arrival rate . Figure 5-9 shows the 

spatial distribution of stations conforming to the null hypothesis (H0) that events follow an 

exponential model, or alternative hypothesis (H1) that events follow a different distribution, 

in relation to the interval between events for the four fixed thresholds, and the progressive 
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improvement in distribution fit as the threshold increases and reduces the event count. 

Figure 5-10 depicts the same information as a histogram. 

  
Figure 5-9 : Representation by an exponential model of interval between events exceeding thresholds of 

(a) 20mm; (b) 25mm; (c) 35mm; (d) 40mm 

These results confirm that using a threshold which is too low in relation to the station 

mean wet day distribution will incorporate too many events, which are not exponentially 

distributed throughout the year. Similarly, adopting a threshold which is too high will severely 

restrict the number of events used in the analysis. A higher station specific threshold will 

encapsulate extreme behaviour more effectively, with events randomly distributed 

throughout the year and with more spatial coherence in the responses to atmospheric drivers. 

 

Figure 5-10 : Number of stations adequately represented by an exponential model by threshold for excesses 
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Runs testing was carried out using the Wald-Wolfowitz runs test (Wald and Wolfowitz, 

1940) for randomness, to examine whether the interval between POT events are randomly 

distributed (H0), although clustered within specific seasons (Allamano et al., 2011). Each 

event exceeding the threshold was assigned as a positive outcome and the runs statistics 

tested for randomness, following the method outlined in Chapter 3. The results, illustrated 

in Figure 5-11, demonstrate that events are only randomly distributed for all stations at 

extremely high thresholds, when the paucity of events per year in the south east prevents 

analysis of within-year clustering. In regions with low mean wet day totals, e.g. southeast 

England, there are insufficient events of > 40mm to test the randomness reliably. Initial runs 

testing also confirmed that only the 199 stations, selected from the trend analyses, are 

suitable for use in POT analyses, due to the missing years of missing data in the remaining 

stations noted earlier. 

  
Figure 5-11 : Randomness of events exceeding fixed thresholds as for Figure 5-9 tested using the runs test 

5.1.5 Dependence on atmospheric conditions 

Poisson regression models, examining the dependence of event frequency on another 

variable were used to examine the significance of difference covariates. The simplest 

regression models relate the frequency of events to a linear coefficient (1 or 0); more complex 
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models are premised on linear regression models. Likely extreme event drivers identified in 

Chapter 2 were incorporated into Poisson regression models and the relationship tested for 

significance at the 5% level against the  distribution. The results of the most important 

relationships, that is with a test score of ≤0.25, are illustrated in Figure 5-12 for seasonality, sea 

surface temperature (SST), mean sea level pressure (MSLP), maximum monthly air temperature 

and two measures of the NAO. Seasonality is approximated from the calendar day, while 

monthly covariates such as SST were selected from the corresponding month of occurrence.  

Seasonality appears to have a considerable influence on POT occurrence rate within 

each year, with all stations correlated at a significance level <1%; high dispersion rates from 

year to year suggest that variability in atmospheric conditions may govern event frequency. 

MSLP also has a highly significant positive correlation with POT occurrence rate; the PCA 

derived NAO index has a positive correlation in the high elevated Atlantic facing regions such 

as northwest Scotland, while other stations are negatively correlated. Both SST and air 

temperature are generally positively correlated with the occurrence rate, implying increased 

frequency with elevated temperatures, with some stations in central England and eastern 

Scotland correlated negatively; however, neither of these covariates were significantly 

correlated. The influence of aggregated indices, such as seasonal NAO, and of lagged 

coefficients, such as MSLP or SST, will be explored more thoroughly in Chapter 7. 

A measure for ENSO was also examined in the Poisson regression model, but obtained 

a very low significance rating and high Akaike Information Criterion (AIC, Akaike, 1974) 

rating showing that this covariate is unimportant. Two monthly measures of the North 

Atlantic Oscillation Index were examined: normalised sea level pressure differences 

between Reykjavik and Gibraltar (Jones et al., 1997) and an index derived from principal 

component analysis (PCA; Hurrell and Van Loon, 1997). The latter index places less emphasis 

on the centre of action (Hurrell and Deser, 2009) and in common with other research 

correlates better with extreme rainfall (Hurrell, 2003). While not all of the covariates 

included in the Poisson regression model were significant at the 5% level, the AIC scores 

demonstrated that each significantly improved the model fit. Given the high, but 

insignificant, correlation with rainfall maxima, MSLP, SST and monthly maximum air 

temperature will be incorporated, together with the PCA derived NAO index, into more 

complex models described in Chapters 7 and 8. 
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Figure 5-12 : Significance (at 90%) of external covariates on Poisson regression model for events exceeding 95% of the wet day distribution (a) Seasonality, represented 

by calendar day; (b) Sea Surface Temperature; (c) Sea Level Pressure; (d) Monthly maximum air temperature; (e) Monthly NAO index with respect to the event month, 

derived from normalised SLP difference between Reykjavik-Gibraltar (Jones et al., 1997); (f) Monthly NAO index derived from PCA (Hurrell and Van Loon, 1997)  
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The data exploration found long runs of missing months or years in 24 stations. While 

these stations will be omitted from all POT analyses, their annual maxima are verifiable from 

alternative sources, such as British Rainfall (Pedgley, 2010), and can be used in Chapter 6 

which examines annual and seasonal maxima. No allowance needs to be made for abrupt or 

gradually varying changes in the data as there is insufficient data to make specific trend 

allowances; these changes are better represented through the use of specific covariates 

related to seasonality or multi-annual atmospheric variability. 

5.2 Thresholds for Wet and Extremely Wet Days 

5.2.1 Low thresholds 

The definition of a high threshold for exceedance models requires a corresponding 

definition of the minimum value for wet days. Salter (1921) noted that the minimum rainfall 

measurement unit was in. until 1914 when metrication was formally adopted; given the 

potential errors of reading such a small volume and conversion errors, he recommended 

1mm (0.04in.) to define a wet day. Lower thresholds (≥0.2mm, in.) have been adopted 

in dry regions to avoid removing useable data (Wilks, 1990; Husak et al., 2007). Others have 

found that although mean rainfall characteristics are well described by low thresholds, 

extreme value models are more reliably estimated from statistics based on a wet day 

threshold ≥1mm (Moberg and Jones, 2005; Alexander et al., 2006) even though higher wet 

thresholds are more commonly used in climate models to minimise problems in 

representation of drizzle (Zhang et al., 2011).  

Two gauges, representing two very different extreme rainfall regimes and shown in 

Figure 5-13, were chosen to review the suitability of the gamma distribution and the 

impacts of different thresholds on extreme value analyses. Visual and statistical testing 

demonstrated that a wet day threshold of ≥0.1mm gave the best fit to the gamma 

distribution (illustrated in Figures 5-14 and 5-15), based on the station properties; this 

threshold includes trace rainfall but removes completely dry days. 
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Figure 5-13 : Location of stations used to explore daily rainfall characteristics 

The quantile-quantile plots in Figure 5-14 demonstrate that the gamma distribution is 

an appropriate choice for mean daily rainfall, but that the upper tail properties are not as 

well reproduced. The point of deviation from the red line (approximately 20mm for Hastings 

and 35mm at Plockton) coincides with the 95% quantile of the wet day distributions at both 

stations; Burauskaite-Harju et al. (2012) also found this to be the point where quantiles 

estimated from extreme value theory outperform “ordinary” quantiles. 

  
Figure 5-14 : Quantile-Quantile plots for Gamma distribution of daily rainfall with a wet day threshold 

≥0.1mm based on daily rainfall records at Hastings and Plockton 

Histograms in Figure 5-15 also show a good fit between the observed frequency of 

rainfall totals (red bars) and the fitted gamma distribution (blue curve). Statistical testing 

failed to accept the fit as the modified Kolmogorov-Smirnoff test (Zwiers and von Storch, 

2004) is calculated from squared differences between the distributions. For the purposes of 

examining the sensitivity of high thresholds, the gamma distribution based on a wet day 

threshold ≥0.1mm provides the best fit for the whole  distribution. However, for specific 

analysis of the upper end of the distribution a wet day threshold of ≥1mm will be adopted 
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as this was found to give a better fit to the extreme value distribution in common with other 

research (Katz et al., 2002; Zhang et al., 2011). 

 
Figure 5-15 : Histograms of Gamma distribution fit for wet days ≥0.1mm estimated from observations 

between 1963-2006 at Hastings and Plockton demonstrating wetter characteristics in North Scotland 

5.2.2 High thresholds 

The duration of data used to define a threshold for exceedance models (base period) 

can have an influence on the threshold value and a commensurate impact on observable 

trends. Portmann et al. (2009) identified that small changes in POT frequency are 

insignificant when compared to the base period, but can display considerable differences 

when compared to other years. Zhang et al. (2005) found a higher probability of false trend 

identification or inhomogeneities in these trends when thresholds are not defined from the 

whole period of the record. 

Base Period Threshold of Quantile (mm) 

10% 20% 30% 40% 50% 60% 70% 80% 90% 

1961-1990 2.3 4 5.6 7.3 9.1 11.2 14.4 17.9 25.2 

1971-2000 2.4 4.1 5.8 7.5 9.3 11.7 14.5 18.2 26 

1961-1995 2.3 4.1 5.7 7.4 9.1 11.4 14.4 17.9 24.9 

1896-2006 2.5 4.1 5.8 7.4 9.2 11.4 14.1 17.8 24.1 
Table 5-1 : Comparison of quantile thresholds for different base periods. Drawn from Hastings annual daily 

rainfall observations 

The sensitivity of trends in events exceeding a volumetric quantile (method outlined in 

Section 5.3) was examined for different base periods and is outlined in Table 5-1 and 

illustrated in Figure 5-16; the orange line is a simple linear trend and the green line shows 

the expected frequency of events in each year of 0.1. Although there is very little difference 

between the numeric value of the lower thresholds for different base periods, the 90% 
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threshold differs by up to 2mm with significant trends only found for the lower threshold 

values (i.e. calculated from the 1961-1995 or 1896-2006 base periods). 

Although the above analyses have established the sensitivity threshold calculation from 

different base periods, the most appropriate duration is not immediately apparent. While 

using the whole record period may be the ideal solution, it would not be possible to compare 

analyses from gauge records commencing in different years. Furthermore, the focus of this 

project is extreme rainfall but a threshold of 90% of the wet day distribution includes too 

many events per year to make the use of an extreme value distribution appropriate (Katz et 

al., 2002). As a result, the accepted definitions of very wet and extremely wet days (IPCC, 

2011), calculated in relation to a base period of 1961-1990 and defined by Alexander et al. 

(2006)  will be used in this project for all examination of events exceeding high thresholds.  

• Very wet days Q95: RRwi is the daily rainfall total on any wet day w ≥ 1mm, in 

period j and RRwn95 is the 95th quantile of rain on wet days between 1961-1990, then for 

W wet days: 

 

• Extremely wet days Q99: for the same notation, RRwn99 is the 99th quantile of rain 

on wet days between 1961-1990: 

 

Figure 5-16 : Variation in percentage of events at Hastings exceeding 90% of the mean wet day total for base 

periods: a) 1961-1990 b) 1971-2000 c) 1961-1995 d) 1896-2006. The green line represents the expected 

frequency of events in this category in each year and orange line the apparent trend in quantile contribution. 
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5.3 Metrics of Extreme Rainfall: Quantiles 

Quantiles of rainfall on wet days can be analysed with extreme value theory to assess 

the frequency and magnitude of excess events; an alternative is to examine changes in 

different quantiles of rainfall magnitude or wet day frequency. Using a histogram type 

analysis the rainfall events may be “binned” either according to the frequency of events 

exceeding R10p:R90p, using the notation above, (Karl and Knight, 1998; Groisman et al., 

2001); or according to some volumetric threshold (Maraun et al., 2008). The first assesses 

changes in the frequency of different magnitude events, while the second appraises changes 

in event intensity. However both aspects are important for engineering design or strategic 

risk management planning and should not be isolated in this manner. Extreme value theory 

facilitates examination of both the frequency and magnitude of the event distribution; thus 

the only reason to examine quantile behaviour in this manner is if it provides greater clarity 

on changes in the intensity or frequency of events. 

 
Figure 5-17 : Volumetric quantile thresholds from Hastings daily rainfall observations obtained by ranking 

the magnitude of all events within the base period, and selecting the upper observation of each quantile. 

Blue line indicates cumulative event total; grey lines the threshold of each volumetric quantile. 

The aim of this exploratory analysis is to review the merits of volumetric quantiles in 

characterising extreme rainfall and whether the results clarify apparent changes in event 

intensity. Adopting the methodology outlined by Maraun et al. (2008), the fractional 

contribution of total rainfall to each volumetric quantile is estimated by: 

• Ranking all wet day totals by magnitude within the base period. 

• Dividing the cumulative total by 10, to obtain volumetric quantiles. 

• Selecting the upper observation of each quantile as the bin threshold (Figure 5-17). 

• Assigning all rainfall observations to the quantile bins for each year. 
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The upper quantile may contain only a few events which together total 10% of the 

base period rainfall, while the lower quantile will contain considerably more than 10% of the 

total number of wet days. 

Michaels et al. (2004) were critical of this approach as increases in total rainfall will 

result in changes to the distribution parameters; uniform changes in the characteristics of 

the distribution may have a non-uniform manifestation in the quantiles. Further, simple 

examination of trends in the upper quantiles of the rainfall frequency or intensity 

distributions (Karl and Knight, 1998; Groisman et al., 2001; Maraun et al., 2008) will 

demonstrate changes relative to a defined period but not their significance. This requires an 

assessment of the changes in proportion to those in the overall rainfall distribution. 

Method of moments estimators for the Gamma distribution parameter estimates can 

be obtained from the wet day mean and variance, facilitating a simple diagnostic to identify 

likely distributional changes. Trends in either the mean or the variance, as shown in Figure 

5-18, will result in changes in the rainfall distribution, and hence the upper volumetric 

quantile. Comparison of Hastings and Plockton also highlights the sensitivity of trend 

analyses to the starting point, for example a regression line commencing in 1963 for 

Hastings would be steeper than one commencing in 1893 as shown. While considerable 

climate variations have occurred since the 1960’s (IPCC, 2007a), care must be taken to 

distinguish natural climate variability from abrupt changes in behaviour. 

 

Figure 5-18 : Wet day statistics for mean wet day total for (a) Hastings and (b) Plockton; variance in wet day 

totals for (c) Hastings and (d) Plockton. Red lines represent linear regression in relation to Hastings record 

(1893:2006), dark blue lines represent linear regression in relation to Plockton record (1963:2006). 
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The volumetric quantile method was used to determine thresholds in relation to a 

base period of 1961-1990 and the resultant fractional contribution of events in each year; 

shown in Figure 5-16(a). The green line indicates the “expected” fractional contribution if 

each quantile contributed 10% of the annual total rainfall (as Maraun et al., 2008); a linear 

trend is indicated in orange. As the regression lines in Figure 5-18 suggest that the rainfall 

distribution is changing in relation to the 1961-90 period, simple linear trends do not give a 

full picture of the significance or magnitude of changes in extreme rainfall. A more relevant 

test would compare observed changes in quantiles with those expected from changes in the 

gamma distribution. Although changes to the individual shape ( ) and scale ( ) parameters 

do not represent direct changes to the rainfall regime, manipulating the parameters can 

illustrate their influence on the extreme responses. This analysis is illustrative only as the 

exact magnitude of the extremes are not well represented by a gamma distribution (Katz et 

al., 2002), as shown earlier. However, the method is useful to determine whether apparent 

trends in the upper quantiles are greater than would normally be expected from changes in 

the wet day distribution. 

Gamma distribution parameters were estimated from Hastings wet days (≥0.1mm) 

using maximum likelihood estimates (MLE); thresholds were estimated for the period 1961-

1990. A synthetic series representing 30 years of rainfall was then created by randomly 

sampling from the distribution 10,950 times, and data categorised by threshold. The 

influence of changes in  and  was examined by re-simulating the gamma distributions 

with each parameter increased in turn by 10%. The mean fractional contributions to each 

quantile from 100 simulations, using the three simulated series, are shown in Figure 5-19. 

 
 

Figure 5-19 : Fractional contribution by quantile for base gamma distribution (black) fitted to Hastings daily 

rainfall, and with increased shape ( , red dashes) and scale ( , blue dot-dash) parameters 

0.0 0.2 0.4 0.6 0.8

0.
00

0.
05

0.
10

0.
15

0.
20

Base simulation
1.1α
1.1β

Fr
a

ct
io

n
a

l C
o

n
tr

ib
u

ti
o

n
 

Quantile of gamma distribution 



~ 95 ~ 

 

The results indicate the impact of each of the parameters on the distribution; by 

increasing  the distribution becomes more kurtotic about the mean with a smaller 

fractional contribution to the lower quantiles. In contrast, increasing  affects kurtosis and 

variance resulting in the greatest increases in the upper quantiles. These results also 

demonstrate that the distribution is not uniform and while thresholds were chosen 

according to quantiles of the cumulative total rainfall, the fractional contribution of events 

does not equate 10%. Furthermore, thresholds were derived empirically from finite 

observations rather than theoretically from an asymptotic distribution, leading to skewed 

estimates. Based on the method of moments variations in the scale parameter,

, may be easier to identify than changes in the shape parameter, 

, which controls the skew of the distribution. The scale parameter has been 

shown to explain seasonal and spatial variations in rainfall, particularly in strongly seasonally 

driven regions (Wilby and Wigley, 2002), and better reflects changes to extreme rainfall 

patterns (Osborn and Hulme, 2002); refer also to Chapter 3. 

The same base gamma distribution was then used to simulate uniform quantitative 

changes to the rainfall distribution arising from increased event intensity, frequency or both 

intensity and frequency. This analysis assumed for the sake of simplicity that changes to the 

rainfall distribution will be uniform, which is unlikely (Allen et al., 2002; Trenberth, 2011). A 

base sample of 10,000 was taken from the un-modified gamma series and the number of 

events exceeding the original thresholds was increased by a total of 10% in: 

• intensity: each of 10,000 original draws multiplied by 1.1 

• frequency: 1000 additional draws from the original distribution 

• intensity and frequency (general): each of 10,000 original draws multiplied by 1.05, 

and 475 additional draws. 

The results in Figure 5-20 compare the fractional contribution of ‘events’ to each 

quantile from the different simulations. The curves from the base distribution and increased 

frequency are overlain as the additional points resulted in no net change to the fractional 

contribution only to the total number of ‘events’.  
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Figure 5-20 : Impact of increases to the Hastings gamma distribution on fractional contribution to volumetric 

quantiles manipulated to reflect uniform changes in rainfall 

The greatest changes in fractional contribution occur for the largest change to the 

distribution parameters and are reflected in the upper quantiles. The simulated increases in 

rainfall intensity equate to a decrease in the scale parameter of % and commensurate 

increase in shape parameter %; simulating increased frequency results in no net change 

to the parameters; and simulated increases in frequency and intensity gives % 

and %. These results emphasise that changes to the hydrological cycle are more 

complex than can be reflected by volumetric quantiles (Trenberth, 2011; Burauskaite-Harju 

et al., 2012), which is found to be an unnecessarily restrictive approach. In particular, 

concentrating on changes in a specific quantile does not identify either the combined 

impacts of changes in event frequency and intensity or the individual changes in frequency 

even where the change is known. The volumetric quantiles approach will not be used 

further in this project, as a method is required which examines holistic changes in extreme 

rainfall patterns, considering frequency, intensity, timing and duration. 

5.4 Metrics of Extreme Rainfall: r-largest events 

Analyses of annual maxima, while potentially including Q95 events rather than just 

Q99 have the advantage of being insensitive to the selection of wet day or upper quantile 

threshold (Pryor et al., 2009). Expanding the maxima series to include ‘r-largest’ events per 

year increases the analysis set, while providing a statistically unbiased measure of extremity, 

and may improve extreme value distributions parameter estimates (Smith, 1986). Although 

this expansion will also increase the number of events used in the analysis, it may improve 

heavy rainfall characterisation in wetter and drier years if other information such as the 

occurrence dates or range of magnitudes are analysed in parallel. 
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Extreme value applications of the r-largest order statistic model are used to improve 

return frequency estimates (Coles, 2001) where data are hard to pool, such as sea surges 

(Hosking and Wallis, 1997). For example, Smith (1986) analysed the 10 highest sea levels per 

year modelling the joint probability distribution with a multivariate GEV distribution, as have 

others examining wave heights (Guedes Soares and Scotto, 2004; Butler et al., 2007) but the 

method has rarely been applied to extreme rainfall analyses (Zhang et al., 2004). It is 

assumed that if the extreme value distribution is a reasonable fit for the annual maxima 

then different sample sizes r will also follow a GEV distribution with the same parameter 

estimates for all values of r (refer to Chapter 3). Selection of the most appropriate value of r 

is easily achieved using parameter stability plots (Coles, 2001), where  and  are 

depicted as functions of r, and identifying the largest value for which all three parameters 

appear to be stable (Butler et al., 2007). The magnitude of r is critical, as too many events 

will introduce large variability and the limiting condition of  will not hold true, while 

too few events will increase uncertainty in the GEV parameter estimates. 

Table 5-2 shows the values of r at which the GEV parameters (standard errors) stabilise 

(minimise) for nine daily rainfall maxima series; a typical parameter stability plot is included in 

Figure 5-21 comparing parameter estimates and standard errors from the r-largest daily 

rainfall maxima at Armagh. While there is considerable variability between the stations, 

inspection of the standard error (s.e.) terms suggests that r =4 or r =5, the smallest value at 

which parameter and standard error stability is achieved, is the most appropriate value. 

Gauge 

Reference 

Name Record 

Length 

Region GEV parameters for r-maxima 

Location,  

(s.e.) 

Scale,  

(s.e.) 

Shape,  

(s.e) 

12 Baltasound No. 2 98 NS 8 (5) 13 (13) 5(4) 

147 Braemar 137 ES 12(3) 14(11) 7(4) 

251 Edinburgh, 

Blackford Hill 

113 SS 7(6) 5(6) 4(4) 

326 Durham 129 NEE 8(5) 9(4) 4(3) 

606 Oxford 156 SEE 5(5) 5(3) 2(2) 

671 Ross-on-Wye 132 SWE 4(4) 4(3) 8(5) 

1530 Armagh 156 NI 14(8) 12(5) 9(2) 

4436 Stretham 138 CEE 14(7) 12(8) 8(5) 

12936 Appleby Castle 119 NWE 12(5) 10(8) 5(4) 

 Table 5-2: Number of r-maxima where approximate stabilisation is visually apparent for the multivariate 

GEV parameter estimates and standard error estimates (s.e.; in parentheses) 
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Figure 5-21 : Parameter stability plots for the multivariate GEV distribution, comparing parameter estimates 

(coloured lines) and standard errors (bars) from the r-largest daily rainfall maxima at Armagh 

Quantile-quantile plots, with the empirical distribution derived from AMAX 

(Stephenson, 2002), and return level estimate plots were also used to examine the influence 

of different values of r. Table 5-3 contains the value of r at each station for which: all 

parameters become stable; the best quantile-quantile fit occurs; and greatest accord 

between return level estimates and observations is achieved. Typical examples of quantile-

quantile plots and return level estimates are shown in Figures 5-22 and 5-23.  

Gauge 

Reference 

Name Region Parameter 

stability 

Quantile-

Quantile 

Return level 

12 Baltasound No. 2 NS 13 3 2 

147 Braemar ES 14 14 3 

251 Edinburgh, Blackford Hill SS 7 1 2 

326 Durham NEE 9 11 12 

606 Oxford SEE 5 11 12 

671 Ross-on-Wye SWE 8 10 3 

1530 Armagh NI 14 14 15 

4436 Stretham CEE 14 14 14 

12936 Appleby Castle NWE 12 5 5 

Table 5-3 : Value of r for the multivariate GEV distribution for which all parameters are stable, the best 

model fit occurs and the best accord between return level estimates and observations is achieved with 

comparison to the annual maximum values (r=1) as the empirical distribution 
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Figure 5-22 : Armagh quantile-quantile plots for the multivariate GEV distribution at different values of r -largest events per year, with comparison to the annual 

maximum values (r=1)  as the empirical distribution  
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Figure 5-23 : Armagh return level estimates for the multivariate GEV distribution at different values of r-largest events per year using the annual maximum values (r=1) 

as the empirical distribution 
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Visual inspection of the proximity of the upper 5% quantiles to the theoretical best 

line (in red) in Figures 5-22 and 5-23, suggests that parameter estimates can be improved by 

using at least r=5 events per year, although there are differences between the most 

effective value of r for all stations. While there is some improvement compared with 

estimates from AMAX (r=1), all fifteen GEV distributions underestimate the upper tail. Other 

methods for improving parameter estimates such as regional frequency analysis (Hosking 

and Wallis, 1997) or excess over threshold models using only independent extreme events 

(Davison and Smith, 1990) may be more appropriate for extreme value distribution 

estimates. Table 5-2 suggested that using fewer maxima per year (1 ≤ r ≤ 5) in parameter 

fitting leads to better approximations of the shape parameter; similarly return period 

estimates from the distributions fitted to smaller values of r appear to match the 

observations better. Guedes Soares and Scotto (2004) assessed the influence of increasing r 

objectively with the deviance statistic, using three-hourly North Sea wave maxima from 

1976-1999, arriving at an optimum value of r=5. Deviance statistics and the AIC indicate that 

the optimum value of r for GEV parameter estimates is between 13 and 15. However, the 

improvements in parameter estimation, and reciprocal reduction in standard error, are 

outweighed by the inclusion of too many non-extreme events in model fitting. The 

variability between different stations is also too great to apply this method homogenously 

to compare spatial differences in return period estimates. 

5.4.1 Variance in range of r 

When countering the quantile approach, Michaels et al. (2004) suggested examining 

trends in the magnitude of each r=10 largest events per year, effectively a simple form of 

quantile regression. They found limited evidence of changes in the wettest 10 days per year 

across the conterminous United States. However, their selection of r was determined from 

data availability rather than through subjective testing, leading to low significance of any 

tests as a result of the wide variability in rainfall regimes. Liu et al. (2011) found the choice 

of 10 days to be “arbitrary”, opting instead to select a number, r, of events reflecting a 

fraction of the annual total rainfall. 

Rather than analysing monotonic linear trends in each of the r-largest events per year, 

event magnitudes were examined in relation to each other (e.g. range of the largest 

magnitudes per year, occurrence month) to determine the characteristics of the heaviest 
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rain days. For instance, to assess whether reciprocity exists between the magnitude, e.g. in 

the range of r events, or timing of the events from year to year. Understanding whether 

particular years are more or less likely to experience large maxima would be beneficial to 

water resource managers, insurers and many others. 

 

Figure 5-24 : Frequency of r-largest events by month for Armagh 

Figure 5-24 illustrates the typical month of occurrence of the 4-largest events per year 

for Armagh, an r value selected from parameter stability plots of the characteristics 

depicted in Figures 5-25 to 5-27. This differs from the most appropriate r for use in the GEV 

model, where a higher number of events were required for parameter estimates. Similar 

temporal patterns were obtained for other stations, with more frequent maxima found 

either in the summer or winter, and very few of the wettest days in March or April. It is not 

possible to identify whether the wettest days cluster within year from this analysis as the 

causes of the events and inter-annual variability are too diverse to identify clear patterns. A 

more detailed exploration of POT seasonality, limiting the range of other drivers, is included 

in Chapter 7.  

The mean, variance, interquartile range and median of the four largest events per year 

were explored for each gauge to determine whether any quantifiable relationship exists. 

The results for Armagh (Figure 5-25) show a high degree of year to year variability, as 

anticipated, in their range and mean value. Linear regressions are suggestive of an increase 

in either the inter-quartile range or variance of the events for a related decrease in median 

or mean. The results for other stations are equally noisy, with no coherent spatial pattern.  
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Figure 5-25 : Statistics of r=4 largest events per year for Armagh 

All stations also have a positive correlation between the mean of the wettest four days 

and their variance, as typified by the plots for Armagh in Figures 5-26 and 5-27. The 

relationship suggests that during years with the most intense annual maximum events other 

peak event totals are not as large; this tallies with observed and projected variability in the 

magnitude of maxima, which is greatest in the extremes (Pall et al., 2007; Portmann et al., 

2009) and likely to increase in variability (Hegerl et al., 2007). 

 
Figure 5-26 : Relationship between mean and variance of r-largest events for Armagh 
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Figure 5-27 : Mean of r-largest totals divided by variance per year for Armagh 

However, the spatial variability between gauges, as well as temporal variations, makes it 

difficult to interpret any patterns in the wettest day per year. There appears to be a general 

relationship between the r-largest events, whereby the range is greatest (least) in dry (wet) 

years and the events occur more (less) at random, but high temporal variability confuses this 

relationship. The differences from year to year make interpretation of the driving forces, 

whether atmospheric or seasonal, overly complex. It is believed that the method of wet days 

could be informative, but only once the most intense rainfall events have been fully 

characterised; therefore, other metrics of heavy and extreme rainfall will be examined. An 

alternative method to improve the GEV parameter estimates is examined in Chapter 6, while 

peak over threshold maxima are explored in Chapter 7. The exploratory data analyses carried 

out in this chapter have demonstrated that the r-largest statistical model, applied either to 

extreme value theory or more standard statistical analyses, is inappropriate for use in this 

project and so will not be employed in later chapters. 

5.5 Summary 

Data processing to develop a comprehensive set of daily rainfall observations was an 

iterative procedure, where initial quality control measures (in Chapter 4) were followed by 

exploratory data analyses to identify erroneous data. Tests for abrupt and gradual changes, 

or event randomness, highlighted remaining errors; some of these were rectified, while 

others identified the need to remove observation series from POT analyses. As a result, only 

199 of the observation records are suitable for peak-over-threshold analyses; however all 223 

AMAX series can be used as these were verifiable against other records. 
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Approximately half of the stations had no significant abrupt changes in the mean or 

the variance of the annual maxima series. Tests for gradual changes were insignificant, 

equated to a null trend, or identified a change after a significant change point towards the 

end of the observation record. The influence of identified change points will be minimised 

by regional pooling, a method to be used in later chapters (Hosking and Wallis, 1988), which 

permits all stations to be analysed without specific allowance for abrupt or gradual changes. 

Exploration of various metrics of rainfall extremity established the most appropriate 

wet day threshold as ≥1mm for extreme events and a threshold of 95% (“very heavy”) for 

POT analyses, to be able to characterise within year clustering. The method of volumetric 

quantiles was found to be unnecessarily restrictive and did not quantify frequency and 

intensity changes in extreme events, making it unsuitable for use in this project. 

Improvements in return period assessment using the -largest events per year were highly 

variable across the stations examined and are minimal with comparison to the regionally 

pooled estimates explored in Chapter 6. The use of these events in a separate analysis to 

characterise the drivers and timing of annual Q95 events may have greater application in 

the future, but is overly complex for use in this project as the data include non-extreme 

events. Therefore, the -largest event set will not be studied further within this thesis. 

5.6 Computer Packages 

The following packages were used in R for all analyses in this chapter: evd 

(Stephenson, 2002), fArma (Wuertz et al., 2009), quantreg (Koenker, 2011), and tseries 

(Trapletti and Hornik, 2011). 
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Chapter Six Changes in Annual and Seasonal Maxima 

“For the rain it raineth every day” 

William Shakespeare, Twelfth Night V:i 

Several notable floods in the UK in recent years have reinvigorated interest in 

estimating the probability of experiencing such events and whether it is possible to detect 

changes in the frequency (Pryor et al., 2009; Stott and Trenberth, 2009) as anticipated from 

a changing hydrological cycle (Trenberth and Shea, 2005). Exploratory data analyses in 

Chapter 5 demonstrated that the simplest metrics of extremity, such as annual maxima 

(AMAX), combined with extreme value theory provide the most effective and readily 

interpretable method to assess such changes. While Chapter 3 showed that the most 

appropriate method to extrapolate annual maxima and estimate the return frequency of 

extreme events is the Generalized Extreme Value (GEV) distribution. 

GEV models can be used to characterise seasonal or location specific changes in 

frequency or magnitude. For example, Maraun et al. (2009) represented UK seasonality 

through a multivariate GEV model with a simple sinusoidal component fitted to monthly 

rainfall maxima. In contrast, Fowler and Kilsby examined the implications of changes to 

extreme rainfall from both seasonal (2003a, henceforth FK2003a) and annual (2003b, 

henceforth FK2003b) event magnitudes using regional frequency analysis to fit a univariate 

GEV model. In common with other studies, FK2003a found a downward trend in estimated 

summer extreme rainfall magnitudes, particularly for 1-day events in Southeast England, 

and for the median seasonal maximum event (SMED). An increasing trend in estimated 

winter extreme rainfall magnitudes was apparent with the greatest increases in Scotland. 

However, in contrast with Osborn and Hulme (2002), limited change in winter extreme 

rainfall was apparent for England and Wales. 

Changes in the seasonal occurrence of extreme rainfall events have had significant 

impacts on the food and drink industry in recent years with heavy rain damaging recently 

planted crops (Rosenzweig et al., 2002), or droughts (an extreme absence of rain) occurring 

at unexpected times of the year, or an increased flood potential resulting from severe 

rainfall on either arid or saturated ground. Quantifying seasonal and regional differences in 

maximum rainfall behaviour, particularly being able to distinguish long term change from 
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natural variability, may inform those involved with adaptive action planning, from the 

individual farmer to the policy maker. 

FK2003b used an approach based on L-moment ratios (Hosking and Wallis, 1997) to fit 

a GEV distribution to regionally pooled standardised AMAX data, and hence to estimate the 

regional rainfall growth curves for 1-, 2-, 5- and 10-day maxima. Decadal variability in the 

pooled AMAX was further examined using ten year moving windows and by fixed decades 

comparisons. It was concluded that several HadUKP regions have experienced changes, of 

differing scale and direction, in the magnitude of pooled extreme rainfall during the period 

1961-2000. Notably, prolonged heavy rainfall events (5- or 10-days) increased in northern 

and western regions during the 1990s while the equivalent events decreased in magnitude 

in the south. It is now opportune to revisit the original work to update the analyses from 

1961-2000 to 2009, and to compare the results with recent publications on UK extreme 

rainfall.  

Here, changes in the estimated magnitude of events with specific return periods were 

also examined using the GEV distribution. GEV distribution curves were fitted to the 1-, 2-, 

5- and 10-day seasonal and annual standardised pooled maxima using maximum likelihood 

estimates (MLE) of the parameters and estimated event magnitudes obtained by multiplying 

by the regional SMED or RMED. A comparison of the estimated GEV parameters obtained 

from MLE and L-moments confirmed that differences between estimates from each method 

are minor and well within the confidence intervals for data sets >50 years. Given the 

extended data set in use and the ease of calculation, it was decided to fit the GEV 

distribution using MLE; parameters estimated from MLE have also been found to minimise 

bias where strong multi-annual cycles are present (Rust, 2009). This differs from the 

previous work (FK2003b; FK2003a), where the L-moments of individual gauges were 

weighted to fit the regionally pooled GEV distributions.  

Regional pools were assessed for homogeneity with the discordancy measure  

(Hosking and Wallis, 1997) of each site in the region to ensure adequate similarity of the 

AMAX distribution in the pooling group. This was important as some stations have been 

added to the regions in this study which were not present in the previous assessments 

(FK2003b; FK2003a); furthermore, GIS based assessment of digital boundaries (Alexander 
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and Jones, 2000) identified some incorrectly allocated stations in FK2003a,b (Figure 6-1). 

The discordancy measure for site , in a pool of size , with  L-moment ratios is: 

 

Equation 6-1 

where  is a matrix of the mean L-moment ratios,  is a matrix of the variance in L-

moment ratios and  is the inverse of matrix . For a more detailed definition, refer to 

Robson (1999). A site was considered to be potentially group discordant when  was 

greater than Dcrit, with  the critical value at the 10% significance level for a pooling 

group of  (after Hosking and Wallis, 1997). 

 

Figure 6-1 : Changes in station region in comparison with Fowler and Kilsby. Text denotes original regional 

allocation (FK2003b; FK2003a), red circles denote relocated stations, black triangles are additional stations 

Two sites were found to have values of Di greater than the critical value; these sites 

are reported in Table 6-1 together with the notable storms identified as the source of 



~ 109 ~ 

discordancy. No changes were deemed necessary to NS as one exceptional storm does not 

necessarily indicate an intrinsic difference from the remainder of the pool. A GIS assessment 

suggested that Appleby Castle should be reallocated to NEE; however, the particularly high 

discordancy score recommended retaining this site within NWE where Di dropped to 0.69.  

Region Gauge Name Gauge 

Reference 

Discordancy 

(Di) 

AMAX Date 

NS Mull: White House of Aros 14162 3.6 70.1mm 27/03/1968 

NWE Appleby Castle 12936 4.11 79mm 24/07/1965 

    61.8mm 10/08/2004 

Table 6-1 : High values of discordancy measure (Di) in the pooling regions 

Regional Frequency Analysis (RFA) was then applied (Hosking and Wallis, 1997), 

standardising time series of individual gauge maxima by the gauge median (for 1961-1990) 

to remove orographic or exposure effects prior to pooling. Regional seasonal and annual 

medians (SMED and RMED, respectively) were calculated from the weighted mean of all 

gauges in the region, where individual stations were weighted according to record length to 

reflect the reliability of the relevant set of observations using Equation 4-1: 

 

Where  is the effective record length at the th site,  the number of sites in the 

pooling group and  represents the number of station years. 

Data were subdivided according to three different categories to examine potential 

changes in return level estimates and median values (annual and seasonal):  

• Fixed decades (1961-1970, …, 1991-2000); 

• Rolling decades (1961-1970, 1962-1971, …, 2000-2009); 

• Datasets covering 1961-2000 and 1961-2009. 

Examining the rolling decades enhances the resultant estimates within fixed decades 

by verifying that apparent changes are not merely artefacts of the selected time period. 

Method three allows a subjective assessment of the influence of recent maxima from 2000 

to 2009 on the return period estimates. For clarity within the text, event estimates are 

identified with the numeric form (e.g. 5-day, 25-year) and analysis periods with the 

alphabetic form (e.g. ten year group). 
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Events considered for this study are the 1-, 2-, 5- and 10-day maximum daily totals per 

annum or season; return period estimates are calculated for an idealised set of 10-, 25-, 50- 

and 100-years for each of the fixed and rolling ten year groups, while acknowledging that 

estimates of 1:100 years are not necessarily reliable. Following the FEH rule of thumb 

(Faulkner, 1999), a dataset at least five times the length of the target return period (T) 

should be used in event estimation, thus T=100 exceeds the maximum valid estimate from a 

minimum pool of fifteen gauges for North Scotland in the period 2000-2009. Seasonal 

maxima and associated return period estimates were analysed using fixed seasons: Spring 

(MAM), Summer (JJA), Autumn (SON) and Winter (DJF). 

6.1 Updated Annual and Seasonal Maxima 

To determine the influence of additional data on the regionally pooled results, and 

identify any recent changes, the pooled standardised series were examined for differences 

from those produced by FK2003b before fitting the GEV as shown in Figure 6-2 for each 

event duration. Plotting positions, , for the fitted distributions were determined from the 

Gringorten formulae (1963):  

 

 
Equation 6-2 

where  is the non-exceedance probability,  the rank in ascending order and , the 

number of pooled maxima. 

Comparison of Figure 6-2 with FK2003b Figure 3 shows that most regions have higher 

extreme values of standardised annual maxima. Some of the increases in the extremes relate 

to annual maxima recorded during the period 1961-2000 at the nineteen supplementary 

gauges so preventing any direct comparison. However, several regions (CEE, NWE, NEE, SS 

and NS) have higher extremes resulting from recent events such as July 2007, affecting CEE 

and SWE with 147mm recorded over a 48-hour period at Pershore Agricultural College, 

September 2008 in NEE with 152mm in 48-hours at Morpeth and the UK record  24-hour total 

of 316.4mm recorded in Seathwaite, Cumbria in November 2009. An exception to this pattern 

is East Scotland, where the maxima values are now lower, arising from the re-allocation of 

Edinburgh Botanic Gardens to the South Scotland region; however, later results will show that 

the return period estimates have not been unduly influenced by this relocation. 
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Figure 6-2 : Standardised regional annual maximum (AMAX) rainfall distributions 1961-2009 for the nine HadUK Precipitation pooling regions (from FK2003b, Figure 3)
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The extra data for 2000-2009 have made most curves steeper, i.e. follow a Fréchet 

distribution, with the exception of Northeast England (NEE) and Northern Ireland (NI) where 

little change is observable. Very few significant monotonic linear trends were found in the 

annual maxima in Chapter 5, and none of >5mm in magnitude, in part because the data are 

highly variable. Before fitting GEV distributions, and to identify spatial or temporal patterns, 

a similar analysis was carried out on the mean regional RMED and SMED for rolling ten year 

periods (Figure 6-3 and 6-4). Rolling decade statistics were calculated from the first year of 

the ten year period analysed for the weighted regional mean 10-year median of the annual 

or seasonal maxima, the x-axis corresponds to the start year of each ten year period.  

Other than NI and SEE, most regions exhibit a significant upward trend in RMED for all 

duration events, particularly in the north and west. South Scotland (SS) shows a significant 

increase of 0.75mm per year in median 10-day maxima, approximately 36mm over the 

period of record. Changes in SMED are more apparent in longer duration events (5- and 10-

day) with significant increases across all regions in winter, again with the largest increases in 

SS. Spring and autumn SMED also appear to be increasing, although both the magnitude and 

the significance of the increase are weaker in the east; summer SMED is significantly 

decreasing in SEE. 

Table 6-2 presents the magnitude per year of linear trends in each region, and their 

estimated significance in parentheses, for the regional RMED and SMED series. Trends were 

assessed using a two-tailed Mann-Kendall statistic, with a significance level of 5%, as rank 

based tests are more appropriate for non-normally distributed data (Yue and Pilon, 2004). 

The significance of trends in each region was also tested using a moving-block bootstrap 

(Efron and Tibshirani, 1993), of block length L=5, to establish the confidence intervals over 

each decade and reflect the relative decrease in data during the most recent decade (2000-

2009). Despite the autocorrelation introduced by the rolling decade approach, the bootstrap 

technique did not alter the trend magnitudes or standard error estimates. Smaller trends in 

shorter duration events, although significant, equate to around 4mm over the period of 

record, and could arise from random atmospheric fluctuations (Benestad, 2003). In contrast, 

significant increases in winter rainfall, particularly in the longer durations, approximate 40-

50mm over the period of record and could have severe implications for flood generation. 



~ 113 ~ 

 
 

Figure 6-3 : Decadal mean Regional Median Annual Maxima (RMED) 
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Figure 6-4 : Trends in the Regional Median Seasonal Maxima (SMED) for SWE in spring; NWE, NEE, SEE and CEE in summer; and NWE and SS in autumn and winter
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Pooling 

Region 

RMED 

mm/year 

Spring 

mm/year 

Summer 

mm/year 

Autumn 

mm/year 

Winter 

mm/year 

(a) 1-day         

SWE 0.01 (0.66) 0.01 (0.13) -0.07 (<0.01) 0.05 (<0.01) 0.08 (<0.01) 

SEE -0.05 (0.02) 0.01 (0.54) -0.12 (<0.01) 0.04 (0.03) 0.09 (<0.01) 

CEE 0.01 (0.78) 0.01 (0.45) -0.05 (0.04) 0.1 (<0.01) 0.07 (<0.01) 

NWE 0 (0.78) 0.02 (0.13) -0.15 (<0.01) -0.06 (0.01) 0.16 (<0.01) 

NEE 0.08 (0.07) -0.03 (0.29) 0.07 (0.57) 0.04 (0.13) 0.16 (<0.01) 

NI -0.05 (0.07) 0.06 (<0.01) -0.11 (<0.01) -0.02 (0.55) 0.07 (<0.01) 

NS 0.1 (<0.01) 0.08 (<0.01) -0.02 (0.28) 0 (0.35) 0.16 (<0.01) 

SS 0.28 (<0.01) 0.16 (<0.01) 0.03 (0.15) 0.14 (<0.01) 0.23 (<0.01) 

ES 0.18 (<0.01) 0.14 (<0.01) 0 (0.7) 0.16 (<0.01) 0.12 (<0.01) 

(b) 2-day     

SWE 0.02 (0.38) 0.06 (<0.01) -0.12 (<0.01) 0.1 (<0.01) 0.19 (<0.01) 

SEE -0.11 (<0.01) 0 (0.86) -0.17 (<0.01) 0.01 (0.45) 0.19 (<0.01) 

CEE 0.05 (0.03) 0.02 (0.52) -0.08 (0.02) 0.11 (<0.01) 0.1 (<0.01) 

NWE -0.01 (0.6) 0.05 (0.01) -0.19 (<0.01) -0.07 (0.01) 0.23 (<0.01) 

NEE 0.16 (<0.01) -0.04 (0.25) 0.06 (0.7) 0.09 (0.04) 0.2 (<0.01) 

NI -0.04 (0.15) 0.09 (<0.01) -0.09 (<0.01) 0.02 (0.92) 0.08 (<0.01) 

NS 0.04 (0.1) 0.08 (<0.01) -0.04 (0.16) -0.04 (0.01) 0.22 (<0.01) 

SS 0.29 (<0.01) 0.19 (<0.01) 0.04 (0.06) 0.21 (<0.01) 0.31 (<0.01) 

ES 0.17 (<0.01) 0.21 (<0.01) -0.07 (0.12) 0.22 (<0.01) 0.14 (0.04) 

(c) 5-day      

SWE 0.14 (<0.01) 0.2 (<0.01) -0.14 (<0.01) 0.29 (<0.01) 0.27 (<0.01) 

SEE -0.03 (0.41) 0.03 (0.62) -0.21 (<0.01) 0.02 (0.38) 0.24 (<0.01) 

CEE 0.16 (<0.01) 0.07 (0.05) -0.04 (0.3) 0.14 (<0.01) 0.13 (<0.01) 

NWE 0.18 (<0.01) 0.15 (<0.01) -0.18 (<0.01) -0.08 (0.05) 0.57 (<0.01) 

NEE 0.3 (<0.01) -0.01 (0.81) 0.08 (0.6) 0.19 (<0.01) 0.27 (<0.01) 

NI 0.05 (0.17) 0.15 (<0.01) -0.11 (<0.01) 0.09 (0.2) 0.13 (<0.01) 

NS 0.21 (<0.01) 0.25 (<0.01) 0 (0.67) -0.1 (0.05) 0.58 (<0.01) 

SS 0.56 (<0.01) 0.3 (<0.01) 0.06 (0.2) 0.41 (<0.01) 0.69 (<0.01) 

ES 0.26 (<0.01) 0.21 (<0.01) -0.01 (1) 0.42 (<0.01) 0.22 (<0.01) 

(d) 10-day     

SWE 0.26 (<0.01) 0.38 (<0.01) -0.25 (<0.01) 0.34 (<0.01) 0.33 (<0.01) 

SEE 0.04 (0.56) 0.1 (0.05) -0.2 (<0.01) 0.06 (0.6) 0.23 (<0.01) 

CEE 0.18 (<0.01) 0.15 (0.02) -0.09 (0.04) 0.25 (<0.01) 0.13 (<0.01) 

NWE 0.3 (<0.01) 0.24 (<0.01) -0.36 (<0.01) -0.03 (0.67) 0.89 (<0.01) 

NEE 0.34 (<0.01) -0.01 (0.86) 0.06 (0.65) 0.3 (<0.01) 0.37 (<0.01) 

NI 0.19 (<0.01) 0.17 (0.03) -0.05 (0.19) 0.17 (0.03) 0.13 (<0.01) 

NS 0.39 (<0.01) 0.37 (<0.01) -0.06 (0.2) -0.2 (0.06) 1.01 (<0.01) 

SS 0.75 (<0.01) 0.34 (<0.01) 0.03 (0.51) 0.56 (<0.01) 1.14 (<0.01) 

ES 0.34 (<0.01) 0.31 (<0.01) 0.03 (0.36) 0.54 (<0.01) 0.25 (<0.01) 

Table 6-2 : Magnitude per year of linear trends calculated with a block bootstrap, of mean decadal RMED 

and SMED by region over the period 1961-2009 for (a) 1-day; (b) 2-day; (c) 5-day; and (d) 10-day events. The 

significance measure is included in parentheses; values ≤0.025 are significant against a two-tailed Mann-

Kendall test at the 5% level. 
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In common with FK2003a, and more recent research (Maraun et al., 2009), a 

consistent increase in magnitude over 1961-2009 is evident in most regions for spring and 

autumn SMED, although the Mann-Kendall test results are only significant in northern 

regions. Contrasting results are apparent for the summer SMED, with the trend in some 

regions decreasing at first then increasing toward the end of the record (e.g. SEE, CEE) and, 

for others, showing overall increases (e.g. NEE). Recent summer events which have been 

particularly intense over southwest and central England (e.g. Boscastle 2004, Gloucester 

2007) have probably influenced the rise at the end of the record in these regions. Mann-

Kendall test results correspond to a significant decrease in short duration events in the 

summer in NI, SEE, SWE and NWE, with less conclusive results for longer durations and 

other regions. Winter SMED is, however, increasing, by varying amounts, most notably in 

NWE, NS and SS for long duration events. 

Table 6-3 shows mean RMED values for each pooling region for fixed decades 

commencing in 1961-70. While the exact numbers differ from those published by FK2003b, 

the same behaviour is observed, with most regions experiencing an increase in RMED over 

the last two decades, particularly the north and west. The decade 1991-2000 was 

dominated by some exceptionally heavy long duration events, reflected by the higher rolling 

mean RMEDs in 5- and 10-day events. While the highest mean RMED for 10-day events 

generally occurred during 1991-2000, in most regions there has been a continuous increase 

since 1961-1970. Some of the changes in RMED are reflected in SMED values: peak short 

duration events in the south and east occur mostly during late summer and autumn, with 

the respective SMED matching RMED behaviour for these regions. By contrast, regions 

dominated by westerly weather, with the heaviest rainfall occurring over longer durations in 

the winter, are again commensurate with RMED increases. 

Figure 6-5 indicates the typical seasonality of annual maxima events for 1- and 10-day 

duration events over the period 1961-2009. This illustrates how south-eastern areas are 

dominated by events in the summer (Rodda et al., 2010), with 1-day events occurring later 

in the summer than 10-day. All other regions tend to experience short duration events (1-

day) in late autumn, with little difference in timing between the regions. 10-day events have 

a wider range of occurrence month, ranging from late autumn to mid-winter, again with 

similar seasonality for all western and northern regions. 
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Pooling Region 1961-70 1971-80 1981-90 1991-2000 2001-09 

(a) 1-day           

SWE 37.8 38.1 36.1 38.4 40.8 

SEE 32.7 34.6 30.3 32.5 33.9 

CEE 32.0 31.1 30.7 33.2 33.4 

NWE 42.2 40.9 41.5 41.2 44.1 

NEE 33.4 32.6 34.7 33.1 40.9 

NI 37.8 34.3 36.0 34.9 38.1 

NS 41.2 40.5 44.0 44.3 39.2 

SS 42.0 38.7 44.4 46.7 48.3 

ES 34.0 32.5 36.1 37.6 39.3 

(b) 2-day           

SWE 48.5 49.9 48.4 50.3 50.1 

SEE 43.2 42.4 39.7 39.6 42.1 

CEE 39.5 38.6 39.7 41.8 43.9 

NWE 54.8 54.6 54.8 53.4 57.2 

NEE 41.5 41.0 46.1 45.4 52.5 

NI 47.8 45.9 48.8 49.0 47.6 

NS 57.9 56.3 60.4 57.7 57.9 

SS 55.8 51.8 59.2 61.9 62.5 

ES 46.1 44.3 46.9 47.8 52.3 

(c) 5-day           

SWE 67.8 72.9 73.9 74.4 74.4 

SEE 56.8 59.6 56.9 57.2 58.3 

CEE 50.7 53.2 53.2 56.9 61.3 

NWE 82.0 80.5 81.1 85.5 90.3 

NEE 57.4 57.4 59.1 64.2 72.8 

NI 70.0 63.1 68.5 74.0 65.6 

NS 86.7 86.3 95.9 96.8 87.2 

SS 84.7 78.6 92.4 98.1 96.7 

ES 64.9 59.8 64.7 68.8 70.2 

(d) 10-day           

SWE 98.3 101.9 105.3 109.4 106.1 

SEE 77.6 79.7 80.4 82.8 80.2 

CEE 69.8 73.3 74.1 75.9 82.0 

NWE 117.7 113.6 117.3 121.4 129.8 

NEE 78.2 78.6 78.2 85.9 93.3 

NI 94.6 89.2 94.1 101.3 96.7 

NS 125.7 128.5 139.6 145.1 130.5 

SS 120.8 114.9 137.5 141.1 136.8 

ES 87.3 78.8 87.6 87.4 95.7 

Table 6-3 : Mean RMED per decade for the nine pooling regions for durations (a) 1-day; (b) 2-day; (c) 5-day; 

(d) 10-day. The highest value of decadal RMED is shown in bold for each case. (Update of FK2003b Table III) 
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Figure 6-5 : Regional timing of extreme rainfall events over the period 1961-2009 from (a) 1-day annual maxima and (b) 10-day annual maxima. Months are arranged 

radially with event frequency on the horizontal axis. 
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The increases in a few regions in summer SMED, although statistically insignificant, 

contrast with climate model projections which suggest that the future climate is likely to 

bring hotter, drier summers (Murphy et al., 2009; Hopkins et al., 2010). However, the results 

presented above and later in this chapter are premised on seasonal maxima rather than 

seasonal mean rainfall and it is known that both Global and Regional Climate Models (GCM, 

RCM) are currently unable to simulate realistic short duration rainfall extremes, due to 

inadequate parameterisation of convective processes (Fowler and Ekström, 2009). Recently 

high resolution (1.5km2) RCM have improved the spatial and temporal representation of 

convective rainfall, although the intensity is still over-estimated (Kendon et al., 2012). The 

significant increases in winter SMED, especially within Scotland and more upland areas, may 

have arisen from less precipitation falling as snow (Jones and Conway, 1997).  

6.2 Updated Return Period Estimates 

6.2.1 Annual Maxima 1961-2009 

Maximum Likelihood Estimates of the GEV parameters were calculated for each of the 

regionally pooled, standardised AMAX series together with standard error estimates. The 

fitted GEV curves for each region are very similar in shape and scale to those obtained by 

FK2003b; this emphasises that with a pool size greater than five, no individual station has a 

dominating influence on the final fitted distribution (Dales and Reed, 1989).  

Figure 6-6 shows regional return period estimates obtained by multiplying the GEV 

curves by the regional RMEDs for the period 1961-2009 for each event duration. There is no 

coherent pattern in the differences with respect to region or event duration between Figure 5 

in FK2003b (reproduced in Figure 6-7) and this update; most differences in estimated 

magnitude are within the confidence limits and are either attributable to natural variability or 

minor changes in pooling group. The SEE, NEE and ES regions present the greatest differences 

in return period estimates and growth curve shape. In SEE all fitted curves have become 

flatter, with the greatest decreases in the upper tail of 1- and 2-day storms. Similarly, fitted 

curves for NEE are flatter but with larger peak values for all duration events. FK2003b 

reported that ES had experienced very wet conditions during the late 1980s and 1990s. 

Recent events in East Scotland have not been as extreme and so had little influence on the 

return period estimates for this region; changes in station data do not appear to have affected 

the fitted distributions. 
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Figure 6-6 : Fitted annual maximum GEV distributions 1961-2009 (using regional mean RMEDs). Update of FK2003b Figure 5. 
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Figure 6-7 : FK2003b Figure 5 for comparison 
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6.2.2 Annual Maxima By Decade 

Differences between FK2003b estimates and the 1961-2009 estimates were explored 

in greater depth using decadal analyses to ascertain whether these result from periodic 

fluctuations or are part of a longer term change in behaviour. Two approaches were 

adopted: fixed decades (years xxx1 to xxx0); and sliding ten year windows starting from 

1961. The standardised AMAX for the ith year of decade k, at site j (Xijk) were calculated from 

the maximum rainfall for that year Pijk and the decadal median AMAX for site j during 

decade k, RMEDjk, before fitting GEV distributions to regionally pooled series. 

 
Equation 6-3 

The results of both analyses (Figure 6-8 and Figure 6-9) emphasise the variability 

between decades and the influence of exceptional years, confirming the need to use the 

largest dataset possible (Institute of Hydrology, 1999). A selection of regions and different 

event accumulations are plotted in Figures 6-8 and 6-9 which are representative of the 

northwest/southeast divide in regional results. 

 Five regions show notable increases in their rolling decadal return period estimates 

over the full analysis period (1961-2009): NWE, NEE, SS and ES. Some regions (e.g. NI, ES) 

have sharp changes which clearly indicate extreme events entering and leaving the decadal 

calculations. The same features are also evident in the fixed decade analyses, where growth 

curves for the decade around the extreme event are considerably higher than those for 

other decades and could, if examined in isolation, suggest a longer term change in 

behaviour. The most noticeable development for the last fixed decade (2001-2009) is that 

many significant differences between the growth curves observed for 1991-2000 are no 

longer significant, being nearer in magnitude to the estimates of previous decades. The 

variability is more prominent in north and west regions, which tend to be more responsive 

to weather systems over the North Atlantic and forcing from the North Atlantic Oscillation 

(NAO), which recently ended a prolonged positive phase (Hurrell and Deser, 2009). Other 

regions which display less contrast between the fixed decade estimates (e.g. SS) have much 

more noticeable increases when the rolling decade return period estimates are reviewed. 
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Figure 6-8 : Fixed decade changes in return period estimates using mean regional RMED: (a) NI region, 1-day; (b) ES region, 10-day; (c) NEE region, 5-day;  

(d) SEE region, 1-day; (e) SS region 10-day 
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Figure 6-9 : Rolling decadal return period estimates fitted for 1961-2009: (a) NI region, 1-day; (b) ES region, 10-day; (c) NEE region, 5-day;  

(d) SEE region, 1-day; (e) SS region 10-day
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Fitted GEV curves for the SEE region were flatter in comparison to other regions for all 

durations, most notably for 1-day events. While the changes from decade to decade are small, 

the overall change in the 10-year event estimate since 1961 shows a significant decrease of 

approximately 15mm. The flatter growth curve is a result of lower skew ( ) in the data, i.e. the 

variance in event magnitudes is decreasing, although the mean value may be heavier for all 

maxima. This is also reflected in the rolling decadal analysis (Figure 6-9d) by a reducing 

interval between the magnitudes of return period estimates in each ten year period and an 

apparent downward trend in the magnitude of shorter duration events over 1961-2009. 

The gradual increase in estimated event magnitude noted by FK2003b for 5- and 10-

day rainfall in SS has continued into the most recent decade with a significant increase in 

magnitude. The magnitude of the estimated 100-year event (1% annual probability) in 1961-

1970 has increased in frequency over the analysis period to approximately 10-years. Fixed 

decade curves, particularly for shorter duration events, are less informative and equally 

likely arise from natural variability and uncertainty in the distribution parameter estimates 

as from progressive increases since 1961 toward longer and heavier rainfall events. FK2003b 

noted a substantial steepening of the fitted GEV curves for 1991-2000 in all accumulations 

in ES, most particularly for the longer duration storms; with uncertainty limits clearly 

separated from all other decades. However, the curve for the 10-day event in the fifth 

decade, is representative of variability in all accumulations, and is considerably flatter 

representing more closely those of earlier decades (Figure 6-8). Changes in return period 

estimates for ES found by FK2003b are replicated here in the rolling decadal analysis, with a 

peak over the 1990s in 5- and 10-day events (related to the events of September 1995) but 

then declining over the last decade. Despite the recent decline, there is a significant upward 

trend both in the estimated range and magnitude of events, with return interval estimates 

increasing from 25-year (4% annual probability) to 10-year frequency. Figure 6-8 

demonstrates that NEE fitted GEV distributions for fixed decades are progressively steeper 

since 1961-1970, although direct comparison between 1961-2000 and 1961-2009 indicates 

flatter curves for the longer period. Inspecting the rolling decade results shows that there 

has been an increase in the range of return period estimates over the whole record in NEE 

in addition to a significant upward trend with increases in estimated event magnitude for 

each return period ranging from 15mm (1-day) to 55mm (10-day) over the analysis period.  
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The results for NI are highly variable and reveal no conclusive changes in return period 

estimates. In this region, the 1- and 2-day events exhibit similar behaviour in the rolling 

decadal distribution estimates, with a step change in estimated magnitude at the end of the 

first decade (1961-1970) of around 20-30mm, before continuing to vary about a lower 

median. The pattern is not repeated in the 5- or 10-day event estimates, which peak later in 

the record; the longer duration events are more suggestive of a continuous increase in 

event magnitude over the full record period. The anomaly in shorter duration events is 

attributable to two wet years in 1968 and 1970 which have not been repeated; a 

widespread storm on 16 August 1970 was recorded at all gauges, with 110.5mm falling at 

Lough Mourne Reservoir. 

Overall, the results from the rolling decadal analyses indicate increases in estimated 

return period magnitudes for all duration storms, particularly in the north and west as 

anticipated from the regional RMED results. Some regions, such as NI, are dominated by 

extremes which occurred within a particular decade and so the changes are less certain. The 

fixed return period estimates for all regions are also highly variable and dominated by 

exceptional events such as those of the late 1990s, as reported by FK2003b. 

6.2.3 Seasonal Maxima 

Seasonal return period estimates were examined in the same manner as the AMAX 

return period estimates. There is distinct decadal variability in the results, and some regions 

and seasons which were previously identified by FK2003a as showing significant increases do 

not show a continuation of this trend. In common with the increases in SMED, and supporting 

the findings of other research (Allan et al., 2009; Hopkins et al., 2010), the greatest increases 

in return period estimates appear in autumn and winter long duration events. 

As few UK annual maxima occur during the spring months (Hand et al., 2004) most 

studies of seasonal extremes have focussed on the common sources of serious flooding, 

that is heavy rainfall during winter or late summer and autumn months. However, FK2003a 

identified increases in spring extreme rainfall over the period 1961-2000 for short duration 

events around the UK, as well as in longer duration events in the north and west of the UK. 

Similarly, more recent work in the UK (Biggs and Atkinson, 2011) found that where the 

signal of change in spring maxima was previously weak or inconclusive, there is now 

evidence of long-term increases in the rainfall intensity. Estimated event magnitudes for the 
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10-year return period have marginally increased, for most accumulations, over the full 

record period in eastern regions as demonstrated in Figure 6-10. The trends are variable, 

with the largest significant increases in 5- and 10-day events, ranging between 5mm and 

25mm for the 10-year return period, and fewer significant results than for other seasons 

arising from the high variability. 

Recent UK observations suggest that mean summer rainfall has decreased in all 

regions, as has the percentage contribution of the heaviest events to total summer rainfall 

(Jenkins et al., 2010). Similarly FK2003a reported that all durations of summer maxima 

consistently decreased in magnitude through the 1961-2000 period. SMED behaviour 

suggests that recent summer maxima and the resultant return period estimates have 

continued to decrease during 2000-2009 for most regions, with minor increases occurring in 

northern regions (NEE, SS, ES). With the exception of those regions, and in common with 

FK2003b, estimated return period magnitudes have significantly decreased in the south and 

east for longer duration events. Decreases of greater magnitude in the longer duration 

events are anticipated with increasing global mean temperature, as the limiting condition of 

available evaporable soil moisture will become an important factor (Allen et al., 2002). 

Burt and Ferranti (2010) found that the contribution of heavy events to total summer 

rainfall had increased in the northwest, corroborated here by an upward trend in estimated 

extreme rainfall event magnitude for 5- and 10-day durations in NI and SS. Other regional 

variations, such as increases in longer duration estimates in NEE and ES and little change in 

NS, are consistent with Perry (2006) who reported similar variability in total and maximum 

summer rainfall over the period 1914-2005 in approximately the same regions. 

FK2003a found increases in autumn rainfall maxima across the country, a result 

supported by more recent work (Maraun et al., 2008; Biggs and Atkinson, 2011). Figure 6-

11(a) demonstrates that the updated 25-year estimates for 10-day rainfall have a high 

degree of variability from decade to decade; with a significant increase in estimated event 

magnitude in all regions except NI, NWE and SEE. However, as the record for Northern 

Ireland is highly variable, with a corresponding irregularity in the estimated return periods, 

it is difficult to find convincing evidence of changing behaviour. In all other regions, there 

are increases in estimated event magnitude between the baseline period of 1961-1990 and 

the most recent results (Table 6-4); although some changes are persuasive they may appear 
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to be more significant due to the period of record examined (Chen and Grasby, 2009) as the 

1960s were a period of low frequency and magnitude for extreme daily rainfall. 

 
 

Figure 6-10 : Ten year rolling period return level estimates for 1961-2009 for Spring (a) CEE and (b) NWE 

regional 1-day; Summer (c) NEE 5-day, (d) CEE 1-day; Autumn (e) SS 2-day, (f) SWE 5-day; 

 Winter (g) SEE 5-day, (h) NEE 10-day. 

FK2003a identified spatially variable changes in winter extreme rainfall event 

magnitudes, with increases found in Scotland but little or no change found in England and 

Wales. Osborn and Hulme (2002), found that the proportion of rainfall from heavy events 

has increased during the winter season across the whole UK; this is supported for Northern 

Ireland and northern England by more recent research (Burt and Ferranti, 2010). Perry 

(2006) reported that, of all the UK regions, North Scotland experienced the largest 

percentage increase in winter rainfall in the period 1914-2004; increases in winter total 
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rainfall were also found in western parts of the UK. Future projections for winter, the season 

most reliably reproduced by Regional Climate Models (Fowler and Ekström, 2009), show 

estimated increases in magnitude of 15-30% across the UK for the 1-day 5-year event by 

2070 (Fowler and Ekström, 2009). Similarly, the UK Climate Projections estimate a 50% 

probability of increases in both mean and wettest day winter rainfall in the order of 33% 

and 25%, respectively, for the medium emissions scenario (Murphy et al., 2009). 

Pooling 

region 

 

Rainfall from the 10-year event 

(mm) 

Rainfall from the 100-year event 

(mm) 

1961-

1970 

2001-

2009 

Trend mm/year 

(significance) 

1961-

1970 

2001-

2009 

Trend mm/year 

(significance) 

(a) 2-day             

SWE 55.3 62.2 0.1 (<0.01) 74.6 95.5 0.1 (0.55) 

SEE 59.9 52.5 -0.23 (0.01) 99.9 72.9 -0.78 (<0.01) 

CEE 45.2 51.1 0.27 (<0.01) 67.5 84.7 0.72 (<0.01) 

NWE 64.7 69.4 -0.05 (0.86) 87.7 99.3 -0.02 (0.81) 

NEE 49.5 64.2 0.23 (<0.01) 66.5 111.5 0.49 (0.01) 

NI 65.0 58.9 -0.05 (0.25) 102.8 94.3 -0.57 (<0.01) 

NS 62.7 73.4 0.24 (<0.01) 80.2 103.4 0.57 (<0.01) 

SS 61.4 77.2 0.33 (<0.01) 76.2 104.0 0.54 (<0.01) 

ES 46.6 70.6 0.58 (<0.01) 61.2 111.9 1.06 (<0.01) 

(b) 5-day       

SWE 76.4 94.0 0.2 (<0.01) 95.2 130.6 -0.04 (0.79) 

SEE 77.0 75.9 -0.15 (0.04) 113.2 112.9 -0.26 (0.1) 

CEE 58.0 67.0 0.32 (<0.01) 76.5 98.4 0.69 (<0.01) 

NWE 98.3 104.6 0.02 (0.81) 134.1 144.6 0.18 (0.55) 

NEE 68.9 84.9 0.43 (<0.01) 86.5 136.9 0.99 (<0.01) 

NI 89.9 80.4 0.07 (0.55) 120.6 119.9 -0.12 (0.41) 

NS 104.2 109.0 0.23 (<0.01) 134.8 150.9 0.83 (<0.01) 

SS 95.6 114.6 0.8 (<0.01) 116.3 145.8 1.45 (<0.01) 

ES 66.4 90.6 0.93 (<0.01) 84.2 129.4 2.02 (<0.01) 
 

Table 6-4 : Change in the estimated magnitude of 10-year and 100-year autumn rainfall events for (a) 2-day 

and (b) 5-day durations for 1961-1970 and 2001-2009, with overall trend magnitude (and significance). 

All regions exhibit a significant increase in estimated event intensity although with 

substantial inter-decadal variability, e.g. SWE. Figure 6-11(b). The increase is least apparent 

in short duration events in NI, CEE and NEE where summer rainfall maxima continue to 

dominate (Burt and Ferranti, 2010).  
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Figure 6-11: 10-day duration regional return period estimates from five decadal periods: (a) Autumn 25-year 

(4% probability); (b) Winter 50-year (2% probability) 

Estimated changes in event magnitude for the 5- and 10-day 25-year return period 

events over the full record are reported in Table 6-5. With the exception of CEE and NI, 

where the changes are negligible, the results are supportive of previously observed 

increases in winter seasonal maxima, and consequent decreases in return period estimates. 

Region Change in 5-day magnitude 

(mm) 

Change in 10-day magnitude 

(mm) 

Estimated 

New Return 

Period mm/year significance mm/year significance 

SWE 0.31 <0.01 0.68 <0.01 12-year 

SEE 0.60 <0.01 0.91 <0.01 15-year 

CEE 0.25 <0.01 0.29 <0.01 - 

NWE 0.48 <0.01 0.74 <0.01 8-year 

NEE 0.22 0.05 0.16 0.06 20-year 

NI 0.35 <0.01 0.23 <0.01 - 

NS 0.66 <0.01 1.03 <0.01 30-year 

SS 1.28 <0.01 1.23 <0.01 8-year 

ES 0.51 <0.01 0.37 <0.01 12-year 
 

Table 6-5 : Trend magnitude per year and significance in estimated event magnitude for 25-year (4% 

probability) 5- and 10-day events in winter. 
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6.3 Discussion 

It is always easy to determine the presence of a trend somewhere within a large data 

set, a phenomenon which increases in tandem with the length of record (Benestad, 2003); 

however, it is more difficult to discern a consistent signal of changes across multiple regions. 

By using several different approaches, it was possible to identify those periods of record 

which were exceptional, e.g. events in NI in the early 1960s, from those which may form 

part of a longer term change in behaviour. The influence of natural variability also made 

some previously clear trends (FK2003b; FK2003a) more ambiguous, e.g. winter in East 

Scotland. Burt and Ferranti (2010) examined the trends in heavy rainfall in several long 

duration records for 1900-2009 across the north of England, finding significant trends in 

maxima for some gauges but not for others. Regional frequency analysis has the advantage 

of removing the variability across a region (i.e. individual peaks from single point 

observations) and allowing greater certainty in magnitude estimates for high return period 

events by augmenting the record (Hosking and Wallis, 1993). This technique has been used 

to effect here to analyse regional behaviour rather than the individual station records. 

UK daily and aggregated daily maxima were examined to determine whether the 

magnitude of extreme rainfall events has continued to evolve in the same manner 

presented in FK2003b and FK2003a. In some instances the perceived changes may be as 

much a factor of changes in the pooling group, due to station closure or change of 

operation, as climate change, natural climatic variability or uncertainty in the GEV 

parameter estimates. Significant changes in the decadal growth curves (FK2003b; FK2003a) 

contrast with some of those reported here where the differences between 2001-2009 and 

earlier decades are more muted. 

Climatic variability has evidently played a major role in the decadal evolution of return 

period estimates, particularly evidenced by the changes in ES. FK2003b observed that the ES 

pooling region had experienced some notable storms during the 1990s, receiving 299% of 

the 1961-1990 average rainfall in September 1995 for example (FK2003b). Subsequent years 

have been drier, and the decadal median rainfall closer to that of the 1970s. This 

emphasises the importance of accounting for climatic variability over several decades, 

making it far harder to discern changes on shorter timescales (Chen and Grasby, 2009). 

Fowler and Kilsby (2002) also assessed the seasonal influence of the NAO on summer and 
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winter rainfall in Yorkshire, finding that the variability of rainfall during these seasons is 

greater during negative phases of the NAO. The NAO has been shown to have a significant 

impact on a decadal to multi-decadal scale on rainfall in the UK and mainland Europe (Allan 

et al., 2009), this seems to be a reasonable explanation for the changes in the curves in 

northern and western regions and will be examined in greater detail in subsequent 

chapters. 

It could be argued that the use of fixed seasons for the analyses is not appropriate if, 

as reported, spring and autumn are becoming shorter in duration and so the associated 

seasonal maxima may not be captured. While regional differences are apparent from spring 

“commencing” over a period of weeks across the country, a fixed approach to the definition 

of seasons gives a benchmark against which to compare the maxima. Alternative 

approaches could include the use of rolling 30-day or 60-day maxima, or half yearly maxima 

which would ignore changes in spring and autumn; as spring maxima are rarely extreme 

(Hand et al., 2004), the latter method might be appropriate. On the other hand, the timing 

and magnitude of heavy rainfall events is of great consequence to farmers as newly planted 

crops are more vulnerable to extreme rainfall (Rosenzweig et al., 2002). Furthermore, 

several recent devastating UK floods have occurred during the autumn and would not be 

effectively captured by a 6-month approach. These considerations justify the use of shorter 

fixed seasons in this study, leading to an earlier awareness of potential changes in 

behaviour. Another method to encompass the seasonality of rainfall is to incorporate a 

seasonality index (Li et al., 2011) based on the angular properties of the calendar day 

(Robson, 1999). This will be explored further in Chapter 7 in conjunction with peak-over-

threshold maxima, to ascertain seasonal properties which have less dependence on fixed 

season definitions. 

The upward trend in autumn maxima is of particular importance to flood defence 

practitioners and farmers as the timing of the events may have a considerable impact on 

harvests. The timing of autumn harvest and subsequent stubble burn in relation to extreme 

rainfall could also have major impacts on rural flooding by affecting surface runoff (Holman 

et al., 2003). Summertime increases in event magnitude, particularly in a hotter, drier future 

climate, may have devastating impacts on future floods, particularly in regions with clay 

soils that are more sensitive to desiccation. Similarly, many sewers in the UK have a design 
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capacity of the 30-year event; increased urbanisation coupled with more intense rainfall will 

lead to increases in urban flooding. Even where flooding may not be an issue, the enhanced 

hydrological cycle will cause an increase in “first flush” pollution and so have a detrimental 

impact on river water quality. 

There have been significant increases in annual maxima over the period 1961-2009, 

particularly in the west, confirming trends which were apparent but possibly insignificant in 

previously published work (FK2003b; FK2003a; Burt and Ferranti, 2010). Estimated return 

period frequencies for South Scotland have decreased over the period of record with events 

formerly having a 1% annual probability now having nearer to 10% probability of occurring. 

In East Scotland, estimated magnitudes for 5- and 10-day events are lower than those found 

by FK2003b, but there has been a sustained increase in magnitude over the full analysis 

period (1961-2009) and a decrease in return period estimates from a 25-year event (4% 

probability) to a 10-year event (10% probability). 

Increases in the median seasonal maxima and the estimated return frequencies and 

magnitudes were found in the spring, autumn and winter seasons, emphasising the likely 

increase in northern latitudes of wetter conditions (Alexander et al., 2006). Results for the 

median summer maxima, and resultant estimates of event magnitude, are variable across 

the country but, in general, point to an increase in the highest intensity events. This result is 

particularly pertinent in the light of recent summer flood events, which could be set to 

increase in frequency if the trend of high intensity rainfall preceded by prolonged dry spells 

persists. Understanding the link between the timing of very heavy rainfall and catchment 

runoff dynamics is likely to be beneficial to adaptation planners hoping to characterise likely 

developments in flood frequency (Wilby et al., 2008), particularly as extreme impacts often 

arise from sequences of less severe events (Stephenson, 2008). 

Methods to examine extreme rainfall can either quantify the changes in frequency of 

event and the relationship to total rainfall, or the changes in estimated event magnitude. 

The former, as employed by Burt and Ferranti (2010) and references therein, is statistically 

interesting and useful in assessing the likely insurance risk in a year. However, in adapting to 

the requirements of the future, practitioners require a quantifiable assessment of changes 

in both frequency and likely magnitude. The approach of this chapter in reviewing changes 

in seasonal maxima and the associated return period estimates begins to address this need, 
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but in concentrating on the maximum values neglects possible variations in within-year 

frequency. The next chapters will assess how best to examine the combination of magnitude 

and within-year frequency of extreme daily rainfall. 

6.4 Computer Packages 

The following computer packages were used for analyses in this chapter: ismev (Coles 

and Stephenson, 2009), evd (Stephenson, 2002), lmomco (Asquith, 2009), nsRFA (Viglione, 

2011), boot (Canty and Ripley, 2011) and Kendall (McLeod, 2009). 
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Chapter Seven Analysis of Very Heavy Rain Day Characteristics 

“And the rain it hammered down” 

Nick Cave, The Carny 

7.1 Introduction 

The temporal and spatial distribution of heavy rainfall events are major drivers in flood 

development, particularly where such events are clustered around a river basin or over a 

sequence of days. The time-varying nature of extreme rainfall, whereby events arrive non-

uniformly in time and with a high degree of reciprocity, is not often assessed despite the 

evident link to flooding (Li et al., 2011). Having explored different extreme statistics, the aim 

of this chapter is to identify the characteristics of extreme 1-day rainfall which best explain the 

temporal variability of event frequency. A threshold exceedance model was adopted using 

very heavy rainfall (Q95) and extremely heavy rainfall (Q99), as outlined in Chapter 5 and 

defined by (Alexander et al., 2006). The use of very heavy rainfall will be necessary to 

understand changes in the inter-arrival times of within-year rainfall events, as the higher 

threshold restricts the data to ≤1 event per year. However, the likely stimuli of extreme and 

very heavy rainfall frequency will be first determined using only extremely heavy rainfall. 

While wet spells, a sequence of variable duration of consecutive wet days, are likely to 

have a greater influence on flood generation than individual days of rain, analyses were only 

carried out for single day events in this project. It is hoped that the analyses can be readily 

expanded to incorporate wet spells when an adequate measure of wet spell extremity can 

be defined. Appendix C.3 explores possible measures of wet spell intensity and relative wet 

spell extremity for adoption by such analyses. Individual events were considered to be 

independent when separated by an interval of consecutive days, of duration at least equal 

to the cluster index identified in Chapter 5 (Ferro and Segers, 2003), with rainfall below Q95.  

The remainder of this chapter explores the seasonality of rainfall maxima to identify 

characteristics which can be used to define homogenous regions of extreme rainfall which 

are less spatially diverse than the Hadley UK Precipitation regions (HadUKP). Subsequently, 

the regional climatic influences on very heavy event occurrence and the interval between 

events, and recurrent short and long term patterns such as seasonality or inter-annual 

cycles, are examined in preparation for the development of statistical models in Chapter 8. 
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7.2 Seasonality 

Individual analysis of the stations would be inefficient, yet a regional analysis using the 

HadUKP regions (Alexander and Jones, 2000) is inappropriate as these regions are spatially 

diverse and encompass several different extreme rainfall response patterns. A coherent 

grouping of the stations is required, for which typical characteristics which might identify 

regional similarities, such as the timing of extreme events, is also necessary. It is noted that 

the original development of the 5 England and Wales precipitation regions (Wigley et al., 1984) 

used a principal component analysis of the mean rainfall characteristics (1861-1970) from only 

55 observation stations, of which fewer than half were located in the region of interest. By 

using considerably more data, specifically directed at extreme daily rainfall characteristics, 

both the spatial coverage of the regions, and their applicability to analyses of the extremes, 

should be considerably enhanced.  

Seasonal variability in the occurrence and intensity of UK rainfall is well recognised, with 

some regions known to receive the heaviest rainfall totals during the summer while others 

receive their largest daily totals later in the year. While seasonally driven extremes can be 

approximated by a sinusoidal form (Hyndman and Grunwald, 2000; Maraun et al., 2009), the 

true distribution of extremely heavy rainfall is skewed non-uniformly towards the latter half of 

the year (Rodda et al., 2009), with very few extremes occurring during mid to late spring, and 

one or two concentrated periods of peak activity. In contrast, the distribution of rainfall days 

tends to be skewed towards high event frequency over several winter months, with some 

regional differences particularly in western locations. The initial explorations, of all 199 

stations, to identify extreme rainfall characteristics are illustrated by two typical stations, 

located in Figure 7-1; all analyses are repeated for the extreme rainfall regions in Section 7.4. 

 
Figure 7-1 : Station locations for seasonal behaviour plots 
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The typical seasonality of extremely heavy rainfall per day of the year, compared with all 

days of rainfall, was calculated using a smoothed 30-day running mean of event frequency per 

day of the year. A smoothed running mean approach was adopted to account for natural 

chaotic behaviour, where the probability of rain on any given day follows a Poisson process 

which may vary from year to year in accordance with the prevailing climatic conditions 

(Cowpertwait et al., 2002). Furthermore, as daily rainfall records are aggregated over a 

subjective period, the actual day of peak occurrence is somewhat arbitrary, dependent on the 

time of measurement (Stewart et al., 1999).  

Extremely wet day frequencies displayed the expected pattern of skewed distributions, 

with a high kurtosis, and centred approximately on the summer and early autumn months at 

all stations. Rodda et al. (2009) observed that the distribution of all extreme rain days, for the 

combined records of all UK stations, exhibit two peak periods – one in mid-summer and a 

second in late autumn. The combined records for all stations used in this project also 

displayed the same properties; however, there was considerable regional variation in the 

timing and extent of the peaks which is discussed in greater detail following the definition of 

the extreme rainfall regions. This seasonal variation in extreme rainfall occurrence is an 

important factor in understanding the clustering of heavy rainfall and will also assist in the 

definition of extreme behaviour regions.  

Figure 7-2a shows the smoothed frequency per day of year of 1- and 5-day Q95 events 

for Haydon Bridge; this station has a relatively uniform distribution of days with rainfall 

throughout the year and a distinctive double peak in extremely wet event frequency, with 

the 5-day peak appearing to have greater emphasis in the winter months. The histogram is 

plotted with respect to 1st April to centre the peak period of activity. In contrast, Figure 7-2b 

plot for Hastings illustrates the high kurtosis and suggestion of a secondary event peak in 

early summer. However, Figure 7-2a was constructed from a record of only 50 years 

compared with that of Hastings (120 years) and so indicates higher variability in the 

smoothed daily frequency density. Both histograms are representative of all stations in the 

similarities of the timing and shape of the histograms for 1- and 5-day rainfall maxima. The 

seasonality of all days with rainfall differs considerably from that of the extreme events 

which tend to occur in conjunction with the seasonality of higher air temperatures.  
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Figure 7-2 : Frequency density of Q95 rainfall per day of the year, starting from 1

st
 April at 

(a) Haydon Bridge; and (b) Hastings SE England. Vertical lines indicate the first day of the season. 

The long term evolution of seasonality was visualised with each Q95 event plotted by 

day (x-axis) and year (y-axis) of occurrence; a smoothed kernel surface was applied 

averaging over 20 years and 30 days to all 199 stations. Edge effects have been removed 

from the plots below, reducing the apparent record durations to 30 years and 100 years 

respectively; the same smoothing density was applied to each gauged record. The double 

peaks in event frequency at Haydon Bridge (Figure 7-3a) are highlighted by magenta bands 

in summer and winter, the single peak is highlighted in cyan in late autumn at Hastings 

(Figure 7-3b). Colour differences reflect the differences in rainfall frequency, with fewer 

events occurring in southeast England. There is also a suggestion of a long term evolution in 

seasonality, e.g. with Haydon Bridge now receiving more peak events later in the year. 

Similar patterns of shifting seasonality were also observed at many other stations, with 

respect to geographical distribution and different dependence on atmospheric oscillations. 

   
Figure 7-3 : Evolution of Q95 event occurrence by day of year from 1

st
 April at (a) Haydon Bridge; and  

(b) Hastings. Grey dots represent event occurrence, coloured surface ranges from orange to red representing 

frequency of events within a 30 day and 20 year centred smooth. 



~ 139 ~ 

It is evident from the above plots that extremely heavy rainfall events do not occur 

uniformly throughout the year, and have considerable regional variation arising from their 

relative dependence on the North Atlantic Oscillation or Sea Surface Temperatures; there is 

a marked period during the year in which events are more likely to cluster in time. However, 

many statistical analyses of extremes neglect seasonal irregularity and persistence as 

important generating processes for extreme behaviour (Stephenson, 2008). Dot plots of the 

evolution of events by day of year for the longer duration observation records (>75 years) 

demonstrate a time varying quality and are suggestive of changes in seasonal timing, which 

requires closer enquiry. 

While seasonality is readily visualised in a horizontal manner with the calendar day 

approach, as above, comparisons between years and seasons may benefit from a rotational 

approach (Robson, 1999), refer to Appendix B.6. The most frequent day of heavy rainfall 

occurrence, , was calculated for all stations for use in the definition of extreme regions. All 

stations had a value of   approximately equal to the calendar day of the highest event 

frequency density typified in Figure 7-2; the seasonality vector, , was calculated from the 

vector components of . Stations such as Haydon Bridge, with two seasonal periods of peak 

event frequency, had low  values, indicating dispersion throughout the year; stations with 

one seasonal period had . 

7.3 Extreme rainfall regions 

The HadUKP regions outlined in Chapter 4 are effective for describing mean daily 

rainfall behaviour and responses to the typical weather systems which act over these 

general areas. However, they were developed using statistics of mean daily rainfall, and are 

not fully representative of sub-scale variations in extreme rainfall frequency, magnitude and 

seasonality. Some regions such as North West England and South West England combine 

several areas with very different extreme rainfall responses. More detailed regional rainfall 

classifications have been developed for several different applications (Bonell and Sumner, 

1992; Hossell et al., 2003; Neal and Phillips, 2009), using a principal component analysis of 

daily rainfall. However, as with the HadUKP regions, these would still require manipulation 

to reflect the different behaviour of extreme rainfall within each sub-division (Macdonald et 

al., 2010) as all relate to mean behaviour. 



~ 140 ~ 

An approach which has been used previously with success to determine the 

orographic and weather driven influences on extreme rainfall is to incorporate these 

parameters as covariates within the estimates of the extreme value distribution (Cooley et 

al., 2007). Figure 7-4 visualises the Generalized Extreme Value distribution location 

parameter at each station estimated using the latitude, longitude and elevation as 

covariates. It is possible to pick out some of the major orographic features of the UK, 

including the Highlands, the Lake District and Snowdonia as well as very low areas within 

East Anglia. As this approach forces each station to be analysed individually, resulting in 

overly complex models based on limited data, it is considered that specifically defined 

extreme regions would be more beneficial to enable regional data pooling and enhance 

estimates of event frequency and magnitude. 

 

Figure 7-4 : Estimates of Location Parameter for the GEV linking elevation, longitude and latitude 

Dales and Reed (1989) devised a set of extreme regions from subjectively clustering 

stations according to GEV distribution characteristics, RBAR (mean of annual maxima from the 

Flood Studies Report) and coefficient of variance. Their initial selection of regions, taken from 

Jackson and Larke (1974), was subdivided throughout England to reflect real differences in 

extreme rainfall patterns; although they acknowledged that the Wales, Scotland and Northern 

Ireland regions require further delineation. Applying these regional divisions to the current 

data set demonstrated that the groupings are inadequate with excessive sub-division in some 

regions, and large grouping in others, resulting in poor representation of extreme rainfall 
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seasonal responses. As a result, it was decided to classify daily rainfall regions from measures 

of extreme rainfall intensity, frequency, climatological behaviour and seasonality. 

7.3.1 Principal Component Analysis 

Following the approaches used by others to create regional divisions (Wigley et al., 

1984; Dales and Reed, 1989; Phillips and McGregor, 2002; Hossell et al., 2003), a set of 

extreme rainfall parameters were investigated to identify the most descriptive variables 

which accounted for climatological influences and topographical differences without 

duplication. The final selection of variables (Table 7-1) was used in a principal component 

analysis (PCA) to classify regions with coherent behaviour. It was considered important to 

include various measures of seasonality to replicate the frequency of summer and winter 

events; the data skewness, in combination with GPD parameters, reflect responses to 

typical atmospheric systems (such as winter driven North Atlantic fronts) as well as the 

station aspect and elevation. 

Variable Name Description Calculation 

sigmahat Shape parameter, 

 

Generalized Pareto Distribution (GPD) fitted to 

99th Quantile of daily station rainfall maxima 

ksi Scale parameter,  

sintheta Angular seasonality Rotational statistics applied to 99th Quantile of 

daily station rainfall maxima costheta 

rbarse Seasonality vector 

g1 Skewness Skew of individual station annual maxima 

RMED Median Median of individual station annual maxima 

R20sum Event count Number of summer events >20mm (May-

August) 1961-1990 

R20win Event count Number of winter events >20mm (October-

March) 1961-1990 

RWIN Mean Mean winter daily rainfall, for rainfall days 

≥1mm 

z Elevation Station elevation 

Table 7-1 : Rainfall variables used in Principal Component Analysis for Extreme Regions 

Excesses over the 99% wet day quantile (Q99) were adopted in preference to annual 

maxima to maximise the data used, and a Generalized Pareto Distribution was fitted at each 

station. The seasonality rotational statistics were derived from Q99 calendar days of 

occurrence. Neither the Q99 threshold or RBAR (as Dales and Reed, 1989) were used in the 

final set as these both replicate information from the fitted GPD and are too similar to the 



~ 142 ~ 

AMAX. Maps of each of the main rainfall measures and  estimates are depicted in Figure 7-

5;  is not shown as it cannot be estimated with any accuracy and presented little regional 

coherence. The seasonality measures highlight the tendency for higher altitude regions to 

receive their maximum rainfall during the winter, and lower lying locations in the summer, 

while the midlands have far less distinctive seasonality (Rodda et al., 2010).  

 

Figure 7-5 : Some measures of extreme rainfall used in a principal component analysis (a) RMED; (b) 

Rotational measure of day of event (c) Coherence of seasonality; (d) Count of summer days >20mm; (e) 

Mean winter wet day value; (f) Fitted GPD scale parameter. 

Several combinations of the measures in Table 7-1 were assessed with PCA, using a 

minimum of four parameters (Jolliffe, 1973), eventually selecting all parameters as the most 

descriptive of extreme rainfall behaviour. Identifying the most appropriate number of 

principal components is largely subjective, based on scree plots (Figure 7-6) or a rule-of-

thumb approach such as selection of components with eigenvalues >1 (Kaiser, 1960) or 
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eigenvalues >0.7 (Jolliffe, 1972), or the number of components required to explain some 

percentage of the data variance. All tests were examined and these suggested use of the 

first three or four components.  

 

Figure 7-6 : Scree plot of principal components 

The first three components explain 72.6% of the data variance, increasing to 80.1% 

with the fourth component; while the first three eigenvalues all exceed 1, the fourth is 0.88. 

Table 7-2 indicates the loadings of each variable for each of the first four components, with 

the two absolute largest values highlighted in bold. The first principal component (PC1) 

relates to the magnitude of the maxima, and the relative regional wetness or response to 

atmospheric circulation patterns. PC2 is more focussed on the extreme value distribution 

behaviour, such as skew and variability in event magnitude; PC3 describes the seasonality of 

events; PC4 is somewhat ambiguous but appears to describe the response to location, 

topography and station aspect or exposure. The smoothed scores for the first three 

principal components are shown in Figure 7-7. 

K-means cluster analysis (Hartigan and Wong, 1979) was applied to the retained 

components to identify coherent groupings of the components and, thus, the stations 

within each region. Sensitivity testing determined that the first three principal components 

produced the most comprehensive regional partitioning with least randomly displaced 

members from the main groups. Use of only the first three components also tallies with the 

scree plots and eigenvalue criteria (Kaiser, 1960). A drawback of k-means clustering is that 

the optimum number of clusters must be defined by the analyst, which can be problematic 
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if the value is not known a priori (Wilks, 2005). Clusters were examined for groups between 

11 < k < 20, as a minimum requirement of the regional definition is to enhance those 

represented by HadUKP whilst avoiding excessive sub-division. 

Measure PC1 PC2 PC3 PC4 

sigmahat 0.241 0.488  0.188 

ksi  -0.533 -0.385 -0.232 

z 0.198  0.252 -0.807 

sintheta 0.187 0.314 -0.476  

costheta 0.337 -0.232 0.176  

rbarse  0.243 -0.665 -0.293 

g  -0.466 -0.276 0.342 

R20sum 0.400   0.158 

R20win 0.442 -0.101   

RMED 0.444    

RWIN 0.436 -0.161   

Proportional 

Contribution 

 0.43 0.18 0.11 0.08 

Table 7-2 : Loadings of each variable within the first four principal components and proportional 

contribution (in italic) to the variance. Bold type indicates most significant contributing variable. 

Cluster analysis applies a random partitioning of the selected data, in this case the 

station principal component scores, centred on the initial latitude and longitude seed 

positions. Algorithms iterate to a solution with the smallest distance between the cluster 

centroid and the group members. An advantage of clustering by group means over 

hierarchical methods is that cluster members can be reallocated to more relevant clusters 

throughout the process. In common with other climatic clustering analyses, it was found 

that increasing the number of clusters fragmented the smaller regions rather than arriving 

at a more comprehensive partitioning of all stations (Corte-Real et al., 1998; Blenkinsop et 

al., 2008; Raziei et al., 2011). Examination of the within sum of squares, and between sum of 

squares statistics for each cluster suggested an optimum partitioning of between 13 and 16 

clusters; closer examination of these revealed that some of the smaller clusters could be 

combined, arriving at a final solution of 14 UK extreme rainfall regions shown in Figure 7-8. 
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Figure 7-7 : Scores of principal components derived from the variables listed in Table 7-1 where 

(a) PC1 describes maxima; (b) PC2 describing variance in maxima; (c) PC2 describing seasonality 

Most regions contain >10 stations with the exception of Mid Wales (MW), which only 

contains five stations, and Humber (HU) with nine. As shown in Chapter 4, five stations are 

sufficient to calculate regional frequency estimates but will also incorporate high 

uncertainty estimates; however, a balance must be achieved between high uncertainty and 

over-smoothing of the extreme characteristics. 

Each region was tested for homogeneity using: the discordancy measure for each 

station (Hosking and Wallis, 1997), regional homogeneity statistics (Hosking and Wallis, 

1993) and the Anderson-Darling rank test statistic (Stedinger et al., 1993). As the 
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discordancy measure is a reliable estimator of homogeneity only for regions with more than 

5 sites (Hosking and Wallis, 1997) it may not be applicable to MW; the Hosking and Wallis 

statistic is most reliable where skew between stations is low, while the Anderson-Darling 

measure is more appropriate for regions with a high skewness measure (Viglione et al., 

2007). Three Hosking and Wallis heterogeneity measures can be calculated from regional 

estimates of L-CV, , L-skew, , and L-kurtosis, : 

 

Equation 7-1 

where  is the record length at the th site, obtaining the heterogeneity measure: 

 

Equation 7-2 

Regions were considered to be homogenous where , possibly heterogeneous for 

 and definitely heterogeneous if  (Hosking and Wallis, 1997). The critical 

discordancy measure for individual sites within a regional pool, with relation to ≤ 15 stations, 

is shown in Table 7-3. The Anderson-Darling test statistic is a generalisation of the goodness 

of fit test, with the significance of the homogeneity score obtained from a bootstrap analysis 

(Viglione, 2011). The statistic was tested at a significance level of %, with the null 

hypothesis of a homogenous region being rejected for all . Viglione (2011) 

recommends that if LR-skew <0.23, the first Hosking-Wallis heterogeneity measure is most 

appropriate and the Anderson-Darling preferable in all other cases. 
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Figure 7-8 : Final selection of Extreme Rainfall Regions identified from a principal component analysis of 

extreme rainfall measures and homogeneity testing 
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Number of sites in 

Region 

Critical Discordancy 

Measure (Dc) 

5 1.333 

6 1.648 

7 1.917 

8 2.140 

9 2.329 

10 2.491 

11 2.632 

12 2.757 

13 2.869 

14 2.971 

≥15 3.000 
Table 7-3 : Critical discordancy values 

The results of the different homogeneity tests are outlined in Table 7-4, with regions 

exceeding the critical test values highlighted in bold; scores near to the critical value are in 

italic. The discordancy measures for all stations in each of the regions were below the 

critical values; although some stations had near critical discordancy measures, these all 

occurred in regions which are otherwise homogenous.  

Extreme 

Region 

Hosking and 

Wallis Test  

( ) 

Anderson-Darling 

Significance Value 

Critical Discordancy 

value  

(critD) 

Number of sites 

approaching  

critD 

NHI 2.57 0.98 3.00 1 

ES -1.21 0.15 3.00 1 

FOR 1.94 0.98 3.00 2 

SH -0.42 0.52 3.00 0 

NW 6.47 0.89 3.00 1 

NO -1.87 0.06 2.97 0 

HUM -0.76 0.57 2.33 1 

EA 1.23 0.51 2.87 0 

SE 0.97 0.61 3.00 0 

WC 1.00 0.86 3.00 0 

MW 0.22 0.87 1.33 4 

SOL 2.30 0.86 3.00 1 

SW 0.27 0.71 2.97 0 

NI -0.49 0.84 3.00 1 
Table 7-4 : Extreme rainfall regions tests for homogeneity using the Hosking and Wallis heterogeneity test 

based on L-CV, Anderson-Darling bootstrap test and discordancy measure. Bold font indicates critical test 

values, italic font indicates near critical values. 

High discordancy scores can often arise from one anomalous rainfall event and so do 

not provide conclusive evidence of heterogeneity. All regions with high scores were 

investigated further, considering the most likely source of heterogeneity to be the most 
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discordant site. Given the limited data set in use, regions achieving marginal scores and 

containing some discordant sites were considered to be homogenous where an 

improvement could not be directly identified. 

North West (NW) has a very high heterogeneity measure, although an insignificant 

Anderson-Darling score, caused by Worthington Water Works located in the centre of the 

region; this station was not reallocated although the score was not ascribable to a specific 

event. North Highlands and Islands (NHI), which is a highly skewed region, also has a 

significant heterogeneity measure according to all three tests. Once again, the score can be 

ascribed to one station which is well within the North Highlands and would not be 

appropriate in a separate region. Cassley, the anomalous station, recorded several high 

rainfall totals including 158.2mm on 22 October 1971 and 145mm on 6 February 1989. The 

Solway region (SOL) has a heterogeneous rating, arising from the inclusion of the Isle of Man. 

In the absence of supporting data, it was decided not to create a specific region for the Isle 

of Man, but to maintain the current allocation which is supported by the PCA scores for all 

stations in this cluster. 

Forth (FOR) has a high discordancy score for one station, located near to the regional 

border, although the Hosking and Wallis heterogeneity measure indicates possible 

heterogeneity. The location of this site recommends that two adjacent stations of similar 

characteristics should also be reallocated, to South Highlands (SH), if the regional border 

were relocated. Although the other two stations do not have high discordancy measures, 

the revised homogeneity scores were calculated for changed regional boundaries moving 

these stations into SH. The revised allocations marginally improved the homogeneity ratings 

for both regions and have been adopted in the final regional definition.  

It is possible that there are too few gauges in some regions to characterise the 

differences in behaviour or to be confident that the regions are fully homogenous. However, 

the allocation is considered sufficiently robust to analyse the pooled regional extreme 

behaviour. Where boundaries were not dictated by station location, they were adopted in 

common with those used by Dales and Reed (1989) and the UK Climate Change Impacts 

Programme (Murphy et al., 2009), shown in Figure 7-9. The boundary definition used in the 

remainder of this project is pragmatic and would benefit from more detailed analysis and 

refinement with a considerably larger data set. 
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Figure 7-9 : Rainfall regions defined by (a) Dales and Reed (1989) and UKCP09 (Murphy et al., 2009) 

7.4 Regional behaviour 

While the extreme rainfall regions were defined using Q99, this threshold may reduce 

the subset of maxima to one or fewer events per year, preventing within year clustering 

analysis. Extreme events do not arrive unprovoked but arise either from an unusual 

combination of circumstances or as an evolution of several common occurrences 

(Stephenson, 2008). Establishing the characteristics and sensitivity of very heavy rainfall to 

different variables will, it is hoped, facilitate greater insight into the evolution of extreme 

events. The remaining analyses will assess the characteristics and time-varying qualities of 

rainfall exceeding Q95. 

Figure 7-10 combines the histograms of event frequency per day of year, as explored 

in Section 7.2, for all stations within each region. Several regions appear to have a lack of 

coherence in the seasonal pattern between the different stations, such as East Scotland (ES) 

or North West (NW). This may in part be due to the spatial extent of the regions, as well as 

incorporating stations with shorter records (<40 years) where natural fluctuations and 

chaotic behaviour may be more apparent than regular seasonal patterns. 
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Some features consistently stand out for all regions. For instance the double peak in 

seasonality, whether equally dominant or with one peak dominant in either summer or late 

autumn, is more in evidence in regions bordering the North Sea. In contrast, exposed 

western regions (notably NHI, SH, SW and SOL) exhibit one long peak period commencing in 

early autumn. Stations in southeast England (SE and EA) demonstrate much clearer double 

periods, with a principal peak in mid- to late-summer and a secondary peak period during 

the autumn. In general terms, the northern regions are dominated by a wide ranging peak 

period over late autumn and early winter. South and eastern stations are dominated by a 

peak in the summer preceded or succeeded by a secondary peak, while stations in the south 

west experience the peak period in the autumn. Overall each regional group appears to 

encompass the correct stations to allow the definition of seasonal characteristics. 

To establish the overall seasonal attributes for each region, station records were 

pooled and the process repeated (Figure 7-11); these results demonstrate much clearer 

east-west and north-south seasonal event timing. Various weighting criteria to account for 

spatial dependence (Hosking and Wallis, 1997; Alexander et al., 2006) were examined but all 

were found to concentrate on event magnitude rather than timing, as a result no weighting 

was applied to the station records. The regional pools are likely to experience the same 

synoptic events and so will not contain completely independent records; including several 

stations with events from the same storm gives reassurance that the data are not erroneous. 

It was also considered that in common with the regional frequency analysis approach, 

including several similar records may increase the standard error in magnitude estimates, 

but should not affect the regional bias (Hosking, 1995a). 
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Figure 7-10 : Frequency density plots of 1-day events per day of year for each station in each extreme 

rainfall regions : North Highlands and Islands (NHI), East Scotland (ES), Forth (FOR), South Highlands (SH), 

North West (NW), Northumbria (NO), North Ireland (NI), Solway (SOL), Humber (HU), South West (SW), Mid 

Wales (MW), West Country (WC), Southern England (SE), East Anglia (EA).  

Vertical lines denote start day of each season. 
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Figure 7-11 : As Figure 7-10 but using regionally pooled data in dark blue lines.  

Pale grey lines denote individual stations.  
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Examination of the possible long term changes is more valid when using a regionally 

pooled data set than from the individual series. Not only is it possible to examine the 

apparent changes in one location in the context of longer records, but natural variability is 

easier to discern from true regional patterns. The pooled data were examined for patterns 

in the highest frequency density of event occurrence over the collective period of record, 

although no weighting was applied to the individual station events prior to pooling. Figure 7-

12 compares the individual station results of events per day of year for Wisley, a station in 

southern England, with its counterpart regional plot (SE) over the common period of record 

containing the most stations. The additional regional data clarifies that an apparent 

clustered period in early summer in Wisley (cyan) and the secondary period in autumn are 

also important for the whole region (dark blue and magenta) demonstrating a good match 

between the station and regional event timing. The darker shading in Figure 7-12b merely 

reflects the additional number of events used for the pooled analysis. This is repeated for all 

stations in all regions, giving confidence in the extreme rainfall region definitions. 

    

Figure 7-12 : Events per day of year for (a) Wisley 1960-2000, (b) Southern England (1960-2000).  

Scale bar represents frequency density. 

Figure 7-13 illustrates the regionally pooled records for the period covered by most 

stations (1965-1995); however, some of the plots have considerable “edge effects” in the 

smoothing where the density of stations within the region reduced from the year 2000 (e.g. 

NHI). The whole record for each pooled region is not shown as scaling the smoothed surface 

to reflect the number of contributing stations would give a false impression of the relative 

smoothing errors at different periods; it is more robust to consider only the period 

containing all stations. Many of the regions appear to show a shift in extreme rainfall 

seasonality in recent decades, either combining two clustered seasons in the 1960s into a 

single period later on (e.g. ES) or occurring later in the year (e.g. NI).  
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Figure 7-13 : Events per day of year, each year for regionally pooled data 1965-1995.  
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The areas of darker blue in each plot in Figure 7-13 correspond with the peak event 

activity indicated in Figure 7-11. It is more obvious from the long term evolution in some 

regions (NHI, EA) that secondary maxima in event frequency per day of the year is an artefact 

of the seasonal response to external influences; in other regions (SH, HUM, FOR) it may be 

that a second period of heavy rainfall only occurs when certain atmospheric conditions prevail, 

such as those experienced during highly positive NAO years. A change in the clustered process, 

where more events occur in a shorter seasonal period, could have serious implications for 

flooding as the timing of events over a river catchment is a critical factor in flood generation. 

While a change in the timing of the seasonal clustered process may have less impact on flood 

generation, it could still have severe consequences for agriculture, for instance through 

intense rain over recently planted crops or enhanced agricultural drought.  

Braemar, ES  Edinburgh Blackford Hill, FOR Chatsworth Gardens, NW 

Durham, NO Armagh, NI Appleby Castle, SOL 

Oakly Park, WC Hastings, SE Stretham, EA 

Figure 7-14 : Events per day of year each year for record length >75 years in each region (1860-2005) 
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Similar plots for the longest station, with >75 years of data, within each region were 

used to assess whether any of the apparent changes in regional behaviour are clearer in the 

longer records or reflective of periodic behaviour. The selected stations are those with the 

longest record in each region; three regions (NHI, MW, HUM) had no station records >75 

years and have not been included as inter-annual patterns are less apparent in shorter 

records (Kundzewicz and Robson, 2004). The resultant plots, commencing between 1853 

and 1911 and ending in 2005, are shown in Figure 7-14. Most of the stations do appear to 

change from around 1960 with respect to the longer period of record, with the figures 

either suggestive of a less concentrated peak seasonal behaviour (ES, EA), or definite shifts 

towards extreme rainfall earlier (SE) or later (NI) in the season. However, this visual 

assessment is not robust and will be better examined with specific statistical tools in 

Chapter 8. 

The influence of the North Atlantic Oscillation (NAO) on the frequency of very wet day 

rainfall was confirmed by a Poisson regression analysis in Chapter 5; other studies have also 

established a connectivity with the NAO for summer rainfall (Linderholm et al., 2009) in 

addition to the better known winter connectivity (Allan et al., 2009; Bartolini et al., 2009). 

An initial examination was carried out of very wet day occurrence in relation to the 

coincident upper (lower) 20% of the monthly NAO distribution. 

Individual stations were assessed for these years, plotting each event by day of year, per 

year of record, with the event magnitude represented by the scale of the dot. Figure 7-15 

illustrates the plots for two such gauges in northwest and southeast England; blue (red) dots 

represent negative (positive) NAO indices. Gaps in the plot on the right (left) correspond to 

years where events did not coincide with very negative (positive) NAO indices.  

The results for Hastings, which tends to receive more continental driven weather 

patterns or summer convective storms, suggests little correspondence between the NAO 

index and event timing or magnitude. As convective events are very short lived, the daily 

NAO signal coincident with the event is likely to be masked by monthly averaging; use of a 

sub-monthly NAO index, which is an atmospheric signal, is considered inappropriate as short 

timescales reflect weather patterns rather than atmospheric processes. Rainfall responses 

for summer convective events are likely to correspond better to sea surface or land surface 

temperatures. In contrast, the influence of the positive NAO index can be seen in the longer 
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duration Appleby Castle winter events. Little is clear from either station regarding the 

relationship between magnitude or interval between events and the NAO index.  

While there are insufficient data to make a definitive statement about the influence of 

NAO phase on very heavy rainfall, both Figure 7-15 and the Poisson regression analyses 

suggest that the NAO correlates well with the frequency of very heavy rainfall. Scatter plots of 

the magnitude of very heavy events plotted against day of the year and NAO index (Figure 7-

16) are also suggestive of a positive correlation. The influence of air temperature, and 

therefore seasonality, on the magnitude of events is borne out by the plot of event magnitude 

with respect to calendar day; there is also a suggestion that very heavy rainfall does not often 

occur during particularly negative NAO years. However, as shown by Hurrell (2003), NAO<-4 is 

very rare, with a consecutive negative index for all winter months (NDJFM), occurring for only 

five winters between 1890 and 2010. Thus, the lack of extremely low values in Figure 7-16b 

may be a distributional quality rather than seasonal characteristic. 

 

Hastings 

  

Appleby Castle 

  

Figure 7-15 : Influence of Positive and Negative phase NAO on very heavy rainfall, events corresponding to a 

positive (negative) monthly index are shown in red (blue) on the left (right).  

Event magnitude is represented by the scale of the dot. 
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Figure 7-16 : Scatter plots of events exceeding a threshold - magnitude against (a) calendar day or (b) 

coincident NAO index for Stornoway (North Scotland) 

 

 
Figure 7-17 : Frequency of very heavy rainfall in relation to monthly NAO index (Hurrell and Van Loon, 1997) 

at Stornoway (North Scotland) with fitted Normal distribution 
 

The annual distribution of the monthly NAO index coincident with event occurrence is 

approximately normal, with a slight positive skew highlighting the high intra-year variability in 

the NAO index (Figure 7-17). Both autumn and winter NAO indices have a distinct positive skew, 

emphasising the North Atlantic influence on event occurrence in north Scotland during these 

months; in contrast, the NAO indices for summer and spring are very small and heavily 

concentrated about zero. However, Folland et al. (2009) found that the July-August NAO index 

has a very strongly significant negative correlation with rainfall in the UK and northwest 

European regions, causing anticyclonic low rainfall conditions during positive phase summers. 

Bladé et al. (2012) found a strong positive correlation with summer rainfall in the 

Mediterranean region, concurring with Folland et al. (2009) that the June NAO index differs 

substantially in behaviour from that of July and August. These analyses emphasise that 
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meteorological responses cannot be characterised from a single seasonal value (Hurrell and 

Deser, 2009) and that the use of monthly aggregates or different seasonal combinations would 

be more appropriate. 

To characterise the intensity of regional rainfall as well as the frequency, a regional 

frequency analysis approach was applied to the Q99 events to develop regional return 

period estimates. Most examples in the literature of pooling excesses over a high threshold 

assume complete homogeneity of the stations within the pool and so do not standardise the 

observation series. This is not appropriate for the regional pools under consideration, where 

considerable differences in elevation and aspect can exist between stations. An adaptation 

of the Regional Frequency Analysis (Hosking and Wallis, 1997) approach has been adopted 

here, whereby the Q99 events are standardised by the Q99 threshold for the station prior to 

pooling. L-moments were fitted to the individual station, , series for all stations, , in the 

region before deriving the regional L-moments from the weighted station average values as 

follows: 

 
Equation 7-3 

where  represents the effective years of station record and  the parameter estimate. 

Years were rejected where either >3 days were missing per month, or >10 days in the whole 

year as it is not possible to estimate whether any events exceeding the threshold occurred 

during those times (Stewart et al., 1999). The location parameter is known to be the 

threshold used to extract the data; in this case a regionally weighted value of , calculated 

from all station thresholds was adopted. Regional Generalized Pareto Distribution (GPD) 

parameters were derived from the regionally weighted L-moments (Hosking, 1990); refer 

also to Appendix B.4. An estimate of RMED for each station was obtained from the fitted 

GPDs (Robson, 1999) with the regional RMED calculated from their weighted mean. 

Return period estimates for a full range of events were then calculated using the 

regionally weighted RMED, shown in Figure 7-18; for comparison, regional GEV distributions 

were also fitted to annual maxima and the return periods estimated. Inter-site dependence 

is not explicitly accounted for as it has been shown that including dependent events only 
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increases the uncertainty surrounding the return period estimates and not their bias 

(Hosking and Wallis, 1997). A spatial dependence model applying a radial weighting to each 

station in relation to the centroid of the region (e.g. Alexander et al., 2006) may reduce the 

uncertainty, but introduces additional unnecessary complexity for distributions derived 

from excesses over a threshold (Svensson and Jones, 2010). 

The calculated return period estimates for most regions follow a similar distributional 

shape and attain comparable magnitude estimates with both the GP (applied to Q99 events) 

and GEV (applied to AMAX) models. The AMAX values were those used in Chapter 5 for all 

223 stations, while the Q99 events are peak over threshold rainfall extracted for only 199 

stations. It has been shown that for shorter time series, or small pools of data, return period 

estimates obtained from the GP model are more robust to outliers (Davison and Smith, 

1990), while with larger data sets there is little difference between the two methods. Four 

regions exhibit considerable differences in return period estimate magnitude between the 

GEV and GP models: NI and EA appear to be underestimated while SE, NO and SOL appear 

to be overestimated. It is likely that these discrepancies have arisen from differences 

between the data sets, as annual maxima for missing years were included when they could 

be verified from British Rainfall or other sources, while the equivalent missing years of POT 

data were omitted completely. In general, the results are similar to those reported in 

Chapter 6, with the steeper curves and highest magnitudes in higher altitude regions (NHI, 

SOL), or regions which receive intense summer convective events (HUM, SE, EA). Regions 

with flatter curves, such as MW or WC, are representative of regions receiving high annual 

totals of rainfall, but with a smaller range in the magnitude of events. 
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Figure 7-18 : Regional return period estimates generated from the regional Generalized Pareto distribution fitted to Peaks over the 99

th
 Quantile (red) and regional 

Generalized Extreme Value distribution fitted to AMAX (grey) for all years of maxima. Dashed lines denote uncertainty estimates. 
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7.5 Multiple Wet Days 

Analyses of partial duration series are premised on independence assumptions, such 

that either all consecutive events are included or only the sequence maximum (Stewart et 

al., 1999). Both approaches have merits and drawbacks: the former enhances distribution 

estimates but includes duplicate information, introducing bias; while the latter minimises 

bias yet discards some important maxima. Where a 24 hour event occurs over two days, 

duplication can be avoided by multiplying the maximum total by 1.16 (Faulkner, 1999). 

Alternatively, multiple wet days (wet spells) could be assessed from the aggregated totals 

such as 2-, 5-, or 10-days (Fowler and Kilsby, 2003b). While fixed aggregate events facilitate 

simple comparison, longer aggregates may contain a period of dry days with considerably 

different properties from a continuous wet spell, making direct comparison less effective. 

Figure 7-19 explores the similarities between seasonality of 1-day (red line) and 5-day 

grey) very heavy rainfall, compared with mean days with rainfall (black). The mean rainfall 

day count incorporates wet spells of duration >1-day as data were not de-clustered. The 

plots suggest that there is little appreciable difference between the frequency of very heavy 

rainfall in relation to the event duration, because the multiple day maximum is usually 

heavily influenced by one heavy day. It is also apparent that the seasonality of very heavy 

days differs considerably from that of rainfall days as the highest frequency of mean rainfall 

days occurs during autumn and winter months. In the south the period with the highest 

frequency of Q95 events coincides with the start of the highest frequency of mean rainfall 

days; further north the range of the mean wet day frequency density per year is smaller 

than in the south. The most frequent mean rainfall days coincide with the most frequent 

Q95 1- and 5-day events in Atlantic facing regions, which are coincidentally those with 

higher elevation; regions bordering the North Sea have a dislocation between summer Q95 

events and autumn/winter mean wet day frequency. 

 



~ 164 ~ 

 
NHI 

 
ES 

 
FOR 

 
SH 

 
NW 

 
NO 

 
NI 

 
SOL 

 
HUM 

 
SW 

 
MW 

 
WC 

 
SE 

 
EA  

Figure 7-19 : Regional frequency of day of year for rainfall days (black), 1-day very heavy rain (red) and 5-day 

very heavy rain (grey) 
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Heavy rainfall has several time-varying characteristics: the events arrive non-uniformly 

in time (Cowpertwait et al., 2002); the interval between successive wet spells is also non-

uniform; and the duration of wet spells is inconstant. These time-varying characteristics are 

seldom examined in depth, particularly the inter-dependence of successive heavy rainfall 

events, and yet extreme events often develop from several dependent non-extreme events 

(Stephenson, 2008). Multiple day heavy events, arriving in succession are a frequent cause 

of flooding and characterising their driving triggers would be beneficial to all involved in 

flood risk management. However, wet spells of varying duration are complex and not readily 

comparable. A long wet spell with 0.5RMED per day may be relatively rare but not severe, 

although repetition could generate an extreme response. By comparison a single daily total 

of 253mm, as at Seathwaite in Cumbria in 2009, is both rare and severe; the associated 

flooding was compounded by the preceding extended wet spell (Met Office, 2010a). 

It is evident that some measure is required to identify the relative extremity of 

different wet spells, regardless of duration; possible approaches include the use of some 

concentration parameter (Li et al., 2011) or a development of the flood and drought 

precipitation index (McKee et al., 1993). A potential definition for wet spells and their 

relative extremity is outlined in Appendix C.3. While this approach would enable wet spells 

to be categorised and the combinations of wet spell duration and intensity most likely to 

have negative consequences identified, characterising the drivers would be highly complex. 

Extreme wet spells arise from different governing climatic conditions, assessment of which 

would necessitate further sub-classification, with the application of multiple extreme value 

distributions to the different maxima (Sornette, 2009). It is concluded that this additional 

complexity lies outside the scope of the current study, and so the statistical models will only 

be applied to 1-day maxima. 

7.6 Conclusions 

A pivotal output from this chapter was the development of rainfall regions formulated 

from metrics of extreme rainfall. While the HadUKP regions (Alexander and Jones, 2000) are 

effective in describing mean daily rainfall behaviour, they are not fully representative of 

sub-scale variations in extreme rainfall. Daily rainfall observations from 199 stations were 

used to develop earlier extreme region characterisations (Jackson and Larke, 1974; Dales 

and Reed, 1989) into 14 regions, representing the temporal, orographic and atmospheric 
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drivers affecting UK extreme rainfall. A paucity of records in upland areas such as the North 

Highlands and Islands or Mid Wales dictated that the regional boundaries are pragmatic at 

present, although these could be enhanced through the use of additional data. The regional 

classifications were used as a spatial tool to explore variations in heavy and extreme daily 

rainfall characteristics. 

Heavy and extreme daily rainfall are time variant in relation to inter- and intra-annual 

occurrence rate and wet spell duration. Although mean wet day frequency follows a 

homogenous Poisson process, the same is not true of heavy or extreme events which tend 

to cluster by season, and are not well represented by linear forms (Yee and Stephenson, 

2007). Seasonality of the day of maxima occurrence  was explored in great detail in addition 

to the relationship with atmospheric drivers and, more briefly, with temperature to identify 

the most likely drivers of extreme events. Some spatial characteristics were also assessed 

and a pragmatic selection of regions collating stations with similar extreme rainfall 

characteristics (in relation to magnitude and event timing) was formulated. By pooling 

extreme rainfall data from similar stations, it was possible to verify whether the apparent 

seasonal event frequency was representative or simply the result of a randomly generated 

process. 

Questions remain after this exploratory analysis, such as the impact of different 

atmospheric conditions on the frequency of events or the long term evolutions in behaviour. 

Developing a frequency model to determine event probability based on the governing 

atmospheric conditions would be beneficial to water resource or risk managers. Similarly, 

characterising the atmospheric relationships may assist with adaptation planning, as 

projected changes in the hydrological cycle or driving conditions could be used to identify 

likely changes in the patterns of event frequency. The aim of Chapter 8 will be to develop 

such a model from the governing processes identified in this chapter. 

7.7 Computer packages 

Packages used for analyses in this chapter include nsRFA (Viglione, 2011), fields (Furrer 

et al., 2012), moments (Komsta and Novomestky, 2011), lmomco (Asquith, 2009), cluster 

(Maechler et al., 2011), and extRemes (Gilleland et al., 2009). 
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Chapter Eight Modelling Very Heavy Rain Days 

“When you have eliminated the impossible, whatever remains, however improbable, 

must be the truth” 

Sir A. C. Doyle, The Sign of the Four 

8.1 Introduction 

The characteristics examined in Chapter 7, describing seasonality, long-term behavioural 

patterns and dependence on atmospheric drivers, present a highly complex relationship 

which cannot be examined with standard statistical tools. Improved estimates of event 

frequency and magnitude could be achieved using extreme value parameters estimated from 

linear covariates of terms such as seasonality (Tramblay et al., 2011). Linear models facilitate 

improved absolute estimates of the covariates and can describe any long-term changes in 

behaviour; however, the model terms do not explain how the changes transpire, only the 

result of the change (Underwood, 2009). Furthermore, the complex relationship between the 

characteristic variables driving the non-homogenous rate of event occurrence demands a 

flexible statistical model which encompasses non-linear behaviour. This is better achieved 

with a Generalized Additive Model (GAM; Wood and Augustin, 2002). 

The comparative benefits of Generalized Additive and Generalized Linear Models 

(GAM, GLM) were explored in Chapter 3, concluding that Vector Generalized Additive 

Models (VGAM) will provide flexibility both in parameter choice and underlying model 

definition. GAMs have gained gaining popularity in assessing data with a strong time-varying 

component and atmospheric dependence (Hyndman and Grunwald, 2000), as well as for 

identifying whether long-term behavioural changes are occurring (Underwood, 2009). GAMs 

have been widely employed in other disciplines to model the health impacts of air pollution or 

long term variability in biota spatial density, but rarely applied in hydrology (Morton and 

Henderson, 2008; Underwood, 2009). Their direct application in extreme value distributions is 

computationally difficult, achieved through incorporating matrix transformed basis functions 

in the distribution parameter estimates using multiple b-splines (Chavez-Demoulin and 

Davison, 2005). VGAMs use vector splines, a form of p-spline, to extend the GAM domain of 

application beyond the mean of the distribution (Yee and Stephenson, 2007). As a result, 

VGAMs have been selected for use in this thesis to analyse the complex temporal responses 

of very heavy rainfall to non-linear atmospheric patterns in a flexible manner.  
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This chapter applies the VGAMs to very heavy daily rainfall totals (Q95) to: assess how 

the arrival rate of heavy rainfall varies throughout the year; evaluate whether long term 

trends exist in the frequency distribution; and quantify apparent changes in the seasonal 

distribution. While two of the most effective methods to pool regional peak over threshold 

maxima are weighted L-moments (Hosking and Wallis, 1997) or Bayesian estimation centred 

on a single site of interest (Ribatet et al., 2007), neither are supported by the R (R 

Development Core Team, 2011) package VGAM v.0.8-4 (Yee, 2011). Therefore, the 

statistically correct, but less efficient point process method was adopted using the 

relationship between the GEV and GPD (refer to Appendix B.2.3). A point process applied to 

normalised pooled block maxima and pooled POT event frequency to simulate event rate 

and intensity (Katz et al., 2002; Eastoe and Tawn, 2010) is considered an appropriate 

alternative pooling method, provided that both models are derived from the same 

controlling covariates to aid interpretation (Coles, 2001).  

While Maraun et al. (2011) developed similar models of monthly rainfall maxima 

dependent on proxies of atmospheric circulation patterns, their sinusoidal Vector 

Generalized Linear Models (VGLM) over-simplified the seasonal responses identified in 

Chapter 7 and did not examine event frequency. The benefit of the VGAM over linear model 

covariates is the resultant parameter flexibility, allowing temporal variation throughout the 

year with respect to multiple influences, and better seasonal clustering representation. This 

approach is novel in several respects. Primarily, GAMs have rarely been applied to 

hydrological series, and the extension to extreme value distributions through VGAMs has 

seldom been applied to daily rainfall extremes. Regionally pooling the hydrological extremes 

assessed with VGAMs, to enhance seasonal frequency and magnitude estimates, does not 

appear to have been attempted elsewhere within the literature.  

To effectively assess within-year clustering, the frequency of events must be analysed. 

As extreme rainfall events are randomly distributed and described by a Poisson Process, 

with a rate which varies throughout the year, the frequency of 1-day Q95 rainfall maxima 

were assessed with a non-homogenous Poisson-VGAM. The magnitude of such events is 

well approximated by extreme value distributions, such as the Generalized Pareto 

Distribution (GPD) or the Generalized Extreme Value (GEV) distribution. Regional pooling of 

event maxima is not possible using the selected software, therefore, event magnitudes were 
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assessed using a GEV-VGAM fitted to regionally pooled annual maxima to form a flexible 

orthogonal point process model. The notation arises from the property of orthogonality 

between  and parameters  and  for all independent data (Katz et al., 2002; Chavez-

Demoulin and Davison, 2005). 

The remainder of this chapter describes the selection of the VGAM parameters and 

regional extreme value distributions. The VGAM orthogonal point process models were then 

used to explore different properties of the rainfall distribution such as long term seasonal 

behaviour and perceived within year clustering. 

8.2 Method 

VGAM supporting theory and the advantages in relation to simpler linear and additive 

models are presented in Chapter 3 and Appendix B.2.3. This section outlines the basics of 

the model formulation, the selection of smoothing and link functions specifically related to 

the regional daily rainfall maxima, and the final model selection. 

8.2.1 Model Parameters 

Chapter 5 demonstrated that the arrival rate, , of POT events follows a non-

homogenous Poisson distribution, with a higher frequency at different periods of the year 

giving the impression of clustering. Runs testing confirmed that the events are randomly 

distributed, although further exploration in Chapter 7 suggested that  is primarily 

dependent on the season. In Chapter 7 it was shown that inter-annual fluctuations in event 

frequency appear to be influenced by ocean-atmosphere coupling and variability, while 

some regions also showed changes in their seasonal patterns, representative of a longer 

term behavioural evolution. These attributes suggest that covariates which should be 

included in the model should encompass, as a minimum, the calendar day and an 

atmospheric component. Spatial differences in behaviour were well represented by the 14 

extreme regions, obviating the requirement for specific locational components. Smoothing 

functions within the VGAMs applied to the covariates will reduce the effective contribution 

of insignificant parameters to zero, allowing a common regional model to be constructed 

rather than several location specific models. Various measures of temperature and 

atmospheric circulation were selected a priori for inclusion as covariates in the model to 

describe extreme daily rainfall frequency and intensity, as these variables are well-predicted 

by climate models (Christensen et al., 2007); this will be beneficial for future iterations of 
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the statistical models to project changes to properties of extreme rainfall with greater 

accuracy than is currently achievable (Fowler and Ekström, 2009). 

The analyses presented in this thesis so far have focussed on the monthly NAO index 

coincident with the event occurrence; and the coincident normalised monthly mean sea 

level pressure (MSLP) and coincident monthly sea surface temperature (SST), for the nearest 

5°x5° grid cells. The response of extreme and very heavy daily rainfall to the coincident 

monthly NAO index may, however, duplicate those driven by coincident monthly MSLP. Sub-

seasonal NAO indices may be more descriptive of the immediate weather rather than 

atmospheric patterns (Hurrell and Deser, 2009) accordingly, a set of seasonal indices 

combining the most common winter (Hurrell, 1996) and summer (Folland et al., 2009) 

indices with new aggregates for spring and autumn were also investigated. A brief 

exploration of the monthly and seasonal NAO patterns suggested that a spring index 

comprising April-June and an autumn index of September-October are most appropriate; 

the November NAO index was found to be more closely aligned with the winter index and is 

sometimes included in the winter aggregate (Rodriguez-Fonseca and de Castro, 2002). While 

lagged values of the seasonal NAO index, particularly winter, may be skilful in predicting 

summer stream flow (Wilby et al., 2004), this is likely due to the influence of winter rainfall 

on the base flow in groundwater catchments and is not considered as a driver of extreme 

rainfall. As a result, the NAO indices investigated further as predictors were coincident 

month and coincident seasonal mean, where seasons are defined as November-March, 

April-June, July-August and September-October.  

Research suggests that monthly SST is strongly correlated with daily rainfall frequency 

and intensity in the south of the UK (Phillips and McGregor, 2002). SST lagged by up to 6 

months and SST anomalies over a wider Atlantic region (Wilby et al., 2002) have also proved 

to be effective predictors of summer stream flow; all variations were investigated in the 

VGAM. Although daily air temperature may better represent the atmospheric fluctuations 

which control the onset of short duration rainfall than monthly measurements, daily data 

also introduce far more noise, with little improvement in the modelled representation of 

event frequency or magnitude. Therefore, the VGAMs investigated the dependence of 

rainfall frequency and intensity on monthly grid box averaged maximum and minimum air 

temperature, for the nearest 5° UK grid cell, and maximum monthly air temperature range. 
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 The variables examined for importance in the regional VGAMs are listed in Table 8-1.  

Covariate Term Definition  

Year Tt  where t is the event 

Day of the year dt   

Linear seasonality: sine Skt   
Linear seasonality: cosine Ckt   
Event intensity rt xt-u Where xt is daily total 

Event occurrence yt y=[0,1] When xt ≥u 

NAO index Nt  Nt monthly or seasonal 

Sea Surface temperature SSt  SSt coincident or ≤ 6 months lag 

Normalised mean sea level 

pressure 

SPt  SPt coincident or ≤ 6 months lag 

Monthly max air temperature   Grid box average maximum 

Monthly min air temperature   Grid box average minimum 

Monthly maximum range    
Table 8-1 : Terms used in the Vector Generalized Additive Models 

To enhance the reliability of frequency and intensity estimates through the use of a 

larger data set, VGAMs were applied to regionally pooled rainfall data. Individual station 

maxima were de-clustered by an interval ≥1day between successive events, selecting the 

maximum of any wet spell to ensure that only independent rainfall maxima were included in 

the analyses. Stations were not standardised prior to fitting the Poisson model to Q95 

events, as event frequency is a binomial sequence which is directly comparable between 

stations when a station specific threshold has been adopted. However, the extreme value 

regional models for event intensity were standardised by the station RMED prior to fitting 

regional GEV distributions. Given the size of the extreme rainfall regions defined in Chapter 

7, it is likely that one storm will be recorded by several stations within a regional pool, either 

on the same or a consecutive day. However, it has been shown that using repeated events 

within a pool of hydrological data does not increase the bias in estimates of rate or 

magnitude, although there is an increase in the standard error estimate (Hosking, 1990; 

Morton and Henderson, 2008). Thus, event duplicates (following station de-clustering) were 

not removed as this would unreasonably reduce the size of the data set and negate the 

advantage of using regional pools for model fitting. 

8.2.2 Model Framework 

Penalized maximum likelihood methods for parameter estimation, which are the 

default option in the computer software (Yee, 2011), were used to fit VGAMs to each 

region. Penalized maximum likelihood is computationally efficient and highly flexible in the 
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selection of model parameters (Wood, 2000), aiding model parameter interpretation due to 

the resultant simplicity of the model. A smoothing parameter is not used directly within 

VGAM for model fitting, rather the maximum model degrees of freedom are specified to 

achieve a suitable balance between model over-fitting and excessive parsimony. The 

number of effective degrees (edf) of freedom dictate the response of the term, with edf=1 

representing a linear response; the default minimum in VGAM is edf=3 (Yee, 2011). 

Modified vector backfitting, where  is decomposed into linear and non-linear 

components, was used to fit the smooth functions, to improve the model convergence rate 

and numerical stability (Yee, 2011). 

Three general methods can be adopted to incorporate smoothed functions of the 

covariates in a GAM :  

• all terms are additive of the form  with independent smoothing for 

each covariate; 

• variable coefficients  where  varies smoothly, but its effect is modified 

by the constant covariate  (Hastie and Tibshirani, 1990); 

• bivariate smoothing  where  and  vary jointly to represent a more complex 

interaction of covariates. This option is not available in VGAM. 

The smoothing parameters can be fitted with ordinary cubic regression splines, 

polynomial splines, or linear based natural cubic splines; cubic regression splines are the 

default option in VGAM and outperformed the other options in efficiency and efficacy. The 

polynomial smoother over-fitted the model to the data, while linear base smoothers are 

only valid for use in linear models. 

Covariates were included in the model in the order of greatest explanation of data 

variance. The greatest source of repeatable variability had been identified as seasonality; dt 

was, therefore, the first smoothed covariate term. Subsequent model terms were included 

as combinations of those listed in Table 8-1, dependent on the relative importance, as 

identified from the model score, and signficance of the correlation between the parameters 

rainfall frequency. It can be complex to determine which of several, possibly similar, 

covariates to include within the model as there is a need to balance the overall model 

goodness of fit against parsimony (Marra and Wood, 2011). Wood and Augustin (2002) state 
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that a term should be dropped from the model if all three of the following criteria are 

satisfied: 

• the term edf is close to its lower limit;  

• the confidence region for the smooth contains zero everywhere;  

• removing the term reduces the deviance statistic, or other relative comparison 

measure such as AIC (Akaike, 1974).  

Stepwise iteration to reject unnecessary covariates (Hastie and Tibshirani, 1990) is 

time consuming, particularly when many covariates are involved, so a modified approach 

was used where only the significant terms from less complex models were included in later 

multivariate models. 

Parameter link functions were selected automatically within the package to ensure 

that the Poisson arrival rate, , and GEV parameters for location, , scale,  

and shape,  (Mestre and Hallegatte, 2009); log-link was used here to obtain 

positive parameters to maintain model stability, although a wide range of other parameter 

link functions are available. Link functions increase the rate and success of model 

convergence by avoiding numerical problems, for instance with negative rate parameter 

estimates, and lead to improvements in the log-likelihood functions and standard error 

estimates (Yee, 2010). 

8.3 Model Fitting and Selection 

Parameter definitions for the Poisson-GEV model were initially established from 

 covariates as: 

 

Equation 8-1 

 is modelled as an intercept only term with a log link and offset to minimise 

numerical instability (Katz et al., 2002; Yee and Stephenson, 2007) and satisfy the 

asymptotic normally distribution and asymptotic covariance constraints of maximum 

likelihood estimation (Chavez-Demoulin and Davison, 2005). Direct modelling of over-
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dispersed event frequency with a negative-binomial distribution, as suggested by Lang 

(1999), was initially considered but rejected in favour of a Poisson distribution with time-

varying rate parameter as being more representative of the physical processes driving event 

occurrence (Chavez-Demoulin and Davison, 2005). If a sequence of events arrive with a rate 

 on day  in year , the probability of an event on any particular day is approximately 

zero, and the probability of an event over the whole year is also small , 

following the governing laws of a discrete distribution. Allowing the arrival rate to vary 

reflects the independence of the maxima and their non-identical distribution throughout 

the year. 

Most regional models were only fitted to a sub-set of stations covering the full record 

period 1961-2009 to minimise the influence of varying numbers of stations per year in the 

pool. The only exceptions were Humber (HUM) and Mid Wales (MW) where, due to their 

small original size, the whole pool was employed. Longer data series were used with the 

fitted models to examine changes in seasonal behaviour. 

8.3.1 Covariate Selection 

To compare the relative importance of the different covariates, the initial models 

comprised a response variable, , representing event occurrence or magnitude, and only 

one explanatory variable. Table 8-2 summarises the results for a Poisson VGAM fitted in one 

region; significant variables with the lowest deviance scores are in bold. The results suggest 

that the SST one month prior to an event (Lag 1) is more powerful as a covariate than 

coincident SST; the 6-month lag normalised SLP and maximum monthly air temperature 

range were also found to be powerful covariates. SST achieved the lowest deviance scores 

although the significance of the parameter varied between regions, with the lowest scoring 

covariate not always significant at the 5% test level. The importance of air temperature 

metrics also varied between regions, with minimum temperature or monthly temperature 

range achieving the lowest deviance scores. Table 8-2 suggests that including seasonality as 

a rotated statistic (Robson, 1999) is statistically better than the calendar day, as 

demonstrated by the model scores, but it was found to represent the seasonal cycle poorly 

and severely increased the computational demand when used in combination with another 

covariate. The coincident monthly NAO index was found to be more important than its 



~ 175 ~ 

seasonal counterpart in all regions. The year of occurrence is replicated by variations in the 

other covariates and so was not selected for more complex model evolutions. 

Selecting the most appropriate covariates for the GEV model was complicated by the 

differing importance of some covariates compared with the Poisson model. In keeping with 

the orthogonal approach (Coles, 2001), the Poisson model was fitted first to represent event 

frequency followed by the GEV model using the same covariates for the GEV model as for 

the Poisson model; this approach aids model interpretation. 

Variables were included in the VGAMs in increasing combinations to determine their 

relative importance or redundancy as interactive terms. SLP was removed from the 

explanatory variables as it detracted from model performance in combination with all 

other covariates; the information provided from SLP was also replicated by including the 

monthly NAO as a covariate. The aim was to achieve the best data representation whilst 

minimising measures such as the deviance statistic or AIC and, therefore, model iterations 

included simplifications with covariates included as linear or quadratic terms to improve 

model parsimony. The final model includes a combination of flexible, semi- and fully-linear 

covariates. The variables selected for their explanatory power of frequency and magnitude 

in all regions are: day of year ( ), monthly NAO index ( ), lagged monthly SST ( ) and 

monthly air temperature range ( ). Air temperature will be particularly beneficial for 

adaptation planning using climate projections, as confidence in projections of this variable are 

much higher than for extreme daily precipitation (Christensen et al., 2007; Fowler and 

Ekström, 2009). Known relationships with seasonality and the NAO may also aid seasonal 

forecasting and planning by improving the probability of accurately forecasting one or more 

extreme events in the year. 

The smooth terms from the fully flexible model indicated that only SST required a 

flexible representation. Therefore, the final model adopted a flexible smoothing parameter 

for ; the other covariates were represented by linear terms (NAO and ), and a 

piece-wise linear regression spline or hinge function model for . Deviance testing 

indicated that this simplified model was sufficiently representative of the data. A similar 

iterative approach was adopted for the GEV distribution models to determine the need for 

flexibility in modelling the location and scale parameters. As discussed in Section 8.2.1, the 
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shape parameter is notoriously difficult to fit accurately and is often fit as a constant value; 

when modelling complex multi-variate distributions, it has also been found that allowing the 

scale parameter, , to be flexible introduces unnecessary complexity (Cooley, 2009). 

Therefore, to minimise computational instability and maintain a degree of parsimony in the 

VGAM,  was modelled as an intercept only term. The GEV models were more variable than 

the Poisson counterparts with respect to the number and nature of covariates: in some 

regions a parsimonious model constructed from only one covariate achieved the lowest AIC 

score, while others favoured more complex models. Although the model with the same 

structure as the Poisson VGAM did not outperform all simpler versions in all regions, it is one 

of the most representative models where the covariates are all statistically significant and so 

has been adopted here. 

Model Terms Effective degrees of freedom Residual 

Deviance 

χ
2
 p-value 

dt Td Nt SSt SPt θt 

M1 f(dt) 11      6512 199 <0.01 

M1.01 f(Skt, Ckt) 11      2.95 21243 <0.01 

M1.1 f(Nt)   11    1970 4695 <0.01 

M1.11 f(Nsea)   5    3234 4510 <0.01 

M1.2 f(STt)    11   4.28 84 <0.01 

M1.21 f(ST1t)    11   1.99 68 <0.01
 

M1.22 f(ST2t)    11   4.86 91 <0.01 

M1.23 f(ST3t)    11   5.16 95 <0.01 

M1.24 f(ST4t)    11   8.4 133 <0.01 

M1.25 f(ST5t)    11   9 143 <0.01 

M1.26 f(ST6t)    11   8.8 147 <0.01 

M1.3 f(SPt)     11  1698 4332 <0.01 

M1.31 f(SP1t)     11  1864 4535 <0.01 

M1.32 f(SP2t)     11  2044 4644 <0.01 

M1.33 f(SP3t)     11  1933 4684 <0.01 

M1.34 f(SP4t)     11  1778 4531 <0.01 

M1.35 f(SP5t)     11  1831 4516 <0.01 

M1.36 f(SP6t)     11  1672 4469 <0.01 

M1.4 f( )       11 31.5 342 <0.01 

M1.41 f( )       11 628 1865 <0.01 

M1.42 f( )       11 0.87 30.5 <0.01 

M1.5 f( )       11 116 671 <0.01
 

M1.51 f( )       11 1258 2947 <0.01 

M1.52 f( )       11 523 30.5 <0.01 

M1.6 f(Td)  4     6793 7.5 <0.01 
Table 8-2 : Model summaries and effective degrees of freedom for Poisson VGAM models in EA using 

individual descriptors to identify the relative importance of different parameters 



~ 177 ~ 

8.3.2 Final Model Selection 

Statistical testing of the VGAM model from four covariates, which achieved the lowest 

deviance and AIC scores, against a more parsimonious model, dependent only on dt and ST1, 

suggested that the difference between the models was negligible and the simpler model 

should be selected. Comparison of the predicted terms from the models corresponded well 

with the observations, but the smoothed representation of the covariates differs between 

each model. The simpler model over-emphasised events occurring at the beginning of the 

year, while the more complex model better reflected seasonality. As a subjective review of 

data representation is an important factor in model selection (Villarini and Serinaldi, 2011), 

the more complex model was selected, using the same model for all regions to ensure 

consistency. 

Poisson and GEV distribution model parameters, listed in Table 8-3, are of the form: 

 

 
Equation 8-2

 
dt was the most important covariate for most regions and models, explaining 45-90% 

of the variability; the next most important variable was , followed by ST1 or Nt 

(dependent on location). The importance of NAO was greatest in northern and Atlantic 

facing regions, while SST dominated in southern regions. Air temperature range was more 

important than the calendar day in south eastern regions, which tend to receive more 

summertime convective storms driven by temperature gradient. 

Figures 8-1 and 8-2 are examples of the smoothing functions which were fitted to each 

regional Poisson and GEV VGAM shown here only for the Northern Ireland (NI) region; ±2 

standard error bars are indicated by dashed lines. The strong seasonality observed in both the 

frequency and magnitude of events is well replicated by dt. The linear term for air 

temperature range is indicative of a negative correlation between air temperature range and 

event magnitude or frequency, which is consistent with observations of the most intense 

rainfall during the summer when the diurnal temperature range is lowest (Zhou et al., 2009). 

Event frequency has a positive correlation with lagged SST for all regions. The SST relationship 
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is less well defined in the GEV model, where southern regions have a positive correlation and 

there is a more variable relationship in northern and Atlantic facing regions. 

Region Estimated Model Terms 

Poisson Generalized Extreme Value 

    

 dt ST1t Nt θt  dt ST1t Nt θt   

NHI  -1.90 -1.04 0.10 0.21 -0.20 0.81 -0.11 2.0e
-2

 -2.5e
-2

 -1.8e
-2

 -1.53 -0.47 

ES  -0.57 -0.23 0.01 0.05 -0.28 0.76 0.67 2.3e
-2

 -2.7e
-2

 -3.5e
-2

 -1.46 -0.47 

FOR  -0.88 0.84 0.03 0.07 -0.34 0.94 0.12 1.2e
-2

 -2.8e
-2

 -3.1e
-2

 -1.39 -0.64 

SH  -0.64 -1.07 0.03 0.25 -0.28 0.93 -0.17 2.2e
-4

 -2.9e
-3

 3.0e
-3

 -1.58 -0.63 

NW  -1.20 0.47 0.03 0.08 -0.23 0.92 0.12 6.9e
-5

 -1.0e
-2

 -5.2e
-3

 -1.49 -0.52 

NO  -2.91 0.85 0.16 -0.14 -0.28 1.06 -0.19 7.9e
-3

 -3.7e
-2

 -3.5e
-2

 -1.39 -0.57 

HUM  -3.25 2.39 0.05 -0.19 -0.24 1.09 -0.38 -2.2e
-3

 -3.2e
-2

 -1.5e
-2

 -1.39 -0.54 

EA -2.86 4.69 0.07 -0.06 -0.25 0.84 4.2e
-2

 1.9e
-3

 -0.05 -7.2e
-4

 -1.37 -0.58 

SE  -2.54 3.37 0.10 -0.02 -0.31 0.67 0.39 6.2e
-3

 -9.1e
-3

 6.3e
-3

 -1.54 -0.41 

WC  -2.07 1.43 0.06 -0.03 -0.24 0.71 -0.07 2.2e
-2

 -1.5e
-2

 -9.7e
-3

 -1.54 -0.61 

MW  -2.09 2.47 0.01 0.17 -0.29 1.17 0.51 -1.9e
-2

 -1.6e
-2

 -2.5e
-2

 -1.56 -0.53 

SOL  -0.85 -0.23 0.02 0.18 -0.27 1.01 0.15 -5.1e
-4

 -1.0e
-3

 -1.7e
-2

 -1.68 -0.45 

SW  -1.48 0.93 0.06 0.01 -0.26 0.51 0.14 2.8e
-2

 3.0e
-3

 9.0e
-3

 -1.58 -0.36 

NI -2.21 -0.15 0.10 -0.03 -0.20 1.01 0.04 -1.2e
-3

 -2.0e
-2

 -1.6e
-2

 -1.54 -0.46 

Table 8-3 : Contributions of atmospheric variables (model term covariates) to distribution parameters, with 

the most influential covariate highlighted in bold for each extreme rainfall region : North Highlands and 

Islands (NHI), East Scotland (ES), Forth (FOR), South Highlands (SH), North West (NW), Northumbria (NO), 

North Ireland (NI), Solway (SOL), Humber (HU), South West (SW), Mid Wales (MW), West Country (WC), 

Southern England (SE), East Anglia (EA).  
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Figure 8-1 : Generalized Extreme Value VGAM fitted to the Northern Ireland Region annual maxima rainfall to model event intensity. Lagged SST (sst1.cov) has 12 

degrees of freedom (edf), day of year (jdn) is piece-wise linear centred about a knot at days 100 and 300 and edf=12, NAO (naom.cov) and monthly air temperature 

range (airdrm.cov) are both linear. The dashed lines are ±2 SE bands. From top left going clockwise, the fitted functions are  
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Figure 8-2 : Poisson VGAM fitted to the Northern Ireland Region Q95 rainfall to model event frequency. The terms are a combination of smoothed, piece-wise linear 

and fully linear functions as for the GEV VGAM. The dashed lines are ±2 SE bands. From top left going clockwise, the fitted functions are  
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8.4 Model Verification 

The ability of each regional orthogonal point process model to represent observed 

event frequency throughout the year (the Poisson models) and magnitude (the GEV models) 

was checked by simulating a large number of events from each VGAM distribution. 

Hypothesised changes in event seasonality, frequency and intensity cannot be examined if 

the observed base distribution is modelled incorrectly. Visual tools such as quantile-quantile 

plots and comparisons of the model outputs with observed data were then used to verify 

the model’s adequacy. 

8.4.1 Event frequency and seasonality 

Figure 8-3 compares the frequency of observed events per day of year with the 

simulated frequency using covariate data for the same period of record (1961-2000). The 

two distributions match well without excessive reproduction of noise (which would suggest 

an over-fitted model (Wood, 2006)), attaining maximum and minimum frequency in the 

correct periods. The regional models are able to replicate the observed double peak in 

event frequency, arising from the interaction and changing importance of the covariates 

throughout the year. Two regions which are less well represented by the model, MW and 

HUM, were derived from the smallest data set; each having fewer than five stations with 

complete records between 1961-2009. However, in both regions the model is able to 

simulate the correct timing, duration, and magnitude of maximum and minimum event 

frequencies. 

Each VGAM produced a sequence of daily Poisson rate parameter estimates, 

dependent on the relevant monthly or lagged monthly covariate data; thus, it is not possible 

to compare the observed and simulated event frequency directly as the latter is the median 

value from 500 random draws from the appropriate Poisson distribution while the former 

was an individual observation. Many draws from the simulated distributions were required 

to characterise objectively the variability present in the observation, and to replicate the 

randomness with which events may occur given different driving atmospheric conditions. 

The quantile-quantile plots depicted in Figure 8-4 are derived from the standardised 

distributions of observed frequency against that simulated from 500 random draws. These 

show good correlation for most regions, with the exception of SW, ES, NHI and FOR; a few 

other regions are less well represented at the lower tail of event frequency. As these regions 
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tend to be dominated by the influence of the North Atlantic Oscillation on storm occurrence 

and intensity, it is likely that the discrepancies have arisen through the model bias towards 

SST flexibility rather than NAO index. 

8.4.2 Intensity 

A similar exercise was carried out for the regionally standardised annual maxima, 

sampling from the fitted GEV-VGAMs 500 times to establish a range of possible event 

magnitudes. The results are indicated in Figure 8-5, with standardised observed events 

plotted within the 95% confidence limits established from the model simulations. Figure 8-6 

illustrates the quantile-quantile plots obtained from the same data; these regional plots are 

generally representative of the observed maxima. As with the Poisson model, tail end 

maxima are not well represented within one or two regions which show under- or over-

estimated maxima; but, for the most part, the confidence bounds surround the desired 1:1 

line, with the exceptions of ES and FOR. A likely cause of the discrepancies is the use of a 

homogenously applied model, which does not apply preferential weighting to covariates in 

different regions. The disparate nature of station observations within some larger regions, 

such as NHI, where lack of data precluded further regional sub-division, also has an impact 

on the regional model fit. The latter may be resolved when regional boundary definitions 

are improved with additional station information. In contrast, the apparently simple 

solution to the former, introducing regional weights on different covariates would augment 

the model complexity as accurate representation would require the weighting to vary 

temporally in response to different covariate combinations. The potentially limited return 

for such an increase in complexity was not considered worthwhile. 

As a final comparison, annual return period magnitudes were estimated from the 

simulated model quantiles for each region, using covariate data for 1961-2000, and are 

shown in Figure 8-7. The shape and steepness of each estimated curve compares well with 

the approximate growth curves obtained from the observed annual maxima in Figure 8-5. 

Similarly, the estimated magnitudes for each year and region are close to those obtained in 

Chapters 6 and 7, providing reassurance that the model is adequate in its representation of 

event frequency and magnitude. 
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Figure 8-3 : Comparison of mean event frequency per day of year from observations and simulated from the Poisson VGAM 
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Figure 8-4 : Quantile-quantile plots of standardised frequency from observations and drawn from the Poisson VGAM 
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Figure 8-5 : Comparison of standardised regional annual maxima with confidence envelope from 500 simulations of the GEV VGAM distribution 
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Figure 8-6 : Quantile-quantile plots of observed event magnitude (gold) with 95% confidence bounds (blue) simulated from the GEV VGAM 
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Figure 8-7 : Estimated annual return period magnitudes using parameters estimated from the GEV VGAM for 1961-2009 
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8.5 Long-term Changes 

The visual representation of events per day of year by year presented in Chapter 7, were 

suggestive of changes in seasonality over the course of the observational record. In some 

regions there appeared to be a more concentrated period of events, suggesting increases in 

within-year event clustering, while in others events appeared more dispersed throughout the 

calendar. Both could have considerable implications on water resource management if true. 

Although the contoured plots of observed daily frequency shown in Chapter 7 are highly 

suggestive of changes, the pooled regional plots encompassed only the common period of 

record for all stations (1961-2000) which is insufficient to determine trends. Monthly 

observations of SST, air temperature range and NAO for the period 1901-2010 were used as 

covariates in the VGAMs to test whether these apparent changes in seasonal timing and in 

within year frequency were true or arose from natural climate variability. 

8.5.1 Event Seasonality 

The relationships in the Poisson-VGAM model were developed from correlations 

between regionally pooled observed rainfall frequency and time series of observed covariates 

for the period 1961-2000. ‘Predictions’ of event probability per day of each year, both those 

which occurred and all likely variations given the driving conditions, were obtained by 

applying the Poisson VGAM to a time series of observed covariate data from 1901-2009. 500 

random draws were taken from each of the resultant 39812 Poisson distributions, to 

accumulate a time series of daily occurrences per year. Day of year vs. year plots per region 

were developed from the resultant event counts, shown in Figure 8-8 to compare with Figure 

7-13. A direct comparison between the two figures is not possible given the scale differences 

between a series of pooled observations per day and multiple simulations per day. That is, the 

frequency density per year obtained from the pooled observations (Figure 7-13) reflects the 

mean value of an empirical distribution with wide confidence bounds; this is also well 

illustrated by the multiple grey lines on the frequency density plot in Figure 7-11 compared 

with the regional mean frequency density. In contrast, Figure 8-8 depicts the mean frequency 

density from a statistical distribution with narrower confidence bounds; therefore, the 

maximum values do not appear to be as large. 
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Figure 8-8 : Q95 Events per day of year simulated from Poisson VGAM for 1901-2009. Day of year is shown 

along the x-axis starting from 1
st

 April. Vertical lines delineate the first day of each season. 
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Concentrating only on the top third (1971-2010) of Figure 8-8, it is possible to 

recognise some similarities between the simulations and the observations. For instance the 

dual seasonality of peak events in some regions is apparent, as is the dependence on 

atmospheric patterns. Simulation results between 1901 and 1970 reveal that the diagonal 

shift of observed event frequency (Figure 7-14) from autumn into winter in NHI and EA is 

more reflective of prevailing atmospheric conditions and cyclic variability, indicated in 

Figure 8-8 by the repeated pattern over several decades, than a behavioural shift. It is 

concluded that the apparent changes in seasonality were visual only, and are not significant; 

this is further demonstrated in Section 8.5.3 with estimates of frequency per day of year. 

As suggested by the figures in Chapter 7, many of the regional plots also demonstrate 

increases in simulated event frequency in the most recent decades - indicated by purple and 

darker blue areas, at the end of the record, within the deep blue patch. This is suggestive of 

increased within-year clustering as event probability is heightened in certain seasons, and is 

formally tested in Section 8.5.3. 

8.5.2 Estimated Event Magnitudes 

As with the Poisson-VGAM, the relationships in the GEV model were developed from 

correlations between regionally pooled observed rainfall frequency and time series of 

observed covariates for the period 1961-2000. ‘Predictions’ of event intensity per day of each 

year, both those which occurred and all likely variations given the driving conditions, were 

obtained by applying the GEV-VGAM to a time series of observed covariate data from 1901-

2009 and deriving the relevant distribution parameters. 500 random draws were then taken 

from each of the resultant GEV distributions, to accumulate a time series of daily occurrences 

per year which was then cut to form decadal time slices for periods 1901-1910,…,2001-2009. 

Estimates of events with specified return periods were calculated for each region 

using the decadal regional RMED values together with the predicted GEV parameters. 

Regional RMED estimates were calculated using weighted station AMAX, as in Chapter 6. 

Where fewer than 5 station AMAX series extended prior to 1961, the station median value 

was multiplied by its ratio to the 1961-1900 regional RMED value to estimate an equivalent 

decadal RMED closer to the regional value rather than the station specific value. In those 

regions which did not have observations prior to 1950, e.g. NHI, the earliest decadal RMED 

value was adopted for all preceding decades; that is the 1950s regional RMED was also used 
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for 1900, 1910,… etc. This has resulted in some artificial similarities between earlier 

decades. The return period estimates by decade are presented in Figure 8-9; return period 

estimates for rolling ten year groups are shown in Figure 8-10 

Eight of the fourteen regions show negligible differences between estimates for each 

decade. The results reflect those presented in Chapter 6 where changes per decade were 

not evident in some eastern and southern regions when using fixed decade estimates. For 

some regions, FOR, MW, SOL and SH, the results are suggestive of an increase in event 

magnitude over the past century; results which, although not directly comparable, are 

similar to those presented in Chapter 6. NHI displays a range of return period estimates 

reflective of cyclic variability, similar to those previously reported in observations and in 

Chapter 6. In contrast SH and ES indicate decreases in event magnitude over the course of 

the century. The results for SH demonstrate the importance of using the newly derived 

extreme rainfall regions, as this result reflects observations reported elsewhere (Jenkins et 

al., 2010) but contradicts the significant increases for the region presented in Chapter 6. 

Fitted standardised GEV distributions from the simulated VGAM parameters, per day 

of year, are shown in Figure 8-11; there are insufficient observations to estimate RMED per 

day of year. Some regions display a tendency toward heavier winter rainfall (MW, SW, NHI) 

and others toward heavier summer events (NO, FOR, HUM), although seasonal differences 

in magnitude are not as distinct for the whole data set as for event frequency or individual 

decades. The variability throughout the year reflects changes in the different contributing 

covariates and their interactions; although the differences do not appear to be as great as 

expected from the analyses in previous chapters. Changes per decade in the estimated 50-

year return period event by day of year, combining the analyses above, are displayed in 

Figure 8-12. Again there is considerable variability, but little significant difference between 

each decade.  
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Figure 8-9 : Estimated Annual Return Period Magnitudes using parameters from the GEV VGAM for each decade 
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Figure 8-10 : Estimated Annual Return Period magnitudes using parameters from the GEV VGAM for rolling ten year periods 
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Figure 8-11 : Standardised quantiles of fitted GEV VGAM, per day of year, for events equivalent to 2-, 10-, 25- and 50-year frequency 
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Figure 8-12 : Standardised magnitude estimates per day of year equivalent to the 50-year event, simulated by decade from GEV VGAM parameters
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8.5.3 Within-year Clustering 

Decadal time series of observed covariates were again used to generate a time series of 

daily Poisson rate estimates, which were sampled 500 times to assess changes in the daily 

frequency of events, shown in Figure 8-13. There is more decadal variability apparent in the 

probability of an event per day of the year than for the equivalent return period estimates, 

although the differences between decades are statistically negligible. Regions with the 

greatest variability in the timing of the peak event frequency seem to repeat the patterns 

from Figure 8-8 where cyclic patterns were apparent in the frequency and spread of events 

over the year. The minor differences between the daily probabilities for each decade confirm 

that the period of higher probability of events has not changed shape or timing. It is 

concluded that apparent changes in seasonality are not significant; the relative probability per 

day of year is distributed according to a non-homogenous Poisson process, dependent on 

calendar day and varying atmospheric patterns. 

While there is no significant temporal change in the relative probability per day, the 

actual probability of an event per day may have increased, leading to enhanced within-year 

clustering. The most frequent day of observed maxima ( ) was calculated from rotated 

seasonal statistics (Robson, 1999); this tallies with the period of highest frequency obtained 

from many simulations. The combination of monthly observed covariates and , which 

averages to a period of several days around the actual day,  approximate the conditions of 

highest event probability per year; any increase in event probability in this period equates to 

heighted probability of consecutive extreme events and, hence, clustering. The predicted 

values of  for each region on  per annum were simulated from the Poisson VGAM, and 

plotted in Figure 8-14 with the smoothed event probability, from a five year running mean. 

Several regions (NW, HUM, WC, SW) have no significant changes over the 109 year 

simulated series, despite considerably variability. Others appear to fluctuate with a peak in 

the central period (ES, FOR, SOL) or at either end (EA). A simple linear trend analysis in SE 

implies that there is no increase in event frequency, although inspection of the running 

mean contradicts this. Three regions (NHI, SH, NO) have significant increases in event 

probability on , confirming that the probability of several events occurring in rapid 

succession (clustering) has increased.  
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Figure 8-13 : Predicted event frequency per day of year simulated per decade from fitted Poisson VGAM 
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Figure 8-14 : Simulated annual changes in probability on the day of the year with the highest probability of event occurrence (Selected JDN From ), 

 with smooth fit and linear trend estimate in pink. 
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Figure 8-15 : Changes In Event Frequency Per Year From 500 Random Draws Per Year From Fitted Poisson Distribution 
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Figure 8-16 : Simulated annual changes in event magnitude on the on the day of the year with the highest probability of event occurrence (Selected JDN From )
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500 samples were drawn from each of the daily individual Poisson distributions with 

the cumulative total per year plotted in Figure 8-15. This shows a significant increase in 

event frequency in 8 regions, again demonstrating enhanced clustering. It is hard to 

distinguish common regional patterns in the changes, for instance sensitivity to SST driven 

events, although there is possibly a north-south difference with increased clustering in the 

north. 

Figure 8-16 illustrates estimates of event magnitude on  per annum using fixed 

decade estimates of regional RMED value, as employed in Figure 8-9. As before, the decadal 

estimates of RMED have influenced the apparent return period magnitudes in regions with 

insufficient observations (NHI, MW, SH). The influence of very large events in individual 

decades on regional RMED estimates is also visible, in addition to cyclic variability in the 

driving processes. Changes in event intensity appear to parallel those in event frequency, 

with regions demonstrating significant upwards trends in frequency also increasing in 

magnitude.  

8.6 Conclusions 

Allowance for non-stationarity in regional rainfall or flood estimates has been 

addressed by the research community, but is far from common practice (Jakob et al., 2011). 

This chapter has presented a new approach to accommodate non-stationarity in frequency 

and magnitude estimates. Allowing the parameters to vary temporally, in response to 

external covariates, represents the non-identically distributed nature of independent rainfall 

maxima over the course of the year and over several different years. A Vector Generalized 

Additive Model for Poisson and GEV distributions, dependent on external covariates such as 

sea surface temperature, was developed to allow for the non-stationarity in observed event 

intensity and frequency to assess apparent changes in the distributions; this is an effective 

method to address the stationarity paradigm (Milly et al., 2008; Lins and Cohn, 2011). Fitting 

a statistical model to observed data enabled the use of observed atmospheric and 

meteorological conditions to simulate event probability many hundred times to establish 

whether the observed responses were random or part of a longer term change. In 

combination with regional climate projections of the covariates, the models could be used 

to assess likely future changes in extreme rainfall intensity and frequency. 
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8.6.1 Model Development 

Many different parameters were investigated for use in the VGAM using covariate 

information identified in previous chapters; the final model incorporated four components 

of varying flexibility. Model summaries and deviance statistics were used to confirm the 

importance of each covariate in the model, as well as their adequacy in representing 

observed data. To aid model interpretation, an orthogonal point process of Poisson and GEV 

distributions was adopted, with the same base covariate set, to estimate event frequency 

and magnitude. 

The contribution of each covariate to the estimated parameters confirmed that 

calendar day is the principal driver of event frequency, with monthly air temperature range 

having second most importance; calendar day and air temperature jointly encompass the 

twin seasonality in event frequency demonstrated in several regions in Chapter 7 as air 

temperature is, perforce, seasonally driven. SST and NAO differ in importance between 

regions, displaying a north-south divide with northern Atlantic regions dominated by the 

NAO and south eastern regions by SST. Calendar day was also the most important covariate 

in the GEV model in all but two regions, which are known to be more responsive to SST 

driven summer convective storms. The balance between the remaining three covariates was 

more equal in the GEV model than in the Poisson model. 

A negative relationship exists in the models between monthly air temperature range 

and both event frequency and magnitude. This parallels the observed relationship between 

frequency and magnitude of summer convective events (Zhou et al., 2009) and confirms 

that the probability of extreme rainfall is higher, and events are more likely to be intense, 

during times of elevated temperature when the diurnal temperature range is at its lowest. 

Climate projections suggest that increases in global mean temperature will also bring a 

reduction in diurnal air temperature range (Christensen et al., 2007). In combination with 

the positive relationship with SST, this implies that short duration rainfall will increase in 

frequency and intensity with increases in global mean temperature. 

8.6.2 Results 

The Poisson and GEV models were tested for their adequacy using a variety of 

statistical and subjective tools (Villarini and Serinaldi, 2011). The Poisson models replicated 

the observed frequency well, without over-fitting the model, and the regional GEV models 
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reproduced event maxima satisfactorily. Weaknesses in the two distribution fits were 

observed in the two regions containing the smallest input data set, but both still replicated 

the key periods of peak event frequency and estimated magnitudes well. 

Long term changes in event frequency and magnitude were tested from many 

hundred simulations from the distributions parameters. Tests for changes in daily event 

frequency per year concluded that there was no significant change in very heavy rainfall 

seasonality from 1901 to 2009. However, the probability of a very heavy rainfall event on 

the day of the year with the highest probability of event occurrence has increased 

significantly in at least 8 regions, resulting in enhanced within-year clustering.  

Event magnitude characteristics confirmed that seasonal signal differences in 

magnitude are less apparent than for event frequency; primarily due to the additional 

variability introduced by the NAO. The changing interactions between the driving covariates 

justify the use of an additive structure, to allow the importance of different signals to vary 

over the course of the year. Changes in magnitude were assessed by decade, finding 

increasing trends in event magnitude in only seven regions. However, the dependence on 

SST and air temperature is indicative of likely increases in event magnitude in all regions 

with projected increases in SST. 

8.6.3 Uses 

The relationships between atmospheric circulation patterns, temperature and 

extreme rainfall established with this statistical modelling technique could be of benefit in 

many applications. The models could be employed in conjunction with seasonal forecasts of 

the NAO and temperature indices to aid water resource management on an annual basis: 

for instance, controlling water levels in reservoirs during years likely to receive many intense 

rainfall events. 

Climate change adaptation plans are often unclear about the implications of projected 

changes in extreme rainfall frequency and magnitude. The models developed here could be 

used with RCM outputs as the driving covariate set to assist adaptation planning, by 

improving projections of the likely changes in very heavy rainfall event frequency and 

intensity. Secondary impacts of changes in water resources, such as the consequences to 

agricultural practices or health impacts could be evaluated more effectively with better 

projections of the rainfall extremes. 
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Improvements to statistical downscaling for regional climate models adopt a two-

pronged approach: enhanced model resolution and using improved input parameters. 

Refined understanding of the interactions between rainfall extremes and driving 

mechanisms could assist model parameterisation and so lead to improvements in regional 

climate projections. 

8.7 Computer Packages 

The packages used for analyses in this chapter were VGAM (Yee, 2011), extRemes 

(Gilleland et al., 2009) and plotrix (Lemon, 2006). 
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Chapter Nine Conclusions 

“Human history becomes more and more a race between education and catastrophe.” 

H.G. Wells, The Outline of History 

9.1 Summary 

This thesis has investigated changes in the temporal behaviour of UK extreme and 

very heavy daily rainfall through analysing different extreme metrics and responses to large 

scale atmospheric and oceanic drivers and correlated responses (temporal and spatial). The 

temporal patterns which were examined focussed on the frequency and temporal proximity 

(or clustering) of events both within-year and over several years. Characterising extreme 

rainfall responses, both frequency and magnitude, in relation to larger atmospheric 

circulation patterns, enabled the current behaviour of extreme rainfall events to be 

understood in the context of natural climate variability and climate change. Furthermore, by 

using climatological observation series which are well represented in Global Circulation 

Models and Regional Climate Models (GCM, RCM) it should be possible to improve 

projections of extreme rainfall intensity and frequency through enhanced statistical 

downscaling and facilitate more effective adaptation action planning in the hydrological 

domain. In a similar manner, improved understanding of the drivers of extreme rainfall 

should lead to better representation of extreme rainfall within GCMs and RCMs, by using 

comparative relationships between the atmospheric circulation patterns and extreme 

rainfall in the models and in the observations to enhance the models. 

A coherent grouping of the extreme rainfall records was required to identify spatial 

patterns in extreme rainfall behaviour, and the responses to atmospheric circulation 

patterns. To this end a new set of extreme rainfall regions was developed using typical 

characteristics, such as the timing and magnitude of extreme events. The 14 regions are the 

first to encompass the orographic and atmospheric spatial differences of extreme daily rainfall 

characteristics for the whole of the UK. 

Statistical models were developed from the relationships between the driving oceanic 

and atmospheric circulation patterns and observed extreme rainfall frequency and intensity in 

each of the 14 regions. These models were used to explain observed randomness in extreme 

rainfall frequency and magnitude as a result of natural climatic variability and to quantify 
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apparent trends in the observations. This is the first time that such models have been used to 

identify changes in within-year event frequency (clustering) and to test trends using time 

series of the observed drivers to “generate” daily event frequency and magnitude for each 

year of a 110 year series. No trends were found in the seasonal patterns of extreme and very 

heavy daily rainfall event frequency, identifying instead considerable randomness and natural 

variability. However, an increased probability of extreme rainfall events, during the period of 

the year when most extreme rainfall events occur, was identified which is suggestive of 

increased event clustering; this will have considerable implications for current flood risk 

management and with respect to future climate change.  

The earliest chapters outlined the context of the project and the tools to be employed 

in the analyses of extreme and very heavy daily rainfall described in later chapters; while 

later chapters assessed trends in extreme rainfall behaviour, and characterised the 

responses to atmospheric and oceanic circulation patterns. The principal conclusions are: 

• Extreme and very heavy rain days in the UK display a distinctive seasonal pattern in 

their frequency, with regional differences in the timing of the peak period. 

• The probability of extreme and very heavy rainfall events within those peak periods 

is increasing, resulting in amplified within-year clustering of events. 

• Seasonal characteristics for event magnitude are less clear primarily due to the 

additional influence of the North Atlantic Oscillation (NAO). The NAO enhances the 

variability of event frequency and intensity in Atlantic facing regions; in southern and 

eastern regions the effect is moderated by sea surface temperatures, which reduce the 

variability in event frequency. 

• Changes to annual estimated event magnitudes are also uncertain. This is thought 

to be a result of the variability in their driving influences. There are statistically significant 

increases in five (of fourteen) regions, decreases in two and no change in the remainder.  

• The strong dependency of UK extreme daily rainfall on monthly air temperature 

and lagged sea surface temperature is suggestive of likely future increases in frequency 

and intensity under global warming. 

The remainder of this section synthesises the results from each chapter, then 

discusses the likely impacts of future changes. The chapter concludes with possible 

extensions to this thesis.  



~ 207 ~ 

9.1.1 Development of a comprehensive data set of UK daily rainfall 

A review of UK daily rainfall data sets revealed various inadequacies, leading to the 

development of a new comprehensive set of daily rainfall observations extending to 2009. 

The data set comprises 223 stations, each with a minimum record duration of 40 years, 

distributed across the UK, and spanning the period 1856-2010 with a latest start date of 

1961; 19 stations cover only the period 1961-2000. A regional frequency analysis (RFA) was 

used to test the sensitivity of regionally pooled statistics to the number of gauges included 

in the pool, confirming that ≥5 stations are required for reasonable extreme value estimates 

and that confidence estimates stabilise for ≥15 stations (Hosking and Wallis, 1988). 

Data processing to develop a comprehensive set of daily rainfall observations was an 

iterative procedure, where initial quality control measures were followed by exploratory 

data analyses to identify remaining problems within the data. Many tests for changes in the 

data or randomness of extreme occurrences highlighted anomalies within individual station 

records which were either rectified with focussed quality control measures, or necessitated 

the removal of the series. Approximately half of the stations had no significant abrupt 

changes in the mean or the variance of the annual maxima series; while tests for gradual 

changes were insignificant or meaningless for all station series. Runs testing established that 

only 199 of the observation records were suitable for peak over threshold (POT) analyses; 

the remaining 24 station records contained too many consecutive missing years of 

observations. However, cross-verification of station maxima using sources such as British 

Rainfall enabled the use of all 223 stations for analyses based on annual maxima. 

9.1.2 Identification of metrics of extreme daily rainfall for examining changes in event 

frequency and magnitude 

Exploration of various metrics of rainfall extremity defined a wet day threshold of ≥1mm 

and established that the definition of a higher threshold is highly dependent on the eventual 

application. Although a threshold equal to 99% of the mean wet day distribution is “extremely 

heavy” (Alexander et al., 2006), the subset of  event per year (i.e. the annual maximum 

series, AMAX) was insufficient to characterise within-year clustering; as such a lower 95% 

(“very heavy”) threshold was adopted for POT analyses to identify more events per year. The 

method of volumetric quantiles was also examined and found to be unnecessarily restrictive 

as it did not quantify changes in both the frequency and intensity of extreme rainfall. The -

largest events method to improve return period estimates was also examined, obtaining 
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highly variable results across the stations examined and proved to give minimal improvements 

with comparison to regionally pooled estimates. The use of the -largest events to 

characterise inter-annual variability in the heaviest rain days per year may have greater 

application in the future, but was found to be overly complex for this project as non-extreme 

events are included in the analysis set. 

9.1.3 Update existing analyses of annual and seasonal maxima 

Regional frequency analysis of daily and aggregated daily annual maxima in the UK 

rainfall regions (Wigley et al., 1984) was employed to estimate likely return frequencies 

from the Generalized Extreme Value (GEV) distribution. The purpose was to determine 

whether the changes in the magnitude of extreme rainfall events reported by Fowler and 

Kilsby (2003b; 2003a) have continued; the results found here contrast with the previous 

study, as the differences between return period estimates for 2001-2009 and earlier 

decades are more muted. 

Climatic variability has played a major role in the decadal evolution of return period 

estimates. For instance, considerable increases in East Scotland return period estimates 

during the 1990s arose from some notable storms (Fowler and Kilsby, 2003b) which have 

not been repeated. This emphasises the importance of accounting for climatic variability 

over several decades and the use of multiple analysis methods to understand any changes. 

There have been significant increases in annual maxima over the period 1961-2009, 

particularly in the west of the UK, confirming trends which were apparent but insignificant 

in previously published work (Fowler and Kilsby, 2003b; Fowler and Kilsby, 2003a; Burt and 

Ferranti, 2010). Estimated return period frequencies for South Scotland have decreased 

over the period of record with events which formerly had a 1% annual probability now 

having nearer to 10% probability of occurring. In East Scotland, estimated magnitudes for 5- 

and 10-day events are lower than those found by Fowler and Kilsby (2003b), but there has 

been a sustained increase in magnitude over the full analysis period (1961-2009) and a 

commensurate decrease in return period estimates from around a 25-year event (4% 

probability) to a 10-year event (10% probability). Increases in both the median seasonal 

maxima and estimated event return frequency and magnitude were found in the spring, 

autumn and winter. Results for median summer maxima, and resultant estimates of event 
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magnitude, were variable across the country but in general pointed to an increase in the 

highest intensity events.  

The results of these analyses revealed two material deficiencies in the analysis 

approach. Firstly, the use of spatially disparate rainfall regions, which can experience very 

different extremes and consequences, is inappropriate. Secondly, practitioners require a 

quantifiable assessment of changes in both the frequency and likely magnitude of extreme 

rainfall to determine appropriate protection measures. A regional frequency analysis based 

only on event magnitudes does not incorporate this critical knowledge surrounding 

temporal variability in those hydrological events which may have the greatest societal 

impacts (Tebaldi et al., 2006). 

9.1.4 Development of a new set of UK extreme rainfall regions 

A pivotal output was the development of UK rainfall regions specifically formulated 

from metrics of extreme rainfall. Daily rainfall observations from the 199 stations which had 

no missing years of data were used to identify a set of 14 extreme rainfall regions 

representing the temporal, orographic and atmospheric drivers affecting extreme rainfall in 

the UK. The regions were tested using a selection of measures and found to be homogenous; 

however, the specific boundaries for some regions  were a pragmatic adoption of other 

classifications, and could be considerably enhanced through the use of additional station 

data. The regional classifications were then used to explore spatial variations in very heavy 

and extreme daily rainfall characteristics. 

9.1.5 Identification of atmospheric and oceanic drivers of extreme daily rainfall  

Very heavy and extreme daily rainfall events were shown to be time variant in relation 

to the occurrence rate and display a distinctive seasonal clustering pattern. In many regions 

the peak in event frequency occurs over the middle and late autumn months, with a quiet 

period in April or May. Several highly complex relationships with atmospheric drivers, 

temperature and seasonality were explored to identify the most likely drivers of extreme 

events for use in later statistical models. Seasonality was identified as the most common 

driving characteristic for event frequency, arising from the dependence on seasonal 

temperatures. Different measures of the NAO were explored as drivers of event frequency, 

finding that the index derived from principal component analyses of sea level pressure 

measurements better represented the event frequency. Using this measure, a significant 
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positive relationship with daily extreme rainfall frequency was identified in Atlantic facing 

regions and significant negative relationship elsewhere. 

9.1.6 Development of multivariate statistical models from daily rainfall observations, 

and atmospheric and oceanic drivers 

Pooled regional maxima contributed to the development of extreme value 

multivariate models representing the frequency and magnitude of events in each region. 

Increasing the number of data used in the estimation of distribution parameters was found 

to improve the model representations of event magnitude and seasonally driven frequency. 

A Vector Generalized Additive Model (VGAM) was selected for a flexible representation of 

non-stationarity in observed event intensity and frequency and dependency on external 

covariates. Two models were fitted, combining to form an orthogonal Poisson process 

model: a Poisson-VGAM to simulate the variability in event frequency and a GEV-VGAM to 

simulate the variability in event intensity. 

The initial covariates which were tested for inclusion in the models were those 

identified from earlier exploratory analyses; progressive iteration of the models to include 

more variables and objective statistical testing were used to identify the most descriptive 

covariates. The selected covariates included in the Poisson-VGAM were calendar day, one 

month lagged sea surface temperature (SST), concurrent monthly NAO and concurrent 

monthly air temperature range. The percentage contribution of each covariate to the 

estimated distribution parameters confirmed that seasonality is the principal driver of event 

frequency, explaining between 45-90% of the variability. The second most important 

covariate was monthly air temperature range; calendar day and air temperature jointly 

encompass the observed double peak in event frequency. SST and NAO were found to differ 

in importance between regions displaying a north-south divide with northern Atlantic 

regions dominated by the NAO index and south eastern regions by SST. The same covariates 

were applied to the GEV-VGAM, with a more equal balance between the latter three 

covariates reflecting the range of influences on event magnitude. 

9.1.7 Identification of sources of non-stationarity in extreme daily rainfall behaviour 

A negative correlation was found between monthly air temperature range and event 

frequency and magnitude, suggesting that the probability and intensity of extreme rainfall 

are higher during times of elevated temperature, when the diurnal temperature range is 

also at its lowest. In southern and eastern regions a strong positive correlation was found 



~ 211 ~ 

between SST and event frequency and magnitude; the relationship with monthly NAO was 

more variable by region. 

Poisson models based on VGAM parameters were able to replicate observed event 

frequency well, without over-fitting the model; regional GEV-VGAM models reproduced 

event maxima satisfactorily. Many hundred simulations of event probability, from known 

atmospheric or meteorological conditions, were conducted with the statistical models to 

establish whether apparent changes in extreme behaviour response were random or part of 

a longer term change. Tests for changes in event frequency per day of year concluded that 

there has been no significant change in seasonality over the record period. However, the 

probability of an event occurring within the most active extreme event season has increased, 

leading to an increase in within-year clustering. Exploration of event magnitudes confirmed 

that the seasonal signal is not strong; the highest intensity events are as likely in summer as 

in winter and are dependent on the controlling atmospheric conditions. Changes in 

magnitude were then assessed by decade, finding significant increasing trends in only five 

regions.  

9.2 Discussion 

The increasing trend found in the GEV analyses of spring maxima is of great 

consequence to farmers as newly planted crops are more vulnerable to extreme rainfall 

than better established plants (Rosenzweig et al., 2002). The upward trend in the same 

analysis of autumn maxima is of particular importance to farmers water resource managers 

and, indirectly, flood defence practitioners as the timing of the events may have a 

considerable impact on the timing and quality of autumn harvests as well as affecting 

surface runoff (Holman et al., 2003). Summertime increases in event magnitude, particularly 

in combination with a hotter, drier future climate, may have devastating impacts on future 

floods in regions with clay soils that are more sensitive to desiccation and so enhanced 

runoff generation. Similarly, many sewers in the UK have a design capacity of only the 30-

year event; increased urbanisation coupled with more intense rainfall will lead to increases 

in urban flooding. Even where flooding may not be an issue, the enhanced hydrological cycle 

will cause an increase in “first flush” pollution and so have a detrimental impact on river 

water quality (Woods-Ballard et al., 2007) 



~ 212 ~ 

Allowance for non-stationarity in regional rainfall or flood estimates has been 

addressed by the research community, but is far from common practice (Jakob et al., 2011); 

most analyses of extreme rainfall have focussed on traditional extreme value analyses to 

estimate the likely return frequency of specific events (Ghil et al., 2011). A statistical 

examination of event frequency and intensity assessing intra-annual frequency, where the 

parameters vary temporally in response to external covariates, is therefore timely. Climate 

change adaptation plans are often unclear with respect to projected changes in extreme 

rainfall as statistical models often underestimate extreme rainfall and the associated 

uncertainty (Fowler et al., 2007). However, the multivariate point process model developed 

in this thesis represents the intra- and inter-year non-identically distributed nature of 

independent rainfall maxima in a manner which could be repeated using climate projections 

to assist with adaptation planning to quantify likely impacts from changes in extreme daily 

rainfall. 

The importance of air temperature range and sea surface temperature as covariates in 

the GEV and Poisson based VGAM models confirms the hypothesis that warmer years may 

bring more intense and more frequent rainfall (Trenberth, 2011). Climate projections 

suggest that increases in global mean temperature will also cause a reduction in diurnal air 

temperature range (Christensen et al., 2007). In combination with the positive relationship 

with Sea Surface Temperature, the implication of this is that short duration rainfall will 

become more clustered and will increase in intensity in the future.  

The drivers of UK extreme rainfall established using this statistical modelling technique 

could also be of practical benefit for extant flood resilience schemes. For instance, seasonal 

forecasts of the covariates could be used as predictors within models to assist with short 

term water resource or flood risk management planning. In addition to the social impacts, 

which cannot be assigned a true monetary value, recent floods in Europe and worldwide 

have had major financial consequences (Maynard, 2006). The insurance industry considers 

consecutive events occurring within a short duration, say 15 days, to be the same event. 

Using the information from this statistical model suggests that such an approach is 

erroneous as the probability of several independent events occurring during this period is 

increasing; this could lead to high costs in years with a higher probability of extreme events. 
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Insurers should consider revising their window of significance accounting for independent 

events to account both for natural seasonal clustering and likely future increases. 

An outcome of this research which would benefit practitioners involved with flood 

defence design and water resource management, would be design guidelines encompassing 

year-to-year variability in event frequency, seasonal clustering, and their likely increases in 

the future. Current design guidelines which focus only on the single largest event per year 

are evidently not sufficient in areas which are sensitive to rapid runoff. Policy makers should 

consider embedding such guidelines in legislation, for example through the Planning Policy 

Statements relating to development in flood plains. Similarly, a revision of urban water 

drainage systems to place less reliance on storage capacity within the sewer network is 

necessary, as existing systems cannot meet the current demands of frequent intense 

rainfall. Those involved with adaptation planning should give greater emphasis to solutions 

such as Sustainable Urban Drainage Systems  to enable better water resource management 

and flood risk management in the future. 

Statistical downscaling for regional climate models benefits from a bi-directional 

approach: improvements in model resolution (down) and improvements in input 

parameters (up). While this project will have little impact on the model resolution, 

enhancing the interactions between rainfall extremes and their driving mechanisms in 

regional climate models will lead to improvements in regional climate projections for use in 

adaptation planning. Comparing the results presented in this thesis with those obtained 

from climate projections for the control period would be a useful exercise to establish 

whether the physical processes driving extreme rainfall are correctly represented in climate 

models. A responsibility also lies with those in power to ensure that the observation 

network is properly financed and maintained as improvements to the climate models can 

only be effective with sufficient validation data for comparison. 



~ 214 ~ 

9.3 Project Developments 

Some immediate developments to this project which are likely to be carried out in the 

short term are: 

• A short comparison of the changes in annual and seasonal maxima reported in 

Chapter 6 with a complementary study carried out for the newly defined extreme rainfall 

regions. 

• Application of covariate information from the UKCP09 climate projections (Murphy 

et al., 2009) within the VGAMs to identify the likely future behaviour of extreme rainfall 

frequency and intensity in the UK, and hence the likely consequences for future flood risk.  

In addition to these immediate developments, the following paragraphs summarise 

research interests which were not pursued due to time constraints. If developed thoroughly, 

all three projects would be of benefit for those applying climate research, such as the 

insurance industry, adaptation planners, or water resource managers.  

9.3.1 Wet days and wet spells 

This thesis only examined the clustering of one day rainfall maxima using a seasonally 

driven Point Process model. However, a formal assessment of the dependence between 

event magnitude and arrival rate to identify whether the intensity and frequency of very 

heavy and extremely heavy rainfall are inextricably linked as part of the clustered process 

(Mumby et al., 2011), thereby heightening the probability of flooding, would also be 

beneficial to flood risk managers. 

Heavy rainfall has several time-varying characteristics: events arrive non-uniformly in 

time, dependent on a seasonal cluster process; the interval between successive periods 

forming a wet spell is also non-uniform, governed by the controlling atmospheric systems; 

and the duration of wet spells is inconstant. These time-varying characteristics are seldom 

examined in depth, particularly the inter-dependence of successive rainfall, and yet extreme 

events often develop from several dependent non-extreme events (Stephenson, 2008). 

Multiple-day heavy rainfall events, arriving in succession are a frequent cause of flooding; a 

characterisation of their driving processes would be of great benefit to all involved in risk 

management. 
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This project focussed on single and fixed day aggregates of extreme rainfall, which 

facilitated a simple comparison of known quantities and extremes. However, these 

aggregates may contain a period of dry days within the accumulated total. More useful 

would be an analysis of only the rainfall days contributing to the high total by considering 

varying duration wet spells. Wet spells of varying duration are complex and not readily 

comparable: a wet spell lasting > 15 days with 10mm per day may be relatively rare but not 

severe, although several wet spells in succession (i.e. chronic severe; Stephenson, 2008) 

could generate an extreme response. By comparison a single daily total of 253mm, as at 

Seathwaite in Cumbria in 2009, is both rare and severe (acute severe; Stephenson, 2008); 

the associated flooding in this case was compounded by the preceding extended wet spell 

(Met Office, 2010a). 

Other evaluations of wet spell duration have principally concentrated on the mean 

duration of daily rainfall wet spells (Dai et al., 1998; Zolina et al., 2010) or monthly 

aggregates (Kruger, 2006). Spell durations are often analysed for drought or temperature 

excesses, employing a combination of Generalised Linear Models and extreme value theory 

to determine spell duration and event frequency (Furrer et al., 2010). This approach is 

suitable for data which are reasonably continuous and dependent on the previous day, but 

cannot be used for daily rainfall extremes (Cowpertwait et al., 2002). A beneficial 

development, particularly for disaster alleviation or risk management planning, would be to 

characterise the drivers of different types of wet spells. An initial definition for wet spells 

and their severity is outlined in Appendix C.3. 

Once the extreme wet spells have been identified, it should be possible to apply the 

models developed for 1-day maxima to characterise the wet spell behaviour, incorporating a 

linear model for the spell duration. While the wet spells may all be classified as extreme, the 

severity of the event is very different and may arise from different governing climatic 

conditions. Characterisation of the different governing atmospheric conditions would 

necessitate classification of the wet spells to allow the effective application of multiple 

extreme value distributions (Sornette, 2009). 

9.3.2 Agricultural responses to extreme rainfall 

Little research has been completed linking trends in phenology with meteorology, with 

the exception of the direct impacts of increasing temperature (Gouveia et al., 2008). Many 
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studies have reviewed trends in the advancement of seasons, timing of pollen releases and 

flowering dates; some have also examined correlations between mean seasonal vegetation 

fluctuations and atmospheric teleconnection patterns. However, the secondary impacts of 

changes in rainfall, particularly extremely heavy rain, are poorly understood; yet increasing 

combinations of drought and flood can have devastating consequences on crop 

development and harvests and can have the greatest impacts on society (Tebaldi et al., 

2006). 

Quantifying the impacts of extreme rainfall on harvest times, quantity and quality, in 

terms of their sensitivity to extreme daily rainfall, using the extreme rainfall models 

developed in this thesis may be of interest to adaptation planners. By enhancing the 

characterisation of current and lagged responses (i.e. the preceding season or year) to 

extreme rainfall, agricultural adaptation plans might focus on realistic improvements rather 

than generic solutions (Eakin and Patt, 2011). 

9.3.3 Co-dependent extremes 

Climatic extremes pose multi-dimensional hazards to critical infrastructure and the most 

vulnerable sectors of society as extreme events arrive non-uniformly in time, in clusters or in 

parallel with other extremes. The direct health costs of climate related extreme events 

incurred in the US between 2002-2009 is estimated at $14bn (Natural Resources Defense 

Council, 2011), and are indicative of the likely repercussions of increased intensity, frequency, 

duration and spatial extent of extreme climate events (CCSP, 2008). Yet appropriate risk and 

hazard management strategies for climate change cannot be devised without a proper 

understanding of the current impacts and vulnerability to non-stationary and clustered 

extreme climatic events, or of the driving atmospheric processes. Flexible decision making can 

only be effected with tools which account for both complexity and uncertainty (Wilby and 

Dessai, 2010).  

Enhancements of single-type extreme event analyses to assess multi-dimensional risks 

largely ignore the tendency for climatic extremes to cluster in time (von Storch and Zwiers, 

1999), although these have major repercussions on remedial work, or a collective impact far 

greater than their individual influence (Vitolo et al., 2009). The temporal risk of sequences of 

extreme events, particularly the composite impact of multivariate extremes, is poorly 

represented in traditional analyses which are premised on event independence. The 
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alternative approach estimates the likely magnitude or impact of specific individual hazards 

with a predefined probability of occurrence (Fowler and Ekström, 2009). The two approaches 

are rarely, if ever, considered in tandem even though both are required for resilient disaster 

risk management (McEvoy et al., 2010). 

A major development of the ideas explored in this thesis would be to examine the 

temporal relationship between several different extreme phenomena. For instance the 

relationship between extremes of heat and precipitation is not well understood; 

characterising the interplay between extremes of differing natures may improve event 

representation in climate models. Applying spatial tools to examine the concurrence of 

events of different nature at similar times would also enable appropriate risk and hazard 

management strategies to be developed. Flood receptor systems have embedded memory, 

for instance channel realignment or sediment movement following a flood event, subsequent 

flooding after the failure of manmade or natural flood defences, or the financial consequences 

of a secondary flood during the business recovery period. Understanding the spatial and 

temporal interplay between these memory processes and likely changes in the frequency and 

intensity of extreme events, with particular reference to flood risk, is a research topic which is 

about to commence in the Water Group, School of Civil Engineering and Geosciences. 
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Appendix A Summary of Equations and Methods 

Clausius-Clapeyron relationship: 

 

for saturation water vapour pressure (es); temperature (T); latent heat of evaporation (Lv) and water 

vapour gas constant (Rv)       Equation 2-1 p23 

Pettit Test for Change Points: 

 

For a time series X of duration T at time t      Equation 3-1 p39 

Aggregated variance test for Long Range Dependence: 

 

 

For a time series Xi in m blocks; giving the sample variance with Hurst exponent H. 

          Equation 3-3 p40 

Mann-Kendall test for trends: 

  

For the test statistic T of n points and a critical value     Equation 3-4 p42 

Wald-Wolfowitz test for randomness: 

 

 
For a sequence of runs R with m failures and n successes and test statistic Z Equation 3-5 p43 

Generalized Extreme Value (GEV) distribution: 

 

for location , scale  and shape   Equation 3-7 p45 
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Generalized Pareto Distribution (GPD): 

 

For threshold u, scale  and shape     Equation 3-8 p46 

GPD relationship to GEV: 

 

For arrival rate , threshold u, GPD scale  and GEV scale   Equation B. 9   p223 

Regional Frequency Analysis record weighting: 

 

For number of annual maxima n at N stations     Equation 4-1 p66 

Site discordancy measure: 

 

For site , in pool size , with  L-moment ratios, matrix of the mean L-moment ratios , and 

matrix of the variance in L-moment ratios       Equation 6-1    p108 

Gringorten Formulae for return level plotting: 

 

 

For the ith ranked position of N maxima and non-exceedance probability F Equation 6-2    p110 

Rotational seasonal statistics: 

 

 

For the angular position  of the calendar day JDN and  events at  stations.      Equation B. 24 

p227 



~ 220 ~ 

L-moment ratios: 

 

For the mean , coefficient of variation , skewness  and kurtosis   Equation B. 15 p225 

GPD parameters from L-moment ratios: 

 

For threshold , scale  and shape , mean , coefficient of variation   Equation B. 16 p225 

Hosking and Wallis regional heterogeneity statistics:  

 

 

For the site statistic Vi, with record length  using the mean L-moment t and skew L-moment tR 

          Equation 7-2    p146 

Final parameter definition for Vector Generalized Additive Poisson and GEV models: 

 

 

For arrival rate , location , scale  and shape  with covariates day of year dt, lagged Sea Surface 

Temperature ST1t, coincident monthly NAO Nt and monthly air temperature range   

           Equation 8-2    p177 
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Appendix B Statistical Tools 

B.1 Bootstrapping 

Bootstrapping is only suitable for use where the dataset size is >10 (Efron, 1979). The 

basic bootstrap method relies on a Monte Carlo simulation to generate a large number of 

random samples from a known process or series of data; summarised as follows (Alexander 

et al., 2009): 

1. Construct a sample probability distribution F
)

 

2. Generate a random sample, X*j, size n, from F
)

 with replacement.  

3. Evaluate α) , the parameter or test statistic for the sample. 

4. Repeat steps 2 and 3 a large number, say 1000, of times. 

The xj
th observation drawn from X*j, may occur multiple times, while xi may not 

appear. 

B.2 Statistical Distributions 

B.2.1 Discrete distributions 

The Binomial distribution is formulated from  independent Bernoulli trials, sampled 

from a population , with a stationary probability of event occurrence is:  

 

Equation B. 1 

For all non-negative integer values, the probability of events following the negative 

binomial distribution is:  

 

Equation B. 2 

Where  is the gamma function, shown in Equation 3-3,  and .  

The Poisson distribution has  with probability density 

function: 

 

Equation B. 3 
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B.2.2 Gamma distribution 

The gamma distribution is a continuous distribution controlled by the dimensionless 

shape parameter, , and scale parameter, ,  and described by: 

 

Equation B. 4 

B.2.3 Extreme Value distributions 

GEV Extension to the R-largest model 

The series of maxima  from the set  may be expanded to 

incorporate the r largest statistics by defining th largest of  with 

limiting behaviour, for fixed r, as  (Coles, 2001). Fitting this series into the GEV 

distribution function, G, using constants  and : 

 

Equation B. 5 

where 

 

Equation B. 6 

with 

 

Equation B. 7 

Peak-over-threshold (POT) Maxima 

By Poisson’s law of small numbers, the excesses of a distribution over the threshold, , 

are a countable sum of binary events with mean . If  is defined at a high enough level 

such that , then  can be approximated by a Poisson variable. 

The Point Process relationship can be combined with the GPD to define both the frequency 

and magnitude of events exceeding the threshold, with the occurrence rate, , following: 

 

Equation B. 8 
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With the parameters directly linked to the GEV as (Davison and Smith, 1990): 

 

Equation B. 9 

B.3 Linear and Additive Models 

B.3.1 Generalized Linear Models 

The ordinary linear regression model is a special case of the Generalized Linear Model 

(GLM), where only one explanatory variable exists and it is confined to the Gaussian 

distribution (Dobson, 2002). For a set of independent variables , the mean 

 follows an exponential family and is dependent on a single parameter  (Nelder 

and Wedderburn, 1972) such that 

 

Equation B. 10 

The parameters  are functions of the explanatory variables  and  is the link 

function giving the residuals from the model as 

 

Equation B. 11 

VGLMs extend the available model families beyond the exponential to extreme value 

distributions, applying the  directly to the distribution parameters using link functions 

 and parameters . Several different link functions may be assigned to each parameter. 

 

Equation B. 12 

The vector smoothers are estimated using combined quasi-Newton and iteratively 

reweighted least squares (IRLS) algorithms with Fisher scoring for numerical stability (Yee, 

2010). 
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B.3.2 Generalized Additive Models 

A more flexible enhancement is the Generalized Additive Model (GAM, Hastie and 

Tibshirani, 1990). The linear predictor term  involves a sum of smooth non-linear 

functions  of the covariates of an exponential family: 

 

Equation B. 13 

where the relationship between  and  is constrained to be smooth through a non-

negative smoothing parameter . 

The smoothness for the model , is transformed into a linear model with a basis 

function  covering the space of functions where  is an element for a set of parameters 

.  

 

Equation B. 14 

P-splines are recommended to define an appropriate smoothing function (Hastie and 

Tibshirani, 1990). The aim is to choose a smoothing parameter, , and basis dimension as 

close to  as possible so that data are neither over or under smoothed.  

The vector smoothers used in VGAMs fit a vector of smooth functions  to the 

vector measurements model , while b-splines minimise the quantity with a 

two term penalty on the lack of fit and  using a penalised likelihood term. These were 

defined from penalized regression smoothers, of the form  where 

 are linear basis functions and  are the non-linear parameters (Yee, 2011). 

B.4 Parameter Estimation 

For a vector  of  observations and  of parameters (in the parameter space ) the 

likelihood function is . The estimator  is the maximum of the likelihood function, 

tending to the best parameter grouping with  for all  in  (Wilks, 2005). 

The likelihood function is similar to the probability distribution function, the difference is 

that fixed values are estimated from unknown parameters with the former. 

Probability weighted moments of data values X1, X2, …, Xi arranged in a linearly 
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ascending order are given by , where . L-moments, and 

their ratios, of the probability distribution defined in terms of the weighted probability 

moments are then given by: 

 

Equation B. 15 

Where λ1 is equivalent to the mean of the distribution and λ2 is the coefficient of 

variation. L-moment ratios calculated from the higher order L-moments describe the 

skewness (τ3) and kurtosis (τ4) of the distribution. Coefficients of the parameters are those 

of the “shifted Legendre polynomials” (Hosking, 1995b). Sample L-moments for data 

samples are calculated in a similar manner with corresponding notation and definitions, e.g. 

 etc. 

Generalised Pareto distribution scale, , and shape, , parameters can be derived from 

L-moments, assuming a known location parameter (Hosking, 1990): 

 

Equation B. 16 

B.5 Model Testing 

The Kolmogorov non-parametric test for the goodness of fit of a probability 

distribution, with statistic Dn, and critical value, , are defined for significance  at the  

level of significance. 

 

 

Equation B. 17 
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The  test assesses model fit for counts of data falling into pre-defined classes 

against the  distribution with  degrees of freedom; for  number of classes - number 

of parameters - 1. 

 

Equation B. 18 

The deviance statistic compares the ratio of fitted model likelihood functions  for 

significant differences against the  distribution. 

 

Equation B. 19 

 For each model  with  dimensions, the AIC (Akaike, 1974) is defined from the 

maximum likelihood functions as: 

 

Equation B. 20 

While the BIC (Schwarz, 1978) includes a term for the number of observations : 

 

Equation B. 21 

The Generalized Cross Validation (GCV) score is obtained by rotating the ordinary 

cross validation score through an optimum angle to the point where the row lengths are 

equal to obtain: 

 

Equation B. 22 

 The smoothing parameter estimate is selected from the minimum GCV score. In a 

similar manner, the unbiased risk estimator is given by (Wood, 2006) 

 

Equation B. 23 
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B.6 Rotated Seasonal Statistics 

If  represents the angular position of the calendar day (at noon) in radians, JDN the 

Julian Day number of the event and LENYR the length of the year (calculated as 365.25): 

 

Equation B. 24 

then for events at  stations the centroid of the events, , can be calculated from 

 

Equation B. 25 

 indicates a regular seasonal concentration of events and  indicates weak 

seasonality. 
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Appendix C Definitions 

C.1 Treatment of Uncertainty 

The following definitions for uncertainty and probability have been used in the thesis, 

following the Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on 

Consistent Treatment of Uncertainties (2010). 

The assessed probability trends or future behaviour is categorised as: 

Term Likelihood of Outcome 

Virtually certain 99-100% probability 

Very likely 90-100% probability 

Likely 60-100% probability 

About as likely as not 33-66% probability 

Unlikely 0-33% probability 

Very unlikely 0-10% probability 

Exceptionally unlikely 0-1% probability 

  

Confidence in the evidence and agreement of research are depicted with a sliding 

confidence scale; increases in confidence are suggested by the increased strength of 

shading. 

High agreement  

Limited evidence 

High agreement 

Medium evidence 

High agreement 

Robust evidence 

Medium agreement 

Limited evidence 

Medium agreement 

Medium evidence 

Medium agreement 

Robust evidence 

Low agreement 

Limited evidence 

Low agreement 

Medium evidence 

Low agreement 

Robust evidence 

 Evidence (type, amount, quality, consistency) 

A
g

re
e

m
e

n
t 

Confidence  

Scale 
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C.2 Phenology 

The Oxford English Dictionary (Volume XI Ow - Poisant, 1989) defines “phenology” and 

related words as:  

“Phenological a. Also phaen- [f. phenol + logical: rendering Ger. phänologisch, used by Dr. C. 

Fritsch in Jarhb d.k.k. Central-Anstalt für Meteorologie, 1853, Vienna 1888]. 

Of or pertaining to phenology or to the objects of its study. So phenologic a.; phenology, the 

study of the times of recurring natural phenomena (see quot. 1884), esp. in relation to 

climatic conditions; phenologist, one who studies phenology. 

1875 (title) Instructions for the observation of Phenological Phenomena, published by the 

Council of the Meteorological Society. 1883 (Nature) 4 Jan 234/2 The most important 

feature of the phenological year was the mild winter. 1884 (Ibid) 9 Oct 558/2 Phenology, the 

observation of the first flowering and fruiting of plants, the foliation and defoliation of trees, 

the arrival, nesting, and departure of birds, and such like, has attracted the attention of 

naturalists from time to time for nearly 150 years. 1894 (Naturalist) 241 Phenological notes 

and statistical tables of rainfall and temperature. 1897 WILLIS Flower Pl. I 155 The study of 

periodic phenomena of vegetation is termed phenology. 1974 (Nature) I Mar 42/1 This 

proposed sequence of major volcanic eruptions followed by several years of cold summers 

and then by glacial advance is supported by historic and phenological data.”  

In the context of this thesis, where reference may be made to phenology, the focus is 

on the “periodic phenomena” of flora and fauna with respect to water resource availability. 

C.3 Wet spells 

To characterise extreme wet spells several components require definition: the 

duration of the event; the minimum rain on any of the days within the spell; an intensity 

measure to be able to compare events; and some measure of extremity. As wet spells of 

varying duration are complex and not readily comparable: the wet spell definition for 

extremity must also account for rarity and severity (Stephenson, 2008). Severity may have a 

rapid onset and conclusion such as Boscastle 2004 (acute), or slow to develop and either of 

prolonged duration such as Gloucester 2007 or repeated occurrence (chronic). 

 A wet spell, , is considered to be any duration, , of >1 day with contiguous daily 

rainfall totals exceeding 1mm per day, with intervals between independent wet spells 

greater than the cluster index (Ferro and Segers, 2003) or one day, whichever is longer. The 



~ 230 ~ 

event magnitude, , is the total rainfall over the wet spell ( ), and D is the total 

number of rainfall days per year or period under consideration (Shinohara et al., 2010), 

giving standardised intensity, , and wet spell durations, : 

 

Equation C. 1 

Sensitivity testing demonstrated that a running 20-day accumulation period identifies 

most wet spells without encroaching into monthly responses; increasing the duration to 

account for longer events did not enhance the extreme data set. Employing fewer days in 

the running mean increased the sensitivity of deviations of long wet spells from mean 

conditions.  

Extreme departures could be identified in a number of ways, for instance the monthly 

Standardised Precipitation Index (SPI) could be used to identify extreme wet spells as those 

with SPI>2, or the monthly concentration index (Li et al., 2011) could be adapted to 

represent sub-monthly values. To develop this measure into one of multiple day wet spells, 

rather than a measure of individual daily rainfall would necessitate an assessment of the 

mean number of days taken to contribute to different magnitudes of events. By fitting a 

gamma distribution to the frequency of days contributing to varying magnitudes of events, a 

measure of the standard error can be derived to identify outlying events. If the goal is to 

understand the atmospheric processes driving each extreme event, further work is then 

required to classify the severity of the events. 
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