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Abstract

Dynamic treatment regimes are functions of treatment and covariate history which are

used to advise on decisions to be taken. Murphy (2003) and Robins (2004) have proposed

models and developed semi-parametric methods for making inferences about the optimal

dynamic treatment regime in a multi-interval study that provide clear advantages over

traditional parametric approaches.

The main part of the thesis investigates the estimation of optimal dynamic treatment

regimes based on two semi-parametric approaches: G-estimation by James Robins and

Iterative Minimization by Susan Murphy. Moodie et al. (2006) show that Murphy’s model

is a special case of Robins’ and that the methods are closely related but not equivalent.

In this thesis we first describe and demonstrate the current theory, then present an alter-

native method. This method proposes a modelling and estimation strategy which incorpo-

rates the regret functions of Murphy (2003) into a regression model for observed responses.

Estimation is fast and diagnostics are available, meaning a variety of candidate models

can be compared. The method is illustrated using two simulation scenarios taken from

the literature and using a two-armed bandit problem. An application on determination of

optimal anticoagulation treatment regimes is presented in detail.
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Chapter 1

Introduction

1.1 Overview of Dynamic Treatment Regimes

The subject of dynamic treatment regime estimation has attracted the attention of many

researchers. It is a method for optimizing a regime which is changing over time. It plays

an important role in making decisions in different fields. For example a physician needs

to adjust dynamically a treatment strategy for his or her patients at each time point and

has to prescribe an appropriate treatment strategy based on the diagnosis carried out for

the patients and the treatment information. The decision taken might be to continue to

treat a patient with the current treatment or to increase/ decrease it. A dynamic treatment

regime is a sequence of decision rules. It introduces an ethical and flexible set of formal rules

studying the effects of treatment which are adjusted over time according to the response

to treatment.

Murphy (2003) defined a dynamic treatment regime as a list of decision rules, one per time

interval, for how the level of treatment will be tailored through time to an individual’s

changing status. It is also defined as a function that takes treatment, covariate history and

baseline covariates as inputs and returns a decision to be taken (Moodie et al. 2005).
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The treatment regime strategies play a critical role in the method or course of remedial

treatment of several diseases such as AIDS or cancers. For such diseases, physicians face the

difficult problem of deciding when and which drugs to administer to a patient. Furthermore,

for such diseases, the strength and interaction of the treatment with the immune system are

so complex that the design of the optimal treatment strategy may require some complicated

analysis.

1.2 Notation

At the start, we need some notation. Our development extends to the general case.

• K denotes the number of intervals;

• j is a specific interval so that j = 1, 2, 3, ..., K.

• Mj represents a status variable available at the start of the jth interval, in particular,

M1 represents baseline covariates and M2 includes time-varying covariates which

may depend on treatment received in the earlier intervals. Mj may be scalar or

multivariate.

• Tj, is the treatment at interval j given subsequent to observing Mj.

• Y is the outcome observed at the end of the Kth interval, and large values of Y are

preferred. So, the occurrence is (M1, T1,M2, T2, · · · ,MK , TK , Y ).

• M̄j denotes a status variable at time j and its history, e.g. M̄j = (M1,M2, ....,Mj).

Also T̄j = (T1, T2, ...., Tj).

• Specific values are denoted with the lower case, e.g. m1, t1,m2, · · · , tK ,mK . Also

t̄j = (t1, t2, ...., tj).
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• dj a rule or regime and doptj+1 is interpreted to mean that optimal rules are followed

from time j + 1 onward.

1.3 Blood Clot

Blood clotting is the body’s natural protection against extreme bleeding. Anticoagulation

is used for patients with either a history or a risk of thrombosis (abnormal formation of

blood clots) in many disorders. The general aim is to prevent thrombotic complications

while keeping the hemorrhage risk low (Landefeld et al. 1993).

1.3.1 Anticoagulation dosage

Warfarin is an anticoagulant. It is classified to be efficient and reasonably safe for prevent-

ing thrombosis. It is the most commonly prescribed anticoagulant drug. It interacts with

many widely-used drugs, and the response of warfarin varies seriously between patients.

Some foods have been reported to interact with warfarin. Its activity has to be monitored

by regular blood testing for the international normalized ratio (INR) to make sure an ad-

equate yet safe dose is taken (Holbrook et al. 2005) . When initiating warfarin therapy,

the specialist will decide how strong the anticoagulant treatment needs to be. The target

INR level will vary from person to person depending on the clinical indicators, but tends

to be 2-3 in most conditions. Target INR may be 2.5-3.5 (or even 3.0-4.5) in patients with

one or more mechanical heart valves (Baglin 2006). The common side effect of warfarin is

bleeding. The risk of severe bleeding is small but clearly visible (the average annual rate

is 0.9 to 2.7 %), and clearly benefit should outweigh the risk when warfarin is considered

as a therapeutic measure. Risk of bleeding is augmented if the INR is out of range due to

accidental or deliberate overdose or due to interactions (Horton 1999).
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1.3.2 Warfarin data

Rosthøj et al (2006) used data from 350 patients given Warfarin anticoagulation from one

hospital between February 1995 and August 2000. Treatment periods varied from 16 days

to almost five years and involved from two to 124 clinic visits. Covariates available include

age, sex, and diagnosis. For this first analysis we decided to concentrate on a subset of the

data, made up of the first 14 clinic visits for the 303 Warfarin-treated patients with at least

that number of visits. The first four visits are considered as induction and the analysis

concentrates on the remaining 10. In the analysis given in this thesis we do not consider

the effect of covariates or time intervals between visits. As will be seen, the consequent

marginal approach brings a range of practical difficulties to be overcome before we can

consider conditional analyses. We have to decide what to define as state Mj at visit j .

After consultation we selected Mj = 0 if INR in range, or Mj = Dj/R, where Dj is the

difference (positive or negative) between INR at time j and the nearest boundary of the

target range, and R is the width of that target range. Half of the visits had INR in range,

Mj = 0. If not, the distribution was positively skew with range -1.53 to 5.00, lower and

upper quartiles -0.19 and 0.80, and median 0.25.

For the actions, we decided to define Tj to be the change in prescribed dose at visit j,

since usually a decision consists of two stages: first, whether or not to change dose; second,

if changing, to what value. Actually there is also a third stage, a recommendation as to

the time interval until the next clinic visit, but this will not be considered. The dose level

(and change in dose) is a discrete variable, determined by the 0.5, 1, 3 and 5 mg Warfarin

tablet sizes, but a fairly large number of combinations are used in practice. Some 61 per

cent of visits result in a decision to leave dose unchanged. Otherwise, the dose change

distribution is fairly symmetric about zero, with standard deviation close to 1 mg but

there were occasional very large changes, the range being -9 to +8 units.
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Figure 1.1: Two illustrations of anticoagulant data.
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Figure 1.1 illustrates the type of data for two patients. The top part of each plot shows

how dose was (or was not) changed at clinic visits. The lower part of each plot shows the

standardised International Normal Ratio (INR), a measure of blood clotting speed. The

standardised version we use has a mixed distribution with a point mass at zero if clotting

speed is within the target range, and otherwise a positive value if clotting time is too

long, negative if clotting is too quick. The upper plot shows data from a patient with the

quite common pattern of initially unstable INR being brought under control by a small

number of modest dose changes. The lower plot shows the less common, but not unusual,

situation of a patient whose clotting time suddenly increases after a stable period. Several

dose changes are needed to regain control and at one time there is overadjustment, causing

INR to fall below target and subsequently have to be increased again. In both cases trial-

and-error combined with the clinicians’ experience and judgment were used to determine

dose changes: there are as yet no accepted decision rules. Since the achieved quality

of anticoagulation control is often poor, and with the use of anticoagulants increasing

worldwide, there is a need for more objective and routine procedures.

1.4 Thesis outline

In order to improve optimal dynamic treatment regimes methodology we propose a mod-

elling and estimation strategy which incorporates the regret functions of Murphy (2003)

into a regression model for observed responses. Estimation is quick and diagnostics are

available, meaning a variety of candidate models can be compared.

We initially describe the basics of dynamic programming and causal inference, to increase

our understanding of the response to treatment and the effects of various covariates. Then

we first describe and demonstrate the current theory. We investigate the estimation of
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optimal dynamic treatment regimes based on a regret function approach introduced by

Susan Murphy and a G-estimation method by James Robins. These are compared first

for simulated sequential randomization trials taken from the literature. We then present

regret-regression for optimal dynamic treatment regimes as alternative method.

The second chapter presents background on dynamic programming and causal inference.

We discuss some basic assumptions which are needed to estimate dynamic treatment

regimes. Chapter 3 introduces the reader to Murphy and Robins methods and investigates

their techniques to discover any characteristics or any important relationships between

them.

Chapter 4 poses the main idea of this thesis. We introduce regret-regression for opti-

mal dynamic treatment regimes with discussion and comparison with Murphy and Robins

methods and illustrate the method via simulations and an application data.

Our extension is presented in the next two chapters. In Chapter 5 we use another alter-

native method called inverse probability of treatment weighting to estimate the optimal

dynamic treatment regimes then compare its results with the regret-regression and prove

that theoretically. This is then extended in chapter 6 to illustrate the regret-regression

estimation method using a common decision stochastic problem from the literature called

multi-armed bandit problem.

Chapter 7 uses the regret-regression method and knowledge gathered from the last few

chapters and presents some diagnostics for choosing the correct model to estimate optimal

dynamic treatment regimes via Murphy (2003) scenario and with an application to the

anticoagulant example. Conclusion is then presented in the closing chapter.
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Chapter 2

Background

2.1 Dynamic Programming

2.1.1 What is dynamic programming?

Dynamic programming is the problem of optimizing a sequence of decisions in which each

decision must be made after the result of the previous decision becomes known (Upton

and Cook 2002). It is a method for optimizing a system changing over time that has been

successfully applied in manufacturing systems, environmental engineering, business, and

many other fields. Due to the infamous curse of dimensionality, exact solutions are only

possible for small problems or under very limiting restrictions. However, recent advances

in computing power have given rise to many approximate dynamic programming methods.

These advances now provide the potential for the application of DP to complicated dynamic

decisions, such as adaptive interventions or dynamic treatment regimes. The key advantage

of dynamic programming is its ability to account for future decisions when optimizing a

current decision. Dynamic programming is an optimization procedure that is designed to

efficiently search for the global optimum of a function; it is an algorithmic technique based
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on a recurrent formula and some starting states (Bellman and Dreyfus 1962).

The problem can usually be divided into stages with a decision required at each stage.

Each stage has a number of states associated with it. There exists a recursive relationship

that identifies the optimal decision for stage i, given that stage i + 1 has already been

solved, and the final stage must be solvable by itself (Yong et al. 2007). The dynamic

programming solutions have a complicated polynomial function which requires a much

faster running time than other techniques. The most important and difficult issue in

dynamic programming is how to determine stages and states so that all of the previous

characteristics hold. More details and examples can be found in Cormen et al. (2001).

The uniqueness of dynamic programming resides in the principle of optimality and it is on

this principle that the whole of dynamic programming is based. Just as in the calculus we

use the basic idea of solving a function after differentiating and equating to zero to find its

minima or maxima (remembering to evaluate the function at the end points) so in dynamic

programming we use the principle of optimality expressed in the functional equation. The

principle is easy enough to recite. Bellman put it this way: ”An optimal policy has the

ownership that, whatever the initial state and initial decision are, the remaining decisions

must form an optimal policy with regard to the state resulting from the first decision”.

As Bellman says in his first book on dynamic programming, ”this observation has all the

dangerous simplicity of half-truth and it can be proved quickly enough by a proof by

contradiction. It is not however, an easy principle to understand and it is worthwhile

spending some time on a simple illustration of the ideas (Norman 1975)”. So, we can

define dynamic programming as an approach to optimization. Optimization means finding

a best solution among several feasible alternatives in each stage of a multistage decision.

The term ”a best solution” is used because there may be more than one optimal solution

(Nemhauser 1967).
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Most medical decision problems are extremely complex and contain a large number of

variables. Abstraction simplifies the process of building a decision model by allowing

a model builder to work at a level of detail that the builder is most comfortable with.

It is also useful in time critical situations or when there is not enough data to support

complete specification of probabilities of the uncertain events. Creation of formal models

for decision-making involves selecting the set of relevant factors to consider and the level

of detail at which to represent them. Often the best choice is not obvious at the outset. A

model builder may begin constructing a model and realize that certain portions need to be

refined. Or he may become overwhelmed by the complexity of the developing model and

decide to abstract away some detail, at least temporarily, to simplify his task (Sundaresh

et al 1999).

2.1.2 Elements of the dynamic programming model

The basic components of the model are:

• T . This is a variable that can be manipulated to achieve the desired objective. Write

Tj = (t1, t2, ....., tK). These variables are commonly referred to as independent or

decision variables.

• The factor M = (m1,m2, .....,mK), affects the objective but these are not control-

lable.

• The measure of effectiveness Y , can be the utility, or return associated with particular

values of the decision variables and parameters. The measure of effectiveness, alter-

natively called the utility measure, criterion function, objective function, or return

function, is a real-valued function of the decision variables and parameters.

There is a wide variety of commonly used measures of utility, such as cost, profit and
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rate of return. It will be assumed that a specific measure of effectiveness can always

be chosen that will adequately reflect the important differences among different values

of the decision variables (Eric 1982).

• Any T satisfying the constraints (which is conditional on the model) is known as

feasible solution to the model. The decision-making problem is to find a feasible

solution that yields high value or return. An optimal solution (T opt) is defined as a

feasible solution producing the greatest possible return, that is,

Y (T opt,M) = max
T

Y (T,M)

• Cj(Tj) and Rj(Tj) are respectively cost and reward the decision variable.

2.2 Deterministic Dynamic Programming

Deterministic dynamic programming is characterised by the fact that, once the decision rule

has been selected, the outcomes are known in advance. For naturally sequential processes

it means that the change of state at any stage is completely determined by the action at the

preceding stage and by the state at that stage. As a consequence, for naturally sequential

deterministic processes, one can either treat the decisions one by one or all together (Taha

1992).

To illustrate the steps of the dynamic programming model, let us consider the following

example (basics were taken from Taha (1987), but we modified it for fixing ideas). Suppose

a physician wishes to treat a patient. He or she tries to avoid side effects (e.g., medicine

toxicity) by using only 6 dosage units for allocation to all four time points. Each time

point is requested to submit its treatment giving cost Cj(Tj) of alternative treatments

Tj = {1, 2, 3} at j = 1, 2, 4 and T3 = {1, 2} (e.g., total dosage units used at time j) and
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rewards Rj(Tj) at time j (e.g., total treatment utility units) for each treatment Tj. Table

2.1 summarises the costs and the rewards. The zero proposals are introduced the possibility

of not allocating dosage units to individual time points. The aim is to maximize the total

treatment rewards resulting from the allocation of the 6 units to the four time points.

Time 1 Time 2 Time 3 Time 4

Tj C1(T1) R1(T1) C2(T2) R2(T2) C3(T3) R3(T3) C4(T4) R4(T4)

1 0 0 0 0 0 0 0 0

2 3 10 1 3 2 4.2 2 5.6

3 4 14 4 12 – – 3 7.2

Table 2.1: Costs and rewards

The problem has 3×3×2×3 = 54 possible treatment policies, some of them are infeasible

because they require more dosage units than the 6 dosage units available. If the total

cost for any of the 54 combinations does not exceed the 6 dosage units, its total reward is

computed. The optimal treatment policy is the feasible combination yielding the highest

total rewards. For example, a feasible treatment policy of {2, 1, 1, 2} is to treat the patient

at time points 1 and 4 using 3 and 2 dosage units respectively. They will cost 5 dosage

units and yield a total reward of 15.6 treatment utility units.

2.2.1 Forward recursive equation:

Let us introduce that fj(Mj) is the maximum rewards at time j given the state Mj and

maxY =
∑
j

fj(Mj),

is the maximum total reward at the end of the final time point. To follow the forward

procedure, the computations are carried out in order f1, f2, f3, f4. Computations advance
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from the first to the last time point. Now, let Mj = units of dosage allocated to time

points 1 up to j. We thus write the recursive equation for the dosage limited example as,

f1(M1) = max
C1(T1)≤M1

[R1(T1)]

fj(Mj) = max
Cj(Tj)≤Mj

[Rj(Tj) + fj−1(Mj−1)] j = 2, 3, 4.

Since we have a deterministic model we can write M1 = C1(T1) say. Similarly M2 =

C1(T1)+C2(T2), M3 = C1(T1)+C2(T2)+C3(T3) andM4 = C1(T1)+C2(T2)+C3(T3)+C4(T4).

Thus M1 = M2 − C2(T2), M2 = M3 − C3(T3) and M3 = M4 − C4(T4). We can define

Mj−1 = Mj − Cj(Tj),

then,

fj(Mj) = max
Cj(Tj)≤Mj

[Rj(Tj) + fj−1(Mj − Cj(Tj))] j = 2, 3, 4.

f1(M1) = max
C1(T1)≤M1

[R1(T1)]

f2(M2) = max
C2(T2)≤M2

[R2(T2) + f1(M2 − C2(T2))].

The computations are carried out as shown in Table 2.2.

R1(T1) Optimal solution R2(T2) + f1(M2 − C2(T2)) Optimal solution

M1 T1 = 1 T1 = 2 T1 = 3 f1(M1) T opt1 M2 T2 = 1 T2 = 2 T2 = 3 f2(M2) T opt2

0 0 - - 0 1 0 0+0=0 - - 0 1

1 0 - - 0 1 1 0+0=0 3+0=3 - 3 2

2 0 - - 0 1 2 0+0=0 3+0=3 - 3 2

3 0 10 - 10 2 3 0+10=10 3+0=3 - 10 1

4 0 10 14 14 3 4 0+14=14 3+10=13 12+0=12 14 1

5 0 10 14 14 3 5 0+14=14 3+14=17 12+0=12 17 2

6 0 10 14 14 3 6 0+14=14 3+14=17 12+0=12 17 2

Table 2.2: Costs and rewards for time points 1 and 2

As shown the values of M1 and M2 are discrete, they as well as M3 in Table 2.3, may only

assume the values {0, 1, · · · , 6} but are not known exactly. On the other hand, M4, which
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is the total treatment units allocated to all time points, is equal to 6. The solution of the

problem is to start with the time 1 (the left side of Table 2.2). Given the value of M1, we

obtain conditional decisions and choose the best alternative whose cost does not exceed

M1. The right side of Table 2.2 shows time point 2 calculations. The idea now is to choose

the alternative in time 2 given M2 that yields the best reward for time points 1 and 2. We

now describe the details for time 2 computations.

• When M2 = 0 the only feasible alternative given M2 is T2 = 1 whose cost and reward

units are both equal to zero.

• M2 = 1. Here we have two feasible alternatives given M2. They are T2 = 1 and

T2 = 2 costing 0 and 1 and yielding rewards of 0 and 3 respectively. Thus, the values

of M1 = M2 − C2(T2) corresponding to T2 = 1 and T2 = 2 are 1− 0 and 1− 1. The

corresponding best rewards from time 1 given M1 = 1 and 0 are both equal to zero.

Thus f2(M2 = 1) = max(0 + 0, 3 + 0) = 3, corresponding to T2 = 2, which is the

optimal treatment at this time point when M2 = 1.

• When M2 = 4. Feasible alternatives are T2 = 1, T2 = 2 and T2 = 3 costing 0, 1

and 4 and yielding rewards of 0, 3 and 12 respectively. Thus, the values of M1 =

M2 − C2(T2) corresponding to T2 = 1, T2 = 2 and T2 = 3 are 4 − 0, 4 − 1 and

4 − 4. The corresponding best rewards from time 1 given M1 = 4, 3 and 0 are 14,

10 and zero respectively. Thus f2(M2 = 4) = max(0 + 14, 3 + 10, 12 + 0) = 14 and

T opt2 (M2 = 4) = 3.

At time 3,

f3(M3) = max
C3(T3)≤M3

[R3(T3) + f2(M3 − C3(T3))] T3 = 1, 2
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R3(T3) + f2(M3 − C3(T3)) Optimal Solution

M3 T3 = 1 T3 = 2 f3(M3) T opt3

0 0+0=0 - 0 1

1 0+3=3 - 3 1

2 0+3=3 4.2+0=4.2 4.2 2

3 0+10=10 4.2+3=7.2 10 1

4 0+14=14 4.2+3=7.2 14 1

5 0+17=17 4.2+10=14.2 17 1

6 0+17=17 4.2+14=18.2 18.2 2

Table 2.3: Costs and rewards for time 3

Then for time 4

f4(M4) = max
C4(T4)≤M4

[R4(T4) + f3(M4 − C4(T4))] T4 = 1, 2, 3

R4(T4) + f3(M4 − C4(T4)) Optimal solution

M4 T4 = 1 T4 = 2 T4 = 3 f4(M4) T opt4

6 0+17=17 5.6+14=19.6 7.2+10=17.2 19.6 2

Table 2.4: Costs and rewards for stage 4

Now we can read the optimal solution directly starting from time 4, we can choose T4 = 2,

which cost 2 dosage units. Then M3 from time 3 will be 6-2=4. From Table 2.3, we see

that optimal alternative given T3 = 1. Since T3 = 1 cost zero units, we have again, from

the right side of Table 2.2, we obtain T2 = 1 as the optimal alternative time 2. Finally

since T2 = 1 cost zero units and using the left side of Table 2.2, we obtain T1 = 3 as the
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optimal alternative at the first time point. Thus the optimal combination of proposals for

time points 1, 2, 3 and 4 is (3, 1, 1, 2), which yields response 19.6

2.2.2 Backward recursive equation

In the dynamic programming literature, the recursive equation is set up such that the

computations start at the last time point and then proceed back to time 1. This method is

called the backward procedure. The main difference between the forward and the backward

methods occurs in the way we define the state of the system.

Figure 2.1: States Mj using the forward and backward methods.

We define the state Mj as the amount of dosage Tj allocated to time j onward and fj(Mj)

as the corresponding optimal reward at time j, for j = {1, 2, 3, 4}. The order of time point
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computations is thus: f4, f3, f2 and f1 .

f4(M4) = max
C4(T4)≤M4

[R4(T4)],

fj(Mj) = max
Cj(Tj)≤Mj

[Rj(Tj) + fj+1(Mj − Cj(Tj))] j = 1, 2, 3.

f3(M3) = max
C3(T3)≤M3

[R3(T3) + f4(M3 − C3(T3))].

The computations are carried out as follows. First: at time points 4 and 3

R4(T4) O.S R3(T3) + f4(M3 − C3(T3)) Optimal solution

M4 T4 = 1 T4 = 2 T4 = 3 f4(M4) T opt4 M3 T3 = 1 T3 = 2 f3(M3) T opt3

0 0 - - 0 1 0 0+0=0 - 0 1

1 0 - - 0 1 1 0+0=0 - 0 1

2 0 5.6 - 5.6 2 2 0+5.6=5.6 4.2+0=4.2 5.6 1

3 0 5.6 7.2 7.2 3 3 0+7.2=7.2 4.2+0=4.2 7.2 1

4 0 5.6 7.2 7.2 3 4 0+7.2=7.2 4.2+5.6=9.8 9.8 2

5 0 5.6 7.2 7.2 3 5 0+7.2=7.2 4.2+7.2=11.4 11.4 2

6 0 5.6 7.2 7.2 3 6 0+7.2=7.2 4.2+7.2=11.4 11.4 2

Table 2.5: Costs and rewards for time points 4 and 3

Next: at time 2

where

f2(M2) = max
C2(T2)≤M2

[R2(T2) + f3(M2 − C2(T2))].

And then: at time 1

f1(M1) = max
C1(T1)≤M1

[R1(T1) + f2(M1 − C1(T1))].

In time 1, the optimal solution is determined by starting with M4 at time 4 and proceeding

to M1 at time 1. Naturally, the solutions are identical with those of the forward method.
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R2(T2) + f3(M2 − C2(T2)) Optimal solution

M2 T2 = 1 T2 = 2 T2 = 3 f2(M2) T opt
2

0 0+0=0 - - 0 1

1 0+0=0 3+0=3 - 3 2

2 0+5.6=5.6 3+0=3 - 5.6 1

3 0+7.2=7.2 3+5.6=8.6 - 8.6 2

4 0+9.8=9.8 3+7.2=10.2 12+0=12 12 3

5 0+11.4=11.4 3+9.8=12.8 12+0=12 12.8 2

6 0+11.4=11.4 3+11.4=14.4 12+5.6 17.6 3

Table 2.6: Costs and rewards for time 2

R1(T1) + f2(M1 − C1(T1)) Optimal solution

M1 T1 = 1 T1 = 2 T1 = 3 f1(M1) T1
opt

6 0+17.6=17.6 10+8.6=18.6 14+5.6=19.6 19.6 3

Table 2.7: Costs and rewards for time 1

2.3 Stochastic Dynamic Programming :

When the states and the returns at each time point are dependent on probabilities then

we use the technical terms stochastic decision making to describe the decisions under risk

or just uncertainty. For example, let us consider a single-time stochastic return function

R(T,M), where

T : is a decision variable.

M : is a discrete random variable.

For a fixed set of decisions T , we define R(T,M) as expectation [EM [r(T,M)]. Now, we

consider two different related examples
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Example 1

Suppose a physician has to decide (within 4 time points), when he or she should treat

a patient with leukemia using a chemotherapy drug. Each time point, the physician is

informed of a new state opportunity which he or she must either treat the patient or wait.

If wait an opportunity is lost in the sense that the physician can not treat past events. The

opportunity appearing at each time point is independent of the ones appearing in other

time points. It is known that at the start of each time point, it may be one of three states

mj = {1, 2, 3}. mj occurs with probability p(mj). It is given that: p1 = p(mj = 1) =

0.3, p2 = p(mj = 2) = 0.5, p3 = p(mj = 3) = 0.2. The drug provides a return, (e.g., a

ratio of natural cells) equal to r(mj) where j = 1, 2, 3, 4 if the paient was treated. The

return is given as r1 = r(mj = 1) = 0.10, r2 = r(mj = 2) = 0.20, r3 = r(mj = 3) = 0.30.

We want to establish the strategy that the physician should follow to maximise his or her

expected return. Note that the probability distribution is the same at all time points.

To solve this problem we note that any time point j, the physician has to decide a binary

decision Tj, either to treat tj = 1 or wait tj = 0. Define fj(mj) = maximal expected return

when starting in time point j and following an optimal strategy up to the end. Optimal

strategy at time point j can be followed by choosing toptj = 1 if a current return r(mj) is

bigger than expected return E[fj+1(mj+1)]. The maximal expected return if starting in

time point j is:

E[fj+1(mj+1)] =
3∑

mj+1=1

fj+1(mj+1)p(mj+1)

and the DP recursion is given by

fj(mj) = max{r(mj), E[fj+1(mj+1)]} where j = 1, 2, 3, 4.

We start at the end.
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Time 4:

f4(m4) = max[r(m4), E[f5(m5)]

= max(r(m4), 0)

= r(m4) where r(m4) = {r1, r2, r3}

In this time point dopt = 1 for all m4 = {1, 2, 3} as it is the final time point.

Time 3:

Here we calculate the expected value of returns at time 4 and compare it with r(m3)

E[f4(m4)] =
3∑

m4=1

f4(m4)p(m4) = f4(r1)× p1 + f4(r2)× p2 + f4(r3)× p3

= 0.1× 0.3 + 0.2× 0.5 + 0.3× 0.2 = 0.19

f3(m3) = max[r(m3), E[f4(m4)]

= max[r(m3), 0.19]

Hence f3(m3) = {r2, r3} when m3 = {2, 3},

and f3(m3 = 1) = 0.19

Because 0.19 only bigger than 0.10. Thus optimal decisions are dopt3 = 0 if m3 = 1.

Otherwise the physician must treat the patient.

Time 2:

E[f3(m3)] =
3∑

m3=1

f3(m3)p(m3) = f3(r1)× p1 + f3(r2)× p2 + f3(r3)× p3

= 0.19× 0.3 + 0.2× 0.5 + 0.3× 0.2 = 0.217

f2(m2) = max[r(m2), E[f3(m3)]

= max[r(m2), 0.217]

f2(m2) = 0.217 if m2 = {1, 2},

f2(m2 = 3) = 0.3
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Time 1:

E[f2(m2)] =
3∑

m2=1

f2(m2)p(m2) = f2(r1)× p1 + f2(r2)× p2 + f2(r3)× p3

= 0.217× 0.3 + 0.217× 0.5 + 0.3× 0.2 = 0.2336

f1(m1) = max[r(m1), E[f2(m2)]

= max[r(m1), 0.2336]

f1(m1) = 0.2336 when m1 = {1, 2},

f1(m1 = 3) = 0.3

Optimal decisions at time point 1 are the same with those in time point 2. Table 2.8

explains the expected return from time point one to four and what the optimal decisions

are.

doptj (mj)

Time point j E[fj+1(mj+1)] mj = 1 mj = 2 mj = 3 Reason

1 0.2336 0 0 1 0.3 > 0.2336

2 0.217 0 0 1 0.3 > 0.217

3 0.19 0 1 1 0.2, 0.3 > 0.19

4 0 1 1 1 0.1, 0.2, 0.3 > 0

Table 2.8: Maximum expected return and optimal decision strategies of the three states.

Here the physician must treat the patient at any time point if mj = 3, at time points 3

and 4 if mj = 2, but only at time point 4 if mj = 1.

Example 2

Suppose a physician has to treat a patient randomly at three time points, either (T = 1)

with probability 1− p, or (T = 2) with probability p. Treatment t which is binary {0, 1},

is to be given subsequent to observing the status. If the patient was treated at time j,

21



after observed Mj, then different random returns (depending on the probability of θ(T ))

can be occurred. Let us assume that Rj(tj|T, θ) be a set of treatment return at time point

j, where j = {1, 2, 3}. The patient’s status starts with the baseline covariate M1 units. So

we can obtain that Mj+1 = Mj + Rj. The next figure shows four potential outcomes at

the end of each time point j

Figure 2.2: Treatment random returns at each time point j

Rj(tj = 1|T = 1, θ1) = aj

Rj(tj = 1|T = 1, 1− θ1) = −aj

Rj(tj = 1|T = 2, θ2) = 2aj

Rj(tj = 1|T = 2, 1− θ1) = −aj,

and Rj(tj = 0|T, θ) = 0. Can we find the optimal strategy which maximises the patient

expected final response?

We use the following optimality equations:

Mj+1 = max [ Mj, E(Mj+1)]
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E(Mj+1) = Mj + E(Rj)

The idea of this example is to treat the patient only if there is a positive return E(Rj) > 0,

but if E(Rj) < 0 then Mj > E(Mj+1) and the optimal decision is not to treat the patient.

Note that patient status will be fixed if the patient is not treated, then Mj+1 = Mj.

E(Rj) = [(1− p)(1− θ1)(−aj) + (1− p)θ1aj + (p)(1− θ2)(−aj) + pθ2(2aj)]

= aj[(1− p)(2θ1 − 1) + p(3θ2 − 1)]

Case 1

Supppose aj is an amount that depends on the current state Mj say. M1 = 800, p =

0.5, θ1 = 0.4, θ2 = 0.7, aj = 0.25Mj,

E(Rj) = aj[(1− p)(2θ1 − 1) + p(3θ2 − 1)]

= aj[0.5× (2× 0.4− 1) + 0.5× (3× 0.7− 1)] = 0.45aj.

As seen E(Rj) = 0.45aj and aj = 0.25Mj. So based on these details, E(Rj) > 0 at all j,

then the optimal decision is to treat the patient. Because E(Mj+1) > Mj at all j as shown

below

At time point 1,

M2 = max [ M1, E(M2)], and E(M2) = M1 + E(R1), then

M2 = max [ 800, 890] = 890.

At time point 2,

M3 = max [ M2, E(M3)], and E(M3) = M2 + E(R2),

M3 = max [ 890, 990.125] = 990.125.

At time point 3,

M4 = max [ M3, E(M4)], and E(M4) = M3 + E(R3),

M4 = max [ 990.125, 1101.514] = 1101.514.
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If the physician follows the optimal strategy and treat the patient at the start of all decision

points, then the maximum expected return will be 1101.5 units.

Case 2

Now, let p = 0.05 then E(Rj) = −0.135aj and Mj > E(Mj+1), at all time points. The

optimal decision will be to choose Mj, that means he or she has to follow a fixed dynamic

strategy (no treatment for all j).

Case 3

If p or θ have different values, the strategy will change at each decision point, e.g., suppose

p and θ have the previous example values except θ2 = 0.2 when j = 2 Then E(R1) =

E(R3) = 0.45aj, but E(R2) = −0.3aj, and

M2 = max [ 800, 890] = 890,

M3 = max [ 890, 823.25] = 890,

M3 = max [ 890, 990.125] = 990.125.

As we see, we have a non fixed dynamic strategy. To maximize the expected return at the

end of the final stage, we have to treat the patient at j = 1, 3 but not at the second time

point.

2.4 Causal Effects

All optimal dynamic treatment strategies considered later, e.g., G-estimation, inverse prob-

ability treatment weighted, etc. are approaches to estimating the causal effect of a time-

varying treatment on time to some event of interest. Because these approaches are designed

for a situation where the treatment may have been repeatedly adapted to patient char-

acteristics, which them selves may also be time-independent. The definition of cause is

complex and difficult, but for empirical research, the concept of the causal effect of a treat-
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ment seems more straightforward and practically useful (Roderick and Rubin 2000). A

key idea is the explanation of causal effects through potential outcomes. Causal effects

are comparisons of the potential outcomes that would have been observed under different

exposures of patients to treatments. In a studied example, several epidemiological studies

showed that women who were taking combined hormone replacement therapy had a lower

average incidence of coronary heart disease, leading doctors to propose that hormone re-

placement therapy was protective against coronary heart disease (Lawlor et al. 2004). But

controlled trials showed that hormone replacement therapy caused a significant increase in

risk of coronary heart disease. Re-analysis of the data showed that women undertaking

hormone replacement therapy were more likely to be from higher socio-economic groups,

with better than average diet and exercise regimes. The two were immediate effects of a

common cause, rather than cause and effect as had been believed (Roderick and Rubin

2000).

Rubin defines a causal effect of one treatment, ta, over another, tb, for a particular patient

and an interval of time from j1 to j2 as the difference between what would have happened

at j2 if the patient had been exposed to ta initiated at j1 and what would have happened

at j2 if the unit had been exposed to tb initiated at j1: our definition of the causal effect

of the ta versus tb treatment will reflect this intuitive meaning.

2.4.1 Longitudinal data

Longitudinal data groups are comprised of repeated measurements of an outcome and a

set of covariates for each of many units. One aim of statistical analysis is to model and

estimate the marginal expectation of the response variable as a function of the covariates

while accounting for the correlation among the repeated observations for a given unit

(Scott and Kung 1986). Longitudinal data have the form of repeated observations on
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the same subject over time. In longitudinal clinical trials, each patient’s information,

treatment offered, and response to it will be recorded at each decision point in the patient’s

treatment. For example, we may measure the amount of HIV virus present in the body

at three monthly time intervals on patients with HIV infection. Patients are assigned

to take different treatments at the start of the study (Davidian 2006). The scientific

questions of importance often involve not only the common kinds of questions, such as

how the mean response differs across treatment, but also how the change in mean outcome

over time differs and other issues regarding the relationship between response and time.

Thus, it is necessary to represent the situation in conditions of a statistical model that

acknowledges the way in which the data were collected in order to address these questions.

Complementing the models, specialized methods of analysis are required. Although the

term longitudinal naturally suggests that data are collected over time, the models and

methods we will discuss are more generally applicable to any kind of repeated measurement

data. That is, although repeated measurement most often takes place over time, this is

not the only way that measurements are taken repeatedly on the same unit. For example,

units may be human subjects. For each subject, reduction in diastolic blood pressure is

measured on several occasions, each occasion involving administration of a different dose

of an anti-hypertensive medication. Thus, the subject is measured repeatedly over dose

(Davidian 2006).

2.4.2 Counterfactuals

We refer to the outcome of the model as counterfactual (potential outcome), because it

is defined under conditions contrary to fact; that is, in reality, not all subjects followed

a given exposure history. Models for counterfactual outcomes are known as structural or

causal models (Hernán 2005). A counterfactual is a potential outcome, prior to the actual
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outcome being observed. It is defined as a person’s outcome if he had followed a particular

treatment regime, which is possibly different from the regime that he was actually observed

to follow. The causal effect of a regime may be seen as the difference in outcome if he had

followed that regime as compared to a placebo regime or a standard care protocol.

Definition Let Ti be the causal variable (treatment) of interest for unit i where i =

1, 2, · · · , n. Ti takes a value in a set τ . The potential outcome {Yi(t), t ∈ τ} repre-

sents the outcome that would be observed for unit i if it receives the treatment whose value

is t, i.e., Ti = t for t ∈ τ .

Hence, for each individual i its set of potential outcomes {Yi(t), t ∈ τ}. From all potential

outcomes, only one of them corresponding to the actual treatment Ti can be observed. We

use Yi to denote the observed outcome for unit i. The treatment variable determines which

of the potential outcomes will be revealed. This can be seen, for example, from the fact

that if the treatment is binary, the observed outcome is given by Yi = TiYi(1)+(1−Ti)Yi(0).

2.4.3 Observational studies, randomized trials and causal effects

For a long time it has been claimed that observational studies can find stronger treatment

effects than randomized trials, (Rosenbaum 2002). In a randomized controlled trial is allo-

cated each subject is randomly assigned to a treatment group or control group before the

start of treatment. Estimating and comparing the effects of dynamic treatment regimes

from a sample of observed trajectories of treatments and outcomes depends on the as-

sumption that new treatments are assigned independently of potential future responses to

treatment, conditional on the history of treatments and response to date, called sequential

ignorability. In longitudinal observational studies, the assumption of sequential ignorabil-

ity must be assumed, while randomization of dynamic regimes can guarantee it ( Lavori

2001).
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In randomized trials, individuals are randomly assigned to a treatment and control group

and if the groups are different significantly after treatment the treatment is assumed to

cause the difference. In observational studies, under the assumption that the treatment

is independent of potential outcomes, it is possible to test whether the treatment has an

effect and estimate the mean counterfactual treatment effect.

Definition Let Ti be a binary treatment variable. The causal effect can be defined for each

unit as the difference: Yi(1)− Yi(0).

Definition Let Ti be a binary (random) treatment variable for unit i where i = 1, 2, ..., n.

Consider fixed (i.e., non-random) but possibly unknown potential outcomes, Yi(1) and Yi(0),

for each i. Then, the following sample average causal effects of interest can be defined by

1
n

∑n
i=1 Yi(1)− Yi(0).

Definition The treatment is said to be randomized if the treatment variable Ti is indepen-

dent of all potential outcomes, Yi(t), for all units, i.e., Yi(t)⊥Ti for all t and all i (Robins

et al. 1997).

2.4.4 Time-varying treatment

If a variable changes over time, we called it a time-varying variable, for example, sex is a

non time-varying variable. A time-varying covariate is a term used commonly in survival

analysis. It means that a covariate is not necessarily fixed. If a person is treated at many

time points with different doses, then the dose is a time-varying covariate. Or, if one wants

to examine the link between area of residence and cancer, this would be complicated by

the fact that study subjects might move from one area to another. The area of residency

might then be introduced in the statistical model as a time-varying covariate.

Time-varying treatment regimes are treatment policies where the type of treatment or the

level of treatment changes over time. On the other hand there are care policies with fixed
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regimes, where the same dose is maintained. Suppose, for example, there are several ways

to treat a patient. A fixed regime would be achieved, for example, by taking the same dose

twice a day at the same time for 4 weeks. In contrast, another regime would be to take

different combinations of drugs over four weeks and this can be considered a time-varying

regime. Note that a time-varying regime can be dynamic or not. The last example was not,

but a dynamic treatment regime is one in which the level of treatment received depends

on time-varying patient diagnosis.

Now, we consider the following examples.

• Varying doses of warfarin for anticoagulation are needed for the drug to be effective

in each patient. Too much warfarin can lead to severe bleeding, and too little can

cause risky blood clots. Historically, there has been no guidance for predicting how

much of the drug a person will need. Physicians have had to approximately estimate

an initial dose of warfarin and then continually monitor the patients International

Normalized Ratio (INR) value which is a measure of how fast the blood clots.

• Measures of amount of HIV virus present in body may be taken during a year at

three monthly time intervals on patients with HIV infection. Patients are assigned

to take different treatments at the start of each time interval.

• Chemotherapy for cancer and control of its side-effects is a dynamic treatment regime.

2.4.5 Assumptions for causal inference

Three assumptions sufficient to identify the average causal effect are consistency, exchange-

ability (e. g., no unmeasured confounders) and positivity. Generally those hold in a ran-

domized experiment, Rosenbaum and Rubin (1983):
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Assumption 1: Consistency

The potential outcome under any particular treatment or action regime identical to the

actual outcome if that regime is followed. This states that the results of a subject’s

treatment allocation are not affected by other subjects’ treatment allocation, Formally, let

T be an n dimensional vector of treatment assignment, whose ith element represents the

treatment value of unit i where i = 1, 2, ..., n. Let Yi(T ) be the potential outcome of unit

i given the treatment assignment for all units, i.e., T . Then, the assumption implies that

Yi(T = a) = Yi(T = b) whenever ai = bi (Rosenbaum and Rubin 1983).

Assumption 2: No unmeasured confounders

Let M be a set of pre-treatment covariates. Then the assumption says that any regime t

of T , received in any interval is conditional on history, but is independent of any future

potential outcome. This means Y (t)⊥T |M = m for each possible value t of T and m of

M . This assumption is sometimes referred as the conditional exchangeability (sequential

randomization). It holds in a randomized experiment in which treatment was randomly

assigned (Robins et al. 1997).

Assumption 3: Positivity

The treatment is not deterministically allocated within any level m of the covariates M .

That is, not all source population subjects with a given value m of M are assigned to

be treated or untreated (Hernán and Robins, 2006). If P (M = m) 6= 0 (the population

marginal probability that M takes the value m) then P (T = t|M = m) > 0 (the conditional

probability that T takes the value t among subjects in the population with M equal to m.

[The above assumed M and T were discrete variables.]

Without additional assumptions, the optimal regime might be estimated from among the

set of feasible regimes (Robins 1994); feasibility requires some subjects to have followed

a special regime to make non-parametric inference from this regime, using Robins (1997),
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the sequential version of no unmeasured assumption at time j,

Tj⊥Mj+1(t̄j), · · · ,MK(t̄K−1), Y (t̄K)|M̄j, M̄j−1

and at the last time point K,

TK⊥Y (t̄K)|M̄K , M̄K−1.

2.5 Causal Directed Acyclic Graphs (DAGs):

2.5.1 DAGs for a single time point

Unconditional exchangeability and conditional exchangeability can be translated into the

language of causal directed acyclic graphs or DAGs, Pearl (1995); Spirtes, Glymour and

Scheines (1993). The causal DAGs have to include all common causes of its variables. Now

consider the three causal DAGs of Figure 2.3, Robins, Hernán and Brumback (2000) in

which M and U represent measured and unmeasured baseline covariates.

Figure 2.3: Causal directed acyclic graphs.

The causal DAG in Figure 2.3a can represent a randomized experiment for which each sub-

ject is randomized to be treated with the same probability P (T = 1). Thus the conditional

probability of treatment does not depend on M or U , i.e.,

P (T = 1|M = m,U = u) = P (T = 1).
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We then say that there is no confounding by measured variables M or unmeasured variables

U . Equivalently, T = 1 and T = 0 are unconditionally exchangeable (i.e., Y (t)⊥T ) because

the treatment T and the outcome Y do not share any common causes. When unconditional

exchangeability holds, E[Y (t)] equals the mean E[Y |T = t] of the study population actually

treated with t.

The causal DAG in Figure 2.3b represents a randomized experiment in which each subject

is randomized to be treated with probability Pr(T = 1|M = m) that depends on the

subject’s value of M but not on U , i.e.,

P (T = 1|M = m,U = u) = Pr(T = 1|M = m).

For example, we might decide to treat a greater proportion of smokers than non-smokers.

We then say that there is confounding but there is not unmeasured confounding. Equiv-

alently, the T = 1 and the T = 0 are not unconditionally exchangeable. In this setting,

E[Y (t)] does not equal the mean E[Y |T = t]. However, E[Y (t)|M = m] = E[Y |T =

t,M = m]. Furthermore, by using data on M , E[Y (t)] can be consistently estimated.

The causal DAG in Figure 2.3c represents a study in which the conditional probability of

treatment P (T = 1|M = m,U = u) depends on the unmeasured variables U as well as

the measured variables M and thus cannot possibly represent a randomized experiment.

We say that there is unmeasured confounding. Equivalently, T = 1 and T = 0 are not

conditionally exchangeable given M because we cannot block all non causal associations

between treatment and outcome by conditioning on the measured covariates M . In this

setting neither E[Y (t)|M = m] nor E[Y (t)] can be consistently estimated, at least not

without further strong assumptions.
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2.5.2 DAGs for multi time points (time-varying treatment)

To develop methods for the estimation of the causal effects of a time-varying treatment,

we need to generalize the definition of causal effect and the three identifiability conditions

of the previous section.

Figure 2.4: Causal directed acyclic graphs with two time point treatments.

Let us assume K time points. Specifically, the generalized identifiability conditions are

explained in Section 2.4.5. The three conditions generally hold in ideal sequentially ran-

domized experiments with full compliance. A sequentially randomized experiment is a

randomized experiment in which the treatment value at each successive visit k is randomly

assigned with known randomization probabilities (bounded away from 0 and 1) that, by

design, may depend on a subject’s past treatment T̄k−1 and covariate history M̄k through

k. As for fixed treatment, exchangeability and conditional exchangeability can be repre-

sented by causal DAGs. The DAGs in Figures 2.4a to 2.4c are the time-varying analogs of

those in Figures 2.3a to 2.3c (Robins and Greenland 2000). The causal DAG in Figure 2.4a

implies unconditional or marginal exchangeability. It represents a sequentially randomized

experiment in which the randomization probabilities at each time j depend at most on a

subject’s past treatment history, which is the proper generalization of no confounding by
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measured or unmeasured variables to a sequentially randomized experiment. Figure 2.4b

represents a sequentially randomized experiment in which the randomization probabilities

at each time j depend on previous history. There is confounding by measured covariates

but no unmeasured confounding. Thus the three identifiability conditions hold. Figure

2.4c represents a study case in which the probability of treatment depends on unmeasured

confounding variables U that cause Y and cannot possibly represent a sequentially ran-

domized experiment. Thus causal effects cannot be consistently estimated (Hernán and

Robins 2006).

Figure 2.5: Examples of causal directed acyclic graphs with unmeasured variables when

stability holds.

Dawid and Didelez (2008) show that conditional simple stability is violated if the unmea-

sured variables U cause decision variables T and the final response Y (as explained in

Figure 2.4c). Simple stability is closely related to the no unmeasured confounders assump-

tion (Robins, 1997). But they explained that even when there are arrows from U1 into

both of T1 and Y , stability can be satisfied under specific circumstances such as

• (Figure 2.5a) assuming an unconditional intervention in T2, i.e., no parent set for the
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action T2. We can note that Y⊥d|T1. That means the decision rules at j = 1, are

chosen independently of Y . At j = 2, we can easily see that Y⊥d|T1,M2, T2, because

the decision rules are chosen without taking previous history into account (no arrows

into T2). This strategy is identifiable even though simple stability is violated.

• As shown in Figure 2.5b, if we assume that the intervention strategy in T2 does

depend on its parent set (back dotted lines), i.e. (T1,M2), but no arrow exist from

U2 into T2, thus Y⊥d|T2. In contrast, in the same example, Figure 2.5c shows at

j = 1, that Y⊥d|T1 is violated and we cannot guarantee that such a conditional

strategy is identifiable.

2.5.3 Observational studies and the identifiability assumptions

for causal inference

A difference between randomized experiments and observational studies is that the condi-

tional probability of treatment is not known in the latter and thus needs to be estimated

from the data.

The major weakness of observational studies is that, unlike in randomized experiments with

full compliance, the three identifiability conditions are not guaranteed by design. Condi-

tional exchangeability will not hold if there is unmeasured confounding. Unfortunately,

the presence of conditional exchangeability cannot be empirically tested. Even consistency

cannot always be taken for granted in observational studies because the counterfactual

outcomes themselves are sometimes not well defined, which renders causal inferences am-

biguous (Robins and Greenland, 2000; Hernán, 2005). Thus, in observational studies, an

investigator who assumes these conditions hold may be mistaken; hence, causal inference

from observational data is a risky business.
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2.6 Discussion

As shown, dynamic programming (Bellman 1957) is an optimization procedure that is

designed to efficiently search for the global optimum of a function; it is an algorithmic

technique based on a recurrent formula and some starting states. The problem can usually

be divided into stages with a decision required at each stage. Each stage has a number of

states associated with it. There exists a recursive relationship that identifies the optimal

decision for stage j, given that stage j + 1 has already been solved, and the final stage

must be solvable by itself. The dynamic programming solutions have a complex polyno-

mial function which assures a much faster running time than other techniques. The most

important and difficult issue in dynamic programming is to take a problem and determine

stages and states so that all of the above characteristics hold. More details and examples

can be found in Cormen et al. (1990).

In the study of dynamic treatment regimes, we need to model the longitudinal distribu-

tion of all the covariates and outcomes. However, the information required is not always

available. Lack of information in such situation is ascribed either to misspecifying the dis-

tributions or the treatment may be mistakenly recommended. As we will see later, methods

given by Murphy (2003) and Robins (2004) do not suffer from this problem. Robins (1987)

used the so called theory of causal inference to assess the direct and indirect effects of time

varying treatments based on experimental and observational longitudinal studies. The po-

tential outcome is the value of a status that would happen to a patient under different

treatments. In the next chapter we review selected successful applications of treatment

decisions in the literature.
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Chapter 3

Optimal Dynamic Treatment

Regimes

3.1 Introduction

The problem of finding the optimal treatment regime is one of sequential decision-making,

where a treatment which appears optimal in the short-term may not be a component of

the optimal regime (Lavori 2001). A regime is said to be optimal if it maximizes the

mean response at the end of final interval. Dynamic regimes are also called tailored com-

munications, adaptive interventions, or adaptive strategies (Murphy 2003). The problem

of estimating treatment effects from observational studies has broad applicability in pub-

lic health, economics and social sciences. Robins and his colleagues, e.g., Robins et al.

(1999), Robins, Hernán and Brumback (2000) and Hernán, Brumback and Robins (2002)

have written extensively on the use of a marginal structural models for this purpose with

focus primarily on functions of the mean of repeated measures, e.g., Hernán, Brumback

and Robins (2002) and on hazard functions for event histories.
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3.2 Optimal Dynamic Treatment Regime Approaches

In this chapter, our purpose is to understand in detail the different approaches to optimal

dynamic treatment regimes and to investigate the relationships between them (we use and

develop some material from Moodie et al. (2007)). We will study two approaches that

have been proposed in the literature, namely: Robins G-estimation and Murphy iterative

minimization. We hope to show the similarities that are shared between what a first

glance might seem like very different approaches. To explain the basics of optimal dynamic

treatment regime, let us assume that a physician has to treat n patients dynamically, at

K fixed time points, with a binary treatment, either (Tj = 0) with no treatment, so he

or she should avoid the side-effect of the drug, or (Tj = 1) with treatment, when the dose

toxicity is less than the dose efficacy. M1 is the baseline covariate and treatments Tj are to

be given subsequent to observing status Mj (the level of health). As an example, let the

potential final response Y be determined by the equation

Y (tK |M̄K , T̄K−1) = βKM1 +
K∑
j=1

γj(Mj, Tj, ψ),

where γj(Mj, Tj, ψ) = (K−j+1)(ψj0+ψj1Mj)
Tj . For j = 2, · · · , K, Mj+1 is a linear function

on both Mj and Tj. E.g., Mj+1 = αj + βjMj + ηjTj. In this example, for simplicity we

will use each of αj and ηj as a set of zero values. Suppose K = 4, ψj0 = {75, 320, 60, 21},

ψj1 = {−1,−2,−0.5,−0.1}, β̄j = {1.5, 1.6, 1.25, 6} and we have five patients, that their

baseline covariates are M1 = {80, 78, 72, 68, 100}. How can we find the the optimal strategy

which maximises the mean final response?

We can calculate the final response of patient i with always-treat strategy and with never-

treat strategy, for all j. The mean difference between these treatment strategies is E(Y (1)−

Y (0)) which is shown in Table 3.1 to be estimated by 1
5
[3144.4− 2438] = 141.28.
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Subject i M1 M2 M3 M4 Y (0) Y (1)

1 80 120 192 240 490 625.0

2 78 117 187.2 234 478 644.4

3 72 108 172.8 216 442 702.6

4 68 102 163.2 204 418 741.4

5 100 150 240 300 610 431.0

Total 2438 3144.4

Table 3.1: Treatment effects

Now, to maximise Y (T̄ = t̄) we should follow the optimal policy,

doptj = max
Tj

γj(Mj, ψ),

that means we should treat the patient only when ψj0 + ψj1Mj ≥ 1, equivalently, when

Mji <
1−ψj0
ψj1

, where Mji is the state of patient i at time j. For this data, optimal treatment

strategies are {0, 1, 0, 0} for patients one, two and five and {1, 1, 0, 0} for other patients.

Optimal strategies for all patients are shown in the following table.

Subject i T̄ opt
4

∑
γj(M̄4, T̄

opt
4 , ψ) Yi(T̄

opt
4 )

1 {0, 1, 0, 0} 247 727

2 {0, 1, 0, 0} 265 733

3 {1, 1, 0, 0} 327 759

4 {1, 1, 0, 0} 379 787

5 {0, 1, 0, 0} 67 667

Total 3673

Table 3.2: Optimal treatment strategies

The mean final response when following optimal treatment strategies is E(Yi(T
∗)−Yi(0)) =

1
5
(3673− 2438) = 247, which is better than fixed treatment strategy.
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Figure 3.2: Mean states and com-

pared different strategies on the ex-

pected mean responses.

Figure 3.1 explains the states and the optimal treatment response for each patient compared

with standard regime and Figure 3.2 shows the means of states and improvements on the

mean final response when using optimal treatment strategies (blue line) instead of always-

treat strategies (green line), and with no-treat strategies (red line). In this example, there

are five fixed initial states, binary treatment and four time points. So for each patient i we

have 24 potential outcomes, e.g., the potential outcomes of patient 3. The following table

shows that only one path maximizes the final outcome. Things are often of course more

T̄4 E[Y (T̄4)] T̄4 E[Y (T̄4)] T̄4 E[Y (T̄4)] T̄4 E[Y (T̄4)]

0,0,0,0 442.0 0,1,0,0 751.0 1,0,0,0 450.0 1,1,0,0 759.0

0,0,0,1 440.4 0,1,0,1 749.4 1,0,0,1 448.4 1,1,0,1 757.4

0,0,1,0 387.2 0,1,1,0 696.2 1,0,1,0 395.2 1,1,1,0 704.2

0,0,1,1 385.6 0,1,1,1 694.6 1,0,1,1 393.6 1,1,1,1 702.6

Table 3.3: All possible potential outcomes of patient 3

40



complicated. For example, we might have random states, e.g., we generate a dataset with

Mj ∼ N(1−ψj0
ψj1

, σ2
Mj

). If we divide the states into two parts Mj <
1−ψj0
ψj1

and Mj ≥ 1−ψj0
ψj1

then we will face 28 different potential outcomes.

The particular problem for optimal dynamic treatment strategies with time varying covari-

ates means that Mj, as intermediate variables depend on earlier treatment and confounders

for later treatment decisions. That is why standard regression method gives biased es-

timators and the alternatives of the regret functions of Murphy (2003) or the blips of

G-estimation have been proposed.

3.2.1 The blip function model

This function is used by Robins (2004) to find an optimal regime. It is based on structural

nested mean models (SNMM), Robins (1986). Robins defines a SNMM as an expected

difference between a person’s counterfactual responses on a specific treatment regime from

time j+1 onwards and on another specific regime from time j conditional on history. There

are subclasses of SNMM’s, which are called the blip functions. We define an optimal blip-

to-reference function as the expected difference in outcome when using a reference regime

instead of tj at time j, in persons who subsequently receive the optimal regime with

treatment and covariate history.

Let a reference regime be denoted by dj
ref = dj

ref (m̄j, t̄j−1). Then let doptj+1 be an optimal

future regime after time j based on t̄j. The blip to reference at the jth time point will be

as follows,

γrefj (tj|M̄j, T̄j−1) = E(Y (tj, d
opt
j+1)|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

At the Kth time point,

γrefj (tK |M̄K , T̄K−1) = E(Y (tK)|M̄K , T̄K−1)− E(Y (drefK )|M̄K , T̄K−1))
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There is also another subclass of SNMMs, called optimal blip-to-zero functions, γj
zero de-

fined as the expected difference in outcome when using the zero regime (should be thought

of as a standard care), instead of treatment tj, in people who consequently receive the

optimal regime with treatment and covariate history.

γzeroj (tj|M̄j, T̄j−1) = E(Y (tj, d
opt
j+1)|M̄j, T̄j−1)− E(Y (dzeroj , doptj+1)|M̄j, T̄j−1)

3.2.2 The regret function model

Murphy (2003) modelled the regret function, which is based on structural nested mean

models (SNMM) (Robins 1986), and it is the negative of the optimal blip that uses the

optimal treatment at time j as the reference regime. Let the regret be

µj = µj(tj|M̄j, T̄j−1).

The regret function at the jth time point will be as follows

µj = E(Y (doptj )|M̄j, T̄j−1)− E(Y (tj, d
opt
j+1)|M̄j, T̄j−1) (3.1)

So if we have three time points:

µ1 = E(Y (dopt1 )|M1)− E(Y (t1, d
opt
2 )|M1),

µ2 = E(Y (dopt2 )|M̄2, T1)− E(Y (t2, d
opt
3 )|M̄2, T1),

µ3 = E(Y (dopt3 )|M̄3, T̄2)− E(Y (t3)|M̄3, T̄2).

The regret at tj is the expected difference in the outcome had the optimal treatment been

taken at j, instead of treatment tj, in participants who followed the observed regime up

to tj and the optimal regime from time j + 1 onwards. Since we hope to maximize Y ,

by definition the regret is non-negative and equals 0 when the optimal action is chosen.

When a non-optimal decision is chosen, the regret quantifies the loss in the mean of Y
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assuming that optimal decisions are made in the future, conditional on the history to time

j. Murphy suggests defining models for the regrets at each time point, these models being

non-parametric, semi-parametric or parametric.

3.2.3 Correspondence between the methods

Optimal blip functions and regrets correspond directly. As we have seen the optimal blip-

to-reference function at the jth interval is

γrefj = E(Y (tj, d
opt
j+1)|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

= E(Y (tj, d
opt
j+1)|M̄j, T̄j−1)− E(Y (doptj )|M̄j, T̄j−1)

+ E(Y (doptj )|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

Then

γrefj = E(Y (doptj )|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

− [E(Y (doptj )|M̄j, T̄j−1)− E(Y (tj, d
opt
j+1)|M̄j, T̄j−1)]

Thus

γrefj (tj|M̄j, T̄j−1) = µj(d
ref
j |M̄j, T̄j−1)− µj(tj|M̄j, T̄j−1)

Now, consider the regret function:

µj = E(Y (doptj )|M̄j, T̄j−1)− E(Y (tj, d
opt
j )|M̄j, T̄j−1)

We can write

µj = E(Y (doptj )|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

− E(Y (tj, d
opt
j )|M̄j, T̄j−1) + E(Y (drefj , doptj+1)|M̄j, T̄j−1)
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Then

µj = E(Y (doptj )|M̄j, T̄j−1)− E(Y (drefj , doptj+1)|M̄j, T̄j−1)

− [E(Y (tj, d
opt
j )|M̄j, T̄j−1)− E(Y drefj , doptj+1|M̄j, T̄j−1)]

Hence

µj(tj|M̄j, T̄j−1) = max
t
γrefj (t|M̄j, T̄j−1)− γrefj (tj|M̄j, T̄j−1)

In the next section, we will estimate the parameters ψ of the optimal blip-to-zero func-

tion and the regret function and investigate the robustness theoretically and through a

simulation study.

3.3 Estimation of Optimal Dynamic Treatment Regimes

3.3.1 G-estimation

G-estimation of structural nested models is a general method that can be further used

to estimate counterfactual means under any static or dynamic regime. It is a powerful

statistical tool that facilitates the estimation of complex exposures over time in the presence

of time-varying confounding and even in the presence of interaction between exposures and

covariates that vary over time (Robins 1986, 2004; Robins et al. 2008). In the presence

of such covariates, standard approaches for adjustment for confounding are biased (more

details can be found in Chapter 5, Section 3). Robins proposes finding the parameters ψ

of the optimal blip-to-zero function via G-estimation. He defined Hj as the outcome of a

person adjusted by the expected difference between the average outcome if he received tj

instead of the optimal at time j, with given treatment and covariate history to time j − 1
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and who was subsequently treated optimally after time j.

Hj(ψ) = Y +
K∑
i=j

[γzeroi (dopti |M̄i, T̄i−1;ψ)− γzeroi (ti|M̄i, T̄i−1;ψ)].

Returning to blip function definition:

Hj(ψ) = Y +
K∑
i=j

{E(Y (dopti )|M̄i, T̄i−1)− E(Y (dzeroi , dopti+1)|M̄i, T̄i−1)

− [E(Y (ti, d
opt
i+1)|M̄i, T̄i−1)− E(Y (dzeroi , dopti+1)|M̄i, T̄i−1)]}

= Y +
K∑
i=j

E(Y (dopti )|M̄i, T̄i−1)− E(Y (ti, d
opt
i+1)|M̄i, T̄i−1).

For example, if K = 3 then:

H3(ψ) = Y + E(Y (dopt3 )|M̄3, T̄2)− E(Y (t3)|M̄3, T̄2)

H2(ψ) = Y + E(Y (dopt2 )|M̄2, T1)− E(Y (t2, d
opt
3 )|M̄2, T1)

+ E(Y (dopt3 )|M̄3, T̄2)− E(Y (t3)|M̄3, T̄2)

H1(ψ) = Y + E(Y (dopt1 )|M1)− E(Y (t1, d
opt
2 )|M1)

+ E(Y (dopt2 )|M̄2, T1)− E(Y (t2, d
opt
3 )|M̄2, T1)

+ E(Y (dopt3 )|M̄3, T̄2)− E(Y (t3)|M̄3, T̄2).

We can obtain that

Hj(ψ) = Y +
K∑
i=j

µi(ti|M̄i, T̄i−1;ψ)

where Hj(ψ) is the counterfactual outcome, i.e., Hj(ψ) = Y [(doptj )|M̄j, T̄j−1;ψ] (Robins,

2004, p. 204).

Let Sj = fj(m̄j, t̄j;ψ), be a vector function determined by interactions between the vari-

ables and treatment which may affect the outcome. It depends on treatment and history.

Further, let pj(tj|m̄j, t̄j−1;α), be the probability of receiving treatment tj or the prob-

ability density function if t is continuous. Suppose the blip is linear, as an example,

45



γj = tj(ψj0 + ψj1mj). In this case we might take Sj = ∂
∂ψ

(γj) = tj(1,mj)
T .

Specifying the functions Hj(ψ) and Sj function for the estimation to influence outcome,

then we define

L(ψ, S) =
K∑
j=1

Hj(ψ){Sj(M̄j, T̄j)− E[Sj(M̄j, T̄j)]} (3.2)

We will estimate ψ as the value for which L(ψ̂, S) = 0.

3.3.2 Unbiasedness

To be sure that E[L(ψtrue, s)] = 0, let us assume Assumption 1 and Assumption 2 of con-

sistency and no unmeasured confounders that were explained in Section 2.4.5 and assume

that M1 is a random variable considered to be a baseline covariate at the start of the first

interval, Mj, where j = 2, · · · , K, are random variables denoting the status at the begin-

ning of the jth interval and Y is a random variable denoting the final response at the end

of the Kth interval

Y = Φ−
K∑
j=1

µj(tj|M̄j, T̄j−1),

where Φ might be depend on any subset of M̄K but does not depend on any of T̄j, that

Hj(ψtrue) = Y +
K∑
i=j

µi(ti|M̄i, T̄i−1, ψtrue),

then

H1(ψtrue) = Φ,

H2(ψtrue) = Φ− µ1(t1|M1, ψtrue),

and

Hj(ψtrue) = Φ−
j−1∑
i=1

µi(ti|M̄i, T̄i−1, ψtrue).

46



By the assumption of no unmeasured confounders, that new treatments are assigned

independently of potential future responses to treatment, conditional on the history of

treatments and response to date. Hj is dependent on T̄j−1, but Hj is independent of

T j. Here the conditional independence justified by sequential ignorability. We know that

E[xy] = E[x]E[y] + [x, y], so

E[L(ψtrue)] =
K∑
j

E[Hj(ψtrue){Sj(M̄j, T̄j)− E[Sj(M̄j, T̄j)]}],

=
K∑
j

E[Hj(ψtrue)]E{Sj(M̄j, T̄j)− E[Sj(M̄j, T̄j)]}

+ cov[Hj(ψtrue), {Sj(M̄j, T̄j)− E[Sj(M̄j, T̄j)]}].

Note E{Sj(M̄j, T̄j) − E[Sj(M̄j, T̄j)]} = 0. The {Hj(ψtrue), [Sj − E(Sj|M̄j, T̄j)]} is equal

to zero. Thus we can conclude that Sj depends on Tj given its earlier history, but Hj is

independent of Tj given its earlier history and so the covariance is zero. Now we have that

E[L(ψtrue)] = 0. Thus it is an unbiased estimating equation from which consistent provided

the treatment allocation probabilities, pj(tj|T̄j−1, M̄j), are known or correctly modelled, so

that the values of E[Sj|M̄j, T̄j] are correctly specified.

Robins (2004) refined the following equation to gain efficiency,

L(ψ, S) =
k∑
j=1

[Hj(ψ)− E[Hj(ψ)|M̄j, T̄j−1]]{Sj(M̄j, T̄j)− E[Sj(M̄j, T̄j)]} (3.3)

Using E[Hj(ψ)|M̄j, T̄j−1]) gives more efficient estimators than those found using Equation

3.2. Robins proves that estimates found by Equation 3.3 are consistent provided either

E[Hj|M̄j, T̄j] or E[Sj|M̄j, T̄j] is correctly modelled, and thus is said to be doubly-robust.

3.3.3 Modification

When optimal blips are linear in ψ, we can solve for ψ̂ explicitly. Use the modification

Hmod,j(ψ) = Y − γj(tj|M̄j, T̄j−1;ψ) +
K∑
i=j

[γi(d
opt
i |M̄i, T̄i−1;ψ)− γi(ti|M̄i, T̄i−1;ψ)].
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which is a person’s outcome adjusted by the expected difference between the average out-

come for someone who received tj and someone who was given the zero regime at time

j, who both had the same treatment and covariate history to time j and were treated

optimally from time j + 1.

3.3.4 Iterative minimization for optimal regimes (IMOR)

Murphy (2003) introduced a method to estimate optimal decision rules to produce the

maximum final mean response. To estimate the regret function parameters, we can follow

estimation procedures which are based on the least squares characterization. Let us suppose

that µj : j = 1, 2, . . . , K, is the regret function, and that pj(tj|M̄j, T̄j−1), the conditional

probability of a treatment tj for given history, is known. Murphy shows that each µj in a

vector of µ̄K satisfies both the constraints,inf µj(t|M̄j, T̄j−1) = 0 and,

E[Y +
K∑
i=1

µi(ti|M̄i, T̄i−1)−
∑
t

µj(t|M̄j , T̄j−1)pj(t|M̄j , T̄j−1)]2 ≤

E[Y +
K∑

i=1,i 6=j
µi(ti|M̄i, T̄i−1) + µj(tj |M̄j , T̄j−1)−

∑
t

µj(t|M̄j , T̄j−1)pj(t|M̄j , T̄j−1]2,

for all µj : j = 1, 2, . . . , K. Murphy suggests that we replace Y by Y + c where c is

an unknown scalar in order to improve the stability of the minimization. Murphy (2003)

developed a method that estimates the parameters of the optimal regime, ψ, by searching

for (ψ̂; ĉ) which satisfy

K∑
j=1

Pn[Y + ĉ+

K∑
i=1

µi(ti|M̄i, T̄i−1, ψ̂)−
∑
t

µj(t|M̄j , T̄j−1, ψ̂)pj(t|M̄j , T̄j−1; α̂)]2 ≤

K∑
j=1

Pn[Y + c+

K∑
i=1,i 6=j

µi(ti|M̄i, T̄i−1, ψ̂) + µj(tj |M̄j , T̄j−1, ψ)−
∑
t

µj(t|M̄j , T̄j−1, ψ)pj(t|M̄j , T̄j−1, α̂), ]2

for all c and all ψ, where Pnf = 1
n

∑n
i=1 f(.) is the empirical average function. Treat-

ment probabilities, e.g., pj(t|M̄j, T̄j−1, α̂) can be estimated. Murphy describes an iterative

method of finding solutions to the previous estimation equation, which begins by selecting
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an initial value of ψ̂, say ψ̂old, then minimizing the right-hand side (RHS) of the equation

over (ψ̂; ĉ) to obtain a new value of ψ, ψ̂new, and repeating this until convergence.

3.3.5 Simulation examples

Simulation 1

Moodie, Richardson and Stephens (2007) use a simple two time point example with Normal

states and binary actions. We replicate their example that data were generated as M1 ∼

N(450, 1502), T1 ∼ Bern(0.5), M2 ∼ N(1.25M1, 602) and T2 ∼ Bern(0.5). Blip functions

were parameterised, leading to regrets

µ1(t1|M1;ψ) =


I(t1 = 0)(ψ10 + ψ11M1) ψ10 + ψ11M1 > 0

−I(t1 = 1)(ψ10 + ψ11M1) ψ10 + ψ11M1 < 0

µ2(t2|M̄2, T1;ψ) =


I(t2 = 0)(ψ20 + ψ21M1) ψ20 + ψ21M2 > 0

−I(t2 = 1)(ψ20 + ψ21M2) ψ20 + ψ21M2 < 0

and then response Y ∼ N(400 + 1.6M1 − µ1(T1|M1;ψ)− µ2(T2|M̄2, T1;ψ), 602).

3.3.6 Results

The goal of this simulation is to compare the performance of Robins and Murphy meth-

ods discussed in this chapter, as well to illustrate the double-robustness of G-estimation

Equation 3.3.

All results are presented in Table 3.4 for K = 2 time points. Using each of G-estimation

and IMOR, we estimate the parameter ψ for 1000 data-sets with sample sizes of 500,

1000 patients respectively. In Table 3.4 IMOR results give unbiased estimators with more

efficiency than G-estimation using Equation 3.2. Robins (2004) uses G-estimation Equation

3.3, to give estimates which are said to be doubly-robust. In implementing G-estimation
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ψ ψ̂ SE rMSE Cov.∗ ψ̂ SE rMSE Cov.∗

n = 500 n = 1000

g-est. eqn.(3.2)

ψ10 = 250 249.364 309.119 308.965 94.8 240.276 223.771 223.870 95.1

ψ11 = −1 -1.021 0.736 0.736 94.9 -0.979 0.538 0.538 94.6

ψ20 = 720 734.252 257.664 257.929 94.8 734.187 182.279 182.740 95.4

ψ21 = −2 -2.040 0.492 0.493 95.8 -2.033 0.346 0.348 95.3

g-est.∗∗ eqn.(3.3) incorrect model

ψ10 = 250 247.224 17.312 17.524 93.7 248.437 12.822 12.910 95.2

ψ11 = −1 -0.993 0.037 0.038 94.1 -0.995 0.027 0.028 95.1

ψ20 = 720 719.384 36.678 36.665 95.1 719.600 27.184 27.173 94.9

ψ21 = −2 -1.999 0.077 0.077 94.7 -1.999 0.057 0.057 94.7

g-est.∗∗∗ eqn.(3.3) correct model

ψ10 = 250 249.529 17.828 17.825 95.0 249.802 12.676 12.671 95.5

ψ11 = −1 -1.000 0.037 0.037 94.9 -0.999 0.027 0.027 95.0

ψ20 = 720 719.529 17.682 17.679 94.6 719.723 12.407 12.404 94.1

ψ21 = −2 -1.999 0.029 0.029 95.2 -2.000 0.021 0.021 94.1

IMOR

ψ10 = 250 251.292 191.348 191.257 95.2 253.198 133.370 133.342 95.1

ψ11 = −1 -0.999 0.432 0.432 95.3 -1.006 0.302 0.302 95.4

ψ20 = 720 717.450 193.615 193.535 95.2 718.673 131.550 131.490 94.7

ψ21 = −2 -1.997 0.299 0.299 94.9 -1.997 0.203 0.203 94.8

∗ Coverage of 95% Wald-type confidence intervals

∗∗ E[Hmod,j(ψ)|m̄j , t̄j] linear in m̄j , t̄j (incorrect model)

∗ ∗ ∗ E[Hmod,j(ψ)|m̄j , t̄j] piece-wise linear (correct model)

Table 3.4: Estimation of ψ parameters using G-estimation and IMOR for 1000 data-sets
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Equation 3.3, two models were considered for E[Hmod,j(ψ)|M̄j, T̄j−1]. The first assumed

that E[Hmod,j(ψ)|M̄j, T̄j−1] depends linearly on all of the earlier history (the incorrect

model). The second is the correct model which allowed the mean function to be piece-

wise, discontinuous linear with the optimal rule thresholds.

T1 M1 M2 E[H2|M̄2, T̄1]

0 ≥ −ψ10

ψ11
≥ −ψ20

ψ21
400 + 1.6M1

1 < −ψ10

ψ11
≥ −ψ10

ψ11
400 + 1.6M1

0 < −ψ10

ψ11
≥ −ψ10

ψ11
400 + 1.6M1 − (ψ10 + ψ11M1)

1 ≥ −ψ10

ψ11
≥ −ψ10

ψ11
400 + 1.6M1 + (ψ10 + ψ11M1)

0 ≥ −ψ10

ψ11
< −ψ10

ψ11
400 + 1.6M1 − (ψ20 + ψ21M2)

1 < −ψ10

ψ11
< −ψ10

ψ11
400 + 1.6M1 − (ψ20 + ψ21M2)

0 < −ψ10

ψ11
< −ψ10

ψ11
400 + 1.6M1 − (ψ10 + ψ11M1)− (ψ20 + ψ21M2)

1 ≥ −ψ10

ψ11
< −ψ10

ψ11
400 + 1.6M1 + (ψ10 + ψ11M1)− (ψ20 + ψ21M2)

Table 3.5: E[H2|M̄2, T̄1] at the optimal solution using G-estimation Equation 2.2, to make

sure that E(H2 − E[H2|M̄2, T̄1]) = 0

The efficiency gained instead of using Equation 3.2 is considerable. However, both of the

two models in G-estimation Equation 3.3 give more efficiency comparing with IMOR of

Murphy (2003). But using the correct model for E[Hmod,2(ψ)|M̄2, T̄1 also leads to increased

efficiency. Table 3.5 explains that in this model the E[Hmod,1(ψ)|m̄1, t̄1] should equal to

400 + 1.6M1if M1 ≥ −ψ10

ψ11
and 400 + 1.6M1 − (ψ10 + ψ11M1) otherwise. This is so because

the patient should not be treated when M1 ≥ −ψ10

ψ11
. At the second interval, we use the

optimal rule to calculate E[Hmod,2(ψ)|M̄2, T̄1]. Table 3.4 explains that we have 23 different

possibilities. So if T1 = 1, and M1 ≥ 250,M2 < 360, then E[Hmod,2(ψ)|M̄2, T̄1] = 400 +
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1.6M1−(ψ20+ψ21M2)+(ψ10+ψ11M1)I(ψ10+ψ11M1 < 0)+(ψ20+ψ21M2)I(ψ20+ψ21M2 < 0),

E[Hmod,2(ψ)|M̄2, T̄1] = 400 + 1.6M1 + (ψ10 + ψ11M1)− (ψ20 + ψ21M2).

That means the optimal decision at j = 1 is that the patient should not take treatment

when M1 ≥ −ψ10/ψ11, and should take treatment that at j = 2, because M2 < −ψ20/ψ21.

Simulation 2

In this simulation our goal is to extend Moodie, Richardson and Stephens (2007) by us-

ing a three time point example. States were generated as M1 ∼ N(450, 1502), M2 ∼

N(1.25M1, 602) and M2 ∼ N(1.6M1, 602). Actions were generated as Tj ∼ Bern(0.5). The

final response was

Y ∼ N(400 + 2M1 − µ1(T1|M1;ψ)− µ2(M2|M̄2, T1;ψ)− µ3(T3|M̄3, T̄2;ψ), 602),

where the regret functions were

µ1(t1|M1;ψ) =


I(t1 = 0)(ψ10 + ψ11M1) ψ10 + ψ11M1 > 0

−I(t1 = 1)(ψ10 + ψ11M1) ψ10 + ψ11M1 < 0

µ2(t2|M̄2, T1;ψ) =


I(t2 = 0)(ψ20 + ψ21M2) ψ20 + ψ21M2 > 0

−I(t2 = 1)(ψ20 + ψ21M2) ψ20 + ψ21M2 < 0

µ3(t3|M̄3, T̄2;ψ) =


I(t3 = 0)(ψ30 + ψ31M3) ψ30 + ψ31M3 > 0

−I(t3 = 1)(ψ30 + ψ31M3) ψ30 + ψ31M3 < 0

Results are given in Table 3.6. They are similar with results when using two time points.

We estimate the parameter ψ for 1000 data-sets with sample sizes of 500, 1000 patients re-

spectively. IMOR gives unbiased estimators with more efficiency than G-estimation using

Equation 3.2, but less efficiency comparing with both of the two models in G-estimation
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Equation 3.3. G-estimation Equation 3.3, gives estimates which are similar to those when

K = 2. The efficiency gained by using the G-estimating Equation 3.3 instead of Equa-

tion 3.2 is considerable whether we use the incorrect model for E[Hmod,3(ψ)|M̄3, T̄2] which

depends linearly on all of earlier history or use the correct model for E[Hmod,3(ψ)|M̄3, T̄2

which allowed the mean function to be piece-wise discontinuous linear with the optimal

thresholds (see a table in Appendix 9.2 which explains that, where we have 25 different

possibilities of E(Hmod,3|.)).

3.4 Dynamic Programming for Optimal Regime (DPOR)

As shown in the previous chapter, dynamic programming is able to solve complex dynamic

decision problems. In this section we aim to use a function of dynamic programming as

an alternative approach for estimating the dynamic treatment regime. We try to show the

similarities that are shared between DP and the methods of G-estimation and IMOR and

what might seem different.

3.4.1 The dynamic programming model

Let an optimal dynamic programming regime at time point j = 1, · · · , K be denoted by

dj
opt. Tj represents a treatment (decision) at the jth time point, we suppose Tj is a binary

(0,1) decision. The aim is to maximize the final response at the end of the last time point.

At the Kth decision point

ηK(M̄K , T̄K) = E[Y |M̄K , T̄K ],

dK
opt(tK |M̄K , T̄K−1) = arg max

tK
ηK(M̄K , T̄K).
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ψ ψ̂ SE rMSE Cov.∗ ψ̂ SE rMSE Cov.∗

n = 500 n = 1000

g-est. eqn.(3.1)

ψ10 = 250 256.598 384.230 384.095 95.1 249.124 252.773 252.648 94.7

ψ11 = −1 -1.020 0.923 0.923 94.1 -0.997 0.615 0.614 94.5

ψ20 = 720 733.568 317.892 318.023 94.9 733.813 223.947 224.260 95.2

ψ21 = −2 -2.036 0.600 0.600 94.8 -2.040 0.418 0.420 93.9

ψ30 = 1310 1338.391 270.646 271.997 94.4 1313.054 182.217 182.152 95.2

ψ31 = −3 -3.047 0.382 0.385 94.9 -3.006 0.257 0.257 95.0

g-est.∗∗ eqn.(3.2) incorrect model

ψ10 = 250 247.850 86.108 86.091 95.4 247.011 61.390 61.432 94.8

ψ11 = −1 -0.991 0.163 0.163 95.1 -0.991 0.115 0.116 94.4

ψ20 = 720 715.439 38.578 38.828 95.3 715.213 27.901 28.295 94.7

ψ21 = −2 -1.990 0.080 0.081 94.8 -1.990 0.058 0.059 94.7

ψ30 = 1310 1312.104 92.291 92.269 95.2 1308.968 65.821 65.796 94.6

ψ31 = −3 -3.002 0.152 0.152 95.8 -2.998 0.108 0.108 94.7

g-est.∗∗∗ eqn.(3.2) correct model

ψ10 = 250 250.879 16.630 16.645 94.6 249.896 12.117 12.111 95.1

ψ11 = −1 -1.002 0.035 0.035 94.4 -1.000 0.026 0.025 94.2

ψ20 = 720 719.836 16.442 16.434 95.1 720.495 11.545 11.550 94.7

ψ21 = −2 -2.000 0.028 0.027 94.7 -2.001 0.019 0.019 95.4

ψ30 = 1310 1309.638 17.212 12.207 94.8 1309.985 11.862 11.857 95.5

ψ31 = −3 -2.999 0.023 0.023 93.5 -3.000 0.016 0.016 95.5

IMOR

ψ10 = 250 248.671 254.063 253.940 95.2 244.147 183.709 183.711 95.0

ψ11 = −1 -1.000 0.624 0.624 94.8 -0.986 0.446 0.446 94.6

ψ20 = 720 732.780 213.515 213.790 94.9 712.411 145.139 145.265 94.4

ψ21 = −2 -2.020 0.347 0.347 95.3 -1.986 0.240 0.240 95.1

ψ30 = 1310 1310.822 262.622 262.492 94.9 1309.778 192.021 191.925 94.8

ψ31 = −3 -3.000 0.340 0.340 95.1 -2.998 0.246 0.246 94.8

∗ Coverage of 95% Wald-type confidence intervals

∗∗ E[Hmod,j(ψ)|m̄j , t̄j ] linear in m̄j , t̄j (incorrect model)

∗ ∗ ∗ E[Hmod,j(ψ)|m̄j , t̄j ] piece-wise linear (correct model)

Table 3.6: Estimation of ψ parameters using G-estimation and IMOR for 3 time points

and 1000 data-sets of sample sizes 500 and 1000

54



Figure 3.3: The optimal decision using dynamic programming.
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Then at the jth decision point

ηj(M̄j, T̄j) = E[Y (Tj)|M̄j, T̄j−1],

=
∑
M̄j+1

maxE[Y (Tj)|M̄j, T̄j−1]× Pr(Mj+1|M̄j, T̄j),

dj
opt(tj|M̄j, T̄j−1) = arg max

tj
ηj(M̄j, T̄j−1).

3.4.2 Simulation results using dynamic programming and other

methods

We will use dynamic programming methodology to find the optimal treatment regime, for

the two time point example, and compare the results with other methods via simulations.

Figure 3.3 shows an example for how to use DP policy to decide the optimal decisions. At

the second time point

η2(M̄2, T̄2) = E[Y (T2)|M̄2, T̄1],

d2
opt(t2|M̄2, T1) = arg max

t2
η2(M̄2, T̄1).

Thus through the distribution of E[Y |M̄2, T̄2] we can decide which roles can be followed for

choosing optimal strategies, e.g., by comparing which T2 leads to maxt2 η2(M̄2, T1). Then

at the first decision point

η1(M1, T1) = E[Y (T1)|M1],

=
∑
M̄2

maxE[Y (T1)|M̄2]× E(M̄2|M1, T1),

d1
opt(t1|M1) = arg max

t1
η1(M1, T1).

Generally, the roles for finding optimal dynamic strategies for all time points j < K,

are based on all distributions of E[Mj+1|M̄j, T̄j] and E[Y (Tj)|M̄j, T̄j−1]. Table 3.7 shows
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the results of generating the data using the following different policies: random decisions,

decisions using true values of ψ, decisions using estimated values of ψ by dynamic program-

ming, decisions using estimated values of ψ by G-estimation and decisions using estimated

values of ψ by IMOR.

Dynamic programming G-estimation IMOR Random True ψ

n = 100

Y 1119.8251 1119.9568 1119.8424 780.2857 1120.1642

SE 30.38086 24.55009 24.64223 33.44929 24.75274

n = 500

Y 1120.1385 1120.0371 1120.1484 780.7488 1120.2901

SE 11.00288 11.04423 10.99385 14.94091 11.02842

n = 1000

Y 1120.0847 1120.1040 1120.1027 780.4983 1120.0963

SE 7.842017 7.857395 7.783616 10.701643 7.858123

Table 3.7: Mean optimal response using dynamic programming, G-estimation, IMOR,

Random, True ψ for 2 time points and simulations of 100 data-sets of sample sizes 100,

500 and 1000

The random policy gives small estimated mean values with high standard errors since we

did not use any rules for choosing actions. Dynamic programming gives close estimates

which are similar to those when using the true values of ψ. But standard errors seem

high in cases of modest samples, e.g., n = 100 in this example. On the other hand, both

G-estimation and IMOR give better estimators even with this small sample size. Thus we
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can conclude that dynamic programming method gives the optimal actions, but it seems

there are many difficulties for implementation such as small sample size, especially when

time points are increased, discrete states and responses are needed to calculate earlier

states probabilities. However, a large number of expectations are needed to calculate the

final response. In total, for this simple example, we need to calculate 2 × (8 + 2) = 20

expectations in working out the optimal policy. If the example had K = 3 decision stages,

still with binary decisions and binary states, we would have needed 2× (32 + 8 + 2) = 42

expectations. For general K we need 2× (22K−1 + 22K−3 + . . .+ 2) expectations.

3.5 Discussion

This chapter has explained the connections between Robins and Murphy methods that

where introduced to make inference about optimal dynamic treatment regimes. The meth-

ods are very similar, but not equivalent. The efficiency of IMOR and G-estimation has

been shown: G-estimates from equation 3.2 are efficient when the models for the mean and

the variance of the counterfactual are correct.

The choice of which method to use in practice is open. G-estimation may be easier to

implement particularly if the optimal blip is linear. In order to believe in Assumption

1 ’no unmeasured confounders’ in an observational study, typically many covariates need

to be included which makes models prone to misspecification and dynamic programming

impossible, hence double-robustness seems like a strong point. But still a risk if both of

E[Hj|M̄j, T̄j] or E[Sj|M̄j, T̄j] are not correctly modelled. Then the model can lead not only

to incorrect estimates of the optimal decision, but to incorrect conclusions as to whether

treatment is beneficial. We conclude that, it is important to be aware of the models for

observables which are then used in implementation.
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Chapter 4

Regret-Regression for Optimal

Dynamic Treatment Regimes

4.1 Introduction

As seen there is increasing interest in methods for determining optimal dynamic treatment

rules from observational data. Several authors have investigated conditions under which

valid causal inference can be obtained while others have concentrated more on estimation

for a variety of problems (e.g. Hogan and Lee 2004, Johnson 2008, Lok et al 2004, Moodie

et al 2007, Murphy 2003, Petersen et al 2007, Robins 2004).

In samples of modest size there is no realistic alternative to parametric modelling of at

least some components of the terms needed to determine an optimal regime. In turn this

brings the risk that the chosen model is not suitable for the data. Fundamental statistical

practice of model building, checking and comparison has had little attention so far in this

literature.

The general problem was described in Chapter 3. Two broad classes of methods are avail-

able, which we can think of as direct and indirect. The direct class can be based on
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modelling of E[Y |M̄j, T̄j1] or E[Y |T̄j]. The problem is then how to tease out the causal

effects of actions, which may require some form of dynamic programming as well as addi-

tional modelling of Mj+1 given (M̄j, T̄j). The computational burden of such an approach

scales dramatically with K and soon becomes infeasible. Structural nested mean models

(eg Robins, 1994) also fall within the direct class and have an advantage in interpretability.

Computational issues remain formidable however. The indirect approach by contrast does

not attempt to model the response Y . Instead, causal effects expressed as differences be-

tween counterfactuals - outcomes that might have occurred - are parameterised. Examples

of these are the regrets of Murphy (2003) and the blips of Robins (2004). Interpretation of

estimates is then easier but now model adequacy is less straightforward, since there is no

model for the observed response. Computational problems are reduced but not removed.

We propose a modelling and estimation strategy which incorporates the regret functions of

Murphy (2003) into a regression model for observed responses. Implementation is therefore

the focus of this chapter, in which we present and apply a method which:

• is straightforward to implement;

• provides direct estimates of causal parameters;

• allows diagnostic model assessment and model comparisons.

The aim is to combine traditional regression modelling of responses with the described

methods for modelling causal effects. Our target is problems of modest sample size in

which parametric models are likely to be the only feasible way forward, in which case it

is especially important that some form of model assessment procedure be available. The

method combines the strengths of the two approaches and is moreover computationally

undemanding. The idea is straightforward: we simply include parameterised regret func-

tions in a regression model for Y . Provided the remaining terms in the model are correctly
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specified, and the usual causal inference assumptions hold, we have the advantage of mod-

elling an observable quantity and hence diagnostic capability, yet from the fitted model

we can read off the optimal decisions and also the consequences of suboptimal ones. And

the computational challenge is simply to fit the chosen model to the responses, which may

require only standard methods and software. Estimation is quick and diagnostics are avail-

able, meaning a variety of candidate models can be compared. The method is illustrated

using two simulation scenarios of Murphy (2003) and Moodie et al (2007). The approach

is described in the next section then the simulations are used in Section 4.3 to investigate

the proposal.

4.1.1 Simple example

Let us introduce at this point an extremely simple example which will be used to fix ideas.

All subjects are assumed to start in the same state M1, which can thus be ignored, and

there is then a sequence T1M2T2 of binary variables followed by some response Y .

Row T1 M2 T2 N E[Y |T1,M2, T2]

1 0 0 0 50 3

2 0 0 1 50 8

3 0 1 0 120 2

4 0 1 1 280 7

5 1 0 0 280 6

6 1 0 1 70 5

7 1 1 0 135 4

8 1 1 1 15 1

Table 4.1: The data
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Figure 4.1: The number of subjects and the average value of the outcome E[Y |T1,M2, T2]

Table 4.1 and Figure 4.1 show the set-up and the parameter choices we use for illustration.

Recall Equation (3.1) that doptj is understood to mean that the optimal policy regime is

followed from time j, and that regret at time j is defined as

µj(tj|M̄j, T̄j−1) = E(Y | M̄j, T̄j−1, d
opt
j )− E(Y | M̄j, T̄j−1, tj, d

opt
j+1).

Optimal actions can be taken by working from the final time point and choosing the actions
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when regrets are equal to zero. To choose optimal actions at the final time point, regrets

are directly calculated. At other time point j = 1, · · · , k − 1, we might choose optimal

actions by calculation of regrets through the expectation of optimal final rewards given

the history of previous states and actions. Regrets for making the wrong decision at the

second time-point can be read directly from the figure, as 5,5,1 and 3 for (T1,M2) equal to

(0,0),(0,1),(1,0) and (1,1) respectively. Choice T1 = 0 is optimal for the first time-point and

the regret for choosing T1 = 1 can be worked out to be 1.8, which is estimated consistently

using Equation (3.2).

We turn now to the direct approach, which involves two stages. The first stage, regression,

involves modelling the observable data. The second stage, dynamic programming (DP)

or backward induction, uses the models to determine optimal actions, working iteratively

from the last time stage. For the simple example there are eight different T1M2T2 sequences

and hence eight parameters in a saturated model for the response Y . Using the standard

main effects and interaction formulation these are

Const T1 M2 T1M2 T2 T1T2 M2T2 T1M2T2

3 3 -1 -1 5 -6 0 -2

From this we can calculate the mean response at each of the eight T1M2T2 sequences and

hence the regrets due to choices T2 for each (T1,M2). Dealing with the first decision time

is trickier: for each of the two values of T1 we need to calculate

∑
M2

E[Y |T1,M2, T
opt
2 ]P (M2|T1),

from which the optimal choice and regret can be found. In total, for general K we need

22K−1 + 22K−3 + . . . + 2 expectations. Moreover, we need the multivariate distribution of

possible states M as well as our model for Y .

In order to complete our treatment of the simple example of Figure 4.1 we will anticipate

a little and apply the regret-regression method to be described in the next section. Let
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I(t1) = I(T1 = t1), I(t1m2) = I(T1 = t1,M2 = m2) and I(t1m2t2) = I(T1 = t1,M2 =

m2, T2 = t2). Further, let Z2(t1) be the residual between M2 and its expected value given

T1 = t1. So Z2(0) = M2 − p0 and Z2(1) = M2 − p1 where p0 = 0.8 and p1 = 0.3, both of

which would need to be estimated in practice. Instead of the eight-parameter main effects

and interaction model summarised in the previous section, we obtain exactly the same

saturated fit using a linear model with the eight covariates given below, along with their

associated parameter values.

Const I(1) Z2(0)I(0) Z2(1)I(1) I(000) I(010) I(101) I(111)

7.2 -1.8 -1 -2 -5 -5 -1 -3

This time we can read off directly that the mean response if the optimal regime is always

followed is 7.2. Choosing the wrong action at the first decision time will cost 1.8 in mean.

The wrong actions at the second time lead to regrets of 5,5,1 and 3 depending on the

earlier sequence (T1,M2). The other two terms measure the effects of M2 after allowing

for the effect of T1. For each value of T1 in this example having M1 = 1 is associated with

a decrease in mean: by 1× (1− 0.8) if T1 = 0 and by 2× (1− 0.3) if T1 = 1, in both cases

assuming the optimal T2 is chosen.

In fitting this model we have chosen the covariates knowing which action is optimal at each

time. Reaching this point is trivial: we first take a working optimal for each decision and

define the covariates accordingly. For example we might have included I(001) instead of

I(000). At the first fit the signs of the final four coefficients determine which actions are

indeed optimal: a positive value appears if the working version is wrong. We thus obtain

the true optimal decisions at the second time and then re-fit the model. Generally, several

iterations of model fitting are necessary. We need to re-fit the model with negative values

of regrets at all time points from time K to time 2. This time the sign of the second

coefficient - the regret at time 1 - determines the optimal. Thus only two model fits are

64



required. Each requires a linear model and negligible effort.

4.2 Regret-Regression Method

With the regrets defined as in Equation (3.1), Murphy (2003, equation 12) showed that

E(Y |M̄K , T̄K) = β0(M1) +
K∑
j=2

φj(M̄j−1, T̄j−1,Mj)−
K∑
j=1

µj(Tj|M̄j, T̄j−1), (4.1)

where

φj(M̄j−1, T̄j−1,Mj) = E{Y (doptj )|M̄j−1, T̄j−1,Mj} − E{Y (doptj )|M̄j−1, T̄j−1} (4.2)

which compares the expected potential response under the optimal rule after Mj is revealed

with the corresponding expected value before Mj is revealed. Thus the achieved response

Y is affected by the initial condition (through β0), the chosen actions (Tj) (through the

regrets µ) and the chance development over time of the states (Mj) (through the φ terms).

Turning to estimation, both Murphy iterative minimization and Robins G-estimation

methods require knowledge of the action probability distribution used in data generation,

P (tj|M̄j, T̄j−1). In a randomized trial this would of course be known, but more generally

it needs to be estimated. Rosthoj et al (2006) speculated, with support from simula-

tion experiments, that small misspecifications could lead to convergence difficulties in the

estimation algorithms.

For our purposes this is sufficient: the regrets can be modelled directly. Throughout we

suppose the three assumptions, which are discussed in Section 3.4.5. A second class to

Assumption 3 can be added that the optimal regimes are taken to mean optimal over

regimes which have positive probability of occurring in the sample data or which are

parametrically identified from observable data. Furthermore we will add the following two

assumptions
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Assumption 4: Finite second moment for Y .

Assumption 5: Between-subject independence. The further assumptions of the indepen-

dence and constant variance are to help ensure that our least squares are well behaved.

Our proposal is that instead of avoiding the φj(M̄j−1, T̄j−1,Mj) terms in Equation 4.2

we explicitly parameterize them, as φj(M̄j−1, T̄j−1,Mj; β) say, and then simultaneously

estimate β and ψ by regressing the observed responses on their associated expectations

Equation 4.1. We are not free to parameterize φj(M̄j−1, T̄j−1,Mj) arbitrarily however. As

φj(M̄j−1, T̄j−1,Mj) = E{Y (doptj )|M̄j−1, T̄j−1,Mj} − E{Y (doptj )|M̄j−1, T̄j−1}

= E{Y (doptj )|M̄j−1, T̄j−1,Mj}

− EMj |M̄j−1,T̄j−1
[E{Y (doptj )|M̄j−1, T̄j−1,Mj}],

we see that by construction EMj |M̄j−1,T̄j−1

{
φj(M̄j−1, T̄j−1,Mj)

}
= 0. Any parameterization

needs to respect this condition: the expected value over Mj of each φj(.) term, given the

past, needs to be zero.

The proposal is straightforward: model φj(M̄j−1, T̄j−1,Mj) as a linear combination of resid-

uals between Mj (or functions thereof) and the corresponding conditional expectation given

(M̄j−1, T̄j−1). Hence we define Zj = Mj−E(Mj|M̄j−1, T̄j−1) and note that the expectation

is identified from observational data for (M̄j−1, T̄j−1) values of interest. Then assume

E(Y |M̄K , T̄K) = β0(M1) +
K∑
j=2

βTj (M̄j−1, T̄j−1)Zj −
K∑
j=1

µj(Tj|M̄j, T̄j−1). (4.3)

Here βj(M̄j−1, T̄j−1) is a coefficient vector measuring the effect of Mj after allowing for

(M̄j−1, T̄j−1) and assuming optimal actions are chosen from time j onward. Formally there

can be a different coefficient for each possible history but in practice we may choose to

simplify. Note that the zero mean requirement (given history) is immediate since the φj(.)

terms are replaced by linear combinations of residuals.

We motivate the proposal by the following two theorems.
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THEOREM 1 Assume µj(tj|M̄j, T̄j−1;ψ) are correctly parameterized and Mj is made

up of indicator variables comparing Nj categories with reference Mj = 0, e. g., Mj =

{0, 1, 2, · · · , Nj}. Then

E(Y |M̄K , T̄K) = β0(M1) +
K∑
j=2

Nj∑
m=0

βjm(M̄j−1, T̄j−1)Zjm −
K∑
j=1

µj(Tj|M̄j, Āj−1;ψ).

where Zjm is component m of Zj and

βjm(M̄j−1, T̄j−1) = E{Y (doptj )|M̄j−1, T̄j−1,Mj = m} − E{Y (doptj )|M̄j−1, T̄j−1,Mj = 0},

which measures the conditional effect of Mj after allowing for history and assuming optimal

rules will be followed for future actions.

Proof

Assume that Mj is binary. Then

φj(M̄j−1, T̄j−1,Mj = 1) = E{Y (dopt
j )|M̄j−1, T̄j−1,Mj = 1}

−
[
E{Y (dopt

j )|M̄j−1, T̄j−1,Mj = 1}P (Mj = 1|M̄j−1, T̄j−1)

+ E{Y (dopt
j )|M̄j−1, T̄j−1,Mj = 0}P (Mj = 0|M̄j−1, T̄j−1)

]
=

[
E{Y (dopt

j )|M̄j−1, T̄j−1,Mj = 1} − E{Y (dopt
j )|M̄j−1, T̄j−1,Mj = 0}

]
×
{

1− P (Mj = 1|M̄j−1, T̄j−1)
}

= β(M̄j−1, T̄j−1)
{

1− P (Mj = 1|M̄j−1, T̄j−1)
}
.

say. Similarly

φj(M̄j−1, T̄j−1,Mj = 0) = E{Y (dopt
j )|M̄j−1, T̄j−1,Mj = 0}

−
[
E{Y (dopt

j )|M̄j−1, T̄j−1,Mj = 1}P (Mj = 1|M̄j−1, T̄j−1)

+ E{Y (dopt
j )|M̄j−1, T̄j−1}P (Mj = 0|M̄j−1, T̄j−1)

]
=

[
E{Y (dopt

j )|M̄j−1, T̄j−1,Mj = 0} − E{Y (dopt
j )|M̄j−1, T̄j−1,Mj = 1}

]
×P (Mj = 1|M̄j−1, T̄j−1)

= −β(M̄j−1, T̄j−1)P (Mj = 1|M̄j−1, T̄j−1).

In both cases φj(M̄j−1, T̄j−1,Mj) = β(M̄j−1, T̄j−1)Zj where Zj = Mj − E(Mj|M̄j−1, T̄j−1).

Extension to categorical Mj is straightforward and Theorem 1 follows.
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THEOREM 2. Assume µj(tj|M̄j, T̄j−1;ψ) are correctly parameterized, all moments of

each Mj exist and E{Y (doptj )|M̄j−1, T̄j−1,Mj} is analytic in Mj. Then for any ε > 0 we can

find positive integers Nj such that

E(Y |M̄K , T̄K) = β1(M1) +
K∑

j=2

Nj∑
m=0

βjm(M̄j−1, T̄j−1)Z̃jm −
K∑

j=1

µj(Tj |M̄j , T̄j−1;ψ) +R(M̄K , T̄K)

where |R(M̄K , T̄K)| < ε. Here Z̃jm is element m of M̃j − E(M̃j|M̄j−1, T̄j−1) and M̃j is an

Nj-vector made up of powers of components of Mj.

Proof

To prove Theorem 2, we need to express
∑K
j=2 φj(M̄j−1, T̄j−1,Mj) defined at Equation 4.1

and Equation 4.3 as
∑K
j=2

∑Nj
m=0 βjm(M̄j−1, T̄j−1)Z̃jm+R(M̄K , T̄K) as given in the statement

of the theorem.

For notational simplicity, suppose Mj is a scalar and let us consider just one j. If

φj(M̄j−1, T̄j−1,Mj) is analytic in Mj then we can expand it about Mj = 0 as a power

series, say to order Nj. So

φj(M̄j−1, T̄j−1,Mj) =
Nj∑
m=0

φ
(m)
j (M̄j−1, T̄j−1, 0)×Mm

j +Rj,Nj

where φ
(m)
j (.) is the m-derivative of φj(.) and Rj,Nj is the residual term, which can be made

arbitrarily small by increasing Nj.

Let M̃j = (Mj,M
2
j , . . . ,M

Nj
j ) and

Z̃j = M̃j − E(M̃j|M̄j−1, T̄j−1) = (Z̃j1, Z̃j2, . . . , Z̃j,Nj).

Substituting Mm
j = Z̃jm + E(Mm

j |M̄j−1, T̄j−1) we have

φj(M̄j−1, T̄j−1,Mj) = h(M̄j−1, T̄j−1) +
Nj∑
m=1

φ
(m)
j (M̄j−1, T̄j−1, 0)× Z̃jm +Rj,Nj

where h(.) does not depend upon the state Mj. Since φj(M̄j−1, T̄j−1,Mj) and each of the

Z̃jm terms all have zero expectation overMj given (M̄j−1, T̄j−1), it follows that h(M̄j−1, T̄j−1) =

0 necessarily. Redefining φ
(m)
j (M̄j−1, T̄j−1, 0) as the history-dependent coefficient βjm(M̄j−1, T̄j−1)
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and repeating the argument for j = 2, . . . , K leads to the theorem. If Mj is not a scalar

then the same arguments apply but with M̃j defined to include powers of products of

elements of vector Mj.

Theorem 1 shows that Equation 4.3 is always true if Mj is categorical or discrete with

bounded support. Theorem 2 shows that the proposal (with Mj redefined as M̃j) can

be an arbitrarily close approximation when the φ terms are analytic and moments of Mj

exist, such as when there is bounded support. Other justifications of Equation 4.3 for other

scenarios are possible for suitably rich M̃j but these are not developed here as we do not

claim Equation 4.3 will always be true: it is an assumed model which we claim can be

realistic in many circumstances. Further, gross departures from the assumed model should

be detected by careful diagnostics. Our suggestion is thus summarized in the following,

which in the sequel we refer to as regret-regression.

Proposal.

(i) Regress each Mj (or function of Mj) on history (M̄j−1, T̄j−1) and define Zj =

Mj − E(Mj|M̄j−1, T̄j−1).

(ii) Assume Equation 4.3 is true. Since βj(M̄j−1, T̄j−1) depends on the possibly high-

dimensional (M̄j−1, T̄j−1), we will need some modelling assumptions in all but the

simplest applications unless sample size is huge. For example we might take a Markov

rule by which βj(M̄j−1, T̄j−1) = βj(Mj−1, Tj−1) or we might assume stationarity over

time. Call the vector of coefficients {β}.

(iii) Estimate the parameters {β} and ψ by ordinary least squares. With subscript i

for subject, we minimize

n∑
i=1

Yi − β0(M1i)−
K∑
j=2

βTj (M̄j−1,i, T̄j−1,i)Zji −
K∑
j=1

µj(Tji|M̄ji, T̄j−1,i)


2

. (4.4)
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(iv) Use bootstrap variance estimators, including re-estimation of the residuals (Zji)

at each resample.

(v) Examine residuals between observed and fitted Y for diagnostic assessment.

The conditions which open this section are sufficient for consistent parameter estimation

and valid causal inference for actions (Tj) (Henderson et al. 2009). Higher order moments

of Mj may need to exist if residuals from non-linear terms are included in Equation 4.3.

4.3 Simulations

Two examples in this section illustrate the procedure. Our choice of ordinary least squares

estimation is pragmatic: parameter estimation using standard software is quick and easy,

facilitating bootstrap variance estimation. Note that we have modelled the mean response

only and have not made any distributional assumptions about Y . If we do, then clearly

we can replace the ordinary least squares estimation with maximum likelihood. Similarly,

weighted least squares may be preferred if we have knowledge of the variance structure and

sandwich-type variance estimators may be constructed as an alternative to bootstrap. See

Diggle et al (1994).

4.3.1 Moodie, Richardson and Stephens scenario

Moodie, Richardson and Stephens (2007) use a simple two-time point simulation example

(as explained in Chapter 3 Section 3.5). The example used simulations of one thousand

repetitions at sample sizes n = 500 and n = 1000 of G-estimation. The results as de-

scribed by Moodie et al (2007) can be seen in Table 4.2. Table 4.3 shows a summary of

simulation results of one thousand repetitions at different sample sizes estimated by the

regret-regression method proposed here. For the latter we used ordinary least squares to fit
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the correctly specified model E[Y |M̄2, T̄2] = β0 +β1M1−µ1(T1|M1;ψ)−µ2(M1|M̄2, T1;ψ).

G-estimation∗

(n = 500) (n = 1000)

True ψ Mean SE Mean SE

250.0 250.01 17.170 249.450 12.160

-1.0 -1.00 0.038 -0.999 0.027

720 720.30 24.050 720.290 10.220

-2.0 -2.00 0.041 -2.001 0.029

Table 4.2: Summary of simulation results of one thousand repetitions based on Moodie et al scenario. ∗ These results

are taken from Moodie et al (2007), who used the doubly robust form of g-estimation: their equation (2), which is the most

efficient of the methods they considered.

Regret-regression

(n = 100) (n = 250)

True ψ Mean SE BSE∗ Cov∗ Mean SE BSE Cov

250 250.233 29.539 29.492 95 249.876 16.929 16.805 96

-1.0 -0.999 0.065 0.065 96 -0.998 0.0389 0.039 98

720 719.734 28.021 28.094 94 719.840 16.818 16.823 96

-2.0 -1.999 0.051 0.051 95 -2.000 0.030 0.030 94

(n = 500) (n = 1000)

True ψ Mean SE BSE∗ Cov∗ Mean SE BSE Cov

250.0 250.066 11.077 11.037 96 249.820 7.639 7.646 96

-1.0 -0.999 0.026 0.026 94 -0.999 0.018 0.018 97

720 720.158 10.821 10.767 94 720.039 7.338 7.317 93

-2.0 -2.001 0.020 0.019 92 -1.999 0.014 0.014 94

Table 4.3: Summary of simulation results of one thousand repetitions using regret-regression method. ∗ BSE and Cov

are standard errors and coverage of 95% bootstrap confidence intervals estimated from 100 bootstrap samples.

The nlm routine in R was used for parameter estimation. In all simulations the algorithm

converged very quickly. Both methods produce apparently unbiased estimators, as they

should, with smaller standard errors under the regret-regression method.
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Table 4.4 investigates how estimated parameters translate into decision regime perfor-

mance. After each repetition at sample sizes n = 500 a further 10000 observations were

generated using each of four different decision rules: the gold standard of always choosing

the optimal decision; equally likely randomised decisions; and following the estimated de-

cision rules obtained by G-estimation of the regret functions and by the regret-regression

procedure.

Y1000 SE Err Cut1 SE Cut2 SE

Gold 1120.1 2.4 0.0 250.0 360.0

Random 780.0 3.5 50.0

Regrets (G-est) 1119.6 2.8 0.6 249.9 9.9 359.5 12.7

Regret-regression 1120.0 2.5 0.3 250.5 6.3 359.9 2.6

Table 4.4: Summary of simulation results based on Moodie et al scenario.

Column Y1000 gives the mean achieved response for each procedure, and column “Err” gives

the overall percentage of times a suboptimal decision was made, pooled over both decision

times. Columns ’Cut1’ and ’Cut2’ summarise the estimated cut points at each decision

time, with the true values given in the gold standard row. Again both G-estimation and

regret-regression perform well, with again less variability when regret-regression is used.

4.3.2 Murphy scenario

Murphy (2003), in her seminal paper introducing regret functions, described a more com-

plex simulation scenario. The simulation was aimed to maximise the final response over

10 time points. In each time point there are two decisions, the first is a binary whether a

child should receive special education (Tj1 = 1), or not (Tj1 = 0), where Tj1 has a uniform

distribution on {0, 1}. If Tj1 = 0 then a second decision Tj2 is a round of tutoring which
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is uniform on ({0, 1, 2, 3}), with P (Tj2) = 1/4. If Tj1 = 1 then a second decision Tj2 is

a round of special education chosen as uniform ({1, 2, 3}) with P (Tj2) = 1/3. For each

interval two subintervals are created, each containing one decision. This gives the effect of

considering 20 time intervals. Each individual starts with the initial status M1 simulated

as

M1 ∼ N(0.5, 0.01).

For j ≥ 2

Mj ∼ N(meanj, 0.01),

where meanj = 0.5 + 0.2Mj−1 − 0.07T{j−1}1T(j−1)2 − 0.01(1 − T{j−1}1)T{j−1}2. The final

response Y is assumed have optimal value 30, which might be reduced by the regrets. The

regrets in each timepoint take different forms. For first decision they are

6{tj1 − I(Mj > 5/9)}2,

and for the second they are

1.5tj1(tj2 − 2mj)
2 + 1.5(1− tj1)(tj2 − 5.5mj)

2.

Then using regrets, the simulated mean final response E[Y |M̄10 = m̄10, T̄(10)2 = t̄(10)2], will

be as follows,

30− 5
10∑
j=1

(mj −meanj)−
10∑
j=1

6{tj1 − I(mj > 5/9)}2

−
10∑
j=1

1.5tj1(tj2 − 2mj)
2 + 1.5(1− tj1)(tj2 − 5.5mj)

2.

where Y is normally distributed with the simulated mean and variance 0.64.

4.3.3 Estimation

Murphy (2003) estimated the regrets for each time point j by using

µj1(tj1|M̄j, T̄(j−1)2) = ψ1{tj1 − I(Mj > ψ2)}2
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Then for part 2 of treatment j, the regret takes the correct form

µj2(tj2|M̄j, T̄j1) = ψ4tj1{tj2 − (ψ3 + ψ5mj)}2 + ψ7(1− tj1){tj2(ψ6 − ψ8mj)}2.

Returning to Chapter 3 Section 2.6, the following equation

1
n

n∑
i=1

k∑
j=1

[Yi +
k∑

l=1,l 6=j
µl(M̄l, T̄l; ψ̂n) + µj(M̄j , T̄j ;ψ)−

∑
t

µj(M̄j , T̄j , t)pj(t|M̄j , T̄j)]2

can be used by the iterative procedure gives the estimated parameters. The assumption is

made that the regrets will be zero at the optimal actions. For the first part in action j the

optimal decision is

doptj1 = I{mj > 5/9},

and for the second,

doptj1 = 2tj1mj + 5.5(1− tj1)mj.

Note that this is already in the form Equation 4.3, and that once estimates of ψ are

available the estimated optimal regime is to choose actions which lead to zero estimated

regrets.

Murphy∗

True ψ Mean SE

6.00 6.89 0.210

0.56 0.56 0.002

0.00 0.05 0.184

1.50 1.50 0.125

2.00 2.01 0.255

0.00 0.06 0.128

1.50 1.48 0.078

5.50 5.54 0.358

Table 4.5: Summary of simulation results based on Murphy scenario. One thousand repe-

titions at sample size n = 1000. Results ∗ are taken from Murphy (2003).
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Regret-regression

(n = 250) (n = 500)

True Mean SE BSE Cov Mean SE BSE Cov

ψ

6.00 5.967 0.062 0.061 94 5.970 0.043 0.043 95

0.56 0.555 0.0005 0.0005 95 0.555 0.0005 0.0005 95

0.00 -0.020 0.073 0.072 98 -0.015 0.053 0.053 96

1.50 1.489 0.060 0.060 96 1.493 0.041 0.041 95

2.00 2.021 0.093 0.091 96 2.018 0.069 0.069 96

0.00 -0.009 0.035 0.034 94 -0.006 0.022 0.022 95

1.50 1.493 0.030 0.028 95 1.495 0.016 0.016 96

5.50 5.531 0.074 0.071 95 5.519 0.052 0.052 96

β

30.00 29.928 0.587 0.534 96 29.913 0.251 0.251 96

-5.00 -4.981 0.353 0.342 95 -4.981 0.213 0.213 96

(n = 750) (n = 1000)

True Mean SE BSE Cov Mean SE BSE Cov

ψ

6.00 5.968 0.032 0.032 94 5.971 0.029 0.029 95

0.56 0.555 0.0004 0.0004 97 0.555 0.0004 0.0004 94

0.00 -0.019 0.039 0.039 98 -0.017 0.036 0.036 95

1.50 1.491 0.030 0.030 95 1.491 0.029 0.029 95

2.00 2.024 0.054 0.053 96 2.021 0.047 0.047 6

0.00 -0.005 0.016 0.016 97 -0.004 0.015 0.015 95

1.50 1.498 0.014 0.0141 95 1.496 0.011 0.011 95

5.50 5.517 0.039 0.0387 93 5.515 0.037 0.037 95

β

30.00 29.940 0.186 0.1848 95 29.909 0.167 0.167 96

-5.00 -5.010 0.172 0.1684 96 -4.995 0.157 0.157 95

Table 4.6: Simulation results of one thousand repetitions based on Murphy scenario using

regret-regression method.
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Tables 4.5 and 4.6 compares results obtained using Murphy’s iterative estimation method

with those from regret-regression, which took a correctly specified model for Y and also

required fitting the state evolution model. Murphy approximated the indicator function in

µ1 by a very steep logistic curve in order to have a smooth function. There was no need for

us to do this: for fixed ψ2 we used Newton-Raphson to obtain, very quickly, least squares

estimates of the other parameters and then simply searched for ψ2. This was not feasible

using Murphy’s estimation technique, which converges only slowly.

Gold Random Murphy∗ Regret-regression

Mean 30 -39.56 29.27 29.88

Standard deviation 0.018 0.203 0.19 0.024

∗ These results are taken from Murphy (2003).

Table 4.7: Summary of simulated performance of decision rules based on Murphy.

Figure 4.2: Residual plot for Murphy simulation with correct model fit, n = 1000.
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Results in Table 4.6 show the regret-regression method works very well in parameter esti-

mation. Table 4.7 shows performance of decision rules. Parameter estimates were obtained

as for Table 4.5 and after each repetition a further 10000 observations were generated us-

ing each of four different decision rules: the gold standard of always choosing the optimal

decision; randomised decisions as described by Murphy for the original data generation;

and following the estimated decision rules obtained by regret models fitted by the Murphy

iterative technique or the regret-regression method.

Figure 4.3: Residual plots for Murphy simulation with her misspecified fits, n = 1000.
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Turning now to diagnostics, Figure 4.2 shows, for a typical simulation, residuals from the

model fit plotted against state (left plot) and regret for the second-time decision on amount

of treatment (right plot). There are 10 states and 10 second-time actions for each subject

but for presentation purposes we have pooled into single plots. Also, the plot shows just a

10% random sample of points. Superimposed on each plot is a smooth (using R supsmu)

trend through the complete data, which in each case looks like a horizontal straight line at

value zero. There is thus, as expected, no evidence against the fitted model. For reference,

the figure also includes as grey lines similar smooth trends for ten other simulations. These

are almost all obscured by the original line as in all cases the mean was constant at zero.

Murphy (2003) briefly discussed model misspecification and described two alternative para-

metric forms for the regret functions. These misspecified models will be described well in

Chapter 7, Section 7.1.2. So we generate data using the original model but we fit the other

misspecified models. Residuals are replicated to account for 10 states and 10 even regrets

for each value of Y . Also shown (as grey lines) are smooth fits to 10 further samples to

give an indication of between-sample variability. In Figure 4.3 shows residuals when each

of the alternative models are true but the model described above is fitted. In both cases

it is clear that the diagnostics would pick up the misspecification. The crosses in Figure

4.3 show a 10% sample of residuals and the solid line is a smooth fit to the complete data.

The left plots compare residuals with the state observations and the right plots with the

fitted even regret values. The top row is based on Murphy’s first misspecification and the

bottom row on her second misspecification. Also shown (as grey lines) are smooth fits to

10 further samples to give an indication of between-sample variability.
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4.4 Application: Anticoagulation Dosage

Our application is on the Warfarin data. Rosthøj et al (2006) attempted to fit regret

models to data from 303 patients given warfarin treatment for anticoagulation. The data

are described in Chapter 1,Section 3.2, but in brief:

• Mj is the standardised difference between INR, a measure of blood clotting speed,

and the target range. About half the values were Mj = 0, meaning within range.

Positive Mj means clotting time was too long and anticoagulation dose might be

decreased, negative the opposite.

• Tj is the change in dose at visit j. There was no change in dose on about 60% of

occasions.

• Fourteen measurements per person were used, but the first four were treated as a

stabilisation period and the final action had no effect, meaning K = 9 in the analyses.

• Response Y was the overall percentage of time INR was within target range.

In this application we suppose the assumptions A1-A5, which are discussed in Section 3.4.5

and Section 4.2 that we believe non of them are violated. Rosthøj at al (2007) were able

successfully to fit just one simple regret model:

µj(tj|M̄j, T̄j−1) =


I(tj 6= 0)(5.84 + 1.59t2j) Mj = 0

0.24(tj + 2.01Mj)
2 Mj 6= 0.

We refer to the previous model as Model M1. In order to assess the suitability of the

model, we re-estimate ψ′s using the regret-regression method

µj(tj|M̄j, T̄j−1) =


I(tj 6= 0)(ψ1 + ψ2t

2
j) Mj = 0

ψ3(tj + ψ4Mj)
2 Mj 6= 0
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and re-name it as Model M2. We need residuals Zj = Mj −E[Mj|M̄j−1, T̄j−1]. These were

obtained from a mixture model for Mj with a logistic component for P (Mj = 0) and a

linear component for |Mj| given (Mj 6= 0).
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Figure 4.4: Residual plots for models M1 and M2.

In both cases we included as covariates 17 functions of previous states and actions up to

lag 4, including all main effects and some pairwise interaction and quadratic terms, and

both actual values and indicators of value zero. We used the same model at all time points

80



but estimated the coefficients separately. All terms were not always needed in the model

but since there is no interest in the model for Mj per se there is no loss in modest over

fitting. We assumed the non-regret residual contribution to response Y was linear in Zj

for all models. In Figure 4.4 the crosses show a 20% sample of residuals and the solid lines

show a smooth fit to the complete data. The left plots compare residuals with the state

observations and the right plots with the fitted regret values. The top row is based on

the Rosthøj et al (2007) regret fit (Model M1) and the bottom row of Figure 4.4 gives

residual plots for the regret-regression fit based on the Rosthøj et al regret function, with

new parameter values (Model M2). Neither model seems adequate given there residuals.

A variety of models were also considered. Some, not all, are listed below.

−2 −1 0 1 2

0.0
0.5

1.0
1.5

2.0

u

f(u
)

Figure 4.5: Regret function in Model M5, , where f(u) = |u| if u < 0 and f(u) =
√
u

otherwise.
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Model M3: This uses regrets as proportional to M2 with time-varying coefficients

µ̃j(tj|M̄j, T̄j−1) =


I(tj 6= 0)(ψ1 + ψ2t

2
j) Mj = 0

ψ3(tj + ψ4Mj)
2 Mj 6= 0

µj(tj|M̄j, T̄j−1) = ψ3+jµ̃j(tj|M̄j, T̄j−1) j > 1

Model M4: This model suggests to use lagged effects of a subset of previous covari-

ates and actions

µj(tj|M̄j, T̄j−1) = ψ1

(
tj + ψ2Mj + ψ3M

2
j + ψ4Mj−1 + ψ5Tj−1 + ψ6TjTj−1

)2
.

−2 −1 0 1 2

0
1

2
3

4

u

f(u
)

Figure 4.6: Regrets function in both models M6 and M7, where f(u) = u2 if u < 0 and

f(u) = u otherwise.

Model M5: The model uses asymmetric regrets with categorised Mj,

µj(tj|M̄j, T̄j−1,M
∗
j = m;ψ) = ψm1f(Tj − ψm2),
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where the optimal decision rule is doptj = ψm2. Here we categorised Mj into 5 states.

M∗
j = {−2,−1, 0, 1, 2}. If the INR was in range then M∗

j = 0 otherwise M∗
j is

defined according to whether Mj is above or below the positive or negative median.

The model uses the link function f(u) =
√
u if u ≥ 0 and f(u) = |u| otherwise.

Figure 4.5 describes shape of regrets function in Model M5.

Model M6: The model uses asymmetric regrets with categorised Mj,

µj(tj|M̄j, T̄j−1,M
∗
j = m;ψ) = ψm1f(Tj − ψm2)

which is exactly the same with Model M5, but using a different link function f(u) = u

if u ≥ 0 and f(u) = u2 otherwise.

Model M7: The model uses asymmetric regrets with categorised Mj and lagged

M∗
j−1 effect,

µj(tj|M̄j, T̄j−1,M
∗
j = m;ψ) = ψm1f(Tj − ψm2 − ψm3M

∗
j−1)

where the optimal decision rule is doptj = ψm2 + ψm3M
∗
j−1. For simplicity, we use

M∗
j−1 = {−1, 0, 1}. The model uses the same link function as Model M6. The shape

of the link function is shown in Figure 4.6.

Figure 4.7 shows residuals for some of the other regret-regression fits. The top row is based

on Model M4 then the middle row is based on Model M5 and the bottom row on the final

fit Model M7. Table 4.8 shows that the residual sum of squares for response Y is reduced

by nearly 60% for this regret-regression model (M0 v M1), where Model M0 is a null model

with SSR =
∑

(Y − Ȳ )2. With the same model but re-estimating parameters there is a

reduction of about 68%.

Fitting was quick and easy in all cases, based on a combination of a least-squares fit for

linear terms embedded in a numerical search (using R function nlm) for non-linear terms.
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Figure 4.7: Residual plots for models M4, M5 and M7.
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We bounded optimal actions at ±3 (only three from 2727 observed actions were outside

this range). A separate asymmetric regret function was fitted for each category of state.

Model dim(ψ) RSS Adjusted R2

(%)

M0: Null - 125234.5 -

M1: Rosthøj 4 50373.1 57.6

M2: Rosthøj, re-estimated 4 39829.9 68.2

M3: Rosthøj, time varying 12 35817.9 69.0

M4: Lag in states and actions 6 31007.9 73.7

M5: Discrete Mj and Tj , asymmetric 10 20208.9 82.7

M6: Discrete Mj , asymmetric 10 20997.7 81.9

M7: Discrete Mj , asymmetric, lag term 15 16347.4 85.7

Table 4.8: Residual sums of squares under various regret-regression models for anticoagu-

lation data. See Section 5 and Appendix for model descriptions

This allows in a simple way the magnitude of regret, not just the optimal decision, to

depend on Mj as well as distance of Tj from the optimum. Not having this flexibility was

given by Robins (2004) as an argument against a regret class proposed by Murphy (2003).

M∗
j = m ψm1 SE ψm2 SE ψm2 SE

-2 0.67 0.30 2.15 0.23 -1.11 0.35

-1 0.38 0.10 2.74 0.16 -1.57 0.69

0 0.97 0.37 -0.14 0.28 -1.12 0.68

1 2.38 0.27 -2.33 0.27 -0.98 0.24

2 2.83 0.94 -3.00 0.48 0.25 0.21

Table 4.9: Parameter estimates and bootstrap standard errors for anticoagulation model

M7
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For category m of state Mj the assumed regret function was

µj(tj|M̄j, T̄j−1,M
∗
j = m;ψ) = ψm1f(Tj − ψm2 − ψm3M

∗
j−1)

where f(u) = u if u ≥ 0 and f(u) = u2 otherwise. Parameter estimates with bootstrap

standard error are given in Table 4.9.

It took under 20 minutes to obtain estimates from the 100 bootstrap samples (using R

rather than a faster language). The illustrative regrets shown in Figure 4.8 suggest together

with Table 4.9 that the results are intuitively reasonable. Each subplot corresponds to

different value of the current categorized state variable. The three lines indicate whether

the previous state was in range (green solid lines), above range (blue dotted lines), or

below range (red dashed lines). From {ψm2} we see that if the current state Mj is low

(clotting time too long) then an increase in dose is suggested; if the current state Mj is

high then a decrease is suggested; and if the patient is in range (Mj = 0) then the effective

optimum is not to change. Inspection of {ψm3} indicates that for the first four categories

of M∗
j the optimal actions are moderated by the previous state Mj−1 also in the expected

way: more drastic dose changes are indicated if two successive states have the same sign;

attenuation toward no-change if they have opposite signs. For the fifth category, Mj−1

seems unimportant for optimal dose. In terms of regret for suboptimal action, we see from

the ψm1 column that the consequences of the poor choice are more severe for patients whose

Mj values are high, and hence have clotting time which is too long. This model explained

87% of the sum of squared response residuals (Table 4.8) and the diagnostic plots shown in

the bottom row of Figure 4.4 and Figure 4.7 show what we consider to be a very reasonable

fit.
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Figure 4.8: Estimated regrets functions under Model M7.
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4.5 Discussion

We have proposed a method for finding optimal dynamic treatment regimes. The method

has not required E[Tj|M̄j, T̄j−1], which is needed for the other methods. Inclusion of the

linear combination of residuals in Equation 4.3 is reminiscent of a path analysis method

for dealing with time-dependent confounders, as exemplified by Borgan et al (2006) for

instance. This brings additional modelling assumptions, not needed by Murphy or Robins,

and hence the possibility of misspecification. If the model is correct however, or close to

correct, then we expect gains in efficiency.

Murphy (2003) had primary interest in the parameters of the regrets, and considered other

unknown functions involved in data generation as being nuisance parameters. We agree

in part only: unless sample size is enormous we see no alternative to assuming parametric

regret models. In that case some form of diagnostic is essential for good statistical practice,

and development of diagnostics based on models for observables is an obvious way forward.

The use of residual plots to detect misspecified regret functions was illustrated in Section

4.2. Chapter 7 on diagnostic methods has further investigation to investigate power of

proposed tests and to understand more how residual means react to different types of

misspecification.

88



Chapter 5

Regret-Regression and Inverse

Probability of Treatment Weighting

5.1 Introduction

As seen in the previous chapter, we have more efficiency by choosing a fully parameterised

model for the mean. The regret-regression method for estimating the causal effect of the

actions on the final response allows diagnostic model assessment and model comparisons.

It requires modelling of E(Mj|M̄j−1, T̄j−1), to remove the effect of the time-dependent

confounders on the counterfactuals, which is not used for the Murphy (2003) iterative es-

timation or the Robins (2004) G-estimation methods. On the other hand regret-regression

has not required E[Tj|M̄j, T̄j−1], which is needed for the others. In this chapter a compar-

ison of the regret-regression and inverse probability of treatment weighting is presented.

Let us assume that each of N study subjects, are either treated T = 1 or not T = 0. We

observe an outcome Y measured at the end of follow-up, and a vector M of baseline covari-

ates. Let Yt denote the counterfactual or potential outcome for a subject under treatment

level T = t. We have two counterfactual variables Y (t = 1) and Y (t = 0). For example,
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if a subject’s outcome would be 8 under treatment and would be 3 under non treatment,

then we can write Y (t = 1) = 8, Y (t = 0) = 3 and Y (t = 1)−Y (t = 0) = 5. For the actual

study, if this subject was treated, then his observed Y will be 8. Furthermore an observed

outcome Y is the counterfactual outcome Y (t) for a subject who is treated with level t.

As discussed in Chapter 2, Section 4, there are three assumptions sufficient for causal

inference. When those three identifiability conditions hold, one can use any of the two

methods discussed below G-formula or Inverse Probability of Treatment Weighted (IPTW)

to consistently estimate E(Yt). They are used to evaluate a fixed treatment regimes from

observational data with time varying covariates as explained in secions 5.2 and 5.3. In this

Chapter, our aims are to compare results of these two methods with regression analysis

(Secion 5.4) and with the regret-regression method. Then in Section 5.6 we show how

to use the G-formula or the IPTW for finding optimal dynamic treatment strategies. In

this case we change our worked example (from Chapter 4), to a similar one that optimal

decisions T2 depend on the value of M2.

5.2 The G-Formula

The traditional approach to estimate causal parameters uses the G-computation formula

from Robins (1986) and Robins (1987). The G-computation formula is a general conditional

expectation of a counterfactual given earlier history that can be further used to estimate

counterfactual means E[Yd], under any static or dynamic regime d (Robins uses (g) instead

of using d). This methodology relies on the model used for E(Y |M,T ) (Neugebauer and

van der Laan 2002). For a given value t of T and vector M of baseline covariates, the

G-formula (based on covariates M) for E[Y (t)] is defined in this simple case as

E[Y (t)] =
∑

Em(Y |M = m,T = t)P (M = m),
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where the sum is for all values m of M in the population. This equality is a result from

the Assumption 2 of no unmeasured confounders. The G-formula for E[Y (t = 1)] is the

standardized mean of Y in the group of patients with T = 1. Note the G-formula depends

on the distribution in the population of the observed variables T , M and Y . In practice, this

distribution will be estimated from the study data. When M takes values on a continuous

scale, then the sum
∑

is replaced by an integral, and the G-formula for this simple case

E[Y (t)] =
∫
E(Y |M = m,T = t) dF (M = m).

5.3 The IPTW Formula

As alternative approach to estimate causal parameters is to use the Inverse Probabil-

ity of Treatment Weighted (IPTW) method. The IPTW formulas for E[Y (t = 1)] and

E[Y (t = 0)] based on M are the means of Y using T = 1 and T = 0 respectively in a

pseudo-population constructed by weighting each subject in the population by their inverse

probability of treatment weight (IPTW)

SW =
P (T = t)

P (T = t|M = m)
,

When M takes continuous values, then

SW =
f(T )

f(T |M)
.

where f(T ) and f(T |M) are the probability density functions evaluated at the subject’s

data T , and T given M , respectively. In a randomized experiment, f(T |M) is known by de-

sign, but in an observational study we have to estimate it from the data. We refer to SW as

stabilized weights and to the pseudo-population created by weights as a stabilized pseudo-

population. In fact, we could alternatively create an unstabilized pseudo-population by
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weighting each subject by their unstabilized weight

W =
1

f(T |M)

However, we can use stabilized or unstabilized weights. The IPTW formula for E[Y (t)] in

the stabilized and unstabilized populations is

E[Y (t)] = E

[
I(T = t)f(T )

f(T |M)
Y

]
/E

[
I(T = t)f(T )

f(T |M)

]

and

E[Y (t)] = E

[
I(T = t)

f(T |M)
Y

]
/E

[
I(T = t)

f(T |M)

]

respectively. Here

(i) E[I(T = t)f(T )N/f(T |M)] and E[I(T = t)N/f(T |M)] are the number of subjects in

the stabilized and unstabilized pseudo-populations with T = t, and

(ii) E[I(T = t)f(T )NY/f(T |M)] and E[I(T = t)NY/f(T |M)] are the sum of their Y

values.

Hernán and Robins (2006) discuss the mathematical equivalence between the g-formula,

standardization and IPTW under positivity. The equivalence is based on the mathematical

identities

E[Y (t)] = E

[
I(T = t)f(T )

f(T |M)
Y

]
/E

[
I(T = t)f(T )

f(T |M)

]
,

= E

[
I(T = t)

f(T |M)
Y

]
/E

[
I(T = t)

f(T |M)

]
,

=
∫
E(Y |M = m,T = t) dF (M = m).

When treatment is unconditionally randomized (see Figure 2.2a in Chapter 2, Section 5)

both the G-formula and the IPTW estimate for E[Y (t)] are equal to the mean E(Y |T = t)
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of Y among those with treatment level t in the population because T and M are indepen-

dent. When the randomization is conditional on M (Figure 2.2b), then the average causal

effect differs from the E(Y |T = 1)−E(Y |T = 0) and data on M are needed to consistently

estimate E(Yt). The G-formula estimates E[Y (t)] by the joint distribution of the variables

M , T , and Y that would have been observed in a study in which every subject received t.

The IPTW method effectively mimics data where the treatment T is independent of M so

that, if the causal graph in Figure 2.2b holds in the actual population, the causal graph

in Figure 2.2a with no arrow from M to T will hold in the pseudo-population. The only

difference between stabilized and unstabilized IPTW is that in the unstabilized pseudo-

population P (T = 1) = 0.5 while in the stabilized pseudo-population P (T = 1) is as in

the actual population. Thus E[Yt] in the actual population is Eps(Y |T = t) where the

subscript ps is to remind us that we are taking the average of Y among subjects with

T = t in either pseudo-population.

In summary, when the three identifiability conditions hold, the average causal effect E[Y (t =

1)]− E[Y (t = 0)] in the population is the difference Eps(Y |T = 1)− Eps(Y |T = 0) in the

pseudo-population.

What about observational studies? Let us assume that the three identifiability conditions

consistency, conditional exchangeability, positivity are met in a particular observational

study. Then there is no conceptual difference between such an observational study and a

randomized experiment. The three conditions imply that the observational study can be

the same as a randomized experiment and hence that the G-formula, or IPTW can also be

used to estimate counterfactual E(Yt) from the observational data. When the consistency

and conditional exchangeability conditions fail to hold, the IPTW and G-formula for E(Yt)
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based on M are still well defined and can be estimated from the observed data; however the

formulas no longer equal E(Yt) and thus do not have the causal interpretation as the mean

of Y had all subjects received treatment t. When positivity fails to hold for treatment level

t, the IPTW formula remains well defined but fails to equal E(Yt), while the G-formula is

undefined (Hernán and Robins, 2006).

The G-formula, and IPTW can provide consistent estimates of counterfactual quantities

like E[Yt̄] under generalizations of our previous definitions of consistency, conditional ex-

changeability, and positivity.

The IPTW formula based on M̄ for the counterfactual mean E[Y (t)] is the average of Y

among subjects with T̄ = t̄ in a stabilized or unstabilized pseudo-population constructed

by weighting each subject by their subject-specific stabilized IPTW

SW =
K∏
j=1

f(Tj|T̄j−1)

f(Tj|T̄j−1, M̄j)
,

or their unstabilized IPTW

W =
K∏
j=1

1

f(Tj|T̄j−1, M̄j)

When the three identifiability conditions hold, either IPTW creates a pseudo-population

in which the mean of Yt is identical to that in the actual population but like on DAG

(Figure 2.2a), the randomization probabilities at each time j depend at most on past

treatment history. The only difference is that in the unstabilized pseudo-population

Pps = (TK = 1|T̄K−1, M̄K) = 0.5.

The following is an extremely simple example described in Chapter 4, Section 1.1. All

subjects are assumed to start in the same state M1, which can thus be ignored. We con-

sider a sequentially randomized trial in which N = 1000. Patients are randomly assigned
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at time K = 1 to treatment T1 = 1 with probability 0.5 and to placebo T1 = 0 otherwise.

Patients continue on treatment or placebo until their next visit to clinic at time K = 2,

where they are again randomly assigned to take treatment with probabilities

P00 = P (T2 = 1|T1 = 0,M2 = 0) = 0.5,

P01 = P (T2 = 1|T1 = 0,M2 = 1) = 0.7,

P10 = P (T2 = 1|T1 = 1,M2 = 0) = 0.2,

P11 = P (T2 = 1|T1 = 1,M2 = 1) = 0.1.

Table 4.1 and Figure 4.1 provide the number of subjects and the average value of the

outcome E[Y |T1,M2, T2]. Note we ignore M1, because we assume that all subjects start

in the same baseline M1. We suppose consistency. Further, we can conclude that the

positivity condition is satisfied, because otherwise one or more of the eight rows would

have no subjects.

G-formula

If we can estimate the counterfactual means E[Y (t̄ = {0, 0})], E[Y (t̄ = {1, 0})], E[Y (t̄ =

{0, 1})] and E[Y (t̄ = {1, 1})] under the 4 possible static regimes. All four means can be

consistently estimated by the G-formula, because the three identifiability conditions hold

in a sequentially randomized trial. Because the confounder M2 is a binary variable the

G-formula can be written as

E[Y (t̄)] = E(Y |T1 = t1,M2 = 0, T2 = t2)P (M2 = 0|T1 = t1)

+E(Y |T1 = t1,M2 = 1, T2 = t2)P (M2 = 1|T1 = t1).

Let us define that E(Y |T1 = t1,M2 = m2, T2 = t2) = Yt1,m2,t2 , I(T1 = t1,M2 = m2) =

I(t1,m2) and I(T1 = t1) = I(t1). Then using the G-formula, we can calculate the four
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means under each of the regimes are

E[Y (t̄ = {0, 0})] = Y (000)×
∑

I(0, 0)/
∑

I(0) + Y (010)×
∑

I(0, 1)/
∑

I(0),

= 3× 100/500 + 2× 400/500 = 2.2,

E[Y (t̄ = {0, 1})] = Y (001)×
∑

I(0, 0)/
∑

I(0) + Y (011)×
∑

I(0, 1)/
∑

I(0),

= 8× 100/500 + 7× 400/500 = 7.2,

E[Y (t̄ = {1, 0})] = Y (100)×
∑

I(1, 0)/
∑

I(1) + Y (110)×
∑

I(1, 1)/
∑

I(1),

= 6× 350/500 + 4× 150/500 = 5.4,

E[Y (t̄ = {1, 1})] = Y (101)×
∑

I(1, 1)/
∑

I(1) + Y (111)×
∑

I(1, 1)/
∑

I(1),

= 5× 350/500 + 1× 150/500 = 3.8.

We conclude that, if one did not know about G-methods, a natural attempt to estimate,

for example; E[Y (t̄ = {1, 1})] from the data in Table 5.1 would be to calculate E(Y |T1 =

1, T2 = 1). This gives

E(Y |T1 = 1, T2 = 1) =
1

85
(5× 70 + 1× 15) = 4.29.

Because this analysis fails to adjust for the confounder M of T ,s effect on Y , the mean

4.29 is non-causal and biased as an estimate of the mean contrast 3.8.

We can note directly the maximum mean response at the second time decisions to choose

the optimal (T2 = 0 or T2 = 1) for each one of the four possible paths (T1,M2) =

{(0, 0), (0, 1), (1, 0), (1, 1)}, then the optimal regimes of T2 for the previous set (T1,M2)

are equal respectively to {1, 1, 0, 0}. Then choose the optimal action at the first time point

T opt1 = 0. Note the wrong actions at the second time lead to regrets of 5,5,1 and 3 depend-

ing on the earlier sequence (T1,M2). The mean response if the optimal regime is always

followed is E(Y (t̄ = {0, 1}) = 7.2. Choosing the wrong action at the first decision time
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costs E[Y (t̄ = {0, 1})]− E[Y (t̄ = {1, 0})] = 1.8.

IPTW

We now describe how to use IPTW for estimating the counterfactual means E[Y (t̄)] under

the four regimes t̄ = {t1, t2}. The first step is to create a stabilized pseudo population by

weighting the subjects in each row in Table 5.1 by the stabilized weights using the IPTW

that

SW =
P (T1 = t1)P (T2 = t2|T1 = t1)

P (T1 = t1|M1 = m1)P (T2 = t2|M2 = m2, T1 = t1)
.

Because all subjects are assumed to start in the same state M1, the factor P (T1 = t1)

cancels, because in our study the potential confounder M1 is absent. So the formula will

be as follows

SW =
P (T2 = t2|T1 = t1)

P (T2 = t2|M2 = m2, T1 = t1)

or by unstabilized weights, the formula is

W =
1

P (T1 = t1|M1 = m1)P (T2 = t2|M2 = m2, T1 = t1)
.

Then using one of these formulas we can obtain the pseudo-population, then estimate

directly the means under each of the regimes.

For example, for the first row:

f(T2|T1) = P (T2 = 0|T1 = 0) = 170/500 = 0.34

and

f(T2|T1,M2) = P (T2 = 0|T1 = 0,M2 = 0) = 50/100 = 0.5

Each of the 50 subjects in the first row therefore receives the weight SW000 = 0.34/0.5 =

0.68. Hence, the row has 0.68×50 = 34 subjects in the stabilized pseudo-population. This

is in column Nps(SW ) in Table 5.1. The other terms in the column are calculated similarly.
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T1 M2 T2 N E(Y |M2, T̄2) f(T2|T1) f(T2|M2, T1) SW Nps(SW ) W Nps(W )

0 0 0 50 3 0.34 0.5 0.68 34 4 200

0 0 1 50 8 0.66 0.5 1.32 66 4 200

0 1 0 120 2 0.34 0.3 1.13 136 100/15 800

0 1 1 280 7 0.66 0.7 0.94 264 100/15 800

1 0 0 280 6 0.83 0.8 1.04 290.5 2.5 700

1 0 1 70 5 0.17 0.2 0.85 59.5 10 700

1 1 0 135 4 0.83 0.9 0.92 124.5 100/45 300

1 1 1 15 1 0.17 0.1 1.7 25.5 20 300

Table 5.1: Data corresponding to the example to explain how to use IPTW for estimating

E[Yt̄].

Also each of the subjects in the first row can be received the weight W000 = 1
(0.5)(0.5)

= 4.

Hence, the row has 4 × 50 = 200 subjects in the unstabilized pseudo-population. The

IPTW weights cancel the arrow between M2 and T1 in the pseudo-population as shown

in Figure 2.2a. The absence of the arrow can be easily confirmed by checking whether

T2⊥M2|T1, where ⊥ represents independence in the pseudo-population. For example, this

conditional independence holds in the stabilized pseudo-population of our example because

Pps(T2 = 1|T1 = 0,M2 = 0) =
66
100

= Pps(T2 = 1|T1 = 0,M2 = 1) =
264
400

= 0.66,

and

Pps(T2 = 1|T1 = 1,M2 = 0) =
59.5
350

= Pps(T2 = 1|T1 = 1,M2 = 1) =
25.5
150

= 0.17.

So the causal DAG corresponding to the pseudo-population does not have the arrow M2

to T2.
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Using the IPTW stabilized or unstabilized pseudo-population formula, the four means

under each of the regimes are

Eps(SW )[Y (t̄ = {0, 0})] =
3× 34 + 2× 136

170
= 2.2,

Eps(SW )[Y (t̄ = {0, 1})] =
8× 66 + 7× 264

330
= 7.2,

Eps(SW )[Y (t̄ = {1, 0})] =
6× 290.5 + 5× 124.5

415
= 5.4,

Eps(SW )[Y (t̄ = {1, 1})] =
4× 59.5 + 1× 25.5

85
= 3.8,

or

Eps(W )[Y (t̄ = {0, 0})] =
3× 200 + 2× 800

1000
= 2.2,

Eps(W )[Y (t̄ = {0, 1})] =
8× 200 + 7× 800

1000
= 7.2,

Eps(W )[Y (t̄ = {1, 0})] =
6× 700 + 5× 300

1000
= 5.4,

Eps(W )[Y (t̄ = {1, 1})] =
4× 700 + 1× 300

1000
= 3.8.

The following table shows the average values of the outcome Eps(Y |T1,M2, T2) of the four

static regimes, using the both of the stabilized and the unstabilized pseudo-population As

T1 T2 Nps(SW ) Nps(W ) Eps(Y |T1, T2)

0 0 170 1000 2.2

0 1 330 1000 7.2

1 0 415 1000 5.4

1 1 85 1000 3.8

Table 5.2: The stabilized and the unstabilized pseudo-population for the average value of

the outcome Eps(Y |T1,M2, T2).

expected, the values of Eps(Y |T1, T2) obtained by IPTW, in the pseudo-population, are
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equal to those obtained by the G-formula. In this example, we do not need to use models

to estimate the inverse probability weights because we can be easily calculated by hand

from the data. Also, we do not need models for the counterfactual means E[Y (t̄)] because

these means can also be calculated by hand. Let us consider the marginal structural mean

model,

E[Y (t̄)] = γ0 + γ1t1 + γ2t2 + γ3t1t2

The model is referred to as a marginal structural mean model (MSM) because it models the

marginal mean of the counterfactuals Yt and models for counterfactuals are often referred to

as structural models, Hernán at al (2000). If they simply fit a model for E(Y |T1, T2) instead

of using a marginal structural model for potential outcomes, to calculate the parameters

γ0, γ1, γ2 and γ3. We obtain,

E(Y |T1, T2) = 2.2 + 2.5T1 + 5T2 − 7T1T2,

this gives biased estimates of γ′s because of confounding by M2. Now we can use the

pseudo-population data because

Eps(W )[Y (t̄ = {0, 0})] = γ0,

Eps(W )[Y (t̄ = {1, 0})] = γ0 + γ1,

Eps(W )[Y (t̄ = {0, 1})] = γ0 + γ2,

Eps(W )[Y (t̄ = {1, 1})] = γ0 + γ1 + γ2 + γ3.

and therefore, using the estimates for Eps(Y |T1, T2) in Table 5.2, γ0 = 2.2, γ1 = 5.4−2.2 =

3.2, γ2 = 7.2− 2.2 = 5 and γ3 = 3.8− 2.2− 5− 3.2 = −6.6.

This estimation procedure is equivalent to fitting a linear model with each subject weighted

by SW as follows

Eps(Y |T1, T2) = 2.2 + 3.2T1 + 5T2 − 6.6T1T2
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5.4 Marginal Structural Models for Optimal Static

Regimes

Robins, (1994) describe how to use marginal structural models (MSMs) for estimating the

effect of treatment on the counterfactual outcomes. In this section we aim to show how to

estimate the parameters using the marginal structural models comparing with the IPTW

and the regret-regression methods.

Y (t1, 0) = Y (0, 0) + β1t1

Y (t1, t2) = Y (t1, 0) + β21t2 + β22t2M2(t1) + β23t1t2 + β24t1M2(t1)t2.

T1 M2 T2 N E(Y |M̄2, T̄2) Y (t1, 0) Y (0, 0)

0 0 0 50 3 3 3

0 0 1 50 8 8− β21 8− β21

0 1 0 120 2 2 2

0 1 1 280 7 7− β21 − β22 7− β21 − β22

1 0 0 280 6 6 6− β1

1 0 1 70 5 5− β21 − β23 5− β1 − β21 − β23

1 1 0 135 4 4 4− β1

1 1 1 15 1 1− β21 − β22 1− β1 − β21

−β23 − β24 −β22 − β23 − β24

Table 5.3: Data corresponding to the example to explain how to use IPTW for estimating

E[Y (t̄)].

Let us assume a structural model for our example. But we will now includeM2 in the model.
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The model has one equation for each time point with one unknown parameter β1 in the

time point 1 equation and a vector β2 of 4 unknown parameters in the second time point

equation. By solving the first equation at t1 = 1, then the parameter β1 = Y (1, 0)−Y (0, 0)

represents the subject the effect of treatment t1 on the outcome when treatment t2 is set

to zero.

The 4 parameters β2 in the second equation parameterize the effect of t2 on Y within

the 4 possible levels of past treatment and covariate history. For example β21, β22, β23, β24

are respectively the effect of t2, the interactions between each of (t2,M2(t1)), (t1, t2) and

(t1,M2(t1), t2) on Y . Also β21 and β21 + β22 are, respectively, the effect of t2 on Y when

t1 = 0 with M2(t1 = 0) = 0 and the effect of t2 on Y when t1 = 0 with M2(t1 = 0) = 1.

Similarly β21 + β23 and β21 + β22 + β23 + β24 are, the effect of t2 on Y when t1 = 1 with

M2(t1 = 1) = 0 and with M2(t1 = 1) = 1, respectively.

Returning to our example, we begin by estimating the parameter vector β2. To do so, in

Table 5.3, we first use the structural model

Y (t1, t2) = Y (t1, 0) + β21t2 + β22t2M2(t1) + β23t1t2 + β24t1M2(t1)t2,

to calculate the mean of Y (t1, 0) in terms of the unknown parameter vector β2. To help

understand these calculations, we see in the second data row of Table 5.3, the expression

8− β21 for the mean of Y (t1, 0) = Y (0, 0) among subjects with t1 = 0, M2 = 0, t2 = 1. By

solving the structural model equation we find the other expressions of Y (t1, 0) and Y (0, 0).

To estimate β2 we consider first the stratum (T1,M2(t1)) = (0, 0). From data rows 1 and 2

in the Table 5.3, we find that the mean when T2 = 0 is 3 and 8− β21 when T2 = 1. Hence

8− β21 = 3.

Next we equate the means of Y (t1, 0) in data rows 3 and 4 corresponding to stratum

(T1,M2) = (0, 1) to 7 − β21 − β22. Since β21 = 5, we conclude β22 = 0. Continuing we

equate the means of Y (t1, 0) in data rows 5 and 6 to obtain 5−β21−β23. Since β21 = 5, we
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conclude β23 = −6. Finally, equating the means of Y (t1, 0) in data rows 7 and 8 to obtain

1 − β21 − β22 − β23 − β24. Since β21 = 5, β22 = 0, β23 = −6, we conclude β24 = −2. To

estimate β1, as shown above β1 = Y (1, 0)− Y (0, 0), so β1 = E[Y (1, 0)]−E[Y (0, 0)]. Thus

β1 = [6
350

500
+ 4

150

500
]− [3

100

500
+ 2

400

500
] = 5.4− 2.2 = 3.2.

Now we can estimate the causal effect of t1 and t2 on Y ,

Y (t1, 0) = Y (0, 0) + β1t1,

Thus E[Y (1, 0)] = E[Y (0, 0)] + β1 = 2.2 + 3.2 = 5.4. Then using the second model,

Y (t1, t2) = Y (t1, 0) + β21t2 + β22t2M2(t1) + β23t1t2 + β24t1M2(t1)t2,

we can estimate E[Y (0, 1)], and E[Y (1, 1)]

E[Y (0, 1)] = E[Y (0, 0) + β21 + β22M2(0)] = 2.2 + 5 + 0E[M2(0)] = 7.2,

E[Y (1, 1)] = E[Y (0, 0)+β1+β21+β23+(β22β24)M2(1)] = 2.2+3.2+5−6+(0−2)(0.3) = 3.8.

Recall the fitting model using IPTW

Eps(Y |T1, T2] = 2.2 + 3.2T1 + 5T2 − 6.6T1T2,

All of these estimated values of the model parameters agree with those obtained by the G-

formula and by IPTW. The value -6.6 is the causal effect of the interaction between t1 and t2

on Y . We obtain this value using the previous results by subtracting E[Y (1, 0)]−E[Y (0, 0)]

which is the effect of t1 out of E[Y (1, 1)]−E[Y (0, 0)], the total treatments effect as follows

(3.8− 2.2)− 5− 3.2 = −6.6

.
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5.5 Comparing the Regret-regression Method with

the Inverse Probability of Treatment Weighting

Method

As shown in Chapter 4, the regret-regression method has the ability to estimate an op-

timal dynamic treatment regime by choosing a fully parameterised model for the mean.

The method estimates the effect of treatments on the potential final responses. Basically

it requires modelling of E[Mj|M̄j−1, T̄j−1], to remove the effect of the confounders (the

intermediate states M2, · · · ,MK) on those outcomes. Note that G-formula (see page )

does not need E[Tj|M̄j, T̄j−1] but instead also uses E[Mj|M̄j−1, T̄j−1], that is why it is not

considered in this section. Instead of that the inverse probability of treatment weighting

needs modelling of E[Tj|M̄j, T̄j−1], which is needed as well for Murphy and Robins methods.

Recall equation 4.3 in Chapter 4 Section 2

E[Y |M̄K , T̄K ] = β0(M1) +
K∑
j=2

βj(M̄j−1, T̄j−1)Zj −
K∑
j=1

µj(Tj|M̄j, T̄j−1).

Inclusion of the linear combination of residuals Zj in the formula is reminiscent of a path

analysis method for dealing with time-dependent confounders. In this section we will

compare the regret-regression method with the inverse probability of treatment weighting

to observe any difference or similarity between them. The regret-regression coefficients

below for a regime {T1 = t1, T2 = t2} are classified as

• Const: denotes the expected final response E[Y (t1, t2)] when following a specific

regime d = {t1, t2}.

• µ1I(t1) : denotes a regret value if we follow a different regime of t1 then a regime of

t2.
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• Z2(T1)I(T1) : be the residual between M2 and its expected value given T1. Suppose

Z2(T1)I(T1) = a then a× (1−p(M2 = 1)) is the loss for going (randomly) to a wrong

path of M2 which does not contain maxY (T1).

• µ2I(T1,M2, T2 6= t2) are regret values when following the other regime of T2 (e.g., if

t2 = 0 then the other regime is t2 = 1).

The regret-regression estimates of the counterfactual means E[Yt̄={0,0}], E[Yt̄={1,0}], E[Yt̄={0,1}]

and E[Yt̄={1,1}] under the four possible static regimes are

First regime d={0, 0}

Const µ1I(1) Z2(0)I(0) Z2(1)I(1) µ2I(001) µ2I(011) µ2I(101) µ2I(111)

2.2 3.2 -1 -2 5 5 -1 -3

Second regime d={0, 1}

Const µ1I(1) Z2(0)I(0) Z2(1)I(1) µ2I(000) µ2I(010) µ2I(101) µ2I(111)

7.2 -3.4 -1 -2 -5 -5 1 3

Third regime d={1, 0}

Const µ1I(0) Z2(0)I(0) Z2(1)I(1) µ2I(001) µ2I(011) µ2I(101) µ2I(111)

5.4 -3.2 -1 -2 5 5 -1 -3

Forth regime d={1, 1}

Const µ1I(0) Z2(0)I(0) Z2(1)I(1) µ2I(000) µ2I(010) µ2I(100) µ2I(110)

3.8 3.4 -1 -4 -5 -5 1 3

According to these results, we can read off directly the mean response and different regrets.

For example, if regime d = {0, 0} is always followed the mean is 2.2. Choosing the other

action at the first decision time (which is the optimal action) increases 3.2 in mean. The
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other actions at the second time lead to regrets of -5,-5,1 and 3 depending on the earlier

sequence (T1,M2). They increase 5 in mean when T2(t1 = 0) = {1, 1} and decrease {1, 3}

in mean when T2(t1 = 1) = {1, 1} because the first set of T2 are the optimal actions and the

second are not. The other two terms measure the effects of M2 after allowing for the effect

of T1. For each value of T1 in this example having M1 = 1 is associated with a decrease in

mean: by 1× (1− 0.8) if T1 = 0 (2 instead of 2.2) and by 2× (1− 0.3) if T1 = 1 (4 instead

of 5.4), in both cases assuming the T2 = 0 is chosen. Recall the optimal regimes

Const µ1I(1) Z2(0)I(0) Z2(1)I(1) µ2I(000) µ2I(010) µ2I(101) µ2I(111)

7.2 -1.8 -1 -2 -5 -5 -1 -3

which are T opt1 = 0, T opt2 (T1 = 0,M2) = 1 and T opt2 (T1 = 1,M2) = 0. As seen when

following optimal regimes all regrets coefficients must be negative in the regret-regression

model. We can use regret-regression method for the other four different regimes. The only

difference is regret coefficients might be positive in the regret-regression model (when one

or more regimes are not optimal). The second regime d = {0, 1} gives the value of the

maximum final response because at second time point it follows the optimal action, which

is t2(t1 = 0,M2) = 1 but follows the action t2(t1 = 1,M2) = 1 which is not the optimal

action. That is why its regret at time one of 3.4 (7.2 − 3.8) is bigger than 1.8 (7.2 − 5.4)

when using optimal regimes. The previous results for the four regimes are exactly the

same with those we got in Table 5.2 by using inverse probability of treatment weighting

which were 2.2, 7.2, 5.4 and 3.8. The following are simulations results on estimation of the

optimal final response. For each simulation we use 100 datasets of samples size 100 and

1000.

As we see inverse probability of treatment weighting and regret-regression give exactly the

same results. Both of the regret-regression method and the inverse probability of treat-

ment weighting remove the effect of the confounder’s covariates. However, an important
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Sample size SD Regret-regression IPTW

Mean optimal response SE Mean optimal response SE

100 0 7.2 0.06 7.2 0.06

0.25 7.2 0.11 7.2 0.11

0.5 7.19 0.13 7.19 0.13

1 7.18 0.22 7.18 0.22

1000 0 7.2 0.02 7.2 0.02

0.25 7.2 0.02 7.2 0.02

0.5 7.2 0.04 7.2 0.04

1 7.2 0.06 7.2 0.06

Table 5.4: Comparing the regret-regression and the inverse probability of treatment weight-

ing methods for estimating optimal regimes using 2 time points

advantage of the regret-regression is to use a unique model. Furthermore, problems arise

when using inverse probability of treatment weighting in cases of sample of modest size or

when there is need to estimate high dimensional parameters. Appendix 9.2 shows that µ̂1

(the estimated regrets at time 1) as obtained from the regret-regression versus the inverse

probability of treatment weighting are identical in the previous example of two time point

situation and binary states and actions.

5.6 The G-formula and the IPTW for Finding Opti-

mal Dynamic Strategies

As seen we are able to use the regret-regression method for finding optimal dynamic regimes

using the regret idea by choosing the optimal actions of T2 which are depend on the value
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of M2. In this section we aim to use the G-formula or the IPTW for finding optimal

dynamic treatment strategies. We need to change our worked example, to a similar one

that optimal decisions T2 depend on the value of M2. Let us assume that

{E(Y000), E(Y001), E(Y100), E(Y101)} = {8, 3, 5, 6},

instead of the values {3, 8, 6, 5}. Hence choosing optimal actions of T2 depend on the values

of M2 as follows

T1 M2 T2 N E(Y |M̄2, T̄2) f(T1) f(T2|M2, T1) W Nps(W )

0 0 0 50 8 0.5 0.5 4 200

0 0 1 50 3 0.5 0.5 4 200

0 1 0 120 2 0.5 0.3 100/15 800

0 1 1 280 7 0.5 0.7 100/15 800

1 0 0 280 5 0.5 0.8 2.5 700

1 0 1 70 6 0.5 0.2 10 700

1 1 0 135 4 0.5 0.9 100/45 300

1 1 1 15 1 0.5 0.1 20 300

Table 5.5: Data corresponding to the example to explain how to use G-formula and IPTW for estimating

optimal dynamic actions.

Table 5.4 shows that optimal strategy depends on M2, e.g., when T1 = 0 if M2 = 0 then

T opt2 = 0 and if M2 = 1 then T opt2 = 1. As time 2 is the final time point, we can choose

optimal T2 directly. As discussed before the regret-regression method can be used to find

optimal dynamic treatment regimes at time 2 by try and error based on the regrets idea.
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In this case the regret-regression coefficients are

Const µ1I(1) Z2(0)I(0) Z2(1)I(1) µ2I(001) µ2I(010) µ2I(100) µ2I(111)

7.2 -1.8 -1 -2 -5 -5 -1 -3

When following optimal regimes all regrets coefficients must be negative in the regret-

regression model. Hence optimal roles using the regret-regression method are T opt1 = 0,

T opt2 (T1 = 0,M2 = 0) = 0, T opt2 (T1 = 0,M2 = 1) = 1, T opt2 (T1 = 1,M2 = 0) = 1,

T opt2 (T1 = 1,M2 = 1) = 0.

After determine the optimal dynamic regimes directly at the second time point, which

maximize E(Y |T1,M2, T2). The optimal dynamic policies for the first time point can be

achieved by comparing the G-formula of each E[Y (T opt2 )|T1,M2]

E[Y (T opt2 )|T1 = 0,M2] = E(Y000)×
∑

I(0, 0)/
∑

I(0) + Y011 ×
∑

I(0, 1)/
∑

I(0),

= 8× 100/500 + 7× 400/500 = 7.2,

E[Y (T opt2 )|T1 = 1,M2] = Y101 ×
∑

I(1, 0)/
∑

I(1) + Y110 ×
∑

I(1, 1)/
∑

I(1),

= 6× 350/500 + 4× 150/500 = 5.4.

To find IPTW policy, we need to compare Eps(W )[Y (T opt2 )|T1,M2] of unstabilized pseudo-

population formula. From table 5.3

Eps(W )[Y (T opt2 )|T1 = 0,M2] = (8× 200 + 7× 800)/1000 = 7.2,

Eps(W )[Y (T opt2 )|T1 = 1,M2] = (6× 700 + 5× 300)/1000 = 5.4.

Thus T opt1 = 0. Hence the optimal dynamic roles using all the three methods are the

same. But the regret-regression method avoids problems which arise when using samples

of modest size or when there is need to estimate high-dimensional parameters.
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Chapter 6

Regret-regression and Multi-armed

Bandit Problem

6.1 Introduction

The multi-armed bandit problem, described by Robbins (1952), is a simple machine learn-

ing problem based on the idea of a traditional slot machine (one-armed bandit) but with

more than one arm. When pulled, each arm provides a reward drawn from a distribution

corresponding to that specific arm. The problem is a classical example of the trade-off

between exploration and exploitation. On the one hand, if the gambler plays exclusively

on the machine that he thinks is best (exploitation), he may fail to discover that one of

the other arms actually has a higher average return. On the other hand, if he spends too

much time trying out all the machines and gathering statistics (exploration), he may fail

to play the best arm often enough to get a high total return.

The classical example of a bandit problem is deciding what treatment to give each patient

in a clinical trial when the effectiveness of the treatments are initially unknown and the

patients arrive sequentially (Thompson 1933). The decision-maker is an experimenter who
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allocates one of K experimental treatments sequentially to a sample of patients. The pa-

tient attends at the clinic at the jth time point, and only one of the K treatments could

be used on the patient. Outcomes accumulate as the trial continues. The objective is to

treat patients to maximize their final expected response. One example concerns patients

with prostate cancer where they need to balance the possibility of a long life expectation

against possible stressful treatment side-effects (patient trade-off). Each choice of an arm

returns in an immediate random return, but the process determining these returns evolves

during the play of the bandit. The characterizing feature of bandit problems is that the

distribution of returns from one arm only changes when that arm is chosen. Hence the

rewards from an arm do not depend on the rewards obtained from other arms. This feature

also assumes that the distributions of returns do not depend clearly on calendar time.

Dynamic programming or backward induction is the standard method for finding the opti-

mal strategies. Other methods, as the myopic rule or stay with a winner (sometimes called

play the winner) rule are used more commonly, although these two methods do not always

give the optimal result. The myopic rule is to choose the arm with greater expected gain

at each stage. In the two-armed Bernoulli bandit, Feldman (1962) showed that myopic

strategies are optimal when the number of patients is known and the success probability

of the two treatments has a two-point prior distribution. However, myopic strategies are

not optimal, or even good, generally. The play the winner rule is to use the same arm if

the last observation from this arm yielded a success at the last stage. The play the winner

rule is optimal if two arms are independent and if the arm used at the last stage is optimal.

For more details of strategies, see Berry and Fristodt (1985).

Other than sequential selection for every observation, separating a medical trial into sev-

eral stages is a more realistic way of solving the two-armed bandit problem. Since the

data can be collected at intervals throughout the trial, there is no need to know the result
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of previous patients before giving the next patient treatment, and the calculations can

thus be simplified. Canner (1970) discussed the binary two-armed bandit, in two-stage

setting with a sampling cost for the first stage patient, but the same number of patients

are assigned to both treatments. Witmer (1986) also discussed the Bernoulli two-armed

bandit in a multi-stage setting but with one treatment known. Clayton and Witmer (1988)

considered the Bernoulli one-armed bandit in a two-stage setting, with the successes in the

first stage discounted by a factor. Gittins and Wang (1992) showed that if two arms have

the same prior mean and only one arm is to be used for all patients, the arm with greater

prior variance shall yield greater outcomes.

6.2 The Multi-Armed Bandit Problem

The multi-armed bandit problem remained unsolved for many years. Only through the use

of dynamic programming could a solution be found and then only for small problems. The

disadvantage of this method is that such formulations are often too general to exploit the

special structure of the problem at hand and they are extremely computationally expensive

for problems of reasonable size. However in some cases structural results have been found

to lead to efficient solution procedures.

In series of papers, Gittins proposed a method of solution. This method gives a calibrating

index to each of the competing arms, namely the Gittins index. Each index depends only

upon the current state of the corresponding arm. At each decision time j = 0, 1, 2, · · · , K

a decision must be taken as to which of the T arms will be selected for processing and the

optimal policy selects that arm with the current largest index. If arm t ∈ T is chosen at

time j then a discounted reward of

λjR{Mj(t)},
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is gained, where λ ∈ [0, 1) is a discount rate, R is a reward function defined on the state

space of arm t and Mj(t) is the value of a Markov chain modelling the evolution of arm t

at time j. After a unit of time dedicated to arm t, it changes state according to a Markov

law of motion Pt. The states of the other arms remain unchanged. The objective is to find

a policy for allocating arms for processing that maximizes the total expected discounted

reward over an infinite horizon.

The multi-armed bandit problem is a discounted Markov decision process denoted

{(Ωt, Pt, R[M(t)], λ) : 1 ≤ t ≤ T}

with the following special features:

1- At each decision time point j = 1, 2, · · · , K an action from the set T is taken. Here

action Tj = tj taken at time j is interpreted as selecting arm t during the interval

[j, j + 1).

2- A time homogeneous Markov chain {Mj(t) : j = 1, 2, · · · , K} with a countable

state space Ωt is used to model the evolution of each arm. Note that, the state of

the system at any time j may be written as,

Mj(t) = {Mj(1), · · · ,Mj(T )}.

3- A transition matrix Pt is such that if action t is taken then arm t in state m

subsequently enters state m̃ with probability

Pt[(m, m̃)], (m, m̃) ∈ Ωt × Ωt, where Ωt is the set of possible states. Further, arms

which are not selected for processing remain unchanged in state. That is, if arm t is

chosen at time j then

p{Mq(j + 1) = Mq(j)} = 1 for q 6= t,
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and

p[Mj+1(t) = m̃|Mj(t) = m} = Pt(m, m̃).

4- A bounded n-dimensional reward function R : 7→ R+ ; for n states; Mj(t) =

{M1j(1), · · · ,Mnj(T )} and a discount factor λ ∈ [0, 1) are such that if arm t is

taken at time j then an immediate reward of λjR[Mj(t)] is earned. Hence, the total

expected reward corresponding to policy d, may be expressed as,

R(d,M) = Ed

∑
j≥0

λjR{Mj(d)}|M0(d)

 .
Here Ed represents the expectation taken over all realizations of the process under

policy d, where d ∈ T and dj represents the choice policy d makes at time j and

M0(d) is an initial state of arm t under policy d.

5- The policy d is any rule for choosing actions at each decision time point in terms of

the history of the process to date. An optimal policy dopt is any rule that maximises

the total expected reward, i.e.

R(dopt,M) = max
d
R(d,M).

Here the maximum is over all policies. It is known that there exists an optimal

policy for a discounted Markov decision process that is deterministic, stationary and

Markov (Ross (1970)).

In Chapter 2, Section 1, we described principles of dynamic programming. For particular

problems the use of dynamic programming and the application of Bellman’s principle of

optimality (Bellman, 1957) would allow these classical problems to be solved. However,

as the size of the problem increases, serious computational difficulties arise, as discussed

earlier. Additionally, no insight into the structure of the optimal policy is obtained.
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In the next sections we wish to maximize the expected value of the sum of non-discounted

rewards (λ = 1) in sections from 6.3 up to 6.6 or discounted rewards (0 < λ < 1) in

all sections from 6.3 up to the end of this chapter. In both, rewards achieved during

situations of finite states; e.g., for arm t at time j, it might there are n states; Mj(t) =

{M1j(t),M2j(t), · · · ,Mnj(t)}. Infinite states, e.g. for arm t at time j which have unlimited

states; Mj(t) = {M1j(t),M2j(t), · · ·}, are not considered here. Also, we will use both

situations of a finite horizon and an infinite horizon where in the first we face K time points,

j = {1, · · · , K} but for the infinite horizon there are unlimited time points, j = {1, 2, · · ·}.

6.3 Regrets and Optimal Dynamic Regime for the

Multi-Armed Bandit Problem

In this section, we will look at the multi-armed bandit problem as a dynamic problem.

The aim is to solve this problem using different approaches for finding optimal dynamic

regimes. For example, consider a multi-armed bandit problem example with two arms

and two states. At time j the state value Mj(t) is a 2-vector {M1j(t),M2j(t)}, where

Mj(1) ∈ {1, 2} is the value of arm one and Mj(2) ∈ {1, 2} of arm two. The action Tj is to

choose one of the arms. Response Y is then incremented by total non-discounted rewards

which depend on the values of the chosen arms. In our example the rewards are 6 or 4 for

the two values of arm one, and 8 or 3 for the two values of arm two. If arm one is selected

then Mj(1) is updated for time j+1 according to a Markov chain but Mj(2) remains at its

previous value. The opposite happens if arm two is selected: Mj(2) is updated but Mj(1)

115



is unchanged. As explained Figure 6.1 the transition matrices are

P1 =


0.2 0.8

0.3 0.7

 and P2 =


0.4 0.6

0.5 0.5

 .

This is a special case of the multi-armed bandit problem.

State 1 State 2

0.8

0.3
0.7

0.2

Arm 1

State 1 State 2

0.6

0.5
0.5

0.4

Arm 2

Figure 6.1: A two-armed bandit example.

For simplicity let us supposeK = 2 time points. Figure 6.2 shows all possible states, actions

and final expected total rewards. The possible four states areMj = {(1, 1), (1, 2), (2, 1), (2, 2)}.

We use a binary action tj = 0 for choosing arm 1 and tj = 1 for choosing arm 2 and denote

the four states of Mj as 1, 2, 3 and 4 respectively. In produce the direct approach to anal-

ysis the problem involves two stages. The first stage, regression, involves modelling the

observable data. The second stage, dynamic programming (DP) or backward induction,

uses the models to determine optimal actions, working iteratively from the last time stage.
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In this example, for each initial state, there are eight different T1,M2, T2 sequences and

hence eight parameters in a saturated model for the expected total final rewards Y . Using

the standard main effects and interaction formulation these are

Initial state Const T1 M2 T2 T1M2 T1T2 M2T2 T1M2T2

1 13 1 -1 1 1 6 1 -6

2 14 -5 -1 -5 1 12 1 -6

3 11 1 -1 1 1 -22 1 4

4 12 -5 -1 -5 1 24 1 -6

From this we can calculate the mean response at each of the eight T1M2T2 sequences (for

each initial state) and hence the regrets due to choices T2 for each (T1,M2). Dealing with

the first decision time is trickier: for each of the two values of T1 we need to calculate

∑
M2

E[Y |T1,M2, T
opt
2 ]P (M2|T1),

from which the optimal choice and regret can be found. Recall Equation 3.1, the regret

function at time j is defined as

µj(tj|M̄j, T̄j−1) = E(Y | M̄j, T̄j−1, d
opt
j )− E(Y | M̄j, T̄j−1, tj, d

opt
j+1).

Optimal actions can be taken by working from the final time point and choosing the actions

when regrets are equal to zero. To choose optimal actions at the final time point, regrets

are directly calculated. At other time points j = 1, · · · , K − 1, we might choose optimal

actions by calculation of regrets through the expectation of optimal final rewards given the

history of previous states and actions. Table 6.1 shows the optimal action for each state

Mj, along with the regrets for choosing a suboptimal action.
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Figure 6.2: States, actions and the mean total rewards (K = 2)
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M1 R1 T1 maxE(R2) µ1 M2 P (M2|M1, T1) R2 T opt2 maxE(Y |M1, T1,M2, T
opt
2 )

1 (6,8) 0 14 0.8 1 0.2 (6,8) 1 14

3 0.8 (4,8) 0 14

1∗ 14.8 0 1 0.4 (6,8) 1 16

2 0.6 (6,3) 0 14

2 (6,3) 0∗ 10.4 0 2 0.2 (6,3) 0 12

4 0.8 (4,3) 0 10

1 10 0.4 1 0.5 (6,8) 1 11

2 0.5 (6,3) 0 9

3 (4,8) 0 12 1.6 1 0.3 (6,8) 1 12

3 0.7 (4,8) 1 12

1∗ 13.6 0 3 0.4 (4,8) 1 16

4 0.6 (4,3) 0 12

4 (4,3) 0 8.6 0.4 2 0.3 (6,3) 0 10

4 0.7 (4,3) 0 8

1∗ 9 0 3 0.5 (4,8) 1 11

4 0.5 (4,3) 0 7

∗ for optimal actions at first time point.

Table 6.1: Optimal actions and total final response

6.4 Regret-Regression for the Multi-Armed Bandit

Problem

In the regret-regression method, the observed Y is parameterised as a function of the

regrets and of a linear combination of residuals between states Mj and their associated

conditional expectations given earlier history. Recall the regret-regression formula

E[Y |M̄K , T̄K ] = β0(M1) +
K∑
j=2

βj(M̄j−1, T̄j−1)Zj −
K∑
j=1

µj(Tj|M̄j, T̄j−1), (6.1)

where βj(M̄j−1, T̄j−1) is a vector measuring the effect of Mj for (M̄j−1, T̄j−1) and assuming

optimal actions are chosen from time j onward. Let µ1I(M1T1) = µ1I(M1 = m1, T1 =
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1 − topt1 ) and µ2I(M1, T1,M2, T2) = µ1I(M1, T1,M2, T2 = 1 − topt2 ) are regrets of choosing

the wrong decision at first and second time point, respectively. Further, let Z2(m1t1) be

the residual between M2 and its expected value given M1 = m1, T1 = t1. So Z2(10) =

M2 − p1(1, 2), Z2(11) = M2 − p2(1, 2), Z2(20) = M2 − p1(1, 2), Z2(21) = M2 − p2(2, 2),

Z2(30) = M2 − p1(1, 2), Z2(31) = M2 − p2(1, 2), Z2(40) = M2 − p1(2, 2) and Z2(41) =

M2 − p2(2, 2) where p1(1, 2) = 0.8, p2(1, 2) = 0.6, p1(2, 2) = 0.7 and p2(2, 2) = 0.5 all

of which would need to be estimated in practice. Instead of the standard model by using

regression with thirty two-parameter main effects and interaction summarised before (eight-

parameter for each of four initial states), the regret-regression obtain exactly the same

saturated fit using a linear model with the twenty covariates given below, along with their

associated parameter values.

Const1 Const2 Const3 Const4 µ1I(10) µ1I(21) µ1I(30)

14.8 10.4 13.6 9 -0.8 -0.4 -1.6

µ1I(40) Z2I(10) Z2I(11) Z2I(20) Z2I(21) Z2I(30) Z2I(31)

-0.4 0 -2 -2 -2 0 -4

Z2I(40) Z2I(41) µ2I(1) µ2I(2) µ2I(3) µ2I(4)

-2 -4 -2 -3 -4 -1

The expected mean responses for each initial state (1,1),(1,2),(2,1) and (2,2) when following

optimal regime are 14.8, 10.4, 13.6 and 9. Costs in the mean if we choose wrong actions at

the first decision time point are 0.8, 0.4, 1.6 and 0.4 in the mean. If we always choose the

initial state by a random coin toss and follow the optimal regime, the overall mean will be

E(Y opt) = 0.25× (14.8 + 10.4 + 13.6 + 9) = 11.95. The wrong actions at the second time of

states (1,1),(1,2),(2,1) and (2,2), lead to regrets of 2, 3, 4 and 1 respectively. The effects of

M2 after allowing for the effect of M1 and T1 can be measured by the other eight terms. At
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the state (1,1) having t1 = 0 decreases the mean expected final response: by 0× (1− 0.8)

and by 2× (1− 0.6) if T1 = 1, in both cases assuming the optimal action T2 later.

6.5 Comparing the Regret-regression with Other Meth-

ods

In the literature, the multi-armed bandit problem is posed as a statistical decision model of

an agent trying to optimize his decisions while improving his information at the same time.

There are several different algorithms and models which can be applied for this problem,

e.g. Linear Programming, Gittins Index, Q-learning etc. These various algorithms are

approximate in a situation of discount rewards and infinite horizon (time of converge

when discounted reward approximates to zero), otherwise they are exact. As in standard

regression models, the form of the regression model in Q-learning need to assume the same

conditions (assumptions A1 to A5) of the regret-regression method which were discussed

in Section 2.4.5 and Section 4.2. While in other method we assume only the assumptions

A1 to A3 in Section 2.4.5 as sufficient assumptions for causal inference.

In this section we compare regret-regression with other methods. For simplicity, we only

consider a two-armed bandit problem with a finite-horizon K = 2, a finite-state n = 2,

and binary actions at each stage, coded (0,1), for choosing arm 1 and arm 2 respectively

assigned randomly in the training data depends on probabilities of states in each arm,

optimal strategies are dynamic (depend on previous states and actions) as described in

Section 6.3.

First, we will have a quick view of the Q-learning and the inverse probability treatment

weighting method using the chosen example in Figure 6.2 with a non-discounted reward

λ = 1.
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6.5.1 Q-learning method

Q-learning, is a simple incremental algorithm developed from the theory of dynamic pro-

gramming (Ross,1983). In Q-learning, policies and the value function are represented by a

two-dimensional lookup table indexed by state-action pairs. There are many variants of Q-

learning (Watkins (1989), Sutton and Barto (1998), Ormoneit and Sen (2002), Lagoudakis

and Parr (2003), Ernst et al. (2005), Murphy (2005)). Q-learning can be viewed as a

generalization of regression to the multi-stage decision problem to compute solutions to

bandit problems. In this section, we use linear regression to fit the Q-functions, and then

we compare the regret-regression estimator with the Q-learning estimator via simulated

experiments. Here is a simple introduction using least squares. We consider the fitted

Q-learning algorithm with linear regression using least squares. Let the stage-j (j = 1, 2)

Q-function be modeled as

Qj(M̄j, T̄j;αj, βj) = αfj 0(M̄j, T̄j−1) + βfj 1(M̄j, T̄j)Tj

where f0(M̄j) and f1(M̄j) are two basis functions of the history of states and actions, with

f1(M̄j, T̄j) denoting the the history information of states and actions that interact with

the action Tj. We have separated these two parts because only the second term features in

the policy. Thus even though we estimate all the parameters from the training data, our

main interest lies in the policy parameters βj’s only (αj’s are nuisance parameters). For

the 2 time point’s case, define

Q2(M̄2, T̄2) = E[Y |M̄2, T̄2)]

Q1(M1, T1) = E[Y |M1, T1],

where Q2(M̄2, T̄2) and Q1(M1, T1) are the Q-function at time 1 and 2, and Y is the final

total reward. If the two Q-functions were known then using backwards induction (e.g. as
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in dynamic programming) we see that the optimal decision rules are

dopt2 (M̄2, T̄2) = max
T2

Q2(M̄2, T1)

dopt1 (M1, T1) = max
T1

Q1(M1).

For Q-learning with function approximation, the time j optimal Q-function is approximated

by Qj(M̄j, T̄j;αj, βj). For example we might use a linear approximation to the Q-functions,

use regression to estimate the parameters (αj, βj), and then choose the decision rules so as

to maximize the estimated Q-functions. We now describe the Q-learning algorithm with

function approximation as in (Murphy 2005). To start, define the algorithm follows.

(α̂2, β̂2) = arg min
α2,β2

1

n

n∑
i=1

(Yi −Q2(M̄2i, T̄2i;α2, β2))2

d̂opt2 (M̄2, T1) = arg max
T2

Q2(M̄2, T̄2, α̂2, β̂2)

Ŷ1i ← max
T2

Q2(M2i, T̄2; α̂2, β̂2), i = 1, 2, · · · , n.

(α̂1, β̂1) = arg min
α1,β1

1

n

n∑
i=1

(Ŷ1i −Q1(M1i, T1i;α1, β1))2

d̂opt1 (M1) = arg max
T1

Q1(M1, T1, α̂1, β̂1)

Output π̂ = (d̂1, d̂2) as the estimated optimal policy

More precisely, Q-learning is a form of approximate dynamic programming where the

conditional mean responses are estimated from the data since they cannot be computed

explicitly (Laber et al. 2010). In order to use data to construct decision rules, a data anal-

ysis model that relates response to the pretreatment variables is employed. A particularly

simple but useful model is,

Y = α0 + α1V1 + · · ·+ αpVp + (β0 + β1W1 + · · ·+ βqWq)T + ε
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where V ’s and W ’s are selected state and action variables or summaries of the selected

state and action variables and ε is the error term. The coefficients, that is the α’s and β’s,

might be estimated from data using regression analysis. Suppose a maximum value of Y

corresponds to a good response, then the decision rule is determined as follows: The first

step in constructing the decision rule is to maximize

(β0 + β1W1 + · · ·+ βqWq)T.

Let T be binary {0, 1}. If this algebraic maximization is performed, the decision rule is

given a patient with the variables (W1, · · · ,Wq), choose T = 1 if the sum (β0 + β1W1 +

· · · + βqWq) ≥ 0 and choose T = 0 otherwise. In the example of K = 2, we can consider

each initial state so that,

Q2(M̄2, T̄2) = α0 + α1T1 + α2M2 + α3T1M2 + (β0 + β1T1 + β2M2 + β3T1M2)T2

For simplicity, this equation can be written as,

Q2 = γ20 + γ21T2,

then we can decide the optimal policy by choosing T opt2 = 0 when γ21 < 0 and T opt2 = 1

when γ21 > 0. For the example, the fitted Q2 models of the four initial states are

Q2(M1 = 1) = 13 + T1 −M2 + T1M2 + (1 + 6T1 +M2 − 6T1M2)T2

Q2(M1 = 2) = 14− 5T1 −M2 + T1M2 − (5− 12T1 −M2 + 6T1M2)T2

Q2(M1 = 3) = 11 + T1 −M2 + T1M2 + (1 + 18T1 +M2 − 6T1M2)T2

Q2(M1 = 4) = 12− 5T1 −M2 + T1M2 − (5− 24T1 −M2 + 6T1M2)T2

and following the dynamic programming (DP) or backward induction, we determine op-

timal actions, working iteratively from the last time stage, as explained in the following

table.
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States Rewards T1 M2 γ20 γ21 T opt
2 Qopt

2 = maxE(Y |T1,M2, T
opt
2 )

1 (6,8) 0 1 12 2 1 14

3 10 4 1 14

1 1 14 2 1 16

2 14 -3 0 14

2 (6,3) 0 2 12 -3 0 12

4 10 -1 0 10

1 1 09 2 1 11

2 09 -3 0 09

3 (4,8) 0 1 10 2 1 12

3 08 4 1 12

1 3 12 4 1 16

4 12 -1 0 12

4 (4,3) 0 2 10 -3 0 10

4 08 -1 0 08

1 3 07 4 1 11

4 07 -1 0 07

Table 6.2: Optimal actions and maximum expected rewards using Q-learning

To obtain the optimal policies at j = 1, we fit the model of Q1 which is a function of

Qopt
2 ,M1 and T1 (according to the equation on page 123, line 12 that we replace Y1i, which

equals to maxT2 Q2 instead of Yi), then we can consider the model: Q1 = γ10 + γ11T1, then

we can decide the optimal policy by choosing T opt1 = 0 when γ11 < 0 and T opt1 = 1 when

γ11 > 0. Using the Q1 models,

Q1(M1 = 1) = 14 + 0.8T1, Q1(M1 = 2) = 10.4− 0.4T1

Q1(M1 = 3) = 12 + 1.6T1 and Q1(M1 = 4) = 8.6 + 0.4T1
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We determine optimal actions, as explained in the following table.

M1 Rewards γ10 γ11 T opt
1 Qopt

1 = maxE(Y |T opt
1 )

1 (6,8) 14 0.8 1 14.8

2 (6,3) 10.4 -0.4 0 10.4

3 (4,8) 12 1.6 1 13.6

4 (4,3) 8.6 0.4 1 9

In general we can use least squares iteration to estimate the Q-function parameters. If j = K, then these

will be equal to the true values. But for j = 1, · · · ,K − 1 they will be different but close to true values in

case of large samples. The next table shows the Q1 estimated parameters using 100 simulations

n = 100 n = 1000 n = 10000

M1 = 1 γ10 14.0000 14.0000 14.0000

γ11 0.6667 0.8209 0.8008

M1 = 2 γ10 10.6154 10.3837 10.3973

γ11 -0.4904 -0.5526 -0.38933

M1 = 3 γ10 12.0000 12.000 12.0000

γ11 1.8980 1.8461 1.6013

M1 = 4 γ10 8.6667 8.6129 8.5990

γ11 0.7333 0.5595 0.4037

6.5.2 Inverse probability treatment weighted method

As explained in Chapter 5, the IPTW formula based on M̄ for the counterfactual mean E[Y (t̄)] is the

average of Y among subjects with T̄ = t̄ in a pseudo-population constructed by weighting each subject by

their subject-specific IPTW

W =
K∏

j=1

1
P [Tj |T̄j−1, M̄j ]

,

Recall the previous bandit example with a sequence M1, T1,M2, T2 of binary states changing after playing

according to the transition matrices, actions and mean total rewards Y measured at the end of follow-up.

All subjects are assumed to start in a randomly chosen selection of the four different states 1, 2, 3 and
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M1 N(M1) T1 N(T1) R(T1) M2 T2 R(T2) E(Y |M̄2, T̄2) N W Nps(W ) E[Y (topt2 )|M̄2, T1]

1 250 0 75 6 1 0 6 12 9 100/18 50

1∗ 8 14 6 100/12 50 14

3 0 4 10 12 100/6 200

1∗ 8 14 48 100/24 200 14

1 175 8 1 0 6 14 42 100/42 100

1∗ 8 16 28 100/28 100 16

2 0∗ 6 14 84 100/56 150 14

1 3 11 21 100/14 150

2 250 0 175 6 2 0∗ 6 12 28 100/56 50 12

1 3 9 7 100/14 50

4 0∗ 4 10 56 100/28 200 10

1 3 9 84 100/42 200

1 75 3 1 0 6 9 22.5 100/18 125

1∗ 8 11 15 100/12 125 11

2 0∗ 6 9 30 100/24 125 9

1 3 6 7.5 100/6 125

3 250 0 100 4 1 0 6 10 18 100/24 75

1∗ 8 12 12 100/16 75 12

3 0 4 8 14 100/8 175

1∗ 8 12 56 100/32 175 12

1 150 8 3 0 4 12 12 100/12 100

1∗ 8 16 48 100/48 100 16

4 0∗ 4 12 36 100/24 150 12

1 3 11 54 100/36 150

4 250 0 150 4 2 0∗ 6 10 36 100/48 75 10

1 3 7 9 100/12 75

4 0 4 8 42 100/24 175

1∗ 3 7 63 100/36 175 8

1 50 3 3 0 4 7 10 100/8 125

1∗ 8 11 40 100/32 125 11

4 0∗ 4 7 20 100/16 125 7

1 3 6 30 100/24 125

∗For optimal actions at second time point.

Table 6.3: States, actions, unstabilized pseudo-populations and optimal outcomes.
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4. Then N = 1000 subjects are randomly assigned at two time points to play arm 1 or play arm 2 with

any assuming probabilities, e.g., P (T1 = 0|M1 = 1) = P (T1 = 1|M1 = 2) = 0.3, P (T1 = 0|M1 = 3) =

P (T1 = 1|M1 = 4) = 0.4 at time 1 and P (T2 = 0|M2 = 1,M1, T1) = P (T2 = 1|M2 = 4,M1, T1) = 0.6,

P (T2 = 0|M2 = 2,M1, T1) = P (T2 = 1|M2 = 3,M1, T1) = 0.8 at time 2. In a real study all terms would

be different and need to be estimated in practice. Table 6.3 describes how to use IPTW for estimating

the means E[Y (t)] under the different regimes t̄ = {t1, t2}. We can calculate the mean expected total

rewards for each initial state under the different regimes {T1 = t1, T2 = topt
2 }. Columns 10 and 12 are the

example assumptions of data population for each path and the pseudo-population which was calculated

based on the inverse probability weighted method, where the actions are randomly assigned with the with

the probabilities; P (T1|M1) and P (T2|M̄2, T1).

To decide the optimal strategies at time 1, we should compare E(Y |M̄2, T1 = 0, topt
2 ) and E(Y |M̄2, T1 =

1, topt
2 ) for each state. E.g., when the initial state is 1 then the optimal decision is to play arm 2, because

E(Y |M̄2, T1 = 1, topt
2 ) = [16(100) + 14(150)]/250 = 14.8 is greater than E(Y |M̄2, T1 = 0, topt

2 ) = [14(50) +

14(200)]/250 = 14.0. In a random study all probabilities of each action given history would be different

and need to be estimated. Then we weight each subject by their subject-specific IPTW

Ŵ =
K∏

j=1

1
P̂ [Tj |T̄j−1, M̄j ]

.

The following calculations are done by estimated values using 100 simulations of data set size 1000

State T1 Eps(Y |M1, T1)

1 0 14(048.21) + 14(201.72)/249.93 = 13.96

1∗ 16(098.01) + 14(149.52)/247.53 = 14.79

2 0∗ 12(049.34) + 10(203.47)/252.81 = 10.39

1 11(124.53) + 09(124.95)/249.48 = 09.98

3 0 12(076.11) + 12(174.72)/250.83 = 12.04

1∗ 16(099.03) + 12(151.19)/250.22 = 13.59

4 0 10(074.02) + 08(175.88)/249.90 = 08.62

1* 11(125.36) + 07(126.61)/251.02 = 08.99

∗For optimal actions at first time point.

The previous table shows how to choose optimal actions at time 1 by using E(Y |M̄2, T1, t
opt
2 )

and the pseudo-population of IPTW for each path.
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6.6 Simulation Results

As we have seen, regret-regression, Q-learning and IPTW methods in our example, lead to

the same optimal policies. These policies for states {1, 2, 3, 4} are respectively {1, 0, 1, 1}

at time 1 and {1, 0, 1, 0} at time 2. To be sure we use simulations of 1000 data sets with

different sample sizes 100, 1000 and 10000 for estimating maxE(Y |M1, T1), which equals

11.95 if using true values. The results are very close each other, as shown below,

n = 100 n = 1000 n = 100000

Method Mean SE Mean SE Mean SE

Regret-regression 11.944 0.081 11.954 0.056 11.950 0

Inverse probability 11.947 0.096 11.951 0.061 11.955 0.006

Q-learning 11.947 0.096 11.951 0.061 11.948 0.007

Although the three methods give the same policies and the same maximum rewards, prob-

lems arise when using IPTW method in samples of modest size (observing many paths with-

out data). On the other hand the Q-learning method needs to estimate high-dimensional

parameters which are different in each time point. But using regret-regression, only two

model fits are required.

6.7 The Gittins Index

An alternative method of solution, based around forwards induction was introduced by

Gittins and Jones (1974). Forward induction policies are constructed by choosing actions

to maximize a measure of the current reward rate. Robinson (1982) define the dynamic

allocation index (DAI) as

G[i, τ ] = sup
τ>0

G[Mj(t), τ ], where j = 1, 2, · · · , K
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= sup
τ>0

E
[∑τ−1

j=0 λ
jR{Mj(t)}|M0(t) = i

]
1− E (λτ )

,

= sup
τ>0

E
[∑τ−1

j=0 λ
jR{Mj(t)}|M0(t) = i

]
E
(∑τ−1

j=0 λ
j|M0(t) = i

) ,

where G[Mj(t)] is the expected discounted reward per expected unit of discounted time

when arm t is operated from initial state m0(t) and τ is a positively valued stopping time

defined on the process. The Gittins index policy is the one that selects the arm with the

current largest DAI. Such policies, since Whittle (1980), are now referred to as Gittins

Index policies. Stationary or non-stationary policies can be obtain using the Gittins Index.

This is because whether the unselected arms remain still (frozen in their current states)

or transition to another state with a different reward is inconsequential; in either case the

player does not obtain the reward from arms he does not play (Whittle, 1980). There

are a number of methods for calculating the Gittins index including direct calculation,

calibration methods, linear programming and special purpose algorithms.

Theorem 5.1 (Whittle 1980)

A policy dopt is optimal for multi-armed bandit problem {(Ωt, Pt, R[Mj(t)], λ) : 1 ≤ t ≤ T},

if and only if at each decision time point

dopt(j) = i⇒ G{Mj(i)} = max
1≤t≤T

G[Mj(t)]}

Any such will be referred to as a Gittins index policy. Further, the maximum G[Mj(t)]

equation is achieved at a time

τ ∗[i] = min
j>0
{j : G[Mj(t)] ≤ G[Mj(t) = i]}

That is, the first time that the processed arm enters a state that has a lower Gittins index

than its initial Gittins index. The term Gittins index was adopted by Whittle (1980) in
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recognition of Gittins contribution. The advantage of this result is that the Gittins index

for each arm is independent of the other arms. Hence, a multi-armed bandit problem is

computationally equivalent to one-armed bandit problem. This means major computa-

tional savings can be made, allowing larger problems to be solved. Gittins index policies

are rules to choose the arm with highest priority which maximizes the total expected

discounted reward.

6.8 Calculating the Gittins Index

The methods for calculating the Gittins index are numerous and include direct calculation,

calibration methods, linear programming and special purpose algorithms. A fuller account

of some of these algorithms can be found in Gittins (1989). Direct computation of the Git-

tins index requires an exhaustive search over all possible times τ in the defining equation,

to locate the stopping time τ ∗ which yields the index. As one would expect, this approach

is computationally expensive and hence would rarely be recommended. Calibration tech-

niques are equivalent to finding a retirement reward for which one would be indifferent

between continuing the processing of the arm and accepting the retirement reward. Note

that the retirement reward means the best reward form other arms at time τ when leaving

arm t.

Linear programming algorithms have been proposed which are again based on the idea of

a retirement reward and they can give the exact Gittins index. These use results derived

from dynamic programming. The simple algorithm can, in principle, be used to extract

value functions which are related to the Gittins index (Chen and Katehakis 1986). Special

purpose algorithms have also been developed for certain models for which optimal policies

can be found through the use of Gittins index. These include target problems, where the
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aim is to identify the arm with the highest expected reward, and sampling models for

which some of the parameters are unknown and must be discovered through experimenta-

tion. Robinson (1982) describes in detail some of the most efficient approaches to an exact

Gittins index index computation. In the following algorithm Bk is a k × k matrix, Sk and

Fk are k-vectors and k
′

indicates the state whose DAI-ordering is k(k = 1, 2, · · · , n), i.e. 1
′

is the state with the largest DAI, 2
′

is the state with the second largest DAI, and so on;

ties are separated arbitrarily.

Algorithm. State 1
′

is some state m satisfying

R[m(t)] = max
m̃(t)

R[m̃(t)]

and B1(1, 1) = (1 − λP (1
′
, 1
′
))−1. For k = 2, 3, · · · , n state k

′
is some state m, not in the

set {1′ , 2′ , ..., (k − 1)
′}, satisfying

R(m) + λ
∑
l<k P (m, l

′
)Sk−1(l)

1 + λ
∑
l<k P (m, l′)Fk−1(l)

= max
j

[
R(m̃) + λ

∑
l<k P (m̃, l

′
)Sk−1(l)

1 + λ
∑
l<k P (m̃, l′)Fk−1(l)

]

where

Sk−1(l) =
k−1∑
w=1

Bk−1(l, w)R(w
′
) and Fk−1(l) =

k−1∑
w=1

Bk−1(l, w).

The matrix Bk is given by

Bk(k, k) = {1− λP (k
′
, k
′
)− λ2

∑
l<k

P (k
′
, l
′
)Zk−1(l)}−1,

Bk(m, k) = λBk(k, k)Zk−1(m) (m = 1, 2, · · · , k − 1),

Bk(k, m̃) = λBk(k, k)
∑
l<k

P (k
′
, l
′
)Bk−1(l, m̃) (m̃ = 1, 2, · · · , k − 1),

Bk(m, m̃) = Bk−1(m, m̃) + λZk−1(m)Bk(k, m̃) (m and m̃ = 1, 2, · · · , k − 1),

where

Zk−1(m) =
∑
l<k

Bk−1(m, l)P (l
′
, k
′
) (m = 1, 2, · · · , k − 1).
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We turn now to the simple example, we assume a discounted reward situation that λ = 1.

The following shows how to find a policy to maximize the total rewards using the Gittins

index.

Arm 1

R(m) = max
m̃

R(m̃) = max(6, 4) = 6.

Suppose λ = 0.9999. Thus the Gittins Index for the first element in arm one reward vector

is 6. Now we will calculate the Gittins Index for the second element,

R(m) + λ
∑
l<k P (m, l

′
)Sk−1(l)

1 + λ
∑
l<k P (m, l′)Fk−1(l)

= max
j

[
R(m̃) + λ

∑
l<k P (m̃, l

′
)Sk−1(l)

1 + λ
∑
l<k P (m̃, l′)Fk−1(l)

]

where

B1(1, 1) = (1− λP (1
′
, 1
′
))−1 = (1− 0.9999P1(1, 1))−1 = (1− .9999(0.2))−1 = 1.24

Sk−1 =
k−1∑
w=1

Bk−1(l, w)R(m
′
) = B1(1, 1)R(1) = 1.24× 6 = 7.49 and

Fk−1 =
k−1∑
w=1

Bk−1(l, w) = B1(1, 1) = 1.24

Thus the Gittins index for the second state is

DAI12 =
R(m̃) + λP1(2, l)S1(l)

1 + λP1(2, l)F1(l)
=

4 + 0.9999(0.3)(7.49)

1 + 0.9999(0.3)(1.24)
= 4.54

Arm 2

R(m) = max
m̃

R(m̃) = max(8, 3) = 8
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and the Gittins Index for the first element in arm two rewards vector is 8. Now we will

calculate the Gittins Index for the second element,

B1(1, 1) = (1− λP (1
′
, 1
′
))−1 = (1− 0.9999P2(1, 1))−1 = (1− .9999(0.4))−1 = 1.66

Sk−1 =
k−1∑
w=1

Bk−1(l, w)R(w
′
) = B1(1, 1)R(1) = 1.66× 8 = 13.33 and

Fk−1 =
k−1∑
w=1

Bk−1(l, w) = B1(1, 1) = 1.66

Thus the Gittins index for the second state is

DAI22 =
R(m̃) + λP2(2, l)S1(l)

1 + λP2(2, l)F1(l)
=

3 + 0.9999(0.5)(13.33)

1 + 0.9999(0.5)(1.66)
= 5.27.

So for this problem we have

Arm DAI index (state 1) DAI index (state 2)

1 6 4.54

2 8 5.27

Then our different policies are as follows

States Rewards Optimal action Tj Optimal action Tj using

using Gittins index play-the-winner policy

(1,1) (6,8) 1 1

(1,2) (6,3) 0 0

(2,1) (4,8) 1 1

(2,2) (4,3) 1 0

Under almost no discounting (λ = 0.9999), the difference between Gittins Index policy

and play-the-winner rule is at state (2,2) where the rewards on offer are (4,3). The Gittins

policy of choosing arm one acknowledges future expectation - the possibility that the arm

one reward value could change from 3 to 8 - whereas the play-the-winner rule is myopic and
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takes the higher immediate reward of 4 on offer from arm one. Both of them are derived

under an assumption that the process continues indefinitely and the optimal policy is

stationary.

6.9 Linear Programming

The previous section explained how it is difficult to calculate Gittins index, even in the

simple case of a multi-armed bandit problem. This section introduces an easy alternative

approach to calculate Gittins index. The linear programming approach for the multi-

armed bandit problem can be found in Chen and Katehakis (1986). They considered a

finite state bandit process and were able to demonstrate the Gittins index for state M

can be obtained by solving a linear program. The problem to be considered involves T

variables M1,M2, · · · ,MT , linear functions

U(M,R) = max
∑
j≥0

T∑
t=1

RjI(Mj(t)),

and T constraint equations

T∑
t=1

I(Mj(t)) = K, for j = 1, 2, · · · , K

where I(Mj(t)) is an indicator and Rj is a reward of Mj(t). The following conventions will

be observed throughout the remainder of this section:

(i) The constraint equations have at least one non-negative real solution and are such

that they are linearly independent.

(ii) The objective function can not be expressed as a linear combination of the con-

straint function.
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6.9.1 Linear programming with a finite horizon

Suppose {V ∗,W ∗
i , i ∈ Ω} are the optimal solution to linear program,

min
U
U = V +

∑
i∈Ω

Wi

subject to

V +Wi ≥ R(i) + λ
∑
j

P (i, j)Wj i, j ∈ Ω − {m}

V ≥ R(m) + λ
∑
j

P (m, j)Wj j ∈ Ω − {m}

Wi ≥ 0, V ∈ R, i ∈ Ω,

where m is a specific state, i for other states and the sign (− {m}) denotes except m.

Then it follows that G(m) = V ∗ and W ∗
m = 0. Therefore, if the above linear program can

be solved to obtain G(m), it is possible to construct an efficient procedure to calculate the

Gittins indexes G(m) for m = 1, 2, · · · ,Ω. However, Kallenberg (1986) observed that the

number of pivot steps (the pivot step is to choose an element corresponding the location

of the largest rewards and the smallest costs) will be highly dependent upon the chosen

permutation of the states in Ω. When Ω = 2, then to calculate G(m1) and G(m2) only two

constraints in the linear program have to replaced. Also in the objective function we will

have only two variables, then the optimal solution can be obtained by a simple graphical

solution. If the problem contains more than two variables, then we need to use other

solution methods such as the simplex method (explained later). In our previous example,

we found the Gittins index for arm 1, state 1 is 6 and 8 for arm 2, state 1. To calculate

the Gittins index for arm 1, state 2 the linear program formula will be as

min
U
U = V +W1

subject to

V +W1 ≥ R(1) + λP (1, 1)W1
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V ≥ R(2) + λP (2, 1)W1

W1 ≥ 0,

then using the specific values in the transition matrix and the rewards vector, these two

constraints will be V + 0.8W1 ≥ 6 and V − 0.3W1 ≥ 4. Then the possible graphical

solution points are ({W,V } = {(7.5, 0), (1.82, 4.54)}). Hence V ∗ = 4.54. Similarly, the

Gittins index for arm 2, state 2 can be found by solving the following linear program

formula

min
U
U = V +W1

subject to

V + 0.6 ≥ 8 and V − 0.5 ≥ 3

W1 ≥ 0,

The possible solution points are ({W,V } = {(13.33, 0), (4.54, 5.27)}). Thus V ∗ = 5.27. For

state 2 in arm 1. These are the same results as seen earlier.

Figure 6.3: The Gittins index by LP
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6.9.2 Results for K = 5

We will use the same details in the last example in Section 3, but assuming K = 5.

Regret

State Mj j = 1 j = 2 j = 3 j = 4 j = 5

1 0.309 0.309 0.305 0.781 2

2 0.309 0.308 0.312 0.393 3

3 0.855 0.856 0.851 1.562 4

4 0.855 0.855 0.859 0.396 1

Table 6.4: Regrets for two-arm bandit problem when K = 5.

Dynamic regret-regression policies for the initial states (1,2,3,4) are (1, 1, 1, 1) at all time

points from j = 1 until j = K − 2. Then it uses (1, 0, 1, 1) for j = K − 1 and (1, 0,

1, 0) for j = K. Choosing the wrong action will cost us the regrets, given in Table 6.4.

Then the optimal expected rewards, using simulations from a dataset size 1000 are shown

in Table 6.5.

Initial State M1 1 2 3 4

Rewards 6 or 8 6 or 3 4 or 8 4 or 3

Optimal expected rewards 30.59 26.07 29.27 24.75

Overall mean 27.67

Table 6.5: Regret-regression optimal mean expected rewards for two-arm bandit problem

when K = 5.

Now we will compare regret-regression results with other methods such as a random policy

(playing each arm with probability 0.5), play-the-winner (playing an arm which gives a

maximum reward) and Gittins index policies. The last two methods have static policies,
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(1, 0, 1, 0) and (1, 0, 1, 1), respectively, for all time points. For reference we give the mean

reward under four decision regimes:

Policy Expected Reward

Random, p = 0.5 25.2

Play-the-winner 26.0

Gittins Index (or linear programming) 27.1

Optimal Dynamic 27.67

Table 6.6: Mean rewards under different strategies when K = 5.

6.9.3 Linear programming policy with an infinite horizon

In the previous section we showed how Gittins Index (linear programming) can be calcu-

lated using a finite horizon with K time points. In this section we will compare results of

linear programming with regret-regression policies, when there are an infinite number of

decision time points. First we describe how to find these policies, then we illustrate the

comparison by a numerical example.

Suppose a bandit has four states and two arms. Arm one has two possible states, denoted

1 and 2. Arm 2 also has two possible states, denoted 3 and 4. Initially one of states is

in arm 1 and the other in arm 2. Arms may change state only after completing service,

according to Markovian transition probabilities. In arm 1, State 1 may thus either remain

in the same state, with probability P (1, 1), or transfer to state 2, with probability P (1, 2) =

1−P (1, 1), and when arm 1 in state 2, state 1 may be entered with probability P (2, 1), or

re-enter state 2, with probability P (2, 2) = 1− P (2, 1). In arm 2, State 3 may thus either

remain in the same state, with probability P (3, 3), or transfer to state 4, with probability

P (3, 4) = 1− P (3, 3), and when arm 2 in state 4, state 3 may be entered with probability
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P (4, 3), or re-enter state 4, with probability P (4, 4) = 1 − P (4, 3). Each time a state

completes its service, a reward Rk for k =1, 2, 3 and 4 is earned, discounted in time by a

discount factor 0 < λ < 1. The objective is to find a policy d ∈ D, that maximise the total

expected discount reward earned over an infinite horizon. By defining Mj(t) as indicator

variable, that takes value 1 if state M(t) in service at time j and 0 otherwise, then we can

write the stochastic optimization problem of interest as follows,

V = max
d∈D

Ed
∑
j≥0

2∑
t=1

λjR[Mj(t)]I[Mj(t)]



Now, returning to the linear programming method. We define,

1- m1, m2, m3, m4 are the number of service completions of states 1, 2 in arm 1

and 3, 4 in arm 2 respectively. E. g., mi =
∑
I[Mj(i)] is the total number of service

completions of state i.

2- R1, R2, R3, R4 are the rewards of states 1, 2, 3 and 4 respectively.

3- The transition matrices will be,

P1 =


P (1, 1) P (1, 2)

P (2, 1) P (2, 2)

 and P2 =


P (3, 3) P (3, 4)

P (4, 3) P (4, 4)

 .

Performance measures :

As with all linear programming problems, the objective must be expressed in terms of

suitable variables. For the multi-armed problem, a natural performance measure is the

total discount number of service completions for each state, namely

md
i = Ed

∑
j≥0

λjI[Mj(i)]


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The variable md
i is the performance of state mi under policy d. By varying the policy

adopted, the corresponding performance vectors span the region of achievable performance

Ω = {md1
1 ,m

d2
2 ,m

d3
3 , ,m

d4
4 }

Hence our stochastic optimization problem of finding an optimal performance vector can

now be reformulated as a mathematical program

V = max
(m1,m2,m3,m4)∈Ω

2∑
t=1

R[M(t)]]

Conservation laws:

To solve this equation a complete description of the performance region Ω needs to be iden-

tified. This is done in terms of linear constraints on the performance vectors, the physical

laws that describe the effects on the system of the scheduling policy implemented. First,

since at each time exactly one arm completes its service, it follows that the total expected

discounted number of completed arm is the same under any policy. This conservation can

be written as

md
1 +md

2 +md
3 +md

4 = E{
∑
j≥0

2∑
t≥1

λjI[Mj(t)]} (6.2)

=
∑
j≥0

λj =
1

1− λ
(6.3)

To construct other relationships, let d3 be a scheduling policy that gives priority to state

3 over other states. Under such a policy, the conservation law can be seen that,

md3
3 =

1

1− λp(3, 3)
+ λp(4, 3)

1

1− λp(3, 3)
md3

4 . (6.4)

This equation expresses the intuitive fact that the total expected discounted number of

state 3 completed, md3
3 , can be decomposed into two terms. The first term is a constant,

1
1−λp(3,3)

, that accounts for state 3 completed until the arm that was initially in state 3
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transfers for the first time to state 4. The second term, λp(4, 3) 1
1−λp(3,3)

md3
4 , accounts for

the number of service completions afterwards. Clearly, md3
3 is the maximum number of

service completions and so it can be concluded that,

md
3 ≤

1

1− λp(3, 3)
+ λp(4, 3)

1

1− λp(3, 3)
md

4 for all d ∈ D.

Using Equation 6.2 and we may rewrite the first inequality as

md
1 +

[
1 + λ

p(3, 2)

1− λp(2, 2)

]
xπ3 ≥

1

1− λ
− 1

1− λp(2, 2)
for all d ∈ D.

Then we derive the linear programming system as follows

Z = maxR1m1 +R2m2 +R3m3 +R4m4

subject to

(1 + λ
p(2, 1)

1− λp(1, 1)
)m2 +m3 +m4 ≥

1

1− λ

m1 +m2 + (1 + λ
p(4, 3)

1− λp(3, 3)
)m4 ≥

1

1− λ
− 1

1− λp(3, 3)

(1 + λ
p(1, 2)

1− λp(2, 2)
)m1 +m3 +m4 ≥

1

1− λ

m1 +m2 + (1 + λ
p(3, 4)

1− λp(4, 4)
)m3 ≥

1

1− λ

m1 +m2 +m3 +m4 =
1

1− λ
m1,m2,m3,m4 ≥ 0

6.9.4 Simplex method

The graphical method is limited to solve linear programming problems having one or two

decision variables. However, it provides where the feasible and non-feasible regions are, as

well as, vertices (corner points of its feasible region). If a linear program has a non-empty,

bounded feasible region, then the optimal solution is always one the vertices. Therefore,
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what is needed to be done is to find all the intersection points (vertices) and then examine

which one among all feasible vertices, provides the optimal solution. An algorithm for

solving the classical linear programming problem is developed by George B. Dantzig in

1947. The simplex method (algebraic method) is an iterative procedure, solving a system

of linear equations in each of its steps, and stopping when either the optimum is reached,

or the solution proves infeasible. Standard maximization problem is a linear programming

problem for which the objective function is to be maximized and all the constraints are

inequalities. For more details and examples can be found in Bartels and Golub (1969).

Our two-armed bandit problem example assuming infinite number of decision time points

can be written as:

Z = max 6m1 + 4m2 + 8m3 + 3m4

subject to

1.374953m2 + m3 + m4 ≥ 10000

m1 + m2 + 1.833194m4 ≥ 9998.333

3.665778m1 + m3 + m4 ≥ 10000

m1 + m2 + 2.19976m3 ≥ 10000

m1 + m2 + m3 + m4 = 10000

m1, m2, m3, m4 ≥ 0

When the simplex method is used in this problem, if the problem has a solution, then the

solution occurs at one of the vertices of a solution region in a multi-dimensional space. We

start at one of the vertices and check the neighboring vertices to see which ones provide

a better solution. We then move to one of the vertices that give a better solution. The

process is repeated until the target vertex is reached. The first step of the simplex method
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requires that each inequality be converted into an equation. Inequalities are converted to

equations by including slack variables S1, S2, S3 and S4. The constraints become:

Z = max 6m1 + 4m2 + 8m3 + 3m4

subject to

1.374953m2 + m3 + m4 − S1 = 10000

m1 + m2 + 1.833194m4 − S2 = 9998.333

3.665778m1 + m3 + m4 − S3 = 10000

m1 + m2 + 2.19976m3 − S4 = 10000

m1 + m2 + m3 + m4 = 10000

m1, m2, m3, m4, S1, S2, S3, S4 ≥ 0,

Setting m1,m2,m3, and m4 to 0, we can read off the values for the other variables:

S1 = 10000, S2 = 9998.333, S3 = 10000 and S3 = 10000. This specific solution is

called a dictionary solution. The slack variables can be included in the objective func-

tion with zero coefficients. The LP problem, with greater than or equal and equality

constraints, are transformed to its standard form in the way, that one artificial variable

A is added to each of the constraints to ensure an initial basic feasible solution. There-

fore we add artificial variables (A1, A2, A3, A4 and A5) to those equations and give them

a large negative coefficient (M) in the objective function, to penalize them. The problem

can now be considered as solving a system of 6 linear equations involving the 14 variables

Z,m1,m2,m3,m4, S1, S2, S3, S4, A1, A2, A3, A4 and A5.

Z − 6m1 − 4m2 − 8m3 − 3m4 +MA1 +MA2 +MA3 +MA4 +MA5 = 0

1.374953 m2 +m3 +m4 − S1 + A1 = 10000
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m1 +m2 + 1.833194 m4 − S2 + A2 = 9998.333

3.665778 m1 +m3 +m4 − S3 + A3 = 10000

m1 +m2 + 2.199760 m3 − S4 + A4 = 10000

m1 +m2 +m3 +m4 + A5 = 10000,

in such a way that Z has the maximum value. The system of linear equations can be

written as above, where all m′s, S ′s and A′s are non-negative. As shown, we select a large

positive number M (thus the name, the Big-M method) and form a new objective function

as

Maximize

Z = 6m1 + 4m2 + 8m3 + 3m4 −M(A1 + A2 + A3 + A4 + A5)

Z = (6 + 6.665778M)m1 + (4 + 4.374953M)m2 + (8 + 5.199760M)m3

+ (3 + 4.833194M)m4 −MS1 −MS2 −MS3 −MS4 − 49998.333M

In the simplex method, the augmented matrix is referred to as the tableau,

Var m1 m2 m3 m4 S1 S2 S3

Z -72.657780 -47.749531 -59.99760 -51.331945 10 10 10

A1 0.000000 1.374953 1.00000 1.000000 -1 0 0

A2 1.000000 1.000000 0.00000 1.833194 0 -1 0

A3 3.665778 0.000000 1.00000 1.000000 0 0 -1

A4 1.000000 1.000000 2.19976 0.000000 0 0 0

A5 1.000000 1.000000 1.00000 1.000000 0 0 0
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Var S4 A1 A2 A3 A4 A5 R.S

Z 10 0 0 0 0 0 -499983.334

A1 0 0 1 0 0 0 10000.000

A2 0 0 0 1 0 0 9998.333

A3 0 0 0 0 0 0 10000.000

A4 -1 0 0 0 0 1 10000.000

A5 0 1 0 0 0 0 10000.000

Although the problem can be solved by using M , but to keep the calculations simple, we

assumed that M = 10, i.e. the value of first element in the first row is −(6 + 6.665778M =

6 + 6.665778× 10) = −72.657780. The previous tableau represents an initial solution. The

initial solution assumes that all available resources are unused i.e. the slack variables take

the largest possible values therefore all m’s and Z are equal to zero. The simplex method

uses a four step process to go from one tableau to the next.

Step 1

Select the pivot column with the ”most negative” element in the objective function row

(determine which variable to enter into the next solution).

Step 2

Select the pivot row (determine which variable to replace in the new solution). Divide the

last element in each row by the corresponding element in the pivot column. The pivot row

is the row with the smallest non-negative result. A3 should be replaced by m1 in the new

solution.
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Step 3

Let ri denotes the row i, where i = 1, 2, · · · , 6. Calculate new values for the pivot row.

Divide every number in the row by the pivot number, r4 = the previous r4/3.665778. Thus

r4 will be, m1, 1, 0, 0.2727934, 0.2727934, 0, 0,−0.2727934, 0, 0, 0, 0, 0.2727934, 0, 2727.934

Step 4

Use row operations to make all numbers in the pivot column equal to 0 except for the pivot

number which remains as 1, r1 = previous r1 + 72.657780× r4, r2 = previous r2− r4, r3 =

previous r3 − r4, r5 = previous r5 − r4 and r6 = previous r6 − r4. Then the next solution

table is

Var m1 m2 m3 m4 S1 S2 S3

Z 0 -47.749531 -40.1770382 -31.5113825 10 10 -9.8205620

A1 0 1.374953 1.0000000 1.0000000 -1 0 0.0000000

A2 0 1.000000 -0.2727934 1.5604011 0 -1 0.2727934

m1 1 0.000000 0.2727934 0.2727934 0 0 -0.2727934

A4 0 1.000000 1.9269666 -0.2727934 0 0 0.2727934

A5 0 1.000000 0.7272066 0.7272066 0 0 0.2727934

Var S4 A1 A2 A3 A4 A5 R.S

Z 10 0 0 0 19.8205620 0 -301777.714

A1 0 0 1 0 0.0000000 0 7270.400

A2 0 0 0 1 -0.2727934 0 7270.400

m1 0 0 0 0 0.2727934 0 2727.934

A4 -1 0 0 0 -0.2727934 1 7272.066

A5 0 1 0 0 -0.2727934 0 7272.066
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Now repeat the steps until there are no negative numbers in the first row. The solution

gives the total numbers of many times we play each arm until reach to the maximum value

of Z, as follows

Var m1 m2 m3 m4 S1 S2 S3

Z 0 0.9997500062 0 0 0.72747934 2.727479e+00 0

m4 0 0.7500312492 0 1 -0.54549587 -5.454959e-01 0

S3 0 0.0004582108 0 0 2.66577799 -6.017095e-16 1

m1 1 -0.3749531262 0 0 1.00000000 -1.725757e-16 0

m3 0 0.6249218770 1 0 -0.45450413 5.454959e-01 0

S4 0 -0.0002749631 0 0 0.00019998 1.199960e+00 0

Var S4 A1 A2 A3 A4 A5 R.S

Z 0 18.7274793 9.27252066 7.272521e+00 10 10 5.272975e+04

m4 0 -0.5454959 0.54549587 5.454959e-01 0 0 5.454050e+03

S3 0 3.6657780 -2.66577799 6.017095e-16 -1 0 8.830727e-13

m1 0 1.0000000 -1.00000000 1.725757e-16 0 0 4.313967e-13

m3 0 0.5454959 0.45450413 -5.454959e-01 0 0 4.545950e+03

S4 1 2.1999600 -0.00019998 -1.199960e+00 0 -1 1.099449e-12

Thus



Z

m4

S3

m1

m3

S4



=



52730

5454

0

0

4546

0


The final solution shows the next important results

• The linear programming policies are to use arm 2 only at all time points (proportions

of playing arm 1 states {m1,m2} are equal to zero).
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• The total optimal rewards using linear programming policies are equal 8 × 4546 +

3× 5454 = 52730.

• The proportions of arm 2 states {m3,m4} are equal to {0.4546, 0.5454}.

• There are no unused resources, where both S3 and S4 are equal to zero.

6.10 Regret-regression policy for an infinite horizon

Equation 4.3 in Chapter 4 Section 2 denotes the regression formula when using a finite

horizon. As we see the formula depends on the function of residuals and the regrets. In

a case of infinite horizon and discounted rewards, when time point j approach to infinity

then discount rewards λjR{Mj(t)} approximately equal to zero. Hence we can write the

regret-regression formula for discounted rewards and infinite horizon as follows

E(Y |M̄τ , T̄τ ) = β0(M1) +
∑
j≥2

λjβTj (M̄j−1, T̄j−1)Zj −
∑
j≥1

λjµj(Tj|M̄j, T̄j−1), (6.5)

where τ is the converges time. In this specific example, results in this chapter, Section

6.9.2 shows that regret-regression policies for time points j = 1, · · · , K − 2 are the same

and equal to {1, 1, 1, 1} which is playing only arm 2 after all of observed states. But their

policies for time points K − 1 and K are differs and equal to {1, 0, 1, 1} and {1, 0, 1, 0}.

Because it is a discounted reward example, then discounted rewards, when j approaches

to converges time, should be approximately equal to zero. Hence we can conclude that

regret-regression policy for this an infinite horizon example is to play arm 2 at all time

points and against all states.
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6.10.1 Simulation Results

We mentioned in Section 6.9.2, that the linear programming policy for a finite horizon is

dopt = {1, 0, 1, 1}. But it differs for an infinite horizon that we should always play only

arm 2 for all states. The method shows that the total discounted rewards for an infinite

horizon when λ = 0.9999 will be 52730, where λ is discounted rate for infinite horizon. It

is affect on the total non-discounted horizon by 1/(1− λ) time points. We compare linear

programming with regret-regression for an infinite horizon by a simulation of 1000 dataset.

Table 6.6 shows simulation results of one hundred repetitions for an infinite horizon (using

time points j ≥ 0 until converges at time with discount rewards equal to zero). When

λ = 0.9999 it converges in mean at j = 126112 and gives total rewards with mean 52729.86

and standard deviation 121.67.

λ 0.6 0.7 0.8 0.9 0.945

Total rewards 13.10 17.67 26.42 54.07 95.93

Converges time 27 38 59 122 225

Times playing T2(M1) 12 17 27 56 102

Proportion playing T2(M1) 0.4574 0.4580 0.4561 0.4584 0.4536

Times playing T2(M2) 14 20 32 66 123

Proportion playing T2(M2) 0.5426 0.5419 0.5438 0.5415 0.5464

λ 0.99 0.9945 0.999 0.99945 0.9999

Total rewards 528.92 958.37 5271.48 9576.68 52729.86

Converges time 1257 2289 12608 22926 126112

Times playing T2(M1) 570 1041 5728 10421 57325

Proportion playing T2(M1) 0.4539 0.4548 0.4542 0.4545 0.4545

Times playing T2(M2) 686 1248 6880 12505 68787

Proportion playing T2(M2) 0.5460 0.5451 0.5457 0.5454 0.5454

Table 6.7: Simulation results for an infinite state of two-armed bandit problem
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So the mean in both methods are approximately the same. It is not surprising because

both polices are exactly the same for all time points except those policies at last two time

points. So if we assume that K increases indefinitely, then discounted rewards of last two

time intervals (which approximately equal to zero) do not effect on the total discounted

rewards.

Hence these compared results on the same simulation problem have been showed that

both methods have identical policies and total discount rewards against different values of

the discounted rate lambda for infinite horizon. On the other hand we can conclude that

regret-regression polices in the two-armed bandit problem on the same simulation problem

on the same simulation problem for infinite horizon gives the same results with those using

IPTW method or Q-learning but it avoids problems which arise when using samples of

modest size or when there is need to estimate high-dimensional parameters. On the other

hand regret-regression gives the same results with linear programming policy for an infinite

horizon. But it has an advantage comparing Gittins index (or linear programming) for a

finite horizon.
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Chapter 7

Diagnostics

Regression diagnostics are required, because assumptions that underlay an analysis may

not hold in any particular case. The diagnostic procedures are intended to check whether

the assumptions of the regression model are satisfied or not (Lin et al, 2002). While model

misspecification can affect the validity and efficiency of regression models, model checking

has not become routine practice in the optimal dynamic treatment field, in part due to

lack of suitable tools. One problem with the blip or regret structural nested mean models

is that they are not based on a model for an observable quantity. This is not a problem

with the regret-regression method described in Chapter 4. Residuals can be used to assess

model adequacy. This will be illustrated in the next section.

7.1 Graphical Informal Testing

Model violations can be detected by means of graphical procedures and formal statistical

tests. Graphical procedures will often be sufficient for validating model assumptions, but

they may be supplemented by statistical tests (Ritz and Streibig, 2008). If there is uncer-

tainty about the interpretation of a plot, it would be helpful to get a second judgment by
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using a formal test such as the Likelihood Ratio Test or Wild Bootstrap Tests which will

be considered here.

7.1.1 Residual plots for model adequacy

Analysis of residuals is an effective method for assessing the fit of the model to the data

and determining whether the model is useful. The recommended approach is to study a

variety of residual plots and look for patterns and trends. The basic idea is that if a model

is correct, then the residuals should have zero mean at all states or regrets. The appearance

of a systematic trend may indicate the absence of an important covariate or an incorrect

functional form. However, determining whether a pattern observed in a residual plot is

due to a model misspecification or due to natural variation can be difficult (Johnston and

So 2003).

7.1.2 Simulation study

The following simulation study is based on the Murphy (2003) scenario which was described

in Chapter 4. We used the regret-regression method to estimate the parameters of the mean

final response E[Y |M̄10 = m̄10, T̄(10)2 = t̄(10)2] in a fully parameterized model,

E[Y |M̄10, T̄(10)2] = β1 + β2

10∑
j=1

(Mj −meanj)−
10∑
j=1

ψ1(tj1 − I{Mj > ψ2})2

−
10∑
j=1

ψ4Tj1{tj2 − (ψ3 + ψ5Mj)}2 + ψ7(1− Tj1){tj2(ψ6 − ψ8Mj)}2.

M1 ∼ N(0.5, 0.01).

For j ≥ 2

Mj ∼ N(meanj, 0.01),
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where

meanj = γ1 + γ2Mj−1 + γ3T{j−1}1T(j−1)2 + γ4(1− T{j−1}1)T{j−1}2. (7.1)

In this section, we consider four different models, Model 1, Model 2, Model 3 and Model

4. All these models have similar generating functions for states and actions with the same

mean and variance as was described in Murphy scenario. Model 1 is the only correct one.

It uses the following regret function either for generating or estimating parameters. For

treatment Tj1 at time j, the regret function is

µj1(tj1|M̄j, T̄j−1, ψ) = ψ1{tj1 − I(Mj > ψ2)}2,

and

µj2(tj2|M̄j, T̄j1, ψ) = ψ4Tj1{tj2 − (ψ3 + ψ5Mj)}2 + ψ7(1− Tj1){tj2(ψ6 − ψ8Mj)}2,

for second treatment Tj2. The other models are miss-specified models. Model 2 and Model

3 provide incorrect description of the regret formulas. We can write any of the regrets above

as quadratic functions of the form µ(u) = ψu2. Model 2 and Model 3 were investigated

by Murphy. They assume a different functional form. For Model 2 it is a quadratic link

function

µ(u) =


u2 if u2 ≥ 0.83

0 otherwise,

for the regrets of Tj1, and the next for the regrets of Tj2

µ(u) =


u2 if u2 ≥ 3.33

0 otherwise.

In Model 3, Murphy used a different link function

µ(u) =


| u | if u2 < 1.5

u2 − 1.5 +
√

1.5 otherwise,
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for the regrets of Tj1, and the next for the regrets of Tj2

µ(u) =


| u | if u2 < 1.5

u2 − 2.5 +
√

2.5 otherwise.

Finally, in Model 4, we fit each state in time j using only the state in time j−1 but we ignore

the effect of treatments in that time point. Thus we falsely assume meanj = γ1 + γ2Mj−1

rather that the expression given at Equation 7.1. Hence we have one correct model and

three miss-specified models.

Plots of residual against fitted values

Figure 7.1 shows residual scatter plots of sample size 500 for the different models.
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Figure 7.1: Plot of residuals against fitted values of sample size 500.

For Model 1 (the correct model), the scatter plot is roughly even distributed above and
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below zero with mean (-0.0000254) which is close to zero and a small standard deviation

(0.973). On the other hand, the residuals of Model 2, Model 3 and Model 4 are distributed

also with approximately zero mean values {0.0000017,−0.0000418,−0.0000002} but larger

standard deviations {7.846, 1.955, 1.891} respectively. As we can see, the residual plots

for Model 2, Model 3 and Model 4 show different variances against the residuals plot on

the Model 1. Although the variances are larger for models 2, 3 and 4, there is no strong

pattern.

The boxplots in Figure 7.2 were obtained from further datasets of the same sample size.

For the correct model, the box covers the interval [-0.06, 0.06].
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Figure 7.2: Boxplots of residuals from a sample size of 10000.
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The median is very close to zero {−0.00176}. In other models, the medians of Model 2,

Model 3 and Model 4 are

{−0.118, 0.115, 0.026}. Their inter-quartile ranges are {5.985, 1.883, 1.879}. As we see the

differences from the correct model are large. Hence Model 2, Model 3 and Model 4 have

a clear difference compared with the correct model. Following these results, we may say

that Model 1 could be the correct model. But in fact we do not have a strong evidence to

make this decision, because results differ from one dataset to another. Also without having

Model 1 for reference we would not know that the variances were too high in the others.

To compare these models, it would be better if we use other residuals plots against regrets

or states, as used later in this chapter, Section 7.2.1 (see Figure 7.4).

Slope of the mean residuals line

The following suggestion is based on plots of residuals against regrets or states at different

time points. If the model is correct, the residuals should not be dependent on each of them.

Therefore the slope β between residuals and states or regrets should be equal to zero. To

calculate the slope, we can use the formula

β̂ =

∑n
i=1 µ̂iRi∑n
i=1 µ̂i

,

where β̂ is the slope, Ri the residual of subject i and µi is the regret of i at any time

point. By replacing Mi instead of µ̂i, we can use the same formula to calculate the slope of

the residuals against states. Table 7.1 gives results for β̂, the average of slopes estimated

from simulated samples of linear function of residuals on the regrets at the second decision

part Tj2 using the different models. It summarises a simulation of 1000 datasets each of

size 500, at time points one, five and nine following the Murphy scenario. There are small

values of the mean and standard error of the slope in Model 1. So regrets do not affect the

mean residuals of Model 1 at these time points. On the other hand there is a clear
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Model 1 Model 2 Model 3 Model 4

First time point Mean 0.0012 -0.1593 -0.2019 -0.0225

Standard Deviation 0.050 0.223 0.121 0.076

Median 0.0006 -0.1514 -0.1969 -0.0221

Quartile Deviation 0.032 0.155 0.082 0.049

Fifth time point Mean -0.0033 -0.1698 -0.4723 -0.1329

Standard Deviation 0.058 0.288 0.164 0.085

Median -0.0063 -0.1631 -0.4630 -0.1292

Quartile Deviation 0.040 0.192 0.110 0.056

Ninth time point Mean -0.0001 -0.1545 -0.4666 -0.1267

Standard Deviation 0.057 0.29 0.158 0.082

Median -0.0025 -0.1484 -0.4576 -0.1247

Quartile Deviation 0.036 0.193 0.105 0.053

Table 7.1: Comparing different models through the average of slopes of residuals against

regrets estimated from 1000 simulated samples of size 500, following the Murphy scenario.

negative relationship between the mean residuals and regrets for both Model 2 and Model

3. In Model 4 the mean slope values and their standard errors show effects of regrets on

residuals but not so much compared with the other missspecifed models. Figure 7.3 shows

the distribution of β̂ in Model 1 is symmetric with zero mean. Histograms of the other

models do not show these properties. Both Model 2 and Model 3 have non-zero mean and

large variance compared with Model 1. However, the slopes of linear functions of residuals

for the states for the different models indicate independence between states and residuals

in Model 1 and might be similar in Model 2 but in Model 3 and Model 4 residuals are

clearly far from zero at time points 5 and 9 (results are in the appendix).
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Figure 7.3: Histogram of β̂ for different models at j = 1, 5 and 9 using simulations of 1000

datasets each of size 500, following the Murphy scenario.
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According to the previous results, it would be helpful to get a second judgment by using a

formal test. In the next section we will use a Wild Bootstrap Test, which is the first formal

test. In the last section we will explore a Likelihood Ratio Test which was used to compute

the p-value. If the model used was correct and the test suitable, then we may conclude

that the p-value should be uniformly distributed on the interval [0, 1] if the usual error

rate interpretation is to be valid. This will be approximately correct for bootstrap tests,

but for other tests it can be far from correct.

7.2 Wild Bootstrap Test

The basic idea of any sort of hypothesis test is to compare the observed value of a test

statistic, say β̂ , with the distribution that it would follow if the null hypothesis were

true. The null is then rejected if β̂ is sufficiently extreme relative to this distribution.

Bootstrapping uses the sample data to estimate relevant characteristics of the population.

The sampling distribution of a statistic is then constructed empirically by re-sampling from

the sample. The key bootstrap analogy is the following: the population is to the sample

as the sample is to the bootstrap samples. Often, an important point of bootstrapping

is not just to evaluate estimates of the parameters, but also to obtain good estimates of

standard errors from the distribution generated by the parameter estimates in bootstrapped

iterations (Draper and Smith, 1998).

The wild bootstrap is a fairly simple modification on the standard bootstrap. The wild

bootstrap method requires neither complete exchangeability nor a Gaussian distribution

for the imaging data (Hongtu Zhu, 2007). The idea of the wild bootstrap is to use for

the bootstrap disturbance associated with the ith observation the actual residual for that

observation, possibly transformed in some way, and multiplied by a random variable, inde-
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pendent of the data, with mean 0 and variance 1. Often, a binary random variable is used

for this purpose. The details of this so-called wild bootstrap can be found in Liu (1988),

Mammen (1993) and Wu (1986).

Suppose D1, D2, · · · , Dn are a sequence of independent zero mean random variables and

suppose

1√
n

n∑
i=1

Di,

converges in distribution to a random variable D. Let Zi be iid random variables with

zero mean and unit variance at this stage. There are, in principle, many ways of specifying

the random variable Zi. Liu (1988) and Mammen (1993) suggest alternative means of

meeting the above requirements, the most widely used of which appeared to be the two

point distribution

Z =


1+
√

5
2
, with probability p =

√
5−1

2
√

5

1−
√

5
2
, with probability 1− p

The so-called Radamacher distribution is an alternative two point distribution:

Z =


1 with probability p = 1

2

−1 with probability 1− p

Both have the property E[Z] = 0 and E[Z2] = 1. On the other hand we can use Z as

standard normal, which does not have two points but still has E[Z] = 0 and E[Z2] = 1.

Then

1√
n

n∑
i=1

ZiDi,

also converges in distribution to D.

We would like to use their idea to form a test based on the residuals from a regret-regression

model. An advantage over the standard bootstrap is that we do not need to assume as

identical distribution for all subjects, though we do need to assume independence. This

leads to a problem: If there is an intercept in the model, residuals Ri are not independent
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as
∑n
i=1Ri = 0. A fix is to assume the contrast n−1/2∑n

i=1 ciRi, where Di = ciRi and∑n
i=1 ci = 0. Thus we will investigate whether a model is adequate or not using

1√
n

n∑
i=1

ZiciRi.

For each dataset we repeated the wild bootstrap sampling 200 times. For example Figure

7.4 shows one dataset of size 500. It is divided to many parts dependent on different tests.

7.2.1 Test the different models based on Murphy scenario

We can plot residuals against states or regrets. As we know there are 10 states and 10

regrets. For the Murphy scenario, note we do not use regrets at the first decision part T1j

which is binary action {0, 1}, because a plot of residuals against only two regret values

does not provide much information. So we will test residuals against states or even regrets

for each jth time point (in this particular case we test them only at first, fifth and ninth

time points).

For the wild bootstrap test, we take a copy of the residuals and then we either multiplied

each of them by a random standard normal Z ∼ N(0, 1), or a random uniform Z ∼

U{−1, 1}. So each observed residual will be on the same vertical but it may go up or

down. Then we compare the mean residuals of the original sample with the mean residuals

of the wild bootstrap sample. After putting the data in the right order we design five

different tests to investigate slope and trends. The following are these tests,

Test 1

This contrasts the mean of the first half of data (ordered by state or regret at time j) with

the mean of the second half. Figure 7.4 shows these means for one simulated dataset under

each of the four models. We can compare the observed difference between the two mean
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lines by the green lines. As stated, the problem in using the wild bootstrap is that the

sum of the residuals is zero; hence they could not be independent. So we do a contrast,

which means we multiply the first half by +1 and the second half by -1 (they will go up or

down respectively), and the sum remains zero (that is why we need to order the data). We

then find the difference between those two means. We do not impose any distributional

assumptions and hence use the wild bootstrap tests. If that difference is significant, then

we can conclude that the first half is different from the second one and there is a trend.

We do these steps on the original sample and repeat that on 200 wild bootstrap samples.

The proportion of times that the difference in the wild bootstrap samples is bigger than

the difference in the real one is the estimated p-value. If the p-value is less than 0.05 then

we can conclude there is something going on and we should reject the assumed model.

Test 2

This test contrasts the middle third with the other thirds. Because it could be that there

is a pattern but not a trend, for example it could be up and then down. So we split the

x-axis into three parts and calculate the difference between the means of them (see the

blue lines in Figure 7.4). To test that, we multiply the middle part by 2 and the other two

thirds by -1. That is also a contrast because the sum is zero. We do the same on the 200

wild bootstrap samples and calculate the difference on each. To decide whether the model

is correct or not, we calculate the p-value by comparing the 200 bootstrap differences with

the difference in the real sample.

Test 3

When the pattern does not have to be a major trend, but could be up or down in the

left-hand tail, we should compare the first sixth with the second sixth (see the left hand
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Figure 7.4: Different tests of the mean residuals against states of a dataset size of 500.
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black lines in Figure 7.4). We split the first third of x-axis into two parts, then we test the

difference as we did before.

Test 4

The trend could in the right-hand tail. The test compares the fifth sixth with the last

sixth. So we split the last third of x-axis into two parts (see the right hand black lines in

Figure 6.5) then we calculate the difference on each sixth to conclude the result of the test

if significant or not.

Test 5

This is based on the maximum deviation from zero of the cumulative sum of residuals.

This is no longer a contrast, but is investigated for completeness. We calculate that in the

real dataset then in all bootstrap samples and compare the difference.

To see whether we have an evidence to reject the null hypothesis or not, the p-value can

be calculated by how often the maximum deviation of the wild bootstrap samples is bigger

than the original one. If the model is correct, then the proportion of rejections of the

assumed model should be by chance equal about 0.05.

7.2.2 Simulation results

As shown in Figure 7.4, for Model 1, it is clear that all the means of each test are at the

same horizontal level. It indicates that Model 1 could be correct, but other models are

not. To test the wild bootstrap we used simulations of 500 datasets of size 500. Tables

7.2-7.4 show the proportions of rejection of the null hypothesis at time points 1, 5 and 9.

Tests use residuals against states or regrets.
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First time point

The first time point table shows that in Model 1, most of the proportions of rejections

of the null hypothesis by chance are around 0.05. We found very similar results when

using the wild bootstrap with either Z ∼ U{−1, 1} or Z ∼ N(0, 1). Against both states

Model 1 Test 1 Test 2 Test 3 Test 4 Test 5

U{−1, 1} State 0.050 0.034 0.038 0.034 0.036

Regrets 0.050 0.066 0.040 0.050 0.030

Z(0, 1) State 0.040 0.042 0.050 0.058 0.052

Regrets 0.040 0.058 0.068 0.060 0.050

Model 2

U{−1, 1} State 0.098 0.078 0.064 0.092 0.036

Regrets 0.610 0.372 0.108 0.634 0.440

Z(0, 1) State 0.120 0.072 0.038 0.098 0.044

Regrets 0.672 0.372 0.092 0.578 0.422

Model 3

U{−1, 1} State 0.146 0.042 0.060 0.082 0.262

Regrets 0.260 0.086 0.056 0.83 0.432

Z(0, 1) State 0.152 0.064 0.054 0.100 0.266

Regrets 0.252 0.076 0.056 0.806 0.398

Model 4

U{−1, 1} State 0.144 0.054 0.062 0.058 0.202

Regrets 0.054 0.058 0.072 0.064 0.116

Z(0, 1) State 0.120 0.038 0.060 0.076 0.230

Regrets 0.058 0.036 0.072 0.082 0.108

Table 7.2: Estimated p-values on different models using first time point.

or regrets, the model is approximately correct, except a few particular cases, e.g., 0.068

in test three using standard normal against regrets, and 0.066 in test two using U{−1, 1}
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against regrets are a little higher. To make our decision, let us put a range of estimated

p-value that we would get by chance if the model is correct, i.e.,

P ∓ 2

√
P × (1− P )

NS
= 0.05∓ 2

√
0.05× 0.95

500
= [0.030, 0.069],

where NS is the number of the planned simulations. Hence values of 0.068 or 0.066 are not

particularly unusual.

Fifth time point

Model 1 Test 1 Test 2 Test 3 Test 4 Test 5

U{−1, 1} State 0.082 0.056 0.040 0.060 0.068

Regrets 0.058 0.046 0.054 0.060 0.050

Z(0, 1) State 0.076 0.066 0.054 0.044 0.056

Regrets 0.048 0.059 0.045 0.068 0.055

Model 2

U{−1, 1} State 0.458 0.09 0.158 0.08 0.17

Regrets 0.810 0.358 0.160 0.474 0.402

Z(0, 1) State 0.394 0.098 0.172 0.068 0.160

Regrets 0.824 0.370 0.178 0.460 0.400

Model 3

U{−1, 1} State 0.766 0.054 0.098 0.198 0.890

Regrets 0.112 0.216 0.054 0.982 0.902

Z(0, 1) State 0.728 0.050 0.100 0.206 0.874

Regrets 0.098 0.246 0.074 0.982 0.922

Model 4

U{−1, 1} State 0.090 0.082 0.040 0.072 0.148

Regrets 0.058 0.056 0.038 0.076 0.106

Z(0, 1) State 0.106 0.064 0.046 0.092 0.148

Regrets 0.064 0.036 0.036 0.084 0.104

Table 7.3: Estimated p-values on different models using fifth time point.
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Table 7.3 repeats for time point five. Tests sizes under Model 1 are generally good and

there are mixed powers for miss-specified models.

Ninth time point

In the ninth time point, results of Model 1 using regrets are similar as the previous time

points. Now all the values of Model 1 are within the range.

Model 1 Test 1 Test 2 Test 3 Test 4 Test 5

U{−1, 1} State 0.074 0.056 0.06 0.044 0.068

Regrets 0.048 0.064 0.062 0.078 0.056

Z(0, 1) State 0.068 0.064 0.052 0.060 0.072

Regrets 0.052 0.058 0.060 0.082 0.060

Model 2

U{−1, 1} State 0.42 0.074 0.174 0.064 0.164

Regrets 0.832 0.388 0.138 0.494 0.416

Z(0, 1) State 0.456 0.088 0.170 0.062 0.152

Regrets 0.694 0.058 0.086 0.186 0.848

Model 3

U{−1, 1} State 0.72 0.058 0.072 0.172 0.872

Regrets 0.086 0.222 0.062 0.972 0.914

Z(0, 1) State 0.668 0.064 0.086 0.186 0.848

Regrets 0.112 0.258 0.052 0.964 0.890

Model 4

U{−1, 1} State 0.082 0.084 0.046 0.062 0.140

Regrets 0.072 0.046 0.064 0.086 0.114

Z(0, 1) State 0.058 0.070 0.044 0.078 0.122

Regrets 0.052 0.064 0.042 0.076 0.100

Table 7.4: Estimated p-values on different models using ninth time point.

Hence we can conclude that model is fine. Models 2 and 3 are miss-specified fit models

that we generate data using these models but we fit Model 1.
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Figure 7.5: Histograms of p-value for model comparison
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Therefore, we observe most other proportions are too far from 0.05 when using tests against

states, with either Z ∼ U{−1, 1} or Z ∼ N(0, 1). Except, in Model 4, there are a few

of proportions around 0.06 or 0.07. We also plot the p-value for the tests against regrets.

The chosen simulations use the fifth time point. Columns 1-3 are histograms of p-value

for tests 1, 2 and 5 respectively. The aim is to see whether the p-values are uniformly

distributed or not. Figure 7.5 is an example to summarise the simulation results of 500

datasets of size 500. We test residuals against regrets using the wild bootstrap U{−1, 1}.

It is clear that the histograms for Model 1 seem uniform, but not others.

According to the previous results, we can conclude that

• We get similar results with either Z ∼ U{−1, 1} or Z ∼ N(0, 1).

• Results using Test 1 and Test 5 are better than the other tests.

• Testing against regrets is better for Model 1, Model 2 and Model 3.

• For Model 4, it is better is to test against states.

7.3 Likelihood Ratio Test

We consider whether it is realistic to develop a diagnostic test for marginal structural

models (MSMs) of Robins, see Hernán et al. (2002). First we provide some background.

Suppose we have a classical regression model:

Y = β0 + β1Mi1 + · · ·+ βkMik + εi,

with independent normal errors. The F test can be used to test the model. It involves esti-

mating both (R) the restricted model (based on fewer parameters) and (U) the unrestricted

model (the full model) and then calculating

(RSSR −RSSU)/M

RSSU/(N −K)
∼ FM,N−K .
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Here RSS is the sum of squared of residuals under the appropriate model, N is sample

size, K the number of parameters in the U model and M parameters are deleted from the

U model to form of the R model.

The Likelihood Ratio Test (LRT ), the Wald Test (WT ) and the Lagrange Multiplier Test

(LMT ), are frequently proposed as alternative means for testing parametric restrictions

in a linear regression model. Since they all converge to the same limiting χ2 distribution,

they have asymptotically the same power characteristics. The three tests are considered

equivalent alternatives for large samples (Kohler, 1982).

The LMT and WT involves the estimation of both the restricted and unrestricted models

and a comparison of the values of their sum of squared residuals. They can be written as,

LMT = N
[
RSSR −RSSU

RSSR

]

and

WT = N
[
RSSR −RSSU

RSSU

]
.

The LRT involves the estimation of both the restricted and unrestricted models and a

comparison of the values of the log likelihoods. If the difference is large, then we can reject

the restrictions, otherwise we accept them.

The likelihood ratio statistic is

LRT = 2(lU − lR),

where

lU = −N
2

ln(2π ×RSSU/n) + 1

and

lR = −N
2

ln(2π ×RSSR/n) + 1,

leading to

LRT = N [ln(RSSU)− ln(RSSR)].
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Our aim is to test an independence by comparing log likelihoods estimation of both the

restricted and unrestricted models without put any assumptions. The comparison of log-

likelihood values reflects the relative goodness-of-fit between two nested models. The

observed difference indicates the effectiveness of the simpler model relative to the more

complex model. When a parameter value or a set of parameter values is removed from a

model and the log-likelihood value remains essentially unaffected (only a slight increase),

the inference is made that the values eliminated are unimportant and likely have only

random influences (Kohler, 1982).

The three tests have a χ2 distribution with M degrees of freedom, because M parameters

are deleted from the more complex model to form a simpler and, as required, a nested

model. However, Savin (1976), has shown that the numerical value of LMT test statistic

is always less than that of LRT , which is less than that of WT . This implies that if we

use the same critical values, indicated by the fact that all three tests converge to the same

limiting χ2 distribution, the Wald test will reject the null hypothesis most often. This

difference in rejection probabilities raises the possibility of conflicting conclusions from the

three tests.

7.3.1 Independence Test

Returning to Chapter 3 Section 3.1, let us recall the formula,

Hj(ψ) = Y +
k∑
i=j

µi(ti|M̄i, T̄i−1),

where

µj(tj|M̄j, T̄j−1) = E(Y | M̄j, T̄j−1, d
opt
j )− E(Y | M̄j, T̄j−1, tj, d

opt
j+1),

which is the expected difference between the average outcome if a patient received tj instead

of the optimal at time j, with given treatment and covariate history to time j− 1 and who
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is subsequently treated optimally after time j.

As seen in Chapter 3, Hj(ψtrue) and Tj are conditionally independent given M̄j, T̄j−1. To

test that, using LRT , let us assume the following hypothesis,

H0: Hj and Tj|M̄j, T̄j−1 are independent,

Ha: Hj and Tj|M̄j, T̄j−1 are not independent.

We will fit Hj models, including and excluding Tj|M̄j, T̄j−1 and make a comparison of the

LRT value with a χ2 statistic for rejecting the null hypothesis or not. In this exploratory

approach we will make a working assumption of normality for Hj, relying on the central

limit theorem for at least partial support.

7.3.2 Results

In this section and the next two sections, we estimate the parameters of the model described

in Section 7.1.2 using random samples of size 500 to examine whether Hj(ψ̂) is independent
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Figure 7.6: Histogram of test statistics and p-value using estimated ψ

of Tj or not. Then we assume the convergence of the likelihood ratio statistic to the assumed
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distributions. Figure 7.6 shows histograms of the likelihood ratio statistics and associated

p-values for 1000 simulated samples of size 500. If the test is performing correctly, the

right hand histogram should be close to uniform. Clearly it is not, since there are too

many small values. The proportion of p-values less than 0.05 is 0.27, indicating the χ2

approximation to the null distribution is very poor.

We repeated the test using WT and LMT tests, and obtained similar results. The p-values

are not uniformly distributed on the interval [0,1].

7.3.3 Using the true ψ values

Figure 7.7 repeats the procedure using the true ψ values instead the estimated ψ values.

The p-values now form a more or less uniformly distributed pattern. The proportion of

p-values less than 0.05 is 0.045. It seems performance of this test has very high sensitivity

to the estimator’s value even when they are very close to the true values.
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Figure 7.7: Histogram of test statistics and p-value using true parameters of ψ
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7.3.4 Using subsets of mixed estimator and true ψ values

We now investigate which parameter elements of ψ seem to have most influence on the

test performance. We have seen that the test performs poorly if all ψ are estimated, and

well if all are fixed at their true values. We used different sub-sets of estimated and true ψ

values. We found that any of estimators of ψ1, ψ2, ψ3 and ψ6 can be used but we must use

ψ4, ψ5, ψ7 and ψ8 only as the true values. The results are shown in the next figure, where

the histogram of p-values is uniformly distributed on the interval [0, 1].
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Figure 7.8: Histogram of test statistics and p-value using true values of {ψ4, ψ5, ψ7, ψ8}

and estimated values of {ψ1, ψ2, ψ3, ψ6}

Now suppose that we fix any three of these four true values and vary the fourth one. Figure

7.9 summarises a simulation of 100 datasets. We use the estimators of {ψ̂1, ψ̂2, ψ̂3, ψ̂6} and

the true values of {ψ5, ψ7, ψ8} and vary ψ4 over the interval [1.3,1.7]. The figure shows how

the probability of rejecting H0 approaches to 0.05 only when the value of ψ4 comes close

to its true value (1.5). It goes far from 0.05 as the absolute difference between the true

and the used value increases.
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Figure 7.9: Probability of rejecting H0 using varying values of ψ4.
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Figure 7.10: Probability of rejecting H0 using varying values of ψ5.
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Figure 7.10 repeated this with ψ5 selected as the variable parameter and with similar

results. Recall the regret function for treatment j part two,

µj2(tj2|M̄j, T̄j1) = ψ4Tj1{tj2 − (ψ3 + ψ5Mj)}2 + ψ7(1− Tj1){tj2 − (ψ6 + ψ8Mj)}2.

Similar plots to Figure 7.9 can be obtained by varying ψ7 and ψ8 rather than ψ4 and

ψ5, because of the symmetry of the regret function. Our conclusion therefore is that the

proposal independence test is unreliable and should not be pursed farther.

7.4 Diagnostics for Warfarin Data

In this section we will test residuals of the M2 model used by Rosthøj et al (2006), but as

shown we improve it by re-estimating its parameters using the regret-regression method.

Then we will compare results with M7 which is the best model according to results as we

described before. We can use here the same diagnostic plots of residuals against states

which we used in Chapter 4, Section 4.3.3, but now we plot each residual for each time

points (9 times) rather than pooling. Then we test these models by using the same five

tests used in Section 7.2.1 in the current chapter and using a conditional multiplier (wild

bootstrap) with random multiplier N(0, 1) or U{−1, 1}.

7.4.1 Comparing warfarin models M2 vs. M7 using conditional

multiplier tests.

Figure 7.11 shows results of testing the first half versus the second half using states at

second and ninth time points to illustrate. The left plots use M2 and the right plots use

M7. The upper plots use second time point and the lower plots use ninth time point. The

plots test the difference between the two halves of the original sample (the blue horizontal

lines). We need to see whether that difference is significant or not.
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Figure 7.11: Comparing tests of models (M2 and M7) at second (first row) and ninth

(second row) time points using 1000 wild bootstrap samples. Left colmn M2, right colmn

M7.
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Model Test 1 Test 2 Test 3 Test 4 Test 5

First time point

M2 U{−1, 1} 0.035 0.028 0.000 0.452 0.013

Z(0, 1) 0.049 0.030 0.000 0.461 0.017

M7 U{−1, 1} 0.913 0.171 0.160 0.351 0.308

Z(0, 1) 0.900 0.150 0.157 0.377 0.298

Second time point

M2 U{−1, 1} 0.000 0.177 0.099 0.980 0.000

Z(0, 1) 0.000 0.174 0.097 0.977 0.000

M7 U{−1, 1} 0.209 0.779 0.262 0.532 0.118

Z(0, 1) 0.247 0.743 0.305 0.533 0.137

Third time point

M2 U{−1, 1} 0.011 0.391 0.607 0.029 0.005

Z(0, 1) 0.015 0.386 0.612 0.034 0.011

M7 U{−1, 1} 0.766 0.330 0.615 0.879 0.561

Z(0, 1) 0.736 0.360 0.587 0.890 0.504

Fourth time point

M2 U{−1, 1} 0.000 0.964 0.046 0.775 0.000

Z(0, 1) 0.001 0.961 0.064 0.791 0.000

M7 U{−1, 1} 0.382 0.520 0.925 0.391 0.259

Z(0, 1) 0.390 0.516 0.918 0.399 0.225

Fifth time point

M2 U{−1, 1} 0.002 0.059 0.702 0.116 0.000

Z(0, 1) 0.004 0.053 0.712 0.102 0.001

M7 U{−1, 1} 0.548 0.996 0.238 0.883 0.622

Z(0, 1) 0.545 0.993 0.221 0.882 0.604

Sixth time point

M2 U{−1, 1} 0.060 0.280 0.184 0.141 0.011

Z(0, 1) 0.053 0.291 0.177 0.134 0.009

M7 U{−1, 1} 0.818 0.949 0.076 0.450 0.733

Z(0, 1) 0.805 0.950 0.075 0.435 0.736

Seventh time point

M2 U{−1, 1} 0.000 0.195 0.929 0.696 0.000

Z(0, 1) 0.000 0.191 0.948 0.647 0.001

M7 U{−1, 1} 0.198 0.549 0.940 0.721 0.204

Z(0, 1) 0.200 0.548 0.937 0.720 0.195

Eighth time point

M2 U{−1, 1} 0.000 0.625 0.415 0.818 0.001

Z(0, 1) 0.000 0.611 0.416 0.806 0.000

M7 U{−1, 1} 0.107 0.994 0.929 0.640 0.106

Z(0, 1) 0.120 0.998 0.936 0.599 0.136

Ninth time point

M2 U{−1, 1} 0.063 0.289 0.821 0.313 0.049

Z(0, 1) 0.060 0.265 0.792 0.276 0.048

M7 U{−1, 1} 0.083 0.487 0.354 0.623 0.923

Z(0, 1) 0.100 0.466 0.371 0.635 0.901

Table 7.5: Estimated p-values for models M2 and M7 using warfarin data
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Grey lines denote the means of the first and the second halves using the wild bootstrap

method with Z ∼ N(0, 1). If the blue lines are not included the grey lines range then we

can say the model is not valid. The upper left plot shows that the blue lines are out of

the grey lines range. To be sure we can use p-values (Table 7.5). The p-values for Test

1 with Model M2 are almost all very low, indicating the model is not appropriate as a

residual trend remains. Some of the test 2 and test 3 results are also significant, indicating

some quadratic effects or a problem in the left tail. Test 4 however does not detect any

problem with Model M2 in the right tail. Test 5, the cumulative sum test, is consistent in

suggesting Model M2 should be rejected at all time points. None of the tests indicate any

problem with Model M7, our final selection.

7.4.2 Discussion

As shown model misspecification can affect the conclusions of a dynamic treatment analysis.

We illustrated that through Murphy models by comparing her misspecifed models with her

correct model. The chapter includes some diagnostic residuals plots. We do not impose

any distributional assumptions and hence use the wild bootstrap tests. We investigated use

of a likelihood ratio statistic for testing the independence of the Hj(ψ) function from the

actions T j, but do not recommend this. More investigation of our application on the anti-

coagulation data was performed. Residual plots and tests were used to compare Model M2

(Rosthøj et al 2006) after we improved it by re-estimating the parameters using the regret-

regression method, and our developed Model M7. Hence M7 gives closed estimated values

to the true model parameters, then optimal treatment strategies can be obtain. Finally we

can conclude that the regret-regression method provides an important advantage of other

methods is that we can compare a variety of candidate models then choose the best one

to estimate the optimal dynamic treatment regimes.
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Chapter 8

Conclusion and Further

Developments

8.1 Conclusion

This dissertation explores problems of optimal dynamic treatment regimes. The most

important problem is choosing an appropriate model when using any semi-parametric

method. Blips with Robins G-estimation method or regrets with Murphy iterative mini-

mization method produce apparently unbiased estimators, with less efficiency when using

non appropriate models. Each of these methods and the relation between them are investi-

gated in Chapter 3 after providing background on causal effects and dynamic programming

as basics of our research area. In Chapter 4 we proposed a method which we hope will as-

sist in the practical implementation of methodology for finding optimal dynamic treatment

regimes. Almirall et al (2009), have a similar aim. Like us, they include residuals Zj in a

model for the observed mean of Y , but unlike us they assume the remaining terms (our

regrets, their blips) are also linear and there is no discussion of diagnostics. Both methods

require modelling of E(Mj|M̄j−1, T̄j−1), which is not necessary if either the Murphy (2003)
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iterative estimation procedure or the Robins (2004) G-estimation method is used. On

the other hand we have not also required Pr(tj|M̄j, T̄j−1), which is needed for the other

methods. Inclusion of the linear combination of residuals in Equation 4.3 is reminiscent

of a path analysis method for dealing with time-dependent confounders, as exemplified by

Borgan et al (2006) for instance. This brings additional modelling assumptions, not needed

by Murphy or Robins, and hence the possibility of misspecification. If the model is correct

however, or close to correct, then we expect gains in efficiency, as seen in the simulation

study of Section 3.3 in Chapter 4.

Murphy (2003) had primary interest in the parameters of the regrets, and considered other

unknown functions involved in data generation as nuisance parameters. We agree in part

only: unless sample size is enormous we see no alternative to assuming parametric models

for all components. In that case some form of diagnostic is essential for good statistical

practice, and development of diagnostics based on models for observables is an obvious way

forward. The use of residual plots to detect misspecified regret functions was illustrated in

Chapter 4, Section 3.3. Chapter 5 investigated a comparison between the regret-regression

approach and inverse probability of treatment weighting. Although they are different

methods both have had the same results. We showed that regret-regression and inverse

probability of treatment weighting are equal in some cases at least (see proof in Appendix

9.1). Then we prepared a chapter for applying regret-regression to decision making on

the multi-armed bandit problem. The chapter compared the regret-regression policy for

solving that problem with other policies using some traditional approaches, such as Gittins

index, Q-learning etc. Some diagnostic methods were used in Chapter 7, to propose and

investigate goodness of fit tests for instance, to understand more how residual means react

to different types of misspecification, and to explore the bias/variance tradeoffs and the

possibility of overfitting.
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8.2 Further Developments

The area of dynamic treatment regimes is very young and exciting. Many challenges remain

in the area of dynamic regime estimation. We have assumed a discrete time scale for state

measurement and action decisions and that there is no censoring. These conditions apply

to the warfarin data example which motivated our work, but in general clinic visits will take

place at different times for different patients and might be thought of as a point process

in continuous time, with differential follow-up. It will be of interest to try to develop our

methods for this situation, perhaps with the counting process approach of Lok (2008) as a

starting point. Further, we have not incorporated covariates. In principle we can include

covariate terms in our parameterized regret functions and state models, but clearly it would

be useful to test this approach in practice, especially as there is much current interest in

genetic variation in anticoagulant response (Schwarz et al, 2008). On the other hand if Mj

is high dimensional our modelling may become problematic and needs to be tested. We

have not seen application on real data with high dimensional Mj of any of the proposed

methods in this literature.
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Chapter 9

Appendix

9.1 Proof that the regret-regression and the inverse

probability of treatment weighting are identical.

Our aim in this section is to prove that the regret-regression and the inverse probability

of treatment weighting are identical, through the same calculated regret at time 1 in the

particular example described in Chapter 4 of two time point situation and binary states

and actions.

Let us recall the stabilized weights using the IPTW

SW =
Pr[T2 = t2|T1 = t1]

Pr[T2 = t2|M2 = m2, T1 = t1]
.

Let SWt1m1t2 = SW (T1 = t1,M2 = m1, T2 = t2) be the stabilized inverse probability of

treatment weighted for Y I(t1,m1, t2) = Y I(T1 = t1,M2 = m1, T2 = t2) and let µ̂1 be the

regret when choosing the wrong action at the first time point, then

SW001 =

∑
I(001)+

∑
I(011)∑

I(0)∑
I(001)∑
I(00)

, SW011 =

∑
I(001)+

∑
I(011)∑

I(0)∑
I(011)∑
I(01)

,
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SW100 =

∑
I(100)+

∑
I(110)∑

I(1)∑
I(100)∑
I(10)

, SW110 =

∑
I(100)+

∑
I(110)∑

I(1)∑
I(110)∑
I(11)

µ̂1 =
∑
Y I(001).SW001+

∑
Y I(011).SW011∑

I(001).SW001+
∑
I(011).SW011

−
∑
Y I(100).SW100+

∑
Y I(110).SW110∑

I(100).SW100+
∑
I(110).SW110

=

∑
I(001)+

∑
I(011)∑

I(0)

∑
I(00)∑
I(001)

∑
Y I(001)+

∑
I(001)+

∑
I(011)∑

I(0)

∑
I(01)∑
I(011)

∑
Y I(011)∑

I(001)+
∑

I(011)∑
I(0)

∑
I(00)∑
I(001)

∑
I(001)+

∑
I(001)+

∑
I(011)∑

I(0)

∑
I(01)∑
I(011)

∑
I(011)

−

∑
I(100)+

∑
I(110)∑

I(1)

∑
I(10)∑
I(100)

∑
Y I(100)+

∑
I(100)+

∑
I(110)∑

I(1)

∑
I(11)∑
I(110)

∑
Y I(110)∑

I(100)+
∑

I(110)∑
I(1)

∑
I(10)∑
I(100)

∑
I(100)+

∑
I(100)+

∑
I(110)∑

I(1)

∑
I(11)∑
I(110)

∑
I(110)

Thus

µ̂1 =
∑
I(00)Y I(001)+

∑
I(01)Y I(011)∑

I(00)+
∑
I(01) −

∑
I(10)Y I(100)+

∑
I(11)Y I(110)∑

I(10)+
∑
I(11)

Now, regarding to regret-regression method, let us recall equation 4.2 in Chapter 4

Section 3

E[Y |M̄K , T̄K ] = β0(M1) +
K∑
j=2

β
(
jM̄j−1, T̄j−1)Zj −

K∑
j=1

µj(Tj|M̄j, T̄j−1). (9.1)

E[Y |M̄K , T̄K ] = β0(M1) +
K∑
j=2

βTj (M̄j−1, T̄j−1)Zj −
K∑
j=1

µj(Tj|M̄j, T̄j−1).

The parameters are estimated by minimising

SS =
∑E[Y |M̄K , T̄K ]− β0(M1)−

K∑
j=2

βTj (M̄j−1, T̄j−1)Zj +
K∑
j=1

µj(Tj|M̄j, T̄j−1)

2

.

this equation will be as follows

SS =
∑

(Y − β0 − β1I(0)(M2 − p̂0) − β2I(1)(M2 − p̂1) + µ1I(1) + µ00I(000)
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+ µ01I(010) + µ10I(101) + µ11I(111))2,

where M2 = I(01) + I(11), p̂0 =
∑

I(01)∑
I(0)

, p̂1 =
∑

I(11)∑
I(1)

and β̂0 is the overall mean. The

values of µ00, µ01, µ10 and µ11 are as follows

µ̂00 =

∑
Y I(001)∑
I(001)

−
∑
Y I(000)∑
I(000)

=

∑
I(000)

∑
Y I(001)−∑ I(001)

∑
Y I(000)∑

I(000)
∑
I(001)

=

∑
I(000)[

∑
Y I(00)−∑Y I(000)]− [

∑
I(00)−∑ I(000)]

∑
Y I(000)∑

I(000)[
∑
I(00)−∑ I(000)]

=

∑
I(000)

∑
Y I(00)−∑ I(00)

∑
Y I(000)∑

I(000)[
∑
I(00)−∑ I(000)]

By the same way we find the other µ’s

µ̂01 =

∑
Y I(011)∑
I(011)

−
∑
Y I(010)∑
I(010)

=

∑
I(010)

∑
Y I(01)−∑ I(01)

∑
Y I(010)∑

I(010)[
∑
I(01)−∑ I(010)]

µ̂10 =

∑
Y I(100)∑
I(100)

−
∑
Y I(101)∑
I(101)

=

∑
I(10)

∑
Y I(100)−∑ I(100)

∑
Y I(10)∑

I(100)[
∑
I(10)−∑ I(100)]

µ̂11 =

∑
Y I(110)∑
I(110)

−
∑
Y I(111)∑
I(111)

=

∑
I(11)

∑
Y I(110)−∑ I(110)

∑
Y I(11)∑

I(110)[
∑
I(11)−∑ I(110)]

Let y = Y + µ00I(000) + µ01I(010) + µ10I(101) + µ11I(111). then

SS =
∑

(y − β0 − β1I(0)(M2 − p̂0)− β2I(1)(M2 − p̂1) + µ1I(1))2 ,

and
∂SS

∂β0

= −2
∑

[y − β0 − β1I(0)(M2 − p̂0)− β2I(1)(M2 − p̂1) + µ1I(1)].

From this β̂0 = y − β1I(0)(M2 − p̂0)− β2I(1)(M2 − p̂1) + µ1I(1),
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SS =
∑

[{y − y} − β1{I(0)(M2 − p̂0)− I(0)(M2 − p̂0)}

− β2{I(1)(M2 − p̂1)− I(1)(M2 − p̂1)}+ µ1{I(1)− I(1)}]2.

Note∑{I(0)[M2−p̂0]} =
∑{I(0)[I(01)+I(11)−

∑
I(01)∑
I(0)

]} =
∑{I(01)−I(0)

∑
I(01)∑
I(0)
} =

∑
I(01)−∑

I(01) = 0

Similarly∑{I(1)[M2 − p̂1]} = 0

This means I(0)(M2 − p̂0) = I(1)(M2 − p̂1) = 0, then

SS =
∑(
{y − y} − β1{I(0)(M2 − p̂0)} − β2{I(1)(M2 − p̂1)}+ µ1{I(1)− I(1)}

)2
.

Now, let

Y1 = y − y, X1 = I(0)(M2 − p̂0), X2 = I(1)(M2 − p̂1) and X3 = I(1)− I(1).

To estimate β1, β2 and µ1, we have to minimises

SS =
∑

(Y1 − β1X1 − β2X2 + µ1X3)2

The first partial derivative of SS with respect to each of β1, β2 and µ1 are

∂SS

∂β1

=
∑

[Y1 − β1X1 − β2X2 + µ1X3]X1

∂SS

∂β2

=
∑

[Y1 − β1X1 − β2X2 + µ1X3]X2

∂SS

∂µ1

=
∑

[Y1 − β1X1 − β2X2 + µ1X3]X3

Now we will turn to matrix notation (XTX) = (
∑

)X2
1

∑
X1X2

∑
X1X3
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∑
X2X1

∑
X2

2

∑
X2X3∑

X3X1
∑
X3X2

∑
X2

3

Note∑
X1X3 =

∑{[I(0)(M2 − p̂0)][I(1)− I(1)] = −I(1)
∑

[I(0)(M2 − p̂0)] = 0,

and by similar argument
∑
X2X3 = 0.

Thus µ̂1 = −
∑

Y1X3∑
X2

3

Note
∑
I(1) =

∑
I(10) +

∑
I(11), and n =

∑
I(00) +

∑
I(01) +

∑
I(10) +

∑
I(11).

Hence

∑
X2

3 =
∑[

I(1)− I(1)
]2

=
∑

I(1)− I(1)
2

=
1

n

[
n(
∑

I(10) +
∑

I(11))− (
∑

I(10) +
∑

I(11))2
]

=
1

n

[∑
I(10) +

∑
I(11))× (

∑
I(10) +

∑
I(11))

]
]

Note
∑
Y1I(1) = I(1)

∑
Y1 = 0,

so

∑
Y1X3 =

∑
Y1(I(1)− I(1)) =

∑
Y1I(1)

=
∑

(y − y)I(1),

∑
Y1X3 =

∑
[(Y − Y ) + µ̂00(I(000)− I(000)) + µ̂01(I(010)− I(010))

+ µ̂10(I(101)− I(101)) + µ̂11(I(111)− I(111))]I(1).

We split this into 5 terms as follows
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1-

∑
(Y − Y )I(1) =

∑
Y1I(1)−

∑
Y I(1)

=
1

n
[n
∑

Y1(I(1)−
∑

Y1

∑
I(1)]

= 1
n
[{∑ I(00) +

∑
I(01) +

∑
I(10) +

∑
I(11)}(∑Y I(10) +

∑
Y I(11))−{∑Y I(00) +∑

Y I(01) +
∑
Y I(10) +

∑
Y I(11)}(∑ I(10) +

∑
I(11))]

= 1
n
[{∑ I(00) +

∑
I(01)}(∑Y I(10) +

∑
Y I(11))−{∑ I(10) +

∑
I(11)}(∑Y I(00) +∑

Y I(01))].

2-

µ̂00
∑

(I(000)− I(000))I(1)

= −µ00I(000)
∑
I(1)

= −(
∑

I(000)
∑

Y I(00)−
∑

I(00)
∑

Y I(000)∑
I(000)[

∑
I(00)−

∑
I(000)]

)
∑

I(000)

n
(
∑
I(10) +

∑
I(11))

= −(
∑

I(00)
∑

Y I(000)
∑

I(00)−
∑

I(000)
∑

Y I(00)

n
∑

I(001
)(
∑
I(10) +

∑
I(11))

= (
(
∑

I(10)+
∑

I(11))

n
∑

I(001)
)[
∑
I(00)

∑
Y I(000)−∑ I(000)

∑
Y I(00)].

3-

µ̂01
∑

(I(010)− I(010))I(1)

= −µ̂01I(010)
∑
I(1)

= −(
∑

I(010)
∑

Y I(01)−
∑

I(01)
∑

Y I(010)∑
I(010)[

∑
I(01)−

∑
I(010)]

)
∑

I(010)

n
(
∑
I(10) +

∑
I(11))

= −(
∑

I(01)
∑

Y I(010)−
∑

I(010)
∑

Y I(01)

n
∑

I(011
)(
∑
I(10) +

∑
I(11))

= (
(
∑

I(10)+
∑

I(11))

n
∑

I(011)
)[
∑
I(01)

∑
Y I(010)−∑ I(010)

∑
Y I(01)].
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4-

µ̂10
∑

(I(101)− I(101))I(1)

= −µ̂10I(101)
∑
I(1)

= −(
∑

I(10)
∑

Y I(100)−
∑

I(100)
∑

Y I(10)∑
I(100)[

∑
I(10)−

∑
I(100)]

)
∑

I(101)

n
(
∑
I(00) +

∑
I(01))

= −(
∑

I(10)
∑

Y I(100)−
∑

I(100)
∑

Y I(10)

n
∑

I(101
)(
∑
I(00) +

∑
I(01))

= (
(
∑

I(00)+
∑

I(01))

n
∑

I(100)
)[
∑
I(10)

∑
Y I(100)−∑ I(100)

∑
Y I(10)].

5-

µ̂11
∑

(I(111)− I(111))I(1)

= −µ̂11I(111)
∑
I(1)

= −(
∑

I(11)
∑

Y I(110)−
∑

I(110)
∑

Y I(11)∑
I(110)[

∑
I(11)−

∑
I(110)]

)
∑

I(111)

n
(
∑
I(00) +

∑
I(01))

= −(
∑

I(00)
∑

Y I(000)−
∑

Y I(00)
∑

I(000)

n
∑

I(001
)(
∑
I(00) +

∑
I(01))

= (
(
∑

I(00)+
∑

I(01))

n
∑

I(110)
)[
∑
I(11)

∑
Y I(110)−∑ I(110)

∑
Y I(11)].

So,∑
Y1X3 = 1

n
[{∑ I(00)+

∑
I(01)}(∑Y I(10)+

∑
Y I(11))−{∑ I(10)+

∑
I(11)}(∑Y I(00)+∑

Y I(01))

+ (
(
∑

I(10)+
∑

I(11))

n
∑

I(001)
)[
∑
I(00)

∑
Y I(000)−∑ I(000)

∑
Y I(00)]

+ (
(
∑

I(10)+
∑

I(11))

n
∑

I(011)
)[
∑
I(01)

∑
Y I(010)−∑ I(010)

∑
Y I(01)]

+ (
(
∑

I(00)+
∑

I(01))

n
∑

I(100)
)[
∑
I(10)

∑
Y I(100)−∑ I(100)

∑
Y I(10)]

+ (
(
∑

I(00)+
∑

I(01))

n
∑

I(110)
)[
∑
I(11)

∑
Y I(110)−∑ I(110)

∑
Y I(11)]].

= 1
n
[{∑ I(00) +

∑
I(01)}[∑Y I(10) +

∑
Y I(11)

+
∑

I(10)
∑

Y I(100)∑
I(100)

−
∑

I(100)
∑

Y I(10)∑
I(100)

+
∑

I(11)
∑

Y I(110)∑
I(110)

−
∑

I(110)
∑

Y I(11)∑
I(110)

]
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− {∑ I(10) +
∑
I(11)}[∑Y I(00) +

∑
Y I(01)

−
∑

I(00)
∑

Y I(000)∑
I(001)

+
∑

I(000)
∑

Y I(00)∑
I(001)

−
∑

I(01)
∑

Y I(010)∑
I(011)

+
∑

I(010)
∑

Y I(01)∑
I(011)

]].

= 1
n
[{∑ I(00) +

∑
I(01)}[

∑
I(10)

∑
Y I(100)∑

I(100)
+
∑

I(11)
∑

Y I(110)∑
I(110)

]

− {∑ I(10) +
∑
I(11)}[∑Y I(000) +

∑
Y I(001) +

∑
Y I(010) +

∑
Y I(011)

−
∑

I(000)
∑

Y I(000)∑
I(001)

−
∑

I(001)
∑

Y I(000)∑
I(001)

+
∑

I(000)
∑

Y I(000)∑
I(001)

+
∑

I(000)
∑

Y I(001)∑
I(001)

−
∑

I(010)
∑

Y I(010)∑
I(011)

−
∑

I(011)
∑

Y I(010)∑
I(011)

+
∑

I(010)
∑

Y I(010)∑
I(011)

+
∑

I(010)
∑

Y I(011)∑
I(011)

]].

= 1
n
[{∑ I(00) +

∑
I(01)}[

∑
I(10)

∑
Y I(100)∑

I(100)
+
∑

I(11)
∑

Y I(110)∑
I(110)

]

− {∑ I(10) +
∑
I(11)}[∑Y I(001) +

∑
I(000)

∑
Y I(001)∑

I(001)
+
∑
Y I(011) +

∑
I(010)

∑
Y I(011)∑

I(011)
]].

= 1
n
[{∑ I(00) +

∑
I(01)}[

∑
I(10)

∑
Y I(100)∑

I(100)
+
∑

I(11)
∑

Y I(110)∑
I(110)

]

− {∑ I(10) +
∑
I(11)}[

∑
I(00)

∑
Y I(001)∑

I(001)
+
∑

I(01)
∑

Y I(011)∑
I(011)

]].

µ̂1 = −
∑

Y1X3∑
X2

3

=
(
∑

I(10)+
∑

I(11))[
∑

I(00)Y I(001)+
∑

I(01)Y I(011)]−(
∑

I(00)+
∑

I(01))[
∑

I(10)Y I(100)+
∑

I(11)Y I(110)]

(
∑

I(00)+
∑

I(01))(
∑

I(10)+
∑

I(11))

Thus

µ̂1 =
∑
I(00)Y I(001)+

∑
I(01)Y I(011)∑

I(00)+
∑
I(01) −

∑
I(10)Y I(100)+

∑
I(11)Y I(110)∑

I(10)+
∑
I(11)

This is the same of µ̂1 using IPTW formula, as required.
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9.2 Additional plot and table of residuals against states
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Figure 9.1: Histograms of β̂ on different models using simulations of 1000 datasets each of

size 500.

192



Model 1 Model 2 Model 3 Model 4

Against states

First time point Mean -0.0001 -0.0152 -0.0208 -0.0078

Standard Deviation 0.008 0.033 0.018 0.013

Median -0.0002 -0.0149 -0.0201 -0.0077

Quartile Deviation 0.005 0.022 0.012 0.009

Fifth time point Mean -0.0003 -0.0271 -0.0723 -0.0741

Standard Deviation 0.010 0.046 0.025 0.016

Median -0.0007 -0.0271 -0.0708 -0.074

Quartile Deviation 0.006 0.030 0.017 0.010

Ninth time point Mean 0.0001 -0.0226 -0.0698 -0.0732

Standard Deviation 0.009 0.048 0.024 0.016

Median 0.0006 -0.0229 -0.0699 -0.0729

Quartile Deviation 0.006 0.031 0.016 0.011

Table 9.1: Comparing different models through the slope residuals against states using

simulations of 1000 datasets each of size 500, following the Murphy scenario.
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Table 9.2: E[H3|M̄3, T̄2] for optimal outcome using G-estimation equation 2.2.

T1 T2 M1 M2 M3 E[H2|M̄2, T̄1]

0 0 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1

1 1 < −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1

0 1 ≥ −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1

1 0 < −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1

0 0 < −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)

1 1 ≥ −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)

0 1 < −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)

1 0 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)

0 0 ≥ −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ20 + ψ21M2)

1 1 < −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ20 + ψ21M2)

0 1 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ20 + ψ21M2)

1 0 < −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ20 + ψ21M2)

0 0 < −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)− (ψ20 + ψ21M2)

1 1 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1) + (ψ20 + ψ21M2)

0 1 < −ψ10
ψ11

≥ −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1) + (ψ20 + ψ21M2)

1 0 ≥ −ψ10
ψ11

< −ψ20
ψ21

≥ −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)− (ψ20 + ψ21M2)

0 0 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ30 + ψ31M3)

1 1 < −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ30 + ψ31M3)

0 1 ≥ −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ30 + ψ31M3)

1 0 < −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ30 + ψ31M3)

0 0 < −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)− (ψ30 + ψ31M3)

1 1 ≥ −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)− (ψ30 + ψ31M3)

0 1 < −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)− (ψ30 + ψ31M3)

1 0 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)− (ψ30 + ψ31M3)

0 0 ≥ −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

1 1 < −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

0 1 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

1 0 < −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

0 0 < −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1)− (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

1 1 ≥ −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1) + (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

0 1 < −ψ10
ψ11

≥ −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 − (ψ10 + ψ11M1) + (ψ20 + ψ21M2)− (ψ30 + ψ31M3)

1 0 ≥ −ψ10
ψ11

< −ψ20
ψ21

< −ψ30
ψ31

400 + 2M1 + (ψ10 + ψ11M1)− (ψ20 + ψ21M2)− (ψ30 + ψ31M3)
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