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Abstract

Automated runtime security adaptation has great potential in providing timely and

fine grained security control. In this thesis we study the practical utility of a run-

time security-performance trade off for the pervasive Secure Socket Layer (SSL/TLS)

protocol. To that end we address a number of research challenges.

We develop an Adaptive Security methodology to extend non-adaptive legacy se-

curity systems with adaptive features. We also create a design of such an extended

system to support the methodology. The design aids in identifying additional key

components necessary for the creation of an adaptive security system.

We furthermore apply our methodology to the Secure Socket Layer (SSL) protocol

to create a design and implementation of a practical Adaptive SSL (ASSL) solution

that supports runtime security adaptation in response to cross-cutting environmental

concerns. The solution effectively adapts security at runtime, only reducing maximum

server load by 15% or more depending on adaptation decision complexity.

Next we address the security-performance trade off research challenge. Following

our methodology we conduct an offline study of factors affecting server performance

when security is adapted. These insights allow for the creation of policies that can

trade off security and performance by taking into account the expected future state of

the system under adaptation. In so doing we found that client SSL session duration,

requested file size and current security algorithm play roles predicting future system

state. Notably, performance deviation is smaller when sessions are longer and files

are smaller and vice versa. A complete Adaptive Security solution which successfully

demonstrates our methodology is implemented with trade-off policies and ASSL as

key components. We show that the solution effectively utilises available processing

resources to increase security whilst still respecting performance guarantees.
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Chapter 1

Introduction

Since the early days of Computing Science the idea of “separation of concerns” has

had a significant impact on how academia and industry approach the design and

implementation of software systems, models and architectures. The phrase was coined

by Edsger W. Dijkstra in his 1982 paper “On the role of scientific thought”:

We know that a program must be correct and we can study it from that

viewpoint only; we also know that it should be efficient and we can study

its efficiency on another day, so to speak. In another mood we may ask

ourselves whether, and if so: why, the program is desirable. But nothing is

gained -on the contrary!- by tackling these various aspects simultaneously.

It is what I sometimes have called “the separation of concerns”, which, even

if not perfectly possible, is yet the only available technique for effective

ordering of one’s thoughts, that I know of. [4]

Some notable examples of this idea in practice includes the Open Systems Inter-

connection (OSI) Basic Reference Model [5]. It provides a set of layered abstractions

for computer network protocol design which allows for separation of concerns between

the layers and so improves operability between protocols. More recently the influen-

tial contributors to the World Wide Web protocol standards have also conceded to

this idea and created two languages, namely eXtensible HyperText Markup Language

(XHTML) and Cascading Style Sheets (CSS), to separate style from content when

designing web pages. Separation of concerns is also made explicit through accepted

programming paradigms such as procedural programming and object-oriented pro-
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gramming. Aspect Oriented programming pushes this idea even further by allowing

cross-cutting concerns, which could include security, logging, tracing, profiling, pool-

ing and cacheing among others, to be dynamically added to objects at runtime (or

compile time) without the objects needing to have any knowledge of the particular

type of addition. The implications and usefulness of this paradigm is an active topic

for current research [6].

That said, the boundaries between concerns is often a grey area. As such it is

an interesting area for research, to either push or break these boundaries in aid of

increasing understanding and grounding their definition. This is no more so evident

than in areas where systems are designed to be intelligent and react to their sur-

roundings. Intelligent systems usually require additional information not generally

accepted as being a justified concern. Due to the general nature of this statement

it can be applied to a wide variety of different areas of research that may fall under

the general area of the thesis topic Adaptive Security. Such research include adaptive

access control policies where policies incorporate application specific information in

policy decisions [7], adaptive intrusion detection systems which allow individual trust

management to conserve processor resources [8], adaptive agents where the system it-

self moves between different domains and has to detect and adapt to various malicious

scenarios [9], adaptive security in resource constrained networks where appropriate

security protocols are selected at runtime based on the current network conditions

[10, 11] and threats [12], adaptive security infrastructures (ASI) where the ASI con-

sists of many security systems which cooperate to ensure minimal policy conflicts

[13, 14] and many more.

Of interest in this thesis are the concerns of system security and system perfor-

mance, in particular separating these concerns at design time and addressing the

contention between them with a intelligent Adaptive Security solution at runtime.

The type of security we address is specifically data privacy through cryptography

and ‘adaptive’ implies the ability to change the cryptographic algorithm at runtime

through an intelligent trade off policy. This is further discussed below and expounded

throughout the thesis.
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1.1 Terminology

We now take this opportunity to provide definitions of key concepts utilised through-

out the thesis.

Security

Security is the measure taken as a precaution against dangers or threats. In IT

security this is addressed as a composite set of attributes occurring concurrently.

Attributes are:

• Confidentiality: limiting disclosure of information to authorised individuals only.

• Integrity: absence of unauthorized system alterations

• Availability: accessible for authorised actions when needed

In this thesis we address all of the above attributes as they apply to the Secure

Socket Layer (SSL) protocol in a web server environment. Confidentiality is the pro-

tection provided through encryption/decryption of sensitive data. Integrity is pro-

vided by SSL through hashing and public key cryptography. Availability is addressed

through the trade-off and can protect against Denial of Service attacks by decreasing

the security.

Quality of Service (QoS)

Quality is measured as the predictability or guarantee of service delivery. In this

thesis we measure the percentage of successfully serviced requests, where success

implies a service response within a given time period.

Trade-Off

Trade-off is defined as “a balance achieved between two desirable but incompatible

features; a compromise.” In this thesis we research the trade-off between Security

and QoS as defined above. A Trade-off as defined in this Thesis exhibits a number of

characteristics. Firstly it refers to the actions taken to increase or decrease security

at the cost or benefit of QoS respectively. Secondly, in the trade-off a minimal level

3



of both QoS and security is specified. Lastly, the extent and intensity of service

usage influences QoS over time and so security and QoS is traded-off to support the

maximum achievable level of security at any particular moment in time within the

stipulated security and QoS constraints.

Adaptive Security

Adapt is defined as: “make (something) suitable for a new use or purpose; mod-

ify” With reference to software systems the type of adaptation is often defined with

reference to when it is achieved. Namely, adaptive can mean static adaptation where

the system is modified at design, compile or link time. It can also refer to dynamic

adaptation where the system modifies its own behaviour at runtime.

With reference to the definition of security above and our understanding of adap-

tive we consider Adaptive Security as a runtime modification of the cryptographic

algorithm employed to secure sensitive data.

1.2 Motivation

Choosing an appropriate level of security to protect a system is inherently a trade

off exercise in maximising security whilst taking into account financial concerns as

well as client Quality of Service (QoS) constraints. We believe that this trade off is

often made implicitly in industry and has only recently come to the attention of the

research community.

Successfully evaluating security often requires many years of practical experience

as such decisions are often based on an array of abstract factors. Factors could include

the likelihood of attacks, the strength of attacks, value of the data processed, strength

of the security algorithms, trust in the algorithms and many more. Additionally

there are even ambiguities in evaluating the actual security algorithms themselves.

Current security algorithm evaluation research [15, 16] provides formulae to evaluate

the security of algorithms but they depend heavily on subjective input such as level of

trust in DES encryption, expected cryptanalytic developments, accuracy of Moore’s

law and average cost of computing power to name a few.
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Furthermore, the chosen level of security also has a direct impact on system perfor-

mance. Choosing the right level of security to meet QoS guarantees requires a great

deal of expertise and foresight. Firstly the expected QoS without security needs to be

understood well. This partly depends on the combined performance effect of system

configuration parameters, such as buffer sizes and cache expiration policies. Due to

the large number of configurable parameters and their complex interdependencies it

may be difficult to determine their combined effect on system performance. Secondly,

the expected client load on the system is also difficult to predict and plays a role in

deciding what QoS guarantees can be provided. Providing security places an addi-

tional load on the system which may be difficult to determine at design time. Not

only does the additional performance cost depend on the chosen algorithm but also

on the chosen algorithm implementation. Even once an algorithm implementation is

chosen the performance impact on the system is greatly dependant on how clients use

the system, as we will show in this thesis.

Once a security algorithm is chosen there are no guarantees that the external

factors on which the decision was based will remain constant. For example, external

threat levels are likely to change over time, as will the value of the data that clients

store on the system. The number of expected clients as well as their behaviour may

also change. New cryptanalytic developments can also severely affect the strength of

or trust in a particular algorithm. Making only one security decision can therefore in

itself leave the system at risk or break QoS guarantees.

Choosing an appropriate level of security is thus a continual trade off exercise

best accomplished at runtime through an Adaptive Security system which can take

relevant environmental factors into account before making a security decision.

1.3 Goal

In reference to the above motivational factors we formulate our goal as follows:

GOAL: Demonstrate the practical utility of Adaptive Security in

trading off security and QoS at runtime.
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In particular we note that due to the subjective and abstract factors that influence

a security decision a certain level of threat to the system inevitably remains. In this

thesis we focus on reducing this threat further by trading off security and performance

to provide better security whilst maintaining QoS constraints. A particular challenge

is to use the available resources effectively without overloading the system or breaking

client QoS constraints.

Such an automated runtime adaptation has the potential to tap into available

resources to maintain a high level of security. It can also provide timely (i.e. in

response to threats) and fine grained (i.e. based on data value) security control.

1.4 Approach

Solutions to a number of research problems need to be explored to achieve the goal

above. Firstly, the issue of how best to create an adaptive security system which

can take QoS metrics into account and then adapt security at runtime needs to be

addressed. There is also the challenge of trading off security and Quality of Service

effectively; addressing issues such as quantifying each in such a way to allow a trade-

off, analysing which contextual information most appropriately represents QoS and

constructing effective security trade-off policies.

In addressing these questions we focus on creating an adaptive security system by

extending legacy security systems with adaptive features. We also choose to consider

security systems where part of the trade-off can be studied offline through experi-

mentation and in so doing provide insight as to the expected future QoS state of the

system under adaptation.

We therefore first study current literature to elicit the implicit adaptive principles

of current adaptive security research and so provide the cornerstone for our method-

ology. The methodology addresses the challenge of extending legacy security systems

with adaptive features and the steps needed to create a trade-off policy. We apply our

methodology to the Secure Socket Layer SSL/TLS security protocol as implemented

for the industry recognised open source Web Server system called Apache. We con-

duct an offline study of the security-performance contention in the system resulting
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from its SSL security provision to clients and so gain the necessary insight to create

a runtime trade-off policy.

In summary, in this thesis we start by investigating the performance overhead of

typical security protocol implementations as well as the level of security they pro-

vide. We furthermore study the performance effect of utilising such implementations

on an Apache based server and study how the performance impact due to security

varies under different client-server conditions. Such key insights provide the basis for

a security-performance trade-off policy which allows intelligent security adaptation at

runtime based on current client-server conditions. To achieve effective runtime secu-

rity adaptation we follow our methodology to design and implement a novel Adaptive

SSL (ASSL) solution.

1.5 Contributions

The analysis and tools constituting this thesis provide the following research contri-

butions:

• A methodology detailing key steps and activities to create an adaptive security

solution from legacy non-adaptive security systems. Steps include: Establishing

a control point to leverage control of the security decision process from the exist-

ing system. Identifying a cross-cutting concern which is a measurable property

of the environment. Studying the interrelationship between security and the

cross-cutting concern in the existing system context by identifying measurable

factors which influence their relationship (This is done offline). Formulation of

a trade-off goal which is optimised based on multiple objectives, one of which is

a security objective.

The methodology specifically addresses existing security systems. Also, only

systems where the security adaptation has a direct impact on the monitored

resource are considered as they provide the necessary complexity to study a

runtime trade-off. We also note that it must be possible to gain control of the

security decision making process from the legacy system for the methodology to

be effective.
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• Ability to predict the runtime system performance behaviour resulting from a

security adaptation. This is achieved through offline experimentation which

measures the system performance states under different security algorithms and

contextual parameters. Parameters such as the requested file size, session dura-

tion and performance cost of the cryptographic algorithms are studied. Offline

analysis allows one to systematically address the complexities of such predictions

leaving the less resource intensive decisions, i.e. those supported by the offline

results, to be made at runtime. Performance outcomes of security decisions can

therefore be studied offline before any decisions need to be made at runtime. We

are thus able to use performance prediction to divine a trade-off policy that can

respect QoS and security guarantees as the outcome of the adaptation is known

beforehand.

• Design and implementation of Adaptive SSL for the Apache web server. The

Secure Socket Layer (SSL) is augmented with adaptive features through the

application of our methodology and adherence to the design which accompanies

it. Adaptation concepts such as ’component based design’ and ’separation of

concerns’, as discussed in the background chapter, supports the development

of Adaptive SSL and ensures its practical utility. Adaptive SSL is shown to

be effective in supporting runtime adaptation with minimum overhead and has

been instrumental in illustrating our approach to achieve adaptive security for

non-adaptive systems.

1.6 Outline

This chapter introduced motivations and goals for an adaptive security solution as

well as detailing key thesis contributions. We now outline the primary thesis chapters:

Chapter 2 Adaptive Security covers a wide range of research areas/domains with

little shared common ground. As such we first present and discuss current Adap-

tive Security literature in this background chapter. This provides the context

for and nomenclature to describe our own work.
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Chapter 3 We focus on our security domain and undertake an in depth comparative

evaluation of current cryptographic algorithm implementations.

Chapter 4 A methodology to build a runtime adaptive security solution is detailed

in this chapter. We also consider the scope of such a methodology as well as

providing a design for the new adaptive security solution.

Chapter 5 In this chapter we detail and evaluate our Adaptive SSL solution which

facilitates runtime security adaptation between client and server based on the

design discussed in the previous chapter.

Chapter 6 We study the effects of external factors influencing server related security

cost. Insight gained through this offline study aides in formulating an adaptive

security policy and we demonstrate its effectiveness in trading off security and

performance at runtime.

Chapter 7 Lastly we summarise and recapitulate the main themes of the thesis. We

also consider possible future directions.
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Chapter 2

Background

We conclude from Chapter 1 that adaptive systems typically require additional in-

formation, not traditionally accepted as a justified concern of the system, to make

adaptation decisions. Such a general view of adaptive systems lead to a research area

which is vast, multidisciplinary and involves a wide range of systems [17]. Not only

is work related to this area far reaching but also relatively new. Almost all papers

cited in this chapter were published this side of 2000, if not within the last few years.

The combination of these factors contributes to the fact that current research in one

area of adaptive systems is often ill suited for transfer to another. With regards to

this, an adaptive systems Road Map paper published in 2008 states that “finding a

solution that should be able to fit all the purposes might be remote.” [17].

In this chapter we therefore take on the challenge of exploring the diversity of this

exciting new area and endeavor to draw together some core principles on which these

diverse adaptive systems are based. We examine what can be implied by the term

adaptive and how it is achieved. We furthermore present current Adaptive Security

literature providing a context and motivation for our research.

In the following section we firstly explore what Adaptive means and how it is

utilised in adaptive security research. We do this by bringing current adaptive security

research together under one adaptation taxonomy. Given an understanding of how

adaptivity is achieved in its many forms we then focus on the subset of systems more

closely resembling our research, namely Self-Adaptive systems.
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2.1 Adaptive

In this section we endeavour to provide a more concrete understanding of the am-

biguous term adaptive and draw together adaptive security research as they relate

to different kinds of adaptivity. In doing so we note that bringing together adaptive

security research in this fashion is to the best of our knowledge a unique compilation.

Using the adaptation taxonomy by S. M. Sadjadi et al. in [18, 19, 20] as a frame-

work, this Chapter brings together Adaptive Security research by exploring how,

when and where adaptation is utilised. For each section we discuss adaptive security

research which best demonstrates the related concept, noting that such research may

also be suited to one or more of the other sections.

2.1.1 When to adapt

Differences in adaptation techniques can be seen as a function of time [18]. Generally

speaking, techniques which allow adaptation later in the product life cycle are much

more powerful. Later adaptation does however mean that it is difficult to employ

traditional testing and formal verification techniques to ensure system consistency.

We first look at static adaptation early in the product life cycle and then move to

more dynamic types of adaptation later in the life cycle.

2.1.1.1 Static adaptation

Adaptive behavior which is hardwired into the system at development time cannot

be changed without recoding. This clearly limits the ease with which the system can

evolve over time.

Alternately the system can support customization at compile/link time. This is

typically done to make an application suitable for a particular environment during

deployment. It can be seen in traditional Linux operating systems where application

source code is compiled/linked using a makefile script to make it suitable for that

particular Linux distribution. Aspect Oriented Programming (AOP) languages also

allow blocks of code to be inserted at various predefined points in the system during

compile/link time. This code may deal with other system concerns such as security,
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logging, etc. (see Section 2.1.2.2 for full description). These systems only require

recompilation or relinking to be made suitable for a new environment.

Configurable systems delay the decision on which components to use for a par-

ticular task until the component is needed. For example the Java Virtual Machine

(JVM) loads classes when the application first needs them. Hashii et al. [21] applies

this to the security domain by utilising Java’s Dynamic Classes to support reconfig-

urable security policies for mobile programs. Such programs traverse many different

systems and so would benefit greatly from the ability to adapt appropriately to each

new environment.

2.1.1.2 Dynamic adaptation

Both tunable and mutable application types initiate adaptation at runtime. Systems

which do not change their functional code at runtime but allow other crosscutting

concerns to be altered in response to current environmental conditions are considered

tunable. Examples include a paper by Brenda Timmerman [22] which considers the

issue of dynamically masking network traffic to protect against traffic analysis attacks.

It allows the cross-cutting concern of security (i.e. the amount of masking) to be

altered in response to changing security policies, which in turn is partly based on

current system load. Higher network load might result in a policy change to reduce

network masking and so free resources to deal with the increased network traffic, and

vice versa. Lawrence Teo et al. [23] describes a dynamic risk-aware access control

architecture which provides additional runtime support to firewalls by monitoring

the environment. It monitors client requests at runtime and makes intuitive risk

based assessments on each request before allowing traffic through. Similarly R.M

Venkatesan et al. [8] considers a firewall which adapts to threats by changing security

policies for each user at runtime based on Intrusion Detection System (IDS) input.

Kang et al. [24] also considers using IDS input in the context of real-time embedded

systems to allow the system to perform optimally until a real security threat occurs.

Finally M.E El-Hennawy et al. [25] also tries to alleviate security processing costs

through segmenting data and applying a different level of encryption to each segment

by varying the algorithm key size.
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Mutable systems additionally allow adaptation which dynamically alters the sys-

tem’s behavior at runtime to one that is functionally different. As mentioned above

this is a very powerful adaptation type and is typically constrained to avoid anoma-

lous system behavior across adaptations. Chunxiao Chigan et al. [10] presents one

such mutable security service for Mobile Ad-Hoc Networks. Not only can it change

the level of security provided but allows complete changes to security infrastructure

in response to different types of security threat.

The Adaptive Security solution presented in this thesis is a dynamic tunable solu-

tion as it enables adaptation of crosscutting concerns in response to current environ-

mental conditions. More precisely, it enables runtime security adaptation based on

current server load. This is achieved through a policy based mechanism which pro-

vides better security when resources are available whilst still respecting client Quality

of Service constraints.

2.1.2 How to adapt

This dimension of the adaptation taxonomy reflects on the techniques used to support

adaptation.

2.1.2.1 Parametrisation

Parametrisation supports adaptation through a tunable variable whose value reflects

either a user choice or environmental property. Such systems typically support static

adaptation where the adaptation logic is hardwired into the system.

Generic Authorisation and Access Control (GAA-API) [26] is one such security

system that supports adaptive authorisation through a tunable system threat level

parameter. Policies are dynamically chosen and applied based on this parameter.

2.1.2.2 Separation of concerns

Adaptation logic which is dispersed throughout the system is costly and difficult to

modify and maintain [27]. Techniques which support separation of concerns address

this problem and significantly simplify the development process. One such technique
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to separate the concerns of functional behavior, i.e. business logic, with other cross-

cutting concerns such as security, Quality of Service and fault tolerance is Aspect

Oriented Programming (AOP) [28]. This separation is achieved at development time

by defining ‘pointcuts’ in the code where the code for crosscutting concerns (or ‘as-

pects’) will be inserted at compile or runtime using an ‘aspect weaver’. This technique

supports adaptation by firstly separating the various concerns and so allowing one

‘aspect’ to be easily replaced with another at compile time (i.e. customisable static

adaptation. See Section 2.1.1). Secondly it supports tunable dynamic adaptation

by allowing aspects to be weaved in at runtime [29, 30]. Lastly it can also support

mutable adaptation by considering the adaptation itself as an aspect and so allow the

system to adapt its functionality to that which was perhaps not envisioned during de-

velopment time [31, 32]. This also requires reflection to some extent and is discussed

in the next section.

AOP is still however considered relatively new with some potential unresolved

issues [33, 6, 34, 35]. None the less Abdelkarim Erradi et al. [36] have taken these ideas

and developed AdaptiveBPEL, a policy-driven framework for adaptive web services

composition. Leveraging AOP, a mutable security framework for distributed object

middleware was developed by Ruibing Hao et al. [37].

Our Adaptive Security solution upholds the idea of separation of concerns by dis-

tinctly separating the concerns of security from that of server configuration. This

separation allows security infrastructure to be developed, changed and deployed in-

dependently and parallel to that of the server.

2.1.2.3 Computational Reflection

Computational Reflection aids adaptation by allowing an application to reason about

and alter its own structure and behavior. This is achieved through ‘introspection’

which allows the application to observe its own behavior and ‘intersession’ which

enables the application to adapt its behaviour based on the observed behavior. Both

are achieved through exposing selected details of the underlying system at a level of

abstraction that hides unnecessary details whilst still allowing changes to the system

behavior. The RUNtime Extension of Services (RUNES) middleware [38] architecture
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utilises reflection, amongst other techniques, to provide a reconfigurable component

based architecture for networked embedded systems.

2.1.2.4 Component based design

Component based design (CBD) views the system as a group of components which

conform to a set of well defined interface specifications. Using interfaces to stan-

dardise interactions between components allows 3rd parties to independently develop

software components for later integration with the system. These are also known as

“Commodity-off-the-shelf” (COTS) components as they can be ready-made for use in

any system that adheres to the interface specifications. Components facilitate adap-

tation either through static recomposition, where components are selected at compile

time, or dynamic recomposition, where new components can be bound to the system

at runtime.

Our Adaptive Security solution fosters the notion of CBD by enabling security

adaptation through a standard HTTP based interface. This allows any 3rd party

which adheres to the interface to adapt the security.

2.1.3 Where to adapt

The last dimension of the taxonomy focuses on where in the system the adaptation is

realised. In particular, we focus on Application, Middleware and Operating System

layers.

2.1.3.1 Application Layer

Adaptive code at this level provides adaptive support to programs which are not

generally tied to a particular middleware platform. The following papers address

various security issues at the application layer by providing infrastructure support

through leveraging techniques presented in Section 2.1.2.

The Willow Architecture [39] supports fault and intrusion tolerance for critical

distributed applications. It does this through a combination of component based

design and control loop support. In the former distributed services are considered

components which adhere to a specific API and can thus be dynamically exchanged
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for other services at runtime and the latter provides support to monitor, diagnose

and respond to application state changes.

The security API for the Strata software platform [40] allows dynamic adaptation

of security policies at runtime based on system events. Their Aspect Oriented ap-

proach allows authorisation policies to be dynamically weaved into the application

code at runtime.

Leveraging reflection B. Hashii et al. [21] developed an application layer Extensible

Security Infrastructure to support dynamic access control policies.

Adaptive Trust Negotiation and Access Control (ATNAC) [41] supports security

adaptation through parameterising their framework with threat-level and suspicion-

level parameters. These parameters are used by the Generic Authorisation and Access

Control API (GAA-API) [26] and TrustBuilder [42] to provide an adaptive access

control and trust negotiation framework.

Through the use of Component Based Design and the concept of separation of con-

cerns the Analyse and Plan components of the control loop for our Adaptive Security

solution is realised at the Application level. Server load data is analysed, adaptation

policies applied and appropriate instructions formulated to trade off security and

performance.

2.1.3.2 Middleware

Middleware provides adaptive support just below the application layer. Schmidt [43]

further breaks this layer down into four layered sections as discussed below starting

with the lowest middleware layer and moving up:

The Host-Infrastructure layer encapsulates and enhances lower level communica-

tion and concurrency mechanisms to hide the heterogeneity of the Operating System

and hardware. This service is exposed through an API to the higher levels. Examples

of adaptive middleware at this layer include ACE [44], Rocks [45] and MetaSockets

[46].

The Distribution layer provides a programming abstraction to the layers above,

allowing distributed applications to be written in a similar fashion to stand alone

programs. That is, function calls on remote objects are free from hard coded depen-
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dencies on their location, target programming language, target OS, etc. Adaptive

middleware at this layer includes TAO [47], DynamicTAO [48] and OpenORB [49].

Common Services provide high level domain independent components that provide

common services such as load balancing, logging, security, fault tolerance, real-time

scheduling, etc. QuO [50], IRL [51] and FRIENDS [52] are examples of adaptive

middleware at this layer. The domain independent Monitor and Execution compo-

nents of our Adaptive Security solution are implemented at this level. A runtime

adaptive Secure Socket Layer (SSL) service adapts a subset of client SSL sessions in

response to application level requests. Current system load is also made available to

the application layer.

Finally, the Domain-Services top layer is tailored to the particular domain and so

can only be reused for that domain. Boeing Bold Stroke [53] open architecture for

mission-computing avionics capabilities is an example of middleware at this layer.

2.1.3.3 Operating Systems

Operating Systems (OS) is the lowest layer we consider. This is a vast field of re-

search which we will not attempt to cover comprehensively. We do however take this

opportunity to make note of particular adaptive security research in these areas.

H. Hinton et al. [12] developed a Security Adaptation Manager that adaptively

protects the OS against buffer overflow based stack-smashing attacks. Complete

copies of the system, each compiled with different levels of security in mind, are

maintained. The system initially operates in a less secure/more performant state.

System events are monitored and once an attack or sequence of potential attacks

are observed future client requests are diverted to a more secure/less performant

compiled implementation. Singh et al. [54] investigates the security-performance

contention in the Access Control mechanism of Storage Area Network file systems. A

compromise is found by developing trust/distrust in users based on their behaviour

over time. Trustworthy users only require minimal security checks and so free up

system resources.
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2.2 Self-Adaptive

Having gained a deeper understanding of how adaptivity is achieved in current adap-

tive security literature we now further analyse those security systems which are con-

sidered to be self-adaptive. We first consider self-adaptive systems more generally,

noting what current research considers as key key components of such systems. In

section 2.2.1 we then analyse current adaptive security systems in that light.

A distinguishing characteristic of self-adaptive systems relates to how the adap-

tation is initiated and in particular by whom. One might think of this entity as the

‘composer’ who uses these techniques to adapt the system. The composer might be

human, a system administrator or developer, or a piece of software. Software sys-

tems can be considered on a sliding scale from manual (human composers) to fully

autonomic systems (software composers). The first level represents a system which

requires skilled professionals to install, monitor, manage and replace. In contrast, the

other side of the sliding scale represents an autonomic system which can automati-

cally take appropriate actions based on business policies and objectives using available

internal or external information [55]. An analogy for such systems can be found in

biological systems such as the human nervous system which frees our brain from the

burden of dealing with lower level, but still vital, functions such as heart rate and

body temperature [56]. Autonomic systems are also commonly known as Self-star or

Self-* [57] systems and can be categorised under four general Self-CHOP [58] charac-

teristics (namely Self-Configuring, Self-Healing, Self-Optimizing and Self-Protecting

[56]).

Such Self-Adaptive systems can be static or dynamic (see Section 2.1.1) in terms of

when adaptation occurs but as autonomicity increases so does the need for a software

representation of the decision making process. This process can be seen as a feedback-

or control loop. It allows systems to make their own adaptation decisions without

human intervention.

The generic autonomic feedback loop considers all stages of the decision making

process [59]. The cycle starts with the collection of relevant environmental data. Is-

sues such as the cost and frequency of collection should be addressed here as monitor-
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ing itself could overload the system or negate performance benefits achieved through

adaptation [17]. Collected data reflects the current state of the system and is analysed

in the next stage. The analytical stage deals with modelling the current and possibly

future state of the system and applying various rules and theories to the collected

data. In the next stage a decision is made, potentially amongst alternatives presented

in the previous stage using techniques such as risk analysis or decision theory, to reach

a desirable state. This stage could also consider the impact of each alternative on

other components sharing the same resources, also bearing in mind the duration and

overhead of the adaptation process itself [17]. Finally the appropriate adaptation

decision is acted on. The impact data of the adaptation can then be collected and

used as feedback for the next control cycle.

Even though such feedback- or control loops have had much success in different

branches of engineering, such as control theory [60], it is still unclear whether general

principles of this discipline can be applied directly to self-adaptive software systems

[17]. Control theory deals well with closed systems whose components and properties

are well known and described using various linear or nonlinear mathematical models.

More general systems however (e.g. discrete and continuous, time-varying, having

delayed or uncertain information) whose structure is also perhaps not fully known is

problematic in control theory even if they can be characterised mathematically [59].

Not only is control theory somewhat limited but the feedback loop is often an

emergent property of the system rather than being explicitly represented in the sys-

tem structure. In particular, autonomic systems can be organised into two groups,

many adaptive systems sharing aspects of both. Nomenclature has not yet been

standardised and so groups can either be top down/bottom up, weak(centralised)/

strong(decentralised)[17], tightly coupled/decoupled [61], etc. For the former the sys-

tem is viewed in a top down fashion, most likely having some central point of control

maintaining an explicit representation of the system and making adaptation decisions

based on some higher level business goals. Such systems are more likely to suffer from

scalability problems [17]. The latter is a system viewed in a bottom up manner where

there is no central control but each component has a set of duties which, when view-

ing all components as a whole, produces some emergent behaviour. As such it can be
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considered more difficult to predict and verify this emergent behaviour. It may also

be an indication why many adaptive software system designers acknowledge the feed-

back properties of such systems but do not represent these control loops explicitly in

design documents. Control loops are also often hidden in design documents through

various abstractions intended to hide complexity. These give rise to a lack of visi-

bility which can cause designers to overlook key control aspects and makes software

validation and verification increasingly difficult [62].

In a bid to deal with the complexities of modern day computing systems IBM has

taken the above challenges to heart and developed an “Architectural Blueprint for

Autonomic Computing” [63]. At the core of this blueprint is the ‘autonomic manager’

which can be seen as a derivative of the popular engineering Model Reference Adap-

tive Control (MRAC) [60] control loop. The autonomic manager is an architecture

that implements the generic feedback loop. First the Monitor component collects

appropriate data from the managed resources through sensors. Data is correlated,

filtered and/or aggregated and the discovered symptom is passed to the Analyse com-

ponent. Symptoms and other data may also be stored in a shared knowledge base.

The analyser determines whether a change needs to be made based on the shared

knowledge (potentially a policy) and the symptoms. A change request is passed to

the Plan component if necessary. The planner generates the necessary command or

workflows in the form of a change plan which is passed to the Execute component.

The executor performs the change plan on the manage resource using the effectors.

The knowledge base may be updated if necessary.

Thus far only a small step has been taken to make feedback loops more visible and

explicit in adaptive software systems [62] and it would be a worthwhile endeavor to

further mine the rich area of control engineering to further ground adaptive systems

research [17].

In recognition of rapidly changing environments and the need for explicit feedback

loop representation L. Marcus [13] introduces the concept of an Adaptive Security

Infrastructure (ASI). It is considered to be a hierarchical structure consisting of many

autonomic systems. The paper focus’ on the foundations for local and global policy

specification in such an infrastructure.
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Alexander Shnitko [14] combines research in [13, 64, 65] to produce a general

model for an adaptive Complex Information System (CIS). The model also has clear

similarities to a feedback loop or autonomic manager. Lastly, Carlo Montangero et

al. [66] discusses an approach to the logic specification of an ASI in the secure mobile

networking domain using ∆DSTL(x) spatial-temporal logic. The contributions in

this thesis fit within this class of systems but we will discuss that in greater length

in Section 2.2.2.

Motivated by the the fact that the feedback loop mechanism is often not explicitly

considered when designing self-adaptive systems we analyse current adaptive security

literature with respect to the IBM’s autonomic manager in Section 2.2.1. This is

followed by a discussion of our contribution in light of these findings in Section 2.2.2.

2.2.1 Feedback loop

In order to bound the discussion we now focus on adaptive security research in partic-

ular. Specifically, we address the feedback loop properties of current adaptive security

systems in context of IBM’s autonomic manager in this section. Each component of

the autonomic manager is considered in turn, discussing if and how current adaptive

security systems account for these components.

A summary of our findings is presented in Table 2.1. Each component is accounted

for and an additional column, namely “feedback”, is added to explicitly address the

fact that the impact of the adaptation on the security system serves as feedback for

the next control loop cycle. In other words, when security is adapted through the

Execute component the Monitor component’s measurements are affected in the next

feedback loop cycle because of the adaptation. With reference to Table 2.1 we now

explore how current adaptive security systems address each component in turn. These

papers are chosen as they most closely represent our background discussion as well

as the various aspects of our research contributions.

Execute

The Execute component represents the security adaptation event itself and as such

we find that all Adaptive Security systems minimally support at least this part of the
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Table 2.1: Feedback loop components

Paper Execute Monitor Analyse/Plan Feedback
Adaptive SSL [67] Yes Active Offline Yes
Authenticast [11] Yes Active Online Yes
Sang H. Son et al. [68] Yes Active Online Yes
B. Timmerman [22] Yes Active Online Yes
Kang et al. [24] Yes Active Offline Yes
C. Chigan et al. [10] Yes Passive Offline
AEF [23] Yes Passive Online
EAC [8] Yes Active Offline
SAM [12] Yes Passive Offline
Sigh et al. [54] Yes Passive Online
ADME/AF schema [7] Yes Passive Online
El-Hennawy et al. [25] Yes

feedback loop. Even the “Adaptive Security/Performace encryption system” by El-

Hennawy et al. [25] addresses this core need when adapting between different key

sizes for the encryption of single files. Even though they do consider the performance

cost/benefits of such an adaptation they do not monitor its effect on the current

system performance, nor make adaptation decisions based on such insights.

From Table 2.1 one can clearly see that the Execute component is not an overlooked

consideration when creating Adaptive Security systems and is a key component in

enabling security adaptation in an Adaptive Security solution.

Monitor

With regard to the runtime monitoring of the system state we found that there

were two types of monitoring taking place.

The first can be classified as Passive monitoring. The system waits for an event

to occur. Adaptive access control systems are particularly suited to this type of

monitoring as the monitoring system must wait for a user to access the system. L.

Teo et al. created an Authorisation Enforcement Facility (AEF [23]) for network

access management which provides passive monitoring by scanning incoming packets

for suspicious content or behaviour. Sigh et al. [54] also uses passive monitoring

when building trust/distrust in users when they access the Storage Area Network file

system. Lastly, K. Beznosov proposed ADME/AF schema [7] to enable application

specific access control in middleware. Passive monitoring comes into affect when the
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application and middleware layer interact.

The second is Active monitoring and involves the monitoring system proactively

polling to retrieve sufficient data. This can most clearly be seen in adaptive security

systems where the system resources such as load or performance is monitored. The

Authenticast system [11] actively monitors system load to provide dynamic authen-

tication for streaming services.

The Enhanced Access Control system (EAC [8]) makes use of both techniques

to detect threats. It actively analyses audit trail data and passively monitors user

activity when they connect to the firewall.

We note that Active monitoring is significantly more resource intensive and as such

could negate the performance benefits achieved through adaptation [17]. Attributes

affecting such costs such as the frequency of monitoring and cost of calculating per-

formance averages are not specifically addressed by the above papers. Monitoring

provides current runtime information to aid in security adaptation decisions and so

forms another key component in the feedback loop.

Analyse/Plan

At the core of the decision process is the Analyse component. According IBM’s

Autonomic blueprint [63] all components need not always be present and since the

output of the Analyse component is often a adaptation decision for the Execution

component we consider the Analyse and Plan components together.

As the analysis can be very system specific, this component can be realised in a

myriad of different ways. We make the following observations regarding trends in this

area.

Firstly, even though the analysis occurs at runtime a number of systems require

additional offline measurements or computations to aid in the runtime (i.e. online)

analysis. Such decision aids need to be pre-computed offline before the system can be

utilised. C. Chigan et al.’s paper on “Resource-aware Self-Adaptive Security Provi-

sioning in Ad Hoc Networks” [10] introduces an offline optimal secure protocol selec-

tion module to analyse and select the most cost effective stack of security protocols

from various layers of the OSI stack to be utilised together at runtime. This selection
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is a costly process which may cause performance degradation in the running system

and is thus done offline. The Enhanced Access Control (EAC [8]) system makes use

of offline audit trails to learn what can be classed as normal user behaviour. Rules

derived from this processor intensive process is then used at runtime in EAC Fire-

wall rules. Lastly, the Security Adaptation Manager [12] can switch to a more secure

version of the system when a threat is detected. Multiple versions of the system is

compiled and maintained offline, each with different security charateristics, enabling

the system to choose between them at runtime. In all the papers above we see that

the analysis is a resource intensive activity and as such best achieved offline.

Secondly we note that compared to offline analysis the complexity of the online

analysis process is limited due to time constraints and processing resource limita-

tions. The Authorisation Enforcement Facility (AEF [23]) uses a simple threshold

value denoting initial trust in the user together with threat level data from the mon-

itor component to make runtime security adaptation decisions. Sang H. Son et al.

in their paper on “An Adaptable Security Manager for Real-Time Transactions” [68]

consider the cryptographic security of real-time database transactions. They devel-

oped an Adaptable Security Manager which utilises a simple feedback mechanism to

link transaction deadline completions, as reported by the monitoring component, with

a security level. If too many deadlines are missed a percentage of transactions are

moved to a lower security level to free resources, and vice versa. Authenticast [11] also

links security level with available resources through a feedback mechanism. In this

case authentication of multimedia streams is considered. If the rate of authentication

falls below the stream arrival rate, security is adapted through a set of heuristics to

reduce resource consumption and so allow the equilibrium between arrival rate and

authentication to be restored. Heuristics include only authenticating a percentage of

the incoming stream, delaying authentication and changing the security algorithm.

We also note that the above mentioned papers merely report on the performance

cost savings of using heuristics, percentage based decisions and threshold values but

do not consider the performance effect of such decisions as part of the decision pro-

cess. To make an informed decision and effectively decide whether security should be

adapted one must know the performance effect of adapting the security on the system
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before doing so. Taking this into consideration may however be too computationally

expensive for online analysis. Offline analysis may also find this difficult due to the

online nature of the adaptivity and its performance effect.

Feedback

The final aspect of Self-Adaptive systems to consider is the notion that changing

the security has an impact on the environment which in turn serves as feedback to

the next iteration of the feedback loop. We found that this is not always the case

as the adaptive security system may monitor a resource which is not affected by

the security adaptation. This is for example the case for the Security Adaptation

Manager [12] which adapts to a more secure version of the software when a security

threat is detected. The threats are monitored and reacted to in the same way in this

feedback loop as in the next iteration of the loop.

Kang et al. in their paper entitled “Towards security and QoS optimization in

real-time embedded systems” [24] the system performance is affected when a level

of security is selected to encrypt the transmission. This in turn will have a direct

impact on future decisions as the system is now in a less/more performant state and

more/less capable of meeting the real-time deadlines.

Authenticast [11] is another such system where adapting the security (i.e. the au-

thentication of real time data streams) directly affects the future system performance.

As such different decisions may need to be made on the next iteration of the feedback

loop.

B. Timmerman in her paper “A security model for dynamic adaptive traffic mask-

ing” [22] addresses the issue of adaptive network traffic masking to protect against

traffic analysis attacks. The amount of masking is sensitive to the current network

load and also affects the network load directly when the amount of masking is adapted.

Changes in the masking frequency therefore has a direct impact on the adaptation

decision for the next feedback loop iteration.

Lastly we consider Sang H. Son et al.’s paper on “An Adaptable Security Man-

ager for Real-Time Transactions” [68] where the cryptographic security of real-time

database transactions is addressed. Transaction deadline completions are measured
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and a percentage of the transactions are adapted to a lower security level if deadlines

are missed, and vice versa. Adapting security affects system performance and there-

fore by implication how many deadlines are met. The impact caused by the security

adaptation therefore provides feedback for the next feedback loop iteration.

We feel it is important to address this aspect of the feedback process as it is often

overlooked in current literature. It also adds significant additional complexity to the

Analysis/Plan components and is therefore an interesting research area to explore.

When considering the papers in this area we also note that even though the adaptation

has a direct effect on the environmental attributes that are monitored by the Monitor

component in the next iteration of the feedback loop, the adaptation itself does not

explicitly take the future state of the system into account when making such decisions

in the current iteration of the feedback loop. Amongst other things we address this

in our contribution discussion next.

2.2.2 Contribution discussion

In this thesis we take the ideas discussed in this chapter one step further to create

a methodology capable of extending standard legacy security systems, making them

fully self-adaptive. The methodology provides steps and considerations to address

all the components of the autonomic feedback loop and in so doing move adaptation

decisions for existing non-adaptive security systems from design or deployment time

to runtime. In particular we advocate a fully Self-Adaptive system where the security

adaptation has a direct affect on the monitored resource (i.e. The impact caused by

the security adaptation provides feedback for the next feedback loop iteration.). To

study the interrelationship between security and the monitored resource we introduce

an offline element to the Analysis/Plan component. As we will see, studying this

relationship through an offline measurement based approach equips us with the tools

to predict the system performance behaviour resulting from a security adaptation.

This aids greatly in developing intelligent and effective adaptation policies. We note

that the type of monitoring to be used is not stipulated in the methodology.

In this thesis we apply our methodology to the SSL/TLS security protocol [69].

In the first row of Table 2.1 one can see that our new Adaptive SSL (ASSL) system
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has an Active monitor component (i.e. processing resources is monitored), an offline

element to the Analyse/Plan component (from which our security-performance trade-

off policies are devised) and exhibits the aforementioned ’Feedback’ property. The

offline element of the Analyse/Plan component is of particular interest in this im-

plementation. Through offline experimentation we measure the system states under

different security algorithms and in so doing enable us to predict the future system

performance state resulting from a security adaptation. This results in intelligent and

effective adaptation policies. In context of the taxonomy in Section 2.1 our ASSL so-

lution can be described as a dynamic tunable solution. Concepts such as Component

Based Design and Separation of Concerns aided in developing the Monitor, Analyse,

Plan and Execute components of the feedback loop which themselves are distributed

over the Middleware and Application domain layers.
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Chapter 3

Cryptographic Algorithm
Implementations

In aid of exploring the contention between security and performance we investigate

the cryptographic algorithms required to secure client-server interactions. We study

both the level of security they provide and the performance cost of doing so.

Algorithms typically provide the following security guarantees: message integrity

to ensure messages are unaltered during transit; message confidentiality to ensure

message content remain secret; non-repudiation to ensure that the sending party

cannot deny sending the received message; and authentication to prove sender and/or

receiver identity.

We first introduce the cryptographic algorithms needed to achieve the above secu-

rity guarantees and show how they are combined to provide a more effective security

solution. We furthermore study current implementations thereof and show that per-

formance overhead varies significantly amongst implementations.

3.1 Cryptographic algorithms

In this section we detail the most prevalent cryptographic algorithms used to achieve

message integrity, confidentiality, non-repudiation and authentication. We also show

how these algorithms are used together to build a more effective security solution.
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3.1.1 Symmetric cryptography

Symmetric cryptography tries to ensure message confidentiality by encrypting the

message (the plaintext) using a secret key to produce an encrypted version of the

message (the cipher text), which is then sent instead of the original message [70].

Message integrity is implicitly provided, as altering the cipher text would result in

an illegible decrypted message. Symmetric refers to the fact that the same secret

key is required to decrypt the message on the recipient’s side [71]. Typical symmet-

ric encryption algorithms include DES, Triple DES, RC2, RC5, Twofish, Blowfish,

IDEA and AES. Most symmetric algorithms can operate in different modes, most

common of which are Cipher Block Chaining Mode (CBC) or Electronic Codebook

Mode (ECB). The former is considered more secure as it ensures that encrypting the

same plaintext never produces the same cipher text. An inherent problem in using

symmetric cryptography is the key distribution problem; since the same secret key is

used to decrypt the message, one must find a way to securely transport the key from

sender to recipient.

3.1.2 Asymmetric cryptography

Asymmetric cryptography provides the same message security guarantees as symmet-

ric cryptography, but additionally provides the non-repudiation guarantee. Asymmet-

ric refers to the fact that different keys are used for encryption and decryption. One

key is kept secret (private key) and the other is made public (public key), and both

are unique. The recipient’s public key should be used during the encryption process

to ensure message confidentiality as only the recipient has the necessary secret key to

decrypt the message. If, however, the message is encrypted using the sender’s private

key the sender cannot deny sending the message as his private key is unique and is

only known to him. Typical asymmetric algorithms include RSA, ElGamal and DSA.

Asymmetric cryptography is extremely powerful, but this comes at a cost. Especially

for longer messages and keys, it is much slower than its symmetric cryptography

counterparts [72].
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3.1.3 Hashing

Hashing tries to ensure message integrity by producing a condensed version of the

message, known as the message digest, which is unique to that message. The hash-

ing algorithm is publicly known and so the recipient can perform the same hash

on the received message, to produce another message digest, and compare it to the

received digest to asses whether the original message has been altered. Typical hash-

ing algorithms include MD2, MD4, MD5, RIPEMD, SHA-1, SHA-256, SHA-384 and

SHA-512. Hashing does not provide confidentiality, non-repudiation or authentica-

tion. On its own, hashing does not provide message integrity either as both the hash

and the message could be replaced by a 3rd party and so prevent the recipient from

detecting the attack. The next section explains how hashing is utilised to ensure

message integrity.

3.1.4 Hybrid security system

The techniques detailed above are combined to achieve a more effective security so-

lution through signing, verifying, encryption and decryption. They are combined as

follows:

The key, in symmetric cryptography, can be securely transported using public key

cryptography by encrypting the symmetric key using the receiver’s public key. The

receiver, and only the receiver, can then first decrypt the symmetric key using his

private key and then decrypt the message using the decrypted symmetric key. Note

that only the symmetric key, which is relatively short, is encrypted using public key

cryptography thus reducing encryption overhead.

The message digest, produced by the hash function, can be encrypted using an

asymmetric cryptography algorithm to avoid an interception attack. Thus, if the

message digest is encrypted using the sender’s private key, only the message can be

replaced during transit and not the message digest, since the interceptor does not

have the sender’s private key to encrypt the new message digest.

Generating a message digest and then encrypting the message digest using a private

key is referred to as signing the message. Decrypting the message digest using the
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sender’s public key, generating a new message digest of the received message and

then comparing the digests is called verifying the message. The performance results

of these two techniques, among others, are analysed in this chapter.

Sender authentication is achieved when the sender’s public key is signed by a mu-

tually trusted 3rd party. The receiver can then verify the public key as the 3rd party’s

public key is trusted.

3.1.4.1 RSA

Understanding the security implications and performance results in Section 3.2 re-

quires a deeper understanding of public key cryptography. In particular RSA [73],

which was developed by Ron Rivest, Adi Shamir and Leonard Adleman in 1977. We

do not explain all the details of RSA, but instead focus on the particular use of RSA

as detailed above.

The algorithm [74] [75]

• Choose 2 large primes p and q such that pq = N

• Select 2 integers e and d such that ed = 1 mod φ(N)

– Where φ(N ) = (p-1)(q-1) is Euler’s phi (or totient) function of N

N is called the modulus, e the public exponent and d the private exponent. The

public key is the pair (N, e) which is made public and the private key is the pair (N,

d) which is kept secret. RSA encryption and decryption explained in context of the

above sections is expressed as follows:

Encryption:

The symmetric key M :

Encrypted key = Me mod n

The message digest M :

Encrypted digest = Md mod n
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Decryption:

The symmetric key C :

Decrypted key = Cd mod n

The message digest C :

Decrypted digest = Ce mod n

Where M is the key or digest converted to an integer according to RFC3447 [76],

C the encrypted key or digest and n the particular modulus, chosen to be either 512,

1024, 2048, 3072 or 4096 bits.

When studying performance, it should be noted that encrypting the key and en-

crypting the message digest is not the same function as one uses the public and the

other the private exponent. Therefore, encrypting the symmetric key and decrypting

the message digest (in the verification process) is mathematically equivalent as they

both use the public exponent. The same can be said for encrypting the message di-

gest (in the signing process) and decrypting the symmetric key as they both use the

private exponent. RSA operation time greatly depends on the length of e and d [77],

since longer exponents incur much larger time and therefore processing overhead.

In the following two chapters we consider how the length of the public and private

exponents affect security as many security mechanisms exploit this to achieve faster

symmetric key encryption/decryption and message signing/verification.

Smaller public exponent

The public exponent e is used in symmetric key encryption and message verifi-

cation. The smallest possible value for e is 3 [78]. This can however weaken RSA

confidentiality assertions. In particular, if the length |M | of the message is such that

|M | < e
√

N the plaintext can easily be recovered [74]. Hastad’s broadcast attack can

be mounted if k cipher texts, encrypted with the same public exponent, can be col-

lected such that k ≥ e. [78]. The Chinese Remainder Theorem (CRT) can then be

used to recover the plaintext message [79, 78]. A defence against such attacks would

be to pad the message using some random bits [80]. Coppersmith imposed further
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restrictions on this in his Short Pad Attack which concludes that for e = 3 an attack

can still be mounted, even though a random set of bits are used, if the pad length

is less than 1
9

of the message length [78]. The Public-Key Cryptography Standards

RFC (RFC3447: PKCS]1 [76]) does however propose the use of Optimal Asymmetric

Encryption Padding (OAEP) [80] for new applications and PKCS1-v1 5 for backward

compatibility with existing applications.

Although e = 3 can provide adequate security, if necessary precautions are taken,

the current recommendation is e = 216 + 1 [78] which is still small, requiring only

17 multiplications, but big enough to solve the above problems at the cost of a slight

increase in encryption time. Short public exponents are not however a concern for

signature schemes [79, 74].

Smaller private exponent

A shorter private exponent d would result in faster key decryption and message

signing. Typically the private exponent is the same length as the modulus regardless

of the public exponent length. Wiener [81] has however shown that if d < 1
3
N0.24 the

private exponent can be obtained from the public key (N, e). More recently, Boneh

and Durfree have shown this to be closer to d < N0.292 [82, 75] and predicted the

likely final result to be closer to d < N0.5 [78, 82].

Other techniques used to decrease algorithm operation time include the use of

the Chinese Remainder Theorem [78], know as RSA-CRT, which is said to be ap-

proximately 4 times faster than using standard RSA algorithms [75]. Rebalanced

RSA-CRT can also be used and tries to shift the cost towards the usage of the public

exponent e [83, 81].

3.2 Performance analysis

This section studies the relative performance overhead between the different security

algorithms discussed above and in particular shows how the choice of implementation

can have a significant impact on their final performance cost. We first look at cryp-

tography software on the client side and show how choosing either the standard Java

Sun Cryptography Extensions [84] or the Java Cryptix Libraries [85] can significantly
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influence the expected algorithm performance. Secondly we evaluate the supported

algorithms on the server side (OpenSSL [86]) and show how these vary in performance

not only compared to the client side implementations but also versions of the same

software. Lastly we consider the security and performance of Verisign’s TSIK toolkit

which was recently acquired by the Apache Software Foundation [87]. It is a hybrid

security system (see Section 3.1.4) used to facilitate Web Services security. As far as

we are aware this is the only performance study of the TSIK toolkit.

We note that parts of the results are based on the MSc dissertation of P. Tomlinson

[88], others are obtained by the author [89]. The results have been published as a joint

publication [90]. To achieve a stand-alone discussion, these and additional results are

presented in this chapter. In particular Figures in section 3.2.1 are by Tomlinson and

all Figures in sections 3.2.2 and 3.2.3 are by the author.

3.2.1 Java Cryptography Extensions & Java Cryptix libraries

This section details a performance evaluation of the most common cryptographic

algorithms for each cryptographic technique. Sun Java Cryptography Extensions [84]

with libraries from Sun (referred to hereafter as JCE) as well as Java Cryptix Libraries

for JCE [85] (referred to hereafter as Cryptix) are used for this purpose.

All experiments were conducted on a 1GHz machine with 256MB RAM running

Linux Fedora Core. For each experiment a 1,137 byte plaintext file was used. All

results for symmetric and asymmetric algorithms include key generation, algorithm

initialisation and message encryption times. The experiments were repeated several

times with negligible variance in the results.

The results presented suggest that RSA-1024 and SHA-256, with 1024 bit key size

and 256 bit digest length respectively, are the most suitable cryptographic algorithms

for use during transactions in systems with performance constraints. Almost any of

the symmetric algorithms could be selected, but IDEA was shown to be the fastest

in our evaluation.
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3.2.1.1 Symmetric cryptography

This section details a comparative performance evaluation of a subset of symmet-

ric encryption algorithms. Using Cryptix we furthermore investigate whether either

Cipher Block Chaining Mode (CBC) or Electronic Codebook Mode (ECB) boasts a

performance advantage. 128 bit key size was used for all algorithms with the excep-

tion of DES (56 bits), Triple DES (112 bits) and Skipjack (80 bits) as they require

fixed key sizes. Unless stated CBC mode was used.
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Figure 3.1: Average time to encrypt a 1137B file using JCE libraries from Sun

Looking at Figures 3.1 and 3.2, the first observation to make is that there are

significant differences between the observed durations shown in each figure; JCE

took much longer than Cryptix for the same algorithm. As an example consider

the encryption time of ∼180ms for AES in JCE (Figure 3.1) and ∼40ms for AES

in Cryptix (Figure 3.2). The implementation therefore has a large impact on the

efficiency of the algorithm execution. This is further emphasized when individual
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Figure 3.2: Average time to encrypt a 1137B file using Cryptix distributions

algorithms are compared. Naively one would expect that the 112 bit Triple DES (3

DES) would take twice as long as the 56 bit DES. However, this is evidently not

the case, being only about 25% slower in Cryptix and only very marginally slower in

JCE. Clearly this is influenced by the implementation, and conceivably Java Virtual

Machine optimisations are also playing a part in apparently “speeding up” Triple

DES.

The algorithm which performed the best in our evaluation was the International

Data Encryption Algorithm (IDEA). According to Schneier [91], IDEA is approxi-

mately twice as fast as DES; in our experiments it was closer to three times as fast.

Perhaps surprisingly, Blowfish was much slower, only a little better than DES and

slower than algorithms such as Skipjack [92] and Serpent. Blowfish was designed to

be fast and to require little memory [91], but we did not find this Cryptix distribution

particularly efficient in our experimental set up. The Advanced Encryption Standard

(AES) [93] performed particularly badly in the JCE distribution, but less poorly in

the Cryptix distribution. We were unable to satisfactorily explain this difference,

36



except as further evidence of how the implementation of an algorithm can severely

impact the actual performance.

What is not evident in these plots is the relative security of the different algorithms.

In this respect key length is a good indicator, and so DES and Skipjack with key

lengths of 56 and 80 bits respectively may be considered potentially less secure than

others. Overall therefore it appears that IDEA is the best choice among the symmetric

algorithms tested, as it provides adequate security as well as a fast execution time.
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Figure 3.3: A comparison of symmetric algorithms operating in ECB mode and CBC mode

Figure 3.3 clearly indicates that neither mode shows a significant performance

advantage. It would therefore seem prudent to use CBC mode during message en-

cryption as discussed in Section 3.1.1.
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Figure 3.4: Average time to encrypt a 1137B file using public key algorithms

3.2.1.2 Asymmetric cryptography

The results presented in Figure 3.4 were obtained using the standard Java Cryptog-

raphy Extensions (JCE). The graph shows the average time to generate keys and

process 1,137 bytes of data. Firstly we note that the increase in processing time is

more than linear for RSA as key size increases. It can also be seen that the 1024

bit Digital Signature Algorithm (DSA) [93] outperforms both RSA-1024 and RSA-

765. DSA is therefore a good option for signing data. DSA can however only be

used for non-repudiation purposes whereas RSA can be used for both encryption and

non-repudiation.

3.2.1.3 Hashing

Java Cryptix Libraries were used in this experiment. All MD algorithms has a digest

length of 128 bits, 160 bits for SHA (unless otherwise stated) and 192 bits for Tiger.

As can be seen in Figure 3.5, SHA-1 significantly outperforms all other considered

algorithms. Unfortunately SHA-1 has recently been shown to be less secure than
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Figure 3.5: Average time to generate a message digest

initially anticipated and SHA-256 is currently recommended [94]. RACE Integrity

Primitives Evaluation Message Digest (RIPEMD) with digest lengths of 128 and 160

bits have been developed to replace the 128 bit MD algorithms. Both RIPEMD

algorithms seem to achieve comparable performance to that of SHA-256, though

clearly have shorter digest lengths and so are potentially less secure.

3.2.1.4 Summary

A comparative evaluation of the standard JCE libraries and Cryptix libraries for the

main symmetric, asymmetric and hashing algorithms have shown that the chosen

implementation plays a significant part in the expected performance of the particular

algorithm. In particular, JCE performs worse than Cryptix for the same algorithm

(see Figure 3.1 and 3.2). The symmetric encryption algorithm IDEA has been found

to have particularly good performance and 3DES showed a performance cost not that

much worse than DES (Figure 3.2). Clear choices for asymmetric encryption and

hashing are RSA-1024 and SHA-256 respectively.
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3.2.2 OpenSSL libraries

This section details our evaluation of algorithm implementations for each crypto-

graphic algorithm supported on the server side. In particular we evaluate two ver-

sions of the OpenSSL libraries, namely 0.9.7f and 0.9.8d. We show that even amongst

different versions of the same software algorithm performance can vary greatly.

All experiments were conducted on a Pentium III 866MHz machine with 512Mb

RAM using the Linux “openssl speed” utility [95]. Figure 3.6 exhibit 90% confidence

intervals of 60KB/s or less with the exception of 0.9.8d AES-128 and AES-192 with

intervals of 400KB/s or less. Figure 3.7 shows 90% confidence intervals of 2KB/s

or less, Figure 3.8 90% confidence intervals of 30KB/s or less and Figure 3.9 90%

confidence intervals of 300KB/s or less.

We find that the particular implementation has a significant impact on the over-

all algorithm performance and so performance assumptions about known fast/slow

algorithms can be misleading. Symmetric algorithm AES-128 and hashing algorithm

MD4 performs particularly well for the newer 0.9.8d version whilst, compared to the

client side Java implementations, SHA-1 performs poorly for both implementations.

We also note that algorithm performance results are measured in data throughput

(kB/s) and not in overall processing time (ms) as in Section 3.2.1. When comparing

these results with those in Section 3.2.1 we keep in mind that an increase in through-

put indicates a faster algorithm implementation whereas an increase in processing

time indicates a slower implementation.

3.2.2.1 Symmetric cryptography

OpenSSL supports a wide variety of symmetric algorithms as can be seen in Figure

3.6.

Figure 3.6 shows that AES in particular has benefitted from a significant perfor-

mance increase in the new 0.9.8d implementation. Where AES is one of the slowest

implementations in the Cryptix and standard JCE implementations (Section 3.2.1)

it is the fastest in OpenSSL, even surpassing the typically fast Blowfish algorithm.

The relative algorithm performances of the older 0.9.7f implementation is however in
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Figure 3.6: Comparison of OpenSSL symmetric algorithms

concurrence with Cryptix implementation. The figure also shows that an implemen-

tation of IDEA was introduced in the new 0.9.8d version, though not performing best

overall as in the Cryptix implementation.

3.2.2.2 Asymmetric cryptography

Figure 3.7 and Figure 3.8 show the signing and verification processes respectively (see

Section 3.1.4) of the supported OpenSSL asymmetric algorithms.

Figure 3.7 shows that for the message signing process both algorithms suffered

a slight performance decrease in the newer 0.9.8d implementation. DSA performs

consistently better than RSA for message signing as key size increases from 512 to

2048, performing almost 20%, more than a 100% and almost 300% better. RSA

is however still often chosen over DSA as it can be used in conjunction with any

hashing algorithm and can also additionally be used to encrypt messages. These

figures additionally affirm the results in Figure 3.4 where DSA-1024 outperformed

RSA-1024 during the signing process for the standard JCE libraries.
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Figure 3.7: Comparison of OpenSSL asymmetric signing algorithms
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Figure 3.8: Comparison of OpenSSL asymmetric verification algorithms
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The verification algorithms in Figure 3.8 show a slight performance decrease for

both asymmetric algorithms in the newer 0.9.8d implementation. As is generally

accepted, RSA performs consistently better than DSA during message verification.

3.2.2.3 Hashing

Supported OpenSSL hashing algorithms are shown in Figure 3.9:
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Figure 3.9: Comparison of OpenSSL hash algorithms

The figure shows mixed performance results for hashing algorithms in the new

version. 0.9.7f shows performance improvements from MD2 through to MD5 but the

new version shows MD4 performing better than MD5.

Looking at the Cryptix implementations in the previous chapter (Figure 3.5) we

can see that SHA-1 outperforms the other algorithms by a large margin. In the

OpenSSL implementation however it performs worse than MD4 and MD5.
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3.2.2.4 Summary

This section compared and contrasted two implementations of the OpenSSL cryp-

tographic library with each other as well as with client side Java libraries discussed

in the previous section. We have shown that even amongst minor software version

alterations performance can vary considerably. In particular we have shown that

when choosing a hashing algorithm the software implementation significantly impacts

the performance amongst the MD algorithm family. OpenSSL’s SHA-1 and IDEA

implementations also perform poorly compared to the other OpenSSL algorithms.

Implementations of these algorithms are however significantly faster than their peers

in the Java Cryptix implementation. When considering the symmetric encryption

algorithms, the newer OpenSSL 0.9.8d implementation provides a particularly fast

version of the cryptographically strong AES-128 algorithm.

3.2.3 Web Services - Hybrid security system

In this section we consider the combination of cryptographic algorithms used in

VeriSign’s web service Trusted Services Integration Kit (TSIK) [87], currently part of

the Apache Software Foundation [96], and evaluate them based on the level of security

they provide as well as their performance. TSIK’s performance is evaluated through

direct comparison with Java’s Cryptography Extensions (JCE). This is published in

[90, 89].

We first analyse the level of security provided by the implementation of the hybrid

system discussed in Section 3.1.4 and then evaluate its relative performance overhead

through experimentation.

We found that TSIK typically has worse performance than JCE. Its performance

is similar to JCE, except that it slows down when processing messages with large

plaintext sizes. It also provides adequate confidentiality, non-repudiation and sender

authentication guarantees through the use of Triple DES and RSA, though should

consider using SHA-256 for message verification in future releases as suggested in

recent literature [94]. With respect to technical ability, TSIK appears to be a viable

and competitive alternative in securing web based business interactions.
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3.2.3.1 Software analysis

Java keytool, Java’s key and certificate management tool, is used to create the Java

keystore, with appropriate key pairs, used by TSIK and JCE. The keytool generates

key pairs for RSA where N is user specified (512, 1024 or 2048), d is the same length

as N and e defaults to 216 + 1 (i.e. 17 bits long). As stated in Section 3.1.4, these

values are adequate and it is currently recommended that the user selects the modulus

to be at least 1024 bits.

TSIK 1.10 provides additional functionality, above that of the Java Cryptography

Extensions (JCE), to construct valid XML messages after encryption/decryption or

signing/verifying. These messages conform to the W3C XML Signature and Encryp-

tion specifications [97]. TSIK supports Triple DES (in cipher block chaining mode)

for symmetric encryption, as defined by W3C [97]. Using a key length of at least 112

bits will currently provide sufficient security. Triple DES is however relatively slow

compared to other more recent contenders such as AES [98]. Conversely, it has stood

the test of time and so is potentially a more reliable solution.

Only SHA-1 is provided for message digest generation (digest length of 160 bits).

SHA-1 has very recently been shown to be less secure than predicted and it is recom-

mended that SHA-256 or better should be used [94]. RSAES-PKCS1-v1 5 algorithm,

specified by W3C [97] and RFC2437 [99], is used as the RSA standard. As stated

in Section 3.1.4, if backward compatibility is not an issue Optimal Asymmetric En-

cryption Padding (OAEP) should be used in preference to PKCS1-v1 5. However,

PKCS1-v1 5 provides adequate security assuming the programmer is aware of certain

issues. Also, RFC2437 [99] indicates that RSACRT is used.

JCE does not support the creation of valid XML messages but supports various

symmetric key algorithms including AES, Triple DES and RC5. It also supports

SHA-1, SHA-256, SHA-512 and MD5, amongst others, for message digest generation.

It also specifies that the padding is applied according to RFC3447 [76]. RSA-CRT is

also used.
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3.2.3.2 Performance analysis

The following section details a comparative evaluation of the performance of VeriSign’s

TSIK toolkit and the standard Java Cryptography Extensions (JCE) in order to iden-

tify whether TSIK is a viable tool to secure web services, for instance those used in

performance critical online transactions.

Environment

All experiments were run on a 3GHz Intel Pentium 4 with 1GB RAM, running

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2-b28) on top of

Linux Fedora Core 2. We used The Legion of the Bouncy Castle [100] as the Java

RSA provider for both JCE and TSIK, and used Apache Axis 1.2 to generate the

appropriate WSDL interface for the web service, which was hosted on Tomcat 5.

Axis was used to both generate the appropriate SOAP messages, from the Java

code and TSIK XML documents, to be sent to the web service, on the server side,

and to generate the SOAP messages which are sent back from the web service to

the client. We took performance measurements on the client as well as server side.

Message transmission and conversion delays were not measured.

Experiments

In comparing the performance of TSIK and JCE we first consider message con-

fidentiality, namely encrypting the message using 3DES and encrypting the 3DES

key using RSA. Secondly we consider message integrity and authentication by eval-

uating the cost of signing and verifying messages using SHA-1 and RSA. Lastly we

study non-repudiation and evaluate its cost as a function of key length. The three

experiments are detailed below.
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Experiment 1:

In experiment 1 we analyse the performance of Triple DES, as a function of message

size:

• Client side: Message plaintext encrypted using Triple DES with a key size of

168. Symmetric key encrypted using an RSA public key (modulus 1024)

• Server side: Encrypted symmetric key decrypted using RSA private key (bit

length 1024) and cipher text then decrypted.

Experiment 2:

In experiment 2 we analyse the combined performance of SHA-1 and RSA algo-

rithms, as a function of the message size:

• Client side: Message signed using SHA-1 and RSA private key (bit length 1024)

• Server side: Message verified using SHA- 1 and RSA public key

Experiment 3:

In experiment 3 we analyse how the modulus size affects the performance of RSA

during signature creation and verification:

• Client side: Message signed (as in experiment 2) using RSA key sizes 512, 1024

and 2048.

• Server side: Message verified.

Results

The experiments above were conducted for TSIK as well as JCE. We repeated the

first two experiments for messages with a range of plaintext sizes, namely 2, 4, 8,

16, . . . , 512 and 1024 KB. Experiment 3 was done using a 2 KB plaintext size. The

results are shown in the figures below. It should be noted that all points in Figures

3.10 and 3.12 exhibit 90% confidence intervals of 3 milliseconds or less and points in

Figures 3.11 and 3.13 exhibit confidence intervals of 0.1 milliseconds or less.
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Figure 3.10: Triple DES encryption time

Experiment 1:

Figure 3.10 shows that JCE performs noticeably better for large file sizes. It also

shows that Triple DES encryption takes longer than decryption in both cases (TSIK

and JCE) except for very large messages where decryption takes longer when using

TSIK. We have no precise explanation for this and can only suggest it has to do with

the particulars of the implementation.

For RSA we see the opposite effect. Figure 3.11 indicates that RSA encryption

takes less time than decryption. As explained in Section 3.1.4.1, that is caused by

the size of the keys used in encryption and decryption. For encryption, the public

key is used, which has a small public exponent of 17 bits. For decryption the large

private key is used whose exponent is the same length as the modulus (i.e 1024

bits). When comparing TSIK with JCE, we see that the differences are minimal.

Decryption varies by an average of about 1 millisecond between the implementations

and encryption even less. We also observe that the cost of encrypting or decrypting

the Triple DES key with RSA in Figure 3.11 is relatively small compared to the overall

cost of encrypting/decrypting the message in Figure 3.10.
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Figure 3.11: RSA-1024 encryption time of 168 bit Triple DES key

Experiment 2:

Figure 3.12 shows that as message size increases signing consistently takes more

time than verification for both JCE and TSIK. This is once again expected as the

messages are signed using the large 1024 bit RSA private key. Encrypting the message

digest should take constant time for each file size and so the graph pattern should

be wholly due to SHA-1 hashing. Whereas signing and verification time increase

steadily for JCE, TSIK performs markedly worse for large file sizes. TSIK should also

consider using the more secure SHA-256 for message verification in future releases as

is discussed in Section 3.2.3.1. We also see a 20ms fixed difference in overhead for

TSIK. This is likely due to the cost of converting the message into an XML readable

format.

Experiment 3:

Figure 3.13 shows that doubling the RSA key size causes signing time to increase

whilst having little effect on the verification time. This can be explained by the fact

that doubling the key size effectively doubles the length of the private exponent (used

in signing) whilst keeping the public exponent length constant.
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Figure 3.13: Message signing/verifying (2KB message size)
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3.2.4 Summary

This chapter evaluated implementations of the cryptographic algorithms used to

achieve message confidentiality, integrity, non-repudiation and authentication. It has

consistently been found that the implementation has a significant impact on the ex-

pected performance of each algorithm.

We first considered two client side Java implementations, namely standard Java

JCE libraries and Cryptix libraries, and found that the standard JCE libraries per-

formed markedly worse. 3DES performed 25% worse than DES for Cryptix and only

marginally worse for JCE. The expected performance degradation of 3DES is 50%, in-

dicating that the implementation played a significant part in algorithm performance.

IDEA was shown to be the fastest symmetric algorithm.

Secondly, two server side OpenSSL implementations were considered. AES-128

performed particularly well for the newer OpenSSL 0.9.8d version even outperforming

IDEA. The MD protocol family showed performance increases from MD2 through to

MD5 for OpenSSL 0.9.7.f and Cryptix, whereas the 0.9.8.d implementation peaked

at MD4. This further emphasises the fact that the implementation choice influences

the algorithm performance significantly.

Lastly we evaluated Verisign’s TSIK toolkit for trusted Web Service interactions,

comparing it to Java’s standard JCE library. TSIK has comparable performance but

suffers when signing/verifying larger files. It is likely that his can be remedied by a

more careful implementation. Further improvements such as using the secure SHA-

256 hashing or opting for faster symmetric encryption algorithms is also advisable

[94].

Having taken a closer look at the performance and security of the algorithms

used to secure client-server interactions we now turn to the security protocols which

facilitate the interaction in the next chapter.
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Chapter 4

Adaptive Security

Using the security algorithms analysed in the previous chapter as well as adaptive

security principles discussed in Chapter 2 we now focus on the creation of an adaptive

security solution. We first present a method to augment existing security services

with adaptive features, outlining key steps and activities for such a process. The

method itself is designed to achieve an adaptive security solution that adheres to

the feedback loop mechanism put forward in IBM’s Autonomic Computing model

[63]. We furthermore put forward a generic design for an adaptive security service,

detailing core interactions amongst key components. The methodology and design

forms the basis for our Adaptive Security solution in Chapters 5 and 6.

4.1 Methodology

In this section we provide a methodology to achieve and adaptive security solution

that conforms to IBM’s Autonomic Computing vision. Extending a Security Service

to facilitate security adaptation requires a number steps and considerations.

In addressing the scope of such a methodology we note that it in particular achieves

adaptation for existing security systems. Much has been done in the pursuit of achiev-

ing runtime adaptation for new systems built from the ground up. Such solutions are

typically platform specific (e.g. Dynamic TAO, Open ORB, etc.), limiting their scope

to adaptive security systems on those platforms, or language specific (e.g. Open Java,

R-Java, PCL, etc) limiting its use to security systems of those languages. The exten-

sion of existing security systems with adaptive features is addressed in our method-
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ology.

In the context of existing security systems, our methodology addresses a certain

subset of systems that can be considered for adaptation. Firstly it applies to sys-

tems where the cross-cutting concern is measurable property of the environment. We

advocate a measurement approach where the relationship between security and the

cross-cutting concern is studied offline through experimentation. The challenge lies in

identifying a measurable property of the environment to represent the cross-cutting

concern, assuming this is possible. For example, when measuring the environment for

security threats before adapting firewall security policies one must first decide what

should be measured to accurately represent a threat. Furthermore, this measurement

must also be made at runtime, as is also the case for other runtime adaptive systems,

for comparison with the offline data. It is therefore imperative that the performance

cost of such monitoring should is not prohibitive to the adaptation process or the

expected system functionality.

When considering the security adaptation itself we note that our methodology

applies to systems where the security adaptation has an impact on the chosen cross-

cutting concern. In other words, as detailed in Section 2.2.1, the impact of the

adaptation on the security system serves as feedback to the Monitor component in

the next feedback loop cycle. As such their relationship can be studied and automated

security actions taken at runtime.

Lastly, a key consideration when applying the methodology to achieve runtime

security adaptation, is how to successfully leverage control from the existing system.

The pertinent part of the existing system is the decision process relating to what

security mechanism to utilize and when to apply it. This is a key challenge and can

range from trivially simple if the security system is built with or on top of adaptive

technologies or prohibitively difficult for closed source legacy systems. A number of

techniques on how this may be achieved is discussed in Chapter 2.1.2

Methodology

1. Establish a control point in the existing system where a security adaptation can

be induced. Effectively leveraging control is system specific and can be done in
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a number of ways including providing wrappers (i.e. encapsulation) for existing

system components or utilising any number of other techniques detailed in our

background chapter, Section 2.1.3.

2. Identify a cross-cutting concern against which security will be traded off. Such a

concern must be a measurable property of the environment or context in which

the system operates. It should be measurable at runtime and monitored without

adversely affecting functional or non-functional system properties.

3. Study the interrelationship between security and the cross-cutting concern in

the existing system context. In particular identify measurable factors which

most significantly influence their relationship. Assess such factors off-line trough

experimentation building an accurate and relevant representation of the rela-

tionship, and therefore the system, based on such factors. Such data may at this

stage be system or implementation specific. Trends based on the factors in the

relationship can therefore be transposed to a model of the system which should

then be further verified as to its accuracy.

4. Formulate a trade-off goal based on the desired security characteristics as well as

cross-cutting concern considerations. Evaluating security is a complex and error

prone process and is detailed in Section 1.2. Create an appropriate policy with

steps based on the system representation or model to achieve the desired goal.

4.2 Design

Having specified the steps required to extend a security service with adaptive features

we now detail a design of such a newly adaptive system to support the methodology

process. We also provide a more detailed design of one particular design component,

namely the Adaptation Unit, since this will be needed in the next chapter where we

apply the principles in this chapter to the design and implementation of an adaptive

Cryptographic Service. The security service in the design can represent any of the

security types discussed in the previous chapter. In keeping with our methodology

we present the following design:
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Figure 4.1: Security Service

Figure 4.1 depicts a standard security service. The Security Unit takes source data

as input, applies the relevant security function to the data and returns the trans-

formed data. The data transformation may be symmetric cryptography, asymmetric

cryptography or hashing.

Figure 4.2: Adaptive Security Service

Extending such a service with adaptive features requires a number of key compo-

nents and interactions. Figure 4.2 depicts the components of an adaptive security

service which augments a standard security service with adaptive features. Further-

more, the design is a realisation of the adaptive feedback loop in Chapter 2.

The Adaptation Unit serves as a key component in the design. It is akin to the

Executor service in the feedback loop and is responsible for enforcing the security

adaptation. Firstly it is required to intercept the Source Data in transit to the Se-
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curity Unit, forming a control point where security can be adapted. Furthermore, it

maps the given Policy rules to the Source Data indicating to the Security Unit which

Security function to apply to which sets of Data.

The Monitor Unit enables the Adaptive Security Service to observe and report

on a cross-cutting concern in the service environment. It corresponds to the Monitor

component in the feedback loop. Through runtime monitoring of the system context it

enables the Trade-Off Engine to make informed decisions based on the Current State

of the system.

The Trade-Off Engine component serves as the decision point for the next two

components of the feedback loop. Firstly it represents the Analyse component; The

Service States file contains pre-computed data or a system model which represents

the interrelationship between security and the cross-cutting environmental concern.

Taking the Current State into account the Trade-Off Engine is thus able to determine

the future system state, i.e. the change in the relationship, if security is adapted. The

last component is the Plan component and determines if and how security should be

adapted based on the adaptation Goal. With reference to the Service States the

Trade-Off Engine generates a Policy which satisfies the adaptation Goal.

Adaption Unit Design

In this section we explore the Adaptation Unit further in support of our adaptive

Cryptographic Service design in Section 5.2.

The Adaptation Unit is instrumental in the adaptation process in two key areas.

Firstly it is tasked to intercept data destined for the Security Service thus leveraging

control over which security transformations may be applied to this data in future.

Additionally, with the aid of a given set of policy specifications, it instructs the

Security Service on which security functions are appropriate for which sets of data.

Figure 4.3 depicts the primary interfaces to such a component (Also see Figure 4.2

for the Adaptation Unit in context of the adaptive security service).

In aid of creating an appropriate design for a Cryptographic Service’s Execute

component in the next chapter (Section 5.2) we now further define the structure of

the generic Adaptation Unit. Such a design can be seen in Figure 4.4.
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Figure 4.3: Adaptation Unit

Figure 4.4: Adaptation Unit Components

57



The leftmost component called the Interceptor diverts data destined for the Secu-

rity Unit to the Adaptation Engine. Data may be parsed and presented in a format

specified by the Adaptation Engine interface.

The Policy Interpreter parses the incoming policy updates, generating appropri-

ately formatted Security Function & Data Filter pairs as input to the Adaptation

Engine. Such parsing may include, but is not limited to, authenticating the sender,

policy syntax checking and mapping policy rules to internal security algorithm & data

filter representations.

Lastly the Adaptation Engine applies the filter conditions specified in the Data Filter

to the incoming data from the Interceptor. Once filtered, the Data is sent to the Se-

curity Unit specifying the appropriate Security Function to apply to the particular

subset of data.

4.3 Summary

In this Chapter we introduced a methodology to successfully create an Adaptive

Security Service. To that end we also presented a design to facilitate the creation of

such a service which adheres to the adaptive systems feedback loop design.

In the next chapter we explore the design and creation of an Adaptation Unit

for a particular service environment (i.e. Web server with SSL/TLS cryptographic

security). In the chapter thereafter we delve deeper into the other stages of the feed-

back loop, exploring the interrelationship between security and performance through

experimentation and finally demonstrating the effectiveness of such a trade-off at

runtime.
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Chapter 5

Adaptive Security for SSL

In this chapter the first step of the methodology in Section 4.1 is applied to create

a control point through which a security adaptation can be applied to an existing

Cryptographic security service. In particular, we focus on the realising an Adaptation

Unit for the SSL cryptographic protocol in a web server context by applying our design

in Section 4.2 which supports our methodology. The solution augments cryptographic

security measures between clients and a web server with adaptive features to respond

to various runtime security influences in a timely and effective manner.

We first introduce the SSL protocol, which utilises many of the cryptographic

algorithms analysed in Chapter 3 to secure communications between a client and

server. We then realise our Adaptive SSL (ASSL) solution through a design and

implementation which reflects the Adaptation Unit design in Section 4.2. Finally

we evaluate its performance to ascertain its viability as an effective adaptive SSL

solution.

5.1 SSL

Secure Socket Layer (SSL), also referred to as Transport Layer Security (TLS), is a

protocol used to secure communications between an application or web server and a

client over the Internet. The protocol is standardised through the Transport Layer

Security [69] effort and involves establishing a secure transport layer connection be-

tween a client and server through a handshake mechanism. Security is provided in

the form of authentication, confidentiality, integrity and non-repudiation of messages.
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During the handshake, algorithms are selected for the aforementioned security prop-

erties, based on those available to both the client and the server. This handshake

process is commonly known as SSL negotiation and the resulting secured connection

is called a session. Established SSL sessions can also be renegotiated at the discretion

of the client or server.

SSL Change 
Cipher Spec

Protocol
SSL Alert
Protocol

SSL
Handshake

Protocol
HTTP

SSL Record Protocol

TCP

IP

Applications

Figure 5.1: SSL Protocol Stack [3]

5.1.1 Protocol

The SSL protocol is comprised of a number of protocols and protocol layers which

facilitate the establishment of a SSL session between a client and a server. The server

can be any application, such as a web server. In this section we look at how the

different protocols compliment each other to provide this secure SSL service [3, 69].

Figure 5.1 shows the SSL protocols in relation to the other internet protocols. The

SSL Record Protocol provides security in the form of confidentiality and message

integrity to the layers above. Of particular interest is the Hypertext Transfer Protocol

(HTTP) which operates on top of the SSL Record Layer to provide secure Web based

interactions. Three further protocols are specified as part of SSL. The SSL Handshake,

SSL Change Cipher Spec and SSL Alert protocols are defined at a higher level to

support management of the SSL secured sessions. We discuss these protocols in more
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detail below.

5.1.1.1 SSL Record Protocol

The SSL Record Protocol provides a secure client-server connection for higher layer

protocols. It ensures data confidentiality through symmetric encryption and mes-

sage integrity through hashing. Messages from the layer above are first fragmented

into blocks, then optionally compressed, a hash value added, then encrypted (adding

padding as necessary) and finally sent. Upon receiving the data the process is re-

versed. Data is decrypted, verified, optionally decompressed, reassembled and passed

to the higher layers.

5.1.1.2 SSL handshaking protocols

The following three subprotocols facilitate negotiation of security parameters used

by the SSL Record Protocol, instantiating negotiated security parameters, optional

mutual authentication and reporting on error conditions. They work together to

establish a secure session between the client and server.

Handshake Protocol

The handshake protocol plays a key part in the SSL protocol and is responsible for

negotiating the security parameters used by the SSL Record Protocol to secure the

session. During parameter establishment the two parties may also authenticate each

other and the session may also be renegotiated. A breakdown of the required client-

server interactions can be seen in Figure 5.2. The protocol can be separated into four

logical phases as indicated by the dotted lines. In phase one the client and server

determine the encryption, authentication and compression algorithms to be used.

In phases two and three the server and client respectively may be authenticated if

required by the other party. Lastly the negotiated algorithms are activated and used

to finish the negotiation process in phase four. Protocol details below are provided for

completeness and are not strictly necessary to understand our research contribution.

SSL terms are indicated in italics and optional messages are shaded in Figure 5.2.
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Figure 5.2: SSL Negotiation [3]
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The client initiates the first phase of the negotiation with a client hello message.

The client hallo message contains a CipherSuite list, in preferential order, of all sup-

ported algorithms for the main cryptographic techniques. It also contains a random

structure, lists the supported compression methods and provides the current SSL ver-

sion number. Lastly it provides a SessionID to identify the session. Upon receiving

the message the server selects a CipherSuite and compression method from the re-

spective lists and replies to the client with a server hello message. In addition to the

preferred CipherSuite and compression algorithm selected from the lists it also con-

tains a SSL version number, a newly generated random structure and a SessionID. If

the returned SessionID is the same as that received from the client it implies that the

server found the SessionID in the server session cache and the old session with that

ID will be resumed (Protocol continues from phase four if this is the case). Otherwise

the new SessionID returned becomes the current SessionID.

In phase two, if requested by the client, the server will respond with a mes-

sage to allow the client to authenticate the server. Optional messages are shaded

in Figure 5.2. The certificate message contains the server certificate (in a format

specified by the CipherSuite) and a list of any additional required certificates. An

additional server key exchange massage may also be sent depending on the authen-

tication method (Further details are extraneous and not covered here). Once the

server is authenticated it may request, through the certificate request message, the

client authenticate itself also. Finally the server sends a compulsory server hello done

message to end the server hello message sequence.

If requested by the server, the client must send its own certificate message. The

client must thereafter send a client key exchange message containing relevant key

information which depends on the previously selected asymmetric protocol. If a

certificate was sent the client sends a certificate verify message which provides explicit

verification that the client owns the certificate. This is done through sending a signed

(using the client private key and hash function) version of the previous messages to

the server.

Phase four is the final phase of the handshake protocol and completes the client-

server session setup. For the first message the Change Cipher Spec Protocol (see
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below) is invoked to activate the negotiated security parameters for all subsequent

messages and notify the server thereof through a change cipher spec message. Lastly

the client sends a finished message which is the first message exchanged with the

new negotiated SSL session. The server similarly invokes the Change Cipher Spec

Protocol and sends its own finished message.

From this point on the application layer can start sending messages using the newly

negotiated SSL session.

Once all four phases have been completed either the server or client can ask for

the session to be renegotiated by sending a hello request or client hello message re-

spectively. This will initiate the SSL negotiation protocol but since the client and

server have already authenticated each other and exchanged the necessary keys, the

protocol completes phase one and continues from phase four where the newly agreed

on CipherSuite and compression algorithm can be activated. The role this feature

plays in our Adaptive SSL solution is discussed later in this chapter.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is responsible for changing the pending Cipher

Spec state (the parameters negotiated during the handshake) to the active Cipher

Spec state (the parameters used to secure the session). In Figure 5.2 the client

sends a change cipher spec message using the pending Cipher Spec and immediately

notifies the client SSL Record Layer to make the pending Cipher Spec state the active

Cipher Spec state. Once both client and server have invoked the Change Cipher Spec

Protocol they will be able to send and receive messages using the newly active Cipher

Spec state.

Alert Protocol

The alert protocol is used to communicate a variety of fatal or warning messages

to the other party. Messages include closure alert messages such as the close notify

message to signify that the sender will not send anymore messages and close the

connection. There are also a variety of error alerts that are used during and after
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the negotiation phase. Such message include handshake failure, certificate expired,

decryption failed, internal error, etc. See RFC4346 [69] for full listing.

5.2 Adaptive SSL

The Adaptation Unit is a key component in providing Adaptive Security for our

chosen Cryptographical Service, namely SSL. In this section we explore the design,

implementation and performance evaluation of such a component which we henceforth

refer to as Adaptive SSL (ASSL).

We first detail our ASSL design, followed by the implementation and finally an

overhead evaluation to ascertain its suitability for runtime security adaptation.

5.2.1 Design

This section explores the design of an ASSL Adaptation Unit in a web server con-

text. We chose to design ASSL for the Apache web server environment. Apache is a

popular web server used in industry today. As such our ASSL solution spans the gap

from research to industry making it a practical tool for runtime security adaptation.

Apache is also an open source web server platform and so allows greater flexibility in

how we can implement our design.

Our ASSL design facilitates runtime security changes to SSL secured sessions in

response to cross-cutting environmental concerns. We first evaluate current meth-

ods of changing security and present a better alternative as a further motivation for

our design. Next we detail the design showing how ASSL can change runtime secu-

rity based on a variety of environmental concerns. Finally the design is show to be

consistent with the generic Adaptation Unit design in Section 4.2.

Design motivation

Web server security is typically configured before the server is started. It is however

possible to change the security at runtime using distributed configuration files. These

configuration files are distributed throughout the server file system and provide the

configuration directives for the directories and subdirectories they reside in. The
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configuration files can contain directives for any server aspect including security and

can be changed by anyone who has write access to the file. These files are therefore

ideally suited to scenarios where users need to configure their part of the server

but do not have access to the main server configuration file. A typical example is

where Internet Service Providers (ISP) host multiple user sites and want to give users

permission to configure their own sites.

Clearly this is a far cry from our envisioned Adaptive SSL solution where security

adaptation is automated and can react in response to a variety of environmental con-

cerns such as threat levels or performance considerations. Distributed configuration

files are however also not suitable as a basic building block for our ASSL solution.

Firstly, these files allow configuration directives other than those related to security

and so permitting their use might result in unexpected changes to the server config-

uration by web site owners.

Secondly, allowing their use incurs an additional performance cost for the server.

For example, if a client requests the file index.html in directory /www/htdocs/example

the presence of the following configuration files have to be checked:

• /configuration

• /www/configuration

• /www/htdocs/configuration

• /www/htdocs/example/configuration

Additionally if any are found their configuration directives are read and merged,

according to a rule set, into a single configuration file. This process is repeated for

every client request regardless of whether the configuration files have changed.

The directory accessed determines the security directives that are applied. Config-

urations may additionally specify a filter on file types to which the security directives

will apply. Adapting security only on the directory and file type accessed is clearly

quite restrictive and we may wish to adapt security based on connection- or client

information.

66



Requirements

In a design of an Adaptive SSL solution we would therefore endeavor to provide a

certain set of key features in addition to meeting the Adaptation Unit design require-

ments detailed in Section 4.2. Firstly we need to sperate the concern of security from

that of server configuration. Decoupling the security rules in this way from the main

server configuration allows us to build a more powerful and flexible adaptive secu-

rity model since the security rules can be determined, deployed and changed without

restriction, independently and parallel to the web server and its components.

Secondly, the design must facilitate the identification of clients requiring security

adaptation using an extensive set of filter conditions. This will allow for more expres-

sive security rules and facilitate a closer match between the environmental conditions

being monitored and the actual clients that need a security change. For example if

security threats are monitored, clients requiring additional security could be identi-

fied by their IP address. Identifying clients based on a subset of connection- or client

information rather than the limited file location and type would achieve this.

Finally Adaptive SSL’s design must accommodate security adaptation based on a

wide range of cross-cutting concerns. Such concerns should not be stipulated by ASSL

and so place no restrictions on the intended use of ASSL. Concerns may be monitored

by specialised 3rd parties thus removing the logic that guides the adaptation from the

main server. “As a separate entity, the effectiveness of the adaptation logic is more

analysable and the mechanism more modifiable and extendable”[27]. Specialised 3rd

parties could include firewalls which adapt security based on current threat levels. For

example, clients that use typically insecure wireless internet connections at airports

can be provided with a higher level of security if the 3rd party detects that the client

is using the server from the airport or if the airport firewall detects a security threat.

Others could include system performance monitors which maximise the security based

on current resource availability, system administrators who need to respond to a

threat quickly or data monitors which alter the connection security based on the

security requirements of the data transferred. We further explore one of these, namely

adapting security based on current system performance, in the next chapter. ASSL

adaptation should also be controlled through a standard interface allowing 3rd parties
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to design their components in a “Commercial-off-the-shelf” (COTS) fashion for later

integration with the system.

Designing ASSL in this way adheres to many concepts discussed in Chapter 2 and

allows it to form a vital part of the self-adaptation feedback loop by providing the

execution component of such a loop.

ASSL design

Applying key ideas and concepts in the previous section, we present our Adaptive

SSL design in the context of a web server environment.

Web Server

SSL

Content 
Generator

Web Server 
Configuration

C
l
i
e
n
t

3. renegotiate

1. enc(req)

5. enc(resp)

4. resp

3. req

2. conf

Figure 5.3: SSL (enc = encrypted; req = request; resp = response; conf = configuration)

Figure 5.3 depicts a standard web server request-response processing cycle during

a typical SSL secured session. The numbers in the figures indicate the event order

and the labels the interaction type. Events with the same number indicate a decision

point and only one of the events take place. Figure 5.3 shows the client sending an

encrypted request to the server in step 1. The request is initially passed to SSL which

then queries the web server’s configuration file (where the security rules are stored)

in step 2. In step 3 SSL either decides to adapt the security by renegotiating the

SSL session or passes the request to the content generator. Depending on the request

the content generator may either reply with a created file or provide a static file as
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a response in step 4. Lastly, the file is encrypted by SSL and passed securely to the

client.

3rd Party
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5. enc(resp)

2. enc(req)

4. resp
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Figure 5.4: Adaptive SSL

Figure 5.4 shows how ASSL is incorporated into the web server environment. It

effectively takes over security adaptation, namely the SSL negotiation and renego-

tiation logic, by intercepting requests and evaluating them against the negotiation

rules specified by 3rd parties. ASSL intercepts the client request in step 1 and either

renegotiates security for the SSL session or passes the request to SSL in step 2. Input

from 3rd parties are not numbered in the figure as they are allowed to send requests

to change the negotiation rules at any time. This has far reaching implications as it

allows security to be tightly coupled with runtime environmental monitoring and so

allows the security to change as the environment or security requirements change.

Figure 5.5 is a magnified version of the ASSL module in Figure 5.4. It shows how

ASSL adapts the session security, during the request-response cycle in Figure 5.4,

based on renegotiation rules specified in the Request Filter. As can be seen in step 2,

the request filter allows security updates from 3rd parties and client queries to run in

parallel. 3rd parties are therefore able to identify clients, or sets of clients, at runtime

in a flexible and effective manner. Request Filter security conditions could include

client security level, type of client, client location, client name, etc. See next chapter
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for details of the chosen Request Filter implementation.

Design evaluation

This section showed how ASSL can provide a runtime adaptive security solution

for SSL in a web server context. We now evaluate the domain specific design above

with respect to its adherence to the generic Adaptation Unit design, as detailed in

Section 4.2, as well as showing that our design additionally meets the requirements

stipulated earlier in this chapter.

Firstly it conforms to the Adaptation Unit design. As seen in Step 1 Figure 5.4

intercepting client requests destined for the SSL component fulfills its role as In-

terceptor. ASSL furthermore supports incoming policy updates through a 3rd party

interface as seen in Figure 5.5. This functionality is akin to that of the Policy In-

terpreter, accepting and parsing the incoming policy updates. Lastly, ASSL applies

the policy updates stored in the request filter to data associated with a particular

client. Such filtering and the associated application of a particular cryptographic al-

gorithm to the data adheres to the functional requirements of the Adaptation Engine

component.

The ASSL design furthermore adheres to a number of additional requirements de-
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tailed in this chapter. Firstly it separates the concern of security from that of server

configuration by supporting SSL security configuration through the ASSL request

filter. Security configuration have thus moved from a webserver centric SSL config-

uration to one that is configured and maintained by the ASSL component. ASSL is

also required to support the identification of clients through a set of extensive filter

conditions. It does this through the Request Filter shown in Figure 5.5. Request Fil-

ter particulars are detailed for our chosen implementation in the next section. Lastly

the ASSL design accommodates security adaptation based on a wide range of cross-

cutting concerns through the HTTP interface which is exposed to COTS based 3rd

parties. Any cross-cutting concern can be monitored and reacted on (i.e. updating

ASSL security) by these specialised 3rd parties.

5.2.2 Implementation

In this section we present and evaluate key features of the ASSL Apache based im-

plementation.

The Apache [96] web server is built on a modular design where nearly all of its

functionality is provided through modules. Modules may register an interest to ma-

nipulate a client’s request at various points during the request-response processing

cycle. Apache provides various hooks to facilitate this. Apache is configured using

directives which are read from a file at start-up (httpd.conf) or at runtime through

the distributed .htaccess configuration files which are stored in the particular direc-

tories accessed during a client request. Modules may also have their own directives

which can be included in these files. Htaccess files are however not ideally suited to

automated runtime configuration as discussed in Section 5.2.1.

SSL is one such Apache module which integrates the OpenSSL toolkit [86] into

Apache. SSL session security is configured through the SSLCipherSuite directive.

This directive specifies a subset of security algorithms that can be used to establish

a secure session with the client. A directive to include all algorithms in order of

strength would look as follows: ALL:+HIGH:+MEDIUM:+LOW:+EXP:+NULL. This is a

custom syntax particular to OpenSSL. See Appendix B for a full description.

Adaptive SSL is also implemented as an Apache module and can be installed on
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existing Apache installations as it requires no additional Apache or SSL source code

changes. The significant parts are detailed below:

Request Filter: The request filter seen in Figure 5.5 is a sequence of [condition,

SSLCipherSuite] pairs on which the security of a session with the client will be rene-

gotiated if one of the conditions matches the client request and the current session

security is not a subset of the newly selected SSLCipherSuite. Each condition in the

list is checked in turn and the first that matches is selected, much in the same way

as firewall filters. Conditions are formulated using the powerful SSLRequire directive

(see Appendix A). Each condition is an arbitrarily complex boolean expression which

can make use of standard CGI, Apache and SSL related variables. For example; A

condition for the cipher suite DES-CBC-SHA (DES encryption in CBC mode using the

SHA hashing algorithm) could be stated as follows [101]:

(%{SSL_CIPHER} !~ m/^(EXP|NULL)/

and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd."

and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"}

and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5

and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 18)

or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/

The above condition states that SSL requests with ciphers which are not of type

EXPORT or NULL, from the organisation ‘‘Snake Oil, Ltd.’’ who are also from the

organisational units Staff, CA or Dev and who makes requests Monday to Friday

between 8 a.m. and 6 p.m. or any request which comes from the address 192.76.162

will need to be renegotiated according the SSLCipherSuite in the [condition, SSLCi-

pherSuite] pair. In this example it is DES-CBC-SHA. See Appendix A for the full list

of variables that can be used in a SSLRequire directive.

The SSLRequire directives are expressed using an extensive subset of contextual

information at the right level of abstraction. It uses only contextual information

relating to the end-to-end client-server connection (which is the primary concern of

SSL), nothing higher (application context) and nothing lower (data context). This
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separation of concerns allows the module to be used in a variety of application and

data contexts without any unnecessary or artificial restrictions at those levels of ab-

straction.

3rd Party interface ASSL also registers a handler, which manages all 3rd party

requests to Apache to insert condition pairs in the Request Filter. This provides a

platform independent and secure means (allowing 3rd party verification) by which the

security can be changed as all 3rd party requests are made over HTTP. A request to

change the security is a delimited URL specifying the location in the Request Filter

to insert the condition pair, the SSLRequire condition and lastly the SSLCipherSuite

to apply if the SSLRequire condition matches the request. In the example below the

request is made to the server at domain.com and adapt-ssl indicates that the request

must be processed by the ASSL handler. This is followed by Request Filter location

(i.e. 1) where the condition pair will be inserted. The [SSLRequire, SSLCipher-

Suite] condition pair is an example of reducing server security to no more than 56 bit

encryption. It states that all clients using key sizes greater than 56 bits should rene-

gotiate their security to use DES encryption (i.e. 56 bit encryption) and SHA hashing.

http://domain.com/adapt-ssl?"1?%{SSL_CIPHER_USEKEYSIZE} > 56?DES-CBC-SHA"

The handler provides a thread safe means to alter the Request Filter and so facil-

itate runtime security adaptation based on runtime configurable conditions. It also

alleviates the burden on the web server to manage session security and allows spe-

cialised programs and individuals who can more effectively monitor environmental

factors, such as potential threats and system load, to alter the security. Such parties

could include firewalls, system performance monitors, network monitors and system

administrators. Resolving conflicts of concern between the various parties are not

within the scope of this thesis.

Hooks: ASSL registers a number of hooks with Apache in such a way that

they are interleaved with existing SSL hooks, in essence taking control of the SSL

renegotiation functionality without altering the existing SSL implementation.
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Configuration. SSL’s SSLCipherSuite directive is stored in the event that it

needs to be applied, when appropriate, if the Request Filter (see above) is empty or

none of the conditions in the Request Filter match the client request. Thus logically

reverting back to the state where SSL has control over session renegotiations.

5.2.2.1 Discussion

This section evaluates our Adaptive SSL implementation choices. We identify key

strengths and limitations of our ASSL module.

Firstly, ASSL can be deployed on any SSL enabled Apache server requiring no

changes to the server code. Only a server restart is required rather than a reinstall, as

is required by some other modules, and so minimising barriers for ASSL deployment.

The ASSL module makes no changes to the existing Apache SSL implementation

(i.e. mod ssl [102]) and so need not be re-released when Apache SSL changes. Neither

does it require the existing SSL implementation to be disabled or removed. ASSL

leverages parts of the SSL implementation without affecting its operation and so

ASSL additionally benefits from SSL updates such as bug fixes and features.

ASSL is also completely transparent to the client, requiring no specialised software

on the client side. This significantly lowers the bar for ASSL adoption. Clients

can, however, have moderated control of the SSL connection through an interface

provided to them by the specialised 3rd parties who control the Web Server security

(see paragraph below). In either case, clients maintain the right not to send data

on connections below a certain security threshold by either examining the negotiated

connection or simply limiting the algorithms that they claim to support during the

negotiation process.

No restrictions are placed on the type of specialised 3rd party that can control

the session security, though 3rd parties can be authenticated. ASSL does not resolve

conflicts of interest between 3rd parties. Advocating 3rd party SSL control separates

the concerns of SSL security from that of server configuration and so allows truly

concurrent development cycles. The use of 3rd parties also lends itself to creative

and potentially unexpected ASSL usage contexts.

Using SSL’s SSLRequire directive provides adaptation decision rules based on the
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client-server connection. In addition to allowing extensive adaptation decision rules

through arbitrarily complex boolean expressions it also provides this at an appropriate

level of abstraction, clearly separating the potential adaptation concerns. It allows

connection adaptation based on connection parameters. Nothing higher (see Figure

5.1), allowing 3rd parties to consider application specific concerns such as performance

issues or client preferences. And nothing lower, allowing 3rd parties to manage data

specific considerations such as securing data based on the value of the information.

Due to a bug in the implementation, SSLRequire does however require the server to

create client processes using a non-threaded, pre-forking Multi-Processing Module.

Although threading does enable greater scalability the prefork module is the Apache

server default for Linux systems due to its stability and backward compatibility,

amongst others [103].

3rd parties interact with the server through the standard HTTP protocol. This

gives 3rd parties the freedom to write their applications in any language on any

platform. Applications also need not be hosted on the server machine thus allowing

remote server security administration. ASSL supports 3rd party authentication but

does not support encrypted security adaptation requests as the adaptation request is

sent as part of the request URL. This is only a problem if the 3rd party is remote and

ASSL can easily be extended to support this by including the request in the message

body.
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5.2.3 Overhead Evaluation

The following section details a performance overhead evaluation of our Adaptive SSL

module to ascertain its suitability for runtime SSL session management. The chief

overhead concern is that of evaluating client requests against the Request Filter as

this process is executed for every client request. Renegotiating the session security

when a match is found is handled in exactly the same way by both Apache’s SSL and

ASSL and as such is not considered here. In each experiment we compare Apache’s

SSL implementation to a ‘best’ and ‘worst’ case performance scenario for Adaptive

SSL. In the best case the Request Filter list is empty and in the worst case the Re-

quest Filter list is full, containing twenty of the following complex boolean expressions.

%{SSL_CIPHER} =~ m/^(EXP|NULL)/

and %{SSL_CIPHER} =~ m/AES256/

and %{SSL_CIPHER_USEKEYSIZE} < 52

and %{REMOTE_ADDR} =~ m/^192.76.162.[0-9]+$/

and %{REQUEST_FILENAME} =~ m/secure/

and %{REMOTE_URI} =~ m/.mov/

and %{HTTP_USER_AGENT} =~ m/^Mozilla/

When evaluating a client request, each expression evaluates to false and so every

expression in the Request Filter is evaluated for each client request. ASSL+ in Table

5.1 and in related figures in this chapter represents ASSL with a full Request Filter

(the worst case scenario).

We first consider the security overhead for a single client request in experiment

1 to gain insight in the absolute time spent in the ASSL module. Experiment 2

evaluates the effect of this overhead on the server by stressing the server to determine

the maximum number of requests it can process at any one time.

Experimental environment. All experiments were conducted on a 2.80GHz

Intel Pentium 4 with 2GB RAM, running Apache 2.2.3 on Linux Fedora Core 5

(Kernel 2.6.17.11). SSL negotiations were performed with a 1024 bit RSA key and

the RSA-DES-SHA1 cipher suite was utilised. OpenSSL 0.9.8d toolkit was used by

76



both Apache’s SSL module and our module. Client workload was generated using

HTTPerf [104] and Autobench [105] was used to simulate a request flow from multiple

clients located on a number of machines. All requests were for a 44 byte index.html

file.

5.2.3.1 Experiment 1

Table 5.1 shows the average time the server takes to process various stages of the client

request before content for the response can be generated. Stages include the server

processing time consumed during negotiation, renegotiation and request decryption.

”Wait for client” indicates server idle time during the negotiation between client and

server. An * indicates that the values are the same as for SSL.

Protocol
Stage SSL ASSL ASSL+

Negotiation 115 * *
Renegotiation 2 61 423
Wait for client 71768 * *

Decryption 354 * *

Table 5.1: Average processing times, in microseconds.

The table shows that in the best case scenario ASSL introduces about 60 microsec-

onds overhead in the renegotiation phase compared to SSL. This increases to up to

close to half a millisecond (423 microseconds) when the Request Filter demands more

processing. To put this into perspective, the table shows that these amounts are easily

outweighed by the time SSL spends in waiting for the client for instance. The over-

head of ASSL in absolute numbers thus seems very minor. Note also that although

SSL’s use of distributed .htaccess configuration files for runtime security changes does

not show up in SSL renegotiation time, it does increase Apache’s request processing

time depending on the size of the .htaccess file. This overhead is avoided by ASSL.

5.2.3.2 Experiment 2

Experiment 2 evaluates the security overhead when the server is under load. We first

note that the maximum number of requests the server can process at any one time

depends greatly on client usage patterns. We therefore conduct two experiments, one
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Figure 5.6: Performance Graph showing 1000 requests per session

where the clients establish few new SSL sessions making many requests per session

and the other where the clients establish a new SSL session per request. In realistic

situations the client behavior will be a mixture of these two extremes. We evaluate

the overall effect of using ASSL in these extreme scenarios.

Scenario 1. In this experiment we evaluate ASSL’s performance for the case

where clients create minimal new SSL sessions when compared to the number of

requests. To that end, 1000 requests are made per session and SSL sessions are

reused. In this scenario the server spends proportionately more time checking for

renegotiations than negotiating new connections. We note that this is due to the fact

that for every SSL session there are many client requests, each of which requiring a

check against the Request Filter for a potential security renegotiation. This should

penalise ASSL’s performance.

Figure 5.6 shows that when using ASSL, Apache experiences peak load between

30% and 85% of the maximum number of requests that SSL can support, depending

on the Request Filter length and complexity. So, we indeed see that checking if
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Figure 5.7: Performance Graph for one request per SSL session

renegotiation is required can be costly and will reduce the amount of clients that can

be supported by a server. Note again that this client behavior represents an extreme

case.

Scenario 2. In this experiment we evaluate ASSL’s performance when clients

create the maximum number of new SSL sessions, namely one session per request. In

this scenario ASSL is only utilised once in each SSL session.

Figure 5.7 shows that even when using a full Request Filter the server incurs

negligible additional overhead when using ASSL under normal client workloads. The

performance does however break down when the server reaches peak load. We think

this is because we hit another bottleneck. We observed that the number of child

processes created by Apache rapidly increases for ASSL and ASSL+ under peak load.

This is likely due to requests waiting for a lock on the Request Filter which results

in Apache not releasing resources allocated to that request. Apache was configured

with a theoretical limit of 40000 child processes and so we believe that the drop in
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performance is likely due to the number of connections that can be supported by the

system itself. A bespoke locking and threading solution could remedy the observed

behavior but this is beyond the scope of our work.

Also note that increasing the requested file size, currently 44 bytes, will increase the

cost of encryption for SSL as well as ASSL and so the additional cost associated with

ASSL will be even smaller relative to the other server costs and so the performance

difference between SSL and ASSL will be less significant. In general terms, the added

functionality of being able to adapt the security level comes at a cost that only

becomes prohibitive when the requested file size is small and the Request Filter is

complex and executed often.

5.3 Summary

In this chapter we have shown how to effectively augment cryptographic security

measures between a client and web server with adaptive security features which can

respond to a variety of environmental influences at runtime in a timely and effective

manner. This was achieved through the application of our methodology and adher-

ence to the Adaptation Unit design in Section 4. Through the utilisation of adaptive

design and software engineering principles in Chapter 2 we created a solution which

can easily be adopted by both client and server. It enables extensive adaptation pos-

sibilities through the use of specialised 3rd parties and provides this in an efficient and

performant manner. Experiment 1 showed that the amount of overhead introduced

by ASSL is small (about 60 microseconds) but that the overhead is sensitive to the

contents of the Request Filter (moving up to the order of milliseconds). When stress-

ing the server (Experiment 2) much depends on the client behavior, which determines

what proportion of processing time is spent executing the Request Filter. In partic-

ular, if load experienced by the server is due to an increase in new SSL sessions, i.e

new clients arriving, an ASSL enabled server experiences little additional overhead.

If however server load is experienced due to an increase in the number of requests

per client, ASSL reduces the maximum server load buy 15% or more depending on

Request Filter size.
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Chapter 6

Security-performance trade-off

In Chapter 1 we considered the challenge of choosing the right level of security to

protect a system from potential attackers. The decision has to incorporate a wide

variety of factors from available processing and financial resources to more subjective

factors such as the level of trust in the particular algorithms, expected cryptanalytic

developments or the expected average future cost of computing resources to name but

a few. Many of these factors are often ignored by system administrators and even

when considered only allow them at best to make a “best effort” assessment based

on subjective information. Even once a decision has been made the external factors

on which it was based may also change. Examples include the value of the protected

data or the threat level at a particular moment in time. Therefore making only one

security decision can in itself leave the system at risk or break QoS guarantees.

One could envision an intelligent security system able to use additional resources,

as and when they are available, to address this problem. To this end we chose to con-

sider the web server environment as our problem domain, focusing on security guar-

antees provided through the Secure Socket Layer (SSL) protocol for client-server in-

teractions. We have studied and evaluated current implementations of cryptographic

algorithms used in SSL and have shown that the implementations themselves play

a significant part in the expected algorithm performance. Due to the lack of Adap-

tive Security literature in the area we designed and implemented our own Adaptive

SSL solution which adapts at runtime between these cryptographic algorithms. We

now build on this research by formulating and demonstrating an effective security-

performance trade-off.
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In this chapter we apply the next three steps of our methodology. Since we have

already chosen a crosscutting concern, i.e. system performance, we start by apply-

ing step three of the methodology in the System Analysis section (Section 6.1). In

this section we identify measurable factors which influence the security-performance

relationship. Through offline experimentation we study their impact under different

client load conditions in Section 6.2. This in effect creates a representation of the

security-performance interrelationship as detailed in the graphs in Section 6.3.5. The

offline data is the Service States data as described in our Design, Section 4.2.

In the final section, Section 6.3, the last step of the methodology is applied. Though

runtime measurement of the aforementioned cross-cutting concern and utilisation of

the precomputed Service States we endeavour to reach our trade-off goal.

6.1 System Analysis

To trade off security and performance we first study their interrelationship. To better

understand the performance impact of a security adaptation on the server we break

down the SSL security cost into its constituent elements and identify the relevant

server side SSL security mechanisms which contribute to the security cost. We sec-

ondly investigate how client behaviour affect the load each mechanism places on the

server and how this influences the overall server load when an adaptation is actuated.

6.1.1 SSL costs

The first mechanism to consider is SSL session negotiation. Through this negotiation

process each client establishes a secure SSL session with the server (as explained

in Section 5.1). Negotiation occurs once per session and sessions are re-used for a

number of future requests. The handshake protocol (Section 5.1.1.2) is expensive,

involving the creation of the necessary key data as well as a number of client-server

message exchanges.

The server also has to manage the security state of all current clients. This involves

storing and retrieving relevant client information from the security cache when a

request is made.
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Table 6.1: Average number of bytes processed per second (rounded to the nearest 100).

Cryptographic
Algorithm

Throughput (kB/s)

RC4 112000
AES 128 36000
AES 192 30600
AES 256 26500
DES 19300
3DES 6900

Lastly the server is responsible for cryptography as it needs to decrypt client

requests and encrypt the relevant responses.

Adapting the security, i.e. changing the security algorithm used, only has a server

performance impact for encryption and decryption. It therefore follows that if the

server is busy and it spends a large proportion of its processing resources on cryptog-

raphy, changing the security would have a significant performance benefit. If however

the server is busy but it spends more time managing the security and less time on

cryptography then adapting the security would have less of a performance impact.

6.1.2 Client load patterns

In aid of identifying the actual relation between server load and the resource require-

ments of the server security mechanisms discussed in Section 6.1.1, we investigate the

following aspects of client load patterns in the next section (Section 6.2):

Security Algorithm The performance cost incurred by the server through en-

cryption and decryption is significantly influenced by the particular software imple-

mentation as we have shown in [90]. For our experiments we have chosen to use

OpenSSL [86] version 0.9.8d. Table 6.1 shows the average measured throughput for

each algorithm. Slower algorithms should result in lower server throughput. Ta-

ble 6.1 shows that 3DES is the slowest algorithm and is about 16 times slower than

RC4 which is the fastest. Care should be taken as slower algorithms do not necessar-

ily provide more protection. This is highly implementation dependent. For instance

in this version of OpenSSL (0.9.8d) AES provides more protection and outperforms

DES whereas in OpenSSL version 0.9.7f it performs worse.
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Data size The size of the requested data has a direct impact on the cryptography

cost. The average file size is determined by the type of web site or e-commerce

application accessed as well as client behavior.

Session duration The length of time clients spend using the service has a signifi-

cant impact on the SSL management cost. Longer sessions results in more concurrent

users which means larger security cache which leads to an increase in client status

retrieval costs from the cache.

Each of the above client load patterns affect the proportion of resources allocated

to each security mechanism and so influence the performance impact of adapting the

security when the server is under load. We investigate the extent of such an impact

through experimentation in the next section.

6.2 Experiments

Through experimentation this section will determine the performance impact of a

security adaptation under the client load patterns identified in Section 6.1 and in so

doing bring to light the interrelationship between performance and security. As we

anticipated in Section 6.1.2 we will see that the level of cryptography, file size and

session length play key roles and we will discover the extent of their impact.

All experiments were conducted on a 100Mb/s ethernet test bed of 11 identical

Pentium III 866MHz machines with 512Mb RAM. Apache 2.2.3 and OpenSSL 0.9.8d

toolkit was used.

Parameters chosen for the experiments are loosely based on the findings in [106].

Each experiment is based on a scenario where clients arrive at the server with in-

creasing frequency, each client creating a new SSL session. Every client makes 64

consecutive requests at intervals of 4s average in a session. A client will wait no more

than 6s for a reply after which it continues immediately with the next request.

For ease of reading, all figures show the load in requests per second (req/s) on the

x-axis rather than in sessions/s. Response time (y-axis) represents the time between

the client sending a request and receiving the response (encrytion/decryption time

included).
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In this section we first present the load generator we implemented to handle the

adaptive nature of our experiments. Thereafter we consider to what extent client load

patterns affect the performance cost or gain when a security adaptation is initiated.

6.2.1 Load Generator

Load generators simulate multiple client requests to a server. Due to the lack of

SSL enabled load generating software that can handle an SSL adaptation, we built a

custom tool utilising and extending Jakarta Commons’ HttpClient 3.1 modules [107].
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Figure 6.1: Load generator tool

As can be seen in Figure 6.1 the tool establishes new client sessions with the

server at a certain rate (λ), following a Poisson process with some mean. Within

each session the client can make multiple requests (λn), the average request rate also

follows a Poisson process with some mean. The tool allows for both mean client

arrival and request rates to be changed during an experiment to better simulate real

client load. It also maintains a unique security state for each client session instead of

sharing session information amongst clients. Many SSL enabled load generators share
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this information for memory and performance reasons. Storing unique information

for each client allows the server to adapt the security for all or only some clients,

when the session is being established or during a session.

In addition to automated collection and graphing of results the tool provides a

combination of features which are not provided as a feature set in other freeware

software applications (features may be present in isolation in other load generating

tools). The set of essential supported features are as follows. Firstly the SSL protocol

is used to secure client sessions. Simulated clients are also divided amongst N physical

machines to reduce the chance that the client machine becomes the bottleneck. (i.e.

When results indicate that maximum server throughput is reached it is due to server-

rather than client machine overload) The tool also allows SSL secured sessions to be

renegotiated at runtime. Additionally, a unique SSL session state is used for each

client rather than sharing SSL state information on the server side amongst sessions

to reduce load on the server machine. This better simulates real client load on the

server. I.e. the server has to manage a separate state for each client and so the

load on the server more closely resembles a real world scenario. It also allows the

server to initiate a SSL renegotiation for a subset of clients. It furthermore provides

non-deterministic client arrival and request rates to better simulate real client load.

Lastly, simulated clients are created using a low overhead threading mechanism to

support high client arrival rates. This allows the clients to place the server under

heavy load without the client machines becoming the bottleneck.

6.2.2 Security Algorithm

In this experiment we show the performance impact of the OpenSSL cryptography

algorithms in Table 6.1. Requests are made for a 8192B file. Client arrival rate starts

at 10 new clients every 2.5s (240 req/s), each client behaving as described above, and

continues, decreasing delay between each batch of 10 client arrivals by 0.1s every time,

until the server is overloaded. All response times under 250ms exhibit 90% confidence

intervals of under 2ms and all response times over 250ms have 90% confidence intervals

under 10ms.

Figure 6.2 shows that under increasing load the server can serve approximately
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290 req/s using 3DES before it becomes overloaded. It can however serve 10%-30%

more requests per second if it uses another algorithm. The figure shows that the

server becomes overloaded in the order shown in Table 6.1, though for this particular

file size and level of client concurrency RC4 only outperforms 3DES by 30% rather

than the 16 fold increase shown in the Table 6.1. This is likely due to the fact that

the resources the server has to delegate to the other tasks are relatively large per

request compared to the resources allocated to cryptography and so the difference in

cryptography performance is not so pronounced.

Nevertheless, we see clearly that the choice of encryption algorithm matters as it

determines the maximum server throughout. Using a different level of security could

therefore increase the number of clients supported by 10%-30%.
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Figure 6.2: Cryptographic protocol overhead
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6.2.3 Data size

This experiment shows the performance impact when requesting three different file

sizes, 1024, 8192 and 12288 bytes. Client arrival rate starts at 10 new clients every

3.1s, decreasing delay between arrivals by 0.1s every time. All response times under

150ms exhibit 90% confidence intervals of under 2ms and all response times over

150ms have 90% confidence intervals under 5ms. The point at which the server

overloads is the last plotted point on the figure, after which the response time shoots

up.
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Figure 6.3: DES and 3DES performance under different file sizes

Figure 6.3 shows that when comparing DES and 3DES the difference in maximum

throughput that that server can achieve grows to almost 30% as the file size increases.

In other words, if clients request a small file size, such as 1024 bytes, the server

gains almost no additional throughput if the security is adapted from 3DES to DES.

This however increases to almost 30% as file size increases. For 12288 byte files the

maximum server throughput increases by almost 30% from 232 req/s to 296 req/s
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when security is adapted from 3DES to DES.

The figure also shows that considering requests per second only is not sufficient

in deciding whether to adapt as the average requested file size plays a key role in its

effect on the system load. For example; changing from DES to 3DES encryption at

242 req/s would overload the system if large files (12288B) are requested but would

be relatively safe for files of 8192 bytes or less.

Since there is little difference in performance for smaller files, higher security should

always be used in such cases. ASSL therefore has a more significant impact in sce-

narios where the client may be viewing or downloading larger files from a service.

Examples could include online photo albums, music downloads, email attachments,

etc.

6.2.4 Session duration

This experiment shows the performance impact of adapting security as client session

time varies. 64 requests per session are made by all clients. Clients with short session

lengths finish their 64 requests in 6.4 seconds (10 req/s) and clients with longer session

lengths finish theirs in 256 seconds (0.25 req/s). Client arrival rate starts at 10 new

clients every 3.1s and 8192B files are requested. All response times under 200ms

exhibit 90% confidence intervals of under 2ms and all response times over 200ms have

90% confidence intervals under 5ms.

Figure 6.4 shows that adapting security from 3DES to DES for shorter sessions

achieves a 35% throughput increase compared to 7% for longer sessions of 256s.

Longer session durations mean more concurrent clients at the server which in turn

results in more SSL management overhead. We therefore observe a smaller server

performance impact due to cryptography adaptation.

In practice client behavior exhibits a mixture of session durations with the average

duration dependant on the type of service hosted on the server.

ASSL shows promise in scenarios where server load is a result of frequent client-

server interactions rather than SSL management costs due to long client sessions.

Highly interactive web sites where clients are likely to finish quickly will therefore ex-

hibit a large performance gain when adapting security using ASSL. Highly interactive
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Figure 6.4: DES and 3DES performance with varying session duration

web pages are also becoming more prevalent on the web since the advent of Web 2.0.

It should also be noted that single server pages are often made up of various

pieces of information such as images, style sheets, and scripts. Each client request

therefore resulting in several additional automated requests per page. Sites where

frequent client-server interactions are generated in this automated way will therefore

also exhibit a larger performance gain.

6.3 Security-performance trade-off

Through a use-case scenario, based on the results obtained in Section 6.2, this section

will trade off security and performance to achieve our trade-off goal. Namely, to show

how Adaptive SSL can successfully maximise security by utilising available processing

resources whilst still respecting client QoS requirements.

To achieve this we implement our Adaptive Security Service design as detailed in

Section 4.2.
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The first component to consider is the Monitor Unit which collects data relating

to the current system resources. Results are passed to the Trade-off Engine where

adaptation policies determine the performance cost/benefit of a security adaptation

based on the collected Service States information. Security is adapted through the

Adaptation Unit.

The ASSL module represents the Adaptation Unit allowing effective security adap-

tation at runtime. ASSL does not stipulate its intended use and so we are able to

extend the solution with our own specialised 3rd party software and complete the

feedback loop.

In this chapter we first present the scenario to which our adaptive system will

react. We demonstrate how a non-adaptive system responds in this scenario. We

then consider two adaptation policies based on our results from Section 6.2 for the

Trade-off Engine. The chosen policy is implemented as part of our specialised 3rd

party software and employed in the scenario to demonstrate its practical utility. The

Monitor Unit is also part of our 3rd party implementation though much responsibility

is delegated to specialised system level monitoring software.

6.3.1 Use-case scenario

The use-case will depict a scenario where a server experiences a sudden influx of client

arrivals. The server has three available cryptography algorithms. In increasing order

of security and performance cost they are RC4, DES and 3DES. For this scenario RC4

is considered adequate to protect the available data, though as discussed in Chapter

1 a security threat inevitably remains. Clients also expect a certain level of Quality

of Service in that they will not wait indefinitely for a server response.

We will first show how the client arrival influx affects the server when using each

security level. We then demonstrate how ASSL can improve on the required security

level (i.e. RC4) whilst respecting client QoS requirements.

6.3.2 Experiment setup

For this use-case the client behavior is as follows. Each client has an average session

duration of 256 seconds consisting of 64 requests at 4 second intervals. Each request
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is for a 12288B file.

For the first 500s 10 clients arrive every 3s (combined average request rate, as

perceived by the server, is 200 req/s). The next 250s client arrivals increase to 10

clients every 2.5s (245 req/s) and then decreases back to 200 req/s for the last 500s.

Each of the throughput values on the figure is a throughput average over a 10s interval.

The Poisson client arrival and request processes are based on a fixed set of random

number generated seed values, and so the figures show a particular experiment trace.

The particular trace however has little impact on the average throughput every 10s

due to the large number of requests in each 10s interval. Experiments were also

done multiple times with different seeds to calculate the average number of timed out

requests, i.e. those requests that broke the client QoS requirements. Other details on

the experimental setup can be found in Section 6.2.

We will show that both RC4 and DES can cope under the client load influx whereas

the more secure 3DES can not. We will also show that ASSL can support the client

load and additionally use available server resources to increase the security.

6.3.3 Basic security (RC4)

Figure 6.5 shows the server throughput under client behavior described above when

using RC4 encryption. The figure depicts a server that can cope under client load.

Additional results affirm this as no client requests timed out (i.e. all replies were

received within 6s. See Section 6.2). Repeating the experiment a number of times

with different seed values also produced no timeouts.

In Figure 6.5 clients start to arrive in batches of 10 every 3s for the first 500s. After

256s clients also start to leave the system (they have completed their 64 requests)

and the server throughput stabilises at 200 req/s. The second (245 req/s for 250s)

and third (200 req/s for 500s) phase of the experiment show the client arrival influx

and also behave as expected.

The server throughput figure for DES is similar to Figure 6.5 albeit at a higher

CPU load. We can see in Figure 6.3 that DES can also sustain a request rate of 245

req/s whilst respecting the 6s client QoS constraint. No client timeouts were recorded

for DES.

92



 0

 50

 100

 150

 200

 250

 300

 0  200  400  600  800  1000  1200  1400  1600

T
hr

ou
gh

pu
t (

re
q/

s)

Time (s)

Figure 6.5: Server throughput using RC4

6.3.4 High security (3DES)

Figure 6.6 shows the server throughput when using 3DES under the same client

behavior as above. The bar graph additionally shows the percentage of requests

which timeout in each interval. It depicts a scenario where the server does not cope

under client load. We can also see this in Figure 6.3 where the server overloads

before 245 req/s when using 3DES. From Figure 6.6 we can see that requests start

to timeout 500s into the experiment when the client load increases beyond the level

at which the server can cope. Because clients only submit the next request after

receiving a response for the previous one, clients make fewer requests per second as

they have to wait longer for a reply and so server throughput drops. Due to the slower

request rate the sessions also become longer and so as more and more clients arrive

at this higher rate the number of concurrent sessions also increase. More concurrent

sessions results in an increase in the total request rate, although nearly all of the

requests time out. Even when no more new clients arrive after 1250s, and current
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Figure 6.6: Server throughput using 3DES

clients finish their sessions, most of the requests still time out. This is likely due to

the fact that the server is still buffering and waiting to serve old client requests, as

it has no way of knowing that the client has timed out, and so the new requests still

have to wait until the buffers have cleared by which time they might also have timed

out.

For 3DES in total 144642 client requests timed out. Repeating the experiment 6

times with different seed values showed an average timeout of 148737 with a deviation

of 1444 at 90% confidence interval.

This experiment showed how performance degrades in a standard non-adaptive

server when an influx of client arrivals overload the server.

6.3.5 Adaptive security

This section will show how Adaptive SSL can be utilised in this scenario to trade

off security and performance by using the available processing resources to increase

security whilst still respecting client QoS requirements. We implement our own spe-
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cialised 3rd party application to monitor system load and make adaptation decisions.

It adapts the security by interacting with our Adaptive SSL solution as discussed in

Chapter 5.

Based on the client load patterns studied we develop two policies to trade off secu-

rity and performance. One through direct and the other through indirect monitoring

of the server throughput. The most promising policy candidate is implemented as

part of our 3rd party application and shown through experimentation to be an effective

and robust solution.

6.3.5.1 Throughput policy

This policy depends on direct monitoring of the server throughput. In particular

we consider monitoring throughput with a view to adapt the security based on the

current average requested file size. We extend the experiments in Section 6.2.3 with

results for file sizes 16384 and 20480 bytes and plot only the maximum achievable

server throughput in Figure 6.7.
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The figure shows that the difference in peak server throughput between DES and

3DES remains constant for files sizes greater than 12288 bytes. This is an unex-

pected result for which we cannot account but which consistently shows up in our

experiments. One would expect the difference in peak performance to continue to

diverge.

From the figure we derive two approximate functions for DES and 3DES using

the last two points plotted. We note that this is only an approximation and can be

derived in any number of different ways.

fdes(x) = − 13x
2048

+ 384

f3des(x) = − 13x
2048

+ 299

The policy utilises the functions to adapt security at runtime as follows. Let T be

the current server throughput, x the average requested file size and enc the current

security algorithm. enc+1 and enc-1 denotes an increase and decrease in security

respectively.

If T ≥ fenc(x) then

fenc−1(x)

Else if T < fenc+1(x) then

fenc+1(x)

The policy reads as follows. If the current server throughput T reaches the peak

throughput the server can maintain under security level enc and average file size x

then decrease the security. If however the current server throughput T is low enough to

increase the security then do so. It would also be prudent to adapt the security before

the maximum throughput is reached. Examples could include defining a throughput

range before the maximum throughput in which the security can be adapted or a

more advanced technique by which the expected throughput for the next throughput

measurement is predicted based on the current throughput rate of change. This is

however beyond the scope of this thesis.
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It should be noted that although file size is considered here the average session

length also plays a key role. Similar graphs and policies can be formulated to consider

variations in session length.

One major concern of measuring server throughput directly is the monitoring cost.

Monitoring itself could overload the system or negate performance benefits achieved

through adaptation [17]. We consider an alternative in the next section.

6.3.5.2 CPU load policy

This policy depends on indirect monitoring of the server throughput by recognising

that increased throughput implies increased server CPU load. The operating system

already monitors CPU load as a background process. This information can be utilised

cheaply by our adaptive policy rather than implementing a bespoke application level

throughput monitoring system which may adversely affect the maximum throughput

results obtained thus far.

In order to utilise the available resources one needs to know how much of it is free

as well as how much will be required or freed when the security is adapted.

Figure 6.8 shows the server performance implications for the three levels of en-

cryption when clients have an average session duration of 256s and request files of

12288 bytes each. The figure shows the average CPU load at different client arrival

rates, starting with 10 clients every 3.1s (i.e. total number of requests as perceived

by the server is 195 req/s) and reducing the delay between arrivals by 0.1s each time

until the server is overloaded. CPU % is the average CPU load measured using iostat

[108]. 100% implies that the CPU is fully utilised and potentially have further idle

tasks waiting to use the CPU.

The figure shows that using 3DES the server overloads just after 230 req/s with

DES and RC4 just after 296 req/s (not shown). This affirms the results in Figure

6.3 and provides further insight. The figure also shows that a server with load over

70% and using DES should not consider adapting to 3DES because a server under

the same client throughput and using 3DES would be overloaded. This is also true

of moving from RC4 to DES over 50% and from RC4 to 3DES over 40%. Decreasing

the security is also prudent when the CPU utilisation reaches 100%.
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Figure 6.8: CPU utilisation under different client loads
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Using the insights gained above we provide an adaptation policy in Table 6.2

that will more effectively utilise the available resources to improve security without

overloading the server and so break client QoS requirements.

Table 6.2: Adaptive SSL policy reference.

New protocol
Current protocol 3DES DES RC4

3DES X 100 100
DES 70 X 100
RC4 40 50 X

Pseudo code for the adaptation algorithm is provided below. It compares the

current CPU level with the values in Table 6.2 and determines whether the current

level of security should be changed. The code first determines the current security

protocol in the first column of the table and moves to position X in that row. It

then considers increasing the security by comparing the current CPU load with all

the values to the left in that row. If the current CPU level is less than the particular

value security can be increased to the algorithm that column represents. For example,

if the current security is DES we move to the X in row 2 column 2. The current CPU

load is compared to the value in the 3DES column to the left. If CPU load is low

enough for an increase in security, i.e. CPU < 70%, then 3DES is selected. The same

is done for values to the right (using the >= operator) to determine if security should

rather be decreased.

#comment

load = getCpuLoad

PolicyTable(row, column)

curSec #current Security level

newSec #new Security level

#Move to X

Move to PolicyTable(curSec,curSec)

#Check if security should be increased

#Check all values to the left

IF load < PolicyTable(curSec, curSec - n)

RECORD newSec
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#Check if security should be decreased

#Check all values to the right

IF load >= PolicyTable(CurSec, CurSec + n)

RECORD newSec

IF newSec THEN adapt

Monitoring costs are a known performance concern for many systems [17]. We we

seek to avoid this by utilising a policy based on CPU load in the next section.

6.3.5.3 Adaptive Experiment

For this experiment the CPU was monitored during the use-case scenario using iostat

[108]. Every 10s our CPU monitoring program computes the average CPU load

recorded over the previous 10s by iostat and adapts the ASSL security based on the

CPU policy in Section 6.3.5.2.

Table 6.3: Adaptive SSL security adaptations.

New security At time (s)
3DES 0
DES 450
RC4 460
DES 720
3DES 780

Table 6.3 shows when security was adapted in Figure 6.9. The values show that

through utilising ASSL the CPU monitor was able to effectively maximise security

for most of the experiment duration. All new clients arriving before 460s and all new

clients arriving after 720s received better than the recommended security level.

It also did this whilst maintaining the client QoS requirements. Figure 6.9 depicts

a scenario where the server can cope under the client load. In total, only 8 client

requests timed out. From the figure we can see that the CPU load was effectively

reduced during the client influx at around 500s by decreasing the security level to

DES and then to RC4 (see Table 6.3) and so preventing the server from overloading

and respecting the client QoS requirements. Once the server load decreased to a safe

level below 50% (see Table 6.2) the security was increased to DES and then to 3DES

100



in the same manner. The figure thus shows the server CPU load increasing again

after approximately 750s.
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Figure 6.9: Server throughput under ASSL security

We observe that the security was reduced twice in a short period of time (once at

450s and again at 460s) and also increased rapidly in a short interval (once at 720s

and again at 780s). This is due to the fact that the first security change has perhaps

not had time to make a significant enough impact on the server load before the next

chance for adaptation occurs. Of course if the time between adaptations is increased

and the increase in arrival rate is large enough for the first adaptation to make little

impact then the server would become overloaded. Choices on how frequently an

average should be taken and how many seconds an average should account for is a

needs based decision and dependant on the environment the server is deployed in.

Drawing from the details in this section it should be noted that our adaptation

policy is very robust to client behavior. Firstly, security is reduced as soon as the

server reaches its maximum load. This is due to the short CPU sample times (10s)
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as well as the fact that our policy does not wait to determine if the load might

decrease or stabilise but reduces the security immediately. Secondly, security is only

increased if the server could cope with the same load at a higher security level. When

security is adapted only new clients start with the higher level of security and so it

takes some time before the server is serving all clients at this new level. Our policy is

therefore very cautious with respect to increasing security and potentially overloading

the system or breaking client QoS.

6.4 Conclusion

In this chapter we showed the benefits of applying our methodology. We analysed

the server performance cost resulting from an SSL security adaption under different

client loads and behaviours and showed how this information can be successfully

exploited to predict the future system state when deciding whether to adapt the

security. We demonstated that this information can successfully be used to create

intelligent adaptation policies.

We have shown that the average requested file size and the SSL session duration

has a significant influence on the performance impact of a security adaptation and so

should be considered in addition to the server processing load or client throughput.

Adapting security has a greater server performance impact when requested files are

large and when clients make multiple short requests. Consequently the server may

choose to provide better security for smaller files and clients with longer sessions or

less security if files become prohibitively large and sessions are short.

We showed how server throughput and client QoS can degrade during an influx of

client arrivals if the default security level is high in a standard non-adaptive server.

We demonstrated that ASSL can effectively allow our 3rd party software to adapt

SSL security at runtime in a real system. We also formulated a robust adaptation

policy and showed that it can provide better security by utilising available resources.
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Chapter 7

Conclusion

In this thesis we recognise that achieving complete “separation of concerns” between

SSL security and performance is merely a fool’s hope. To resolve this contention we

deferred the trade off from design time to runtime, thus allowing an informed trade

off policy specification based on up to date contextual information only available at

runtime. To that end we specified our goal as follows: To “Demonstrate the practical

utility of Adaptive Security in trading off security and QoS at runtime.”

We first provide an overview of the thesis, reflecting on the principles and key

lessons learnt in Section 7.1. We conclude the chapter and the thesis with insights

into potential future research directions.

7.1 Principles & Key lessons

The underlying principal focus and driving force in this thesis is the desire to move

security decisions from a design or deployment time decision to that of a runtime

decision. Many systems, architectures and frameworks currently exist to support

such runtime decisions but the challenge we address in this thesis lies in moving

such a decision from a static design/deployment time decision to a dynamic runtime

decision. This concept is at the heart of our methodology which takes legacy security

systems and provides steps to realise an adaptive security system.

When implementing the methodology a number of key lessons have been learnt

which provide further insight to our core contributions:

Firstly, we have found that an effective methodology must fully realise the auto-
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nomic feedback loop mechanism. In so doing the methodology fully considers the

significant facets of an adaptive system and as an end result produces an adaptive

security system where the adaptation is not an emergent property of the system but

explicitly represented in the system structure. The methodology does not encourage

changing the existing system but instead advocates building on top of and around

the existing system such that the legacy system becomes in effect only one phase of

the adaptive feedback loop.

Secondly, the significant value of offline data in making complex runtime decisions.

Such data is not only practical in that these potentially resource intensive processes

are used to compute data offline but also allows for more complex runtime decision

making. It allows for the offline study of the interrelationship between security and the

crosscutting concern so that complex considerations regarding the future state of the

system can then be made at runtime before a security decision is taken. This offline

data lies at the core of our intelligent adaptive policy contributions which not only

take into account the effect previous security adaptations have on the crosscutting

concern but also predicts the future impact of security adaptations.

There are also a number of design and implementation challenges in following

the methodology. A noteworthy part of this contribution is the performant nature

of Adaptive SSL and the extended infrastructure. Having chosen performance as

the crosscutting concern places additional requirements on the system in supporting

adaptation without adversely affecting the crosscutting concern. The adaptation

decision itself is however only part of the performance cost. Due to the feedback

loop nature of the design and the emphasis placed on building on top of and around

the existing legacy system one quickly accumulates additional components which all

need to share in the processing resources. We note that the monitoring component

often plays a significant role in these costs. An additional implementation challenge

which must be met in following the methodology was to gain control of the security

decision making process in the legacy system. Accomplishing this and providing a

performant implementation of the design led to the achievement of our goal, namely

“Demonstrating the practical utility of Adaptive Security in trading off security and

QoS at runtime”
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7.2 Future direction

In light of the diverse scope and novel nature of our research area there are a plethora

of potential research directions to explore. We highlight the key areas we find of

particular interest.

Firstly we consider experimental extensions of our research contribution. One

such area already mentioned relates to when the adaptation occurs. In this thesis

we adapted security when the server reached overload for a particular encryption

algorithm, file size and session duration combination. It may however be prudent to

adapt the security before an overload level is reached. One could consider defining a

range of values within which to adapt the security before overload occurs such that

if currentLoad ≥ overload - n security must be adapted. Finding a suitable value

for n would be the objective in this case. One may also consider predicting the next

server load measurement based on the current request rate increase or decrease and so

adapt the security preemptively. i.e. if expected load l ≥ r × t (where r is the change

in client request rate and t the time at which the new measurement will be taken)

then the security must be adapted. Logging server load over a number of weeks to

establish expected client behaviour may also prove useful in preemptively adapting

security. Further analysis of the adaptation process itself could also prove insightful.

Various adaptation heuristics could be explored in understanding the performance

effect of a security adaptation; adapting security for only a percentage of the clients

may be appropriate. One can also consider a scenario where clients with different

security levels are using the system and adapting the security for only certain groups

of clients may achieve the desired performance goal. The total server processing cost

for adaptation can also vary depending on the definition of adaptation. Adaptation

may imply changing server security for all new clients, changing security for all clients

at any particular moment in time or re-authenticating clients. Each method varying

in processing and bandwidth overhead.

Secondly an alternate approach to the design and development of Adaptive SSL can

also be considered. A design which additionally utilises client side code presents an

opportunity to use multiple SSL sessions per client. Such concurrent sessions can rep-
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resent different security levels and adapting security implies sending data over a more

or less secure session. We therefore avoid the need for session renegotiation. Data

units (e.g. a single web page) can also be fragmented into sections, sent over multiple

SSL sessions and reconstructed on the client/server side. This has the additional cost

of maintaining multiple concurrent SSL sessions per client and reconstruction of data

units but allows for immediate added protection for particular sections that require it

as well as adding minimal performance overhead during adaptation. A policy design

that does not depend on pre-computed offline measurements may also prove useful.

To that end one could adapt Queueing theory models for multiple job types to model

and predict adaptation benefits.

Finally we consider research endeavours in the general area of Adaptive Security.

To effectively evaluate security in an automated fashion it must be quantified. “Can

we Quantitatively Assess Security?” [109] provides an overview of such research

ranging from evaluating cryptographic key sizes [15], as is used in this thesis, to using

Markovian theory [110]. An interesting extension of our work would be to quantify

security in such a way that it can be directly traded off with performance using some

utility function. Current literature suggests that inspiration for such a trade off might

be found in the area of control engineering [17].

An Adaptive Security system that can take all security concerns into account,

evaluate system Quality of Service and trade them off without human interaction

still requires a considerable amount of active research. One fact however is slowly

being accepted by the research community, and to this our research attests, security

is not... absolute.
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Appendix A

SSLRequire Directive [1]

The SSLRequire directive is an arbitrarily complex boolean expression specifying, in the case of

ASSL, a condition for security re-/negotiation. The expression matches the following Backus-Naur

Form syntax:

expr ::= "true" | "false"

| "” expr!

| expr "&&" expr

| expr "||" expr

| "(" expr ")"

| comp

comp ::= word "==" word | word "eq" word

| word "!=" word | word "ne" word

| word "<" word | word "lt" word

| word "<=" word | word "le" word

| word ">" word | word "gt" word

| word ">=" word | word "ge" word

| word "in" "{" wordlist "}"

| word "=~" regex

| word "!~" regex

wordlist ::= word

| wordlist "," word

word ::= digit

| cstring

| variable

| function

digit ::= [0-9]+ cstring ::= "..."
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variable ::= "%{" varname "}"

function ::= funcname "(" funcargs ")"

... where funcname is the function file(filename) which takes a string argument and expands the

contents of the file. varname represents any of the SSL variables in Table A.1 or CGI and Apache

variables below.

Standard CGI/1.0 and Apache variables:

HTTP_USER_AGENT PATH_INFO AUTH_TYPE

HTTP_REFERER QUERY_STRING SERVER_SOFTWARE

HTTP_COOKIE REMOTE_HOST API_VERSION

HTTP_FORWARDED REMOTE_IDENT TIME_YEAR

HTTP_HOST IS_SUBREQ TIME_MON

HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY

HTTP_ACCEPT SERVER_ADMIN TIME_HOUR

HTTP:headername SERVER_NAME TIME_MIN

THE_REQUEST SERVER_PORT TIME_SEC

REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY

REQUEST_SCHEME REMOTE_ADDR TIME

REQUEST_URI REMOTE_USER ENV:variablename

REQUEST_FILENAME
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Table A.1: SSL variables [111]

Variable Name Value Type Description
HTTPS flag HTTPS is being used
SSL PROTOCOL string The SSL protocol version

(SSLv2, SSLv3, TLSv1)
SSL SESSION ID string The hex-encoded SSL session id
SSL CIPHER string The cipher specification name
SSL CIPHER EXPORT string true if cipher is an export cipher
SSL CIPHER USEKEYSIZE number Number of cipher bits (actually

used)
SSL CIPHER ALGKEYSIZE number Number of cipher bits (possible)
SSL VERSION INTERFACE string The mod ssl program version
SSL VERSION LIBRARY string The OpenSSL program version
SSL CLIENT M VERSION string The version of the client certifi-

cate
SSL CLIENT M SERIAL string The serial of the client certificate
SSL CLIENT S DN string Subject DN in client’s certificate
SSL CLIENT S DN x509 string Component of client’s Subject

DN
SSL CLIENT I DN string Issuer DN of client’s certificate
SSL CLIENT I DN x509 string Component of client’s Issuer DN
SSL CLIENT V START string Validity of client’s certificate

(start time)
SSL CLIENT V END string Validity of client’s certificate

(end time)
SSL CLIENT A SIG string Algorithm used for the signature

of client’s certificate
SSL CLIENT A KEY string Algorithm used for the public

key of client’s certificate
SSL CLIENT CERT string PEM-encoded client certificate
SSL CLIENT CERT CHAIN string PEM-encoded certificates in

client certificate chain
SSL CLIENT VERIFY string NONE, SUCCESS, GENEROUS

or FAILED:reason
SSL SERVER M VERSION string The version of the server certifi-

cate
SSL SERVER M SERIAL string The serial of the server certificate
SSL SERVER S DN string Subject DN in server’s certificate
SSL SERVER S DN x509 string Component of server’s Subject

DN
SSL SERVER I DN string Issuer DN of server’s certificate
SSL SERVER I DN x509 string Component of server’s Issuer DN
SSL SERVER V START string Validity of server’s certificate

(start time)
SSL SERVER V END string Validity of server’s certificate

(end time)
SSL SERVER A SIG string Algorithm used for the signature

of server’s certificate
SSL SERVER A KEY string Algorithm used for the public

key of server’s certificate
SSL SERVER CERT string PEM-encoded server certificate
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Appendix B

SSLCipherSuite Directive [2]

SSLCipherSuite directive is a colon separated list, in preferential order, of all algorithm combinations

(or ciphers) to be considered for an SSL or ASSL security re-/negotiation. The ciphers may be listed

separately as in Table B.2 and B.3 or specified using aliases listed in Table B.1. A combination of

elements in the two tables may also be used and can be manipulated with the following prefixes:

• No prefix: add cipher to list

• + add ciphers to list and pull them to current location in list

• - remove cipher from list (can be added later again)

• ! kill cipher from list completely (can not be added later again)

For example; The SSLCipherSuite “ALL:!ADH:RC4+SHA:+MEDIUM:+SSLv2” indicates that

all ciphers in Table B.3 should be included with the exception of those containing anonymous key

exchange algorithms. Ciphers that use RC4 and SHA should be listed next followed by all ciphers

that use 128 bit encryption (i.e. MEDIUM) and then all SSLv2 ciphers.
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Table B.1: SSL alias list [2]

Alias Description
ALL all SSL ciphers
SSLv2 all SSL version 2.0 ciphers
SSLv3 all SSL version 3.0 ciphers
TLSv1 all TLS version 1.0 ciphers
EXP all export ciphers
EXPORT40 all 40-bit export ciphers only
EXPORT56 all 56-bit export ciphers only
LOW all low strength ciphers (no export, single DES)
MEDIUM all ciphers with 128 bit encryption
HIGH all ciphers using Triple-DES
RSA all ciphers using RSA key exchange
DH all ciphers using Diffie-Hellman key exchange
EDH all ciphers using Ephemeral Diffie-Hellman key exchange
ADH all ciphers using Anonymous Diffie-Hellman key exchange
DSS all ciphers using DSS authentication
NULL all ciphers using no encryption

Table B.2: SSL algorithm list [2]

Tag Description
kRSA RSA key exchange
kDHr Diffie-Hellman key exchange with RSA key
kDHd Diffie-Hellman key exchange with DSA key
kEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no

cert)
aNULL No authentication
aRSA RSA authentication
aDSS DSS authentication
aDH Diffie-Hellman authentication
eNULL No encryption
DES DES encryption
3DES Triple-DES encryption
RC4 RC4 encryption
RC2 RC2 encryption
IDEA IDEA encryption
MD5 MD5 hash function
SHA1 SHA1 hash function
SHA SHA hash function
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Table B.3: Example of SSL Algorithm list [2]

Cipher-Tag Protocol Key Ex-
change

Authentication Encryption MAC

DES-CBC3-SHA SSLv3 RSA RSA 3DES(168) SHA1
DES-CBC3-MD5 SSLv2 RSA RSA 3DES(168) MD5
IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1
RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
IDEA-CBC-MD5 SSLv2 RSA RSA IDEA(128) MD5
RC2-CBC-MD5 SSLv2 RSA RSA RC2(128) MD5
RC4-MD5 SSLv2 RSA RSA RC4(128) MD5
DES-CBC-SHA SSLv3 RSA RSA DES(56) SHA1
RC4-64-MD5 SSLv2 RSA RSA RC4(64) MD5
DES-CBC-MD5 SSLv2 RSA RSA DES(56) MD5
EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1
EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5
EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5
EXP-RC2-CBC-MD5 SSLv2 RSA(512) RSA RC2(40) MD5
EXP-RC4-MD5 SSLv2 RSA(512) RSA RC4(40) MD5
NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5
ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1
ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1
ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5
EDH-RSA-DES-CBC3-
SHA

SSLv3 DH RSA 3DES(168) SHA1

EDH-DSS-DES-CBC3-
SHA

SSLv3 DH DSS 3DES(168) SHA1

EDH-RSA-DES-CBC-
SHA

SSLv3 DH RSA DES(56) SHA1

EDH-DSS-DES-CBC-
SHA

SSLv3 DH DSS DES(56) SHA1

EXP-EDH-RSA-DES-
CBC-SHA

SSLv3 DH(512) RSA DES(40) SHA1

EXP-EDH-DSS-DES-
CBC-SHA

SSLv3 DH(512) DSS DES(40) SHA1

EXP-ADH-DES-CBC-
SHA

SSLv3 DH(512) None DES(40) SHA1

EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5
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