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Abstract 

Medulloblastoma is the most common malignant brain tumour of childhood. Transcriptomic 

classification of the disease has indicated the existence of discrete molecular subgroups of 

medulloblastoma, although the precise number, nature and clinical significance of these 

subgroups remains unclear. Two groups, characterised by activation of the WNT and SHH 

signalling pathways, are common to all published studies. An assay for the rapid diagnosis of 

medulloblastoma subgroups was therefore designed, using transcriptomic gene signatures of 

pathway activation for the WNT and SHH signalling pathways. The successful validation of 

these gene signatures in vitro and in silico enabled a meta-analysis of 173 new and published 

cases to be performed, which defined the molecular and clinico-pathological correlates of the 

disease subgroups more precisely. WNT subgroup cases were associated with CTNNB1 

mutation, chromosome 6 loss and classic histology and were diagnosed > 5 years of age. SHH 

cases predominated in infants and showed an age-dependent relationship to desmoplastic / 

nodular histology. WNT / SHH independent tumours showed all histologies, peaked at 3 to 6 

years and were associated with chromosome 17p loss.  

A novel DNA methylation array-based approach was next applied to disease subclassification. 

Using consensus clustering, based on non-negative matrix factorisation, four methylomic 

subgroups were identified in a training cohort (n = 100), which were robustly validated in a test 

cohort (n = 130). The subgroups were characterised by significant relationships to specific 

clinico-pathological and molecular markers. Two subgroups were characterised by activation of 

the WNT and SHH signalling pathways and showed equivalent clinico-pathological and 

molecular characteristics to the previously defined transcriptomic subgroups. For the WNT / 

SHH independent subgroups, group I was associated with a loss of chromosome 17p, whereas 

group II was enriched for large cell / anaplastic (LCA) histology. The WNT subgroup was 

associated with a favourable prognosis, while no survival differences were apparent between 

the remaining subgroups (SHH, group I, group II). Specific methylation biomarkers were 

identified for the discrimination of all subgroups. Assays of DNA methylation status were 

robust in derivatives of FFPE tissues, enabling testing in routinely-collected clinical material.  

Finally, the prognostic potential of methylomic biomarkers was investigated in a large clinical 

trials-based cohort (n = 191), with particular focus on the non-WNT subgroups (n = 163), where 

subgroup membership was not prognostic. Using the Cox Boost algorithm, which adds high 

dimensional data to mandatory clinical covariates to form cross-validated prognostic Cox 

survival models, the methylation status of MXI1 and IL8 were each identified as independent 

prognostic markers.  These were incorporated into a novel risk stratification scheme, based on 

the cumulative assessment of disease risk using clinical (metastatic disease; poor prognosis), 

pathological (LCA pathology, poor prognosis) and methylomic variables (WNT subgroup, 

favourable prognosis; MXI1 and IL8 status). Importantly, this scheme assigns 46% of cases to a 

low risk group of patients (>90% survival) who could potentially be treated less intensively, 

with the aim of reducing therapy-associated late effects.  This model out-performed the 

current clinical and other state-of-the-art medulloblastoma risk classification schemes.  These 

data provide clear precedent for the utility of DNA methylation biomarkers for disease 

subclassification and prognostication in medulloblastoma, and their clinical application in 

diagnostic tumour biopsies. 
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1.1 Cancer 

Cancer is an umbrella term for a numerous, heterogeneous collection of diseases, all 

characterised by uncontrolled growth and invasion of cells that encroach upon or 

displace surrounding tissue. Under normal conditions, tight regulation of cellular 

proliferation and apoptosis ensures a homeostasis of cell numbers that maintains 

normal tissue architecture and function. Any event that disrupts this homeostasis in 

favour of proliferation, by affecting genes involved in processes such as apoptosis and 

/ or proliferation can lead to aberrant proliferation, which in turn can generate a 

tumour.  

A tumour is simply defined as an abnormal growth of body tissue. It encompasses 

benign, pre-malignant and malignant forms, with cancer, by definition, a malignant 

tumour, because of its ability to invade and infiltrate surrounding tissues. Invasion is 

the process by which cells break away from the primary tumour and move into 

adjacent tissues. Metastasis is defined as the spread of secondary tumours, which 

detach from the primary tumour, to other non-adjacent locations in the body via the 

blood or lymphatic system. The determination of metastatic status is an important 

prognostic factor in most cancers. More than 200 different cancers have been 

described, and cancer remains one of the most important disease burdens worldwide 

(CRUK, 2011). Although many cancers have environmental determinants, ultimately, 

these environmental determinants have to materially alter the expression of genes to 

favour inappropriate proliferation of a cell, meaning that cancer is fundamentally a 

genetic disease. 

1.1.1 Cancer incidence 

Despite an increased understanding of the determinants of cancer, and the lifestyle 

choices that can reduce the risk of developing cancer, cancer incidence in the 

developed world has continued to rise, with a lifetime risk of developing cancer in the 

UK of 40% in 2008 (Figure 1.1). The reasons for this increase are complex, but must be 

understood in the context that improvements in the treatment of diseases other than 

cancer mean that people are living longer and therefore are at an increased risk of 

developing cancer through increased longevity.  
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As shown in Figure 1.1, there are marginally more cancers in males than females. 

Notwithstanding the gender-specific cancers (principally breast, ovarian, uterine and 

prostate cancers), males have a higher incidence and mortality in almost every major 

cancer (Figure 1.2), and efforts are being undertaken to encourage lifestyle changes in 

men which may reduce their excess cancer burden, due to an increased incidence of 

smoking, higher alcohol intakes and a reluctance to seek medical attention (Peate, 

2011). 

In 2008, the most recent year with available statistics, 309,500 people were diagnosed 

in the UK (CRUK, 2011). In the same year, there were 150,000 deaths from cancer in 

the UK (CRUK, 2011).  Interestingly, rates of cancer in the UK are substantially higher 

than in many other developed countries. The UK has the 22nd highest cancer rate in the 

world, and estimates suggest that approximately one third of these cancers are 

preventable through changes in diet, weight loss and an increase in physical activity 

(WCRF, 2010). Cancer is predominantly a disease that affects the elderly, with 

childhood cancer (defined here as age at diagnosis less than 15 years of age) 

representing only 1% of all newly diagnosed cancers in the UK, equivalent to 1500 

cases annually (CRUK, 2011) (Figure 1.3).  
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 Figure 1.1. Increasing lifetime risk of cancer in Great Britain, 1975-2008. Figure taken from 
Cancer Research UK cancer stats (CRUK, 2011). 
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Figure 1.2. Incidence and mortality rates of common cancers in the UK. A.The 20 most 
commonly diagnosed cancers in the UK in 2008. B. The 20 most common causes of death from 
cancer in the UK in 2008. Data supplied from http://info.cancerresearchuk.org/cancerstats. 
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Figure 1.3. Average number of new cancers per year increases with age. Figure taken from 
Cancer Research UK cancer stats (CRUK, 2011).  

 

1.1.2 Childhood cancer 

In contrast to adult cancers, childhood cancers (defined here as age at diagnosis less 

than 15 years) often arise in locations derived from embryonal tissues, in contrast to 

adult cancers, which are primarily epithelial in origin. Leukaemias and cancers of the 

central nervous system (CNS) comprise greater than 50% of childhood cancers (Figure 

1.4). Survival rates can vary according to cancer type, with a five year survival rate for 

all paediatric cancers of 78% in the period from 2001-2005 (CCRG, 2010), although 

survival rates for aggressive forms of glioma are as low as 5%. Cancer remains one of 

the leading causes of death in childhood, responsible for over 300 deaths a year in the 

UK (CRUK, 2011). Moreover, the deleterious side effects that are a consequence of 

cancer treatments in children confer a heavy burden on survivors and their carers, 

through the late effects of treatment, which can include neuro-cognitive and neuro-

endocrine defects. There is a pressing need to further characterise the nature and 

behaviour of childhood cancers, both to reduce the death rate, but also to identify 

methodologies that might mitigate the severity of treatment side effects. This is a 

problem unique to childhood cancers, due to the long survival times and relatively high 

cure rates. 
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Figure 1.4. Incidence of most common cancers of childhood in the UK. HL – Hodgkin’s 
lymphoma; NHL – Non-Hodgkin’s lymphoma. Figure adapted from Cancer Research UK cancer 
stats (CRUK, 2011) 
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1.1.3 Cancer is a multi-stage process 

Normal physiological and cellular processes have evolved to keep cancer in check, and 

in order for a normal cell to become malignant, it must acquire various capabilities in 

order to evade these defences. Histopathological investigations have described a 

typical progression in solid tumours, initiating with tissue hyperplasia (excessive 

proliferation of normal cells), which progresses into dysplasia (excessive proliferation 

of immature cells), and finally into invasive carcinoma. In their landmark papers, 

Hanahan and Weinberg describe six hallmarks of cancer which a cell must acquire in 

order to become malignant (Hanahan and Weinberg, 2011; Hanahan and Weinberg, 

2000), (Figure 1.5). Although the acquisition of these abilities will be common to nearly 

all cancers, the mechanisms by which these abilities are acquired are very 

heterogeneous, both within specific cancers and across all cancers. The specific 

processes are discussed below. 

 

 

 

Figure 1.5. The six hallmark capabilities of cancer, necessary for tumour growth. Figure taken 
from (Hanahan and Weinberg, 2011)  
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1.1.3.1 Sustained proliferative signalling 

In normal tissues, the processes that mediate entry into and progression through the 

cell cycle are tightly controlled, ensuring a homeostasis of cell numbers, and a 

maintenance of tissue architecture. Cancer cells acquire the capability to sustain 

proliferative signalling through various mechanisms: They may produce growth factor 

ligands themselves, or stimulate normal cells within the adjacent stroma to produce 

proliferative growth factors. Cancer cells can also become hyper-responsive to growth 

factors by increasing the number of receptors at the cell surface. Alternatively, the 

constitutive activation of proliferative signalling pathways can obviate the need for 

growth factors (Hanahan and Weinberg, 2011). 

1.1.3.2 Evasion of growth suppressors 

In addition to the stimulatory mechanisms outlined above, cancer cells must also 

evade negative regulation of cell proliferation. Many examples of tumour suppressor 

genes (TSGs) (section 1.1.6) have been described that act as control proteins that 

determine whether the cell is free to proceed along proliferative pathways, or whether 

cellular senescent and apoptotic pathways should be activated (Hanahan and 

Weinberg, 2011).  

1.1.3.3 Activating invasion and metastasis 

The processes which govern invasion and metastasis remain poorly understood, but a 

series of discrete steps that characterise invasion and metastasis have been described. 

In this series, local invasion is the first step, which is governed by changes to the 

mechanisms by which cancer cells interact with adjacent cells and the extracellular 

matrix. The next step is intravasation by cancer cells into adjacent blood and lymphatic 

vessels, where they can be transported to distant tissues. After transportation, cancer 

cells escape into the surround parenchyma and form small nodules of cancer cells 

(micro-metastases). Finally, the micro-metastases grow into additional macroscopic 

tumours, a process termed colonisation.   
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1.1.3.4 Enabling replicative immortality 

Cancers are widely accepted as having acquired limitless replicative potential. In 

normal cells, only a limited number of successive cell divisions are possible before cells 

become senescent, a non-proliferative but viable state. If division is continued, cells 

reach a crisis phase and the majority of cells die. Rarely, cells acquire limitless 

replicative potential, and it has been established that changes in telomere structure 

are the mechanism by which such cells can become immortalised (Blackburn, 1991). 

Under normal conditions of cell division, telomere length successively shortens, until 

the telomeres have largely eroded, have lost their protective functions and trigger 

senescence. Telomerase, an enzyme that can counter telomere erosion, is activated in 

~90% of immortalised cells (including cancer cells) and its expression is correlated with 

a resistance to senescence and crisis / apoptosis (Hanahan and Weinberg, 2011).   

1.1.3.5 Induction of angiogenesis 

Invading and growing tumours require nutrients and oxygen, and the capability to 

evacuate metabolic wastes. This capability is supplied by the stimulation of angiogenic 

mechanisms that provide a tumour-associated neo-vasculature. The induction of 

angiogenesis is mediated by various factors that either induce or oppose angiogenesis. 

The most widely studied examples of these factors are the inducer vascular endothelial 

growth factor A (VEGF-A) and the inhibitor thrombospondin-1 (TSP-1). Under normal 

conditions, the VEGFA gene is activated during embryonal and post-natal development, 

as well as in pathological conditions in the adult. In cancer, VEGFA expression is 

induced by hypoxia and oncogene signalling. TSP-1 binds trans-membrane receptors 

which stimulates suppressive signals that can counter pro-angiogenic stimuli (Hanahan 

and Weinberg, 2011).     

1.1.3.6 Resisting cell death 

Cancer cells must overcome apoptotic mechanisms to persist and proliferate. The 

activation of apoptotic processes can be triggered by stresses resulting from elevated 

levels of oncogene (section 1.1.5) signalling, and DNA damage due to hyper-

proliferation. Two apoptotic regulatory mechanisms exist for determining the 

activation of apoptosis. One receives and processes extra-cellular triggers of apoptosis, 
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the other senses intracellular pro-apoptotic signals. Both culminate in the activation of 

proteases which proteolytically disassemble the cell before phagocytosis. The most 

commonly observed mechanism for the evasion of apoptosis is the loss of tumour 

protein 53 (TP53) and its tumour suppressor function (Hanahan and Weinberg, 2011).  

1.1.3.7 Genetic model for development of cancer 

More than one mutation is necessary for development of cancer. A series of mutations 

to several classes of gene is normally required before a normal cell can transform into 

a tumour cell. The monoclonal origin of cancer is a model that described the process of 

tumourigenesis being dependent upon a series of genetic and epigenetic events that 

sequentially accumulate in a cell population that is derived from a single initiating 

mutation in a single cell.  

Under the model, a mutation in a single cell provides a selective growth advantage 

over surrounding somatic cells. The mutated cell proliferates, and creates a population 

of cells with the same genotype, increasing the likelihood of additional tumorigenic 

mutations and proliferative capability. Each successive event provides an additional 

growth advantage and is clonally expanded until a tumour is formed which has 

acquired the capabilities described in section 1.1.3. 

In their classic paper from 1990, Fearson and Vogelstein present a model for the clonal 

evolution of colorectal carcinoma (Fearon and Vogelstein, 1990) that formalised the 

model for the clonal evolution of cancer. Colorectal tumours almost always arise from 

pre-existing benign tumours (adenomas), and the process by which normal epithelium 

forms adenomas, which progress to full carcinoma, is governed by the continued 

acquisition of genetic and epigenetic defects that drive proliferation and expansion, as 

shown in Figure 1.6. 
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Figure 1.6. A model for the development of colorectal cancer. Although the specific genetic 
changes that occur through tumour progression will vary, the underlying histological changes 
are likely to be common for every colorectal carcinoma. Figure adapted from Fearon and 
Vogelstein, 1990.  

 

 

 

 

The monoclonal origin of cancer has been confirmed in several types of cancer by 

chromosome X inactivation studies, which have demonstrated that cells within a single 

tumour, and cells of anatomically distinct tumours from an individual patient, have the 

same number of inactive X chromosomes and therefore originate from a single cell 

(Wang et al., 2009b; Jones et al., 2005; Jacobs et al., 1992). However, some cancers have 

been shown to contain cells with a variable pattern of X chromosome inactivation, suggestive 

of a polyclonal origin, whereby cancers develop from multiple colonies of genetically distinct 

cells that interact to initiate tumorigenesis (Parsons, 2008). 

1.1.4 Genetic determinants of cancer 

As discussed in section 1.1, cancer initiates with an abnormal proliferation of cells with 

the capability of infiltrating and displacing surrounding tissues. There is a widely 

accepted view that a cell must acquire multiple genetic lesions in order for this to 

occur, as described in section 1.1.3.7. The majority of these lesions arise from 

environmental exposure to mutagenic factors (ultra-violet (UV) light, ionising radiation, 

chemical mutagens present in the environment). However, there are a number of 

inherited cancer syndromes where affected individuals are heterozygous for a mutated 

allele, and are vulnerable to acquiring a further mutation in the second allele, which 

can act as the initiating step of the multi-stage process of cancer. One example of 

cancer genes are the BRCA family of genes, with female members of affected families 

harbouring harmful mutations being particularly susceptible to developing breast or 

ovarian cancers. Women carrying harmful mutations in BRCA1 or BRCA2  have a 
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lifetime risk of breast cancer that is five times normal, and a risk of ovarian cancer that 

is ten to thirty times normal (Kadouri et al., 2007).  Two gene classes are fundamental 

to the development of cancer: Oncogenes and tumour suppressor genes.  

1.1.5 Oncogenes  

An oncogene is a gene that, when mutated or expressed at abnormally high levels, has 

the potential to cause cancer by directly promoting cell growth and proliferation, 

inhibiting apoptosis, or facilitating other hallmarks of a cancer cell illustrated in section 

1.1.3. The first oncogene, SRC, was identified in 1970 in a chicken retrovirus (Martin, 

1970). Since their initial description in viruses, studies in cancer cell lines identified that 

oncogenes can be mutated forms of normal genes, termed proto-oncogenes (Stehelin 

et al., 1976). Proto-oncogenes encode proteins whose normal function is to regulate 

cell growth and differentiation. They can be converted into oncogenes by acquiring 

enhanced functionality through dominant gain-of-function mutations, or by an 

upregulation of expression of the normal product (Strachan and Read, 1999). Many 

proto-oncogenes have subsequently been identified and, with that, came the 

realisation that many oncogenes are different components of the same pathway, 

implicating a relatively small number of pathways in the development of cancer. Since 

the activation of many oncogenes has been identified in diverse cancers, there is hope 

that specific pathway inhibitors will be useful against a broad range of cancer types 

(Vogelstein and Kinzler, 2004), defined by their oncogenic activation profile. Examples 

of well-studied oncogenes are shown in Table 1.1. The mechanisms by which proto-

oncogenes become oncogenes are described below. 
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Oncogene Normal Function Cancer Association 

BRAF Intracellular signalling Melanoma 

EGFR Growth factor receptor Glioma, non-small cell lung 

cancer 

ERBB2 Growth factor receptor Breast 

HRAS Component of signal 

transduction pathway 

Colorectal carcinoma, 

bladder, 

rhabdomyosarcoma 

MYCN Transcription factor Neuroblastoma / 

medulloblastoma 

PDGFB Growth factor Dermatofibrosarcoma, 

fibroblastoma 

KRAS Intracellular signalling Colorectal 

VEGF Promotes angiogenesis Metastatic colorectal 

Table 1.1. Examples of proto-oncogenes, their normal function and examples of cancer in 
which they can become activated. Data gathered from the Cancer Genome Project 
(www.sanger.ac.uk/genetics/CGP/Census/),(Strachan and Read, 1999). 

 

 

1.1.5.1 Activation of proto-oncogenes 

Many cancer cells contain many copies of structurally intact oncogenes, a process 

named gene amplification. For example, many neuroblastoma cancers are amplified in 

the oncogene MYCN (Schwab, 1990), and some medulloblastomas are amplified for 

MYCC (Bigner et al., 1990). The increase in gene copy number can promote messenger 

RNA (mRNA) expression of the oncogene which can drive tumourigenesis. The 

mechanisms that lead to gene amplification are poorly understood, although genomic 

instability is a hallmark of cancer cells and a loosening of the checkpoints that control 

genome integrity can permit gene amplification to occur.  

An alternative mechanism for proto-oncogene activation is through point mutation. 

For example, specific point mutations in the HRAS gene can abrogate the GTPase 
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activity of the HRAS protein. In turn, this causes the G-protein-coupled receptor 

signalling protein GTP-RAS to be inactivated more slowly, leading to excessive cellular 

response to signalling from G-protein coupled receptors (Khosravi-Far and Der, 1994). 

The karyotype of tumour cells is typically abnormal, with structural abnormalities such 

as chromosomal gains, losses or translocations relatively common. One mechanism for 

oncogene activation is by generation of fusion genes along well-defined breakpoints. 

The best known example of this is the Philadelphia chromosome, observed in 90% of 

patients with chronic myeloid leukaemia (Whang et al., 1963).  This involves a 

balanced reciprocal 9;22 translocation, forming a novel fusion gene, BCR-ABL (Strachan 

and Read, 1999).  An alternative translocation mechanism transposes oncogenes into 

active chromatin domains. The translocation of the MYCC gene to actively transcribed 

chromatin regions proximal to immunoglobulin loci is a hallmark of Burkitt’s 

Lymphoma (Strachan and Read, 1999). In this case, the intact gene is translocated, and, 

without its normal control, is transcribed at an inappropriately high level. 

1.1.6 Tumour suppressor genes 

Tumour suppressor genes (TSGs) are a class of genes whose gene products prevent a 

cell from progressing towards cancer. They can be inhibitory to processes that drive 

cellular proliferation and growth or can function to promote genome stability, by 

ensuring fidelity in DNA replication, repairing damaged DNA, or promoting apoptosis if 

the damage is irreparable (Charles, 2004).  

The two-hit hypothesis of TSG inactivation was proposed by Knudsen in 1971, after he 

observed that the age of onset of retinoblastoma followed second order kinetics, with 

the implication that two separate genetic events were necessary for tumourigenesis to 

occur (Knudson, 1971). He recognised that mutations in TSGs were recessive, and 

inactivation of a TSG would be bi-allelic, in contrast to oncogene mutations, which 

involve gain-of-function and are dominant. Later experiments with retinoblastoma 

validated Knudsen’s hypothesis. In familial retinoblastoma, one mutated form of the 

RB1 gene is inherited, with only one more hit at the affected locus necessary for the 

initiation of tumourigenesis. As a result, the tumour tends to occur bilaterally in 

children < 2 years of age. Sporadic retinoblastomas require the independent 
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inactivation of both RB1 alleles and tend to occur unilaterally in older children 

(Cavenee et al., 1983).  

Since their initial description, more than 100 TSGs have been identified through their 

association with sporadic and inherited cancers. However, there are notable 

exceptions to the two hit rule, with loss of a single copy of the PTCH1 gene sufficient to 

initiate medulloblastoma, due to haplo-insufficiency (Goodrich et al., 1997), and the 

loss of a single copy of PTEN can promote progression of prostate cancer by the same 

mechanism (Kwabi-Addo et al., 2001). Commonly inactivated TSGs are listed in Table 

1.2. 
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Gene Normal Function Cancer Association 

APC Scaffold protein Colorectal 

BRCA1 Transcriptional control Breast and ovarian 

carcinoma 

CDKN2A Regulates cell division Melanoma 

DCC Regulates growth 

processes 

Colorectal carcinoma 

RB1 Regulates cell division Retinoblastoma 

TP53 Regulates cell division and 

apoptosis 

Lung, medulloblastoma 

VHL Regulates cell division and 

angiogenesis 

Kidney 

WT1 Transcriptional control Wilms’ Tumour 

Table 1.2. Examples of TSGs, their normal function and examples of cancers in which they 
are inactivated. Table adapted from Strachan and Reid, 1999.  
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1.1.6.1 Inactivation of tumour suppressor genes 

Many mechanisms for the inactivation of TSGs have been reported. Whole 

chromosomal loss, chromosomal copy number neutral (CNN) loss of heterozygosity 

(LOH), mitotic recombination, gene conversion, gene deletion, point mutation and 

epigenetic inactivation through hypermethylation of the gene promoter (section 1.1.9) 

are all recognised mechanisms for the inactivation of TSGs (Strachan and Read, 1999). 

Importantly, bi-allelic loss can occur via the same mechanism, or by any combination 

of two mechanisms. Chromosomal loss and loss with duplication can lead to LOH 

compared to constitutional DNA, which is detectable through running genomic arrays 

such as array CGH (comparative genomic hybridisation) and SNP (single nucleotide 

polymorphism) arrays and is a well-described method for detecting candidate tumour 

suppressor loci in cancer. 

1.1.7 Epigenetics  

Epigenetics is the study of heritable changes in gene expression caused by mechanisms 

other than changes in the primary DNA sequence, and there is an increasing body of 

evidence that critical events in tumourigenesis may be driven by epigenetic 

mechanisms (Baylin and Jones, 2011; Jones and Baylin, 2002; Jones and Laird, 1999). 

As of 2011, four major classes of epigenetic regulation have been shown to be 

important in cancer: DNA methylation, chromatin remodelling, post-translational 

histone modifications and gene regulatory micro RNAs. None of these processes 

function in isolation, with the permissiveness for gene transcription being the result of 

a complex interplay of epigenetic processes which determine whether DNA is in its 

inactive (heterochromatin) or active form (euchromatin), shown in Figure 1.7, and is 

discussed in detail in section 1.1.8. 
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Figure 1.7. Epigenetic control of gene transcription by dynamic changes in DNA methylation 
status and chromatin modifications. In the upper panel, A,DNA is depicted in its active form, 
euchromatin; nucleosomes (large blue circles) are relaxed, histone H3 (lightning bolt) is 
acetylated (green triangle) and CpG dinucleotides are unmethylated (white circles). DNA (black 
line) is now permissive for induction of transcription. Through the interplay of DNMTs (DNA 
methyltransferases), MBPs (methyl-binding proteins), HDACs (histone deacetylases) and HATs 
(histone acetyltransferases), DNA can be rendered transcriptionally inactive (lower panel, B, 
which depicts heterochromatin, defined by nucleosome compaction). Nucleosomes have 
condensed, histone H3 has become methylated (red ovals) and deacetylated, and CpG 
dinucleotides are now methylated (red circles). Figure taken from (Lindsey et al., 2005). 
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1.1.8 Regulation of gene expression by epigenetic mechanisms 

The architecture of gene expression states has been subject to intense study over the 

last decade, and the complexity and number of processes that can affect gene 

transcription have become more fully characterised (Baylin and Jones, 2011). The 

organisation of gene promoters is dependent on chromatin structure and organisation 

at regions flanking the promoter, and on the specific interplay of regulatory proteins at 

the site of the promoter, mediated by dynamic changes to methylation and / or 

acetylation of regulatory proteins. 

1.1.8.1 Histone modifications and nucleosome reorganisation 

Active gene promoters are characterised by nucleosome-depleted regions upstream of 

their transcriptional start sites (TSSs). The nucleosomes that flank these depleted 

regions are marked by trimethylation of lysine 4 of histone 3 (H3K4me3), have 

acetylated lysines, and harbour the histone variant, H2.AZ, which may destabilise 

nucleosomes to facilitate initiation of transcription (Figure 1.8). The transcribed 

regions of active genes also show enrichment for specific histone modifications, such 

as histone H3 lysine 36 trimethylation (H3K36me3), which may enable elongation of 

transcription (Guenther et al., 2007). Although DNA methylation represses initiation of 

transcription in promoter regions (Guenther et al., 2007), dense methylation of gene 

bodies may also promote elongation of transcription (Maunakea et al., 2010). 

Enhancer regions, shown in Figure 1.8, are characterised by nucleosome depletion, the 

presence of H3K4me1 and acetylation of lysine 27 of histone H3 (H3K27Ac).  

DNA methylation, mediated by DNA methyltransferases (DNMTs), stabilises epigenetic 

gene silencing (Lin et al., 2007) and ‘locks’ DNA in a silent state (Deaton and Bird, 2011) 

(Figure 1.8), in promoter regions that lack H2A.Z, have nucleosomes located across the 

TSS, and which additionally harbour repressive histone modifications such as histone 

H3 lysine 9 bi- or trimethylation (H3K9me2 or H3K9me3). It is now understood that the 

maintenance of genome-wide expression states is determined by the balance of 

transcriptionally permissive and transcriptionally repressive chromatin modifications 

(Chi and Bernstein, 2009).  
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In addition to DNA methylation, promoters can also be silenced by polycomb group 

proteins (PcGs), shown in Figure 1.8. In humans, the protein complex PRC2 mediates 

histone H3 lysine 27 trimethylation (H3K27me3), which is recognised by the protein 

complex PRC1, which inhibits transcriptional elongation by ubiquitylation (Stock et al., 

2007) and chromatin compaction (Eskeland et al., 2010). While DNA methylation at 

promoters is thought to remain relatively stable following development, polycomb-

mediated repression is a more dynamic repression system (Mohn et al., 2008). In 

embryonic stem cells, CpG islands (section 1.1.9), silenced by PcG proteins, possess the 

active transcriptional histone marks H3K4me3 and H3K27me3, existing in a ‘bivalent’ 

state, which is poised between active transcription and stable repression. This 

bivalency may allow regulatory flexibility, for activation when needed during 

differentiation (Chi and Bernstein, 2009), or conversion to a repressive state for genes 

whose expression is not required. Bivalent CpG island promoters are observed in one 

fifth of CpG island promoters in embryonic stem (ES) cells (Ku et al., 2008), but are also 

found to a lesser extent in other cell types (Roh et al., 2006). It is thought that bivalent 

gene promoters are prone to acquiring de novo DNA methylation in cancer and pre-

cancerous cells (Ohm et al., 2007; Widschwendter et al., 2007), providing a mechanism 

for the DNA hypermethylation observed at specific gene promoters in cancer.  

Additional control is provided by global modifications to chromatin architecture. 

Insulators such as CTCF (Guelen et al., 2008), along with PcG occupancy, organise DNA 

into repressive heterochromatin or active euchromatin loops to enable large-scale 

repression or to connect distal enhancers and proximal promoters. The major 

mechanisms and modification that activate and repress DNA transcription are 

summarised in Table 1.3. A more detailed summary of the proteins involved in 

controlling transcription at the TSS is given below. 
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Figure 1.8. Model of the structure of the epigenome in normal human cells. A silenced gene 
(indicated by an X over the transcriptional start site) at the top of the figure has its promoter 
region occupied by a Polycomb group (PcG) complex, indicated by a red oval, that mediates 
repressive changes including the repressive histone modification trimethylation of lysine 27 on 
histone 3 (H3K27me3). CpG dinucleotides within this region are unmethylated (blue circles) 
and nucleosomes (yellow reels) are positioned over the transcriptional start sites. The gene 
promoter beneath the silenced gene is in a permissive state for gene transcription, 
characterised by active histone H3 lysine 4 trimethylation (H3K4me3) at the promoter. In 
addition, histones H3 and H4 are acetylated at key lysines, and the trimethylation of histone 3 
lysine 36 (H3K36me3) aids transcriptional elongation. The transcriptional start site is not 
occupied by nucleosomes. A distal enhancer for this gene is also shown, characterised by an 
active nucleosome configuration and the signature histone modification for enhancers, 
methylation of histone H3 lysine 4 (H3K4me1). Towards the bottom of the figure, 
transcriptionally inactive heterochromatin is shown, with compacted nucleosomes, the 
presence of histone H3 lysine 9 bi- and trimethylation (H3K9me2 and H2K9me3), which are 
signature repressive marks of constitutive heterochromatin and extensive DNA methylation. 
Finally, heterochromatin is folded into chromosomes within the nucleus, as shown. Figure 
taken from Baylin and Jones, 2011.  
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1.1.8.2 Regulatory processes at the transcriptional start site  

A tetrameric complex that surrounds a nucleosome has been identified as the initiating 

complex for DNA methylation (Ooi et al., 2007). The complex consists of two molecules 

of the de novo methyltransferase DNMT3A and two of DNMT3L, an inactive isomer 

expressed in embryonic stem cells. Nucleosomes that contain the histone mark 

H3K4me3 cannot be bound by this complex, targeting DNA methylation to regions 

such as inactive promoters, intragenic regions and regions not subject to 

transcriptional control. The enzyme family responsible for methylating cytosine 

residues are the DNA methyltransferases (DNMTs), with DNMT1 maintaining the de 

novo methylation patterns determined by DNMT3A and DNMT3B. In differentiated 

somatic cells, DNMT1 shows a strong preference for recognising hemi-methylated DNA 

intermediate produced during replication of a methylated sequence, perpetuating pre-

existing methylation patterns between parent and daughter cells. The interplay 

between DNMT3A / B and DNMT1 is being defined in normal and cancer cells. 

DNMT3A and DNMT3B are thought to repair errors made by DNMT1 after DNA 

synthesis (Jeong et al., 2009). The recent description of enzymes that remove DNA 

methylation, such as the TET family of proteins, which form 5-hydroxymethylcytosine 

from methylated cytosine, have been demonstrated to be important during 

development and tumourigenesis (Williams et al., 2011; Kriaucionis and Heintz, 2009). 

The contribution and position of the determinants of transcription in a 

transcriptionally active and repressed gene are shown in Figure 1.9. 

In an actively transcribed promoter, widely spaced nucleosomes contain acetylated 

histone H3 and H4, with additional H3K4me3. Polycomb protein is absent, and a 

transcription activator complex, consisting of a co-activator protein (CA), transcription 

factor (TF) and histone acetyl transferase (HAT) can access the TSS. DNMTs are 

excluded from the promoter, preventing de novo methylation of CpG dinucleotides. In 

its inactive form, the promoter DNA is characterised by methylation of CpG 

dinucleotides, with the promoter region now accessible to DNMTs. The promoter itself 

is occupied by transcriptionally repressive proteins, including methyl-cytosine binding 

proteins (MBPs) and nucleosomes in which the histones have become deacetylated in 

a process mediated by histone deacetylases (HDACs). The nucleosomes have 

additionally acquired methylated lysine 9 of histone H3, mediated by a lysine 4 
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methyltransferase. Finally, the transcription activator complex is no longer able to 

access the TSS (Figure 1.9).  
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Figure 1.9. A CpG rich promoter in transcriptionally activated and repressed configurations. A. 
The activated promoter is surrounded by widely-spaced, relaxed nucleosomes, which contain 
H3K4me3, whose methylation is mediated by Lysine 4 methyltransferase, HMT, and 
acetylation marks, mediated by histone acetyl transferase (HAT). The open chromatin state 
allows entry of the transcription activator complex, consisting of a co-activator protein (CA), 
transcription factor (TF) and HAT. DNA methyltransferases (DNMTs) are excluded from the 
promoter, preventing de novo methylation of CpG dinucleotides. B. The transcriptionally 
repressed promoter is characterised by dense promoter CpG methylation. Methyl-cytosine 
binding proteins (MBPs) bind to the DNA and recruit histone deacetylase (HDAC) complexes, 
which, in turn, deacetylate the nucleosomes and, in conjunction with trimethylation of lysine 9 
of histone H3 (H3K9me3), generate a tightly compacted chromatin structure that prevents 
access of the transcriptional activator complex. The promoter is also accessible to DNMTs, 
enabling the maintenance of the repressive CpG methylation and the associated 
transcriptional silencing. HP1 – chromodomain protein HP1α; HMT – Lysine 4 
methyltransferase. Figure adapted from (Jones and Baylin, 2002).  
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Repressive chromatin Active chromatin 

Nucleosomes across promoter region Nucleosome depletion at promoter 

Histone H3 lysine 9 dimethylation Histone H3 lysine 4 trimethylation 

Histone H3 lysine 9 trimethylation Histone H3 lysine 36 trimethylation 

Deacetylation of histones H3 and H4 Acetylation of histones H3 and H4 

Methylated DNA across promoter region Unmethylated DNA across promoter 

region 

For certain gene promoters: 

Repression not dependent upon DNA 

methylation across promoter; dependent 

upon the binding of PcGs which repress 

transcription 

In enhancer region: 

Nucleosome depletion 

Histone H3 lysine 4 methylation 

Histone H3 lysine 27 acetylation 

Table 1.3. Catalogue of repressive and active chromatin marks for the control of gene 
transcription in humans. PcG – polycomb group proteins. 
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1.1.9 DNA methylation in cancer 

The most widely studied epigenetic change is methylation of the 5’ carbon of cytosine 

at CpG dinucleotides. The dinucleotide CpG is rare within the genome relative to other 

dinucleotide pairs (Bird, 1980). This is because the methylated cytosine is able to 

spontaneously deaminate to thymine. It is thought that only those methylated CpGs 

which have an important role in gene regulation have persisted in the genome through 

selective pressure, the rest being lost over evolutionary time without detriment to 

host fecundity. DNA loci with a high GC percentage proximal to gene promoters are 

known as CpG islands (Gardiner-Garden and Frommer, 1987). Computational 

identification of CpG islands from the initial draft of the human genome estimated that 

there were 29,000 CpG islands (Lander et al., 2001). One current definition of a CpG 

island is that of a sequence with length > 500 bases, GC content > 50% and CpG 

dinucleotides at an observed : expected ratio > 0.6 (Wang and Leung, 2004), but there 

is no strict definition. Although CpG islands are generally located in the 5’ upstream 

promoter region of a gene, there are atypical CpG islands located within the gene or 3’ 

to the gene (Nguyen et al., 2001).  Approximately 60% of human genes are associated 

with a CpG island. A recent study demonstrated hypermethylation (inappropriately 

high levels of methylation) across a 1MB region of colorectal cancer cells, suggesting 

that this large scale silencing may be a mechanism for LOH across large chromosomal 

regions (Frigola et al., 2006). It has been suggested that whilst methyl groups have no 

effect on base pairing, they may affect DNA–protein interactions and inhibit 

transcription by interfering with its initiation; DNA methylation can reduce the binding 

affinity of transcription factors and recruit methylation-dependent DNA binding-

proteins, which act as transcriptional repressors (Jones and Laird, 1999).  

Generally, promoter-associated CpG islands of normal adult somatic cells are thought 

to be predominantly unmethylated, with their associated genes being transcriptionally 

active. This is in contrast to most CpG sites outside of CpG islands, which are 

predominantly methylated. This methylation may be necessary to silence intact 

retrotransposons (principally, LINE-1 (long interspersed nuclear element-1) and Alu 

elements), preventing genome instability (Walsh et al., 1998). It has been reported 

that the global hypomethylation (inappropriately low levels of methylation) observed 

in cancer cells (Goelz et al., 1985) may provide a mechanism for an increase in genome 
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instability by activating previously silenced retrotransposons, by loss of imprinting and 

/ or chromosomal instability.  

Studies in cancer have shown that against a global cancer hypomethylation 

background, hypermethylation is detectable in specific DNA regions (de Bustros et al., 

1988). In 1994, the first demonstration that DNA hypermethylation at a promoter can 

lead to silencing of a TSG was described in the Von Hippel Landau (VHL) gene (Herman 

et al., 1994). Subsequent investigations have revealed that CpG island 

hypermethylation of TSGs varies according to tumour type (Costello et al., 2000). 

Canonical cancer genes such as the DNA repair genes MLH1, BRCA1 and MGMT have 

all been shown to undergo silencing by DNA hypermethylation in cancer cells (Esteller, 

2006). Current estimates are that 5-10% of genes whose promoter regions are 

unmethylated after completion of embryonal development acquire methylation in 

cancer (Bird, 2002). More recently, comprehensive analyses of genome-wide DNA 

methylation patterns have revealed the existence of CpG island ‘shores’ (Irizarry et al., 

2009), regions of DNA that lie upstream but close to CpG islands. These regions 

showed more variable methylation patterns than within CpG islands, with a strong 

relationship to gene expression, and are tightly linked to the tumour tissue of origin.   

Epigenetic gene silencing in cancer has also been shown to be important in 

predisposing to mutational events that can drive tumourigenesis. The mismatch repair 

gene MLH1 is frequently methylated in sporadic tumours and is associated with an 

observed microsatellite instability (Jones and Baylin, 2002). Conversely, mutational 

events that are associated with epigenomic defects are also being identified. For 

example, mutations in IDH1 (Parsons et al., 2008) occurring in gliomas correlate with a 

CpG island hypermethylator phenotype (Noushmehr et al., 2010). In addition, cytosine 

methylation can influence tumorigenicity, since 5-methylcytosine can deaminate to 

thymine; up to 50% of inactivating point mutations of the TSG TP53 in somatic cells 

occur at methylated cytosines (Rideout et al., 1990). The role of DNA hypermethylation 

in enabling pathway disruption through the transcriptional repression of multiple 

microRNAs is becoming more widely recognised. For example, a hypermethylation 

signature of microRNA loci, associated with metastasis, has been reported (Lujambio 

et al., 2008). A selection of genes commonly transcriptionally silenced by promoter 

hypermethylation in cancer is shown in Table 1.4. 
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Gene Function Gene 

Name 

Cancer Type References 

Cell-cycle regulation RB1 

P16
INK4A 

P14
ARF

 

RASSF1A 

Retinoblastoma 

Colon, lung, many others 

Colon 

Lung, liver, brain 

(Greger et al., 1994) 

(Herman et al., 1995) 

(Xing et al., 1999) 

(Dammann et al., 

2000) 

Tumour-cell invasion CDH1 

CDH13 

TIMP3 

VHL 

Breast, gastric, thyroid, leukaemia, liver 

Lung, ovarian, pancreas 

Brain, kidney 

Renal cell 

(Wheeler et al., 2001) 

(Sato et al., 1998) 

(Esteller et al., 2001) 

(Herman et al., 1994) 

DNA repair / 

detoxification 

MLH1 

MGMT 

GSTP1 

BRCA1 

Colon, endometrial, gastric 

Brain, colon, lung, breast 

Prostate, liver, colon, breast, kidney 

Breast, ovarian 

(Herman et al., 1998) 

(Esteller et al., 1999) 

(Lee et al., 1994) 

(Dobrovic and 

Simpfendorfer, 1997) 

Chromatin 

remodelling 

SMARCA3 Colon, gastric (Moinova et al., 2002) 

Cell signalling SOCS1 Liver, colon, multiple myeloma (Nagai et al., 2002) 

Transcription ESR1 Colon, breast, lung, leukaemia (Issa et al., 1994) 

Apoptosis DAPK1 Lymphoma (Katzenellenbogen et 

al., 1999) 

Table 1.4. Examples of genes silenced by aberrant DNA hypermethylation in cancer. RB1, 
retinoblastoma 1; p16INK4, cyclin dependent kinase inhibitor 2A INK4A;  p14ARF, cyclin 
dependent kinase inhibitor 2A ARF; RASSF1A, Ras association domain family protein 1 isoform 
A; CDH1, cadherin 1; CDH13, cadherin 13; TIMP3, tissue-inhibitor of metalloproteinase 3; VHL, 
Von Hippel Lindau; MLH1, mutL, E. Coli, homolog of, 1; MGMT, methylguanine-DNA 
methyltransferase; BRCA1, breast cancer 1; GSTP1, glutathione S-transferase 1;  SMARCA3, swi 
/ snf-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 
3; SOCS1, suppressor of cytokine signalling 1; ESR1, oestrogen receptor 1; DAPK1, death-
associated protein kinase. Table adapted from (Robertson, 2005). 
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1.1.9.1 DNA methylation patterns provide a rich source of 

biomarkers 

DNA methylation patterns hold rich promise as biomarkers for detection of cancer, 

assessment of prognosis, and predicted response to therapy. The assessment of TFPI2 

methylation in stool and blood samples has been reported as a novel biomarker for the 

detection of colorectal cancer (Glockner et al., 2009). Similarly, a methylation signature 

of active ovarian cancer (Teschendorff et al., 2009) may have potential as a non-

invasive strategy for early detection in at-risk groups. Finally, using a methylation-

sensitive restriction enzyme, comparative hybridisation based approach, a 112 locus 

methylation signature has been developed that is able to predict progression free 

survival in ovarian cancer with 95% accuracy (Wei et al., 2006). 

An assessment of the DNA methylome of 1054 cancers on the GoldenGate methylation 

array platform (section 2.7) demonstrated that the tissue type origin of cancers could 

be determined from its DNA methylation profile (Fernandez et al., 2011), indicating 

that DNA methylation patterns could be useful for determining the cell of origin of 

cancer, which might have implications for treatment strategies.  More specifically, 

hypermethylation marks that silence the MGMT gene in glioma can predict response 

to the chemotherapeutic drug, temozolomide (Esteller et al., 2000).  

There are an increasing number of cancer drugs which function to reverse the 

epigenetic abnormalities of cancer. DNA demethylating agents such as azacytidine and 

decitabine inhibit all DNA methyltransferases and have shown promise in increasing 

survival in patients with myelodysplastic syndrome (MDS) and increasing the time 

period between diagnosis of MDS and full-blown acute myeloid leukaemia (Silverman 

and Mufti, 2005).  The precise mode of action for this class of drugs remains poorly 

understood. It is conceivable that treatment with demethylating agents could 

reactivate previously silenced TSGs and slow tumour progression. There is also interest 

in the potential potentiating effects of epigenetic treatments, when allied with 

conventional chemotherapeutic treatments. The application of chemotherapy to a 

tumour creates a strong selective pressure for changes in gene expression that reduce 

the effectiveness of the drug. These changes in gene expression may be mediated by 

the hypermethylation and silencing of specific genes which bind to the drug. If the 
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demethylating agent is applied alongside the chemotherapy, development of 

resistance to chemotherapy may be retarded (Teodoridis et al., 2004).   

Concerns remain over the non-specific nature of these drugs, which have the potential 

to reactivate normally silenced genes in addition to hypermethylated tumour specific 

genes, and it has been demonstrated that treatment of cancer cell lines with 

demethylating agents led to the methylation-dependent dysregulation of many 

hundreds of genes, including classes of genes that promote and inhibit cell growth 

(Suzuki et al., 2002).  
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1.2 Paediatric tumours of the central nervous system 

Cancers of the CNS are the second most common group of cancers in childhood 

(Gurney, 1999), responsible for 40% of cancer deaths in children in the UK (Soffietti et 

al., 2002). Between 1998 and 2002, CNS tumour incidence was 4.40 cases per 100,000 

person years for children aged 0 - 19 years in the United States (CBTRUS, 2011). 

Although survival rates have improved, 40% of children diagnosed with a CNS tumour 

will die from their disease; moreover, survivors suffer considerable morbidity, usually 

in the form of neuro-endocrine and neuro-cognitive defects, from the effects of their 

treatments (Pizer and Clifford, 2009). 

The World Health Organisation (WHO) classification of CNS tumours has standardised 

their classification from a consensus view of neuro-pathologists and geneticists (Louis 

et al., 2007), enabling worldwide epidemiological studies and clinical trials to be 

implemented from common diagnostic and classification criteria. The identification 

and characterisation of brain tumours now depends on genetic and 

immunohistochemical markers in addition to traditional histopathological features.  

1.2.1 Embryonal tumours of the CNS 

The majority of childhood CNS tumours arise within the brain. Gliomas, which can arise 

in both the brain and spine, although the brain is by far the most common origin, 

comprise 50% of childhood brain tumours. Primitive neuro-ectodermal tumours (PNET) 

of the CNS comprise ~20% of childhood brain tumours and are the most common 

malignant paediatric brain tumours, as shown in Figure 1.10. Initially classified as a 

single entity, the 2000 WHO classification (Kleihues et al., 2002) recognised five 

distinct embryonal tumours (medulloblastoma, supratentorial PNET, 

medulloepithelioma, ependymyoblastoma and atypical / rhabdoid tumours, 

characterised by undifferentiated neuro-epithelial cells (Sarkar et al., 2005)). This was 

based on the recognition that these five variants have distinct morphological, 

immunohistochemical, molecular, clinical and biological profiles. Medulloblastoma is 

by far the most common variant, comprising 95% of PNETs (Sarkar et al., 2005). The 

2007 re-evaluation of brain tumour classification (Louis et al., 2007) separated 

medulloblastoma from other PNETs and recognised five distinct medulloblastoma 

variants, discussed in section 1.3.1. 
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Figure 1.10. Occurrence of childhood brain tumours. Data retrieved from Cancer Stats (CRUK, 
2011). 
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1.3 Medulloblastoma 

In 1925, Bailey and Cushing identified a novel tumour, localised to the cerebellum, and 

distinct from gliomas (Bailey and Cushing, 1925). The authors postulated that this 

undifferentiated tumour, which they named medulloblastoma, derived from 

embryonic cells in the ependymal lining of the fourth ventricle of the cerebellum 

(Figure 1.11) and subsequently pioneered treatment of medulloblastomas using 

radiotherapy, reviewed by (Ferguson and Lesniak, 2005).   

In the intervening years since its initial description, the tumour has been well 

described and both the means of diagnosis and therapeutic strategies have greatly 

improved. It arises, by definition, in the posterior fossa (a region of the brain that 

contains the brainstem and cerebellum), usually from the roof of the fourth ventricle, 

and presents as a midline tumour. More commonly in older children, the tumours can 

also arise in a cerebellar hemisphere.  

Medulloblastoma is the most common malignant brain tumour of childhood, 

accounting for 20% of all paediatric brain malignancies, with an incidence of 0.5 / 

100,000 children / year (Crawford et al., 2007), corresponding to  approximately 90 

cases a year in the UK (Pizer and Clifford, 2009).  Approximately 70% of cases occur in 

childhood (3 to 15 years of age), with 10-15% infant cases (< 3 years of age). There is a 

bi-modal distribution in age of incidence, with peaks at 3-4 years and 8-9 years of age 

(Crawford et al., 2007; Ellison, 2006; Ellison, 2002). There is a gender imbalance 

observed with the incidence of medulloblastoma in males 1.5-2 times higher than in 

females (Crawford et al., 2007).The origin of medulloblastoma is discussed in later 

sections (1.3.13). 

 



35 
 

 

Figure 1.11. Anatomy of brain and location of medulloblastoma. A. Dorsal-ventral schematic 
view of the brain, showing location of cerebellum and fourth ventricle. The location of brain 
regions is denoted by arrows (cerebellum is shown with a red arrow). B. Sagittal section 
showing regions of the brain, indicated by arrows (cerebellum is shown with a red arrow). 
Schematic brain sections taken from a primer of brain tumours (ABTA, 2010). C. T1- weighted 
sagittal section magnetic resonance imaging (MRI) scan of child with medulloblastoma. 
Medulloblastoma is visible as grey staining mass indicated by red arrow. Image kindly provided 
by Dr. Simon Bailey (Paediatric Brain Tumour Research Group, Newcastle University, UK). 

 

1.3.1 Histology of medulloblastoma 

Medulloblastoma is currently classified using WHO criteria (Louis et al., 2007) as a 

grade IV tumour because of its invasive nature, metastatic capability and primitive 

cellular appearance. Under WHO criteria, 5 distinct histological disease variants are 

recognised: classic medulloblastoma, desmoplastic / nodular (DN) medulloblastoma, 

medulloblastoma with extensive nodularity (MBEN), large cell medulloblastoma and 

anaplastic medulloblastoma. Typically, the histopathological subtype of the tumour is 

determined by an experienced neuro-pathologist after surgical excision of the tumour. 
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1.3.1.1 Classic medulloblastoma 

The classic medulloblastoma (Figure 1.12A) is the most common of the 

histopathological medulloblastoma subtypes, comprising 70-80% of medulloblastomas 

(Pizer and Clifford, 2009; Gilbertson and Ellison, 2008). This tumour variant is typically 

composed of small round cells with a high nuclear to cytoplasm ratio that occur in 

sheet-like areas of densely packed undifferentiated cells, with hyperchromatic nuclei 

visible after H & E (haematoxylin and eosin) staining (Ellison, 2002).  

1.3.1.2 Desmoplastic / nodular medulloblastoma 

The desmoplastic / nodular (DN) variant of medulloblastoma is observed in 10-15% of 

cases (Pizer and Clifford, 2009; Gilbertson and Ellison, 2008; McManamy et al., 2007; 

Ellison, 2002). It is most often observed in young children (Pizer and Clifford, 2009), 

representing > 50% of infant cases (<3 years old at diagnosis) and just 5% of cases aged 

3 – 15 years (McManamy et al., 2007) and also appears to have a higher prevalence in 

adult cases (Remke et al., 2011b; Ellison, 2002).   The DN subtype is characterised by 

scattered round or ovoid nodules separated by reticulin-rich desmoplastic inter-

nodular regions (Figure 1.12B). Desmoplasia in infant cases has previously been 

associated with an improved prognosis (Rutkowski et al., 2005), although the 

prognostic value of desmoplasia in non-infants is unclear. Tumour cells located within 

inter-nodular / desmoplastic regions are more densely packed and pleomorphic than 

nodular cells (Ellison, 2002). The extent of nodularity can be variable and an increased 

nodular density has been associated with an improved prognosis (Verma et al., 2008; 

McManamy et al., 2007).  

1.3.1.3 Medulloblastoma with extensive nodularity 

The 2007 classification of CNS tumours identified a new histological subgroup of 

medulloblastoma, the medulloblastoma with extensive nodularity (MBEN), which is 

closely related to the DN disease variant (section 1.3.1.2), differing in a markedly 

expanded lobular architecture and a correspondingly reduced inter-nodular 

component (Figure 1.12C). It comprises 1-2% of medulloblastomas (McManamy et al., 

2007). The nodules contain round cells with uniform nuclei with a high level of 

neuronal differentiation and a low proliferative index (Louis et al., 2007). This variant 
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most often presents in infant patients (< 3 years old at diagnosis) and is associated 

with a favourable prognosis (McManamy et al., 2007; Ellison, 2002). 

1.3.1.4 Large cell medulloblastoma 

The large cell variant of medulloblastoma comprises ~ 4% of medulloblastomas, and is 

characterised by large cells with a large, pleomorphic nucleus, prominent nucleoli and 

an abundant cytoplasm (Figure 1.12D).  This subtype has a higher mitotic and 

apoptotic rate than other medulloblastoma variants, and, as a consequence, regions of 

necrosis are often apparent (Gilbertson and Ellison, 2008; Ellison, 2002). The large cell 

variant has been associated with a poor prognosis (Eberhart et al., 2002; Brown et al., 

2000). 

1.3.1.5 Anaplastic medulloblastoma 

Anaplastic medulloblastoma comprises 10-20% of medulloblastomas (Gilbertson and 

Ellison, 2008). The anaplastic variant is characterised by cells with nuclear 

pleomorphism and moulding of cells, where cells wrap around each other (Figure 

1.12E) (Ellison, 2002). Although areas of anaplasia can be present in all 

medulloblastoma histopathological subtypes (sections 1.3.1.1, 1.3.1.2, 1.3.1.3 and 

1.3.1.4), it is particularly pronounced in this anaplastic subtype. The anaplastic variant 

has previously been associated with a poor prognosis (Giangaspero et al., 2006; 

Eberhart and Burger, 2003). Because the large cell and anaplastic variants form a 

continuum with a shared poor prognosis (Gilbertson and Ellison, 2008; Brown et al., 

2000), they are typically grouped as a single large cell / anaplastic (LCA) category in 

studies of medulloblastoma.   
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Figure 1.12. Histopathological subtypes of medulloblastoma. Unless stated otherwise, section shown is stained with haematoxylin and eosin. A. Classic 
medulloblastoma. B. Desmoplastic / nodular (DN) medulloblastoma. C. Medulloblastoma with extensive nodularity (MBEN), stained with Neu-N antibody (specific 
for neural cells). D. Anaplastic medulloblastoma. E. Large cell medulloblastoma. Sections A,B,D,E taken from (Gilbertson and Ellison, 2008). Section C taken from 
(Ellison, 2002).   
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1.3.2 Clinical presentation and diagnosis of medulloblastoma 

Most medulloblastoma patients present with a raised intracranial pressure due to 

hydrocephalus, caused by blockage of the cerebrospinal fluid (CSF) pathways at the 

fourth ventricle. This is manifested clinically by headaches, vomiting, lethargy and 

drowsiness, which is observed in ~80% of patients at diagnosis. Disruption of the 

cerebellum may be indicated by ataxia, and pressure on the brain stem can result in 

cranial nerve palsies and long tract signs (Pizer and Clifford, 2009). In older children, 

behavioural changes and a declining academic performance may also be present 

(Wilne et al., 2007). Infants may present with non-specific symptoms such as irritability 

and vomiting, often leading to delays in the diagnosis of medulloblastoma, although 

raised intra-cranial pressure in infants can be indicated by an enlarged head.  

Patients suspected to have a medulloblastoma are diagnosed using standard neuro-

imaging techniques. Computed tomography (CAT) and magnetic resonance imaging 

(MRI) can both be used in diagnosis, and if a medulloblastoma is indicated, it is usual to 

scan using MRI, if it hasn’t already been applied, due to the higher resolution that this 

technique affords (Packer et al., 1999). On MRI scans, the tumour is visible as a 

heterogeneous hypo-intense mass (Halperin et al., 2001), as shown in Figure 1.11C. 

Since metastasis to other areas of the CNS via CSF is a well validated marker of poor 

risk, which influences treatment decisions and occurs in 35% of cases (Pizer and 

Clifford, 2009), typically an MRI scan of the entire cerebrospinal axis is performed to 

assess disease spread (Packer et al., 1999) (section 1.3.3).  

1.3.3 Tumour staging 

Tumour staging is an important prognostic factor and its assessment is fundamental to 

selecting appropriate treatment strategies (section 1.3.5). The extent of dissemination 

of the tumour is determined pre-operatively by MRI scans of the entire cerebro-spinal 

axis, in addition to cytological examination of CSF following tumour excision. The 

determination of metastatic state is assigned with reference to Chang’s criteria (Chang 

et al., 1969), shown in Table 1.5.  

 

 



40 
 

Stage Criteria 

M0 No evidence of gross subarachnoid metastasis and no tumour cells 
observed in CSF (50%) 

M1 Microscopic tumour cells observed in CSF (20%) 

M2 Gross nodular seeding in cerebellum, cerebral subarachnoid space, 
or in third or fourth ventricles (5-10%) 

M3 Gross nodular seeding in spinal subarachnoid space (20%) 

M4 Extra-neural metastasis, uncommon (1%) 

Table 1.5. Description of M stage classification system for medulloblastomas. M stage (Chang 
et al., 1969) is assigned based on pre-operative MRI scans and post-excision cytological 
examination of the CSF. Approximate percentage incidences of each M stage is shown in 
parentheses. Table adapted from (Zeltzer et al., 1999). 
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1.3.4 Prognostic factors in medulloblastoma 

A number of well-validated factors have been shown to be important determinants of 

patient prognosis in medulloblastoma. Current risk stratification schemes consider the 

age of the patient (infant patients under 3 years of age at diagnosis), metastatic spread 

and residual disease following surgical excision to confer membership of a poor risk 

patient group, with the remaining patients being classified as standard risk. Current, 

well supported prognostic markers, with accompanying evidence are summarised in 

Table 1.6.  

The poorer prognosis of infant cases may partly be a consequence of the avoidance of 

radiotherapy in these cases, because of the unacceptable neuro-cognitive sequelae 

associated with cranial radiotherapy to a small, developing brain. Therapies in infant 

cases are often designed to avoid or delay the use of cranio-spinal radiotherapy. It has 

also been reported that infant medulloblastomas can be genetically and 

histopathologically distinct, which may relate to their clinical behaviour; the relative 

contribution of biology and therapy to outcome in infants remains unclear (Crawford 

et al., 2007; Packer et al., 1999). 

Metastatic status (section 1.3.3) is also fundamental to treatment selection. Patients 

with metastatic disease at presentation to the CSF (M1), brain (M2) or spine (M3) are 

assigned to poor risk treatment protocols (Zeltzer et al., 1999). Residual disease is 

identified by post-operative MRI scans, performed within 72 hours of surgery, after 

which time post-operative changes impede the identification of residual disease. 

Subtotal resection, defined by any residual disease with a cross-sectional area of 

greater than or equal to 1.5 cm2, has been shown to be a significant marker of poor 

prognosis (Pizer and Clifford, 2009).  

In recent years, novel molecular prognostic factors have been identified (section 

1.3.16), some of which are now validated in ≥2 clinical trials cohorts (Table 1.6) and are 

being incorporated into state-of-the-art classification schemes used in upcoming 

clinical trials. In particular, the good prognosis conferred by WNT (Wingless) pathway 

activation in medulloblastoma and the poor prognosis associated with a large cell / 

anaplastic histological subtype are being incorporated into the risk stratification  
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schemes for the PNET 5 / 6 clinical trials which are due to commence in 2012 (Pizer 

and Clifford, 2009). 

Category Prognostic factor Reference 

Favourable risk 

Histology 
Desmoplasia in patients < 3 years of 
age 

(McManamy et al., 2007; 
Rutkowski et al., 2005) 

Biology 
WNT pathway activation (β-catenin 
nuclear accumulation) 

(Clifford et al., 2006; Ellison 
et al., 2005) 

Adverse risk 

Clinical / 
radiological 

Age < 3 years of age 
 
Metastatic disease 
 
Post-surgical residual disease ≥ 1.5 
cm2 

(Rutkowski et al., 2005; 
Zeltzer et al., 1999) 
(Zeltzer et al., 1999; Bailey 
et al., 1995) 
(Pomeroy et al., 2002; 
Zeltzer et al., 1999) 

Histology 
Large cell / anaplastic 
medulloblastoma 

(Eberhart and Burger, 2003; 
McManamy et al., 2003; 
Ellison, 2002) 

Biology 
MYC family gene amplification (Lamont et al., 2004; 

Eberhart and Burger, 2003) 

Table 1.6. Currently accepted prognostic factors in medulloblastoma, validated in ≥2 clinical 
trials cohorts. Markers of favourable and adverse risk are listed, with supporting references 
included. Table adapted from (Pizer and Clifford, 2009). 
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1.3.5 Treatment of medulloblastoma 

After diagnosis, the fundamental treatment modality is surgical excision, with the aim 

of achieving maximal removal, while sparing as much normal brain as possible, 

followed, if appropriate, by post-operative cranio-spinal radiotherapy and / or 

chemotherapy. Due to the devastating side effects, cranio-spinal radiotherapy is 

avoided if possible in infant cases under the age of 3, who are treated with specialised 

protocols (section 1.3.5.1.3). The treatment decisions are currently based on the 

prognostic factors age at diagnosis, metastatic stage and residual disease, as outlined 

in section 1.3.4. 

1.3.5.1 Treatment protocols 

1.3.5.1.1 Current treatments for standard risk patients 

Standard risk patients > 3 years old at diagnosis are currently treated with protocols 

designed to reduce as far as possible neuro-cognitive and neuro-endocrine sequelae, 

whilst maintaining a low rate of relapse. The first line of treatment following excision is 

typically cranio-spinal radiation of 24 Gray (Gy), coupled with a posterior fossa boost to 

56 Gy, allied to eight doses of concomitant weekly vincristine, followed by up to eight 

cycles of adjuvant chemotherapy with lomustine, cisplatin and vincristine (Packer et al., 

2006). This achieves 5 year progression free survival (PFS) rates of 79%-81% (Packer et 

al., 2006; Packer et al., 1999). A further reduction of cranio-spinal radiation to 18 Gy is 

being investigated in younger children (Pizer and Clifford, 2009).  

1.3.5.1.2 Current treatments for high risk patients 

High-risk non-infant patients are currently defined by positivity for metastatic disease 

(M1 / M2 / M3, observed in approximately 30% of patients) and / or residual disease. 

Second-look surgery, in which residual disease is removed in a second operation, is 

becoming more popular and enables the re-assignment of patients to a standard risk 

protocol (Pizer and Clifford, 2009). Since 5 year PFS for high risk patients is 

approximately 60% (Pizer and Clifford, 2009; Gilbertson, 2004), the primary focus for 

this group of patients is to achieve a cure, rather than avoidance of neuro-cognitive 

and neuro-endocrine sequelae.  
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Current standard treatments for high risk patients involve an initial dose of 35 – 36 Gy 

cranio-spinal radiotherapy, with a boost of 18 – 20 Gy to the posterior fossa. Further 

boosts to sites of metastatic spread are usually administered, if appropriate. 

Chemotherapy is generally administered, although the precise time of application is 

variable (Crawford et al., 2007).  

1.3.5.1.3 Current treatments for patients under 3 years of age 

Treatment of medulloblastoma in very young children represents a very difficult 

balance between the necessity to achieve cure and not breaching an acceptable level 

of neuro-cognitive sequelae. For this reason, chemotherapeutic treatment following 

surgical excision is the most widely accepted treatment, with the aim to delay, or 

prevent altogether, the need to administer radiotherapy. As an alternative to 

irradiation of the entire cranio-spinal axis, focal irradiation of the tumour is becoming 

increasingly common (Rutkowski et al., 2010). However, treatment with the same 

chemotherapeutic regimes used as an adjuvant to radiotherapy in older children leads 

to a poor outcome, with 5 year PFS of approximately 30% (Crawford et al., 2007). A 

recent study identified large survival differences by histological subtype in children 

aged under 5 at diagnosis (Rutkowski et al., 2010). 8 year event free survival (EFS) rates 

were 55% for children with DN or MBEN histologies, 27% for children with classic 

histologies and 14% for children with LCA histologies. Novel treatment strategies have 

been explored. In particular, a German study found that an intensive 

chemotherapeutic regime in infants with complete tumour resection and no solid 

metastases led to a 5 year PFS of 82%, although PFS for patients with solid metastases 

or residual disease was worse (33% and 50% 5 year PFS, respectively). Notably, this 

study demonstrated that infants with desmoplastic tumours had a 5 year PFS of 85%, 

demonstrating the prognostic advantage of desmoplasia in the under 3s (Rutkowski et 

al., 2005).    

1.3.5.1.4 Current treatments for relapsing patients 

While patients who have not previously been irradiated can be successfully treated 

after relapse with radiotherapy (Ridola et al., 2007), for the majority of patients whose 

primary treatment involved radiotherapy, the prognosis is dismal, with survival rates of 

just 2% (Pizer and Clifford, 2009). Over 75% of relapses in children occur within two 
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years of diagnosis (Packer et al., 1999), with 80% of relapses at the leptomeninges, 

alone or in combination with relapse at the primary site (Pizer and Clifford, 2009). High 

dose chemotherapy may be efficacious in patients with an isolated relapse, although 

prognosis is dismal, with most treatments being palliative in this group of patients. 

1.3.5.2 Treatment sequelae 

The improved survival observed for medulloblastoma patients has come at the cost of 

considerable side effects that are a consequence of treatment. Survivors often have to 

contend with long term intellectual impairment, due to damage during development 

from the tumour and from radiotherapy treatments. The extent of intellectual 

impairment is inversely related to the age of the patient (Fossati et al., 2009).  In 

addition, neuro-endocrine and spinal damage can affect growth, bone development 

and can lead to early puberty. Chemotherapeutic regimes can cause ototoxicity, 

infertility and lead to secondary cancers as a result of treatment. In general, the 

neuropsychological outcome for patients is poor, with survivors exhibiting lifelong 

social and educational difficulties (Pizer and Clifford, 2009).   

1.3.6 Challenges for the improvement of patient outcome 

The multi-modal approaches outlined above, allied to advances in surgical technique 

and post-operative care, have combined to achieve an improvement in 5 year survival 

rates from 3% to 70% over the last 50 years (Crawford et al., 2007; Newton, 2001). 

Whilst this progress is encouraging, fundamental challenges still remain; there is a 

clear need to continue to explore treatment options in the 30% of patients who still 

experience relapse, whilst for those patients who achieve cure, there is a need to 

reduce as much as possible the intensity of treatment, so that neuro-cognitive defects 

are minimised.  

A troika of approaches are being employed to achieve these aims: improved 

treatments, the use of novel biological agents that specifically target the 

inappropriately activated signalling pathways that drive tumourigenesis (see sections 

1.3.9, 1.3.10), and improved risk stratification.  

Surgical techniques that minimise damage to healthy surrounding brain tissue 

continue to be refined, while clinical trials focus on optimising combinations of 
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chemotherapy and radiotherapy (Pizer and Clifford, 2009; Crawford et al., 2007). It is 

possible that proton therapy, which allows very tight constraint over the areas of 

tissue targeted compared to conventional radiotherapy, might further spare healthy 

brain tissue, and is being investigated as a replacement for cranio-spinal radiotherapy 

(Fossati et al., 2009). 

Improvements in understanding of the molecular determinants of medulloblastoma 

have demonstrated subgroups of medulloblastoma characterised by activation of the 

WNT and Sonic hedgehog (SHH) signalling pathways (discussed in detail in sections 

1.3.9 and 1.3.10). Drugs which specifically target these pathways may enable targeted 

control of the tumour without the devastating side effects associated with current 

treatments for medulloblastoma.  

The characterisation of molecular predictors of disease outcome has been 

accomplished in tandem with an improved understanding of disease biology. These 

novel molecular predictors, summarised in Table 1.6, are being evaluated for their 

inclusion into refined risk stratification schemes. However, the proposed diagnostic 

molecular markers (WNT status and amplification of the MYC oncogenes) identify only 

approximately 20% of patients, and there is a pressing need for additional well-

validated molecular markers of prognosis, discussed further in section 1.3.16. A more 

accurate appraisal of patient risk at diagnosis, that incorporates additional molecular 

disease determinants, represents a simple and cost effective way of ensuring that 

patients are treated with appropriately tailored treatment strategies, reducing the 

severity of neuro-cognitive sequelae in good prognosis patients, whilst continuing to 

aggressively treat patients with poor prognosis, where achieving cure is the sole 

treatment objective.  

1.3.7 Genetics of medulloblastoma 

The study of three areas has greatly aided the elucidation of the molecular genetics of 

medulloblastoma – the study of familial cancer syndromes whose phenotype includes 

medulloblastoma, the application of whole-genome and molecular cytogenetic 

techniques and the targeted investigation of specific oncogenes and TSGs. The major 

findings from these investigations are summarised in the following sections.  
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1.3.7.1 Familial cancer syndromes 

Although the majority of medulloblastomas (~95%) are sporadic, the first insights into 

the molecular basis of the disease were obtained by studying familial cases of 

medulloblastoma. Familial linkage analysis enabled the identification of genes involved 

in the molecular pathogenesis of medulloblastoma. The phenotypes of the familial 

cancer syndromes basal cell nevus (Gorlin) syndrome (Gorlin et al., 1965), Turcot 

syndrome (Turcot et al., 1959) and Li-Fraumeni syndrome (Li and Fraumeni, 1969) all 

can include medulloblastoma. 

Germline mutations in the tumour suppressor PTCH1 have been identified in patients 

with Gorlin syndrome (Johnson et al., 1996), also known as naevoid basal cell 

carcinoma syndrome. The rate of medulloblastoma in individuals affected by Gorlin 

syndrome is 600 times that of the general population. The PTCH1 gene encodes a 

protein that is a membrane-bound receptor involved in the developmental SHH 

pathway (section 1.3.9). Subsequent investigations revealed that 10% of sporadic 

medulloblastomas displayed PTCH1 mutations (Raffel et al., 1997), indicating a role for 

the SHH pathway in medulloblastoma (section 1.3.9.1).  

Turcot syndrome is a hereditary disease characterised by colonic polyps, colorectal 

cancer and neuroepithelial tumours (Hamilton et al., 1995). Type I Turcot syndrome is 

characterised by hereditary non-polyposis colorectal cancer syndrome, mutations in 

DNA mismatch repair genes and an early onset of malignant glioma (Paraf et al., 1997); 

in type II Turcot syndrome, affected individuals are characterised by germline 

mutations of the TSG APC, and an increased incidence of CNS tumours, principally 

medulloblastoma. APC protein binds -catenin (Rubinfeld et al., 1993), acting as an 

antagonist of the WNT signalling pathway (section 1.3.10), and mutation of the APC 

gene can free -catenin from proteosomal degradation, activating the WNT pathway. 

Mutations in APC have been identified in less than 5% of sporadic medulloblastomas, 

but the identification of the importance of the WNT pathway for tumourigenesis in 

individuals affected by type II Turcot syndrome enabled the importance of the WNT 

pathway in medulloblastoma to be recognised. 

Li-Fraumeni syndrome is associated with multiple tumour types, including 

medulloblastoma and mutations in the TP53 gene (located at chromosome 17p13.1) 
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have been identified in affected families (Malkin et al., 1990). Subsequently, it has 

been reported that the overall frequency of TP53 mutations in medulloblastoma (both 

familial and sporadic cases) is from 7-16% (Lindsey et al., 2011; Pfaff et al., 2010; 

Tabori et al., 2010; Ellison, 2002). The role of TP53 as an important TSG has been 

widely discussed (Malkin, 2001), but briefly, TP53 acts as a transcription factor in 

response to DNA damage, regulating the cell cycle and apoptosis; inactivated TP53 

serves to bypass cell cycle check-points, avoiding apoptosis, and contributing to 

immortalisation of the cancer cell. 

The gene mutations identified in familial cases pointed towards a role for aberrantly 

expressed WNT and SHH pathways in medulloblastoma pathogenesis. The roles of the 

SHH and WNT pathways in cancer are now well characterised (Klaus and Birchmeier, 

2008; Marino, 2005) and are discussed in sections 1.3.9 and 1.3.10. Additional familial 

syndromes have implicated further disease pathways in medulloblastoma (Table 1.7), 

but the mechanisms by which they drive carcinogenesis are poorly understood. 
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Syndrome Gene Locus Tumour 

Susceptibility 

Risk Reference 

Turcot 

Syndrome 

(Type 2) 

APC 5q21 – 

22 

Medulloblastoma 

Multiple colorectal 

adenoma 

79% 

100% 

(Paraf et al., 

1997; Hamilton et 

al., 1995) 

Gorlin 

Syndrome 

PTCH1 9q22.3 Medulloblastoma 

Basal cell carcinoma 

3 - 5% 

100% 

(Hahn et al., 

1996; Johnson et 

al., 1996) 

Li-Fraumeni 

Syndrome 

TP53 17p13.1 Medulloblastoma 

Multiple primary 

neoplasms 

~2% 

3-25% 

(Kleihues et al., 

1997; Malkin et 

al., 1990) 

Fanconi 

Anaemia 

subtype 

‘D1’ 

BRCA2 13q12.3 Medulloblastoma 

Wilms’ tumour 

Neuroblastoma 

Haematological 

malignancies 

(infants) 

Breast cancer (adult) 

High (Reid et al., 2007; 

Hirsch et al., 

2004; Offit et al., 

2003) 

Fanconi 

Anaemia 

subtype 

‘D1’ 

PALB2 16p12.1 

Rubenstein 

– Taybi 

Syndrome 

CREBBP 16p13.3 Medulloblastoma 

Other CNS tumours 

Neural crest tumour 

Rare 

Rare 

Rare 

(Taylor et al., 

2001) 

Coffin – 

Siris 

Syndrome 

- - Medulloblastoma Rare (Fleck et al., 2001; 

Rogers et al., 

1988) 

Table 1.7. Familial cancer syndromes implicated in medulloblastoma. Table adapted from 
(Gajjar and Clifford, 2010). 

  



50 
 

1.3.7.2 Recurrent chromosomal abnormalities 

Investigations into the chromosomal abnormalities observed in medulloblastoma have 

identified a series of non-random chromosomal gains and losses that are characteristic 

of medulloblastoma. Array CGH and fluorescent in situ hybridisation (FISH)-based 

techniques for assessing copy number have more recently been augmented with SNP 

arrays and LOH analyses.  

Abnormalities of chromosome 17 represent the most frequently observed 

chromosomal defect in medulloblastoma. Chromosome 17p loss has been identified in 

30-40% of medulloblastomas and is commonly associated with a reciprocal gain of 17q, 

resulting in isochromosome 17q (i(17q)) in 30-40% of medulloblastomas (Northcott et 

al., 2009; Nicholson et al., 2000; Bigner et al., 1997; Bigner et al., 1988). Approximately 

15% of tumours show gain of 17q without loss of 17p and gain of the whole of 

chromosome 17 is observed in 5-10% of tumours (Cho et al., 2011; Northcott et al., 

2009; Lamont et al., 2004). Loss of chromosome 17p in isolation has been observed in 

20% of patients and has been associated with a poor prognosis (Gilbertson et al., 2001). 

Isochromosome 17q has been associated with an unfavourable prognosis (Pfister et al., 

2009; Pan et al., 2005), although this relationship has not been observed in other 

studies (Ellison et al., 2011b).  

The common loss of 17p is suggestive that this region harbours a TSG that is 

inactivated in medulloblastoma and the proposed region has been determined to lie 

between 17p13.1 and 17p13.3 (Jung et al., 2004). The location of the TP53 gene at 

17p13.1 was of great interest, but the frequency of TP53 mutations of ~10% in 

sporadic medulloblastoma indicates that this gene is not the common target gene 

associated with loss of 17p (Ellison, 2002).  The REN (KCDT11) gene, which is situated 

at 17p13.2, has been suggested as a TSG, since it inhibits the SHH signalling pathway 

and is deleted in medulloblastoma (Di Marcotullio et al., 2004). Finally, epigenetic 

inactivation of the HIC1 gene, located at 17p13.3, has been linked, in conjunction with 

loss of 17p, with medulloblastoma (Rood et al., 2002). The precise role for HIC1 has yet 

to be determined, but mice heterozygous for HIC1 develop a range of malignancies 

(Chen et al., 2003), consistent with a two-hit inactivation of a tumour suppressor. 
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The ascertainment of samples from recurrent medulloblastoma has been challenging, 

since surgery is not usually indicated at relapse, and treatments are usually palliative. 

However, a study of a cohort of 28 paired presentation and relapse cases identified 

that the acquisition of  chromosomal abnormalities associated with a poor risk (17q 

gain, gain of chromosome 6) is characteristic of recurrent tumours (Korshunov et al., 

2008).  

Other non-random chromosomal aberrations have been associated with 

medulloblastoma. Gain of chromosome 7 or isolated 7p / 7q gain is the second most 

frequent gained region, observed in 20 - 30% of tumours (Northcott et al., 2009; Lo et 

al., 2007; Avet-Loiseau et al., 1999), and recent work has linked loss of 10q in 

association with 7q gain as being prognostic for poor outcome in paediatric 

medulloblastoma (Pezzolo et al., 2011). Interestingly, the genes HGF and MET are 

located on chromosome 7q, and HGF / MET signalling plays a role in cerebellar 

development, with stimulation of Hgf / Met signalling in mice preventing apoptosis in 

granule neuron precursors (GNPs) within the cerebellum (Kongkham et al., 2008). A 

comprehensive analysis of 212 medulloblastomas using SNP arrays identified frequent 

loss of chromosomes 6, 8, 9q, 11, 16q and 17p and gains of chromosomes 1q, 7 and 

17q (Northcott et al., 2009), suggesting that these chromosomes harbour genes 

important in disease pathogenesis which are currently unidentified. 

The demonstration that medulloblastoma comprises discrete disease subgroups, two 

of which characterised by activation of the WNT and SHH pathway (section 1.3.9, 

1.3.10, 1.3.12.1), has enabled the identification of specific chromosomal abnormalities 

associated with subgroups. The WNT subgroup is associated with loss of chromosome 

6 in the majority of cases (Clifford et al., 2006) and is independent of chromosome 17 

abnormalities (Pizer and Clifford, 2009), although the putative TSG located on 

chromosome 6 has also not yet been definitively identified. 

Alongside gross chromosomal abnormalities, there are locus-specific amplifications of 

specific oncogenes that have been demonstrated to be important in medulloblastoma, 

alongside dysregulation of specific genes, which are discussed in the following sections.  
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1.3.7.3 Dysregulation of specific medulloblastoma-associated 

genes 

The recent whole exome sequencing strategy employed on 22 medulloblastomas, with 

validation in an 88 member cohort, represented a first attempt to catalogue genes 

commonly mutated, amplified or deleted in medulloblastoma (Parsons et al., 2011), 

although this report cannot be regarded as definitive, since genes (for example, MYCN)   

with aberrant alterations known to be associated with medulloblastoma at low 

frequencies (5% or less) were not identified (Table 1.8). The novel observation that 

MLL2 and MLL3 can be mutated in medulloblastoma raises the possibility that 

inactivation of these genes, which are involved in chromatin regulation, may disrupt 

transcriptional regulation of normal brain development and differentiation (Lim et al., 

2009).  

Aside from MLL2, the most frequently mutated genes in medulloblastoma are core 

members of the SHH and WNT pathways (PTCH1 and CTNNB1, respectively), which are 

discussed in sections 1.3.9 and 1.3.10.  

One mechanism for oncogene activation is through amplification, where an oncogene 

with non-mutated sequence is transcribed at an inappropriately high level (section 

1.1.5.1). TSGs can also be inactivated through epigenetic silencing, and these 

mechanisms are discussed in the following sections. 
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Gene Number of 

mutations (%) 

Number of 

amplifications (%) 

Number of 

deletions (%) 

PTCH1 22 / 88 (25%) 0 / 23 (0%) 0 / 23 (0%) 

MLL2 12 / 88 (14%) 0 / 23 (0%) 0 / 23 (0%) 

CTNNB1 11 / 88 (13%) 0 / 23 (0%) 0 / 23 (0%) 

TP53 6 / 88 (7%) 0 / 23 (0%) 0 / 23 (0%) 

MYC 0 / 88 (0%) 3 / 23 (13%) 0 / 23 (0%) 

PTEN 3 / 88 (3%) 0 / 23 (0%) 0 / 23 (0%) 

OTX2 0 / 88 (0%) 2 /23 (9%) 0 / 23 (0%) 

SMARCA4 3 / 88 (3%) 0 / 23 (0%) 0 / 23 (0%) 

MLL3 3 / 88 (3%) 0 / 23 (0%) 0 / 23 (0%) 

Table 1.8. An exome screen of 22 medulloblastomas identifies genes with potential 
relevance to medulloblastoma pathogenesis. Genes with aberrant alterations in at least 2 / 22 
members of the primary cohort were validated in a larger 88 member cohort and their 
frequency and incidence is shown for that cohort. A cohort of 23 tumours, which included all 
members of the primary cohort, was analysed for copy number alterations. Table adapted 
from Parsons et al., 2011. 
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1.3.7.3.1 Amplification of oncogenes in medulloblastoma 

The amplification of oncogenes is a well-described mechanism for disease progression 

in medulloblastoma. Multiple studies have reported both the presence and poor 

prognosis associated with amplification of members of the MYC family of oncogenes 

(MYCN, MYCC and MYCL) in medulloblastoma (Northcott et al., 2009; Pfister et al., 

2009; Rutkowski et al., 2007; Lamont et al., 2004; Aldosari et al., 2002; Brown et al., 

2000). The MYC genes contribute to many mechanisms of tumourigenesis, including 

transformation, cell proliferation and differentiation, apoptosis, and genome instability 

(Secombe et al., 2004). Amplification of MYCC is observed in approximately 5% of 

medulloblastomas, with MYCN amplification at a similar frequency (Pfister et al., 2009; 

Lamont et al., 2004; Aldosari et al., 2002). Increased expression of MYCC can promote 

the proliferation of cerebellar granule cells in mouse models and an anaplastic 

histology in medulloblastoma cell lines (Stearns et al., 2006; Fults et al., 2002), while 

over-expression of MYCN is sufficient to drive the pathogenesis of metastatic 

medulloblastoma in mouse models (Swartling et al., 2010). MYCL amplification is only 

rarely observed (1-2%) (Northcott et al., 2009). 

The regulation of the MYC proteins is governed by their formation of heterocomplexes 

with MAX, which promotes transcription at genes containing an E-box binding site. 

MAX is also able to form repressive complexes with the MAD family of proteins and 

the interplay between MYC, MAD and MAX governs the transcriptional status of the 

targets of MYC (Grandori et al., 2000).  

The oncogenes OTX2 (Parsons et al., 2011; Northcott et al., 2009) and the SHH-

associated GLI2 oncogene (Northcott et al., 2011; Rieber et al., 2009) have been 

consistently reported at a frequency of <5% in medulloblastoma.  

1.3.7.3.2 Epigenetic silencing of medulloblastoma genes 

Candidate gene approaches applied to the study of CpG island methylation in 

medulloblastoma have been reviewed (Lindsey et al., 2005). RASSF1A, CASP8 and HIC1 

(Lindsey et al., 2005) show promoter CpG island hypermethylation, consistent across 

multiple studies, that is associated with transcriptional silencing in significant 

proportions of cases. Genes hypermethylated in cancer encode proteins that have a 
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diverse range of functions, including microtubule stabilisation and regulation of mitosis 

(RASSF1A), regulation of transcription (HIC1), and apoptosis (CASP8).  

Recent work has identified possible epigenetic mechanisms for activation of the WNT 

and SHH signalling pathways. The PTCH1-C promoter was identified as hyper-

methylated in medulloblastomas, and reactivation of expression of PTCH1 following 

treatment with the DNA methyltransferase inhibitor 5’aza-2’-deoxycytidine in cell lines 

with a methylated PTCH1-C promoter indicates that epigenetic silencing of PTCH1 may 

be important (Diede et al., 2010). The silencing of the SFRP gene family though DNA 

methylation has been suggested to be a mechanism by which inhibition of the WNT 

pathway could be reduced, which may contribute to excessive WNT signalling 

(Kongkham et al., 2010).  

In other tumours, evidence has emerged for the presence of hyper-methylator 

phenotypes (West and Barrett, 1993). It is characterised by tumour-specific 

hypermethylation at several hundred CpG islands (Costello et al., 2000). Since its initial 

description in Syrian hamster cells, this CpG island hyper-methylator phenotype (CIMP) 

has been described primarily in colorectal cancers, but also in neuroblastoma, gastric 

carcinoma, hepatocellular carcinoma, and biliary and ampullary carcinoma (Teodoridis 

et al., 2008). More recently, a subtype of glioblastoma was reported to be 

characterised by a CpG island methylator phenotype (Noushmehr et al., 2010). No 

evidence for CIMP in medulloblastoma has yet been reported.  

Genome-wide techniques for assessing the methylation status of gene promoters in 

medulloblastoma have become increasingly available and are described in section 

1.3.13. Importantly, a genome-wide characterisation of the DNA methylome in 

medulloblastoma has not previously been undertaken. 

1.3.8 Aberrant activation of embryonal signalling pathways 

Cell signalling pathways play important roles in developmental processes. 

Inappropriate activation of these pathways can drive the cell towards inappropriate 

growth and differentiation. Through the study of familial cancer syndromes, mutations 

in key components of the WNT and SHH signalling pathway have been implicated in 
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the pathogenesis of medulloblastoma, pathways fundamental to our understanding of 

medulloblastoma. 

1.3.9 Sonic hedgehog signalling pathway 

The Hedgehog pathway is an important regulator of embryonic development, including 

stem cell maintenance, cell differentiation and proliferation, and tissue polarity. 

Initially discovered in 1980, the hedgehog gene (Hh) is named after the spiked 

phenotype observed in mutant Drosophila larvae (Nusslein-Volhard and Wieschaus, 

1980). Subsequently, three mammalian homologues of the Drosophila hedgehog gene 

(Hh) have been identified: Sonic (SHH), Indian (IHH) and Desert (DHH); the most widely 

studied homologue is the SHH gene. The SHH pathway has diverse effects in different 

cellular contexts. It can act as a morphogen in cell fate determination and a mitogen in 

the development of organs (Ingham and McMahon, 2001). The crucial role for the SHH 

pathway in cerebellar development is discussed below, but the pathway is also 

important in adults, where it plays a role in the proliferation of adult stem cells (in 

particular, neural stem cells (Gupta et al., 2010)), tissue repair and renewal and tissue 

homeostasis (Hooper and Scott, 2005).  

The importance of inappropriate SHH pathway activation in cancer is now widely 

recognised, with the link between Gorlin’s syndrome (section 1.3.7.1) and basal cell 

carcinoma providing the first evidence for its involvement. The SHH pathway is 

summarised in Figure 1.13. During normal SHH pathway signalling, SHH ligand binds to 

PTCH1, which releases the receptor SMO from inhibition. In turn, this activates a 

signalling cascade, possibly mediated by G proteins, that activates the GLI family of 

transcription factors, by forming an activated complex, GLI A, that transcriptionally 

activates SHH pathway target genes, such as Cyclin D1 and MYCN (Kenney et al., 2003). 

In the absence of SHH ligand, GLI proteins are proteolytically processed to generate 

the repressive GLI R complex, which prevents SHH target genes from being transcribed. 
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Figure 1.13. The human SHH pathway. In this pathway, signalling is initiated by SHH protein 
binding to its receptor, PTCH1, which in turn releases SMO from inhibition. SMO activates 
downstream transcription factors of the GLI gene family, which translocate to the nucleus and 
activate target genes of the SHH pathway (Carlotti Jr et al., 2008). The mechanisms controlling 
the GLI proteins are not well understood in humans, although it has been demonstrated that 
SUFU (suppressor of fused) is a powerful GLI1 antagonist that mediates inhibition of 
transcription, export from the nucleus and cytoplasm sequestration (Barnfield et al., 2005). 
GLI1 and GLI2 proteins function as transcriptional activators, whilst GLI3 is a transcriptional 
repressor (Ruiz i Altaba, 1997). In the absence of Hh ligand, the repressor GLI R is generated 
shown at the bottom right of the figure, whilst with an activated SMO, the GLI A activator is 
produced, which drives expression of target genes. The target genes include PTCH1 itself, bone 
morphogenic proteins and other genes involved in cell proliferation and differentiation 
(Ferretti et al., 2005), including Cyclin D1, MYCN, BMI1, BCL-2 and VEGF. Figure taken from 
(Rubin and de Sauvage, 2006). 
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1.3.9.1 Role of the SHH pathway in cerebellar development 

The development of the cerebellum is still poorly understood, although it is now clear 

that the developmental processes that occur within the cerebellum are related to the 

origin and pathogenesis of medulloblastoma (section 1.3.13). There is growing 

evidence that oncogenic abnormalities in the constituent cells and signalling pathways 

that govern the complex structures of the cerebellum may drive the formation of 

different subtypes of medulloblastoma.  

At an early stage of cerebellar development, cells are derived from two distinct 

germinal zones; one from precursor cells in the roof of the fourth ventricle, which gives 

rise to GABAergic precursors, including Purkinje cells; the other from cells within the 

rhombic lip, which comprises of GNP cells, which produce the external granule layer 

(EGL) (Gilbertson and Ellison, 2008). The EGL persists into the second year post-natally.  

The distinct precursor cells of the cerebellum are orchestrated by the activation of 

specific signalling pathways to guide the development of the cerebellum. The SHH 

pathway plays a crucial role in this development, where its primary role is to control 

the expansion, differentiation and migration of GNPs in the EGL of the cerebellum 

(Ruiz i Altaba et al., 2002), as shown in Figure 1.14. The importance of the SHH 

pathway is further reinforced by experiments that inhibit SHH signalling in mouse 

models of cerebellar development, where inhibition results in a marked decrease in 

the proliferation of the EGL (Dahmane and Ruiz i Altaba, 1999); conversely, 

recombinant SHH drives the proliferation of GNPs (Wechsler-Reya and Scott, 1999).  
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Figure 1.14. Role for SHH pathway in post-natal development of the cerebellum. The 
secretion of SHH ligand from Purkinje neurons promotes the rapid proliferation of granule cell 
precursors in the EGL. These cells migrate through the molecular and Purkinje layer, whilst 
undergoing terminal differentiation, where they become mature granule neurons within the 
internal granule layer of the cerebellum. Figure taken from Ruiz I Altaba et al., 2002. 
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1.3.9.2 The SHH pathway in medulloblastoma 

Activation of the SHH signalling pathway characterises approximately 25% of 

medulloblastomas. Mutations in SHH pathway components (PTCH1, SUFU, SMO) have 

been described for subsets of medulloblastomas with activated SHH pathway (Ellison 

et al., 2003), although there remains a sizeable proportion of SHH medulloblastomas 

for which a causative mechanism has not been identified, indicating that other 

mechanisms for pathway activation remain to be discovered.   

The mechanisms by which the SHH pathway can drive medulloblastoma have been 

elucidated in mouse models of the disease. 10-15% of Ptc+/- mice go on to develop 

medulloblastoma (Goodrich et al., 1997) and express high levels of Gli1, consistent 

with activation of the SHH pathway. More than half show residual populations of GNP 

cells at the surface of the cerebellum that fail to undergo terminal differentiation and 

migration to the internal granule layer, suggestive that medulloblastoma arises from 

these residual populations in this model (Goodrich et al., 1997). 

Activation of the SHH pathway is observed in the majority of infant cases (Northcott et 

al., 2011) and is also associated (although not exclusively) with a desmoplastic 

phenotype. A similar enrichment has been observed in adult cases, where an incidence 

of 50% has been reported (Remke et al., 2011b). Multiple studies have identified 

distinct sets of differentially expressed genes that characterise medulloblastoma with 

an activated SHH signalling pathway (Cho et al., 2011; Northcott et al., 2010; Kool et al., 

2008; Thompson et al., 2006). No apparent differences in survival between SHH and 

WNT / SHH independent tumours have been identified (Cho et al., 2011; Ellison et al., 

2011a; Northcott et al., 2010), although this requires additional validation in clinically 

controlled trials cohorts. Similarly, no difference in survival has been reported between 

adult and childhood SHH medulloblastomas (Northcott et al., 2011; Remke et al., 

2011b). 

1.3.10 WNT signalling pathway  

The WNT signalling pathway plays an important role in embryogenesis and cancer, but 

it is also important in the regulation of normal physiological processes in adults. 

Initially recognised to be important in developmental biology, its relevance to cancer 
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later became apparent when the interaction with the tumour suppressor APC and β-

catenin was identified (Rubinfeld et al., 1993; Su et al., 1993). The identification of 

mutations in the APC gene in families affected with Turcot syndrome (section 1.3.7.1) 

linked their syndrome to inappropriate activation of the WNT signalling pathway. 

Subsequent work  identified that up to 85% of sporadic colorectal cancers are 

associated with truncating mutations in APC (Groden et al., 1991). More rarely, gain of 

function mutations in CTNNB1 (the β-catenin gene) have been reported in colorectal 

cancers (Klaus and Birchmeier, 2008), and it is this type of mutation that is most 

commonly observed in WNT pathway activated medulloblastomas (section 1.3.10.2).  

In the absence of WNT ligands, cytoplasmic β-catenin is recruited into a destruction 

complex, consisting of APC, Axin and Glycogen synthase kinase-3β (GSK-3β), where it is 

N-terminal phosphorylated by casein kinase-1α and GSK-3β. After phosphorylation, β-

catenin is targeted for proteosome mediated degradation, ensuring that cytoplasmic 

levels of β-catenin remain low.  

Activation of the canonical WNT signalling pathway is initiated by secreted WNT 

proteins binding to Frizzled receptors in the plasma membrane. This interaction can be 

inhibited by several proteins, including the secreted, frizzled, related proteins (SFRPs), 

Dickkopfs (DKKs) and WNT-inhibitory factor 1 (WIF1) (Klaus and Birchmeier, 2008). In 

the next step, Dishevelled (DSH) is recruited to the plasma membrane, where it 

interacts with Frizzled to mediate the translocation of Axin to the plasma membrane 

and inactivation of the destruction complex. This inactivation enables the cytoplasmic 

stabilisation and subsequent translocation of β-catenin to the nucleus. 

In the nucleus, β-catenin forms a transcriptionally active complex with the lymphoid 

enhancer factor (LEF) and T cell factor (TCF) transcription factors. Target genes of the 

transcriptional complex include the proto-oncogene, MYC, proliferative genes such as 

cyclin D1 and cell signalling genes (VEGF, FGF4 and FGF18) (Klaus and Birchmeier, 

2008). The canonical WNT signalling pathway is summarised in Figure 1.15. 
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Figure 1.15. The WNT signalling pathway. In the absence of WNT ligand, β-catenin is recruited 
by the cytoplasmic destruction protein complex, which contains APC, Axin and glycogen 
synthase kinase -3β (GSK-3β). GSK-3β phosphorylates the N-terminal domain of β-catenin, 
targeting it for degradation. WNT ligand binds to the trans-membrane ligand frizzled (FRZ). 

Dishevelled (DSH) has an inhibitory effect on the phosphorylation of -catenin by GSK3β, 

enabling -catenin to translocate to the nucleus, where it forms a transcriptionally active 
complex with lymphoid enhancer factor (LEF) and T cell factor (TCF), and mediates 
transcription of proliferative target genes, such as MYCC, Cyclin D1 and AXIN2. Figure adapted 
from (Scotting et al., 2005). 
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1.3.10.1 Role of the WNT pathway in cerebellar development 

The role for the WNT pathway in cerebellar development is poorly understood, 

although it has been shown that deletion of the Wnt-1 gene from mice completely 

blocks cerebellar development by preventing the formation of the midbrain-hindbrain 

junction from which the cerebellum is derived (Thomas and Capecchi, 1990). Recent 

work in mouse models reported the expression of WNT pathway target genes in the 

lower rhombic lip of the cerebellum at day 11.5 of embryonic development, and the 

dorsal brainstem at day 15.5 (Gibson et al., 2010), which helped to identify a putative 

cell of origin for medulloblastomas with an activated WNT pathway (section 1.3.13). 

1.3.10.2 Dysregulation of the WNT pathway promotes 

medulloblastoma 

The most commonly observed mutation in medulloblastoma with an activated WNT 

signalling pathway are activating mutations that affect the phosphorylation domain of 

the β–catenin protein, affecting 8% of sporadic medulloblastomas (Gilbertson and 

Ellison, 2008) and ~95% of WNT-activated medulloblastomas (Fattet et al., 2009; Kool 

et al., 2008; Thompson et al., 2006). Now, in the absence of WNT ligand, the β-catenin 

protein can no longer be phosphorylated by the complex of APC, axin and GSK-3β and 

marked for degradation (Figure 1.15). Instead, unmodified β–catenin is free to 

translocate to the nucleus and initiate transcription of proliferative WNT pathway 

target genes.   

Mutations in other WNT pathway components have also been identified. Individuals 

affected by Turcot syndrome harbour mutations in APC, one of the proteins 

responsible for targeting β–catenin for degradation (section 1.3.7.1), and rare 

mutations of AXIN have also been reported (Baeza et al., 2003). The majority of WNT 

pathway activated tumours are of classic histology (Ellison et al., 2005; Eberhart et al., 

2000), occur in non-infants and have dual peaks of incidence at 10 and 20 years.  They 

have also been associated with a favourable prognosis (Cho et al., 2011; Northcott et 

al., 2010; Fattet et al., 2009; Clifford et al., 2006; Ellison et al., 2005).  

WNT activated tumours have distinct molecular and genomic defects that enable 

robust classification of these tumours. They can be identified by a nucleopositive 
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immunophenotype for β–catenin (Ellison et al., 2005; Eberhart et al., 2000), and this is 

the basis for the identification of WNT positive cases in the upcoming PNET5 clinical 

trials cohorts (Pizer and Clifford, 2009), discussed further in section 1.3.16.  

1.3.11 Novel treatment options through inhibition of signalling 

pathways 

The treatment of cancers through the specific inhibition of activated developmental 

signalling pathways represents an attractive therapeutic goal, since the non-tumour-

specific cellular damage caused by intensive chemotherapy and radiotherapy could be 

reduced with adjuvant inhibitor therapy, enabling a much improved quality of life for 

the patient, both during and after treatment, whilst still achieving a cure. In recent 

years, targeting of tumour-specific mutant proteins with specific inhibitors have been 

reported, including the use of imatinib to target the BCR-ABL fusion protein in patients 

with chronic myelogeneous leukaemia (Druker et al., 2006), and the use of erlotinib to 

target EGFR in patients with non-small-cell lung cancer (Jänne et al., 2005). These 

approaches are attractive also, since they are applicable to any cancer with a specific 

pathway activation, and in future, it may be possible to define cancers not only by 

their location, but also their signalling pathway activation status, so that personalised 

therapies can be administered.  

The recognition that up to 25% of medulloblastoma patients have tumours 

characterised by SHH signalling pathway activation and that WNT pathway activation is 

observed in a further 10% has prompted investigation into the discovery and utility of 

specific inhibitors for these pathways that may be useful for treating medulloblastoma. 

Progress for inhibition of the SHH pathway is more advanced and is reviewed first.  

Pre-clinical data in mouse models demonstrated that suppression of the SHH pathway 

using a small molecule inhibitor of Smoothened could eliminate medulloblastoma in 

Ptc1+/-p53-/- mice (Romer et al., 2004). Subsequently, the inhibitor has been developed 

in humans as the drug vismodegib (GDC-0449), which is an orally available inhibitor of 

the SHH pathway gene SMO. A recent case report detailed the dramatic (albeit 

transient) regression of metastatic medulloblastoma in an adult male (Rudin et al., 

2009).  After three months, the patient relapsed, and a later publication identified a 

mutation in SMO that had no effect on SHH signalling but disrupted the ability of GDC-
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0449 to bind SMO (Yauch et al., 2009). As of 2011, there is an ongoing phase II trial 

evaluating the efficacy and safety of GDC-0449 for the treatment of adults with 

recurrent or refractory medulloblastoma (Gupta et al., 2010). Second-generation 

inhibitors of SMO will be designed to retain activity to both the wild type and mutant 

forms of SMO (Dijkgraaf et al., 2011).  

The recent discovery that itraconazole, a routinely administered antifungal, was a 

potent inhibitor of the SHH pathway (Kim et al., 2010), raises hopes that this could be 

an easily tolerated and clinically robust method for the inhibition of medulloblastoma, 

although the drug does not pass through the blood / brain barrier and would need to 

be administered directly to the CSF. Since it inhibits the SHH pathway by preventing 

the ciliary accumulation of SMO, distinct from the mode of action of SMO inhibitors 

such as vismodegib, this drug could be evaluated in conjunction with other targeted 

therapies with the aim to prevent resistance mechanisms from developing.    

The inhibition of SHH pathway in young children with medulloblastoma needs to 

proceed with caution, since in a mouse medulloblastoma model, treatment with a 

specific SHH pathway inhibitor caused permanent defects in bone structure, by 

inducing premature fusion of the growth plates (Kimura et al., 2008). It is unclear 

whether this side effect would be observed in humans, and trials should proceed with 

care to evaluate optimal toxicity endpoints.  

WNT inhibitors are not as fully developed as SHH inhibitors and are yet to enter clinical 

trials. This was primarily due to a perceived lack of druggable targets, although recent 

progress has raised hope that inhibitors can be developed. Inhibition of the WNT 

pathway would have clinical utility outside of medulloblastoma; most importantly, 

over 80% of colorectal cancers are driven by WNT pathway mutations (Garber, 2009). 

Cyclo-oxygenase (COX) inhibitors have been shown to down-regulate WNT signalling, 

through poorly understood mechanisms (Barker and Clevers, 2006); subsequently, 

specific inhibitors have been identified: the drug XAV939 has been reported to 

antagonise WNT signalling by stabilising axin, which is the concentration-limiting 

component of the β-catenin destruction complex (Huang et al., 2009). The application 

to medulloblastoma is unclear, however, since the most frequently observed activation 

mechanism for WNT signalling is an activating mutation of β-catenin, which prevents 
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interaction with the destruction complex. Indirect inhibition of the WNT pathway may 

also have clinical utility. In mouse medulloblastoma xenograft models, down-

regulation of the WNT pathway was achieved by inhibiting the phosphatidylinositol 3-

kinase / Akt signalling (Baryawno et al., 2010). The application of WNT inhibitors must 

be considered with the recognition for the crucial role of the WNT pathway in self-

renewal, particularly in the bone marrow and gut, and the serious side-effects that 

would accompany a systemic inhibition of the pathway.   

The treatment of subgroups of medulloblastoma characterised by activated embryonal 

signalling pathways with specific inhibitors holds great promise for the development of 

future treatment strategies that minimise side-effects and maximise tumour-specificity. 

However, progress has been limited, and routine use of these approaches in 

medulloblastoma remains several years away, although the first SHH inhibitors are 

entering clinical trials. There also remain unanswered questions about the suitability of 

the inhibitors in young children, with the potential for devastating side-effects if 

normal developmental processes that rely on SHH or WNT pathway activation are 

irreversibly halted.  

1.3.12 High throughput genomic and transcriptomic methods in 

medulloblastoma 

The application of high-throughput genomic and transcriptomic techniques has helped 

characterise the recurrent changes that define subgroups of medulloblastoma, which 

have subsequently proved useful for the characterisation of disease determinants, 

clinical behaviours and disease stratification in what is now recognised as a molecularly 

heterogeneous disease.  

1.3.12.1 Transcriptomic subgrouping of medulloblastoma 

Since the first application of transcriptomic arrays to medulloblastomas in 2002, which 

demonstrated that medulloblastoma was molecularly distinct from PNET, atypical 

teratoid / rhabdoid tumours (AT / RT) and glioma (Pomeroy et al., 2002), further 

advances have led to an evolving molecular classification of medulloblastoma. More 

recent studies have focussed on investigating the molecular heterogeneity within 

medulloblastomas, in order to subclassify the disease, so that subgroup specific 
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disease features and clinical behaviours can be identified. Many of these studies have 

also applied genomic arrays in conjunction with the transcriptomic assays, enabling an 

integrative approach to disease classification, which subclassifies medulloblastoma by 

its transcriptome, with subgroups associated with enrichments for specific 

chromosomal aberrations. 

Unsupervised microarray experiments by Kool and colleagues (n = 62) and Thompson 

and colleagues (n = 46) identified five disease subgroups (Kool et al., 2008; Thompson 

et al., 2006). Thompson and colleagues used unsupervised hierarchical clustering (HC) 

(section 2.9.1) to identify five disease subgroups, designated A-E. The B and D 

subgroups were characterised by expression signatures of the WNT and SHH pathways, 

respectively. Subsequent investigations identified mutations in CTNNB1 and PTCH1 / 

SUFU in subgroups B and D, respectively, confirming their designation as WNT and SHH 

subgroups of medulloblastoma. The WNT subgroup was also strongly associated with 

monosomy of chromosome 6. A common theme to all transcriptomic subclassifications 

of medulloblastoma has been the relative difficulty in assigning definitive 

transcriptomic, genomic and clinico-pathological features that robustly identify the 

remaining WNT / SHH independent subgroups across different studies, compared to 

the WNT and SHH disease subgroups.  Thompson and colleagues identified that 

anaplasia was enriched in subgroup E tumours, and isochromosome 17q in subgroup C, 

but no other associations with these WNT / SHH independent subgroups were 

identified (Thompson et al., 2006).  

Kool and colleagues also identified five disease subgroups (again designated A-E) using 

HC. For the majority of cases, this transcriptomic classification was paired with array 

CGH. Again, WNT (A) and SHH (B) disease subgroups were identified, characterised by 

CTNNB1 mutation, monosomy 6 and good outcome (WNT cases) and PTCH1 mutation 

and 9q loss (SHH cases). Subgroups C and D were associated with expression 

signatures of neuronal activation and glutamate and gamma-aminobutyric acid 

receptors, whereas D and E were associated with retinal gene expression patterns. 

Chromosome 17 abnormalities were more common in groups C and D. WNT / SHH 

independent subgroups (C-E) were associated with an increased incidence in 

metastatic disease. There were also notable differences in clinico-pathological features, 

with WNT cases occurring in older children and associated with a classic histology. By 
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contrast, SHH cases were strongly associated with infant and DN disease. Their study 

demonstrated that there was a degree of transcriptomic overlap between the WNT / 

SHH independent subgroups, with shared increases in expression of genes involved in 

protein biosynthesis, NOTCH and platelet-derived growth factor (PDGF) pathways. 

Likewise, group C overlapped with group D, and group D with group E, again 

emphasising the difficulty in assigning robust markers that define the subgroups (Kool 

et al., 2008).  

In 2010, Northcott and colleagues undertook a larger study on 103 samples, 

investigating both transcriptomic and genomic signatures of medulloblastoma 

(Northcott et al., 2010). Again, using an unsupervised HC approach, they identified 4 

disease subgroups. They described a WNT subgroup, associated with a WNT 

expression signature, monosomy of chromosome 6, and a good prognosis, and a SHH 

subgroup, characterised by a SHH expression signature, desmoplastic histology, and an 

increased incidence of infant and adult cases; there were two further WNT / SHH 

independent subgroups, C and D. There was a male preponderance of cases in 

subgroups C and D, an increased incidence of isochromosome 17q and both shared 

expression of genes involved in neuronal development. In contrast, WNT and SHH 

subgroup cases were enriched for expression of genes involved in axonal guidance. 

Subgroup C tumours were characterised by genes involved in phototransduction, 

glutamate signalling, gain of 1q, poorer survival and, along with WNT subgroup cases, 

increased MYCC expression. The paradoxical relationship between MYCC expression in 

WNT and non-WNT cases is interesting, since its increased expression is associated 

with a favourable prognosis in WNT cases, but an unfavourable prognosis in group C 

tumours, and provides an example of pleiotropic behaviour of prognostic biomarkers 

across subgroups of medulloblastoma. It is possible that levels of MYCC in WNT 

tumours are not at the supraphysiological levels found in group C, which depend upon 

gain or amplification of the MYCC gene, which was exclusively observed in this group.  

Subgroup C tumours all occurred in children under 10 years of age, in contrast to 

subgroup D cases, with a peak incidence from 11-15 years.  Subgroup D tumours had 

an over-representation of genes involved in cyclic-AMP signalling, semaphorin 

signalling in neurons and p53 signalling.  
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Uniquely in this study, four immunohistochemical markers, DKK1, SFRP1, NPR3 and 

KCNA1 specifically identified the WNT, SHH, C and D subgroups, respectively. Survival 

analyses in a separate tissue microarray cohort classified by these antibodies 

confirmed a poorer survival in subgroup C tumours, although questions remain 

whether the antibody-based classification is exactly comparable to the transcriptomic 

classification, since the age profiles of the subgroups C and D differ between 

transcriptomic and antibody based classifications.  

This approach to classifying medulloblastomas, coupled with the additional recent 

description of robust WNT and SHH subgroup immunohistological markers (WNT – 

nuclear accumulation of β-catenin; SHH – immunoreactivity for GAB1 (Ellison et al., 

2011a)), requires additional validation, but offers promise for the routine assignment 

of medulloblastoma subgroup in hospital pathology laboratories (Eberhart, 2011). 

Also in 2010, the largest study to date, by Cho and colleagues, tested the gene 

expression of 194 medulloblastomas, and used a consensus-clustering non-negative 

matrix factorisation (NMF) approach to identify six subgroups (c1 to c6), an approach 

similar in concept to the consensus clustering approach described in section 2.9.4. 

Briefly, in the first step, optimal numbers of metagenes were estimated using the 

whole dataset. In the second step, partitions of 85% of the dataset were re-iteratively 

selected and clustered using the partitioning around medoids algorithm (Kaufman and 

Rousseeuw, 2008).   The stability of each solution was assessed for each number of 

clusters and the most stable solution selected. Once again, WNT (c6) and SHH (c3) 

disease subgroups were identified, characterised by expression of WNT and TGF-β 

genes, monosomy of chromosome 6 (WNT), and enrichment for genesets associated 

with SHH signalling, loss of 9q (SHH) and amplification of GLI2. Subgroup c1 was 

characterised by high levels of MYCC expression, coupled with gains and amplifications 

of MYCC. In addition, expression of photoreceptor genes and GABRA5 were features 

shared with the closely related subgroup, c5. Subgroup c5 also had an increased 

number of chromosomal abnormalities compared to subgroup c1. Subgroups c2 and c4 

shared similarities in gene expression, with both enriched for expression of markers of 

neuronal differentiation, including the glutamatergic markers GRM1 and GRM8. 

Subgroup c4 also showed evidence for expression of photoreceptor markers and a 

MYCC-mediated expression signature, similar to subgroup c1. Immunostaining for 
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photoreceptor and neuronal / glutamatergic markers in this subgroup demonstrated 

how the mixed expression phenotype could be due to distinct cellular populations 

within the tumour (Cho et al., 2011).   

It is possible that the increased size of the study (n = 194) by Cho and colleagues 

(nearly double the size of the next biggest study by Northcott and colleagues (n = 103)) 

enabled the subtle differences between closely related subgroups c2 and c4, and c1 

and c5 to be discerned, and that the remaining three studies were not adequately 

powered to detect these differences, which might represent ‘subgroups within 

subgroups’. Recent work demonstrating that adult and infant SHH medulloblastomas 

are clinically and molecularly distinct (Northcott et al., 2011) and the identification of 

three molecular subgroups in adult medulloblastoma, with Northcott subgroup C only 

rarely identified (Remke et al., 2011b) demonstrates that there is evidence for 

‘subgroups within subgroups’, although it remains to be seen what implications this 

may have for risk stratification.    

In summary, consensus for the precise number of medulloblastoma subgroups has yet 

to be reached. However, in every reported study, distinct WNT and SHH subgroups 

were apparent, although the nature and number of WNT / SHH independent 

subgroups remains unclear; this observation underpinned the investigations reported 

in chapter 3. The reported molecular and clinico-pathological features of each 

subgroup vary between studies, and because of the differing numbers of subgroups 

reported, there is necessarily some overlapping of features, but it is possible to extract 

some commonalities between studies, as summarised in Figure 1.16.   
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Figure 1.16. Transcriptomic classification of medulloblastoma identifies robust subgroups 
characterised by activation of the WNT and SHH signalling pathway. For WNT / SHH 
independent subgroups, reports differ as to the precise number (from two to four WNT / SHH 
independent subgroups) and nature of these subgroups. The subgroup names, frequency and 
incidence of subgroup membership and molecular and clinico-pathological features of 
subgroups are listed for four transcriptomic investigations of medulloblastoma (Cho et al., 
2011; Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006). Figure adapted from 
Eberhart, 2011.  
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1.3.13 Cellular origins of medulloblastoma  

Originally assumed to develop from embryonic cells in the ependymal lining of the 

fourth ventricle of the cerebellum (Bailey and Cushing, 1925), our refined 

understanding of medulloblastoma has led to the proposal that different subtypes of 

medulloblastoma arise from different types of progenitor cell (Gilbertson and Ellison, 

2008). Discussed in sections 1.3.9 and 1.3.10, there are subgroups of medulloblastoma 

defined by their activation of the WNT and Sonic hedgehog (SHH) embryonal signalling 

pathways. Recent work in mouse models of medulloblastoma with activated WNT 

(Gibson et al., 2010) or SHH pathways (Schuller et al., 2008; Yang et al., 2008) has 

described a cell of origin for tumours activated in these signalling pathways.  

One of the most widely studied models of medulloblastoma is the Ptc mutant mouse 

(Goodrich et al., 1997). Homozygous mutation of the Ptc gene is embryonic lethal but 

10-15% of heterozygous Ptc+/- mice develop medulloblastomas. By creating conditional 

mutants of Ptc, Yang and colleagues were able to inactivate Ptc in GNP cells, which led 

to a phenotype of severe hyperplasia of the external granule layer (Figure 1.17). Most 

GNP cells continued to differentiate into neurons, but remnant populations remained 

that continued to divide and formed tumours in 100% of animals (Yang et al., 2008). 

Interestingly, deleting Ptc in neural stem cells also induced medulloblastoma, but only 

from those stem cells that had committed to the granule cell lineage. 

By examining the Brain Explorer 2 (http://www.brain-map.org), Gibson and colleagues 

catalogued the expression of 24 WNT and 25 SHH signature genes of medulloblastoma 

in the developing mouse brain (Gibson et al., 2010). These experiments confirmed that 

SHH signature genes were expressed at the upper rhombic lip at embryonic day (E) 

11.5 and within the cerebellum at E15.5. In contrast, WNT signature genes were 

expressed at the lower rhombic lip at E11.5 and the dorsal brainstem at E15.5. By 

targeting activating mutations of CTNNB1 to specific locations, it was determined that, 

while mutations in the cerebellum had little impact on progenitor cell populations,  

mutations within the dorsal brainstem caused the abnormal accumulation of cells, 

which persisted into adulthood and progressed to form medulloblastoma, in 

conjunction with Tp53 mutation. Additional evidence came from MRI scans of human 

WNT and SHH medulloblastoma, where tumours infiltrated the dorsal brainstem and 
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cerebellum, respectively (Figure 1.17). Finally, 10-15% of mice with an activating 

mutation in β-catenin and deletion of Tp53 developed medulloblastoma that 

recapitulated the molecular features of human WNT-subtype medulloblastoma. The 

authors then went on to demonstrate that mutant β-catenin prevented the dorsal-

ventral migration of progenitor cells that would normally develop into the dorsal 

brainstem.  

In summary, it seems likely that SHH-subtype medulloblastomas arise from mutations 

within GNP cells of the developing cerebellum, whilst WNT-subtype medulloblastoma 

arise from the dorsal brainstem; they are distinct diseases that involve different cells of 

origin (McCarthy, 2011). The cell of origin for the majority of medulloblastomas, that 

arise independently of activation of the WNT or SHH pathway, is still unclear, although 

the increasing recognition that medulloblastoma is a heterogeneous disease, with 

multiple mechanisms of carcinogenesis, underscores the importance of treatment 

strategies that include consideration of the biological subtype of the tumour. 
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Figure 1.17. The cell of origin for WNT and SHH subtype medulloblastomas. A. Expression of 
WNT and SHH signature genes in mouse embryos at E11.5. SHH subgroup signature genes are 
expressed most strongly at the upper rhombic lip (URL). WNT signature genes are expressed 
most strongly at the lower rhombic lip (LRL). B. Normal and Math1-Cre / PtcC/C mouse 
cerebellum shows at 21 days post-natally that mutant mouse (right hand panel) has severe 
hyperplasia of the external granular layer, where granule neuron precursors develop. C. 
Human medulloblastomas show different areas of tumour infiltration that is dependent upon 
subtype. MRI scans show sagittal sections with close-up showing brain stem and tumour. For 
the SHH medulloblastoma (left), the tumour has arisen within the cerebellum, whereas for the 
WNT medulloblastoma (right), the tumour has arisen from the dorsal brainstem. Part A and C 
taken from Gibson et al., 2011. Part B taken from Yang et al., 2008.   
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1.3.14 Methods for the genome-wide analysis of methylation 

patterns 

Methods for the analysis of DNA methylation patterns have been developed that 

utilise techniques that rely on a methylation-dependent treatment of the DNA before 

amplification or hybridisation. There are three main approaches: endonuclease 

digestion, affinity enrichment and bisulfite conversion (discussed more fully in section 

2.6), summarised in Table 1.9.  
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Pre-

Treatment 

Analytical Step 

Locus-specific 

analysis 

Gel-based analysis Array-based 

analysis 

NGS based 

analysis 

Enzyme 

Digestion 

HpaII-PCR 

(Wahlfors et 

al., 1992) 

RLGS (Hayashizaki 

et al., 1993) 

CHARM (Irizarry 

et al., 2008) 

Methyl-seq 

(Brunner et 

al., 2009)  

Affinity 

Enrichment 

MeDIP-PCR  MeDIP (Weber 

et al., 2005) 

aPRIMES 

(Pfister et al., 

2007) 

MeDIP-seq 

(Down et al., 

2008) 

Sodium 

bisulfite 

 Sanger bisulfite 

sequencing  

(Frommer et al., 

1992) 

MSP (Herman et al., 

1996) 

GoldenGate 

(Bibikova et al., 

2006) 

Infinium 

(Bibikova et al., 

2009) 

WGSBS 

(Lister et al., 

2009) 

Table 1.9. Major techniques for DNA methylation analysis. CHARM – comprehensive high-
throughput arrays for relative methylation; MeDIP – methylated DNA immunoprecipitation; 
MSP – methylation sensitive PCR; NGS – next generation sequencing; RLGS – restriction 
landmark genome scanning. Table adapted from Laird, 2010. 

 

The first techniques for assessing locus specific DNA methylation patterns used 

methylation-sensitive restriction endonucleases to fragment DNA in a methylation-

dependent manner, which could later be identified by gel electrophoresis and / or 

Southern blotting. However, these techniques are subject to false-positive results, due 

to incomplete digestion of DNA for reasons other than DNA methylation (Laird, 2010).  

Later, restriction landmark genome scanning (RLGS) was the first truly genome-wide 

technique for assessing DNA methylation patterns (Hayashizaki et al., 1993). 
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Differences in DNA methylation are detected as difference in the pattern of restriction 

fragments generated by digestion with a methylation-sensitive restriction enzyme, 

separated by two-dimensional gel electrophoresis. This technique has been widely 

used to identify imprinted loci and sites that are methylated in a cancer- or tissue-

specific manner (Costello et al., 2000; Plass et al., 1996). The use of RLGS and similar 

techniques has declined, as more reliable methods, that are less labour intensive, have 

become available ((Laird, 2010)). An alternative approach is differential methylation 

hybridisation (Huang et al., 1999), which involves digestion of one pool of genomic 

DNA with a methylation-sensitive restriction enzyme and mock digestion of a second 

pool. The two pools are amplified and fluorescently labelled, prior to a competitive, 

two-colour array hybridisation. The relative intensities of fluorescent signal from the 

digested and mock-digested pools can be used to infer methylation status at specific 

loci. An optimised workflow, which uses the methylation-dependent endonuclease, 

McrBC, to provide a greater sensitivity to densely methylated regions, followed by 

array hybridisation, is known as CHARM (comprehensive high-throughput arrays for 

relative methylation (Irizarry et al., 2008)). The techniques outlined above, which rely 

on restriction-enzyme mediated enrichment of methylated sequences, are being 

adapted to replace the array hybridisation step with next generation sequencing 

(Brunner et al., 2009).  

The affinity enrichment of methylated regions of DNA using specific antibodies for 

methylated-cytosines has proved to be useful for the identification of methylated DNA. 

One example of this type of technique, MeDIP (methylated DNA immunoprecipitation) 

(Weber et al., 2007; Keshet et al., 2006; Weber et al., 2005), involves hybridisation to a 

capture array following affinity-enrichment for methylated DNA. MeDIP-seq, which 

applies next generation sequencing to affinity-enriched methylated DNA, replacing the 

array analysis step, has recently been described (Down et al., 2008). 

The discovery that sodium bisulfite treatment deaminated unmethylated cytosine 

residues to uracil, while sparing methylated cytosine residues (section 2.6) prompted 

the introduction of many techniques that utilise this primary sequence change, which 

gives a reliable readout of methylation status. Low throughput techniques, such as 

bisulfite Sanger sequencing (section 2.6.1) (Frommer et al., 1992), quickly became the 

‘gold standard’ against which other techniques are compared, since the change in DNA 
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sequence is unambiguous and is, by definition, locus specific. Later, methylation-

sensitive polymerase chain reaction (MS-PCR) (section 2.6.2) (Herman et al., 1996) was 

reported for the rapid assay of locus-specific methylation status. The reduced 

sequence complexity of bisulfite-treated DNA (three bases instead of four), has 

resulted in decreased hybridisation specificity, which has hindered the introduction of 

array-based assay of bisulfite-treated DNA; however, through careful probe design, 

Illumina have released three generations of methylation arrays, that assay the 

methylation status of specific CpG dinucleotides (section 2.7) (Sandoval et al., 2011; 

Bibikova et al., 2009; Bibikova et al., 2006). The arrays are reported to be robust, 

reproducible and, importantly, are suitable for use with DNA extracted from formalin-

fixed, paraffin embedded (FFPE) tissue (Thirlwell et al., 2010). 

It is likely that all these techniques will eventually be superseded by whole genome 

shotgun bisulfite sequencing (WGSBS), which apply next generation sequencing to 

bisulfite treated DNA (Lister et al., 2009), although approximately one tenth of the CpG 

dinucleotides in the mammalian genome are refractory to analysis by this means (Laird, 

2010). Nanopore-based sequencing, which can directly read unmodified methylated 

cytosine residues at single molecule resolution, remains in development, but holds rich 

promise for true single cell measurements of the DNA methylome in future (Clarke et 

al., 2009). 

This project utilised Illumina’s Golden Gate Cancer Panel I methylation microarrays 

(section 2.7) to characterise the DNA methylome of medulloblastoma. These arrays 

were chosen due to their low sample requirements relative to the other techniques 

outlined above (less than 1 µg), their low cost, their suitability for use with FFPE tissues 

and their high reproducibility. 

1.3.15 Methylomic analysis of medulloblastoma 

Candidate-gene based approaches for the investigation of DNA methylation mediated 

silencing of gene expression in medulloblastoma (section 1.3.7.3.2) have been 

superseded by techniques that enable global assays of DNA methylation status.  

RLGS has been used to indicate the levels of global methylation in medulloblastoma, 

and refinements in techniques allowed the identification of a number of DNA 
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fragments which are differentially methylated in tumour tissues and the normal 

cerebellum (Smiraglia et al., 1999). Fruhwald and colleagues identified that 1% of CpG 

islands were methylated in primary medulloblastomas and identified DNA sequences 

for which hypermethylation correlated with a poorer prognosis (Fruhwald et al., 2001).  

 Subsequently, cell line experiments compared mRNA expression before and after 

treatment with the DNA demethylating agent, 5-aza,2’-deoxycytidine, so that 

expression under the control of DNA methylation could be identified. Using this 

approach, COL1A2 expression was shown to be re-activated following 5-aza,2’-

deoxycytidine treatment. Further investigations in primary tumours revealed that 

dense biallelic methylation associated with transcriptional silencing was observed in 

the majority of cases tested. In addition, promoter hypomethylation of the COL1A2 

gene was strongly associated with infant desmoplastic cases, illustrating the utility of 

methylation status as biomarkers for disease phenotypes (Anderton et al., 2008).  A 

similar approach identified an inhibitor of HGF / MET signalling, serine protease 

inhibitor kunitz-type 2 (SPINT2), as a putative tumour suppressor silenced by promoter 

methylation in medulloblastoma. One third of primary medulloblastomas tested 

showed evidence for promoter methylation of SPINT2. Furthermore, re-expression of 

SPINT2 in cell lines, reduced proliferative capacity in vitro and increased survival in a 

xenograft model in vivo (Kongkham et al., 2008). Subsequently, this technique also 

identified the methylation dependent silencing of the SFRP family of genes in a 

minority of primary medulloblastomas, which may release WNT signalling from 

inhibition, contributing towards excessive WNT signalling in the disease (Kongkham et 

al., 2010). 

A different approach was taken by Pfister and colleagues, who described a method 

called array-based profiling of reference-independent methylation status (aPRIMES), 

which enabled the assessment of direct methylation status (Pfister et al., 2007). The 

method is based on the differential restriction and competitive hybridisation of 

methylated and unmethylated DNA by methylation-specific and methylation-sensitive 

restriction enzymes, respectively. The ratio of methylated to unmethylated DNA is 

determined by the intensity of signal after competitive hybridisation to a microarray 

containing probes present within CpG islands. Using this approach, ZIC2 was identified 

as a frequently methylated gene in paediatric medulloblastomas. This approach is 
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limited by the demanding technical requirements (primarily, generation of microarrays 

from CpG island enriched libraries) and the requirement for 100% processivity for the 

methylation-specific and methylation-sensitive restriction enzymes. Moreover, the 

assay by definition is limited to only assessing the methylation status of CpG islands, so 

that genome-wide estimates of methylation are not possible.  

Other techniques that utilise bisulfite treatment (section 2.6) to directly assess 

genome-wide methylation patterns have also been reported, but until now, have not 

been applied to medulloblastoma. A novel high-throughput technology that directly 

measures DNA methylation on bisulfite treated DNA has been developed by Illumina 

(Bibikova et al., 2006). This technology uses an existing bead based microarray 

platform to assess methylation status using ~1500 probes that map to ~800 cancer 

related genes (section 2.7), and provided the platform for the investigations reported 

in chapters 4 and 5. The later introduction of the Infinium and Infinium HD arrays 

(27,000 and 450,000 CpG sites respectively) (Sandoval et al., 2011; Bibikova et al., 2009) 

utilise similar technology to provide a truly genome-wide characterisation of the 

methylome.  

At present, the utility of DNA methylation patterns to subclassify medulloblastoma has 

not been reported. The work reported in chapters 4 and 5 uses a DNA methylation 

array-based approach to identify whether DNA methylation has utility for disease 

subclassification and prognostication. 

1.3.16 Molecular markers of prognosis in medulloblastoma 

The relationship between survival and prognostic molecular markers in 

medulloblastoma has been reported in more than 200 articles over the last 30 years 

(Gilbertson, 2011). Despite this, few markers have been validated in ≥2 trials cohorts 

(Table 1.6), although the prognostic ability of activation of the WNT pathway (assessed 

by nuclear accumulation of β-catenin) and the poor risk conferred by amplification of 

the MYC oncogenes are to be tested in the upcoming PNET5 and PNET 6 clinical trials 

(Pizer and Clifford, 2009). The realisation that medulloblastoma comprises a 

heterogeneous group of diseases with discrete cells of origin and underlying 

abnormalities may enable a more robust identification of molecular markers that 

define subtype-specific survival differences.  
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This is illustrated by conflicting reports concerning the prognostic effect of mutations 

in TP53. An initial report by Tabori and colleagues reported a universally poor survival 

in children with somatic TP53 mutation (Tabori et al., 2010). Subsequent investigations 

revealed that the survival effects of TP53 mutation were dependent upon the disease 

context in which they occur; TP53 mutation frequently occurs alongside activation of 

the WNT pathway, and is therefore compatible with a favourable prognosis (Lindsey et 

al., 2011; Pfaff et al., 2010); on the other hand, it also frequently occurred alongside 

amplification of MYCN, a proposed marker of poor prognosis (Pfister et al., 2009), but 

was not prognostic overall (Pfaff et al., 2010), demonstrating that an understanding of 

the background molecular heterogeneity is critically important to the investigation of 

the prognostic value of TP53. 

Despite this pessimistic view of molecular prognostication in medulloblastoma, there 

are a handful of examples, validated in multiple studies, which demonstrate that real 

progress has been made. The improved survival observed in medulloblastomas with an 

activated WNT signalling pathway has been validated across multiple studies (Fattet et 

al., 2009; Clifford et al., 2006; Gajjar et al., 2006; Ellison et al., 2005). Likewise, the 

poor prognosis associated with amplification of MYCC has been replicated in multiple 

studies (Ellison et al., 2011b; Pfister et al., 2009; Eberhart et al., 2004; Lamont et al., 

2004). Finally, a recent report from Remke and colleagues focussed on disease 

prognostication within the WNT / SHH independent subgroups of medulloblastoma 

(Remke et al., 2011a). Using transcriptomic approaches, they identified four disease 

subgroups in 64 samples. They noted that FSTL5 was prognostic across all disease 

subgroups, with highest expression identified in Northcott group C tumours (see 

section 1.3.12.1), which were associated with a poor prognosis in their own and 

previously reported cohorts (Northcott et al., 2010). Importantly, the expression of 

FSTL5 in Northcott group D tumours was highly variable, which led the authors to 

propose that high FSTL5 expression might identify Northcott group D tumours with a 

poor prognosis. Next, they tested the prognostic ability of immunostaining for FSTL5 in 

a larger, independent cohort, and confirmed that FSTL5 was prognostic across the 

whole cohort in univariate and multivariate survival models, and also was prognostic 

within the WNT / SHH independent Northcott subgroup C and D tumours. Thus, this 

validated biomarker holds promise as a marker of poor prognosis, with particular value 
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for identifying high risk Northcott group D or low risk Northcott group C patients, for 

more effective risk stratification in future clinical trials.   

While few reported prognostic molecular markers of medulloblastoma have been 

robustly validated and progressed into trials, there is an increasing understanding of 

the absolute importance of verifying the reported prognostic marker in an 

independent (preferably clinical trials) cohort. Additionally, the survival implications 

for membership of the non-WNT molecular subgroups are unclear, and the behaviour 

of currently accepted clinical markers is also unclear, requiring further investigation in 

trials cohorts. Since the large majority of historical trials cohorts are comprised of 

tissues that are FFPE, any reported marker should be amenable to testing in such 

materials, either through standard immunohistochemical techniques, or through 

techniques that are insensitive to the alterations to nucleic acids that occur as part of 

the fixing process.  
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1.4 Summary and aims 

Medulloblastoma is the commonest malignant brain tumour of childhood, comprising 

20% of all CNS cancers. While 5 year survival rates have reached ~ 80% using current 

risk-adapted combination therapies, there remain unmet needs for an understanding 

of how to successfully treat the remaining 20% of patients who relapse, and for the 

introduction of novel risk stratification schemes that can identify patients with a good 

prognosis, for whom less aggressive treatments can be administered, reducing the risk 

of adverse treatment sequelae, whilst maintaining PFS. Likewise, if patients with a 

particularly poor prognosis could be identified, novel combinations of intensive 

therapies coupled with suitable adjuvant therapies could be applied that maximise 

their chance of survival. 

 In recent years, considerable efforts have been applied to molecular subclassification 

of the disease. Transcriptomic classification of the disease has provided evidence for 

between 4 to 6 disease subgroups (section 1.3.12.1), with two subgroups, respectively 

defined by activation of the SHH and WNT pathways, common to all studies. While 

means for the identification of WNT subgroup cases are available, at the 

commencement of this project, there were no assays for the identification of SHH 

subgroup medulloblastomas, and a clear need for a simple, validated assay to identify 

WNT and SHH subgroup medulloblastomas. The relationships between non-WNT 

subgroup membership and molecular and clinico-pathological disease correlates are 

not well defined and have previously been investigated in cohorts of limited size; a 

meta-analysis of transcriptomic datasets, using data from multiple studies, has not 

previously been undertaken. 

The recent availability of DNA methylation microarrays enables the investigation of any 

differential patterns of DNA methylation within medulloblastomas, for the 

identification of discrete methylomic disease subgroups, and has not previously been 

attempted. This may help to bring clarity to the transcriptomic subclassification of the 

disease; any agreement between the number of medulloblastoma subgroups, 

estimated using transcriptomic and methylomic means, could help reach consensus. 

Additionally, the use of DNA methylation arrays offers a means for the subclassification 
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of medulloblastoma in historical, FFPE-derived, trials cohorts that would not be 

possible using transcriptomic techniques. 

Finally, the relationship of disease subgroup membership to survival is not fully 

understood. While the good prognosis conferred by membership of the WNT subgroup 

has been widely reported (section 1.3.10.2), the prognostic implications of 

membership of the non-WNT transcriptomic subgroups remain unclear and bear 

further scrutiny (Cho et al., 2011; Ellison et al., 2011b; Northcott et al., 2010). 

In future, for an improved understanding of the disease, it will become necessary to 

consider medulloblastoma as an umbrella term for a mixed group of heterogeneous 

cancers, with different disease determinants and clinical behaviours; the behaviour 

and incidence of previously reported clinico-pathological, molecular and prognostic 

markers in medulloblastoma needs to be assessed in the context of molecular 

subgroup membership;  it is also possible that some correlates and markers will remain 

prognostic independent of subgroup (‘universal’ markers of poor risk in 

medulloblastoma).   

This project aimed to investigate novel methods for the classification of 

medulloblastoma, and to investigate the utility of these methods for improved disease 

prognostication, with the following specific aims. 

1. To identify minimal gene expression signatures for the identification of 

WNT and SHH pathway activation in medulloblastoma, to apply those 

signatures to a test cohort and publically available transcriptomic datasets, 

and to undertake a meta-analysis of clinical and molecular correlates of 

medulloblastomas classified by their signalling pathway activation status 

(chapter 3). 

2. Using a novel DNA methylome profiling technology, to investigate whether 

medulloblastomas display differential patterns of DNA methylation and any 

ability of such patterns for disease subclassification. If any such patterns 

were identified, to investigate any relationship to WNT and SHH pathway 

activation, relationship to molecular and clinico-pathological correlates and 

survival (chapter 4). 
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3. To undertake a comprehensive survival analysis of medulloblastoma; to 

investigate whether previously identified prognostic markers in 

medulloblastoma display pleiotropic behaviours across disease subgroups 

and the utility of methylated loci as biomarkers for prognostication. Finally, 

to investigate the integration of any proposed prognostic methylated loci 

into improved risk stratification schemes for medulloblastoma (chapter 5). 
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Chapter 2. Materials and methods 
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2.1 Cohorts 

The cohorts of primary medulloblastomas used for the investigations reported in 

chapter 3 consisted of an initial 55 member medulloblastoma cohort, whose 

characteristics are described below.  

A representative cohort of 55 medulloblastomas was analysed, detailed in Table 2.1. 

The cohort comprised of 33 (60%) NMB (medulloblastoma cases collected in Newcastle 

and 22 (40%) RJG (medulloblastoma cases supplied by Dr. Richard Gilbertson 

(Department of Developmental Neurobiology, St Jude Children’s Research Hospital, 

Memphis, TN, USA)). Histological subtypes comprised 39 classic (71%), 5 LCA (9%) and 

11 DN tumours (20%). The cohort included medulloblastomas regardless of age at 

diagnosis. There were 11 (20%) infant cases (aged under 3 at diagnosis), 41 (75%) 

children (>3-15 years) and 3 (5%) adults (≥16 years). The cohort contained 21 (38%) 

female and 34 (62%) male cases, with a male: female ratio of 1.6:1.  M stage 

classification according to Chang’s criteria (Chang et al., 1969) was available for most 

cases. Since the nature of the reported M stage varied (some cases reported M0 / M1 

as a single category), M staging was simplified into two categories; M- cases were 

defined as being M0, M1 or M0 / 1. M+ status was assigned to cases reported as M2 or 

M3 (no M4 cases were observed in any cohort studied). The majority of cases for 

which there was available information were M- (36 / 44 (82%)), with 8 M+ cases (18%). 
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1 RJG 112 0.7 F DN 0 0 0 

2 RJG113 2.5 M LCA 1 0 0 

3 RJG114 2.9 M CLAS 0 0 0 

4 RJG115 4.6 M CLAS 0 NA NA 

5 RJG116 19.0 M DN 0 0 0 

6 RJG 117 12.8 M CLAS 1 0 0 

7 RJG118 2.6 F CLAS 1 0 0 

8 RJG 120 3.6 M CLAS NA 0 0 

9 RJG121 4.1 M LCA 0 0 0 

10 RJG122 2.5 M LCA 0 0 0 

11 RJG123 15.4 M CLAS 0 0 0 

12 RJG124 6.3 M DN 1 0 0 

13 RJG126 2.6 M DN 1 0 0 

14 RJG127 4.8 F DN 0 0 1 

15 RJG 129 11.5 M CLAS NA 0 0 

16 RJG131 5.7 F DN 1 0 0 

17 RJG133 16.7 M CLAS 0 0 1 

18 RJG 135 3.6 F CLAS 0 0 0 

19 RJG136 2.9 M DN 0 0 1 

20 RJG140 12.5 M DN 0 0 0 

21 RJG141 9.8 F CLAS 0 0 0 

22 RJG142 1.0 F DN 0 0 1 

23 NMB 20 6.6 M CLAS NA 0 0 

24 NMB43  10.0 M CLAS 0 0 0 

25 NMB45  12.6 M CLAS 0 0 0 

26 NMB46  5.1 M CLAS 0 0 0 

27 NMB51  6.8 M CLAS 0 0 0 

28 NMB52  8.6 F CLAS 0 0 0 

29 NMB 59 6.6 M LCA 0 0 0 

30 NMB60  5.0 M CLAS 0 0 0 

31 NMB61  10.3 M CLAS 0 1 0 

32 NMB63  11.5 M CLAS 0 0 0 

33 NMB 64 1.4 F DN NA 0 0 

34 NMB 65 9.3 M CLAS NA 0 0 

35 NMB 66 4.9 M CLAS NA 0 0 

36 NMB 68 6.9 F CLAS NA 0 0 

37 NMB69 7.9 M CLAS 0 0 1 

38 NMB70 3.3 F CLAS 0 0 0 

39 NMB 71 15.8 M CLAS NA 0 0 

40 NMB76  7.5 M CLAS 0 0 0 
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41 NMB77 8.5 F CLAS 0 0 0 

42 NMB78  5.5 M CLAS 1 0 0 

43 NMB79  3.5 F CLAS 1 0 1 

44 NMB80  10.2 F CLAS 0 0 0 

45 NMB81  14.2 F DN 0 0 0 

46 NMB82  5.4 M CLAS 0 0 0 

47 NMB 83 10.5 M CLAS NA 0 0 

48 NMB 84 15.1 F CLAS NA 0 0 

49 NMB 87 1.6 M CLAS NA 0 0 

50 NMB88  17.0 F CLAS 0 0 0 

51 NMB89 4.6 F CLAS 0 0 0 

52 NMB90 3.0 F CLAS 0 0 0 

53 NMB92 4.3 M CLAS 0 0 0 

54 NMB93 10.0 M CLAS 0 1 0 

55 NMB94 9.0 F CLAS 0 1 0 

Table 2.1. Clinical demographics of the cohort used for chapter 3. The cohort consisted of 55 
primary medulloblastomas obtained from across the UK and Europe (n = 33), and from Dr. 
Richard Gilbertson (n = 22). Study ID, sample ID, age in years at diagnosis, and gender are 
shown. Histological subtype is coded as follows: CLAS – classic, DN – desmoplastic / nodular, 
LCA – large cell / anaplastic. M stage is coded based on Chang’s criteria (see section 1.3.3). 0 – 
M- (M stage 0 / 1), 1 – M + (M stage 2 / 3). CTNNB1 mutation: 0 – no mutation detected; 1 – 
mutation detected. Missing data are indicated with NA.  

 

The training and test cohorts that formed the basis of chapters 4 and 5 are common to 

both and are also described below.   

The training cohort initially consisted of 108 medulloblastomas and is listed in Table 

2.2. This cohort comprised 86 NMB cases, 15 RJG and 7 PNET 3 (medulloblastoma 

cases from the PNET3 (Primitive-neuroectodermal tumour 3) clinical trials cohort, 

detailed below) cases. Histological subtypes (see below) comprised 80 classic type 

(74%), 17 desmoplastic / nodular (16%), 10 LCA (9%) and 1 MBEN case (1%). The 

cohort included medulloblastomas regardless of age at diagnosis. The median age at 

diagnosis was 7.6 years. There were 18 (17%) infant cases (aged under 3 at diagnosis) 

and 7 (6.5%) adult cases (aged over 16 at diagnosis). The cohort contained 67 male 
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cases (62%) and 41 female cases (38%), with a male: female ratio of 1.6:1.   M stage 

classification according to Chang’s criteria (Chang et al., 1969) was available for 96 

cases (89%). The majority of cases for which there was available information were M- 

(77 / 96 (80%)), with 19 M+ cases (20%). Survival data was available for the majority of 

cases (95 cases (88%)), with a median follow up time of 4.8 years.  

The test cohort consisted of 143 primary medulloblastoma tumours from patients 

entered onto the SIOP / UKCCSG PNET3 clinical trial (Taylor et al., 2003), hereafter 

referred to as PNET3. The trial took place from March 1992 to January 2000. Patients 

defined as average risk, aged from 3 to 16 years, were recruited from across Europe 

and placed into one of two treatment arms (radiotherapy alone versus application of 

chemotherapy prior to radiotherapy). The study found that there was a significant 

difference in 3 and 5 year EFS between treatment arms that was not repeated when 

overall survival (OS) was examined. The cohort details are listed in Table 2.3. The test 

cohort comprised 122 classic type (85%), 10 DN (7%) and 11 LCA (8%) 

medulloblastomas. The median age at diagnosis was 8.6 years. The cohort contained 

88 male cases (62%) and 55 female cases (38%), with a male: female ratio of 1.6:1. M 

stage classification was available for 142 / 143 cases (99%), with 114 M- cases (80%) 

and 28 M+ cases (20%). Survival data were available for every case, with a median 

follow up time of 9.8 years. 

 For both cohorts, histological variants were confirmed on review by Professor David 

Ellison (Chair of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA) 

according to the 2007 WHO classification criteria (Louis et al., 2007). Additional clinico-

pathological correlate data were obtained from a variety of sources. M stage, patient 

age and survival data were kindly provided by Dr. Simon Bailey (Newcastle University 

Brain Tumour Research Group). The molecular correlates were kindly provided by 

other Newcastle University Brain Tumour Research Group members: Chromosome 6 

and 17 heterozygosity was assayed by Dr. Meryl Lusher and Dr. Hisham Megahed 

respectively, using the HOMOD (homozygosity mapping of deletions) methodology 

(Goldberg et al., 2000), a technique that can identify LOH in tumour samples without 

the necessity for  matched constitutional DNA. Chromosome 6 and 17 heterozygosity 

statuses were determined by analysis of six polymorphic microsatellite markers 

spanning each chromosome using previously described methods (Langdon et al., 2006).  
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Activating mutations of CTNNB1 were identified by Dr. Meryl Lusher. A mutational 

analysis of CTNNB1 was performed by direct sequencing using previously reported 

primers and methods (Ellison et al., 2005). Data on amplification of the MYC family 

genes MYCC and MYCN were supplied by Dr. Sarra Ryan, who measured gene 

amplification using a real-time PCR-based technique. Samples where the haploid copy 

number for either gene was greater than 5 were classed as amplified.  

Information on WNT and SHH pathway activation came from two sources. Firstly, the 

GeXP assay for the transcriptomic assignment of pathway activation described in 

sections 2.4 and 4.3.8 was used to assign pathway activation in cases extracted from 

fresh frozen tissue for which mRNA was available. Secondly, a recent study by Ellison 

et al. described antibody markers of the WNT and SHH molecular medulloblastoma 

subgroups (Ellison et al., 2011a). In their study, immunoreactivity for filamin A and 

YAP1 identified SHH and WNT tumours, whilst GAB1 immunoreactivity characterised 

SHH medulloblastomas and nuclear immunoreactivity for β-catenin identified WNT 

tumours (Figure 2.1). Since their study was based on a cohort comprising PNET3 trials 

cases, there was significant overlap between the subgroup assignments made in Ellison 

et al’s study and the sample comprising the test cohort in this study (data were 

available for 115 / 143 (80%) test cohort samples and for 5 / 108 (5%) training cohort 

samples. The clinico-pathological and molecular correlates are shown for the training 

and test cohorts in Table 2.2 and Table 2.3 respectively. The summarised cohort 

demographics, after the removal of samples failing quality control, are described in 

Table 4.3. A summary of the cohorts used in this study, both in primary investigations 

and for assay development and validation, are listed in Table 2.4.   
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Figure 2.1. Immunohistochemistry for CTNNB1 and GAB1 antibodies using specific antibodies 
respectively identifies WNT and SHH subgroups of medulloblastoma. Each panel shows a 
representative medulloblastoma section with H&E counterstaining. Panel A and B show 
samples positive and negative for nuclear accumulation of β-catenin, a marker of WNT 
pathway activation in medulloblastoma. The occasional cell with nuclear accumulation in the 
negative sample is not sufficient to ascribe nuclear accumulation positivity. Panel C shows a 
sample positive for expression of GAB1 in a DN medulloblastoma. Nodules show lack of 
staining; desmoplastic regions show dense staining. Panel D shows a case with absence of 
GAB1 staining, indicating an absence of SHH pathway activation. Figure adapted from Ellison 
DW et al., 2011a. 



93 

 

Sam
p

le ID
 

A
ge 

Sex 

Tu
m

o
u

r Typ
e 

C
en

tre 

M
 stage 

C
TN

N
B

1
 m

u
tatio

n
 

C
h

ro
m

o
so

m
e 6

 LO
H

 

C
h

ro
m

o
so

m
e 1

7
 

LO
H

 

M
YC

C
 am

p
lificatio

n
 

M
YC

N
 am

p
lificatio

n
 

Sign
allin

g p
ath

w
ay 

sign
atu

re 

Sign
allin

g p
ath

w
ay 

an
tib

o
d

y statu
s 

EFS Statu
s 

EFS Tim
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NMB108 4.6 F CLAS BELG 1 0 NA NA 0 0 1 NA 0 4.6 

NMB109 8.0 M CLAS BELG 0 0 0 NA 0 0 0 NA 0 2.3 

NMB110 10.0 F CLAS BELG 0 0 0 NA 0 0 0 NA 0 1.6 

NMB111 10.0 M CLAS BELG 0 0 0 NA 0 0 NA NA 0 2.5 

NMB112 43.0 F CLAS BELG 0 0 0 NA 0 0 0 NA 0 2.3 

NMB113 3.0 M CLAS BELG 0 0 NA NA 0 0 
 

NA 0 4.1 

NMB125 6.0 F CLAS BUD NA 0 0 NA 0 0 0 NA 0 3.0 

NMB126 8.4 F CLAS BUD NA 0 0 NA 0 0 0 NA NA NA 

NMB128 4.5 M CLAS BUD NA 0 0 NA 0 1 0 NA NA NA 

NMB129 5.7 M LCA BUD NA 0 0 NA 0 0 0 NA NA NA 

NMB131 10.3 M CLAS BHAM 0 1 1 NA 0 0 2 NA 0 7.4 

NMB133 6.9 F CLAS BHAM 0 0 0 NA 0 0 NA NA 0 4.8 

NMB134 4.9 M CLAS BHAM 1 0 0 NA 0 1 0 NA NA NA 

NMB135 11.2 F CLAS BHAM 0 1 1 NA 0 0 2 NA 0 4.4 

NMB136 10.5 M CLAS BHAM 1 0 0 NA 0 0 0 NA NA NA 

NMB137 15.1 F CLAS BHAM 1 NA 0 NA 0 0 0 NA 1 1.2 

NMB138 3.3 M CLAS BHAM 0 NA 0 NA 0 0 1 NA 1 0.8 

NMB139 12.7 M CLAS BHAM 0 1 1 NA 0 0 2 NA 0 2.8 

NMB140 9.4 M CLAS BHAM 0 0 0 NA NA NA 0 NA 0 2.7 

NMB141 11.7 F CLAS BHAM 0 0 0 NA 0 0 1 NA 0 2.2 

NMB142 12.1 M CLAS BHAM 1 0 0 NA 0 0 0 NA 0 2.3 
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NMB143 2.8 M LCA BHAM 0 0 0 NA 0 0 0 NA 1 0.8 

NMB144 5.1 M CLAS BHAM 1 0 0 NA 0 0 0 NA 1 2.0 

NMB147 19.6 M CLAS SOTON 0 0 0 NA 0 0 0 NA NA NA 

NMB148 1.6 M CLAS SOTON 0 0 0 NA 0 0 1 NA 1 0.3 

NMB149 6.3 M LCA SOTON NA 0 0 NA 0 0 0 NA 1 1.3 

NMB151 9.8 M CLAS SOTON 1 0 0 NA 0 0 0 NA 1 1.6 

NMB152 0.5 M CLAS SOTON 0 0 0 NA 0 0 0 NA 1 5.1 

NMB153 3.3 M CLAS SOTON NA 0 0 NA 0 0 0 NA 0 13.2 

NMB154 4.7 M CLAS SOTON NA 0 0 NA 0 0 0 NA NA NA 

NMB155 19.8 M CLAS SOTON NA 0 0 NA 0 0 0 NA NA NA 

NMB156 7.3 M DN SOTON 0 0 0 NA 0 0 0 NA 0 13.1 

NMB157 5.4 M DN SOTON 1 0 0 NA 0 0 0 NA 0 10.6 

NMB159 22.8 M DN NCL NA 0 0 NA 0 0 1 NA NA NA 

NMB16 0.1 M CLAS NCL 0 0 0 NA NA NA 0 NA 1 0.0 

NMB162 5.1 M CLAS NCL 0 0 0 NA 0 0 0 NA 0 7.5 

NMB164 7.1 F LCA NCL 0 0 0 NA 0 0 0 NA 0 2.6 

NMB165 12.7 M CLAS NCL 0 0 0 NA NA NA 0 NA 0 4.3 

NMB166 9.7 F CLAS NCL 0 0 0 NA 1 0 0 NA 0 5.6 

NMB167 6.5 F CLAS NCL 0 0 0 NA 0 0 0 NA 0 4.0 

NMB168 9.8 F LCA NCL 0 0 0 NA 0 0 0 NA 1 1.8 

NMB169 8.9 M LCA NCL 0 0 0 NA 1 0 0 NA 1 0.2 
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NMB17 4.0 M CLAS NCL 0 0 0 NA NA NA 0 NA 0 5.7 

NMB171 7.7 M CLAS NOTT NA 0 0 NA 0 0 0 NA NA NA 

NMB180 10.7 M CLAS LEEDS 0 0 0 NA 0 0 0 NA 0 5.1 

NMB181 8.4 M DN LEEDS 0 0 0 NA 0 1 1 NA 1 0.1 

NMB182 9.6 M CLAS LEEDS 0 0 0 NA 0 0 0 NA 0 4.6 

NMB184 8.6 M CLAS LEEDS 0 0 0 NA 0 0 0 NA 0 3.6 

NMB185 14.0 M CLAS CARD 1 0 0 NA 0 0 0 NA 0 4.7 

NMB186 8.0 M CLAS CARD 0 0 0 NA 0 0 0 NA 1 3.1 

NMB187 3.7 M CLAS NOTT 0 0 0 NA 0 0 0 NA 0 4.8 

NMB188 8.6 F CLAS NOTT NA 0 0 NA 0 0 0 NA 0 0.2 

NMB189 8.6 M CLAS NOTT 0 0 0 NA NA NA 0 NA 0 3.6 

NMB190 11.7 M CLAS NOTT 1 0 0 NA NA NA 0 NA 1 6.6 

NMB199 9.8 M CLAS NCL 1 0 0 NA NA NA 0 NA 1 1.3 

NMB200 1.3 F DN NCL 0 0 0 NA 0 0 1 NA 0 7.0 

NMB202 40.0 F DN NCL 0 0 0 NA 0 0 1 NA 0 5.9 

NMB203 6.2 M CLAS NCL 0 0 0 NA NA NA 0 NA 0 4.2 

NMB227 4.0 M CLAS NCL 1 NA 0 NA NA NA 0 NA 1 1.3 

NMB250 4.8 M CLAS NCL 0 0 0 NA NA NA 0 NA 0 2.0 

NMB251 3.3 F CLAS NCL NA 0 NA NA NA NA NA NA NA NA 

NMB252 13.1 F CLAS NCL 0 1 1 NA NA NA 2 NA 0 1.1 

NMB253 0.4 M DN POL 0 0 0 NA NA NA 1 NA 0 1.2 
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NMB254 1.5 F DN POL 0 0 0 NA NA NA 1 NA 0 0.9 

NMB33 1.5 F DN NCL 0 0 0 NA NA NA 1 NA NA NA 

NMB43 9.0 M CLAS NCL 0 0 0 1 0 0 0 NA 1 4.2 

NMB45 12.6 M CLAS NCL 0 0 0 1 0 0 0 NA 0 8.4 

NMB51 6.8 M CLAS NCL 0 0 0 0 0 0 0 NA 0 8.0 

NMB52 8.6 F CLAS NCL 0 0 0 1 0 0 0 NA 0 7.2 

NMB60 5.0 M CLAS BHAM 0 0 0 0 NA NA 0 NA 1 1.0 

NMB63 11.5 M CLAS NCL 0 0 0 0 0 0 1 NA 0 7.4 

NMB64 1.5 F MBEN BHAM 0 0 0 NA 0 0 NA NA 1 1.6 

NMB65 9.3 M CLAS BHAM 0 0 0 NA 0 0 NA NA 0 5.5 

NMB69B 7.8 M CLAS CARD 0 0 NA NA NA NA 0 NA 0 8.7 

NMB76 7.5 M CLAS BHAM 0 0 0 0 0 0 0 NA 1 2.4 

NMB77 8.5 F CLAS BHAM 0 0 0 1 0 0 0 NA 0 6.4 

NMB78 5.5 M CLAS BHAM 1 0 0 0 0 0 0 NA 1 0.3 

NMB79 3.5 F CLAS CAM 1 0 0 0 0 0 1 NA 0 6.5 

NMB80 10.2 F CLAS CAM 0 0 0 0 0 0 0 NA 0 1.9 

NMB81 14.2 F DN CAM 0 0 0 0 0 0 1 NA 0 3.8 

NMB82 5.4 M CLAS NCL 0 0 0 1 1 0 0 NA 0 4.8 

NMB88 17.0 F CLAS BRI 0 0 0 1 0 0 0 NA 0 2.8 

NMB89 4.6 F CLAS BRI 0 0 0 1 0 1 0 NA 0 7.5 

NMB90 3.0 F CLAS BRI 0 0 0 0 0 0 0 NA 0 10.4 
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NMB93 10.0 M CLAS BRI 0 1 1 0 0 0 2 NA 0 1.5 

NMB94 9.0 F CLAS BRI 0 1 1 0 0 0 2 NA 0 5.0 

PNET30119 15.8 M CLAS PNET3 0 1 1 0 NA NA NA 2 0 5.3 

PNET30131 5.4 F LCA PNET3 0 1 0 1 NA NA NA 2 0 5.0 

PNET30139 7.6 F CLAS PNET3 0 1 1 0 NA NA NA 2 1 1.8 

PNET30146 9.1 F CLAS PNET3 0 0 1 NA NA NA NA NA 1 2.8 

PNET30147 10.8 F CLAS PNET3 0 1 1 0 NA NA NA 2 0 12.3 

PNET30209 10.4 M CLAS PNET3 0 0 NA NA 0 0 NA NA 0 7.5 

PNET350129 9.9 M CLAS PNET3 0 0 1 0 NA NA NA 2 0 11.2 

RJG112 0.7 F DN RJG 0 0 0 NA 0 0 NA NA 1 1.3 

RJG113 2.5 M LCA RJG 1 0 0 0 NA NA 0 NA 0 15.5 

RJG114 2.9 M CLAS RJG 0 0 0 NA 0 0 NA NA 1 1.1 

RJG115 4.6 M CLAS RJG 0 0 0 NA 0 0 NA NA 0 14.4 

RJG116 19.0 M DN RJG 0 0 0 0 0 0 1 NA 0 14.0 

RJG118 2.6 F CLAS RJG 1 0 0 NA 0 0 NA NA 0 13.4 

RJG121 4.1 M LCA RJG 0 0 0 1 NA NA 0 NA 0 12.6 

RJG122 2.5 M LCA RJG 0 0 0 0 0 0 0 NA 1 0.9 

RJG124 6.3 M DN RJG 1 0 0 0 0 0 0 NA 1 0.3 

RJG126 2.6 M DN RJG 1 0 0 0 0 0 1 NA 0 0.1 

RJG127 4.8 F DN RJG 0 0 0 0 0 0 1 NA 0 8.3 

RJG131 5.7 F DN RJG 1 0 0 0 0 0 0 NA 1 0.2 
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RJG135 3.6 F CLAS RJG 0 0 0 NA 0 0 NA NA NA NA 

RJG141 9.8 F CLAS RJG 0 0 0 0 0 0 0 NA 0 4.7 

RJG142 1.0 F DN RJG 0 0 0 0 0 0 1 NA 1 0.3 

Table 2.2. Clinical demographics of the training cohort. The cohort consisted of 108 primary medulloblastomas obtained from across the UK and Europe (n = 86), 
from Dr. Richard Gilbertson (n = 15) and from the PNET3 clinical trial (n = 7). Patient ID, age in years at diagnosis, and gender are shown. Histological subtype is 
coded as follows: CLAS – classic, DN – desmoplastic / nodular, LCA – large cell / anaplastic, MBEN – medulloblastoma with extensive nodularity). The centre from 
which the sample was received is shown: BELG – Belgium; BHAM – Birmingham, UK; BRIS – Bristol, UK; BUD – Budapest, Hungary; CAM – Cambridge, UK; CARD – 
Cardiff, UK; LEEDS – Leeds, UK; NCL – Newcastle, UK; NOTT – Nottingham, UK; PNET3 – PNET3 trials cohort; POL – Poland; RJG – Memphis, TN, USA; SOTON – 
Southampton, UK. M stage is coded based on Chang’s criteria (see section 1.3.3). 0 – M- (M stage 0 / 1), 1 – M + (M stage 2 / 3). CTNNB1 mutation: 0 – no 
mutation detected; 1 – mutation detected. Chromosome 6 LOH: 0 – no loss of heterozygosity detected; 1 – loss of heterozygosity detected. Chromosome 17 LOH: 
0 – no loss of heterozygosity detected; 1 – loss of heterozygosity detected. MYCC amplification: 0 – no amplification detected; 1 – amplification detected. MYCN 
amplification: 0 – no amplification detected; 1 – amplification detected. Signalling pathway activation: 0 – WNT / SHH independent; 1 – SHH pathway activated; 2 – 
WNT pathway activated. Signalling pathway antibody status: 0 – WNT / SHH independent; 1 – SHH antibody positivity; 2 – WNT antibody positivity. Event free 
survival status (0 - no event, 1 – event) and time in years are given. Missing data are indicated with NA.  
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PNET30002 12.8 F CLAS 0 1 0 0 0 0 NA 2 1 0 13.0 

PNET30009 6.3 F CLAS 0 1 1 0 0 0 NA 2 1 0 12.5 

PNET30012 4.7 M CLAS 0 0 0 0 0 0 NA 0 1 0 9.8 

PNET30013 9.9 M CLAS 0 0 0 1 0 0 NA 0 1 1 3.5 

PNET30015 12.9 M CLAS 0 0 0 1 0 0 NA 0 2 1 0.7 

PNET30018 3.4 M CLAS 0 0 0 0 0 0 NA 0 1 0 12.6 

PNET30019 15.4 M CLAS 0 0 0 0 0 1 NA 0 2 1 0.6 

PNET30028 7.2 F CLAS 1 0 0 1 0 0 NA 2 1 0 10.7 

PNET30030 14.6 M DN 0 0 0 0 0 0 NA NA 1 1 5.7 

PNET30031 7.2 M CLAS 0 0 0 0 0 0 NA 0 2 1 2.1 

PNET30032 9.7 M CLAS 0 NA NA NA 0 1 NA NA 1 0 10.0 

PNET30033 8.8 F CLAS 0 0 0 0 0 1 NA 0 2 0 12.1 

PNET30035 11 M CLAS 0 0 0 0 0 0 NA 1 2 1 0.8 

PNET30038 10.8 F LCA 0 0 0 1 0 0 NA 1 1 1 2.0 

PNET30039 8.5 F CLAS 0 0 1 0 0 0 NA 2 2 0 8.6 

PNET30041 7.6 M CLAS 0 NA NA NA 0 0 NA NA 1 0 11.9 

PNET30043 8.6 F CLAS 0 NA NA NA 0 0 NA NA 1 1 2.2 

PNET30044 9.2 M DN 0 0 0 0 0 0 NA 1 2 0 10.2 

PNET30047 7.3 M DN 0 0 0 0 0 0 NA 1 2 0 10.8 

PNET30048 14.4 M CLAS 0 0 0 0 0 0 NA 0 1 0 10.4 
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PNET30051 7.5 F CLAS 0 1 1 0 0 0 NA 2 2 0 9.7 

PNET30052 9.4 M CLAS 0 1 0 0 0 0 NA 2 1 0 10.2 

PNET30054 6.2 M CLAS 0 0 0 0 0 0 NA 0 1 1 3.3 

PNET30062 6.6 M CLAS 0 0 0 0 0 0 NA 0 1 0 8.0 

PNET30065 5.7 F CLAS 0 0 0 0 0 0 NA 0 1 0 11.7 

PNET30066 5.9 M CLAS 0 0 0 0 0 0 NA 0 2 1 1.5 

PNET30072 7.6 F CLAS 0 0 0 0 0 0 NA 0 1 1 1.5 

PNET30075 6.5 F DN 0 0 0 0 0 0 NA 1 2 0 2.1 

PNET30083 4.5 F CLAS 0 0 0 0 0 0 NA 0 2 0 10.6 

PNET30105 8.3 M CLAS 0 0 0 0 0 0 NA 0 2 0 11.1 

PNET30106 6.4 M CLAS 0 0 0 0 0 0 NA 0 1 1 1.3 

PNET30107 5.9 F CLAS 0 0 0 1 0 0 NA 0 2 0 11.2 

PNET30112 7.1 F CLAS 0 1 1 0 0 0 NA 2 1 0 11.3 

PNET30113 4.1 F CLAS 0 0 0 1 1 0 NA 0 2 1 0.3 

PNET30116 9.5 M CLAS 0 0 0 0 0 0 NA 0 2 1 1.5 

PNET30120 6.3 M CLAS 0 0 0 0 0 0 NA 0 1 0 10.1 

PNET30121 13.2 M CLAS 0 0 0 1 0 0 NA 0 2 0 11.0 

PNET30124 6.2 F LCA 0 0 0 0 0 0 NA 1 2 0 10.5 

PNET30126 8.4 M CLAS 0 0 0 1 0 0 NA NA 1 1 2.2 

PNET30129 7.9 M LCA 1 0 0 1 0 0 NA 0 1 1 1.1 
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PNET30132 5.1 F CLAS 0 0 0 0 0 0 NA 0 2 0 10.4 

PNET30134 8.4 M LCA 0 0 0 1 0 0 NA 0 2 1 2.6 

PNET30137 13.4 M LCA 0 1 1 0 0 0 NA 2 1 0 11.3 

PNET30141 6.4 M CLAS 0 0 0 0 0 0 NA 0 1 0 12.3 

PNET30145 5 M CLAS 0 0 0 0 0 0 NA NA 2 1 1.3 

PNET30148 4.2 M CLAS 0 0 0 0 0 0 NA NA 1 0 10.2 

PNET30150 8.9 F CLAS 0 0 0 1 0 0 NA 0 1 0 12.2 

PNET30152 10.2 F CLAS 0 0 0 0 0 0 NA 2 1 0 0.1 

PNET30160 8.8 F DN 0 0 0 0 0 0 NA NA 1 0 9.0 

PNET30161 8.1 M CLAS 0 0 0 0 0 0 NA 0 2 0 11.8 

PNET30164 8.3 F CLAS 0 0 0 0 0 0 NA 0 1 1 6.2 

PNET30165 12.4 M CLAS 0 0 0 0 0 0 NA 1 2 0 7.1 

PNET30166 8.6 M CLAS 0 0 0 0 0 0 NA NA 1 1 7.1 

PNET30172 8.4 M CLAS 0 0 0 0 0 0 NA 2 1 0 8.8 

PNET30175 5.4 F CLAS 0 0 0 0 0 0 NA 1 2 0 6.3 

PNET30178 7.7 M CLAS 0 NA NA NA 0 0 NA NA 2 0 6.0 

PNET30179 3.5 F CLAS 0 0 0 0 0 0 NA NA 1 0 11.2 

PNET30180 9.9 M CLAS 0 0 0 1 0 0 NA 2 2 0 9.1 

PNET30185 10.3 M CLAS 0 0 0 0 0 0 NA NA 1 0 11.1 

PNET30186 11.6 F CLAS 0 0 0 1 0 0 NA 0 2 0 11.1 
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PNET30191 7.8 M LCA 0 0 0 0 0 0 NA 0 2 1 0.5 

PNET30193 7.3 F LCA 0 0 0 0 0 0 NA 1 1 0 8.6 

PNET30195 6 F DN 0 0 0 0 0 0 NA 1 2 0 8.8 

PNET30199 15.5 F DN 0 0 0 0 0 0 NA 1 2 0 9.3 

PNET30201 6.6 M LCA 0 0 0 0 0 1 NA 1 2 1 0.5 

PNET30202 9.7 F CLAS 0 NA 0 0 0 0 NA 1 1 0 8.7 

PNET30205 9.2 F CLAS 0 NA NA NA 0 1 NA NA 1 0 7.0 

PNET30209 10.4 M CLAS 0 NA NA NA 0 0 NA NA 1 0 7.5 

PNET30210 4.6 M CLAS 0 0 0 0 0 0 NA NA 1 0 7.8 

PNET350001 10.1 M CLAS 0 NA NA NA 0 0 NA NA 1 0 8.1 

PNET350010 5.9 M CLAS 0 0 0 0 0 0 NA NA 2 0 11.7 

PNET350011 13.4 M CLAS 0 0 0 0 0 0 NA 1 2 1 5.3 

PNET350012 4.2 F CLAS 1 0 0 0 1 0 NA 0 1 0 10.8 

PNET350015 4.6 F CLAS 1 0 0 0 0 0 NA 0 2 1 0.6 

PNET350019 15.4 M CLAS 0 0 0 0 0 0 NA 1 2 1 2.1 

PNET350021 14 M CLAS 1 1 0 0 0 0 NA 2 1 0 11.0 

PNET350034 14.3 M CLAS 0 0 0 0 0 1 NA 0 2 0 7.0 

PNET350035 9.9 F CLAS 0 0 0 0 0 0 NA 0 2 0 7.1 

PNET350040 15.6 M CLAS 0 0 0 1 0 0 NA 0 2 1 5.1 

PNET350041 10.8 M CLAS 0 0 0 0 0 0 NA 0 1 0 10.0 
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PNET350044 8.1 M CLAS 0 0 0 1 0 0 NA 0 2 0 10.1 

PNET350045 6.8 M CLAS 0 0 0 0 0 0 NA 2 2 0 12.1 

PNET350049 13.1 F LCA 1 0 0 0 0 0 NA 0 1 1 2.2 

PNET350056 10.8 M CLAS 0 1 1 0 0 0 NA 2 2 0 11.8 

PNET350057 14 M CLAS 0 0 0 0 0 0 NA 0 2 0 10.1 

PNET350058 11.6 M CLAS 1 0 0 0 0 0 NA 0 1 0 10.3 

PNET350060 10.3 M DN NA NA NA NA 0 1 NA NA 1 1 1.3 

PNET350063 5.3 F CLAS 0 0 0 0 0 0 NA 1 2 1 0.5 

PNET350068 6.3 F CLAS 1 0 0 0 0 0 NA NA 1 0 11.7 

PNET350075 8 F CLAS 0 NA 1 0 0 0 NA NA 2 0 11.7 

PNET350080 10.3 M CLAS 0 1 1 0 0 0 NA 2 1 0 10.2 

PNET350086 10.4 F CLAS 1 NA NA NA 0 0 NA NA 1 0 11.8 

PNET350088 15.2 F CLAS 0 0 0 0 0 0 NA 0 2 0 10.3 

PNET350090 10.3 F CLAS 0 0 0 0 0 0 NA 2 1 0 1.3 

PNET350091 4.4 M CLAS 1 0 0 0 0 0 NA 0 1 1 1.6 

PNET350099 13 F CLAS 0 0 0 1 0 0 NA 0 1 1 4.4 

PNET350104 5.4 M LCA 1 0 0 0 0 1 NA NA 1 1 0.0 

PNET350106 7.9 F CLAS 1 0 NA NA 0 0 NA 0 1 1 0.7 

PNET350116 3.8 F CLAS 0 0 0 0 0 0 NA 1 2 0 7.0 

PNET350120 13.5 M CLAS 0 0 0 0 0 0 NA 1 2 0 14.8 
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PNET350124 7.1 M CLAS 1 0 0 1 0 0 NA 0 1 1 2.2 

PNET350128 15.4 M CLAS 0 NA NA NA 0 1 NA NA 1 0 9.2 

PNET350132 14.1 M CLAS 0 0 0 1 0 0 NA 0 2 0 9.3 

PNET350133 9.5 F CLAS 0 0 0 1 0 0 NA 0 1 0 9.3 

PNET350136 12.1 M CLAS 0 0 0 1 0 0 NA 0 2 0 8.8 

PNET350137 6 F CLAS 0 0 0 0 0 0 NA 0 1 1 5.4 

PNET350142 9.4 F CLAS 1 0 0 1 0 0 NA 0 1 1 1.0 

PNET350147 5.3 M CLAS 0 0 0 0 0 0 NA NA 2 0 4.8 

PNET350150 5.1 M CLAS 1 0 0 0 0 0 NA 0 1 1 1.1 

PNET350161 6.8 F CLAS 0 0 0 1 0 0 NA 0 2 1 2.5 

PNET350163 6.8 F CLAS 0 0 0 1 0 0 NA 0 2 0 10.1 

PNET350165 14 F CLAS 0 0 0 0 0 0 NA NA 2 0 5.8 

PNET350166 10.6 M CLAS 0 0 0 0 0 0 NA 0 2 1 3.2 

PNET350167 6.9 F CLAS 0 0 0 0 0 0 NA 0 2 0 10.4 

PNET350169 3.1 M LCA 1 0 0 0 0 0 NA 1 1 1 1.2 

PNET350170 10.9 F CLAS 1 0 0 0 0 0 NA 1 1 0 8.6 

PNET350172 5.4 M CLAS 0 0 0 1 0 0 NA 0 2 0 10.3 

PNET350174 12.5 M CLAS 1 0 0 0 0 0 NA 0 1 0 7.6 

PNET350176 7.8 F DN 0 0 0 0 0 0 NA 1 2 0 9.8 

PNET350184 11.8 M CLAS 0 0 0 0 0 0 NA 0 2 0 10.2 
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PNET350189 14.3 M CLAS 0 0 0 1 0 0 NA 0 2 0 10.0 

PNET350193 14.1 F CLAS 0 0 0 0 0 0 NA 0 1 0 8.1 

PNET350197 5.3 M CLAS 1 NA NA NA 0 1 NA NA 1 1 0.8 

PNET350198 9.5 M CLAS 1 0 0 0 0 0 NA 0 1 1 4.2 

PNET350204 10.7 M CLAS 1 NA NA NA 0 1 NA NA 1 0 10.1 

PNET350208 9.7 F CLAS 1 0 0 0 0 0 NA 0 1 0 9.6 

PNET350209 9.1 M CLAS 0 0 0 0 0 0 NA 0 1 1 4.1 

PNET350212 10.8 M CLAS 1 0 0 0 0 0 NA 0 1 0 5.4 

PNET350217 9.5 M CLAS 1 NA 0 0 0 0 NA 0 1 1 4.8 

PNET350218 3.4 M DN 0 0 0 0 0 0 NA 1 1 1 1.5 

PNET350224 14.9 M CLAS 0 0 0 0 0 0 NA 0 2 0 5.0 

PNET350241 13.1 M CLAS 1 0 0 1 0 0 NA 0 1 1 2.2 

PNET350244 14.1 M CLAS 0 0 0 1 0 0 NA 0 2 0 4.6 

PNET350248 3.9 M CLAS 0 0 0 0 0 0 NA 0 1 0 6.0 

PNET350250 15.8 M CLAS 0 NA NA NA 0 0 NA NA 1 1 2.0 

PNET350253 9.6 M CLAS 0 0 0 0 0 0 NA 0 2 1 2.3 

PNET350254 5.6 F CLAS 0 0 0 0 0 0 NA 0 2 0 9.3 

PNET350256 4.2 M CLAS 1 0 0 0 0 0 NA NA 1 1 0.3 

PNET350259 9.1 M CLAS 1 0 0 0 0 0 NA 0 1 1 0.8 

PNET350284 11.2 M CLAS 0 0 0 0 0 0 NA 0 2 0 5.4 
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PNET350290 9.7 F CLAS 0 0 0 0 0 0 NA 1 1 0 8.3 

PNET350291 6.7 M CLAS 0 0 0 0 0 0 NA NA 1 0 11.0 

PNET350292 3.3 M CLAS 1 0 0 0 0 0 NA 0 1 0 7.8 

Table 2.3. Clinical demographics of the test cohort. The cohort consisted of 143 primary medulloblastomas obtained from the PNET3 clinical trial. Patient ID, age 
in years at diagnosis, and gender are shown. Histological subtype is coded as follows: CLAS – classic; DN – desmoplastic / nodular; LCA – large cell / anaplastic. The 
centre from which the sample was received is shown: M stage is coded based on Chang’s criteria (see section 1.3.3): 0 – M- (M stage 0 / 1), 1 – M + (M stage 2 / 3). 
CTNNB1 mutation: 0 – no mutation detected; 1 – mutation detected. Chromosome 6 LOH: 0 – no loss of heterozygosity detected; 1 – loss of heterozygosity 
detected. Chromosome 17 LOH: 0 – no loss of heterozygosity detected; 1 – loss of heterozygosity detected. MYCC amplification: 0 – no amplification detected; 1 – 
amplification detected. MYCN amplification: 0 – no amplification detected; 1 – amplification detected. Signalling pathway activation: 0 – WNT / SHH independent; 
1 – SHH pathway activated; 2 – WNT pathway activated. Signalling pathway antibody status: 0 – WNT / SHH independent; 1 – SHH antibody positivity; 2 – WNT 
antibody positivity.  Treatment status is indicated (1 – chemotherapy plus radiotherapy; 2 – radiotherapy only). Event free survival status (0 - no event; 1 – event) 
and time in years are given. Missing data are indicated with NA.  
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Cohort Name Size Source Description Chapter 

Chapter 3 primary 
investigation cohort 

55 
Primary medulloblastomas from UK and Europe 

(n = 33) and USA (n = 22), with DNA and 
available clinico-pathological data 

This cohort was assessed for mutations in PTCH1, SMO, SUFU and for PTCH1 
and COL1A2 promoter methylation status. Chromosome 6 and chromosome 

17p were also tested for LOH 
3 

Chapter 3 GeXP 
investigation cohort 

39 
Primary medulloblastomas from UK, Europe (n 

= 25) and USA (n = 14), with DNA, RNA and 
clinico-pathological data available 

39 / 55 samples from chapter 3 primary investigation cohort had available 
RNA and were tested for WNT / SHH pathway activation using GeXP assay 

described in chapter 3 
3 

Kool et al. 
(Kool et al., 2008) 

62 
60 primary medulloblastomas, 2 local relapsed 

biopsies 

Transcriptomic data from Affymetrix U133 plus 2 arrays used to select WNT /  
SHH signature genes for  GeXP assay, to validate GeXP assay (chapter 3) and 

assess expression patterns (chapter 5) 
3, 5 

Thompson et al. 
(Thompson et al., 2006) 

46 Primary medulloblastomas 
Transcriptomic data from Affymetrix U133aV2 arrays used to select WNT /  

SHH signature genes for  GeXP assay, to validate GeXP assay (chapter 3) and 
assess expression patterns (chapter 5) 

3, 5 

Fattet et al. 
(Fattet et al., 2009) 

40 
Primary medulloblastomas from single 

institution 
Transcriptomic data from Affymetrix U133 plus 2 arrays used to validate GeXP 

assay (chapter 3) and  assess expression patterns (chapter 5) 
3, 5 

Primary methylation 
array training cohort 

108 
Primary medulloblastomas from UK, Europe 

and USA 
The cohort was run on Golden Gate methylation arrays and, following QC, 

disease subgroups were identified 
4 

PNET3 methylation array 
test cohort 

143 
Primary medulloblastomas from PNET3 clinical 

trial (see section 2.1, 5.3.1) 

The cohort was run on Golden Gate methylation arrays and, following QC, 
used to validate subgroup patterns discovered using the primary methylation 

array training cohort 

4 
 

Age-matched survival 
cohort 

191 

Comprised PNET3 methylation array test cohort 
cases passing methylation array QC (n = 136), 
plus age matched (3-16 years) cases passing 
methylation array QC (n = 55) from primary 

methylation array cohort 

This cohort was used to identify potentially prognostic methylomic biomarkers 
in a cohort with a defined age distribution (aged 3 – 16 years at presentation) 

5 

Cho et al. 
(Cho et al., 2011) 

194 
Primary medulloblastomas from 5 USA 

oncology centres 
Transcriptomic data from Affymetrix HT HG U133A used to assess expression 

of prognostic methylation biomarkers  
5 

Northcott et al. 
(Northcott et al., 2010) 

103 Primary medulloblastomas 
Transcriptomic data from Affymetrix Human Exon 1.0 ST array used to assess 

expression of prognostic methylation biomarkers 
5 

Table 2.4. Summary of cohorts utilised in this study. Sample number, sample source, description and chapter in which its use is described are indicated for 
each cohort. 
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2.2 Extraction of nucleic acids 

DNA and RNA extractions were performed by members of the Paediatric Brain Tumour 

Research group (Northern Institute for Cancer Research, University of Newcastle, UK). 

Dr. Meryl Lusher, Mr. Kieran O’Toole and Dr. Janet Lindsey kindly carried out the 

extractions. Additional DNA and RNA samples of medulloblastomas were kind gifts of 

Dr. Richard Gilbertson and were extracted by Twala Hogg (both Department of 

Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 

USA).     

2.2.1 DNA extraction 

DNA was extracted from FFPE medulloblastoma samples using a Qiagen DNeasy kit 

(Qiagen, Valencia, CA, USA) according to manufacturer’s instructions. DNA was 

extracted from frozen tumour samples using Trizol (Invitrogen, Carlsbad, CA, USA) 

according to manufacturer’s instructions. Concentrated DNA stocks were stored at        

-80°C. 

2.2.2 RNA extraction 

RNA was extracted from frozen material using Trizol (Invitrogen) according to 

manufacturer’s instructions. RNA was resuspended in RNase free water (Invitrogen) 

and treated with DNase I (Ambion) to eliminate residual contaminating DNA. 

Concentrated stocks were stored at -80°C. 

2.3 Assessment of nucleic acid concentration and quality 

2.3.1 Nanodrop 

DNA concentrations were assessed with the Nanodrop spectrophotometer (Thermo 

Scientific), which is able to measure DNA concentration in a sample volume of 1 µl. 

DNA and RNA efficiently absorb UV light, with an absorption maximum at 260 nm. In 

contrast to nucleic acids, proteins have an absorption maximum of 280 nm. The 

machine measures the optical density (OD) of the sample at wavelengths of 260 and 

280 nm, and reports a nucleic acid concentration as well as an OD260 / OD280 ratio. This 

provides a measure of the amount of contaminating protein within the sample.   
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2.3.2 Bioanalyzer 

RNA quality was an important metric in the analyses performed with this material, so a 

more sensitive method was used to assess RNA quantity and quality. The Bioanalyzer 

2100 platform (Agilent, Stockport, UK) is a chip-based micro-fluidics based system for 

sizing, quantification and quality control of DNA, RNA and protein from a 1 µl sample 

volume. Micro-fluidics form the basis of an electrophoresis based method. The RNA 

nano II assay is accurate for the assessment of RNA concentration from 5-500 ng / µl 

and was performed using the manufacturer’s protocol. Samples with concentrations 

above 500 ng / µl were diluted appropriately so that an accurate reading could be 

taken. For each sample, the assay reported RNA concentration, 28S:18S ratio and an 

 RNA integrity number (RIN), which is a measure of RNA degradation. High 

quality RNA would have a RIN above 9 and a 28S:18S ratio close to 2, with degraded 

samples having a RIN closer to 1 and a 28S:18S ratio less than 1.  Two example traces 

are shown in Figure 2.2. 

 

Figure 2.2. Example electropherogram traces from Bioanalyzer. The x axis shows time in 
seconds, the y axis shows fluorescent units. Panel A shows a trace from a good quality RNA. 
The 18S and 28S peaks are visible at 42 and 49 seconds respectively. The peak at 27 seconds 
contains small RNAs, including the 5.8S and 5S ribosomal peaks and transfer RNAs. Panel B 
shows a poor quality RNA. The amount of degraded RNA has significantly increased, as shown 
by the large peak at 25 to 30s. The 18S peak is still visible at 42 seconds, but the 28S fraction at 
48 seconds is much reduced. For both traces, the RNA integrity number (RIN) is indicated. 

 

A

B

RIN: 3.6

RIN: 9.2
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2.4 The GeXP assay for assessing expression signatures 

The GenomeLab™ GeXP Analysis System Multiplex RT-PCR (reverse-transcriptase – 

polymerase chain reaction) assay (Beckman Coulter, Fullerton, CA, USA) is a PCR-based 

assay for the multiplex, simultaneous assessment of gene expression for up to 30 loci 

from as little as 20 ng of total RNA. Initially, the assay uses gene-specific priming for 

the quantitative amplification of target loci, with a subsequent universal priming to 

quantitatively amplify cDNA. It is particularly useful for the testing of larger cohorts for 

disease or mutation-specific expression signatures, derived from microarray 

expression array experiments.  

Specific chimeric primers, consisting of the locus specific sequence and the universal 

primer sequence, are constructed for each target locus. Pairs of chimeric primers, 

specific for each locus, are designed so that each detected amplicon is separated in 

size from other amplicons. The resultant fragments are separated in a capillary 

sequencer and visualised by applying a laser to detect the fluorescent tags attached to 

the PCR products.  

The GeXP assay consists of three steps: (i) cDNA synthesis by reverse transcription, (ii) 

PCR and (iii) fragment analysis on a capillary sequencer, detailed below. In this study, 

the GeXP assay has been used to design gene expression signatures for the activation 

of the WNT and SHH signalling pathways (see chapter 3).  

In the first step, a multiplex mix of reverse primers (each of which has a sequence 

complementary to the locus of interest joined to a universal reverse primer) is used to 

linearly synthesise cDNA from the mRNA target sequence (Figure 2.3).  

In the second step, PCR, the first few cycles are driven by the locus specific parts of the 

chimeric primers. Over the remaining cycles, the fluorescently labelled universal 

forward primers (contained within the PCR buffer), which are in a large excess, drive 

amplification from universal primers, with each designed amplicon being equivalently 

amplified (Figure 2.3).  

The final step, fragment analysis, is the application of the PCR products to a capillary 

electrophoresis system. Each designed amplicon will produce a peak of a specific size, 

whose area is proportional to the abundance of the target locus. The resultant 
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electropherogram (Figure 2.4) is used to determine relative abundance of gene 

transcripts by examining peak areas relative to a control gene.  

  



112 

 

 

Figure 2.3. Principles of the GeXP assay. Schematic shows how reverse transcription with the 
reverse  primer set only creates assay specific cDNA, During the PCR reaction, after initial 
amplification by specific chimeric amplicons, the excess of fluorescently labelled universal 
primers ensures that all amplicons, regardless of size are priming from the same primer pair 
and are equivalently amplified. Figure adapted from literature supplied by Dr. Jo Craggs 
(Beckman Coulter, High Wycombe, UK). 
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Figure 2.4. The GeXP assay is able to simultaneously assay gene expression for up to 30 loci. 
In this example trace, the red peaks correspond to ladder peaks used to accurately size the 
designed fragments. The blue peaks represent the genes being assayed in the experiment. 
Quantitative assessment of peak areas relative to control genes enable specific gene 
transcription to be measured. In this case, the control gene is at 179 base pairs (bp) and is 
indicated by an arrow. The Kanamycin peak at 325bp demonstrates that the reaction was 
capable of producing detectable product from input RNA and serves as a control for 
determining that the reagents and experimental procedures have performed adequately. The x 
axis shows fragment size in nucleotides, the y axis shows relative peak intensity. 

 

2.4.1 Primer Design for the GeXP assay system 

The forward and reverse primers are chimeric, with the reverse primers having a 5’ 

end containing a 19 base pair universal sequence followed by a transcript-specific 

sequence (19 or 20 nucleotides); the forward primers have an 18 base pair universal 

sequence followed by a transcript-specific sequence (19 or 20 nucleotides). Primer 

design and multiplexing for the selected loci was undertaken using the GeXP Express 

Profiler, Gene Expression module (Beckman Coulter). The primer pairs were designed 

to produce products optimally separated by 7-10 base pairs, with a Tm for the locus-

specific primer from 57°C to 63°C. Basic local alignment search tool (BLAST) (Altschul et 

al., 1990) and basic local alignment tool (BLAT) (Kent, 2002) searches, as well as the e-

PCR feature of the UCSC genome browser (Hinrichs et al., 2006) were performed to 

ensure primer specificity. To eliminate the possibility of detecting genomic DNA, PCR 

products were designed across exon boundaries; products were also designed where 

Control gene

Kanamycin peak
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possible to overlap the Affymetrix probes from which they were derived. For genes 

with multiple transcripts, amplicons were designed that detected all known transcripts. 

In addition to the selected loci, endogenous control genes were selected that were 

equivalently expressed across the cohort of interest. The relative abundance of each 

locus of interest is calculated by comparison to the expression of a control gene. 

An additional manufacturer-specified control primer set that amplifies spiked-in 

Kanamycin mRNA is included in the Reverse Transcription (reverse primer) and PCR 

buffers (forward primer) provided. Primers were ordered from VH Bioscience 

(Newcastle, UK) and were reverse-phase purified following synthesis. Primers were 

diluted in 18.2MΩ Purelab water (ELGA, High Wycombe, UK) and concentrated stocks 

of 100µM were stored at -80°C, with working aliquots at 20µM (R primers) and 10µM 

(F primers) stored at -20°C. The nucleic acid sequences of the designed primers are 

shown in section 3.3.6.1. 

Before commencement of GeXP optimisation experiments, primer multiplexes were 

prepared. The reverse (R) primer multiplex was prepared so that each primer was at a 

concentration of 500nM. The forward (F) multiplex was prepared so that each primer 

was at a concentration of 200nM.  

2.4.2 Assessment of RNA concentration and quality 

RNA quantity and quality of medulloblastoma samples were assessed using the RNA 

nano II assay on the Agilent Bioanalyzer 2100 (Agilent, Stockport, UK), using the 

manufacturer’s protocol. For each sample, the assay reported RNA concentration, 

28S:18S ratio and a RNA integrity number (RIN), which is a measure of RNA 

degradation (see section 2.3.2). RNA aliquots at a concentration of 20 ng / l were 

prepared as templates for the GeXP assay. 

2.4.3 Assay optimisation 

For successful optimisation of the GeXP assay, it was first necessary to define a suitable 

positive control that detected all known transcripts, to ensure that, in every run, all 

designed peaks are detectable. This is discussed in section 3.3.6.3. 
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In addition, after completion of assay optimisation, this serves to calibrate the 

detected peaks. For example, if a peak is designed at 179bp, for certain runs, due to 

minor variations in the experimental procedure and / or reagents (for example, the 

poly-acrylamide substrate through which the products are separated), the actual peak 

could be detected at an estimated distance from 178 to 180bp (this is within normal 

bounds for the assay). Therefore, the positive control also provides a common 

reference for where a peak is detected, that may change between different runs. 

2.4.3.1 Primer specificity 

It was necessary to demonstrate that each primer was generating the desired 

amplicon of the correct size and that unintended interactions between any single 

primer and the other primers in the multiplex were not occurring. Undesigned 

amplicons are undesirable, since they could overlap with designed amplicons of other 

transcripts. To test for this possibility, singlet 200nM F primers were used to amplify 

complementary DNA (cDNA) produced from a standard R primer multiplex containing 

all reverse primers.  The defined positive control was used as a template. Results 

showing more than one peak (in addition to the Kanamycin mRNA control peak) were 

identified. Loci which showed more than one peak, indicating undesired interaction 

with other primers, were removed from the multiplex for subsequent experiments. 

2.4.3.2 Primer attenuation 

The Beckman CEQ system has a dynamic range of detection from 2000 to 130,000 

intensity units, so for accurate quantitation, it was important that each expressed 

transcript was detected within this range. Using a reverse primer multiplex where each 

primer was at a concentration of 500nM, genes whose peaks that exceeded 130,000 

units were identified. A reverse primer multiplex was prepared that omitted these 

genes. Serial dilutions of these genes’ primers were added to this multiplex and the 

standard GeXP procedure was carried out to determine which dilutions produced 

peaks within the dynamic range. From these investigations, the optimal primer 

dilutions were derived and a finalised reverse primer mix, with attenuated primers at 

their optimal dilutions, was prepared. 
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2.4.4 GeXP assay procedure 

The GeXP assay was performed in triplicate for each sample. Positive controls as well 

as no-template and reverse-transcriptase-negative controls were included for each 

experiment.  

2.4.4.1 Reverse Transcription Step 

The reverse transcription reaction was performed according to the manufacturer’s 

standard protocol. RNA was extracted from medulloblastoma primary tumours and cell 

lines, as described in section 2.2.2. In a 10 l reaction volume, 2 l of 5 X RT (reverse 

transcriptase) Buffer (containing a Kanamycin RNA reverse primer) (Beckman Coulter), 

0.5 l of reverse transcriptase (RT) (20 units / l) (Beckman), 2.5 l of Kanamycin RNA 

(Beckman) and 1 l of attenuated reverse primer mix (concentrations of each primer 

varying from 500 nM to 10 nM) was added to 2.5 l of RNA template (20 ng / l). The 

reverse transcriptase and subsequent PCR reactions were carried out on a GeneAmp® 

9700 thermocycler (Applied Biosystems, Foster City, CA, USA). The reaction was heated 

for 1 minute at 48°C to relax the RNA, then incubated at 37°C for 5 minutes, 42°C for 

60 minutes and finally reverse transcriptase enzyme was denatured by heating to 95°C 

for 4 minutes.   

2.4.4.2 PCR step 

PCR was carried out at a 10 l reaction according to manufacturer’s instructions 

(Beckman Coulter). Each reaction contained 2 l of 5 X PCR Buffer (containing Forward 

primer for Kanamycin RNA) (Beckman Coulter), 5 mM MgCl2 (Thermo-Hybaid, Ashford, 

UK), 1.75 units of ThermoStart Taq DNA polymerase (Thermo-Hybaid) and 1 l of the 

forward primer multiplex mix (each primer was at a final concentration of 20 nM). 5.35 

l of this mix was added to 4.65 l of cDNA from the reverse transcription reaction. 

The PCR reaction was carried out by heating the sample mixture for 10 minutes at 95°C 

(denaturation and Taq activation, followed by 35 cycles of 94°C (denaturation) for 30s, 

55°C for 30s (annealing) and 70°C for 1 minute (extension). PCR products were stored 

at 4°C until required. 
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2.4.4.3 Fragment analysis 

PCR products were diluted 1:5 with 18.2M pure water prior to loading. 1 l of each 

dilution was added to a CEQ sequencing plate (Beckman Coulter) containing 38.5 l of 

Beckman sample loading solution (Beckman Coulter) and 0.5l of size-standard 400 

ladder (Beckman Coulter). After mixing, fragments were separated on a CEQ 8000 

(Beckman Coulter) using the Frag-3 protocol. Fragments were exported to the 

GenomeLab GeXP genetic analysis software for analysis.  
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2.5 Expression Microarray 

Since their first description (Schena et al., 1995), expression microarrays have 

revolutionised the measurements of gene expression. Prior to their discovery, studies 

of gene expression were limited to single candidate gene-based investigations. They 

have enabled truly genome-wide assessments of gene expression that have greatly 

enhanced the ability to detect differentially expressed transcripts between samples.  

2.5.1 3’ IVT Affymetrix Arrays 

The Affymetrix (Affymetrix, Santa Clara, CA, USA) 3’ IVT (in vitro transcription) arrays 

that form the basis for the derivation of expression signatures for signalling pathway 

activation (see chapter 3) are a high-density oligonucleotide array for the genome-

wide measurement of gene expression. Each detected transcript is represented by 11 

oligonucleotide probes, each 25 bases in length. For each probe, in addition to the 

perfect match probe, there is a mis-matched probe at position 13, which can act as a 

control for non-specific hybridisation. The probe location and a workflow for running 

the arrays are shown in Figure 2.5. Briefly, cDNA is first prepared from a RNA sample. 

cDNA is then  3’ in-vitro transcribed and biotinylated to make biotinylated 

complementary RNA (cRNA). After fragmentation, the cRNA is hybridised to the 

microarray, washed to remove non-specific hybridised fragments and stained with PE 

(phycoerythrin)-conjugated streptavidin. Arrays are read with a laser scanner and 

intensity scores are summarised for downstream analyses.  

The summarised expression data are outputted in .CEL format files that can be read 

into software and subjected to background correction, normalisation and probe 

summarisation (section 2.5.2), using an appropriate technique, before examining for 

differential expression.  
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Figure 2.5. Affymetrix 3’-IVT arrays. A. The location of 3’-IVT array probes. Eleven probes are 
shown which span the 3’ end of a given transcript. The 5’ contents of the gene are not assayed. 
B. An Affymetrix 3’-IVT array workflow, adapted from a previously published report (Staal et al., 
2003).  
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2.5.2 Robust multi-array average (RMA) 

The robust multi-chip average (RMA) algorithm (Irizarry et al., 2003) is the most 

widely-used method for  background correction and normalisation and summarisation 

of Affymetrix microarray data. In the background correction step, the mis-matched 

probe data are discarded, and instead, a background correction is applied which is 

calculated from the perfect match probes. The background correction works on the 

assumption that the observed signal (O) consists of a normally distributed background 

noise (N), defined by its mean, µ, and its standard deviation, σ, and an exponentially 

distributed true signal (S) defined by the exponent of a constant α, with 

O = N + S, N ~ N(µ,σ2), S ~ Exp(α). 

The parameters α, µ and σ are assumed to be equal for all perfect match probes on a 

chip and are estimated for each chip.  The estimated noise for each probe is subtracted 

from the observed intensity of expression to give a corrected measure of expression. 

In the next step, the arrays are subjected to quantile normalisation, which transforms 

each array so that its distribution of intensities is the same and scaled so that the mean 

is the same. To achieve this, the expression data are ranked for each array, taking the 

average value at each rank across all arrays and then replacing for each array the 

actual expression scores with the averaged rank value across all arrays.  

In the final step, the 11 probes that hybridise to each detected transcript are 

summarised into a single value of gene expression using median polishing, a technique 

that is robust to the effects of outlier probes, since it uses median values, but also 

because it estimates values based on the entire set of arrays being tested, rather than 

from a single array.  

RMA has been shown to outperform other normalisation and expression 

summarisation techniques (Millenaar et al., 2006) and has become the most widely 

used method for processing Affymetrix arrays. 

2.6 Bisulfite modification of DNA 

Sodium bisulfite treatment modifies all unmethylated cytosine residues to uracil whilst 

leaving 5-methylcytosines unchanged. This treatment causes a change in the DNA 
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sequence at the single nucleotide level that can subsequently be detected using 

sequencing or using PCR based techniques (Herman et al., 1996; Frommer et al., 1992). 

For all analyses involving bisulfite treated DNA, bisulfite conversion was undertaken 

using an EpiTect bisulfite kit (Qiagen), according to manufacturer’s instructions. 

The ‘gold standard’ for the ascertainment of DNA methylation is through bisulfite 

sequencing and it is the benchmark against which any alternative means for estimating 

DNA methylation is measured.   

2.6.1 Bisulfite treated DNA primer design and sequencing 

For this project, MethPrimer (Li and Dahiya, 2002), was used to design appropriate 

primers for sequencing of bisulfite treated DNA. Primers are designed to be strand 

specific as well as bisulfite-specific (so that primers contain non-CpG cytosines which 

are not complementary to non-bisulfite treated DNA). Since the bisulfite treated DNA 

is of a lower complexity than untreated DNA, extra constraints are needed for primer 

selection in addition to those required for standard PCR.  

 Primers should not contain any CpG sites within their sequence to avoid 

preferential selection of methylated or unmethylated DNA.  

 To bias against detecting DNA that has not been completely modified, primer 

should hybridise to primary DNA sequence containing non-CpG cytosine 

residues (which will be converted into uracil residues if bisulfite conversion has 

occurred). This will ensure preferential hybridisation to completely modified 

DNA. 

Amplified bisulfite treated DNA can then be sequenced using conventional methods. 

Direct sequencing enables the average methylation level of the sample from which the 

DNA was extracted to be determined (Figure 2.6). Samples in which the methylated 

peak represented >25% of the total peak height in greater than 25% of the analysed 

CpG sites were classed as showing evidence of methylation (i.e. methylated). 
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Figure 2.6. Principles of bisulfite conversion and sequencing to identify methylated cytosine 
residues. In the first step, DNA is denatured and treated with sodium bisulfite. This deaminates 
unmethylated cytosine residues, while leaving methylated cytosine residues unchanged. In the 
next step, specific primers, designed to avoid CpG islands, are used to amplify the region of 
interest. Conventional capillary sequencing can then discriminate between methylated and 
unmethylated cytosines. In the bottom panel, cytosine residues are indicated with arrows. 
Methylated cytosine residues will be read as cytosines, as they are unchanged following 
bisulfite treatment. Unmethylated cytosine residues will be read as thymine, since they were 
converted to uracil residues after bisulfite treatment. To measure the methylation at discrete 
CpG dinucleotides, the height of the cytosine peak is divided by the sum of the height of the 
cytosine and thymine peaks.  

  

--ACTCGACGGTCCATCGAT--

--TGAGCTGCCAGGTAGCTA--
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m m
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2.6.2 Methylation–specific PCR 

Methylation-specific PCR (MSP), is an alternative method for analysing methylation 

status of bisulfite treated DNA, which obviates the need for DNA sequencing (Herman 

et al., 1996). MSP takes advantage of the sequence differences introduced by bisulfite 

treatment. Two sets of primers are designed, one specific for methylated (the M pair) 

and one specific for unmethylated loci (the U pair). For each tested sample, two PCR 

reactions are performed, one for each set of primers. Amplification with the M pair 

indicates the presence of methylated DNA; amplification with the U pair indicates the 

presence of unmethylated residues, and if both primer pairs produce bands, the 

sample has both methylated and unmethylated CpG dinucleotides (Figure 2.7). MSP 

has the advantages that it can be performed on small amounts of DNA, is much less 

labour intensive than bisulfite sequencing and can detect methylated loci at an 

abundance as low as 0.1% (Herman et al., 1996). The biggest disadvantages are that 

the results of MSP are qualitative rather than quantitative, and that careful 

optimisation is necessary to ensure that the PCRs for both U and M are performing 

equivalently.   

Primers for MSP were designed using MethPrimer (Li and Dahiya, 2002), using the 

following design criteria: 

 Primer sequences to contain at least one CpG site at the 3’ end, to ensure 

optimal discrimination between methylated and unmethylated alleles. 

 Primer sequences to contain as many CpG sites as possible, to further enhance 

discriminative power. 

 Primers in the M and U pairs should contain the same CpG sites within their 

sequence, to ensure that any differential methylation in proximal CpG sites 

outside the region of interest is not affecting the amplification efficiencies. 

 Primer sets U and M should have similar melting temperatures so that they can 

be amplified using the same reaction conditions on the same thermocycler. For 

this reason, the U set, which will be less complex and contain fewer cytosine 

residues, is longer than the M set. 
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For loci assessed by MSP, any sample showing a visible PCR product using primers 

specific for the methylated sequence, was classed as showing evidence of methylation 

(i.e. methylated). 

 

 

 

 

Figure 2.7. Methylation-specific PCR is able to sensitively identify DNA methylation. In this 
simplified example, a single PCR is set up for two DNA samples, one with a methylated CpG 
dinucleotide that is unchanged following bisulfite treatment, the other with an unmethylated 
DNA sample, where unmethylated cytosines have been converted to uracil residues. The 
methylation-specific reverse primer is able to bind to the target locus, which has a methylated 
cytosine residue, enabling amplification of the locus to occur. For the unmethylated sample, 
the conversion of the unmethylated cytosine prevents hybridisation from occurring, which in 
turn, prevents amplification. When the PCR products for the two samples are electrophoresed 
on an agarose gel, a band will be apparent for the methylated DNA sample, M, but not for the 
unmethylated sample, U. In a paired analysis (not shown), a primer pair specific for 
unmethylated DNA is used to amplify both samples and run in parallel to detect the presence 
of unmethylated DNA. Figure adapted from Wikipedia 
(http://en.wikipeida.org/wiki/Bisulfite_sequencing). 

  

M
M U

http://en.wikipeida.org/wiki/Bisulfite_sequencing
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2.7 Golden Gate Cancer Panel I Methylation Array 

This project utilised a high-throughput microarray technology that directly measures 

DNA methylation levels on bisulfite treated DNA (Bibikova et al., 2006). Briefly, 

bisulfite conversion of genomic DNA converts unmethylated cytosine to uracil residues, 

whilst methylated cytosines are unchanged. Pairs of probes, one pair specific to a 

converted uracil residue, the other pair specific to an unchanged (methylated) cytosine 

are hybridised to target DNA. Allele specific extension followed by ligation creates 

joined probe pairs that can be PCR amplified from common primer sequences. The PCR 

products contain address sequences that hybridise to a bead-based array microarray 

format. The ratio of hybridisation intensities from the unmethylated probe : 

methylated probe is used to determine the methylation status at specific CpG 

dinucleotides. The assumption is made that this accurately reflects the status of 

adjacent CpG dinucleotides. This assumption has been validated (Bibikova et al., 2006) 

using bisulfite sequencing. The principle of the technology is outlined in Figure 2.8. 

Using this technology, the GoldenGate Cancer Panel I methylation array (Illumina, San 

Diego, CA) is able to measure methylation status at 1505 loci mapping to 807 genes. 

The probes have been selected to represent TSGs, oncogenes, imprinted genes and 

genes involved in DNA repair, cell cycle control, differentiation and apoptosis. In 

addition, previously reported methylated genes were included (Bibikova et al., 2006). 

Probes situated both within (n = 1044) and outside of CpG islands (CpG islands were 

defined by Illumina) (n = 461), are represented. Probes are represented by a gene 

name, then the distance of the assayed CpG dinucleotide relative to the TSS (loci 

upstream of the start site are labelled with P (promoter), downstream loci with E 

(exon)), then the strand assayed (forward strand (F), reverse strand (R)). Thus an 

example probe, AATK_E63_R, is measuring methylation at the AATK gene, 63 bases 

downstream of the TSS, with the reverse strand being assayed. 
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Figure 2.8. The principles of the Illumina GoldenGate methylation array. Figure taken from 
Bibikova et al., 2006. A. After bisulfite conversion, specific probes can detect methylated and 
unmethylated CpG residues. B. Allele-specific extension and ligation, followed by PCR from 
common primer sequences enables quantitative comparative measurement of Cy3 
(unmethylated) and Cy5 (methylated)-labelled PCR products when hybridised to a bead-based 
microarray. 

 

   

2.8 Methylation microarray Assay 

Microarray analysis was performed on the Illumina Golden Gate Cancer Panel I 

methylation array at the Wellcome Trust Centre for Human Genetics, Oxford, UK 

according to manufacturer’s protocols (Illumina, San Diego, CA, USA).  

For each locus to be assayed, four oligonucleotides (two allele-specific oligonucleotides 

and two locus-specific oligonucleotides) are designed (Figure 2.8). Pooled query 

oligonucleotides corresponding to the 1505 loci assayed on the array are annealed to 
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bisulfite treated genomic DNA and washed to reduce non-specific hybridisation. 

Hybridised oligonucleotides are then extended and ligated to produce amplifiable 

fragments. Finally, specific fluorescently labelled universal PCR primers (Cyanine 3 (Cy3) 

– unmethylated; Cyanine 5 (Cy5)  – methylated) selectively amplify unmethylated and 

methylated fragments. 

In order to read the signal, pools of 3 µm diameter glass beads bound to specific 

detection oligonucleotides were randomly assembled into a bead array format. 

Because the beads are randomly positioned, a decoding process is used to determine 

the location and identity of each bead at every array location (Gunderson et al., 2004). 

The fluorescently-labelled amplified PCR products are hybridised to the beads. 96 well 

arrays containing the bead mixes were scanned in the Bead Array reader, which 

simultaneously scans at two different wavelengths (532 and 658 nm) to identify levels 

of Cy3 and Cy5 fluorescence.  

Individual files are created for the red and green channels for each sample. Data and 

associated images are exported ready for downstream analysis by the end user in Bead 

Studio v3.2 (Illumina, San Diego, CA, USA).  

Bead Studio is a general purpose program suitable for the analysis of all Illumina array 

data. The methylation module is specifically designed for the analysis of methylation 

array data. After reading in the data, background intensity, calculated from a panel of 

negative controls was subtracted from each data point and a level of methylation, the 

β score was calculated as in the following equation: 

 

β = __________________max(Cy5 intensity,0)_________________ 

         (max(Cy3 intensity,0) + max(Cy5 intensity,0) + 100)  

 

 

The β-value provides a continuous measure of levels of DNA methylation in samples, 

ranging from 0 in the case of completely unmethylated sites to 1 in completely 

methylated sites. 
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2.8.1 Methylation Microarray Quality Control 

Bead Studio contains quality control measures to identify whether the array has run 

successfully. These are summarised in Figure 2.9. Subsequently, an improved method 

for the identification of spatial artefacts, BASH (BeadArray Subversion of Harshlight) 

(Cairns et al., 2008) became available. This software enabled the identification of 

spatial artefacts, enabling these areas to be excluded when calculating methylation 

intensities (Figure 2.10). Since the distribution of beads on the array is random, 

excluding areas due to anomalous intensities will not exclude specific probes due to 

their fixed position on the array. Additionally, since for each probe there are on 

average 60 beads on the array (approximately 30 each of unmethylated / methylated 

probe sequences), the removal of up to 20% of the beads on the array can be 

implemented without detriment to the estimation of the β score (Illumina, personal 

communication).   

When running the test (PNET3) cohort, although previous FFPE samples had achieved 

satisfactory results, 2 inter-array replicates were additionally included to test for 

reproducibility. After masking of the anomalous intensity regions, β scores were 

calculated in the same way as Illumina’s Bead Studio program (section 2.8), and 

exported for further analysis. 

Sample intensities were assessed using the R package, beadarray (Dunning et al., 2007). 

Poorly performing samples were identified by examining scatter plots of signal 

intensity for both red and green channels. Examples of such plots are shown in Figure 

2.11. Finally, quality control (QC) data from Bead Studio were collated with the signal 

intensity plots shown in Figure 2.11. Samples were deemed to have failed QC if they 

failed more than one QC test. 
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Figure 2.9. Bead Studio QC measures. Figure panels are adapted from Illumina’s literature. 
Boxes describe each control step. 

Allele specific extension 

Two probes, mismatched by one base. Only 
one probe should ligate and therefore 
produce a signal after PCR amplification

Bisulfite conversion

Primers are designed for the same locus, 

targeting either converted or unconverted 
DNA sequences. Presence of both signals 
indicates incomplete conversion

Contamination

For each run on the array reader, 1 out of 4 PCR contamination detection primers are added to 
each oligo pool. During each run, only this primer should give a signal. A high signal for any of the 
other three contamination primers indicates contamination from previous runs

Extension gap

Tests the efficiency of extending 15 bases 
from the 3’ end of the allele specific oligo
to the 5’ end of the locus-specific oligo

Gender Control

In males, control loci should be 
unmethylated, whereas females should be 
hemi-methylated. For cancer samples, this 
control is unreliable, since loss of X is a 
frequent occurrence.

Hybridisation Control

Two allele specific oligonucleotides
(ASOs) with differing melting 
temperatures are hybridised to the 
same non-polymorphic locus. Only one 
ASO should extend and produce a signal
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Figure 2.10. Identification of spatial anomalies on bead arrays using BASH (Cairns et al., 
2008). The first row shows reconstructions of intensities across the array. The second row 
shows areas of anomalous intensities identified using the BASH algorithm, marked in red. 
These areas were ignored during subsequent calculation of the β scores. Columns show three 
types of spatial anomalies detected. In the first column, there is a small area of lower intensity 
scores, possibly caused by a fibre on the surface of the array. The second column shows an 
array where there were low intensities around the edges of the array. The third column shows 
the effects of an unintended bubble forming on the array surface. It should be noted that the 
angle of rotation for the BASH masked plots does not match the angle of rotation for the 
image reconstructions.   
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Figure 2.11. Red / green intensity density-scatterplots additionally identify poorly 
performing samples. Scatterplots display red (R intensities, y axis) and green (G intensities, x 
axis) for all data points from an individual array. Due to the large number of data points, their 
occurrence is indicated by shades of blue. High density areas of the plot are shaded dark blue, 
low density in light blue. Where density is low, individual data points are plotted. Panel A 
shows a well-performing sample; densest part of scatterplot is at a high green / low red 
intensity, corresponding to unmethylated probes. The next densest part is at a low green / 
high red intensity, corresponding to methylated probes. The next three panels (B-D) show 
intensity scatterplots of failed arrays. Panel B shows an array where the red channel intensities 
are much reduced. Panels C and D show, with increasing severity, arrays where sample 
intensities are much reduced at both intensities, indicating failed arrays.  

  

A B

C D
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2.8.2 Bland-Altman plot 

The Bland-Altman plot (Bland and Altman, 1986) is a method for analysing the 

agreement between two different assays. It plots the average of the two assays along 

the x axis and the difference between the two estimates on the y axis (Figure 2.12).  

It is designed to overcome the limitation that a simple linear regression between the 

two estimates of a parameter cannot explain whether there is any agreement between 

the two estimates. It can only describe any linear relationship between them. If the 

line of best fit lies along the line of equality, then there is agreement between the two 

estimates, but Pearson’s correlation coefficient, r, does not estimate this agreement. It 

is also sensitive to the range of the parameter being tested. If the parameter has a 

wide range, the correlation coefficient will increase. For this project, this type of plot 

was used to compare estimates of β score estimated by methylation array and bisulfite 

sequencing and provided a method for assessing agreement between two different 

methods. 

 

Figure 2.12. Bland-Altman plots are superior to linear regression for analysing agreement 
between methods. A. Scatter plot showing linear relationship between two methods for 
measuring peak expiratory flow rate (PEFR), with data from Bland and Altman’s original paper 
(Bland and Altman, 1986). There is a strong linear relationship, as demonstrated by Pearson’s 
r2 coefficient. B. Bland-Altman example plot using same data. The x axis shows the average 
PEFR from the two assays and the y axis shows the difference in estimates between the two 
methods. Horizontal dotted lines show the mean difference and two standard deviations from 
the mean difference. It can be seen that there is a large difference in estimates of PEFR 
between the two methods, and that they are not equivalent, despite the strong linear 
relationship between the two methods. 
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2.9 Methods for unsupervised clustering 

Cluster analysis is a broad term that encompasses a number of techniques for dividing 

a dataset into clusters of objects that are similar to one another, and formed an 

integral part of the analyses for this thesis. The different techniques used are briefly 

discussed below.  

2.9.1 Hierarchical clustering 

Hierarchical clustering (HC) is a statistical method for the grouping of related samples 

into clusters which form part of a wider hierarchy. It can be agglomerative, which is an 

iterative process in which clusters are merged until a single cluster which contains all 

samples is obtained. At each step, the two most similar clusters are grouped to form a 

merged cluster (Figure 2.13).  Less commonly, divisive HC can be used, in which all 

samples begin in one cluster. In this case, the most disparate sample (i.e. the most 

dissimilar to all other observations) initiates a ‘splinter group’. In subsequent steps, the 

algorithm reassigns samples that are more similar to the splinter group than the 

original unifying group. This is repeated iteratively until each sample has been placed 

into a discrete group, with the samples in a hierarchy. 

The measure of cluster distance is also important. The most commonly utilised 

measures are average agglomeration (in which the distance between two clusters is 

the average of the dissimilarities between the samples in one cluster and the samples 

in the other cluster) and complete (in which the distance between two clusters is given 

by the largest dissimilarity observed between a sample in the first cluster and a sample 

in the second cluster) (Figure 2.13).   

To perform HC, it is first necessary to measure the similarity between samples. This 

takes the form of a dissimilarity matrix, which quantifies the dissimilarity (or distance) 

between each sample. For numerical data, the most commonly used functions for 

calculating this dissimilarity are Euclidean and Manhattan distance (Figure 2.13). Once 

a hierarchy of clusters has been derived, by cutting the tree at an appropriate level, 

samples can be placed into discrete clusters. While this is one of the strengths of HC, 

since the cluster derivation can be guided by the person doing the analysis, this is also 
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a weakness, since there is a degree of subjectivity in sample assignment, which is 

absent for other techniques, such as k means clustering (section 2.9.5). 

 

 

Figure 2.13. Construction of a hierarchical cluster dendrogram. A and B. The type of 
agglomeration method used can affect the structure of the dendrogram. The most commonly 
used agglomeration methods are shown. In average linkage (A), the average distance between 
two clusters determines their dissimilarity. For complete linkage (B), the dissimilarity between 
two clusters is determined by the distance between the most dissimilar members of a cluster. 
C and D. The most common methods for initially determining the dissimilarity between the 
samples comprising the dataset is shown. The Euclidean function specifies the distance 
between two samples to be the root-sum-of-squares difference, or less formally, as the crow 
flies. The Manhattan function specifies the distance between two samples to be the sum of the 
absolute difference between their positions, or less formally as the city block difference. E. An 
example dendrogram, which is the graphical output of a hierarchical clustering, generated 
from average agglomeration (part A) and Euclidean distance (part C) is shown for a 
hypothetical dataset. In this case, three clear clusters are visible, and if the tree is cut at a 
height of 150, shown with a red line, cluster membership can be assigned on this basis. 
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2.9.2 Principal component analysis 

While not formally a clustering method, principal component analysis (PCA) is a useful 

method for the visualisation and interpretation of the variation within a complex 

dataset. It is fundamentally a dimension reduction procedure, reducing the complexity 

of a dataset to a smaller number of dimensions that can be used to reveal underlying 

structure. In a high-dimensional setting, as is the case for genome-wide arrays, there is 

likely to be a high degree of redundancy within the dataset, i.e. some variables are 

highly correlated, enabling the reduction of the observed variables into a smaller 

number of principal components, which are artificial variables that account for as 

much of the variation in the dataset as possible. A simple two dimensional example 

illustrating the first two principal components is shown in Figure 2.14.  

2.9.2.1 Biplots 

A biplot is an exploratory graph that enables information from both samples and 

variables to be displayed on the same plot. This has been extended to representing the 

results of PCA, and entails the plotting of the two most important principal 

components along the x and y axes, with the samples being shown as a scatterplot 

along these axes and the projection of the variables from which the loadings have 

been calculated to be drawn as arrows, enabling the contribution of the variables, 

measured within the dataset, to the principal components, to be determined. An 

example biplot is illustrated in Figure 2.14. 
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Figure 2.14. Principal component analysis and biplots. A. A two dimensional example of a 
dataset comprising two variables is shown. The first principal component, which accounts for 
as much variation in the dataset as possible, is shown as a blue line, labelled PC1. The second 
principal component, PC2, is calculated orthogonally to the first and represents the next 
largest amount of variation in the dataset. B. An example biplot is shown for a hypothetical 
dataset. The samples are represented as points on a scatterplot, showing the values for the 
first and second principal components, and have been grouped into three (grey circles, red 
triangles and blue squares). The arrows represent the projections of the variables that 
comprise the dataset and show how the red arrows represent variables that identify the red 
triangle group, and the blue arrows represent variables that identify the blue square group. 
The grey circles appear to be negative for all variables, since they are unaffected by the 
projections of the variables.   
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2.9.3 Non-negative matrix factorisation 

Like PCA, NMF (non-negative matrix factorisation) (Brunet et al., 2004; Lee and Seung, 

1999) is a methodology for complexity reduction in high-dimensional data. Whilst 

initially applied to image recognition and textual analysis (Lee and Seung, 1999), its 

utility for class discovery with gene expression data was subsequently recognised 

(Brunet et al., 2004; Kim and Tidor, 2003) and NMF is now a widely used technique for 

class discovery in biological research.  

Essentially, the application of NMF to biological data involves taking high dimensional 

data and describing the variation within the dataset by reducing the variation to a 

small number of metagenes, a process conceptually similar to principal component 

analysis (section 2.9.2).  NMF differs from PCA in that each metagene consists of a 

positive linear combination of variables, so that metagene expression is more 

biologically meaningful than for principal components, which can take negative values 

and are not intuitive. A single metagene, however, can be defined in terms of its 

correlative (and anti-correlative) genes in order to uncover biological meaning. After 

factorisation into a small number of metagenes, the dataset can then be clustered to 

reveal class memberships. The goal of NMF is, from an input matrix A, consisting of N 

probes and M samples, to identify a small number (k) of metagenes that best 

approximate the patterns of variation across the input matrix. This is equivalent 

mathematically to factorising the matrix A into W and H matrices. Matrix W is of size N 

probes by k metagenes and represents the correlation of each input probe with each 

metagene k. Matrix H is of size k metagenes by M samples and represents the 

expression of each metagene for each sample. A simple factorisation on a small 

dataset where k = 2 is illustrated in Figure 2.15. 

 Although the convention is to talk in terms of the ‘expression’ of metagenes, the 

application of NMF to methylation array datasets will nevertheless identify metagenes 

defined by methylation, whose ‘expression’ levels are related to the input methylation 

probes. 

NMF has been reported to out-perform other commonly used clustering methods that 

had previously been applied to high-dimensional biological data, such as HC or self-

organising maps (Gao and Church, 2011). These techniques are disadvantaged by their 
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sensitivity to the metric used to assess sample similarity and, for HC, there is a degree 

of subjectivity in the choice of clusters. However, the stability and reproducibility of HC 

can be improved, by bootstrapping the data and performing multiple clustering runs 

(Suzuki and Shimodaira, 2006) .  

NMF also provides a powerful way to assist in classification across datasets. Let an 

input matrix A1 be factorised into W1 and H1 matrices during the NMF process. Given a 

second input matrix A2, after matching features between A1 and A2, a matrix W2 can be 

calculated based on the correlation of the features of A2 with the metagenes 

calculated from the initial dataset. Since NMF is defined by A ~ W x H, and A2 and W2 

are now known, H2 can be inferred and represents the metagene expression profile in 

a second dataset, enabling comparisons between datasets that share the same NMF-

based dimension-reduction procedure and therefore the same metagenes (Tamayo et 

al., 2007).  

2.9.3.1 Methods to assess optimal numbers of metagenes 

The R package NMF, contains methods useful for deciding upon the optimal number of 

metagenes, so that the underlying structure of the data can be identified. In particular, 

the cophenetic correlation coefficient is a measure of the fidelity with which the 

assigned metagenes represent the underlying structure of the data and can be 

compared across different numbers of metagenes to identify an optimal number.  

Alternatively, a consensus clustering approach can be employed. By iteratively carrying 

out NMF on a subset of the dataset, extracting H values and then projecting them onto 

the whole dataset to calculate H values for the whole dataset and performing a 

classification on the projected H matrix, sample stability can be assessed at a range of 

metagene and cluster numbers to identify the optimal numbers of both. This is the 

basis for the approach described in detail in section 2.9.4. 
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Figure 2.15.  NMF can decompose high-dimensional data into discrete metagenes to reveal 
underlying structure. In this truncated methylation dataset, the heatmap A shows methylation 
probes (n = 100) for medulloblastoma samples (n = 23). Unmethylated probes are shown green, 
methylated probes in red. Hemi-methylated probes are black. The NMF process factorises the 
matrix A into two matrices W and H. Matrix W has size N rows by k columns, where k is the 
number of metagenes. Each data point for matrix W represents the coefficient of a 
methylation probe with that particular metagene. Probes with low correlation to the 
metagene are shown in blue, high correlation in red. Matrix H has size k rows and M columns, 
where each column represents the metagene expression profile for a given sample. For matrix 
H, high metagene expression is shown red, low metagene expression in blue. In this example, 
there are two metagenes, corresponding to two discrete groups. The matrix A is factorised into 
matrices W and H, revealing two classes characterised by their metagene expression. The line 
graph numerically shows the expression of metagenes, using the same data shown in the 
heatmap above, to illustrate the clear difference in metagene expression between the two 
classes. 
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2.9.4 Consensus-based unsupervised clustering approach 

Unsupervised cluster analysis was undertaken in order to investigate whether there 

were any subgroups of medulloblastoma, defined by differences in their methylation 

patterns. A consensus-clustering based approach was applied. The approach, 

described below in detail, was initially used to determine whether using the whole 

dataset or a dataset where non-informative probes were removed, produced the most 

stable clusters. Maximum stability was achieved using filtered data. Retained probes 

had at least 5% of samples with a β score over 0.17 or at least 5% of samples with a β 

score less than 0.83. These figures (0.17 / 0.83) were chosen since the limits of 

detection of this assay are reported to be 0.17 (Bibikova et al., 2006). 

 The second step involved selecting the optimal number of clusters within the training 

cohort using NMF (see section 2.9.3). For every combination of 2:6 (x) metagenes and 

2:6 (y) clusters, the following steps were repeated 100 times:  

 1: Randomly select 80% of the dataset 

 2: Perform NMF for x metagenes on this randomly selected subset 

 3: Project H values from this factorisation onto whole dataset 

 4: Classify by k means algorithm into y clusters using projected H values 

 5: Store classes for each sample 

For each combination of metagenes and clusters, the most stable clustering solution 

was identified by examining the average sample assignment consistency i.e. the 

average modal cluster score across all samples. After selecting the optimal number of 

metagenes and clusters, non-classifiable (NC) samples were defined as samples which 

were assigned to the same cluster less than 80% of the time.  

After selecting the optimal number of metagenes and clusters, the consensus 

clustering approach was applied to the test dataset to pre-emptively identify NC 

samples within that cohort. This analysis was repeated using datasets with both intact 

X chromosome probes and with X chromosome probes removed. The consideration of 

the X chromosome is important, since females with diploid X chromosomes will have 

one X chromosome silenced through methylation (Wutz and Gribnau, 2007), whilst the 

single X chromosome of males will be predominantly unmethylated in euchromatic 

regions. Retaining the X chromosome probes might induce uncertainty in cluster 
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assignment by confounding with gender specific differences. Since removing X 

chromosome probes produced a more stable solution, subsequent analyses were 

carried out on datasets in which the X chromosome probes had been removed.  

The third step involved taking the training dataset from which the NC samples were 

removed and implementing NMF with the optimal number of metagenes. This process 

was repeated 200 times and the most stable solution selected. The H values for the 

training dataset were extracted and used to project H values for the test dataset (see 

section 2.9.3). 

The k means algorithm (see section 2.9.5) was used to assign samples to fixed classes 

using the optimal number of clusters identified in the second step, using 1000 

iterations and 50 starts. These class assignments formed the basis for subsequent 

construction of metagene classifiers. 

2.9.5 K means clustering 

K means clustering is a method of cluster analysis that partitions samples into a pre-

specified number of clusters, so that each sample belongs to a cluster with the nearest 

mean. It is an iterative algorithm, repeating until convergence is reached. It is limited 

because the number of clusters has to be pre-specified and also that the cluster 

solution depends on the initial conditions, so that the algorithm has to repeated many 

hundreds of times to reach a stable solution.  

The algorithm consists of two parts. In the first step, each sample is randomly assigned 

to one of k classes.  In the second step, the initial cluster means are calculated to be 

the centroid of the cluster’s randomly assigned members. K clusters are then created 

by associating each sample to its nearest cluster mean. The centroid of each cluster is 

recalculated and becomes the new mean. Samples are reassigned to one of k clusters 

by associating each to its nearest cluster mean. Step two is iteratively repeated until 

convergence is reached. The process is illustrated in Figure 2.16.  
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Figure 2.16. The k means algorithm for sample classification. The first steps of the algorithm 
are illustrated. The first step is spread across two panels. Three samples are randomly assigned 
to be cluster means in the first step (shown as differently coloured circles). In the second panel, 
samples are assigned to groups on the basis of their nearest mean. In the third panel, the 
sample means are re-calculated (means no longer correspond to samples and are shown as 
stars) and the samples reassigned based on the new mean values for the cluster centres. The 
process is repeated until stability is reached (i.e. there is no change in class assignment).  
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2.10 Assessment of clustering assignment 

One powerful way to assess cluster assignment is also one of the simplest. Plotting the 

loadings of principal components after PCA (see section 2.9.2) can quickly reveal 

underlying patterns within the data. If desired, covariance spheroids (see below) can 

be plotted over putative class assignments to reveal whether there is evidence for 

separation of the classes. This is illustrated in Figure 2.17. 

 

 

 

 

 

Figure 2.17. Assessment of cluster assignment by PCA. 3D Plot shows subgroup membership 
for illustrative data plotted against the first three principal components. Component axes are 
labelled (Comp. 1, 2 and 3). Samples have been assigned to 5 subgroups (red, pink, orange, 
green, blue). Covariance spheroids have been calculated and the 95% confidence intervals 
plotted for each subgroup, shown in translucent colours. In this case, three orange cases are 
overlapping the pink group and are potentially misclassified. 
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2.10.1   Silhouette Plots 

Silhouette plots are a useful, easily interpretable graphical measure of cluster 

assignment (Rousseeuw, 1987). First, a distance measure is calculated from the 

dataset in question. This distance measure is used to calculate the average dissimilarity 

between every sample and the other members of the cluster to which the sample 

belongs (a). For each cluster for which the sample is not a member, the average 

dissimilarity between the sample and the cluster mean is calculated. The smallest 

dissimilarity indicates the cluster neighbour of the sample in question and is 

designated as b. Finally, the silhouette score is calculated by subtracting b from a and 

dividing by the maximum of b or a, in order to ensure minimum and maximum 

silhouette scores of -1 and 1 respectively. Observations with a silhouette score close to 

1 are very well clustered, since they are not near neighbour clusters. A score of around 

zero indicates samples that may lie between two clusters and negative scores indicate 

samples which are potentially placed into the wrong cluster. An example silhouette 

plot is shown in Figure 2.18. 
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Figure 2.18. Silhouette plots are useful for the assessment of cluster assignment. Each 
sample is represented by a horizontal bar. Clusters are shown in different colours. For each 
cluster, samples are ranked in descending order of silhouette score. In this example, there are 
four clusters, with all samples having a positive silhouette score indicative of a satisfactory 
clustering. Alongside each cluster, information is included. J is the cluster number; nj is the 

number of samples within each cluster; avecj si is the average silhouette width per cluster.   
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2.11 Over-fitting 

The reason for carrying out class discovery in cancer is to identify underlying structures 

within the data that might ultimately be useful for disease classification, 

prognostication and / or informing treatment choices.  

Due to the high dimensionality of genome-wide assays, the classification of samples 

using this type of data is very prone to over-fitting, and may lead to the identification 

of biologically irrelevant subgroups. Classifiers can be constructed that, while 

performing well on the original dataset, are not reproducible in future studies 

(Ransohoff, 2004). In particular, for cancers with relatively low incidence such as 

medulloblastoma, the number of samples in genome-wide studies will be vastly 

outweighed by the number of variables assessed. One approach to ameliorate this 

problem is to split the dataset into training and test cohorts, carrying out class 

discovery in the training cohort and validating any findings in the test cohort.  The 

absolute separation of test data, which are used for validation only, from training data 

should prevent over-fitting when used to validate classes identified in the training 

dataset, and is an absolute requirement for any model that may ultimately influence 

clinical decisions. 

2.12  Support Vector Machines  

Once class membership has been confidently assigned, classifiers can be used to 

predict class membership both in the training and test cohort. Predicting membership 

within the training cohort enables assessment of classifier performance on the dataset 

from which it was derived. Subject to satisfactory performance on the training dataset, 

subsequent classification of the test dataset can be undertaken. Class uncertainty can 

be calculated and samples whose classification is less robust can be identified, and, if 

necessary, removed from further analyses. Next, clinico-pathological correlates of the 

assigned groupings can be tested across the training and test datasets to ensure that 

patterns of correlation are maintained across class, regardless of whether the sample 

arose from training or test datasets.  

The most widely used method of classification in genome-wide studies is  support 

vector machines (SVMs) (Chang, 2001), and has been reported to be the most effective 
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classifier when applied to the classification of cancer from transcriptomic data 

(Statnikov et al., 2005).  SVMs appear to be insensitive to the high-dimensionality of 

genome-wide datasets and perform well in a cancer classification context using small 

numbers of samples (Irgon et al., 2010). Initially applicable only to binary classification, 

subsequent work demonstrated the utility of multi-category SVMs (MC-SVMs) in 

cancer (Lee and Lee, 2003).  The construction of an SVM is outlined in Figure 2.19. 

Essentially, training vectors (i.e. variables) are mapped into higher dimensional space 

by a function φ. The SVM then identifies a linear separating hyperplane that separated 

classes by a maximal margin in this higher-dimensional space. The function φ is known 

as the kernel function and is most commonly linear or radial (see section 2.12.1). Every 

kernel has a cost parameter, which is the penalty parameter of the error. 

MC-SVMs are an extension of the binary SVM described above. For this scenario, the 

multi-class problem is split into multiple binary classifications, comparing every 

combination of pairs of classes. Classification is then carried out by a voting strategy, 

where each combination of class-pair classifiers assigns each sample to one of two 

classes. All the comparisons are tallied and for each sample, the class with the most 

votes is returned. 

2.12.1   SVM Kernels 

The choice of kernel for constructing a SVM depends upon the complexity of data 

being considered. For high-dimensional data, such as genomic or transcriptomic data, 

it has been reported that the linear kernel performs well (Furey et al., 2000). For less 

complex data, a radial kernel is often a more suitable choice. A radial kernel is 

illustrated in Figure 2.19, where data are shown that are not linearly separable, but 

become so when transformed into higher dimensional space. When using a radial 

kernel, it is necessary to specify an additional parameter, gamma, that is optimised 

during the tuning process (see section 2.12.2). 

2.12.2   Tuning SVM model 

In order to construct a well-performing SVM, it is necessary to tune the model to 

identify optimal parameters. At the same time, it is important to avoid over-fitting to 

the training dataset. This can be avoided by employing cross-validation (section 2.12.3). 
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During the tuning process, different values of the cost and gamma parameters, if using 

a radial kernel, and cost only if using a linear kernel are used to construct a SVM, and 

the accuracy on the training set checked through cross-validation. The optimal value(s) 

for the parameter(s) is / are returned.   

2.12.3   Cross-validation 

During the tuning process, cross-validation can be employed to try to avoid overfitting 

the model to the training data. In this project, leave-one-out cross validation (LOOCV) 

was used to ameliorate the effects of over-fitting to training datasets. This involves 

taking in turn a single sample from the training dataset (n samples in total) as the 

validation dataset and all remaining samples (n-1) as the training dataset. The SVM is 

constructed on the training set and used to predict class membership for the single 

validation sample. This is iteratively repeated until each sample will have acted as a 

validation set once. The cross validation accuracy is the percentage of data which are 

correctly classified compared to the SVM constructed using the whole dataset.  

2.12.4   Confusion Matrices 

A confusion matrix is a simple way to assess classifier performance. If the classifier is 

applied to a dataset in which the class is already known, the classes assigned by the 

classifier can be directly compared, and any discordant classifications can quickly be 

identified. An example confusion matrix is shown in Table 2.5. 

  
True Class 

  
A B C D 

C
lassifier- 

assign
ed

 
class 

A 25 0 0 1 

B 0 30 0 0 

C 0 0 57 0 

D 0 0 0 18 

Table 2.5. Confusion matrices and their interpretation. In this case, true class (A to D) is 
shown in columns, and the class assigned by the classifier (A to D) is shown in rows. The 
number of class assignment matches can be assessed. In this example, 1 case with a true class 
of D has been incorrectly classified as A by the classifier.   
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Figure 2.19. Principles of SVM. The figure shows samples from two classes (blue triangles and 
red circles). Input data are impossible to separate linearly. By transforming data using the 
specified kernel function, a transformation φ is used to construct a higher-dimensional 
hyperplane, so that the separation between the classes is maximised.  Samples that lie closest 
to the margin, indicated with arrows, are known as support vectors. The line that separates 
the classes is known as a maximum margin classifier. If it is not possible to separate the classes 
without error, soft margins are used that split the classes optimally, maximising distance 
between cleanly split samples. 

  



150 
 

2.13 Survival analysis in medulloblastoma 

2.13.1   Event free and overall survival in medulloblastoma 

For survival studies of medulloblastoma, two outcomes are commonly measured: 

Event free survival (EFS) and overall survival (OS). EFS and OS are defined as the time 

periods between diagnosis of disease (or commencement of treatment) to relapse or 

progression / death, respectively. Within medulloblastoma research, EFS has been 

favoured over OS as a measure of survival since, after relapse, patient survival is 

exceedingly rare, but time to death may be influenced by second-line therapeutic 

strategies. The decision to commence further therapies following relapse is variable, 

with the majority of further treatment being palliative. EFS is a more accurate 

reflection of survival risk, since the period between relapse and death can be variable 

due to factors unrelated to disease severity.    

2.13.2   Kaplan-Meier plots and log-rank test 

The construction and analysis of survival curves is fundamental to the identification of 

prognostic factors in cancer. The Kaplan-Meier estimator (Kaplan and Meier, 1958) is 

used to measure the proportion of patients living with or without an event occurring 

for a set time following diagnosis or treatment. When a large enough sample size is 

studied, the survival curves will approximate the survival in the whole population. For 

medulloblastoma, the subdivision of the disease according to clinico-pathological 

features and / or molecular markers is desirable, so that treatment options can be 

tailored to patient risk, ensuring that patients with a good prognosis are treated with 

protocols that, while maintaining cure rates, will reduce therapy-related side effects in 

later life, whilst continuing to aggressively treat patients with a poor prognosis. An 

example Kaplan-Meier plot is shown in Figure 2.20. 
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Figure 2.20. Example of a Kaplan Meier curve. Graph shows a small hypothetical cancer 
cohort that is assessing the difference (if any), between two treatments (1 (red) and 2 (blue)). 
The two lines represent the observed proportion of relapses in the cohort. Since patients will 
be recruited to the trial at different time points, the follow up time will be different between 
patients. If a patient has not yet relapsed at the end of the observation period, the patient is 
said to be censored at that point. These censor points are marked with pluses on the curve. 
Relapsing patients will be identifiable where the curve steps downwards. In this plot, the bar 
graph on the right indicates the absolute number and proportion of patients assigned to each 
treatment. The table below the graph is an at-risk table and is used to assess the effective 
population size for each treatment at two-yearly intervals. The number will reduce over time 
due to patient relapse or through censoring. On the bottom right, the log-rank test assesses 
whether the difference in the curves observed is statistically significant (see next paragraph). 
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 For statistical interpretation of survival data, the log-rank test (Bland and Altman, 

2004; Mantel, 1966) is applicable to censored data. It tests the null hypothesis that 

there is no difference in survival between two or more groups. It calculates the 

difference between the observed number of events and the expected number of 

events if there was no difference between the populations at each timepoint where an 

event occurs. A chi-squared test of the null hypothesis, at the appropriate degrees of 

freedom, can be used to calculate a ‘p’ value. Cox proportional hazards models, which 

additionally identify the severity of associations, can assess the effects of more than 

one covariate and are applicable to continuous covariates, will be discussed in section 

2.14.    

2.14  Cox proportional hazards model 

The Cox proportional hazards model (Bradburn et al., 2003; Cox, 1972) is the most 

widely used multivariate approach for analysing survival data in a clinical setting. At its 

most simple, it models survival times (or, more specifically, the hazard function) using 

explanatory variables.  

The hazard function is the probability that any individual will experience an event 

during a given time interval, given that the individual has survived to the beginning of 

the interval. The Cox proportional hazards model is a form of (multiple) regression, 

where the relationship between the dependent variable, the hazard function, is 

compared against explanatory variables.   

For each considered explanatory variable, a hazard ratio and ‘p’ value is reported. The 

‘p ‘value is calculated by dividing the natural log of the hazard ratio by its standard 

error, and comparing the result against the normal distribution. Values greater than 

1.96 are significant at a 5% level. 95% confidence intervals can be calculated for the 

estimated hazard ratio to determine whether or not this interval includes a hazard 

ratio of 1, indicating a non-significant covariate. An example output from a Cox 

proportional hazards model and its interpretation is shown in Table 2.6.  
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Covariate Hazard Ratio  95% Confidence 

Interval (CI) 

‘P’ value 

Age 0.91 0.74 – 1.13 0.40 

Histology 1.56 1.05 – 2.33 0.029 

Treatment 0.73 0.59 – 0.91 0.0052 

Table 2.6. An example Cox model from a hypothetical cancer dataset. In this multivariate 
analysis, each tested covariate is included in a multiple regression against survival. For each 
covariate, the calculated hazard ratio, 95% confidence interval and ‘p’ value are given. For 
continuous variables such as age, the hazard ratio refers to the increase in hazard for an 
increase of 1 in the value of the covariate. In this example, the risk of an event decreases by 9% 
if the patient is a year older, after adjustment for other covariates in the model. However, this 
is not significant, and the 95% confidence intervals span 1, suggesting that age has no bearing 
on survival. This is in contrast to categorical variables such as histology, where the presence of 
the histology being tested confers a 56% increase in the risk of an event. Since the 95% 
confidence intervals do not include 1, this is interpreted as significant at the 5% level.  The 
application of the treatment being tested confers a 27% decrease in the risk of an event, and 
this is significant at the 1% level.  

 
 

2.15  Selection of potentially testable putative prognostic 

methylation probes 

Before the identification of prognostic covariates can begin (section 2.16), probes with 

low variability or low range can be filtered out, since they are unsuitable for 

consideration as predictive biomarkers, because they are non-testable. Probes with at 

least 5% of cases highly methylated (β score > 0.8) and at least 5% of cases 

unmethylated (β score < 0.2) were selected as being potentially prognostic. The 5% 

cutoff was chosen since this is approximately the frequency with which amplifications 

of the prognostic oncogenes MYCC and MYCN are observed in the disease (Pfister et al., 

2009; Rutkowski et al., 2007).   

2.16  Methods of measuring bimodality 

 An idealised prognostic methylation marker would show a sharply bimodal 

distribution with modes at 0 and 1 that correlated well with survival. This bimodal 

difference would be easier to distinguish in subsequent tests than a methylated probe 
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with a unimodal distribution. To ensure that probes potentially testable in future 

assays of prognostic probes would be easily testable, the bimodality index (Wang et al., 

2009a) can be applied to the pre-filtered methylation probes (described in section 

2.15). For each probe tested, the bimodality index is calculated, a measure of the 

probe bimodality. Since the bimodality index is returned as a continuous variable, 

probe lists can be ranked in order of bimodality. While previously applied to high-

throughput transcriptomic data, histograms of the β score distribution of the top three 

most and least bimodal probes  (Figure 2.21), selected from a pre-filtered selection of 

methylated probes (section 2.15), demonstrate that this technique is also applicable to 

high-throughput methylation data. 
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Figure 2.21. Bimodal index can identify probes compatible with subsequent use as 
prognostic biomarkers. Most (left hand column) and least (right hand column) bimodal 
methylation probes are shown as barplots. Methylation β score, classed into ten bins is shown 
on the x axis, with frequency per bin on the x axis. 
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2.17 Cox boost algorithm 

The application of high-dimensional data, typical of transcriptomic or methylomic 

array-based experiments, in a survival setting is prone to over-fitting (section 2.11), 

since the number of potential covariates will be much larger than the number of 

samples on which the study is based. Strategies, all utilising cross-validation-based 

methods (section 2.12.3), have been explored to overcome this limitation. Supervised 

principal component survival analysis (Bair and Tibshirani, 2004) combines the effects 

of many weak predictors of survival to identify stronger predictors of survival. This 

approach is limited since it reports multi-component survival markers without taking 

into account any existing clinical variables. This raises the possibility that any reported 

significant associations are simply due to correlations with previously identified clinical 

survival correlates.   

A more desirable approach would select covariates from high-dimensional data that 

are complementary to existing clinical survival covariates, avoiding the identification of 

covariates that are simply correlating with established clinical covariates. This is the 

approach taken by the Cox boost algorithm (Binder et al., 2009), which tests covariates 

for prognostic potential alongside mandatory clinical variables. It results in a sparse 

classifier, i.e. the algorithm preferentially chooses a smaller number of high-

dimensional covariates with additional predictive value, with the majority of covariates 

having no predictive power. To ensure sparseness, a penalty score is chosen which 

balances the predictive power of each potentially included covariate. 

Desired clinical covariates are forced into the model and subsequently, a boosting 

approach is used to identify potentially prognostic optional covariates. Boosting is a 

general method of formulating a very accurate predictor by combining a number of 

less accurate predictive covariates. In this context, a set of predictive covariates from 

high-dimensional data can be combined with mandatory clinical covariates to produce 

an optimal survival model. In each boosting step, the estimated prognostic potential 

for each optional covariate is recalculated, based on the penalty score for including 

extra covariates and offset by previous boosting steps. After the optimal number of 

boosting steps, a final model is reported. 
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For this project, the initial Cox boost model was specified to include the appropriate 

mandatory clinical variables. Subsequently, the optimal parameters for picking the 

optional covariates could be selected. The parameter for the optimal number of 

boosting steps was chosen using LOOCV with respect to the partial log-likelihood. Next, 

the optimal penalty for including optional covariates was chosen at the optimal 

number of boosting steps. By optimising the number of boosting steps through cross-

validation, the effects of over-fitting can be reduced (Binder et al., 2009). 

Finally, the optimal model was calculated, which identified any optional covariates 

with added prognostic potential. Permuted ‘p’ values were calculated for the selected 

optional covariates using LOOCV. 

2.18 ROC curves to assess predictive performance 

Originally formulated by Allied forces during World War II to help quantitatively assess 

the verisimilitudinous identification of enemy objects on radar traces, the Receiver 

Operating Characteristic (ROC) plot is a visualisation of the sensitivity (or true positive 

(TP) rate) versus false positive (FP) rate (which is defined as 1 – specificity).  

ROC curves are most often used for the assessment of classification. A perfect 

classification would have 100% sensitivity and 100% specificity, and a random classifier 

would have 50% sensitivity and 50% specificity (Figure 2.22).   

They have been applied in a clinical setting, where they have several useful features. 

Firstly, the power to discriminate TPs can be visually identified without resorting to a 

specific threshold of detection. They are also useful for assessing the discriminatory 

power from several different classification schemes. Finally, the area under the ROC 

curve (AUC) can be interpreted as the probability that a test result from a randomly 

selected individual positive for the outcome being assayed exceeds that of a randomly 

selected individual negative for outcome, and is a useful summary of the predictive 

power of the classifier being considered. 

Initially applied to assaying disease status and other binary outcomes in a disease 

setting, the application of ROC curves to survival analysis has been described (Heagerty 

et al., 2000), and is a useful measure of the predictive power of a disease classifier in a 
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survival context. An example ROC curve applied to a hypothetical survival cohort and 

its interpretation is shown in Figure 2.22. 

 

 

Figure 2.22. The receiver operating characteristic (ROC) curve is useful for assessing 
classification performance. The ROC curve shown in black is based on a hypothetical cancer 
survival cohort. For a given time period of follow-up (in this case, 1 year), the classifier (black) 
demonstrates how the true positive rate (TP – y axis) varies with the false positive rate (FP – x 
axis). The classifier is performing very well, since for a given true positive rate, the false 
positive rate is much smaller; in the plot, this is shown by the steeply ascending ROC curve. 
This is also shown by the area under the curve (AUC) of 0.932. By plotting ROC curves at 
different time points, the utility of the classifier across different follow up periods can be 
assessed.  

For comparison, a classifier with no predictive power (red line) is also shown along the unit line, 
demonstrating a situation where it is impossible to tell a true positive from a false positive. A 
classifier with perfect predictive power (blue line), has an AUC equal to 1.   
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2.19 Nomograms 

Nomograms are a useful method for the graphical representation of the strength of 

risk factors in a multi-variate model of survival. Although they have fallen out of favour 

with the widespread adoption of computers (a nomogram can easily be replaced by a 

simple function), they remain useful for visual inspection of effect sizes in regression 

models, such as the Cox proportional hazards model. 

In this project, nomograms were used to visually compare the risk factors from a Cox 

proportional hazards model (section 2.14). To assess patient risk, the points score for 

each risk factor is calculated and the total risk score is then used to read off the hazard 

score, which is a linear predictor of risk. This is related to the hazard ratio returned 

from the Cox proportional hazards model, which is the exponent of the linear predictor 

of risk. Nomograms were plotted using the R package Design. An example nomogram 

is shown in Figure 2.23.  

 

 

Figure 2.23. Nomograms are useful for visual inspection of the strength of the effects of 
selected risk factors. In this hypothetical example, two factors (age and sex) are considered for 
their effect on survival. The points score for each case is calculated based on its age and 
gender. For example, a 50 year old male would receive 50 points for age and 16 points for 
being male, giving a total of 66 points, equating to a hazard score (linear predictor) of 0.25. 
This is equivalent to a hazard ratio of 1.28 relative to the null model.  
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2.20 Classification and Regression Trees 

The classification and regression tree (CART) method for risk stratification was used to 

identify variables that best separate patients into differential risk groups. The 

technique is used to create a model that predicts the target variable (in this case, 

survival) based on several risk factor covariates. The cohort is successively divided into 

groups of cases with similar response patterns, at each step splitting a node into two 

subgroups using the covariate that best discriminates survival outcomes using the 

likelihood ratio test. This continues until subgroups have reached a minimum size or 

when no covariate can further split subgroups.  

It has the advantage that it is simple to understand and interpret, but can be subject to 

over-fitting (section 2.11). The tree can be cross-validated to avoid this limitation. The 

R package rpart was used to generate the decision tree shown, using a minimum 

subgroup size of 5 cases and LOOCV (section 2.12.3) to avoid over-fitting. An example 

decision tree is shown in Figure 2.24. 

2.21 Statistical Analyses 

Statistical analyses were performed using the R program, version 2.12 (R foundation). 

Statistical significance was tested using t tests, analysis of variance (ANOVA), Fisher’s 

exact test, Tukey’s honest significant difference and Chi-squared test. Survival 

associations were tested using log-rank tests (section 2.13.2) and Cox proportional 

hazards test (section 2.14). ‘P’ values were uses to assess significance. Further details 

of specific analyses are shown where appropriate. 
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Figure 2.24. CART analysis provides an easily interpretable means of assigning risk 
stratification. In this hypothetical dataset, two factors, number and size of tumours are 
considered. The decision tree can be read according to the instruction at the top of each node. 
For example, the first node considers the number of tumours. In this case, 200 cases have less 
than 1.5 tumours and are assigned to the left hand branch. The remaining 140 cases are 
assigned to the right hand branch, which ends in a terminal node, with a hazard ratio of 1.47. 
Below each hazard ratio, the total number of cases falling within that node is shown as the 
denominator, with the number of cases experiencing relapse is shown as the numerator. So for 
the right hand terminal node, 65 / 140 cases experienced a relapse. In this way, the tree 
identifies four terminal nodes, with hazard ratios of 0.137, 0.836, 0.861 and 1.471. Clearly, in 
this dataset, a patient with one tumour of between size 1.5 and 2.5 is at a significant survival 
advantage compared to the remaining cases, 
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Chapter 3. Design and implementation of an assay for rapid 
diagnosis of medulloblastoma subgroups 
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3.1 Introduction 

The constitutive activation of WNT and SHH signalling pathways (Clifford et al., 2006; 

Ellison et al., 2005; Raffel et al., 1997) has been shown to play important roles in the 

pathogenesis of medulloblastoma (section 1.3.9.2, 1.3.10.2). Moreover, the mutation 

of specific pathway components represents the majority of mutations associated with 

medulloblastoma to date. 

The SHH pathway is activated by mutation of PTCH1 in approximately 10% of 

medulloblastomas (Ellison et al., 2003) and loss of Ptch1 has been shown to drive 

tumourigenesis in mouse models of the disease (Kim et al., 2003; Goodrich et al., 1997), 

where it stimulates inappropriate proliferation of GNP cells (section 1.3.9.1). Similarly, 

mutation in WNT pathway components have been described in up to 20% of cases 

(Dahmen et al., 2001; Eberhart et al., 2000; Huang et al., 2000).  

 Activation of these pathways in medulloblastomas is an important clinical indicator. 

WNT pathway activated medulloblastomas have a favourable prognosis (>90% OS) 

(Gajjar et al., 2006; Ellison et al., 2005) and small-molecule inhibitors of the WNT 

pathway are in the early stages of development (Lu et al., 2011; Baryawno et al., 2010). 

Small molecule inhibitors of SHH pathway activated tumours show pre-clinical and 

early clinical activity against the disease (Rudin et al., 2009; Romer et al., 2004).  

Transcriptomic investigations of the disease (section 1.3.12.1) have revealed that 

medulloblastoma comprises distinct molecular disease subgroups (Cho et al., 2011; 

Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006). The precise number of 

subgroups reported varies from 4 to 6, however two subgroups characterised by 

activation of the WNT and SHH pathway are consistently reported by these studies.  

The WNT subgroup is the best described molecular disease subgroup, and is 

characterised by mutation of CTNNB1, nuclear accumulation of β-catenin and 

chromosome 6 loss (Fattet et al., 2009; Clifford et al., 2006; Thompson et al., 2006; 

Eberhart et al., 2000). The determinants of SHH subgroup membership are less well 

defined. Mutations in PTCH1 are only reported in a subset of SHH cases, indicating a 

role for other mechanisms and correlates. A number of putative determinants of SHH 

pathway activation (e.g. PTCH1 hypermethylation, mutation of SUFU / SMO  and REN 

(KCTD11) genetic loss) have been reported in medulloblastoma (Diede et al., 2010; Di 
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Marcotullio et al., 2004; Taylor et al., 2002; Reifenberger et al., 1998), but their 

relationship to the SHH subgroup remains to be established. Moreover, the clinical 

features of the SHH subgroup require clarification. SHH activation has been associated 

with the DN disease histology in some studies, but not others, and associations with 

infant cases have also been reported (Kool et al., 2008; Taylor et al., 2002; Pietsch et 

al., 1997; Wolter et al., 1997). 

In the near future, it is likely that identifying WNT and SHH tumours will become an 

important part of medulloblastoma diagnostics, for the selection of subtype 

appropriate therapeutic stratification and application of specific biological therapies 

that target specific signalling pathways. Until recently, robust subgroup identification 

of non WNT cases has relied on advanced genomic techniques (i.e. microarray) 

technologies, which are expensive and not practicable for the routine diagnosis of 

medulloblastoma subgroups. Subsequent to the completion of work reported in this 

chapter, GAB1 and SFRP1 immunopositivity have been reported to characterise SHH 

tumours (Ellison et al., 2011b; Northcott et al., 2010) and antibody markers for the 

remaining WNT / SHH independent tumours have been described (Northcott group C – 

NPR3; Northcott group D – KCNA1) (Northcott et al., 2010).  

 The identification of robust biomarkers for subgroups and the development of assays 

to test them, which can be routinely used across multiple treatment centres, using 

small amounts of biopsied material, will be essential for any clinical application. A 

number of new approaches suitable for clinical testing of gene signatures have 

recently become available. Examples include the GeXP system (Beckman Coulter, 

Fullerton, CA, USA) and the Nanostring platform (Nanostring Technologies, Seattle, WA, 

USA). These technologies are a cost-effective and high-throughput means of 

simultaneously assaying gene expression in multiple genes (GeXP – 30 genes; 

Nanostring – 50 -70 genes). In this chapter, a novel method for testing gene signatures 

of WNT and SHH pathway activation, that can be rapidly applied to small amounts of 

clinical material using an array-independent methodology, was developed for the 

identification of WNT and SHH subgroup membership in medulloblastomas, which 

formed the basis for investigations of pathway correlates in wider cohorts.  This was 

coupled with a comprehensive investigation into the determinants of pathway 

activation to define the clinical and molecular characteristics of each subgroup. 
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3.2 Aims 

The work reported in this chapter aimed to: 

 Develop and validate minimal mRNA expression signatures for the diagnosis of 

WNT and SHH pathway activated subgroups in clinical material. 

 Apply the signatures to a cohort of medulloblastoma RNA samples and assign 

samples to a signature subgroup (WNT, SHH, WNT / SHH independent). 

 Apply the signatures in silico to available transcriptomic datasets and classify 

them into signature subgroups. 

 Implement a comprehensive investigation of the determinants of SHH pathway 

activation and investigate their correlation with subgroup membership. 

 In a combined cohort, consisting of the primary cohort and the available 

transcriptomic datasets, to undertake a meta-analysis to investigate the clinical 

and molecular characteristics of each subgroup and their utility for improved 

disease management. 
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3.3 Materials and methods 

3.3.1 Description of cohort  

A representative, 55 member cohort, comprising RNA extracted from snap-frozen, 

primary medulloblastoma samples was selected, as detailed in section 2.1. A panel of 

constitutional DNA samples from 100 normal individuals was obtained from the North 

Cumbria Community Genetics Project (UK). Research Ethics Committee approval had 

been obtained for the collection, storage and biological study of all material.  

3.3.2 Extraction of nucleic acids 

DNA and RNA were extracted from snap-frozen tumour samples and medulloblastoma 

cell lines MED1, MED8A, D283, D425, D458, D384, D556, D341, UW228 and DAOY 

using Trizol (Invitrogen, Carlsbad, CA, USA) according to manufacturer’s instructions, as 

detailed in section 2.2.1. RNA quality and quantity of primary medulloblastoma 

samples was assessed using the RNA nano II assay on the 2100 Bioanalyzer (Agilent, 

USA), as described in section 2.3.2.  

3.3.3 A mutational screen to identify known genetic defects of 

medulloblastoma 

All coding exons of the PTCH1 and SMO genes were PCR amplified using the primers 

and conditions shown in Table 3.1. The coding exons of the SUFU gene were PCR 

amplified using previously published primers (Scott et al., 2006). Mutation screening 

was performed using denaturing high-performance liquid chromatography (dHPLC) on 

the Transgenomic WAVE system (Transgenomic, Cheshire, UK). To identify mutations, 

heteroduplex formation, before and after spiking with equal amount of control, wild-

type DNA was assessed according to manufacturer’s instructions. Samples whose 

elution profile differed from the wild type controls were directly sequenced on an ABI 

377 sequencer (Applied Biosystems). In reported studies, dHPLC has been shown to 

identify >90% of sequence variants (Scott et al., 2006).  Mutation analysis of the 

CTNNB1 and APC genes was performed as previously described (Ellison et al., 2005). 

This work was conceived and implemented by Dr. Debbie Scott and Dr. Debbie 

Straughton (both Newcastle University Brain Tumour Research Group). 
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Exon Primer Forward  
(5'-3') 

Primer Reverse  
(3'-5') 

Primer  
Annealing  
Temp (°C) 

Product 
Size 
(bp) 

1B CAATGGAAGGCGCAGGGTCTGA TTGGGATCGCCCCCGCCAC 56 513 

2 GCAAGCGGGCGTGGGCGCGCGG ATAGAGATATTCGCCAGCGCA 60 337 

3 GCAGGTAGTCAGATAACAGA TGGGAGAAGGCTGCTGGTTTA 60 335 

4 GAATTTGCACTAATTTCTTAT TAGTGTGCCTTAACCTAACGC 61 198 

5 AATTTCTCAGGAACACCCCA AATGTTGCTTATCATTGTTTG 61 239 

6 CGATGCGTTTAGAAGGCTCTT GAAGGGTGGAGAGCAAAACAC 59 299 

7 CTTATGCACTGGATTTTAACA AAGCCACTTCCCTCCTGACA 59 274 

8 GAGGCAGTGGAAACTGCTTCCT TGGTTATGCAATTCTTCATTT 59 266 

9 AGGCTTGTGGAAGTGTTCAT TTCCATGACTGCTCCTGCTTC 61 271 

10 GAAACATTAGAATCACAACAC GGCCCCCAGGCTTGGCCCAGC 61 292 

11 CATCTGAATTGCATCTCGCAT GACATCACAGCTTCCTCTGTTC 63 207 

12 TCTGTGCTCCAAGGGGACCAT TCCCATGTCTGCGGTCTCTGCT 63 266 

13 AAGCAGTCCTCTGATTGGGCG TGGTGCTGTGAGAGAACTCTT 63 244 

14a TCCTAAGTCAGAGCTGTGTAA GTACTACACCACCGCTGAGCC 60 311 

14b CCAGCTCCGCACGGAGTACG GAACCTTTGGAGTTCATCAGAT 65 334 

15 GAAGAGTCAGTGGTGCTCCCTGG GTCTTTTGCGTGTTCAGCTTCA 63 416 

16 CCACCCCGCTAGGACCAGGGTC GGTGGAGGCTGCTTGACAGCG 70  288 

17 CAAGGCAGAAGTGTGTTTACC TGCCTTCCCTGGTTCTCCAAA 63 311 

18 GAAACTGTGATGCTCTTCTAC TTCCTTTCAGCATAGCTCTTTC 58 396 

19 CCTTGTGGGCAGCCCCAGAGG GGCTCTGTTTGTCTCCAAGTGG 61 275 

20 CAGAGCTGAGCATTTACCAGGT TAGAAATCATTGTGATTGGG 61 257 

21 GTCGGGCACACGGAGGGTGGC CGGCTGAATGCTGTGTTTCC 63 226 

22 TGAGTGTGGCCAGCGGTAAA GTGGGCCTGGAGGTCCAGCGG 64 383 

23a GTGGGAGCTGCGGGGACCAT AGCGTCCACTGCCATGGGCA 66 338 

23b CGTTCTCACAACCCTCGGAA GAGGAGGACAAGGTTCTCCTG 66 381 

 

 

Exon Primer Forward  
(5'-3') 

Primer Reverse  
(3'-5') 

Primer 
Annealing  
Temp (°C) 

Product  
Size  
(bp) 

1 GCCGAGGTCGTGCGTGTGGCCG ACCCTTGGAAAGAACAGGCTCA 64 490 

2 ACACTGTACCTGCCAGGTCTGA GGAGCCCAGAGCTTTGTCTCCT 64 437 

3 CCATGCTACCTAGATACCTTTC CTCAGCCTGGAACGTGGGAAGA 64 347 

4 GCTCAGTTAAGGGTGTCTGTGT GCAGGATCTGGCTCTGCCCTAC 64 364 

5 GAGACCAGGTAGAGGGAGTACA ACCTTCTGTCCCACCCCTTCCT 64 368 

6 GTATAGTGACTGGTAGGAACGG CTTGCTGCCAGTACTGGGAGCT 64 290 

7 TAATCAGACTTGGGACTCCAGA CTATGCGACCGGCAGGATGCAG 67 287 

8 CCAGCTGGGTGAACTTTGAGGC GGCAGCAGGGATTTGCCAGGTC 67 310 

9 GTGACAGAGCAAGATCCTATCT TCCTGCCTCTAGCACAGCCTTG 67 367 

10 TCCTTCTCTGGAAAGAATGGCA ATGTGCTAGTCTCTCCCAGCCT 67 315 

11 TGGCACTGACTATGGGAGGCAC TGGAGTACAGGGGCTGTCGGAG 67 298 

12 GAGCCAGGGCCCCAGGCTCG AGGACCTGGGACAGGAAAGA 67 500 

Table 3.1. PCR primers and amplification conditions for the mutational analysis of PTCH1 
(upper table) and SMO (lower table).  Primers were designed according to build version 36 of 
the NCBI Genomic Sequence Assembly (Genbank Gene ID 5727; 
http://www.ncbi.nlm.nih.gov/). The addition of 10 x Q solution (Qiagen) was required to 
amplify exon 1 of SMO. 

  

http://www.ncbi.nlm.nih.gov/
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3.3.4 Analysis of promoter methylation status 

Two promoter-associated CpG islands of the PTCH1 gene, spanning exons 1a and 1c 

(Diede et al., 2010) were identified and characterised using the Emboss CpGPlot 

website (http://www.ebi.ac.uk/emboss/cpgplot/). 1a methylation status was 

determined by MSP (Herman et al., 1996) (section 2.6.2) using primers shown in Table 

3.2 and 1c by bisulfite sequencing (Frommer et al., 1992) (section 2.6) using previously 

published primers (Scott et al., 2006). 

The methylation status of the COL1A2 promoter was assessed by bisulfite sequencing 

(section 2.6) using previously published primers (Anderton et al., 2008). For loci 

assessed by bisulfite sequencing, the relative peak intensities at each CpG residue 

were determined. Methylation status was assigned as described in section 2.6.1. This 

work was conceived and implemented by Dr Janet Lindsey and Dr Debbie Straughton 

(both Newcastle University Brain Tumour Research Group). 

 

 Methylated Primers Unmethylated Primers 

Product Size (bp) 114 115 

Annealing Temp (°C) 62 62 

Reverse Primer 
(5’-3’) 

ACTACTACTCACACGACGAACGCT ACTACTCACACACAACAAACACT 

Forward Primer 
(5’-3’) 

GGTCGTAGAGATTTCGGGATTTTC GGTTGTAGAGATTTTGGGATTTTTG 

Table 3.2. Methylation Specific PCR (MSP) primers for the analysis of the PTCH1 promoter-
associated CpG island 1a. 

  

http://www.ebi.ac.uk/emboss/cpgplot/
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3.3.5 Loss of heterozygosity analysis 

Loss of heterozygosity of chromosome regions 9p22.3 and the p-arm of chromosome 

17 were analysed using the HOMOD method (section 2.1), as previously published 

(Langdon et al., 2006). LOH of chromosome 6 was analysed as previously described 

(section 2.1). This work was carried out by Dr. Meryl Lusher and Dr. Hisham Megahed 

(both Newcastle University Brain Tumour Research Group). 

3.3.6 Development of GeXP assay to identify signalling pathway 

activated samples 

A multiplex mRNA expression assay (section 2.4) (Schwalbe et al., 2011; Rai et al., 2009) 

was developed to test tumours for membership of the WNT or SHH medulloblastoma 

subgroups in the primary medulloblastoma RNA cohort (n = 39). Two previously 

reported independent medulloblastoma expression microarray datasets (Kool et al., 

2008; Thompson et al., 2006), were used to design signatures for WNT and SHH 

pathway activation. Data were respectively downloaded from the St. Jude Research 

website (http://www.stjuderesearch.org/site/data/medulloblastoma) and the Gene 

Expression Omnibus (GEO) (Barrett et al., 2007). Data were processed and normalised 

using the rma algorithm (see section 2.5.2) using R version 2.09 (R core foundation) 

and Bioconductor (Gentleman et al., 2004). 

To ensure homogeneity between datasets, Kool et al’s dataset (performed using the 

Affymetrix U133 plus 2.0 array) was filtered to include only those probe sets present in 

Thompson et al’s dataset (performed on the Affymetrix U133A array). In cases where 

more than one probe mapped to a gene, the most significant probe was retained, 

leaving one probe per gene (12,679 probes). Probes differential for the WNT or SHH 

subgroups, defined by Kool and colleagues (Kool et al., 2008) were identified using t 

tests. These t tests were then corrected for multiple testing using Benjamini-

Hochberg’s false discovery rate correction (Benjamini and Hochberg, 1995). Finally, 

only those significant genes that showed up-regulation in the subgroup of interest 

were considered. Previous work had validated 3 SHH-associated genes (GLI1, PTCH2 

and SFRP1) and 2 WNT-associated genes (DKK2 and WIF1) by quantitative reverse 

transcriptase real-time PCR (Thompson et al., 2006) and these genes were also 

considered for inclusion in the signatures. 

http://www.stjuderesearch.org/site/data/medulloblastoma
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Genes highly significant (i.e. within 50 most significant transcripts, WNT probes; within 

175 most significant transcripts, SHH probes), in both datasets, in addition to 

previously validated genes, regardless of rank, were considered for signature inclusion. 

Genes were prioritised which fulfilled as many of the following criteria as possible; (i) 

previously validated as markers of signature activation; (ii) 3’ untranslated region (UTR) 

<750 bp, so that the final exon-exon boundary is proximal to the 3’ end of transcript. 

The length of the 3’ untranslated region (UTR) was retrieved from BioMart (Smedley et 

al., 2009); (iii) amenable to primer design subject to gene structure and strict GeXP PCR 

product size criteria; (iv) amplicon to overlap corresponding Affymetrix probe set; (v) 

successful PCR amplification using designed primers. 

3.3.6.1 Amplicon design 

The eXpress designer software (Beckman Coulter) was used to design multiplex primer 

sets for the GeXP assay. The multiplex was designed in accordance with manufacturer 

instructions, following the criteria described in section 2.4.1. Briefly, primer sequences 

were checked for specificity using BLAST (Altschul et al., 1990) and BLAT (Kent, 2002) 

searches. In addition, primer sequences were checked against dbSNP v129 (Sherry et 

al., 2001) to ensure that they did not harbour any known SNPs. The control genes 

GAPDH, B2M and 28S ribosomal RNA (rRNA) were selected as potential reference 

genes, on the basis that they were located on chromosomes not frequently associated 

with copy number alterations in medulloblastoma. The initial multiplex primers are 

shown in Table 3.3.  
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Gene 
Type 

Gene 
Name 

Affymetrix 
Probe 

Amplicon 
Size (bp) 

F primer (5’ - 3’) R primer (5’ - 3’) 

SHH MICAL1 218376_s_at 141 GACCAGGAGCTACGAGGCTA TTGACCAAATCCACCAGCTT 

CTRL B2M 201891_s_at 149 AGGCTATCCAGCGTACTCCA TCAATGTCGGATGGATGAAA 

SHH SFRP1 202037_s_at 155 TCTGAGGCCATCATTGAACA TCAGGGGCTTCTTCTTCTTG 

SHH RAB33A 206039_at 162 AGGGAGAAGACCGTGGAAAT AAGACCACGGCATGTACGTT 

SHH GLI1 206646_at 170 TTGAGAACCTCAGGCTGGAC CGGCGTTCAAGAGAGACTG 

CTRL 28S RNA N/A 178 GGGGGAGAGGGTGTAAATCT GCCAATCCTTATCCCGAAGT 

WNT TMEM45A 219410_at 194 TGCATGGGATCTGATGGAT TCCAACTTCTGAGGAGCAGAG 

SHH BCHE 205433_at 204 AGCTGGCCTGTCTTCAAAAG TTCCACTCCCATTCTGCTTC 

SHH PTCH2 221292_at 214 TGCTGGTTCCCACTTTGACT GCTGGTGGACTCAGGATCTC 

SHH PDLIM3 209621_s_at 228 TTCAGAGTGCTCCAGGGAAT TCAGGGTGCCGGTACTTATC 

WNT DKK2 219908_at 234 TTGGGATGGCAGAATCTAGG AGCCCATGAGAACCCTTCTT 

WNT WIF1 204712_at 241 CCAGGGAGACCTCTGTTCAA TCCTCGGCCTTTTTAAGTGA 

WNT CNGA3 207261_at 248 TTATTTGCAGGGCCTGTTTC AGGGACAACACATCCAGCTT 

WNT PYGL 202990_at 268 AGCAGCCTGACCTCTTCAAA AAGGTTCCACGTTCCAGATG 

SHH ITIH2 204987_at 275 CACCTAAAGCCCACGGACTA TTGTAATGCCCGTCAATGAA 

WNT TNC 201645_at 283 ACCACAATGGCAGATCCTTC GCCTGCCTTCAAGATTTCTG 

WNT CCDC46 213644_at 318 GTGCGATGTGCAGAGAAAAA TGGAAGAAGTCCACAGCACA 

CTRL GAPDH 217398_x_at 354 CCTGACCTGCCGTCTAGAAA TTCCTCTTGTGCTCTTGCTG 

Table 3.3. SHH and WNT subgroup signature genes selected for expression analysis. The gene 
type, amplicon size, and forward and reverse primer pairs used for multiplex GeXP assays are 
listed. Universal tags (Forward: AGGTGACACTATAGAATA, Reverse: GTACGACTCACTATAGGGA) 
were added to each primer sequence for GeXP analysis. CTRL – control gene. SHH – marker of 
SHH subgroup tumours. WNT – marker of WNT subgroup tumours. Corresponding Affymetrix 
probes used in microarray-based expression analysis are shown. 

 

 

3.3.6.2 Preparation of forward and reverse primer multiplexes 

Initial forward and reverse primer multiplex mixes were prepared at 500nM and 

200nM respectively, as described in section 2.4.1.  

3.3.6.3 Selection of a positive control 

The medulloblastoma cell lines MED1, MED8A, D283, D425, D458, D384, D556, D341, 

UW228 and DAOY were assessed for their suitability as positive controls (see section 

2.4.3). Since no cell line could detect all signature genes, it was necessary to mix the 

selected cell line with mRNA from known WNT and SHH cases, whose positive status 
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had been previously determined by direct sequencing of the CTNNB1 and PTCH1 genes, 

respectively. The CTNNB1 and PTCH1 mutated cases with the most abundant stocks of 

RNA were selected for inclusion in a hybrid positive control consisting of cell line and 

primary tumour RNA. 

3.3.6.4 Assay optimisation 

The assay was designed so that there was redundancy in the signature genes, so that 

any genes not performing satisfactorily could simply be removed from the primer mix 

without further optimisation. As discussed in section 2.4.3.1, singlet forward primer 

reactions were carried out to identify unintended interactions between primers. Genes 

whose primers were inappropriately interacting with other primers to form 

undesigned amplicons were removed from the multiplex. Attenuation of primers was 

applied to reverse primers that initially produced too high a signal (section 2.4.3.2). 

Reverse primers for GAPDH, SFRP1, B2M and 28S rRNA were subsequently diluted 1:20, 

1:20, 1:50 and 1:20000 respectively. 

3.3.7 GeXP reaction conditions 

The GeXP reaction was carried out as described in section 2.4.4, using 50 ng RNA as 

template per replicate. Reactions were carried out in triplicate. 

3.3.8 Comparison of GeXP gene expression with estimates derived 

from real-time reverse transcriptase PCR 

For 5 signature genes, there were matched quantitative real time RT-PCR data 

available for 23 cases (Thompson et al., 2006), to compare reproducibility between 

gene expression data estimated by GeXP and real-time RT-PCR. Data were first log2 

transformed, and scaled to a mean of zero and a variance of one to make them 

comparable. Bland-Altman plots (section 2.8.2), were plotted to assess concordance. 

3.3.9 Integration and analysis of combined gene expression data sets 

The optimised WNT and SHH signalling pathway signatures (Kool et al., 2008; 

Thompson et al., 2006) (n = 62 and 46, respectively), were selected from the two 

microarray datasets used to derive the expression signatures. In addition, a third 

medulloblastoma microarray dataset, reported by Fattet and colleagues (Fattet et al., 
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2009) (n = 40), became publicly available in 2009. It was downloaded from GEO and 

normalised as described in section 3.3.6 and the gene signature probes selected. All 

three publicly available datasets have linked clinical (age at diagnosis, histological 

subtype and gender) and PTCH1 / CTNNB1 mutational data available (except PTCH1 

mutation data not available from Fattet and colleagues’ dataset (Fattet et al., 2009)). 

Expression data of signature genes were integrated from all three datasets (n = 148), 

together with the primary investigation cohort (n = 39). 

First, the GeXP data were normalised relative to the selected control gene, 28S rRNA. 

Mean expression scores were calculated from independent runs in triplicate. Next, the 

GeXP data were log2 transformed to match the expression microarray data. Prior to 

joining, to ensure that highly expressed signature genes contributed equally towards 

assigning signature status as lowly expressed signature genes, datasets were 

separately scaled, on a per-gene basis, to have a mean of zero and a variance of 1.  

For each dataset, HC of samples by their signature genes was carried out using 

Euclidean distance and average agglomeration (section 2.9.1). Biplots (section 2.9.2.1) 

were plotted for the selected signature genes to support identification of pathway 

expressing samples. Stacked barplots of signature genes were plotted to identify the 

extent to which each signature was being expressed. Samples were assigned to a 

subgroup with reference to HC, supported by biplots of PCA and stacked barplots. 

There was some overlap between studies: 11 samples were assessed by expression 

array by Thompson and colleagues (Thompson et al., 2006) and GeXP; 3 samples were 

assessed by expression array by Kool and colleagues (Kool et al., 2008) and GeXP, 

which enabled the comparison of subgroup assignment in individual samples using our 

signatures, when evaluated using different gene expression assays. Clinical and 

genomic correlates were combined for the combined, non-overlapping cohort (n = 173) 

(see Table 3.5).  

3.3.10  Assessment of subgroup assignment 

To assess subgroup assignment, silhouette plots (Rousseeuw, 1987) (section 2.10.1) 

were constructed for the primary investigation cohort (n = 39) and three 

transcriptomic datasets (Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006)  
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(n = 40, 62 and 46, respectively). In addition, the correlation between CTNNB1 

mutation and WNT subgroup membership, and PTCH1 mutation and SHH subgroup 

membership was assessed in both the primary GeXP cohort and microarray datasets.  

3.3.11  Additional statistical analysis 

Fisher’s exact and chi-squared tests were used to identify relationships between 

expression signature status and selected molecular and clinical disease features in the 

primary investigative cohort (n = 39) and in the combined cohort (n = 173). Bonferroni 

corrections for multiple hypothesis testing were applied where appropriate. Additional 

patient age data were kindly provided by Dr. Marcel Kool (Academic Medical Centre, 

Amsterdam, the Netherlands).   
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3.4 Results 

In this chapter, a multi-gene expression assay was designed and validated for the 

routine identification of WNT and SHH medulloblastoma subgroups. A comprehensive 

investigation of proposed molecular determinants of pathway activation was 

undertaken in the primary investigation cohort. The assay was then applied to publicly 

available transcriptomic datasets (Fattet et al., 2009; Kool et al., 2008; Thompson et al., 

2006), and subgroup assignments were pooled for a meta-analysis of the molecular 

basis, associated biomarkers and clinical relevance of the disease subgroups.     

3.4.1 Selection of signature genes 

15 genes (eight potential SHH signature genes (BCHE, GLI1, ITIH2, MICAL1, PDLIM3, 

PTCH2, RAB33A and SFRP1) and seven potential WNT signature genes (CCDC46, CNGA3, 

DKK2, PYGL, TMEM45A, TNC and WIF1)) were selected subject to the criteria outlined 

in section 3.3.6. The selected genes and their identification is summarised in Table 3.4, 

and their expression in the subgroups (WNT, SHH, WNT / SHH independent), defined 

by Kool and colleagues (Kool et al., 2008), shown in Figure 3.1. Each selected signature 

gene was highly differential for subgroup membership in both Kool and colleagues’ 

(Kool et al., 2008) and Thompson and colleagues’ transcriptomic datasets (Thompson 

et al., 2006). 

3.4.2 Selection of positive control 

Cell line D556 detected 11 / 15 target genes and was the best performing cell line. By 

mixing NMB93 (WNT-positive, CTNNB1 mutant), NMB81 (SHH-positive, PTCH1 mutant) 

and D556 cell line RNA, it was possible to detect all 15 target genes. The positive 

control for subsequent experiments was defined as a mix of RNAs from D556, NMB81 

and NMB93, each at 20 ng / l in the ratio 2:1:1 respectively 
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Kool 

Rank

Gene 

Name
probe Name

Corrected 

p value

3'UTR 

Length

Previously 

Validated 

Marker

Thompson 

Rank

Consideration 

for signature 

inclusion?

Successful amplicon design?

Designed 

amplicon 

overlaps 

Affymetrix 

Probe

Successful PCR 

amplification
Thompson Rank Gene Name Probe Name

Corrected 

p value

3'UTR 

Length

Previously 

Validated 

Marker

Kool Rank

Consideration 

for signature 

inclusion?

Successful amplicon design?

Designed 

amplicon 

overlaps 

Affymetrix 

Probe

Successful PCR 

amplification

1 PDLIM3 210170_at 5.45E-26 545 10 Y Y Y Y 1 SFRP1 202036_s_at 4.02E-15 3204 Y 7 Y Y N Y

2 EYA1 214608_s_at 1.75E-17 1987 21 N NA NA NA 2 NRIP2 215104_at 1.17E-14 1860 32 N NA NA NA

3 NDP 206022_at 2.93E-17 1022 3 N NA NA NA 3 NDP 206022_at 1.28E-13 1022 3 N NA NA NA

4 SPHK1 219257_s_at 6.36E-16 273 24 Y N - Final Exon (6) too long - 1055bp NA NA 4 ALDH1A3 203180_at 1.23E-12 1920 26 N NA NA NA

5 NGFR 205858_at 3.54E-15 2007 53 N NA NA NA 5 PGM1 201968_s_at 2.11E-11 569 57 Y N - size constraints NA NA

6 ATOH1 221336_at 1.02E-14 78 Y 8 Y

N - Only one exon - no exon-exon 

boundaries NA NA 6 CXCR4 211919_s_at 4.49E-11 519 42 Y N - two isoforms NA NA

7 SFRP1 202037_s_at 3.07E-14 3204 Y 1 Y Y N Y 7 MICAL1 218376_s_at 7.40E-11 276 18 Y Y Y Y

8 KIAA0922 209760_at 7.46E-14 134 9 Y N - multiple transcripts, final exon NA NA 8 ATOH1 221336_at 3.43E-10 78 Y 6 Y

N - Only one exon - no exon-exon 

boundaries NA NA

9 GLI1 206646_at 1.65E-13 200 Y 27 Y Y N Y 9 KIAA0922 209760_at 3.43E-10 134 8 Y N - multiple transcripts, final exon NA NA

10 SATB2 213435_at 1.15E-12 2710 329 N NA NA NA 10 PDLIM3 210170_at 3.48E-10 545 1 Y Y Y Y

11 GAB1 214987_at 2.14E-12 5378 682 N NA NA NA 11 GAS1 204457_s_at 4.50E-10 1377 164 N NA NA NA

12 FAM198B 219872_at 2.31E-12 577 3485 N NA NA NA 12 RAB33A 206039_at 7.45E-10 129 46 Y Y Y Y

13 ANKRD6 204671_s_at 3.42E-12 2829 22 N NA NA NA 13 SHROOM2 204967_at 1.34E-09 2505 15 N NA NA NA

14 ZNF516 203604_at 9.52E-12 2833 56 N NA NA NA 14 ARHGEF7 202548_s_at 1.35E-09 2623 132 N NA NA NA

15 SHROOM2 204967_at 1.30E-11 2505 13 N NA NA NA 15 ABLIM3 205730_s_at 2.18E-09 2148 60 N NA NA NA

16 BCHE 205433_at 1.39E-11 601 19 Y Y Y Y 16 METRN 219051_x_at 2.31E-09 92 21 Y N NA NA

17 CA14 219464_at 2.06E-11 418 54 Y Y Y N 17 PGAM2 205736_at 2.36E-09 36 147 Y N - multiple transcripts, final exon

18 MICAL1 218376_s_at 3.11E-11 276 7 Y Y Y Y 18 PCNT 203660_s_at 3.17E-09 441 28 Y N - multiple transcripts, final exon NA NA

19 SEPT10 212698_s_at 8.44E-11 1521 28 N NA NA NA 19 BCHE 205433_at 3.26E-09 601 16 Y Y Y Y

20 CRB1 220522_at 1.31E-10 6139 227 N NA NA NA 20 BTBD3 202946_s_at 3.35E-09 2942 68 N NA NA NA

21 METRN 219051_x_at 2.20E-10 92 16 Y N NA NA 21 EYA1 214608_s_at 5.35E-09 1987 2 N NA NA NA

22 ABCA8 204719_at 2.96E-10 792 102 N NA NA NA 22 ANKRD6 204671_s_at 9.36E-09 2829 13 N NA NA NA

23 ABCB4 207819_s_at 4.41E-10 46 31 Y N - multiple transcripts, final exon NA NA 23 CABC1 218168_s_at 1.05E-08 807 138 N NA NA NA

24 CTSC 201487_at 4.66E-10 400 167 Y N - multiple transcripts, final exon NA NA 24 SPHK1 219257_s_at 1.73E-08 273 4 Y N - Final Exon (6) too long - 1055bp NA NA

25 IRAK3 220034_at 5.72E-10 6440 492 N NA NA NA 25 SYPL1 201260_s_at 5.03E-08 1301 34 N NA NA NA

26 ALDH1A3 203180_at 1.45E-09 1920 4 N NA NA NA 26 FAM46A 221766_s_at 7.01E-08 3964 129 N NA NA NA

27 GCK 211167_s_at 1.66E-09 864 33 N NA NA NA 27 GLI1 206646_at 7.64E-08 200 Y 9 Y Y N Y

28 PCNT 203660_s_at 1.98E-09 441 18 Y N - multiple transcripts, final exon NA NA 28 SEPT10 214720_x_at 1.18E-07 1521 19 N NA NA NA

29 KLHL4 214591_at 3.74E-09 3515 1122 N NA NA NA 29 SOX9 202935_s_at 1.73E-07 2023 656 N NA NA NA

30 RGS10 204319_s_at 3.81E-09 284 2172 N NA NA NA 30 GNG3 222005_s_at 1.73E-07 396 137 Y Gene overlaps with BSCL2 exon. NA NA

31 ANKRD57 219496_at 3.95E-09 2918 43 N NA NA NA 31 ABCB4 207819_s_at 1.77E-07 46 23 Y N - multiple transcripts, final exon NA NA

32 NRIP2 215104_at 5.17E-09 1860 2 N NA NA NA 32 SUN2 212144_at 2.85E-07 1647 1666 N NA NA NA

33 GRIA4 208464_at 9.13E-09 2517 1214 N NA NA NA 33 GCK 211167_s_at 3.06E-07 864 27 N NA NA NA

34 SYPL1 201259_s_at 9.42E-09 1301 25 N NA NA NA 34 NLGN1 205893_at 3.80E-07 5340 223 N NA NA NA

35 TEX15 221448_s_at 9.71E-09 1741 4431 N NA NA NA 35 C7orf16 220231_at 3.90E-07 1171 118 N NA NA NA

36 LRP5L 214873_at 1.00E-08 377 334 N NA NA NA 36 APBA2 209870_s_at 3.91E-07 1181 834 N NA NA NA

37 C1orf54 219506_at 1.12E-08 81 221 N NA NA NA 37 RBM38 212430_at 3.91E-07 1790 574 N NA NA NA

38 ARHGEF26 222121_at 1.26E-08 2353 319 N NA NA NA 38 NHLH1 214628_at 4.01E-07 1714 106 N NA NA NA

39 NDST3 220429_at 1.46E-08 3039 82 N NA NA NA 39 PPM1H 212686_at 4.34E-07 4502 167 N NA NA NA

40 GLO1 200681_at 1.53E-08 1351 472 N NA NA NA 40 PDLIM2 219165_at 4.57E-07 555 330 N NA NA NA

41 COL21A1 208096_s_at 1.85E-08 1066 70 N NA NA NA 41 TMEM184B 202027_at 5.85E-07 2398 173 N NA NA NA

42 CXCR4 211919_s_at 1.88E-08 519 6 Y N - two isoforms NA NA 42 SCG5 203889_at 6.63E-07 488 190 N NA NA NA

43 IGBP1 202105_at 2.09E-08 342 995 N NA NA NA 43 ANKRD57 219496_at 6.67E-07 2918 31 N NA NA NA

44 C10orf72 213381_at 2.27E-08 1205 87 N NA NA NA 44 FSD1 219170_at 9.75E-07 192 273 N NA NA NA

45 PDE1A 208396_s_at 2.34E-08 310 166 Y N - multiple transcripts, final exon NA NA 45 PACSIN2 201651_s_at 1.16E-06 1585 141 N NA NA NA

46 RAB33A 206039_at 2.34E-08 129 12 Y Y Y Y 46 NLGN4X 221933_at 1.27E-06 1819 652 N NA NA NA

47 PLXND1 38671_at 2.78E-08 1253 145 N NA NA NA 47 CIDEB 221188_s_at 1.27E-06 437 361 N NA NA NA

48 MAP7D3 219626_at 2.86E-08 1682 3637 N NA NA NA 48 ABTB2 213497_at 1.91E-06 1398 58 N NA NA NA

49 PNRC1 209034_at 3.03E-08 963 90 N NA NA NA 49 SDC2 212158_at 2.29E-06 2223 156 N NA NA NA

50 EP400 212375_at 3.03E-08 2786 81 N NA NA NA 50 SCHIP1 204030_s_at 2.29E-06 591 105 N NA NA NA

60 PTCH2 221292_at 7.33E-08 844 Y 157 Y Y Y Y 113 ITIH2 204987_at 0.00011605 332 Y Y Y Y

75 ITIH2 204987_at 3.94E-07 332 113 Y Y Y Y 157 PTCH2 221292_at 0.00041743 844 Y N Y Y Y



177 
 

 

Table 3.4. Selection of WNT and SHH signature genes from two expression array datasets (Kool et al., 2008; Thompson et al., 2006). Table shows the top 50 up-
regulated genes within Kool's (left-hand table) and Thompson’s (right-hand table) datasets for both SHH (upper table) and WNT (lower table) subgroups, ranked by 
'p' value. Selected signature genes are highlighted green. Selected signature genes that failed during assay optimisation are shown in red. Whether or not the gene 
is a candidate for primer design, subject to criteria listed in section 3.3.6, is shown. For potential candidates, whether or not primer design and subsequent PCR 
amplification was successful is indicated, including comments if not. Y, yes; N, no; NA, not applicable or not attempted; DOWN-REG, gene is within top 50 most 
differentially expressed up-regulated genes, although is down-regulated in second dataset. 

Kool 

Rank
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Thompson 

Rank
Gene Name Probe Name
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3'UTR 
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3'UTR length 

<750 bp
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Kool Rank
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Successful amplicon design?
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Affymetrix 

Probe

Successful PCR 

amplification

1 TMEM51 218815_s_at 1.38E-35 734 Y 10 Y N - multiple transcripts, final exon 1 TNC 216005_at 5.52E-34 630 Y Y 3 Y Y Y Y

2 GAD1 206670_s_at 1.38E-35 1435 N 8 N N - multiple transcripts, final exon 2 DKK2 219908_at 6.15E-30 2151 N Y 8 Y Y N Y

3 TNC 216005_at 1.38E-35 630 Y Y 1 Y Y Y Y 3 WIF1 204712_at 3.78E-29 721 Y 4 Y Y Y Y

4 WIF1 204712_at 2.35E-34 721 Y 3 Y Y Y Y 4 DKK4 206619_at 7.60E-27 31 Y 14 Y N - size constraints NA NA

5 LEF1 210948_s_at 5.49E-32 1206 N Y 762 N NA NA NA 5 RAI2 219440_at 1.65E-24 366 Y 13 Y N - unusual gene structure NA NA

6 CCDC46 213644_at 3.70E-29 429 Y 18 Y Y Y Y 6 EPHA7 206852_at 1.75E-23 3405 N 11 N NA NA NA

7 FZD10 219764_at 8.16E-27 1051 N NA DOWN-REG N NA NA NA 7 CNGA3 207261_at 3.19E-22 1345 N 49 Y Y Y N

8 DKK2 219908_at 9.53E-26 2151 N Y 2 Y Y N Y 8 GAD1 205278_at 2.39E-21 1435 N 2 N N - multiple transcripts, final exon NA NA

9 BMP4 211518_s_at 3.48E-25 295 Y 63 Y Not Attempted - Thompson Rank low NA NA 9 IFT57 218100_s_at 4.54E-21 1664 N 26 N NA NA NA

10 OSR2 213568_at 3.70E-25 424 Y 11 Y N - multiple transcripts, final exon NA NA 10 TMEM51 218815_s_at 5.78E-21 734 Y 1 Y N - multiple transcripts, final exon NA NA

11 EPHA7 206852_at 3.14E-24 3405 N 6 N NA NA NA 11 OSR2 213568_at 5.62E-20 424 Y 10 Y N - multiple transcripts, final exon NA NA

12 GABRE 204537_s_at 1.43E-23 2090 N 34 N NA NA NA 12 RASL11B 219142_at 8.76E-19 1027 N 25 N NA NA NA

13 RAI2 219440_at 3.55E-23 366 Y 5 Y N - unusual gene structure NA NA 13 TMEM2 218113_at 2.31E-18 1830 N 50 N NA NA NA

14 DKK4 206619_at 1.38E-22 31 Y 4 Y N - multiple transcripts, final exon NA NA 14 ALCAM 201951_at 1.41E-17 2423 N 57 N NA NA NA

15 FOXA1 204667_at 1.38E-22 1381 N 55 N NA NA NA 15 PYGL 202990_at 1.64E-17 172 Y 35 Y Y Y Y

16 ALK 208212_s_at 1.51E-22 449 Y NA DOWN-REG N NA NA NA 16 MYOT 219728_at 2.41E-17 465 Y 43 Y Not attempted - better candidates available NA NA

17 PDE11A 221110_x_at 1.88E-22 6155 N 1493 N NA NA NA 17 GPR64 206002_at 4.03E-17 1554 N 74 N NA NA NA

18 TNFRSF11B 204933_s_at 7.11E-22 816 N 2891 N NA NA NA 18 CCDC46 213644_at 1.56E-15 429 Y 6 Y Y Y Y

19 STC1 204597_x_at 8.29E-22 2854 N 939 N NA NA NA 19 WNT16 221113_s_at 1.74E-15 1758 N 105 N NA NA NA

20 TSPAN9 205665_at 8.29E-22 3442 N 330 N NA NA NA 20 P4HA2 202733_at 1.97E-15 1171 N 36 N NA NA NA

21 C22orf31 206839_at 1.55E-21 69 Y 425 N NA NA NA 21 EMX2 221950_at 1.48E-14 1313 N 38 N NA NA NA

22 WNT11 206737_at 1.57E-21 738 Y NA DOWN-REG N NA NA NA 22 C9orf3 212848_s_at 2.65E-14 477 Y 44 Y Not attempted - better candidates available NA NA

23 DLX4 208216_at 2.47E-21 1013 N 2394 N NA NA NA 23 QPCT 205174_s_at 3.38E-14 494 Y 1985 N NA NA NA

24 AMHR2 206892_at 3.15E-21 54 Y NA DOWN-REG N NA NA NA 24 NET1 201829_at 6.47E-14 1850 N 52 N NA NA NA

25 RASL11B 219142_at 4.16E-21 1027 N 12 N NA NA NA 25 SOCS2 203372_s_at 7.21E-14 1022 N 146 N NA NA NA

26 IFT57 218100_s_at 4.91E-21 1664 N 9 N NA NA NA 26 TMEM45A 219410_at 7.21E-14 425 Y 94 Y Y Y N

27 PART1 205833_s_at 6.23E-21 NA* N 1100 N NA NA NA 27 PAPSS1 209043_at 1.87E-13 582 Y 47 Y Not attempted - better candidates available NA NA

28 CYB5R2 220230_s_at 8.92E-21 278 Y NA DOWN-REG N NA NA NA 28 CRYZ 202950_at 3.26E-13 809 N 145 N NA NA NA

29 TNNC1 209904_at 2.00E-20 172 Y 985 N NA NA NA 29 RAB11FIP2 203884_s_at 4.63E-13 4011 N 46 N NA NA NA

30 C20orf103 219463_at 3.68E-20 703 Y 30 Y Not attempted - better candidates available NA NA 30 C20orf103 219463_at 6.08E-13 703 Y 30 Y Not attempted - better candidates available NA NA

31 TRBC1 210915_x_at 4.99E-20 219 Y 39 Y Not attempted - better candidates available NA NA 31 LPIN1 212274_at 1.41E-12 2617 N 283 N NA NA NA

32 AIMP1 202541_at 5.23E-20 1527 N 58 N NA NA NA 32 FGF20 220394_at 1.49E-12 920 N 40 N NA NA NA

33 PTGS1 215813_s_at 5.23E-20 3158 N 51 N NA NA NA 33 BAMBI 203304_at 1.69E-12 537 Y 34 Y Not attempted - better candidates available NA NA

34 BAMBI 203304_at 1.32E-19 537 Y 33 Y Not attempted - better candidates available NA NA 34 GABRE 204537_s_at 2.88E-12 2090 N 12 N NA NA NA

35 PYGL 202990_at 3.47E-18 172 Y 15 Y Y Y Y 35 FZD6 203987_at 7.49E-12 1525 N 203 N NA NA NA

36 P4HA2 202733_at 1.43E-17 1171 N 20 N NA NA NA 36 LRP4 212850_s_at 1.62E-11 2114 N 41 N NA NA NA

37 EMID1 213779_at 2.39E-17 780 N 54 N NA NA NA 37 SPRY2 204011_at 1.81E-11 781 N 259 N NA NA NA

38 EMX2 221950_at 5.67E-17 1313 N 21 N NA NA NA 38 DSE 218854_at 6.32E-11 936 N 75 N NA NA NA

39 QPRT 204044_at 7.26E-17 592 Y 190 N NA NA NA 39 TRBC1 210915_x_at 7.62E-11 219 Y 31 Y Not attempted - better candidates available NA NA

40 FGF20 220394_at 1.01E-16 920 N 32 N NA NA NA 40 PLEKHF2 218640_s_at 9.69E-11 1889 N 186 N NA NA NA

41 LRP4 212850_s_at 1.07E-16 2114 N 36 N NA NA NA 41 SLIT2 209897_s_at 3.14E-10 1547 N 308 N NA NA NA

42 LHX6 219884_at 1.88E-16 2182 N NA DOWN-REG N NA NA NA 42 FBXL7 213249_at 3.28E-10 2604 N 115 N NA NA NA

43 MYOT 219728_at 2.08E-16 465 Y 16 Y Not attempted - better candidates available NA NA 43 NEFH 33767_at 5.38E-10 686 Y 172 N NA NA NA

44 C9orf3 212848_s_at 2.33E-16 477 Y 22 Y Not attempted - better candidates available NA NA 44 COL5A1 212489_at 5.46E-10 2536 N 64 N NA NA NA

45 ECEL1 219914_at 2.73E-16 325 Y NA DOWN-REG N NA NA NA 45 DEFA5 207529_at 5.99E-10 121 Y 272 N NA NA NA

46 RAB11FIP2 203883_s_at 2.85E-16 4011 N 29 N NA NA NA 46 DKK1 204602_at 5.99E-10 849 N Y 62 Y Not attempted - better candidates available NA NA

47 PAPSS1 209043_at 4.19E-16 582 Y 27 Y Not attempted - better candidates available NA NA 47 ODZ3 219523_s_at 6.17E-10 2672 N 173 N NA NA NA

48 LDLRAP1 57082_at 6.25E-16 1893 N 95 N NA NA NA 48 ATP8A1 213106_at 7.59E-10 4640 N 71 N NA NA NA

49 CNGA3 207261_at 6.26E-16 1345 N 7 Y Y Y N 49 NRN1 218625_at 8.85E-10 976 N NA DOWN-REG N NA NA NA

50 TMEM2 218113_at 8.95E-16 1830 N 13 N NA NA NA 50 MPP1 202974_at 2.07E-09 660 Y 275 N NA NA NA

*PART1 - processed transcript, not translated
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Figure 3.1. Signature genes are differentially expressed in both Kool et al. and Thompson et 
al. datasets. Box-dotplots are shown for A. Seven WNT subgroup candidate signature genes 
and B. Eight SHH subgroup candidate signature genes in both datasets (Kool et al., 2008; 
Thompson et al., 2006). The expression for each subgroup (WNT, SHH and Ind (WNT / SHH 
independent)) as described by Kool et al. is shown. 
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3.4.3 Optimisation and assessment of gene signatures for pathway 

activation 

During the assay optimisation (section 2.4.3), it became clear that primers for the gene 

CNGA3 were inappropriately interacting with other primers, and this primer set was 

subsequently removed from the primer multiplex. By running against RNA from known 

CTNNB1 and PTCH1 mutants, the gene TMEM45A was shown to not reliably identify 

WNT subgroup cases. Instead, it recognised both WNT and SHH pathway activated 

cases, with a higher expression observed in SHH cases. For this reason, the primers for 

TMEM45A were also removed from the multiplex, giving a total of eight SHH signature 

genes (BCHE, GLI1, ITIH2, MICAL1, PDLIM3, PTCH2, RAB33A and SFRP1) and five WNT 

signature genes (CCDC46, DKK2, PYGL, TNC and WIF1) in the final, optimised gene 

signature. 

3.4.3.1 GeXP assay reproducibility 

Data were normalised relative to the expression of the control gene, 28S rRNA. After 

excluding gene expression data where each triplicate measurement was equal to zero, 

since these will introduce bias by artificially reducing the amount of variability 

observed between triplicate measurements, the coefficient of variation (CV) was 

calculated, defined by the ratio of the standard deviation to the mean, expressed as a 

percentage. The average CV for the genes measured in the GeXP assay was 13.29% 

(average mean 0.19, with average standard deviation 0.024).   

3.4.3.2 Comparison of GeXP assay expression score with real time 

reverse transcriptase PCR estimates of gene expression 

For 5 signature genes (SFPR1, PTCH2, GLI1, DKK2 and WIF1), there was matched 

quantitative real time RT-PCR data available for 23 cases (Thompson et al., 2006), to 

compare reproducibility between gene expression data estimated by GeXP and real-

time RT-PCR. The Bland-Altman plot (section 2.8.2) shown in Figure 3.2 demonstrates 

that reproducibility is good, with samples with a relatively high level of expression 

correlating especially well. The two techniques diverge the most when low to 

intermediate values of expression are encountered. 
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Figure 3.2. Bland-Altman plot shows comparison between paired estimates of gene 
expression for GeXP and real-time RT-PCR for genes SFPR1, PTCH2, GLI1, DKK2 and WIF1 
from 23 cases. The x axis shows the average score from the two estimations of relative gene 
expression and the y axis shows the difference between GeXP and real-time RT-PCR estimates 
of gene expression. Horizontal dotted lines are plotted at 2 standard deviations of the 
difference and at the mean difference. Since the mean difference is 5 x 10-11, this dotted line is 
not visible as it is obscured by the horizontal axis. 

 

 

3.4.4 Assignment of pathway activation by WNT and SHH expression 

signature 

In the primary investigation cohort (n = 39), the assignment of subgroup was 

unequivocal for all samples, independent of data analysis method used (unsupervised 

HC, PCA (Figure 3.3), stacked barplots (Figure 3.4)). Validation of these signatures in 

three independent medulloblastoma expression microarray datasets (Fattet et al., 

2009; Kool et al., 2008; Thompson et al., 2006) showed that the signatures could be 

successfully interrogated by hierarchical cluster analysis and PCA, were diagnostic in all 

cases, independent of cohort or gene expression assay used (Figure 3.3) and showed 

close consistency with stacked barplot data (Figure 3.4). Signature positivity was 

concordant with the disease subgroups apparent after independent clustering of the 
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1500 most variable probes within each entire array dataset (Figure 3.5), and correctly 

classified disease subgroup (SHH, WNT or WNT / SHH independent) in 99% (146 / 148) 

of cases overall (Figure 3.3). There was complete concordance in subgroup assignment, 

using all analytical methods, for the 14 cases analysed in parallel by GeXP and array 

(section 3.3.9). Silhouette plots (section 2.10.1) of the subgroups assigned by the 

signature, showed well clustered samples with a positive silhouette score for every 

member of the primary investigation cohort (n = 39) and for 145 / 148 of the 

transcriptomic datasets. Three samples showed a negative silhouette score and could 

be considered to be incorrectly classified.  
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Figure 3.3. Diagnostic WNT and SHH subgroup gene expression signatures recognize 
equivalent molecular subgroups across multiple medulloblastoma cohorts. Data from 4 
independent data sets are shown (A, primary investigation cohort; B, Kool and colleagues (n = 
62; (Kool et al., 2008)); C, Thompson and colleagues (n = 46; (Thompson et al., 2006)); and D, 
Fattet and colleagues (n = 40; (Fattet et al., 2009))). WNT and SHH subgroup expression 
signature positivity demonstrates close concordance with (i) underlying molecular defects in 
the respective pathways and (ii) discrete sample clusters identified on independent clustering 
of the most variable probes in each array data set (Figure 3.5). Each panel (A–D) shows 
hierarchical clustering of signature genes (WNT subgroup, red; SHH subgroup, blue; WNT / 
SHH independent, grey). Mutational information for CTNNB1 and PTCH1 is shown (coloured 
boxes, mutation; grey checked boxes, missing data). Array clusters which show concordance 
with the detected SHH and WNT subgroup signatures derived by clustering the most variable 
probes of each whole array data set are shown (purple, SHH subgroup; orange, WNT subgroup 
(Figure 3.5)). Biplots show PCA for each signature gene set. Arrows show projections of 
expression axes for each gene (SHH signature genes, blue; WNT signature genes, red; WNT / 
SHH independent cases, grey). 
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Figure 3.4. Identification of SHH and WNT subgroup medulloblastomas using diagnostic 
expression signatures. Data are illustrated from the 4 independent data sets using stacked bar 
plots (A, primary investigation cohort; B, Kool and colleagues (n = 62; (Kool et al., 2008)); C, 
Thompson and colleagues (n = 46; (Thompson et al., 2006)); and D, Fattet and colleagues (n = 
40; (Fattet et al., 2009))). WNT signature genes (red) and SHH signature genes (blue) in 
combination clearly define subgroup membership. Vertical dashed lines delineate sample 
groups positive for WNT and SHH signatures by hierarchical clustering and PCA analysis in 
Figure 3.3. Right-hand panel indicates stacked order of genes for each signature. Before 
generation of bar plots, expression data from each cohort were scaled on a per gene basis to a 
mean of zero and a variance of 1. Samples expressing all or most signature genes at above 
average levels will show bars of greater positive magnitude. 
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Figure 3.5. Independent hierarchical clustering of the 1500 most differentially expressed 
genes within transcriptomic datasets from independent medulloblastoma cohorts described 
by Kool and colleagues (A; (Kool et al., 2008)), Thompson and colleagues  (B; (Thompson et 
al., 2006)) and Fattet and colleagues (C; (Fattet et al., 2009)). Discrete subgroups within each 
data set, which correlate with the WNT and SHH subgroups recognised by expression 
signatures described in Figure 2, are marked (orange, WNT; purple , SHH). 
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Figure 3.6. Silhouette plots of subgroups assigned by the 13-gene transcriptomic signature 
demonstrate correctly-clustered samples for 39 / 39 (100%) of the primary investigation 
cohort and 145 / 148 (98%) of array-based datasets: A, primary investigation cohort; B, Kool 
et al.; C, Thompson et al.; D, Fattet et al. Discrete subgroups within each data set, which 
correlate with the WNT and SHH and WNT / SHH-independent subgroups as described in 
Figures X and Y, are marked (red, WNT; blue , SHH; grey, WNT / SHH independent). A 
silhouette width (si) close to one indicates a very well clustered sample, whereas samples with 
close to zero width lie between two clusters; samples with negative silhouette widths are 
potentially placed into the wrong cluster. For each cluster, numbered 1 to 3, the number of 
cluster members (nj) and average silhouette width (aveiCj Si) are given. 
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3.4.5 Signature positive cases show specific clinical disease features 

and behaviours 

Since the gene expression signatures had been shown to perform consistently well 

across both GeXP-based and array-based measurements of gene expression, it enabled 

the molecular subgroup data from all four cohorts to be combined for meta-analysis 

with the mutational and clinical data which were consistently reported for all studies.  

A cohort comprising 173 cases was assessed in this analysis (Table 3.5). Clinical 

demographics were consistent with previously reported estimates for 

medulloblastoma (Pizer and Clifford, 2009). There were 115 (68%) classic, 39 (23%) DN 

and 16 (9%) LCA type medulloblastomas, and 3 cases with data not available. 

Histological classifications were those reported in the original publications (Fattet et al., 

2009; Kool et al., 2008; Thompson et al., 2006).  The gender ratio of the combined 

cohort was 1.42:1. There were 34 (20%) infant cases (≤3 years old at diagnosis) and 

138 (80%) non-infant cases, one case with data not available (overall, median age at 

diagnosis 6.45, range 0.3 – 35.3 years).  There were 30 (21%) M+ disease cases, and 

113 (79%) M- disease cases and 44 cases with data not available. Overall, there were 

21 (12%) WNT and 42 (24%) SHH subgroup cases observed. The subclassification of the 

remaining cases has not produced consistent findings in previous studies (Cho et al., 

2011; Northcott et al., 2010; Fattet et al., 2009; Kool et al., 2008; Thompson et al., 

2006). Remaining cases were therefore assigned to the WNT / SHH independent 

classification as a single group, representing 110 (64%) of cases.  
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This study 2 LCA M 1 1 2.5 0 0 
WNT/SHH-

ind 
0 1 0 0 

This study 3 CLAS M 0 1 2.9 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 4 CLAS M 0 0 4.6 NA NA 
WNT/SHH-

ind 
NA NA NA 0 

This study 5 DN M 0 0 19 0 0 SHH 0 0 0 0 

This study 7 CLAS F 1 1 2.6 0 0 
WNT/SHH-

ind 
0 NA 0 0 

This study 9 LCA M 0 0 4.1 0 0 
WNT/SHH-

ind 
1 NA 0 0 

This study 10 LCA M 0 1 2.5 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 11 CLAS F 0 0 15.4 0 0 
WNT/SHH-

ind 
0 1 0 0 

This study 12 DN M 1 0 6.3 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 13 DN M 1 1 2.6 0 0 SHH 0 1 0 0 

This study 14 DN F 0 0 4.8 0 1 SHH 0 NA 0 0 

This study 16 DN F 1 0 5.7 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 17 LCA M 1 0 16.7 0 1 SHH 0 1 0 0 

This study 19 DN M 0 1 2.9 0 1 SHH 0 0 0 0 

This study 20 DN M 0 0 12.5 0 0 
WNT/SHH-

ind 
NA 0 0 0 

This study 21 CLAS F 0 0 9.8 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 22 DN F 0 1 1 0 1 SHH 0 0 0 0 

This study 24 CLAS M 0 0 10 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 25 CLAS M 0 0 12.6 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 26 CLAS M 0 0 5.1 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 27 CLAS M 0 0 6.8 0 0 
WNT/SHH-

ind 
0 1 0 0 

This study 28 CLAS F 0 0 8.6 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 30 CLAS M 0 0 5 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 31 CLAS M 0 0 10.3 1 0 WNT 0 0 1 0 

This study 32 CLAS M 0 0 11.5 0 0 SHH 0 1 0 0 

This study 38 CLAS F 0 0 3.3 0 0 
WNT/SHH-

ind 
0 1 0 0 

This study 40 CLAS M 0 0 7.5 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 41 CLAS F 0 0 8.6 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 42 CLAS M 1 0 5.5 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 43 CLAS F 1 0 3.5 0 1 SHH 0 1 0 0 

This study 44 CLAS F 0 0 10.2 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 45 DN F 0 0 14.2 0 0 SHH 0 0 0 0 

This study 46 CLAS M 0 0 5.4 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 50 CLAS F 0 0 17 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 51 CLAS F 0 0 4.6 0 0 
WNT/SHH-

ind 
1 0 0 0 
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This study 52 CLAS F 0 1 3 0 0 
WNT/SHH-

ind 
0 0 0 0 

This study 53 CLAS M 0 0 4.3 0 0 
WNT/SHH-

ind 
1 0 0 0 

This study 54 CLAS M 0 0 10 1 0 WNT 0 0 1 0 

This study 55 CLAS F 0 0 9 1 0 WNT 0 0 1 0 

Kool et al., 2008 255 CLAS M NA 0 19.0 1 0 WNT 0 0 1 0 

Kool et al., 2008 256 CLAS M 0 0 7.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 258 DN M 0 1 3.0 0 0 SHH 0 1 0 0 

Kool et al., 2008 259 CLAS M 0 0 15.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 260 CLAS M 0 0 8.0 1 0 WNT NA NA NA 0 

Kool et al., 2008 261 CLAS M 0 0 4.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 262 CLAS M 0 0 14.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 264 CLAS F 0 0 7.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 265 DN M 0 1 3.0 0 1 SHH 0 1 0 0 

Kool et al., 2008 267 CLAS F 0 0 10.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 268 CLAS F 0 0 5.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 269 CLAS M 0 1 2.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 270 NA F 0 0 20.0 1 0 WNT 1 1 1 0 

Kool et al., 2008 272 DN M 0 1 2.0 0 0 SHH 0 1 0 0 

Kool et al., 2008 273 CLAS M 0 1 3.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 274 CLAS M 0 0 4.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 275 CLAS F 0 0 11.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 311 CLAS M 1 0 13.5 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 312 CLAS M 0 0 7.3 0 0 
WNT/SHH-

ind 
1 1 0 0 

Kool et al., 2008 313 CLAS M 1 0 8.0 0 0 WNT 0 0 0 0 

Kool et al., 2008 315 CLAS M 1 0 6.4 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 316 DN M 0 1 1.8 0 0 SHH 1 1 0 0 

Kool et al., 2008 317 CLAS M 1 0 3.3 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 318 CLAS M 1 1 2.8 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 324 CLAS M 0 1 2.2 0 0 SHH 0 0 0 0 

Kool et al., 2008 325 CLAS M 0 0 3.1 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 326 CLAS M 0 0 5.9 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 332 DN F 0 0 4.8 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 334 DN M 0 0 27.1 0 0 SHH 0 0 0 0 

Kool et al., 2008 335 CLAS F 0 0 35.3 0 0 SHH 1 1 0 0 

Kool et al., 2008 336 CLAS M 0 0 10.3 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 337 CLAS M 1 0 16.6 0 0 
WNT/SHH-

ind 
0 0 0 0 
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Kool et al., 2008 338 DN F 0 0 5.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 339 DN M 0 0 5.3 0 0 
WNT/SHH-

ind 
1 1 0 0 

Kool et al., 2008 340 CLAS F 0 0 7.8 1 0 WNT 0 0 1 0 

Kool et al., 2008 341 CLAS M 0 0 12.2 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 342 CLAS F 0 1 1.5 0 1 SHH 1 1 0 0 

Kool et al., 2008 343 CLAS F 0 0 25.6 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 365 CLAS M 0 0 10.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 367 CLAS F 0 0 6.0 0 0 
WNT/SHH-

ind 
NA NA NA 0 

Kool et al., 2008 368 CLAS M 0 0 7.4 0 0 
WNT/SHH-

ind 
NA NA NA 0 

Kool et al., 2008 369 CLAS M 0 0 10.4 1 0 WNT 0 0 1 1 

Kool et al., 2008 370 CLAS M 1 0 4.9 0 0 
WNT/SHH-

ind 
NA NA NA 0 

Kool et al., 2008 371 CLAS F 0 0 11.2 1 0 WNT NA NA NA 0 

Kool et al., 2008 372 CLAS M 0 0 12.7 1 0 WNT NA NA NA 0 

Kool et al., 2008 373 LCA M 0 1 2.8 0 1 SHH NA NA NA 0 

Kool et al., 2008 374 NA F NA NA NA 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 377 CLAS M 0 0 5.4 0 0 
WNT/SHH-

ind 
1 0 0 1 

Kool et al., 2008 379 CLAS M NA 0 10.0 1 0 WNT 0 0 1 1 

Kool et al., 2008 421 CLAS M 0 0 6.0 0 0 
WNT/SHH-

ind 
NA NA NA 0 

Kool et al., 2008 424 CLAS M 1 0 5.0 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 425 CLAS F 0 0 6.0 1 0 WNT NA NA NA 0 

Kool et al., 2008 426 CLAS M 1 1 3.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 427 DN M 0 0 7.0 0 1 SHH 0 1 0 0 

Kool et al., 2008 434 DN F 0 0 12.0 0 0 
WNT/SHH-

ind 
0 0 0 0 

Kool et al., 2008 435 DN F 0 1 3.0 0 0 SHH 0 0 0 0 

Kool et al., 2008 440 DN F 0 0 3.7 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 446 CLAS F 0 0 6.3 0 0 SHH 1 1 0 0 

Kool et al., 2008 447 CLAS F 0 0 31.0 0 0 SHH 0 0 0 0 

Kool et al., 2008 452 CLAS M NA 1 2.5 0 0 SHH 0 0 0 0 

Kool et al., 2008 455 CLAS F 0 1 2.4 0 0 
WNT/SHH-

ind 
1 0 0 0 

Kool et al., 2008 458 DN M 0 0 3.75 0 0 
WNT/SHH-

ind 
0 0 0 0 

Thompson et al., 
2006 

1 LCA M 0 0 4.1 0 0 
WNT/SHH-

ind 
1 NA 0 1 

Thompson et al., 
2006 

2 DN M 0 0 12.5 0 0 
WNT/SHH-

ind 
1 NA 0 1 

Thompson et al., 
2006 

3 CLAS F 0 0 15.4 0 0 
WNT/SHH-

ind 
0 NA 0 1 

Thompson et al., 
2006 

4 DN F 0 0 9 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

5 DN F 1 0 5.7 0 0 
WNT/SHH-

ind 
0 0 0 1 

Thompson et al., 
2006 

6 CLAS F 1 1 2.6 0 0 
WNT/SHH-

ind 
0 NA 0 1 
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Thompson et al., 
2006 

7 CLAS M 0 0 9.2 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

8 LCA M 0 1 2.5 0 0 
WNT/SHH-

ind 
0 NA 0 1 

Thompson et al., 
2006 

9 CLAS F 0 0 3.6 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

10 CLAS F 1 1 2.8 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

11 CLAS F 0 0 10.7 NA NA WNT 0 NA 1 0 

Thompson et al., 
2006 

12 CLAS M 0 0 7.3 1 0 WNT 0 NA 1 0 

Thompson et al., 
2006 

13 CLAS M 0 0 16.2 1 0 WNT 0 NA 1 0 

Thompson et al., 
2006 

14 CLAS F 0 0 9.2 1 0 WNT 0 NA 0 0 

Thompson et al., 
2006 

15 CLAS F 0 0 10.8 1 0 WNT 0 NA 1 0 

Thompson et al., 
2006 

16 CLAS M 0 0 7.3 1 0 WNT 0 NA NA 0 

Thompson et al., 
2006 

17 CLAS M 0 0 5.3 NA NA 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

18 DN M 1 0 7.5 NA 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

19 CLAS F 0 0 7.3 0 NA 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

20 CLAS F 0 0 9.8 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

21 CLAS M 1 0 4.3 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

22 CLAS M 0 0 11.5 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

23 DN F 0 0 12.5 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

24 CLAS M 0 0 10.7 0 0 
WNT/SHH-

ind 
NA NA 0 0 

Thompson et al., 
2006 

25 CLAS F 0 0 10.4 0 0 
WNT/SHH-

ind 
1 NA 0 0 

Thompson et al., 
2006 

26 DN F 1 1 1.8 0 0 SHH 0 NA 1 0 

Thompson et al., 
2006 

27 LCA M 0 0 12.5 0 1 SHH 1 NA 0 0 

Thompson et al., 
2006 

28 LCA F 0 0 11.6 0 0 SHH 1 NA 0 0 

Thompson et al., 
2006 

29 LCA M 0 0 10.9 0 0 SHH 1 NA 0 0 

Thompson et al., 
2006 

30 LCA M 0 0 5.6 0 0 SHH 0 NA NA 0 

Thompson et al., 
2006 

31 DN F 0 1 1 0 1 SHH 0 0 0 1 

Thompson et al., 
2006 

32 LCA M 1 0 16.7 0 1 SHH 0 1 0 1 

Thompson et al., 
2006 

33 DN F 0 0 4.8 0 1 SHH 0 NA 0 1 

Thompson et al., 
2006 

34 DN M 1 1 2.5 0 1 SHH 0 1 0 1 

Thompson et al., 
2006 

35 DN F 0 1 2.2 0 1 SHH 0 NA 0 0 

Thompson et al., 
2006 

36 DN F 0 1 1.2 0 0 SHH 0 NA 0 0 

Thompson et al., 
2006 

37 DN M 0 1 1.5 0 0 SHH 0 NA 0 0 

Thompson et al., 
2006 

38 DN F 1 1 1.2 NA NA SHH 0 NA 1 0 

Thompson et al., 
2006 

39 LCA F 0 0 6.3 0 0 
WNT/SHH-

ind 
0 NA 0 0 



192 
 

S
tu

d
y
 

S
tu

d
y
 ID

 

H
isto

lo
g
y
 

G
e
n
d
e
r 

M
 S

ta
g
e
 

A
g
e
 

A
g
e
 (y

e
a
rs) 

C
T
N

N
B
1
 

m
u
ta

tio
n
 

P
T
C
H

1
 

m
u
ta

tio
n
 

S
ig

n
a
tu

re
 

1
7
p
 lo

ss 

9
 q

 lo
ss 

C
h
ro

m
o
so

m

e
 6

  lo
ss 

E
x
clu

d
e
 

Thompson et al., 
2006 

40 LCA M 1 0 5.8 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

41 LCA M 1 0 6.6 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

42 CLAS M 0 1 2.9 0 0 
WNT/SHH-

ind 
1 0 0 1 

Thompson et al., 
2006 

43 LCA F 1 0 3.3 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

44 DN M 0 0 5 0 0 SHH 0 NA 0 0 

Thompson et al., 
2006 

45 LCA M 1 1 3 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Thompson et al., 
2006 

46 CLAS F 0 0 8.8 0 0 
WNT/SHH-

ind 
0 NA 0 0 

Fattet et al., 2009 MB79 CLAS NA NA 1 3.0 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB80 DN NA NA 0 8.0 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB81a LCA NA NA 0 9.1 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB82 DN NA NA 0 3.4 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB87a CLAS NA NA 0 7.3 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB88 CLAS NA NA 0 9.5 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB89 CLAS NA NA 0 11.2 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB91 CLAS NA NA 0 4.9 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB92 CLAS NA NA 0 8.9 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB93 DN NA NA 0 5.8 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB95 LCA NA NA 0 3.4 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB96 CLAS NA NA 0 3.7 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB99 NA NA NA 0 8.2 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB100 CLAS NA NA 0 7.6 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB101 CLAS NA NA 0 5.6 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB102 CLAS NA NA 0 9.0 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB105 DN NA NA 1 1.0 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB106 CLAS NA NA 0 4.2 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB107 CLAS NA NA 0 10.5 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB108 CLAS NA NA 0 8.0 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB109 CLAS NA NA 0 5.3 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB112 CLAS NA NA 0 11.5 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB116 CLAS NA NA 0 12.3 1 NA WNT NA NA 1 0 

Fattet et al., 2009 MB117 DN NA NA 1 0.3 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB118 CLAS NA NA 0 9.6 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB119 CLAS NA NA 0 7.8 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB120 CLAS NA NA 0 9.0 1 NA WNT NA NA 1 0 

Fattet et al., 2009 MB121 CLAS NA NA 0 5.8 0 NA 
WNT/SHH-

ind 
NA NA 0 0 
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Fattet et al., 2009 MB122 CLAS NA NA 0 7.1 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB123 DN NA NA 0 3.1 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB124 CLAS NA NA 0 10.2 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB125 CLAS NA NA 0 3.5 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB127 CLAS NA NA 0 5.6 1 NA WNT NA NA 1 0 

Fattet et al., 2009 MB128 DN NA NA 0 6.5 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB130 DN NA NA 1 2.0 0 NA SHH NA NA 0 0 

Fattet et al., 2009 MB131 CLAS NA NA 0 10.9 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB133 CLAS NA NA 0 13.2 1 NA WNT NA NA 1 0 

Fattet et al., 2009 MB134 CLAS NA NA 0 11.0 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB135 CLAS NA NA 1 2.8 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Fattet et al., 2009 MB136 CLAS NA NA 0 5.0 0 NA 
WNT/SHH-

ind 
NA NA 0 0 

Table 3.5. Clinical and molecular features of the combined cohort used for correlative 
analyses. Reported clinical, pathological and molecular features for three transcriptomic 
cohorts (Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006) together with the cohort 
described in this study, are shown. Histology (CLAS, classic; LCA, large cell / anaplastic; DN, 
desmoplastic / nodular). Gender (M, male; F, female). M stage (0, M0 / 1; 1, M2 / 3). Age (>3 
years, 0; ≤3 years, 1). CTNNB1 and PTCH1 mutation status (0, no mutation detected; 1 – 
mutation detected). Chromosome 17p and 9q loss, assessed by LOH analysis (this study), array 
CGH (Kool et al., 2008), FISH (Thompson et al., 2006) (0, no loss detected; 1, loss detected).  
Chromosome 6 loss, assessed using LOH analysis (this study), array CGH (Fattet et al., 2009; 
Kool et al., 2008) and FISH (Thompson et al., 2006) (0, no loss detected; 1, loss detected).  
Duplicate samples analysed in both the current study cohort and other cohorts are marked 
(exclude column; 0, include; 1, exclude) and were removed from correlative analyses. NA – not 
available. 
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3.4.6 Genetic and epigenetic mechanisms of SHH and WNT pathway 

activation 

The patterns of mutation observed for CTNNB1 and PTCH1 served to further validate 

the fidelity of the gene expression signatures developed, since they were exclusively 

detected in WNT and SHH subgroup cases, respectively, where data was available 

(Figure 3.3) (combined cohort ‘p’ = 5.3 x 10-8 and ‘p’ = 0 (chi-squared test), 

respectively).  

Mutation of CTNNB1 was the primary mechanism and correlate of WNT pathway 

activation, observed in 19 / 20 (95%) cases where mutational and expression signature 

data were available. Consistent with this, no APC mutations were observed within the 

55 cases tested in the primary investigation DNA cohort.  

PTCH1 mutation was a major mechanism of SHH pathway activation. 11 / 32 (34%) 

SHH subgroup cases investigated harboured a PTCH1 mutation (Figure 3.3). Therefore, 

a systematic investigation of alternative genetic mechanisms of pathway activation 

was undertaken in our primary investigation cohort, to identify possible causative 

mechanisms. This mutational analysis incorporated investigations into all known 

pathway genes in which mutations have previously been reported; PTCH1 (Kogerman 

et al., 2002; Pietsch et al., 1997; Raffel et al., 1997; Wolter et al., 1997), SUFU (Taylor 

et al., 2002) and SMO (Reifenberger et al., 1998).  

In addition to 5 truncating mutations of PTCH1 identified, only one further potentially 

pathogenic missense SUFU mutation was identified, with no evidence for SMO 

mutation found (Table 3.6). Additional non-pathogenic variants discovered (e.g. 

polymorphic variants or intronic changes) are summarised in Table 3.7. Allelic loss of 

chromosome 17p, targeting REN (KCTD11) at 17p13.2 has also been previously 

associated with SHH pathway activation in medulloblastoma (De Smaele et al., 2004; 

Di Marcotullio et al., 2004) and was observed in 9 / 37 (24%) of cases tested. 
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 Molecular characteristics 
 Clinical 

characteristics 

Case 
no. 

Gene Exon Nucleotide Amino acid Nature of mutation 
9q 

LOH 

 
Age 
(yrs) 

Sex Pathology 

43 PTCH1 2 239delGA Leu79FS Truncating Y  3.5 F Classic 

19 PTCH1 3 572insTA Tyr191FS Truncating N  2.9 M DN 

37 PTCH1 9 1341delACTC Leu447FS Truncating Y  7.9 M Classic 

17 PTCH1 10 1350delC Leu450FS Truncating Y  16.7 M LCA 

14 PTCH1 14 2011insC His671FS Truncating Y  4.8 F DN 

22 PTCH1 19 3205delGGCATGATGGG Gly1069FS Truncating N  1.0 F DN 

           

10 SUFU 9 C1084T Arg362Cys Missensea N 
 

2.5 M LCA 

Table 3.6. Genetic mechanisms of SHH pathway activation in medulloblastoma.  Coding 
sequence mutations detected in PTCH1, SUFU and SMO in 55 primary medulloblastomas.  LOH, 
loss of heterozygosity; M, male; F, female. Nucleotide and amino acid positions are shown 
relative to Build 36 of the NCBI genomic sequence assembly (Genbank gene IDs 5727 (PTCH1), 
51684 (SUFU) and 6608 (SMO); http://www.ncbi.nlm.nih.gov/). avariation not identified in 100 
non-neoplastic DNA samples. No mutations were detected in SMO. 

 

3.4.6.1 Epigenetic mechanisms of SHH pathway activation 

Epigenetic mechanisms of SHH pathway activation were additionally investigated, as 

an alternative to genetic determinants of pathway activation. Two predicted 

promoter-associated CpG islands, spanning exons 1a and 1c of PTCH1, and a promoter-

associated CpG island within SUFU, were identified and investigated for any evidence 

of DNA hypermethylation, which may help determine transcriptional silencing (section 

1.1.8). 

There was no evidence for DNA methylation of the PTCH1 exon 1a-associated or the 

SUFU CpG island observed in any tumour tested (n = 39; Table 3.8), indicating that any 

transcriptional silencing at these loci through DNA hypermethylation is unlikely to be 

important in the activation of the SHH pathway in medulloblastoma. In contrast, 12 / 

27 (44%) of tumours investigated showed evidence of DNA hypermethylation of PTCH1 

exon 1c, suggesting a potential role for this epigenetic mechanism. Unlike PTCH1 

mutations, however, this hypermethylation was exclusively observed in non-SHH 

subgroup medulloblastomas, indicating that methylation-dependent silencing at this 

locus is unlikely to be important in the pathogenesis of SHH medulloblastomas. 

Similarly, no significant associations between any other identified defects associated 
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with SHH pathway activation (SUFU missense mutation and 17p allelic loss (REN; 

KCTD11)) and SHH subgroup status, were identified (Table 3.8).  

Gene Exon Nucleotide variation Amino acid variation Frequency Nature of Variation 

SMO 6 G1203C Ala401Ala 1/55 (1.8%) Missense mutation (synonymous)a 

      

PTCH1 22 A3583T Thr1195Ser 1/55 (1.8%) Polymorphism (non-synonymous)b 

PTCH1 23a C3845T Pro1282Leu 1/55 (1.8%) Polymorphism (non-synonymous)b 

PTCH1 23a C3944T Pro1315Leu 29/55 (53%) Polymorphism (non-synonymous)a,b 

SUFU 8 G1018T Ala340Ser 2/55 (3.6%) Polymorphism (non-synonymous)a,b 

SMO 1 49ins3 17InsLeu 5/55 (9.1%) Polymorphism (non-synonymous)c 

SMO 4 G808A Val269Ile 2/55 (3.6%) Polymorphism (non-synonymous)c 

      

PTCH1 2 C318T Leu106Leu 3/55 (5.5%) Polymorphism (synonymous)b,c 

PTCH1 5 A735G Thr245Thr 2/55 (3.6%) Polymorphism (synonymous)a,b 

PTCH1 12 T1665C Asn555Asn 17/55 (31%) Polymorphism (synonymous)b,c 

PTCH1 12 C1686T Ala562Ala 14/55 (25.5%) Polymorphism (synonymous)b,c 

PTCH1 14b A2199G Ser733Ser 13/55 (23.6%) Polymorphism (synonymous)b 

PTCH1 23a G3954A Pro1318Pro 1/55 (1.8%) Polymorphism (synonymous)b 

SMO 4 G852A Gln284Gln 2/55 (3.6%) Polymorphism (synonymous)c 

SMO 5 G1137A Ala379Ala 1/55 (1.8%) Polymorphism (synonymous)c 

SMO 6 G1164C Gly388Gly 5/55 (9.1%) Polymorphism (synonymous)b 

SMO 10 T1722C Ser574Ser 1/55 (1.8%) Polymorphism (synonymous)b 

SMO 12 G2052A Pro684Pro 4/55 (7.3%) Polymorphism (synonymous)c 

SMO 12 A1989G Pro663Pro 1/55 (1.8%) Polymorphism (synonymous)a 

      

PTCH1 1B 1IVS1B-10 del6 - 1/55 (1.8%) Intronic variationd 

PTCH1 1B 1IVS1B-10 ins3 - 11/55 (20%) Intronic variationd 
PTCH1 10 1503IVS10+12 g>a - 1/55 (1.8%) Intronic variationd 
PTCH1 11 1504IVS11-12 t>c - 1/55 (1.8%) Intronic variationd 
PTCH1 14 2250IVS14+25 t>c - 2/55 (3.6%) Intronic variationd 
PTCH1 15 2560IVS15+9 g>c - 30/55 (55%) Intronic variationd 
PTCH1 15 2560IVS15+8 g>c - 1/55 (1.8%) Intronic variationd 
PTCH1 17 2887IVS17+21 a>g - 31/55 (56%) Intronic variationd 
SUFU 8 1022IVS8+49 t>c - 3/55 (5.5%) Intronic variationd 
SUFU 9 1023IVS9-23 g>c - 9/55 (16.4%) Intronic variationd 
SMO 1 1IVS1-35 g>t - 1/55 (1.8%) Intronic variationd 
SMO 2 332IVS2-56 t>c - 41/55 (74.5%) Intronic variationd 
SMO 3 537IVS3-26 t>c - 16/55 (29.1%) Intronic variationd 
SMO 3 747IVS3+24 c>g - 16/55 (29.1%) Intronic variationd 
SMO 4 920IVS4+79 t>c - 14/55 (25.5%) Intronic variationd 
SMO 4 920IVS4+55 c>a - 1/55 (1.8%) Intronic variationd 
SMO 4 920IVS4+68 g>a - 2/55 (3.6%) Intronic variationd 
SMO 5 1140IVS5+13 g>a - 2/55 (3.6%) Intronic variationd 
SMO 6 1264IVS6+41 a>g - 5/55 (9.1%) Intronic variationd 
SMO 8 1357IVS8-33 g>c - 1/55 (1.8%) Intronic variationd 
SMO 10 1652IVS10-72 g>a - 1/55 (1.8%) Intronic variationd 

Table 3.7. Additional DNA sequence variations detected in PTCH1, SUFU and SMO in 55 
primary medulloblastomas. Nucleotide and amino acid positions are shown relative to Build 
36 of the NCBI genomic sequence assembly (Genbank gene IDs 5727 (PTCH1), 51684 (SUFU) 
and 6608 (SMO); http://www.ncbi.nlm.nih.gov/). avariation not identified in 100 non-
neoplastic DNA samples, bvariation previously reported in the literature or dbSNP 
(http://www.ncbi.nlm.nih.gov/), cvariation identified in paired constitutional (blood) DNA 
sample, dintronic variations were not predicted to affect splice sites and were not 
characterised further.  
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Table 3.8. Associations between molecular subgroups and medulloblastoma genomic, epigenomic and clinical disease features. NOTE. Cases are shown 
arranged by signature status (SHH, WNT, WNT / SHH independent) as determined in Figure 3.3, and then by ascending age, amolecular subgroup; bmutation status; 
chypermethylation status (black, methylated; white, unmethylated); and dchromosomal loss (black, allelic; white, no loss). Age is shown in years and categorized 
into infants (≤3 years, black) and non-infants (>3 years, white). Pathology variant is indicated by a white square (classic), black square (DN) or grey square (LCA). 
Gender is indicated by black squares (F, female) and white squares (M, male). M- disease is indicated by white squares and M+ disease by black squares. Raw ‘p’ 
and ‘p’ values corrected for multiple hypothesis testing are shown for relationships between molecular / clinical correlates and subgroup membership (chi-squared 
tests, Bonferroni correction). Significant (*’P’ < 0.05) and marginally significant (**’P’ = 0.051–0.10) associations are marked. Diagonally hatched grey boxes 
indicate unavailable data. Abbreviations: FS, frameshift; MS, missense mutation; ns, not significant.

Corrected
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3.4.7 Genomic biomarkers of SHH and WNT pathway activation 

An investigation of selected medulloblastoma chromosomal abnormalities 

(chromosome 6, 9q and 17p loss) and epigenomic defects (COL1A2 status) of biological 

and / or prognostic significance (Pizer and Clifford, 2009; Anderton et al., 2008) was 

undertaken, for their associations with the SHH and WNT disease  subgroups, and each 

other, to assess any utility as biomarkers of pathway activation. 

Chromosome 6 loss, CTNNB1 mutation and the absence of chromosome 9 and 17 

abnormalities, were observed in all WNT cases in the primary cohort (Table 3.8), 

consistent with previous findings (Fattet et al., 2009; Kool et al., 2008; Clifford et al., 

2006; Thompson et al., 2006).  Across the combined cohort, evidence of loss of an 

entire copy of chromosome 6 was associated with 88% (14 / 16) of WNT cases with 

available data (‘p’ < 3 x 10-16, Fisher’s Exact test), however this relationship was not 

exclusive; chromosome 6 loss was also detected in occasional non-WNT cases (2 / 145 

(1.4%)).  8 of 35 tumours tested (23%) showed evidence of genetic loss at the 9q22.3 

region surrounding the PTCH1 locus in our primary cohort (Table 3.8).  4 of 8 were in 

the SHH subgroup and 2 / 4 tumours with PTCH1 mutations showed LOH of 9q22.3, 

however neither association reached significance (‘p’ = 0.06 and 0.22 respectively, 

Fisher’s Exact test).  A significant inverse association between 17p loss and 

membership of the SHH and WNT subgroups was observed; 17p losses were 

exclusively observed in WNT / SHH independent cases (17p LOH in 0 / 12 SHH or WNT 

cases vs 10 / 26 WNT / SHH independent cases (‘p’ = 0.02, Fisher’s Exact test)).  In 

addition, COL1A2 hypermethylation was detected in 76% (25 / 33) of cases; an absence 

of COL1A2 methylation was significantly associated with the SHH subgroup (‘p’ = 0.01, 

Chi-squared test), but this relationship was not maintained when a correction for 

multiple hypothesis testing was applied (Table 3.8).  

3.4.8 Distinct clinical features of medulloblastoma molecular 

subgroups 

Analysis of the medulloblastoma molecular disease subgroups, defined by the gene 

expression signatures, revealed striking differences in their clinical disease features. 
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3.4.8.1 Signature positive cases display different ages of 

incidence 

WNT / SHH independent tumours comprised the majority of cases and had their peak 

incidence in the 3-to-6 year age group, but were extremely rare in the first 2 years of 

life (Figure 3.7). In contrast, SHH subgroup tumours had a major peak in infancy (21 / 

42 (50%) of SHH cases were diagnosed ≤ 3 years of age). SHH subgroup tumours 

represented the majority of the infant clinical group (21 / 34 (62%) of cases ≤ 3 years of 

age), but were less common in non-infant children (16 / 127 (15%) cases > 3-15 years 

of age), and were the majority of adult cases (5 / 11 (45%) cases ≥ 16 years of age, 

overall ‘p’ = 5.8 x 10-9, chi-squared test). Below 2 years of age, almost all cases (11 / 12 

(92%)) were SHH positive. WNT subgroup cases were not observed in infants 

(minimum age observed was 5 years) and had a bi-modal age distribution with major 

and minor peaks at 10 and 20 years, respectively. 

 

 

Figure 3.7. Medulloblastoma molecular subgroups show distinct age of incidence 
distributions. Data for the WNT (grey), SHH (black), and WNT / SHH independent (hatched) 
subgroups are shown, based on a combined cohort of 173 medulloblastomas. A, density plots 
show subgroup dependent ages of incidence. Case density represents the smoothed frequency 
of incidence within each of the 3 subgroups. Grey dotted line is plotted at 3 years of age. B, bar 
plots show age distribution of data set. C, bar plot shows age distribution of cases aged ≤6 
years at diagnosis. F, frequency.  
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3.4.8.2 Subgroups show no differences in gender ratios 

For cases with available gender information, WNT subgroup cases suggested gender 

parity (9 M: 8 F, ratio 1.1), in contrast to SHH (19 M: 14 F, ratio 1.4) and WNT / SHH 

independent cases (50 M: 33 F, ratio 1.5), which showed a male enrichment, although 

this was not significant (‘p’ = 0.85, chi-squared test) (Figure 3.8).   

 

Figure 3.8. WNT subgroup suggests gender parity. SHH and WNT / SHH independent subgroup 
cases show enrichment for male cases (black) over female cases (white), in contrast to WNT 
subgroup cases, which had approximately equal gender ratio.  
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3.4.8.3 Signature positive cases show associations with specific 

histopathological subtypes 

Significant differences were also observed in the distribution of medulloblastoma 

histological subtypes between the molecular subgroups (‘p’ = 9 X 10-12, Chi-squared 

test; Figure 3.9, Figure 3.10). WNT subgroup cases exclusively displayed classic 

histology (‘p’ = 0.0003, Fisher’s Exact test), and WNT / SHH independent tumours were 

also predominantly of the classic subtype, but DN and LCA cases were also observed. 

Consistent with previous studies (Kool et al., 2008; Thompson et al., 2006; Raffel et al., 

1997; Wolter et al., 1997), SHH cases were overall strongly associated with DN 

histology (‘p’ = 2.1 X 10-8, Fisher’s exact test).  However, this relationship was not 

absolute and LCA and classic cases were also observed in the SHH group.  Most notably, 

examination of this large cohort revealed the relationship between SHH activation and 

DN pathology to be age dependent (Figure 3.9, Figure 3.10); DN cases made up the 

majority of infant (≤ 3 years old) SHH subgroup cases; all DN cases in this infant group 

displayed SHH activation. DN pathology may therefore serve as a surrogate marker of 

SHH activation in the infant group.  In contrast, there were almost equal proportions of 

DN, LCA and classic cases in SHH-expressing non-infant cases, and the majority of non-

infant DN tumours were not SHH activated (‘p’ < 0.0001, Fisher’s Exact test).  No 

significant evidence for differences in metastatic stage (WNT 7% (1 / 16) M+ disease, 

SHH 16% (5 / 32) and WNT / SHH-independent 24% (20 / 82)) were observed between 

the different expression subgroups (‘p’ = 0.20, Chi-squared). 
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Figure 3.9. Molecular subgroups show relationships to medulloblastoma histological variants. 
Subgroup and histological information was available for 170 of 173 cases (Table 3.5). A, WNT 
subgroup (n = 20); B, SHH subgroup (n = 42); C, WNT / SHH independent cases (n = 108; ‘p’ = 
3.1 x 10-11, chi-squared test). White, classic (CLAS); grey, LCA; black DN histological variants. 

 

Figure 3.10. Associations between SHH subgroup medulloblastomas and DN histology are 
age-dependent. A, histological variants (white, classic (CLAS); grey, LCA; black DN) show 
significantly different distributions (‘p’ = 0.05; chi-squared test) in SHH subgroup cases arising 
in infants (≤3 years at diagnosis (n = 21); A1) and non-infants (>3 years (n = 21); A2). B, infant (n 
= 16; B1) and non-infant (n = 23; B2) DN medulloblastomas show significantly different 
relationships to the SHH subgroup (‘p’ = 8.6 x 10-5; Fisher's exact test; SHH subgroup, white; 
non-SHH, black). 
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3.5 Discussion 

3.5.1 Expression signatures of Wnt and SHH pathway activation 

The identification of distinct medulloblastoma subgroups (Cho et al., 2011; Northcott 

et al., 2010; Kool et al., 2008; Thompson et al., 2006) offers significant potential to 

improve the understanding of disease biology and clinical management. This chapter 

reported the development and validation of minimal diagnostic gene expression 

signatures, which can routinely be applied to identify the SHH, WNT and WNT / SHH 

independent medulloblastoma disease subgroups.  These gene expression signatures 

are robust and informative for subgroup identification in RNA extracted from snap-

frozen tumour material, using different gene expression assays. In particular, the GeXP 

assay reported here offers a number of advantages over microarray methodologies for 

the routine assignment of subgroup membership. The assay is easy to perform, takes 

less than a day to complete, is cost effective (less than one tenth the costs of 

performing microarray) and, importantly, can be performed on small amounts of total 

RNA (150 ng, compared to 500 ng to 5 µg for a typical expression microarray analysis). 

The removal of the significant disadvantages associated with microarray analysis (time 

consuming, complex and the need for expensive array analysis platforms) for subgroup 

assignment provides a strong basis for their clinical application; the GeXP method 

presented here is feasible for investigation in real time across multiple treatment 

centres during clinical treatment and in future clinical trials. 

We have shown that the disease subgroups recognised by these signatures are 

equivalent and consistently identified in four independent medulloblastoma cohorts, 

allowing their assembly into a large combined cohort.  Coupled with an extensive 

analysis of our novel primary cohort, this has allowed significant insights into the 

underlying molecular mechanisms, associated biomarkers, and clinical characteristics 

of these molecular disease subgroups.   

3.5.2 Genetic and epigenetic subgroup defects 

Our systematic investigation of specific medulloblastoma genetic and epigenetic 

defects in this study has informed their roles as determinants or correlates of the 

molecular subgroups identified.  
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3.5.2.1 Correlates of Wnt pathway activation 

Consistent with previous studies (Kool et al., 2008; Clifford et al., 2006; Thompson et 

al., 2006), CTNNB1 mutations were identified as the primary pathway activating event 

present in almost all WNT subgroup tumours, with chromosome 6 losses also affecting 

the majority of these cases. 

3.5.2.2 Correlates of SHH pathway activation 

PTCH1 mutation was the major mechanistic correlate of SHH activation, identified in 

~34% of SHH cases. SHH-associated PTCH1 mutations were detected both in 

conjunction with chromosome 9q loss, and in the heterozygous state, indicating 

disruption of a single PTCH1 allele can be sufficient to cause SHH pathway disruption in 

medulloblastoma. An absence of COL1A2 hypermethylation is also significantly 

associated with SHH subgroup medulloblastomas, most strongly in infant cases.  

Notably, a number of the previously reported determinants of SHH activation that we 

examined (PTCH1 exon 1c methylation (Diede et al., 2010), SUFU missense mutation 

(Taylor et al., 2002) and 17p (REN (KCTD11) (Di Marcotullio et al., 2004) allelic loss) 

were not specifically associated with the SHH subgroup, indicating any role they may 

play in medulloblastoma is SHH-independent.  Additionally, other SHH pathway 

defects examined (PTCH1 exon 1a hypermethylation), including events  previously 

reported in medulloblastoma (SMO mutations (Reifenberger et al., 1998) or SUFU 

truncating mutations (Taylor et al., 2002)) were not observed at all, suggesting their 

roles are either less common than previously thought, or are restricted to limited 

tumour subsets less well represented in our mutation screening cohort.  This is likely 

the case for SUFU mutations, which appear to be associated with germline inheritance 

and have their peak incidence in infants (Brugieres et al., 2010; Scott et al., 2006; 

Taylor et al., 2002). Further mechanisms of pathway activation remain to be identified 

in the majority of SHH cases.   

3.5.2.3 Correlates of the WNT / SHH independent subgroup 

Chromosome 17 defects were the only events significantly correlated with the most 

common WNT / SHH-independent subgroup, suggesting a role for chromosome 17 

genes in these cases.  This disease subgroup however remains the least well 
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characterised at the molecular level.  Sub-division of this group has been proposed on 

the basis of its transcriptomic and genomic patterns however, unlike the SHH and WNT 

groups, inconsistent results have been reported from different studies (Cho et al., 2011; 

Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006), and the identification 

of specific genes and pathways associated with its pathogenesis will be critical to 

future advances in our understanding of its molecular basis and any underlying 

heterogeneity.  

The significant associations observed between medulloblastoma molecular subgroups 

and specific gene, pathway and chromosomal defects (i) strongly support the existence 

of molecularly distinct SHH and WNT subgroups, (ii) inform the contributory 

mechanisms involved in their pathogenesis, and (iii) provide potential biomarkers for 

subgroup identification. When assessed for suitability as primary biomarkers, only 

CTNNB1 mutations, which were specifically observed in all but one WNT subgroup case, 

have sufficient sensitivity and specificity to have utility. Nuclear localisation of -

catenin has also been widely reported as a positive marker of WNT pathway 

activation(Clifford et al., 2006; Ellison et al., 2005; Eberhart et al., 2000), although its 

relationship to our WNT expression signature and CTNNB1 mutations could not be 

investigated in the present study due to tissue limitations.  Likewise, COL1A2 status 

may have utility in the identification of SHH subgroup infant desmoplastic 

medulloblastomas (this study and (Anderton et al., 2008)), particularly in cases where 

biopsy limitations do not allow assessment of the DN pathological variant.  The 

remainder of gene and chromosomal defects investigated were not suitable as primary 

biomarkers for positive subgroup discrimination, as a result of either their (i) non-

exclusivity, (ii) limitation to subsets of subgroup cases, or (iii) inverse correlation with 

pathway activation. In comparison, gene expression signatures positively identified all 

subgroup cases and provide an accurate diagnostic test for subgroup membership. The 

genomic markers examined may therefore provide useful secondary or confirmatory 

markers, when used in conjunction with these signatures.  

Consensus for the precise number of transcriptomic disease subgroups has yet to be 

reached (section 1.3.12.1), with estimates of 4, 5 and 6 disease subgroups reported 

(Cho et al., 2011; Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006). The 



206 
 

GeXP assay reported in this chapter could be extended to other WNT / SHH 

independent subgroups once they are better defined.  

3.5.3 Clinical relevance of reported expression signatures 

The combination of molecular and clinico-pathological data from four independent 

cohorts for meta-analysis, totalling 173 cases, has facilitated clear and significant 

insights to the clinical features of the medulloblastoma molecular subgroups, which 

have either not been apparent or not shown statistical significance in individual 

analyses of the smaller component cohorts reported to date (Fattet et al., 2009; Kool 

et al., 2008; Thompson et al., 2006). The SHH (24% of cases), WNT (12%) and WNT / 

SHH-independent (64%) groups show different age distributions and relationships to 

disease histopathology.  SHH subgroup tumours peak in infancy and are intimately 

correlated with DN pathology in this group, to the extent that DN pathology may be 

considered as a surrogate marker for SHH activation in medulloblastomas arising in 

infants <3 years old at diagnosis, although classic and LCA cases also constitute a 

minority of SHH subgroup cases in this age group.  This relationship breaks down in 

non-infants (≥3 years at diagnosis), where SHH tumours are less common, and show 

equivalent proportions of DN, classic and LCA disease; SHH-independent DN cases are 

also commonly observed in this age group.  These data strongly indicate that (i) SHH 

subgroup and (ii) DN tumours, arising in the infant and non-infant age groups, have 

different biological and clinical characteristics, and that SHH-positive DN tumours of 

infancy represent a unique disease subgroup associated with a favourable clinical 

behaviour (Garre et al., 2009; McManamy et al., 2007; Rutkowski et al., 2005), and a 

characteristic molecular pathogenesis (COL1A2 unmethylated (Anderton et al., 2008)) 

and mutational spectrum (SUFU (Brugieres et al.; Taylor et al., 2002)).  Conversely, 

WNT tumours display classic pathology and occur in non-infants. Notably, both the 

SHH and WNT subgroups show at least two different incidence peaks in their age 

distribution (both have second peaks in adults), suggesting additional clinical and 

molecular heterogeneity within these groups.   

The lack of association between M stage and molecular subgroups (‘p’ = 0.20) is in 

disagreement with the previous study by Kool et al., (2008), who reported metastatic 

tumours being less common in WNT and SHH pathway activated medulloblastomas. 
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This could be due to the different measurement criteria for metastasis between the 

studies (the present study compared M0 / 1 versus M2 / 3, while Kool et al. compared 

M0 versus M1 / M2 / M3). Alternatively, the increased numbers in this study (130 

versus 58 with M stage data in the Kool et al. study) may have enabled a more 

accurate characterisation of the relationship between signalling pathway activation 

and metastasis, and future large clinically controlled studies should be informative in 

this regard.  

3.5.4 Summary 

The identification of medulloblastoma molecular subgroups has significant prognostic 

and predictive potential to improve therapeutic delivery and disease outlook in the 

clinical setting, and could represent a first step in the molecular diagnostic triage of 

medulloblastomas, to guide treatment decisions.  In addition to distinct clinical 

features, molecular subgroups also appear to have characteristic clinical behaviours; 

the favourable prognosis of WNT subtype medulloblastomas is now established in 

multiple clinical cohorts (Korshunov et al., 2010; Fattet et al., 2009; Gajjar et al., 2006; 

Ellison et al., 2005), and will form the basis of treatment reductions in the forthcoming 

international molecularly-driven PNET 5 / 6 clinical trials (Pizer and Clifford, 2009).  

Combined data from this and other studies indicate SHH-positive DN tumours arising in 

infants represent a similarly favourable prognosis subgroup with a distinct molecular 

basis (Garre et al., 2009; Anderton et al., 2008; McManamy et al., 2007; Rutkowski et 

al., 2005). Recently, it has been recognised that paediatric and adult SHH 

medulloblastomas are molecularly and clinically distinct (Northcott et al., 2011), with 

the survival advantage of desmoplasia in infants not prognostic in adult SHH cases, 

raising the concept of disease prognostication within subgroups.  Molecularly targeted 

SHH inhibitors are also currently under pre-clinical and clinical development, and have 

shown early evidence of activity in medulloblastoma (Rudin et al., 2009; Romer et al., 

2004).   Assessment of the prognostic impact of the remaining molecular subgroups 

will now be essential to determine their utility to direct the selection of adjuvant 

therapy. 

The ability to accurately diagnose the SHH molecular subgroup will thus be important 

for the targeted delivery of these novel agents, and our findings have identified SHH-
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positive subgroups of medulloblastomas which would be predicted to benefit most 

from SHH inhibition strategies. However, the SHH pathway plays a key role in normal, 

including cerebellar, development, and its transient inhibition in young mice causes 

permanent defects in growth plate formation and bone structure (Kimura et al., 2008).  

In view of such potential toxicities, a cautious approach to their application should be 

undertaken, particularly in the infant age group where SHH subgroup tumours 

predominate. 

This chapter reported an assay that can robustly identify WNT, SHH and WNT / SHH 

independent medulloblastoma subgroups and investigated their clinical correlations in 

a wider meta-analysis, although the precise number of subgroups remains unclear 

(section 1.3.12.1). Based on these observations, the following chapter reports an 

investigation into whether epigenetic patterns of DNA methylation have additional 

utility for disease subclassification. 
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Chapter 4. DNA methylomics identifies clinically significant 
subgroups of medulloblastoma 
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4.1 Introduction 

The study of epigenetic changes in medulloblastoma offers potential for the 

identification of novel biomarkers and disease targets. Until recently, the study of DNA 

methylation in medulloblastoma was limited to single candidate gene approaches. 

These have identified CpG island hypermethylation of RASSF1A, CASP8 and HIC1, 

associated with transcriptional silencing in significant proportions of primary tumours 

(Lindsey et al., 2005). More recently, genome-wide experiments comparing expression 

in MB cell lines before and after treatment with the demethylating agent 5’-Aza-2’-

deoxycytidine (Anderton et al., 2008; Kongkham et al., 2008) or the histone 

deacetylase inhibitor trichostatin A (Vibhakar et al., 2007) have identified methylation 

dependent silencing of genes (COL1A2, SPINT2, DKK1, respectively) that is 

recapitulated in primary tumour tissue. A novel approach from Diede et al. used a 

genome-wide screen that exploited the increased melting temperature of methylated 

DNA to identify that the epigenetic silencing of the PTCH1-C promoter may be a 

contributing factor towards tumourigenesis (Diede et al., 2010).  

Previous work has demonstrated that COL1A2 CpG island hypermethylation identifies 

infant DN cases, with an associated favourable prognosis, demonstrating how 

methylation of specific CpG islands can be useful for disease subgrouping, as well as 

predicting disease behaviour and patient outcome (Anderton et al., 2008). Until now, 

the utility of DNA methylation to subclassify medulloblastoma had not previously been 

investigated. 

This part of the study made use of a newly-available technique for the characterisation 

of the DNA methylome. The Golden Gate Cancer Panel I methylation microarray 

(Bibikova et al., 2006) (see section 2.7) measures the methylation status of 1505 

probes corresponding to 807 genes. Genome-wide transcriptomic approaches have 

previously been applied to identify subgroups of medulloblastoma (Cho et al., 2011; 

Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006), identifying between 4 

and 6 subgroups (see section 1.3.12.1). The application of a novel method for the 

characterisation of the medulloblastoma DNA methylome, independent of 

transcriptomic data, represents an opportunity to assess, firstly, whether methylomic 

data is amenable for the classification of medulloblastoma, and, if so, whether there is 
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any relationship to the previously posited transcriptomic disease subgroups. This 

approach could also identify specific molecular events in medulloblastoma 

development. 

The merits of subgrouping the disease are clear; to date, it has enabled the 

characterisation of molecular processes driving the disease, which, in turn, has led to 

the introduction of drug treatments for SHH cases (Rudin et al., 2009) (section 1.3.11), 

and the recognition that medulloblastomas with an activated WNT pathway are 

associated with a good prognosis (Fattet et al., 2009; Clifford et al., 2006; Ellison et al., 

2005). However, the underlying mechanisms and prognostic potential for any 

remaining, pathway independent subgroups remain poorly understood. 

Once consensus has been reached for the number of disease subgroups, efforts can 

begin to identify the unique features of disease subgroups, initially for the 

identification of subgroup specific biomarkers to assign subgroup and for the 

identification of correlates of clinical behaviours. Following functional work, the 

identification of putative novel drug targets may be possible. The prospect of 

prognostication within disease subgroups also becomes possible; by identifying intra-

subgroup variant disease features, it may be possible to identify prognostic markers 

that may also have functional relevance.  

This chapter reports an investigation into the characterisation of methylomic 

subgroups of the disease, using a training tumour cohort for class discovery, and a test 

cohort for class validation. The robustness of the assigned classes is characterised. 

Additionally, the relationship between subgroup membership and clinico-pathological 

and molecular correlates is assessed, along with WNT and SHH signalling pathway 

activation, using the GeXP assay described in chapter 3.  

Previous attempts to subclassify the disease have all been based on single cohorts (Cho 

et al., 2011; Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006). While 

attempts have been made to validate findings in other publically available 

transcriptomic datasets, these findings have not been robustly validated (Cho et al., 

2011; Northcott et al., 2010) (see section 1.3.12.1). The methylomic subclassification of 

the disease reported here is the first time that a combined test and training cohort 

have been applied in the same study for validation of identified subgroups using 
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identical methods. Moreover, this is the first high-throughput study to test a clinical 

trials-based cohort for the prognostic potential of any identified subgroups. This, thus 

far, unique opportunity to identify subgroups, validate them in a test cohort and test 

for survival differences in  a trials cohort form the basis of investigations for both 

chapter 4 and 5. 

4.2 Aims 

Genome-wide assessment of the medulloblastoma DNA methylome had not previously 

been investigated. Using a novel DNA methylation array approach, this part of the 

study aimed to investigate: 

 Whether medulloblastoma samples display differential patterns of DNA 

methylation and any ability of such patterns for disease subclassification and if 

subgroups can be identified, to investigate:  

o Whether subgroups can be validated in an independent 

medulloblastoma cohort. 

o Whether there is a relationship between subgroups and previously 

posited transcriptomic disease subgroups 

o The identification of subgroup specific methylation biomarkers 

o The clinico-pathological and molecular correlates of any identified 

methylomic subgroups 

o Whether there are survival differences between subgroups 
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4.3 Materials and Methods 

4.3.1 Cohort description 

An initial training cohort of 108 medulloblastoma samples, comprising 101 DNA 

samples extracted from frozen tumour tissue and 7 from FFPE tissue, was selected for 

array analysis (section 2.1). This cohort was chosen to include all known 

medulloblastoma histopathological subtypes, as well as samples with known specific 

medulloblastoma-associated mutations (CTNNB1 (β-catenin) mutation (Ellison et al., 

2005) or PTCH1 mutation (Zurawel et al., 2000)). Histopathological subtype was 

confirmed on review using WHO criteria (Louis et al., 2007) by Professor David Ellison. 

Newcastle and North Tyneside Research Ethics Committee approval was obtained for 

the collection, storage, and biological study of all material. 

The test cohort comprised 143 primary medulloblastoma samples from patients 

enrolled in the PNET3 clinical trial (Taylor et al., 2003), for which full survival and 

clinical information (age, histopathological subtype, gender, M stage, MYCC / MYCN 

amplification status (see section 2.1)) was available . This trial recruited childhood 

medulloblastomas (for this trial, defined as aged 3-16 years old at diagnosis) from 

across Europe (see section 2.1). DNA from this cohort was exclusively derived from 

FFPE materials.  

4.3.2 Nucleic acid extraction 

DNA was extracted from FFPE samples using a Qiagen DNeasy kit (Qiagen, Valencia, CA, 

USA) according to manufacturer’s instructions. DNA and RNA were extracted from 

frozen tumour samples using Trizol (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer’s protocols, as detailed in section 2.2.1. Aliquots of 1 µg of DNA at 100 

ng / µl, measured by Nanodrop (section 2.3.1), were sent to the array facility for 

processing. 

4.3.3 Methylation Microarray assay 

Microarray methylation analysis was performed on the Illumina GoldenGate Cancer 

Panel I methylation array at the Wellcome Trust Centre for Human Genetics, Oxford, 

UK according to manufacturer’s protocols (Illumina, San Diego, CA, USA). Arrays were 
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imaged using a BeadArray Reader scanner. Raw experimental data were imported into 

BeadStudio v3.2 (Illumina, San Diego, CA), an analysis suite for bead array format 

microarrays (section 2.8).  

4.3.4 Quality control, array normalisation and validation 

Quality control (QC) was performed using the inbuilt QC metrics within methylation 

module v3.2 of BeadStudio, as well as the extra QC measures contained within the R (R 

Development Core Team, 2008) package, beadarray 1.6.0 (Dunning et al., 2007), to 

assess spatial distribution of anomalous signal intensities and to identify poorly 

performing samples by scatter plots of intensities (section 2.8.1). Sample replicates 

were run to assess intra- (n = 4 samples run in duplicate on the same array) and inter- 

(n = 4 sample duplicates run on different arrays) array reproducibility was assessed by 

running sample replicates. Data were initially normalised in BeadStudio as previously 

described (Ladd-Acosta C., 2007) and subjected to the quality control measures 

contained within that program. Subsequently, β values were re-derived using the BASH 

algorithm (section 2.8.1) to mask out regions with anomalous intensities. Subsequently, 

the β value was calculated using the equation shown in section 2.8.1. The software 

reports a β value for each locus. The β value can range from 0 (fully unmethylated) to 1 

(fully methylated). Quality control plots were examined to identify poorly performing 

samples (section 2.8.1).  

4.3.4.1 Bisulfite sequencing to confirm observed methylation 

patterns 

It has been reported (Ladd-Acosta C., 2007; Bibikova et al., 2006) that the GoldenGate 

methylation array provides high quality reproducible data that correlates well with 

validation data derived from bisulfite sequencing. In order to confirm this correlation, 

a panel of 7 discriminatory probes (ASCL2_P360_F, HFE_E273_R, NOS2A_E117_R, 

COL1A2_E299_F, CCKAR_P270_F, SPDEF_P6_R and MSH2_P1008_F), corresponding to 

the genes ASCL2, HFE, NOS2A, COL1A2, CCKAR, SPDEF and MSH2 were selected for 

bisulfite sequencing in 18 medulloblastoma samples selected from the methylation 

array cohort (section 2.6). PCR primers flanking the probes of interest were designed 

using MethPrimer (Li and Dahiya, 2002) and used to amplify the region of interest from 

bisulfite treated DNA. Sequencing reactions were performed and read using a 
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Beckman-Coulter CEQ 8800 (Beckman, Fullerton CA, USA). The methylation status at 

specific nucleotides was estimated by dividing the relative peak height of the G residue 

(representing a methylated cytosine) by the sum of the peak heights of the G and T 

residues (representing an unmethylated cytosine converted to a uracil residue by the 

bisulfite treatment). The design and execution of the validation work was undertaken 

in conjunction with Dr. Janet Lindsey. The primer sequences for this analysis are listed 

in Table 4.1. The differences between array and bisulfite sequencing derived estimates 

was visualised by plotting Bland-Altman plots (Bland and Altman, 1986), and density 

plots. 

 

Gene Probe F primer 
(5’ – 3’) 

R primer 
(5’ – 3’) 

ASCL2 ASCL2_P360_F GGGAATTTGA 
ATTTTTTATTT 

 

AAACTAAATTCC 
TACTAAACCCC 

 

CCKAR CCKAR_P270_F ATTGTTTTTTTATAA 
GGAGGTAGAATATA 

 

CTAAATACAAACA 
ACCTAACTACCC 

 

COL1A2 COL1A2_E299_F AGGTATTTTAGGG 
TTAGGGAAATTTT 

 

ATTACTACAAACA 
ACAACAAAATCC 

 

HFE HFE_E273_R GGTAATAGTTGTA 
GGGTGATTTTTG 

 

CAAATCCTCCAA 
AATTAACAAACTC 

MSH2 MSH2_P1008_F GGTAGAAGATTT 
TTTGGGTTTAAA 

 

CACCATCCTAAAC 
AACATAATAAAAC 

 

NOS2A NOS2A_E117_R AAAAATAATTTTT 
TGGATGGTATGG 

 

TTACAACTAACTA 
CACTACCTCCCC 

 

SPDEF SPDEF_P6_R TTGTTTGTGGTTT 
GAGGTAAGTAAG 

 

CCCTCAAAAAAT 
AACCCTCTAAAAT 

 

Table 4.1. Primer sequences used for bisulfite validation of methylation levels observed with 
GoldenGate methylation array. Sequences are listed 5’ – 3’. 
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4.3.5 Unsupervised cluster analysis 

An unsupervised cluster analysis was performed on the methylation array data derived 

from the training cohort, as described in section 2.9.4. Briefly, an optimal combination 

of metagenes and clusters was identified by an iterative, NMF- and k means-based, 

consensus clustering approach, testing every combination of 2:6 metagenes and 2:6 

clusters. After selecting the optimum metagene and cluster numbers, samples that 

were not consistently classified to the same cluster (i.e. assigned to the same cluster in 

less than 80% of repeat analyses) were assigned to the NC class. Using the same 

consensus clustering approach with the optimal combination of metagenes and 

clusters, the same cutoffs were applied to the test cohort to identify additional NC 

samples.  

H matrices were extracted from the training dataset and used to project an H matrix 

for the test cohort (section 2.9.3). The training cohort H matrix was used to construct a 

classifier based on the class assignments from consensus clustering.   

4.3.6 Construction of a classifier 

Sample members from the test dataset were assigned to clusters by constructing a 

SVM classifier from the H matrix derived from the training dataset and applying it to 

the test dataset (section 2.12).  

4.3.6.1 Support vector machine for classification of 

medulloblastoma subgroup 

Using the group assignments derived from k means clustering of the training dataset, a 

classifier was constructed using the H matrix derived from NMF of the training dataset. 

SVM (Chang, 2001) was used to classify the data. A linear-kernel multi-class (MC)-SVM 

was tuned using LOOCV (section 2.12.3). Using the optimal cost parameter of 2, the 

MC-SVM was constructed. The SVM was used to predict class membership in the 

training cohort. 
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4.3.6.2 Validation of SVM classifier on an independent 

methylation array medulloblastoma data set 

The projected H values for the test dataset (section 2.9.3) were used as the basis for 

prediction of class membership using the SVM classifier. The methylation probes that 

correlated or anti-correlated most closely with the training set H values were selected 

as being representative markers for each class and were visually compared for 

patterns of similarity in the test dataset.  

A dataset containing the joined H values and class designations from both the test and 

training cohort was constructed and used as the basis for subsequent analyses. To 

assess cluster assignment, silhouette plots (section 2.10.1) (Rousseeuw, 1987) were 

used to assess class membership and identify samples that were incorrectly classified. 

4.3.7 Principal Component Analysis to visually identify subgroup 

differences 

Principal component analysis (sections 2.9.2) was applied to the datasets to visually 

compare group assignments. Principal components were generated from the H values 

of the training dataset and used to project test cohort principal components from the 

test cohort H values. The projected principal components for the test dataset were 

appended to the training dataset principal components and plotted as a biplot. 

4.3.8 GeXP assay to identify WNT and SHH pathway activation 

In order to examine the correlation between signalling pathway activation and the 

methylomic subgroups identified, the GeXP assay (Schwalbe et al., 2011) described in 

section 3.3.6 was used to assign expression status (WNT, SHH or WNT / SHH 

independent) in 88 / 100 cases in the training cohort for which mRNA was available. 

The experimental procedure is detailed in section 3.3.7. Briefly, experiments were run 

in triplicate on 25 ng mRNA per reaction to measure the expression of eight SHH 

signature genes and five WNT signature genes. Expression values were normalised 

against expression of 28S rRNA. Class membership was assigned as described in section 

3.4.4, using stacked barplots and bi-plots. The test cohort was derived from FFPE 

materials, so was unsuitable for this analysis. However, antibody assignment of WNT 
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and SHH status had previously been reported for the PNET3 cohort (Ellison et al., 

2011a). 

4.3.9 Antibody assignment of WNT and SHH status in FFPE samples 

The antibody assignment of WNT and SHH status in FFPE was carried out as described 

(Ellison et al., 2011a) in section 2.1. Data was available for 5 / 7 members of the 

training cohort that were derived from DNA extracted from FFPE tissue and from 115 / 

143 (80%) members of the test cohort, which was derived exclusively from DNA 

extracted from FFPE tissue. This data was integrated into downstream analyses of 

clinico-pathological correlates of the identified subgroups. 

4.3.10   Global differences in patterns of methylation across 

subgroups 

The identified subgroups were tested to identify large-scale changes in the proportion 

of methylated and unmethylated probes. For the purposes of this analysis, 

unmethylated probes were defined as having a β score < 0.333, and methylated 

probes as having a β score > 0.667. Analyses were conducted on the whole dataset 

after removal of QC failures (n = 230) (having excluded X chromosome probes), and on 

subsets of the dataset, comprising probes situated within and outside of CpG islands. 

ANOVA tests were used to identify significant differences. Where a significant 

difference was reported, Tukey’s Honest Significance Difference test was applied to 

identify the subgroup pairs for which a significant difference was detected. This test 

compares all possible pairs of means, and is conceptually similar to a t test, except that 

there is a correction for multiple testing that reduces the risk of type I errors (false 

positives). Boxplots were constructed to visualise these comparisons.  

4.3.11  Analysis and integration of clinico-pathological and 

molecular correlates with methylomic data 

The training and test cohorts were joined for subsequent investigations of the 

relationship of subgroup membership to clinico-pathological and molecular correlates 

and survival. 
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Clinico-pathological correlate data was obtained from a variety of sources (section 2.1). 

Clinico-pathological data was available for gender, M stage, histological subtype, age at 

diagnosis, and survival. Molecular data for chromosome 17 LOH, chromosome 6 LOH, 

CTNNB1 mutation and the amplification of the MYCC and MYCN oncogenes was also 

available.  

Chi-squared tests of association were used to assess the relationships between 

subgroup membership and clinico-pathological and molecular correlates. To identify 

the specific subgroups driving significant differences in relationship to the correlate, 

chi-squared residuals (subgroups driving the significant chi-squared test will have a 

larger chi squared residual, which is a measure of the difference between the observed 

and expected values) were plotted on a heatmap.  

4.3.12 Relationship of methylomic subgroups to survival 

In order to determine the relationship of subgroups to survival, it was first necessary to 

verify that previously identified risk markers were identifiable, to test whether the 

survival cohort was representative of previously described medulloblastoma cohorts. 

Kaplan-Meier plots were constructed for LCA, M stage (M- vs M+), chromosome 17 

LOH, age (under 3 vs others) and MYCC / MYCN amplification.  Next, a plot of 

methylation subgroup membership was constructed for the whole cohort and for a 

subset of the cohort containing cases aged 3-16, matching the age profile for 

recruitment into the PNET3 trial.  
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4.4 Results 

4.4.1 A genome-wide screen of methylation patterns in 

medulloblastoma 

This chapter aimed to test the hypothesis that differential patterns of methylation 

exist within medulloblastomas and to test the ability of any such patterns to classify 

the disease. A total of 251 arrays were sent off for analysis on the Golden Gate Cancer 

Panel I methylation microarray. 

4.4.2 Quality control and validation 

For the training and test datasets, intra- and inter-array reproducibility was assessed 

by running sample replicates. Linear regression of training set replicates showed good 

correlation. Comparisons were made both between samples run twice on separate 

arrays (inter-array) and samples run twice on the same array (intra-array). Inter-array 

(n = 4) Pearson’s r2 values ranged from 0.97 to 0.99. Intra-array (n = 4) r2 values ranged 

from 0.96 to 0.98. Similarly, inter-array replicates (n = 2) were run for the test cohort, 

with both r2 values of 0.94.This was judged to be satisfactory, both for frozen DNA 

(Figure 4.1) and FFPE DNA (Figure 4.2). 

Sample QC, as described in section 2.8.1, was implemented to identify poorly 

performing samples that were subsequently removed from further analyses. QC 

failures, classified by failure in greater than one test, are summarised in Table 4.2. The 

failure rate was 7.4% (8 / 108 samples) for the training cohort, which was 

predominantly comprised of frozen DNA. This was close to the failure rate of the test 

cohort (9.1% (13 / 143 samples), which was comprised exclusively of FFPE DNA.  

 After removal of 8 QC failure samples from the training cohort and 13 QC failure 

samples from the test (PNET3) cohort, final cohort sizes were 100 cases for the training 

cohort and 130 cases for the test cohort. The demographics of the final cohorts are 

shown in Table 4.3. Exploratory PCA analysis demonstrated no clustering by sample 

type (DNA extracted from fresh frozen / FFPE tissue) or from contributing centre (data 

not shown).   



221 
 

 

Figure 4.1. Inter- and intra-array replicates demonstrate reproducibility of Golden Gate 
methylation array. Scatter plots show matching β scores across two replicates. For each plot, 
sample ID and nature of comparison (intra-, inter-array) is shown. Pearson’s r2 score is shown.

Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

Replicate 1 β value
R

ep
lic

at
e 

2
 β

va
lu

e
Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

Replicate 1 β value

R
ep

lic
at

e 
2 

β
va

lu
e

Replicate 1 β value

R
ep

lic
at

e 
2

 β
va

lu
e

r2=0.974 r2=0.983

r2=0.956 r2=0.959

r2=0.979 r2=0.992

r2=0.983 r2=0.967



222 
 

 

Figure 4.2. Inter-array replicates on FFPE array demonstrate good reproducibility for FFPE-
derived samples. Scatter plots show matching β scores across two replicates. For each plot, 
sample ID and nature of comparison (intra-, inter-array) is shown. Pearson’s r2 score is shown.
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Allele Specific Extension Bisulfite Conversion Contamination Extension Gap Gender Control First Hybridisation Density Plot Remove 

Training 
Cohort 

Samples 

NMB108 NMB108   NMB108 NMB108 NMB108 NMB108 Y 

NMB113 NMB113   NMB113 NMB113 NMB113 NMB113 Y 

NMB153             N 

NMB251 NMB251   NMB251 NMB251 NMB251 NMB251 Y 

NMB69B NMB69B   NMB69B NMB69B NMB69B NMB69B Y 

PNET3209 PNET3209   PNET3209   PNET3209 PNET3209 Y 

RJG114         RJG114 RJG114 Y 

RJG115 RJG115   RJG115 RJG115 RJG115 RJG115 Y 

RJG118 RJG118   RJG118 RJG118 RJG118 RJG118 Y 

          NMB70   N 

          NMB127   N 

Test cohort 
(PNET3) 

FFPE 
Samples 

31             N 

32           32 Y 

41           41 Y 

43 43     43 43 43 Y 

178 178 178   178 178 178 Y 

   205 
 

      205 Y 

  
 

      209 209 Y 

50001 50001 50001   50001 50001 50001 Y 

50060 50060 50060     50060 50060 Y 

  50086     50086 50086 50086 Y 

50128         50128 50128 Y 

  50147           N 

50197 50197       50197 50197 Y 

50204         50204 50204 Y 

50250           50250 Y 

Table 4.2. List of quality control measures and samples that failed these measures. Samples removed from further analyses are marked. Allele specific extension, 
bisulfite conversion, contamination, extension gap, gender control and first hybridisation are Bead Studio quality controls. Density plot was calculated using 
beadarray (Dunning et al., 2007). Samples failing more than one test were deemed QC failures and removed from subsequent analyses. 
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Demographic 

Cohort 

Training Test (PNET3) 

Number (frozen / FFPE) 100 (94 / 6) (94% / 6%) 130 (0 / 130) (0% / 100%) 

Gender 

Male 
Female (M:F ratio) 

 

62 (62%) 
38  (38%) (1.6:1) 

 

78 (60%) 
52 (40%)  (1.5:1) 

Age in years: median 

(range)  

7.4 (0.1 – 43.0) 8.4 (3.1 – 15.6) 

Age: Infant cases 

≤ 3 years of age 

> 3 years of age 

 

15 (15%) 

85 (85%) 

 

0 (0%) 

130 (100%) 

Histological subtype 

Classic 
Desmoplastic / nodular 

Large cell / anaplastic 

 

72 (72%) 
18 (18%) 

10 (10%) 

 

110 (85%) 
9 (7%) 

11 (8%) 

M Stage 
M- 

M+ 

NA 

 
72 (72%) 

17 (17%) 

11 (11%) 

 
105 (81%) 

25 (19%) 

0 (0%) 

CTNNB1 mutation 

0 – no - negative 
1 – yes - positive 

NA 

 

87 (87%) 
10 (10%) 

3 (3%) 

 

118 (91%) 
9 (7%) 

3 (2%) 

Chromosome 6 LOH 
0 – no - negative 

1 – yes - positive 

NA 

 
89 (89%) 

11 (11%) 

0 (0%) 

 
121 (93%) 

8 (6%) 

1 (1%) 

Chromosome 17 LOH 

0 – no - negative 
1 – yes - positive 

NA 

 

24 (24%) 
9 (9%) 

67 (67%) 

 

102 (78%) 
27 (21%) 

1 (1%) 

MYCC amplification 
0 – no - negative 

1 – yes - positive 

NA 

 
74 (74%) 

3 (3%) 

23 (23%) 

 
128 (98%) 

2 (2%) 

0 (0%) 

MYCN amplification 

0 – no - negative 

1 – yes - positive 
NA 

 

73 (73%) 

4 (4%) 
23 (23%) 

 

125 (96%) 

5 (4%) 
0 (0%) 

Signalling pathway mRNA 
signature 

WNT 

SHH 
WNT / SHH independent 

NA 

 
 

6 (6%) 

19 (19%) 
63 (63%) 

12 (12%) 

 
 

0 (0%) 

0 (0%) 
0 (0%) 

130 (100%) 

Antibody status 
WNT 

SHH 
WNT / SHH independent 

NA 

 
5 (5%) 

0 (0%) 
0 (0%) 

95 (95%) 

 
16 (12%) 

23 (18%) 
76 (58%) 

15 (12%) 
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Table 4.3. Demographics, clinico-pathological and molecular correlates of 100 member 
medulloblastoma training cohort and the 130 member test medulloblastoma cohort. For 
each cohort, the number and percentage in parentheses for each measured correlate 
(excluding age range) are shown. NA indicates missing data. For the training cohort, the single 
MBEN case was linked to the DN cases. Data for gender, histological subtype, M stage, CTNNB1 
mutation, chromosome 6 LOH, chromosome 17 LOH, MYCC amplification, MYCN amplification, 
signalling pathway expression signature and signalling pathway antibody staining is shown. 
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4.4.2.1 Verification of methylation values reported by bisulfite 

sequencing 

Although previous work had reported that the methylation scores reported by the 

Golden Gate Cancer Panel I array accurately reflect the true methylation score 

(Bibikova et al., 2006), it was necessary to validate this for the datasets used in these 

experiments. Work carried out in conjunction with Dr. Janet Lindsey verified a panel of 

7 probes that showed differential methylation across 18 medulloblastomas.  

A Bland-Altman plot (Bland and Altman, 1986) of β values estimated by array and 

bisulfite sequencing is shown in Figure 4.3.  It shows how at extremes of methylation 

(β close to 0 or 1), there is strong agreement between estimates. This is weakened at 

intermediate methylation scores (β close to 0.5), where the difference between 

estimates is increased. The density plot in panel B of Figure 4.3 shows the average 

deviation between the estimates of β made for individual data points using the two 

alternative methods. The mode of the distribution is 0.02, with a mean β score 

difference of 0.006. Coincidentally, the standard deviation of this distribution is 0.167, 

close to the reported level of sensitivity (0.17) for the Golden Gate assay (Bibikova et 

al., 2006). No one gene or sample was responsible for the few large-scale 

disagreements in β value observed. 

Finally, the measurement of β values by bisulfite sequencing is by its nature imprecise, 

since it relies on the measurement of peak heights generated from direct DNA 

sequence analysis traces. A grouped comparison was made comparing methylation 

values when classified into three groups (unmethylated – β < 0.333, hemimethylated - 

0.333 < β < 0.666, methylated – β > 0.667). Under this classification scheme, there was 

agreement for 104 / 126 measurements (83%). For cases with disagreement, this was 

generally from one category to its adjacent category, rather than, for example, 

methylated in array and unmethylated in bisulfite estimates of β, which occurred in 

only 2 / 126 (1.5%) measurements.   
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Figure 4.3. Validation of array β values by bisulfite sequencing.  

A. Bland-Altman plot showing direct comparison between bisulfite sequencing estimation of 
methylation and Golden Gate array-estimated methylation. Data from 18 samples at 7 loci 
(ASCL2, CCKAR, COL1A2, HFE, MSH2, NOS2A, SPDEF) are shown. The x axis shows the average 
score from the two estimations of β value and the y axis shows the difference between 
bisulfite sequencing and array estimates of methylation. Horizontal dotted lines are plotted at 
2 standard deviations of the difference and at the mean difference. 

B. Density plot showing distribution of deviation between bisulfite sequencing and array 
estimates of methylation. The case density (y axis) is a measure of frequency. A blue line 
indicates the modal value for deviation between estimates. Measurements more than two 
standard deviations from the mean deviation are shaded in red. 

C. Combined table / heatplot showing correlation between bisulfite and array estimates after 
transforming the data (Unmethylated – β score < 0.333; hemi-methylated - 0.334 < β score < 
0.666; methylated - 0.667 < β score). The number in each cell is proportional to the colour it is 
filled with (the background of larger numbers will tend towards black). 
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4.4.3 Global patterns of DNA methylation 

For the training set, 1058 / 1505 probes showed evidence of methylation (β score > 

0.333) in one or more samples, of which 494 showed substantial variation between 

samples (defined as having standard deviation greater than 0.17). For the test set, 

1166 / 1505 probes showed evidence of methylation (β score > 0.333) in one or more 

samples. 554 probes showed substantial variation between samples.  

The distribution of average methylation status of each probe within and between 

training / test cohorts is summarised in Table 4.4. In particular, there was a marked 

difference in the methylation status of probes located within and outside of CpG 

islands. In the joined training and test datasets, 869 / 1044 probes (83%) located 

within CpG islands were unmethylated (β score < 0.333). This contrasted with non-CpG 

island probes, where the majority of probes (288 / 461 (62%)) were methylated (β 

score > 0.666). This difference was highly significant (‘p’ < 2 x 10-16). Chi-squared tests 

for probe distribution differences between the training and test datasets were not 

significant. 
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 Probe classification Training 

Cohort 
(n = 100) 

Test 

Cohort 
(n = 130) 

Total 

Cohort 
(n = 230) 

‘P’ value 

All probes 

Unmethylated 

 

976 (65%) 947 (63%) 960 (64%) 

0.129 
Hemimethylated 

 
165 (11%) 148 (10%) 155 (10%) 

Methylated 
 

364 (24%) 410 (27%) 390 (26%) 

CpG 
Islands 

Unmethylated 

 

877 (84%) 861 (82%) 869 (83%) 

0.211 
Hemimethylated 

 
78 (7%) 71 (7%) 73 (7%) 

Methylated 
 

89 (9%) 112 (11%) 102 (10%) 

Non-CpG 
Islands 

Unmethylated 

 

99 (21%) 86 (19%) 91 (20%) 

0.294 
Hemimethylated 

 
87 (19%) 77 (17%) 82 (18%) 

Methylated 
 

275 (60%) 298 (65%) 288 (62%) 

Table 4.4 Global methylation distribution among training and test cohorts. Average 
methylation scores were calculated for all probes across the training and test cohort. For three 
probe categories (all probes, probes located within CpG islands and probes located outside of 
CpG islands), the number of unmethylated (average β < 0.333), methylated (average β > 0.667) 
and hemi-methylated probes (0.333 < average β ≤ 0.666) are shown for the training cohort, 
test cohort and total cohort. Chi-squared tests between the training and test cohort do not 
show any significant differences in the probe distributions; for the total cohort, there were 
significant differences between methylation classifications within and outside of CpG islands 
(‘p’ < 2 x 10-16, chi squared test). 
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4.4.4 Unsupervised cluster analysis identifies 4 distinct DNA 

methylation subgroups 

 

An NMF / consensus clustering approach was initially applied to subsets of the training 

dataset (n = 100) to identify the optimal number of metagenes and clusters (see 

section 2.9.4).  The average percentage of times within the 100 iterations that each 

sample was classified into the same cluster was calculated for each combination of 

metagenes and clusters. The overall average sample classification percentage was 

calculated by averaging across all sample averages, giving a measure of the 

reproducibility of each combination of metagenes and clusters (Figure 4.4). Although 

the highest reproducibility of sample clustering was observed for a two cluster, four 

metagene solution (99.59%) , this was discounted since it ran counter to what is known 

about the disease, where consensus exists for the existence of at least three subgroups 

(Cho et al., 2011; Schwalbe et al., 2011; Northcott et al., 2010; Kool et al., 2008; 

Thompson et al., 2006). In addition, the cophenetic correlation coefficient (section 

2.9.3.1) was also considered in choosing an optimal number of metagenes and clusters. 

An increase in cophenetic correlation coefficient from 0.997 to 0.998 was observed 

with a 4 metagene solution compared to a 3 metagene solution, indicating a better 

clustered 4 metagene solution, so for this reason, a 4 cluster 4 metagene solution (with 

an average modal sample assignment of 97.80%) was chosen in preference to a 3 

cluster, 3 metagene solution (sample assignment stability 97.84%).  
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Figure 4.4. Determination of optimal combination of metagenes (K – 2 to 6 metagenes) and 
clusters (C – 2 to 6 clusters) within the training dataset. A. The average percentage 
assignment of samples to the same cluster over 100 iterations is shown as a 3D surface plot for 
each tested combination of metagenes and clusters. Data peaks are the optimal combinations 
of metagenes and clusters. B. The data shown in the surface plot is tabulated. The chosen 
optimal number of 4 metagenes, 4 clusters is highlighted yellow. 
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Having chosen a 4 metagene, 4 cluster approach, NC samples were identified. At a 

stability cutoff of 80%, three samples were not consistently classified: NMB63 (44%), 

NMB90 (64%) and NMB182 (63%) (percentages in parentheses indicate the 

classification percentage frequency of the modal class). These were assigned to the NC 

group at this time and removed from the training dataset. To pre-emptively identify NC 

samples within the test dataset, the same consensus clustering approach was 

undertaken with a 4 metagene, 4 cluster solution. At the same 80% cutoff, seven 

samples were identified as outliers: PNET30141 (52%), PNET30148 (63%), PNET30150 

(72%), PNET350012 (78%), PNET350041 (55%), PNET350120 (60%) and PNET350291 

(79%).  These were assigned to the NC group of samples and removed from the test 

dataset. 

NMF was iteratively applied to the refined, 97 member training cohort 200 times, and 

the best performing solution was selected for a 4 metagene factorisation.  The H 

matrix was extracted and k means was used to assign samples to one of four 

subgroups (group 1 – 21 samples; group 2 – 23 samples; group 3 – 10 samples; group 4 

– 43 samples). 

Next, these assignments were used to train a SVM classifier on the training set H 

matrix. Initially, the classifier was tested against the training cohort.  A confusion 

matrix (see section 2.12.4) between the cluster assignment and the SVM prediction of 

class assignment (Table 4.5) demonstrates that the classifier perfectly recapitulates the 

cluster assignments derived from k means analysis of the training set H matrix (section 

2.9.5). 

  

Class 

Cluster Assignment 

1 2 3 4 

SVM prediction 

1 21 0 0 0 

2 0 23 0 0 

3 0 0 10 0 

4 0 0 0 43 

Table 4.5. Confusion matrix shows that SVM classifier perfectly classifies the training dataset 
into the four classes assigned by the k means algorithm.
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4.4.5 Clusters are reproducible and can be validated in a test dataset 

After verifying the satisfactory performance of the SVM classifier on the training 

dataset, it was applied to the test dataset. H values for the test set were projected 

from the training set H values as described in section 2.9.3. The projected H values 

were applied to the SVM classifier. The class designations predicted from the SVM are 

compared against the class designations for the training set in Table 4.6. 

 

Subgroup Training n, (%) Test n, (%) 

1 (SHH) 21 (22%) 29 (24%) 

2 (Grp II) 23 (24%) 25 (20%) 

3 (WNT) 10 (10%) 18 (15%) 

4 (Grp I) 43 (44%) 51 (41%) 

Table 4.6. Comparison between sample numbers for each class for training and test datasets. 
Number is given with percentage in parentheses.   

 
 

A silhouette plot (section 2.10.1) of the combined training and test cohort (n = 220) 

classified cases identified 4 samples (NMB128, NMB133, NMB250 and NMB137) as 

having a negative silhouette score, indicating an incorrect classification and these were 

re-assigned to the not-classifiable category. A silhouette plot (Figure 4.5) demonstrates 

that each of the remaining 216 classified samples have a positive silhouette score, 

indicating a correct clustering. A biplot (section 2.9.2.1) along principal components 2 

and 3 of the joined dataset demonstrates clear separation between the classes and 

shows how subgroups are reproducible across the training and test datasets. 

The synthesis of the classification of methylomic subgroups of medulloblastoma in 

training and test cohorts and the clinico-pathological and molecular correlates, 

metagene expression and correlative methylation probe data is shown in Figure 4.5. It 

illustrates the similar metagene profiles and methylation values for probes that 

correlate and anti-correlate with metagene expression between training and test 
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datasets. It is notable that there is evidence for intermediate expression of the group I 

associated metagene V3 in the majority of cases classified as group II, although the 

reciprocal relationship is not apparent for group I cases. Non-classified samples show a 

mixed metagene expression profile, with most expressing the V4 metagene (whose 

expression is associated with group II membership) in addition to one or more 

additional metagenes.
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SHH 50 | 23%| 0.87

Grp II 44 | 20% | 0.60

Grp I 94 | 44% | 0.62

WNT 28 | 13% | 0.93
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Figure 4.5. DNA methylomics identifies 4 classes of medulloblastoma with significant relationships to clinico-pathological and molecular markers.  

A: NMF-based consensus clustering of the training dataset identifies 4 subgroups that are validated in the test dataset. First panel shows subgroup membership, 
with clinico-pathological and molecular correlates of subgroups for both datasets. Subgroup membership is indicated by colour: SHH – blue; Group II – purple; 
WNT – red; Group I – orange. Female gender, desmoplastic /nodular histology (DN), large cell / anaplastic histology (LCA), M+ disease (M Stage) and age <3 years 
(Age) is shown in black. SHH gene signature positivity (SHH Sig) and SHH antibody positivity (SHH Ab) are labelled blue. Wnt expression signature positivity (WNT 
Sig), Wnt antibody positivity (WNT Ab), CTNNB1 mutation and chromosome 6 loss of heterozygosity (Chr6 LOH) are labelled red. Chromosome 17 loss of 
heterozygosity (Chr17 LOH), MYCC amplification and MYCN amplification are labelled black.  Missing data is labelled grey. Panel to the right of clinico-pathological 
and molecular correlates displays chi-squared test residuals that indicate any over-representation of each correlate across subgroups. Under-represented groups 
are white, whilst over-represented groups are black. ‘P’ values, derived from chi-squared tests of association between subgroup-assigned samples, are also shown. 
To the right of the training and test sets, the non-classified (NC) (n = 14) cases are also shown. Second row displays magnitudes of 4 metagenes (V1 to V4). Highly 
expressed metagenes are red, lowly expressed are blue. Third panel displays the top 10 most highly correlated and anti-correlated methylation probes for each 
metagene. Methylated probes are red, unmethylated probes are green, and hemi-methylated probes are black, as shown in the methylation key. 

B.Silhouette plots (top right figure) of assigned subgroups demonstrates correctly clustered (silhouette score > 0) samples for 216 / 216 classified samples of the 
joined training and test cohort. A silhouette width (si) close to one indicates a very well clustered sample, whereas samples with close to zero width lie between 
two clusters; samples with negative silhouette widths are potentially placed into the wrong cluster. For each cluster, the number of cluster members, the 
percentage of cluster members and average silhouette width are given. 

C: Bi-plot of training and test datasets (bottom right figure) demonstrates reproducibility of clusters across datasets. Arrows show projections of 4 metagenes 
along second and third principal components, labelled with their metagene number. For all clusters, training set samples are shown as filled shapes (WNT – red 
triangles, SHH – blue squares, Group I – orange diamonds, Group II – purple circles), with test samples as empty shapes.  
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4.4.5.1 Two training dataset methylation subgroups are 

associated with activation of developmental signalling pathways 

The GeXP to assign WNT and SHH pathway activation status (Schwalbe et al., 2011) 

was applied to 88 / 100 training dataset cases with available mRNA. Sample pathway 

activation was assigned in the same way as described in section 3.3.9. WNT pathway 

activation was assigned to 6 (7%) cases, SHH pathway activation to 18 (20%) cases and 

WNT / SHH independent to 64 (73%) cases. A biplot showing the class assignments is 

shown in Figure 4.6. Striking associations between methylomic subgroup membership 

and signalling pathway activation were observed. Subgroup 1 was highly significantly 

associated with activation of the SHH pathway (17 / 19 cases assessed (89%); ‘p’=3.3 x 

10-14, chi-squared test), whilst subgroup 3 was associated with activation of the WNT 

pathway (5 / 5 cases assessed (100%); ‘p’=1.4 x 10-14, chi-squared test). The 

relationship was not entirely exclusive, however, with one case each activated for WNT 

and SHH pathway being observed in subgroup 4.  

4.4.5.2  Two test dataset methylation subgroups are associated 

with staining for antibody markers associated with activation of 

developmental signalling pathways 

The expression signature used to assign WNT and SHH signalling pathway activation in 

the training cohort was unsuitable for RNA extracted from FFPE tissues. However, data 

reporting WNT and SHH pathway activation was available through an 

immunohistochemical technique for the majority of test set samples (115 / 130 (88%)) 

(see section 4.3.9). This work was carried out by Ellison and colleagues, who were 

working on the same PNET3 trials cohort that comprised the test dataset (Ellison et al., 

2011a).  

The same associations observed between methylation subgroups, pathway activation 

and gene expression signature in the training cohort were recapitulated in the test 

cohort with antibody status. (The following association tests also include training 

cohort members derived from FFPE materials where antibody status was available (n = 

5)). Subgroup 1 was highly significantly associated with the SHH antibody GAB1 

positivity (‘p’ = 5.2 x 10-16, chi-squared test). Subgroup 3 was highly significantly 

associated with nuclear accumulation of β-catenin (‘p’ < 2 x 10-16, chi-squared test). 



238 
 

Again, mirroring what was observed in the training cohort with expression signatures, 

the relationship was not exclusive. There was one SHH antibody positive member in 

both subgroups 2 and 3, and one WNT antibody positive member in subgroup 1.  

 

Figure 4.6. Bi-plot of WNT / SHH mRNA expression signature for 88 medulloblastomas, 
assessed by GeXP analysis (chapter 3). Axes show principal component loadings along 
component 1 (x axis) and component 2 (y axis). Arrows show projections of expression for 
each gene (SHH signature genes, blue; WNT signature genes, red). Cases are coloured 
according to assignment. SHH positive, blue triangle; WNT positive, red square; WNT / SHH 
independent, grey circle). 
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4.4.6 Global patterns of methylation within subgroups 

 The 4 subgroups identified were assessed for any global differences in methylation 

patterns. Comparisons were made between the absolute number of hypo- and hyper-

methylated probes across subgroups, for the whole dataset (minus X chromosome 

probes), and for probes situated within and outside of CpG islands (Figure 4.7). 

No evidence for CIMP (see section 1.3.7.3.2) was detected in any group. While there 

were no between-group differences in methylation patterns across the whole dataset, 

when the dataset was divided into probes within and outside of CpG islands, significant 

differences became apparent. There were highly significant differences between CpG 

island hypo-methylated probes (‘p’ = 4.6 x 10-8, ANOVA) and non-CpG island hyper-

methylated probes (‘p’ = 8.7 x 10-5, ANOVA).   

Tukey HSD tests were applied to identify the pairs of classes that were significantly 

different. For CpG island hypo-methylated probes, there were significant increases in 

the number of hypo-methylated group I probes compared to group II (‘p’ = 6.0 x 10-7) 

and SHH (‘p’ = 7.2 x 10-7) group members. For the non-CpG island hyper-methylated 

probes, there were significant increases in the number of hyper-methylated group I 

probes compared to group II (‘p’ = 1.8 x 10-5). In summary, group I cases had an excess 

of hypo-methylated CpG island probes and an increase in hyper-methylated non-CpG 

island probes relative to group II.  

4.4.7 Non-classified samples share few molecular features and are 

not qualitatively different from classified samples 

NC tumours (n = 14) comprised 6% of cases within the combined cohort. The NC 

samples were tested against the classified samples (n = 216) for differences in clinico-

pathological and molecular correlates.  No significant differences were detected (Table 

4.7). Their clinico-pathological correlates are shown in Table 4.8. Two NC samples were 

SHH positive (one SHH GeXP positive, one SHH antibody positive). All other cases were 

negative for both WNT and SHH signature / antibody status. All NC cases were classic 

type histology.  
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Figure 4.7. Comparison of global methylation patterns across identified subgroups. Boxplots 
show absolute numbers of hyper- or hypo-methylated probes across whole dataset after 
removal of X chromosome probes (row 1); across probes situated within a CpG island (row 2); 
across probes situated outside of CpG islands (row 3). Data on CpG island membership was 
supplied by Illumina in the annotation file for the Golden Gate array. Number of probes is 
shown on the y axis. ‘P’ values given are from ANOVA tests. Where this ‘p’ value was less than 
0.05, Tukey Honest Significant Different tests were applied to identify group pairs where the 
mean significantly differed. Significant differences with ‘p’ < 0.0001 are indicated with a red 
connecting line. 
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C
o

rre
late 

‘p
’ valu

e 

Sex 1 

DN histology 0.382 

LCA histology 0.623 

M stage 1 

Age – under 3 vs over 3 1 

Age (years) 0.440 

SHH Sig 1 

SHH Ab 1 

WNT Sig 1 

WNT Ab 0.580 

Chr 6 loss 0.613 

Chr 17 loss 0.685 

MYCC amp 0.279 

MYCN amp 0.445 

Table 4.7. Comparison of clinico-pathological and molecular correlates between classified (n 
= 216) and non-classified samples (n = 14). Fisher’s exact test was used for all comparisons 
except age in years, for which a t test was used. No correction for multiple testing was 
undertaken since all results were non-significant before any correction.  
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Sex M F M M F M F M F M M M M F 

DN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

LCA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M Stage NA 0 0 0 0 0 1 0 1 0 0 0 0 0 

Infant (age 
< 3) 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Age (years) 4.5 6.9 4.8 4.2 8.9 6.4 15.1 13.5 4.2 10.8 6.7 11.5 9.6 3 

SHH Sig 0 NA 0 NA NA NA 0 NA NA NA NA 1 0 0 

SHH Ab NA NA NA NA 0 0 NA 1 0 0 NA NA NA NA 

WNT Sig 0 NA 0 NA NA NA 0 NA NA NA NA 0 0 0 

WNT Ab NA NA NA NA 0 0 NA 0 0 0 NA NA NA NA 

CTNNB1 
mutation 

0 0 0 0 0 0 NA 0 0 0 0 0 0 0 

Chr 6 LOH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Chr 17 LOH NA NA NA 0 1 0 NA 0 0 0 0 0 NA 0 

MYCC amp 0 0 NA 0 0 0 0 0 1 0 0 0 0 0 

MYCN amp 1 0 NA 0 0 0 0 0 0 0 0 0 0 0 

Table 4.8. Clinico-pathological and molecular correlates of non-classifiable cohort. Gender (M, 
male; F, female). Histology (DN – desmoplastic / nodular; LCA – large cell / anaplastic). M stage 
(M-, 0; M+, 1). Age (>3 years, 0; ≤3 years, 1). SHH Sig – assessment of SHH expression signature 
positivity (0, signature negative; 1, signature positive). SHH Ab – assessment of positivity for 
SHH antibody staining (0 / 1, negative / positive for GAB1 antibody staining). WNT Sig – 
assessment of WNT expression signature positivity (0, signature negative; 1, signature positive). 
WNT Ab – assessment of positivity for nuclear accumulation of β-catenin (0 / 1, negative / 
positive for CTNNB1 antibody staining). CTNNB1 mutation status (0, no mutation detected; 1 – 
mutation detected). Chromosome 6 and 17 loss, assessed by LOH analysis (0, no loss detected; 
1, loss detected). MYCC and MYCN amplification, assessed by real time PCR (0, no amplification; 
1 – amplification). NA – not available. 

  



244 
 

4.4.8 Assignment of names to identified subgroups 

On the basis of the reported associations between subgroups and activation of the 

WNT and SHH signalling pathways described above, group names were assigned. The 

two SHH and WNT pathway-associated groups were named SHH and WNT. The 

remaining two groups, characterised predominantly by an absence of signalling 

pathway activation, were named group I and group II, with the largest group being 

assigned to group I. This designation is shown in Table 4.9.  

 

K means cluster Name Training, n (%) Test, n (%) Joined, n (%) 

1 SHH 21 (22%) 29 (24%) 50 (23%) 

2 Group II 23 (24%) 25 (20%) 48 (22%) 

3 WNT 10 (10%) 18 (15%) 28 (13%) 

4 Group I 43 (44%) 51 (41%) 94 (43%) 

Table 4.9. Named methylomic subgroups of medulloblastoma. The numbers and percentage 
comprising each group in the training, test and joined cohorts are shown. 
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4.4.9 Identification of probes that correlate with metagenes for the 

identification of novel biomarkers 

The methylation probes that defined each metagene were identified by carrying out a 

Pearson’s correlation of the probe methylation levels to the expression values of the 

metagenes within the training cohort. Since there was an exact correlation between 

metagene expression and subgroup membership, these probes also represented 

biomarkers for subgroup membership. The top 10 most correlative and anti-correlative 

probes are shown in Table 4.10 and shown graphically in Figure 4.5. It was not possible 

to carry out Gene Set Enrichment Analysis (Subramanian et al., 2005), firstly due to the 

low resolution of the array, but secondly because the array is highly enriched for 

cancer specific genes, so that even a random selection of genes present on the array 

will identify pathways and gene sets relevant to cancer and report them as significantly 

enriched against a genomic background.   

The 80 significant probes listed in Table 4.10 were selected and used to assess 

subgroup assignment by PCA in the combined classified training and test cohort. 

Sample classification was assessed by plotting covariate spheroids along the 95% 

confidence intervals (Figure 4.8).  
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Probe Gene

Pearson's  

Correlation

Average β 

Value 

(group 

members)

Average β 

Value 

(non-

group 

members)

Di fference 

in β va lue

TRIM29_P135_F TRIM29 -0.88 0.49 0.95 -0.46

HDAC7A_P344_F HDAC7A -0.82 0.27 0.94 -0.66

IAPP_E280_F IAPP -0.7 0.57 0.96 -0.4

GP1BB_E23_F GP1BB -0.69 0.38 0.89 -0.51

SPP1_P647_F SPP1 -0.68 0.56 0.91 -0.35

RARA_P1076_R RARA -0.67 0.49 0.92 -0.43

SERPINB5_P19_R SERPINB5 -0.67 0.79 0.97 -0.18

DDR2_E331_F DDR2 -0.62 0.27 0.87 -0.6

RAB32_P493_R RAB32 -0.62 0.22 0.84 -0.62

FER_P581_F FER -0.6 0.35 0.84 -0.49

HOXA9_P303_F HOXA9 0.7 0.57 0.1 0.47

PTHR1_P258_F PTHR1 0.72 0.87 0.34 0.53

ASCL2_P609_R ASCL2 0.75 0.95 0.24 0.71

POMC_P400_R POMC 0.76 0.73 0.1 0.62

TNFRSF10C_E109_F TNFRSF10C 0.79 0.5 0.12 0.38

ASCL2_P360_F ASCL2 0.81 0.95 0.12 0.84

MT1A_E13_R MT1A 0.82 0.8 0.15 0.65

TNFRSF10C_P7_F TNFRSF10C 0.82 0.68 0.17 0.51

ASCL2_E76_R ASCL2 0.83 0.91 0.08 0.83

MT1A_P49_R MT1A 0.85 0.77 0.08 0.69

VAV1_E9_F VAV1 -0.89 0.31 0.95 -0.63

VAV1_P317_F VAV1 -0.84 0.24 0.86 -0.62

AATK_E63_R AATK -0.79 0.68 0.96 -0.28

AATK_P709_R AATK -0.78 0.23 0.71 -0.48

LCN2_P86_R LCN2 -0.77 0.47 0.82 -0.36

AATK_P519_R AATK -0.75 0.41 0.84 -0.43

SPDEF_P6_R SPDEF -0.74 0.27 0.69 -0.42

TGFB1_P833_R TGFB1 -0.7 0.46 0.95 -0.49

SPDEF_E116_R SPDEF -0.69 0.13 0.47 -0.34

GFAP_P1214_F GFAP -0.65 0.38 0.75 -0.37

PLG_E406_F PLG 0.64 0.87 0.41 0.46

IL16_P93_R IL16 0.64 0.8 0.29 0.51

MMP7_P613_F MMP7 0.65 0.85 0.59 0.26

CCKAR_E79_F CCKAR 0.67 0.82 0.23 0.59

DSC2_E90_F DSC2 0.72 0.61 0.07 0.55

CCKAR_P270_F CCKAR 0.73 0.85 0.24 0.61

KIAA1804_P689_R KIAA1804 0.74 0.62 0.15 0.47

MBD2_P233_F MBD2 0.78 0.62 0.19 0.43

MSH2_P1008_F MSH2 0.88 0.87 0.14 0.73

BAX_E281_R BAX 0.89 0.49 0.15 0.34

WNT 

Metagene

SHH 

Metagene
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Probe Gene

Pearson's  

Correlation

Average β 

Value 

(group 

members)

Average β 

Value 

(non-

group 

members)

Di fference 

in β va lue

CCKAR_E79_F CCKAR -0.83 0.08 0.58 -0.5

PIK3R1_P307_F PIK3R1 -0.79 0.08 0.6 -0.52

PLG_E406_F PLG -0.76 0.29 0.68 -0.39

IFNGR2_P377_R IFNGR2 -0.75 0.09 0.52 -0.43

CCKAR_P270_F CCKAR -0.75 0.1 0.59 -0.49

RAN_P581_R RAN -0.75 0.21 0.64 -0.43

ASCL2_P609_R ASCL2 -0.65 0.12 0.49 -0.37

RHOH_P121_F RHOH -0.65 0.41 0.82 -0.41

ASCL2_P360_F ASCL2 -0.64 0.04 0.37 -0.33

ZNF264_P397_F ZNF264 -0.63 0.09 0.46 -0.36

ACTG2_P346_F ACTG2 0.7 0.86 0.64 0.22

IL8_P83_F IL8 0.7 0.95 0.68 0.27

SPP1_P647_F SPP1 0.7 0.98 0.78 0.2

SPP1_E140_R SPP1 0.72 0.75 0.37 0.38

HLA-DOB_E432_R HLA-DOB 0.73 0.87 0.59 0.28

MMP10_E136_R MMP10 0.73 0.82 0.42 0.4

HLA-DPA1_P28_R HLA-DPA1 0.76 0.85 0.5 0.35

WNT10B_P993_F WNT10B 0.76 0.76 0.33 0.42

LEFTY2_P719_F LEFTY2 0.77 0.86 0.49 0.37

TRIM29_E189_F TRIM29 0.82 0.74 0.33 0.41

ZNFN1A1_E102_F ZNFN1A1 -0.8 0.41 0.9 -0.49

SERPINA5_E69_F SERPINA5 -0.77 0.54 0.88 -0.34

AIM2_E208_F AIM2 -0.75 0.76 0.96 -0.21

KRT1_P798_R KRT1 -0.71 0.54 0.93 -0.39

B3GALT5_P330_F B3GALT5 -0.68 0.87 0.98 -0.11

IL12B_E25_F IL12B -0.67 0.78 0.97 -0.19

KRT5_E196_R KRT5 -0.67 0.78 0.98 -0.2

BLK_P668_R BLK -0.65 0.26 0.82 -0.56

PLA2G2A_E268_F PLA2G2A -0.65 0.47 0.88 -0.41

CEACAM1_P44_R CEACAM1 -0.65 0.66 0.93 -0.27

TGFB2_E226_R TGFB2 0.72 0.5 0.09 0.41

LOX_P313_R LOX 0.72 0.3 0.03 0.27

FES_P223_R FES 0.73 0.6 0.13 0.47

FRZB_E186_R FRZB 0.74 0.52 0.08 0.44

RARRES1_P426_R RARRES1 0.75 0.63 0.21 0.41

BCR_P346_F BCR 0.75 0.3 0.06 0.24

IL1RN_P93_R IL1RN 0.76 0.58 0.13 0.45

FES_E34_R FES 0.8 0.58 0.1 0.48

MMP14_P13_F MMP14 0.83 0.53 0.09 0.45

WRN_P969_F WRN 0.84 0.65 0.17 0.49

Group I 

Metagene

Group II  

Metagene
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Table 4.10. The top 10 most anti-correlative and correlative probes that define each 
metagene represent novel biomarkers for the methylomic subgroups of medulloblastoma. 
Anti-correlative probes are shown with a white background. Correlative probes are shown with 
a grey background. Probe name, gene name, Pearson correlation, β scores of group and non-
group members, as well as the difference in β values between group and non-group members 
are given. 
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Figure 4.8. Selection of the top 10 most correlative and anti-correlative probes for each 
metagene recapitulates the assigned classes. Principal component analysis loadings plot, 
derived from 80 methylation probes showing highest correlation and anti-correlation to 
metagenes is shown. Class designations for WNT (red), SHH (blue), Group I (orange) and Group 
II (purple) are shown for 216 classifiable cases in the training and test cohorts. Covariance 
spheroids with a 95% confidence interval have been plotted to demonstrate group 
memberships. 
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4.4.10 DNA methylomic subgroups show different clinical disease 

features and behaviours 

The classification of medulloblastomas into discrete subgroups enables differences in 

clinico-pathological and molecular correlates between subgroups to be assessed 

(Figure 4.9). Significant differences were assessed using chi-squared tests, with the 

contributing subgroup being identified by examining the chi-squared residuals for each 

subgroup (Figure 4.5). The WNT and SHH pathway activated subgroups were strongly 

associated with previously published markers for these subgroups (Ellison et al., 2011a; 

Schwalbe et al., 2011; Clifford et al., 2006) (see section 4.4.5.1, 4.4.5.2). The WNT 

methylomic subgroup was characterised by CTNNB1 mutation (‘p’ < 2 x 10-16), 

chromosome 6 loss (‘p’ < 2 x 10-16), WNT expression signature (training cohort, ‘p’=1.4 

x 10-14) and nuclear accumulation of β-catenin (test cohort, ‘p’ < 2 x 10-16). The SHH 

methylomic subgroups was associated with DN histology (‘p’=1.8 x 10-14), SHH 

expression signature (training cohort, ‘p’ = 3.3 x 10-14), GAB1 staining (‘p’=5.2 x 10-16), 

indicating SHH subgroup (test cohort) and infant status (training cohort only, ‘p’=3.8 x 

10-6). There were few instances of cases positive for these markers being present in 

other subgroups (in the training cohort, one case with SHH pathway activation and one 

case with WNT pathway activation were classified into group I; in the test cohort, one 

case with WNT antibody positivity and CTNNB1 mutation was classified into the SHH 

group, and two SHH antibody positive cases were not classified into the SHH 

methylomic subgroup). 

Significant differences in incidence for gender (‘p’ = 0.0028), LCA histology (enriched in 

group II cases, ‘p’ = 0.024), M stage (enriched in group I and II cases, ‘p’ = 0.011), and 

chromosome 17 LOH (enriched in group I cases, ‘p’ = 0.00039) were also observed, 

although the significant differences observed for LCA phenotype and M+ disease 

become non-significant after correction for multiple testing (Figure 4.9).   

The classification of medulloblastomas into four subgroups enables direct comparison 

between the non-signalling pathway activated medulloblastomas group I and group II. 

When this direct comparison is made, there is a significant enrichment for LCA cases in 

group II (‘p’ = 0.0063, chi-squared test) and a marginally significant enrichment for 

chromosome 17 LOH in group I cases (‘p’ = 0.033, Fisher’s exact test). The age 



251 
 

distribution graph shown in the last panel of Figure 4.9 demonstrates that group II 

cases occur predominantly in younger cases compared to group I cases. As has 

previously been reported (Schwalbe et al., 2011), WNT positive cases were not 

observed in infants. Although there is a significant enrichment for infant cases within 

the SHH methylomic subgroup (‘p’ = 3.8 x 10-6, chi squared), overall, there was no 

significant difference in ages between subgroups (‘p’ = 0.60, ANOVA). Whilst SHH and 

WNT cases showed balanced male and female cases and a paucity of metastatic cases, 

conversely group I and group II cases showed an excess of male cases (‘p’ = 0.0028, chi 

squared). This indicates that the previously reported gender imbalance (1.7:1 M:F 

cases (section 1.3) is being driven by methylomic subgroups I and II, which also showed 

an increased incidence of metastatic cases (Figure 4.9).  

The relationship between subgroup membership and survival is shown in Figure 4.10. 

The WNT subgroup is clearly associated with an improved EFS compared to the 

remaining methylomic subgroups, which do not show any differences in their survival. 

The NC samples show a trend for improved survival, although only 12 / 14 NC samples 

had available survival data. Significant survival differences were observed for MYCC / 

MYCN gene amplification status, large cell anaplastic histology, metastasis and infant 

status, confirming that previously reported prognostic markers were reflective of the 

results of previous studies. No survival difference was seen for chromosome 17 LOH 

status; additionally, a relationship was observed between female gender and improved 

survival (Ellison et al., 2011b; Pfister et al., 2010; Curran et al., 2009). These 

relationships are shown in Figure 4.11. 

Cox models were constructed to test for prognostic utility of metagene expression and 

for validation of previously reported survival correlates (Table 4.11). In univariate 

analyses, expression of the WNT- (‘p’ = 0.0013) and group II- (‘p’ = 0.05) associated 

metagenes were significant, although only the WNT metagene was significant after 

correction for multiple testing. In a multivariate analysis including the verified 

prognostic factors metastatic status, LCA histology and infant status (Pizer and Clifford, 

2009), in addition to the expression of the metagene, WNT (‘p’ = 0.002) metagene 

expression remained prognostic, with expression of the group I metagene of marginal 

significance (‘p’ = 0.05), although again the group I metagene expression is not 
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significant after correction for multiple hypothesis testing.  
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Figure 4.9. Clinical and molecular correlates of methylomic subgroups of medulloblastoma.  

Number and percentage incidence are shown for selected clinical and molecular correlates of 
the disease across methylomic subgroups. Gender – male, black; female – white. Histology – 
classic, black; large cell / anaplastic, grey; desmoplastic / nodular – white. Metastasis – M- 
black; M+, white. Age (training cohort only, since this included infant cases) – black – over 3 
years of age at diagnosis; white – under 3 years of age at diagnosis. Chr 17 LOH – chromosome 
17p loss of heterozygosity assessed by HOMOD method. No loss detected – black; loss 
detected – white. ‘P’ values from chi squared tests are shown. The final figure (bottom right) 
shows the age distributions across the subgroups. WNT cases (red trace) are non-infant and 
peak in incidence at 10 years of age. SHH cases (blue trace) represent the largest proportion of 
cases observed in infancy, whilst group I cases (orange trace) have a peak of incidence at 9 
years, in contrast to group II cases (purple trace) which have a peak of incidence at 4.5 years. 
The ‘p’ value from an ANOVA test to compare group means is shown. 
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Figure 4.10. Differential survival of methylomic subgroups of medulloblastoma. A. Kaplan-
Meier plot shows EFS for joined training and test cohorts with all available survival data (n = 
216). B. Kaplan-Meier plot shows EFS data for PNET3 clinical trials cohort plus age-matched 
(aged 3-16 years) non-trials cases (n = 191). Subgroups are coloured as shown in at-risk table 
below plot. Stacked bar on right hand side of plot indicates number and percentage 
composition of each subgroup. ‘P’ values from log-rank tests are given. 
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Figure 4.11. Investigation of relationship between previously reported molecular and clinico-
pathological correlates with survival in the classified cohort with available survival data (n = 
216). Each plot shows Kaplan-Meier plot, bar plot showing group membership and at-risk table, 
as explained in Figure 2.20. ‘P’ values derived from log-rank tests are shown. Age – 1– under 3; 
0 - over 3 at diagnosis. LCA – 1 – LCA histological subtype; 0 – LCA negative. M stage – M-, 0; 
M+, 1; Gender – 0 – male; 1 – female. MYCC / MYCN amp – 0 – no amplification of MYCC / 
MYCN; 1 – amplification of MYCC / MYCN. Chr 17 LOH – 0 – no evidence for chromosome 17 
LOH; 1 – evidence for chromosome 17 LOH.  
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 Univariate Multivariate 

Correlate ‘P’ value HR (95% CI) ‘P’ value HR (95% CI) 

V1 (WNT) 0.013 0.19 (0.069 – 0.52) 0.0020 0.18 (0.061 – 0.53) 

V2 (SHH) 0.31 1.40 (0.74 – 2.65) 0.12 1.69 (0.87 – 3.28) 

V3 (Group I) 0.14 1.67 (0.85 – 3.30) 0.05 2.11 (1.00 – 4.45) 

V4 (Group II) 0.05 2.14 (1.01 – 4.59) 0.40 1.44 (0.62 – 3.33) 

Large cell / 
anaplastic 

0.0006 2.89 (1.58 – 5.27) NA NA 

M+ 9.6 x 10-5 2.68 (1.64 – 4.42) NA NA 

Age (under 3) 0.0005 3.72 (1.78 – 7.81) NA NA 

Chr17 LOH 0.70 1.13 (0.61 – 2.07) 0.62 1.17 (0.63 – 2.20) 

MYCC / MYCN 
amplification 

0.03 2.55 (1.10 – 5.91) 0.002 4.07 (1.70-9.75) 

Female 
Gender 

0.007 0.48 (0.29 – 0.82) 0.03 0.55 (0.32 – 0.93) 

Table 4.11. Cox model investigation of metagene expression and other previously postulated 
prognostic markers in classified cohort with survival data available (n = 204) identifies 
potentially prognostic metagenes. Univariate analysis considers expression of each metagene 
or correlate positivity in isolation Correlates considered include large cell / anaplastic histology, 
M+ disease, infant status, chromosome 17 LOH, amplification of MYCC / MYCN, and gender. ‘P’ 
value and HR (hazard ratio) (with 95% confidence intervals) are shown. The multivariate 
analysis included large cell / anaplastic histology, M stage and infant status as prognostic 
factors in the base model. Subsequently, each metagene or correlate that was not already in 
the model was added. The ‘p’ value for metagene and correlate expression in this multi-
factorial model is reported, as well as hazard ratio and 95% confidence intervals. NA – not 
applicable, since large cell /anaplastic histology, M+ disease and infant status were covariates 
included in the base model for multivariate analysis.  

  



257 
 

4.4.11 Summary of the described subgroups and their 

characteristics 

A consensus clustering approach was applied to a training cohort of 100 samples. 4 

clusters were identified and validated in a test cohort of 130 samples. 94% (216 / 230) 

of samples could be confidently classified. Subgroup members showed highly 

significant differences in their clinico-pathological and molecular correlates (Figure 4.5, 

Figure 4.9). The WNT subgroup was associated with an improved survival; there were 

no survival differences between the remaining subgroups (Figure 4.10). The 

characteristic features of the subgroups are summarised in Table 4.12.  

 

 

 
Group I Group II SHH WNT 

Molecular 
abnormalities 

Chr 17p LOH   Chr 6 LOH 

Expression 
Profile / 
Antibody 
profile 

  SHH Signature  

SHH antibody 
GAB1 
immunopositivity 

WNT Signature 

WNT antibody 
CTNNB1 
nuclear 
accumulation 

Disease 
Features 

Fewer female 
cases 

LCA histology 

Fewer female 
cases 

DN histology 

Enriched for 
infants 

Classic 
histology 

M- disease  

No infant cases 

Improved 
survival 

Table 4.12. Summary of molecular and clinical characteristics of methylomic subgroups. Chr 
6 / 17p LOH – chromosome 6 or 17p LOH. 
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4.5 Discussion 

4.5.1 Golden Gate Cancer Panel I array is robust, reproducible and 

reports accurate estimates of DNA methylation 

This chapter employed a novel methylome profiling technology for the identification of 

disease subgroups of medulloblastoma cohorts. The failure rate for both training and 

test datasets (section 4.4.1) was consistent (7% and 9% respectively) and sample 

reproducibility was also satisfactory (Figure 4.1, Figure 4.2). One intriguing aspect of 

the nature of the QC failures within the test cohort was the enrichment for MYCN 

amplification, with 6 / 13 (46%) of QC failures being MYCN amplified. This contrasts to 

the QC-passing samples, where the frequency of MYCN amplification was 6 / 124 (5%).  

The intriguing enrichment for MYCN amplified cases in the test cohort which failed 

initial QC is difficult to explain, as it is exceedingly unlikely to occur by chance (‘p’ = 

0.0001, Fisher’s Exact test) and the same relationship was not observed in the training 

dataset QC failures (6 / 6 failures with available data were not MYCN amplified). It is 

possible that the process of DNA extraction in MYCN amplified medulloblastomas from 

FFPE tissue is unreliable, but it could also hint that there is something fundamentally 

different about the stability of DNA in MYCN amplified medulloblastomas.  Ideally, a 

paired comparison between DNA extracted from fresh frozen tissue and from FFPE 

tissue on the same sample for MYCN amplified cases would be performed on the 

methylation array to determine whether the observed effect is a methodological 

consequence of the more fragmented DNA from FFPE tissues, although this class of 

samples would be scarce, due to the low incidence of MYCN amplified cases and the 

difficulty in obtaining paired DNA samples. 

The ability to generate methylomic data from DNA extracted from FFPE tissues offers 

potential for further investigatory or confirmatory work in archival cohorts, for which 

nucleic acid derivatives from fresh frozen tissues are not generally available, greatly 

increasing the potential sample pool for future studies, with size always an important 

limitation in generating informative medulloblastoma cohorts. Moreover, this 

technology does not seem subject to the batch effects commonly encountered in 

transcriptomic experiments, where sample preparation and handling can be a very 

important determinant of array performance. This may be due to the inherent stability 
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of 5-methylcytsoine residues within DNA compared to the transitory half-life and 

increased fragility of mRNA transcripts.  

Bisulfite validation of a panel of 7 discriminatory probes in 18 medulloblastomas 

confirmed that the reported β values from the array were a close match to values 

estimated from bisulfite sequencing, with a mean difference in β score of 0.006. The 

non-random nature of the minority of comparisons with a large deviation suggests that 

this is not a locus-specific phenomenon but rather a stochastic process, and is 

therefore not a cause for concern, particularly in the context of an experiment 

measuring methylation at 1505 loci. Any stochastic errors in methylation estimation at 

individual loci would not, by definition, be able to contribute towards any identified 

subgroups within the dataset.   

The investigations into sample reproducibility and the fidelity of the reported 

methylation values proved satisfactory and enabled analysis of methylation patterns of 

medulloblastoma to proceed.  

4.5.2 Medulloblastoma comprises 4 methylomic subgroups 

The classification of medulloblastoma using methylomic arrays in a 100 member 

training cohort identified four disease subgroups (group I, group II, SHH and WNT), 

which were validated in a 130 member test cohort. The validation of the identified 

subgroups in an independent second cohort demonstrates subgroup reproducibility, 

avoiding any confounding through over-fitting. The identification of subgroups is 

important in two ways: firstly, it represents the first time that methylomic approaches 

have been used to classify the disease, validating this approach and secondly, this 

provides the first classification of the disease independent of transcriptomic measures.  

As discussed in section 1.3.12.1, estimates for the number of transcriptomic disease 

subgroups ranges from 4 to 6. Although the number varies, all studies report two 

discrete subgroups characterised by activation of the WNT or SHH signalling pathways. 

Like all previous transcriptomic studies, methylomic classification identified two clear 

WNT and SHH subgroups. In this case, two additional pathway independent subgroups 

were identified. The high congruence between WNT and SHH pathway activation 

(Figure 4.5), assessed by GeXP in the training cohort and by antibody positivity in the 
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test cohort clearly identifies the subgroups and represents a positive three-way 

validation of each technique for the assessment of WNT and SHH pathway status. 

 The estimated number of pathway-independent methylomic subgroups matches the 

number of pathway-independent transcriptomic subgroups identified by Northcott et 

al., although it is, without further investigation, impossible to ascertain whether there 

is any correlation between the two independently-identified pathway-independent 

disease subgroups. The investigation of this question is discussed in section 4.5.6. 

The intermediate levels of expression of the V3 metagene by the majority of group II 

medulloblastomas (in addition to the high expression of the group II-defining 

metagene, V4), could indicate that group I and group II tumours arise from a similar 

cell of origin, with group II tumours acquiring additional defects.  

4.5.2.1 Non-classifiable samples are distinct and share few 

clinico-pathological and molecular correlates 

There were no common clinico-pathological, molecular or methylomic correlates that 

defined the 14 / 230 samples assigned as NC (Table 4.8). One possible explanation for 

the lack of common features is that the reason for the NC status is sample 

independent and is actually due to a cryptic technical error that was not identified with 

the QC measures available. If true, this technical error could be procedural or could lie 

with the quality of the original DNA sample. Another possible explanation is that these 

samples are atypical medulloblastomas and are simply not amenable to classification 

when referenced against typical medulloblastomas. It is also possible that the NC 

group do indeed represent a separate class of medulloblastomas and that the 

resolution of the array was not sufficient to include common features absent in 

classified medulloblastomas, although caution would have to be applied when using a 

higher resolution approach, since this, of course, would be prone to over-fitting 

(section 2.11).  

The improved survival observed in the 12 / 14 NC cases compared to other non-WNT 

cases for which survival data was available is intriguing, although any interpretation of 

the result would necessarily have to be tempered with the consideration of the small 

sample size involved. Indeed, if a log-rank test is performed between NC and classified 
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samples in a binary comparison, the improved survival observed for NC samples is not 

significant (‘p’ = 0.06). No NC case was positive for any WNT subgroup correlates (WNT 

expression signature, WNT antibody positivity, chromosome 6 loss or β-catenin 

mutation, meaning that the improved survival observed is not being driven by its 

association to WNT pathway activation (Clifford et al., 2006; Ellison et al., 2005). This 

represents an interesting observation that requires further study in additional cohorts, 

to establish whether or not the NC class is consistent across studies and by running 

additional high throughput genomic and transcriptomic arrays, whether there are any 

copy number abnormalities or gene expression changes that are common to this 

subset of medulloblastomas. 

4.5.2.2 Global patterns of DNA methylation 

Array structure was investigated to identify global patterns of medulloblastoma 

methylation. The majority of CpG island probes (83%) were unmethylated, in contrast 

to non-CpG island probes with a majority of methylated probes (62%). This is 

consistent with what has been previously reported, with the majority of CpG islands 

being unmethylated and promoter regions of genes without CpG islands being 

predominantly methylated (Deaton and Bird, 2011). 

When the analysis was extended to individual subgroups, differences became apparent. 

Group I samples were associated with an increase of hypo-methylated probes 

compared to group II within CpG islands and an increase of hyper-methylated probes  

outside of CpG islands relative to group II probes.  

It is possible that group I tumours are displaying patterns of methylation that more 

closely match the underlying methylation patterns within normal tissue (CpG islands 

predominantly unmethylated, promoter regions without a CpG island predominantly 

methylated), and that the group II tumours, whilst similar to group I, have acquired 

additional defects that further diverge from a more normal, cerebellum-like state. This 

would be in concordance with the hypothesis that the group I and II tumours share a 

common cell of origin, as discussed in section 4.5.2. This could easily be tested by 

examining the methylation status of normal cerebellum samples. 
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4.5.3 Identification of novel biomarkers for disease identification 

The biomarkers listed in Table 4.10 greatly increase the number of testable biomarkers 

for the identification of medulloblastoma subgroups. The PCA plot in Figure 4.8 

demonstrates that these probes accurately identify sample groupings across the 

combined classifiable training and test cohort (n = 216), emphasising the potential for 

subgrouping using a reduced number of methylation biomarkers. There is clear 

separation of the WNT and SHH subgroups, with some overlap on the boundary 

between group I and group II cases, showing that the boundary between them is likely 

to be fuzzy and indicates that any future methylomic assays for the assignment of 

subgroup status would likely include a measure of uncertainty, as was implemented in 

this study (where to be assigned to a group, a sample had to have a greater than 80% 

modal assignment score (see section 2.9.4)). They may also represent key subgroup-

specific genes and pathways in medulloblastoma that may become more apparent 

when DNA methylation is assessed with a higher resolution platform.  

The identification of these biomarkers raises several possibilities for future 

investigations. It remains an open question whether these biomarkers are functionally 

relevant or serve only as markers of disease type. By running transcriptomic arrays in 

conjunction with methylation arrays on paired samples, anti-correlative pairs of 

methylation and gene expression probes can be identified and verified, using sodium 

bisulfite and RT-PCR based techniques respectively, which in turn could identify 

subgroup specific transcriptomic differences with a putative functional relevance.   

Future approaches, discussed in detail in section 4.5.6, could be directed towards the 

generation of a testable assay for the assessment of subgroup determinant 

methylation probes. 

4.5.4 Methylomic subgroups show significant differences in clinico-

pathological and molecular correlates 

The identified methylomic subgroups show clear differences in their clinical and 

molecular features. While the WNT and SHH pathway-activated subgroups are 

characterised by known and previously described features, other important novel 

relationships were observed.   
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The SHH subgroup cases had a major peak of incidence in infancy (in the training 

cohort, 9 / 21 SHH cases were ≤ 3 years of age; the test cohort contained no infant 

cases). Interestingly, the majority of adult cases (>16 years of age – 4 / 7 cases total) 

were SHH cases, in agreement with previous studies (Northcott et al., 2011; Remke et 

al., 2011b).  

The WNT subgroup displayed previously reported characteristics of this group of 

tumours (Schwalbe et al., 2011); there were highly significant associations with 

chromosome 6 loss and activating mutations of β-catenin. There were no WNT 

subgroups cases from infants, and this subgroup displayed a tight age range, peaking 

at 10 years of age. Both WNT and SHH subgroups were characterised by a small excess 

of females (SHH – 26 / 50 (52%); WNT – 16 / 28 (57%)) and a paucity of M+ cases (SHH 

– 5 / 48 (10%); WNT – 2 / 28 (7%)).  

This gender ratio was in contrast to the non-signalling pathway activated subgroups, 

which had a large excess of male cases, in agreement with previous group-wide 

transcriptomic studies, which found approximate gender parity in the WNT and SHH 

subgroups, with an excess of male cases in the WNT / SHH pathway independent 

subgroups (Cho et al., 2011; Northcott et al., 2010). This was especially pronounced for 

group II members (group II – 35 / 43 (80%); group I – 60 / 94 (64%)). This and other 

differences between group I and group II represent evidence to support the hypothesis 

that these represent discrete disease subgroups.  Group I was almost entirely 

composed of classic type medulloblastomas (88 / 94; 94%), with group II cases showing 

the highest subgroup incidence (9 / 43; 21%) of large cell / anaplastic cases. One third 

of group II cases (14 / 41; 34%) were M+ disease, compared to 19 / 89 (21%) group I 

cases (‘p’ = 0.13, Fisher’s Exact test).  

There are two pieces of evidence that show a potential agreement between the 4 

methylomic subgroups described here and the 4 transcriptomic subgroups described 

by Northcott et al. Firstly, the age distribution profile for groups I and II (Figure 4.9) 

shows similar patterns of incidence in the two WNT / SHH independent transcriptomic 

subgroups C and D. Group II and group C (4 years, methylomic, 3-5 years, 

transcriptomic) show an earlier peak incidence than group I and group D (9 years 

methylomic, 11-15 years transcriptomic). Secondly, there is a significant enrichment 
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for chromosome 17 LOH in group I, and a significant enrichment for isochromosome 

17q is observed in transcriptomic subgroup D. The processes by which any putative 

overlap between the methylomic and transcriptomic subgroups could be assessed is 

discussed in section 4.5.6. 

The incidence of MYCC and MYCN amplification was not sufficient to identify any 

significant relationships, since there was no subgroup exclusivity for amplification. 

MYCC and MYCN amplification was observed in SHH, group I and group II cases. The 

WNT subgroup did not contain any MYCC or MYCN amplified cases, although this 

subgroup is also the smallest and the absence could be due to sampling. MYCN 

amplification is more common (9 MYCN: 5 MYCC) than MYCC amplification.  

4.5.5 The WNT subgroup is associated with an improved survival 

Survival investigations of the defined methylomic subgroups were undertaken to 

identify prognostic differences (Figure 4.11). Initially, previously reported survival 

markers were tested to ascertain whether this was a representative medulloblastoma 

cohort. M+ status (‘p’ = 5 x 10-5) (Rutkowski et al., 2010), LCA histological subtype (‘p’ = 

0.0003) (Pizer and Clifford, 2009), infant status (‘p’ = 0.0002) (Rutkowski et al., 2005), 

MYCC or MYCN amplification (‘p’ = 0.02) (Ellison et al., 2011b) and male gender (‘p’ = 

0.0055) (Curran et al., 2009) were all associated with a worse prognosis, recapitulating 

previous studies. Conversely, no relationship between survival and chromosome 17 

LOH was observed (‘p’ = 0.70), contradicting previous studies (Pan et al., 2005; Di 

Marcotullio et al., 2004), but in agreement with others (Ellison et al., 2011b; McCabe 

et al., 2011; Jung et al., 2004; Emadian et al., 1996), which found no relationship 

between LOH at chromosome 17 and survival. The recapitulation of the established 

clinical markers (M+ disease, LCA histology and infant status) demonstrates that this 

medulloblastoma cohort is representative of the wider disease and provides hope that 

any identification of additional, novel, prognostic markers may not be the result of an 

unbalanced cohort. 

The prognostic potential of metagene expression was assessed in univariate and 

multivariate Cox proportional hazards models (Table 4.11). Similar to the Kaplan-Meier 

plots shown in Figure 4.10, the WNT metagene V1 was the only metagene related to 

survival. The improved survival observed for the WNT methylomic subgroup (Figure 
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4.10) has previously been reported using other measures of WNT pathway activation 

(Ellison et al., 2011b; Schwalbe et al., 2011; Clifford et al., 2006; Ellison et al., 2005). 

There were no significant differences in survival for the remaining subgroups in either 

the full cohort or within the PNET3 clinical trials cohort with age-matched non trials 

cases. This is perhaps surprising for the group II cases, which show an enrichment for 

LCA histology and M+ staging. This could mean that the effects of these poorly 

understood markers is pleiotropic, emphasising both the need for the identification of 

additional prognostic markers for the assignment of patient risk in non-WNT 

medulloblastomas and also the need to analyse survival correlates within sample 

subgroups.  

Previous work has reported differences in survival for non-WNT transcriptomic 

subgroups, although this work is limited; until now, array-based classification of 

subgroup status in medulloblastoma has not been tested in a clinical trials cohort of 

the disease. Cho et al. reported that membership of the c1 subgroup, characterised by 

expression of MYCC and related translational / ribosomal signatures (Cho et al., 2011), 

was associated with a poor prognosis.  Northcott et al. defined 4 transcriptomic 

subgroups and reported that these subgroups could be classified using single antibody 

subgroup identifiers (Northcott et al., 2010). The antibody-based classification was 

subsequently applied to a non-overlapping independent trials cohort to assess survival 

differences. Subgroup C was identified as being associated with a poor survival, 

although it is notable that there were significant differences in age distribution 

between subgroup C and subgroup D in the transcriptomic-classified and antibody-

classified cohorts, raising the possibility that the transcriptomic subgroups were not 

perfectly recapitulated in the survival cohort, which was classified solely by antibody 

staining and emphasising the need for direct cross-validation in a trials-based cohort 

classified using the same technique used to define subgroups. 

Until the number of transcriptomic clusters reaches consensus, and the means for 

assigning subgroup membership become more robust, it will remain problematical to 

ascribe differences in survival between subgroups, not least because of the difficulties 

in reproducing classifications across studies. This study represents the first stage of the 

process, defining molecular disease subgroups and testing survival in a trials-based 

cohort whose subgroup status had been molecularly defined (Figure 4.10). 
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Once again, DNA methylation may provide a more reliable means of assessing 

subgroup membership. DNA methylation is inherently less labile than measuring gene 

expression and was robust across DNA from both frozen and FFPE samples. It appears 

that the antibody assignment of WNT and SHH activation (Ellison et al., 2011a) is also 

robust, since the correlation between the SHH methylomic subgroup and SHH antibody 

positivity in the test dataset was high. However, until the reproducibility of antibody 

assignment of WNT / SHH independent medulloblastoma subgroups (Northcott et al., 

2010) is validated, an alternative, non-immunohistochemical approach might be 

preferable. The use of methylation markers might represent an alternative approach, 

for example using an MS-MLPA (methylation sensitive, multiplex ligation-dependent 

probe amplification) (Nygren et al., 2005) assay, which could be used routinely in a 

diagnostic setting, since the technique it is based upon, MLPA (Schouten et al., 2002), 

is widely used in diagnostic labs.   

4.5.6 Further work 

While this chapter has identified four methylomic subgroups of the disease, this 

represents only the beginning of the investigations into methylomic classification of 

the disease. 

At the inception of the project, two transcriptomic studies (Kool et al., 2008; 

Thompson et al., 2006), which reported 5 transcriptomic subgroups of the disease, 

were used as the basis for designing a GeXP assay to assign signalling pathway 

activation, and this assay was used to confirm the high congruence between WNT and 

SHH pathway activation and membership of the WNT and SHH methylomic subgroups 

(chapter 3).  

Subsequent reports (Cho et al., 2011; Northcott et al., 2010) have identified four and 

six subgroups, respectively. Work being undertaken in 2011 by Dr. Dan Williamson 

(Brain Tumour Research Group, Newcastle University) has taken all published 

medulloblastoma transcriptomic datasets (Cho et al., 2011; Northcott et al., 2010; 

Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006) and undertaken a meta-

analysis to identify the current best estimate of subgroup number. This has identified 

four transcriptomic subgroups (WNT, SHH and two non-signalling pathway subgroups). 

It will be very important to know whether the methylomic subgroups described in this 
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chapter are recapitulating the transcriptomic subgroups already described, or whether 

they represent a novel means of disease classification.  

At the time of writing, a second GeXP assay to classify samples based on these four 

transcriptomic subgroups is being designed by Dr. Dan Williamson and Dr. Matthew 

Partington (Brain Tumour Research Group, Newcastle University), and the resultant 

assay will be applied to the training dataset cohort, in order to assess whether there is 

any correlation between the non-signalling pathway activated transcriptomic 

subgroups and methylomic subgroups identified in this study. Subsequently, it may be 

possible to identify and validate protein markers for the routine classification of 

medulloblastoma transcriptomic subgroup by immunohistochemistry in the routine 

setting of hospital pathology labs. 

One intriguing hypothesis for future work is that, having defined four disease 

subgroups, there will be additional variability within subgroups that could help identify 

intra-cohort prognostic markers and also explain intra-subgroup disease aetiology and 

progression. This remains unexplored at the moment, due to limitations of sample size; 

once subgroups are defined, sample size within each subgroup is reduced, and to 

remedy this in future, there will be a need for, in the context of medulloblastoma, 

extremely large (>500) sample cohorts to provide sufficiently large subgroup numbers 

for these sorts of intra-group analyses.  

Technological advances in the assaying of DNA methylation will also be instrumental in 

further elucidating the nature of the medulloblastoma methylome. Since the inception 

of the project, the Golden Gate Cancer Panel I array has been superseded by higher 

resolution platforms. The Illumina Infinium methylation array (Baker, 2010; Thirlwell et 

al., 2010), which provides information at 27,000 CpG dinucleotides, with probes 

present within the promoter regions of 14,475 genes became available in 2009. Early 

in 2011, the next generation Illumina HD 450k methylation arrays became publicly 

available (Sandoval et al., 2011). This array measures CpG methylation at > 450,000 

CpG dinucleotides, representing CpGs within promoter regions, gene bodies, 3’ UTR 

and inter-genic regions. Within promoter regions, CpGs located within CpG islands, but 

also in proximal regions (CpG island shore and shelves) are assayed (Irizarry et al., 

2009), enabling a truly comprehensive characterisation of the methylome.  



268 
 

This enables questions to be asked that were not possible with the Golden Gate 

methylation array; patterns of differential methylation could be subjected to gene 

ontology and gene set enrichment analysis, to identify co-repressed networks of genes, 

silenced by methylation. Analysis of medulloblastoma by these 450k arrays can provide 

a rich source of potential disease biomarkers and, in conjunction with transcriptomic 

analysis, could for the first time identify relevant genes whose expression is mediated 

by promoter DNA methylation patterns in medulloblastoma. It will also become 

possible to identify any large, megabase scale gene silencing through hyper-

methylation, leading to a functional LOH, as has previously been described in 

colorectal cancer cell lines (Frigola et al., 2006).  Pilot studies of medulloblastomas on 

the 450k array have been undertaken in spring 2011, and appear to demonstrate 

satisfactory reproducibility on DNA extracted from both frozen and FFPE tissues. 

In a post-array era, it is likely that whole-genome shotgun bisulfite sequencing (WGSBS) 

(Laird, 2010) will become the technique of choice for characterisation of DNA 

methylomes. This technique will provide a truly whole-genome summary of DNA 

methylation, although there are still some limitations to overcome, due to the 

reduction in sequence complexity following bisulfite conversion. Nevertheless, a 

recent study described WGSBS of human peripheral blood mononuclear cells, covering 

92% of the genome, indicating that this approach is possible and will likely be more 

widely adopted in the future (Li et al., 2010). 

The widespread availability and adoption of nanopore based sequencing techniques, 

which are able to directly read 5-methylcytosine (Clarke et al., 2009), while still several 

years away, will eventually provide a single molecule readout of DNA methylation 

within a cell, and will provide an unprecedented insight into the heterogeneity of DNA 

methylation and sequence within tumours. However, from a classification perspective, 

insights into disease heterogeneity are less important, and the global, genome-wide 

measure of DNA methylation of a tumour sample provided by the 450k array will be 

well suited to this task.     

The recent description of 5-hydroxymethylcytosine within the primary sequence of 

DNA derived from brain tissue (Kriaucionis and Heintz, 2009) and the subsequent 

report that the TET1-mediated hydroxylation  of 5-methylcytosine to 5-
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hydroxymethylcytosine contributes to the age-related depletion of 5-methylcytosine  

in the adult brain (Guo et al., 2011), illustrates that the mechanisms and functional 

consequence of methylation in the brain are still poorly understood, with the 

tantalising possibility that 5-hydroxymethylcytosine represents an intermediate step in 

the demethylation of DNA.  The simultaneous assay of both 5-methylcytosine and 5-

hydroxymethylcytosine in medulloblastoma might further enhance our understanding 

of the role of DNA methylation in the pathogenesis of brain tumours. 

4.5.7 Summary 

This chapter has identified and validated the existence of 4 methylomic subgroups of 

medulloblastoma. While the identified subgroups have striking differences in their 

clinico-pathological and molecular correlates, it is noticeable that, WNT subgroup 

apart, membership of which is associated with an improved survival, there is no 

difference in survival between the remaining subgroups. Since there is no discernible 

prognostic value to membership of the SHH, group I or group II subgroups, the next 

chapter investigates the utility of methylomic biomarkers to augment survival models 

of medulloblastoma, for the generation of novel survival models with an improved 

performance over the current paradigm for clinical classification. 
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Chapter 5. Construction of a novel model for disease risk 
stratification using DNA methylomic biomarkers 

  



271 
 

5.1 Introduction 

Although there has been significant progress in the evaluation of patient risk in 

medulloblastoma, and a 5 year PFS rate of 70-85% in non-infant cases is now achieved 

(Tamayo et al., 2011; Packer et al., 2006; Gilbertson, 2004), there remains a large 

proportion of high risk (~30%) and standard risk patients (~15%) for whom current 

treatments are ineffective. For infant cases, the survival rate is approximately 30-40% 

at 5 years, which may be related to the reluctance to administer radiation therapy 

because of the devastating side effects that this engenders. 

Although the survival rates outlined above are improving, medulloblastoma survivors 

are commonly burdened with deleterious neuro-cognitive and neuro-endocrine 

sequelae (Garre et al., 1994). Efforts are being made to identify patients likely to have 

a good prognosis, so that their treatment intensity can be reduced, reducing their risk 

of deleterious sequelae whilst still maintaining a cure. Conversely, patients with a poor 

prognosis can continue to be aggressively treated, with the primary goal being to 

achieve a cure. 

The current risk assignment scheme, which stratifies patients into two risk groups, 

does not adequately reflect the true heterogeneity of disease risk. Currently, patients 

positive for M+ disease, residual disease following surgical excision of the tumour or 

aged under 3 at diagnosis are classified as high risk. Remaining patients are classified 

as standard risk (Gilbertson, 2004). Large cell / anaplastic histology is becoming more 

widely accepted as a marker of poor prognosis (Brown et al., 2000) and is becoming 

incorporated into state of the art classification schemes (Ellison et al., 2011b; Tamayo 

et al., 2011). 

The recognition that WNT subgroup medulloblastomas are associated with an 

improved prognosis (Clifford et al., 2006; Ellison et al., 2005) has rapidly been 

incorporated into classification schemes that will be assessed in future clinical trials 

and demonstrates how molecular classification of the disease can enhance 

classification (Ellison et al., 2011b; Pizer and Clifford, 2009). The PNET 5 / 6 trials, due 

to commence in early 2012, are investigating a refined classification scheme, where 

WNT subgroup membership, assigned by testing for the nuclear accumulation of β-

catenin, confers assignment to a low risk group (Pizer and Clifford, 2009). Poor risk 
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cases are defined by LCA histology, M+ disease, MYCC / MYCN amplification or the 

presence of residual disease. Remaining cases are defined as standard risk (Pizer and 

Clifford, 2009).  

More recently, several novel classification schemes have been proposed that 

incorporate additional molecular markers to existing, prognostic, clinico-pathological 

correlates (Ellison et al., 2011b; Tamayo et al., 2011; Pfister et al., 2009; de Haas et al., 

2008), summarised in Table 5.1. However, these are limited, either by the complexity 

of the proposed scheme (Tamayo et al., 2011), or because they were not tested in 

clinical trials cohorts (Tamayo et al., 2011; Pfister et al., 2009; de Haas et al., 2008).  

In addition, differential survival between transcriptomic disease subgroups has been 

investigated (Cho et al., 2011; Northcott et al., 2010) (summarised in Table 5.1). The 

major limitations to currently reported survival analyses of medulloblastomas profiled 

using high-throughput techniques is that they are non-clinical trials based (Cho et al., 

2011; Tamayo et al., 2011; Northcott et al., 2010), that subgroup membership was not 

directly assessed by transcriptomic methods (Northcott et al., 2010) (discussed in 

section 4.5.5) and that consensus for the number and determinants of subgroups has 

not yet been reached. 

In this chapter, a non-infant trials-based cohort is used as the basis for testing whether 

there are pleiotropic effects of survival correlates across subgroups. The utility of 

methylomic subgroups for disease prognostication are assessed, and a novel disease 

risk stratification scheme is proposed, incorporating novel DNA methylation 

biomarkers, which out-performs other state of the art classification schemes.
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Table 5.1. Recently reported prognostication schemes for medulloblastoma. For each study, the year, title of study, description of disease classifier, cohort 
size, indication as to whether cohort is comprised of clinical trials cases and an estimate of performance is given. 5 year EFS and OS percentages are 
estimated from Kaplan-Meier curves if not explicitly stated in article text. The reference for each study is given. The latter two studies, separated by a grey 
bar, are from transcriptomic analysis of the disease, and only examined the relationships between transcriptomic disease subgroup membership and 
survival.

Year Study Class i fier Cohort s ize (n ) Cl inica l  tria ls  cohort Performance Reference

2011
Predicting relapse in patients  with medul loblastoma by 

integrating evidence from cl inica l  and genomic features

No s imple class i fier offered. Nomogram for ass igning patient ri sk 

cons idered 7 chromosomal  abnormal i ties , s ix 6-gene s ignatures , 

transcriptomic subgroup, M+ disease s tatus , his tology, MYC 

activation

Tra ining cohort - 96 

Test cohort - 78
N

Optimal  model  had AUC of 

0.87, 0.80 in tra ining / test 

cohorts  respectively

Tamayo et a l ., 

2011

2010

Defini tion of disease-risk s trati fication groups  in 

chi ldhood medul loblastoma us ing combined cl inica l , 

pathologic, and molecular variables

Low-risk: b-catenin nucleopos itive with absence of M+ disease and 

/ or LCA his tology and / or MYC ampl i fication  

High-risk: M+ disease and / or LCA his tology and / or MYC 

ampl i fication

Standard-risk: Al l  other cases

207 Y - PNET3

5 year EFS:

Low-risk  - 92%

Standard-risk - 77%

High-risk - 43%

El l i son et a l ., 

2011b

2009

Outcome prediction in paediatric medul loblastoma 

based on DNA copy number aberrations  of chromosome 

6q and 17q and the MYC and MYCN loci

5 risk categories  (in order of increas ing risk):

6q loss

6q / 17q balanced

17q ga in

6q ga in

MYCC / MYCN ampl i fied

Discovery cohort - 80

Test cohort - 260
N

5 year EFS:

6q loss  - 88%

6q / 17q balanced - 73%

17q gain - 48%

6q gain - 19%

MYCC / MYCN amp - 5%

Pfis ter et a l ., 

2009

2008

Molecular ri sk s trati fication of medul loblastoma 

patients  based on immunohistochemical  analys is  of 

MYC, LDHB , and CCNB1 express ion

Immunohistochemical  scoring:

Low -risk: MYC -

Standard-risk: MYC+, LDHB / CCNB1 -

High-risk: MYC +, LDHB / CCNB1 +

109 N

5 year EFS:

Low-risk  - 91%

Standard-risk - 66%

High-risk - 18%

de Haas  et 

a l ., 2008

2010
Medul loblastoma comprises  four dis tinct molecular 

variants
Four transcriptomic disease subgroups: WNT, SHH, Group C, Group D 236 N

5 year OS:

WNT - 95%

SHH - 88%

Group C - 35%

Group D - 76%

Northcott et 

a l ., 2910

2010

Integrative genomic analys is  of medul loblastoma 

identi fies  a  molecular subgroup that drives  poor 

cl inica l  outcome

Six transcriptomic disease subgroups: c1, c2, c3 (SHH), c4, c5, c6 

(WNT)
115 N

5 year EFS:

c1 - 41%

c2 - 64%

c3 (SHH) - 65%

c4 - 77%

c5 - 68%

c6 (WNT) -82% 

Cho et a l ., 

2011
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5.2 Aims 

This chapter aimed to investigate the utility of DNA methylomics for disease 

subclassification and prognostication in medulloblastoma: 

1. To determine whether previously identified survival correlates of 

medulloblastoma exhibit pleiotropic behaviours across methylomic subgroups 

of the disease 

2. To investigate the utility of methylated loci as biomarkers for disease 

prognostication. 

3. To investigate any identified prognostic methylated loci for their integration 

into an improved risk stratification scheme for medulloblastoma.
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5.3 Materials and methods 

5.3.1 PNET3 clinical trials cohort 

The survival cohort comprised 136 PNET3 cases (Taylor et al., 2003) (section 2.1) which 

passed methylation array QC (section 2.8.1). Histopathological subtype was confirmed 

on review by Professor David Ellison (St Jude Children’s Research Hospital, Memphis, 

TN, USA). Newcastle and North Tyneside Research Ethics Committee approval was 

obtained for the collection, storage, and biological study of all material. EFS was 

considered in preference to OS, for the reasons outlined in section 2.13.1. 

5.3.1.1 Available clinico-pathological correlates 

Data for M+ disease stage, chromosome 17 LOH, MYCC / MYCN amplification and 

gender were available, and were measured as described in section 2.1.  

5.3.2 Age matched cohort 

An additional, 55 member, age-matched (3 – 16 years at diagnosis) cohort with 

available survival data was appended to the PNET3 cohort described above. This 

additional cohort comprised cases from the training dataset described in section 2.1. A 

log-rank test (section 2.13.2) identified any survival difference between the PNET3 and 

age-matched cohorts. Tests of association (Fisher’s exact, chi-squared and t tests) were 

carried out to identify differences in incidence of previously reported clinical correlates. 

5.3.3 Validation of known correlates 

Log-rank tests were applied to validate previously identified survival factors in 

medulloblastoma. Tests were applied to M+ disease stage (Chang et al., 1969), LCA 

histology (Ellison et al., 2011b; Brown et al., 2000), MYCC / MYCN amplification 

(Lamont et al., 2004), gender (Curran et al., 2009) and chromosome 17 LOH (Ellison et 

al., 2011b; Pan et al., 2005) in both the whole survival cohort and, where possible, 

among the methylomic subgroups group I, group II and SHH. For many correlates, the 

numbers of cases positive for the correlate within each subgroup is too low to draw 

any inference about any subgroup-specific behaviour. To identify subgroups where 

sample size might be sufficient to detect subgroup-specific correlate effects, power 
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calculations were performed using the software PS, version 3.0.43 

(http://biostat.mc.vanderbilt.edu/PowerSampleSize). Since the WNT and NC groups of 

samples were associated with a low risk (section 4.5.5), these subgroups were 

excluded from subgroup-specific analyses of survival correlates because they would 

necessarily be non-informative, but were included in whole cohort tests. Since 

information regarding extent of tumour resection was incomplete (information 

unavailable for 59 / 191 (31%) cases), this was not considered as a prognostic factor in 

these investigations. 

5.3.4 Identification of additional testable markers for assigning 

disease risk 

Potential prognostic methylation markers were first filtered to ensure that only 

potentially useful markers were tested (section 2.15). Next, the bimodality index 

(Wang et al., 2009a) for the selected probes was calculated to identify potentially 

prognostic probes suitable for consideration. As discussed in section 2.16, an ideal 

methylation prognostic biomarker would have a bimodal distribution with two modes 

close to zero and one, easily separable in future assays to measure prognostic 

biomarkers. 

5.3.5 Cox boost algorithm for integration of cross-validated high-

dimensional data with existing clinical covariates 

The Cox boost algorithm (section 2.17) was used to identify additionally prognostic 

markers on a base model consisting of M+ disease status, LCA histology and MYCC / 

MYCN amplification. After filtering for potentially useable prognostic probes (section 

2.15), the 200 most bi-modal methylation probes (section 2.16) plus methylomic 

subgroup membership were considered as potential additionally prognostic markers 

on a cohort from which WNT cases had been removed.  

The optimal algorithm parameters were calculated. First, the optimal number of 

boosting steps was calculated using LOOCV. The penalty score was also derived for the 

optimal number of boosting steps. After running the algorithm, optional covariates 

with additional prognostic power were identified and formally introduced into a Cox 

http://biostat.mc.vanderbilt.edu/PowerSampleSize
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model which included the base model covariates shown above. ‘P’ values for the 

optional covariates are subsequently calculated using LOOCV. 

5.3.6 Cox proportional hazards model to identify additional 

prognostic covariates 

A Cox proportional hazards model (section 2.14) was constructed for a model which 

included LCA histology, M+ disease and MYCC / MYCN amplification and the selected 

optional covariates identified using the Cox boost algorithm (section 5.3.5). The 

performance of the novel Cox model for predicting survival was compared against 

currently used survival models (current clinical model – LCA histology, M+ disease 

stage as markers of poor risk; PNET 5 / 6 clinical trials model – LCA histology, M+ 

disease stage, MYCC / MYCN amplification; N.B. WNT as a favourable prognostic 

marker was removed, since the cohort, by definition, did not contain WNT cases 

(described in section 5.3.3)) using ROC curves (section 2.18). 

5.3.7 Characterisation of additional covariates 

Cox proportional hazards models (section 2.14) for the selected additional covariates 

were constructed in a univariate and multivariate setting, with a base model 

constructed from LCA histology, M+ disease stage and MYCC / MYCN amplification.  

5.3.8 Formulation of a novel medulloblastoma risk stratification 

scheme 

The potential utility of identified prognostic probes was investigated. It is likely that, in 

a routine hospital laboratory setting, an assay to measure methylation would not 

report a score at the same level of precision as the methylation array. Rather, it is 

more likely that the assessment of methylation status will be determined based on a 

pre-determined cutoff. To test whether the selected methylation covariates were 

amenable to being classified by cutoff,  the methylation data from the selected 

covariates was binarised at cutoffs (ranging from 0.9 to 0.1 in increments of 0.1) to 

determine whether binarised data behaved similarly to the continuous variable. 

Univariate Cox proportional hazards models were constructed at each cutoff and any 

probe that did not behave similarly to a univariate model using continuous 

methylation data, at appropriate cutoffs, was rejected. 
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Bisulfite sequencing-based estimates (section 2.6) of DNA methylation are able to 

distinguish unmethylated (β score ≤0.33) from hemi-methylated (0.33 < β score ≤ 0.67) 

from methylated DNA (β score > 0.67). Covariates amenable to classification were 

assigned to an appropriate cutoff (0.33 or 0.67) and integrated into the model, 

replacing the previously continuous methylation covariates. Cox proportional hazards 

models (section 2.14) for the binary-classified markers were constructed in univariate 

and multivariate analyses. ROC curves (section 2.18) were plotted to assess classifier 

performance between the Cox model utilising continuous methylation covariates and 

the Cox model with binary-classified covariates. 

Finally, the Cox model comprising the base covariates plus additional methylation-

based binary-classified biomarkers was adapted to form the basis of an easily-

determined clinical algorithm. It was built upon the PNET 5 / 6 treatment strategy, 

which is currently being assessed in clinical trials (Pizer and Clifford, 2009). This 

scheme places cases positive for LCA histology and / or M+ disease and / or MYCC or 

MYCN into a poor prognosis, high risk group. Cases positive for nuclear accumulation 

of CTNNB1 (equivalent to WNT pathway activation), but negative for any high risk 

factors are placed into a low risk group. Remaining cases are assigned as standard risk. 

Unlike PNET 5 / 6, it was decided that, since the WNT subgroup behaves clinically so 

differently from other medulloblastomas (section 4.5.5), that membership of this 

subgroup would, regardless of the status of any other risk factor, confer membership 

of the low risk group.  

A Cox proportional hazards model was constructed using the selected risk factors in 

the non-WNT survival cohort. A nomogram (section 2.19) was plotted to visualise the 

magnitude of the included hazard variables and to aid assignment of risk score 

boundaries. 

The novel biomarkers were integrated with the other included covariates to form an 

additive risk stratification model. For comparison, a classifier derived from CART 

(classification and regression tree) analysis (section 2.20) was constructed from the 

non-WNT survival cohort, considering potential high risk variables M + disease, LCA 

histology, MYCC / MYCN amplification, and MXI1 and IL8 methylation. This was 

augmented with WNT subgroup membership to derive a CART-based classifier, which 
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was compared to the additive risk model by plotting Kaplan-Meier curves (section 

2.13.2) and ROC curves (section 2.18). In the same way, the additive classifier was 

subsequently compared with current disease classification models and recently 

reported classification schemes.  
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5.4 Results 

The methylomic subgroups identified in chapter 4 were used to investigate the 

prognostic potential for methylomic classification of the disease. Following cohort 

validation, any subgroup specific, pleiotropic effects of previously described risk 

markers of medulloblastoma were investigated. Subsequently, a novel classification 

scheme for medulloblastoma prognostication was investigated, adding methylation 

markers to augment the current clinical risk stratification schemes. 

5.4.1 The age-matched cohort is not significantly different from the 

PNET3 cohort 

The survival characteristics of the age matched cohort (n = 55) were compared against 

the survival of the PNET3 cohort samples (n = 136) in order to verify their suitability for 

adding to the PNET3 cohort. No difference in survival was found (Figure 5.1). Similarly, 

no difference in any survival correlate tested was observed (Table 5.2). 

 

Figure 5.1. No survival differences observed between the PNET3 trials cohort (n = 136; PNET3; 
blue) and age-matched non-trials samples (n = 55; MATCHED; red). At-risk table is shown 
below plot, and log-rank test ‘p’ value is shown at bottom right of plot. 
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Demographic 

Cohort 

‘p’ value 

PNET3 Age Matched 

Gender 
Male 
Female (M:F ratio) 

 
80 (59%) 
56  (41%) (1.4:1) 

 
33 (60%) 
22 (40%)  (1.5:1) 

1 

Age in years: median 
(range)  

8.45 (3.1 – 15.6) 8.6 (3.2 – 15.1) 
0.29 

Histological subtype 
Classic 
Desmoplastic / nodular 
Large cell / anaplastic 

 
115 (85%) 
9 (7%) 
12 (9%) 

 
42 (76%) 
7 (13%) 
6 (11%) 

0.33 

M Stage 
M- 
M+ 
NA 

 
111 (82%) 
25 (18%) 
0 (0%) 

 
43 (78%) 
12 (22%) 
0 (%) 

0.69 

CTNNB1 mutation 
0 – no - negative 
1 – yes - positive 
NA 

 
118 (87%) 
13 (10%) 
5 (4%) 

 
48 (87%) 
5 (9%) 
2 (4%) 

1 

Chromosome 17 LOH 
0 – no - negative 
1 – yes - positive 
NA 

 
106 (78%) 
28 (21%) 
2 (1%) 

 
15 (27%) 
6 (11%) 
34 (62%) 

0.41 

MYCC amplification 
0 – no - negative 
1 – yes - positive 
NA 

 
134 (99%) 
2 (1%) 
0 (0%) 

 
53 (96%) 
2 (4%) 
0 (%) 

0.33 

MYCN amplification 
0 – no - negative 
1 – yes - positive 
NA 

 
131 (96%) 
5 (4%) 
0 (0%) 

 
53 (96%) 
2 (4%) 
0 (0%) 

1 

Table 5.2. No difference between survival correlates in PNET3 and age matched cohort. For 
each cohort, the number and percentage in parentheses for each potential survival correlate 
(excluding age range) are shown. NA indicates missing data. Data for gender, histological 
subtype, age, M stage, CTNNB1 mutation, chromosome 17 LOH, MYCC amplification, and 
MYCN amplification is shown. The ‘p’ value shows results from testing for differences in 
correlate occurrence using Fisher’s Exact test (gender, M stage, CTNNB1 mutation, 
Chromosome 17 LOH, MYCC amplification and MYCN amplification), chi-squared test 
(histological subtype) and t test (age).  
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5.4.2 Validation of previously reported clinico-pathological correlates 

The behaviour of previously reported prognostic markers in the joined, 191 member 

cohort, consisting of cases from the PNET3 trials cohort (n = 136) and age-matched 

non-trials cohort cases (n = 55), was investigated. Log-rank tests identified significant 

relationships between survival and large cell / anaplastic histology (‘p’ = 2 x 10-5), M+ 

disease stage (‘p’ = 2.8 x 10-6), gender (‘p’ = 0.013) , MYCC / MYCN amplification (‘p’ = 

0.013) and membership of the WNT methylomic subgroup (data was complete for this 

measure of WNT pathway activation, in contrast to CTNNB1 mutation, missing in 7 

cases, ‘p’ = 0.00142). No significant relationship between chromosome 17 LOH and 

survival was observed (‘p’ = 0.34). These relationships are shown in Figure 5.2. A 

multivariate Cox proportional hazards model of the significant variables demonstrates 

that these covariates are all independently prognostic (Table 5.3).  
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Figure 5.2. Significant relationships were observed for previously reported disease 
prognostic markers in the combined cohort. Kaplan-Meier plots are shown for large cell / 
anaplastic histology (LCA) (0 (red) , LCA negative; 1 (blue), LCA positive), M Stage (M+ disease 
stage) (0 (red), M-; 1 (blue) ,M+), gender (F (red) – female; M (blue) – male), chromosome 17 
loss of heterozygosity (Chr 17 LOH) (0 (red), chr 17 LOH negative; 1 (blue), chr 17 LOH positive), 
MYCC / MYCN amplification (MYCC / MYCN amp) (0 (red) – no MYCC / MYCN amplification 
detected; 1 (blue) – MYCC / MYCN amplification detected) and WNT subgroup membership (0 
(red) – not a member of WNT subgroup; 1 (blue) – member of WNT subgroup). At-risk tables 
and ‘p’ values from log-rank tests are shown. 
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Covariate Hazard Ratio 
(95% CI) 

‘p’ value 

LCA histology 4.33 
(2.24 – 8.34) 

1.2 x 10-5 

M+ disease 2.73 
(1.61 – 4.63) 

0.00019 

MYCC / MYCN amplification 3.34 
(1.39 – 8.05) 

0.0072 

Male gender 2.14 
(1.20 – 3.83) 

0.010 

WNT methylomic subgroup 0.11 
(0.015 – 0.77) 

0.026 

Table 5.3. Previously reported prognostic markers are independently prognostic in the 
combined cohort. Table shows a multivariate Cox proportional hazards model that 
incorporated all previously reported survival correlates that were significant on logrank test. 
For each covariate, hazard ratio (95% confidence interval in parentheses) and ‘p’ value are 
shown.  

 

5.4.3 Validation of current clinical model and PNET5 / 6 clinical trials 

model 

Before any investigation of novel risk stratification models, it was necessary to 

investigate the prognostic potential of existing classification schemes in the 

investigation survival cohort.  The current clinical classification scheme, as applied to 

non-infant cases, classifies patients positive for LCA histology and / or M+ disease into 

a poor risk subgroup. In a Cox proportional hazards model, both LCA histology and M+ 

disease were strong predictors of adverse outcome (LCA histology, HR = 3.57, 95% CI 

1.89 – 6.77, ‘p’ = 9.3 x 10-5; M+ disease, HR = 3.25, 95% CI 1.92 - 5.48, ‘p’ = 1.1 x 10-5) 

and identified a standard risk group with a 5 year EFS of 78% and a poor risk group 

with a 5 year EFS of 40% (Figure 5.3A and B).  

The PNET 5 / 6 clinical trials model (Figure 5.3C and D) classifies patients positive for 

any of LCA histology, M+ disease or MYCC / MYCN amplification into a poor risk 

subgroup, while patients positive for WNT subgroup membership, without any poor 

risk correlates, are classified as low risk.  Remaining cases are classed as standard risk. 

In the investigation cohort, Cox proportional hazards models showed that all three 

high risk disease correlates were strongly predictive of disease outcome (LCA histology, 

HR = 3.84, 95% CI 2.01 – 7.32, ‘p’ = 4.5 x 10-5; M+ disease, HR = 2.90, 95% CI 1.72 – 4.90, 
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‘p’ = 7.0 x 10-5; MYCC / MYCN amplification, HR = 2.44, 95% CI 1.04 – 5.71, ‘p’ = 0.0039) 

and that membership of the WNT subgroup conferred an improved survival (HR 0.09, 

95% CI 0.01 – 0.68, ‘p’ = 0.019). Kaplan-Meier curves showed 5 year EFS of 95%, 76% 

and 42% for the low, standard and poor risk disease stratification groups, respectively. 

The current clinical model and the PNET 5 / 6 clinical trials models have significant 

prognostic potential in the investigation cohort. The addition of WNT subgroup 

membership to the PNET 5 / 6 stratification model enables a new low risk category, 

defined by WNT status, to be identified. Previous investigations in chapter 4 revealed 

that the WNT methylomic subgroup of the disease is associated with an improved 

prognosis (Figure 4.10), with no survival differences apparent for the remaining 

subgroups. This emphasises the need for the identification of additional prognostic 

biomarkers for non-WNT medulloblastomas, and is the approach taken in the 

remainder of this chapter (section 5.4.5). 
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Figure 5.3. Both the current clinical model and the PNET 5 / 6 trials model for disease 
stratification are prognostic in the investigation cohort. A. Kaplan-Meier plot of current 
clinical model applied to investigation cohort (Std – standard risk (orange) – negative for LCA 
histology and M+ disease; Poor – poor risk (red) – positive for LCA histology and / or M+ 
disease). At-risk table and ‘p’ values from log-rank tests are shown. B.  Cox proportional 
hazards model of clinical covariates considered in current clinical risk stratification. For each 
covariate, hazard ratio (95% confidence interval in parentheses) and ‘p’ value are shown. C. 
Kaplan-Meier plot of PNET 5 / 6 clinical model applied to investigation cohort (Low – low risk 
(green) – WNT positive cases negative for LCA histology, M+ disease and MYCC / MYCN 
amplification; Std – standard risk (orange) – cases negative for WNT activation, LCA histology, 
M+ disease and MYCC / MYCN amplification; Poor – poor risk (red) – positive for LCA histology 
and / or M+ disease and / or MYCC / MYCN amplification). At-risk table and ‘p’ values from log-
rank tests are shown. D.  Cox proportional hazards model of clinical covariates considered in 
current clinical risk stratification. For each covariate, hazard ratio (95% confidence interval in 
parentheses) and ‘p’ value are shown.  
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5.4.4 Investigation into the feasibility of identifying pleiotropic 

effects of previously identified survival correlates between 

methylomic subgroups 

The risk factors tested across the whole cohort in section 5.4.2 were next investigated 

for potential pleiotropic effects between disease subgroups. Power calculations, using 

the observed subgroup correlate incidence, showed that for all but one combination of 

subgroup and correlate (gender in group I subgroup cases), any investigation into any 

pleiotropic effect of correlates between subgroups would be under-powered (i.e. 

power less than 0.80) and would not be worth pursuing in this cohort (Table 5.4); 

moreover, since the one comparison that was adequately powered did not have an 

adequately powered comparator subgroup, any inference about the nature of a 

pleiotropic effect would not be possible. 

 

 

 Methylomic Subgroup 

Risk Factor 
SHH Group I Group II 

Incidence Power Incidence Power Incidence Power 

LCA histology 

0 
1 

 

31 (86%) 
5 (14%) 

0.28 

 

75 (95%) 
4 (5%) 

0.25 

 

29 (81%) 
7 (19%) 

0.35 

M Stage 

0 
1 

 

32 (89%) 
4 (11%) 

0.24 

 

62 (78%) 
17 (22%) 

0.67 

 

24 (67%) 
12 (33%) 

0.46 

Chromosome 17 LOH 

0 
1 

 

29 (94%) 
2 (6%) 

0.15 

 

38 (61%) 
24 (39%) 

0.71 

 

23 (85%) 
4 (15%) 

0.23 

MYCC / MYCN 

amplification 
0 

1 

 

31 (86%) 
5 (14%) 

0.28 

 

77 (97%) 
2 (3%) 

0.15 

 

33 (92%) 
3 (8%) 

0.19 

Gender 
M 

F 

 
17 (47%) 

19 (53%) 

0.53 
 

49 (62%) 

30 (38%) 

0.81 
 

28 (78%) 

8 (22%) 

0.38 

Table 5.4. Investigation into the feasibility of testing for pleiotropic effects of prognostic 
markers across methylomic disease subgroups. Power to detect pleiotropic effects for the 
methylomic subgroups SHH, group I and group II were calculated from the observed incidence 
of each risk factor (0 – absence of risk factor; 1 – presence of risk factor). The incidence and 
power for each comparison is shown.  
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5.4.4.1 MYCC / MYCN amplification 

While this study was under-powered for the identification of subgroup specific 

correlate effects (Table 5.4), the differential subgroup specific survival effects observed 

for MYCC / MYCN amplification, while anecdotal, bear further scrutiny. MYCC / MYCN 

amplification was relatively rare in the whole cohort (11 / 191 cases (6%)), but there 

were striking differences in outcome between the subgroups. MYCC / MYCN 

amplification positive cases in group I (2 / 79 cases (3%), ‘p’ = 0.30) and group II (3 / 36 

cases (8%), ‘p’ = 0.81) did not show significant survival differences, whereas there was 

a dismal prognosis for MYCC / MYCN amplification in SHH cases (5 / 36 cases (%), ‘p’ = 

1.3 x 10-11, log-rank test)(Figure 5.4). 

 

 

 
 

 

 
 

 

Figure 5.4. MYCC / MYCN amplified cases display striking differences in clinical behaviours 
across disease subgroups. Kaplan-Meier plots are shown for MYCC / MYCN amplification 
(MYCC / MYCN amp) (0 (red) – no MYCC / MYCN amplification detected; 1 (blue) – MYCC / 
MYCN amplification detected). At-risk tables and ‘p’ values from log-rank tests are shown.
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5.4.5 Integration of methylomic correlates with previously reported 

survival markers 

The Cox boost algorithm (Binder et al., 2009) was next used to identify significant 

methylation markers or subgroup membership with additional prognostic potential, in 

addition to the current clinical risk stratification strategy (section 2.17). This algorithm 

employs a boosting approach to avoid overfitting (section 2.11), generating survival 

models which include mandatory clinical covariates, plus a small number of prognostic 

high-dimensional covariates, limited by the addition of a penalty score for every 

additional term included in the model.  Cross-validated ‘p’ values for high-dimensional 

covariates are subsequently calculated using LOOCV.  

WNT cases were removed from the cohort prior to running the algorithm, since there 

were so few WNT cases that relapsed (1 / 28 WNT cases). The first stages of the model 

identified optimal parameter sizes. The cross-validated, optimal number of boosting 

steps was 17. The optimal penalty parameter was 13000. The algorithm identified 

three additionally prognostic optional covariates (cross-validated ‘p’ values are shown 

in parentheses): IL8_P83_F (‘p’ = 0.027), MXI1_P1269_F (‘p’ = 0.00065), and 

POMC_P400_R (‘p’ = 0.021). Methylomic subgroup membership was not prognostic. 

5.4.5.1 Assessment of suitability of identified methylation probes 

The suitability of the three selected methylation probes was assessed. First, their 

prognostic potential in univariate and multivariate Cox models was examined (Table 

5.5). All three putative probes were significant (‘p’ < 0.05) in both univariate and 

multivariate analyses. Next, the methylation probes were considered as binary 

variables at a range of cutoffs (section 5.3.8). Since no cutoff was significant for the 

POMC_P400_R probe, and it was only marginally significant in a multivariate analysis 

(‘p’ = 0.047), it was removed from further consideration (Table 5.6). 

5.4.5.2 Selected methylation probes show subgroup specific 

patterns of methylation 

The distribution of β scores for the selected probes, MXI1_P1269_F and IL8_P83_F, 

were assessed by plotting combined boxplots and strip-plots (Figure 5.6). The WNT and 

SHH subgroups show a methylated MXI1_P1269_F β score, with the remaining 
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subgroups (plus the NC cases) showing a mixed methylation profile. IL8_P83_F also 

had a mixed methylation profile, with group I and group II cases being predominantly 

methylated, and SHH and WNT cases showing a mixed methylation profile.  

5.4.6 An improved survival model for medulloblastoma incorporating 

continuous methylomic markers 

A finalised Cox proportional hazards model for non-WNT medulloblastomas is shown 

in Table 5.7.  It includes existing covariates (LCA histology, M+ disease, MYCC / MYCN 

amplification, section 5.4.3) and two methylation probes (MXI1_P1269_F, IL8_P83_F), 

selected on the basis of (i) their prognostic potential, assessed by the Cox boost 

algorithm (section 2.17) and (ii) their suitability for assay using alternative techniques 

(see section 5.3.8, 5.4.7.1). Gender was not considered as a prognostic covariate, since 

the prognostic role of gender is unclear in the disease (Ellison et al., 2011b; Curran et 

al., 2009; Alston et al., 2003; Weil et al., 1998). Each covariate in the survival model is 

independently significant (Table 5.7). The performance of the extended model was 

assessed by plotting ROC curves (section 2.18), shown in Figure 5.5. This demonstrates 

the improved performance of this model at both 5 and 10 years relative to Cox 

proportional hazards models derived from the PNET 5 / 6 clinical trials model (omitting 

WNT membership, since this is not relevant to a non-WNT survival cohort), and current 

clinical model (section 5.4.3), with an improvement in AUC of 0.060 and 0.069 at 5 

years and 0.085 and 0.090 at 10 years, respectively.  
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Gene Probe 
Univariate Multivariate 

Hazard Ratio 
(95% CI) 

‘P’ value Hazard Ratio 
(95% CI) 

‘P’ value 

MXI1 MXI1_P1269_F 
3.29 

 (1.30 – 8.29) 
0.012 4.92 

(1.90 – 12.74) 
0.0011 

IL8 IL8_P83_F 
8.22 

(1.46 – 46.37) 
0.017 6.44 

(1.17 – 35.59) 
0.033 

POMC POMC_P400_R 
0.15 

(0.02 – 0.86) 
0.034 0.17 

(0.03 – 0.97) 
0.047 

Table 5.5. Assessment of putative prognostic methylation markers as continuous variables in 
univariate and multivariate analyses of the non-WNT subgroup survival cohort. For each 
methylation covariate, hazard ratios (95% confidence intervals in parentheses) and ‘p’ value, 
uncorrected for multiple testing, are shown for univariate and multivariate analyses (adding to 
a base model that included LCA histology, M+  status and MYCC / MYCN amplification as 
covariates). 

Gene MXI1 IL8 POMC 

Probe MXI1_P1269_F IL8_P83_F POMC_P400_R 

Cutoff Hazard Ratio 
(95% CI) 

‘P’ 
value 

Hazard Ratio 
(95% CI) 

‘P’ 
value 

Hazard Ratio 
(95% CI) 

‘P’ 
value 

Continuous 3.29 
(1.30 – 8.29) 

0.017 8.22 
(1.46 – 46.37) 

0.017 0.15 
(0.02 – 0.86) 

0.034 

0.9 1.18  

(0.68 – 2.06) 

0.559 3.60 

(1.55 – 8.38) 

0.0029 0 

(0 – inf) 

1 

0.8 1.87  

(1.14 – 3.09) 

0.014 3.66 

(1.33 – 10.01) 

0.012 0 

(0 – inf) 

1 

0.7 2.57  
(1.47-4.50) 

0.00092 3.22 
(1.17 – 8.88) 

0.024 0 
(0 – inf) 

1 

0.6 2.65  

(1.41 – 4.98) 

0.00247 2.54 

(0.92 – 6.99) 

0.072 0 

(0 – inf) 

1 

0.5 1.87  

(1.00 – 3.51) 

0.0516 2.61 

(0.82 – 8.33) 

0.105 0.15 

(0.02 – 1.11) 

0.064 

0.4 1.90  
(0.96 – 3.73) 

0.0643 3.41 
(0.83 – 13.97) 

0.088 0.25 
(0.07 – 1.04) 

0.057 

0.3 2.08  

(0.95 – 4.57) 

0.0677 1.95 

(0.48 – 7.97) 

0.35 0.74 

(0.33 – 1.63) 

0.45 

0.2 2.04  

(0.88 – 4.73) 

0.0973 3.15 

(0.44 – 22.72) 

0.26 0.60 

(0.30 – 1.22) 

0.16 

0.1 2.12 
(0.77 – 5.84) 

0.146 NA NA 0.59 
(0.31 – 1.11) 

0.10 

Table 5.6. Consideration of the prognostic potential for methylation probes as binary 
variables at variable cutoffs. For each methylation probe, the methylation score was 
converted into a binary variable using the cutoffs listed in the first column. A univariate Cox 
proportional hazards model was constructed for each binary variable in the non-WNT survival 
cohort. For comparison, univariate Cox proportional hazards models are shown for the 
methylation scores as a continuous variable. The hazard ratio (95% confidence intervals in 
parentheses) and ‘p’ value at each cutoff are shown. Where confidence intervals are reported 
as ‘0 – inf’, this represents a situation in which it was not possible to assign confidence 
intervals. 
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 Univariate Multivariate 

Covariate Hazard ratio 
(95% CI) 

‘P’ value Hazard ratio 
(95% CI) 

‘P’ value 

Large cell / 
anaplastic 

3.90 
(2.06 – 7.38) 

2.86 x 10-5 3.35 
 (1.74 – 6.45) 

0.00030 

M+ disease 3.03 
(1.80 – 5.12) 

3.31 x 10-5 3.57 
(2.07 – 6.15) 

5.0 x 10-6 

MYCC / MYCN 
amplification 

2.33 
(1.00 – 5.42) 

0.049 3.15 
(1.32 – 7.50) 

0.0095 

Continuous MXI1 
methylation 

3.29 
 (1.30 – 8.29) 

0.012 6.39 
(2.35 – 17.4) 

0.00028 

Continuous IL8 
methylation 

8.22 
(1.46 – 46.37) 

0.017 9.59 
(1.67 – 55.09) 

0.011 

Table 5.7. An extended Cox proportional hazards survival model for medulloblastoma 
incorporates continuous methylation markers. For each selected covariate, hazard ratio (95% 
confidence intervals in parentheses) and ‘p’ value are shown for both univariate and 
multivariate analyses. All selected covariates are significant in univariate analyses and 
independently significant in multivariate analyses. 

 

Figure 5.5. ROC curves demonstrate improved performance in a non-WNT survival cohort of 
novel Cox proportional hazards model that includes methylation markers as continuous 
variables at 5 and 10 years. ROC curves are shown for Cox proportional hazards models 
derived from base model covariates (Base - variables LCA histology and M+ disease, shown 
black), extended PNET 5 / 6 clinical model covariates (section 5.4.3) (Extend – PNET 5 / 6 
clinical model - variables LCA histology, M+ disease and MYCC / MYCN amplification, shown 
red) and methylation augmented model (Meth – variables LCA histology, M+ disease, MYCC / 
MYCN amplification, MXI1 methylation and IL8 methylation, shown green). The AUC is shown 
for each model. FP – false positive rate, x axis; TP – true positive rate, y axis. 
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5.4.7 An improved model for prediction of survival in 

medulloblastoma, using cutoffs to assign DNA methylation biomarker 

status 

The Cox model described in section 5.4.6 demonstrates that the addition of 

methylation markers to existing prognostic markers can add additional predictive value 

to survival models in medulloblastoma. As discussed in section 5.3.8, for a clinically 

useful test, a methylation score defined by a cutoff, comparable to the assessment of 

methylation status by bisulfite sequencing, is necessary. Realistically, bisulfite 

sequencing is able to assign a CpG locus to methylated, hemi-methylated and 

unmethylated classes (in terms of β score, this is equivalent to unmethylated – β ≤ 

0.33; hemi-methylated – 0.33 < β ≤ 0.67; methylated – β > 0.67). 

5.4.7.1 Selection of a cutoff for binary classification of 

methylation 

Table 5.6 shows that a cutoff of 0.67 would appear to be satisfactory for both 

MXI1_P1269_F and IL8_P83_F probes, since MXI1_P1269_F was significant at cutoffs 

of 0.6 (‘p’ = 0.0025) and 0.7 (‘p’ = 0.00092), and IL8_P83_F was significant at a cutoff of 

0.7 (‘p’ = 0.024), and marginally significant at a cutoff of 0.6 (‘p’ = 0.072). The 

distribution of MXI1_P1269_F and IL8_P83_F methylation in the non-WNT survival 

cohort is shown in Figure 5.6. Log-rank tests applied to this binary classified 

methylation data at a cutoff of 0.67 (Figure 5.7), demonstrated significant differences 

in survival. 66 / 163 (40%) cases were unmethylated for MXI1, associated with an 

improved survival (‘p’ = 0.00098, log-rank test). 26 / 163 (16%) cases were 

unmethylated for IL8, also associated with an improved survival (‘p’ = 0.017, log-rank 

test). On this basis, subsequent investigations were carried out using binary classified 

methylation scores at a cutoff of 0.67. 

  



294 
 

 

Figure 5.6. Distribution of β scores for selected prognostic methylation probes. Strip-plots 
show distribution of β scores across non-WNT samples. Boxplots show median score (thick 
black line) and inter-quartile ranges (extent of box). The whisker (dotted line) shows the lowest 
and highest data-points that lie within 1.5 inter-quartile ranges of the lower and upper quartile, 
respectively. The selected β score cutoff of 0.67 is shown for both selected loci as a red line. 

 

 

Figure 5.7. Binary classification of methylation markers recapitulates significant survival 
differences. The significant relationships observed here reiterate the significant relationships 
between methylation and survival when considered as continuous variables (Table 5.5). 
Kaplan-Meier plots are shown for MXI1 and IL8 methylation at a cutoff of 0.67 ( 0 (red) – 
methylation < 0.67; 1 (blue) – methylation ≥ 0.67). At-risk tables and ‘p’ values from log-rank 
tests are shown. 
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5.4.7.2 Cox model for medulloblastoma survival using binary-

classified methylated probes is equivalent to model based on 

continuous methylation variables 

The replacement of the β score for MXI1 and IL8 methylation with a binary 

classification at a 0.67 cutoff in the original Cox model shown in Table 5.7 is 

demonstrated in Table 5.8. Each covariate remains significant with this binary 

replacement, demonstrating that the integrity of the Cox model remains intact. 

Interestingly, the hazard ratios for all 5 covariates were similar in magnitude. The Cox 

model with binary methylated variables (binary) performs equivalently to the 

counterpart Cox model with continuous methylated variables (continuous) (Figure 5.8). 

At 5 years, there is very little difference between the AUC from continuous (AUC = 

0.761) and binary (AUC = 0.767) Cox models. At 10 years, the binary model (AUC = 

0.763) slightly outperforms the continuous model (AUC = 0.745). 
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 Univariate Multivariate 

Covariate Hazard ratio 
(95% CI) 

‘P’ value Hazard ratio 
(95% CI) 

‘P’ value 

Large cell / 
anaplastic 

3.90 
(2.06 – 7.38) 

2.86 x 10-5 4.09 
(2.11 – 7.93) 

2.9 x 10-5 

M+ disease 3.03 
(1.80 – 5.12) 

3.31 x 10-5 3.39 
(1.98 – 5.81) 

8.2 x 10-6 

MYCC / MYCN 
amplification 

2.33 
(1.00 – 5.42) 

0.049 2.79 
(1.18 – 6.55) 

0.019 

Binary MXI1 
methylation 

2.57 
(1.44 – 4.60) 

0.0015 3.48 
(1.92 – 6.31) 

4.1 x 10-5 

Binary IL8 
methylation 

3.22 
(1.17 – 8.88) 

0.024 3.35 
(1.20 – 9.37) 

0.021 

Table 5.8. Binary classification of methylation probes does not substantively change the 
previously identified Cox model. For each selected covariate, hazard ratio (95% confidence 
intervals in parentheses) and ‘p’ value are shown in both univariate and multivariate analyses. 

 

 

 

 

Figure 5.8. Binary classification of MXI1 and IL8 methylation does not affect classifier 
performance at 5 or 10 years. ROC curves demonstrate equivalent performance of Cox 
proportional hazards model applied to the non-WNT survival cohort that includes continuous 
or binary-classified methylation markers. ROC curves are shown for binary model (Binary -  
variables LCA histology, M+ disease, MYCC / MYCN amplification, binary MXI1 and IL8 
methylation, shown blue) and continuous methylation model (Continuous – variables LCA 
histology, M+ disease, MYCC / MYCN amplification, MXI1 and IL8 methylation, shown green). 
The area under the curve (AUC) is shown for each model. FP – false positive rate, x axis; TP – 
true positive rate, y axis. 
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5.4.7.3 Formulation of a testable survival model for assigning 

patient risk in medulloblastoma 

An extended classification scheme for the assignment of disease risk in 

medulloblastoma was formulated. It built upon the PNET 5 / 6 treatment strategy, 

which is about to enter trials (Pizer and Clifford, 2009). This scheme places cases 

positive for large cell / anaplastic histology and / or M+ disease and / or MYCC or 

MYCN amplification into a poor prognosis, high risk group. Cases positive for nuclear 

accumulation of CTNNB1 (equivalent to WNT pathway activation), but without any 

high risk features, are placed into a low risk group. Remaining cases are assigned as 

standard risk. 

Unlike PNET 5 / 6, it was decided that, since the WNT methylomic subgroup behaves 

clinically so differently from other medulloblastomas (section 4.5.5), that membership 

of this subgroup would, regardless of the status of any other risk factor, confer 

membership of the low risk group. The Cox model shown in section 5.4.7.2 was used as 

the basis for the remainder of the classifier, comprising the high risk features, LCA 

histology, M+ disease, MYCC or MYCN amplification, MXI1 and IL8 methylation status. 

The Cox proportional hazards model described in Table 5.8 demonstrated that the 

hazard ratios for all covariates were broadly similar, recapitulated by a nomogram 

(section 2.19) of hazards in the non-WNT survival cohort (Figure 5.9), which 

demonstrates approximately equal points scores for each risk factor considered. Risk 

stratification has been defined according to the total points score from combinations 

of risk factor positivity, which is, in turn, consistent with an additive disease risk model, 

in which each risk factor is considered with an equal weighting.  

In stratification models, it was noted that survival decreased in proportion to the total 

number of independently significant high risk features present (Figure 5.10).  In order 

to simplify a classification scheme based on the number of risk factors, non-WNT cases 

with 0 or 1 risk factors were, like WNT cases, assigned to the low risk group. Non-WNT 

cases with 2 risk factors were assigned to standard risk group. Finally, non-WNT cases 

with greater than 2 risk factors were assigned to the poor risk group. This classification 

scheme is summarised and compared with previous disease risk stratification schemes 

in Figure 5.12. Most importantly, this scheme would classify an additional 64 patients 
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as low risk compared to the PNET 5 / 6 clinical trials classification scheme, representing 

an increase of 267% in low risk patients, without changing event-free survival (PNET 5 / 

6 classification – low risk 95% EFS, 24 patients; novel methylation scheme – low risk 90% 

EFS, 88 patients). While there is a concomitant reduction in EFS for standard risk and 

poor risk disease under the novel methylation classification scheme, this is due to the 

large numbers of good prognosis samples being assigned to the low risk disease group.  

 

 

 

Figure 5.9. Nomogram of risk factors in Cox proportional hazards model derived from non-
WNT survival cohort (n = 163, Table 5.8), demonstrates similar magnitudes of hazards. Risk 
boundaries are shown (Low – low risk; Std – standard risk; Poor – poor risk), defined by the 
total number of points conferred by risk factor positivity and delineated by blue lines. In the 
illustrated stratification scheme, the absence of any risk factor or a single risk factor would 
confer membership of the low risk group. Any combination of two risk factors would confer 
membership of the standard risk group and cases with three or more risk factors would be 
classified as poor risk. This validates the utility of the risk factors as equally predictive risk 
markers in an additive model of risk stratification, shown in Figure 5.10. 

 

 
 

Points
0 10 20 30 40 50 60 70 80 90 100

Mstage

0

1

LCA
0

1

MYCCN
0

1

IL8
0

1

MXI1
0

1

Total Points
0 50 100 150 200 250 300 350 400

Linear Predictor
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

MXI1 methylation

Total Points

Hazard Score

IL8 methylation

MYCC / MYCN 
amplification

LCA histology

M+ disease

Points

Low Std Poor



299 
 

 

Figure 5.10. The number of risk factors in the non-WNT survival cohort (n = 163) determines 
survival. Kaplan-Meier curves are shown for each occurrence of risk factor frequency (0 – 
green; 1 – dark green; 2 – orange; 3 – dark orange; 4 – red). Where frequency and percentage 
on bar chart are too small to discern, they have been plotted to the right of the bar chart. In 
the final proposed model, cases with 0 and 1 risk factors are merged with all WNT cases to 
form a single low risk category. Non-WNT cases with 2 risk factors are categorised as standard 
risk. Non-WNT cases with 3 or 4 risk factors are assigned to a poor risk category. 

 

 

5.4.7.4 Derivation of a survival model by classification and 

regression tree (CART) 

The proposed model described in section 5.4.7.3 was compared against a model 

derived using a different method. The classification and regression tree method, CART 

(section 2.20), was used to identify variables that most effectively stratify patients into 

different disease groups. In the non-WNT survival cohort, the poor risk factors M+ 

disease, LCA histology, MYCC / MYCN amplification, MXI1 methylation and IL8 

methylation were considered, as described in section 5.3.8. A total of seven different 

outcome categories were identified (Figure 5.11A). In contrast to the additive survival 

model proposed in section 5.4.7.3, the decision tree did not utilise MYCC / MYCN 

amplification as a prognostic variable, although both MXI1 and IL8 methylation were 

important prognostic factors.  
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The Kaplan-Meier curve plotted from this categorisation (Figure 5.11B shows that the 

groups lend themselves to further consolidation in classification, analogous to the 

categorical simplification proposed in section 5.4.7.3). After automatically assigning 

WNT cases to a low risk group, this consolidation enables the identification of three 

groups (low risk (n = 48), 5 year EFS 95%; standard risk (n = 113), 5 year EFS 71%; poor 

risk (n = 30), 5 year EFS 19%, Figure 5.11C). Finally, the stratification based on CART 

analysis was compared against the stratification from an additive model of risk 

assignment described in section 5.4.7.3. ROC curves (Figure 5.11D) show that the 

additive model marginally outperforms the CART-derived model (additive model – AUC 

0.799 at 5 years, 0.796 at 10 years; CART-derived model – AUC 0.769 at 5 years, 0.761 

at 10 years). Notwithstanding this slight improvement in classifier performance, the 

major advantages to the additive model of risk assignment compared to the CART-

derived model are (i) its simplicity relative to the relatively complex scheme shown in 

Figure 5.11A, and (ii) the large increase in the number of patients assigned to low risk 

(including WNT cases, 88 low risk patients for additive model, 48 low risk patients for 

CART-derived model, an increase of 83%).  
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Figure 5.11. Classification and regression tree approach for formulation of risk stratification scheme. A. Decision tree derived from consideration of non-WNT 
survival cohort with 5 potentially prognostic variables (LCA histology (LCA), M+ disease (M stage), MYCC / MYCN amplification, MXI1 methylation (MXI1 meth) and 
IL8 methylation (IL8 meth)). At each terminal node, the resulting hazard ratio is shown. Underneath, the number of relapsing cases divided by the total number of 
cases that fall within that particular category, are shown. B.  Kaplan-Meier plots are shown for the seven terminal nodes of the non-WNT survival cohort described 
in part A. To simplify the classification scheme, the seven curves have been simplified into three categories as shown by curly brackets. C. Simplified classification 
scheme based on CART classification of risk categories. Kaplan-Meier plots are shown for low risk (Low – green – cases identified as low risk shown in B plus WNT 
cases defined by methylomic subgroup); standard risk (Std – orange) and poor risk (Poor - red) categories. Barplot shows number and percentage of each category. 
At-risk tables and ‘p’ values from log-rank tests are shown. D. A comparison of risk stratification performance using the additive classification scheme (section 
5.4.7.3) and the scheme implemented from the CART classification. ROC curves are shown for additive model (Meth - poor risk  variables LCA histology, M+ disease, 
MYCC / MYCN amplification, binary MXI1 and IL8 methylation; low risk variable WNT status, shown blue) and CART model (shown red). The area under the curve 
(AUC) is shown for each model. FP – false positive rate, x axis; TP – true positive rate, y axis. 
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5.4.7.5 Methylation augmented survival model outperforms 

current disease classification schemes 

Not only does the novel methylation classification scheme identify a substantially 

enlarged low risk group, it outperformed previous classification schemes, as shown by 

ROC curves in Figure 5.13. The methylation scheme performs better than the current 

classification scheme (AUC increases of 0.122 at 5 years, 0.153 at 10 years) and the 

PNET 5 / 6 trials model (AUC increases of 0.081 at 5 years, 0.107 at 10 years) 

5.4.7.6 Patterns of risk-factor co-occurrence in non WNT survival 

cohort 

The frequency of risk factor co-occurrence is shown in Table 5.9. This shows how, for 

cases with combinations of two risk factors (identified as standard risk in the proposed 

model), this always involves at least one methylation marker (72 / 72 cases (100%)). 

Most cases with two or more previously identified risk factors (any combination of LCA 

histology, M+ disease or MYCC / MYCN amplification) are also associated with a 

methylated MXI1 and / or IL8 biomarker (11 / 12 cases (92%)). Finally, where only one 

risk factor was observed, this was a methylation biomarker in 53 / 55 cases (96%). 
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Figure 5.12. DNA methylomics offers potential for an improved risk classification of medulloblastoma. A.  Refinement of clinical risk stratification applied to non-
infant PNET3 clinical trials cohort (n = 190), illustrated using Kaplan-Meier plots of EFS. First panel shows current clinical staging, second panel shows modified risk 
stratification, used for assigning treatment in current PNET 5 / 6 clinical trials. Third panel displays a novel cumulative risk stratification scheme that utilises 
existing clinical markers plus two cross-validated prognostic DNA biomarkers (MXI1, IL8), identified in our methylomic screen. Low risk is coloured green, standard 
risk amber and high risk red. B. Flowcharts for assignment of patient risk in current clinical model (first panel), PNET 5 / 6 clinical model (second panel) and PNET 5 
/ 6 clinical model augmented by methylation biomarkers (third panel), used to derive Kaplan-Meier plots shown in part A.  LCA: large cell / anaplastic; M+: M stage 
greater than 1; MYCC / N amplified: amplification of MYCC or MYCN oncogenes; MXI1 methylation:  methylation score of ≥ 0.67; IL8 methylation: methylation 
score of ≥ 0.67.  
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Figure 5.13. Novel methylation-based classification scheme out-performs current risk 
stratification models at 5 and 10 years. ROC curves are shown for current clinical model (Base 
– high risk variables: LCA histology and M+ disease, shown black), extended PNET 5 / 6 trial 
clinical model (Extend – high risk variables: LCA histology, M+ disease, MYCC / MYCN 
amplification. Low risk variable: WNT pathway activation and absence of high risk factors, 
shown red), methylation augmented clinical model, outlined in part B of Figure 5.12 (Meth -  
high risk variables: LCA histology, M+ disease, MYCC / MYCN amplification, binary MXI1 and IL8 
methylation. Low risk variable: WNT status, shown blue). The area under the curve (AUC) is 
shown for each model. FP – false positive rate, x axis; TP – true positive rate, y axis. 
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40 0 0 0 0 1 Low 
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1 0 1 0 0 0 Low 

0 1 0 0 0 0 Low 

52 0 0 0 1 1 Std 

1 0 0 1 0 1 Std 

9 0 1 0 0 1 Std 

5 1 0 0 0 1 Std 

1 0 0 1 1 0 Std 

4 0 1 0 1 0 Std 

0 1 0 0 1 0 Std 

0 0 1 1 0 0 Std 

0 1 0 1 0 0 Std 

0 1 1 0 0 0 Std 

4 0 0 1 1 1 High 

15 0 1 0 1 1 High 

4 1 0 0 1 1 High 

1 0 1 1 0 1 High 

2 1 1 0 0 1 High 

0 1 0 1 0 1 High 

0 0 1 1 1 0 High 

0 1 0 1 1 0 High 

0 1 1 0 1 0 High 

1 1 1 1 0 0 High 

0 0 1 1 1 1 High 

2 1 0 1 1 1 High 

2 1 1 0 1 1 High 

0 1 1 1 0 1 High 

0 1 1 1 1 0 High 

0 1 1 1 1 1 High 

Table 5.9.  Co-occurrence of risk factors in non-WNT survival cohort. Table shows occurrence 
of risk factors and their frequency among the non-WNT survival cohort (n = 163). For each risk 
factor (LCA histology, M+ disease, MYCC / MYCN amplification, MXI1 methylation and IL8 
methylation, 1 denotes the presence of a risk factor, and 0 the absence of a risk factor. The 
resultant risk, determined by the total number of risk factors is shown.  
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5.5 Discussion 

Investigations in chapter 4 demonstrated that, WNT and NC medulloblastoma cases 

apart, there was no discernible difference in survival between the group I, group II and 

SHH methylomic subgroups. In the age-matched, trials-based cohort, this finding was 

repeated in multivariate analyses which showed no additional prognostic value for the 

non-WNT subgroups, in contrast to previous studies which showed that transcriptomic 

subgroups C (Northcott et al., 2010) and c1 (Cho et al., 2011) were associated with a 

poor prognosis. This chapter investigated the prognostic utility of methylomic 

biomarkers and identified a novel risk stratification scheme that outperforms 

previously published schemes in medulloblastoma. 

5.5.1 Survival cohort recapitulates previously reported survival 

markers and classification schemes 

After showing that the age-matched cohort (n = 55) showed equivalent survival to the 

PNET3 clinical-trials cohort (n = 136) (Figure 5.1), the two datasets were joined to form 

a unified survival cohort (n = 191). The verification that previously reported markers of 

survival (LCA histology, M+ disease and MYCC / MYCN amplification (Ellison et al., 

2011b; von Hoff et al., 2009; Brown et al., 2000)) were associated with significant 

differences in survival (section 5.4.2, Figure 5.2) demonstrated that this was a 

representative cohort of medulloblastomas. Next, the verification that both current 

clinical risk stratification and the proposed PNET 5 / 6 classification schemes (Figure 5.3) 

perform well with the survival cohort enabled comparisons to be made between novel 

and existing stratification schemes. 

5.5.2 Investigation of the pleiotropic effects of prognostic markers 

across methylomic subgroups 

The determination that the cohort investigated here was representative of previously 

reported medulloblastoma cohorts verified that investigations into any pleiotropic 

effects of previously identified clinical correlates would be possible. However, the 

power calculations shown in Table 5.4 demonstrate that such investigations would not 

be adequately powered, highlighting the inevitable problem of sample sizes decreasing 

as medulloblastomas are placed into discrete subgroups, and the need for 
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investigations in larger cohorts, in a post-transcriptomic / methylomic disease 

classification setting, as discussed in section 4.5.1, since the numbers per subgroup will 

be much reduced. This need could be met by methylome profiling of historical FFPE 

trials-based cohorts, since clinical trials cohorts with archived fresh frozen materials 

are scarce.  

Currently, the biological behaviour of discrete disease subgroups remains poorly 

understood and the effects on survival of clinico-pathological correlates need to be 

investigated.  

5.5.2.1 MYCC / MYCN amplified SHH cases have a dismal 

prognosis 

The effects of MYCC / MYCN amplification on survival for SHH subgroup cases were 

striking, where 5 / 36 (14%) cases with amplification (4 MYCN / 1 MYCC) all relapsed 

within 1 year (Figure 5.4). It is unfortunate that too few cases of either oncogene were 

observed individually to make any inference about the separate behaviours of MYCC 

and MYCN. Nevertheless, this dismal survival was not observed in group I or group II 

cases with MYCC / MYCN amplification, where survival was consistent with non-

amplified cases. The role of MYCN in medulloblastoma cases and in SHH 

medulloblastoma in particular, is becoming more widely recognised, although its 

precise contribution to survival is unclear. Poor outcome of MYCC / MYCN amplified 

cases has previously been reported (Pfister et al., 2009), although in a more recent 

study, a poor outcome for MYCC amplified cases only was observed (Ellison et al., 

2011b). The frequent association of MYCN amplification with TP53 mutation (Pfaff et 

al., 2010) may be a causative factor for the poor survival of MYCN cases observed 

within the SHH subgroup, while it has also been observed that paediatric SHH cases are 

enriched for MYCN amplification relative to adult SHH cases (Northcott et al., 2011). 

The poorer survival of SHH MYCN amplified cases represents an intriguing finding that 

should be investigated in other cohorts, since the observations reported above remain 

anecdotal, and there are too few cases to determine whether this is an important 

event in disease prognostication. With a reported incidence of MYCC / MYCN 

amplification of 4% and 7% respectively (Pfister et al., 2009), and a SHH subgroup 

incidence of 23% (Table 4.9), a cohort size of 1240 would be required to identify 
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approximately 20 SHH, MYCN amplified cases, emphasising the need for global 

cooperation in sample ascertainment for the next phase of elucidating the effects of 

survival markers in a post-subgrouped disease 

5.5.3 Female gender is associated with an improved survival 

A significant survival advantage was observed across the whole cohort for female cases 

(‘p’ = 0.013, log-rank test). The prognostic role of gender in medulloblastomas is 

unclear. The largest study addressing this question in medulloblastoma (Curran et al., 

2009) of 1049 subjects (668 males, 381 females), reported that in children over 3, 

females had significantly greater survival than males, a finding consistent with the 

increase in female survival observed in this study, although this has been contradicted 

elsewhere (Ellison et al., 2011b; Curran et al., 2009; Alston et al., 2003; Weil et al., 

1998). Investigations in chapter 4 identified that there was approximately gender 

parity in the WNT and SHH methylomic subgroups, with a male excess in group I and 

group II cases.  Gender has not been widely reported as a prognostic factor in 

medulloblastoma until recently and requires further investigation in larger cohorts to 

more fully understand the relationship between gender and subgroup before 

considering its introduction into future disease risk stratification schemes. The gender 

imbalance observed in medulloblastoma has been widely reported, with a male : 

female disease ratio estimated from the central brain tumour registry of the United 

States of 1.6 : 1 (Crawford et al., 2007), and this investigation has demonstrated how 

this male excess is being driven by the group I and group II methylomic subgroup 

medulloblastoma cases. Recent work has demonstrated a potentially protective role 

for oestrogen in mouse models of medulloblastoma (Mancuso et al., 2010), 

demonstrating for the first time, how female gender could mediate improved survival 

by the interaction of oestrogen and insulin growth factor 1 (IGF-1) mediated pathways. 

Further investigation of the potential prognostic impact of gender in medulloblastoma 

is needed, both in infant and childhood cohorts before its effect is considered in 

survival models and risk stratification schemes. 
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5.5.4 Addition of MXI1 and IL8 methylation status to current 

medulloblastoma risk stratification models 

The identification of a novel prognostic Cox model, augmented with methylation 

biomarkers, which outperforms the current clinical risk stratification schemes, 

represents a first precedent for the use of methylomic data for prognostication in 

medulloblastoma. While this is a single cohort study and is therefore liable to over-

fitting (section 2.11), the Cox boost algorithm used took steps to minimise this 

problem (section 2.17). Nevertheless, this model would require additional validation in 

an independent cohort, discussed below in section 5.5.7.   

The similar hazard ratios for the included poor risk markers in the prognostic Cox 

model (Figure 5.9, Figure 5.10), enabled the creation of a novel additive risk classifier 

(section 5.4.7.3), based on the total number of risk factors (Figure 5.12). This classifier 

is an intuitive and attractive method for the assignment of patient risk in a clinical 

setting, which compares favourably with both alternative methods for deriving 

classifiers (CART, Figure 5.11), and other reported classification schemes, discussed 

below.  

Although the CART-derived classification scheme did not include MYCC / MYCN 

amplification as prognostic factors, both MXI1 and IL8 methylation were selected as 

prognostic risk factors in the classification tree, validating their prognostic utility by 

using an independent method to stratify risk. MYCC / MYCN amplification was selected 

as a prognostic risk factor in the selected additive risk model, since it was prognostic 

both in univariate and multivariate analyses (Figure 5.2, Table 5.3) and has previously 

been reported to be a significant marker of poor prognosis (Ellison et al., 2011b; Pfister 

et al., 2009).  

5.5.5 Comparison with state-of-the-art risk stratification schemes 

A report from Tamayo and colleagues (Tamayo et al., 2011) presented a selection of 4 

novel classification schemes (Table 5.1), with AUC ranging from 0.58 to 0.84 at 30 

months in a training cohort (n = 96). In an independent test cohort (n = 78), the 

performance of the schemes range from an AUC of 0.73 to 0.80 (Tamayo et al., 2011).  

The cohort used for the derivation of the classification scheme presented in this 
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chapter (n = 191) was double the size of the training cohort used by Tamayo and 

colleagues (Tamayo et al., 2011). 

For the risk stratification scheme presented by Pfister and colleagues, their novel 

classifier (Table 5.1) had an AUC of approximately 0.67 at 30 months (Pfister et al., 

2009). The scheme presented in this chapter had an AUC of 0.86 at 30 months, slightly 

outperforming the optimally performing scheme in the training dataset of Tamayo and 

colleagues (Tamayo et al., 2011) and comfortably outperforming the scheme proposed 

by Pfister and colleagues (Pfister et al., 2009). Moreover, the scheme presented here 

considers only six covariates (WNT status, LCA histology, M+ disease, MYCC / MYCN 

amplification, MXI1 and IL8 methylation), in contrast to the scheme chosen by Tamayo 

and colleagues, which proposed a nomogram to assign risk that considered the effects 

of 17 covariates, 6 of which are 6-member expression signatures (a total of 47 

variables) (Tamayo et al., 2011). While this might be feasible in the context of a 

discovery paper, this approach would not be practicable in a routine setting, in 

contrast to the scheme presented here, which adds only two additional variables to 

the PNET 5 / 6 clinical trials model, easily testable in a routine diagnostic lab setting 

(discussed in section 5.5.7). Furthermore, under the proposed classification scheme, 

WNT status, MXI1 and IL8 methylation are assigned simultaneously using DNA 

methylomics, leaving only MYCC and MYCN amplification status to be measured using 

different means.  

As previously discussed (section 4.5.5), methylation markers are less labile than 

transcriptomic measurements, are more suitable for measurement and are also 

suitable for use in archival cohorts from which nucleic acid derivatives extracted from 

FFPE tissue are available. The methylation augmented classification scheme is 

comparable in complexity to the scheme proposed by Pfister and colleagues, which 

considered copy number aberrations of chromosome 6q, 17q and the MYCC and MYCN 

loci (Pfister et al., 2009), although the scheme presented here comfortably 

outperforms their classifier.  
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5.5.6 Investigation into the gene function of selected survival 

methylation  biomarkers 

As discussed in section 1.1.7, the widely-accepted understanding is that methylation of 

gene promoter regions is associated with a condensed chromatin structure (Figure 1.7). 

Therefore it is possible that for both MXI1 and IL8, the increased risk described above 

associated with a methylated promoter region CpG dinucleotide is representative of 

the CpG island as a whole (since both MXI1 and IL8 have CpG islands spanning their 

promoter regions), which is in turn plays a role in gene silencing. This would need to be 

validated through bisulfite sequencing (section 2.6.1) of the CpG islands.  

5.5.6.1 MXI1 is a negative regulator of MYC activity 

The MXI1 (MAX-interacting protein 1) gene is a six / seven exon gene (see below) 

located on chromosome 10q25.2 and encodes a protein, MXI1 that binds to MAX. 

Since MXI1 competitively competes with the potent oncoprotein MYC, it can act as a 

negative regulator of MYC activity by preventing MYC from binding to MAX, 

suppressing cell proliferation and is therefore a putative tumour suppressor (Eagle et 

al., 1995). The allelic loss of MXI1 in prostate cancer has subsequently been shown to 

be common in prostate cancer, where a study identified allelic loss of MXI1 in 22 / 40 

(53%) tumours (Prochownik et al., 1998). This is potentially important, since 

dysregulation of the MYC pathway is fundamental to the tumour biology of 10-15% of 

medulloblastomas (Eberhart et al., 2004). Mutations in MXI1 have previously been 

described in medulloblastoma (Scott et al., 2006), suggesting that allelic loss through 

either mutation or inactivation through DNA-methylation induced silencing may 

contribute towards disease pathogenesis by freeing the MYC / MAD / MAX pathway 

from inhibition (section 1.3.7.3.1).  

The relationship between MXI1 methylation and any silencing of gene expression 

warrants further investigation, and is discussed below in section 5.5.7. However, 

indirect evidence is available from the transcriptomic studies of medulloblastoma 

which assayed the expression of the MXI1 gene (Cho et al., 2011; Northcott et al., 2010; 

Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006), shown in Figure 5.14. 

Every study demonstrated expression of the gene, with a large average dynamic range 

of expression across studies (average range 3.3 log2 units, representing a 10 fold 
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change). The absence of evidence for gene silencing might mean other mechanisms 

other than DNA methylation of the MXI1 promoter are responsible for the regulation 

of transcription of this gene. Nevertheless, if there is a methylation-induced down-

regulation of MXI1 expression, this could be contributing to the release from inhibition 

of the MYC / MAD / MAX network. The patterns of methylation observed, whereby 

hypomethylation of the MXI1 locus was associated with an improved prognosis, are 

not entirely consistent with this hypothesis, since the majority of non-WNT 

medulloblastomas assayed in this chapter (97 / 163 non WNT cases (60%)) had 

elevated levels (β score ≥ 0.67) of MXI1 methylation. Alternatively, the differential 

methylation observed for MXI1 could potentially be determining the isoform of MXI1 

expressed. Investigations in glioblastoma have identified an alternative MXI1 transcript, 

MXI1-0, that is over-expressed in glioblastomas relative to the wild-type transcript. 

MXI1-0 is transcribed from an alternative upstream exon (exon 0), located 18kb 

upstream of the wildtype first exon (Engstrom et al., 2004).  Investigations of the 

MXI1-0 protein demonstrated that it failed to repress MYCC dependent transcription. 

Future investigations should aim to characterise the methylation status of both the 

conventional promoter region as well as methylation surrounding exon 0, in tandem 

with investigations of the expression of transcript starting at exon 0 relative to 

transcript starting at exon 1.   

5.5.6.2 Expression of IL8 is associated with PTEN loss 

IL8 is a four exon gene located at chromosome 4q13.3. It encodes a chemokine protein 

IL8 (also known as CXCL4) whose function is to attract haematopoietic progenitor cells 

(Pruijt et al., 2002) for the initiation of angiogenesis. The expression of IL8 has 

previously been shown to be relevant to glioblastoma (de la Iglesia et al., 2008). The 

loss and / or inactivation of phosphatase and tensin homologue (PTEN) have been 

shown to be an important factor in the pathogenesis of glioblastomas. Endogenous 

signal transducer and activation of transcription 3 (STAT3) signalling is inhibited in 

PTEN-deficient glioblastoma cells. Activated STAT3 directly occupies the IL8 promoter 

and inhibits its transcription. Consistent with this chain of events, IL8 was up-regulated 

in PTEN-deficient glioblastoma cells (de la Iglesia et al., 2008).   



315 

 

In a whole exome screen of 22 medulloblastoma cases, a single mutation in PTEN was 

identified. In a validation cohort of 88 cases, 3 / 88 (3.5%) were positive for mutations 

in PTEN (Parsons et al., 2011). In addition, the transcriptomic identification of six 

subgroups by Cho and colleagues demonstrated that 14 / 18 members of the c5 

subgroup had focal PTEN and / or 10q loss, demonstrating that the inactivation of 

PTEN through loss or mutation is common in medulloblastoma (Cho et al., 2011). 

While it is clear that the expression of IL8 bears further investigation in 

medulloblastoma, the mechanism by which IL8 methylation can confer a poorer 

survival is unclear, since the methylation-dependent silencing of IL8 is antithetical to 

the activation of IL8 described above in PTEN-deficient glioblastoma cells. 

As for MXI1, there is a need to investigate the relationship between differential 

methylation of IL8 and its gene expression. Across the available transcriptomic 

datasets, there is evidence for variable IL8 expression (Figure 5.14), with a large 

average dynamic range of expression across studies (average range 6.1 log2 units, 

representing a 70 fold change); within 4 studies (Cho et al., 2011; Northcott et al., 2010; 

Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006), a large proportion of cases 

showed very low levels of expression of IL8 (Affymetrix expression array data reports a 

value of expression which is log2 transformed after adding a constant to prevent 

negative levels of expression. An absent or low level of expression is approximately 2-3 

units on this scale). The higher expression levels observed by Northcott and colleagues 

(Northcott et al., 2010) are likely due to the differential sample processing since this 

experiment utilised Affymetrix exon arrays which are not directly comparable to the 3’ 

in vitro transcription expression arrays used in the other four studies. In summary, the 

expression of IL8 in transcriptomic studies is consistent with evidence of gene silencing 

is a minority of cases. However, this cannot be directly associated with methylation 

levels of the IL8 promoter observed in this study, since the majority of 

medulloblastomas assayed in this chapter (137 / 163 non WNT cases (84%)) had 

elevated levels (β score ≥ 0.67) of IL8 methylation. 

Finally, transcriptomic investigations of medulloblastoma have suggested that group C 

medulloblastomas (Northcott et al., 2010) are enriched for genes associated with 

elevated levels of MYC, suggesting that any effect of MXI1 methylation on the nature 

of MXI1 expression may be modulated by methylomic subgroup membership. 
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However, for both MXI1 and IL8 methylation, after binary cutoffs at 0.67 were applied, 

there was no discernible survival difference for methylation status in group I and group 

II medulloblastomas, where in every case, an absence of methylation was associated 

with an improved survival (MXI1 - group I, ‘p’ = 0.01, log rank test; group II, ‘p’ = 0.01, 

log rank test. IL8 – group 1, ‘p’ =0.12, log rank test; group II, ‘p’ = 0.10, log rank test).  
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Figure 5.14. Box-plots show log2 expression of MXI1 and IL8 from 5 studies which undertook 
transcriptomic analysis of medulloblastoma (Cho et al., 2011; Northcott et al., 2010; Fattet et 
al., 2009; Kool et al., 2008; Thompson et al., 2006). Each transcriptomic dataset is labelled by 
its first author, with studies ordered by decreasing number of samples (Cho et al. – n = 194; 
Northcott et al. – n = 103; Kool et al. – n = 62; Thompson et al. – n = 46; Fattet et al. – n = 40).  

 

 

5.5.7 Further work 

The aims described in the introduction to this chapter have been fulfilled, but more 

questions remain. In particular, the investigation of the pleiotropic survival effects of 

clinico-pathological and molecular correlates were shown to be inadequately powered, 

although a potential effect for MYCC / MYCN amplification was identified, and 

emphasised the need to expand the investigation into larger cohorts. There is now a 
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clear need to fully understand the effect of these well-validated survival correlates in 

the context of subgroup membership. This could provide a platform for the derivation 

of novel risk classification schemes. It is possible that incorporation of the interaction 

between subgroups and risk factors could greatly increase the predictive power of risk 

stratification, without the need to include additional molecular markers. 

The proof of concept that methylation biomarkers can be useful as prognostic 

biomarkers sets a precedent for future investigations on higher resolution platforms in 

larger cohorts. In these future investigations, to identify methylation biomarkers that 

not only are prognostic, but also have a putative functional relevance, parallel 

investigations of the relationship between (i) methylation and survival and (ii) 

expression and survival could be undertaken on genome-wide array platforms, and any 

loci with significant relationships to survival for both gene expression and methylation 

could be investigated further. This need not necessarily come from paired methylation 

and expression array samples, and could be bootstrapped onto existing transcriptomic 

datasets. This would ensure that any potentially prognostic methylation probes are 

associated with a change in expression that may be functionally relevant.   

Before any further insights can be gained from examining the prognostic potential of 

methylation markers, MXI1 and IL8 methylation status would need to be confirmed by 

bisulfite sequencing. Subject to successful validation, the relationship between 

methylation and gene expression could be investigated. This would aim to identify 

whether the prognostic methylation markers are simply biomarkers or whether they 

engender changes in gene expression that may have a putative functional impact.   

The relationship between promoter methylation status and gene expression could be 

investigated by treating methylated medulloblastoma cell lines with 5-aza-cytidine, a 

DNA methyltransferase inhibitor (Lindsey et al., 2004), and measuring gene expression 

before and after treatment. If warranted, the expression of primary medulloblastoma 

samples could then be directly compared against the methylation state of the 

promoter regions. 

This chapter has confirmed that methylomic biomarkers have potential for assigning 

patient risk in medulloblastoma. The identification of the two methylation biomarkers 

IL8 and MXI1 and their integration into a clinical model produces a classification 



319 

 

scheme that outperforms currently used risk stratifications. It is clear that since this is 

a single cohort study, and before any consideration of the utility of this scheme is 

made, it would be imperative to validate the prognostic nature of these biomarkers in 

an independent cohort.  

Subject to successful validation of the fidelity of the reported methylation markers and 

validation of the classifier in an independent cohort, the development of an assay for 

the measurement of MXI1 and IL8 methylation in a routine diagnostic setting would be 

necessary. It would be relatively simple to integrate prognostic markers into a future 

MS-MLPA (Nygren et al., 2005) assay (see section 4.5.6) or Veracode assay (Illumina, 

2011; Pedersen et al., 2011) that assigns medulloblastoma subgroup based on 

methylation biomarkers. 

Finally, while this chapter has confined itself to examining paediatric 

medulloblastomas, exactly the same questions could and should be asked in further 

infant and adult medulloblastoma and joined (infant, paediatric and adult) cohorts. 

5.5.8 Summary 

This chapter has investigated the possibility of identifying differential behaviours of 

clinico-pathological and molecular correlates in medulloblastoma disease subgroups 

and identified the need to identify any differential behaviours in larger, independent 

disease cohorts.  

The chapter has also demonstrated that methylation biomarkers have utility as 

prognostic biomarkers, and identified specific biomarkers (MXI1 and IL8 methylation) 

with prognostic utility. Subsequently, a novel risk stratification scheme for 

medulloblastoma was derived, which out-performed both currently-used and state-of-

the-art risk stratification schemes and provides a platform for future further 

investigations for refining risk stratification of medulloblastoma.   
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Chapter 6. Summary and Discussion 
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6.1 Introduction 

Medulloblastoma is the most common malignant brain tumour of childhood, 

accounting for 20% of all paediatric brain malignancies, with an incidence of 0.5 / 

100,000 children / year (Crawford et al., 2007), corresponding to approximately 90 

cases a year in the UK (Pizer and Clifford, 2009). Clinico-pathological correlates have 

proved useful for disease stratification; 80% of standard risk patients are cured of their 

disease (Packer et al., 2006). High risk patients, defined by positivity for any of 

metastatic disease, residual disease following surgical excision and aged under 3 at 

diagnosis, fare worse, with 5 year PFS rates of 50% (Pizer and Clifford, 2009).  

Although the majority of newly diagnosed cases of medulloblastoma will be cured of 

their disease, survivors treated under current protocols are burdened with 

unacceptably severe neuro-cognitive and neuro-endocrine late effects. Typically, 

survivors will have a reduced IQ and lifelong social impairment, alongside defects in 

growth (section 1.3.5.2).  

The recent discoveries that medulloblastoma is a molecularly heterogeneous disease 

(Cho et al., 2011; Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006; 

Ellison et al., 2005; Raffel et al., 1997), comprising a series of molecular subgroups, 

offer hope that additional prognostic molecular markers may be identified that enable 

more appropriate treatment strategies, through improved disease-risk stratification 

and the targeted use of novel molecularly-targeted therapeutics, with the twin aims of 

(i) curing every patient and (ii) reducing treatment intensities in patients with a 

favourable prognosis, for an improvement in their quality of life as a survivor of 

medulloblastoma. This approach has started to bear fruit – the upcoming PNET 5 / 6 

clinical trials (Pizer and Clifford, 2009) include activation of the WNT pathway as a 

marker of favourable prognosis and amplification of MYCC / MYCN oncogenes as 

markers of poor prognosis, in addition to established clinico-pathological disease 

correlates. 

While the precise number of disease subgroups remains unclear (see section 1.3.12.1), 

there is hope that including subgroup information in survival models may also enable a 

more refined disease risk stratification. Moreover, the pleiotropic effects of 

established and novel risk covariates across disease subgroups remain to be 
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investigated in clinical trials cohorts. This, coupled with the increasing availability and 

coverage of methods to assess genomic, epigenomic and transcriptomic differences, 

should enable the completion of a comprehensive molecular characterisation of the 

disease over the next decade. This should, in turn, enable the derivation of novel 

stratification schemes, alongside improvements in pathway specific inhibitors (section 

1.3.11), which show promise for inhibiting tumour growth whilst reducing 

radiotherapeutic intensities, to help fulfil the twin aims of curing every patient, whilst 

reducing the late effects of treatment as far as possible. 

This project set out to investigate the nature and utility of medulloblastoma subgroups 

for disease prognostication. In chapter 3, transcriptomic signatures of WNT and SHH 

pathway activation were defined that accurately classified tumours across multiple 

studies (Fattet et al., 2009; Kool et al., 2008; Thompson et al., 2006). A comprehensive 

analysis of the genetic and epigenetic determinants of pathway activation was 

undertaken in the primary investigation cohort. Subsequently, a meta-analysis of the 

clinico-pathological and molecular features of the WNT, SHH, and WNT / SHH 

independent subgroups of medulloblastoma was undertaken, incorporating data from 

three other published studies, assigning pathway activation status using the defined 

expression signatures. 

In chapter 4, a novel DNA methylation microarray approach was used to determine 

whether medulloblastomas showed any differences in their patterns of methylation, 

and, if so, whether these patterns had any utility for disease classification. On a 

training dataset, a consensus-clustering, NMF-based approach (section 2.9.4) identified 

four subgroups, and defined the methylation probes that were determining metagene 

expression. The H values from the four-group clustering were projected onto the test 

dataset and a classifier used to assign group membership of the test dataset. Again, 

the clinico-pathological and molecular features of the identified subgroups were 

investigated.  

Finally, a novel risk stratification scheme was identified in chapter 5, which used the 

Cox boost algorithm (Binder et al., 2009) to augment existing clinical variables with 

methylation markers. From the resultant Cox model (section 2.14), an additive risk 
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stratification scheme was defined, and compared against current, imminent (PNET 5 / 

6) and state of-the-art molecular classification schemes.    
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6.2 Gene signatures of signalling pathway activation have utility for 

disease subclassification 

The assessment of WNT and SHH pathway activation in medulloblastoma is 

fundamental to the assignment of treatment strategies: The improved prognosis of 

WNT-activated tumours is well recognised (Cho et al., 2011; Northcott et al., 2010; 

Fattet et al., 2009; Clifford et al., 2006; Ellison et al., 2005), and it is hoped that the 

reduced treatment intensities applied to WNT-positive cases in the upcoming PNET 5 

clinical trial will ensure a cure and achieve a significant reduction in late effects of 

treatment. Moreover, the possibility of biological inhibition of the SHH pathway in SHH 

medulloblastomas (section 1.3.11) holds rich promise for a reduction in treatment side 

effects through targeted therapies that obviate or diminish the need for radiotherapy 

(Rudin et al., 2009). If the concerns about the premature fusion of growth plates in 

bones of young children treated with SHH inhibitors were to be dispelled (Kimura et al., 

2008), this could also be a promising treatment option for the 62% of infants who 

show an activated SHH pathway (Schwalbe et al., 2011), a group of patients in whom 

radiotherapy is either not used, or used only sparingly, due to the unacceptable side 

effects of treatment in very young children. 

Clinically, in order to assign subgroup status, an assay must be rapid, robust, 

reproducible and applicable in a standard hospital pathology lab. The described GeXP 

assay for the assignment of WNT and SHH pathway activation fulfils all of these criteria. 

Its applicability across in vitro and in silico datasets demonstrated its robustness and 

enabled a meta-analysis across multiple datasets to accurately identify the defining 

molecular and clinico-pathological correlates of the WNT, SHH and WNT / SHH 

independent subgroups.  

Using three further transcriptomic datasets of medulloblastoma (Fattet et al., 2009; 

Kool et al., 2008; Thompson et al., 2006) available at the time of analysis, in addition to 

the primary investigation cohort, a total cohort of 173 cases was available for meta-

analysis. Mutations in CTNNB1 and PTCH1 were exclusively detected in WNT and SHH 

pathway-positive cases, respectively. While CTNNB1 mutation was reported in 95% of 

WNT cases, 34% of SHH cases investigated harboured a PTCH1 mutation, indicating 

that other mechanisms of pathway activation must be responsible. Loss of 
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chromosome 9q was observed in SHH cases both with and without PTCH1 mutation, 

indicating that disruption of a single PTCH1 allele is sufficient to cause SHH pathway 

activation in medulloblastoma. A number of the previously reported determinants of 

SHH pathway activation (SUFU missense mutation (Taylor et al., 2002), REN allelic loss 

(Di Marcotullio et al., 2004), PTCH 1c methylation (Diede et al., 2010)) were not 

specifically associated with the SHH subgroup, indicating that additional activation 

mechanisms remain to be identified.  Loss of chromosome 6 was also closely 

correlated with WNT pathway activation, whilst chromosome 17p loss was observed 

only in the WNT / SHH independent subgroup, indicating that there may be a role for 

chromosome 17p genes in these cases. 

WNT / SHH independent tumours comprised the majority of cases (63%), and had a 

peak of incidence at between 3-6 years of age. SHH tumours were most common in 

infancy (50% of SHH cases were observed in infants), with a second peak in adult cases 

(45% of adult cases). Almost all cases under 2 years of age at diagnosis were SHH-

positive. WNT positive cases peaked in incidence at 10 and 20 years and were not 

observed in infant cases.   

There were significant differences in histopathological subtypes between the 

subgroups. WNT cases were exclusively classic type, whereas there was a strong 

association between DN histology and the SHH subgroup, although this relationship 

was not exclusive. DN cases made up the majority of infant SHH subgroup cases and, 

interestingly, all DN infants were of the SHH subgroup. In contrast, there were equal 

proportions of DN, LCA and classic cases in SHH-expressing non-infant cases, and the 

majority of non-infant DN tumours were not SHH activated. WNT / SHH independent 

tumours were primarily classic type, although both LCA and DN histologies were also 

observed. No significant differences in metastatic state or gender were identified, 

although the WNT cases showed gender parity, in contrast to SHH and WNT / SHH 

independent cases, which had an excess of males cases.   

The significant associations observed between medulloblastoma subgroups and 

specific gene, pathway and chromosomal defects strongly supports the existence of 

discrete molecular WNT and SHH subgroups. In contrast to the investigated genetic 

and chromosomal correlates of the assigned subgroups, the expression signatures 
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positively identified all subgroup cases and provided an accurate diagnostic test for 

subgroup membership. Subsequently, the meta-analysis demonstrated how SHH 

subgroup and DN tumours, arising in the infant and non-infant age groups, have 

different biological and clinical characteristics, and that SHH-positive DN tumours of 

infancy may represent a unique disease subgroup associated with a favourable clinical 

behaviour (Garre et al., 2009; McManamy et al., 2007; Rutkowski et al., 2005). The 

bimodal age distributions of the WNT and SHH cases also suggests that there exists 

additional clinical and molecular heterogeneity within these groups. 

In summary, an assay that robustly identified WNT, SHH and WNT / SHH independent 

medulloblastoma subgroups was reported and the clinico-pathological and molecular 

correlates were investigated in a wider meta-analysis. The precise number of disease 

subgroups remains unclear (section 1.3.12.1), and requires further investigation. In 

chapter 4, a novel method that assessed epigenetic patterns of DNA methylation was 

applied to primary medulloblastomas, to investigate whether they exhibited 

differences in their methylation patterns, and if so, whether the differences had any 

utility for further disease subclassification.  

6.3 Patterns of methylation have utility for disease subclassification  

The utility of DNA methylation for disease subclassification has not previously been 

assessed in medulloblastoma. The Golden Gate DNA methylation microarray (section 

2.7) was used to test whether patterns of DNA methylation had any utility for 

subclassification of medulloblastoma. The observed subgroups were validated in a 

second independent trials cohort and their relationship to the previously discussed 

transcriptomic subgroups was assessed by running the expression signature assay of 

WNT and SHH pathway activation reported in chapter 3. The clinico-pathological and 

molecular correlates of the assigned subgroups were investigated, and subgroup 

methylation biomarkers identified. Finally, the prognostic implications of subgroup 

membership were investigated. 

Consensus clustering of the training dataset (n = 100) identified four clusters that were 

well validated in the test dataset (n = 130), in addition to a small group of cases that 

were not classifiable (n = 14; 6%). Integration with transcriptomic subgroup 

assignments revealed two subgroups characterised by WNT and SHH pathway 
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activation, respectively, and two subgroups independent of the WNT and SHH 

pathways. The WNT subgroup (n = 28; 13%) was associated with a WNT expression 

signature (Chapter 3 and Schwalbe et al., 2011), CTNNB1 mutation, nuclear 

accumulation of β-catenin protein (Eberhart et al., 2000) and chromosome 6 loss 

(Clifford et al., 2006). WNT cases were not observed in infants, and had a bi-modal age 

of incidence, with peaks at 10 and 17 years, and had a predominantly classic histology. 

In contrast, SHH cases (n = 50; 23%) were enriched in infant cases, with peaks of age of 

incidence at 3 years and in adult cases (>16 years). SHH cases were associated with 

previously defined markers of the SHH group (a SHH expression signature (Chapter 3 

and Schwalbe et al., 2011), GAB1 immunopositivity (Ellison et al., 2011a) and were 

enriched for DN histology. Both SHH and WNT cases showed gender parity. 

In contrast, the remaining subgroups, group I (n = 94; 44%) and group II (n = 44; 20%), 

were enriched for male cases, with the enrichment being particularly strong in group II 

cases. Group II was also enriched for LCA histology and metastatic disease, and peaked 

in incidence at 4 years. Group I, the largest subgroup, was similarly enriched for 

metastatic disease, but was uniquely enriched for cases that displayed loss of 

chromosome 17p and showed a peak of incidence at 9 years. An investigation of the 

prognostic potential for subgroup membership revealed that the WNT subgroup was 

associated with a favourable prognosis. No difference was apparent for the remaining 

subgroups, SHH, group I and group II.  

Chapters 3 and 4 both investigated the subgroups of medulloblastoma using two 

different methodologies, and defined clinico-pathological and molecular features 

associated with each group. The findings from both chapters are summarised in Table 

6.1. The equivalent groupings from both studies share clinical and molecular features, 

and have striking similarities in their incidence.
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 Subgroup WNT SHH WNT / SHH independent 

Transcriptomic Signatures 

(chapter 3) 

Clinico-pathological 

features 

· Non-infant cases, bi-modal age 

distribution, peaks at 10 and 20 

years 

· Classic histology 

· Gender parity 

· 62% of infant cases 

· 45% of adult cases 

· DN enrichment – all 

infant DN cases were SHH; 

majority of non-infant DN 

cases were not SHH 

· Male excess 

· Peak of incidence at 3-6 years old 

· Predominantly classic histology 

· Male excess 

Molecular features 

· CTNNB1 mutation (95%) 

· Chromosome  6 loss (88%) 

· PTCH1 mutation (34%) 

· Absence of COL1A2 

methylation 

· Chromosome 17p loss 

Incidence (%) 12 24 63 

DNA methylomic 

classification (chapter 4) 

Subgroup WNT SHH Group I Group II 

Clinico-pathological 

features 

· Good prognosis 

· Non-infant cases, bi-modal age 

distribution, peaks at 10 and 17 

years 

· Classic histology 

· Gender parity 

· Infant cases 

· DN enrichment 

· Gender parity 

 

· Peak of incidence at 9 

years 

· Metastatic disease 

· Male excess 

 

· Peak of incidence at 4 

years 

· Metastatic disease 

· Enrichment for LCA 

histology 

· Male excess 

 

Molecular features 

· WNT expression signature 

· CTNNB1 mutation 

· Chromosome 6 loss 

· Nuclear accumulation of β-

catenin 

· SHH expression signature 

· GAB1 immunopositivity 

· Enrichment for 

chromosome 17p loss 

 

Incidence (%) 13 23 44 20 

Table 6.1. Summary of clinico-pathological and molecular features from transcriptomic classification and methylomic classification of medulloblastoma. 
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Previous transcriptomic investigations had reported from 4 to 6 disease subgroups 

(Cho et al., 2011; Northcott et al., 2010; Kool et al., 2008; Thompson et al., 2006); here, 

using a methylomic approach, 4 subgroups were identified. Two (WNT and SHH) were 

similar in nature to the previously described WNT and SHH transcriptomic subgroups, 

as shown in Table 6.1. The two WNT / SHH independent subgroups, group I and group 

II showed overlapping methylation patterns and appeared to be closely related; 

nevertheless, significant differences between these subgroups were identified. These 

differences (enrichment for loss of chromosome 17p in group I, LCA enrichment in 

group II) matched the enrichments of loss of chromosome 17p in Northcott 

transcriptomic group C (Northcott et al., 2010) and LCA histology in Northcott 

transcriptomic subgroup D (Northcott et al., 2010) respectively, suggesting that there 

is a degree of overlap between the transcriptomic subgroups reported by Northcott et 

al. and the methylomic subgroups reported in this project, and is therefore supportive 

of there being four subgroups of medulloblastoma. By running paired methylomic and 

transcriptomic arrays, the precise relationship between methylomically- and 

transcriptomically-determined subgroups could be assessed, and, by clustering the 

samples using the transcriptomic determinants of the six subgroups described by Cho 

and colleagues (Cho et al., 2011) to subgroup the disease, the relationship between 

the methylomic subgroups and their 6 transcriptomic subgroups could also be 

assessed.  

The demonstration that DNA methylomics is well suited to the identification of 

medulloblastoma subgroups enables the wider assignment of medulloblastoma 

subgroups in historical cohorts where fresh frozen tumour material is unavailable, 

since the Golden Gate array works well with DNA derived from FFPE tissues. The 

Golden Gate array has proven to be a useful platform for investigation of genome-wide 

methylation patterns, showing reproducible results from low amounts of starting 

material. In addition, the stability of DNA methylation offers an advantage over 

transcriptomic assays, which typically perform poorly on RNA derived from FFPE tissue, 

due to the fragility of mRNA.  

The work described in chapter 4 convincingly identified four disease subgroups, and 

identified significant relationships with clinico-pathological and molecular disease 
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features, validating the use of DNA methylation microarrays for disease 

subclassification.  

Although the WNT subgroup was associated with a favourable prognosis, there was no 

prognostic value to membership of the SHH, group I or group II subgroups; the work 

reported in chapter 5 investigated the utility of methylomic biomarkers to augment 

survival models of medulloblastoma, for the generation of novel survival models.  
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6.4 Novel disease classification models 

Chapter 5 reported an investigation into the prognostic potential of methylomic 

markers, in addition to a consideration of the feasibility of investigating established 

clinico-pathological risk factors for any evidence of distinct subgroup behaviours. 

Unfortunately, the survival cohort used in this chapter, despite being one of the largest 

medulloblastoma cohorts studied to date, was not adequately powered to detect such 

differences, so these investigations must wait for larger cohorts, demonstrating how 

subsequent studies need to be carefully designed to ensure adequate power for the 

detection of subgroup specific differences in the prognostic potential of established 

clinico-pathological correlates. 

Since WNT cases were associated with a particularly favourable prognosis, they were 

removed from subsequent investigations into establishing prognostic methylation 

biomarkers. After verification that established clinical covariates were significantly 

prognostic in the test cohort, which consisted of PNET3 trials cases, plus additional, 

age-matched, non-trial, primary medulloblastomas, methylation probes amenable to 

development as biomarkers were selected, by calculating their bimodality (Wang et al., 

2009a). The 200 most bimodal probes were applied to the Cox Boost algorithm 

(section 2.17), along with the mandatory clinico-pathological covariates LCA histology, 

M+ disease and MYCC / MYCN amplification.  

The algorithm identified three cross-validated, potentially prognostic methylated loci, 

two of which, MXI1 and IL8, were amenable to binary classification of their 

methylation status, analogous to the classification that could be made through 

bisulfite sequencing. After confirming that binary classification of methylation status 

did not affect multivariate Cox models, nomograms were constructed that 

demonstrated how each covariate selected by the Cox boost algorithm had similar 

hazard ratios, supportive of a simple additive model of disease risk. In the described 

model, non-WNT patients were assigned to one of three risk groups (low, standard and 

poor), depending on their cumulative number of risk factors. Patients with 0 or 1 of the 

risk factors LCA histology, M+ disease, MYCC / MYCN amplification, MXI1 methylation 

or IL8 methylation were assigned to the low risk group; patients with 2 risk factors 

were assigned to the standard risk group; patients with 3 or more risk factors were 
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assigned to the high risk group. WNT cases were assigned to the low risk group, 

regardless of the status of any other risk factor.  

The proposed classification scheme performed well, comfortably out-performing the 

current risk stratification schemes, as well as the upcoming PNET 5 / 6 clinical trials 

model and other state-of-the-art classification schemes. Most importantly, 46% of 

patients were classified as low risk, compared to only 15% of patients using the PNET 5 

/ 6 classification(Pizer and Clifford, 2009). This would, of course, require validation in 

additional, independent cohorts, but nevertheless, it represents a validation that 

methylation markers can be useful for disease prognostication, particularly if care is 

taken to pick bimodal loci, which are, in turn, suitable for development in subsequent 

clinical assays.  

6.5 Future work and progress towards improved treatments for 

medulloblastoma 

The molecular heterogeneity of medulloblastoma is becoming clear. Assays for the 

routine assignment of subgroup identity are important, since they can identify groups 

of patients with a good prognosis (WNT) or patients for whom SHH inhibitors might be 

efficacious. The assay described in chapter 3 is a robust, rapid and low cost means of 

assigning subgroup status and could be useful in a routine hospital pathology 

laboratory. An integrative analysis of all the publicly available transcriptomic datasets, 

discussed in section 4.5.6, could help consensus for the number of transcriptomic 

disease subgroups to be reached. 

A robust definition of disease subgroups, identified through comprehensive integrated 

transcriptomic, copy number, sequencing and methylation-based analyses in large, 

clinical trials cohorts is needed; this would enable the inter-relationship between gene 

copy number, mutational status, methylation status and gene expression to be 

assessed, and their contribution to determination of subgroup membership to be 

quantified. The integrative techniques that will enable these analyses include the 

application of NMF techniques (section 2.9.3) across multiple studies, Genomic 

Identification of Significant Targets in Cancer (GISTIC) analysis, for identification of 

copy number aberration enrichment (Beroukhim et al., 2007), geneset enrichment 

analysis (GSEA) (Subramanian et al., 2005), and tests for anti-correlation to identify 
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hyper / hypomethylation events associated with a reduced / increased gene 

expression. Subsequently, expression signatures that identify the definitively 

determined medulloblastoma subgroups could be developed, enabling assignment of 

disease subgroups in a single assay, which could be useful in a diagnostic laboratory 

setting and, in future, could have additional prognostic implications that are currently 

unknown. 

In chapter 4, a first generation DNA methylation microarray (Bibikova et al., 2006) was 

used to identify four disease subgroups. Subsequently, the Infinium (27,000 probes) 

(Bibikova et al., 2009) and Infinium HD (450,000 probes) (Sandoval et al., 2011) 

methylation arrays have been released that achieve unprecedented resolution to 

enable a truly genome-wide characterisation of DNA methylation, a coverage which 

was lacking for the Golden Gate methylation arrays employed in chapter 4. By applying 

these arrays to larger cohorts, it might be possible to identify additional subgroups-

within-subgroups. Alternatively, as WGSBS and the methods for its analysis become 

more mature (Li et al., 2010; Lister et al., 2009), the use of this approach could provide 

a record of CpG methylation at single nucleotide resolution. There is evidence from 

transcriptomic studies that paediatric and adult SHH medulloblastomas are clinically 

and molecularly distinct (Northcott et al., 2011; Remke et al., 2011b), and this 

increasing refinement in the molecular classification of medulloblastomas may, in turn, 

be useful for further refinements of future risk stratification schemes. The use of the 

subgroup-associated methylation biomarkers in assays that determine subgroup status 

is attractive, since DNA methylation is a more stable indicator than gene expression, 

and, through using an MS-MLPA assay (Nygren et al., 2005) to assign patient subgroup 

and, potentially, prognosis, it may be possible to automate the classification of 

subgroup assignment in a routine diagnostic setting; an automated classification is 

something which is difficult to achieve by using immunohistochemistry, which is 

subjective in nature. The 450k arrays will also enable questions to be asked that were 

not possible with the Golden Gate methylation array; patterns of differential 

methylation could be subjected to gene ontology and gene set enrichment analysis 

(GSEA), to identify co-repressed networks of genes, silenced by methylation. Analysis 

of medulloblastoma by these 450k arrays can provide a rich source of potential disease 

biomarkers and, in conjunction with transcriptomic analysis, could for the first time 
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identify relevant genes whose expression is mediated by promoter DNA methylation 

patterns in medulloblastoma.  

As outlined in the introduction (section 1.3.16), the molecular heterogeneity of 

medulloblastoma necessitates a re-evaluation of disease prognostication in the 

context of the disease subgroups. The relative paucity of validated molecular markers 

of prognosis (WNT / MYC gene amplification excepted) may be because the nature of 

the subgroup can influence the clinical relevance of the marker, and this requires 

investigation in larger cohorts.   

The improved survival model described in chapter 5 represented a proof of concept 

that methylation biomarkers can be useful as prognostic biomarkers, and sets a 

precedent for future investigations of the prognostic potential of DNA methylation 

biomarkers on higher resolution platforms, in larger cohorts. For the purposes of this 

study, it is important that the methylation status of the genes MXI1 and IL8 be verified 

using bisulfite sequencing to confirm that the array is accurately reporting the 

methylation status of the promoter region. Before any consideration of the potential 

incorporation of MXI1 and IL8 methylation status into current classification schemes, 

the prognostic value of these genes would need to be subjected to validation in 

independent, preferably trials-based, disease cohorts. 

In these future investigations, to identify methylation biomarkers that not only are 

prognostic, but also have a putative functional relevance, parallel investigations of the 

relationship between (i) methylation and survival, and (ii) expression and survival, 

could be undertaken on genome-wide array platforms, and any loci with significant 

relationships to survival for both gene expression and methylation could be 

investigated further, ensuring that any selected, putatively prognostic methylation 

probes are associated with a change in expression that may be functionally relevant.   

This project explored themes that will become increasingly important over the coming 

years – although tumour genome sequencing may eventually enable truly 

individualised patient treatment options to be considered, at least for the next decade, 

broad risk- based classification will remain clinically relevant – the increased sensitivity 

afforded by the inclusion of additional molecular (genomic, transcriptomic and 

methylomic) markers have the potential to improve patient outcome, both in terms of 
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patient survival and for the reduction of late effects, but will have to be done carefully, 

to ensure that only robust and validated molecular makers are incorporated.  
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